

Table of Contents
1. Main.java

1.1. Variables
1.2. ClosingThread()
1.3. start()
1.4. main()
1.5. readDatabase()
1.6. removeAccount()
1.7. linkAccounts()
1.8. fetchTransactions()
1.9. getCustomer()

1.10. addCustomer()
1.11. addAccount()
1.12. findCustomer()
1.13. getDate()

2. AccountsPackage
2.1. Customer.java

2.1.1. Variables
2.1.2. Constructor
2.1.3. Getters and Setters
2.1.4. addAccount()
2.1.5. removeAccount()
2.1.6. toString()

2.2. Account.java
2.2.1. Variables
2.2.2. Constructor
2.2.3. getCustomerId()
2.2.4. getBalance()
2.2.5. Abstract methods

2.3. CheckingAccount.java
2.3.1. Variables
2.3.2. Constructor
2.3.3. Withdraw()
2.3.4. Deposit()
2.3.5. CloseAccount()
2.3.6. getAccountType
2.3.7. toString()
2.3.8. getAccountId()

2.4. SavingsAccount.java
2.4.1. Variables

1

2.4.2. Constructor
2.4.3. Withdraw()
2.4.4. Deposit()
2.4.5. CLoseAccount()
2.4.6. isCD()
2.4.7. toString()

2.5. Loan.java
2.5.1. Variables
2.5.2. Constructor
2.5.3. Deposit
2.5.4. Getters and setters
2.5.5. advanceMonth()
2.5.6. updateInterestRate()
2.5.7. toString()

2.6. PendingTransaction.java
2.6.1. Variables
2.6.2. Constructor
2.6.3. Getters and setters
2.6.4. toString()

3. ControllerPackage
3.1. MainController.java

3.1.1. Variables
3.1.2. function()
3.1.3. login()
3.1.4. initialize()

3.2. SubController.java
3.2.1. Variables
3.2.2. advanceAMonth()
3.2.3. updateInterestRate()
3.2.4. function()
3.2.5. logout()
3.2.6. returnTo()
3.2.7. closeAccount()
3.2.8. Deposit()
3.2.9. Withdraw()

3.2.10. transferFunds()
3.2.11. initialize()
3.2.12. changed()
3.2.13. createTransaction()

3.3. CustomerController.java
3.3.1. Variables

2

3.3.2. function()
3.3.3. Logout
3.3.4. transferFunds()
3.3.5. Withdraw()
3.3.6. initialize()
3.3.7. changed()
3.3.8. createTransaction()

3.4. TellerController.java
3.4.1. Variables
3.4.2. function()
3.4.3. logout()
3.4.4. telSearch()
3.4.5. createAccount()
3.4.6. initialize()

3.5. ManagerController.java
3.5.1. Variables
3.5.2. function()
3.5.3. logout()
3.5.4. createAccount()
3.5.5. createLoan()
3.5.6. manSearch()
3.5.7. initialize()

3.6. CreateAccountController.java
3.6.1. Variables
3.6.2. function()
3.6.3. returnTo()
3.6.4. createAccount()
3.6.5. createCustomer()
3.6.6. functionToDoStuff()
3.6.7. setAccountTypeVisibilty()
3.6.8. setNewCustomerVisibilty()
3.6.9. initialize()

3.6.10. changed()
3.7. LoanAccountController.java

3.7.1. Variables.
3.7.2. function()
3.7.3. createLoan()
3.7.4. returnMan()
3.7.5. initialize()

3.8. CollectionController.java
3.8.1. CollectionController{}

3

3.9. TransactionController.java
3.9.1. Variables
3.9.2. function()
3.9.3. returnCreditTransaction()
3.9.4. returnCheckTransaction()
3.9.5. returnToCus()

4. Data
4.1. BankingDatabase.txt
4.2. EnumeratedTypes.java

5. FXMLPackage
5.1. AccountCreation.fxml
5.2. CreateTransactions.fxml
5.3. Customer.fxml
5.4. Failed.fxml
5.5. LoanAccounts.fxml
5.6. LoginPage.fxml
5.7. ManagerMainMenu.fxml
5.8. SavingsAccount.fxml
5.9. SubMenu.fxml

5.10. Success.fxml
5.11. TellerMainMenu.fxml

1. Main.java
Within main the BankingDatabase.txt is read and written when the program opens and

closes. Also included are the methods to manipulate the ArrayLists themselves as well as
initialize the GUI.

