
派業歷

PyElly User’s Manual
For Release v1.5.8.3

10 December 2018

Clinton P. Mah

Walnut Creek, CA 94595  

Table of Contents
1. Introduction 6
2. The Syntax of a Language 10
3. The Semantics of a Language 15
4. Defining Tables of PyElly Rules 19
4.1 Grammar (A.g.elly) 21
4.1.1 Syntactic Rules 21
4.1.2 Grammar-Defined Words 22
4.1.3 Generative Semantic Subprocedures 23
4.1.4 Global Variable Initializations 23
4.2 Special Patterns For Text Elements (A.p.elly) 24
4.3 Macro Substitutions (A.m.elly) 27
5. Operations for PyElly Generative Semantics 30
5.1 Insertion of Strings 30
5.2 Subroutine Linkage 30
5.3 Buffer Management 31
5.4 Local Variable Operations 31
5.5 Set-Theoretic Operations with Local Variables 33
5.6 Global Variable Operations 33
5.7 Control Structures 33
5.8 Character Manipulation 35
5.9 Insert String From a Table Lookup 37
5.10 Buffer Searching 38
5.11 Execution Monitoring 38
5.12 Capitalization 40
5.13 Semantic Subprocedure Invocation 40
6. Simple PyElly Rewriting Examples 41
6.1 Default Semantic Procedures 41
6.2 A Simple Grammar with Semantics 42
7. Running PyElly From a Command Line 46
8. Advanced Capabilities: Grammar 52
8.1 Syntactic Features 52

8.2 The ... Syntactic Type 54
9. Advanced Capabilities: Vocabulary 57
9.1 More on the UNKN Syntactic Type 57
9.2 Breaking Down Unknown Words 58
9.2.1 Inflectional Stemming 58
9.2.2 Morphology 61
9.3 Entity Extraction 64
9.3.1 Numbers 65
9.3.2 Dates and Times 65
9.3.3 Names of Persons (A.n.elly) 66
9.3.4 Compound Entities Defined by Templates (A.t.elly) 71
9.3.5 Coding Your Own Entity Extractors in Python 73
9.4 PyElly Vocabulary Tables (A.v.elly) 74
10. Logic for PyElly Cognitive Semantics 78
10.1 The Form of Cognitive Semantic Clauses 80
10.2 Kinds of Cognitive Semantic Conditions 82
10.2.1 Fixed Scoring 82
10.2.2 Starting Position, Token Count, and Character Count 82
10.2.3 Semantic Features 83
10.2.4 Semantic Concepts 85
10.2.4.2 Language Definition Files for Semantic Concepts 88
10.3 Adding Cognitive Semantics to Other PyElly Tables 90
10.3.1 Cognitive Semantics for Vocabulary Tables 90
10.3.2 Cognitive Semantics for Pattern Rules 92
10.3.3 Cognitive Semantics for Template Matching 93
10.3.4 Cognitive Semantics for Entity Extraction 93
11. Sentences and Punctuation 95
11.1 Basic PyElly Punctuation in Grammars 96
11.2 Extending Stop Punctuation Recognition 99
11.2.1 Stop Punctuation Exceptions (A.sx.elly) 99
11.2.2 Bracketing Punctuation 101
11.2.3 Exotic Punctuation 101

11.3 How Punctuation Affects Parsing 102
12. PyElly Tokenizing and Parsing 103
12.1 A Bottom-Up Framework 103
12.2 Token Extraction and Lookup 105
12.3 Building a Parse Tree 106
12.3.1 Context-Free Analysis Main Loop 106
12.3.2 Special PyElly Modifications 107
12.3.3 Type 0 Grammar Extensions 108
12.4 Success and Failure in Parsing 108
12.5 Parse Data Dumps and Tree Diagrams 109
12.6 Parsing Resource Limits 113
13. Developing Language Rules and Troubleshooting 116
13.1 Pre-Checks on Language Rule Files 116
13.2 A General Application Development Approach 118
13.3 Miscellaneous Tips 118
13.3.1 General Advice 119
13.3.2 Generative Semantics 119
13.3.3 Macro Substitutions 120
13.3.4 Patterns for Identifying Syntactic Types 121
13.3.5 Vocabulary Building 121
13.3.6 Syntactic and Semantic Features 122
13.3.7 Parsing Problems 123
13.3.8 Diagnostic Options in Rewriting 123
13.3.9 Punctuation 124
13.3.10 Ambiguity 124
13.3.11 Name Recognition 125
13.3.12 Other Good Practices 126
13.4 Making PyElly Work for You 127
14. PyElly Applications 128
14.1 Current Example Applications 128
14.2 Building Your Own Applications 132
15. Going Forward 135

15.1 What PyElly Tries To Do 135
15.2 Practical Experience in PyElly Usage 137
15.3 Where We Now Stand 138
Appendix A. Python Implementation 141
Appendix B. Historical Background 146
Appendix C. Berkeley Database and SQLite 148
Appendix D. PyElly System Testing 150
Appendix E. PyElly as a Framework for Learning NLP 154
Appendix F. A Shallow XML Markup Application 156
Appendix G. Unicode Issues 168

PyElly User’s Manual

1. Introduction
PyElly is an open-source software toolkit for creating computer scripts to analyze and
rewrite English and other natural language text. This processing will of course fall far
short of the talking robot fantasies of Hollywood, but with a bit of effort, you can still
quickly put together many nontrivial linguistic applications that can do useful work. In
particular, PyElly can serve as a preprocessor to clean up the many pesky low-level
details of language that often burden text data mining.

PyElly can also give you some firsthand experience with the nuts and bolts of
computational linguistics. You can quickly write scripts to do tasks like conjugating
French verbs, rephrasing information requests into a formal query language,
compressing messages for texting, extracting names and other entities from a text
stream, or even re-creating the storied Doctor simulation of Rogerian psychoanalysis.

We have been building such natural language applications since computers were only a
millionth as powerful as they are today. The overall problem of natural language
processing (NLP) remains quite challenging, however, and most toolkits to support NLP
require heavy lifting to develop the logic and interpretive frameworks to accomplish
even something simple. PyElly expedites such busy work through a broad range of
ready-made tools and resources, all integrated within a single free open-source package.

Why do we need yet another NLP toolkit? To begin with, a complete natural language
solution is still far off, and so we can gain from a diversity of reliable methods to break
down and manipulate text data. Also, though PyElly is all new code, its core is really a
legacy system, with some major components dating back more than 40 years. This
sounds ancient, but language changes slowly, and mature linguistic software tools and
resources can be of service even with today’s text data.

The impetus for PyElly and its predecessors came from observing that many different
natural language applications face similar issues. For example, information retrieval and
machine learning with text data can both work better when we can reduce the words in
target text to their roots. So, instead of contending with variants like RELATION,
RELATIONAL, RELATIVELY, and RELATING, a system could just keep track only of
RELATE. This is of course the familiar stemming problem, but available free resources
to correlate such word variations are often disappointing.

A stemmer is of course not hard to build, but it takes time and commitment to do a good
job, and no one really wants to repeat this from scratch in every new project. That is true
of many other low-level language processing capabilities as well. One should at least pull
together some kind of NLP software library from available resources, but even better
would be to integrate them much more closely. PyElly does that.

The current implementation of PyElly is intended primarily for educational use and so
was written entirely in Python, currently a favored first programming language in high
schools. This should allow students to adapt and incorporate PyElly code into class
projects that have to be completed fairly quickly. PyElly can be of broader interest,

Page �6

PyElly User’s Manual

though, because of its range of natural language support, including stemming,
tokenizing, entity extraction, vocabulary management, sentence recognition, idiomatic
transformation, rule-driven syntactic analysis, and ambiguity handling.

The operation of PyElly revolves around classic rule-based computational linguistics. It
will require some language expertise because you need to be able to define all the details
of the processing that you want, but many of the basics here have been prebuilt in PyElly
if you are working with English input. The standard PyElly distribution also includes the
language definition rules for nine different example applications to get you started in
constructing your own.

The current PyElly package consists of a set of Python modules in sixty-six source files.
The code should run on any computer platform with a Python 2.7 interpreter, including
Windows 8 and 10, Linux, Mac OS X and other flavors of Unix, IOS for iPhone and iPad,
and Android. The PyElly source is downloadable from GitHub under a standard BSD
license so that you may freely modify and extend it as needed. Though intended mainly
for education, commercial usage of PyElly is unrestricted.

For recognizing just a few dozen sentences, PyElly is probably overkill; you could handle
them directly by writing custom code in any popular programming language. More
often, however, the possible input sentences will be too many to list out fully, and so you
must characterize them more generally through rules describing how the words you
expect to see are formed, how they combine in text, and how they are to be interpreted.
PyElly lets you manage such details of language definition in a systematic way.

PyElly is a kind of translator: it reads in plain text, analyzes it, and writes out a
transformation according to the rules that you supply. So an English sentence like “She
goes slowly” might be rewritten in French as “Elle va lentement” or in Chinese as 她⾛慢
慢地. Or you might reduce the original sentence to just “slow” by stripping out suffixes
and words of low content. Or you may want to rephrase the sentence as a question like
“Does she go slowly?” All this can be done by supplying suitable rules to guide PyElly.

PyElly rules encode linguistic knowledge of many types. The main ones will define a
grammar and vocabulary for the sentences of an input language plus associated
semantic procedures for rewriting those sentences to produce target output. Creating
such rules requires some trial and error, but usually should be no more difficult than
setting up macros in a word processor. PyElly will get you started quickly and then will
provide debugging aids to help track down the problems that will inevitably arise.

Many natural language systems, especially those in academic research, aim at the most
thorny problems in language interpretation. These are opportunities for impressive
processing gymnastics and often lead to dense theoretical papers without necessarily
producing anything for everyday use. PyElly aims instead to be simple and down to
earth. In response to well-known tough sentences like “Time flies like an arrow,” it is
quite all right for PyElly or any other practical NLP system to respond just with "Huh?”

Page �7

PyElly User’s Manual

PyElly is compact enough to run on mobile devices with no cloud connection. Excluding
the Python environment, compiled PyElly code along with encoded rules and other data
for an application should typically require less that 500 Kbytes of storage, depending on
the number of rules actually defined. A major project may involve hundreds of grammar
rules and tens of thousands of vocabulary elements, but some useful text analyses
require just a few dozen rules and little explicit domain vocabulary.

What is a grammar, and what is a vocabulary? A vocabulary establishes the range of
words you want to recognize; a grammar defines how those words can be arranged into
sentences of interest. You may also specify idiomatic rephrasing of particular input word
sequences prior to analysis as well as define patterns for making sense of various kinds
of entities not listed in your vocabulary; for example, 800 telephone numbers or
Russian surnames ending in -OV or -OVA, or generic drug names.

This manual will explain how to do all of this and will also introduce some essentials of
language and language processing that any NLP practitioner should know. To take
advantage of PyElly, you should be able to create and edit text files for the platform of
your choice and set up file directories there so that PyElly can find your rules. PyElly
currently has to run from a command line. For advanced work, you should also be
comfortable with Python coding. In an ideal world, an interactive development
environment (IDE) could make everything easier here, but that is yet to be.

