
 1

•

•

Solaris™ Security

By Peter H. Gregory

Publisher : Prentice Hall PTR

Pub Date : August 17, 1999

ISBN : 0-13-096053-5

Pages : 336

At last, a security book just for Solaris and UNIX(r) system administrators. Learn
the specifics for making your system secure, whether it's an organization-wide
network or a standalone workstation. Expert author Peter Gregory has managed
security for everything from top-secret corporate research facilities to casinos.
Take advantage of his experience to build a secure, reliable system of your own.

Solaris Security looks at the physical, logical, and human factors that affect
security, including:

• PROMs, physical security, bootpaths, permissions, auditing tools, system
logs, passwords, and more

• Secure network interfaces and services for remote and Internet access,
intrusion detection, access control, email, and printing

• Enhanced security for NIS, NIS+, DNS, and NFS

A special section shows you how to plan for the inevitable disasters so you can
recover your data quickly and accurately without compromising security.
References to books, journals, and online resources will help you keep up with
the latest innovations.
Every chapter opens with a checklist of key topics and their significance, so you
can quickly find the information you need. Whether you are a security manager,
Information Technology/Systems manager or a network administrator,
Solaris(tm) Security is the single resource to answer all your questions and get
your systems in shape now and for the future.

 2

Library of Congress Cataloging-in-Publication Data

Gregory, Peter H.
Solaris security / Peter H. Gregory.
p. cm.
ISBN 0-13-096053-5
1. Computer security. 2. Solaris (Computer file) I. Title.
QA76.9.A25G752000
005.8—dc21 99-26686
CIP

Credits

Editorial/production supervision: BooksCraft, Inc., Indianapolis, IN

Acquisitions editor: Gregory Doench

Editorial assistant: Mary Treacy

Marketing manager: Bryan Gambrel

Manufacturing manager: Alexis R. Heydt

Art director: Gail Cocker-Bogusz

Interior designer: Meg VanArsdale

Cover director: Jerry Votta

Cover designer: Anthony Gemmellaro

Project coordinator: Anne Trowbridge

Sun Microsystems Press

Marketing manager: Michael Llowyd Alread

Publisher: Rachel Borden

© 2000 by Prentice Hall PTR
All rights reserved. This product and related documentation are protected by copyright and distributed
under licenses restricting its use, copying, distribution, and decompilation. No part of this product or
related documentation may be reproduced in any form by any means without prior written authorization
of Sun and its licensors, if any.
RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is
subject to the restrictions as set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.
The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.
All product names mentioned herein are the trademarks of their respective owners.
10 9 8 7 6 5 4 3 2 1

Dedication

 3

To Corinne and Laney, without whom life would lack meaning and joy.
To the memory of Melanie Baker-Bowman, friend and colleague.

 4

Foreword
The other day, there was a news story about hackers who took over some U.S. government Web sites.
Most people probably thought one of two things about this event: that the hackers were very good, or
that the government was really incompetent. And the story undoubtedly confirmed a widespread fear:
that cyberspace is a very bad neighborhood where lawlessness abounds and no one is safe.
Are any of these beliefs accurate? Are all of them accurate? As is generally the case, none is
completely correct, but all have an element of truth.
We can address the first belief easily enough. Yes, some hackers are excellent. They can take a new
application or protocol and find holes that have completely eluded the designers. But such hackers are
a small minority. Most are copycats—so-called "script kiddies"—who run canned programs that exploit
known flaws. A large part of running a secure system rests on this point; as we shall see, this is a very
important matter.
But if typical hackers aren't that good, is the government—more accurately, the system administrators
who run the various machines affected—that bad? Again, this will become clear later.
The last point—the notion that the Internet is inherently very dangerous—is the most interesting.
Translated into technical language, the same idea will be expressed somewhat differently—that the
protocols used on the Internet are flawed and that, if the designers had paid proper attention to security,
we wouldn't have any problems today. The corollary is that, with a bit of willpower, we could deploy
newer and better protocols and fix the problem. As this quote from a popular Web page indicates, many
businesses appear to support the idea.

Our secure server software (SSL) is the industry standard and among the best software
available today for secure commerce transactions. It encrypts all of your personal
information, including credit card number, name, and address, so that it cannot be read
as the information travels over the Internet.

The context of this quote is an explanation of why it's safe to shop on this particular Web site. The page
goes on to cite the large numbers of people who have shopped there without any problems. The
implication is that cryptography is both necessary and sufficient to resolve all security concerns.
That cryptography is needed is almost beyond argument. Given the so-called "password sniffers"—
eavesdropping programs that pick up passwords in transit —there is little doubt that analogous
programs would have been developed to steal credit card numbers. In fact, it's a simpler problem;
passwords are generally sent a character at a time, whereas credit card numbers are easily recognized
and are likely to be contained in a single large packet. But to claim that the cryptography is sufficient is
an exaggeration.
Ignoring the flaws in typical Web cryptography—those are inherent in the nature of the human
interactions when using the Web; it's doubtful that any other designers could have done better—the real
threat comes from the company's very success: the company has many credit card numbers stored on
its site. Anyone who successfully penetrates it can steal them by the millions. In other words, the use of
encryption and authentication—which is about all that better network protocols could do for us—protect
the data in transit, but leave it unprotected on the destination host. Only if other forms of cryptography
can prevent all ways to hack into that host can we say that better network protocols would do the trick.
In other words, from a security perspective the Internet protocols are designed about as well as they
could be; any other network of comparable power would have very similar security issues.
But if the Internet is a dangerous place, and the problem isn't with its design, what is the problem? What
is wrong with our network security? That's a trick question, though; the right question is, what is wrong
with our hosts? While there are problems attributable to the network itself—and these are the problems
most easily fixed by cryptography—what we generally see is the use of the Internet to exploit host
security problems. The distinction can be seen most easily by asking this question of any security hole:
if the Internet did not exist, could a local user exploit that hole to gain privileges? In most cases, the
answer is yes. In other words, the Internet has provided the access, rather than being an inherent part
of the problem.
This realization—that host security is the real issue—is the key to achieving security on the Internet. All
the cryptography in the world won't protect a machine that is insecure. The trick, then, is knowing how
to protect hosts—and it's not trivial.
One solution, of course, is limit what a host can do. If a program isn't available, it isn't a security risk.
But deciding what programs should and shouldn't run on a given computer is a delicate task; one has to

 5

balance functionality against security. Indeed, given the intertwined nature of services on a modern
operating system, many programs you need won't run without other programs you regard as more
dubious. Thorough knowledge is necessary when making such trade-offs.
The purpose of a firewall—the primary Internet security device in use today—is now clear. A firewall
shields risky services from hostile outsiders, while permitting their use by presumably trustworthy
insiders. In other words, it eases the problem by limiting access, hence changing the risk/benefit
equation. Firewalls, then, are not about network security; rather, they are communications interrupters.
They limit access to risky host services.
From this, we see the fundamental limitation of firewalls: since they don't provide security per se,
anyone who can bypass them—an insider or an outsider who has found some way around or through
the firewall—can still exploit residual problems on nominally protected machines. Firewalls are quite
valuable, but they are not panaceas, and they must be properly placed to be useful.
One more point must be raised before we can answer the questions posed at the beginning of this
discussion: what is the nature of these security holes? It turns out that virtually all of them are bugs,
either in code or in system configuration. If we could eliminate bugs, we could eliminate almost all
security problems, and most of the rest could be fixed by cryptography.
Of course, we can't prevent bugs, especially in code supplied to us by others. But we can apply patches
as they are developed. Most successful attacks, it turns out, rely on known holes, holes for which
patches and workarounds already exist. Certainly, that is the case for virtually all of the attacks
launched by the script kiddies.
Beyond that, system configuration can make a big difference. This is especially true for containing
penetrations. For example, suppose that an intruder has somehow gained access to a system. Can he
or she be stopped at that point, before further damage is done? That generally depends on whether or
not the intruder can obtain root privileges, which in turn is critically dependent on local system
configuration.
Host security, then, rests on four legs: bug-free code and application design, up-to-date system
patches, good configuration, and the proper balance between functionality and security. Three of these
four are the responsibility of the system administrator. You cannot have a secure system without good
system administration.
Good system administration is not easy, however. Apart from internal pressures—there is a perpetual
tension between security on the one hand and functionality and ease of use on the other—reliable
information is hard to come by. Too many references are too vague and general or try to cover too
many different platforms. But the devil is in the details, and a routine vendor-supplied upgrade can
overwrite carefully tuned security mechanisms.
Were the system administrators to blame for the break-ins we described earlier? We don't know. But if
they were, it was not because they were bad. Rather, it takes great system administration to keep a
machine secure, and even good system administration is hard.
—Steven M. Bellovin
AT&T Labs Research

Preface

Who Should Read This Book
A Quick Look at the Contents
Technical Prerequisites for the Practitioner
Conventions Used in This Book
Sources for Information
Security Remedies and Public-Domain Software
About Web Sites
Acknowledgments
Feedback
Disclaimer

Who Should Read This Book

Solaris™ Security has two audiences—IS/IT and security managers and UNIX administrators.
The content for IS/IT and security managers appears primarily in

 6

• Chapter 1, "The Security Problem"
• Chapter 2, "The Security Paradigm"
• Chapter 10, "Network/System Architecture"
• Chapter 16, "System Recovery Preparation"

The remaining chapters in the book are primarily technical and written for the UNIX administrator.
However, any IS/IT or security manager who needs to learn more about UNIX technology (in the
security context) will find all of the technical chapters easy to read. Most chapters open with "What's in
this chapter" and "Why this is important" sections. This allows you to choose whether any particular
chapter needs immediate attention or whether it can or should be considered in the future.

Quick Look at the Contents

This book discusses the physical, logical, and human-factor aspects of computer and network security
in the specific context of Solaris 2.x and Solaris 7 running on Sun Microsystems computers. There are
five parts.

• Introduction. The computer security problem is dramatically illustrated in chapter 1, "The
Security Problem." Chapter 2, "The Security Paradigm," is a principle-based prescription
recommended for use by all UNIX administrators, but also applicable to those managing
computers of other vintages.

• The standalone system. This part focuses on the computer itself and covers all aspects of
security. Regardless of whether or not it is connected to a network, every system is also a
standalone system. Chapter 3, "PROM, OpenBoot, and Physical Security," covers one of the
least-known vulnerabilities of a Solaris system, as well as practical means for securing a Sun on
a desktop or in a data center. Chapter 4, "The Filesystem," is a comprehensive review of file
and directory security, and includes sections on filesystem auditing tools and suggestions for
UNIX administrators. Everything about user accounts is discussed in chapter 5, "User Accounts
and Environments." The intricacies of system booting are covered in Chapter 6, "System
Startup and Shutdown."Chapter 7, "cron and at," and chapter 8, "System Logs," provide a
thorough look at those respective areas.

• The network-connected system. This part of the book is dedicated to the role and place of a
Sun system on a network. Most severe vulnerabilities of a system are related to its being
connected to a network. Chapter 9, "Network Interfaces and Services," discusses the logical
attachment of Sun systems to the network and its vulnerable services. The principles of network
and system architecture are covered in chapter 10, "Network/System Architecture." "Electronic
Mail" is the topic of chapter 11. Chapter 12 reveals vulnerabilities with printing. Chapter 13,
"Network Access Control," describes the best means for controlling access to a system via the
network. DNS, NIS, and NIS+ are discussed in chapter 14, "Name Services." Chapter 15, "NFS
and the Automounter," dissects these services and offers ways of improving their security.

• Disaster and recovery. Disasters, whether caused by human error, malice, or natural events,
will occur. Chapter 16, "System Recovery Preparation," gives a detailed look at the measures to
be taken before a disaster strikes to ensure a rapid, accurate, and complete recovery.

• Appendices. Appendix A, "Online Sources for Security Information," is a thorough review of
web sites, FTP sites, and mailing lists. Likewise, a comprehensive list of security tool sources is
found in appendix B, "Online Sources for Public-Domain Security Tools." Complete information
on Solaris patches is found in appendix C, "Obtaining and Applying Solaris Patches."Appendix
D, "Suggested Reading," refers the reader to online and in-print publications of further interest.
Sun's Solaris security products are discussed in appendix E. The steps required to implement
and manage C2 security are found in appendix F. Appendix G explains how to verify the
integrity of public-domain software. A glossary of attacks appears in appendix H. Appendix I is a
secure system checklist.

Technical Prerequisites for the Practitioner

Solaris™Security is written for the intermediate to advanced UNIX administrator who needs a thorough
understanding of the Solaris operating system from a security perspective. If you are a technical reader,
you should have the following tools and experience:

 7

• A C compiler—either one furnished by Sun or the Gnu C compiler. This is because most public-
domain tools are packaged in source form only and require compilation.

• Some experience with building public-domain tools on a UNIX system. This is not as critical a
requirement as it was during UNIX's first decade, when public-domain tools were not as
portable, where they required a lot of modification before they would compile (much less work
properly). Further, advances in the configuration tools that accompany most public-domain
packages permit those with little or no experience with the C language to get even the most
complex public-domain tools up and running.

Conventions Used in This Book

Commands and Filenames

I emphasize commands and filenames within paragraphs with italics. For example, the file /etc/passwd
contains system password information. The trap command is used to prevent premature exit.
Commands and filenames outside of paragraphs are set in Courier font; for example

share -F NFS -o rw=homeusers -d "Home Directories" /export/home

Portions of commands indicating syntax (vs. the actual intended content) are set in italics, as follows.

share -F FStype -o options -d description path

In the example above, FStype, options, description, and path are to be replaced with actual values
appropriate in practice (I will always point this out in the text where such examples occur in the book).

File Contents and Scripts

Shell scripts and the contents of computer files are set apart from paragraphs and are set in Courier
font. The following example user's .profile file illustrates.

.profile file for application users
trap exit 1 2 3 15
PATH=/export/app/bin
exec /export/app/bin/application
exit

A sample /etc/default/passwd file appears as follows.

#ident "@(#)passwd.dfl 1.3 92/07/14 SMI"
MAXWEEKS=4
MINWEEKS=1
WARNWEEKS=3
PASSLENGTH=6

Computer Sessions

Examples of sessions with the computer are set apart from paragraphs and set in Courier font. Input
from the user is underlined to distinguish it from computer output. An example session follows.

% id
uid=1001(jim) gid=101(users)
% su bob
Password: ********

 8

% id
uid=1004(bob) gid=102(cust)
% lp -d localprinter /home/bob/eom.prt
request-id is localprinter-87 (1 file(s))
%

Also note from this example that the user-entered password is represented by a string of underlined
asterisks. In reality, Solaris does not echo any actual characters typed when a user enters a password;
the underlined asterisks signify a user entering non-echoed text.

Note

Some commands include the underscore (_) character, which is obscured in
underlined text. Commands with underscores are not underlined in this book, and all
such examples are footnoted. An example command with an underscore follows.

ndd -set /dev/ip ip_forwarding 0

Cautions and Warnings

Special notes and cautions are set apart, like this.
Caution

/usr/bin/su has the SetUID bit turned on. Su will no longer work if this bit is turned off.

Sources for Information

This book references several information sources. Each chapter ends with a section entitled "Where to
Go for Additional Information" in which one or more of the following types of references are cited.

• AnswerBook. This is an online reference provided by Sun and included with the Solaris 2.x
release media. AnswerBook employs hyperlinks to give you the ability to quickly retrieve
documents referenced within other documents. Any user can start a local AnswerBook session
with the answerbook (Sun's proprietary browser that predates Web technology) or answerbook2
(Web browser interface) command.

• Man pages. This is the original UNIX command reference, useful if you know the command or
file name you wish to learn more about.

Note

Man page references in this book contain the man page section number to help
differentiate those instances where an entry appears in more than one section. For
example, when the passwd man page is cited, it may appear as "passwd(1M)" (the
passwd command) or "passwd(4)" (the passwd file). To call up the "passwd(1M)"
man page, enter the command man -s 1M passwd . To call up the "passwd(4)" man
page, enter the command man -s 4 passwd.

 9

• docs.sun.com. Sun has placed its entire AnswerBook and Man Pages collections on the
Internet at http://docs.sun.com/.

• SunSolve. This is an information service made available to Sun customers on current
maintenance or support contracts. SunSolve is periodically distributed to customers on CD-
ROM and is also available online at http://sunsolve.sun.com/. A userid and password are
required to use this site.

• Web sites. These are organizations or collections of information useful for the security
specialist.

• Publications. This ranges from paper to electronic magazines, books, and articles.

Security Remedies and Public-Domain Software

This book illustrates security weaknesses in the Solaris operating system and proposes remedies for
those weaknesses. Remedies take the form of

• System configuration changes. Frequently, a security weakness can be mitigated simply by
changing a configuration.

• The use of Sun-supplied software. This book will describe the package name, where it can be
found, and where to find installation instructions.

• The use of commercial software. Sometimes, only a commercial software package is available
as a security remedy. This book describes such security programs and where they can be
found.

• Process and procedure changes. Frequently a system's weakness lies in the action (or inaction)
of users and administrators. This book proposes several changes in behavior that are intended
to raise system security awareness.

Warning

Solaris™ Security neither warrants nor endorses the use of configuration changes or
public-domain or commercial software. It is the final decision of the UNIX
administrator or other local site professional to decide what measures need to be
taken to remedy security weaknesses.

All public-domain software tools must be verified for integrity. A well-known security
tool was once compromised (fitted with a back door) and distributed to the
unsuspecting public for a short time. A UNIX administrator should no longer take the
integrity of a security tool for granted just because it is on a respected or well-known
web site. Appendix G contains information on how to verify the integrity of software
obtained from the Internet.

The term public domain does not necessarily constitute a legal right to use for all
individuals, organizations, or situations. The license agreement for any public-domain
software package should first be examined to ensure that its terms and conditions are
not in conflict with the package's intended use. Each site's UNIX administrator or other
local site professional must exercise sound judgement.

About Web Sites

Solaris™ Security is full of uniform resource locators (URLs) containing the latest tools and other
information. But, on the other hand, nothing dates a book like obsolete, changed, or inoperative URLs.

 10

In the short space of time between final draft and publication of this book, some URLs are certain to
become outdated or the Web site restructured, rendering complex URLs inoperative.
Consider the following URL:
ftp://ftp.win.tue.nl/pub/security/tcp_wrappers_7.6.tar.gz
This URL, because it contains a tool's version number, has a fairly high likelihood of becoming
obsolete. If the tool is upgraded, this URL may be deactivated. If something like this happens, try the
URL but without the last element, as follows:
ftp://ftp.win.tue.nl/pub/security/
Examine the contents of this page to determine what data should be retrieved. To continue this
example, if even the preceding URL is invalid, truncate the last remaining element
ftp://ftp.win.tue.nl/pub/
and so forth, until information can be found that will indicate what happened to the desired content.
Most responsible Web and file transfer protocol (ftp) sites will deposit a README file stating that tools
or other information are at another site or no longer available.
If all of the above fails, then information about the desired tool or publication may be found from one of
the general security Web sites listed in appendix A, "Online Sources for Security Information," or
appendix B, "Online Sources for Public-Domain Security Tools."

Acknowledgments

Solaris Security owes its existence to the influence, ideas, and contributions of several individuals and
organizations.
Liz Suto introduced me to the publishing business when she asked me to review her book, Informix-
Online Performance Tuning. Liz introduced me to Mark Taub, one of Prentice Hall's acquisition editors,
with whom I have worked on several book reviews in the years since. Mark in turn introduced me to
other editors at Prentice Hall, exposing me to several more reviewing projects.
I would also like to thank John Hedtke, an accomplished technical author and local acquaintance, for
sage advice about writing technical books—not only how to approach the book itself, but also its impact
on one's life.
Jeff Gitlin (Lucent) reviewed an early version of the manuscript and offered numerous ideas. John Gray
(University of Hartford) reviewed an early version of chapters 1 – 5 and likewise provided invaluable
feedback.
As the manuscript matured, some of my AT&T colleagues assisted: Ken Jacob with Solaris patches;
Gordon Marler with NIS, NIS+, NFS, and Automounter; Patrick Olney on PGP, system logs, secure
system checklist, and glossary of attacks; Rani Sandoy-Brown on logcheck and the proc commands;
and Robert Olson on PROM security, Mike Cattolico (Tigerscience) helped with IPsec and SKIP.
Thanks also to Doug Hughes (Auburn University) for some clarification on some of the content at his
NIS security site and to Wietse Venema (IBM) for some helpful PGP information and permission to use
his site as an example.
Near the manuscript's completion, Gordon Marler (AT&T) and Armoun Forghan (AM Technologies) did
a lot of QA and editing in a short space of time. Gordon QA'd all of the URLs—itself a daunting task. I
thank my wife, Corinne Gregory, for the developmental edit of the entire manuscript (while eight months
pregnant!). This important step greatly enhanced the book's readability.
The run level state-transition diagram was added at the last minute. Thanks go to Ken Jacob, Rani
Sandoy-Brown, Eric Andrews, and Roger Santo for helping to make it understandable.
Special thanks to Steven M. Bellovin, co-author of Firewalls and Internet Security: Repelling the Wily
Hacker, for writing the Foreword. His pioneering work with UNIX security may be his greatest legacy.
And thanks to my acquisitions editor, Greg Doench. Greg's been a great individual to work with, on prior
book and book proposal review projects as well as with this book. Greg's greatest virtue is patience
(trust me). And thanks, too, to Mary Treacy, Greg's assistant, for helping Greg help me.
Thanks to Ian Meldrum of Sun Microsystems for acquiring a Sun workstation and Solaris releases
2.5.1, 2.6, and Solaris 7, as well as several SunSolve and AnswerBook collections. And thanks to Jim
Barbuscia at Sun, who helped chase down some vital pieces of information.
Finally, I thank my wife, Corinne, for helping me get up at 4 A.M. on weekdays so that I could spend
time researching and writing without adversely affecting family time.
Special thanks go to Melanie Baker-Bowman, in whose memory I dedicate this book. Melanie was a
career tech writer and communications master who really knew the writing business. She was one of
my best friends and a colleague at AT&T. We worked together helping to get AT&T's Project Angel off
the ground in its early days. She offered encouragement and ideas during the book's proposal and early

 11

writing stages. She offered to review the entire first draft of the manuscript for wide-audience
readability. Coincident to my sending her the manuscript's first draft, Melanie was diagnosed with
advanced cancer of the pancreas. Undaunted, Melanie marked up a few chapters, and we discussed
them on the phone. Ultimately, the cancer prevailed and Mel passed away a week before final
manuscript submission.
I learned a great deal about writing to a diverse audience during the many writing projects that Melanie
and I worked on at AT&T. She lives on throughout this book on every page.
Melanie was best known for kayaking in Puget Sound; I'll always be reminded of her when I see a
kayak atop a car or in the Sound. Hence the kayak on the dedication page.

Feedback

Despite much research, experimentation, and QA, it is possible that there are mistakes in this book.
Further, progress and technology march on: even before this book goes to press, Web sites referenced
herein will rise and fall, security tools will fall into and out of favor, hackers will find brand-new avenues
of exploitation, and Sun Microsystems will add and change features in Solaris. Please send me
feedback about any mistakes or ideas for future editions:
Prentice Hall PTR
Att.: Gregory Doench
One Lake Street
Upper Saddle River, NJ 07458

Disclaimer

The opinions, examples, and dramatizations in this book are my own and do not reflect those of my
employer, AT&T, or any prior employer or client.

 12

About the Author
Peter H. Gregory is the IT Engineering Manager for a major telecommunications service provider. He
developed and implemented system and network security policies for its research facilities, where he
served as site manager, IT architect, UNIX system administrator, network engineer, Webmaster, and
network software developer. Previously, he was lead software engineer for a security product used in
the world's largest casions.

 13

Part 1: Introduction
Part 1 illustrates just how large the computer security problem is today. Chapter 1
introduces a dramatized computer security incident and then explains how advances in
technology have increased the complexity of system architectures and how new
business paradigms have expanded the interconnectivity of computers and networks.
These together have broadened and increased the risk of disruption of business
operations due to administrator errors and acts of malice by both insiders as well as
those outside the company.

Part I Introduction

 Chapter 1, "The Security Problem," shows the breadth of the security problem with an illustration and
describes the factors responsible for increased risk.

Chapter 2, "The Security Paradigm," introduces new thought processes that will help the Solaris
system administrator "take the blinders off" and operate with security as a part of every procedure and
decision.

Chapter 1. The Security Problem
Ted's pager started beeping at 6:30 A.M. on the first day of a four-day holiday weekend. Ted was
staying in town this year, and was on call for the UNIX engineering team, but didn't expect any users to
need help. He searched in the dark for the irritant and silenced it.
Ted started to doze, when his on-call automatic pilot kicked in. He sat up, turned on the light, and read
the pager message typed in by the answering service that took after-hours UNIX support calls. The
pager's display read

 !!!CANNOT LOG IN!!!
 DEMO IN 1 HR
 PH 011-32-49-476934
Exclamation points always signified an emergency condition that needed immediate attention.
Emergencies didn't happen often, but when they did, all other work stopped until the emergency was
fixed.
The user was the vice president of engineering, Ted's boss, in Brussels, Belgium, doing an important
product demo for a large customer. The company's future was riding on a sale that Ted's boss was
trying to close that weekend.
Ted walked across the room to his UNIX workstation connected to the company local area network
(LAN) via his frame relay remote access connection. He first was going to telnet to the main information
server named linus, a Sun E4000 that ran the company's DNS, NIS+, and remote access authentication
services.

home # telnet linus
linus: Unknown host

So that's it, thought Ted, DNS is down. No sweat—I'll telnet to linus's IP address and restart in.named.
Ted continued typing.

home # telnet 192.168.125.11
Trying 192.168.125.11...
telnet: Unable to connect to remote host: Connection timed out
home #

So I can't get in either, Ted whispered under his breath. Rats, I'll have to go into the office to get NIS+
restarted or whatever it is that's keeping us both out.

 14

Ted, knowing what was on the line with the demo in Brussels, raced to work. During the 20-minute drive
(thankfully it was a holiday!), Ted mentally reviewed what he would have to check to get to the bottom
of this problem and get back to his long, lazy weekend.
A few minutes later, Ted was in the server room. He walked over to the linus system console and
couldn't believe what he saw: the single line at the top of the screen

<#0> ok

Linus had been halted and was sitting at the OpenBoot prompt.
Why had linus halted and not automatically rebooted, Ted wondered to himself. Instinctively, Ted typed
probe-scsi at the ok prompt. Yep, all of the SCSI devices: boot disk, CD-ROM drive, tape drive—all
there.
Well, let's boot this beast and get outta here, Ted thought. He typed boot at the OpenBoot prompt, but
instead of booting, an error occurred: OpenBoot said there was no operating system to boot from.
Disk crash? Filesystem corruption??
Ted had dealt with these kinds of problems before. It isn't pretty, but it's routinely solved: boot from CD-
ROM, repair the root filesystem if possible. If not, reinstall Solaris, the backup program, and restore all
of the local customizations from tape, and we're back on the air in two hours.
But Ted didn't have two hours—he now had less than half an hour before his boss's demo was
scheduled to begin! He had to think quickly.
The jumpstart server was a DNS secondary and a NIS+ slave and could be given a new IP address in a
couple of minutes. Brilliant thinking, Ted thought to himself as he walked across the room to horace, the
jumpstart server.
The system horace was halted, too, just like linus.
The backup server driftnet, the database server kermit, and the home directory server anytown were all
halted.
Ted needed to get help. Clarke, the genius behind the server/network architecture, was out of town with
relatives. What was his cell phone number? Would he have it? Chris, another UNIX admin, was let go
last month, so he would be no help. Gary had only been here three months, but was out of town
somewhere, and Ted didn't have his pager number. Bill, the other veteran UNIX system administrator
(SA), was pretty sharp and could help unravel this.
Bill was home with his family but could be there in 20 minutes. Maybe he knew what was going on.
Ted called his boss and told him that someone had stopped all the servers, and that the first one he
had tried to reboot would not reboot.
While waiting for Bill to arrive, Ted made a pot of coffee. It would be a long day. He went back to linus
and horace and tried to boot them again. No luck.
Bill arrived and they went back into the server room. "What's this mean, Bill?" Ted asked.
"There is no kernel image on the boot disk to boot from. Let's check the internal cabling and reseat all
the memory SIMMS."
They powered down linus, opened it up, reseated its memory, and powered back up. Same error
message.
"Let's boot from a Solaris Operating System CD," was Bill's next move. "We need to see what's on the
root filesystem. There must be some sort of corruption, or perhaps an OS bug that has affected all of
the servers." After all, they were all of the same architecture—UltraSPARC—land at the same OS and
patch levels.
They went to the cabinet where all of the release media was stored. The CD drawers were empty.
"They must be in someone's office." But wait, it wasn't just a few CDs that were missing—all the CDs
were gone: the OS, AnswerBooks, C compilers, backup software, and even the third-party database
and software applications. Every CD was missing.
Ted's heart sank. "Someone did this to us," he said to Bill. But who?
The VP's Brussels demo didn't happen. Ted and Bill never could get the DNS, the remote access
authentication server, or any other server for that matter, up and running that day. None were bootable,
and there were no OS CDs to be found anywhere.
Let's take a look at what happened.
Chris, the UNIX SA who was let go, saw it coming. He wasn't happy—in fact, he was downright mad. A
week before he was fired, he took all of the release CDs and threw them in a convenience store
dumpster on the way home one night. The next week he was let go.
Then, discouraged from having no job prospects, he logged back in, using administrative passwords
that were never changed, and did an rm -rf / on most of the production servers, thereby destroying all

 15

OSs and the data on them. That was just a few hours before the Brussels demo. Ted's boss was the
next person to try to access the servers.
Several steps taken by the UNIX SA team could have prevented—or at least minimized—this situation.

• Copies of all OS CDs could have been stored off-site. This would have mitigated the loss of the
CDs in the cabinet since there would have been one or more backup sets.

• All administrative passwords should have been changed immediately upon Chris's termination.
Chris would not have been able to access the systems days after his termination.

• There was no procedure document specifying the order for starting the servers.
• There was no contact list of UNIX SAs' names and home, pager, and cell numbers.

Causes of Security Weaknesses

Growth of Network Connectivity

The primary cause of scenarios such as the one described in the previous section is that UNIX systems
(and NT systems, VAX systems, AS/400 systems, and all the rest) are being connected to small and
large networks—including the Internet—without adequate consideration for security risks. Networks that
were once restricted to closed buildings or campuses are being connected to each other (including the
Internet) in order to facilitate must-have or nice-to-have business functions without regard to the risks of
doing so. Security has traditionally been an afterthought (if considered at all) throughout the chain of
command in information technology (IT) organizations, and those organizations have paid the price for
their ignorance.
In the 1980s, companies built Ethernet and Token Ring LANs and connected all of their computers to
them. These LANs were information islands that did not need much security beyond userid access
controls.
Many organizations had guest accounts without passwords, as well as easily guessed administrative
passwords, and they never removed or locked the accounts of departing employees (and why should
they-the security guards at the front door would prevent former employees from reentering the building;
this effectively prevented their accessing the network). The organization LANs facilitated intrabusiness
functions such as data transfers between desktop systems and mainframes, file and print services for
desktop systems, and electronic mail.
By the 1990s, companies began to see the advantages of connecting their LANs to each other, to their
business partners' LANs, and, finally, to the Internet itself. Intrabusiness functions expanded to include
interbusiness functions.
The explosive popularity of the World Wide Web (WWW) in the mid-1990s resulted in a vast increase in
the number of businesses connecting their LANs to the Internet.
In most cases, businesses were connecting their servers and workstations to LANs and their LANs to
wide area networks (WANs), business partner networks, and the Internet without serious thought to the
security of their systems. Those unprotected guest accounts were still there. The old accounts
belonging to long-departed employees were still there and forgotten.
The Internet Worm Incident in 1988 was proof positive that security at the system level was grossly
inadequate. While the Worm gave rise to the Carnegie Mellon Computer Emergency Response Team (
CERT) and increased security awareness among system vendors and systems administrators, the
state of security awareness and preparedness is still way behind the talent and determination of today's
amateur and professional hackers, some of whom may be on your payroll.
Security was not a prime concern in the era when UNIX was developed; its security model was
designed for small- and medium-sized workgroups in an intranetwork environment. Fortunately, there
exist many OEM add-on security features and third-party products to provide adequate protection to
UNIX systems that are exposed to additional risks.

Software Vulnerabilities

System and application software not originally intended to withstand Internet hacker attack are now
exposed to the Internet. Client/server applications designed for intranetlevel security have been
connected to the Internet and are now exposed to attack. This is true even in situations where such
servers are protected by firewalls and other measures. No matter how secure an application may be,
that application, the tools used to develop and run it, or the components protecting it have weaknesses.

 16

Another way to look at software vulnerability is to consider the size and complexity of the programs that
are accessible from the Internet. Complex tasks require complex software programs. While it may be
difficult enough to prove that a simple program is secure, it may be impossible to prove that a complex
program is secure. Two popular examples of this software complexity are sendmail and Web servers.

• Sendmail is a large, complex program used to deliver electronic mail, or e-mail, within
corporations and between them on the Internet. Over the years, many design flaws in sendmail
have been exploited by hackers. As a result, it has been revised and patched numerous times
to answer the attacks by the increasingly sophisticated hacker community. The developers and
maintainers of sendmail have done (and are doing) a gallant job of plugging security holes, but
the hackers seem to be right behind them, discovering new weaknesses that heretofore were
undiscovered.

• World Wide Web servers—relatively new on the scene—are similarly large and complex. Add to
this the fact that Web servers call other programs, such as common gateway interface (CGI)
scripts, which execute on Web servers themselves, as well as Java and ActiveX programs
which are transmitted to and execute on Web clients. Finally, consider that the information
being passed between Web servers and Web clients is going beyond product marketing and
pricing, for instance, and is increasingly financial, sensitive, or personal in nature. Financial
transactions taking place over the Internet are making the systems controlling and recording
them increasingly attractive targets of hackers. Not all of the systems involved are as secure as
they could and should be.

Employees and Contractors

According to a Data Processing Management Association (DPMA) study published in 1992, over 80
percent of the perpetrators of computer crime work for the company from which data was stolen or
damaged. While hacking incidents are sensational and grab the headlines, these inside jobs (most of
which are not publicized) are actually doing the most harm. The dramatic example at the beginning of
this chapter points this out.
I should note that the DPMA statistic cited above predates the Web and most companies' Internet
connections. Internet connectivity provides a tempting, and too often easy, avenue for attack. Further,
Internet connectivity and Web applications are still emerging technologies fraught with security
weaknesses. Many of the developers and administrators are unaware of the specific weaknesses that
can lead to exploitation.
Far too many information systems (IS) and IT shops look only to technology for answers to their
security questions. Technology can only close the security gap so far; the rest is up to policies,
procedures, and trust.

Motivated and Resourceful Hackers

Companies are building systems that are more attractive than ever before. Hackers try to break into
these systems for thrills, publicity, or financial reward. Often they succeed. The systems belong to
banks, insurance companies, telephone companies, public utilities, and high-tech companies. Hackers
break in to alter financial transactions for direct or indirect personal gain or to steal information that they
later sell to competitors or reveal to the public. More companies are making their computers accessible
via remote access for employees and are connecting more computers to the Internet. We're creating
ever more opportunities for hackers to exploit.
Hackers have more sophisticated tools at their disposal than ever before. Their most popular tool is the
personal computer. Hackers may have as many as a dozen or more computers in their homes, all
designed to discover and exploit increasingly complex vulnerabilities.
Hackers give their tools away on their Web sites and share their information at conferences. They're
organized and motivated, and there are large rewards (prestige in the hacker community, for one) to be
won by those patient enough to discover a weakness.
Whereas many companies remain ignorant and uninformed when it comes to security practices and
technologies until it is too late, UNIX systems administrators, network administrators, and security
professionals are beginning to organize to share security information. Some of these organizations
include the System Administrators Guild (SAGE) and National Computing Security Association (NCSA).

 17

Site Policies

Policies define limits of behavior in an organization. The IS shop in this chapter's example had no policy
for storing OS and software media off-site; this proved to be a critical flaw as it most likely added days
to the recovery time.

 18

Chapter 2. The Security Paradigm
Most UNIX systems administrators do not know where to begin when it comes to securing their
systems. Some begin by installing one or more public-domain security tools on their systems; others
modify their systems to make them less vulnerable; and still others have relatively open systems inside
a very secure firewall. None of these methods will offer adequate protection by themselves. They are
piecemeal; they don't fit into a strategy, and they don't reflect an overall approach or design. Moreover,
they don't reflect the attitude required for long-term success.
Before any systems, firewalls, or architectures can be changed, security principles must be developed,
understood, and embraced by the administrators and managers who are responsible for them. This
chapter is devoted to the introduction to and justification for these principles.

Principle 1: The Hacker Who Breaks into Your System Will
Probably Be Someone You Know

While many hackers are nameless, faceless individuals in another time zone or on another continent,
statistics reveal that most system security incidents are inside jobs.
What is an inside job? It boils down to sabotage in one form or another. Examples include

• Sabotaging backup processes to give the appearance of normal backups (but where future
recovery will be impossible)

• Planting time bombs—deliberate errors in programs or processes that will cause malfunctions
long after the employee leaves the company

• Changing root passwords on critical systems and not telling anyone before leaving the company
(another form of a time bomb)

• Deliberately erasing backup media
• Removing OS or product media to make recoveries or future installations more difficult

Never give out root passwords to users.[1] Either use tools to get them what they need or deny them the
access or function they are requesting. As a last resort, give users root-level privileges only for those
functions they absolutely must have in order to do their jobs.

[1] I once heard an amusing story about a UNIX systems administrator who had a fairly ignorant user who insisted he
needed the root password on his computer. The systems administrator resisted until the user got management involved
and made trouble. The sysadmin was forced to give the root password to this user, but he did so in a creative way: he
changed the name "root" in /etc/passwd to another name, and then he added a nonprivileged userid called "root" and gave
its password to the troublesome user. The user never suspected that he didn't have true root privileges and, wanting to
save face, never once called the systems administrator when he ran into filesystem permissions problems.

Users with root privileges are potential problems. Users with root privileges may become intoxicated
with their newfound power and begin to tinker with things they're unfamiliar with. Or users with root
access may accidentally remove or change something that will hinder their ability to carry out their real
jobs (not systems administration!). Finally, a diabolical user will use his power to further his dark
aspirations and inflict damage beyond his own system. This all leads to the second principle.

Principle 2: Trust No One, or Be Careful About Whom You Are
Required to Trust

Breach of trust is the biggest threat to computers and the information stored on them. UNIX systems
administrators introduce far too many trust relationships between the machines they're responsible for
in order to make their tasks easier to carry out. Frequently, systems administrators create large, simple
webs of trust among their systems using the root userid. For instance, the root userid (which has
complete control over all aspects of a system) on all systems on the network will trust the root userid on
many, if not all, other systems on the network.
Why is this a bad idea? It is these same trust relationships that hackers will discover and exploit. A
hacker who breaks into root on a machine will first examine the /.rhosts and /etc/hosts.equiv files on
that machine to see whom it trusts. If machine larch trusts machine tamarack, then our hacker will

 19

suspect that all machines on the network may trust tamarack. Machine larch has betrayed one of the
weaknesses in the network; once the hacker breaks into machine tamarack, all machines on the
network are easy prey if they all trust tamarack.

Principle 2a: Don't Trust Yourself, or Verify Everything You Do

A systems administrator is his or her own worst enemy. Working multiple priorities, deadlines, and long
hours all contribute to mistakes. Some of these mistakes will result in simple failures in functionality;
others will fill up disks, buffers, queues, or process tables; but the worst will silently open up gaping
security holes or damage systems in subtle, hard-to-detect ways. More than 50 percent of data damage
or loss incidents is due to human error.[2]

[2] Source: Data Processing Management Association, 1992.

Verify everything you do. It is not sufficient to kill a process, remove or chmod a file or directory, or lock
an account and move on. Stop, think, and verify. Kill the process and look for it. Remove the file or
directory and look for it. Chmod the file and ls it again. Copy the directory to tape and read it back.
Protect the directory and try to remove or change it.
Develop a healthy distrust for everything you tell the computer to do. Be a skeptic. Challenge the
computer (or yourself) to prove that it did what you told it to.
Veteran airplane pilots still go through their preflight checklists and read the items out loud.
Experienced carpenters measure twice and saw once. UNIX systems administrators likewise ought to
verify everything, great and small.

Principle 3: Make Would-Be Intruders Believe They Will Be Caught

Retail stores vulnerable to shoplifting put up signs that read, "If we catch you, we prosecute you." They
erect visible detectors, cameras, and monitors. The message is clear: they are watching for thieves and
can catch them.
Information is the merchandise of the computer age and, using means similar to retail stores, our
information systems must contain visible warnings, barriers, and detectors that will help to deter, detect,
and catch would-be criminals. And since those perpetrators of information thievery are most likely
employees or associates of the organization owning the systems, those means must be visible to
legitimate system users via good password security and messages that say, "We are watching you."

Principle 4: Protect in Layers

The often-fatal mistake systems administrators, network administrators, or technology architects make
is that they rely on a single layer or method of security to protect a system or service. An exploitation of
the one mechanism protecting the system or service will expose that system or service.
For example, a corporation allows certain individuals to telnet through the Internet to one of its servers
inside the corporate network. An access list on the corporation's Internet firewall filters telnet sessions
so that they can originate only from those known, approved IP addresses. A similar, redundant access
control mechanism limiting inbound access is on the server. The server is inside a locked room. All
accounts require passwords.
Suppose that a bug in the firewall's access list algorithm is discovered that will allow certain other types
of access to those servers. A hacker could take advantage of this bug and gain access to the inside of
the corporation's network. Figure 2.1 illustrates the concept.

Figure 2.1. Protecting in Layers

 20

What this corporation should have done was protect in every layer possible. In addition to the filtering
firewall, the Internet router could have been set up to filter out unwanted traffic. Further, a mechanism
to control access to every computer could have been implemented. Finally, a method other than plain
old telnet could have been employed to eliminate the risk of a hacker's eavesdropping and gaining
passwords (although this was not part of the exploitation in this example).
This example leads us to the next principle.

Principle 5: While Planning Your Security Strategy, Presume the
Complete Failure of Any Single Security Layer

A properly designed layer-protected system, application, or service should presume a complete,
temporary failure of one layer of security.
Back to our preceding example. This time the same corporation allows inbound telnet access and filters
access at the network level on both its Internet router and Internet firewall and also implements access
lists on its UNIX servers. If any one of these security mechanisms fails, the other two will continue to
protect the UNIX servers from unauthorized access. Figure 2.2 illustrates this point.

Figure 2.2. Compromised Security Layer

Hackers are not the only reason to protect in layers. The security mechanisms protecting systems are
complex and administered by people. These people, either because they do not understand the site
architecture, or because they are not adequately trained on network principles or security tools, can
make mistakes resulting in more access than should be allowed (if you have a network engineer who

 21

doesn't understand your network or basic network concepts administering all of the mechanisms
protecting your network, you've got another problem altogether).
Consider the security of your corporate computing assets: the main routers and servers in the data
center. While the data center itself is locked and may be entered only by using a magnetic card entry
system, many companies' servers in the data center are logged in to highest-privilege accounts, even
when unattended. In addition to physical security, consider using automatic/manual locking screen
savers and keycard access to privileged accounts. If you're not yet convinced this is necessary, just
think back to the last time you saw the data center door propped open by an unescorted tradesman so
that he could leave and reenter the data center without having to find a busy systems administrator.
Protect in layers.

Principle 6: Make Security a Part of the Initial Design

Most corporate networks were built many years ago before the concept of network security became a
topic that anyone talked about. These corporate networks were wholly contained within buildings or
groups of buildings when the older physical security paradigm adequately protected them. When this
was true, physical access and a userid/password was all it took to acceptably secure an application.
Since that time, these relatively unsecure networks have been connected to other similarly unsecure
networks, without additions to security at any level.
It is always more difficult to retrofit a feature into any product or system, and this goes for security
particularly: adding security features to a system, application, or network after it is built is costly and
troublesome. Here are a few reasons why this is so.

• Retrofitted security features often make an application or system more difficult, complicated, or
time consuming to access. Users who were able to access an application without having to
enter a password will complain now that they must enter a userid and password. They will claim
counterproductivity and other half-truths designed to get senior management to think that
security only gets in the way.

• It may be necessary to change a system's basic configuration or architecture in order to get the
security feature to work. Disks may need to be repartitioned to make room for security software;
operating system and/or firmware versions may need to be updated to support security
features.

• It may be difficult or impossible to retrofit some devices, systems, or applications with adequate
security features, either because they cannot support security extensions or because these
extensions may be prohibitively expensive.

How do you get security to be part of a system's plan? By specifying security requirements, policies,
and procedures before the system is designed or installed. If you allow security features to go in later,
you may find that they either never get implemented or the retrofit is poor.

Principle 7: Disable Unneeded Services, Packages, and Features

UNIX systems are shipped with all network services (e.g., ftp, telnet, rlogin, rsh, rexec, timed) activated
and ready to go. Each network service is a potential security hole, a possible entry point for a hacker.
This is very simple: if inbound ftp isn't needed on a system, turn it off. If inbound telnet isn't needed, turn
it off. If rlogin, rsh, and rexec aren't needed, turn them off. The remaining services on a system should
be only those required for its function. Note that required means must-have services, not nice-to-have
services.
Chapter 9, "Network Interfaces and Services," describes this topic more fully.
The same principle of removing/disabling unneeded services applies to software packages on a
system. If UNIX-to-UNIX copy (UUCP), for instance, is installed on a system, get rid of it. It's consuming
space and contains current or future potential security threats.
Another way to consider the reason for removing unneeded services and packages from a system is to
examine the risks and benefits for such services. Take, for example, an Internet Web server using trivial
file transfer protocol (tftp) and telnet.
tftp is a dangerous service because it allows any user on another system to transfer files into and out of
the system running the tftp service. A skilled user may be able to access or replace files he or she has
no business manipulating. On our example Web server, tftp will not be needed, so there is no benefit

 22

from tftp. Since tftp is dangerous, the risk is high. A package with high risk and zero benefit has no
business being available on this particular Web server, so it ought to be disabled.
The telnet service would make administration of the Web server easier since the administrator could
control the system from the workplace or from home. While telnet is not the security risk of tftp, it is far
from being risk free. In this instance, the benefit is low (measured in convenience only—it is not
required by the Web server) and the risk is moderately high. Telnet is therefore a candidate for removal.

Principle 8: Before Connecting, Understand and Secure

Your customers understandably want the latest and greatest. One of them may be asking you to allow
telnet Java, ActiveX, RealAudio, or any of dozens of other Web add-ons. Or possibly they may want
you to download and install a new UNIX-based tool or application.
No matter how urgent, the time to make a security assessment is before the tool or feature is released
to your users. A user who doesn't get to have a requested package because it's a security risk isn't
going to be half as upset as the user who had a newly acquired tool taken away. Also, if a tool or
feature is a security risk, it's better that you find out before the user does (if, indeed, they ever do).
There are all types of UNIX system administrators. Some have a systems programming or software
engineering background, but others do not. A UNIX administrator without a programming or software
engineering background needs to get some help when assessing public-domain tools being requested
by users.
The time to develop a policy that says someone will make a security assessment of all requested tools,
applications, and features before releasing to users is now. Don't wait until the horse is out of the barn.

Principle 9: Prepare for the Worst

While this may sound like a pessimistic approach, it will result in an environment that faces a
diminished security risk. Preparing for disaster means preparedness for the day and hour that we all
hope will never come.
Assume that hackers are already scheming to break into your site. They may already know a lot about
your site's architecture—they may be colleagues who need to settle a score with an insensitive boss or
have found a way to pick up some extra spending money by selling information to an unscrupulous
competitor.

The Nine Principles: A Way of Life

The nine security principles discussed in this chapter represent a new way of thinking about systems
administration and security. A UNIX systems administrator should have a healthy dose of distrust about
software, tools, and applications; about some of his customers and about him or herself; and especially
about determined, unscrupulous people on the outside who want to get in and play.

 23

Part 2: The Standalone System
Systems must first be physically and logically secure. This applies whether a Sun
system is networked or not. Regardless of network connectivity, certain features and
characteristics increase the risk of loss or exposure to the person(s) or company using
it. Topics covered in this next section include:

Part II The Standalone System

 Chapter 3, "The PROM, OpenBoot, and Physical Security"

 Chapter 4, "The Filesystem"

 Chapter 5, "User Accounts Environments"

 Chapter 6, "System Startup and Shutdown"

 Chapter 7, " cron and at "

 Chapter 8, "System Logs"

Chapter 3. The PROM, OpenBoot, and Physical Security
The SPARC and UltraSPARC PROM and its software, called OpenBoot, are discussed in this chapter,
as are issues related to a system's physical security.
What's in this chapter

• What the PROM is
• What OpenBoot is
• How to access OpenBoot
• Why there are security implications to settings in OpenBoot
• Things you need to know about physical security

Why this is important
Someone who can access OpenBoot or its settings can gain complete control of a computer system.
There are steps you can take to protect a system from a physical access perspective.

What Is the PROM?

The Sun system PROM (PROM stands for programmable read-only memory) is a computer chip
containing information and firmware. The information on the PROM includes the system's hostid and
several configuration settings such as the boot device and other system boot parameters. The firmware
on the PROM is called OpenBoot.

What Is OpenBoot?

