PROJECTILE MOTION WORKSHEET

1. A ball is kicked horizontally at $8.0 \mathrm{~m} / \mathrm{s}$ from a cliff 80 m high. How far from the base of the cliff will the stone strike the ground?
2. How long will it take a shell fired from a cliff at an initial velocity of $800 \mathrm{~m} / \mathrm{s}$ at an angle 30° below the horizontal to reach the ground 150 m below?
3. Jason Kendall throws a baseball with a horizontal component of velocity of $25 \mathrm{~m} / \mathrm{s}$. It takes 3.00 s to come back to its original height. Calculate its horizontal range, its initial vertical component of velocity and its initial angle of projection.
4. An egg is thrown horizontally off the roof of SI , which is 60 meters high, with an initial velocity of $6.5 \mathrm{~m} / \mathrm{s}$. How long does it take to hit the ground? How far does it go in the x direction?
5. A diver jumps UP off a pier at an angle of 25° with an initial velocity of $3.2 \mathrm{~m} / \mathrm{s}$. How far from the pier will the diver hit the water (Assume the level of water is the same as the pier)
6. Wile E. Coyote is holding a "HEAVY DUTY ACME TM $^{\text {ANVIL" on a cliff that is } 40.0 \text { meters }}$ high. The Roadrunner (beep-beep), who is 1.0 meter tall, is running on a road toward the cliff at a constant velocity of $10.0 \mathrm{~m} / \mathrm{s}$. Wile E. Coyote wants to drop the anvil on the Roadrunner's head. How far away should the Roadrunner be when Wile E. drops the anvil?
7. A bullet is fired at an angle of 60° with an initial velocity of $200.0 \mathrm{~m} / \mathrm{s}$. How long is the bullet in the air? What is the maximum height reached by the bullet?
8. A bullet is fired at an angle of 45°. Neglecting air resistance, what is the direction of acceleration during the flight of the bullet?
a) upward
c) dependent on the initial velocity
b) downward
d) at a 45° angle
9. A golfer drives her golf ball from the tee down the fairway in a high arcing shot. When the ball is at the highest point of its flight:
a. the velocity and acceleration are both zero
b. the x -velocity is zero and the y -velocity is zero
c. the x -velocity is non-zero, but the y -velocity is zero
d. the velocity is non-zero, but the acceleration is zero
10. A bullet is fired horizontally from a gun. At the same time a similar bullet is dropped from the same height. The fired bullet will:
a) hit the ground first
c) hit at the same time as the dropped bullet
b) hit the ground second
d) never hit the ground

Answers

$$
\begin{aligned}
& 32 \mathrm{~m} \\
& 0.37 \mathrm{~s} \\
& 75 \mathrm{~m} ; \mathrm{v}_{\mathrm{y}}=15 \mathrm{~m} / \mathrm{s} ; 31^{0} \\
& \text { a) } 3.5 \mathrm{~s} \text { b) } 21 \mathrm{~m} \\
& 0.8 \mathrm{~m} \\
& 28.6 \mathrm{~m} \\
& \text { a) } 35.4 \mathrm{~s} \text { b) } 4601 \mathrm{~m} \\
& \text { b } \\
& \text { c } \\
& 0 .
\end{aligned}
$$