Currently, PyElly can read and process Unicode characters from the Latin-1
Supplement, Latin Extender A, and parts of Latin Extender B plus extra punctuation
and spaces. These include most of the letters with diacritical marks used in European
languages written with Latin alphabets. For example, PyElly knows that é is a vowel,
that ß is a letter, that Œ is the uppercase form of œ, and that ² is a digit. This can be
helpful even for nominally English text, since we often encounter terms with foreign
spellings like NÉE or RÉSUMÉ or ÆGIS.

As any beginning student of a foreign language soon learns, its rules are inevitably
messy. Irregularities will trip up someone or something trying to speak or write
mechanically from a simple grammar. PyElly users will face the same challenge, but by
working generally at first and then adding special rules to deal with exceptions as they
turn up, we can evolve our linguistic chops to reach some useful level of parlance. There
is no royal road to NLP, but persistence can lead to progress over time. PyElly will help
you keep on track in making a sustained effort in rule definition.

You need not be an experienced linguist or a computer programmer to develop a PyElly
application; and I have tried to write this manual to be understandable by non-experts.
The only requirements for users are basic computer literacy as expected of 21st-Century
high school graduates, linguistic knowledge as might be gained from a first course in any
foreign language, and willingness to learn. You can start out with simple kinds of PyElly
processing and move on to more complex translations as you gain experience.

In addition to this introduction, the PyElly User’s Manual consists of fourteen other
major sections plus seven appendices. Sections 2 through 7 should be read in sequence
as they provide a tutorial on how get started in using PyElly. Sections 8 through 11 deal

Page �8

PyElly User’s Manual

with advanced features helpful for developing complex applications. Section 12 explains
PyElly parsing, Section 13 lays out some practical strategies and tips for PyElly
application development, and Section 14 describes a variety of current and some future
PyElly applications. Section 15 wraps everything up.

PyElly (“Python Elly”) was inspired by the Eliza system created by Joseph Weizenbaum
over 50 years ago for modeling natural language conversation, but PyElly code has a
different genesis. Its implementation in Python is the latest in a series of successive
natural language toolkits going back four generations: Jelly (Java, 1999), nlf (C, 1984
and 1994), the Adaptive Query Facility (FORTRAN, 1981), and PARLEZ (PDP-11
assembly language, 1977). The basic PyElly parsing algorithm and the ideas of cognitive
and generative semantics come from Vaughan Pratt’s LINGOL (LISP, 1973). Frederick
Thompson’s REL system (1972) also influenced the design of PyElly.

The main PyElly website is at https://sites.google.com/site/pyellynaturallanguage/ .
This introduces PyElly and shows some actual translations with language definition
rules from different PyElly example applications. The latest PyElly source code,
language definition rule files for example applications, test data and procedures, and
documentation are available from https://github.com/prohippo/pyelly.git . This is also
where you can find the latest PDF of this user’s manual for download. 

Page �9

https://github.com/prohippo/pyelly.git

PyElly User’s Manual

2. The Syntax of a Language
A language is as a way of stringing together words or other symbols to form sentences
that other people can make sense of in some context. In general, not all combinations of
symbols will make a meaningful sentence; for example, “Cat the when” is nonsense as
English. To define a language that you want PyElly to process, you must first identify
those combinations of symbols that do make sense and then assign suitable
interpretations to them.

If a language is small enough, such as the repertory of obscene gestures, we can simply
list all its possible “sentences” and say in expletives what each of them means. Most
nontrivial natural languages, though, have so many possible sentences that this
approach is impractical. Instead one must note that a language tends to have regular
structures; and by identifying those structures, a computational linguist can formally
characterize the language much more concisely than by listing all possible sentences.

The structural description of a language is called a grammar. It establishes what the
building blocks of a language are and how they form simple structures, which in turn
combine into more complex structures. Almost everyone has studied grammar in school,
but formal grammars have to go into much greater detail. They commonly are organized
around sets of syntactic rules describing all the particular kinds of language structure to
be expected in sentences. Such syntactic rules will provide a basis for both generating
and recognizing the sentences of a language with a computer.

In linguistics, a grammar expresses how one or more structures can come together to
produce a new composite structure. This is described through syntactic rules, commonly
written with an arrow notation as follows:

W->X Y Z

This rule states that a W-structure can be composed of an X-structure followed by a Y-
structure followed by a Z-structure; for example, a noun phrase in English can consist of
a number, followed by an adjective, and followed by a noun:

NOUNPHRASE->NUMBER ADJECTIVE NOUN

There is nothing mysterious here; it is like the kind of sentence diagramming once
taught in junior high school and now coming back into vogue. We could draw the
following equivalent diagram on a blackboard for the syntactic rule above.

 W
 /|\
 / | \
X Y Z

Page �10

PyElly User’s Manual

where a W can in turn be part of a higher-level structure and X, Y, and Z can also split out
further into various substructures. Using a tree to describe syntactic structure is fine,
but the arrow notation will be more compact and easier to enter from a keyboard,
especially as sentence syntax grows more complex.

The structure-types W,X, Y, Z , and so forth roughly correspond to the parts of speech
from our school days, but will be interpreted more generally in PyElly. In this user
manual, we shall refer to them as syntactic types or syntactic categories. The ones that
you need for a PyElly grammar will depend on your particular target application. Some
applications may require up to almost a hundred different syntactic categories, going far
beyond NOUN and VERB.

Syntactic rules for linguistic analysis can be much more complicated than W->X Y Z,
but PyElly will work with just three forms of rules:

X->token
X->Y
X->Y Z

where X, Y, and Z are syntactic types and token is a word or some other kind of
vocabulary element like a number or some arbitrary alphanumeric identifier.

These three types are enough to re-express a more complex rule like

R->A B C

This is done by dividing the more complex rule into multiple more simple rules

R->A T
T->B C

where T is a unique intermediate syntactic structure introduced solely to stand for a B
followed by a C. It is not really a part of speech.

Here is a set of PyElly grammar rules that might be employed to describe the structure
of the sentence “It is red.”

SENTENCE->SUBJECT PREDICATE
SUBJECT->PRONOUN
PRONOUN->it
PREDICATE->COPULA ADJECTIVE
COPULA->is
ADJECTIVE->red

Page �11

PyElly User’s Manual

This shows all three forms of PyElly restricted syntax rules. The ordering of the rules
does not matter. The names of syntactic types like SUBJECT or COPULA are arbitrary
except for a few reserved names to be explained below.

The structure of a sentence as implied by these rules can be expressed graphically as a
labeled tree diagram, where the root type is SENTENCE and where branching
corresponds to splitting into constituent substructures. By convention, the tree is always
shown upside down, and so the lowest part of a tree will show the individual words of
the sentence. For example, the sentence “It is red” would have the following diagram:

 SENTENCE
 |
 +------------+------------+
 | |
SUBJECT PREDICATE
 | |
 | +-------+--------+
 | | |
PRONOUN COPULA ADJECTIVE
 | | |
 | | |
 it is red

The derivation of such a diagram for a sentence from a given set of syntactic rules is
called “parsing.” The diagram itself is called a “parse tree,” and its labeled parts are
called the “phrase nodes” of the parse tree; for example, the PREDICATE phrase node in
the tree above encompasses the actual sentence fragment “is red.” Given our syntax
rules above, PyElly can automatically parse our sentence; and the resulting tree diagram
will then be the starting point for interpreting the sentence.

Our simple grammar above so far can describe only a single sentence, but we can extend
its coverage by adding rules for other kinds of structures and vocabulary. For example,
the added syntax rules

SUBJECT->DETERMINER NOUN
DETERMINER->an
NOUN->apple

will let PyElly analyze the sentence “An apple is red.” We can continue to build up our
grammar here by adding other rules; for example,

PREDICATE->VERB
VERB->falls

Page �12

PyElly User’s Manual

will also put “It falls” and “An apple falls” into the sentences PyElly can recognize. We
can continue in this way to encompass still more types of grammatical structure and still
more vocabulary. The new rules can be added in any order you want.

The key idea here is that a few rules can be combined in various ways to describe many
different sentences. There is still the problem of choosing the proper mix of rules to
describe a language in the most natural and efficient way, but we do fairly well by simply
adding one or two rules at a time as done above. In some complex applications, we may
eventually need hundreds of such rules, but these can still be worked out in small steps.

Technically speaking, PyElly grammar rules shown above define a “context-free
language.” Such a grammar mainly describes the relationships between adjacent
subtrees for a sentence; and it is harder to correlate the possibilities for the structures
far apart in a parse tree even though they might be close together as words in an actual
sentence. For example, consider the example of a context-free rule with the parallel
structures SUBJECT and PREDICATE.

SENTENCE->SUBJECT PREDICATE

In languages like English, subjects and predicates have to agree with each other
according to the attributes of person and number: “We fall” versus “He falls”. When
grammatically acceptable SUBJECT and PREDICATE structures have to be formed in
correlated ways, context-free rules here force us to work harder to restrict a SENTENCE
to have only certain combinations of subjects and predicates in agreement. We might
have to write multiple explicitly correlated rules like

SENTENCE->SUBJECT1 PREDICATE1
SENTENCE->SUBJECT2 PREDICATE2
SENTENCE->SUBJECT3 PREDICATE3

where SUBJECTi would always agree properly with PREDICATEi, but this has the
disadvantage of greatly multiplying the number of rules we have to define. A good
natural language toolkit should make our job easier than this.

Even though English and other natural languages are not context-free in a theoretical
sense, we still want to treat them that way for practical reasons. By doing so, we can take
advantage of the many sophisticated techniques developed for parsing artificial
computer languages like C++ or Swift, which do tend to be context-free. This is the
approach taken in PyElly and its predecessors.

For convenience, PyElly also incorporates semantic checking of intermediate results in
parsing and allows some shortcuts to make grammars more concise (see Section 8).
These extensions can go on top of a plain context-free parser to give it some context-
sensitive capabilities, although some kinds of sentences still cannot be handled by
PyElly. (The classic problematic context-sensitive examples are the parallel subjects and
predicates, in sentences like “He and she got cologne and perfume, respectively.”)

Page �13

PyElly User’s Manual

The syntax of natural language can get quite complicated in general; but we usually can
break this down in terms of simpler structures. The challenge of defining a PyElly
grammar is to capture enough of such simpler structures in grammar rules to support a
proper analysis of any input sentence that we are likely to see.

A PyElly sentence analysis can actually go far beyond the examples above. For example,
the leaves of a parse tree may be more than single words. PyElly vocabulary rules can
combine multiple input words into a single parse tree leaf token or split off parts of an
input word into separate tokens. PyElly can also control when particular PyElly syntax
rules apply by subdividing syntactic categories. Furthermore, PyElly has to handle the
unavoidable ambiguity in analyses when working with a natural language. This user
manual will go into detail on these and other matters in later subsections, but for simple
applications, the basic framework described in this section should be enough.

You must be able to understand most of the discussion in this section in order to
proceed further with PyElly. A good text for those interested in learning more about
language and formal grammars is John Lyon's book Introduction to Theoretical
Linguistics (Cambridge University Press, 1968). This is written for college-level readers,
but covers to the basics that you will need to know. 