OpenBoot is firmware that is part of all Sun SPARC boot PROMs. It contains information about how a
SPARC system is booted, plus built-in commands for testing the hardware on a SPARC system.

Note

References to OpenBoot commands and features apply to OpenBoot versions 2.0 and
later. This book describes OpenBoot version 2.0 (which first appeared on the
SPARCStation 2 system) and version 3.0.

 24

OpenBoot is activated as soon as a SPARC system is turned on. Depending on the configuration
settings, the system will either be booted from a local disk (hard disk or CD-ROM) or over the network,
or the system will display an OpenBoot prompt and await further instructions. Most systems (and every
system's factory-installed default) will automatically boot from an internal hard disk and not stop at or
display the OpenBoot prompt at all.

In addition to boot time, OpenBoot can also be accessed while the system is running by pressing Stop-
A on the system keyboard (on a system where a Sun keyboard is attached to the keyboard port); by
sending a break code or power cycling the console terminal (on a system where a terminal is attached
to the console serial port); by halting the system; or by running the eeprom program.

Warning

Administrators must be careful whenever doing a Stop-A on a running system.
Pressing Stop-A stops the system. Integrity of the system's data is at risk, not to
mention availability of its services.

Why Users Must Be Kept Out of OpenBoot

There are two reasons why no end user should ever have access to OpenBoot:

1. A clever user with access to OpenBoot can boot the system from almost any SCSI device
(external hard disk or CD-ROM). A user who can boot a system from his own media can take
complete control over that system; you might as well give the user the root password.

2. A user who can Stop-A a system can change any of dozens of OpenBoot environment
variables, giving the most skilled UNIX administrator a long-term headache.

Protecting OpenBoot by Setting Security Parameters

This section describes the procedure used to password protect a system's OpenBoot. I recommend that
all data center systems and end-user systems be protected.
There are three levels of security in OpenBoot: none, command, and full. Sun systems are shipped with
the OpenBoot security level set to none. The three levels are explained in Table 3-1.

Table 3-1. OpenBoot Security Levels
Mode Available Commands

none No password required. All OpenBoot settings can be changed (including the disk partition
from which the system is booted) and any OpenBoot command executed. Anyone with
physical access to the system has full control over it.

command All commands except for boot and go require the password. The system may be booted from
the default boot device. The go command (continuing system operation after pressing Stop-A
or sending the break sequence) is also allowed. The user must enter the OpenBoot
password for all other commands.

full All OpenBoot commands except go (continuing system operation after pressing Stop-A or
sending the break sequence) require the OpenBoot password.

Recommended Security Level for OpenBoot

 25

Every Sun OpenBoot should be set to command or full, even if the system is located in a secure data
center.

Procedures for Changing OpenBoot Security Levels

The following sections describe the procedure for changing OpenBoot security levels.

How to Set the OpenBoot Password from Solaris

This example sets the OpenBoot password from Solaris (as root).

eeprom security-password
Changing PROM password:
New password:********
Retype new password:********

How to Set the OpenBoot Password from the OpenBoot Prompt

This example sets the OpenBoot password from the OpenBoot prompt.

ok password
ok New password (only first 8 chars are used):********
ok Retype new password:********
ok

How to Set OpenBoot Security Levels from Solaris

This example sets the security level to command from Solaris (as root).

eeprom security-mode=command

If the OpenBoot password has never been set, eeprom will prompt for it, as in the first example above.

How to Set OpenBoot Security Levels from the OpenBoot Prompt

This example sets the security level to command.

ok setenv security-mode command
ok

This example sets security level to full.

ok setenv security-mode full
ok

Warning

 26

If the OpenBoot password is forgotten when security mode is set to full , it can be
changed only with the eeprom command run from user root.

If the PROM and root passwords are forgotten (with security mode set to full), the
system's PROM will have to be replaced. This is because it will be impossible to boot
the system from CD-ROM (with Solaris OS media in the drive) in an attempt to recover
the root password.

Be very careful with security mode set to full.

All Passwords Lost—Partial Recovery Procedure

This procedure describes the steps used to recover a system where the OpenBoot and root passwords
are lost and where the OpenBoot security level is set to full.
Prerequisites: A replacement PROM to be used temporarily; a Solaris-release CD-ROM.
Caveat: This will allow the recovery of the root password, but not the PROM password. If the PROM
password is forgotten, it cannot be reset or recovered—ever. In this event, replace the PROM as soon
as possible.

1. Carefully remove the old PROM from the system. It will be needed later.

2. Insert a new PROM, one with the security mode set to none.

3. Follow the instructions in the section on recovering a lost root password (later in this chapter).

4. Shut the system down. Power it off.

5. Switch back to the original PROM removed in step 1.

6. Boot the system.

7. Log in as root using the password set in step 3.

Boot Device Recommendations

A system, even one in a secure data center, should be configured to boot from an internal disk rather
than an external device on a SCSI bus.
In a situation where someone has gained physical access to a data center (but not to the inside of a
server, for whatever reason), a system configured to boot from an external device could have that
external device replaced with another by a simple cable change. Someone can simply attach a different
hard disk to the SCSI bus by unplugging the correct device and attaching another one with the same
SCSI address. The only clue (which could later be erased) would be a few SCSI device time-out
messages. A system booted from this new external device can have a completely altered identity
(different node name, network address, password file, access permissions over the network, etc.),
thereby compromising any information on the system and possibly on other systems as well.
A system configured to boot from an internal disk must be physically opened in order to change the
boot device. This makes it somewhat more difficult for an intruder to take over a system, even one they
have physical access to.

Change the OpenBoot Banner

 27

The OpenBoot banner should be changed from the default to some company-specific text. Such text
could identify the system as being the property of the company. The following example illustrates a
change to the OpenBoot banner.

ok setenv oem-banner? true
ok setenv oem-banner "This system property of ABCD Corp"

ok

Recover a Lost Root Password

This section describes the procedure used to recover a lost root password.[1] Prerequisites include

[1] Hackers already know how to do this.

• The system must have a CD-ROM drive already installed and configured.
• You must have a Solaris 2.x or Solaris 7 media CD.
• The OpenBoot security level must not be set to full (which would prevent the use of the boot

cdrom command below).

Warning

This is not a risk-free procedure. The system is being forcibly halted, resulting in the
possible loss of data or filesystem corruption.

Note

This procedure also assumes that the boot disk device (example: /dev/dsk/c0t3d0s0) is
known. It is difficult to determine this if the system is halted and cannot be started.
Each server's boot device name should be recorded in the event that this type of
recovery is required.

The root password recovery procedure outlined in steps 1 through 18 below assumes the system is
running and that you are logged on (or can log in). If the system is halted, skip to step 4.

1. Determine the device name for the partition containing the /etc directory. Follow this example.
2.
3. # df /etc
4. / (/dev/dsk/c0t3d0s0): 253062 blocks 81357 files
5. #
6.

 28

In this example, the root partition device is /dev/dsk/c0t3d0s0; this device is also used in the
examples that follow. Substitute the correct root partition device if it is different from the
example here.

2. Insert the Solaris 2 or Solaris 7 CD media into the CD-ROM drive.[2]

[2] The OS version of the CD-ROM need not necessarily be the same as the OS version on the system, as long
as the CD-ROM being used supports the system's hardware and devices.

3. If a prompt is available, flush the filesystem cache by typing sync.

4. If the system is running, type Stop-A.

5. Type boot cdrom -s at the "ok" prompt.

6. At the "#" prompt, type mkdir/tmp/mnt, then mount /dev/dsk/ c0t3d0s0/tmp/mnt.

Note that the following error message may appear:

mount: the state of /dev/dsk/c0t3d0s0 is not okay
 and it was attempted to be mounted read/write
mount: please run fsck and try again

If this occurs, it will be necessary to run fsck to repair the filesystem. Use the following
command: fsck/dev/rdsk/c0t3d0s0 (note that the device name used with the mount command
(/dev/dsk/...) is different from the device name used with the fsck command (/dev/rdsk/...).

7. Change to the directory containing the root password by typing cd /tmp/mnt/etc.

8. Make a backup copy of the /etc/shadow file, by typing cp shadow shadowRECOVER.

9. Get the root password string from the /etc/shadow file with the cat command. For example
10.
11. # cat shadow
12. root:xdOexJE8X8v2M:6445::::::
13. daemon:NP:6445::::::
14. bin:NP:6445::::::
15. sys:NP:6445::::::
16. adm:xdOexJE8X8v2M:10473::::::
17. lp:Rt7ekqsuSIHr2:10473::::::
18. smtp:NP:6445::::::
19. uucp:NP:6445::::::
20. nuucp:NP:6445::::::
21. listen:*LK*:::::::
22. nobody:NP:6445::::::
23. noaccess:NP:6445::::::
24. nobody4:NP:6445::::::
25. pete:tspx1CqH8igWA:10507::::::
26. admin:tspx1CqH8igWA:10261::::::

 29

27. #
28.

10. Remove the root password entry from the /etc/shadow file with the sed command. Using the
example shadow file above, type in the following command:

11.
12. # sed s/xdOexJE8X8v2M// shadow > shadowNEW
13. #
14.

Note

UNIX administrators familiar with operating a system under these conditions
can use vi instead of sed to remove root's password string from /etc/shadow. There
are so many possible scenarios to cover, however (different terminal and
console types, for instance), that it is simpler to describe this procedure using
sed.

11. Check that the shadowNEW file created above was properly edited by displaying it again with
the cat command. Using the example shadow file above, the shadowNEW file should appear as
follows:

12.
13. # cat shadowNEW
14. root::6445::::::
15. daemon:NP:6445::::::
16. bin:NP:6445::::::
17. sys:NP:6445::::::
18. adm:xdOexJE8X8v2M:10473::::::
19. lp:Rt7ekqsuSIHr2:10473::::::
20. smtp:NP:6445::::::
21. uucp:NP:6445::::::
22. nuucp:NP:6445::::::
23. listen:*LK*:::::::
24. nobody:NP:6445::::::
25. noaccess:NP:6445::::::
26. nobody4:NP:6445::::::
27. pete:tspx1CqH8igWA:10507::::::
28. admin:tspx1CqH8igWA:10261::::::
29. #
30.

12. If the shadowNEW file looks okay, copy it back over the shadow file by typing cp shadowNEW
shadow.

13. Change directory to root by typing cd /.

14. Unmount the system's root filesystem by typing umount/tmp/mnt.

15. Flush the filesystem cache by typing sync.

16. Halt the system by typing init 0.

 30

17. Remove the boot CD from the CD-ROM drive.

18. Type boot at the "ok" prompt to reboot the system. You should now be able to log on as root
without being challenged for a password.

Note

Do not wait for an emergency to test this procedure. Try it on each server (and your
own desktop system) and record-in a secure place-system-specific information such
as the full device name of the root partition (e.g., /dev/dsk/c0t3d0s0).

Physical Security Considerations

In keeping with the concept of protecting in layers discussed in chapter 2, I have several
recommendations regarding physical security of data center systems. None of these precautions will
prevent a determined intruder from accessing or destroying computer equipment, but they will slow
them down. The following sections discuss several physical security issues.

Theft and Access Prevention

Physically fasten all systems and peripherals to equipment racks utilizing the locking tabs.
Utilize a physical access mechanism that records who enters the data center at what time. This raises
the degree of accountability regarding physical access to data centers by making everyone aware that
their entrances to the data centers are controlled and recorded.
Consider the use of surveillance cameras in or near data centers.

Audit PROMs

Periodically audit every system's PROM to ensure that it has not been replaced. This could easily be
done by recording all system hostids and then comparing them later to what was recorded earlier.
Do note that this is not a watertight check. An intruder could—given motive, means, and opportunity—
physically break into a system, swap a system's PROM for another with different security and boot
settings but with the same hostid. So, in and of itself, auditing hostids does not conclusively prove that
no tampering has occurred.

OpenBoot Passwords

Password protect OpenBoot on all data center (plus desktop and lab) systems, whether they are in a
locked room or not. Assign a different password to each system's OpenBoot, using a nonpredictable
password scheme.
Configure automatic, password-protected screen locks. Lock all screens when leaving the room.
Chapter 5 will cover procedures for setting up auto screen locks.
The password used to unlock the screen is the login password. To lock the screen, click on the padlock
icon on the front panel.

Note

Auto screen locking in the common desktop environment (CDE) works only in Solaris
version 2.6 and newer (CDE version 1.2).

CD-ROM Drives

 31

Remove internal CD-ROM drives on systems once the systems are built. An intruder can boot a system
from a CD-ROM and make any imaginable alteration to the operating system, including erasing any
trace of these alterations. Instead, when you need to boot a system from a CD-ROM, boot it from an
external CD-ROM drive.
Keep all peripherals (external CD-ROM drives, external disks, all cables) locked and out of sight. A
clever intruder can make good use of them.

Backup Media

Keep all backup and release media locked up and out of sight.
Utilize an off-site media storage vendor. Develop a formal plan to get recently written backup media off-
site as soon as possible.

OS Release Media

Keep all Solaris release media locked and out of sight. Together with a CD-ROM drive, an intruder can
take complete control of a system in just a few minutes with only these two items.
Send a set of Solaris release media to the off-site storage vendor mentioned in the previous section.

Where to Go for Additional Information

AnswerBook

• AnswerBook 2-OpenBoot Command Reference

Man Pages

• eeprom(1M)
• fsck(1M)
• mount(1M)
• umount(1M)

Publications

• What to Do If Root Password Is Lost, SunSolve Infodoc 16786
• Butler, Janet, and Badura, Poul. Contingency Planning and Disaster Recovery: Protecting Your

Organization's Resources. Computer Technology Research Corp., 1997.

Web Sites

• Open Firmware Home Page—http://playground.sun.com/1275/

Chapter 4. The Filesystem
In this chapter I describe the basic workings of the UNIX filesystem as it pertains to security.
What's in this chapter

• What the UNIX filesystem is
• How access permissions in the UNIX filesystem work
• How to verify access permissions
• What device permissions are
• How to audit a filesystem

Why this is important

 32

Virtually all information stored on a UNIX computer system is stored in a filesystem. Information can be
altered or stolen from a computer system whose filesystem access permissions are improperly set.

What Is the Filesystem?

The filesystem is the part of the computer system used to store and manage the computer's files; it
consists of the operating system, system and application programs, and data. Part of managing a
system's files includes setting access permissions to control which users of a computer can access
what files and by what methods: read-only, read and write, and execute (applies only to system and
application program files).
Many UNIX security problems are a direct result of improper understanding and, thus, manipulation of
the filesystem. Through misunderstanding or just plain haste, many administrators open potential
security holes by modifying ownership or permission settings on files and directories. Changes in
permissions are often made to temporarily solve a short-term file or directory access problem. Many
times the result is that they leave the door open permanently.

Some Applications Require Open Permissions

Unfortunately, many UNIX-based third-party applications still require that file and/or directory
permissions for data stored and managed by the application be kept wide open (full read/write access
by all system users) in order to function correctly. A UNIX-based e-mail application I used to work with
required that all user mailbox directories have global read/write privileges (imagine how easy it would
be for one user to access and manipulate another user's mailbox). In another case, an engineering
application I supported required that the /tmp directory have global read/write access without the "sticky
bit" being set (the use of the sticky bit is discussed later in this chapter). These are just a few examples
of how numerous applications still require what should be considered sloppy security settings in order
to function correctly.
While troubleshooting an application, UNIX administrators are tempted to set access permissions wide
open and leave them that way when an application is being intolerant of standard file or directory
access. But all too often, even though a problem may have been isolated to permissions or ownership
on a single file or directory (or not a permissions issue at all), a UNIX administrator wants to leave
things as they are, call the problem "solved," and move on to another support issue, when, in fact, an
even larger problem has been created in its place. This is comparable to propping the office front door
open days, nights, and weekends because it's too hard to figure out who has keys and who doesn't.
Some applications mitigate their wide-open permission architecture at the UNIX filesystem level by
adding a level of security within the application itself. Application-based security architecture will be
specific to each application and is beyond the scope of this book. An example of security within an
application is a mechanism where certain users can view or modify certain records or fields in a
database. Referring back to the concept of protecting in layers, an application designer should utilize
security features wherever possible, including protecting data files at the UNIX filesystem level.

Understanding File and Directory Permissions

Solaris 2.x and Solaris 7 conform to the UNIX System V Release 4 standards for the implementation of
the UNIX filesystem permissions structure. This structure controls who can access which information on
a UNIX system.
It is necessary to know only two things about file permissions: the identity of the user (or defined
group of users) attempting to access a file, and the type of access required by that user (read, write,
search, or execute). Practically everything that may seem complicated (and all too often it is
complicated) about UNIX file/directory access is derived from these two pieces of information: who and
permission level.

Who: User, Group, and Other

In UNIX, there are three categories of users: an individual user (also known as owner), a defined group
of users, and everyone else (also known as other or world).

 33

Individual users on a system, called userids, are defined in the system's /etc/ passwd file or in the NIS
passwd or NIS+ passwd.org_dir databases. People logging onto a UNIX system identify themselves
with a userid and its corresponding password.
Each user is also defined as being a member of a group; this primary group is defined in the
/etc/passwd or the NIS passwd or NIS+ passwd.org_dir databases.
In addition to a user's primary group, a user can belong to secondary groups. These groups of users
are defined in the /etc/group file or in NIS or NIS+ group databases. The /etc/passwd and /etc/group
files (and their NIS and NIS+ counterparts) are described in chapter 5.

Permission Summary: Read, Write, Execute, SetUID, SetGID, Sticky Bit

The basic permissions allowed for a file or directory in UNIX are read, write, or execute (the term
search is used in place of execute for a directory—more on this later). There are additional special
permission parameters known as SetUID, SetGID, and Sticky Bit. This section describes in detail the
definitions of each type of permission for files and directories.
The terms read bit, write bit, and so on refer to the way that UNIX stores information about file
permissions. Each item, such as read file for a user, is stored as one computer bit. Since a bit of
computer information can only be 0 or 1, you can think of a bit in this context as a flag; either the flag is
on (bit is set to 1)—permitting access—or the flag is off (bit is set to 0)—denying access.
The term process refers to any program that can be run on a UNIX system. Programs, or processes,
typically read or write files on a UNIX system. The terms program and process can be used
interchangeably here. In the context of filesystem permissions, you can also think of a process in terms
of a user. A user must run some type of program in order to access a file, even if the program chosen is
cat (which outputs the contents of a file to the screen) or vi (a text editing program used to view or alter
the contents of a file).
Permission Details: Read—File A process will be able to read the contents of a file.
Permission Details: Read—Directory A directory is a special file in a special format, consisting of
filenames and inodes. A process able to list the contents of a directory will be able to see which files
reside there. For example, the ls program will be able to list the files in a directory with the read bit set.
Permission Details: Write—File A process will be able to alter or replace the contents of a file. This
includes removing the contents of the file by copying /dev/null to the file. The file cannot be removed—
that depends upon the permissions of the directory containing the file.
Permission Details: Write—Directory A process will be able to create or remove files or empty
directories or devices residing in the directory. Files in the directory cannot be overwritten (unless their
permissions allow it), but they can be removed and re-created.
More clarification: A process with write access to a directory can remove files from that directory,
regardless of whether that process has permission to write (or even read) the files there. Removal of a
file is an action taken on the directory containing the file, not on the file itself.
Permission Details: Execute—File The file can be executed if it is a runnable program. If the file is not
a program file, this has no meaning.[1]

[1] If the file is a shell script, removing the execute bit will not prevent it from being run, but will affect only the way in which it
can be run. A shell script file with an execute bit can be executed directly (that is, by typing its name at a shell prompt). A
script file without an execute bit can be read by running the shell itself with the name of the script file as an argument. For
example, a shell script called count.sh with no execute bits cannot be run by typing count.sh at a prompt, but it can be run
by typing sh count.sh at a prompt.

Permission Details: Execute—Directory The read bit is required in order to be able to obtain a list of
the files contained in a directory. With only the execute bit set on a directory, it is still possible for a
process to open a file or directory within that directory as long as the process knows the exact name of
the file or directory—and as long as permissions on the file or directory itself permit access.
This characteristic of directory permissions—the capability of allowing a process to open a file or
directory while at the same time denying a process the ability to list that directory's contents—can be
used to effectively hide files, or even entire directory trees, from nonprivileged users. (Since the root
userid accesses files and directories without consulting the read or write bits, this method should not be
considered hacker-proof, but only as one means for slowing down nonroot users.)
Here's how it's done; consider the directory /home/phil/db/db1998 which contains the files file1.txt and
file2.txt (see Figure 4.1).

Figure 4.1. Traversing Directories

 34

Users can cd to /home/phil and see the directory db, but users cannot cd to db nor can they see its
contents. However, here they can cd through db by typing cd db/db1998. Once users are in the
directory db1998, they can see (and read) the two files file1.txt and file2.txt.
Permission Details: SetUID—File The SetUID bit for a file is relevant only if the file is a program.
SetUID is used to allow a program to assume the identity of a particular user regardless of who is
running the program. This is useful in cases where only certain programs should be allowed to access
certain information.
As an example, consider this problem: The file /etc/shadow contains the encrypted passwords for all
users on a UNIX system. For obvious security reasons, no user should be able to write to, or even read,
this file. How, then, can a user change his or her own password?
The answer: A program that can be run as an ordinary user, but that has the ability to read and write to
a file that the user cannot read or write. In this example, the program is the passwd program. It is
SetUID to root (the SetUID bit is set, and the user root owns the file). Because passwd is SetUID to
root, it is able to read and make the necessary changes to /etc/shadow when a user needs to change
his or her password.
As a security feature, an ordinary user cannot create a SetUID root program. While a user can activate
the SetUID bit to any file or program, the chown command removes the SetUID bit. This prevents a
user from being able to create a SetUID root program. Users can set SetUID only on a program they
own; once given away with chown, the SetUID bit is cleared.
Permission Details: SetUID—Directory Setting the SetUID bit on a directory has no effect upon that
directory.
Permission Details: SetGID—File Just as the SetUID bit allows a program to change its userid to that
of another user, the SetGID bit allows a running program to change its groupid from that of the user
running it to the groupid of the running program. This gives the program access to all files and
directories owned by the group.
Permission Details: SetGID—Directory When the SetGID bit is set on a directory, subsequent files
and directories created within this directory inherit the groupid of the directory, not the groupid of the
process creating the file or directory.
The following session illustrates this mechanism.

% id -a
uid=1001(pete) gid=10(staff) groups=10(staff),8(lp)
% mkdir test
% chgrp lp test
% chmod 777 test
% chmod g+s test
% ls -la
total 32
drwxr-xr-x 8 pete staff 512 Mar 6 21:03 .
drwxr-xr-x 6 root root 512 Feb 3 21:37 ..
drwxrwsrwx 2 pete lp 512 Mar 6 21:03 test
%
% cd test
% touch newfile
% ls -la newfile
-rw-r--r-- 2 pete lp 512 Mar 6 21:04 newfile
%

 35

Without the SetGID bit in the directory test, the file newfile would have had a groupid of staff. Instead,
newfile's groupid is lp because the directory test has a groupid of lp, and the directory has the SetGID
bit set.
Permission Details: Sticky Bit—File Currently, setting the sticky bit on a file has no effect.
Historically, however, setting the sticky bit on a program file caused UNIX to retain the image of that
program in memory, thus accelerating subsequent invocations of the program. Memory management
changes and improvements in SVR4 and Solaris 2.x have rendered this obsolete.
Permission Details: Sticky Bit—Directory If the directory is writable and the sticky bit is set, files
within the directory can be removed or renamed if at least one of the following conditions is met:

• The file is owned by the user.
• The directory is owned by the user.
• The file is writable by the user.
• The user is root.

Typically, only the /tmp and /var/tmp directories on a UNIX system will have the sticky bit set. The
reason for this is that /tmp and /var/tmp are publicly readable and writable. The sticky bit prevents users
from removing files owned by others. Ordinarily, files are allowed to be deleted based upon the
permissions of the directory, not the file. Without the sticky bit set in /tmp and /var/tmp, anyone would
be able to remove any file, since /tmp and /var/tmp are world writable. With the sticky bit set in /tmp and
/var/tmp, the ability to delete a file is based upon whether the process owns the file.

Putting It All Together: The Who and the What

The concept of user and group identity and file permissions fits a two-dimensional model as illustrated
in Table 4-1.

Table 4-1. File and Directory Permissions Matrix
Who Read Write Execute SetIUD SetGID Sticky Bit

User On or Off On or Off On or Off
Group On or Off On or Off On or Off On or Off On or Off On or Off
Other On or Off On or Off On or Off

How to View File and Directory Permissions

The ls command is used to view permissions on a file or directory. The letter l option tells ls to display
the permission fields themselves. Here is an example of ls output.

% ls -la test
-rwxrwxrwx 1 pete staff 577 Feb 3 20:33 .profile
%

These are the elements of the output from the ls command.

• -rwxrwxrwx the permission field that specifies which users have which permissions for reading
and writing the file or directory (see Figure 4.2 for a detailed explanation)

Figure 4.2. Is Command File/Directory Permissions

 36

• 1 the number of links (filenames) to the file
• pete the owner of the file
• staff the groupid of the file
• 577 the size of the file
• Feb 3 20:33 the creation/last modification date of the file
• .profile the name of the file

Permissions: Numeric Form

What we have seen thus far is file and directory permissions in symbolic form. That is, the position-
dependent rwxrwxrwx notation of who has what permissions. There is also a numeric form that is a bit
more shorthand than the symbolic permissions.
It is not only useful but essential that the UNIX administrator understand the numeric form of file and
directory permissions. This is because some notations or commands (primarily umask, which is
discussed later in this chapter) use only the numeric form of permissions. It is therefore important that
the UNIX administrator understand both numeric and symbolic permissions.
Numeric permissions employ a four-digit octal coding system to represent permissions for
read/write/execute for user/group/other, plus sticky bit, SetUID, and SetGID settings. Incidentally, this
numeric system is closer to the way permissions are actually stored and used internally in UNIX.
I will explain the numeric permission system—and how it relates to symbolic permissions—in detail.
The numeric and symbolic systems look like Figure 4.3 side-by-side.

Figure 4.3. Numeric and Symbolic Permissions

 37

For the user, group, and other digits, the permission numbers are

• 1 execute
• 2 write
• 4 read

To combine any of permissions 1, 2, or 4, add the values of the digits. For instance:

• 6 read and write (4 + 2)
• 7 read, write, and execute (4 + 2 + 1)

Zero in a field implies no permission.
Examples of permissions for user, group, and other are

• 751–7 is the user permission (read, write, execute); 5 is the group permission (read, execute); 1
is the other permission (execute).

• 640–6 is the user permission (read, write); 4 is the group permission (read); 0 is the other
permission.

Most of the time, only three digits are used to express permissions. However, a four-number digit (such
as 2000) is used to express sticky, SetUID, and SetGID permissions. The permission numbers are

• 1 sticky
• 2 SetGID
• 4 SetUID

Just as with the other three digits, this digit is added to show permissions in combination. For example,
a 5 would indicate sticky and SetUID.
Here is an example using all four digits. A file's permission is 2751. This is broken down as follows:

• 2751 SetGID (2000); user can execute/write/read (700); group can execute/read (50); other can
execute (1).

Setting File and Directory Permissions—Numeric

If you're reading this chapter sequentially, then you're just getting used to numeric permissions. We will
discuss them first.
The chmod command is used to change permissions for a file or directory. The numeric form of chmod
is

chmod nnnn filenamelist

where nnnn is the numeric permission to apply, and filenamelist is a list of one or more files and/or
directories. For example, to set a file so that all users (including user and group) can execute a file
name calc (but not read or write its contents), then the command to do so would be

chmod 111 calc

The command to set the /tmp directory for read/write/execute for all users, plus the sticky bit,[2] would be

[2] This is a typical permission for the /tmp directory.

chmod 1777 /tmp

 38

Setting File and Directory Permissions—Symbolic

The form of the chmod command to set permissions symbolically is

chmod symbol-list filenamelist

where symbol-list is three characters: a who symbol, an operator symbol, and a what symbol.
The symbols identifying who are

u—user

g—group

o—other

a—all (user and group and other)

The operator symbols are

+—add permissions

-—take away permissions

=—assign permissions

The symbols identifying what are

r-read

w-write

x-execute

s-SetUID or SetGID

t-sticky bit

u, g, o-take already-existing permission settings from user, group, or other

Multiple permission settings can be set in one chmod command; entries are separated by a comma (,).
Here are some chmod examples.

1. Add write permission for user to file proc.
2.
3. chmod u+w proc
4.

5. Add read and execute permission for all users to file proc.
6.
7. chmod a+rx proc
8.

 39

9. Set user permission to read/write, add read permission to group and other to the file proc.
10.
11. chmod u=rw,go+r proc
12.
13.

umask and How It Works

The umask is a value that determines the default permission settings assigned when new files and
directories are created.
Each UNIX system has a default umask value; each user can change his or her own umask value (and
usually does so at login time in a .cshrc, .login, or .profile file); each process can also examine or alter
its umask value with the umask command.
umask is an inherited feature. If a process sets a particular umask, its children will inherit the same
umask value.
Here's how umask works. Numerically, it specifies which permissions are not granted by default when a
file or directory is created. For example, a user's umask is set to 027. The umask 027 is broken down
into 0, 2, and 7. The 0 means that the user will have all permissions; the 2 means that group will not
have write (2) permissions; the 7 means that other will not have execute (1), write (2), or read (4)
permissions. This is illustrated in Figure 4.4.

Figure 4.4. umask Example

Another way to think about umask is to subtract each of its digits from 7; the resulting digits are the
permission set up for a file or directory that is created while that umask is in effect. This is illustrated in
Figure 4.5.

Figure 4.5. umask Substraction Example

In addition to being set numerically, a umask can also be set symbolically, with options similar to
chmod's symbolic syntax. For example

umask u+rwx,g+rx,o-a ...is the same as: umask 027
umask u+rw,g+r,o+r ...is the same as: umask 133

 40

Ksh and umask -S

The Korn shell has a nice feature with its built-in umask command. The -S option is used to
symbolically—rather than numerically—display the user's umask. For example

% sh
% umask
0027
% ksh
% umask
0027
% umask -S
u=rwx,g=rx,o=
%

Default File Permissions and umask

Permissions for files that are created with commands such as vi, cp, or touch or with shell redirection
are determined by applying the process's umask value to the initial value 666. This is illustrated in the
following example.

% umask
0027
% touch foo
% ls -ld foo
-rw-r----- 1 pete staff 0 Oct 1 07:17 foo
%

In this example, the file's permissions can be calculated as 666 (initial value) less 027 (umask) equals
640 (the file's permissions).

Root User umask

I recommend that root's umask be set to 077 or 027. This will result in any file created by root being not
readable or writable by others.

Default Directory Permissions and umask

Permissions for directories created with commands such as mkdir are determined by applying the
process's umask value to the initial value 777. The following example illustrates this.

% umask
0027
% mkdir foo
% ls -la foo
-rwxr-x--- 2 pete staff 0 Oct 1 07:18 foo
%

In this example, the directory's permissions are calculated as 777 (initial value) less 027 (umask), giving
750 (the directory's permissions).

 41

How to Find Files with Specific Permission Settings

The UNIX administrator needs to know how to find files with specific security settings. Here are a few
examples of the find command.

1. Find all SetUID files in and under the current working directory (.).
2.
3. % find . -type f -perm -4000 -print
4.

5. Find all SetGID files in and under the current working directory (.).
6.
7. % find . -type f -perm -2000 -print
8.

9. find all world-writable files in and under the current working dir- ectory (.).
10.
11. % find . -type f -perm -o+w -print

System Device Access Permissions

Solaris is shipped with appropriate permissions assigned to device files such as disk drives, tape
drives, and memory. These permissions are discussed here.
A word should be said for Sun's method of indirect references to commonly used devices. For instance,
typical disk devices are referenced by SCSI controller and device number, such as

/dev/dsk/c0t3d0s0

This example signifies a disk device, controller 0, SCSI target 3, disk 0, slice 0. But examination of this
file shows that it is not a device file, but instead a logical link to the file named

../../devices/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,
800000/sd@3,0:a

Permissions of this file (in ls -l format) are brw-r----- 1 root sys.

Warning

Under no circumstance should the permissions of a disk device be changed. A change
could result in an entire filesystem being readable or writable by everyone.

Tape drive device permissions are looser, as tape drives are by default considered to be accessible by
all users. Permissions of tape drives (in ls -l format) are crw-rw-rw- 1 root sys. For a production
environment, tape device permissions should be tightened so that only the userid actually performing
backups will have read and write permissions to relevant tape drive devices.

 42

Solaris memory devices are /dev/mem and /dev/kmem. These devices are logical links to
../../devices/pseudo/mm@0:mem and ../../devices/pseudo/mm@0: kmem, respectively. Permissions for
these devices (in ls -l format) are crw-r----- root sys.

Warning

Under no circumstance should the permissions of a memory device be changed. A
change could result in process table and device buffer information being readable or
writable by everyone.

The next section describes four tools that will track permissions of all system devices. It is
recommended that one or more of these tools be used to ensure that devices are secure.

Filesystem Auditing Tools

There are several tools available that enable the UNIX administrator to audit a UNIX filesystem. The
tools that will be discussed in this chapter include Sun Microsystem's Automated System Enhancement
Tool (ASET) and the public-domain tools Computer Oracle and Password System (COPS), Tiger,
Tripwire, and lsof.

ASET

ASET is a Solaris software package used to enhance security by checking the permissions and
contents of system files. ASET can also be used to increase security on a system by tightening up
filesystem access permissions.

Where to Find ASET

ASET is included in the standard Solaris 2.5, 2.5.1, 2.6, and Solaris 7 release media. The Solaris
package name for ASET is SUNWast. Check for ASET on a system with the following command:

pkginfo | grep SUNWast

ASET Security Levels

ASET has the following three security levels, each of which is suitable for different environments.

Low no system behavior is altered. ASET only makes checks and reports weaknesses.

Medium some system files' access permissions are restricted in order to reduce the risk
of attack.

High many system files' access permissions are restricted. This setting is the most
secure, for use in Internet or Extranet mail, ftp, or Web servers.

Running ASET

 43

A cursory examination can be performed on the system by simply running the aset command, as
follows:

/usr/aset/aset
======= ASET Execution Log =======

ASET running at security level low

Machine = orion; Current time = 0412_13:11

aset: Using /usr/aset as working directory

Executing task list ...
 firewall
 env
 sysconf
 usrgrp
 tune
 cklist
 eeprom

All tasks executed. Some background tasks may still be running.

Run /usr/aset/util/taskstat to check their status:
 /usr/aset/util/taskstat [aset_dir]

where aset_dir is ASET's operating directory,currently=/usr/aset.

When the tasks complete, the reports can be found in:
 /usr/aset/reports/latest/*.rpt
You can view them by:
 more /usr/aset/reports/latest/*.rpt

ASET writes its reports into the ASET working directory, usually /usr/aset/reports/latest. Upon
subsequent ASET runs, this directory is renamed to /usr/aset/reports/mmdd_hh:mm, where
mmdd_hh:mm is a value coded to the date and time the report was run.
For a complete description of ASET, please refer to the aset(1M) man page.

COPS

COPS is a package from Purdue University that examines a system for a number of known
weaknesses and informs the UNIX administrator about them. Some problems can be fixed
automatically.

Where to Find COPS

The primary source for COPS is ftp://coast.cs.purdue.edu/pub/tools/unix/scanners/cops/. Look for the
latest version and download the tar.Z file. Instructions for unpacking, building, and installing are found in
README and other documents.

Recommended COPS Tools

• dir.check, file.check-scans system for world-writable system files and directories

 44

• dev.chk-scans system device directories to ensure that hackers won't be able to circumvent
filesystem security by writing to disk storage devices directly

• home.chk, user.chk-checks users' home directories for world writability
• root.chk-scans root user login files for world writability; also checks root's paths for sanity, as

well as root's umask and hosts.equiv
• suid.chk-scans system for new SetUID programs

Running COPS

Run COPS regularly, as frequently as once per day (or even more) on servers, and possibly less
frequently on desktop systems. COPS detects changes in file and directory permissions from one
invocation to the next.

Tiger

Tiger is a package from Texas A&M University that examines a system for known weaknesses and
informs the UNIX administrator about those it discovers. Its function is similar to that of COPS.

Where to Find Tiger

Tiger's primary source is ftp://coast.cs.purdue.edu/pub/tools/unix/tiger/TAMU/. Also needed are
signature files for each OS (including Solaris 2.x and Solaris 7) found in ftp:// coast.
cs.purdue.edu/pub/tools/unix/tiger/TAMU/tiger-sigs/.

Running Tiger

Tiger can be run by unwrapping the Tiger archive file and running the script tiger. It is recommended
that Tiger be run as frequently as once per day on servers and perhaps less frequently on desktop
systems.

Tripwire

Tripwire, another package from Purdue University, is a sophisticated filesystem auditing tool used to
detect signs that a UNIX filesystem has been tampered with.
Tripwire reads a configuration file to find out which files and directories on a UNIX system should be
examined. Each file and directory in the configuration file is rigorously examined and the results of that
examination are compared against a database containing baseline information about every file and
directory to be checked. Differences between the baseline information and what is currently found are
listed in a report that the UNIX administrator then can use to determine whether the changes found by
Tripwire are legitimate or not.

Where to Find Tripwire

The public-domain version of Tripwire can be found at
ftp://coast.cs.purdue.edu/pub/tools/unix/Tripwire/. A commercial version of Tripwire is available from
http://www.tripwiresecurity.com/.

Setting Up and Running Tripwire

Tripwire comes with a default configuration file that is essentially a list of files and directories that
Tripwire should examine. The configuration file should be examined to make sure that all system files
and directories are included.
The first time Tripwire is run, it creates a database of complete information for each examined file.
Information about each UNIX file is stored in this database. On subsequent runs, information about
each file is compared against the values stored in the database. Any files that have been changed (not
just the contents, but ownership, permissions, modification/access dates, etc.) will be detected by
Tripwire and listed in a report.

 45

I highly recommend that Tripwire be first run on the system immediately after the operating system has
been installed. This is because Tripwire, on its initial run on a system, cannot determine whether the
system has already been compromised.
Run Tripwire at least once a day on servers, and perhaps a little less frequently on desktop systems.
Tripwire incurs a great deal of filesystem input/output (I/O), so it would be least intrusive to run Tripwire
after hours, started by cron.

lsof (list open files)

lsof lists all opened files on a UNIX system and indicates which processes have opened them. This tool
can be used to help determine whether hackers are reading or writing files to which they should not
have access.

Where to Find lsof

lsof is available at http://sunfreeware.com/. It is also available at ftp://vic.cc.purdue.
edu/pub/tools/unix/lsof/ (this site also has lsof binaries in the event no C compiler is available).

Setting Up and Running lsof

lsof generates a lot of output (a lot of files are open on a typically running UNIX system) that only an
experienced UNIX administrator can decipher.

Other Security Tools and Techniques

Check /etc Permissions

There are no files in /etc that need to be group (or other) writable. To determine whether there are any
group/other-writable files in /etc, enter these commands as root:
find /etc -type f -perm -g+w -print (to find group-writable files)
find /etc -type f -perm -o+w -print (to find world-writable files)
Use the chmod command to change any errant group/other write permissions as follows:

chmod -R go-w /etc

Ensure Proper utmp and utmpx Permissions

The utmpM and utmpx databases contain user access and accounting information for the system. If
these files are group- or world-writable, then the record of system accesses can be altered or erased
easily.
The file permissions for /var/adm/utmp and /var/adm/utmpx should be 644.

Use Fix-modes Tool to Enhance Security

The Fix-modes tool is used to enhance filesystem security by tightening the security permissions of
many Solaris system files. Fix-modes creates an audit trail and can be undone.
Fix-modes is available from ftp://ftp.fwi.uva. nl/pub/solaris/fix-modes.tar.gz.

Use the fuser Command

The fuser command is used to determine which processes, if any, have a particular file or files open.
fuser can be used to

 46

• See if any process has a file open before removing or renaming the file [3]

[3] Note that removing an open file will not disrupt a process that has already opened the file. A removed open file
will, however, cease to be listed with the ls command, but it will still consume disk space. Once a process has
closed an open file (presuming that no other processes also have the file opened), the file will actually be
removed and its space freed.

• See which processes have files or directories open as part of a troubleshooting process to
determine why a filesystem cannot be umounted

Here is an example use of fuser.

% fuser /tmp
/tmp: 16018c 15218c 14813c 2173o
% fuser /usr/sbin/inetd
/usr/sbin/inetd: 138t
%

A letter code follows a process id in fuser output. The letter codes are

c—the process's current working directory

r—the process's root directory (this is a mount point directory)

o—an ordinary open file

m—a memory—mapped file

t—a text file (in other words, a currently running program binary file)

Fuser can also be used to list all processes that have any file open in a mounted filesystem and,
optionally, kill those processes. This should be used only in emergencies where a filesystem must be
unmounted immediately. See the fuser(1M) man page for complete details.

Use the ls Command to Show Hidden Files and Hidden Characters in
Filenames

The UNIX administrator should always use the -a (show hidden files) and -b (print nonprintable
characters) options when using ls.
The -a option tells ls to show ordinary files and directories plus hidden files and directories. A hidden file
or directory is one whose name begins with the dot (.) character. This is useful because the UNIX
administrator ordinarily should be seeing all the contents of a directory with the ls command. For
instance, while troubleshooting a situation where a filesystem has run out of available disk space, the
culprit may be a hidden file. If the UNIX administrator does not list hidden files with ls, the guilty files will
be a little more difficult to find.
The -b option tells ls to print nonprintable characters in file (or directory) names in octal \bbb notation.
Nonprintable characters in filenames? You bet. They can be created by accident or even purposefully
by a mischievous user. Consider this example.

% touch abc\<backspace>d
% ls
abd
% rm abd
abd: No such file or directory
% ls -b
ab\010d

 47

%

Techniques on removing such files are discussed in the next section.

Alias the ls Command

The ls command can be aliased so that the - a and -b options are used without having to be typed in
every time. Procedures for aliasing ls follow.
For C shell users, include the following entry in the .login file.

alias ls '/usr/bin/ls -a -b \!*'

For Bourne shell and Korn shell users, include the following entry in the .profile file.

ls() { /usr/bin/ls -a -b $* ; }

Alias the rm Command

For safety reasons, the rm command can be aliased in order to force the UNIX administrator to verify
the deletion of each file, preventing accidental deletion. Many UNIX administrators have their personal
stories of having removed entire filesystems by accident. The -i option tells rm to ask for verification of
each file being removed. An example of rm with the -i option is

% rm -i *
rm: foo is a directory
rm: gcos.txt (yes/no)? n
rm: hal.doc (yes/no)?
rm: status.out (yes/no)? y
%

Some notes about rm -i:

• Directories and subdirectories are not removed (unless the - rf option is also used).
• "No" is the default response (the file hal.doc is not removed in the example above).

Randomize Filesystem Inode Numbers with fsirand

The inode numbers in a filesystem can be predicted for filesystem files such as / (the root entry for any
filesystem), lost+found, etc. A clever hacker can attempt to open and alter files by inode number instead
of by name. A great way to thwart this vulnerability is by randomizing a filesystem's inode numbers with
the fsirand command. fsirand does not alter the visible filesystem, only its inode numbers.
Filesystems must be unmounted before fsirand can be run. Any filesystem altered by fsirand first should
be backed up and fsck run.

Note

fsirand functionality is present in mkfs in Solaris 2.5 and newer.

 48

Filesystem Quotas

A frequent source of grief for the UNIX administrator is the management of shared disk space. Users all
too often consume all available disk space, thus precipitating errors for everyone using that filesystem.
Unfriendly users can disrupt other users' work by deliberately filling a shared filesystem with one or
more large files. Disk quotas can be used to limit the amount of disk space each user is allowed to use.
This is the procedure for setting up a filesystem for quota use.

1. The mount option quota must be added to /etc/vfstab or the appropriate automount map. Here
is an example vfstab entry.

2.
3. /dev/dsk/c0t1d0s7 /dev/rdsk/c0t1d0s7 /export/home ufs 2 yes

quota
4.

2. As root, create a file called quotas in the root directory of the filesystem (in this case,
/export/home/quotas). In this example, use the command touch /export/ home/quotas.

3. Set up a prototype quota entry for a single user with the edquota command. An example entry:
4.
5. fs /export/home blocks (soft = 8000, hard = 9999) inodes (soft =

800, hard = 999)
6.

In this example, the user's soft disk space limit is 8,000 blocks (times 512 bytes equals 4 MB);
the hard disk space limit is 9,999 blocks (5 MB). The soft inode limit (the number of files the
user may own) is 800, and the hard limit is 999.

When a user exceeds a soft limit, a dialogue box is displayed (see Figure 4.6). When a user
exceeds a hard limit, the user will not be able to create files. The error message seen is "Disc
quota exceeded."

Figure 4.6. Soft Quota Error

4. Replicate the prototype entry to other users as needed with the edquota command. An example
command is

5.
6. # edquota -p phil mary john sue rick larry ralph april
7. #
8.

 49

In this example, the quotas values for user phil are replicated to users mary, john, sue, rick,
larry, ralph, and april.

5. Activate quotas with the quotaon command.

6. Build initial quota statistics with the quotacheck command.

7. Create a quota report with the repquota command. Here is a sample report.
8.
9. # repquota -a
10. /dev/dsk/c0t1d0s7 (/export/home):
11. Block limits File limits
12. User used soft hard timeleft used soft hard

timeleft
13. phil +- 17402 999 99999 7.0 days 197 9999 9999
14. #
15.

In this example, user phil has exceeded his block limit quota; files owned by phil are taking too
much disk space. This is signified both by the "+ -" symbol and by the "timeleft" field for block
limits on the report.

Filesystem Access Control Lists

UNIX system administrators find that the UNIX file and directory permission scheme is insufficient in
complex environments. Certain aspects of managing access to files and directories sometimes do not
translate well to large environments. Consider the following scenario.
A medium-sized company has several departments. Access control has been set up so that UNIX
groups correspond to the different departments. Default file permissions are set up so that only users
and groups can read and write to files and directories; thus, files and directories in one department are
unavailable to all others. How do users share certain files in their departments with certain individuals in
other departments without resorting to setting read or write bits in other?
Answer: It cannot be done.
Solaris access control lists (ACLs) can help remedy this problem. The getfacl and setfacl commands
are used to get and set ACL entries for files and directories.
Setfacl, the command to set ACL entries for a file or directory, is used to change ACL permissions.
From our example above, consider a specific file cust.db that has the following permissions:

% ls -la cust.txt
-rw-rw---- 1 jsmith acct 65536 Jan 22 1999 cust.db
%

In this example, cust.db is owned by user jsmith, groupid acct. Both user jsmith and group acct have
read/write access to cust.db. No other users have access whatsoever to the file.
Consider a situation where user sjones needs read/write access to cust.db, but where sjones is not a
member of the group acct. A possible solution is to use setfacl to add sjones as a user with read/write
access to cust.db. The following session illustrates this situation.

% ls -la cust.db

 50

-rw-rw---- 1 jsmith acct 65536 Jan 22 1999 cust.db
% getfacl cust.db
file: cust.db
owner: jsmith
group: acct
user::rw-
group::rw- #effective:r--
mask:r--
other:---
% setfacl -m user:sjones:rw-cust.db
% getfacl cust.db
file: cust.db
owner: jsmith
group: acct
user::rw-
user:sjones:rw- #effective:rw-
group::rw- #effective:r--
mask:r--
other:---
% ls -la cust.db
-rw-rw----+ 1 jsmith acct 65536 Jan 22 1999 cust.db
%

Note the "+" on the end of the permission bits in the final ls command output. This signifies that there
are ACL entries for this file.

Note

Carefully consider the use of ACLs. While ACLs are useful and even necessary in
some situations, administering them can become a full-time job.

Where to Go for Additional Information

AnswerBook

• AnswerBook2—System Administration Guide, Managing File Systems
• AnswerBook2—System Administration Guide, Managing System Resources
• AnswerBook2—System Administration Guide, Managing System Security

Man Pages

• aset(1M)
• chmod(1)
• chown(1)
• csh(1)
• edquota(1M)
• fsck(1M)
• find(1M)
• fsirand(1M)
• fuser(1M)
• getfacl(1)
• ksh(1)
• ls(1)
• ls(1B)
• pkginfo(1M)

 51

• repquota(1M)
• rm(1)
• quota(1M)
• quotacheck(1M)
• quotaoff(1M)
• quotaon(1M)
• setfacl(1)
• sh(1)
• umask(1)

Publications

How to Set Up Quotas on a File System, SunSolve SRDB 4652

How to Enable User Storage Space Quotas for Solaris, SunSolve FAQ 1946

How to Modify ACLs, SunSolve Infodoc 12718

How to Set ACL Entries on a File, SunSolve Infodoc 12714

How to Delete ACL Entries on a File or Directory, SunSolve Infodoc 12728

Chapter 5. User Accounts and Environments
This chapter describes the basic workings of user accounts on Solaris systems.
What's in this chapter

• What the userid root is and why it needs extra protection
• Ways to respond when a user asks for root privileges
• How the password, shadow, and group files work
• Methods for strengthening account and user environment security
• Auditing tools

Why this is important
User accounts lie at the very heart of UNIX system security. They are the first layer of defense against
misuse and attack. It is therefore necessary for a UNIX systems administrator to thoroughly understand
what user accounts are and how they work.