1.1 Variables.

1.2 ClosingThread() - Extends the Thread class. This class is runnable and responsible for
writing the bank system data to the primary text file when the program closes. It gets the current
data from the ArrayLists to write.

1.3 start() - Loads the FXML and runs the GUI.

4

1.4 main() - Makes system startup calls.

1.5 readDatabase() - This method is used on startup to read in the data.txt for the banking
system. The data is loaded into the appropriate ArrayList. Switch is used to split out the
Customer, Checking, Savings, Loan, Transactions objects.

1.6 removeAccount() - Receives an Account to be removed from the accounts ArrayList.

1.7 linkAccounts() - Links accounts to a customer.

1.8 fetchTransactions() - Recieves an accointId and returns the transactions for the account.

5

1.9 getCustomer() - Returns a customer from the customer ArrayList with the specified SSN.

1.10 addCustomer() - Receives a customer object and adds it to the customer ArrayList.

1.11 addAccount() - Recieves an account object and adds it to the accounts ArrayList. Calls
linkAccounts to link the account tot the customer.

1.12 findCustomer() - Returns true/false if the customer exists in the system.

1.13 getDate() - Return the current date.

2. AccountsPackage

The Account Package includes all the code pertaining to customer, account and
transaction data. Included are the following classes.
2.1 Customer.java

The customer class stores all the data needed for a customer in the system. All variables
are protected and all methods are public. Every customers customerId is their social security
number and thus unique.

2.1.1 Variables - The following variables are stored:

2.1.2 Constructor- The constructor will initialize all variables in the class.

6

2.1.3 Getters and Setters - All variables have simple getter and setter methods which will not be
listed here.

2.1.4 addAccount() - This method adds an Account item to the customers accounts ArrayList. A
check is performed to ensure the account is owned by the customer.

2.1.5 removeAccount() - This method removes an Account item to the customers accounts
ArrayList. A check is performed to ensure the Account is owned by the Customer.

2.1.6 toString() - returns the Customer information in String format.

2.2 Account.java

The Account class holds the account information. This class is abstract and extends to
Loan, CheckingsAccount, SavingAccount classes. There cannot be an Account without a
Customer who owns it.

7

2.2.1 Variables.

2.2.2 Account() - constructor

2.2.3 getCustomerId() - Returns customerId.

2.2.4 getBalance() - Returns balance.
.
2.2.5 Abstract Methods - The last 3 methods are abstract to be used by the extended classes.

2.3 CheckingAccount.java

CheckingAccount is an extension of Account, and allows for customer to have a
Checking Account.

2.3.1 Variables.

2.3.2 Constructor - The constructor will initialize all variables in the class, and make sure the
identifier is 0 or not.

8

2.3.3 Withdraw() - This methods will get the customer withdraw, and make sure the account
have enough balance to withdraw, and return the amount. If a backup Savings Account exists,
check withdraw against balance. If Withdraw is greater than the balance it will withdraw overge
from the backup account. Else check balance against withdraw amount and if over deny
withdrawal. Returns amount withdrawn successfully.

9

2.3.4 Deposit() - Receives an amount and adds it to balance.

2.3.5 CloseAccount() - Removes this Account from the system. Receives current time then
removes the balance from the Account to be paid out to the customer. Pending transactions are
checked for outstanding transactions. This account is sent to Main.removeAccount() to be
removed from database ArrayList. Former balance is returned.

10

2.3.6 getAccountType() - Returns accountType.

2.3.7 toString() - Returns the Account as String in the following format:

2.3.8 getAccountId() - Returns identifier.

2.4 SavingsAccount.java

SavingsAccount is an extension of accounts and holds the saving account information
for customers.
2.4.1 Variables.

2.4.2 Constructor.

2.4.3 Withdraw() - If the account is a CD the methods returns 0. If the withdrawal is less than the
balance the amount is withdrawn and balance updated, else return 0. Amount withdrawn is
returned.

11

2.4.4 Deposit() - Receives amount to deposit and updates the balance.

2.4.5 CloseAccount() - Closes this Account. If the Account is a CD the due date is checked. If
closure call is before the CD due date no interest is returned. Else the close call is after CD due
date the balance is returned with the calculated interest. Else the account is not a CD the
balance is returned with occured interest. Balance is set to 0 and the account is sent to
Main.removeAccount() to be removed from the database ArrayList.