Page �14

PyElly User’s Manual

3. The Semantics of a Language
The notion of meaning has always been difficult to talk about. It can be complicated
even for individual sentences in a language, because meaning involves not only their
grammatical structure, but also where and when it is used and who is using it. A simple
expression like “Thank you” can take on different significance, depending on whether
the speaker is a thug collecting extortion money, the senior correspondent at a White
House press conference, or a disaster victim after an arduous rescue.

Practical computer natural language applications cannot deal with all the potential
meanings of sentences, since this would require modeling almost everything in a
person’s view of world and self. A more realistic approach is to ask what meanings will
actually be appropriate for a computer to understand in a particular application. If the
role of a system in a user organization is to provide, say, only information about
employee benefits from a policy manual, then it probably has no reason to figure out
references to subjects like sex, golf, or the current weather.

Within PyElly, the scope of semantics will be limited even more drastically: we will deal
with the meaning of sentences only to the extent of being able to translate them into
some other language and to evaluate our options when we have more than one possible
translation. This has the advantage of making semantics less mysterious while allowing
us still to implement useful kinds of language processing.

For example, the meaning of the English sentence “I love you” could be expressed in
French as “Je t’aime.” Or we might translate the English “How much does John earn?”
into a data base query language “SELECT SALARY FROM PAYROLL WHERE
EMPLOYEE=JOHN.” Or we could convert the statement “I feel hot” into an IoT
command line like

set thermostat /relative /fahrenheit:-5

In a sense, we have cheated here, avoiding the problem of meaning in one language by
passing it off to another language. Such a translation, however, can be quite useful if
there is a processor that understands the second language, but not the first. This is
definitely a modest approach to semantics; but it beats talking endlessly about the
philosophical meaning of meaning without ever accomplishing anything in actual code.

As noted before, the large number of possible sentences in a natural language prevents
us from compiling a table to map every input into its corresponding output. Instead, we
must break the problem down by first taking the semantics of the various constituent
structures defined by a grammar and then combine their individual interpretations to
derive the overall meaning of a given sentence.

With PyElly, we define the semantics of a sentence structure as procedures associated
with each of the grammatical rules describing the structure. There will actually be two
different kinds of semantic procedures here: those for writing out translations will be
called “generative,” while those for evaluating alternative translations will be called

Page �15

PyElly User’s Manual

“cognitive.” At this stage, however, we shall focus on the generative, and leave the
cognitive until Section 10, since these two aspects of semantics operate quite differently.

A successful PyElly sentence analysis will produce a parse tree describing its syntactic
structure. Each phrase node of that tree will be due to a particular grammatical rule, and
associated with that rule will be a generative semantic procedure defining its meaning.
You will have to supply such a procedure for each of your grammar rules, though often
you can just take the defaults defined by PyElly for its three types of grammar rules.

The top phrase node of a complete PyElly parse tree will always be that of the type SENT
(=“sentence”). The generative procedure for such a phrase node will always be called by
PyElly to begin the translation of the original input sentence. This should then set off a
cascade of other procedure calls through the various lower-level constituent structures
of the sentence to produce a final output. The actual ordering of calls to subconstituent
procedures will be determined by the logic of the procedures at each level of the tree.

A PyElly generative semantic procedure basically will operate on text characters in a
series of output buffers. This will involve standard text editing operations commonly
supported in word processing programs: inserting and deleting, buffer management,
searching, substitution, and transfers between buffers. Consistent with PyElly semantics
being procedures, there will also be local and global variables, structured programming
control structures, subprocedures, simple lookup, and set manipulation.

Communication between different semantic procedures will be through local and global
variables as well as by inspecting the current content of buffers. The value of any local or
global variable will always be a string of arbitrary Unicode characters, possibly the null
string. Global variables will be accessible to all procedures and will remain defined even
across the processing of successive sentences, serving as a longer-term memory for
PyElly translations.

Local variables will have a limited scope such as seen in programming languages like C
or PASCAL. They are defined in the procedure where they are declared and also in those
procedures called as subroutines either directly or indirectly. When there are multiple
active declarations of a variable with a given name visible to a semantic procedure, the
most recent one applies. Upon exit from a procedure, all of its local variables
immediately become undefined.

Let us look at some actual semantic procedures to see how a PyElly translation would
actually work. Suppose that we have the five grammar rules

SENT->SUBJECT PREDICATE
SUBJECT->PRONOUN
PRONOUN->we
PREDICATE->VERB
VERB->know

Page �16

PyElly User’s Manual

With these rules, we can implement a simple translator from English into French with
the five semantic procedures below, defined respectively for each rule above. For the
time being, the commands in the procedures will be expressed in ordinary English.
These commands will control the entry of text into some output area, such as a text field
in a window of a computer display. Here is what our procedures will do:

For a SENT consisting of a SUBJECT and PREDICATE: first run the procedure for
the SUBJECT, insert a space into the output being generated, and then run the
procedure for the PREDICATE.

For a SUBJECT consisting of a PRONOUN: just run the procedure for the
PRONOUN.

For the PRONOUN we, insert nous into the output being generated.

For a PREDICATE consisting of a VERB, just run the procedure for the VERB.

For the VERB know, insert connaisser.

With this particular set of semantic procedures, the English sentence “we know” will be
translated to nous followed by a space followed by connaisser. You can easily verify
this by starting with the semantic procedure for SENTENCE and tracing through the
cascade of procedure executions.

Each syntactic rule in a grammar must have a semantic procedure, even though the
procedure might be quite trivial such as above when a SUBJECT is just a PRONOUN or a
PREDICATE is just a VERB. This is because we need to make a connection at each level
from SENTENCE all the way down to individual input words like we and know. These
connections will give us a framework to extend our translation capabilities just by
adding more syntactic rules plus their semantic procedures; for example,

PRONOUN->they

For the PRONOUN they: insert ils.

You may have noticed, however, our example translation here is incorrect. Even more so
than English, French verbs must agree in person and number with their subject, and so
the translation of know with the SUBJECT we should be connaissons (first person
plural) instead of connaisser (the infinitive). Yet we cannot simply change the VERB
semantic procedure above to “insert connaissons” because this would be wrong if the
PRONOUN for SUBJECT becomes they (third person plural).

We really need more elaborate semantic procedures here to get correct agreement. This
is where various other PyElly generative semantic commands come in. In particular, we
can use local variables to pass information about number and person between the
semantic procedures for our syntactic structures to govern their translations (see
Section 6). Nevertheless, the overall PyElly framework of semantic procedures attached
to each syntactic rule and called recursively will remain the same.

Page �17

PyElly User’s Manual

(If you want to look ahead to see how a simple English-to-French translation might be
done properly in PyElly, you can peek at Subsection 6.2. Understanding the details of
the syntactic rules and their generative semantics will require you to go through
Sections 4 and 5 first, however.)

Semantic procedures must always be coded carefully for proper interaction and
handling of details in all contexts. We have to anticipate all the ways that constituent
structures can come together in a sentence and provide for all the necessary
communication between them at the right time. We can make the problem easier here
by taking care to have lower-level structures be parts of only a few higher-level
structures, but this will require some advance planning.

Writing syntactic rules and their semantic procedures is actually a kind of programming
and will require some programming skills. It will be harder than you first might think
when you try to deal with the complexity of natural languages like English or French.
PyElly, however, is designed to help you to do this kind of programming in a highly
structured way, and it should be easier than trying to accomplish the same kind of
translation in a language like Python or even LISP.

The idea of procedural semantics was introduced by Vaughan Pratt in his LINGOL
system. Procedures are not the only way of dealing with meaning, but they fit in well
with what we do in computational linguistics and especially within a framework where
we want to rewrite input text from one language to another. The availability of various
programming language features like variables in PyElly semantic procedures also
provides a way of modeling the contexts of sentence parts beyond what we can describe
with syntactic rules alone.

Page �18

PyElly User’s Manual

4. Defining Tables of PyElly Rules
By now, you should understand the idea of grammar rules and their semantic
procedures. This section will go into the mechanics of how to define them in text files to
be read in by PyElly at startup. To implement different applications such as translating
English to French or rewriting natural language questions as structured data base
queries, you just need to provide the appropriate files of rules for PyElly to load.

PyElly rules fall into eight main types: (1) grammar, (2) vocabulary, (3) macro
substitutions, (4) patterns for determining syntactic types, (5) personal names and
name components, (6) various other regular forms of naming, (7) morphology, and (8)
punctuation and sentence delineation. The grammar of a language for an application
reflects the linguistic capabilities supported by a target system, while a vocabulary is
geared toward a particular context of use; macros support particular users of a system,
and special patterns and name components tend to be specific to given applications.
Having separate tables of rules make it easier to tailor PyElly operation for different
environments while allowing parts of language definitions to be reused.

This section will focus on the grammar, special pattern, and macro rule tables, required
by most PyElly applications. Some of the finer details of syntactic rules will be
postponed to Section 8, “Advanced Programming: Grammar.” The creation and use of
tables for vocabulary, names, and morphology will be described in Section 9, “Advanced
Programming: Vocabulary.”

To make PyElly do something, you have to set up an application defined by a specific set
of language definition rules organized into tables. The current PyElly package
implements each type of rule table as a Python class with an initialization procedure that
reads in its rules from an external text source file. The text input files for rules governing
a particular application A should be named as follows:

A.g.elly for syntactic rules and their semantic procedures in a grammar.

A.m.elly for macro substitutions.

A.p.elly for special patterns.

You may replace the A here with whatever name you choose for your application, subject
to the file-naming conventions for your computer platform. Only the A.g.elly file is
mandatory for any PyElly application; the other two may be omitted if you have no use
for either macro substitutions or patterns. Section 7 will explain how PyElly will look for
various language definition files for an application and read them in.

The rest of this section will describe the required formats of the definitions in the input
files A.g.elly, A.m.elly, and A.p.elly. Normally you would create these files with
a text editor or a word processor. The NotePad accessory on a Windows PC or TextEdit
on a Mac will be quite adequate, although you may have to rename your files afterward
because they insist on writing out files only with extensions like .txt.

Page �19

PyElly User’s Manual

An important element of most language rules will be syntactic structure names, seen in
Section 2. We also call them “syntactic types” or “parts of speech,” but they will be more
general than what we learned in grade school. The current implementation of PyElly in
Python can handle up to 112 different syntactic types in its input files. Six of these types,
however will be predefined by PyElly with special meanings.

SENT Short for SENTence. Every grammar must have at least one rule of
the form SENT->X or SENT->X Y. PyElly translation will always
start by executing the semantic procedure for a SENT structure.

END For internal purposes only. Avoid using it.

UNKN Short for UNKNown. This structure type is automatically assigned
to strings not known to PyElly through its various lookup options.
(See Subsection 9.1 for more on this.)

... For an arbitrary sequence of words in a sentence. This is for
applications where much of the text input to process is
unimportant. (See Section 8 for more details.)

PUNC For punctuation. (See Section 11.)