Introduction

People identify themselves to a computer via a userid (also known as UID). The computer systems we
interact with grant or deny access to information based upon our userids.
Computers grant you access to information based upon who they think you are, not upon who you
actually are. Take, for example, a financial clerk who has access to bank account information. The clerk
is logged into the computer system—that is, the clerk has identified himself by providing a userid and
password. The computer then allows the clerk to access and change financial records for its customers.
Now let's say that the clerk gets up to take a five-minute stretch—he just walks away from his terminal.
Anyone could sit down at that terminal and enter transactions as though they were the clerk. The
computer does not know the difference—it doesn't know whether the person entering transactions is the
original clerk who signed on earlier.

User Account Security

The hacker who seeks information from a computer system needs only to find a way to trick either a
person or the computer itself about his or her identity. Hackers are interested in the operating system

 52

software bugs that permit them to easily assume the identity of a person who is allowed to access or
modify the information they seek.

The Root Account

The userid root is the ultimate prize to computer hackers. This account, used by UNIX system
administrators, has unlimited access to virtually all programs, files, and resources a computer has to
offer. If a hacker can change his identity from that of a normal user to any other user, root is frequently
the account of choice because of its unrestricted access.
The userid root is the ultimate prize to computer hackers. This account, used by UNIX system
administrators, has unlimited access to virtually all programs, files, and resources a computer has to
offer. If a hacker can change his identity from that of a normal user to any other user, root is frequently
the account of choice because of its unrestricted access.
The root account is omnipotent not because of its name, but because of its userid, which is 0. The first
line from the /etc/passwd file is shown in Figure 5.1 to illustrate.

Figure 5.1. Root Userid Is 0

Other accounts can be created with a userid of 0; those other accounts have all the power and privilege
that root has. Further, the root account's name could be changed, but as long as its userid number is 0,
it is still root.

Other Administrative Accounts and Groups

Several administrative accounts exist on a Solaris system. While these accounts do not have root
privileges, they should be protected as though they did. System processes using these accounts control
basic system functions such as electronic mail, relational database access, and printing. A compromise
of any of these accounts can result in wholesale exposure and damage to files in its respective
subsystem. For example, a compromise in the lp account can result in an intruder's having complete
control over the printing subsystem and, hence, the hacker may be able to alter at will the contents of
any printout.

Which Administrative Accounts Should Be Locked

Several administrative accounts should be locked so that no one can log in and cause trouble. These
accounts include daemon, bin, sys, adm, lp, uucp, nuucp, listen, nobody, and noaccess. The procedure
for locking an account is explained in the shadow file section later in this chapter.

Sysadmin Group

Such vulnerabilities are not limited to user accounts; the sysadmin group (groupid 14) must be similarly
protected because members of this group can perform system administration tasks with Admintool.

Sys Group

The sys group (groupid 3) must be similarly protected, as it is allowed to run the ufsdump command.
ufsdump is the system backup program; it is possible, then, for a nonroot user to read every file on a
system and be able to restore any or all of these files on a system where the user did have root
privileges. Such a user would, for example, be able to read the /etc/shadow file and crack account
passwords (/etc/shadow is discussed later in the shadow file section; cracking account passwords is
discussed in the section on the Crack tool near the end of the chapter).

 53

User Accounts

Except for a few lucky UNIX administrators who get to build the right kind of environment from the
ground up, UNIX admins should consider any UNIX account as potentially having root privileges. It can
be difficult to irrefutably prove that a given account does not (or will not) have access to a "back door."

When Users Need Root Privileges

Users may legitimately require root privileges if they need to do the following:

• Mount diskettes or CD-ROMs where manual mount and umount commands are required (the
mount and umount commands can be run only as root) and where Volume Management[1] is not
running

[1] Volume Management is used to facilitate the automatic mounting and unmounting of diskettes and CD-ROMs
on the user's behalf without the user needing root privileges.

• Kill or restart specific processes not belonging to the user; for example, in a software
development environment, a user may need to kill and restart a database instance or
application (nonroot users can kill only their own processes)

PATH and LD_LIBRARY_PATH

The PATH and LD_LIBRARY_PATH environment variables must be safe, particularly for privileged
users such as root. By safe I mean that the referenced directories must have tight permissions (no
group or other write access) and known entities therein. PATH or LD_LIBRARY_PATH must not
contain directories whose contents are questionable or purposes unknown.
Set root's path—defined in /.profile—as follows:

PATH=/usr/bin:/sbin:/usr/sbin

No user's PATH or LD_LIBRARY_PATH should ever contain "." (search the shell's current working
directory for executables or libraries). Otherwise, a user could plant a Trojan horse [2] in a directory that
he can write to and just sit back and wait until root stumbles into that directory and accidentally
executes that program.

[2] See "Glossary of Attacks" in appendices for a definition and example of the Trojan horse and LD_LIBRARY_PATH
attacks.

The Password, Shadow, and Group Files

This section deals with the simplicity of having only direct passwd, shadow, and group files. NIS and
NIS+ are dealt with in chapter 14.

Password File

On a UNIX system, user accounts are defined in the system file /etc/passwd. /etc/passwd contains the
following information about a user: userid, numeric id, numeric groupid the user belongs to, full name,
home directory, and login shell. A portion of a /etc/passwd file is shown here.

root:x:0:1:Super-User:/:/sbin/sh
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:
sys:x:3:3::/:
adm:x:4:4:Admin:/var/adm:
lp:x:71:8:Line Printer Admin:/usr/spool/lp:

 54

smtp:x:0:0:Mail Daemon User:/:
uucp:x:5:5:uucp Admin:/usr/lib/uucp:
nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico
listen:x:37:4:Network Admin:/usr/net/nls:
nobody:x:60001:60001:Nobody:/:
noaccess:x:60002:60002:No Access User:/:
nobody4:x:65534:65534:SunOS 4.x Nobody:/:
pete:x:1001:10:Peter Gregory:/export/home/pete:/bin/sh

The passwd file is owned by root and must be readable by all users, but writable only by root. Hence,
/etc/passwd permissions are typically -rw-r--r--.
Consistency of the passwd file can be checked with the pwck command.

Shadow File

Unlike UNIX systems in the distant past when the encrypted password string was a part of the passwd
file and hence readable by all users, the Solaris 2 and Solaris 7 system passwd file contains no
password information. Instead, the encrypted password information is kept in the shadow file
/etc/shadow. The /etc/shadow file contains the following information: userid, encrypted password string,
and several fields related to the "aging" of each user's password. A sample /etc/shadow file is shown
here.

root:tspx1CqH8igWA:6445::::::
daemon:NP:6445::::::
bin:NP:6445::::::
sys:NP:6445::::::
adm:NP:6445::::::
lp:NP:6445::::::
smtp:NP:6445::::::
uucp:NP:6445::::::
nuucp:NP:6445::::::
listen:*LK*:::::::
nobody:NP:6445::::::
noaccess:NP:6445::::::
nobody4:NP:6445::::::
pete:tspx1CqH8igWA:10261::::::

In this example, several accounts have the string NP or *LK* in the encrypted password file. These
codes represent No Password and Locked, respectively. In both cases, the accounts are unusable from
a login perspective (the accounts cannot be logged in, as no password can possibly decrypt to the
string NP or *LK*).
The /etc/shadow file is owned by root and readable only by root; no other users on the system can read
/etc/shadow. Its permission settings are -r--------. If /etc/shadow were readable by anyone, then account
passwords could easily be guessed using a password cracking program such as Crack. I'll discuss
password cracking later in this chapter.

Password Security

Using Good Passwords

The use of good passwords is the single most important defense against unauthorized system use.
Solaris enforces the need for good passwords by requiring a password to have at least six characters,
one or more of which is a numeric or special character, such as * or &.

 55

Probably one of the greatest weaknesses in Solaris is that these restrictions are ignored if root is
changing a user's password (including its own password!). The rationale behind this lack of restrictions
is that the UNIX administrator is assumed to know better than to assign an easy-to-guess password.
Still, without constant reminders, UNIX administrators could tend to get sloppy and assign passwords
that are too easy to guess.
Password aging is the mechanism that requires that users periodically change their password. Here are
some examples.

1. Force the account jsmith to change its password every 30 days.
2.
3. # passwd -n 30 jsmith
4. #
5.

6. Force the account tnguyen to change its password on the next login.
7.
8. # passwd -f tnguyen
9. #
10.

11. Prevent the user cowens from changing its password.
12.
13. # passwd -n 2 -x 1 cowens
14. #
15.

16. Lock the tbarnes account, thus preventing login.
17.
18. # passwd -l tbarnes
19. #
20.

See the passwd(1M) man page for additional information.

UNIX Groups

Group Membership

In Solaris 2 and Solaris 7, users have a primary group, defined in /etc/passwd, but they can also belong
to several other groups, defined in /etc/group at the same time. The effect of a user's primary group is
the groupid (also known as GID) of files created by the user. Any file created by the user will have a
groupid equal to that of the user's primary group.
Two commands are available for displaying group membership: id and groups. Examples of both follow.

1. Display userid and primary group.
2.
3. % id
4. uid=1001(phil), gid=10(staff)
5. %
6.

7. Display userid, primary group, and all other groups.

 56

8.
9. % id -a
10. uid=1001(phil), gid=10(staff), groups=10(staff),20(admins)
11. %
12.

13. Display all group memberships.
14.
15. % groups
16. staff admins
17. %
18.

The newgrp command is used to temporarily change a primary groupid to the groupid of one of the
other groups listed in the id -a or groups command. For example

% id -a
uid=1001(phil), gid=10(staff), groups=10(staff),20(admins)
% newgrp admins
% id -a
uid=1001(phil), gid=20(admins), groups=10(staff),20(admins)
%

Group File

The /etc/group file defines the user groups on a UNIX system and the users that are members of these
groups. /etc/group contains the name of the group, the groupid number, and a list of userids that are
members of each group. A sample group file is shown here.

root::0:root
other::1:
bin::2:root,bin,daemon
sys::3:root,bin,sys,adm
adm::4:root,adm,daemon
uucp::5:root,uucp
mail::6:root
tty::7:root,tty,adm
lp::8:root,lp,adm
nuucp::9:root,nuucp
staff::10:
daemon::12:root,daemon
sysadmin::14:
nobody::60001:
noaccess::60002:
nogroup::65534:

The /etc/group file is owned by root, readable by all users, but writable only by root. /etc/group's
permissions are -rw-r--r--.
Consistency of the /etc/group file can be checked with the grpck command.

Group Password

 57

A user can be challenged by a password prompt when changing groups with the newgrp command.
While no direct tools exist for this purpose, group passwords can be implemented in Solaris 2 and
Solaris 7. This is an example newgrp session.

$ id
uid=1001(phil) gid=10(staff)
$ newgrp sysadmin
newgrp: Password ********
$ id
uid=1001(phil) gid=14(sysadmin)
$

Use the procedure in steps 1–6 to set up a group password and enforce its use. In this example, force a
user to furnish a password when changing to group sysadmin.

1. Remove phil from group sysadmin (if user phil is a member of group sysadmin, he will not be
required to supply a password when changing to group sysadmin).

2. Choose a password; for instance, 5y5*adm1n could be used.

3. Change the password for a normally locked account (e.g., lp) to this password, as follows:
4.
5. # passwd lp
6. New password: ********
7. Re-enter new password: ********
8. #
9.

4. Using vi, extract the password string for account lp from the file /etc/shadow. In this example,
the /etc/shadow entry appears as follows:

5.
6. lp:Rt7ekqsuSIHr2:10473::::::
7.

5. Using vi, insert this string into the password field for the sysadmin entry in /etc/ group. In this
example, the /etc/group entry will appear as follows:

6.
7. sysadmin:Rt7ekqsuSIHr2:14:
8.

6. Return the lp account to its former locked state; the shadow entry might appear as follows:
7.
8. lp:*LOCK*:10473::::::
9.

The etc/default/passwd File

The /etc/default/passwd file contains several parameters related to account passwords. These are
systemwide defaults. A sample /etc/default/passwd file appears below.

#ident "@(#)passwd.dfl1.392/07/14 SMI"

 58

MAXWEEKS=4
MINWEEKS=1
WARNWEEKS=3
PASSLENGTH=6

In this example

• Account passwords must be changed at least every four weeks, but not more than once per
week. This prevents a user, having been forced to change his or her password, from
immediately changing it back to the familiar old password.

• Users will receive warning messages of upcoming password changes three weeks after
changing passwords (and, hence, one week before they are required to change their
passwords).

• A user's password must be at least six characters in length.

Root Access

Direct Root Login

For greater accountability, it is advisable that root never log in directly. Instead UNIX administrators
should log in using their own unprivileged accounts, and then use the switch user su command
(explained below) to become root. This provides an audit trail of who became root in the first place.
A system can be configured to restrict locations for which root can log in directly. This is controlled by
the CONSOLE= setting in the file /etc/default/login (there will be a complete description of
/etc/default/login later in this chapter).
To allow root to log in only at the system console, set CONSOLE= /dev/console in the file
/etc/default/login. This would be appropriate in a setting where the system's console is in a locked room.
It would be better yet to prevent root from direct login everywhere; set CONSOLE=/dev/null in
/etc/default/login, because every administrator who would need to first be root should log in using his
own ordinary account, and then su to become root. This forces accountability, since the system records
who sus to root.

The su Command

The switch user or su command permits a user to change from one userid to another; su prompts the
user for the new userid's password. An example session follows.

% id
uid=1001(jim) gid=101(users)
% su - bob
Password: ********
% id
uid=1004(bob) gid=102(cust)
% lp -d localprinter /home/bob/eom.prt
request-id is localprinter-87 (1 file(s))
% ^D
% id
uid=1001(jim) gid=101(users)
%

In this example, user jim changes to user bob—jim supplied bob's password and then was effectively
userid bob. User jim needed to su to bob's account in order to print the report in bob's home directory.

 59

The su "-" option in this example causes jim's environment to look just like that of user bob's, as though
he had actually logged in as bob. Without the "-" jim's environment would have been unchanged
(except for the userid itself).
The su command is the recommended means for becoming root on a system. This provides needed
accountability, since su logs all su attempts (failed or successful). If one of several UNIX administrators
were to log in directly as root on a system, it would be impossible to tell which administrator did what.
When a user runs su, the userid of the shell running su is unchanged; instead, a new shell is started,
and the userid of that new shell takes the new identity. This is why, in the preceding example, pressing
^D returns the user to the former userid.

Restricting Use of su

It is possible to restrict use of su to a group of users, such as UNIX administrators. This is
accomplished with the following commands:

% chgrp admins /usr/bin/su
% chmod o-rwx /usr/bin/su

In this example, /usr/bin/su has its groupid changed to admins, and chmod'd to allow only su's owner
(root) and any member of group admins to run it. It is assumed that UNIX administrators are already
members of the admins group.

Caution

/usr/bin/su has the SetUID bit turned on; su will no longer work if this bit is turned off.

su from Root

su does not ask for a userid's password if su is running as root. Thus it is possible for the root user to
change to any other userid without knowing any passwords (it is presumed that, since the UNIX
administrator can change any password, he should also be able to su to any account without having to
provide its password). An example session follows.

% id
uid=1008(steve) gid=101(users)
% su - root
Password: ********
id
uid=0(root) gid=1(other)
su marty
% id
uid=1015(marty) gid=101(users)
%

su Logging

Because it is such a powerful command, su can log its attempts in a variety of ways, all of which are
controlled by the file /etc/default/su. Here is a typical /etc/default/su file.

SULOG=/var/adm/sulog

 60

SYSLOG=YES
CONSOLE=/dev/console
PATH=/usr/bin:
SUPATH=/usr/sbin:/usr/bin

SULOG defines the su logfile for logging all su attempts. SYSLOG, set to YES or NO, determines
whether su attempts should also be logged to syslog. CONSOLE defines to which screen to send su
messages. PATH is the default path for the new user's shell; SUPATH is the path set if the new user is
root. Note that, for any userid, the PATH variable can be changed interactively; the values in
/etc/default/su are merely initial values for PATH.

Shell and Application Security

Forced Application Startup

As UNIX applications get into the hands of an increasing number of nontechnical users, UNIX
administrators are frequently being asked to restrict application users to their applications and to
prevent them from being able to reach a UNIX shell prompt. The following example user's .profile file
illustrates.

.profile file for application users
trap exit 1 2 3 15
PATH=/export/app/bin
exec /export/app/bin/application
exit

In this example, the trap command is used. This is a safeguard that tells the shell script .profile to exit
(logging the user off) if an interrupt signal is received (such as typing ^C). This is not absolutely
foolproof, as a lucky user might be able to interrupt .profile before the trap command is executed
(although this is very unlikely).
If the application permits a user to run a UNIX shell, then this method is not completely foolproof.
Another possible option is to change the user's shell to the application itself. An example /etc/passwd
file entry illustrates this approach.

bob:x:1018:101:Bob Jones:/home/bob:/export/app/bin/application

This may or may not work, depending on whether the application requires that certain environment
variables be set prior to execution. The UNIX administrator will have to weigh these options in deciding
how to reliably restrict users to an application.

Include System Name in Root Shell Prompt

Many UNIX administrators can attest to having performed the correct operation on the wrong system.
Frequently this is because they forgot which system they were on at the time. The system name should
be a part of root's shell prompt so that the UNIX administrator will never need to expend extra effort to
see which system she is on.
To put the system name in root's shell prompt in Bourne shell (/bin /sh) or Korn shell (/bin/ ksh), add the
following to /.profile:

PS1="'uname -n' # "
export PS1

 61

To put the system name in root's shell prompt in C shell (/bin/csh), add the following to /.login:

set prompt="'uname -n' # "

Restricted Shell

There are instances where users need access to a UNIX shell, but where the user's activities on the
system need to be restricted. The restricted shell may the answer.
The two restricted shells available in Solaris are /usr/lib/rsh (Bourne shell) and /usr/ bin/rksh (Korn
shell). There is no restricted version of the C shell.
The principal features of the restricted shell are as follows:

• User cannot change directory (cd).
• PATH variable cannot be changed.
• User cannot specify a path starting with / either in a command or in a filename.
• User cannot redirect output (> and >>).

From these properties, it is possible to restrict a restricted shell user to a subset of commands. This is
accomplished by creating a special bin directory and putting that directory in the user's PATH. For
example, if a restricted user can run only the date and who commands, the UNIX administrator would
run these commands to set up a bin directory.

% mkdir /rusers/bin
% ln /usr/bin/who /rusers/bin/who
% In/usr/bin/date/rusers/bin/date

The user's PATH variable would contain only /rusers/bin.

Note

The UNIX administrator needs to be careful when choosing which commands a
restricted shell user can run. For example, vi allows a user to launch a normal shell
with the !sh command.

Default Login Environment

The /etc/default/login file contains several parameters related to the user's login environment. Its
parameters are

• CONSOLE—if set to console device, then root can directly log in only on that device; if it is not
set, root can log in directly on any device or over the network.

• PASSREQ—set to YES if a password is required (recommended).
• PATH—the initial path after logging in; not enforced, since any user can change his path.
• SLEEPTIME—time, in seconds, to sleep between failed login attempts; default is 4, range is 0

through 5.
• SUPATH—the initial path when suing to root; again, not enforced, since root can change its

path.
• SYSLOG—if set to YES, all root logins are logged to syslog; default is YES.
• TIMEOUT—time, in seconds, before abandoning a login session; range is 0 through 900.
• UMASK—default login umask; not enforceable since any user can change this.

 62

Writing Directly to the Console

Some environments require the ability to write messages directly to /dev/console rather than using
syslog or other more standard message mechanisms.
A UNIX sysadmin will find that, in changing permissions of /dev/console from its default of 0600 to
something like 0620 (/dev/console writable by group) or 0622 (/dev/console writable by other), these
permissions will "stick" until the current user logs off, at which time /dev/console permissions revert to
0600. The UNIX sysadmin may be tempted to write some sort of a workaround such as adding a chmod
0622 /dev/console to a user's .profile or .login, but this is a less-than-satisfactory method.
There is an acceptable way of doing this, however. The file /etc/logindevperm is used by the login
program to set the permissions of several console devices such as the keyboard, mouse, frame buffer,
and sound. An entry can be added to /etc/logindevperm to allow nondefault permissions for
/dev/console. A sample entry might be

/dev/console 0622 /dev/console # change default console mode

In this example, login will change the permissions of /dev/console to 0622 (read, write by owner; write
by group and other).

Note

This information is provided only for those canned or preexisting applications that
require this functionality. Any new application or tool should not be designed for
direct I/O to /dev/console ; use a secure and flexible alternative such as syslog
instead. Because /dev/console is not meant to be written to by others, Sun
Microsystems cannot support system behavior associated with such a change.

Program Buffer Overflow

One of the common threads in UNIX security bugs has to do with program buffer overflows. Many of the
common UNIX commands have been victims of buffer overflow bugs. An intruder will discover a way of
overflowing a buffer on a particular command in such a way that executable code is spilled onto the
stack. This executable code, written by the intruder, will contain instructions designed to give him root
access or to cause some other form of trouble.
Solaris can be configured to prevent stack-based buffer overflows. The procedure is

1. Add the following lines to /etc/system:
2.
3. set noexec_user_stack=1
4. set noexec_user_stack_log=1
5.

2. Restart the system with the init 6 command.

Any attempts to execute code in the stack will be logged by syslog if syslog's kern facility is set to the
notice (or higher) level. Refer to chapter 8 for more information on syslog. An example log message
follows:

a.out[347] attempt to execute code on stack by uid 555

 63

Unfortunately, it's not as simple as this. Some software legitimately tries to run code from the stack, and
such software will abort if the protection described above is turned on. This setting should be tried out
on a test system before being set on a production server.

Additional Process Information

The process tools collection is a set of commands that can be used to get additional information about
processes. These tools reside in /usr/proc/bin. The commands are described in Table 5-1.

Table 5-1. Process Tools
Tool Description

pcred View a process's credentials (effective and real userid and groupid)
pfiles View a process's open files
pflags View a process's tracing flags and signal status
pldd View the dynamic libraries linked into a process

pmap View a process's address space map (a detailed look at how much virtual memory the process
is consuming)

psig View a process's signal
pstack View a process's hex/symbolic stack trace
ptime A high-precision accounting of a process's CPU time; see also the time(1) man page
ptree Hierarchical view of all of a process's child processes
pwait Wait for a specified process to terminate
pwdx View a process's current working directory

X-Windows Security

One of the greatest security risks a system will face is when a user walks away from a logged-in
session. While it may be reasonable to require that users on a "character" terminal or console log off if
they leave their systems unattended, X- Windows users will shriek if required to log off. Their
arguments are valid: it can take quite a while to set up all of their X-Window programs, windows, and
sessions; furthermore, they may be running processes that take a long time (longer than the interval
between bathroom breaks) to complete.

X-Windows Screen Lock, Manual

The greatest defense against the risk of abuse of an unattended system is the X-Windows screen lock.
To lock the screen in the common desktop environment (CDE), press the lock symbol on the front
panel, as shown in Figure 5.2. To lock the screen in OpenWindows, start the Workspace menu by right-
clicking in the window background; then select the Utilities option; then press Lock Screen, as shown in
Figure 5.3.

Figure 5.2. CDE Screen Lock

Figure 5.3. OpenWindows Screen Lock

 64

X-Windows Screen Lock, Auto

X-Windows can also be configured to automatically lock the screen after a preconfigured period of
inactivity. Autolock is both useful and annoying, but it should never be used as the sole means for
locking an X-Windows session.
To set autolock in CDE, launch the Style Manager; then select Screen (see Figure 5.4). Turn the
Screen Saver and the Screen Lock on, and set the Start Lock slider to the number of minutes desired.

Figure 5.4. CDE Auto Screen Lock Configuration

 65

To set autolock in OpenWindows, start the Workspace menu by right-clicking in the window
background; then select the Properties option; then select the Miscellaneous category. Set Screen
Saver to Auto, and fill in the number of minutes in the field to the right (see Figure 5.5).

Figure 5.5. OpenWindows Auto Screen Lock Configuration

X-Windows Display Permissions

The xh ost command is used to control which systems or users have permission to write to a user's X-
Windows display. The following are examples of the xhost command.

1. Check to see who has permission to write to this X-Windows display (in this example, no other
machines have permission).

2.
3. % xhost
4. access control enabled, only authorized clients can connect
5. %

 66

6.

7. Check to see which machines have permission to write to this X-Windows display (in this
example, machines sleepy and dopey have permission).

8.
9. % xhost
10. access control enabled, only authorized clients can connect
11. INET:sleepy,dopey
12. %
13.

14. Allow the user phil on machine grumpy to write to display.
15.
16. % xhost +phil@grumpy
17. %
18.

19. Turn off access control (allow all users and machines to write to this display). This is not a
recommended practice!

20.
21. % xhost +
22. %

Auditing Tools

There are some public-domain auditing tools available that will help to determine what security issues
may exist on a UNIX system.

COPS

COPS is an auditing tool used to discover back doors that a user may use as an unauthorized means
for gaining root privileges. COPS is discussed in detail in chapter 4.

Crack

Crack is a tool used to guess account passwords on a UNIX system. Crack runs a dictionary attack (so
named because Crack uses a common word dictionary as its source of passwords to guess) on UNIX
system accounts.
A UNIX administrator should periodically run Crack to discover which accounts have passwords that
can be easily guessed (such as common words or names). A UNIX administrator would notify users
owning cracked accounts by telling them to use better passwords (those not so easily guessed).
Rather than guess passwords by trying to log in, Crack runs the crypt(3C) function and compares the
result against the encrypted password string from /etc/shadow. If the result matches the password
string in /etc/shadow, then Crack has guessed the account's password.
This is the primary reason why password strings were moved from /etc/passwd (the globally readable
file) to /etc/shadow (readable only by user root)—to hide these encrypted password strings that could
otherwise be cracked. The UNIX administrator can easily run Crack because he has access to the
/etc/shadow file.
Crack can be downloaded from ftp://coast.cs.purdue. edu/pub/tools/unix/crack/.

Where to Go for Additional Information

 67

AnswerBook

• AnswerBook2—System Administration Guide, Managing User Accounts and Groups

Man Pages

• crypt(3C)
• group(4)
• groups(1)
• grpck(1B)
• id(1M)
• login(1)
• logindevperm(4)
• passwd(4)
• pwck(1M)
• shadow(4)
• su(1M)

Chapter 6. System Startup and Shutdown
This chapter details the mechanisms controlling system startup and shutdown.[1]

[1] For information on boot PROMs and on how information in the PROM controls system startup, see chapter 3.

What's in this chapter

• The meaning of system run levels
• The locations and identities of files controlling system startup and shutdown
• Tools and techniques you can use to audit and modify these files

Why this is important
A UNIX system administrator needs to understand the UNIX startup and shutdown mechanisms.
Because these mechanisms are not universally understood, they could be the focus of attack or
exploitation.

System Run Levels

It is important to be familiar with run levels—what they mean, how to determine a system's run level,
and how to change the run level. This is because the tasks of booting and shutting down a system are
nothing more than changing the system's run levels. The active Solaris operating system is classified as
running at a particular run level. A run level describes a system's general availability to users—for
instance, whether services such as network file system (NFS) would be available. For example, booting
a system is a change from level 0 (not running) to level 2 (multiuser mode). Getting a system into
maintenance mode is a change from level 2 (multiuser mode) to level 1 (single-user mode). The run
levels and their meanings are described in Table 6-1 and illustrated in a state-transition diagram (see
Figure 6.1). See the init(1M) man page for additional information.

Table 6-1. System Run Levels
Run

Level
Description

0 Used to terminate the operating system and bring it to the PROM firmware prompt, where it is
safe to power the system down.

1 Single-user administrative/maintenance mode.
2 Multiuser mode; all facilities except NFS are available over the network.
3 Multiuser mode, including NFS.
4 Not currently used by Solaris.

 68

5 Used to bring the system to a state where it is safe to power it down, then power it down
automatically on systems that support this.

6 Used to shut the system down, then reboot to the default run state (level 3 by default).
S or s Single-user mode with all local filesystems mounted.

Figure 6.1. Run Level State Transition Diagram

Determining Current Run Level

Use the who command to determine the system's current run level. In the following example, the
system is in run level 3.

$ who -r
 . run-level 3 Sep 7 15:44 3 0 S

System Startup

This section describes the steps that a Sun SPARC system performs during the startup, or boot,
procedure.

 69

PROM

The system PROM software and its environment variables load into memory and begin execution. The
PROM reads the auto-boot and boot-device variables in order to determine whether the PROM should
attempt a boot and, if so, from which device (disk or net). See chapter 3 for additional information.

init

The UNIX kernel is loaded, the root filesystem is mounted, and the init process is started. If the system
is booting to single-user mode, booting stops and the following prompt is displayed:

INIT:SINGLE USER MODE
Type Ctrl-d to proceed with normal start-up,
(or give root password for system maintenance)

If the root password is entered, a root shell is launched. At this point the UNIX administrator is free to
examine the system and perform any maintenance. When complete, the UNIX administrator exits the
root shell by typing exit or ^D.

Multiuser Mode

When the UNIX system boots to tiuser mode multiuser mode (whether by default or when the
administrator exits the root shell in single-user mode), the init process reads /etc/inittab in order to
determine what to do next.

The rc Mechanism

The rc mechanism is the collection of scripts that are executed when the system's run level is changed.
The rc scripts actually carry out the tasks required to change from one run level to another. This section
describes what the rc mechanism does to boot a system to multiuser mode.
The shell script /etc/rc2 is launched. First, /etc/rc2 determines the previous run state of the system. If
the previous run state was 0, then each shell script in the directory /etc/rc2.d that begins with the letter
S is executed, effectively starting all local and network services except the NFS server.
It is easy to tell what happens when /etc/rc2 runs, by listing the files in the directory /etc/rc2.d. During
the rc2 startup phase, the files in /etc/rc2.d beginning with the letter S are executed in the same order
that they appear when listed with the ls command. The standard convention for naming files in this
directory is Snndddd, where nn is a two-digit number used to control the run sequence of the files and
dddd is a string of characters describing the function of the script. A typical list of files in /etc/rc2.d is as
follows:

K20spc S47asppp S74syslog S89bdconfig
K60nfs.server S69inet S74xntpd S91leoconfig
K76snmpdx S70uucp S75cron S92rtvc-config
K77dmi S71rpc S76nscd S92volmgt
README S71sysid.sys S80PRESERVE S93cacheos.finish
S01MOUNTFSYS S72autoinstall S80lp S96ab2mgr
S05RMTMPFILES S72inetsvc S80spc S99audit
S20sysetup S73cachefs.daemon S85power S99dtlogin
S21perf S73nfs.client S88sendmail
S30sysid.net S74autofs S88utmpd

At system startup, all of these files that start with the letter S (S01MOUNTFSYS, then
S05RMTMPFILES, and ending with S99dtlogin) are executed in order. The shell scripts are passed the
single argument start. All other files in the directory are ignored (the files beginning with the letter K are

 70

run when the run level is changed from 3 to 2. The file README is not executed during any run level
change.
Next, /etc/rc2 executes all shell scripts found in the /etc/rc. d directory (this is a historical section which
is usually empty). All shell scripts are passed the single argument start.
Further, init starts /etc/rc3, which in turn executes all scripts beginning with S in the directory /etc/rc3.d.
All shell scripts are passed the single argument start.
Next, the service access controller (sac) is started. Sac initiates "port monitors," or processes, which
listen on system serial ports in order to control access to the machine.
Finally, the ttymon process is started with the express purpose of getting a login prompt on the system
console.

System Shutdown

This section describes the steps performed during a system shutdown procedure.

init

When a system administrator shuts the system down with a shutdown or init 0 command, the init
process first launches the script /etc/rc0. In a manner similar to system startup, /etc/rc0 executes shell
scripts in certain directories. They are as follows:

• /etc/shutdown.d (this is for historical reasons only, and is usually empty). Shell scripts are
passed the single argument stop.

• /etc/rc0.d/K*. Shell scripts are passed the single argument stop.
• /etc/rc0.d/S* (usually nothing here). Shell scripts are passed the single argument stop.

Next, /etc/rc0 attempts to kill all processes with the killall command, first by trying to kill all processes
"gently," and then more forcefully. Finally, /etc/rc0 dismounts all mounted filesystems (except root).

uadmin

init finally runs the uadmin command. uadmin performs the following final steps of system shutdown:

• All processes are killed.
• The filesystem buffer cache is flushed.[2]

[2] The filesystem buffer cache may contain writes to the disk(s) that have not yet been written to the disk itself.
Thus it is important to complete these writes in order to ensure integrity of filesystem information.

• The root filesystem is unmounted.
• The processor is halted.

More Information on rc Files

Many of the files in the startup and shutdown directories /etc/init.d, /etc/rc0.d, /etc/rc2.d, /etc/rc2.d, and
/etc/rc3.d are linked together.[3] For instance, /etc/init.d/sendmail, /etc/rc2.d/ S88sendmail, and /etc/rc0.
d/K57sendmail are all the same file. Likewise, /etc/init.d/lp, /etc/rc0.d/K20lp, /etc/rc1.d/K20lp, and
/etc/rc2.d/S80lp are the same file.

[3] In the case of rc files, these links are hard links as opposed to symbolic links. Refer to the ln(1) man page for more
information.

Startup and shutdown scripts are actually the same script. How can one script perform both startup and
shutdown duties? Recall that these scripts are always passed the argument start or stop. Each script
has sections of code dedicated to startup and shutdown. A functional flow of an rc script follows:

initialize common variables

 71

if (argument = "start")
 { startup section }
if (argument = "stop")
 { shutdown section }
if (argument = something else, or if no argument was entered)
 { print error message }

These design characteristics were included for the following reasons:

• The complete collection of all startup and shutdown files resides in /etc/init.d (by definition).
• This makes it easier to customize system characteristics by easily modifying the startup and

shutdown mechanisms.
• Files with a common purpose are actually the same file, simplifying the process of changing

system characteristics.

An Example rc File Examined

We will examine the startup file controlling the syslog daemon here. This file has three links:

• /etc/init.d/syslog
• /etc/rc0.d/K55syslog—executed by /etc/rc0 with the argument stop at system shutdown.
• /etc/rc1.d/K55syslog—executed by /etc/rc1 with the argument stop when returning to single-

user mode.
• /etc/rc2.d/S74syslog—executed by /etc/rc2 with the argument start when booting to multiuser

mode.

The file appears as follows:

A procedure for locating all of the links to a startup file follows.

1. Determine the inode number of the startup file. For example
2.
3. % ls -li S74syslog

 72

4. 37798 -rwxr--r-- 4 root sys 621 Jul 15 1997
S74syslog

5. %
6.

In this example, the inode number is 37798. This number is used in the next step.

7. Find all other files in /etc having the same inode number as S74syslog. Continuing the example:
8.
9. % find /etc -inum 37798 -print
10. /etc/init.d/syslog
11. /etc/rc0.d/K55syslog
12. /etc/rc1.d/K55syslog
13. /etc/rc2.d/S74syslog
14. %
15.

Auditing Startup and Shutdown Mechanisms

Because many system safeguards are either not running or are inaccessible during system startup and
shutdown, the UNIX administrator must be especially careful to ensure the integrity of the startup and
shutdown scripts. Two tools that can be used to audit system startup and shutdown scripts are COPS
and Tripwire.

COPS

The rc.chk program in COPS is used to audit a system's startup and shutdown programs. rc.chk looks
for any world-writable files in the /etc/init.d, /etc/shutdown.d, and /etc/rc* directories, as well as in the file
/etc/inittab. (COPS is described in detail in chapter 4.)

Tripwire

Tripwire (also discussed in chapter 4) can be configured to audit a system's startup and shutdown
scripts. Make sure that Tripwire is checking the following files and directories.

• /etc (contains rc scripts and numerous system configuration files)
• /etc/init.d (contains startup and shutdown scripts)
• /etc/rc0.d (contains shutdown scripts)
• /etc/rc1.d (contains shutdown scripts)
• /etc/rc2.d (contains startup scripts)
• /etc/rc3.d (contains startup scripts)
• /usr/sbin (system programs used during startup and shutdown)
• /kernel (UNIX kernel and device drivers)

Modifying Startup and Shutdown Mechanisms

Adding Startup and Shutdown Scripts

The following procedures will streamline the process of adding startup and shutdown scripts.

• It is easier to copy an existing rc script than to create a new one.
• Rather than combine functions into single scripts, make separate scripts for each function. It will

be easier to enable and disable each function independently.

 73

• Using the ln command, make hard links to the files in /etc/init.d, /etc/rc0.d, /etc/rc2.d, and
/etc/rc3.d as appropriate.

Changing Startup and Shutdown Scripts

The following procedures will help with the task of changing startup and shutdown scripts.

• Save a copy of the as-installed script. Make sure the copy does not start with the letter S or K (if
they start with S or K, the original and copied files will be executed).

• Make liberal comments—details mastered today are often forgotten tomorrow.

Warning

Never have rc files execute programs or reference files in world-writable directories
(programs or files can be added, removed, or changed by intruders). Never include
world-writable directories in PATH statements. Either practice opens potential security
holes, since rc files run as root.

Disabling Startup and Shutdown Scripts

This procedure will make the task of removing startup and shutdown scripts easier in the long run.

• Rather than delete a startup or shutdown file, rename it by adding the letter X to the beginning
of the file's name. This will preserve the file while at the same time preventing it from being
executed. For example, rather than remove S80lp, rename it to XS80lp (this should be done
only in /etc/rc0.d, /etc/rc1.d, /etc/rc2.d, or /etc/rc3.d-never in /etc/init.d). Always use the mv
command to rename these files. Using cp and rm will break the hard link between the files. I'll
explain this in the next section.

More on Linked Startup Files

A UNIX administrator must take care when working with linked startup files (refer to the section on rc
Files earlier in this chapter). For example, if a service needs to be temporarily disabled at system
startup, rename the file rather than copying it. Renaming a file will preserve its inode number (and
hence its link to the other filenames).
The right way to disable syslog at startup is

% cd /etc/rc2.d
% mv S74syslog X74syslog
%

The wrong way to disable syslog at startup is

% cd /etc/rc2.d
% cp S74syslog X74syslog
% rm S74syslog
%

The reason this second example is wrong lies in the future. The UNIX administrator, having disabled
syslog with cp and rm, would probably reenable syslog with the following:

 74

% cd /rc2.d
% cp X74syslog S74syslog
% rm X74syslog
%

The problem with this technique is that, while technically syslog startup will work properly, the UNIX
administrator's procedures would break the logical link between /etc/rc2.d/S74syslog and its
counterparts /etc/init.d/syslog, /etc/rc0.d/K55syslog, and /etc/rc1.d/K55syslog. In this situation,
modifications made to /etc/rc2.d/S74syslog will not be reflected in its counterparts (and vice versa)
because they are no longer the same file.

Where to Go for Additional Information

AnswerBook

• AnswerBook 2—System Administration Guide, Shutting Down and Booting a System

Man Pages

• boot(1M)
• kernel(1M)
• init(1M)
• inittab(4)
• init.d(4)
• killall(1M)
• ln(1)
• uadmin(1M)
• uadmin(2)

Publications

• Boot and Run Levels, SunSolve Technical Bulletin 1077

Chapter 7. CRON and AT
We will examine the UNIX job scheduling subsystems cron and at in this chapter.
What's in this chapter

• How cron and at work and how they are configured
• Common mistakes and pitfalls
• Auditing and mitigating security risks

Why this is important
Because cron and at are what UNIX administrators tend to use to add their own scheduled jobs to a
system, cron and at tend to be a favorite haunt for hackers. Many UNIX administrators make common
mistakes while using cron and at, and these mistakes can be easily avoided.

cron

What is cron?

cron is a job scheduling system used to execute regularly scheduled commands at predetermined
times. Typically, the commands executed by cron are batch programs that are used to perform chores

 75

such as cycling logfiles, purging old information from files or directories, backing up and cleaning up
databases, and so on. A program configured to be run by cron is commonly known as a cron job.
The UNIX administrator can control which users have access to cron (described later on in this
chapter).
cron is configured to execute programs at regular intervals. These intervals are measured in minutes,
hours, days, weeks, and months. Various simple and complex scheduling schemes can be configured
for programs. Examples include

• Every five minutes
• Every day at 4:05 A.M.
• Every Monday at 4:05 A.M., 8:05 A.M., 12:05 P.M. and 4:05 P.M.
• At every hour on the 5th of each month
• Every December 31 at 8 A.M.

A user schedules jobs to run by configuring a crontab file. A crontab file contains each command a user
wishes to run, together with the days and times that each command should be run. The syntax for a
crontab file is

minute hour day-of-month month day-of-week command

Minute is coded 0–59, hour is coded 0–23, day-of-month is coded 1–31, month is coded 1–12, and day-
of-week is coded 0–6 (0 = Sunday, 1 = Monday, etc.). A field can have a single number, a list of
comma-separated numbers, a range of numbers, or an asterisk.
Lines beginning with the # symbol are comment lines.
Here is an example crontab file.

#ident "@(#)root 1.14 97/03/31 SMI" /* SVr4.0 1.1.3.1 */

root crontab

10 3 * * 0,4 /etc/cron.d/logchecker
10 3 * * 0 /usr/lib/newsyslog
45 3,15 * * 0 /usr/lib/fs/nfs/nfsfind

In this example, logchecker runs on Sundays and Thursdays at 3:10 A.M. newsyslog runs on Sundays
at 3:10 A.M. nfsfind runs on Sundays at 3:45 A.M. and 3:45 P.M.
It is important to understand that there is no intrinsic beginning or end to the intervals described above.
When cron runs a job every five minutes, it doesn't start tomorrow and end next week—cron runs the
job every five minutes forever. Further, a program started by cron cannot tell cron to execute it again in
five minutes as it is configured to nor can it tell cron not to execute it again.
Refer to the crontab(1M) man page for a complete description of crontab options.

How cron Works

At system startup, the cron daemon starts and reads all users' crontab files. cron also reads the file
/etc/default/cron to determine its generic behavior.
It then does nothing until it is time for the next job to be launched for any userid. cron forks (divides into
two identical processes) and the cron parent process goes back to sleep. The cron child process
changes its userid to that of the userid for which the job is being launched; the child then executes the
job.

How cron Is Configured

cron examines the file /etc/default/cron at system startup in order to determine the values of
CRONLOG, PATH, and SUPATH. These values are shown in Table 7-1.

 76

Table 7-1. /etc/default/cron Settings
Variable Description

CRONLOG YES (default)—cron will log all commands launched in the file /var/log/cron.
 NO—cron will not log commands launched.
PATH Default PATH for nonroot cron jobs. If unspecified, PATH = /usr/bin.
SUPATH Default PATH for root cron jobs. If unspecified, PATH = /usr/sbin:/usr/bin.

cron User Configuration

Users view and configure cron settings with the crontab command. The command for viewing a crontab
file is crontab -l.
The recommended procedure for changing a crontab file is as follows:

1. cd to a directory readable (or searchable) only by the userid (this is because the text file
generated in the next step might otherwise be readable by other users).

2. Enter the command crontab -l > mycronfile. This causes the user's crontab file to be written to
the file mycronfile.

3. Edit the file mycronfile. Make all desired changes.

4. Enter the command crontab < mycronfile. This causes the cron daemon to copy mycronfile to
the actual location used by cron. The cron daemon also rereads the user's new crontab file,
thereby introducing into its run schedule any changes the user made to his or her crontab file.
crontab performs syntax checking on the crontab entry itself, but does not verify the existence
or syntax of the command.

5. Enter the command crontab -l, in order to verify that the intended changes were made (refer to
the second principle in chapter 2).

Note

I do not recommend use of the crontab -e command (which is another way to edit a
crontab file). crontab -e places a world-readable copy of the user's crontab file in the
/tmp directory. Any user on the system would then be able to see that user's crontab
file. Refer to the second principle in chapter 2.

User Access to cron System

Together, the two files /etc/cron.d/cron.allow and /etc/cron.d/cron.deny determine whether any
particular user may or may not run the crontab command.
The file /etc/cron.d/cron.allow lists which userids are allowed to use crontab. Similarly,
/etc/cron.d/cron.deny lists which userids are not allowed to use crontab. A typical cron.deny file follows.

daemon
bin
smtp
nuucp
listen
nobody
noaccess

 77

The userids listed in this example do not have permission to run crontab.
A user is allowed to run crontab if the user's name appears in cron.allow, or if cron.allow does not exist
and the user's name is not in cron.deny. A user is not allowed to run crontab if cron.allow exists and the
user's name is not in it, or if cron.allow does not exist and the user's name is in cron.deny. If neither
cron.allow nor cron.deny exists, a user is not allowed to run crontab (except root). See the crontab(1)
man page for a complete explanation of the cron.allow and cron.deny logic.
Note that denial to crontab does not imply that a user's cron jobs will not be run. In fact, this can be a
useful security feature. A system administrator can set up cron jobs for particular users, but can forbid
the same user from viewing or modifying his or her crontab file through the use of /etc/cron.d/cron.allow
and /etc/cron.d/cron.deny.

at

What Is at?

at is a scheduling system used to execute a command (or series of commands) at a single specified
time in the future. The measures of time used are minutes, hours, days, and months. Absolute and
relative intervals are allowed. Some scheduling examples include

• Now
• Plus two hours thirty minutes
• Tomorrow at 10 A.M.
• Four hours from now
• Two weeks from now at 4 P.M.

at is distinguished from cron primarily in that cron is used to execute a command over and over at a
specific time, whereas at is used to execute a command one time at a particular time.
UNIX administrators can control which users have access to at in the same way they can control
access to cron, described earlier.

How at Works

At system startup, the cron daemon starts and reads all entries in /var/spool/cron/atjobs. These at job
entries contain all of the environment information needed to run the at job, including the actual at job
command(s). The names of the at job entries themselves tell cron when to start the at job; the format of
the filename is n.m, where n is the number of seconds since January 1, 1970, and m is a sequence
digit used to distinguish multiple at jobs configured to start at exactly the same second. The sequence
digit value is a, b, etc.
The internal mechanism for starting at jobs is essentially the same as for cron jobs: cron forks, the
parent process goes back to sleep, and the child process changes its userid to that of the userid for
which the job is being launched; the child then executes the at job file in /var/spool/cron/atjobs .

User Access to at System

The files /etc/cron.d/at.allow and /etc/cron.d/at.deny work exactly like the files /etc/ cron.d/cron.allow
and /etc/cron.d/cron.deny described earlier.

Common Mistakes to Avoid

Failure to Adequately Conceal Programs Launched by cron

Scripts and programs launched by cron—particularly for userid root—should not be readable by anyone
but the user/owner.

 78

Leaving crontab Files Lying Around for All to See

Temporary copies of crontab files should not be left in places (like /tmp) where others can see them and
exploit possible weaknesses revealed in cron entries.

Unsecure PATH Elements in Scripts Launched by cron

The PATH statement (whether set in /etc/default/cron or the launched program itself) should contain no
unsecure directories.
For example, PATH in a cron-launched shell script for user root is set to /tmp:/usr/bin. A hacker
knowing this could create executable programs in the /tmp directory that were the same name as
commands used in the cron-launched shell script. Then, when the shell script ran a particular
command, the hacker's copy in /tmp would be run (as root) instead of the correct version in /usr/bin.

Note

If PATH were set to /usr/bin:/tmp , a clever hacker could still have some fun. The
intended command used by a cron -launched script could be removed from /usr/bin (
only if there was already a security problem with permissions incorrectly set in
/usr/bin); this would cause the script to run the hacker's version in /tmp.

Indeterminate PATH Elements in Scripts Launched by cron

The PATH statement should contain no indeterminate directories. PATH should not contain any "~" or
"." entries, which could be unsecure (readable or—worse—writable by others). "~" or "." in PATH open
the door to Trojan horse attacks. [1]

[1] Refer to the Glossary for a definition of Trojan horse.

Use of stdin and stdout in cron and at Jobs

Because there is no user terminal or terminal session associated with a cron or at job, stdin and stdout
must be redirected. Specifically, any command in a cron job reading from stdin will get an immediate
end-of-file (as though the user, if the command were running from a terminal, pressed Ctrl-D).
Any command in a cron job writing to stdout will have its output sent to the owner of the cron job in a
mail message. This may or may not be the desired result.

Auditing Tools

Tripwire

Tripwire, described in chapter 4, should be configured to regularly examine the following files and
directories:

• /etc/cron.d—the directory containing cron and at configuration files and the logchecker program
• /etc/default—the directory containing system default behavior files, including cron and at
• /var/cron—the directory containing the cron log
• /var/spool/cron—the directory containing cron's spool area; the contents of

/var/spool/cron/atjobs should not be checked unless you do not run at jobs, or unless the
frequency at which at jobs change is low (a yearly job, for instance). This is because the
contents of /var/spool/cron/atjobs will change frequently if at is heavily used.

• /etc/cron.d/cron.allow—one of two files determining access to cron
• /etc/cron.d/cron.deny—one of two files determining access to cron

 79

• /etc/cron.d/at.allow—one of two files determining access to at
• /etc/cron.d/at.deny—one of two files determining access to at

COPS

COPS, described in chapter 4, should be set up to run cron.chk, the program used to examine cron
jobs for possible security weaknesses.