2.4.6 isCD() - Returns boolean true if a due date exists as CDDue.

2.4.7 toString() - Returns this SavingsAccount information in String in the following format:

2.5 Loan.java

12

The loan class is an extension of accounts, that shows the loan information for
customers. There are 3 loan types that each have different monthly payment calcualtions:
ST(Short Term) - balance/(5*12.0))+(balance/2)*5*this.currentInterestRate
LT(Long Term) - balance/(30*12.0))*30*this.currentInterestRate
CC(Credit Card) - balance/(1*12.0))+(balance/2)*1*this.currentInterestRate

2.5.1 Variables.

2.5.2 Constructor - Creates a loan object. The currentPaymentDue is set based on
accountType. The payment calculations are performed within the constructor. The payment due
is calculated based on accountType.

2.5.3 Deposit() - Deposit is used to make payments on the Loan account. When the method is
called it checks if the payment is late. If payment is not late it is calculated against the balance
and payment due. A new payment due is calculated. If payment is late the late payment flag is

13

set to true. If balance is 0 the account will close itself.

2.5.4 Getters and Setters - The following methods are simple getter and setter methods:
getAccountType()
getDatePaymentDue()
getCurrentInterestRate()
setCurrentInterestRate()
getCurrentPaymentDue()
getLastPayment()
getMissedPaymentFlag()
setMissedPaymentFlag()
getIdentifier()

2.5.5 advanceMonth() - This method is used to simulate 30 days passing. It will look at the
current account balance, and interest rate and calculate a new balance. It will also give it a new
due date.

2.5.6 updateInterestRate() - Function to update the interest rate. Takes in a new value for the
new interest rate. 0.01 = 1%.

2.5.7 toString() - Returns the loan account data in the following format:

14

2.6 PendingTransaction.java
This class handles pending transactions against accounts. It include functionality to stop

payments if they have not been honored yet.

2.6.1 Variables.

2.6.2 Constructor.

2.6.3 Getters and setters - included simple getters and setters are as follows:
getAccountID()
getTransactionID()
getAmount()
getPayToOrderOf()
getDateOfTransaction()
getIsStopped()
setIsStopped()

2.6.4 toString() - Returns a String of the PendingTranaction data in the following format:

15

3. ControllerPackage
The Controller class will access the input boxes and other various items from the fxml

pages. The pages should contain fx:id to be able to be accessed on this page using event
listeners.

3.1 MainController.java

This controller handles the initial login of a Manager Teller or Customer

3.1.1 Variables:

3.1.2 function() - This used for changing the gui pages and setting the new scene.

3.1.3 login(): loads the FXML and get user information and separate the login is Teller or
manager or customer.

16

3.1.4 initialize(URL arg0, ResourceBundle arg1)

3.2 SubController.java

The SubController handles all the overall user functionality for the system.

3.2.1 Variables - In addition to the below image there are many Button, ComboBox, TextField,
TextArea, ListView, Pane and Label variables as well.

3.2.2 advanceAMonth() - On button click, advance the loan a month. This allows us to watch
interest rise automatically,Set the current amount due,Set the loan balance to what the
customer owes on that loan,Signals that a month has passed and the customer has been
notified.

17

3.2.3 updateInterestRate() - Check if the account is valid or not, on valid account, it grabs the
new interest rates and updates it, then returns the rate.

3.2.4 function() - This used for changing the gui pages and setting the new scene.

3.2.5 logout() - This used for user log out the page.

3.2.6 returnTo() - This used for Gui return to manager page or teller page.

18

3.2.7 closeAccount() - This used for close account.

3.2.8 Deposit() - This used for deposit the money to account.

3.2.9 Withdraw() - This used for withdraw money from account.

3.2.10 transferFunds() - This used for checking or saving account transfer funds to other.

19

3.2.11 initialize() - Sets customers account being displayed to the selected customer on the
Manager/Teller page. Within the function, there are various controllers that change what is
being displayed.

3.2.12 changed() - Depending on the combobox selected, it will change the information in the
fields being displayed

3.2.13 createTranscation() - This used for user create a transaction.

3.3 CustomerController.java

The CustomerController handles the functions a customer is allowed to perform while
logged in.

3.3.1 Variables - In addition to the below image there are many Button, ComboBox, TextField,
TextArea and ListView variables as well.