SEPR For inferred sentence separators. (See Subsection 12.6.)

You will of course have to make up your own names for any other syntactic types needed
for a PyElly application. Names may be arbitrarily long in their number of characters
but may include only ASCII letters, digits, and periods (.); upper and lower case will be
the same. You do not have to use traditional grammatical names like NOUN, but why be
unnecessarily obscure here?

You may want to keep your syntactic type names unique in their first four characters,
however. This is because PyElly will truncate names to that many characters in its
formatted diagnostic output like parse trees (see Section 12, “PyElly Parsing”). The
resulting tree will be confusing if you have syntactic types like NOUN and NOUNPHRASE.
When reading in grammar rules, PyElly will warn you about any such situation.

Here are some trivial, but functional, examples of grammar, macro, and pattern
definition files:

PyElly Definition File
example.g.elly
g:sent->ss # top-level rule
__
g:ss->unkn
__
g:ss->ss unkn
__  

Page �20

PyElly User’s Manual

PyElly Definition File
example.m.elly
i’m->i am # contraction

PyElly Definition File
example.p.elly
0 &# number -1 # simple integer

These rules will be explained in separate subsections below. Lines beginning with ‘# ’,
disregarding any leading space characters, will be taken as comments and ignored. A
comment can also be at the end of an input line, but this has to start with ‘ # ’ . The
extra spaces are necessary because the # character is special in PyElly pattern matching.

4.1 Grammar (A.g.elly)
An A.g.elly text file may have four different types of definitions: (1) syntactic rules
with their associated semantic procedures, (2) individual words with their associated
semantic procedures, (3) general semantic subprocedures callable from elsewhere, and
(4) initializations of global variables at startup. These definitions will be respectively
identified in the A.g.elly file by special markers at the start of a line: G:, D:, P:, or
I:. The definitions may appear in any order; markers can be upper or lower case.

4.1.1 Syntactic Rules

These must be entered as text in a strict format of lines. Syntactic rule definitions will
follow the general outline as shown here in a monospaced font for easier reading:

G:X->Y # a marker G: + a syntax rule
_ # a single <UNDERSCORE>,
 # omitted if no semantic
 # procedure follows
 . #
 . # the body of a generative
 . # semantic procedure
 #
__ # a double <UNDERSCORE>,
 # mandatory definition terminator

a. In a G: line, PyElly will allow spaces anywhere except after the G, within a syntactic
structure name, or between the ‘-’ and ‘>’ of a rule.

b. The same formatting applies for a PyElly syntactic rule of the form X->Y Z.
c. A generative semantic procedure for a syntactic rule will always appear between the line

starting with a single underscore (_) and the line starting with a double underscore (__).

Page �21

PyElly User’s Manual

d. A cognitive semantic procedure may appear before the single underscore, but this will be
described later in Section 10 (“Logic for PyElly Cognitive Semantics”).

e. The actual basic actions for generative semantics will be covered in Section 5
(“Operations for PyElly Generative Semantics”).

f. If a semantic procedure is omitted, various defaults apply; see Section 6 (“PyElly
Programming Examples”). In this case, the first single underscore delimiter is optional.

4.1.2 Grammar-Defined Words

It is usually a good idea to keep the vocabulary for a PyElly application separate from a
grammar as much as possible. For scalability, PyElly will keep its vocabulary mainly in
an external data store; and Section 9 will describe how to set this up. Some single-word
definitions, however, may also appear alongside the syntactic rules in a grammar
definition file. These will be called internal dictionary rules.

In particular, some words like THE, AND, and NOTWITHSTANDING are associated
with a language in general instead of any specific content. These are probably best
defined as part of a grammar file anyway. In other cases, there may also be so few words
in a defined vocabulary for an application that we may as well include them all internally
in a grammar rather than externally.

The form of an internal dictionary rule is similar to that for a grammatical rule:

D:w<-X # a marker D: + a word "w"
 # + a structure type X
_ # a single <UNDERSCORE>
 . #
 . # a generative semantic procedure
 . #
__ # a double <UNDERSCORE>,
 # mandatory definition terminator

a. The D: is mandatory in order to distinguish a word rule from a grammatical rule of the
form X->Y.

b. To suggest the familiar form of printed dictionaries, the word w being defined appears
first, followed by its structure type X (i.e., part of speech). Note that the direction of the
arrow <- is reversed from that of syntax rules.

c. The w must be a single word, number, or other text token, possibly hyphenated, or a
single punctuation mark, or a short bracketed text segment like (s). Multi-word terms
in an application must be defined in PyElly’s external vocabulary or stitched together by
grammar rules, macro substitution rules, or other mechanisms discussed in Section 9.

d. The single and double underscore separators for semantics are the same as for syntactic
rules. A word definition may also have both cognitive and generative semantics to
establish its meaning for PyElly.

e. A given word may have multiple internal dictionary rules and so be ambiguous.
f. A given internal dictionary word may also be defined elsewhere in PyElly (see Section 9).

These other definitions may differ. PyElly will figure out how to make sense of them. 

Page �22

PyElly User’s Manual

4.1.3 Generative Semantic Subprocedures

Every PyElly generative semantic procedure for a rule will be written in a special PyElly
programming language for text manipulation. This language also allows for named
subprocedures, which need not be attached to a specific syntax rule or internal
dictionary rule. Such subprocedures may be called in a generative semantic procedure
for a PyElly rule or by another subprocedure. Their definitions should in a *.g.elly
grammar file, but may appear anywhere in that file.

A subprocedure will take no arguments and return no values. All communication
between semantic procedures must be through global or local variables or from the text
written into PyElly output buffers (see Section 5 for details). Calls to subprocedures may
be recursive, but you will be responsible for avoiding infinite recursion here.

A subprocedure definition will have the following form:

P:nm # a marker + procedure name "nm"
_ # a single <UNDERSCORE>,
 # mandatory
 . #
 . # generative semantic procedure body
 . #
__ # double <UNDERSCORE> delimiter,
 # mandatory

a. Note the absence of any arrow, either -> or <-, in the first definition line.
b. A procedure name n should be a unique string of alphanumeric characters without any

spaces. It should be of non-zero length, because PyElly itself predefines the procedure
with no name. The case of letters is unimportant. Duplicate definitions for the same
procedure name will be reported as an error.

c. The underscore separators are the same as for syntactic rules and word definitions and
will both be mandatory for a subprocedure definition.

d. A subprocedure definition may have only generative semantics. Cognitive semantics will
never apply to a subprocedure and will always be ignored if specified.

4.1.4 Global Variable Initializations

PyElly global variables in a generative semantic procedure can be set in various ways
(see Subsection 5.6). You may, however, want to preset some important parameters in
the loading of a particular application grammar before any generative semantic
procedure is run. To initialize a global variable x to the string s at startup, just put in a
I: line in your grammar definition file like this:

I:x=s  

Page �23

PyElly User’s Manual

You must have one I: line for each global variable being initialized. Note that an I: line
always stands by itself; there is no associated generative semantic procedure as in the
case of G:, D:, and P: lines. An I: line may appear anywhere in a grammar definition
file, but for clarity, it should be before any reference to it in a semantic procedure. For
readability, you may freely put spaces around the variable name x and after the = sign
here. For example,

I:iterate = abcdefghijklm
I:joiner = svnm

In the first initialization above, the iterate global variable is set to abcdefghijklm.
A string value may have embedded space characters, but all leading and trailing spaces
will be ignored and multiple consecutive embedded spaces will be collapsed into one.

4.2 Special Patterns For Text Elements (A.p.elly)
Many elements of text are too numerous to list out in a dictionary, but are recognizable
by their form; for example, Social Security numbers, web addresses, or Icelandic
surnames. PyElly allows you to identify such elements in input text by specifying the
patterns that they conform to. That is how PyElly now deals with ordinary decimal
numbers in input text to be translated.

PyElly special patterns serve to assign a syntactic structure type (part of speech) to a
single word or other simple token in its input text. This will supplement any explicit
definition in a grammar’s internal dictionary (see Subsection 4.1.2) or in its external
vocabulary table (see Subsection 9.4). For example, you can make ‘123’ a NOUN by a D:
rule in a grammar table, but PyElly can still infer that it is a type NUM from a pattern.

In general, we may have to compare a character string with multiple patterns to identify
a particular kind of text element. PyElly coordinates this kind of processing through a
finite-state automaton (FSA), which should be familiar to every aspiring computational
linguist. This is not a physical machine, but a software algorithm working from a
predefined set of rules telling it how to proceed step by step in matching up a series of
patterns from left to right against a stream of input text.

The key concept in an FSA is that of a state, which sums up what patterns have already
been matched by a text string and what patterns it should look for next. An FSA will
typically have multiple states, but one of these will always be the starting state when the
FSA is at the front of an input text string with nothing yet matched. The total number of
different states must be limited, hence the finiteness of an automaton.

In any given state, an FSA will have a specific list of patterns to check against the input
text at its current position. These may have wildcards able to match multiple characters
in text; for example, any digit 0-9. PyElly wildcards are similar to the wildcards used in
regular expressions in utilities like grep, but are defined specifically for natural
language processing (see below). This differs from the usual kind of FSA, which will
allow no wildcards in its patterns to trigger transitions.

Page �24

PyElly User’s Manual

Each pattern at a state will have a certain action to take upon any match. Usually, this
means moving forward in its input string and going on to a next state according to its
predefined rules. There may be more than one such next state because a string at a given
FSA state can match more than one pattern with wildcards. This is a complication, but
everything is still equivalent to a regular FSA. It just lets our rules be more compact.

Some matches will have no next state in a PyElly FSA, but instead will specify a syntactic
structure type. If an FSA has also reached a suitable endpoint for an input token, then a
match is complete, and PyElly can create a token of that given syntactic type from the
text being matched. At this point, a normal FSA would be done, but PyElly will also
examine all the matching possibilities arising from multiple next states for an FSA.
PyElly continues until it has checked all reachable states. PyElly then will return a
positive match length if any matching token has been found; 0, otherwise. Only the
longest of any full match will be kept. See Section 12 for more details.

PyElly requires every FSA state to be identified by a unique non-negative integer, where
the initial state is always 0. The absence of a next state after a match is indicated by -1
or -2. At each state, what to look for next is defined as a pattern of literal characters and
wildcards. A *.p.elly definition file will consist of separate lines each specifying a
possible pattern for a given state, an optional PyElly syntactic structure type associated
with any full match, and a next state upon a match with the pattern at a state. These
specifications comprise the table of pattern rules that a PyElly FSA will work with.