Where to Go for Additional Information

AnswerBook

• AnswerBook 2—System Administration Guide, Managing System Resources, Scheduling
System Events

Man Pages

• at(1)
• cron(1M)
• crontab(1)
• crontab(4)

Publications

• Administration and Usage of Crontab, SunSolve White Paper 918
• Crontab Administration and Usage, SunSolve Infodoc 3959

Chapter 8. System Logs
UNIX system logging capabilities and configuration are described in this chapter.
What's in this chapter

• Description and configuration of syslog
• loginlog
• sulog
• Last log
• Other system logs

Why this is important
UNIX systems record security (and other) events in system logs. UNIX system administrators need to
know how these logging mechanisms function so that they can be understood and modified as needed.

What Is a System Log

A system log is a recording of certain events. The kind of events found in a system log is determined by
the nature of the particular log and any configurations used to control those events that are logged.
System logs are usually human-readable text files containing a timestamp and other information
specific to the message or subsystem.

syslog

syslog is UNIX's general-purpose logging mechanism and consists of the following:

 80

• syslog()—an application program interface (API) referenced by several standard system utilities
and available to anyone writing software in the C programming language (this topic will not be
explored further in this book)

• logger—a UNIX command used to add single-line entries to the system log
• /etc/syslog.conf—the configuration file used to control the logging and routing of system log

events
• syslogd—the system daemon used to receive and route system log events from syslog() calls

and logger commands

syslog Facilities and Severity Levels

syslog system messages are categorized by facility and severity. The facilities are listed in Table 8-1.
syslog severity categories are listed, in decreasing order, in Table 8-2.

Table 8-1. syslog Facilities
Facility Message Description

user Generated by user processes. This is the default facility; messages not fitting any of the other
listed categories here are classified as facility user.

kern Generated by the system kernel.
mail Generated by the e-mail system.
daemon Generated by system daemons, such as ftpd.
auth Generated by the authorization programs login, su, and getty.
lpr Generated by the printing system.
news Generated by the Usenet News system.
uccp Generated by the UUCP system.
cron Generated by cron and at.
local0-7 Generated by up to eight locally defined categories numbered 0 through 7.
mark Generated by syslog itself for timestamping logs.

Table 8-2. syslog Severity Levels
Severity Description

emerg The most severe messages, such as immediate system shutdown.
alert System conditions requiring immediate attention.
crit Critical system conditions, such as failing hardware or software.
err Other system errors.
warning Warning messages.
notice Notices requiring attention at a later time.
info Informational messages.
debug Messages for debugging purposes.

syslog Message Classification Notation

The notation used to classify syslog messages is facility. severity. For example, a warning message
from the printing system would be classified as lpr.warning.
For any severity level specified, messages are generated for that and all less-severe levels. For
example, lpr.warning causes warning-, err-, crit-, alert-, and emerg-level messages from the lpr
service to be generated.
Wild card notation is used in syslog notation. For example, *.err means severity level err messages
from all facilities (except the mark facility).

syslog Configuration

syslog configuration consists of routing error messages from various facilities (and at various severity
levels) to one or more of the following destinations:

 81

• Logfiles anywhere on the system
• Another computer running syslog with its own syslog configuration
• Active users on the system

The notation for syslog.conf messages is selector <tab> action (note that the character between
selector and action must be a tab and must not be one or more spaces). Action consists of a system
name, pathname, or userid. Selector consists of one or more semicolon-separated facility-severity pairs
taking the form facility.level[;facility.level]. facility consists of one or more comma-separated facilities.
Here are examples of complete entries.

1. All debug (and higher) messages in the mail system are written to the file
/var/log/mail.debug.log.

2.
3. mail.debug /var/log/mail.debug.log
4.

5. Crit messages from all facilities are sent to the users root and adm if they are logged in.
6.
7. *.crit root,adm
8.

syslog is configured in the /etc/syslog.conf file. A typical syslog.conf file follows. First, several comment
lines appear.

#ident "@(#)syslog.conf 1.4 96/10/11 SMI" /* SunOS 5.0 */

Copyright (c) 1991-1993, by Sun Microsystems, Inc.

syslog configuration file.

This file is processed by m4 so be careful to quote (' ') names
that match m4 reserved words. Also, within ifdef's, arguments
containing commas must be quoted.

The next line directs severity err messages from all facilities (*) and severity notice messages from the
kern and auth facilities to be directed to the device /dev/console.

*.err;kern.notice;auth.notice /dev/console

The next line directs severity err messages from all facilities, severity debug messages from the kern
facility, severity notice from the daemon facility, and severity crit from the mail facility to all be directed
to the /var/adm/messages file.

*.err;kern.debug;daemon.notice;mail.crit /var/adm/messages

The next line directs severity alert messages from all facilities and severity err messages from the kern
and daemon facilities to be directed to the user operator.

*.alert;kern.err;daemon.err operator

The next line directs severity alert messages from all facilities to the user root.

 82

*.alert root

The next line directs severity emerg messages from all facilities to all logged-in users.

*.emerg *
if a non-loghost machine chooses to have authentication messages
sent to the loghost machine, un-comment out the following line:
#auth.notice ifdef('LOGHOST', /var/log/authlog, @loghost)

The next line directs all severity debug messages from the mail facility to the file /var/log/syslog if the
local system is named loghost [1]; otherwise it directs them to the machine loghost as defined in
/etc/hosts, DNS, or NIS.

[1] A system is usually defined as loghost in the /etc/hosts file. For example

#/etc/hosts
127.0.0.1 localhost
149.46.23.16 1pserver loghost

mail.debug ifdef('LOGHOST', /var/log/syslog, @loghost)

The next set of lines directs messages from the user facility to the console, to the file
/var/adm/messages, and to the user's root and operator only if the local system is named loghost.

non-loghost machines will use the following lines to cause "user"
log messages to be logged locally.

ifdef('LOGHOST', ,
user.err /dev/console
user.err /var/adm/messages
user.alert 'root, operator'
user.emerg *
)

Debugging syslog

syslog has a debugging mechanism that allows the UNIX administrator to trace the emergence and flow
of syslog messages. syslog is debugged in two parts:

• On startup, syslog displays a two-dimensional matrix illustrating its configuration as defined in
the configuration file /etc/syslog.conf.

• In real time, syslog displays inbound syslog messages and specifies how the messages are
processed.

Follow this procedure to turn on syslog debugging.

 83

1. Kill syslogd process with a kill -15 pid command.

2. Restart syslogd with the command /usr/sbin/syslogd -d. This will start syslogd in debug mode.
syslogd will first read its configuration file and write output similar to the following:

3.
4. # /usr/sbin/syslogd -d
5. getnets() found 1 addresses, they are: 0.0.0.0.2.2
6. amiloghost() testing 127.0.0.1.2.2
7. I am loghost
8. amiloghost() testing 127.0.0.1.2.2
9. nlogs 6
10.

The next section is syslogd reading from syslog.conf.

cfline(*.err;kern.notice;auth.notice /dev/console)
cfline(*.err;kern.debug;daemon.notice;mail.crit
/var/adm/messages)
cfline(*.alert;kern.err;daemon.err operator)
cfline(*.alert root)
cfline(*.emerg *)
cfline(mail.debug
/var/log/syslog)

Here, syslogd prints version information.

syslogd: version 1.59
Started: Fri May 15 21:07:26 1998
Input message count: system 0, network 0

This section is a matrix of inputs and outputs. The value in each position represents the
minimum severity level (7 = debug, 6 = info, 5 = notice, 4 = warning, 3 = err, 2 = crit, 1 = alert, 0
= emerg, x = nothing). Each column is a different service (left to right: kern, user, mail, daemon,
auth, lpr, news, uucp, cron, local0-local7, mark). Each row represents a different output (a file or
user).

Outputs: 6
5 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 X CONSOLE:
/dev/console
7 3 2 5 3 X FILE:
/var/adm/messages
3 1 1 3 1 X USERS:
operator

 84

1 X USERS: root
0 X WALL:
X X 7 X FILE:
/var/log/syslog
Per File Statistics
File Tot Dups Nofwd Errs
---- --- ---- ----- ----
/dev/console 0 0 0 0
/var/adm/messages 0 0 0 0
operator 0 0 0 0
root 0 0 0 0
WALL 0 0 0 0
/var/log/syslog 0 0 0 0
syslogd: restarted
off & running....
Logging to FILE /var/adm/messages
Logging to FILE /var/adm/messages

3. Wait for or cause events that will log to syslog.

Example 1: The following command is run

logger -p auth.notice "This is a test."

and then syslogd in debug mode will display

Logging to CONSOLE /dev/console

and the following text will appear on the console window.

May 15 16:21:31 alpha pete: This is a test.

Example 2: the following command is run

logger -p mail.crit "This is the next test."

and then syslogd in debug mode will display

Logging to FILE /var/adm/messages

 85

and the following entry will be written to /var/adm/messages.

May 15 16:21:49 alpha pete: This is the next test.

4. To stop testing syslog, press ^C in the window where syslogd is running in debug mode. syslog
will display the following message:

5.
6. ̂ Csyslogd: going down on signal 2
7. syslogd: going down on signal 2
8. #
9.

5. Restart syslogd in normal mode with the command /usr/sbin/syslogd.

Note

syslogd should be run in debug mode only interactively. The system will hang if
syslogd is run in debug mode in the system startup scripts (usually /etc/rc2.d/
S74syslog).

loginlog

Unsuccessful login attempts after five consecutive failures are logged in the file /var/adm/loginlog, only
if the file /var/adm/loginlog exists and is owned by root, group sys, and has read and write permissions
only for root. Follow this procedure to create and configure the file /var/adm/loginlog for unsuccessful
login attempt logging:

1. Log in (or su) as root.
2. Enter the command touch /var/adm/loginlog.
3. Enter the command chown root /var/adm/loginlog.
4. Enter the command chgrp sys /var/adm/loginlog.
5. Enter the command chmod 600 /var/adm/loginlog.

The following is an example entry written into /var/adm/loginlog.

adm:/dev/pts/9:Tue May 5 21:07:49 1998

This entry indicates that a user attempted to log in as user adm on port /dev/pts/9 on May 5 at 9:07
P.M.

sulog

The sulog file, /var/adm/sulog, is a log containing all attempts (whether successful or not) of the su
command. An entry is added to the sulog file every time the su command is executed. An example of
the sulog file follows:

SU 02/03 22:47 + tty root-daemon

 86

SU 02/07 15:41 + pts/8 pete-root
SU 02/07 15:45 + console root-daemon
SU 02/13 21:43 + pts/5 pete-root
SU 02/13 22:18 + pts/5 pete-root
SU 02/15 20:03 + console root-daemon
SU 02/15 20:06 + pts/3 pete-root
SU 02/15 20:10 + tty root-daemon
SU 02/23 20:51 - pts/6 pete-root
SU 02/23 21:14 + console root-daemon

The fields in sulog are: date, time, successful (+) or unsuccessful (-), port, user executing the su
command, and user being switched to. In the preceding example, all su attempts were successful,
except for the attempt on 2/23 at 20:51, when user pete unsuccessfully attempted to su to user root.

Last Log

The last command displays login/logout and system boot information in time sequence order. last reads
the binary file /var/adm/wtmpx, which is written to every time a user logs in or out and when the system
is rebooted. An example last command output is

pete console :0 Wed Apr 1 20:52 still
logged in
pete console :0 Wed Apr 1 20:40 - 20:51
(00:10)
pete console :0 Mon Feb 23 21:31 - 20:39
(36+23:08)
reboot system boot Mon Feb 23 21:13
pete console :0 Sun Feb 15 20:03 - 21:11
(8+01:07)
reboot system boot Sun Feb 15 20:02
pete console :0 Sat Feb 7 16:05 - 20:00
(8+03:55)
reboot system boot Sat Feb 7 15:44
pete console :0 Tue Feb 3 22:50 - 15:42
(3+16:51)
root console :0 Tue Feb 3 21:04 - 22:50
(01:46)
pete console :0 Tue Feb 3 20:59 - 21:03
(00:04)
root console :0 Tue Feb 3 20:52 - 20:59
(00:06)
pete console :0 Tue Feb 3 20:38 - 20:52
(00:13)
root console :0 Tue Feb 3 20:35 - 20:38
(00:02)
pete console :0 Tue Feb 3 20:19 - 20:35
(00:15)
pete console :0 Tue Feb 3 20:18 - 20:19
(00:00)
pete console :0 Tue Feb 3 20:18 - 20:18
(00:00)
root console :0 Tue Feb 3 20:12 - 20:18
(00:05)
reboot system boot Tue Feb 3 20:11

 87

reboot system boot Tue Feb 3 18:56
root console :0 Fri Jan 30 09:11 - 09:12
(00:00)
reboot system boot Wed Jan 28 11:26
root console :0 Fri Jan 23 15:00 - 11:25
(4+20:25)
reboot system boot Thu Jan 22 15:14
wtmp begins Thu Jan 22 15:14

Volume Manager Log

The volume manager log, /var/adm/vold.log, is used by the Solaris Volume Manager (the software that
manages the CD-ROM and diskette drives and automates the user-system interaction when using
those drives).

Install Log

The system install log, found in /var/sadm/system/logs/install_log, is generated when Solaris is installed
on the system. The install log contains all of the character output generated throughout Solaris
installation. The log contains information such as disk partitioning and formatting, software module
installation status, and mount points.

sysidtool Log

The sysidtool log, found in /var/sadm/system/logs/sysidtool.log, is generated by the sysidtool tool suite,
itself run automatically at system installation time or when the system is unconfigured with sys-unconfig.
This log can be useful for double-checking the configuration of a newly installed or reinstalled system to
see what, if any, changes have occurred.

Tools to Help with Logging

Logcheck

Logcheck is a public-domain tool used to examine syslog and any other logfiles. When something
suspicious is found, it sends an e-mail message alerting the UNIX administrator that something is up.
Logcheck employs a filter file containing keywords; when a log entry containing a keyword is found, a
message is sent. Logcheck utilizes the "report everything that is not explicitly ignored" feature— a nice
feature, since it can be difficult to know in advance every possible type of message that could be
logged. It is run from cron as often as needed (once per hour is the recommended minimum frequency).
This is a description of Logcheck configuration files.

• logcheck.hacking—File of known active hacking attack messages to look for. Only put
messages in here if you are sure they won't cause false alarms. This is a rather generic way of
checking for malicious activity and can be inaccurate unless you know what past hacking
activity looks like. The default is to look for generic Internet security scan (ISS) probes and
obvious sendmail attacks.

• logcheck.violations—File of security violation patterns to specifically look for. This file should
contain keywords that administrators should probably be aware of. It may or may not cause
false alarms sometimes. Generally, anything that is negative is put in this file. It may miss some
items, but these will be caught by the next check. Move suspicious items into this file to have
them reported regularly.

• logcheck.violations.ignore—File that contains more complete sentences that have keywords
from the violations file. These keywords are normal and are not cause for concern but could
cause a false alarm. An example of this is the word "refused" which is often reported by
sendmail if a message cannot be delivered; it can also be a more serious security violation of a
system attaching to illegal ports. Obviously, you would include the sendmail warning as part of

 88

this file. Use your judgment before putting words in here or you can miss really important
events. The default is to leave this file with only a couple of entries. Do not leave the file
empty. grep will assume that an empty file means a wildcard and will ignore everything! The
basic configuration allows for the more frequent sendmail error. Again, be careful what you put
in this file.

• logcheck.ignore—This is the name of a file that contains patterns that we should ignore if found
in a logfile. If you have repeated false alarms or want specific errors ignored, you should put
them in here. Once again, be as specific as possible, and go easy on the wildcards.

Logcheck may be obtained from
http://www.psionic.com/abacus/logcheck/
ftp://coast.cs.purdue.edu/pub/tools/unix/logcheck/

Where to Go for Additional Information

Man Pages

• last(1)
• loginlog(4)
• login(1)
• logger(1)
• sulog(4)
• sysidtool(1M)
• syslog(3)
• syslogd(1)
• syslog.conf(4)
• sys-unconfig(1M)
• vold(1M)

 89

Part 3: The Network-Connected System
Network communications have multiplied the usefulness of computers and information,
but connecting any system to a network increases the risk of mishap. The amount of
risk is proportional to the number of people who can access the system and to the
number and type of services that are accessible by these people.

Topics covered include

Part III The Network-Connected System

 Chapter 9, "Network Interfaces and Services"

 Chapter 10, "Network/System Architecture"

 Chapter 11, "Electronic Mail"

 Chapter 12, "Printing"

 Chapter 13, "Network Access Control" (Authentication, Firewalls, Intrusion Detection, and Virtual
Private Networks)

 Chapter 14, "Name Services" (DNS, NIS, NIS+)

 Chapter 15, "NFS and the Automounter"

Chapter 9. Network Interfaces and Services
We'll talk about physical and logical network interfaces and network services in this chapter.
What's in this chapter

• About network interfaces
• How network interfaces are configured
• About network services
• How network services are configured
• How routing information is configured
• How to use snoop (Sun's network sniffer program)

Why this is important
UNIX system network interfaces and services are the facilities used to access a UNIX system over a
network; UNIX system security is frequently compromised by improper knowledge and configuration of
network interfaces and services.

Networks

A network is a specific collection of equipment and wiring set up to facilitate the communications
between two or more computers (or other network devices such as printers, plotters, scanners, and
modems). If you need more information on networks and how they work, refer to the list of publications
at the end of this chapter.

Network Interfaces

A network interface is the physical part of a Sun computer used to communicate via a network to other
computers. The interface consists of electronic circuitry plus one or more physical connectors used for
attaching network cables to the computer. A network interface is configured with commands described
later in this chapter.

Network Interface Characteristics

 90

A network interface on a Sun system has a number of characteristics worth knowing about. These
characteristics are

• MAC address. MAC is an acronym for Media Access Control, the name of the ISO
communications layer 2, known as the data link layer.[1] Otherwise known as the Ethernet
address or physical address, the MAC address is a generally unchangeable characteristic
usually "burned" into each Ethernet network interface card in the computer. An example MAC
address is 8:0:20:22:e3:e2. Ethernet standards assume that no two network interfaces (in the
entire world) have the same MAC address.

[1] For more information on TCP/IP concepts, please refer to the references listed at the end of this chapter.

Note

In many cases (particularly in the newer architectures) the MAC addresses of
network interface cards (NICs) are in fact changeable. Solaris does provide a
way of changing a network interface's MAC address; this is disussed in the
section on network interface configuration later in this chapter. However,
except in rare circumstances (such as a server with multiple network interfaces
connected to the same network), MAC addresses should be considered
unchangeable and should not be modified. An example later in this chapter
shows how to change the MAC address.

• IP address. This is the generally known network address assigned to the computer. An
example IP address is 204.63.68.119. Unlike a MAC address (which is generally
unchangeable), an IP address is defined and configured by the UNIX or network administrator
according to a predetermined site addressing plan.

• Subnet mask. While not actually a characteristic of the network interface itself, the subnet
mask is a characteristic used by the network drivers to determine whether outbound packets
should be sent directly to their destinations or to the default router.

• Promiscuous mode. This characteristic, when turned on, determines that every packet seen
on the network should be passed to the software drivers and buffered, presumably for use by a
program running on the system. Ordinarily, only those network packets actually intended for a
particular computer are passed to the software drivers and buffered; the rest (those packets
intended for other computers) are ignored. The snoop program places the network interface in
promiscuous mode so that it can display all packets on the network. See the example snoop
session at the end of this chapter.

Network Interface Configuration

Several commands are used to configure a network interface. Also, the static values in some
configuration files determine initial network interface settings after system boot.

ifconfig

The ifconfig command is used to examine and change the following network interface characteristics.

• Status (up or down)
• IP address
• Subnet mask
• Broadcast address (the address used to send a packet to all computers on the same subnet)
• Maximum transmission unit (mtu)—the maximum packet size
• MAC address

 91

For additional information see the ifconfig(1M) man page. The following are examples of ifconfig.

1. Show configuration settings for all interfaces, single physical interface.
2.
3. # informal# ifconfig -a
4. lo0: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232
5. inet 127.0.0.1 netmask ff000000
6. le0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu

1500
7. inet 207.127.1.83 netmask ffffff00 broadcast 207.127.1.255
8. #
9.

The first interface listed is lo0, the loopback interface. Every system by definition has a loopback
interface.

The second interface listed is le0, a 10MB Ethernet interface.

10. For interface le0, change the IP address to 207.127.1.88 and the netmask to 255.255.255.0.
11.
12. # ifconfig le0 207.127.1.88 netmask 255.255.255.0
13. #
14.

15. For interface le0, change the IP address to 207.127.1.88; the netmask is looked up in the file
/etc/inet/netmasks, in NIS or NIS+, depending upon the value for the netmasks entry in
/etc/nsswitch.conf.

16.
17. # ifconfig le0 207.127.1.88 netmask +
18. #
19.

20. Shut down interface le0.
21.
22. # ifconfig le0 down
23. #
24.

25. Change interface le0 MAC address.
26.
27. #
28. # ifconfig le0 ether aa:bb:cc:00:11:22
29.

For more information refer to the ifconfig(1M) man page.

ndd

 92

The ndd command is used to examine and change network device driver characteristics. Most of the
settings that can be changed in the network drivers are not security related but are instead involved
with network tuning. However, there are a few settings that the security-conscious administrator needs
to know about. I describe them in the following sections.

Note

The ndd settings described here are related to packet routing on a network. These
settings, some of which may alter the behavior of the network, should be coordinated
with the LAN administrator.

Warning

Sun does not publish the /dev/ip and /dev/tcp tunable parameters; they may change at
any time.

Configure IP Forwarding

IP forwarding is a characteristic of a Sun workstation acting as a router; in other words, a workstation
having connections to two or more networks and forwarding network packets between them.
With inexpensive routers available today, a UNIX workstation seldom gets pressed into service as a
router. However, it may still be common for a UNIX workstation to have connections to two or more
networks—not for the purpose of being a router, but to give nodes on the two or more networks access
to the service offered by the workstation. Figure 9.1 illustrates this distinction.

Figure 9.1. Workstations with Multiple Network Connections

The Solaris network drivers give the workstation connected to two or more networks the ability to act as
a router and forward packets. This is accomplished with the ndd command, shown in these examples.[2]

[2] The usual underscoring in these examples is omitted because the underscores would hide the underscores in the
commands themselves; i.e.,: "ip_forwarding."

 93

1. Display the packet forwarding characteristic. In this example, IP forwarding is off (0). If IP
forwarding is set or on, the result will be 1, as shown in example 2.

2.
3. # ndd -get /dev/ip ip_forwarding
4. 0
5. #
6.

7. Turn on packet forwarding.
8.
9. # ndd -set /dev/ip ip_forwarding 1
10. #
11.

Warning

Example 2 should be performed only in a situation where the system is
deliberately being used as a router.

12. Turn off packet forwarding. I recommend that this entry be added to the end of /etc/init.d/inetinit.
13.
14. # ndd -set /dev/ip ip_forwarding 0
15. #
16.

Ignore Redirects

A redirect packet is an Internet control message protocol (ICMP) message telling a system (or router) to
change its routing table. This is potentially dangerous because an intruder, knowing that a Solaris
system is acting as a router, can attempt to alter its routing table (for instance, as part of a denial-of-
service attack) by sending it redirects.
Any Solaris system—even one configured as a router—should ignore redirects. To have the system do
so, add the following entry to the end of /etc/init/inetinit.

ndd -set /dev/ip ip_ignore_redirects 1

Send Redirects

Not only should Solaris systems ignore redirect packets, but they should also be configured to not send
redirect packets. To accomplish this, add the following entry to the end of /etc/init/inetinit.

ndd -set /dev/ip ip_send_redirects 0

Forward Directed Broadcasts

 94

A directed broadcast packet is a packet whose destination IP address is the broadcast address of a
network. For instance, the broadcast address for the class C network 10.31.6.0 is 10.31.6.255. Directed
broadcasts are potentially dangerous because they permit a single packet to be sent to all systems on a
network.
When a Solaris system is configured to be a router, it should not forward directed broadcasts. Add the
following entry to the end of /etc/init/inetinit.

ndd -set /dev/ip ip_forward_directed_broadcasts 0

Configure Source Routing

A \source-routed packet is a packet wherein the sender specifies the path by which the packet will be
taken to its destination, as opposed to letting the routers choose the best path. These are potentially
dangerous because they may permit an intruder to launch an attack on a network.
I recommend that the Solaris system not forward source-routed packets. Add the following entry to the
end of /etc/init/inetinit.

ndd -set /dev/ip ip_forward_src_routed 0

Turn Off IP Forwarding with /etc/notrouter

IP forwarding can also be disabled by creating the file /etc/notrouter (Solaris 2.4 and newer) and then
rebooting the system. This is not foolproof, however, as an intruder with root access can simply turn IP
forwarding back on with the ndd command.

netstat

The netstat command is used to examine network device driver status, including the following:

• Routing tables
• Active sockets
• Streams statistics
• ARP tables
• Statistics by protocol

While I have listed some typical examples of netstat commands and their output below, it is beyond the
scope of this book to exhaustively explain every permutation of what netstat output should look like.
Rather, the security-conscious administrator should have a thorough understanding of her systems and
how they relate to the surrounding network architecture. Only such an understanding will enable the
systems administrator to recognize things that don't look right.

1. Display routing tables. A routing table is used by the system to determine how to send outgoing
packets to ensure that they reach their destination.

2.
3. # netstat -r
4. Routing Table:
5. Destination Gateway Flags Ref Use Interface
6. ------------------ ------------------ ----- ----- ------ ------

7. localhost localhost UH 0 8 lo0
8. Subnet_0 vulcan U 3 2168 le0
9. BASE-ADDRESS.MCAST.NET vulcan U 3 0 le0
10. default router.vulcan.com UG 0 4474

 95

11. #
12.

13. Display active sockets. A socket is an identifier associated with a specific network conversation
between this system and another system. This display also shows the system's readiness to
communicate with other systems via specific network services. Only part of the output is shown.

14.
15. # netstat -a
16. UDP
17. Local Address Remote Address State
18. -------------------- -------------------- -------
19. *.route Idle
20. *.* Unbound
21. *.sunrpc Idle
22. *.* Unbound
23. *.32771 Idle
24. *.name Idle
25. *.biff Idle
26. *.talk Idle
27. *.time Idle
28. *.echo Idle
29. *.discard Idle
30. *.daytime Idle
31. *.chargen Idle
32. *.32772 Idle
33. *.32773 Idle
34. *.32774 Idle
35. *.32775 Idle
36. *.32776 Idle
37. *.32777 Idle
38. *.32778 Idle
39. *.32779 Idle
40. *.lockd Idle
41. .
42. .
43. .
44.

45. Display network interfaces. This display shows the system's network interfaces and some basic
statistics about each one.

46.
47. # netstat -i
48. Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis

Queue
49. lo0 8232 loopback localhost 24939149 0 24939149 0 0 0
50. hme0 1500 Subnet_1 vulcan 221166262 0 220093434 0 0 0
51. hme2 1500 10.0.31.0 kaos31 3062352 0 6412005 0 0 0
52. #
53.

54. Display the address resolution protocol (ARP) table. The ARP table is the translation between
the MAC address and IP addresses.

55.

 96

56. # netstat -p
57. Net to Media Table
58. Device IP Address Mask Flags Phys Addr
59. ------ -------------------- --------------- ----- -------------

--
60. hme2 spock 255.255.255.255 08:00:20:8d:b6:c1
61. hme0 hermes 255.255.255.255 00:10:ff:d0:78:a1
62. hme0 bones 255.255.255.255 08:00:20:86:76:24
63. hme2 BASE-ADDRESS.MCAST.NET 240.0.0.0 SM 01:00:5e:00:00:00
64. hme0 BASE-ADDRESS.MCAST.NET 240.0.0.0 SM 01:00:5e:00:00:00
65. hme0 vulcan 255.255.255.255 SP 08:00:20:7d:69:bd
66. #
67.

For more information refer to the netstat(1M) man page.

Note

netstat is a powerful diagnostic tool. It is important for the UNIX administrator
to be familiar with how netstat works and how to interpret its output. Those
unfamiliar with UNIX network concepts should consider one or more of the
books mentioned at the end of this chapter.

/etc/inet/hosts

The /etc/inet/hosts file contains information used to configure system interfaces at boot time. The file
/etc/hosts is a symbolic link to /etc/inet/hosts.[3] A typical /etc/inet/hosts file:

[3] Prior to Solaris 2.x (System V, Release 4), the files /etc/inet/hosts, /etc/inet/netmasks, /etc/ inet/services,
/etc/inet/protocols, and /etc/inet/inetd.conf were known as /etc/hosts, /etc/netmasks, /etc/services, /etc/protocols, and
/etc/inetd.conf, respectively. The latter filenames are preserved for compatibility with earlier versions of Solaris and other
UNIX OSs.

Internet host table

127.0.0.1 localhost
207.127.1.7 loghost
207.127.1.83 dbserver

The localhost entry is found on all systems. The loghost entry is used by syslog (see chapter 8 for more
information). The last entry, dbserver, is the name and IP address of this system.
The file /etc/inet/hosts is used to equate system names with their respective IP addresses. UNIX
administrators and users tend to remember system names, whereas the systems themselves use IP
addresses to communicate with one another. /etc/inet/hosts provides this name-to-address translation.
Each system must have its own copy of /etc/inet/hosts. In large networks, maintaining each system's
/etc/inet/hosts file is impractical, so a centralized naming service is used instead (see chapter 14 for
more information).

/etc/inet/netmasks

 97

The /etc/inet/netmasks file is used to determine the range of IP addresses on the network(s) to which
the system is connected. The file /etc/netmasks is a symbolic link to /etc/ inet/netmasks. This
information is needed so that the network drivers can determine whether packets to be sent out should
be sent directly to the destination host(s) or instead to the default router.

207.127.1.0 255.255.255.0
96.0.0.0 255.255.0.0

Each entry in /etc/inet/netmasks contains two fields: a network number and its respective subnet mask.

/etc/defaultrouter

The /etc/defaultrouter file is a plain text file that contains the name or IP address of the default router.
Packets destined for computers or devices not on the same subnet as the system sending them are
sent instead to the default router, which presumably will forward them to the proper destination. For
more information see the section on routing later in this chapter.

Note

If the name of the default router is used, there must be an entry for that name in the
/etc/inet/hosts file, since no directory service (i.e., DNS, NIS, or NIS+) is running on the
system when the routing table is being set up.

/etc/nodename

The /etc/nodename file is a text file that contains only the name of the system. This name matches the
name of the system defined in /etc/inet/hosts.

/etc/hostname.interface

The /etc/hostname.interface file is a plain text file containing the host name of the "xxx" network
adaptor. This file is used together with /etc/inet/hosts to determine to which IP address the network
adaptor should be assigned when the system is booted.
For example, consider a system with two network interfaces—le0 and le1. Two hostname.interface files
must be used—/etc/hostname.le0 and /etc/hostname.le1. The next section describes how these files
are used, together with /etc/inet/hosts and /etc/inet/netmasks, to configure a system's network
interfaces.

How Adaptors Are Configured

Figure 9.2 illustrates the relationship between the configuration files, network adaptors, and their
network addresses.

Figure 9.2. Network Adoptor Configuration

 98

The system's network adaptors are configured at boot time as follows (refer to Figure 9.2).

1. The system inventories its network adaptors and then pairs them with the /etc/
hostname.interface files. This associates a hostname with each adaptor.

2. The hostnames are paired with IP addresses from the /etc/inet/hosts file.
3. The subnet mask for each interface is derived from information in the /etc/inet/ netmasks file.

Promiscuous Mode

Promiscuous mode (defined earlier in this chapter) can be detected with the public-domain tool cpm
(check promiscuous mode). cpm is available from ftp://coast.cs.purdue. edu/pub/tools/unix/cpm/.

Running cpm

The following examples demonstrate cpm detecting an interface in promiscuous mode.

1. Interface in promiscuous mode
2.
3. # cpm
4. 3 network interfaces found:
5. lo0: Normal
6. le0: *** IN PROMISCUOUS MODE ***
7. le1: Normal
8. 1 of them is in promiscuous mode.
9. #
10.

11. No interfaces in promiscuous mode
12.
13. # cpm
14. 3 network interfaces found:
15. lo0: Normal
16. le0: Normal
17. le1: Normal
18. 0 of them is in promiscuous mode.
19. #
20.

Network Services

A network service is a logical portion of the Solaris operating system used to communicate specific
types of information among computers. A system with one or more services configured will consent to
communicate with other computers requesting service.

 99

Examples of network services include

• telnet— allows users on other systems to log in to this system and initiate a login shell from
which UNIX commands may be entered

• ftp— allows users on other systems to initiate a file transfer session with this system in order to
either pick up or drop off files

• sendmail —allows other systems to establish a connection in order to send and receive e-mail
messages

• ntp— permits other systems to ask this system for the correct time of day, enabling the two
systems to synchronize each other's clocks

• routed —facilitates the exchanging of routing information in situations where the workstation
itself is a router, or where the workstation is on a complex network with multiple routers
providing connectivity to other networks

Unnecessary Services

Solaris systems are shipped with a wide variety of network services, most of which are activated. It is in
the best interests of each system (and its owner) to have all nonessential services deactivated. Refer to
chapter 13 for information on disabling unnecessary network services.

Network Service Numbers

Network service numbers (also known as port numbers) are predefined in the Internet's Request for
Comments (RFC) 1700. For more information on RFCs, refer to the appendix on suggested reading.

Network Service Configuration

Services are configured with two configuration files—/etc/inet/services and /etc/inet/ inetd.conf. These
two files work together to determine which network services are activated and how they are configured.

/etc/inet/services

The /etc/inet/services file equates each service name with a port number and port type. The file
/etc/services is a link to /etc/inet/services; /etc/services exists for system-level compatibility with older
versions of UNIX. The fields in /etc/inet/services are defined as

name port/protocol [aliases]

where name is the name for the service, port is the IP port number, protocol is the protocol used
(either transmission control protocol [TCP] or user datagram protocol [UDP]), and aliases is an
optional list of alternate names for the service.
A portion of an /etc/inet/services file follows:

#ident "@(#)services 1.1697/05/12 SMI" /* SVr4.0 1.8 */

Network services, Internet style

tcpmux 1/tcp
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp

 100

daytime 13/udp
netstat 15/tcp
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp
ftp 21/tcp
telnet 23/tcp
smtp 25/tcp mail
time 37/tcp timserver
time 37/udp timserver
name 42/udp nameserver
whois 43/tcp nicname # usually to sri-nic
...

/etc/inet/inetd.conf

The /etc/inet/inetd.conf file equates each service (by its name) with network services offered by the
system. The file /etc/inet/inetd.conf contains the configuration characteristics for each particular service
needed to start that service properly.
The file /etc/inetd.conf is a link to /etc/inet/inetd.conf; /etc/inetd.conf exists for system-level compatibility
with older versions of UNIX. The fields in /etc/inet/inetd.conf are defined as follows:

name type protocol waitstatus userid path args

where name is the name for the service; type is one of these— stream, dgram, raw, seqpacket, or tli;
protocol is one of the protocol types listed in /etc/inet/protocols; waitstatus is either wait or nowait;
userid specifies which account will run the service; path is the full pathname of the service (the value
internal has a special purpose explained below); and args contains all program arguments (starting with
arg0, usually the program name itself).
Here is a portion of an /etc/inet/inetd.conf file.

#ident "@(#)inetd.conf 1.33 98/06/02 SMI" /* SVr4.0 1.5 */

Configuration file for inetd(1M). See inetd.conf(4).

To re-configure the running inetd process, edit this file, then
send the inetd process a SIGHUP.

Syntax for socket-based Internet services:
<service_name> <socket_type> <proto> <flags> <user> <path> <args>

Syntax for TLI-based Internet services:

<service_name> tli <proto> <flags> <user> <path> <args>

Ftp and telnet are standard Internet services.

ftp stream tcp nowait root /usr/sbin/in.ftpd in.ftpd
telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

Tnamed serves the obsolete IEN-116 name server protocol.

 101

name dgram udp wait root /usr/sbin/in.tnamed in.tnamed

Shell, login, exec, comsat and talk are BSD protocols.

shell stream tcp nowait root /usr/sbin/in.rshd in.rshd
login stream tcp nowait root /usr/sbin/in.rlogind in.rlogind
exec stream tcp nowait root /usr/sbin/in.rexecd in.rexecd
comsat dgram udp wait root /usr/sbin/in.comsat in.comsat
talk dgram udp wait root /usr/sbin/in.talkd in.talkd
...

How Network Services Are Started

The main Internet server process inetd is started when the system is booted. The startup script
/etc/rc2.d/S72inetsvc starts the inetd process. inetd reads the configuration files /etc/ inet/services and
/etc/inet/inetd.conf and then listens for connection requests from other computers over the network. The
inetd process listens simultaneously on all ports defined in /etc/inet/services.
If a connection request arrives on an undefined port (a port not defined in /etc/inet/ services), then no
service is started. The requesting computer is sent a "connection refused" message.
When a connection request arrives on a defined port (one defined in /etc/inet/services and
/etc/inetd/inetd.conf), then inetd will launch the service by starting the program listed in the path field in
/etc/inetd/inetd.conf (the program will be run as the userid specified in /etc/inetd/inetd.conf). The new
program will communicate over the network to the computer that originally requested the service
connection.
Some services have the word internal in the path field in /etc/inetd/inetd.conf. When a connection
request arrives for these services, inetd does not start another process, but instead communicates over
the network to the requesting computer directly (in other words, the network service functionality is built
in to inetd). Only services that can be processed quickly are done using this method. Examples include
echo, chargen, and discard.

Daemon Network Services Not Started with inetd

It is possible—in fact common-to start network services without inetd's help. An example of one of these
services is sendmail.
Sendmail, the network service used to send and receive electronic mail, is started independently of
inetd by its own rc file, S88sendmail. The sendmail daemon listens on port 25 (as defined in
/etc/inet/services) and manages its own network communications. The inetd process is never involved
in sendmail's configuration or communications.
Here are other examples of network services that run independent of inetd and what starts them if they
are used.

• DNS, started by S72 inetsvc
• NIS, started by S71rpc or S71yp
• NIS+, started by S71rpc
• NFS, started by S15nfs.server
• in.routed, started by S72inetsvc

What does this all mean? The inetd process is used to manage commonly used network services, but
not heavily used ones. Heavily used services listen on ports using dedicated daemon processes that
are running all the time (the assumption with inetd is that the spawned process servicing the request
exits after fulfilling the request).
This is really a matter of system efficiency. For those services not heavily used, inetd is a single
process listening on a multitude of ports, so that a multitude of daemon processes don't have to. This
saves space in the system's process table.

 102

On the other hand, heavily used network services employ their own dedicated processes (daemons)
that listen for and handle requests directly. This improves response time for those network services.
Were inetd to directly handle a heavily used network service such as sendmail, inetd would have to
launch the sendmail process each time a mail message arrived! This would bring a heavily used mail
relay system to a near standstill, since it would be spending nearly all of its time starting (and starting,
and starting.) sendmail processes.

Routing

For most UNIX systems, there is usually only one network router available to route packets to other
networks. There are cases, however, where a UNIX system has more than one router from which to
choose when making a packet delivery decision. Figure 9.3 illustrates this scenario.

Figure 9.3. Single and Multiple Routers and Networks

The case of a single router leading to all networks is solved with the use of /etc/ defaultrouter. For
example, if the IP address of the router is 10.12.17.2, then /etc/ defaultrouter would appear as

10.12.17.2

The case of multiple routers leading to multiple networks is solved in one of two ways: static routes and
dynamic routes.

Adding Static Routes

Static routes are added manually to the workstation with the route command. The format of the route
command is route add net net-address subnet-mask router hops, where net-address is the TCP/IP
address for the entire network to be routed to; subnet-mask is the subnet mask for that network; router
is the IP address of the router that routes to that network; and hops is the number of network hops to
that network.

Note

UNIX and network administrators must work together when setting up routes on any
workstation so that its routing configuration matches the actual network topology.

 103

Using the illustration in Figure 9.3 as an example, the UNIX workstation on the right-hand side of the
illustration would be set up as follows:

• The file /etc/defaultrouter would contain the IP address of one of the two routers—presumably
the one leading to most other networks, in this case 10.14.48.1.

• To add a route to the second network, the following command line is added to the end of the
startup file /etc/rc2.d/S72inetsvc.

•
• route add net 10.15.0.0 255.255.0.0 10.14.48.2 1
•

This effectively tells the UNIX workstation, "To reach IP network 10.15.x.x, send packets to
router 10.14.48.2—and, by the way, network 10.15.x.x is one router hop away."

Adding Dynamic Routes

An alternative to adding static routes with the route command is to run in.routed or in.rdisc. Either of
these routing daemons is started at boot time by adding the appropriate command line to
/etc/rc2.d/S72inetsvc. The advantage of using one of these routing daemons is that the UNIX system
need only listen on the network for routing information packets and use the information in those packets
to dynamically update the system's routing table. In a frequently changing network, this can be a boon
to UNIX and network administrators because the UNIX system need not be reconfigured with new static
routes each time the network topology changes; instead new routing information will reach the UNIX
system automatically.

Warning

There is always a dark side to configurations and methods designed to save time and
increase efficiency, and dynamic routing is no exception. An intruder can easily forge
packets containing false routing information and send them to a UNIX system known
to listen to routing information packets. This can be used to cause great harm to the
organization that owns the system.

This is a book on Solaris security, not general systems administration. Hence, discussions on how to
set up dynamic routing will stop here. It should be enough for the UNIX administrator to know the pros
and cons of static and dynamic routing and decide which is best for any particular environment. Further,
the UNIX-network interactions can be so complex in the realm of network topology and routing that I
could write several chapters on this topic alone. Please refer to "Where to Go for Additional Information"
at the end of this chapter for references to books which discuss this topic.

Using snoop

snoop is a Solaris program used to listen to all packets on the network. It is important to know how to
use snoop to diagnose a variety of network service problems. Here are several examples of ways to
use snoop.

Note

 104

snoop is a useful diagnostic tool, but it is also potentially dangerous. Only the root
user can run snoop . Since snoop can be used to capture session passwords and
other sensitive data, (if for no other reason) the UNIX administrator must be careful
about who has the root password on any UNIX system. One suggestion might be to
remove snoop from a UNIX system whose user has the root password.

1. Show all packets passing to and from the machine linus.
2.
3. # snoop host linus
4. ...
5.

6. Show all packets on the network using the NTP protocol.
7.
8. # snoop port 123
9. ...
10.

11. Capture a telnet session, including the login password. In this example, the userid is peterh, and
the password is jeopardy.

12.
13. # snoop -v host lucy port 23
14. Using device /dev/hme (promiscuous mode)
15. linus -> lucy TELNET C port=42459
16. lucy -> linus TELNET R port=42459
17. linus -> lucy TELNET C port=42459
18. lucy -> linus TELNET R port=42459
19. linus -> lucy TELNET C port=42459
20. linus -> lucy TELNET C port=42459
21. lucy -> linus TELNET R port=42459
22. lucy -> linus TELNET R port=42459
23. linus -> lucy TELNET C port=42459
24. lucy -> linus TELNET R port=42459
25. linus -> lucy TELNET C port=42459
26. lucy -> linus TELNET R port=42459
27. linus -> lucy TELNET C port=42459
28. lucy -> linus TELNET R port=42459
29. lucy -> linus TELNET R port=42459 \r\n\r\nUNIX(r)

System V
30. linus -> lucy TELNET C port=42459
31. lucy -> linus TELNET R port=42459
32. linus -> lucy TELNET C port=42459
33. lucy -> linus TELNET R port=42459
34. linus -> lucy TELNET C port=42459
35. lucy -> linus TELNET R port=42459 login:
36. linus -> lucy TELNET C port=42459
37. linus -> lucy TELNET C port=42459 p
38. lucy -> linus TELNET R port=42459 p
39. linus -> lucy TELNET C port=42459
40. linus -> lucy TELNET C port=42459 e

 105

41. lucy -> linus TELNET R port=42459 e userid=peterh
42. linus -> lucy TELNET C port=42459
43. linus -> lucy TELNET C port=42459 t
44. lucy -> linus TELNET R port=42459 t
45. linus -> lucy TELNET C port=42459
46. linus -> lucy TELNET C port=42459 e
47. lucy -> linus TELNET R port=42459 e
48. linus -> lucy TELNET C port=42459
49. linus -> lucy TELNET C port=42459 r
50. lucy -> linus TELNET R port=42459 r
51. linus -> lucy TELNET C port=42459
52. linus -> lucy TELNET C port=42459 h
53. lucy -> linus TELNET R port=42459 h
54. linus -> lucy TELNET C port=42459
55. linus -> lucy TELNET C port=42459
56. lucy -> linus TELNET R port=42459
57. linus -> lucy TELNET C port=42459
58. lucy -> linus TELNET R port=42459 Password:
59. linus -> lucy TELNET C port=42459
60. linus -> lucy TELNET C port=42459 j
61. lucy -> linus TELNET R port=42459
62. linus -> lucy TELNET C port=42459 e
63. lucy -> linus TELNET R port=42459
64. linus -> lucy TELNET C port=42459 o
65. lucy -> linus TELNET R port=42459
66. linus -> lucy TELNET C port=42459 p
67. lucy -> linus TELNET R port=42459
68. linus -> lucy TELNET C port=42459 a
69. lucy -> linus TELNET R port=42459
70. linus -> lucy TELNET C port=42459 r
71. lucy -> linus TELNET R port=42459
72. linus -> lucy TELNET C port=42459 d
73. lucy -> linus TELNET R port=42459
74. linus -> lucy TELNET C port=42459 y
75. lucy -> linus TELNET R port=42459
76. linus -> lucy TELNET C port=42459 password=jeopardy
77. lucy -> linus TELNET R port=42459
78. linus -> lucy TELNET C port=42459
79. lucy -> linus TELNET R port=42459 Last login: Tue

Nov 20
80. linus -> lucy TELNET C port=42459
81. lucy -> linus TELNET R port=42459 Sun Microsystems

Inc
82. linus -> lucy TELNET C port=42459
83. lucy -> linus TELNET R port=42459 You have

mail.\r\n
84. linus -> lucy TELNET C port=42459
85. lucy -> linus TELNET R port=42459 lucy%
86. linus -> lucy TELNET C port=42459
87. ^C
88. #

Where to Go for Additional Information

AnswerBook

 106

• AnswerBook 2—System Administration Guide, TCP/IP and Data Communications
Administration Guide

Man Pages

• defaultrouter(4)
• dmesg(1M)
• hosts(4)
• ifconfig(1M)
• in.rdisc(1M)
• in.routed(1M)
• inetd.conf(4)
• ndd(1M)
• netmasks(4)
• netstat(1M)
• route(1M)
• services(4)
• snoop(1M)
• uname(1)

Publications

• Ethernet Interface FAQ/PSD, SunSolve Infodoc 12306
• Misc Networking Programs PSD/FAQ, SunSolve Infodoc 12052
• Murhammer, Martin. TCP/IP Tutorial and Technical Overview, 6th ed. Upper Saddle River, NJ:

Prentice Hall, 1998.
• Comer, Douglas. Internetworking with TCP/IP, Vol. I: Principles, Protocols and Architecture, 3d

ed. Upper Saddle River, NJ: Prentice Hall, 1995.
• Comer, Douglas, and Stevens, David. Internetworking with TCP/IP, Vol. II, ANSI C Version:

Design, Implementation, and Internals, 3d ed. Upper Saddle River, NJ: Prentice Hall, 1999.
• Stevens, W. Richard. TCP/IP Illustrated, Volume 1: The Protocols. Reading, MA: Addison-

Wesley, 1994.
• Wright, Gary R., and Stevens, W. Richard. TCP/IP Illustrated, Volume 2: The Implementation.

Reading, MA: Addison-Wesley, 1995.
• RFC1700, "Assigned Numbers" (official list of TCP/IP port number assignments),

http://www.cis.ohio-state.edu/htbin/rfc/rfc1700.html

Chapter 10. Network/System Architecture
The relationship between UNIX system (and systems') architecture to network architecture is discussed
in this chapter.
UNIX and network architectures are symbiotic; when either is developed or modified, both need to be
considered so that they will operate correctly and securely.
What's in this chapter

• Principles for overall system design and implementation that will lead to a more secure
environment

Why this is important
The UNIX system administrator must have the ability to step back and consider the overall network and
systems and applications architectures. UNIX systems in a network are rarely "islands," but instead
usually have a complex web of relationships and dependencies. The stability and security of the
individual systems and of the overall architecture depend upon choices made during the design and
implementation of the systems.

What Is an Architecture?

 107

Whether the scope is a system, many systems, a network, or all of these, an architecture is the
collection of elements that work together to fulfill some intended objective. That objective could be

• A file-sharing system for a group of people
• A software development platform
• Electronic mail
• A network to facilitate communications among several users, each of whom uses a computer

Simple vs. Complex Architectures

Complex systems are inherently more difficult to administer than simple systems. A hacker, when given
a choice, would probably choose to attack a complex system for the following reasons:

• A complex system inherently contains more components (whether hardware or software).
• The more components a system has, the greater the likelihood that there exists a poorly

designed or misconfigured element.
• A poorly designed or misconfigured element can be an invitation to attack or exploitation.
• A system with many components may be more inviting to attack or exploitation simply because

of the greater likelihood that an attack will go unnoticed.

For example, consider two e-mail architectures. The first architecture, which we'll call architecture A,
consists of a central mail server and several mail clients. The second architecture, architecture B,
consists of distributed mail servers and mail clients (perhaps in a distributed or load-balancing
architecture). Assume that both architectures are applied to the same problem. Both of the
architectures are illustrated in Figures 10.1 and 10.2.