3.3.2 function() - This used for changing the gui pages and setting the new scene.

3.3.3 logout() - This used for user log out the page.

20

3.3.4 transferFunds() - This used for checking or saving account transfer funds to other.

3.3.5 Withdraw() - This used for withdraw money from account.

3.3.6 initialize() - updating display to show customers information.

3.3.7 changed() setting local variables.

3.3.8 createTranscation() - This used for user create transaction.

3.4 TellerController.java

The TellerController handles the functions a teller is allowed to perform while logged in.

3.4.1 Variables.

3.4.2 function()

21

3.4.3 logout() - Allows a teller to log out.

3.4.4 telSearch() - Method for a teller to search for a customer in the system by SSN.

3.4.5 createAccount() - Method to begin creating an account from the teller page.

3.4.6 initialize(URL arg0, ResourceBundle arg1)

3.5 ManagerController.java

The ManagerController handles the functions a manager is allowed to perform while
logged in.

3.5.1 Variables.

3.5.2 function()

22

3.5.3 logout() - Method to log a manager out.

3.5.4 createAccount() - Method to begin creating an account for a manager.

3.5.5 createLoan() - Method to begin creating a Loan as a manager.

3.5.6 manSearch() - This method allows the manager to search the system for a customer.

3.5.7 initialize(URL arg0, ResourceBundle arg1)

3.6 CreateAccountController.java

The CreateAccountController handles functionality for creating a account for a customer.
3.6.1 Variables - In addition to the below image there are many Button, ComboBox, TextField,
and Label variables as well.

23

3.6.2 function() - This function will be used to set and go to the next scene.

3.6.3 returnTo() - This function, based on login permissions, will take you back to the manager
or teller main page.

3.6.4 createAccount() - This method will create an account object as long as there is a customer
to create an account for.

Lastly, account is sent to main to be added to the accounts ArrayList.

3.6.5 createCustomer() When called it reads the input variables and creates a customer object.
The customer is sent to main and added to the customer ArrayList.

24

3.6.6 functionToDoStuff()

3.6.7 setAccountTypeVisibilty()

25

3.6.8 setNewCustomerVisibilty()

3.6.9 initialize() - Sets the values in the sub-menu CreateAccount to the selected account type.

26

3.6.10 changed() - Checks to see if you are using a new or pre existing customer. Changes the
fields displayed depending on what was selected in the combo box.

3.7 LoanAccountController.java

The LoanAccountController handles functionality for creating loans in the system.

3.7.1 Variables:

3.7.2 function() - This is used to traverse pages.

3.7.3 createLoan() - Checks that there is not a null so a loan can be created

Grabs the dates.

27

The following show where the loan type string is abbreviated so it can be passed to the
constructor

The loan is then created and added to the accounts ArrayList in Main.

3.7.4 returnMan() - Returns the GUI to the manager main menu screen.

3.7.5 initialize()

3.8 CollectionController.java

Taking in an ArrayList and turning them into a ObservableList for use with combo boxes.
3.8.1 CollectionController{}.

28

3.9 TransactionController.java

The TransactionController is used for obtaining values from the CreateTransactions.fxml
page. The controller should pass the content to savings the account class.

3.9.1 Variables.

3.9.2 function() - This used for changing the gui pages and setting the new scene.

3.9.3 returnCheckTransaction(ActionEvent actionEvent) - Used to submit the credit card
transaction.

29

3.9.4 returnCheckTransaction(ActionEvent actionEvent) - Used to submit the checking
transactions.

3.9.5 returnToCus() - Checks the login type and makes sure to transfer the user to the correct
area when navigating.

4. Data
4.1 BankingDatabase.txt - This text file is the main data file for the banking system. It is
accessed only at the startup and shutdown of the system. Each block of data in the file is
headed by the type of data to follow. Examples to follow:

30

4.2 EnumeratedTypes.java - See entire file below:

5. FXMLPackage

In the FXML package are the generated FXML files used for the GUI objects and styling.
The following is the list of all the files:
5.1 AccountCreation.fxml
5.2 CreateTransactions.fxml
5.3 Customer.fxml
5.4 Failed.fxml
5.5 LoanAccounts.fxml
5.6 LoginPage.fxml
5.7 ManagerMainMenu.fxml
5.8 SavingsAccount.fxml
5.9 SubMenu.fxml
5.10 Success.fxml
5.11 TellerMainMenu.fxml

31