Here is a simple PyElly file for an FSA with patterns and rules:

simple FSA to recognize syntactic structure types
example.p.elly

each input record is a 4-tuple
STATE PATTERN SYNTAX NEXT

0 #, - 1
0 ##, - 1
0 ###, - 1
1 ###, - 1
1 ###$ NUM -1
0 &# - 2
2 . - 3
2 $ NUM -1
3 &#$ NUM -1
3 $ NUM -1

This recognizes numbers like 1024, 3.1416, and 1,001,053 as tokens of syntactic
type NUM. A pattern rule in its most basic form will be a single line with four parts:

 STATE PATTERN SYNTACTIC TYPE NEXT

Page �25

PyElly User’s Manual

a. The first part is an integer ≥ 0 indicating a current PyElly finite automaton state.
b. The second part is a PATTERN, which may be an arbitrary sequences of letters, numbers,

and certain punctuation, including hyphen (-), comma (,), period (.), slash (/). If these
are present, they must be matched exactly within a word being checked.

c. A PATTERN may have explicit characters and also wildcards, which can match various
substrings in a token string. PyElly wildcards in a pattern will be as follows:

d. If a character to be matched is also a PyElly wildcard, then you must escape it in a
*.p.elly pattern with a double backslash; for example, * to match * literally.

e. A PATTERN consisting only of \0 (ASCII NUL) will cause an automaton to move to some
non-final state without any matching. A double backslash is not required here.

f. Brackets [and] in a pattern will enclose an optional subsequence to match; only one
level of bracketing is allowed and only alphanumeric characters are allowed inside the
brackets. The pattern [ab]c will match the string abc or the string c.

g. A pattern with a wildcard other than \0 or $ by itself must always match at least one
character; for example, the pattern[a]* will be rejected.

h. The third part of a pattern rule is a syntactic type (part of speech) like NOUN, indicating a
possible final state. Any non-final state must specify ‘-’ as its associated type.

i. The fourth part is the next state to go to upon matching a specified pattern. This will be
an integer ≥ -2. A -1 here means a final state, which should follow a syntactic type; a -2
will also be final, but allows for matched token ending in the middle of a normal token.

j. All -1 final state patterns not ending with the * or $ wildcards will have a wildcard $
appended automatically. Patterns for all non-final and -2 final states will be left alone.

will match a single digit 0 - 9, including some exponents

@ will match a single letter a - z or A - Z, possibly with diacritics

! will match a single uppercase letter, possibly with diacritics

¡ will match a single lowercase letter, possibly with diacritics

? will match a single digit or letter

* will match an arbitrary sequence of non-blank characters, including a null sequence

&? will match one or more letters or digits in a sequence

&# will match one or more digits in a sequence

&@ will match one or more letters in a sequence

^ will match a single vowel

% will match a single consonant

’ will match an apostrophe appearing either as ' (ASCII) or ’ (Unicode right single
quotation mark) or ′ (Unicode prime)

$ will match the end of a token, but not add to the extent of any matching; a token will
end if followed by a space or certain punctuation

Page �26

PyElly User’s Manual

For example, the pattern ###-##-####$ matches Social Security numbers, while the
pattern (###)###-####$ matches a telephone number with an area code, but without
separating spaces. See Subsection 9.2.1 for more on possible number patterns.

PyElly also treats lowercase alphabetic characters as semi wild in effect. A lowercase
letter in a pattern will match the same letter in text input irrespective of case. An
uppercase letter in a pattern, however, will match only the uppercase version of the
letter in text input. So, put an uppercase letter into a pattern only if you mean it.

The PyElly FSA will always recognize only a single token with no spaces. You cannot
match multiple words separated by spaces like XXX YYY ZZZ. You can, however,
recognize special tokens with punctuation characters not normally in a PyElly token; for
example, (R-TEXAS). To do this in the PyElly FSA, you should have separate states to
match a single punctuation character:

0 (- 1
1 !-!&@ - 2
2) XID -1

It is possible to define an A.p.elly file of rules that reference only the start state 0.
When your patterns have many wildcards, however, having multiple states can make
your steps of matching much clearer. Having more states will always work and will also
let you share states in different subsets of pattern rules.

4.3 Macro Substitutions (A.m.elly)
Macro substitution is a way of automatically replacing specific substrings in an input
stream by other substrings. This is a useful capability in a language translator, and so
PyElly adds it as yet another integrated tool, adapting code from Kernighan and Plauger,
Software Tools, Addison-Wesley, 1976.

The main difference in PyElly macro substitution versus Software Tools is that
substrings to be replaced can be described with wildcards along with explicit characters
to match and that the substrings to replace parts of the original string can specify the
parts of the original string that matched consecutive sequences of pattern wildcards.

Macro substitution is convenient for handling idioms, synonyms, abbreviations, and
alternative spellings and for doing syntactic transformations awkwardly described by
context-free grammar rules. A PyElly macro substitution rule is generally defined as
follows in language definition file A.m.elly:

P_Q_R->A B C D

Page �27

PyElly User’s Manual

a. Each macro substitution rule must be a single line. Since macros will defined in their
own *.m.elly file, we need no marker at the beginning of each line.

b. The left side of a substitution will be a pattern containing literal Unicode characters and
PyElly wildcards. It may not be empty. The wildcards will include all the ones listed in
the preceding subsection (3.2) for special patterns, plus a _ space wildcard and a ~
nonalphanumeric wildcard. The left side may have arbitrarily many parts separated by
the _ wildcard. The space wildcard is the only one allowed within pattern brackets []
for optional components in a match; there will also be semi wild matching of lower
alphabetic characters in patterns as in the preceding subsection. A left side not ending in
a _ or * wildcard is assumed to end with $. Note that a ~ wildcard will not match an
ampersand, which is a stylized writing of the Latin et.

c. In macros, a pattern can match multiple words in a macro substitution when there are
space wildcards on the left side. This makes the $ wildcard much less useful than in FSA
pattern matching, which are restricted to a single token, which may include punctuation.

d. The right side of a substitution may contain space characters as word separators; or it
may be empty. Upper and lower case will be significant on the right side. It will be
significant on the left side only for semi wild matching. The right side can be arbitrarily
long, although you usually want a substitution to be shorter than an original string.

e. Input text matching the pattern on the left side will be replaced by the right side. This is
the actual macro substitution defined by a rule.

f. A \\1, \\2, \\3, and so forth, on the right stands respectively for the first, second, third,
and so forth, parts of text matched by wildcard patterns on the left. PyElly allows up to
nine bindings for a pattern. Each binding applies to a sequence of contiguous wildcards,
except for _ and ’, which will always be bound to a single character. For example,
matching the pattern #@abc# will associate the first digit and letter of a match with \\1
and the last digit with \\2. Matching the pattern #a’_* with a string will associate the
digit before a with \\1 , a space with \\2, and any string after the space with \\3.

g. Characters used as wildcards can be matched literally by escaping them with \\; for
example \\? matches a question mark. This applies only to the left side of macro rules.

h. When any macro is matched and its substitution done, then all macros will be checked
again against the modified result for further possible substitutions. When a macro
eliminates its match entirely, though, substitutions will be ended at that position.

i. The order of macro substitution rules is significant. Those first in a definition file will
always be applied first, possibly affecting the applicability of those defined afterward.
Macro patterns starting with a wildcard will always be checked after all others, however.

j. Macros have no associated semantic procedures because they run outside of PyElly
syntax-driven parsing and rewriting.

Macro substitutions will be trickier to manage than grammatical rules because you can
accidentally define them to work at cross-purposes. An infinite loop of substitutions can
result if you are careless. Nevertheless, macros can greatly simplify a language definition
when you use them properly and keep their patterns fairly short.

Substitution rules will be applied to the current PyElly input text buffer at the current
position each time before the extraction of the next token to be processed. This can
override any tokenization rules in effect and can modify any previous stemming of

Page �28

PyElly User’s Manual

words. All of that can add up to substantial overhead if you define many macros because
all possible substitutions will always be tried out at each possible token position.

Here are some actual PyElly macro substitution rules from an application trying to
compress input text as much as possible while keeping it readable:

*'ll -> \\1
percent* -> %
will_not -> wont
data_base -> DB
greater than or equal to -> >=
carry_-ing -> wth
receiv[e]* -> rcv\\1
#*_@[.]m$ -> \\1\\3m

The last macro rule above will replace “10 p.m” with “10pm” to save space.

The substitution part of a macro rule may include a \\s special character, indicating the
u’\u001E’ Unicode character, which is ASCII RS (record separator). For example,

,_@@&@ing_that -> ,\\s \\1ing that

will insert RS into the PyElly text input buffer after finding a comma (,) when followed
by a participial -ING THAT expression. PyElly automatically recognizes RS as the
syntactic category SEPR, but your grammar rules then must do something with this.

You often can use macro substitutions to handle idioms or other irregular forms that are
exceptions to general language rules or to make explicit some dependencies between
words that might be hard to capture in PyElly context-free syntax rules. In such cases,
just rewrite problematic tet into a less unambiguous form that your grammar rules will
recognize. This could be an arbitrary string of letters or digits not normally readable by a
person; for example, didn’t -> DDNT.

Macros will always be applied after any inflectional stemming, but also before any
morphological stemming (see Subsection 9.1) with an unknown text element. Use them
with care; PyElly will warn you when something might be dangerous, but will not stop
you from getting into an infinite loop of substitutions. 

Page �29

PyElly User’s Manual

5. Operations for PyElly Generative Semantics
In Section 3, we saw examples of generative semantic procedures expressed in English.
PyElly requires, however, that they be written in a special structured programming
language for editing text in a series of output buffers. This language has conditional and
iterative control structures, but generally operates at the nitty-gritty level of
manipulating a few characters at a time.

Basically, PyElly generative semantics manages buffers and moves around text in them.
The semantic procedures for various parts of a PyElly sentence all have to put their
contributions for a translation into the right place at the right time. Proper coordination
is critical; you have to plan everything out and control the interactions of all procedures.

Every generative semantic procedure will be a sequence of simple commands, each
consisting of an operation name possibly followed by arguments separated by blanks.
These various operations are described below in separate subsections. For clarity, the
operation names are always shown in uppercase here, but lower or mixed case will be
fine. Comments below begin with ‘ # ’ and are not part of a command.

5.1 Insertion of Strings
These operations put a literal string at the end of the current PyElly output buffer:

APPEND any string # put “any string" into current buffer

BLANK # put a space character into buffer

SPACE # same as BLANK

LINEFEED # start new line in buffer, add space

OBTAIN # copy in the text for the first token
 # at the sentence position of the
 # phrase constituent being translated

5.2 Subroutine Linkage
For calling procedures of subconstituents for a phrase and returning from such calls:

LEFT # calls the semantic procedure
 # for subconstituent structure
 # Y when a rule is of the form
 # X->Y or X->Y Z.

RIGHT # calls the semantic procedure
 # for subconstituent structure
 # Z for a rule of the form
 # X->Y Z, but Y for rule X->Y

Page �30

PyElly User’s Manual

RETURN # returns to caller, not needed at
 # the end of a procedure

FAIL # rejects the current parsing of an
 # input sentence and returns to the
 # first place where there is a choice
 # of different parsings for a part of
 # an input structure

5.3 Buffer Management
Processing starts with a single output text buffer. Spawning other buffers can help to
keep the output of different semantic procedures separate for adjustments before
joining everything together. You can set aside the current buffer, start working in a new
buffer and then return to the old buffer to shift text back and forth between them.