Figure 10.1. Architecture A Example

Figure 10.2. Architecture B Example

 108

Architecture A (the simpler architecture) has the potential to be more secure than architecture B. Why is
this? First, architecture A has only one server to exploit, and architecture B has five. Further, the
configuration in architecture B will be more complex than in architecture A; in architecture B, the servers
are inherently more complex since they must be configured to communicate not only with clients, but
presumably with other servers as well.

Architecture Principles

Security needs to be designed into IT architectures instead of being retrofitted into them. The following
principles, when applied to the development of IT architectures, will result in systems that are simpler
and, hence, more secure.

Principle 1: Minimize the Number of Failure Points (or Shorten the Critical
Path)

A large number of failure points invites more opportunities for exploitation. Recall that architectures A
and B accomplish roughly the same thing (although in different ways). Architecture B—with its greater
number of components and higher complexity—will tend to be less secure.

Principle 2: Keep Services Close to Those Being Served

In some ways this is a restatement of principle 1. Imagine an e-mail client who must communicate to a
server several network hops away, perhaps halfway around the world. Chances are that the e-mail
connections pass through many network elements and travel over many networks. This is an example
of a service (the mail server) that is topologically far away from the client being served. In this example,
there may exist several weak points that could be exploited, such as improperly configured routers or e-
mail gateways. When a weak point is exploited, information will be lost or stolen or service will be
interrupted. Figure 10.3 illustrates these two architectures.

Figure 10.3. Client Proximity to Server

 109

In this example, the client that is close to the server could be an e-mail or database server with its
clients on the same LAN. The client distant from the server could be the same clients and servers, but
connected via a worldwide satellite network.
One could also argue that principle 1 contradicts principle 2. In some scenarios this could be true.
Maximum security is but one idealistic requirement that a complex system will have—the others are
simplicity, low cost, and high performance. These competing requirements need to be considered in
any proposed architecture, each on its own merit. No one said that balancing these needs would be
easy!

Principle 3: Vertically Align Services with Their Applications

This is another restatement of principle 1. Consider the two architectures illustrated in Figure 10.4. The
architecture on the left is more failure-prone because it has more failure points—specifically (on the
server side) three servers and three services (application, DNS, and dynamic host configuration
protocol (DHCP)). The architecture on the right is less prone to failure because there are fewer physical
components supporting the system.

Figure 10.4. Example of Vertical Service Alignment

Principle 4: Prepare for Increasing Network Partitioning

A trend is developing where companies are begining to deploy intranet firewalls, or firewalls within their
company networks, in order to partition organizational and geographical networks from one another.
The primary reason for this is to more effectively prevent and contain security incidents. Further, as IT
organizations move toward greater standards-based models of business unit autonomy, intranet
firewalls may be the means for company departments to protect themselves from other departments.

 110

In environments with intranet firewalls, network architects will need to move network services closer to
the clients being served. For example

• Each intranetwork should have its own e-mail gateway.
• Each intranetwork should have its own primary or secondary DNS and NIS/NIS+ servers (refer

to chapter 14 for additional information).

See chapter 13 for additional information on firewalls.
Figure 10.5 illustrates a model of partitioned networks.

Figure 10.5. Partitioned Networks

Chapter 11. Electronic Mail
One of the most exploited network services is e-mail. Its complexity and ubiquity has led to the
discovery of several security holes over the years. Configuration of e-mail is potentially complex and not
easily understood; hence, a misconfigured system can have weaknesses that lead to bigger problems.
Most people think of e-mail as consisting only of the graphical user interface (GUI) or character
interface used to read and send e-mail messages. Few consider the transport and delivery systems as
part of the overall e-mail architecture.
What's in this chapter

• Basics of sendmail and mail agents
• A survey of e-mail-related security risks
• How to mitigate security risks

Why this is important
E-mail, used practically everywhere, presents the UNIX administrator with one of the most significant
vulnerabilities that must be properly dealt with.

Overview of E-Mail

Solaris e-mail consists of three agents: transport agent, delivery agent, and user agent. Figure 11.1
illustrates these agents in end-to-end mail message delivery.

 111

Figure 11.1. Mail Agents

Transport Agent

The transport agent for Solaris is sendmail. Sendmail receives new messages from users, makes mail
delivery routing decisions by examining delivery addresses, and initiates the forwarding of mail
messages by selecting and calling mail delivery agents.
Sendmail transports mail messages using the simple mail transport protocol (SMTP) message protocol.
SMTP is a TCP protocol that uses port number 25.
Sendmail uses domain name service (DNS) in order to determine to which system to forward each mail
message.

Delivery Agent

The delivery mechanism is used to deposit a mail message into a user's mailbox-that is, to actually
perform the task of appending the message to the file /var/mail/<userid>. The delivery agent used by
Solaris is a program called mail.local.

User Agent

User agents are programs used by people to compose, read, and store e-mail messages. Solaris
provides the following user agents:

• /usr/bin/mail and /usr/bin/mailx—character interface mail programs
• /usr/openwin/bin/mailtool—the standard GUI mail program used with OpenWindows
• /usr/dt/bin/dtmail—the standard GUI mail program used with CD E

User agents read mail messages stored in a user's mailbox, which is the file /var/mail/ userid, where
userid is the user's account.
User agents deliver mail by establishing a network connection to the mail server's sendmail program via
SMTP and then sending the contents of the mail message via the connection.

Other User Agents

It is worth mentioning that, in addition to the Solaris-supplied user agents, numerous others are in
common use. They fall into two classes: graphical or character interface replacements for mail, mailx,
mailtool, and dtmail; and POP clients.

 112

Post office protocol (POP) is a network protocol used to deliver mail messages between a user's
mailbox and a user agent GUI. A simple POP architecture is illustrated in Figure 11.2.

Figure 11.2. POP Client/Server Architecture

Types of E-Mail Security Weaknesses

E-mail has a number of features that for some people would be security weaknesses, while for others
they would be an annoyance or perhaps inconsequential. I will describe a few of these features in the
following sections.

Auth (or Identd) Protocol

When someone initiates a connection to an Internet site, that site may try to authenticate that user by
querying the user's originating Internet site. The auth protocol is used in an attempt to verify the identity
of the user.
The auth protocol (sometimes known as ident or identd), described in the Internet's RFC's 1413, 1416,
and 1700,[1] uses TCP port 113 when making an auth query. Any program can make an auth query;
these queries are usually answered by the sendmail daemon on the site being queried.

[1] For more information on RFCs, refer to appendix D.

Some sites choose to make auth information unavailable. This can generally be done without actually
causing other services to fail—most services failing to get an auth protocol authentication will run
anyway. It is recommended that auth be disabled at the firewall by blocking TCP and UDP port 113.
Figure 11.3 illustrates how the auth protocol is used.

Figure 11.3. auth Protocol

Message Brokering

A clever—but not exceedingly sophisticated—troublemaker can easily create an e-mail message that
appears to be originating from almost anywhere. Moreover, this hacker can forge actual e-mail
messages that truly do originate from almost anywhere. In this example, a hacker is forging an order
cancellation memo.[2]

[2] Hackers, accomplished and not so accomplished, know how to do this.

 113

% telnet big-customer.com 25
Trying 146.52.76.3...
Connected to big-customer.com.
Escape character is '^]'.
220 big-customer.com. Sendmail SMI-8.6/SMI-SVR4 ready at Fri, 31 Jul
1998 07:06:56
-0700
helo sinbad
250 alpha. Hello big-customer.com [203.8.21.4], pleased to meet you
Mail From: pres@big-customer.com
250 pres@big-customer.com... Sender ok
RCPT To: pres@big-mfg-co.com
250 pres@big-mfg-co.com... Recipient ok
DATA Subject: Cancel order
354 Enter mail, end with "." on a line by itself
Tony,
 Please cancel that $20 million order
we placed yesterday.
 Bill
 .
 250 HAA19816 Message accepted for delivery
quit
221 sinbad. closing connection
Connection closed by foreign host.

The resulting e-mail message in this example will actually originate at big-customer.com's e-mail server,
travel over the Internet, and end up in the pres@big-mfg-co.com mailbox. Examination of e-mail
headers will give few, if any, clues that the message is a forgery.
Sendmail has no direct defense against this kind of an attack. However, some firewalls are able to
block connections originating on port 23 (telnet) and arriving on port 25; such a connection at blocked
ports may certainly be an attempt at e-mail forgery.

Message Source Routing

An old trick in e-mail involves sending e-mail to a particular Internet site and forcing it there through
another Internet site (illustrated in Figure 11.4). In the example in Figure 11.4, the ultimate destination
of the message is user@nuts.com, but the message is first sent to bolts.com and then remailed to
nuts.com.

Figure 11.4. Message Source Routing

Privacy

 114

E-mail messages are still largely transported from server to server and from server to client "in the
clear" (unencrypted). On a shared-media network, anyone with a network sniffer program can
eavesdrop on others' e-mail messages.
While Solaris—and standard UNIX—does not provide a prepackaged solution, public-domain solutions
are available. The section on mitigating security weaknesses discusses possible solutions.

Authenticity

Authenticity is the measure of whether an e-mail message actually originated from the sender and
whether or not the message is a forgery. Authentication mechanisms give message recipients
confidence in the origination of a message by using digital signatures. The next section discusses ways
to make sure messages are authentic.

Mitigating E-Mail Security Weaknesses

This section describes specific actions that can be taken to mitigate some or all of the risks associated
with running e-mail.

Run Sendmail Only on Mail Servers

The bulk of the security risks associated with e-mail is directly associated with the sendmail program
running as a daemon on a system. A commonly used architecture for a group of UNIX systems has
sendmail running on every system. Figure 11.5. illustrates such an architecture.

Figure 11.5. Less Secure Mail Architecture

A more secure e-mail architecture is proposed that differs from the traditional, less secure architecture
as shown in Table 11-1. The more secure e-mail architecture is illustrated in Figure 11.6, and its
implementation details are discussed in the following sections.

Table 11-1. Sendmail Architecture Comparison
Characteristic Less Secure Architecture More Secure Architecture

sendmail
program

Runs as a daemon on
every UNIX system

Runs as a daemon only on mail servers; runs at regular
intervals on mail clients to process outbound mail

/var/mail Separate copies present
on every system

Master copy on mail server; NFS mounted by all mail
clients

user aliases Point to desktop client
systems

Point to mail server

user agent Runs on desktop client
system

Runs on desktop client system (no change)

Figure 11.6. More Secure Mail Architecture

 115

Sendmail Daemon

Run sendmail as a daemon on each mail server. Refer to the Solaris Mail Administration Guide for
details.
On each mail client, do not run sendmail as a daemon. Follow this procedure instead.

1. Comment the sendmail invocation (usually line 29) in /etc/rc2.d/S88sendmail as follows:
2.
3. # /usr/lib/sendmail -bd -q1h;
4.

2. Adjust any aliases pointing to user accounts on the client system to instead point to accounts on
the mail server. For example, in an environment where userid jsmith uses workstation granite
(and where the mail server system name is roundhouse):

Old alias entry: jsmith: jsmith@granite

New alias entry: jsmith: jsmith@roundhouse

Follow standard procedures for updating aliases in /etc/mail/aliases, NIS, or NIS+.

3. Each mail client will need to NFS mount the mailbox directory /var/mail from the mail server.
Consider, for example, the mail server roundhouse and mail client granite.

Mail server roundhouse entry in /etc/dfs/dfstab:

share -F nfs -o rw=mailclients -d "Mailboxes" /var/mail

Mail client granite entry in /etc/vfstab:

roundhouse:/var/mail - /var/mail - no rw,hard,actimeo=0

Note

 116

actimeo=0 is required in order for mailbox locking to work properly.

Then follow standard NFS procedures for exporting /var/mail on the server and mounting it on
the client system.

4. Add the following entry to root's crontab file:
5.
6. 0 * * * * /usr/lib/sendmail -q > /var/adm/sendmail.log 2>&1
7.

This will cause any queued outbound mail on the client to be sent to the site's mail server each
hour.

Disconnect Inside Mail Server(s) from the Internet

Many architectures employ an inside mail server to receive mail from the Internet. The weakness of this
architecture is directly related to the fact that sendmail is running as a daemon on a system where
literally anyone on the Internet is allowed to connect. A compromise to the mail server in this
architecture means not only mail to and from the Internet is affected, but also all intraorganization mail
as well. And the compromised system contains the organization's mail messages and, hence,
potentially valuable information. This architecture is illustrated in Figure 11.7.

Figure 11.7. Mail Server Connected to the Internet

Instead, a mail relay server should be implemented. The mail relay permits the receipt of e-mail from
the Internet while shielding the inside mail server from intrusion. This mail relay architecture is
illustrated in Figure 11.8. In this architecture, the mail relay receives all mail on behalf of the mail server
and then forwards it to the mail server. The mail relay has no specific knowledge of mail aliases and
contains no local mailboxes. Likewise, outbound mail is forwarded from the mail server to the mail
relay, which then forwards mail to the Internet.

Figure 11.8. Mail Relay Architecture

 117

If the mail relay is compromised due to a weakness in sendmail, there is a lower risk of losing inside
company information because there are no mailboxes or aliases on the mail relay. If a compromise is
detected, system administrators can temporarily take the mail relay out of service, but they could keep
the mail server running. In this way, the impact of an intrusion is minimized since intraorganization mail
delivery can continue.
To further protect the mail server, the firewall should prohibit direct access of any kind between the
Internet and the mail server, allowing direct access only to the mail relay.
This architecture also typically includes the use of interior and exterior DNS domains. See chapter 14
for complete information on Internet domain architectures. The Sun manual Mail Administration Guide
also discusses this architecture in the section on setting up and administering mail services.

Prevent Message Source Routing

I explained message source routing earlier in this chapter. Now I will describe the process used to
prevent message source routing for standard Sun sendmail configurations only.
For systems using a Main.cf configuration file, comment the following lines found in
/etc/mail/sendmail.cf (these entries are located throughout the file, not in one place).

R$+%$+ $@$>3$1@$2 user%host
R$*<@$%y.LOCAL>$* $#ether $@$2 $:$1<@$2>$3 user@host.sun.com
R$*<@$%x.LOCAL>$* $#ether $@$2 $:$1<@$2>$3 user@host.sun.com
R$*<@$%y>$* $#ether $@$2 $:$1<@$2>$3 user@etherhost
R$*<@$%x>$* $#ether $@$2 $:$1<@$2>$3 user@etherhost
R$+%$+ $@$>30$1@$2 turn % => @, retry

For systems using a Subsidiary.cf file, comment the following lines found in /etc/mail/ sendmail.cf (these
entries are also located throughout the file).

R$+%$+ $@$>3$1@$2 user%host
R$*<@$%l>$* $1<@$2.LOCAL>$3 user@etherhost
R$*<@$%l.LOCAL>$* $#ether $@$2 $:$1<@$2>$3 user@host.here
R$*<@$%x.LOCAL>$* $#ether $@$2 $:$1<@$2>$3 user@host.here
R$+%$+ $@$>30$1@$2 turn % => @, retry

Note

sendmail configuration files can be difficult to work with and unforgiving. Use extreme
caution when modifying /etc/mail/sendmail.cf. I strongly recommend that sendmail
changes be tested on test systems before being implemented on production systems.
Refer to the references at the end of this chapter for more help with sendmail.

Implement Mail Encryption and Digital Signatures

Only the combined use of message encryption and digital signatures can assure that e-mail messages
can be delivered without having been eavesdropped, altered, or forged.
Encryption is used to ensure the privacy of a message. Even if a message travels across public
networks and even if it is snooped by a hacker, the hacker will have a very difficult time decrypting the
message.

 118

A digital signature is used to ensure that a message has actually originated from the claimed source
and that it has not been altered in transit. Thus the recipient can have a high degree of confidence in
the authenticity and integrity of the message.
The most popular encryption software available is Pretty Good Privacy (PGP); it is available in public-
domain and commercial versions from http://web.mit.edu/network/pgp.html (only available to U.S.
citizens in the United States or Canadian citizens in Canada) and at ftp://ftp.pgp.net/pub/pgp/.

Replace Sendmail

The version of sendmail provided by Sun is liable to be a few revisions behind the latest version
available on the Internet. While it is not a trivial task, sendmail can be replaced with one of several
alternate mail transfer agents; I will discuss a few options here.

Note

Sun Microsystems will not support the replacement of the sendmail program supplied
with Solaris. Sendmail should be replaced only by someone with thorough knowledge
and experience with the mechanisms of e-mail transmission and delivery.

Public-Domain Sendmail

While the version of sendmail used by any current version of Solaris is quite recent, the best method for
having the very latest sendmail is to acquire and maintain the latest version of public-domain sendmail.
Any site considering switching from Sun-supplied and -supported sendmail to unsupported public-
domain sendmail needs to weigh the risks and benefits (see Note, above). Table 11-2 outlines the most
basic risks and benefits of the two sendmails.

Table 11-2. Sun-Supplied Sendmail vs. Public-Domain Sendmail: Risks and Benefits
sendmail
Version

Risks Benefits

Sun-supplied
sendmail

Not the latest version; could be vulnerable to
the latest security risks. The latest features will
be delayed.

Supported by Sun.

public-domain
sendmail

Not supported by Sun; site assumes a greater
burden by having to support sendmail on its
own.

The latest versions and features
available without having to wait for
Solaris to catch up.

Note

Exercise caution when applying patches on a system using public-domain sendmail. A
patch may accidentally replace a public-domain sendmail file (including the sendmail
program itself!) with Sun's sendmail.

You can obtain public-domain sendmail from one of the following sites:

• http://www.sendmail.org/
• http://www.sunfreeware.com/

Postfix (formerly Vmailer)

 119

Postfix is a public-domain sendmail replacement that claims to be easier to administer than sendmail.
Like other sendmail replacements, the UNIX administrator needs to thoroughly understand the
implications of using an unsupported software package. But that said, the experienced administrator
can use postfix to improve the security and administrative overhead in an enterprise environment.
The pros and cons of using postfix vs. sendmail are similar to the arguments of Sun-supported
sendmail and public-domain sendmail in Table 11-2.
Postfix can be obtained from http://www.postfix.org/ or http://www.porcupine.org/.

SMAP

Sendmail on a mail relay system can be replaced with Sendmail Wrapper (SMAP). SMAP is a simple
mail acceptor and forwarder with none of the complexities (and, consequently, the vulnerabilities) of
sendmail. SMAP listens for incoming mail on port 25 (the usual SMTP port), queues it to disk, and then
forwards it to its destination using sendmail in bulk send mode (which is not a security risk like sendmail
in daemon mode).
SMAP is available from ftp://ftp.tis.com/pub/firewalls/toolkit/. Read the instructions in the README file
to obtain the software. Be sure to also download the general and Solaris patches (which must be
installed with the patch utility).
SMAP is part of the Firewall Toolkit package. There is a Firewall Toolkit mailing list; send mail to
majordomo@ex.tis.com; in the body of the message, include the words "subscribe fwtk-users (your-
email-address)."

Remove Unnecessary E-Mail Aliases

Unless the site is running UUCP (most aren't), the alias decode should be commented or removed.
When properly commented, the /etc /mail/aliases entry reads as follows:

decode: "|/usr/bin/uudecode"

The permissions of the file /etc/mail/aliases should be 644.

Implement Smrsh

If a nefarious user discovered that user sue had a world-writable .forward file, he could put something in
it like this:

\sue, |"cp /bin/sh /home/sue/su-sh;chmod u+s /home/sue/sue-sh"

Then the troublemaker could send mail to user sue. Sue's .forward file would execute the line cp /bin/sh
/home/sue/su-sh;chmod u+s /home/sue/sue-sh, thereby creating a shell that runs as user sue. The
troublemaker could then execute /home/sue/sue-sh and effectively become sue, since /home/sue/sue-
sh is SetUID to user sue.
The public-domain program Smrsh prevents code like this example from running. When Smrsh runs a
command (such as cp or chmod in this example), Smrsh looks for that program only in its own private
sm.bin directory. If the command is not in sm.bin, the command fails and the e-mail message bounces
back to the sender.
Smrsh is now bundled with public-domain sendmail (discussed earlier).
Sendmail.cf must be modified for Smrsh to take effect; the prog mailer entry is changed to run smrsh
instead of sh.

Mprog, P=/usr/local/bin/smrsh, F= ...

Implement ForwardPath

 120

In a NIS/Automounter environment where users' home directories are exported from desktop systems
and mountable everywhere (a common architecture), a user can launch a denial-of-service attack on
the mail server by turning off or disconnecting his workstation and then sending himself mail. The mail
server will try to automount the user's home directory and could hang while doing so.
The ForwardPath option in sendmail version 8 (new in Solaris 7) permits the UNIX administrator to
define a single directory on the mail server that will contain all the user's .forward files.
A sample ForwardPath entry in sendmail.cf would resemble

O ForwardPath=/usr/local/mailforwards/$u.forward:$z/.forward

This tells sendmail to first look for the file /usr/local/mailforwards/userid.forward. If this file is found, then
a user's .forward file in his home directory is ignored. If sendmail does not find a file
/usr/local/mailforwards/userid.forward, it will next look in the user's home directory for a .forward file.
Sites that wish to never permit .forward files in home directories can define ForwardPath as follows:

O ForwardPath=/usr/local/mailforwards/$u.forward

This tells sendmail to look only in /usr/local/mailforwards for userid.forward files. This eliminates the
need for sendmail to ever look in a user's home directory.

Where to Go for Additional Information

AnswerBook

• AnswerBook 2—Mail Administration Guide

Man Pages

• aliases(1)
• forward(1)
• mail.local (1M)
• sendmail(1M)

Publications

• Sendmail PSD/FAQ (Product Support Document), SunSolve Infodoc 12815
• Costales, Bryan, Allman, Eric, and Estabrook, Gigi. Sendmail. 2d ed. Sebastopol, CA: O'Reilly

& Associates, Inc., 1997.
• Zimmerman, Philip R. The Official PGP User's Guide. Cambridge, MA: MIT Press, 1995.

Web Sites

• RFC1413, "Ident Protocol," http://www.cis.ohio-state.edu/htbin/rfc/rfc1413.html
• RFC1416, "Telnet Authentication Option," http://www.cis.ohio-state.edu/htbin/rfc/rfc1416.html
• RFC1700, "Assigned Numbers" (official list of TCP/IP port number assignments),

http://www.cis.ohio-state.edu/htbin/rfc/rfc1700.html
• Sun/Solaris-specific information at sendmail.org, http://www.sendmail.org/sun-specific/

Chapter 12. Printing
The printing subsystem can be another source of exploitation or attack. Like electronic mail, the printing
mechanism is not well understood; configuration errors can lead to weaknesses and exploitation.
What's in this chapter

 121

• Where printing information is stored and how it can be audited
• How to ensure that only the print spooler can access directly connected printers
• Access control for print devices

Why this is important
Valuable personal and/or company information is handled by the print subsystem in the form of the
content of the information printed. Therefore, the print subsystem must be trustworthy and secure.

Printing Architectures

From a security perspective, printing is considered either as local printing or network printing. Local
printing consists of a workstation sending print requests to a printer that is directly attached to that
workstation. Network printing involves sending print requests over the network either to a print server or
to a printer directly connected to the network. These architectures are shown in Figure 12.1.

Figure 12.1. Printing Architectures

Print Subsystem Directories

The print subsystem maintains several log and temporary storage directories. The UNIX system
administrator must make sure that as-delivered permissions in these files and directories are not altered
in a way that would give access to people and processes that have no business snooping around there.
The top-level print subsystem directories are

• /var/lp
• /var/spool/lp

Auditing Print Subsystem Directories

The best way to keep tabs on the print subsystem's directories and files is through automated
filesystem audits. ASET and Tripwire are recommended tools for these automated audits. Refer to
chapter 4 for complete information on ASET and Tripwire.

Local Printing

Local printing involves a printer physically connected to a Sun parallel or serial port. The best measure
of security specific to locally connected printers is to ensure that only the print service has write access
to the print device.

 122

Why? Suppose a sloppy UNIX administrator opened up permissions on a print device during testing or
troubleshooting and forgot to change the permissions back to what they were supposed to be. No big
deal? What if the printer was loaded with company letterheads, checks, or purchase orders? Still no big
deal?
So perhaps it would be sloppiness on the part of the person responsible for POs or checks to make
sure they don't leave those forms in an unattended printer. The principle of protecting in layers exists for
this purpose. You should not rely on only one line of defense (locking up checks, for instance) as the
only security measure. Keeping non-print-service users from being able to write to the print device
should make everyone rest a little easier.

Local Print Devices

The two serial ports A and B are typically /dev/term/a and /dev/term/b. T he parallel port is typically
/dev/bpp0.
These devices are usually logical links to actual files in the /devices directory, but the details of the
actual links are not important.

How to Determine Which Device a Specific Printer Uses

The lpstat -v command will list the device used for a printer.

lpstat -v laser1
device for laser1: /dev/bpp0
lpstat -v
device for laser1: /dev/bpp0
device for matrix: /dev/term/a

Print Device Permissions

A serial port or parallel port print device should be owned by root, group sys. The user root should have
read and write permissions; no other permissions should be set. An example command to view these
permission settings follows.

ls -Ll /dev/bpp0
crw------- 1 root sys 73, 0 Jan 22 1998 /dev/bpp0

Note

Solaris uses a mechanism of indirection to define its devices. /dev/term/a and
/dev/bpp0 are not the actual devices files, but are symbolic links to them. The L option
is used with the ls command to show the ownership and permissions for the file
pointed to by the logical link /dev/bpp0. Permissions for the symbolic link itself are
lrwxrwxrwx and should not be changed.

Auditing Print Device Permissions

 123

The Tripwire program should be used to regularly check the permissions of all device files in /dev and
/devices in order to detect ownership or permissions changes of the print devices. See chapter 4 for
more information on using Tripwire.

Restricting Access to Printers and Print Servers

Each printer on a UNIX system can have user and system restrictions placed on it. This will allow the
following types of access restrictions for each printer:

• Allow only certain users access to a printer.
• Deny certain users access to a printer.
• Allow all (or no) users from a certain system access to a printer.

In an environment with many users and printers, there can be several reasons why these restrictions
would be put into place, such as:

• To restrict printing on expensive media (such as transparencies) to certain individuals
• To restrict printing on special media (such as letterhead, POs, and checks) to certain individuals
• To restrict printing on personal printers to their targeted users only

Restrictions are set up with the lpadmin -u command. Here are some examples.

1. Permit user jroberts to print to printer checkprinter.
2.
3. # lpadmin -p checkprinter -u allow:jroberts
4. #
5.

6. Permit all users on machine vulcan to print to printer duplex2.
7.
8. # lpadmin -p duplex2 -u allow:vulcan!all
9. #
10.

Both examples assume that the respective printers have already been set up and configured.
Refer to the lpadmin(1M) man page for complete information on allowing and denying access to
printers.

Direct Access to Network Printers

A network printer is a printer connected directly to the LAN, not a UNIX workstation. Few, if any,
network printers can be configured to allow access from only certain print servers. Rather, network
printers usually accept print requests from any system on the network.
Depending upon your level of security concern, consider the following:

• A network and/or printer architecture that will permit only the designated UNIX print servers
access to their respective printers. Possibilities include putting printers on a different subnet and
restricting access using a firewall or router access control lists.

• Connect sensitive printers directly to print servers or end-user workstations.

Where to Go for Additional Information

AnswerBook

• AnswerBook 2—System Administration Guide, Managing Printing Services

 124

Man Pages

• lpadmin(1M)
• lpstat(1M)
• ls(1M)

Chapter 13. Network Access Control
Solaris is getting better about closing security holes, but in my opinion more can be done to introduce
and tighten network access controls.
What's in this chapter

• Various network access methods
• How to deactivate network services to reduce security risks
• Which commonly used network services are potentially unsecure (and how to fix them)
• Intrusion detection
• Types of network authentication
• Virtual private networks

Why this is important
Network access represents the majority of a system's vulnerability. Knowledge of these services and
how they are controlled is vital to the security of an entire organization.

Network Access Control Principles

This chapter is built around one underlying principle regarding network access: disable what is not
needed, and build access controls around what is needed.

Unnecessary Network Access Points Are Security Risks

Consider the hypothetical network spelling service. You connect to a system's spelling service and type
in a string of words; the service returns the same string but with misspellings corrected. Now suppose
that a couple of unintentional bugs have been introduced into the spelling service, one or more of which
permits someone clever to either penetrate, control, or disable the system.
At one time or another, one or more UNIX-based network services have suffered from this degree of
weakness. And weaknesses such as this are still being discovered. For every network service that is
turned off, potential security holes are eliminated. If, to continue our example, the spelling service is
turned off, then any weaknesses in the spelling service are irrelevant. It is for this reason that all
unnecessary services ought to be deactivated. Properly deactivated network services eliminate any
current or future threat of system penetration, control, or disabling via that network service.
I'll describe the process of turning network services on and off after the next section.

Unguarded Network Access Points Are Security Risks

Not every network service can be turned off. Or, put another way, if every network service were turned
off, then the system's network cable might as well be disconnected!
Usually, there are some network services that are necessary, but the good news is that most can have
access controls applied. Later on I'll talk about the application of network access control for network
services that must be turned on.

Necessary and Unnecessary Services

How can you determine if a network service is a necessary one? That is a difficult question to answer;
this section will explain the services that are activated on a standard Sun Solaris 7 system, what they
mean, what they are used for, and what happens if they are turned off. I'll also show you how to tell if a
service is turned on or not, and how to create a simple service of your own.

 125

A necessary service is defined as a service that is required for the system to carry out its required
functions. Table 13-1 lists the services listed in the file /etc/inet/services and configured by default on
standard Sun Solaris 2.6 and Solaris 7 installations and under what conditions they are necessary.

Note

Unless otherwise specified in Table 13-1, the presence of each service permits the use
of inbound service requests. For example, the presence of TCP service 23 (telnet)
permits inbound telnet sessions. Removal of this service will not prevent outbound
telnet sessions.

Table 13-1. Solaris Network Services
Port

Type Name Description

1 TCP tcpmux TCP port service multiplexer. Necessary.

7 TCP/UDP echo Echoes back any character sent to it. Used primarily for testing.
Generally unnecessary.

9 TCP/UDP discard Swallows everything sent to it. Used primarily for testing.
Generally unnecessary.

11 TCP systat
Runs a ps command. Unnecessary and ill advised, because it
gives system clues to someone with no permission to access the
system.

13 TCP/UDP daytime Displays the date and time. Used primarily for testing. Generally
unnecessary.

15 TCP netstat
Runs a netstat -f inet command. Unnecessary and ill advised,
because it gives system clues to someone with no permission to
access the system.

19 TCP/UDP chargen Sends revolving pattern of ASCII characters. Used primarily for
testing. This service can flood a network. Generally unnecessary.

20 TCP ftp-data
One of two services used for ftp. This service is used during
actual file transfers. Necessary only on an ftp server. See section
on ftp.

21 TCP ftp One of two services used for ftp. This service is used for ftp
commands. Necessary only on an ftp server. See section on ftp.

23 TCP telnet
The telnet service. Necessary only if you want to be able to telnet
to this system; otherwise unnecessary. See sections on TCP
Wrappers and telnet's lack of security.

25 TCP smtp
E-mail is transported from system to system using this service.
Only necessary if this system must receive mail from other
systems. See chapter 11 for more information.

37 TCP/UDP time Outdated time service. Seldom used anymore. Generally
unnecessary.

42 UDP name Obsolete IEN-116 name service. Seldom used anymore.
Generally unnecessary.

43 TCP whois The whois service. Unnecessary unless the system is a whois
server.

53 TCP/UDP domain
The domain name service (DNS). Necessary only if system is a
DNS primary or secondary server; unnecessary for DNS clients.
See chapter 14 for more information.

67 UDP bootps The BOOTP service. Necessary only if this server is a BOOTP
server.

 126

68 UDP bootpc The BOOTP service. Necessary only if this server is a BOOTP
client.

69 UDP tftp
The trivial file transfer protocol service. Necessary only for tftp
boot servers. Potentially dangerous and generally unnecessary.
See tftp(1) and in.tftpd(1M) man pages for more information.

77 TCP rje The remote job entry service. Seldom used and generally
unnecessary.

79 TCP finger
The finger service. Potentially dangerous and generally
unnecessary. See finger(1) and in.fingerd(1M) man pages for
more information.

87 TCP link Private terminal link protocol. Seldom used and generally
unnecessary.

95 TCP supdup The telnet SUPDUP protocol developed at MIT in the late 1970s
(described in RFC734). Unnecessary.

101 TCP hostnames The hostnames service. Seldom used and generally unnecessary.
102 TCP iso-tsap Generally unnecessary.

103 TCP

Used only for ISO
X.400 e-mail.
Generally
unnecessary.

104 TCP x400-snd Used only for ISO X.400 e-mail. Generally unnecessary.

105 TCP csnet-ns Mailbox name nameserver protocol. Seldom used and generally
unnecessary.

109 TCP pop-2 The post office protocol, version 2. Seldom used and generally
unnecessary.

111 TCP/UDP sunrpc

The RPC suite of services. Necessary for servers only if one or
more of the following services are run: NIS, NIS+, NFS, Kerberos,
rquotad, rusersd, sadmind, wall. Unnecessary for clients of any of
the above-mentioned services.

117 TCP uucp-path Used by UUCP over IP. Seldom used and generally unnecessary.

119 TCP nntp Network news transfer protocol. Necessary only if system is a
Usenet News server.

123 TCP/UDP ntp Network time protocol. Necessary only if system is an NTP client
or server.

144 TCP NeWS The old NeWS Window System protocol. Unnecessary unless the
system is running NeWS.

512 TCP exec

Used by the rexec command. Potentially dangerous— uses
~/.rhosts file for authentication; passwords and subsequent
session transmitted in the clear, and, worst of all, rexec performs
no logging. Necessary only if the system must receive inbound
rexec requests. Workarounds possible. (See section on TCP
Wrappers as well as the section on secure replacement for telnet,
rsh, and rlogin.)

512 UDP biff Inbound mail notification ("bark if file found" is the unofficial but
literal meaning). Seldom used and generally unnecessary.

513 TCP login

Used by the rlogin command. Potentially dangerous— uses
~/.rhosts file for authentication; passwords and subsequent
session transmitted in the clear. Necessary only if the system
must receive inbound rlogin requests. Workarounds possible.
(See section on TCP Wrappers as well as the section on secure
replacement for telnet, rsh, and rlogin.)

513 UDP who Part of rwho subsystem. Generally unnecessary. See rwho(1) and
in.rwhod(1M) man pages for more information.

514 TCP shell Used by the rsh command. Potentially dangerous— uses ~/.rhosts

 127

file for authentication; passwords and subsequent session
transmitted in the clear, and, like rexec, it performs no logging.
Necessary only if the system must receive inbound rsh requests.
Workarounds possible. (See section on TCP Wrappers as well as
the section on secure replacement for telnet, rsh, and rlogin.)

514 UDP syslog Used by syslog logging service. Necessary only if system is a
syslog server. See chapter 8 for more information.

515 TCP printer Necessary only if system accepts print requests from other
systems on the network.

517 UDP talk Used by the talk command. See talk(1) and in.talkd(1M) man
pages for more information.

520 UDP route

Used only if system is a network router (which is seldom the case
anymore), or needs to receive routing protocol information across
the network from one or more routers or workstations. See
in.routed(1M) for more information. Generally unnecessary.

530 TCP courier An experimental RPC service. Unnecessary.
540 TCP uucp Used by UUCP over IP. Seldom used and generally unnecessary.
550 UDP new-rwho Part of new experimental rwho subsystem. Unnecessary.
560 UDP rmonitor Unnecessary.
561 UDP monitor Unnecessary.
600 TCP pcserver Sun IPC server. Unnecessary.
750 TCP/UDP kerberos Used only if system is a kerberos server or client.
1008 TCP/UDP ufsd Used by the Sun Online Disksuite product.
1103 TCP xaudio X-Windows audio server; used by CDE.
1524 TCP ingreslock Unnecessary.
2049 TCP/UDP nfsd Used only if system is an NFS server.
2766 TCP listen The System V listener; similar to tcpmux.
4045 TCP/UDP lockd NFS lock manager. Used only if system is an NFS server.
6112 TCP dtspc Used by CDE.
7100 TCP fs Font server. Used by CDE and OpenWindows.
There are hundreds of officially assigned network services and hundreds more unassigned (but
nevertheless used). You will find a complete list of officially assigned services in RFC1700 (see the
references at the end of this chapter).

How to Disable Unnecessary Services

The following procedure is used to identify and disable a service determined to be unnecessary.

1. Use vi (or another editor) to comment the entry in the file /etc/inet/services by prepending it with
a # character. It would also be useful to add a descriptive comment to the line above the
commented line, explaining who is commenting it and why.

2. Use vi (or another editor) to locate any corresponding entry in /etc/inet/inetd.conf. A
corresponding entry will begin with the name used as the first field in the /etc/inet/services file.
Comment the entry by prepending it with a # character. Add a descriptive comment as in step 1.

3. Locate the inetd process and send it a SIGHUP signal.

Figure 13.1 illustrates disabling the telnet service on a system.

Figure 13.1. Disabling a Network Service (Example)

 128

Disable Service Not Defined in /etc/inet/services and /etc/inet/inetd.conf

Some services such as sendmail are not defined in /etc/inet/services and /etc/inet/inetd.conf. Table 13-
2 describes how to disable such services.

Table 13-2. Disable Other Network Services
Service How to Disable

sendmail 1. Rename (using the mv command) /etc/rc2. d/S88sendmail to /etc/rc2.d/X88sendmail.
2. Kill all sendmail processes.

DNS 1. Comment entry to start in.named in the file /etc/rc2.d/S72inetsvc.
2. Kill in.named process and any named.xfer processes.

NFS server 1. Comment entries in /etc/dfs/dfstab.
2. Rename (using the mv command) /etc/rc3.d/S15nfs.server to /etc/rc3.d/X15nfs.server.
3. Kill nfsd process(es).

NFS client 1. Comment fstype=nfs entries in /etc/vfstab.
2. Unmount all NFS-mounted filesystems with umount command.
3. Rename (using the mv command) /etc/rc2.d/S73nfs. client to /etc/rc2.d/X73nfs.client.

Automounter 1. Rename (using the mv command) /etc/rc2.d/S74autofs to /etc/rc2.d/X74autofs, and/or
2. Remove /etc/auto_*.

ntp 1. Rename (using the mv command) /etc/rc2. d/S74xntpd to /etc/rc2.d/X74xntpd.
2. Kill xntpd process.

syslog 1. Rename (using the mv command) /etc/rc2. d/S74syslog to
/etc/rc2.d/X74syslog.

 2. Kill syslogd
process.

print
services

1. Rename (using the mv command) /etc/rc2. d/S80lp to /etc/rc2.d/X80lp.
2. Run lpshut command.

Strengthening Network Access Control

This section describes the steps used to apply and verify access control for common network services.

inetd Connection Tracing

inetd will attempt to trace all incoming TCP services if the -t (trace) option is used. In trace mode, inetd
will log to syslog's daemon facility at severity level notice. See chapter 8 for additional information on
syslog.
Sample syslog output from inetd in trace mode follows:

Apr 11 05:37:14 alpha inetd[1771]: telnet[1773] from 199.8.20.11 3281
Apr 11 05:38:17 alpha inetd[1771]: ftp[1785] from 199.9.10.14 982
Apr 11 05:38:40 alpha inetd[1771]: login[1788] from 199.9.2.2 1023

 129

By default these messages will appear in /var/adm/messages.
Follow this procedure for turning on inetd tracing.

1. Edit the startup file /etc/init.d/inetsvc. Add a -t to the inetd startup command line so that it looks
like this

2.
3. /usr/sbin/inetd -s -t &
4.

2. Stop and restart inetd. Here is a sample dialog.
3.
4. # ps -ef|grep inetd
5. root 1880 1822 0 05:52:42 pts/4 0:00 grep inetd
6. root 114 1 0 05:37:02 ? 0:00 /usr/sbin/inetd -

s
7. # kill 114
8. # /usr/sbin/inetd -s -t
9. #
10.

TCP Wrappers

TCP Wrappers is a public-domain tool used to control which systems (and, optionally, which users on
those systems) can access network services. TCP Wrappers is used to restrict inbound network access
only, and then only on certain services defined in the file /etc/inetd/inetd.conf. TCP Wrappers can be
found at ftp://ftp.porcupine.org/pub/security/.

Converting a Service to TCP Wrappers

It is easy to convert most services to TCP Wrappers. The following example shows how inbound telnet
is converted to TCP Wrappers. This example assumes that TCP Wrappers has already been built and
installed.
Modify the file /etc/inetd/inetd.conf. The original entry for telnet is

telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

The new entry for telnet is

telnet stream tcp nowait root /usr/sbin/in.tcpd /usr/sbin/in.telnetd

The fundamental difference is explained: responding to an inbound telnet request, instead of running
in.telnetd, inetd runs in.tcpd, the TCP Wrappers program, which checks its access control lists before
launching the real in.telnet program (and only if it should!).

Example: How to Restrict Telnet to Certain Systems

TCP Wrappers uses the two files /etc/hosts.allow and /etc/hosts.deny to determine which systems and
users should have access to which services. An example /etc/hosts.allow file follows.

/etc/hosts.allow file

in.telnetd: .sun.com, 207.127.1.

 130

in.rshd: .sun.com, 207.127.1.
in.rlogind: .sun.com, 207.127.1.
in.ftpd: .sun.com, 207.127.1.

A computer using this /etc/hosts.allow file will permit inbound telnet, rsh, rlogin, and ftp from computers
in the sun.com domain, as well as those on the 207.127.1 network. The /etc/hosts.deny file uses the
same syntax.
To be alerted when TCP Wrappers detects unauthorized connection attempts, add the following entry
to the end of /etc/hosts.deny (after all other entries):

ALL: ALL: /usr/bin/mailx -s "%d: unauthorized connection attempt from
 %c" sysadmin@domain.com

To log all TCP Wrappers connections (allowed and disallowed) to syslog, add the following entry to
/etc/syslog.conf:

auth.notice;auth<tab>/var/log/wrapperlog

Note that in this example, <tab> must be a literal tab character. Substitute another logfile for
/var/log/wrapperlog as appropriate for the site.
Please refer to TCP Wrappers documentation for complete installation and configuration information.

Public-Domain rpcbind

In situations where a system must be an NFS, NIS, or NIS+ server, a public-domain rpcbind is available
that significantly enhances security over the original Solaris version of rpcbind. This is accomplished via
a TCP-Wrappers-like mechanism whereby only systems on certain IP addresses or networks are
allowed to access NIS/ NIS+, NFS, and other RPC services.
This enhanced version of rpcbind requires libwrap.a, which is part of the TCP Wrappers tool described
earlier. The TCP Wrappers files /etc/hosts.allow and /etc/hosts.deny are also used with rpcbind.
This rpcbind is available from ftp://ftp.porcupine.org/pub/security/rpcbind_2.1.tar.gz.

.rhosts File—Gateway to the r-Commands

The so-called r-commands consist of rlogin, rsh, rcp, and rdist. They are called r-commands because
they all start with the letter r, which stands for remote. All have to do with running shells or commands
on remote systems—rlogin = remote login, rsh = remote shell, rcp = remote copy, rdist = remote
distribution.
The nice thing—and the bad thing—about the r-commands is that, through the use of an .rhosts file, a
user on one system can log in or execute commands on a remote system without having to supply a
password.

Warning

The use of .rhosts to permit trusted r-commands across a network is not
recommended, particularly by root. In all but the smallest environments, the implicit
webs of trust set up through the overuse of .rhosts can quickly grow out of control
and expose the site to unacceptable security risks.

 131

Similar to telnet, in the absence of an appropriate .rhosts entry, a user attempting to access a remote
system via an r-command will be required to enter the account's password. This password is
transmitted in the clear over the network.

The inherent weaknesses of the r-commands include

• Any password entered is done in the clear; anyone snooping the network will easily be able to
see the password.

• The entire r-command session is in the clear. Every character of the session, including
passwords, can easily be recorded.

See the section on secure replacement for rsh and rlogin below for information on a more secure
alternative to rsh and rlogin.

/etc/hosts.equiv File

The /etc/hosts.equiv file is similar to the .rhosts file, but opens a far wider security hole than does
.rhosts.

Warning

hosts.equiv allows a user from a remote system to become any user on a local
system. It can also permit any user on a remote system to become any user on a local
system. For this reason the use of hosts.equiv is strongly discouraged.

Auditing .rhosts and hosts.equiv Files

The .rhosts and hosts.equiv files should be audited periodically by the COPS and/or Tripwire tools.
The following COPS modules include checks for .rhosts and hosts.equiv security: root.chk and root.pl,
trust.pl, user.chk, and user.pl.
Refer to chapter 4 for more information about obtaining and running COPS and Tripwire.

Secure Replacement for telnet, rsh, and rlogin

rsh and rlogin represent one of UNIX's biggest security holes. Unless equivalence is set up (which in
itself can be dangerous) with .rhosts or /etc/hosts.equiv, the user will be prompted for a password that,
if typed, is transmitted in the clear over the network. This means that anyone with a network sniffer,
such as the Solaris snoop program, can easily see this password and save it for future mischief.
Further, the entire rsh/rlogin session is transmitted in the clear.
ssh, or secure shell, is a nice drop-in replacement for UNIX's rsh, rlogin, and telnet. ssh functions the
same way as rsh, but includes the following enhancements:

• Better authentication using RSA technology—this eliminates IP, host, and DNS spoofing
weaknesses

• Full-session encryption, including passwords

Public domain ssh for Solaris is available at http://www.cs.hut.fi/ssh or ftp://ftp.cs.hut.fi/pub/ssh/.
Commercially supported versions for Solaris (as well as Windows 3.x, 9x, and NT) are available at
http://www.datafellows.com/ or http://www.ssh.fi/.

ftp

 132

ftp is a significant security risk. Like telnet and the r-commands, all ftp traffic is transmitted in the clear
over the network. If ftp is a site necessity, then consider these recommendations:

• Avoid anonymous ftp. Instead, explicitly control and identify who will be accessing the site from
the outside world and assign individual userids and passwords.

• Turn on ftpd logging and debugging. The ftpd entry in /etc/inet/inetd.conf should appear as
follows:

•
• ftp stream tcp nowait root /usr/sbin/in.ftpd in.ftpd -

dl
•

• Follow the recommendations in the ftpd(1M) man page.
• Never ftp as root (remember, the password is sent in the clear over the network); to enforce

this, add root to /etc/ftpusers (userids in this file are prohibited from connecting to the system
using ftp).

Warning

If anonymous ftp is a site necessity, it is essential that the instructions in the ftpd(1M)
man page regarding anonymous ftp be followed to the letter.

Sites requiring greater access control and/or logging capabilities should replace Sun's ftpd with
Washington University's ftp package, known as wu-ftp . It is available at

• ftp://wuarchive. wustl.edu/packages/wuarchive-ftpd/
• http://www.sunfreeware.com/ (look for wu-ftpd)
• ftp://ftp.cyber.com. au/pub/unix/wu-ftpd-2.4.tar.Z .

tftp

Trivial file transfer program (tftp) is a host-to-host file transfer program similar to, but simpler than, ftp.
tftp has no user or system authentication mechanism.
tftp is generally dangerous and, unless absolutely necessary, should be turned off. If tftp is a site
necessity, limit its use to as few systems as possible (and never a system reachable from the Internet),
and make sure it is restricted to use only a single directory with the -s /tftpboot option. Modify
/etc/inet/inetd.conf as follows:

tftp dgram udp wait root /usr/etc/in.tftp in.tftp -s /tftpboot

X-Windows Is Unsecure

Similar to the r-commands (rlogin, rsh, rcp) and telnet, all X-Windows traffic is transmitted in the clear
over the network, and its authentication is weak (and easily disabled altogether).
ssh can be used to provide secure X-Windows sessions that are fully encrypted. An example X-
Windows ssh session is described here (assuming ssh is installed on both systems).

 133

1. With Open Windows or CDE running, ssh from one system's console to a remote system with
the command ssh system-name.

2. On the remote system, run any X-Windows program. ssh will cause that program's X-Windows
output to be displayed back on the original system.

There is no need to run the xhost command on the original system, nor is it necessary to set the
DISPLAY environment variable on the remote system. ssh takes care of both automatically.
See the earlier section on secure replacement for telnet, rsh, and rlogin in this chapter for information
on obtaining ssh. For more information on X-Windows security, see chapter 5.

Firewalls

A firewall is a network device designed to allow the network administrator to determine which network
protocols will be allowed to enter or leave a network, as well as which systems or networks those
protocols will be allowed to pass. Firewalls accomplish this with a set of rules that define those network
packets that are allowed through and those that are blocked. Some example firewall rules are[1]

[1] These rules are only examples and may not reflect security requirements for your site.

• Deny all inbound telnet from the Internet to this site.
• Allow inbound and outbound SMTP mail between the local mail server mail.mysite.com and any

site on the Internet.
• Allow ftp from the Internet to only the ftp server ftp.mysite.com.
• Allow www from the Internet only to the Web server www.mysite.com.
• Allow outbound telnet from this site to anywhere on the Internet.
• Allow outbound ftp from this site to anywhere on the Internet.
• Deny all other services except those listed above.

A firewall is typically placed in the network at the boundary between one organization and another and,
most commonly, between an organization and the Internet.
Firewalls should not be considered the line of defense, but a line of defense—firewalls can be
configured incorrectly, they can fail, and network paths can (accidentally and otherwise) be built around
them.
In an organization where the UNIX administrator is not familiar with or responsible for the organization's
firewall(s), it is imperative that firewalls be thoroughly understood so that the UNIX administrator can
properly supplement access control policies on server and desktop systems.
Refer to appendix E for more information on Sun firewall products.

Testing System Accessibility

No UNIX administrator should trust his or her diligence and typing skills so much as to leave security
configurations untested. But on the other hand, thoroughly testing a UNIX system for network access
vulnerability can take hours, if not days. Some public-domain tools have been implemented that
automate the work of uncovering vulnerabilities. I'll discuss a few of these in the following sections.

Satan

The Security Administrator's Tool for Analyzing Networks (Satan) is a tool used by UNIX and network
administrators to discover weaknesses in system and network configurations.
Satan is a port scanner program that works by probing a system over the network—or all systems on a
subnetwork—looking for known weaknesses (without actually exploiting them) and reporting to the user
any weaknesses found. For each weakness found, Satan displays a tutorial explaining the problem and
possible solutions.
Satan is available at the following sites:

• http://www.fish.com/satan/
• http://www.trouble.org/~zen/satan/satan.html

 134

ISS

Internet Security Scan, or ISS, is a port scanning tool similar to Satan in that the tool scans systems or
subnets looking for weaknesses that should be taken care of.
ISS is available from ftp://coast.cs.purdue.edu/pub/tools/unix/iss/.

Note

The public-domain version of ISS has not been updated since 1995; its effectiveness
has diminished since then. A commercial version with regular updates has replaced it;
information is available at http://iss.net/.

Intrusion Detection

Upon reading the previous section, you might wonder whether an intruder could use these same tools
to discover security weaknesses that could then be used to break into or otherwise disrupt a site. This
is not only possible, but probable. Furthermore, hackers have tools far better than Satan and ISS for
discovering a site's security weaknesses.
It used to be enough to simply disallow unauthorized data access, using devices such as firewalls and
tools such as TCP Wrappers. Frequently, however, hacking attempts went unnoticed until it was too
late. Intrusion detection, the practice of discovering, in real time, break-in attempts on a system or
network, is a growing segment in the security tools arsenal and is maturing and getting the attention it
deserves.
One or more suitable intrusion detection tools should be used in any site connected to the Internet.
Certainly any system directly accessed from the Internet (inbound or outbound) should be outfitted with
one or more of these tools, and perhaps some "interior" servers, such as DNS or e-mail, should be
configured as well. The following sections cover a few public-domain intrusion detection tools.

Syn

Syn is a utility used to track port scanning activity generated by someone running Satan, ISS, or some
other port scanning tool. It uses tcpdump to capture packets and logs suspicious events to syslog. Syn
is written in perl; hence, perl is also required in order for syn to run.
Syn is available from ftp: //ftp.pgci.ca/pub/syn/.

Klaxon

Klaxon is a utility used to detect port scanning activity generated by tools such as Satan and ISS.
Klaxon can also attempt to determine the identity (using the Ident protocol described in RFC931) of the
remote user running the port scanner.
Klaxon is available from ftp://ftp.eng.auburn.edu/pub/doug/.

Courtney

Courtney is a utility designed to detect incoming port scans from port scanners such as the Satan
program. Courtney requires libpcap (available at ftp://ftp.ee.lbl.gov/libpcap-0.0.tar.Z), tcpdump, and perl
version 5.
Courtney is available from http://ciac.llnl.gov/ciac/SecurityTools. html.

Tocsin

Tocsin is a promiscuous network monitor designed to detect SYN and RST attacks. These kinds of
attacks are not detected by tools such as TCP Wrappers or Klaxon. For more information on SYN and
RST attacks, see the glossary of attacks appendix.
Tocsin is available from ftp://ftp.eng.auburn.edu/pub/doug/.

 135

Gabriel

Gabriel is a port scanner detector used to detect Satan, ISS, and others. Unlike Syn and Courtney,
Gabriel does not require perl or even a C compiler; Gabriel includes C-source code and ready-to-run
binaries for Solaris 1 and Solaris 2.
Gabriel is available from http://www.lat.com/gabe.html.

Intrusion Detection: Staying Current

Intrusion detection is a developing technology. The security-conscious UNIX administrator would do
well to stay current on the topic; Web sites with interesting information on intrusion detection include

• http://www.cs.purdue.edu/coast/projects/autonomous-agents.html
• http://www.cs.purdue.edu/coast/intrusion-detection

Authentication

Authentication refers to a process of identifying yourself to a system in order to access information.
Solaris supports three authentication methods: System, DES (also known as Diffie-Hellman), and
Kerberos. NIS and NIS+ support all three methods.

System Authentication

System authentication simply refers to the standard UNIX file/directory permissions and userid/groupid
structure, nothing more. This is the default method used for authentiction—there is nothing more to
making this work than setting good file and directory ownership and permissions.

DH Authentication

DH (Diffie-Hellman) is used to authenticate users and systems. [2] DH uses the data encryption standard
and public-key cryptography to safely encrypt authentication information over the network. Solaris
systems include the complete DES authentication software needed to set up DES authentication, the
procedure for which follows.

[2] DH authentication was known as DES authentication up to Solaris 2.5. The term "DEs authentication" was changed to
"DH authentication" in Solaris 2.6. The mechanism remains unchanged.

1. Ensure each computer participating in DES authentication is configured to be a member of the
DNS, NIS, or NIS+ domain.

2. Set up public keys and secret keys with the newkey or nisaddcred commands for all users who
will be accessing other systems (for example, using NFS), and have each user set up his or her
Secure RPC password with the chkey command.

3. Verify that name service is running with the nisping -u command (for NIS+) or by checking if the
ypbind ypbind process is running (for NIS) by typing ps -ef | grep ypbind.

4. Make sure the keyserv process is running (ps -ef | grep keyserv).

5. As root, decrypt and store the secret key with the keylogin -r command. This needs to be done
only once, if the root secret key is changed, or if the file /etc/.rootkey is lost.

 136

6. Each user will need to decrypt and store the secret key with the keylogin command. This is
necessary only if the login and network passwords differ (if the login and network passwords are
the same, the user login will also perform the network login).

7. To convert an NFS mount to a secure NFS mount on the server, add the -sec=dh option to each
dfstab entry in /etc/dfs/dfstab. For example

8.
9. share -F nfs -o sec=dh /export/home
10.

8. For each NFS client, edit the corresponding /etc/vfstab entries (or, when using automounter, the
appropriate automount map entries). An example vfstab entry follows:

9.
10. appserver:/d1/local - /usr/local NFS - yes ro,br,sec=dh
11.

Kerberos Authentication

Kerberos, like DES, is an authentication system that uses DES encryption to protect authentication
information transmitted over the network.
Kerberos server software is not included with Solaris and must be obtained from a site such as
http://web.mit.edu/kerberos/www/. Solaris includes the client-side daemon kerbd as well as the routines
used by a client to create, acquire, and verify Kerberos tickets.

Note

Considerable knowledge and effort are required to set up a Kerberos environment, and
it may not be the appropriate authentication system for every site. See the references
section for Kerberos references.

Note

MIT distributes Kerberos only to U.S. citizens located in the United States or to
Canadian citizens located in Canada.

The following is the procedure for setting up a secure NFS mount using Kerberos authentication
(assuming Kerberos is set up):

1. To convert an NFS mount to a secure NFS mount on the server, add the -sec=krb4 option to
each dfstab entry in /etc/dfs/dfstab. For example

2.
3. share -F nfs -o sec=krb4 /export/home
4.

 137

2. For each NFS client, edit the corresponding /etc/vfstab entries (or, when using automounter, the
appropriate automount map entries). An example vfstab entry follows:

3.
4. appserver:/d1/local - /usr/local NFS - yes ro,br,sec=krb4

Virtual Private Networks

A virtual private network (VPN) is an encrypted network connection between two systems. A VPN
allows two parties to connect via the Internet (or other public network) without fear of an eavesdropper
recording and/or interfering with the connection. A system-to-system VPN is analogous to an encrypted
telephone call—the parties on the call don't have to worry about the presence of a wiretap since their
conversation will be encrypted and virtually uncrackable.
Frequently, VPNs are more cost effective than private, dedicated data circuits. This is because each
party needs only to have a dedicated Internet connection through which they communicate. This
becomes more cost effective as the number of parties using VPNs increases.

SKIP

Sun uses Simple Key-management for Internet Protocols (SKIP) encryption for its VPNs. SKIP client
software is available for Sun workstations, servers, and PCs running Windows 9x.
SKIP is available on Sun's EFS, SPF, and Securenet products in a server configuration supporting
multiple SKIP sessions between multiple sites.
A typical SKIP connection between a PC client and a Sun server is illustrated in Figure 13.2.

Figure 13.2. SKIP Connection Between PC Client and Sun Server

SKIP can also be used to encrypt all network traffic between two sites (see Figure 13.3).

Figure 13.3. SKIP Connection Between Two Sites

IPsec

IP security protocol (IPsec), the public-domain VPN solution developed by the Internet Engineering
Task Force (IETF) is growing in popularity. In a short time IPsec may eclipse or merge with SKIP as the
Internet VPN standard. By the time this book goes to press, there should be one or more commercial
versions of IPsec available for Solaris. Sun Microsystems itself has gone on record saying it will
implement IPsec.[3]

 138

[3] Refer to http://www.sun.com/software/white-papers/wp-solaris7/.

A public-domain third-party VPN solution using the IPsec security standard is available. The National
Institute of Standards and Technology (NIST) is the source for this standard—The NIST IPsec
Reference Implementation, available to U.S. citizens within the United States and Canadian citizens
within Canada only. This is a complete IPsec source, written for Slackware and patches for RedHat
Linux. With minimal effort this will port to Solaris 2. All who wish to download this software must first
register at this Web site: http://www.antd.nist. gov/itg/cerberus/ipsec-form.html.
Unlike many popular UNIX add-on tools, little public-domain IPsec client software is available for
UNIX/Solaris. Instead, most IPsec products may be commercial. Some security tools vendors are
indicating that IPsec products are in development.

Where to Go for Additional Information

AnswerBook

• AnswerBook 2—System Administration Guide, TCP/IP and Data Communications
Administration Guide

• AnswerBook 2—System Administration Guide, NFS Administration Guide

Man Pages

• chkey(1)
• ftpd(1M)
• hosts.equiv(4)
• keylogin(1)
• mv(1)
• newkey(1M)
• nisaddcred(1M)
• nisping(1M)
• .rhosts(4)
• tftpd(1M)
• ypbind(1M)

Publications

• RFC1700, "Assigned Numbers" (official list of TCP/IP port number assignments),
http://www.cis.ohio-state.edu/htbin/rfc/rfc1700.html

• The Moron's Guide to Kerberos, Brian Tung, http://gost.isi.edu/brian/security/kerberos.html
• How to Kerberize Your Site, Oak Ridge National Laboratory,

http://www.ornl.gov/~jar/HowToKerb.html
• Kerberos FAQ, http: //www.cis.ohio-state.edu/hypertext/faq/usenet/kerberos-

faq/general/faq.html
• Cheswick, William R., and Bellovin, Steven M. Firewalls and Internet Security: Repelling the

Wily Hacker. Reading, MA: Addison-Wesley, 1994.
• Improving the Security of Your Site by Breaking into It, Dan Farmer,

ftp://ftp.porcupine.org/pub/security/admin-guide-to-cracking.101.Z
• What Is a VPN?, ftp://ftp.employees.org/ferguson/vpn.zip
• CyLAN IPSec White Paper, http://www.cylan.com/files/whpaper.htm
• RFC2411, "IPsec Document Roadmap," http://www.ietf.org/rfc/rfc2411.txt
• Scott, Charlie, Wolfe, Paul, and Erwin, Mike. Virtual Private Networks, 2d ed. Sebastopol, CA:

O'Reilly & Associates, Inc., 1999.
• How to Configure SKIP and a SunScreen SPF-200, SunSolve InfoDoc 16282

Web Sites

• MIT Kerberos site—http://web.mit.edu/kerberos/www/
• Sun firewalls—http://www.sun.com/security/#products

 139

• USC/ISI Kerberos site—http://gost.isi.edu/info/kerberos/
• NIST Internetworking Technologies Group—http://www.antd.nist.gov/antd/html/itg. html,

http://www.antd.nist.gov/antd/
• IETF's IPsec site—http://www.ietf.org/html.charters/ipsec-charter.html

Chapter 14. Name Services
Name services are often the least-understood facilities on a UNIX system; frequently they are cobbled
together until they work, and then they aren't touched for fear they will break down again. All too often
security holes exist that invite disaster should a UNIX administrator make a mistake or an intruder
decide to make some trouble.
What's in this chapter

• Overview of DNS and ways to improve its security
• Architecture of split-horizon DNS and why it is useful
• NIS's security weaknesses
• Ensuring NIS+ security
• The name service switch
• Nscd and its role in name services

Why this is important
Name servers provide organization-wide information services which are only as reliable as the servers
are secure.

Domain Name Service (DNS)

The unseen backbone of Internet navigation, DNS translates domain names into IP addresses and IP
addresses into domain names.
Why is DNS needed? Computer software programs communicate with each other by referencing their
respective IP addresses; however, because IP addresses are abstract, they can be easily forgotten.
DNS was developed because people can remember names far easier than addresses. In every
instance where a person types in a domain name (for example, in a Web browser), the software
program must summon DNS in order to determine the IP address of the computer with that particular
domain name.
DNS is a hierarchical directory service, with each server containing a list of node names and their
respective IP addresses, as well as a possible list of subdomains and the IP address(es) of server(s)
that contain information about the subdomains.
Each name in Figure 14.1 is a DNS domain. Each DNS domain contains the following information:

• A list of computer names (and their IP addresses) that are registered domain servers for the
domain.

• A list of computer names and their respective IP addresses that are part of the domain.
• A list of subdomains, and the computer names and IP addresses that are the domain servers

for those subdomains. From Figure 14.1, the domain sun contains three sub-domains—corp,
west, and east —along with the names and IP addresses of the DNS servers for those
respective domains. The process of naming a subdomain and assigning one or more servers for
the subdomain is called delegation. This term will be used throughout the section on DNS.

Figure 14.1. DNS Domain Hierarchy

 140

Note

The top-most domains ".", "com," "org," "edu," "gov," "mil" (and, in fact, many others,
principally the two-letter ISO country codes such as "us," "jp," and "ca") are
controlled by the Internet Network Information Center (InterNIC), an organization that
registers all top-level domain names. The domain names "sun," "att," and "javasoft" in
the example above are registered and delegated from the InterNIC domain servers.
Delegation and control of the domain names "corp," "west," and "east" in the example
above are solely within the control of the organization responsible for the domain
"sun."

Each domain has a primary domain server, which is the system containing the database of names and
IP addresses. Each domain can also have one or more secondary domain servers; these servers are
configured with the IP address(es) of only the primary domain servers they serve; the secondary
servers then periodically request a zone transfer—a copy of the database from the primary server so
that they, too, can answer queries for the domain.

All computers in a network with the need to perform DNS inquiries are called resolvers. Resolvers
contain the software necessary to perform DNS inquiries, plus two configuration files,
/etc/nsswitch.conf, and /etc/resolv.conf. Examples of these files appear below.

/etc/nsswitch.conf

The file /etc/nsswitch.conf sets up directives for a variety of directory services. In the example below,
the entry "files dns" tells the system, when looking up names or IP addresses, to first look in the file
/etc/inet/hosts and then to use DNS. Here is a typical /etc/nsswitch.conf file. The "hosts" entry is
underlined.

/etc/nsswitch.files:

An example file that could be copied over to /etc/nsswitch.conf; it
does not use any naming service.

"hosts:" and "services:" in this file are used only if the
/etc/netconfig file has a "-" for nametoaddr_libs of "inet"
transports.
passwd: files
group: files

 141

hosts: files dns
networks: files
protocols: files
rpc: files
ethers: files
netmasks: files
bootparams: files
publickey: files
At present there isn't a 'files' backend for netgroup; the system
will
figure it out pretty quickly, and won't use netgroups at all.
netgroup: files
automount: files
aliases: files
services: files
sendmailvars: files

/etc/resolv.conf

The file /etc/resolv.conf is used solely by DNS; it tells DNS which domain to use for lookups; it also lists
one or more DNS server IP addresses to use for DNS lookups. A typical /etc/resolv.conf file would
appear as follows:

domain west.sun.com
nameserver 204.63.68.119
nameserver 204.63.67.7

In this example, the domain assumed is west.sun.com; the two DNS servers to be queried are at IP
addresses 204.63.68.119 and 204.63.67.7.
The domain entry in /etc/resolv.conf is used to help resolve partially qualified domain names. For
instance, a computer in the west.sun.com domain can query DNS for the IP address of the computer
mailserver.west.sun.com by asking just for the name mailserver. DNS will assume that the computer
wants the IP address for mailserver.west.sun.com.

DNS Security Weaknesses and Solutions

Too Much Information Visible to the Internet

Generally speaking, all of the machine names and their respective IP addresses in an organization can
easily be queried by anyone on the Internet. Even if an effective, properly configured firewall is in place,
the ability to view the names and IP addresses of servers and workstations is enough to make more
than a few site administrators nervous. Consider, for example, DNS entries for machine names such as
billing, fin-server, or gl-master. This would be like publishing the plans for a secret submarine base
outside of the locked gates! Even with a firewall in place, publishing the names and addresses of
important systems and devices poses a security threat because it defines named targets for intruders to
try to attack. A DNS architecture called split-horizon DNS addresses this concern.

Split-Horizon DNS

A split-horizon DNS architecture is one in which publicly reachable systems and network elements are
defined in the publicly reachable DNS domain, while the internal infrastructure of the same organization
is defined in an isolated, unreachable DNS domain. Figure 14.2 illustrates this architecture.

 142

Figure 14.2. Split-Horizon DNS Architecture

Some important characteristics of this architecture include

• The public xyz.com DNS server, as well as the servers www, ftp, and mail, are the only systems
defined in the public xyz.com DNS server database.

• Neither the internal DNS server(s) nor any internal servers or workstations are defined in the
public xyz.com DNS database. From the perspective of the Internet, the internal DNS servers
do not exist.

• resolv.conf entries on internal servers and workstations point to the internal xyz.com DNS
server(s).

• The firewall allows the internal DNS server to query the Internet.
• The firewall blocks queries and zone transfer requests from the Internet from reaching the

internal DNS server(s).

Follow this procedure for setting up a split-horizon DNS architecture.

1. Set up external DNS server. Follow the procedure described in SunSolve publication DNS
PSD/FAQ (Infodoc 11975, version 2.5, February 19, 1997), section 3.7, "How to Set Up a
Primary DNS Server." Include in the zone files only the publicly visible hosts that need to be
accessed from the Internet.

2. Set up internal DNS server. Follow the procedure described in SunSolve publication DNS
PSD/FAQ (Infodoc 11975, version 2.5, February 19, 1997), section 3.7, "How to Set Up a
Primary DNS Server." Include in the zone files all internal and external hosts in the network.

3. Set up Internet firewall to block all TCP port 43 (DNS zone transfer) packets from the internal
DNS server to and from the Internet. This will block all zone transfer attempts between the
internal DNS server and the Internet.

4. Set up the Internet firewall to block all UDP port 43 (DNS query) packets to the internal DNS
server from the Internet; the Internet firewall should permit UDP port 43 packets from the
internal DNS server to the Internet. This will block all queries from the Internet to the internal
DNS server, but will allow the internal DNS server to query the Internet.

Note

In an older variation of the split-horizon DNS architecture, the internal DNS servers
would be set up with "forwarders" entries pointing to the exterior DNS servers. This

 143

forced the interior DNS servers to ask the exterior DNS servers for Internet DNS
queries. This architecture has one primary weakness: if a hacker can take over the
exterior DNS server (which is more vulnerable because it is an exterior server), she
can modify the exterior DNS server so that some or all DNS queries originating from
the inside DNS servers will return incorrect answers.

If the interior DNS servers query the Internet directly, the hacker wishing to corrupt
Internet DNS queries must either break into the interior DNS server (which would
presumably be more difficult since it can be better protected), or break into the DNS
servers for the Internet domain(s) that the hacker wishes to corrupt.

Block Unwanted Queries with Allow-Query Function

Sites using BIND Version 8.1 or newer[1] can use a new security feature in the named.conf file called the
allow-query function. This feature allows the UNIX administrator to specify which clients can query a
nameserver. One practical use for this feature is to permit only inside systems to query a DNS server
for inside DNS information. An example named.boot file fragment follows.

[1] Refer to the section on how to know your BIND version later in this chapter for more information on determining which
version of BIND is running.

...
options {
 allow-query { 128.126.120/24; 128.126.130/24; };
};
...

In this example, the nameserver will accept queries only from systems on the 128.126.120.* and
128.126.130.* networks.
In BIND Version 8.1 and later, the allow-query function can also be enforced at the zone level. An
example zone file fragment:

zone "lab.sun.com" {
 type primary;
 file "db.lab.sun.com";
 allow-query { 124.30/16; };
};

In this example, only systems on the 124.30.*.* network may query this nameserver for information
about the the domain lab.sun.com.

Note

Despite the protection that the allow-query function affords (by permitting domain
queries only from certain networks), a firewall or filtering router should be used to
prevent DNS queries from the Internet from reaching interior DNS servers. This is an
example of protecting in layers (see chapter 2).

 144

Illicit Zone Transfers from DNS Servers

The zone transfer is the mechanism for replicating a DNS database from one server to another. Some
UNIX/network administrators may not want just anyone to pull a zone transfer from their public DNS
server (and certainly not from their private/internal DNS server!). Several means are available for
preventing illicit zone transfers.

1. Set up the Internet firewall to block all TCP port 43 (DNS zone transfer) packets from the
internal DNS server to and from the Internet. This will block all zone transfer attempts between
the internal DNS server and the Internet. Open up holes in the firewall on that same port for
registered and legitimate DNS secondary servers.

2. Obtain and apply the BIND 4.9.3 patches from Sun,[2] and then use the xfernets directive in the
named.boot file.

[2] Solaris 2.6 comes with BIND 4.9.4, so no patches are necessary. Patches are required for Solaris 2.5.1 and
earlier releases. See the section on know your BIND version for more information.

3. Obtain and apply public-domain BIND (4.9.3 or newer) and use the xfernets directive in the
named.boot file.

4. In BIND 8.1 and later,[3] use the allow-transfer option to specify which hosts or networks may pull
a zone transfer from the domain.

[3] Solaris 7 comes with BIND 8.1 or later. See the section on knowing your BIND version for more information.

Differences Between nslookup and Actual DNS Queries

I should note that it is possible for nslookup and an application program to arrive at different results
when looking for a host or IP address. This is because nslookup uses its own name lookup routines
instead of the system-supplied standard gethostbyname() and gethostbyaddr() used by Solaris utilities
and application programs. It is recommended that the DIG utility (discussed below) be obtained and
used for DNS troubleshooting.

Public-Domain DNS (BIND)

The full source code and documentation for BIND are available for anyone requiring the latest BIND
features or the source code itself for making site customizations. It is available at http://www.isc.org/ or
http://www.dns.net/dnsrd/.

Note

Sun Microsystems will not support the replacement of the BIND programs supplied
with Solaris. BIND should be replaced only by someone with thorough knowledge and
experience with the DNS mechanism.

DIG Public-Domain Tool

The domain information groper (DIG), now included with public-domain BIND, is a DNS server and
client diagnostic tool. DIG is a DNS debugging tool used to help diagnose DNS queries, both within an
organization and over the Internet. DIG is available at http://www.isc.org/.

Disable nscd Caching

 145

Consider disabling nscd's cache. nscd is known in certain circumstances to produce erratic behavior.
See the section on disabling nscd caching later in this chapter.

Know Your BIND Version

The advanced and well-equipped UNIX administrator keeps up on the latest features in BIND, but if you
use BIND from Solaris, how can you tell which version is being run?
The following example illustrates how the what command can be used to determine which version of
BIND is running on a system.

/usr/ccs/bin/what /usr/sbin/in.named
/usr/sbin/in.named:
 in.named BIND 8.1.2 Tue Oct 6 00:50:47 PDT 1998 Generic-5.7-
October 1998
 db_dump.c 4.33 (Berkeley) 3/3/91
 db_load.c 4.38 (Berkeley) 3/2/91
 db_lookup.c 4.18 (Berkeley) 3/21/91
 db_save.c 4.16 (Berkeley) 3/21/91
 db_update.c 4.28 (Berkeley) 3/21/91
 db_glue.c 4.4 (Berkeley) 6/1/90
 ns_forw.c 4.32 (Berkeley) 3/3/91
 ns_init.c 4.38 (Berkeley) 3/21/91
 ns_main.c 4.55 (Berkeley) 7/1/91
 Copyright (c) 1986, 1989, 1990 The Regents of the University
of California.
 ns_maint.c 4.39 (Berkeley) 3/2/91
 ns_req.c 4.47 (Berkeley) 7/1/91
 ns_resp.c 4.65 (Berkeley) 3/3/91
 ns_stats.c 4.10 (Berkeley) 6/27/90
 SunOS 5.7 Generic October 1998

In this example, BIND 8.1.2 is the version running on the system. Only the second line of input is useful.
The other lines are versions of the various modules of in.named. The last line of the output (SunOS
5.7 Generic October 1998) is interesting, too, because it indicates which version of Solaris this
version of BIND was intended for.
Once the UNIX administrator knows which version of BIND is on the system, it is possible to take
advantage of security features associated with that version.

NIS

NIS was not part of the Solaris 2.x core OS until Solaris 2.6. For Solaris 2.5.1 and earlier, NISKIT (also
known as NSKIT) is the add-on package that allows a site to continue using true NIS master and slave
servers without having to maintain SunOS systems for that purpose.

Note

Because this book covers Solaris 2.x only (and not SunOS or Solaris 1.x), discussion
in this section is limited to the use of native NIS or NISKIT 1.2 (or newer) for Solaris
2.x.

 146

NIS's purpose is the centralization of information found in the following files:

• Password information in /etc/passwd and /etc/shadow
• Group information in /etc/group
• Hosts (names and IP addresses) information in /etc/inet/hosts
• Various network configuration information in /etc/inet/networks, /etc/inet/services,

/etc/inet/protocols, /etc/rpc, /etc/ethers, /etc/inet/netmasks, /etc/bootparams, /etc/publickey
• Network group definitions (for which there is no non-NIS implementation)
• Automount tables (/etc/auto_master)
• E-mail aliases and definitions in /etc/mail/aliases and sendmail variables

Any or all of these settings can be centralized with NIS. Each client can be configured to read the NIS
tables or its own flat files; this is controlled by the file /etc/nsswitch.conf. Here is an example
/etc/nsswitch.conf file for a NIS client.

/etc/nsswitch.nis:

An example file that could be copied over to /etc/nsswitch.conf; it
uses NIS (YP) in conjunction with files.

"hosts:" and "services:" in this file are used only if the
/etc/netconfig file has a "-" for nametoaddr_libs of "inet"
transports.
the following two lines obviate the "+" entry in /etc/passwd and
/etc/group.
passwd: files nis
group: files nis
consult /etc "files" only if nis is down.
hosts: nis [NOTFOUND=return] files
networks: nis [NOTFOUND=return] files
protocols: nis [NOTFOUND=return] files
rpc: nis [NOTFOUND=return] files
ethers: nis [NOTFOUND=return] files
netmasks: nis [NOTFOUND=return] files
bootparams: nis [NOTFOUND=return] files
publickey: nis [NOTFOUND=return] files
netgroup: nis
automount: files nis
aliases: files nis
for efficient getservbyname() avoid nis
services: files nis
sendmailvars: files

See the section on name service switch files later in this chapter for additional information.
While NIS is not particularly secure, I will discuss several steps that can be taken to strengthen NIS
security in the section on NIS security weaknesses and solutions.

Obtaining and Installing NISKIT

The NISKIT (also frequently spelled NSKIT) package name in Solaris versions up to 2.5.1 is
SUNWnsktr, SUNWnsktu, and SUNWnskta (AnswerBook). It is available on its own product CD, the
Server Supplement, or the Solaris Migration Kit CDs.
NIS is included in Solaris 2.6; the package names are SUNWypr and SUNWypru.
Likewise, NIS is included in Solaris 7; the package names are SUNWypu and SUNWypr.

 147

Obtain the SunSolve document NSKIT PSD/FAQ (Infodoc 11989) prior to installing NISKIT. This
document contains information necessary to install the product properly.
NISKIT version 1.2 is far more stable and reliable than earlier versions.

NIS Security Weaknesses and Solutions

Move NIS Maps out of /etc Directory

By default, NIS will use the file /etc/passwd, /etc/shadow, /etc/inetd/netmasks, etc. for its maps. Two
problems arise from this: first, anyone with login access to the system will be able to read all of the NIS
maps; second, with /etc/passwd and /etc/shadow as NIS map sources, root login will be possible only if
NIS is running properly.

Protect NIS Maps Directory

Only root should be able to read (and write) the contents of /var/yp. This directory should be part of a
frequent filesystem audit performed by Tripwire and/or COPS. See chapter 4 for additional information
on these tools.

Use a Hard-to-Guess NIS Domain Name

A user who does not know the name of the NIS domain cannot pull NIS maps. Hence, the name of the
NIS domain name should not be intuitive—for instance, it should not be the same as the DNS domain
name. This is a security through obscurity measure, and persistence will pay off for a lucky intruder (an
intruder would resort to other means, such as sniffing the network, listening for NIS packets containing
the domain name).

Implement /var/yp/securenets

NIS can be configured to make its maps available only to certain networks or systems. This is
accomplished through the use of /var/yp/securenets. Examples follow.
To restrict NIS map visibility to only the 128.116.71.0 and 126.116.73.0 networks, /var/yp/securenets
would contain the following:

255.255.255.0 128.116.71.0
255.255.255.0 128.116.73.0

To restrict NIS map visibility to hosts at IP addresses 128.116.71.3 and 128.116.71.5 and to the entire
network 128.116.73.0, /var/yp/securenets would BIND contain the following:

255.255.255.255 128.116.71.3
255.255.255.255 128.116.71.5
255.255.255.0 128.116.73.0

Hide Shadow Fields

Anyone who can ypcat (the command used to dump a NIS table) a NIS password file containing
shadow fields will have an easy time breaking into systems. Shadow fields are the encrypted
passwords for all users in the NIS domain. A public-domain program like "crack" will use a large
dictionary and some clever algorithms to guess the passwords for the accounts in the NIS database.
To hide the NIS shadow files, C2 security must be implemented. Refer to appendix F for more
information.

 148

There is an unsupported but purportedly effective alternative to C2 for hiding the NIS shadow files; refer
to Doug's Tools Page at http://www.eng.auburn.edu/users/doug/nis. html for additional information.
Note that the procedure described there applies to SunOS 4.x and not to Solaris 2.x.

Avoid Illicit NIS Servers

By default, NIS clients find servers at boot time by broadcasting an "are there any NIS servers out
there?" message; the client will bind to the first NIS server to respond, legitimate or not. Measures to
control this include

• Don't give root passwords to users of machines on your network. If some users must have root
passwords, consider moving their machines to a lab subnet (the point here is to prevent
someone from creating an unauthorized NIS server).

• Use Tripwire, COPS, and other tools to audit filesystems and detect changes such as NIS client
or server configuration.

• Bind all NIS clients to specific known servers instead of having them broadcast to the entire
subnet. This is done by running ypinit -c and specifying which NIS servers the system should
bind to (in decreasing order of preference). ypinit -c must also be run when any new NIS
servers are built or when old ones are decommissioned. Finally, any NIS server specified with
ypinit -c must also be defined in /etc/inet/hosts.

• Use rpcinfo commands to detect illicit NIS servers. An example dialogue follows.

rpcinfo -b ypserv 1
128.116.71.18 dancer
rpcinfo -b ypserv 2
128.116.71.18 dancer
128.116.71.20 vixen
128.116.71.76 prancer
128.116.71.217 bob

It is necessary to query for hosts running ypserv versions 1 and 2. In this example, the known NIS
servers dancer, vixen, and prancer are listed (dancer is a SunOS server). Also present is the system
bob, an end-user's workstation, not a known NIS server.

Note

The rpcinfo commands shown above must be run on each subnet at the site. This is
because the rpcinfo -b queries (as well as any system's responses) generally will not
cross subnet boundaries. The site's network administrator should be consulted for
confirmation.

Keep Root and Other Administrative Accounts out of NIS

The root account should always be local; that is, the root account should not be in NIS. The two most
important reasons for this are

• If the root password is discovered by an intruder, the intruder will have root access to all
machines in the NIS domain.

• If NIS or the network malfunctions, it may not be possible to log in as root on any machine in the
domain.

 149

These can be at least partially mitigated by using a local root account in /etc/passwd and /etc/shadow
and by specifying "passwd: hosts nis" in /etc/nsswitch.conf to force logins to first consult the local
passwd and shadow files. There is more information on /etc/nsswitch.conf in the name service switch
section of this chapter.

Disable nscd Caching

In certain circumstances nscd is known to produce erratic behavior. Consider disabling nscd's cache.
Refer to the nscd section at the end of this chapter.

Other NIS Weaknesses

Features absent in NIS include

• Quality password enforcement—NIS does not enforce the use of mixed-case and nonalphabetic
characters in passwords; thus, user accounts in NIS will invariably contain easily guessed
passwords. This makes the need to hide shadow fields much more urgent.

• Password aging—NIS does not support password aging.
• Secure RPC—ordinary UNIX permissions and nothing more govern which users have access to

which directories and files.

NIS+

NIS+, introduced with Solaris 2.x, is an extensible version of NIS that includes the following additional
features:

• More control over who can read the NIS maps.
• Users log into NIS+ with a network password (in addition to logging into their own machine).
• Scales for larger organizations.
• Delegation of maps to other administrators.

The following sections discuss NIS+ security weaknesses and solutions.

NIS+ Default Access Rights

NIS+ default access rights are the first line of defense, for they determine who can read the NIS+ maps.
The nisdefaults command shows default NIS+ access rights for the domain (see Figure 14.3).

Figure 14.3. NIS+ Principal Classes

Within each principal class (nobody, user, group, world), the four symbols are r (read), m (modify), c
(create), and d (destroy). Read permissions are all you need to read NIS+ tables. Modify, create, and
destroy are needed only by domain owners, typically UNIX administrators.
The niscat command can show rights for an individual NIS+ table.

 150

% niscat -o passwd
...
Access Rights : ----rmcdr---r---
%

In this example of rights for the passwd table, principal nobody has no rights, principal owner has full
read, modify, create, destroy rights, and principals group owner and world have read-only rights. Any
NIS+ table can be queried for current rights.
As long as there are no rights for nobody, the only principals who can read the NIS+ tables are those
who have been given specific authorizations to NIS+.

Access Rights for Principal nobody

Access rights should be extended to principal nobody only if NIS+ tables need to be read by NIS
clients (typically SunOS systems) or unauthenticated clients. Recognize, however, that this will have a
significant impact on security: anyone will be able to read the tables with read access extended to
nobody.

NIS+ Security Level

NIS+ should never be run at security level 0. To check the security level, run the nisstat command.

/usr/lib/nis/nisstat
Statistics for domain west.sun.com. :
Statistics from server : coho.west.sun.com.
Stat 'root server' = 'ON'
Stat 'NIS compat mode' = 'ON'
Stat 'DNS forwarding in NIS mode' = 'OFF'
Stat 'security level' = '2'
Stat 'serves directories':
 west.sun.com.
 org_dir.west.sun.com.
 groups_dir.west.sun.com.
Stat 'Operation Statistics':
 2
 OP=LOOKUP:C=3300:E=0:T=424
 OP=LIST:C=5333:E=0:T=708
 OP=FINDDIR:C=3057:E=0:T=660
OP=STATUS:C=4:E=0:T=841
Stat 'directory cache' = 'C=8558:H=8556:M=2:HR=99%'
Stat 'group cache' = 'C=0:H=0:M=0:HR=100%'
Stat 'static storage' = '4284'
Stat 'dynamic storage' = '1966936'
Stat 'up since' = 'up 18D, 01:14:30'

The NIS+ security level is controlled by the nisd -S startup option found in the file /etc/rc2.d/S71rpc. The
default security level is 2. See the nisd(1) man page for additional details.

Administering NIS+

NIS+ should be administered with Admintool.
If Admintool cannot be used (for instance, if Xwindows is not available), then use the nisaddent
command. For example, to change the netmasks file, perform the following steps:

 151

nisaddent -d -t netmasks > /tmp/netmasks
vi /tmp/netmasks
...
nisaddent -r -f /tmp/netmasks netmasks

In this example, nisaddent is first used to dump the netmasks table to a flat file; the flat file is edited,
and nisaddent is used to reload the netmasks table from the modified flat file.

Note

When adding or removing entries from the table passwd table, both the passwd and
shadow tables must be dumped, edited, and restored. The proper sequence is

nisaddent -d -t passwd > /tmp/passwd
nisaddent -d -t shadow > /tmp/shadow
chmod 600 /tmp/shadow
vi /tmp/passwd /tmp/shadow
...
nisaddent -r -f /tmp/passwd passwd
nisaddent -m -f /tmp/shadow -t passwd.org_dir shadow[4]
rm /tmp/shadow

[4] This

command is shown without underlines so that the underscore is visible.

Back Up NIS+ Tables

All NIS+ tables must be backed up at least once per day to be safe. Prior to a tape backup, run the
nisbackup command. nisbackup creates a snapshot of all NIS+ tables which can be handy during a
data recovery operation.

Flush NIS+ Transactions

I recommend that the nisping -C command be executed periodically (at least once per day, but in a
busy environment one or more times per hour) to checkpoint NIS+ and flush all transactions to disk.

Keep Root and Other Administrative Accounts Out of NIS+

The root account should always be local on each system; that is, the root account should not be in
NIS+. Two important reasons for this follow:

 152

• If the root password is discovered by an intruder, the intruder will have root access to all
machines in the NIS+ domain.

• If NIS+ or the network malfunctions, it may not be possible to log in as root on any machine in
the domain.

These can be at least partially mitigated by using a local root account in /etc/passwd and /etc/shadow
and by specifying "passwd: hosts nisplus" in /etc/nsswitch.conf to force logins to first consult the local
passwd and shadow files. For more information on /etc/nsswitch.conf see the name service switch
section below.

Disable nscd Caching

In certain circumstances nscd is known to produce erratic behavior. Consider disabling nscd's cache.
Refer to the nscd section at the end of this chapter..

Name Service Switch

The file /etc/nsswitch.conf found on each client system determines for that system which name services
will be used for each type of information needed. A typical nsswitch.conf file for a system in a NIS+
environment appears as follows:

/etc/nsswitch.nisplus:

An example file that could be copied over to /etc/nsswitch.conf; it
uses NIS+ (NIS Version 3) in conjunction with files.

"hosts:" and "services:" in this file are used only if the
/etc/netconfig file has a "-" for nametoaddr_libs of "inet"
transports.
the following two lines obviate the "+" entry in /etc/passwd and
/etc/group.
passwd: files nisplus
group: files nisplus
consult /etc "files" only if nisplus is down.
hosts: nisplus [NOTFOUND=return] files
services: nisplus [NOTFOUND=return] files
networks: nisplus [NOTFOUND=return] files
protocols: nisplus [NOTFOUND=return] files
rpc: nisplus [NOTFOUND=return] files
ethers: nisplus [NOTFOUND=return] files
netmasks: nisplus [NOTFOUND=return] files
bootparams: nisplus [NOTFOUND=return] files
publickey: nisplus
netgroup: nisplus
automount: files nisplus
aliases: files nisplus
sendmailvars: files nisplus

The syntax for each entry is

database: directives

 153

where database is the type of data to be looked up and directives is a list of one or more information
sources and conditions under which they will be used.
For example, the entry passwd: files nisplus is interpreted as follows: for passwd entries, first look in
the local system's file(s) (in this case, /etc/passwd) and, if the desired entry is not found, then consult
NIS+.
The entry services: nisplus [NOTFOUND=return] files is interpreted: for services entries, first look in
NIS+; if the entry is not found in NIS+, then return; if NIS+ is down, then look in local files.
There are many other status codes, including SUCCESS, UNAVAIL, NOTFOUND, and TRYAGAIN.
Consult the nsswitch.conf(4) man page for complete details on the use of nsswitch.conf.

Note

If /etc/nsswitch.conf is changed on a running system, the nscd daemon must be
restarted. Refer to the section on nscd below.

nscd

nscd, the name service cache daemon, caches name service requests for hosts, passwd, and group. It
caches these services whether the system is using flat files (e.g., /etc/inet/hosts, /etc/group,
/etc/passwd), DNS, NIS, or NIS+.
nscd can be the cause of several problems, including

• Changes in /etc/nsswitch.conf are not fully effective until nscd is restarted.
• Changes in hosts, group, or passwd in flat files or NIS+ may not immediately take effect;

sometimes nscd caches the old information too long.
• Changes in NIS are ignored.[5] For example, a user changes his password on his NIS client with

yppasswd and then logs out. The user cannot log in using the new password because nscd has
cached the old password and will not query NIS for password (or other) changes until its cache
has expired (the user can still log in with the old password).

[5] nscd and NIS were never designed to coexist.

• nscd performs negative caching. For example, a user tries to ping a host not yet defined in
DNS. Minutes later, the host name is defined in DNS. However, the user is still unable to ping
the server (by name) because nscd has cached the nonexistence of the host.

• nscd has been blamed for ping, arp, sendmail, telnet, and ftp problems.
• nscd has been known to peg the CPU and have memory leaks.
• nscd's cache has been known to become corrupted.

Because it is integrated into the system mechanisms used to find host names (in /etc/hosts, DNS, NIS,
or NIS+), nscd cannot be disabled; some functions may not work.
nscd can be tamed somewhat by disabling its caching mechanism. To disable caching, the
configuration file /etc/nscd.conf needs to include the following three entries:

enable-cache hosts no
enable-cache passwd no
enable-cache group no

Once /etc/nscd.conf has been changed, nscd needs to be stopped and restarted. The following
dialogue illustrates this.

/etc/init.d/nscd stop
/etc/init.d/nscd start

 154

To confirm that nscd's caching has been disabled, run the nscd -g command. An example dialogue
follows.

$ /usr/sbin/nscd -g
nscd configuration:
 0 server debug level
"/dev/null" is server log file
passwd cache:
 No cache is enabled
 0 cache hits on positive entries
 0 cache hits on negative entries
 0 cache misses on positive entries
 0 cache misses on negative entries
 0% cache hit rate
 0 queries deferred
 0 total entries
 211 suggested size
 600 seconds time to live for positive entries
 5 seconds time to live for negative entries
 20 most active entries to be kept valid
 Yes check /etc/{passwd,group,hosts} file for changes
 No use possibly stale data rather than waiting for refresh
group cache:
 No cache is enabled
 0 cache hits on positive entries
 0 cache hits on negative entries
 0 cache misses on positive entries
 0 cache misses on negative entries
 0% cache hit rate
 0 queries deferred
 0 total entries
 211 suggested size
 3600 seconds time to live for positive entries
 5 seconds time to live for negative entries
 20 most active entries to be kept valid
 Yes check /etc/{passwd,group,hosts} file for changes
 No use possibly stale data rather than waiting for refresh
hosts cache:
 No cache is enabled
 0 cache hits on positive entries
 0 cache hits on negative entries
 0 cache misses on positive entries
 0 cache misses on negative entries
 0% cache hit rate
 0 queries deferred
 0 total entries
 211 suggested size
 3600 seconds time to live for positive entries
 5 seconds time to live for negative entries
 20 most active entries to be kept valid
 Yes check /etc/{passwd,group,hosts} file for changes
 No use possibly stale data rather than waiting for refresh
$

Where to Go for Additional Information

 155

AnswerBooks

• AnswerBook 2—TCP/IP and Data Communications Administration Guide
• AnswerBook 2—Solaris Naming Setup and Configuration Guide
• AnswerBook 2—Solaris Naming Administration Guide
• AnswerBook 2—NIS+ Transition Guide

Man Pages

• defaultdomain(4)
• in.named(1M)
• nis+(1)
• nisaddent(1M)
• nisbackup(1M)
• niscat(1)
• nischmod(1)
• nisdefaults(1)
• nisping(1M)
• nisstat(1M)
• nscd(1M)
• nscd.conf(4)
• nslookup(1M)
• nsswitch.conf(4)
• resolv.conf(4)
• rpcinfo(1M)
• securenets(4)
• what(1)
• ypcat(1)
• ypbind(1M)
• ypinit(1M)

Publications

• DNS PSD/FAQ, SunSolve Infodoc 11975
• NSKit PSD/FAQ, SunSolve Infodoc 11989
• NIS+ PSD/FAQ, SunSolve Infodoc 11988
• NIS PSD/FAQ, SunSolve Infodoc 12000
• Misc Networking Programs PSD/FAQ, SunSolve Infodoc 12052
• How to Set Up NIS+ in Solaris 2.x, SunSolve Infodoc 1014
• How NIS Binding Works, SunSolve Infodoc 3376
• How to Tell What Version of BIND You Are Running, SunSolve Infodoc 16255
• Network Security PSD/FAQ, SunSolve Infodoc 13335
• Albitz, Paul, and Liu, Cricket. DNS and Bind. Sebastopol, CA: O'Reilly & Associates, 1998.
• Stern, Hal. Managing NFS and NIS. Sebastopol, CA: O'Reilly & Associates, 1991.
• Ramsey, Rick. All About Administering NIS+. Upper Saddle River, NJ: Prentice Hall PTR, 1994.

Web Sites

• InterNIC Domain registration services—http://rs.internic.net/
• InterNIC directory services—http://ds.internic.net/
• AlterNIC information—http://www.alternic.net/
• Hide NIS Shadow Field (and other NIS security information)—

http://www.eng.auburn.edu/users/doug/nis.html
• RFC1032, Domain Administrators Guide—http://www.cis.ohio-state.edu/htbin/rfc/rfc1032.html
• RFC1033, Domain Administrators Operations Guide—http://www.cis.ohio-

state.edu/htbin/rfc/rfc1033.html
• RFC1034, Domain Names-Concepts and Facilities—http://www.cis.ohio-

state.edu/htbin/rfc/rfc1034.html

 156

• RFC1035, Domain Names-Implementation and Specification—http://www.cis.ohio-
state.edu/htbin/rfc/rfc1035.html

Chapter 15. NFS and the Automounter
The network file system (NFS) proves over and over to be the weak link in an enterprise's computing
infrastructure. Often misunderstood, NFS security is frequently compromised in favor of enabling data
access for business users. Given the nature of early NFS versions and its security features, it is no
wonder that data security has been compromised in order to give people the access they need (or
want).
In recent years, NFS security has improved markedly, and these features can be incorporated into the
enterprise.
What's in this chapter

• Basic workings of NFS
• Improved NFS server and client security
• NFS authentication
• NFS and access control lists
• Automounter security

Why this is important
NFS and the automounter are network services; the network frequently proves to be the weak link in
system security. System administrators need to know how to set up NFS and automounter so that they
are secure.

NFS

NFS gives the appearance of the existence of specific directories and files on a computer, when in fact
those specific directories and files reside on another computer. From the UNIX user's perspective, NFS
is the invisible mechanism that makes one computer's specific directories and files appear to also exist
on another, or several, computers.
All normal filesystem commands such as ls, du, cat, and vi work on files presented through NFS just as
though those files were physically present on the system.

NFS Operations

The two principal operations carried out by machines participating in NFS are share and mount.
Share is an operation carried out by a system, making one or more of its physically resident directories
available for access by other systems. This is the role of an NFS server. Mount is the complementary
operation carried out by another system whereby the server's shared filesystem is made to appear to
be resident on the mounting system, or NFS client. In Figure 15.1 the NFS server shares the directory
/export/home, which is mounted at the location /home on the NFS client.

Figure 15.1. NFS Architecture

 157

Improving Security with NFS Share

An NFS server's directories are shared with the share command. Security can be improved by
restricting which systems may mount a server's NFS directory. Syntax of the share command follows.

share -F FStype -o options -d description path

Options consists of one (or more, separated by commas) of the following:

• ro—the directory is shared read-only to all clients.
• ro=client [, client…]—the directory is shared read-only to one or more clients or netgroups.
• rw—the directory is shared read/write to all clients (not recommended, because write access

could be granted to a system/user who has no business having it).
• rw=client [, client…]—the directory is shared read/write to one or more clients, netgroups, DNS

domains, or networks.
• sec=mode[:mode…]—security authentication mode. I'll discuss this in the section on NFS

authentication.
• nosuid—prevents the creation of SetUID programs on NFS-mounted directories; keeps NFS-

SetUID mounted SetUID programs from running in SetUID mode.

See the share_nfs(1M) man page for a complete listing of share options.
Here is an example share command.

share -F NFS -o rw=homeusers -d "Home Directories" /export/home

In this example, the directory /export/home is shared read/write to systems in the netgroup homeusers.
An NFS server's permanent collection of NFS shares is listed in the file /etc/dfs/dfstab. An example
/etc/dfs/dfstab file is

share -F NFS -o rw=homeowners,ro -d "Home Dirs" /export/home
share -F NFS -o ro=allusers -d "Man Pages" /export/man
share -F NFS -o ro=allusers -d "AnswerBook" /export/ab
share -F NFS -o rw=.labs.sun.com -d "Mail" /var/spool/mail

In the first entry, the directory /export/home is shared read/write to all systems in the netgroup
homeowners and read-only to all other systems. The next two entries share man pages and
answerbook in read-only mode to all systems in the netgroup allusers. The final entry shares
/var/spool/mail to all systems in the DNS domain labs. sun.com.