SPLIT # creates a new buffer and
 # directs processing to it

BACK # redirects processing to end
 # of previous buffer while
 # preserving the new buffer

MERGE # appends content of a new
 # buffer to the previous one,
 # deallocating the new one

These allow a semantic procedure to be executed for its side effects without immediately
putting anything into the current output buffer. Splitting and merging will work when
nested recursively, but for clarity, put a corresponding SPLIT and MERGE in the same
procedure. The MERGE operation can also be combined with string substitution:

MERGE /string1/string2/ # as above, except that all occurrences
 # of "string1" in the new buffer will be
 # be changed to "string2"
 # (the divider / here may be replaced by
 # any char not in string1 or string2)

5.4 Local Variable Operations
Local variables can store a Unicode string value. Variable names may have one or more
letters or digits. They will be declared within the scope of a semantic procedure and will
automatically disappear upon a return from the procedure.

VARIABLE xv=string # declare and set variable xv to
 # "string"; if the "=string" part
 # is missing, then initialization
 # is to a null string ""

Page �31

PyElly User’s Manual

SET xv=string # assigns "string" to the most recent
 # declaration of local variable xv,
 # defining xv if necessary; if the
 # "=string" part is missing, then
 # assignment is to a null string ""

A string may contain any printing characters, but trailing spaces will be dropped. To
handle single space characters specified by their ASCII names, you may use the
following special forms:

VARIABLE xv SP # define variable xv as single
 # space char

SET xv SP # set variable xv as single
 # space char, defining xv
 # if necessary

Note the absence of the equal sign (=) here. PyElly will recognize SP, HT, LF, and CR as
space characters here and nothing else. This form can also be used with the IF, ELIF,
WHILE, and BREAKIF semantic operations described below. You may write VAR as
shorthand for VARIABLE; they are equivalent.

Some operations have a local variable as their second argument. These support
assignment, concatenation of strings, and queuing.

ASSIGN xv=zv # assigns the strings value of local
 # variable zv to the local
 # variable xv in their most
 # recent declarations

QUEUE qv=xv # appends the string stored for local
 # variable xv to any string stored for
 # variable xv

UNQUEUE xv=qv n # removes the first n chars of the
 # string stored in local variable
 # qv and assigns them to local
 # variable xv; if n is unspecified,
 # the character count defaults to 1;
 # if qv has fewer than n chars, then
 # xv is just set to the value of qv
 # and qv is set to the null string

The equal sign (=) and righthand local variable name is required for UNQUEUE and
QUEUE. If a lefthand local variable is undefined here, it will become automatically
defined in the scope of the current generative semantic procedure.

Page �32

PyElly User’s Manual

5.5 Set-Theoretic Operations with Local Variables
PyElly allows for manipulation of sets of strings, represented as their concatenation into
a single string with commas between individual strings. For example, the set
{“1”,”237”,”ab”,”u000”} would be represented as the single string “1,237,ab,u000”.
When local variables have been set to such list values, you can apply PyElly set-theoretic
operations to them.

UNITE x<<z # takes the union of the list values
 # of local variables x and z
 # and saves the result in x

INTERSECT x<<z # intersects the list values
 # of local variables x and z
 # and saves the result in x

COMPLEMENT x<<z # restricts the list values of
 # of local variable x to those
 # not in the list value for
 # local variable z and saves
 # the result in x

5.6 Global Variable Operations
Global variables are permanently allocated in a language definition and are accessible to
all semantic procedures through two restricted operations:

PUT x y # store the value of local
 # variable x in global
 # variable y

GET x y # the inverse of PUT

There is no limit on the total number of global variables. The global variables gp0, gp1,
… can be defined and set from a PyElly command line (see Section 7); you can define
other global variables yourself in semantic procedures by doing a PUT or a GET with a
new global variable name. You can also set global variables with the I: option in a
grammar rule file.

5.7 Control Structures
Only two structures are supported in generative semantics: the IF-ELIF-ELSE
conditional and the WHILE loop; they are as follows: 

Page �33

PyElly User’s Manual

IF x=string # if local variable x has
 # value string, execute the
 # following block of code

ELIF x=string # follows an IF; the test is
 # made if all preceding
 # tests failed and will
 # control execution of
 # following block of code
 # (more than one ELIF can
 # follow an IF)

ELSE # the alternative to take
 # unconditionally after all
 # preceding tests have failed

WHILE x=string # the following block of code
 # is repeatedly executed
 # while the local variable
 # x is equal to string

END # delimits a block of code and
 # terminates an IF-ELIF-ELSE
 # sequence or a WHILE loop

An END must terminate every IF-ELIF-ELSE sequence and every WHILE loop. PyElly
will report a table definition error if any required END is missing for a control structure.

As in Subsection 5.4, we can check for single space characters here. For example,

IF x SP # check if local variable x is
 # a space character

ELIF x SP #

WHILE x SP #

Instead of SP, you may also have HT, LF, NL , or CR. ; NL is the same as LF. New lines in
a PyElly output buffer are always represented as a LF followed by an SP.

A tilde (~) preceding the variable name x reverses the logical sense of comparison in all
the checks above.

IF ~x=string # test if x ≠ string

The IF and ELIF commands also have a form that allow for the testing a variable
against a list of strings. PyElly allows for 

Page �34

PyElly User’s Manual

IF x=s, t, u # test if x == s or x == t or x == u
ELIF x=s, t, u # test if x == s or x == t or x == u

The multiple strings to be compared against here must be separated by a comma (,)
followed by a space. The space is essential for PyElly to recognize the listing here. The
tests here can be negated with a tilde (~) also. The checking of multiple space characters
SP, HT, NL, and CR as described above is unsupported.

Within a WHILE loop, you may also have

BREAK # unconditionally break out
 # of current WHILE loop

BREAKIF x=string # if local variable x has
 # value string, break out of
 # current WHILE loop

The condition for BREAKIF can negated with a preceding tilde (~) as above. You can
check for a single space character also.

5.8 Character Manipulation
These work with the current and next output buffers as indicated by < or > in a
command; x specifies a source or target local variable to work with.

EXTRACT > x n # drops the last n chars of
 # the current output buffer and
 # sets local variable x to the
 # string of dropped characters

EXTRACT x < n # drops the first n chars of
 # the next output buffer and
 # sets local variable x to the
 # string of dropped characters

INSERT < x # insert the chars of local
 # variable x to the end of the
 # current output buffer

INSERT x > # insert the chars of local
 # variable x to the start of the
 # next output buffer

PEEK x < # get a single char from
 # start of next output buffer
 # without removing it

Page �35

PyElly User’s Manual

PEEK > x # gets a single char from
 # end of current output buffer
 # without removing it

DELETE n < # deletes up to n chars from the
 # start of the next output buffer

DELETE n > # deletes up to n chars from the
 # end of the current output
 # buffer

STORE x k # save last deletion in a current
 # procedure in local variable
 # except for last k chars when
 # k > 0 or the first k chars
 # when k < 0; if unspecified,
 # k defaults to 0

SHIFT n < # shifts up to n chars from
 # the start of the next output
 # buffer to the end of the
 # current output buffer

SHIFT n > # shifts up to n chars from
 # the end of the current output
 # buffer to the start of the
 # next output buffer

If n is omitted for EXTRACT operation, it is assumed to be 1; if the < or > are omitted
from a DELETE or a SHIFT, then < is assumed. These commands must always have at
least one argument. All deleted text can be recovered by a STORE command.

The DELETE operation also has two variants

DELETE FROM s # this deletes an indefinite
 # number of chars starting from
 # the string s in the current
 # buffer up to the end

DELETE TO s # this deletes an indefinite
 # number of chars up to and
 # including the string s
 # in the next buffer

If the argument s is omitted for DELETE FROM or DELETE TO, it is taken to be the
string consisting of a single space character. If s is not found in the current or the next
buffer for DELETE FROM or DELETE TO, all of that buffer will be deleted. As with the
regular DELETE operation, any characters removed by this command can be recovered
in a local variable by the STORE command.

Page �36

PyElly User’s Manual

5.9 Insert String From a Table Lookup
This operation that uses the value of a local variable to select a string for appending at
the end of the current output buffer. It has the form

PICK x table # select from table according
 # to the value of x

The table argument is a literal string of the form

 (v1=s1#v2=s2#v3=s3#...vn=sn#)

where the # character must be used to terminate each table option. If the value of given
local variable x is equal to substring vi for a table option, then substring si will be
inserted. If there is no match, nothing will be inserted, but when vn is null, then sn will
be inserted if the variable x matches no other vi.

For example, the particular PICK operation

PICK x (uu=aaaa#vv=bbbb#ww=cccc#=dddd#)

in a generative semantic procedure or in a vocabulary table entry is equivalent to the
PyElly code

IF x=uu
 APPEND aaaa
ELIF x=vv
 APPEND bbbb
ELIF x=ww
 APPEND cccc
ELSE
 APPEND dddd
END

but the IF-ELSE form will take up multiple lines. PyElly will compile a PICK operation
to use a Python hash object for faster lookup.

The operation

PICK x (=dddd#)

will append dddd for any x, including x being set to the null string. 

Page �37

PyElly User’s Manual

5.10 Buffer Searching
There is a general search operation in forward and reverse forms. These assume
existence of a current and a new buffer as the result of executing SPLIT and BACK.

FIND s < # the contents of the new
 # buffer will be shifted to the
 # current buffer up to and including
 # the first occurrence of string s

FIND s > # as above, but the transferring
 # will be in the other direction
 # past first occurrence of s

The substring s may not contain any spaces. If s is missing, but either < or > is
specified, then s will be set to a single space character. If s is not found in a buffer scan,
the entire contents of the buffer will be shifted. If s is specified and a final < or > is
omitted, then > will be assumed. Note that s can include the characters < or >, which
can look confusing, but will have the correct interpretation in what to search for. Note,
however, that FIND < and FIND >, will always search for a single space.

A more specialized search allows you to align your current and new buffers at the start
of an output line as marked by a previously executed LINEFEED command.

ALIGN < # shift chars in new buffer to current
 # until a \n inserted by LINEFEED is
 # found; the current buffer should
 # end with \n followed by a space

ALIGN > # as above, but transfer will be in the
 # other direction; any matching \n and
 # following space will be left in the
 # current buffer, however

ALIGN will be like FIND in that the entire source buffer be moved if no \n is found; but
if found, the current buffer will always end up with <nl><sp> as its last two chars.

5.11 Execution Monitoring
To track the execution of semantic procedures when debugging them, you can use the
command:

TRACE # show processing status in tree

In the semantic procedure for a phrase, this will print to the standard error stream the
starting token position of the phrase in a sentence, its syntax type, the index number of
the syntactic rule, the degree of branching of the rule, the generative semantic stack
depth, the output buffer count, the number of characters in the current buffer:

Page �38

PyElly User’s Manual

TRACE @0 type=field rule=127 (1-br) stk=9 buf=1 (2 chars)

We see here that PyElly is running the semantics for the 1-branch rule 127 associated
with a phrase of type FIELD at token position 0; it is executing at the 9th level of calls
with a single buffer containing only two characters. If a subprocedure named pn (see
Subsection 5.13) has called the current generative semantic procedure either directly or
indirectly, then this will be identified also. The output above then becomes

TRACE @0 type=field rule=127 (1-br) stk=9 in (pn) buf=1 (2 chars)

If there are multiple named subprocedures in the chain of calls for the current
generative semantic procedure, then only the most recent will be reported.

To show the current string value of a local variable x, you can insert this command into
a semantic procedure:

SHOW x message # show value of local variable x

This writes the ID number of the phrase being interpreted, the name of the variable
being shown, its current string value, and an optional identifying message to the
standard error stream. For example,

SHOW @phr 108 : [message] VAR x= [012345]

The message string is optional here; it may contain spaces.

To see up to the last n chars of the current and up to the first n of the next output buffer
at the current point of running generative semantics, you can use a third command

 VIEW n # show n chars of current + next buffers

When executed in a generative semantic procedure, VIEW 3 will write the following
kind of message to the standard error stream:

VIEW = 0 @phr 6 : [u'u', u'n', u'>'] | [u’<‘, u’s’, u’s’’]

This first gives the index number of the current output buffer and the ID number of the
phrase being interpreted. The vertical bar (|) separates the list of Unicode characters
ending the current buffer from the list starting the next buffer. Set n to get as wide a
window here as you need; if unspecified, the default for n is 5. Run a sequence of VIEWs
to monitor progress in accumulating rewritten text for PyElly output.

Page �39

PyElly User’s Manual

5.12 Capitalization
PyElly has only two commands to handle upper and lower case in output.

CAPITALIZE # capitalize the first char
 # in the next buffer after a
 # split and back operation

This operates only on the next output buffer. If you fail to do a SPLIT and BACK
operation to create a next output buffer before running this command, you will get a
null pointer exception, which will halt PyElly.

UNCAPITALIZE # uncapitalize the first char
 # in the next buffer after a
 # split and back operation

The restrictions for CAPITALIZE apply here also.

5.13 Semantic Subprocedure Invocation
If DO is the name of a semantic subprocedure defined with P: in a PyElly grammar
table, then it can be called from a generative semantic procedure for a rule or another
subprocedure by giving the name in parentheses:

(DO) # call the procedure called DO

The subprocedure name must be defined somewhere in a PyElly A.g.elly file. This
definition does not have to come before the call. When a subprocedure finishes running,
execution will return to just after where it was called. Any local variables in the
subprocedure will then become undefined.

A subprocedure call will always take no arguments. If you want to pass parameters, you
must do so through local or global variables or in an output buffer. Similarly, results
from a subprocedure can be returned only by putting them into an output buffer or
passing them in a local or global variable.

The null subprocedure call () with no name is always defined; it is equivalent to a
generative semantic procedure consisting of just a RETURN. This is normally used only
for PyElly vocabulary definitions with no associated generative semantics (see
Subsection 9.4). 

Page �40

PyElly User’s Manual

6. Simple PyElly Rewriting Examples
We are now ready to look at some simple examples of semantic procedures for PyElly
syntax rules, employing the mechanisms and operations defined in the preceding
sections. Sections 8 and 9 will discuss more advanced capabilities.

6.1 Default Semantic Procedures
The notes in the Section 4.1.1 of this manual mentioned that omitting the semantic
procedure for a syntax rule would result in a default procedure being assigned to it. Now
we can finally define those default procedures. A rule of the form G:X->Y Z will have
the default

_
 LEFT
 RIGHT
__

Note that a RETURN command is unnecessary here as it is implicit upon reaching the
end of the procedure. You can always put one in yourself, however.

A rule of the form G:X->Y has the default semantic procedure

_
 LEFT
__

A rule of the form D:w<-X has the default

_
 OBTAIN
__

These are automatically defined by PyElly as subprocedures without names. They do
nothing except to implement the calls and returns needed minimally to maintain
communication between the semantic procedures for the syntactic rules associated with
the structure of a sentence derived by a PyElly analysis.

In the first example of a default semantic procedure above, a call to the procedure for
the left constituent structure X comes first, followed immediately by a call to the
procedure for the right constituent Y. If you wanted instead to call the right constituent
first, then you would have to supply your own explicit semantic procedure, writing

_
 RIGHT
 LEFT
__

Page �41

PyElly User’s Manual

In the second example above of a default semantic procedure, there is only one
constituent in the syntactic rule, and this can be called as a left constituent or a right
constituent; that is, a RIGHT call here will be interpreted as the same as LEFT.

In the third example of a default semantic procedure above, which defines a
grammatical word, there is neither a left nor a right constituent; and so we can execute
only an OBTAIN. Either a LEFT or a RIGHT command here would result in an error.

6.2 A Simple Grammar with Semantics
We now give an example of a nontrivial PyElly grammar. The problem of making
subjects and predicates agree in French came up previously in Section 3. Here we make
a start at a solution by handling elison and the present tense of first conjugation verbs in
French and of the irregular verb AVOIR “to have.” For the relationship between a
subject and a predicate in the simplest possible sentence, we have the following
syntactic rule plus semantic procedure.

G:SENT->SUBJ PRED
_
 VAR PERSON=3 # can be 1, 2, or 3
 VAR NUMBER=s # singular or plural
 LEFT # for subject
 SPLIT
 RIGHT # for predicate
 BACK
 IF PERSON=1
 IF NUMBER=s
 EXTRACT X < # letter at start of predicate
 IF X=a, e, è, é, i, o, u
 DELETE 1 # elison j’
 APPEND ’ #
 ELSE
 BLANK # otherwise, predicate is separate
 END
 INSERT < X # put predicate letter back
 END
 ELSE
 BLANK # predicate is separate
 END
 ELSE
 BLANK # predicate is separate
 END
 MERGE # combine subject and predicate
 APPEND !
__

The two local variables NUMBER and PERSON are for communication between the
semantic procedures for SUBJ and PRED; they are set by default to “singular” and “third

Page �42

PyElly User’s Manual

person”. The semantic procedure for SUBJ is called first with LEFT; then the semantic
procedure for PRED is called with RIGHT, but with its output in a separate buffer. This
lets us adjust the results of the two procedures before we actually merge them; here the
commands in the conditional IF-ELSE clauses are to handle a special case of elison in
French when the subject is first person singular and the verb begins with a vowel.

G:SUBJ->PRON
__

The above rule allows a subject to be a pronoun. The default semantic procedure for a
syntactic rule of the form X->Y as described above applies here, since none is supplied
explicitly.

D:i<-PRON
_
 APPEND je
 SET PERSON=1
__
D:you<-PRON
_
 APPEND vous
 SET PERSON=2
 SET NUMBER=p
__
D:it<-PRON
_
 APPEND il
__
D:we<-PRON
_
 APPEND nous
 SET PERSON=1
 SET NUMBER=p
__
D:they<-PRON
_
 APPEND ils
 SET NUMBER=p
__

These internal dictionary grammar rules define a few of the personal pronouns in
English for translation. The semantic procedure for each rule appends the French
equivalent of a pronoun and sets the PERSON and NUMBER local variables appropriately.
Note that, if the defaults values for these variables apply, we can omit an explicit SET.

Continuing, we fill out the syntactic rules for our grammar.

G:PRED->VERB
__

Page �43

PyElly User’s Manual

This defines a single VERB as a possible PRED; the default semantic procedure applies
again, since no procedure is supplied explicitly here.

Now we are going to define two subprocedures needed for the semantic procedures of
our selection of French verbs.

P:plural
_
 PICK PERSON (1=ons#2=ez#3=ent#)
__
P:1cnjg
_
 IF NUMBER=s
 PICK PERSON (1=e#2=es#3=e#)
 ELSE
 (plural)
 END
__

Semantic subprocedures plural and 1cnjg choose an inflectional ending for the
present tense of French verbs. The first applies to most verbs; the second, to first
conjugation verbs only. We need to call them in several places below and so define the
subprocedures just once for economy and clarity.

D:sing<-VERB
_
 APPEND chant # root of verb
 (1cnjg) # for first conjugation inflection
__
D:have<-VERB
_
 IF NUMBER=s
 PICK PERSON (1=ai#2=ais#3=a#)
 ELSE
 IF PERSON=3
 APPEND ont # 3rd person plural is irregular
 ELSE
 APPEND av # 1st and 2nd person are regular
 (plural)
 END
 END
__

We are defining only two verbs to translate here. Other regular French verbs of the first
conjugation can be added by following the example above for “sing”. Their semantic
procedures will all append their respective French roots to the current output buffer and
call the subprocedure 1cnjg.

Page �44

PyElly User’s Manual

The verb AVOIR is more difficult to handle because it is irregular in most of its present
tense forms, and so its semantic procedure must check for many special cases. Every
irregular verb must have its own special semantic procedure, but there are usually only a
few dozen such verbs in any natural language.

Here is how PyElly will actually process input text with this simple grammar. The
English text typed in for translation is shown in uppercase on one line, and the PyElly
translation in French is shown in lowercase on the next line.

YOU SING
vous chantez!

THEY SING
ils chantent!

I HAVE
j’ai!

WE HAVE
nous avons!

THEY HAVE
ils ont!

The example of course is extremely limited as translations go, but the results are correct
French, unlike those in Section 3. For more comprehensive processing, we would also
take English inflectional stemming into account, use macro substitutions to take care of
irregularities on the English side like has, and handle other subtleties. We also have to
deal with various tenses other than present as well as aspect, mood, and so forth. You
should, however, be able to envision now what a full PyElly grammar should look like
for rewriting English as French; it will take much more work just to make the rules fairly
complete, but the steps would be similar to what we already have seen above.

Page �45

PyElly User’s Manual

7. Running PyElly From a Command Line
We have so far described how to set up definition text files to create the various tables to
guide PyElly operation. This section will show you how to run PyElly for actual language
analysis, but first we will have to take care of some preliminary setup. That should be
fairly straightforward, but computer novices may want to get some technical help here.

To begin with PyElly was written entirely in version 2.7 Python, which seems to be the
most widely preinstalled by computer operating systems. The latest version of Python is
3.*, but unfortunately, this is incompatible with 2.7. So make sure you have the right
version here. Python is free software, and you can download a 2.7 release from the Web,
if needed. The details for doing so will depend on your computing platform.

There is a problem with Unicode output when running version 2.7 of Python. If you try
to redirect such output to a file, you may encounter a UnicodeEncodeError because
of the defaults of your Python system configuration. To avoid this error, put the
following line into the initialization shell file that will run each time you log in.

export PYTHONIOENCODING=utf8

The shell files for PyElly integration testing will do this setup, but you will have to take
care of it yourself whenever running PyElly application directly from a command line.

Once you have the latest version Python 2.7.* ready to go, you can download the full
PyElly package from GitHub. This is open-source software under a BSD license, which
means that you can do anything you want with PyElly as long as you identify in your
own documentation where you got it. All PyElly Python source code is free, but still
under copyright.

The Python code making up PyElly currently consists of 66 modules comprising about
11,000 source lines altogether. A beginning PyElly user really needs to be familiar with
only three of the modules.

ellyConfiguration.py - defines the default environment for PyElly processing.
Edit this file to customize PyElly to your own needs. Most of the time, you can leave
this module alone.

ellyBase.py - sets up and manages the processing of individual sentences from
standard input. You can run this for testing or make it a part of a programming
interface if you want to embed PyElly in a larger application.

ellyMain.py - runs PyElly from a command line. This is built on top of EllyBase
and is set up to extract individual sentences from continuous text in standard input.