 158

The most common weakness with NFS is that the NFS server shares its directory(ies) with too few
restrictions.

• Directories are available to too many clients (possibly altogether unrestricted).
• Too many directories are shared.
• Directories are shared read/write when read-only would suffice.

Refer to the share(1M) and share_nfs(1M) man pages for complete information.

Improving Security with NFS Mount

An NFS client mounts directories shared by NFS servers with the mount command. Syntax of the
mount command is

mount -F NFS -o [rw|ro] [bg|fg] [suid|nosuid] [soft|hard]
 [intr|nointr] [sec=option] server:/directory /localdirectory

Mount options are

• rw—directory is mounted read/write (settings on NFS server will prevail).
• ro—directory is mounted read-only.
• fg—if the first mount attempt fails, subsequent attempts will be made in the foreground (default).
• bg—if the first mount attempt fails, subsequent attempts will be made in the background.
• suid—SetUID execution is allowed (default).
• nosuid—SetUID execution is not allowed.
• hard—continue to retry the mount until the server responds (default).
• soft—return an error if the NFS server does not respond.
• intr—client can interrupt processes (with a keyboard interrupt) waiting on a mount (default).
• nointr—client cannot interrupt processes waiting on a mount.
• sec—secure RPC security setting (can be one of none, sys, dh, kerb).

Refer to the mount(1M) man page for a complete listing of options.
An example mount command is

mount -F NFS -o ro,bg,sec=dh appserver:/d1/local /usr/local

In this example, the client system wishes to mount the server appserver directory /d1/ local onto the
local directory /usr/local, in read-only mode, using DES authentication.
The file /etc/vfstab is used to permanently set up NFS client mounts. The format of vfstab for NFS
mounts is

server:/directory - /localdirectory NFS - yes options

Here is an example /etc/vfstab entry.

appserver:/d1/local - /usr/local NFS - yes ro,bg,sec=dh

In this example, the /etc/vfstab entry is corresponding to the preceding example mount command.

Improving Security by Setting NFS Portmon

 159

Ordinarily NFS will respond to requests that originate from any UDP port. However, NFS can be
configured to respond only to requests originating from privileged ports; that is, from ports originating
from the root userid on another UNIX system.
When NFS portmon is set on a server, the server will ignore NFS mount and I/O requests coming from
unprivileged ports. To set NFS portmon, add the following entry to /etc/system (and then reboot the
system):

* set portmon to deny unauthorized access
set nfssrv:nfs_portmon=1

NFS Authentication

The NFS share command provides four options for authenticating NFS mounts and subsequent
accesses. They are

• sys—(Secure RPC AUTH_SYS) ordinary UNIX userid, groupid, and file/directory permission
bits are passed over the network in the clear and not authenticated by the NFS server. This is
the default.

• dh—(Secure RPC AUTH_DES) Diffie-Hellman/DES public key authentication.
• krb4—(Secure RPC AUTH_KERB) Kerberos Version 4 authentication.
• none—(Secure RPC AUTH_NONE) map all NFS client userid's to the userid nobody on the

NFS server. Note: this mode is supported by share, but not by mount or the automounter.

This is an example NFS share command specifying authentication.

share -F NFS -o sec=dh,rw=homeusers -d "Home Dirs" /export/home

In this example, all NFS clients must use DES authentication in order to mount and access the shared
/export/home directory.
Both Diffie-Hellman and Kerberos options encrypt authentication information that is transmitted over the
network. The other options, sys and none, do not use encryption.
The Diffie-Hellman and Kerberos options require Secure RPC. Refer to chapter 13 and the section on
authentication for more information.

Servers as NFS Clients

NFS presents the UNIX administrator with opportunities to centralize information storage. However,
these economies can be taken too far. Servers that depend on NFS servers for continued operation are
jeopardizing their stability. Consider the architecture illustrated in Figure 15.2—the server mailsvr
depends upon the integrity of the server dbsvr for its own integrity. The opportunities for system failure
for the server mailsvr have been greatly increased with this NFS mount. If the server dbsvr crashes, or
if the network connecting mailsvr and dbsvr fails, the system mailsvr is in trouble.

Figure 15.2. Server-to-Server NFS Dependency

Possible remedies involve a change in the intersystem architecture so that the server mailsvr no longer
depends upon the server dbsvr for its stability. Another remedy is to use a different mechanism such as
rdist to make /usr/local visible on mailsvr.

 160

Even more precarious examples of being held hostage by NFS include the following:

• A user logs onto a server, which in some environments causes the server to NFS-mount a
user's home directory, which resides on his desktop system. The integrity of the server now
depends upon the integrity of a desktop system. The desktop system could easily be turned off,
thereby possibly hanging the server.

• In this case, your server depends on an NFS server in a different organization. The other
organization, with goals and priorities of its own, may fail to perceive the importance of the
stability of your server which depends on it (your emergency may not be their emergency).

These examples drive home the following point: servers should not be NFS clients, particularly of
NFS servers not in your complete control.

NFS and Access Control Lists

ACLs, explained in chapter 4, were implemented in Solaris 2.5. NFS clients which support ACLs will
use them. If an NFS server supporting ACLs encounters a client that does not support ACLs, the ACLs
will be bypassed and normal UNIX userid/groupid permissions will be enforced. Likewise, if an NFS
client supporting ACLs mounts a filesystem from a server that does not support ACLs, then any ACL
settings will be ignored.

NFS on the Network

Despite all of the remedies we have discussed, NFS traffic on the network is still in the clear—anyone
with a sniffer in the right place can easily see and record all of the information being transmitted. This
makes NFS over a public network (such as the Internet) especially perilous.
There are at least two ways to remedy this:

• Employ a SKIP tunnel [1] (or other tunneling protocol) between the NFS server and each NFS
client.

[1] See the section on virtual private networks in chapter 13 for additional information on SKIP and IPsec.

• Employ encryption technology at the network level (for instance, between the routers
connecting the server and client).

Disabling NFS

To disable NFS, refer to instructions in Table 13-2.

Automounter

The automounter is a client-side enhancement to NFS. Instead of mounting all NFS filesystems at
system boot time, the automounter mounts NFS filesystems when they are needed and unmounts them
when they are not needed. The automounter is configured with a set of maps that specify the mount
point locations, the servers serving them, and any NFS mount options used.
The real power of the automounter lies in the ability to distribute the automounter maps via NIS or NIS+.
Correspondingly, there is no mechanism for distributing /etc/vfstab (hard NFS mount) information via
NIS or NIS+. Thus, the automounter is the only option able to leverage NIS or NIS+.
All of the NFS security principles and practices discussed thus far apply to the automounter. Attention
to share options, authentication, and basic file/directory permissions apply equally to NFS and
automounter. In addition to these, the following automounter features require attention.

1. Permissions of /etc/auto_master, /etc/auto_home, and any site-specific automounter map files.
These should be owned by root, groupid bin, and permissions -rw-r--r--. Remove the read-only
bit for other if you do not want users seeing what can be mounted.

 161

2. By default, the automounter will query an NFS server only once when processing a new
automounter mount. On a congested network, this can cause the automounter mount to fail.
The retry setting should be set to 3. This setting is changed in auto_master; for example

3.
4. /home auto_home -retry=3
5.

Finally, most automounter problems are really underlying NFS problems. All filesystems that are
mounted with the automounter should first be tried using NFS commands. If filesystems mount properly
with NFS, then any problem experienced is probably with the automounter itself. Conversely, if
filesystems cannot be mounted manually with NFS, then NFS is the source of any problem.

Indirect Automounter Maps

Indirect automounter maps are usually used for directories such as home directories or tools. Indirect
maps include information about a parent directory, as well as its subdirectories. Here is an example of
indirect automounter maps; the file /etc/auto_master (or NIS/NIS+ auto_master map) would contain the
following entry:

/home auto_home

The NIS/NIS+ auto_home map referenced would contain the following entries:

bob orcas:/export/home/bob
phil cypress:/export/home/phil
susan sanjuan:/export/home/susan

The auto_master and auto_home maps together define a collection of directories found under /home
(such as /home/bob, /home/phil, and /home/susan). These directories are mounted only when
referenced (such as with the cd or ls command) and are dismounted after a short period of not being
used.
To continue this example, if the host orcas (which serves up bob's home directory / export/home/bob)
should fail or become unreachable, then any read or write attempts to / home/bob will hang, but the
automount client will continue running. If bob's home directory is not being accessed, the failure of the
NFS server serving his home directory will not even be noticed by the automount client.

Direct Automounter Maps

Direct automounter maps are typically used for single directories such as /var/mail, /usr/ man, or
/usr/local. This is an example of direct automounter maps.

/usr/man beatle:/usr/share/man
/var/mail mailsrv:/var/mail

Direct automount maps are decidedly less secure than indirect maps. If an NFS server crashes or
becomes unreachable, all clients referencing that server via direct automount maps will hang until the
NFS server is available again. This is true

• Regardless of client-side or server-side NFS mount options (such as hard or soft)
• Even if the automount client is not attempting I/O to the mounted filesystem

For these reasons, direct maps should be changed to indirect maps; the procedure for doing is

1. Create a new auto_master entry called indirect.

 162

2.
3. /indirect auto_indirect
4.

2. Move all direct map entries into the indirect map auto_indirect. For example, these direct map
entries:

3.
4. /usr/man beatle:/usr/share/man
5. /var/mail mailsrv:/var/mail
6.

become

man beatle:/usr/share/man
mail mailsrv:/var/mail

These maps will cause host beatle's /usr/share/man to appear as /indirect/man on any
automount client, and host mailsrv's /var/mail to appear as /indirect/mail on any automount
client. Read on for the fix.

3. Create symbolic links on each automount client as follows:
4.
5. # ln -s /indirect/man /usr/man
6. # ln -s /indirect/mail /var/mail
7.

These symbolic links restore the desired existence of /usr/man and /var/mail.

Automounter Browsing

Browsing (new in Solaris 2.6) is a feature wherein an automount client is able to view all of the entries
in an indirect automount map without actually mounting them. Prior to Solaris 2.6, we would have had
to examine the automount maps themselves to know what directories were available to be
automounted under /home, for example. But with browsing, all we need to do is cd to the automounted
directory (in this case /home); the ls command will list all mountable directories (before browsing was
available, ls /home would list only mounted directories, not mountable directories).
Browsability is disabled by default for /home and /net in Solaris 2.6 and later.

Warning

Be careful if you are considering activating automounter browsing for large indirect
maps such as /home or /net. Besides the extra overhead involved, it might not be such
a good idea to reveal to the curious (or malicious) user all of the mountable directories
at a site.

 163

If browsing is not desired, consider disabling automounter browsing; we will discuss how in the
following sections.

Disable All Automounter Browsing on an NFS Client

Follow this procedure to disable automounter browsing for all automount directories on a single NFS
client.

1. Add the -n option to the automountd startup in the file /etc/init.d/autofs. The automountd
command line should look like this.

2.
3. /usr/lib/autofs/automountd -n < /dev/null > /dev/console 2>&1
4.

2. Restart the autofs service as follows.
3.
4. # /etc/init.d/autofs stop
5. # /etc/init.d/autofs start
6. #
7.

Disable Automounter Browsing for a Single Entry on an NFS Client

Follow this procedure to disable automounter browsing for a single automount directory on an NFS
client. In this example, browsing capability will be disabled for /net. This procedure will work only if the
client's automount maps are local and not in NIS or NIS+.

1. Edit /etc/auto_master and add the -nobrowse option to the /net entry as follows.
2.
3. # Master map for automounter
4. #
5. /net -hosts -nosuid, nobrowse
6. /home auto_home
7. +auto_master
8.

2. Run the automount command on the client to force the change.

Disable Automounter Browsing for All NFS Clients

Follow this procedure to disable automounter browsing for all NFS clients.

1. Edit the appropriate automounter maps (this may be on clients, or in NIS or NIS+) and add the -
nobrowse option. An example /etc/auto_master entry follows.

2.
3. /home auto_home -nobrowse
4.

2. Run the automount command on each client to force the change.

Automounter and the Name Service Switch

 164

By specifying NIS or NIS+ as the only source for automounter information, the file /etc/auto_master on
any automount client is ignored and can even be removed. The automount entry in /etc/nsswitch.conf
would appear as follows on a NIS client.

automount: nis

The file /etc/nsswitch.conf entry for automount would appear as follows on a NIS+ client.

automount: nisplus

Disabling Automounter

To disable the automounter, refer to instructions in Table 13-2.

Where to Go for Additional Information

AnswerBook

• AnswerBook 2—NFS Administration Guide
• AnswerBook 2—Solaris Naming Administration Guide

Man Pages

• automount(1M)
• df(1)
• dfstab(4)
• getfacl(1)
• ls(1)
• mount(1M)
• mount_nfs(1M)
• mountall(1M)
• nfssec(5)
• setfacl(1)
• share(1M)
• shareall(1M)
• share_nfs(1M)
• vfstab(4)

Publications

• Automounter PSD/FAQ, SunSolve Infodoc 11990
• The NFS Distributed File Service, SunSolve Whitepaper 1252
• NFS PSD/FAQ, SunSolve Infodoc 11987
• Stern, Hal. Managing NFS & NIS. Sebastopol, CA: O'Reilly & Associates, 1991.

Part 4: Disaster and Recovery
UNIX administrators pride themselves on the architectures, policies, and procedures
they develop, and many a fine computing enterprise has been built based upon a good
combination of technical knowledge, business acumen, and common sense. But, like
life insurance, the effort required to prepare for recovery in the event of a disaster is a
category of thought and action that many disregard. It is not human nature to be
proactive about worst case scenarios.

 165

Chapter 16 will expose the UNIX administrator to the thoughts and processes required
to mitigate the effects of a man-made or natural disaster and restore system operations.

While one could argue that disaster recovery and security are unrelated topics that
cannot be discussed together, it can also be argued that security can be defined as
doing anything and everything to assure the continuation of business operations. The
ideas presented in the following chapter are offered in light of the book's intended
audience—UNIX administrators, security specialists, and their managers—and the
ability they have to effect change in this area.

Part IV Disaster and Recovery

 Chapter 16: System Recovery Preparation

Chapter 16. System Recovery Preparation
The best-laid plans for success have little business value if there are no corresponding plans for what to
do if and when the unthinkable occurs.
Disaster need not take the form of a disgruntled employee or a hacker. A flood, hurricane, tornado,
extended power outage, and other events outside of our control have just as much potential for
disrupting computer and business operations. While it may not be practical to prepare for these kinds of
disasters by ensuring they will have zero impact on the business, it is exceedingly practical to prepare
for how to pick up the pieces and continue on when a disaster does occur.
What's in this chapter

• What can go wrong with a system
• How to prepare in advance for an effective system recovery

Why this is important
Failures will occur, and recoveries will need to be done. Recovery preparedness is the single most
important factor in recovery success!

What Can and Will Go Wrong

Natural Disaster

Earthquakes, tornadoes, hurricanes, floods, wind, ice storms, snow, and rain can literally spell disaster
for a business by directly damaging company facilities and assets or by dirupting transportation,
communications, or public utilities that enable the company to conduct business.

Man-Made Disaster

Sudden business failure of a key supplier, union strikes, terrorism, and war can threaten a company's
survival by hindering its ability to continue business.

Inside Utility Failure

Electric power and air conditioning are the environmental utilities that support a data center or server
room. Interruption of either of these inside utilities threatens the continued operation of company
servers. An uninterruptible power supply (UPS) can—at a minimum—soften the impact of a power
failure by giving UNIX system administrators an opportunity to cleanly shut down servers.
However, consider that, if a data center's computers are protected with a UPS, the air conditioning also
needs to be on UPS (or a generator). Otherwise, the computers will continue running in a data center
with no air conditioning, leading to more problems.

 166

Hardware Failure

Hardware failures are probably the most familiar type of failure. These include failure of power supplies,
system boards and adaptors, memory, disk storage, and especially cabling and cable connections.

UNIX Administrator Error

Nearly every experienced UNIX administrator has a tale to tell, such as having entered the command
rm -rf /tmp * instead of rm -rf /tmp /*, thereby removing all files from a system. UNIX administrators are
human and capable of making honest, high-impact mistakes.

Documentation Error

Errors in procedural documentation can lead UNIX administrators, programmers, and users to do the
wrong thing, sometimes without their knowing it until weeks or months later (if ever).

Programmer Error

Despite thorough testing (if and when one is fortunate enough to test thoroughly), software bugs creep
to the surface and manifest themselves in the form of data corruption or destruction.

User Error

Through inadequate training, heavy workload, poor documentation, or lack of attention to detail, a user
can corrupt or destroy information by making mistakes. Lack of (or inadequate) data access controls
increases the exposure and impact to this type of error.

Sabotage

Whether from insiders or outsiders, the malicious corruption or destruction of information and
information systems is probably the most sensational form of human-caused information destruction.
Because it can be perpetrated by trusted insiders, it can be the most difficult to detect and prevent.

Preparing for Recovery

Recovery preparation begins when the building is designed, the data center location is chosen,
hardware and software vendors are selected, and systems are designed. Recovery preparation, like
security, is not a Band-Aid to be applied to an existing infrastructure, but part of a sound design
methodology. Along every step of the way, consider what can go wrong and how the design can help to
continue business.
With each advancing year, businesses depend more and more on computers and networks to help run
the business; increasingly, computers and networks are the business. The popular notion 20 years ago
was that every process performed by a computer system had its manual backup procedure with which
everyone was familiar. If there was a system failure, data input screens filled in by mail-order clerks
were replaced with hand-written forms. Draftsmen returned to their drafting tables. Marketers continued
their marketing planning.
When the computer system fails, what will the Internet online bookstore do? When the computer fails,
what will the banker (with online banking services) do? What will the online stock trader do? What will
the ISP do? These businesses cannot fall back on manual procedures when their computers fail
because they do not have manual procedures.
The answer lies in preparation. Business operations must continue as quickly as possible—long delays
can cause a business to fail. Even short of outright failure, what does disruption of normal business
operations cost and what is the organization willing to do to prevent that loss? And the finger-pointers
will all look to the person responsible for the networks and computers. That person is probably you.
We'll take a closer look in the following sections at the aspects of system design and management, with
a keen eye on recovery awareness, preparation, and ease of recovery.

 167

Create an Incident Reponse Team

It is easy to do the wrong thing during a security incident. A UNIX administrator not familiar with the
concept of the chain of evidence might accidentally destroy evidence or render it unusable in a court of
law. The UNIX administrator (or his boss) might not call the right people during an incident, costing the
organization valuable time.

System Filesystem Design

How are the servers and desktop systems designed? Is there clean segregation between OS partitions,
home directories, and applications and tools? Are Solaris-furnished programs in /usr/bin and /usr/sbin
modified or renamed? Are public-domain programs in / usr/bin or /usr/sbin?
Why does this matter? This is an important aspect of system recovery. To be effective, a system
recovery must be executed quickly and accurately. A loosely managed system with locally written tools
and data files sprinkled here and there (particularly in directories intended for other purposes, such as
Solaris OS binaries and data files) will be difficult to recover.
Recommendation: In terms of the design and layout of individual desktop and server systems, I urge
the following:

• Maintain a high degree of segregation between OS partitions and partitions used for home
directories and applications.

• Install all tools and applications on a centralized server and NFS-mount the server(s)'
directories to local clients.

• Do not alter in any way the contents of /usr/bin or /usr/sbin; instead, put all local tools in a
separate (preferably NFS-mounted) directory such as /usr/local/bin.

• Similarly, where possible do not populate /etc with local tools' configuration files; instead, use a
separate (preferably NFS-mounted) directory such as /usr/local/etc.

These recommendations lead to the following system build procedure:

1. Load OS from CD-ROM.

2. Localize the system, preferably using a canned shell script. This should include all settings
peculiar to the site such as specifying DNS and NIS servers, print queues, NFS/automounter
settings, patch updates, etc.

The same recommendations lead to the following system recovery procedure:

1. Load OS from CD-ROM.

2. Localize the system, preferably using a canned shell script. This should include all settings
peculiar to the site such as specifying DNS and NIS servers, print queues, NFS/automounter
settings, patch updates, etc.

3. Recover home and application(s) directory(ies) from latest backup.

These build and recovery procedures appear to be ridiculously simple, as well they should be. They are
the product of strict segregation of the OS from home and application directories and of a discipline to
"leave the OS alone" when and where possible.

Filesystem Geometry

A filesystem's geometry is defined as the settings used by mkfs (make filesystem) to create the
filesystem on a disk partition. mkfs generally does a decent job of setting up the right number of inodes
and superblocks on a filesystem, but a skilled UNIX administrator can customize mkfs's settings in
order to squeeze more space or performance out of a filesystem.

 168

The downside of mkfs customizing is that the emergency repair of a filesystem using fsck (filesystem
check) can make recovery of a filesystem difficult, if not impossible. The reason for this is that fsck
assumes default locations for the filesystem's superblocks; if the filesystem was built with custom mkfs
settings, the superblock locations will not be where fsck expects to find them. If the UNIX administrator
did not record the superblock locations when building the filesystem, then she will not be able to tell
fsck where they are; without that information, a corrupted filesystem is potentially an unrecoverable
filesystem.
Recommendation: When building filesystems with custom geometry, use the -v option with mkfs and
make a hardcopy of the mkfs session. It just might be needed someday.

Tape Backups

Sooner or later, backups are the life blood of an organization. At some point, hardware or software will
fail; a UNIX administrator, operator, database administrator (DBA), or user will make a mistake; and
data will need to be recovered from a tape backup. Next to making systems, tools, and data available to
users, the next most important activity is making sure that backups are working.
Recommendations:

• Examine backup run logs daily to ensure backups are working properly.
• Have another UNIX administrator audit the backup system configuration to make sure that all

systems are being backed up and that all filesystems are being backed up.
• Randomly examine backup media to ensure that restore software can actually copy the

contents to a system. The ability to merely read a tape's contents are insufficient.
• Utilize off-site storage of backup media. Fires, floods, and sabotage will surely destroy a server

along with the backup tapes, which are usually right next to it.

System Recovery Testing

Without system recovery experience, a UNIX administrator can find the prospect of a ground-up system
recovery frightening. This is a healthy but needless fear. There is only one way to overcome this.
Recommendation: Conduct a full server recovery test every three months. Use the following
procedure:

1. When possible, clone the server and practice recoveries on the clone; this will enable the UNIX
administrator to practice full recoveries during working hours without disrupting production
system availability.

2. Backup the production server twice; make sure both backup sets are readable.

3. Rebuild the clone from scratch (typically: boot and load the OS from CD, install backup recovery
software, recover the rest of the system from backup tapes).

4. Perform regression testing on the functions of the server clone to ensure that it is providing
services.

Release Media

A vital part of a system recovery is having release media and knowing where it is.
Recommendation: Have two or more sets of release media for each Solaris version supported on the
site. Have one set of release media for each supported version stored with off-site backup tapes.

System Event Logbooks

Without adequate recordkeeping, during a system recovery it may be difficult to determine

• Disk partitioning
• Filesystem customizations

 169

• OS version and install options
• SCSI device addresses
• Patches

Recommendation: Maintain a meticulous journal of every detail of a system's construction, wiring,
device addresses, out-of-the-ordinary configurations, and other changes made along the way.

Solaris and Tool Patches

During a real recovery, it might be difficult to retrieve Solaris patches; for instance, the Internet
connection (if patches are obtained over the Internet) may be down.
Recommendation: Maintain a local archive of all patches used at the site.

CD-ROM Drives

Chapter 3 recommends that servers not have CD-ROM drives directly attached. Otherwise, an intruder
with Solaris release media who has gained physical access to a system will have too easy a time
breaking into the system if a CD-ROM drive is attached.
Recommendation: Have one or more internal or external CD-ROM drives available. Make sure that
the SCSI address for CD-ROM drives is free (the SCSI address is 6 by default).

Hardware and Software Service Agreements

A full spectrum of hardware service agreements is available from Sun to match the business's needs for
each desktop and server system. Options range from carry-in and cross-ship service to on-site repair
and replacement. Carry-in service means the failed system must be taken to a service depot. In cross-
ship service, the vendor will ship a replacement system to the customer before receiving the failed
system from the customer.
Recommendation: Match business continuation needs for each server and desktop system to an
appropriate hardware service plan.

Keep Hardware Spares

Even with the best hardware service plan, sooner or later it may take an unacceptably long period of
time to get a special part to repair a desktop or, worse yet, a server system.
The most convenient way to keep spare parts is to have a spare system. This spare system can be in
the form of a development server, a test server, or (!) a test recovery server. It need not sit idle—in fact,
it is better if it does not sit idle; an idle system has a way of not working when it is needed.
The spare system does not necessarily need to have the entire CPU or memory complement that its
production counterpart has; this can make the spare system unnecessarily costly. Instead, equip it with
the minimum necessary to run the most important functions or applications. After all, this is an
emergency spare system, and the real production system will (hopefully) be fixed and online quickly.

Recommendation 1: Have a spare system available that can run critical applications or
be cannibalized for parts in the event of a hardware failure.

Recommendation 2: Employ as few hardware system types as possible; this will
minimize the number of spares needed.

Copies of Critical Server PROMs

Many business tools have licensing agreements that prohibit moving the software from one server to
another. The recommendation in the preceding section of having a spare system is easily defeated if
any of the server software packages are tied to the server's hostid.
One possible remedy is to have a spare PROM for each server. This will permit the UNIX administrator
to temporarily move software packages tied to specific hostid's from one server to another.

 170

Recommendation: Obtain a spare PROM for each server that serves hostid-specific software. Contact
your nearest Sun branch office for information.

Note

Systems with the same hostid should not be running concurrently. Any spare PROM
should be used only if the other system with the same hostid is not running. Software
vendors whose licensing schemes are tied to hostid may object unless they are well
informed. Ethical behavior is the responsibility of the UNIX administrator and others
involved with having and using spare PROMs.

Disk Space to Spare

One possible solution in the event of a server failure is to temporarily recover all or part of its contents
to one or more other servers until the failed server can be recovered.
For this alternative to be possible, servers must be running well below their disk capacity. Flexibility is
sacrificed if servers are run at close to 100% disk utilization.
Recommendation: Have enough spare online disk capacity to accommodate at least some
configurations of having data temporarily served by other servers. Use of NIS+ (or NIS) and the
automounter make these transitions easier to accomplish.

Recovery Documentation

Without adequate documentation, a UNIX administrator may find it difficult to properly recover a server.
Recommendation: Maintain up-to-date documentation on server architecture, backup and recovery
procedures, off-site storage media recovery, and operational procedures. Make sure that a hard-copy
list of passwords is available (and well protected!). Keeping only online copies is fruitless if the system
they are stored on is down. And make sure that everyone who has to use it has the most current
version and knows where it is. Destroy old copies!

Contacts and Cross-Training

Disasters always seems to happen after hours or on three-day weekends when key personnel are out
of town. During natural disasters, key people may be unable to return to work premises to assist with
recovery operations. This signals the need for contact lists, pagers, cell phones, and cross-training so
that everyone on the UNIX team knows how to recover systems. It is also important to make sure that
enough people on the team have authority to make emergency purchases, authorize return of off-site
storage media, initiate contingency plans, and so on.
Recommendation: Ensure that key people are reachable after hours by utilizing contact lists, pagers,
and cell phones. Cross-train technical staff to maximize likelihood of successful recoveries. Delegate
authority to enough personnel so that the few who can assist with a recovery are empowered to do
what's needed to continue recovery operations. Have a backup communications plan in the event that
power failure or phone service problems make ordinary communications procedures unavailable.

Partner with Inside Suppliers

Next to the company's network engineers, the UNIX team's most important ally is the facilities group—
the team who delivers electric power and air conditioning.
Large-scale UPS systems or on-site generators are expensive, but may be easily justifiable if they
assure continuing business operations. Likewise, redundant heating, ventilation, and air conditioning
(HVAC) systems, portable rental AC systems, and a few powerful electric fans can reduce the impact of
an HVAC failure by buying time for repairs or for a clean shutdown.

 171

Recommendation: Coordinate disaster recovery plans with the team that provides electric power and
air conditioning; without these facilities, you might as well stay home.

Partner with Outside Suppliers

Frequently, computer equipment will become damaged beyond repair during natural or man-made
disasters. Community or regional disasters exacerbate the matter by disrupting the transportation
systems needed to facilitate the shipment of replacement computers and supplies.
Recommendation: Partner, formally or informally, with key hardware suppliers to ensure the rapid
availability of replacement systems and supplies so that recovery operations can begin as soon as
possible.

Where to Go for Additional Information

Publications

• Butler, Janet G., and Badura, Poul. Contingency Planning and Disaster Recovery: Protecting
Your Organization's Resources. Computer Technology Research Corp., 1997.

• Contingency Planning & Management, http://www. contingencyplanning.com/

Web Sites

• Disaster Recovery Planning—http://www.utoronto.ca/security/drp.htm
• Disaster Recovery Journal—http://www.drj.com/
• Institute for Crisis Management—http://www.crisisexperts.com/

 172

Part 5: Appendices
The following topics are covered in the appendices:

Part V Appendices

 Appendix A: Online Sources for Security Information—security Web sites, hacker Web sites, and
security mailing lists

Appendix B: Online Sources for Public-Domain Security Tools—TCP/IP, access control, intrusion
detection, filesystem security, e-mail security, DNS, other tools, security tools sites, and hacker tool
sites

 Appendix C: Obtaining and Applying Solaris Patches

 Appendix D: Suggested Reading—books, publications available online, and SunSolve publications,
periodicals, and RFCs

 Appendix E: Sun/Solaris Commercial Security Products

 Appendix F: Implementing C2 Security

 Appendix G: Verifying the Integrity of Public-Domain Software

 Appendix H: Glossary of Attacks

 Appendix I: Secure System Checklist

Appendix A. Online Sources for Security Information
Web site URLs can become quickly outdated. Please refer to the section about Websites in the book's
preface for more information.

Security Web Sites

AntiOnline : http://www.antionline.com/ (a commercial security site)

CERIAS (Center for Education and Research in Information Assurance and Security):
http://www.cerias.purdue.edu/

CERT (Computer Emergency Response Team, at Carnegie Mellon University):
http://www.cert.org/ (security bulletins, tools, etc.)

CIAC (Computer Incident Advisory Capability): http://ciac.llnl.gov/ (security bulletins,
tools, etc.)

COAST (Computer Operations, Audit, and Security Technology) sites

The COAST project page: http://www.cs.purdue.edu/coast/coast.html

COAST index to security sites: http://www.cs.purdue.edu/coast/hotlist/

Computer Security Institute : http://www.gocsi.com/ (membership organization
offering training to information security professionals)

Disaster Recovery Planning : http://www.utoronto.ca/security/drp.htm

Encryption Privacy and Security Resource : http://www.crypto.com/

 173

HERT (Hacker Emergency Response Team): http://www.hert.org/ (security bulletins)

IETF's IPsec site : http://www.ietf.org/html.charters/ipsec-charter.html (discussion of
IPsec protocol)

Infowar : http://www.infowar.com/ (a commercial security site)

Institute for Crisis Management : http://www.crisisexperts.com/ (commercial crisis
management site)

International Computer Security Association : http://www.icsa.net/ (a commercial
Internet security site)

LIST (Laboratory for Information Security Technology): http://www.list.gmu.edu/
(general information security site)

National Institutes of Health Computer Security Information :
http://www.alw.nih.gov/Security/security.html (general information security site)

SANS Institute : http://www.sans.org/ (a cooperative research and education
association for system administrators, security professionals, and network
administrators)

Sun OnLine Documentation : http://docs.sun.com/ (Sun's AnswerBook, Man Pages,
whitepapers, and more, on the Internet)

SunSolve : http://sunsolve.sun.com/ (an information service made available to Sun
customers on maintenance or support contracts; SunSolve is periodically distributed to
customers on CD-ROM and is also available online at this site; a userid and password
are required to access the site)

University of Toronto Computer Security Administration :
http://www.utoronto.ca/security/ (general information security site)

UNIX Guru Universe : http://www.ugu.com/ (tools, news, and other information for
UNIX system administrators)

Hacker Web Sites

2600 :: http://www.2600.com/ (one of the originals; started as a bulletin board system
[BBS]; the early issues provide interesting reading)

Deter : http://www.deter.com/unix/ (UNIX security information and tools)

Hacker's Club : http://hackersclub.com/

Hacker's Lair : http://hackerzlair.org/

Hack Net : http://hack-net.com/

Hack Palace : http://www.hackpalace.com/

Nomad Mobile Research Center : http://www.nmrc.org/

Phrack : http://www.phrack.com/ (a popular hackers' online magazine)

 174

Security Mailing Lists

Bugtraq : http://www.netspace.org/lsv-archive/bugtraq.html or http://www.geek-
girl.com/bugtraq/

CERT : http://www.cert.org/contact_cert/certmaillist.html

CIAC : http://ciac.llnl.gov/ciac/CIACMailingLists.html

Firewall Toolkit : majordomo@ex.tis.com ("subscribe fwtk-users" in message body)

HERT : http://www.hert.org/ or alert@hert.org

SANS Network Security Digest : digest@sans.org

Sun Patch Club Report : SunSolve-EarlyNotifier@Sun.com

Sun Security Bulletin : security-alert@sun.com

SunSolve Early Notifier Alerts : SunSolve-EarlyNotifier@Sun.com

Patches

Refer to appendix C for a list of Solaris patch sources.

 175

Appendix B. Online Sources for Public-Domain Security
Tools
This appendix contains a complete list of all of the security tools mentioned in this book, as well as a
collection of good security tools and information sites.
Web site URLs can become quickly outdated. Please refer to the section about Web sites in the book's
preface for more information.

TCP/IP Security Tools

ISS (Internet security scan)
ftp://coast.cs.purdue.edu/pub/tools/unix/iss/

Note

This public-domain security tool has not been updated since 1995; its effectiveness
has diminished since then. A commercial version with regular updates has replaced it;
information is available at http://iss.net/. This is not an endorsement of this
commercial product.

Satan (Security Administrator's Tool for Analyzing Networks)

http://www.fish.com/satan/

http://www.fish.com/~zen/satan/satan.html

ftp://ftp.porcupine.org/pub/security/satan-1.1.1.tar.Z

cpm (check promiscuous mode)

ftp://coast.cs.purdue.edu/pub/tools/unix/cpm/

tcpdump (network monitoring and data acquisition)

ftp://ftp.ee.lbl.gov/

Access Control Security Tools

TCP Wrappers
ftp://ftp.porcupine.org/pub/security/tcp_wrappers_7.6.tar.gz
rpcbind
ftp://ftp.porcupine.org/pub/security/rpcbind_2.1.tar.gz (requires libwrap.a, a part of TCP Wrappers—see
above entry)
Ssh (secure shell)

 176

ftp://ftp.cs.hut.fi/pub/ssh/ (commercially supported version at http://www.ssh.fi/)
Kerberos
(Kerberos is available only to U.S. citizens located in the United States or to Canadian citizens located
in Canada.)
http://web.mit.edu/kerberos/www/ (about Kerberos)
http://web.mit.edu/network/kerberos-form.html (form for U.S. citizens)
http://web.mit.edu/network/kerberos-form-canada.html/ (form for Canadian citizens)
crack (password cracker)
ftp://coast.cs.purdue.edu/pub/tools/unix/crack/
fwtk (firewall toolkit)
ftp://ftp.tis.com/pub/firewalls/toolkit/README (it is necessary to register for this public-domain package)
S/Key
ftp://ftp.coast.cs.purdue.edu/pub/tools/unix/skey/

Intrusion Detection Tools

Klaxon
ftp://ftp.eng.auburn.edu/pub/doug/
Courtney
http://ciac.llnl.gov/ciac/SecurityTools.html (requires libpcap [available at ftp://ftp.ee.lbl.gov/libpcap.tar.Z],
tcpdump [see "TCP/IP Security Tools" in this appendix], and perl v.5 [see "Other Tools and Sources" in
this appendix])
Tocsin
ftp://ftp.eng.auburn.edu/pub/doug/
Gabriel
http://www.lat.com/gabe.html
syn
ftp://ftp.pgci.ca/pub/syn/ (requires perl [see "Other Tools and Sources" in this appendix] and
tcpdump [see "TCP/ IP Security Tools" in this appendix])

Filesystem Security Tools

Tiger
ftp://coast.cs.purdue.edu/pub/tools/unix/tiger/TAMU/
Tripwire
ftp://coast.cs.purdue.edu/pub/tools/unix/Tripwire/

Note

This public-domain security tool has not been updated since 1994. A commercial
version with regular updates has replaced it; information is available at
http://www.tripwiresecurity.com/. This is not intended to be an endorsement of this
commercial product.

COPS

ftp://coast.cs.purdue.edu/pub/tools/unix/cops/

Encryption Tools

PGP

 177

http://web.mit.edu/network/pgp.html (only for U.S. citizens in the United States or Canadian citizens in
Canada)
ftp://ftp.pgp.net/pub/pgp/
MD5
ftp://coast.cs.purdue.edu/pub/tools/unix/md5/

E-Mail Security Tools

SMAP (sendmail wrapper)
ftp://ftp.tis.com/pub/firewalls/toolkit/README
sendmail V8 (public-domain sendmail)
http://www.sendmail.org/
http://www.sunfreeware.com/
Postfix (formerly Vmailer)
http://www.postfix.org/
smrsh
smrsh is included with public-domain sendmail. See the sendmail reference above.

DNS Tools

Public-Domain BIND
http://www.dns.net/dnsrd/
http://www.isc.org/
Dig
Now a part of public-domain BIND. See previous entry.
Other DNS Tools
ftp://ftp.is.co.za/networking/ip/dns/

Other Tools and Sources

logcheck
http://www.psionic.com/abacus/logcheck/
ftp://coast.cs.purdue.edu/pub/tools/unix/logcheck/
lsof (list open files)
http://sunfreeware.com/
ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/ (this site also has lsof binaries available in the event no C
compiler is available)
Patchdiag
http://sunsolve.sun.com/sunsolve/patchdiag/, or on a SunSolve CD (available only to Sun customers on
current maintenance or support contracts)
fix-modes
ftp://ftp.fwi.uva.nl/pub/solaris/fix-modes.tar.gz
perl
Perl is required by several public-domain security tools.
http://www.perl.com/
ftp://ftp.uu.net/systems/gnu/
http://www.sunfreeware.com/
Washington University ftpd
ftp://wuarchive.wustl.edu/packages/wuarchive-ftpd/
ftp://ftp.cyber.com.au/pub/unix/wu-ftpd-2.4.tar.Z
http://www.sunfreeware.com/ (look for wu-ftpd)

Security Tools Sites

CERT Tools
ftp://ftp.cert.org/pub/tools/
CIAC Tools

 178

http://ciac.llnl.gov/ciac/SecurityTools.html
COAST Tools
ftp://coast.cs.purdue.edu/pub/tools/unix/
Doug's Tools
ftp://ftp.eng.auburn.edu/pub/doug/
LIST (Laboratory for Information Security Technology) Security Tools
http://www.list.gmu.edu/software.htm
Sun Freeware Site
http://www.sunfreeware.com/
Wietse Venema's UNIX Security Tools Collection
ftp://ftp.porcupine.org/pub/security/

Hacker Tools Sites

This section contains UNIX hacking sites and tools. Use the information you find here responsibly!

1. http://agape.kuntrynet.com/hack/trojan/misc/
2. http://www.tekniq.net/archive/security/hack/
3. http://hack-net.com/html/exploits/1998/10/index.shtml
4. http://www.nswc.navy.mil/ISSEC/Docs/how.to.hack.unix.html
5. http://hackerzlair.org/members/pROcon/information.html
6. http://www.hackpalace.com/hacking/unix/rootkits/
7. http://www.deter.com/unix/
8. http://www.hoobie.net/security/exploits/
9. http://www.rootshell.com/
10. http://www.enslaver.com/files/rootkits/

 179

Appendix C. Obtaining and Applying Solaris Patches
Patches are used to repair software bugs and security holes. A patch is a group of files including a
newer version of one or more operating system modules, device drivers, system programs or utilities, or
configuration files. The newer version of the program, driver, or file contains a fix or repair of some kind
intended to correct a vulnerability or malfunction.
A system lacking the latest security patches is vulnerable to the latest hacking techniques.

Sources for Patch Information

SunSolve : http://www.sunsolve.com/ (web site for registered Sun maintenance
customers, containing whitepapers and patches; also, periodically mailed CDs
containing same)

Sun Patch Club Report (weekly e-mail reports on new Solaris patches): SunSolve-
EarlyNotifier@Sun.com

Sun Security Bulletin : security-alert@sun.com (periodic e-mail reports on Solaris
security bugs and recommended fixes)

CERT (Computer Emergency Response Team, at Carnegie Mellon University):
http://www.cert.org/

CIAC (Computer Incident Advisory Capability): http://ciac.llnl.gov/

Understanding Solaris Patches

Solaris patches are uniquely identified with a six-digit patch number and a two-digit patch version
number. For example, patch 106242-03 is the third version of the patch 106242. Sun uses one serial
numbering system for all versions of Solaris.
Solaris patches are typically distributed as compressed tar archives. Example Solaris patch filenames
are 106242-03.tar.Z, 106242-03.tar.gz, or 106242-03. tar.zip.

Note

The following procedure does not need to be performed routinely. It is included only
for those who wish to understand Solaris's patch architecture.

To unwrap a patch: create a new directory, copy the patch file to it, and run one of the following
commands. Using our example Solaris patch filenames 106242-03.tar.Z, 106242-03.tar.gz, and
106240-03.tar.zip:

• For a patch filename ending in .Z, enter zcat file | tar xvf -, where file is the name of the patch
file.

• For a patch filename ending in .gz, enter gzcat file | tar xvf -, where file is the name of the patch
file.

• For a patch filename ending in .zip, enter unzip file | tar xvf-, where file is the name of the patch
file.

Unwrapping the patch causes a directory to be created; the name of the directory is the same as the
name of the patch, example 106242-03. The patch directory contains the following files and directories:

 180

• Install.info—a text file containing generic patch installation instructions.
• README.patch (for example, README.106242-03)—a text file containing specific information

about this patch.
• One or more Sun package directories, for example SUNWaccr. This directory contains updated

Solaris files to be replaced.
• installpatch—the patch install script (obsolete in Solaris 2.6).
• backoutpatch—the patch backout script (obsolete in Solaris 2.6).

Patch history and backout information resides in /var/sadm/patch. This is the directory that grows as
patches are installed (particularly if older versions of patches are not backed out).

Understanding Solaris Patch Clusters

Solaris patch clusters are collections of Solaris patches that are packaged together for some common
purpose. Examples of patch clusters include

• Solaris 2.x or Solaris 7 recommended patches
• Solaris 2.x or Solaris 7 patches containing security fixes (Sun includes security patches in its list

of recommended patches)
• Solaris 2.x or Solaris 7 Year-2000 patches

Note

The Solaris recommended patches are the most important patches and fix critical
system and security holes. While generally the set of recommended patches are
interoperable and should not cause undesirable system behavior, the experienced and
wary UNIX administrator should err on the side of caution and proceed slowly and
carefully when installing even recommended patches.

Sources for Patches

Sun customers can access Sun's complete patch archive at the SunSolve Web site at
http://sunsolve.sun.com/. Find the login link on this page (users will be asked for a userid and
password—this gets assigned for site contracts once a Sun service contract is in force) to access all
patches. Sun service customers can also periodically recieve SunSolve CDs, which include patches for
current and some prior releases of Solaris.
Sun users who are not on maintenance can access Sun's publicly available patches on this same Web
site without having to login. Find the patches link on the page and proceed.
Sun's publicly available patches are also available at

• http://metalab.unc.edu/pub/suninfo/sun-patches/.

Patch Installation Strategies

Patches consume disk space—sometimes lots of disk space—on Solaris systems. When installed as
recommended, patch installation includes backout data, which is used to back out the patch in case
problems are encountered with the patched version of any software.

Before Installing Patches

Before you install patches, you should

1. Consider installing the patch on a test system to ensure that no unexpected behavior occurs.
2. Find and study all related README files. On a SunSolve Patch CD, they can be found:

 181

o As the file README.FIRST file at the topmost directory on the SunSolve Patch CD
o As the file <VER>_<PKG>_README (example: 2.3_MCAD_GFX.README) for specific

package or product patches; in the subdirectory files on the SunSolve Patch CD;
o As the file <VER>_Recommended.README (example: 2.6_Recommended.README)
o As the file <PATCH>_README (example: 106242-01.README) in an individual patch

3. Do a full backup of every system being patched.
4. Back out earlier versions of the same patch. For example, if patch 106242-06 is being installed

on a system that contains patch 106242-05 (or any prior version), then patch 106242-05 (or any
prior version) should first be backed out.

5. Reboot the system and stay in single-user mode. Be sure /usr and /var are mounted (in case
the system does not mount them in single-user mode).

6. Be sure that no applications, database servers, etc. are running.

Which Patches to Install

Every Solaris system should contain the recommended patches.
Sun's position on other patches (those not included in the Solaris patch clusters) is that patches should
be installed only to counteract actual observed problems that the patch is designed to address. In other
words, Solaris patches should not be installed because they are there. Reasons not to install patches
not on the recommended list include

• The problem that the patch was designed to solve may not be occurring on your system.
• A patch can introduce new problems or anomalies.
• Patches consume disk space.

Testing Patches

Don't assume that systems will behave normally after the installation of a patch. Patches should first be
installed on a small number of systems, and then the systems should be tested to ensure that the patch
installation does not cause any undesired behavior.

For Patches Requiring System Reboot

Read the <PATCH>.README in each patch to determine if any special procedures are required, such
as a system reboot. In cases where a reboot is required, the reboot should be performed as soon as
possible after the installation of each patch.

The patchdiag Program

The patchdiag command examines a local system to determine whether it needs additional patches or
patch updates. A system's complement of patches is compared to a data file of current patches that can
be downloaded from SunSolve. patchdiag is included on the SunSolve CD starting with Version 3.0.12
and is also available online at SunSolve (available only to Sun customers on current maintenance or
support contracts).

Patch Installation Procedure, Solaris 2.x—2.5.1

The installpatch and backoutpatch scripts, included with every patch, are used to install and remove
patches. The showrev -p command is used to list the patches installed on the system.

Note

Do not use the installpatch -d option when installing patches. This option does not
save backout information needed to remove the patch later. The penalty for backing
out a patch installed without the backout option is a complete OS install.

 182

Patch Installation

To install a single patch on a system, use the following procedure.

1. Enter the command mkdir /tmp/patch.
2. Copy the patch file to the directory /tmp/patch.
3. Uncompress the patch file with uncompress (if the patch filename ends with .Z) or gunzip (if the

patch filename ends with .gz).
4. Unwrap the patch file with the tar command. For example, if the patch filename is 106545-

03.tar, the command would be tar xvf 106545-03.tar.
5. Install the patch with the installpatch command found in the patch archive. For example, enter

the command /tmp/patch/106545-03/installpatch /tmp/patch/ 106545-03.
6. Examine the patch installation log. To continue this example, the log file is

/var/sadm/patch/106545-03/log.

Bulk Patch Installation

To apply many patches at once on a system, use the following procedure.

1. Enter the command mkdir /tmp/patch.
2. Copy all patch archives to the directory /tmp/patch.
3. Run the following script to install all patches unattended.
4.
5. #!/bin/sh
6. #
7. cd/tmp/patch
8. uncompress *Z
9. for patch in *
10. do
11. tar xvf $patch
12. installpatch /tmp/patch/$patch
13. done
14. rm -rf /tmp/patch
15.

To apply many patches at once on several systems, first use rdist (or similar tool) to distribute patches
and the above wrapper script to all of the systems; then use rsh or Ssh to execute the wrapper script
above.
Although it may be potentially time consuming to do so, you should examine the logs for all patch
installs on all systems for errors.

Patch Installation Procedures for Solaris 2.6 and Solaris 7

The patchadd and patchrm commands were introduced with Solaris 2.6. Instead of being shipped with
each patch (as are installpatch and backoutpatch), patchadd and patchrm are part of Solaris.
patchadd provides a means for the bulk installation of patches, including installation of patches to client
systems over the network. Thus, on Solaris 2.6 and later, there is no need for bulk installation wrappers
such as the example in the preceding section.

Note

Do not use the patchadd -d option when installing patches. This option does not save
backout information needed to remove the patch at a later time.

 183

Patch Installation

To install a single patch on a system, use the following procedure.

1. Enter the command mkdir/tmp/patch.
2. Copy the patch file to the directory /tmp/patch.
3. Uncompress the patch file with uncompress (if the patch filename ends with .Z), gunzip (if the

patch filename ends with .gz), or unzip (if the patch filename ends with .zip).
4. Unwrap the patch file with the tar command. For example, if the patch filename is 106545-

03.tar, the command would be tar xvf 106545-03.tar.
5. Install the patch with the patchadd command. For example, enter the command patchadd

/tmp/patch/106545-03.
6. Examine the patch installation log. To continue this example, the log file is /var/

sadm/patch/106545-03/log.

Bulk Patch Installation

To apply many patches at once on a system, use the following procedure.

1. Enter the command mkdir /tmp/patch.
2. Copy all patch archives to the directory /tmp/patch.
3. Uncompress the patch file with uncompress (if the patch filename ends with .Z), gunzip (if the

patch filename ends with .gz), or unzip (if the patch filename ends with .zip).
4. Unwrap the patch file with the tar command. For example, if the patch filename is 106545-

03.tar, the command would be tar xvf 106545-03.tar.
5. Install the patches with the patchadd command. For example, enter the command patchadd -M

/tmp/patch/106545-03 /tmp/patch/107436-01 /tmp/patch/108974-02.
6. Examine the patch installation logs.

To apply many patches at once on several systems, first use rdist (or similar tool) to distribute patches
to all of the systems; then use rsh or Ssh to execute patchadd.
Although it may be potentially time consuming to do so, you should examine the logs for all patch
installs on all systems for errors.

Solaris OS Upgrades

Because patches are specific to a particular version of Solaris, an OS upgrade removes the patch
history by removing /var/sadm/patch. Thus, when upgrading Solaris, you are starting with a clean
system in regard to patches. Although you might be thinking about all the disk space that was
recovered by the upgrade removing those old OS patches, keep in mind that patches on the new
version may consume that much space over time.
When installing or upgrading to a new version of Solaris, you should immediately install any patches or
maintenance updates on the release CD. Also, you should acquire the latest recommended patches for
the new Solaris release from SunSolve and install them.

Where to Go for Additional Information

AnswerBook

• AnswerBook 2—System Administration Guide, Volume 1: Managing Software
• AnswerBook 2—Solaris Advanced Installation Guide

Man Pages

 184

• patchadd(1M)
• patchrm(1M)
• pkgparam(1)
• showrev(1M)
• unzip(1)

Publications

• How to Patch Autoclient and Diskless Systems, SunSolve Infodoc 15677
• Removing Saved Patch Data to Free Up Disk Space, SunSolve Infodoc 16110
• How to Install Patch When Booted Off CD-ROM, SunSolve Infodoc 16790
• Patch Install Quick Troubleshooting Steps, SunSolve Infodoc 17914
• Practical Overview of Troubleshooting Patches and Patch Installation, SunSolve Infodoc 17973

Web Sites

• SunSolve—Solaris patches and information (for Sun customers on maintenance contracts
only)—http://sunsolve.sun.com/ or ftp://sunsolve.sun.com/ or ftp://sunsolve1.sun.com/

• Solaris publicly available patches—http://metalab.unc.edu/pub/sun-info/sun-patches.

Appendix D. Suggested Reading

Books
Publications and Articles Available Online
SunSolve Publications
Periodicals Online
Internet RFCs

Books

Ramsey, Rick. All About Administering NIS+. Upper Saddle River, NJ: , Prentice Hall PTR, 1994.
Butler, Janet, and Badura, Poul. Contingency Planning and Disaster Recovery: Protecting Your
Organization's Resources. Computer Technology Research Corp., 1997.
Albitz, Paul, and Liu, Cricket. DNS and Bind. Sebastopol, CA: O'Reilly & Associates, 1998.
Cheswick, William, and Bellovin, Steve. Firewalls and Internet Security: Repelling the Wily Hacker.
Reading, MA: Addison-Wesley, 1994.
Pipkin, Donald. Halting the Hacker: A Practical Guide to Computer Security. Upper Saddle River, NJ:
Prentice Hall PTR, 1997.
Meinel, Carolyn. The Happy Hacker: A Guide to Mostly Harmless Hacking. Show Low, AZ: American
Eagle Publications, 1998.
Comer, Douglas E. Internetworking with TCP/IP: Principles, Protocols, and Architecture. Upper Saddle
River, NJ: Prentice Hall PTR, 1995.
Comer, Douglas E., and Stevens, David L. Internetworking with TCP/IP: Design, Implementation, and
Internals. Upper Saddle River, NJ: Prentice Hall PTR, 1998.
Stern, Hal. Managing NFS & NIS. Sebastopol, CA: O'Reilly & Associates, 1991.
Anonymous. Maximum Security: A Hacker's Guide to Protecting Your Internet Site and Network.
Indianapolis, IN: Sams Publishing, 1998.
Scott, Charlie, and Wolfe, Paul, and Erwin, Mike. Virtual Private Networks. Sebastopol, CA: O'Reilly &
Associates, 1999.
Zimmerman, Phillip R.. The Official PGP User's Guide. Cambridge, MA: MIT Press, 1995.
Costales, Bryan, and Allman, Eric. Sendmail. Sebastopol, CA: O'Reilly & Associates, 1997.
Murhammer, Martin. TCP/IP Tutorial and Technical Overview. Upper Saddle River, NJ: Prentice Hall
PTR, 1998.
Stevens, W. Richard. TCP/IP Illustrated, Volume 1: The Protocols. Reading, MA: Addison-Wesley,
1994.

 185

Stevens, W. Richard, Wright, Gary R.. TCP/IP Illustrated, Volume 2: The Implementation. Reading, MA:
Addison-Wesley, 1995.
Stevens, W. Richard. TCP/IP Illustrated, Volume 3: TCP for Transactions, Http, Nntp, and the UNIX
Domain Protocols. Reading, MA: Addison-Wesley, 1996.
Meinel, Carolyn. "How Hackers Break In.". New York, NY: Scientific American, October 1998.

Publications and Articles Available Online

1. Best Current Practices RFCs

http://www.faqs.org/rfcs/bcp/bcp-index.html

http://www.garlic.com/~lynn/rfcdoc.htm#BCPdoc

2. Disaster Recovery Journal

http://www.drj.com/

3. Spafford, Eugene H. The Internet Worm Incident

ftp: //coast.cs.purdue.edu/pub/doc/morris_worm/spaf-IWorm-paper-ESEC.ps.Z

4. Spafford, Eugene H. The Internet Worm Program: An Analysis

ftp: //coast.cs.purdue.edu/pub/doc/morris_worm/spaf-IWorm-paper-CCR.ps.Z

5. CyLAN IPSec White Paper

http://www.cylan.com/files/whpaper.htm

6. Trusted Computer System Evaluation Criteria (also known as The DOD Orange Book)—
contains the official C2 specification

http://www-library.itsi.disa.mil/org/dod_std/dod_std_5200_28.html (how to order a hardcopy)

ftp://ftp.za.kernel.org/pub/linux/libs/security/Orange-Linux/refs/Orange.html (softcopy)

7. Farmer, Dan. Improving the Security of Your Site by Breaking into It

ftp://ftp.porcupine.org/pub/security/admin-guide-to-cracking.101.ZM

8. What is a VPN?

ftp://ftp.employees.org/ferguson/vpn.zip

9. Tung, Brian. The Moron's Guide to Kerberos

http://gost.isi.edu/brian/security/kerberos.html

10. How to Kerberize Your Site, Oak Ridge National Laboratory

http://www.ornl.gov/~jar/HowToKerb.html

11. Kerberos FAQ

 186

http://www.cis.ohio-state.edu/hypertext/faq/usenet/kerberos-faq/general/faq.html

12. Sun/Solaris-specific information at sendmail.org

http://www.sendmail.org/sun-specific/

SunSolve Publications

Note

SunSolve publications are available to Sun customers who are on current
maintenance or support contracts. SunSolve is periodically distributed to customers
on CD-ROM and is also available online at http://sunsolve.sun.com/. A userid and
password are required to use this site.

1. A Practical Guide to Solaris Security, Whitepaper 1164
2. Introduction to Sun System Security, Infodoc 2143
3. Mastering Security on the Internet for Competitive Advantage, Whitepaper 1353
4. Internet Service Provider Configuration Guidelines, Whitepaper 1342
5. Security in the Solaris Environment, Whitepaper 1272
6. Sun System Security, Whitepaper 913
7. Managing Your Mission-Critical, Open Enterprise, Whitepaper 1288
8. Solaris—Networked Computing for the Global Enterprise, Whitepaper 1290
9. Brief Description of NIS+ Security for Solaris SPARC, FAQ 1926
10. C2 Security Frequently Asked Questions, Infodoc 14313
11. Network Security PSD/FAQ, Infodoc 13335
12. Security in Practice, Whitepaper 1390
13. What to Do if Root Password Is Lost, Infodoc 16786
14. How to Set Up Quotas on a File System, SRDB 4652
15. How to Enable User Storage Space Quotas for Solaris, FAQ 1946
16. How to Find What Software Package a File Belongs To, Infodoc 18393
17. How to Modify ACLs, Infodoc 12718
18. How to Set ACL Entries on a File, Infodoc 12714
19. How to Delete ACL Entries on a File or Directory, Infodoc 12728
20. Boot and Run Levels, Technical Bulletin 1077
21. Administration and Usage of Crontab, Whitepaper 918
22. Crontab Administration and Usage, Infodoc 3959
23. Ethernet Interface FAQ/PSD, Infodoc 12306
24. Misc Networking Programs PSD/FAQ, Infodoc 12052
25. Sendmail PSD/FAQ, Infodoc 12815
26. DNS PSD/FAQ, Infodoc 11975
27. How to Tell What Version of BIND You Are Running, Infodoc 16255
28. NSKit PSD/FAQ, Infodoc 11989
29. NIS+ PSD/FAQ, Infodoc 11988
30. NIS PSD/FAQ, Infodoc 12000
31. How to Set Up NIS+ in Solaris 2.x, Infodoc 1014
32. How to Implement Secure RPC Without NIS or NIS+, Infodoc 18021
33. How to Rebuild a NIS+ Rootmaster, Infodoc 16402
34. Network Security PSD/FAQ, Infodoc 13335
35. Why Do All My Ethernet Addresses Have the Same Ether MAC Address?, Infodoc 16733
36. Automounter PSD/FAQ, Infodoc 11990
37. The NFS Distributed File Service, Whitepaper 1252
38. NFS PSD/FAQ, Infodoc 11987
39. How to Patch Autoclient and Diskless Systems, Infodoc 15677

 187

40. Removing Saved Patch Data to Free Up Disk Space, Infodoc 16110
41. How to Install Patch When Booted Off CD-ROM, Infodoc 16790
42. Patch Install Quick Troubleshooting Steps, Infodoc 17914
43. Practical Overview of Troubleshooting Patches and Patch Installation, Infodoc 17973

Periodicals Online

1. Contingency Planning & Management, http://www.contingencyplanning.com/
2. First Strike, e-mail newsletter from Sun, (e-mail) FSsubscribe@emailch.com
3. Inside Solaris, http://www.cobb.com/sun/
4. Internet Security Advisor, http://www.advisor.com/
5. SC Magazine, Infosecurity News, http://www.infosecnews.com/
6. SKIP Website, http://www.sun.com/security/skip/
7. Server/Workstation Expert (formerly Sun Expert), http://sun.expert.com/
8. SunHELP, http://www.sunhelp.com/
9. SunServer, http://www.pcinews.com/sun/
10. SunWorld, e-mail newsletter from Sun, http://www.sunworld.com/, (e-mail)

swunsub@emailch.com
11. Sys Admin, http://www.samag.com/
12. UNIX Review/Performance Computing, http://www.performancecomputing.com/

Internet RFCs

Request for Comments, or RFCs, are the official published collection of technical protocols and policies
used on the Internet. They are available from several sources; a few are listed here.

• http://www.ietf.org/rfc.html
• http://www.cis.ohio-state.edu/hypertext/information/rfc.html
• http://www.faqs.org/rfcs
• http://www.pmg.lcs.mit.edu/rfc.html
• http://info.internet.isi.edu/in-notes/rfc/files
• http://www.rfc-editor.org/rfc.html

1. RFC1032, Domain Administrators Guide, http://www.ietf.org/rfc/rfc1032.txt
2. RFC1033, Domain Administrators Operations Guide, http://www.ietf.org/rfc/rfc1033.txt
3. RFC1034, Domain Names—Concepts and Facilities, http://www.ietf.org/rfc/rfc1034.txt
4. RFC1035, Domain Names—Implementation and Specification, http://www.ietf.org/rfc/rfc1035.txt
5. RFC 1281, Guidelines for the Secure Operation of the Internet, http://www.ietf.org/rfc/rfc1281.txt
6. RFC1413, Ident Protocol, http://www.ietf.org/rfc/rfc1413.txt
7. RFC1416, Telnet Authentication Option, http://www.ietf.org/rfc/rfc1416.txt
8. RFC1700, Assigned Numbers (official list of TCP/IP port number assignments)

http://www.ietf.org/rfc/rfc1700.txt
9. RFC 2196, The Site Security Handbook, http://www.ietf.org/rfc/rfc2196.txt
10. RFC2401, Security Architecture for the Internet Protocol, http://www.ietf.org/rfc/rfc2401.txt
11. RFC2411, IPsec Document Roadmap, http://www.ietf.org/rfc/rfc2411.txt
12. RFC2504, Users' Security Handbook, http://www.ietf.org/rfc/rfc2504.txt

Appendix E. Solaris Security Products
This appendix contains a description of Sun's security products for firewalls, virtual private networks,
and the highly secure Trusted Solaris operating system.
Sun is adding security products and capabilities faster than we can reprint this book. For the most up-
to-date information, visit Sun's software security products Web site at http://www.sun.com/products-n-
solutions/software/security/.

SunScreen SKIP

 188

SunScreen SKIP is a software product that transparently and automatically authenticates and encrypts
all TCP/IP network traffic between systems.
SunScreen SKIP is bundled as part of the SunScreen Secure Net solution, or can be chosen as a
stand-alone product. SunScreen SKIP is available for the Solaris Operating Environment, as well as
Windows 95, Windows 98, and Windows NT 4.0 environments.
SunScreen SKIP's Global Version supports 40-bit RC2 and 40-bit RC4 data encryption. The Export-
Controlled Version supports encryption used in the Global Version plus 56-bit DES CBC encryption.
The U.S. and Canada Only Version supports encryption found in the Export-Controlled Version, plus 3-
Key Triple-DES and 128-bit SAFER CBC encryption. SunScreen SKIP has an Automatic Certificate
Discovery mechanism, which eliminates the need for manual key distribution.
More information about SunScreen SKIP is available at http://www.sun.com/software/skip/ds-skip/.
Also, see the section on virtual private networks in Chapter 13 for more information on using SKIP.

SunScreen Secure Net

SunScreen Secure Net is an integrated firewall and SKIP server product. The Secure Net firewall can
operate in routing mode, and optionally includes proxies for content filtering and user authentication.
Secure Net provides proxies for HTTP, Telnet, FTP, and SMTP. In routing mode, Secure Net can be
configured in a high-availability (HA) cluster, where a backup Secure Net system can take over for a
failed primary system. At all times, the backup Secure Net system mirrors the state of the primary
system for seamless failover.
The Secure Net firewall can also operate in stealth mode, with no IP or MAC address, making it far
more difficult to attack. In stealth mode, the OS can be hardened to make the firewall even more
secure.
Secure Net can also perform Network Address Translation (NAT), where internal addresses are
mapped to different external addresses, thereby masking the identity of systems in the enterprise. As
packets pass through the Secure Net firewall, between an internal host and a public network, the
addresses are transparently replaced with new addresses. NAT also permits the use of "private" (non-
registered) addresses by translating those addresses to valid, registered addresses when systems with
private addresses wish to communicate with systems on public networks, such as the Internet.
More information on Secure Net is available at http://www.sun.com/software/securenet/.

Trusted Solaris

Trusted Solaris is a highly secure version of Solaris, designed and certified for trusted computer system
evaluation criteria (TCSEC) compartmented mode workstation (CMW), otherwise known as security
level B 1.
Two versions of Trusted Solaris are available.

• Trusted Solaris 1.2—based on SunOS 4.1.3_U1
• Trusted Solaris 2.5.1—based on Solaris 2.5.1 11/97

Trusted Solaris is designed for an environment where the utmost in information security is required.
Extensions to the filesystem, kernel, system administration utilities, user interfaces, and networking
effectively restrict the flow of sensitive information so that individuals lacking proper security clearances
cannot get access to it.
Trusted Solaris was designed so that most third-party products can run without modification or
recompilation.
Refer to the Trusted Solaris 2.5 Technical White Paper for more information. This document is available
from

Sun Microsystems Federal Inc.

2550 Garcia Avenue

Mountain View, CA 94043 USA

 189

415-969-9131

A FAQ document on Trusted Solaris is available at http://www.sun.com/products-n-
solutions/government/ts_faq.html.

Where to Go for Additional Information

Web Sites

• SKIP Web site—http://www.sun.com/security/skip

Appendix F. Implementing C2 Security
The Basic Security Module (BSM) package is Sun Microsystems' implementation of C2 security. This
appendix describes the steps used to install, activate, and manage C2 security on a Solaris system.
Why run C2 security? Primarily, C2 security enables the tracing of all system events back to specific
users through the use of extensive audit trails.
This appendix is an overview of C2 security. For complete information, consult the texts listed in the
references at the end of this appendix.

What Is C2 Security?

C2 security enhances system security and offers several benefits, including

• Traceability of all system events back to specific users
• Inability to abort the system using Stop-A (if a user's stopping the system is truly a concern,

then the system should also be in a locked room, since there is little that C2 security can do to
prevent a user from simply turning the system off and on)

Implications of C2 Security

C2 security has several side effects (some people would call these detriments), including

• The audit trail logs can consume a considerable amount of disk space (as much as tens or
hundreds of MB).

• The system will run slower by 5–10% due to the overhead of capturing and writing to the audit
trail logs; a system "on the edge" from a performance perspective will appear to run much
slower.

• Volume manager is unavailable. This means that diskettes and CD-ROM discs are not
automatically mounted when inserted into their drives. Instead, they must be mounted manually
with the mount command.

Enabling C2 Security

This section assumes the installation of the following packages from the Solaris OS media (these
packages are installed by default unless specifically excluded during an install or upgrade):

• SUNWcar—Solaris core architecture
• SUNWcsr—core SPARC
• SUNWcsu—core SPARC
• SUNWhea—header files
• SUNWman—man pages

Follow this procedure to enable C2 security.

 190

1. Bring the system to single-user mode with the init 1 command.
2. Change to the BSM directory with the cd /etc/security command.
3. Execute the bsmconv script with the ./bsmconv command. Sample dialogue follows.
4.
5. # ./bsmconv
6. This script is used to enable the Basic Security Module (BSM).
7. Shall we continue with the conversion now? [y/n] y
8. bsmconv: INFO: checking startup file.
9. bsmconv: INFO: move aside /etc/rc2.d/S92volmgt.
10. bsmconv: INFO: turning on audit module.
11. bsmconv: INFO: initializing device allocation files.
12.
13. The Basic Security Module is ready.
14. If there were any errors, please fix them now.
15. Configure BSM by editing files located in /etc/security.
16. Reboot this system now to come up with BSM enabled.
17. #
18.

19. Bring the system back to multiuser mode with the init 6 command.

Disabling C2 Security

Follow this procedure to disable C2 security.

1. Bring the system to single-user mode with the init 1 command.
2. Change to the BSM directory with the cd /etc/security command.
3. Execute the bsmunconv script with the ./bsmunconv command. Sample dialogue follows.
4.
5. # ./bsmunconv
6. This script is used to disable the Basic Security Module (BSM).
7. Shall we continue the reversion to a non-BSM system now? [y/n] y
8. bsmunconv: INFO: moving aside /etc/security/audit_startup.
9. bsmunconv: INFO: restore /etc/rc2.d/S92volmgt.
10. bsmunconv: INFO: removing c2audit:audit_load from /etc/system.
11.
12. The Basic Security Module has been disabled.
13. Reboot this system now to come up without BSM.
14. #
15.

16. Bring the system back to multiuser mode with the init 6 command.

Managing C2 Security

Sites that have implemented C2 security have done so for a variety of reasons, but the common theme
is the ability to account for all system changes. Regardless of this, the essential issues with C2 security
are

• Configuration of C2 audit capture
• Management of C2 logs
• Management of system performance with C2 security turned on
• Audit events

 191

• Audit trail analysis
• Management of removable media
• Device allocation

Each of these is discussed in the following sections.

Configuration of C2 Audit Capture

The configuration files /etc/security/audit_class, /etc/security/audit_event, and
/etc/security/audit_control, along with the auditconfig command, determine what events are recorded
and in which directory they are stored.

Management of C2 Logs

This is primarily a matter of managing the space that C2 logs consume. Every site's auditing needs and
C2 log disk space consumption rates are different. Depending upon the logging granularity needed—as
well as the storage capacity of the system itself—finding space for and managing the C2 logs will be
insignificant, nightmarish, or somewhere in between.

Management of Performance

C2 may break the back of a system that is already near the edge with regard to performance. The extra
I/O related to writing out C2 logs may turn a sluggish system into an excruciatingly slow system. This
matter requires expertise in system performance and tuning in order to determine the cause of any
performance problems exacerbated by C2 logging.

Audit Events

On a system with C2 auditing turned on, certain events require immediate attention. The audit system
will launch the audit_warn script when disk space runs low or other malfunctions occur. Audit_warn
sends e-mail to the alias audit_warn, and it also writes a message to the system console.

Audit Trail Analysis

The auditreduce and praudit tools form the core of audit trail analysis. auditreduce is used to extract
and filter audit trail records for specific reports, and praudit makes the records that are somewhat
human readable. The Basic Security Module Guide includes several examples of shell scripts used to
further process auditreduce and praudit output.

Removable Media Management

When C2 is turned on, Volume Manager is disabled; hence, diskettes and CD-ROM discs are not
automatically mounted. This can be a problem on a system where frequent diskette and/or CD-ROM
access is needed by an end user. But then again, the functions requiring C2 security should probably
reside on a separate system from that of an end user needing to mount and dismount CDs and
diskettes.
If a mounted CD or diskette is required on a C2 system, consider these alternatives:

• Permanently mount the device at boot time and allocate the device to a specific user (see the
next section on device allocation).

• Copy the contents of the diskette or CD to a fixed hard disk.
• Redesign the application requiring both C2 and mountable diskettes or CDs.

Device Allocation

 192

UNIX ordinarily permits all users read and write access to read/write cartridge devices such as tape
drives and diskettes. This openness is unacceptable in a C2 environment where strict and verifiable
control over file access is required.
Consider, for example, a UNIX administrator who needs to archive some files to a tape. He will put the
tape in the drive, walk back to his desk, perform the backup commands, and then walk back to the
server to retrieve the tape. During his trek back to the data center to retrieve the tape, another user
could have copied all or part of the contents of the tape to her own home directory, or even altered the
contents of the tape.
The allocate, deallocate, dminfo , and list_devices commands are used to control and monitor these
kinds of accesses by allowing access to tape and other devices to one user at a time.

Recommendations

1. When starting out with C2, experiment first on a testing or development platform, not on the
production server(s) for which it is ultimately intended.

2. Read and learn the SunSHIELD Basic Security Module Guide.
3. Experiment with audit_class, audit_control, audit_event, and auditconfig settings in order to

ensure the correct level of audit trail capture.
4. Set up the audit_warn e-mail alias to point to one or more UNIX admin accounts.
5. Experiment with the auditreduce and praudit tools.

Where to Go for Additional Information

AnswerBook

• AnswerBook 2-SunShield Basic Security Module Guide

Man Pages

• allocate(1M)
• auditconfig(1)
• auditreduce(1)
• audit_class(4)
• audit_control(4)
• audit_event(4)
• bsmconv(1M)
• bsmunconv(1M)
• deallocate(1M)
• dminfo(1M)
• list_devices(1M)
• praudit(1M)

Publications

• C2 Security (BSM) Frequently Asked Questions, SunSolve Infodoc 14313
• Trusted Computer System Evaluation Criteria (also known as The DOD Orange Book), contains

the official C2 specification; available at
o http://www-library.itsi.disa.mil/org/dod_std/dod_std_5200_28.html (how to order a

hardcopy)
o ftp.za.kernel.org/pub/linux/libs/security/Orange-Linux/refs/Orange.html (softcopy)
o http://www.geocities.com/Baja/Canyon/2983/orange.html (softcopy)

Appendix G. Verifying the Integrity of Public-Domain
Software

 193

The days of blindly trusting the integrity of public-domain software—even on well-known sites—are
over. A popular public-domain security package (used throughout this book) was compromised by a
hacker and subsequently downloaded by unsuspecting UNIX administrators before its back door was
discovered and the package repaired. This appendix provides information needed to raise your
confidence in your ability to verify the integrity of public-domain software.

Note

This procedure verifies only the archive site's software package integrity—that it has
not been tampered with since its last official release. It does not ensure anything
about its behavior while running on a system. In other words, if the software obtained
is the genuine article with regard to its digital signature, that does not mean that the
software will work properly.

Verification Using PGP

PGP is a frequently used tool for the verification of digital signatures and, hence, the integrity of
software packages. PGP is available from

• http://web.mit.edu/network/pgp.html (only for U.S. citizens in the United States or Canadian
citizens in Canada)

• ftp://ftp.pgp.net/pub/pgp/

The process of verifying the integrity of a package is shown here by way of example: we obtain the
software package rpcbind from ftp.porcupine.org and copy two files from the site:

• rpcbind_2.1.tar.gz—the software package archive
• rpcbind_2.1.tar.gz.sig—the software package archive digital signature

While the site manager's public key is on the FTP or Web site (in the file wietse. pgp), it is important to
obtain the public key by some other means. In this example, the site manager's key is available from
CERT advisory CA-99-01 Trojan TCP Wrappers (see the URL at the end of this appendix), or from
MIT's public PGP key server at http://pgp5.ai.mit.edu/pks-commands.html# extract, or from his personal
Web site at http:// www.porcupine.org/wietse/.

Note

Obtaining and trusting a PGP public key obtained from the same site as a software
package is ill-advised. This is because an intruder who compromises a site will also be
able to create a phony public key that will "validate" any compromised software.

Instead, any public key associated with a site should be obtained independently or
verified by other means, such as a direct phone call to the owner of the public key.

The following example assumes that PGP has been obtained and installed on the system.

1. Import originator's PGP key to your keyring.
2.
3. % pgp -ka wietse.pgp
4. ViaCrypt PGP 2.7.1 - Pretty Good Privacy for everyone.
5.

 194

6. U. S. Patent Nos. 4.200,770, 4,218,582, 4,405,829 and 4,424,414
7. licensed exclusively by Public Key Partners.
8. U. S. Patent No. 5,214,703 licensed by Ascom Tech AG.
9. Zip compression by Mark Adler and Jean-loup Gailly, used with

permission.
10. (c) 1990-1994 Philip Zimmerman
11. (except for DigiSig+ Cryptographic Engine and IDEA Cipher).
12. (c) 1993-1995 DigiSig+ Cryptographic Engine by ViaCrypt,
13. a division of Lemcom Systems, Inc, 24 Feb 95 B
14. ViaCrypt PGP is export restricted. Refer to ViaCrypt PGP

software license.
15. Current time: 1999/03/28/ 07:24 GMT
16.
17. Looking for new keys...
18. pub 1022/D5327CB9 1992/09/25 wietse venema

<wietse@wzv.win.tue.nl>
19.
20. Checking signatures...
21. pub 1022/D5327CB9 1992/09/25 wietse venema

<wietse@wzv.win.tue.nl>
22. sig! D5327CB9 1995/04/01 wietse venema

<wietse@wzv.win.tue.nl>
23. sig! D5327CB9 1998/02/05 wietse venema

<wietse@wzv.win.tue.nl>
24.
25. Keyfile contains:
26. 1 new key(s)
27.
28. One or more of the new keys are not fully certified.
29. Do you want to certify any of these keys yourself <y/N)? Y
30. Key for user ID: wietse venema (Wietse@wzv.win.tue.nl>
31. 1022-bit key, Key ID D5327CB9, created 1992/09/25
32. Key fingerprint = 78 96 4A 4D F0 F0 D1 3C 45 E9 03 FC 17 67

DC D8
33. This key/userID association is not certified.
34. Questionable certification from:
35. (KeyID: 7E0AB281)
36. .
37. .
38. .
39. Questionable certification from:
40. (KeyID: EF27E771)
41.
42. Also known as: wietse venema <wietse@porcupine.org>
43. This key/userID association is not certified.
44. Questionable certification from:
45. wietse venema <wietse@wzv.win.tue.nl>
46.
47. Do you want to certify this key yourself <y/N)? y
48. %
49.

50. Verify the signature of the archive file.
51.

 195

52. % pgp rpcbind_2.1.tar.gz.sig
53. ViaCrypt PGP 2.7.1 - Pretty Good Privacy for everyone.
54.
55. U. S. Patent Nos. 4.200,770, 4,218,582, 4,405,829 and 4,424,414
56. licensed exclusively by Public Key Partners.
57. U. S. Patent No. 5,214,703 licensed by Ascom Tech AG.
58. Zip compression by Mark Adler and Jean-loup Gailly, used with

permission.
59. (c) 1990-1994 Philip Zimmerman
60. (except for DigiSig+ Cryptographic Engine and IDEA Cipher).
61. (c) 1993-1995 DigiSig+ Cryptographic Engine by ViaCrypt,
62. a division of Lemcom Systems, Inc, 24 Feb 95 B
63. ViaCrypt PGP is export restricted. Refer to ViaCrypt PGP

software license.
64. Current time: 1999/03/28/ 07:29 GMT
65.
66. File has signature. Public key is required to check signature.
67. File 'rpcbind_2.1.tar.gz.sig' has signature, but with no text.
68. Text is assumed to be in file 'rpcbind_2.1.tar.gz'.
69. .
70. Good signature from user "wietse venema

<wietse@wzv.win.tue.nl>".
71. Signature made 1998/04/11 00:12 GMT
72.
73. Warning: Because this public key is not certified with a

trusted
74. signature, it is not known with high confidence that this

public key
75. actually belongs to: "wietse venema <wietse@wzv.win.tue.nl>".
76.
77. Signature and text are separate. No output file produced.
78. %
79.

An example of a bad file-signature match follows.

% pgp rpcbind_2.1.tar.gz.sig
ViaCrypt PGP 2.7.1 - Pretty Good Privacy for everyone.

U. S. Patent Nos. 4.200,770, 4,218,582, 4,405,829 and 4,424,414
 licensed exclusively by Public Key Partners.
U. S. Patent No. 5,214,703 licensed by Ascom Tech AG.
Zip compression by Mark Adler and Jean-loup Gailly, used with
permission.
(c) 1990-1994 Philip Zimmerman
 (except for DigiSig+ Cryptographic Engine and IDEA Cipher).
(c) 1993-1995 DigiSig+ Cryptographic Engine by ViaCrypt,
 a division of Lemcom Systems, Inc, 24 Feb 95 B
ViaCrypt PGP is export restricted. Refer to ViaCrypt PGP
software license.
Current time: 1999/03/28/ 07:29 GMT

File has signature. Public key is required to check signature.

 196

File 'rpcbind_2.1.tar.gz.sig' has signature, but with no text.
Text is assumed to be in file 'rpcbind_2.1.tar.gz'.
.
Warning: Bad signature, doesn't match file contents!

Bad signature from user "wietse venema <wietse@wzv.win.tue.nl>".
Signature made 1998/04/11 00:12 GMT

Warning: Because this public key is not certified with a trusted
signature, it is not known with high confidence that this public
key
actually belongs to: "wietse venema <wietse@wzv.win.tue.nl>".

Signature and text are separate. No output file produced.
%

Note

Different sites use different methods for storing digital signature files. As shown in the
example above, some sites put the signature file in the same directory as the archive
file. Other sites package the signature file differently. Look for README files to see if a
particular site has adopted digital signatures for its content.

Verification Using MD5

Some sites post MD5 checksums of software source code as an alternative—and equally reliable—to
PGP. MD5 is available from ftp://coast.cs.purdue.edu/pub/tools/unix/md5/.
The process of verifying the integrity of a package is shown here by way of example: obtain the
software package TCP Wrappers from ftp://ftp.porcupine.org and copy the file tcp_wrappers_7.6.tar.gz
from the site. This tar.gz file is verified against the MD5 checksum posted in the CERT advisory
http://www.cert.org/advisories/CA-1999-01.html. An example session follows.

md5 tcp_wrappers_7.6.tar.gz
MD5 (tcp_wrappers_7.6.tar.gz) = e6fa25f71226d090f34de3f6b122fb5a

The circled checksum above is compared to the checksum shown on the CERT Web page. If the
checksums compare, then the TCP Wrappers archive file tcp_wrappers_7.6.tar.gz can be considered to
be intact.

Where to Go for Additional Information

Publications

• Zimmerman, Phillip R. The Official PGP User's Guide. Cambridge, MA: MIT Press, 1995.

Web Sites

• CERT Advisory CA-99-01 Trojan TCP Wrappers— http://www.cert.org/advisories/CA-1999-
01.html (site containing a press release describing the TCP Wrappers break-in; also contains
Wietse Venema's public PGP key)

Appendix H. Glossary of Attacks

 197

This glossary contains a collection of the various types of attacks that can be launched upon a network,
system, or organization. Examples follow many of the definitions.

Note

Hackers have proven themselves to be among the world's most creative people.
Hence, the following list will probably be obsolete by the time this book goes to press.
The best way to stay on top of new forms of attack is to subscribe to CERT and other
security alert mailing lists, as well as to periodically visit security Web sites. Refer to
appendix A for a list of mailing lists and Web sites.

Glossary
back door

Computer code written into an application that permits the application developer (or anyone else
with the necessary knowledge) to gain access to information or application features without
having to supply authentication information.
Most applications' back doors are placed intentionally for use during application development
and debugging; generally speaking, back doors are present in production versions of programs
because the application developer forgot to remove them.
Back doors are also the result of break-ins; left behind by hackers, they are the means for
subsequent unauthorized returns to a system in order to facilitate further illegal behavior.

denial of service
An action or event that prevents a system from providing its usual services. Examples include

• Sending hundreds or thousands of e-mail messages to a site in an attempt to fill a mail
server's queue or to cause it to crash

• Consuming space in filesystems in order to prevent legitimate disk space uses
• Sending phony routing information protocol (RIP) packets to a router in order to alter its

routing tables and prevent it from functioning correctly (this would cause a loss of
network connectivity)

• Sending thousands of TCP SYN packets to a system in order to prevent it from being
able to accept legitimate TCP connections

• Shutting off a building's electric power

All of these examples rely on a common theme: consume one or more resources in order to
prevent or disrupt the functioning of legitimate processes also needing those resources.

dictionary attack
An attempt to break into a user account by guessing passwords from a dictionary. See also
password cracking and password guessing.

DNS cache attack (also known as a poison cache attack)
An attack on a DNS server whereby phony DNS responses (to queries that were never sent)
are sent to a DNS server in order to alter the DNS server's cache. Since the DNS server
answers frequently hit queries from its cache, responses to queries after the attack will be
incorrect..
The most common reason for a DNS cache attack is to cause the DNS server to change its
responses. For example

A hacker constructs phony DNS response packets and sends them to sun.com's
DNS server. The hacker has built a phony Sun Microsystems Web server and is
trying to corrupt Sun's DNS server so that Internet queries to www.sun.com will
point to the hacker's Web server instead of Sun's Web server.

 198

DNS rogue server
Not really a direct attack, but a case of someone running a phony DNS server, presumably
hoping that systems will query it and get phony answers back. This can cause clients to use the
wrong servers for higher-level services such as the World Wide Web, e-mail, or news.

dumpster diving
Going through a company's trash (or recycle) bins in order to retrieve documents (or equipment)
yielding clues about the company's computing and network infrastructure. The worst possible
discovery would be a printout (or sticky note) containing a password.

e-mail message source routing
Sending e-mail to a site address that forces the site to forward the message to its destination.
For example
A troublemaker sends e-mail to joe%mycompany.com@yourcompany.com.
The message is first sent to yourcompany.com, then is forwarded to mycompany.com, and
delivered to joe.

.forward attack, form 1
Hacking a user's world-writable .forward file in order to fool sendmail into executing any
command on behalf of the user. For example

A hacker changes the user sue's .forward file to contain the following:

\user
|"cp /bin/sh /home/sue/su-sh;chmod u+s /home/sue/sue-
sh"

and then sends mail to sue. The command sequence above is then executed.
The command creates a version of sh that runs as user sue.

forward attack, form 2
A special form of a denial of service attack; for example

A mail server NFS-mounts home directories from end-user workstations in order
to read users' .forward files. A clever user can simply turn off his workstation; the
next time someone sends mail to that user, the mail server may hang while
trying to mount the user's home directory (the user's home directory cannot be
mounted because his machine has been turned off). See "Implement
ForwardPath" in chapter 11 for information on how to prevent this type of attack.

In a variant of this attack, a user turns off his workstation and then causes
hundreds or thousands of e-mail messages to be sent to his system. This
causes the process table (or virtual memory) on the mail server to completely fill
up, effectively hanging the system. This is because the sendmail processes
(one for each mail message generated) cannot open his .forward file, and so the
sendmail processes sit and wait. This is an especially troublesome attack since,
upon reboot, sendmail again attempts to process the huge mail queue and
potentially fills the process table again.

 199

IP address spoofing
Configuring a system so that its stated IP address is that of another system. This is done in an
attempt to break into a system in cases where it is suspected of trusting another. For example

A server named pumpkin at IP address 11.40.34.16 trusts (via an .rhosts file)
another server, named melon, at address 11.40.36.18. An intruder, suspecting
this trust relationship, configures her system so that the "from" IP address field
in packets it sends to pumpkin is really that of melon. The intruder could, for
instance, construct a phony rsh packet in an attempt to fool pumpkin into
thinking that her phony packets were being sent from melon; if successful, the
intruder's phony commands might get carried out on pumpkin.

LD_LIBRARY_PATH attack
Some programs use shared libraries (those files with names ending in .so, found in the /usr/lib,
/usr/openwin/lib, or /usr/dt/lib directories); the LD_LIBRARY_PATH variable is used by these
programs to figure out which shared libr ary routines to use and in what order. The
LD_LIBRARY_PATH attack is a special kind of a Trojan horse attack, similar in fact to one
where the PATH statement is set up incorrectly (see Trojan horse and its example in this
section). It works by taking advantage of an error (usually by a UNIX system administrator) in
the LD_LIBRARY_PATH environment variable, so that Trojan horse library routines are used
instead of the intended library routines.

logic bomb
An otherwise legitimate program is contaminated with a section of code designed to do
something nasty when a specific condition is met. (See also time bomb.) For instance

A shell script launched by cron detects the presence of the file /tmp/halt and
halts the system.

MAC address spoofing
Configuring a system so that its MAC address is the same as that of another system on the
network. This would disrupt any attempts to communicate with the correct system, particularly if
the masquerading system is faster than the real one.

NIS/ NIS+ server spoofing
In an environment where NIS/NIS+ clients bind to servers by sending NIS broadcast packets, a
devious person could create a phony NIS/NIS+ server in order to prevent NIS/NIS+ clients from
connecting with legitimate NIS/NIS+ servers.

password cracking
Obtaining an /etc/passwd, /etc/shadow, or NIS/ NIS+ password map file containing encrypted
passwords. An intruder would then run crack on these passwords in an attempt to discover
account passwords by brute force. See also dictionary attack .

password guessing
A very low-tech form of password cracking where an intruder is trying to guess a user's
password by using information the intruder may know about the user (such as birthdays or
children's or spouse names). See also dictionary attack .

 200

port scanning
Running a security tool such as Satan or ISS against a system (or collection of systems on a
network) in order to discover what vulnerable network services are configured on the system(s).

program buffer overflow
Overflowing a program's input buffer in a way that causes executable code to be copied into the
stack and subsequently executed. A well-known example is the fingerd exploit used in the
Internet Worm incident. Refer to the two papers on the Internet Worm cited in appendix D.

session hijacking
Listening to a session between two computers and then injecting forged packets (in one or both
directions) in an attempt to alter the outcome of the session in progress. This is also known as a
sequence number attack because the intruder must try to guess the next sequence numbers in
the connection stream in order to quickly forge phony packets with those sequence numbers.

shoulder surfing
Looking over a person's shoulder when that person is typing in a password. This is why it is
proper etiquette to literally turn one's back when another is entering a password. This is a subtle
form of social engineering.

snooping
Using a program such as snoop in order to capture and record network packets containing
passwords and other sensitive information. A fine example can be found in chapter 9 in the
section on using Snoop, where a telnet session account password is being captured.

social engineering
Using the phone, e-mail, or other means to convince an unsuspecting individual to yield
sensitive information or commit a foolish act. For example

Intruder, calling the Helpdesk: "Hello, this is Phil Jones. I'm out of town and
need to dial in to get a report. I had a noisy line or must have fat-fin-gered my
password—could you reset it for me?"

Helpdesk: "Sure, no problem. I've changed it to "martini." Be sure to change the
password to something else once you log in."

Intruder: "Thanks a lot. This really helps. Good-bye."

Intruder, calling department admin: "Hello, this is Phil Jones. I'm out of town and
need to dial in to get a report. I've lost the access number, can you give it to
me?"

Admin: "Sure, it's 801-555-1234."

With just a couple of phone calls, the intruder was able to get the remote access
phone number and get a user's password changed to a known value. Within
minutes the intruder will be logged into the system with a legitimate user
account and password.

time bomb
An otherwise legitimate program is contaminated with a section of code designed to do
something nasty when a specific date or time occurs. See also logic bomb.

 201

trap door
See [back door]

Trojan horse
A program containing a (usually nefarious) purpose other than its perceived or intended one.
For example

A fake su program is placed in /tmp or some other world-writable directory. If
root's PATH is set incorrectly to include "." (specifically, if "." appears before
/usr/bin), and if the UNIX administrator executes su while in that directory, then
the fake su program will be the one executed—not the real su in /usr/bin. The
fake su would ask for the root password just like the real su, but instead of
suing, the fake su would just e-mail the password just entered to the owner of
the Trojan horse. Then the Trojan horse su would execute the real su as a
means of concealing what happened (the UNIX administrator would probably
think he just mistyped the root password the first time).

virus
A program that inserts itself into an executable program, makes copies of itself, and through its
design is able to be moved from computer to computer. Viruses are found on unprotected
operating systems such as MacOS or MS Windows and do not pose a significant threat to the
UNIX community. See also worm.

war dialing
Setting up a computer and modem to sequentially call every phone number in a given prefix,
recording instances where computers were reached.

wire tap
The act of physically attaching connectors or other devices to a communications wire in order to
intercept communications traffic.

worm
A program that runs on a system, makes copies of itself, and through its design is able to move
(or be moved) from computer to computer. Unlike a virus, a worm does not change other
programs. The most famous worm is the Internet Worm of 1988. See the references The
Internet Worm Incident and The Internet Worm Program: An Analysis listed in appendix D.

Appendix I. Secure System Checklist
This appendix contains a checklist of steps to perform on a new or existing system to ensure it is as
secure as possible. Each step references one or more sections in the book (the chapter number is
given first, then section title).

1. (For new systems) Load the OS directly from an official Sun release CD-ROM.
o Save hardcopies of all mkfs output when building filesystems by hand. Make sure the

system's partitions are large enough for patches and OS upgrades. See 16, "Filesystem
Geometry." A complete record of all filesystems built during OS installation can be found
in the file /var/sadmn/system/logs/install_log.

o Do not install CDE, OpenWindows, or ToolTalk on servers. These packages have
security holes that are better left off a server.

o Before connecting the system to the network, install and run Tripwire in order to
baseline the system before tampering can possibly occur. See 4, "Tripwire."

 202

Warning

Baselining an existing system with Tripwire is considerably more
difficult because the system may already have been compromised. This
is because Tripwire can detect tampering only after a system has been
baselined. The only reliable solution is to reinstall Solaris and all of the
system's applications from original manufacturer media (not from local
backups, which may also be compromised!).

o Install all required patches and security patches. See appendix C, "Obtaining and
Applying Solaris Patches."

o Back up the system twice. Store one backup set on-site (in a secure location) and send
the other set off-site.

2. Make the system as physically secure as possible. See 3, "Theft and Access Prevention."
3. Set the OpenBoot security level to command or full. See 3, "Protecting OpenBoot by Setting

Security Parameters."
4. (For fileservers) Consider implementing filesystem quotas. See 4, "Filesystem Quotas."
5. In environments with complex file and directory permission requirements, consider

implementing access control lists. See 4, "Filesystem Access Control Lists."
6. Disable all unnecessary accounts: daemon, bin, sys, adm, lp, uucp, nuucp, listen, nobody,

noaccess. See 5, "Which Administrative Accounts Should Be Locked."
7. Allow root to log in only at the system console; set CONSOLE=/dev/console in the file

/etc/default/login. See 5, "Direct Root Login."
8. Make the su command available only to UNIX administrators. See 5, "Restricting Use of Su."
9. Log all su attempts. See 5, "Su Logging."
10. Set up root (and other administrative accounts) so that the system name is part of the shell

prompt. See 5, "Include System Name in Root Shell Prompt."
11. Use secure settings in /etc/default/login. See 5, "Default Login Environment."
12. Use screen locks when running X-Windows. See 5, "X-Windows Security."
13. Restrict access to cron and at to accounts that truly need them. See 7, "User Access to cron

System" , and 7, "User Access to at System."
14. Turn on logging of failed login attempts. See 8, "Loginlog."
15. Alias ls and rm commands for root and other administrative accounts. See 8, "Alias the ls

Command to Show Hidden Files and Hidden Characters in Filenames," and 8, "Alias the rm
Command to Prevent Accidental File Deletion."

16. Disable IP packet forwarding. See 9, "Turn off IP Forwarding with /etc/ notrouter."
17. Disable all unnecessary network services. See 13, "Necessary and Unnecessary Services."
18. Disable telnet, rlogin, rexec, rcp and rsh; use Ssh instead. See 13, "Secure Replacement for

telnet, rsh, and rlogin. "
19. Disable NFS server capabilities (unless system must be an NFS server). See 13, "How to

Disable Unnecessary Services."
20. Disable NFS client capabilities (unless system must be an NFS client). See 13, "How to Disable

Unnecessary Services."
21. Disable automounter (unless system must be an automount client). See 13, "Disable Service

Not Defined in /etc/inet/services and /etc/inet/inetd.conf. "
22. Stop running sendmail as a system daemon (unless system is a mail server). See 13, "How to

Disable Unnecessary Services."
23. If the system is a mail server, strengthen sendmail security. See 11, "Mitigating E-Mail Security

Weaknesses."
24. If the system is a mail relay, consider replacing sendmail with SMAP or postfix. See 11,

"Replace Sendmail. "
25. Disable e-mail message source routing. See 11, "Prevent Message Source Routing."
26. Remove all unnecessary e-mail aliases. See 11, "Remove Unnecessary E-mail Aliases."
27. Implement Smrsh. See 11, " Implement Smrsh. "
28. Implement ForwardPath if this is an e-mail server. See 11, "Implement ForwardPath."

 203

29. Implement inetd connection tracing. See 13, " inetd Connection Tracing."
30. Install and configure TCP Wrappers. See 13, "TCP Wrappers."
31. Implement public-domain rpcbind on a system which must be an NFS, NIS, or NIS+ server. See

13, "Public Domain rpcbind. " Otherwise, disable rpcbind.
32. If the system is a NIS client:

o Move NIS maps out of /etc. See 14, "Move NIS Maps out of /etc. "
o Make sure the NIS maps directory is safe. See 14, "Protect NIS Maps Directory."
o Bind to a specific NIS server (or servers) rather than broadcast for a NIS server. See 14,

"Avoid Illicit NIS Servers."
33. If the system is a NIS server:

o Make the NIS domain name different from the DNS domain name. See 14, "NIS Domain
Name."

o Restrict the systems that can see the NIS maps. See 14, "Implement /var/yp/
securenets. "

o Consider hiding shadow fields. See 14, "Hide Shadow Fields."
o Do not put root and other administrative accounts in NIS. See 14, "Keep Root and Other

Administrative Accounts out of NIS."
34. If the system is running NIS+:

o Make sure the NIS+ security level is set to 2. See 14, "NIS+ Security Level."
o Back up NIS+ tables at least once per day. See 14, "Back Up NIS+ Tables."
o Make sure NIS+ transactions are frequently flushed. See 14, "Flush NIS+ Transactions."
o Do not put root and other administrative accounts in NIS+. See 14, "Keep Root and

Other Administrative Accounts out of NIS."
35. Disable nscd Caching. See 14, " nscd. "
36. See what network services are reachable on the system. Take any corrective action. See 13,

"System Accessibility."
37. Implement an intrusion detection product. See 13, "Intrusion Detection."
38. Run Tripwire and baseline the system again. Put the Tripwire database for the system in a safe

place off of the system. See 4, "Tripwire."
39. Create an incident response team. See 16, "Create an Incident Response Team."
40. Document the system build and subsequent modifications in an electronic logbook. See 16,

"System Event Logbooks."
41. Make sure the system is covered under a Sun hardware and software support contract. See 16,

"Hardware and Software Service Agreements."
42. Determine what hardware spare parts should be on-site, if any, and acquire them. See 16,

"Keep Hardware Spares."
43. Obtain one or more copies of the system's PROM, particularly if one or more software products

are bound to the system's hostid. See 16, "Copies of Critical Server PROMs."
44. Make sure other UNIX administrators are cross-trained on the architecture and all procedures

for the system. Obtain working-hours and after-hours contact information for everyone who
administers the system. See 16, "Contacts and Cross-Training."

45. Back up the system again; get the media off-site.
46. Get the latest CERT and Sun Security Bulletin reports and check for any ast-minute security

holes that must be remedied. Subscribe to two or more security incident mailing lists and read
all of the advisories that arrive.

47. NOW connect the system to the network!!