The ellyBase module reads in *.*.elly language definition files to generate the various
tables to guide PyElly analysis of input data. Section 4 introduced three of them. For a
given application A, these will be A.g.elly, A.p.elly, and A.m.elly, with only the

Page �46

PyElly User’s Manual

A.g.elly file mandatory. Subsequent sections of this user manual will describe the
other *.*.elly definition files.

The PyElly tables created for an application A will be automatically saved in two files:
A.rules.elly.bin and A.vocabulary.elly.bin. The first is a Python pickled
file, which is not really binary since you can look at it with a text editor, but this will be
hard for people to read. The second is an actual binary database file produced by SQLite
from definitions in a given A.v.elly (see Subsection 9.4 for an explanation).

If the *.elly.bin files exist, ellyBase will compare their creation dates with the
modification dates of corresponding A.*.elly definition files and create new tables
only if one or more definition files have changed. If a *.rules.elly.bin is more
recent than a *.vocabulary.elly.bin file, then the latter will be recompiled
regardless of whether it is more recent than its corresponding *.elly.bin file.
Otherwise, the existing PyElly language rule tables will be reloaded from the
*.elly.bin files.

The files *.rules.elly.bin record which version of PyElly they were created under.
If this does not agree with the current version of PyElly, then PyElly will immediately
exit with an error message that the rule file is inconsistent. To proceed, you must then
delete all of your *.elly.bin files so that they will be regenerated automatically from
your latest language definition files.

In most cases, ellyBase will try to substitute a file default.x.elly if an A.x.elly file
is missing. This may not be what you want. You can override this behavior just by
creating an empty A.x.elly file. The standard PyElly download package includes eight
examples of definition files for simple applications to show you how to set everything up
(see Section 14).

You can see what ellyBase does by running it directly with the command line:

python ellyBase.py [name [depth]]

This will first generate the PyElly tables for the specified application and provide a
detailed dump of grammar rules allowing you to see any problems in a language
definition. The default application here will be test if none is specified. Resulting
tables will be saved as *.elly.bin files that PyElly can subsequently load directly to
start up faster. If you do run the test application here, ellyBase will respond:

release= PyElly v1.5.8.3
system = test
 . . .

>

(Initialization output has been omitted here, replaced by the ellipsis.)

Page �47

PyElly User’s Manual

After initializing, ellyBase will prompt for one sentence per input line, which it will then
try to translate. Its output will be a rewritten sentence in brackets if translation is
successful; or just ???? on failure. It will also show all parse trees built for the syntactic
analysis plus a detailed summary of internal details of parsing. The optional depth
argument above will limit how far down the reporting of parse trees will go (see -d for
ellyMain below).

For an application with batch processing of input sentences not necessarily on separate
lines, you normally will invoke ellyMain from a command line. The ellyMain.py file is
a straight Python script that reads in general text and allows you to specify various
options for PyElly language processing. Its full command line is as follows in usual Unix
or Linux documentation format:

python ellyMain.py [-b][-d n][-g v0,v1,v2,…][-p][-noLang] [name] < text

where name is an application identifier like A above and text is an input source for
PyElly to translate. If the identifier is omitted, the application defaults to test.

The commandline flags here are all optional. They will have the following
interpretations in PyElly ellyMain:

When ellyMain starts up in interactive mode, you will see a banner in the following form
with some diagnostic output replaced by . . .: 

-b operate in batch mode with no prompting; PyElly will otherwise run in
interactive mode with prompting when its text input comes from a user
terminal.

-d n set the maximum depth for showing a PyElly parse tree to an integer n.
This can be helpful when input sentences are quite long, and you do not
want to see a full PyElly parse tree. Set n = 0 to disable parse trees
completely. See Section 12 for more details.

-g v0,v1,v2,.. define the PyElly global variables gp0, gp1, gp2, ... for PyElly semantic
procedures with the respective specified string values v0, v1, v2, ...

-p show cognitive semantic plausibility scores along with translated output.
If semantic concepts are defined, PyElly will also give the contextual
concept of the last disambiguation according to the order of
interpretation by generative semantics. This is intended mainly for
debugging, but may be of use in some applications (see disambig,
described in Section 14).

-noLang do not assume that input text will be in English; the main effect is to turn
off English inflectional stemming (See Section 11).

Page �48

PyElly User’s Manual

PyElly v1.5.8.3, Natural Language Filtering
Copyright 2014-2018 under BSD open-source license by C.P. Mah
All rights reserved

reading test definitions
recompiling grammar rules
 . . .
recompiling vocabulary rules
 . . .

Enter text with one or more sentences per line.
End input with E-O-F character on its own line.

>>

You may now enter multiline text at the >> prompt. PyElly will process this exactly as it
would handle text from a file or a pipe. Sentences can extend over several lines, or a
single line can contain several sentences. PyElly will automatically find the sentence
boundaries according to its current rules and divide up the text for analysis.

As soon as PyElly reads in a full sentence, it will try to write a translation to its output.
In interactive mode, this will be after the first linefeed after the sentence because PyElly
has to read in full lines. A linefeed will NOT break out of the ellyMain input processing
loop, but consecutive linefeeds will terminate a sentence even without punctuation. End
all input with an EOF (control-D on Unix and Linux, control-Z in Windows). A keyboard
interrupt (control-C) will break out of ellyMain with no further processing. PyElly
..elly language definition files should be UTF-8 with arbitrary Unicode except in
grammar symbol names. As text input to translate, however, PyElly will accept only
ASCII, Latin-1 Supplement, Latin Extender A, some Extender B characters plus some
other Unicode punctuation, and Greek lowercase; all other input characters will be
converted to spaces or to underscores. The chinese application described in Section 14
uses definition files with both traditional and simplified Chinese characters in UTF-8.

All PyElly translation output will be UTF-8 characters written to the standard output
stream, which you may redirect to save to a file or pipe to modules outside of PyElly.
PyElly parse trees and error messages will also be in UTF-8 and will go to the standard
error stream, which you can also redirect. Historically, the predecessors of PyElly have
been filters, which in Unix terminology means a program that reads from standard
input and writes a translation to standard output.

Here is an example of interactive PyElly translation with a minimal set of language rules
(echo.*.elly) defining a simple echoing application with inflectional stemming:

>> Who gets the gnocchi?

=[who get -s the gnocchi?]

Page �49

PyElly User’s Manual

where the second line is actual output from ellyMain. PyElly by default converts upper
case to lower, and will strip off English inflectional endings as well as -ER and -EST. You
can get stricter echoing by turning off inflectional stemming and morphological analysis.

PyElly will first look for the definition files for an application in your current working
directory. You can change this by editing the value for the symbol baseSource in
ellyConfiguration.py. The definition files for the various PyElly applications
described in Section 14 can be found in the applcn subdirectory under the main
directory of Python source files, resources, and documentation. Configure here to your
particular working environment.

PyElly *.py modules by default should be in your working directory, too. You can
change where to look for them, but that involves resetting environment variables for
Python itself. PyElly is written as separate Python modules to be found and linked up
whenever you start up PyElly. This is in contrast to other programming languages where
modules can be prelinked in a few executable files or packaged libraries.

There is a stripped-down implementation of top-level PyElly processing called
ellySurvey.py, which ignores sentence boundaries and omits the parsing and
rewriting of input text. Instead, this produces a listing of all the tokens found by PyElly
along with source tags indicating how each was derived. This is invoked with the
command line:

python ellySurvey.py [name] < text

where name is an application identifier and text is an input source to translate. If the
identifier is omitted, the application defaults to test.

The ellySurvey listing of tokens will have the following source tags:

A token can have more than one source if your language rules have multiple definitions
for it; for example, a term may be in both your internal grammar dictionary and your
external vocabulary table, and it might also be recognized by entity extraction as well as
by the finite state automaton built into PyElly. Here is an example of a token listing with
the marking application: 

Ee by entity extraction

Fa by finite automaton for application

Id in internal dictionary for application

Pu by punctuation recognizer

Un unknown

Vt in external vocabulary table for application

Page �50

PyElly User’s Manual

Id on/On
Ee 09/16/____
Pu ,
Id his
Vt country
Vt take
FaId -ed
Id in
Vt at least
Fa 1500
Vt refugee/refugees
FaId -s
Vt flee/fleeing
FaId -ing
Vt war
Pu .

A token is shown in its analyzed form as it would appear in a PyElly parse tree; if this
differs from its original input form after possible macro and other transformations, then
that form is also given on the same line, separated by a slash (/). The listing makes it
easier to find problems in tokenization or vocabulary lookup. Unknown tokens are
identified in the listing, since you often will want to define them explicitly.

If you are processing some large text corpus for the first time, you should always run
ellySurvey first. This should help identify the problems in that data solvable just by
vocabulary definitions, which should then make subsequent grammar definitions easier.

On the whole, PyElly gives you many options for processing natural language input. You
must, however, be comfortable with computing at the level of command lines in order to
run PyElly in ellyMain.py or ellyBase.py or ellySurvey.py. There is as yet no
graphical user interface for PyElly. The current PyElly implementation may be a
challenge to computer novices unfamiliar with Python or with commandline invocation.

Page �51

PyElly User’s Manual

8. Advanced Capabilities: Grammar
As noted above, PyElly language analysis is built around a parser for context-free
languages to take advantage of extensive technology developed for parsing computer
programming languages. So far, we have stayed strictly context-free except for macro
substitution prior to parsing and use of local variables shared by generative semantic
procedures to control translation.

You can actually accomplish a great deal with such basics alone, but for more
challenging language analysis, PyElly supports other grammatical capabilities. These
include extensions to grammar rules like syntactic and semantic features and the special
... syntactic type mentioned earlier. Other extensions related to vocabularies are
covered in the next section.

The handling of sentences and punctuation in continuous text is also normally a topic of
grammar, but PyElly breaks this out as a separate level of processing for modularity. The
details on this will be discussed in Section 11.

8.1 Syntactic Features
PyElly currently allows for only 112 distinctive syntactic types, including predefined
types like SENT and UNKN. If needed, you get more types by redefining the variable NMAX
in the PyElly file symbolTable.py, but there is a more convenient option here. PyElly
also lets you qualify syntactic types through syntactic features, which in effect greatly
multiplies the total number of syntactic types available.

Syntactic features are binary tags for syntactic types, allowing them to be divided into
subcategories; they are best known from Noam Chomsky’s seminal work Syntactic
Structures (1957). Currently, PyElly allows up to sixteen syntactic features associated
with a subset of syntactic types. You can define those subsets and name the features
however you want. You can get more than sixteen syntactic features by redefining the
variable FMAX in symbolTable.py, but this is not recommended.

The advantage of syntactic features is that grammar rules can disregard them. For
example, a DEFINITE syntactic feature would allow definite noun phrases to be
identified in a grammar rule without having to introduce a new structural type like DNP.
Instead, we would have something like NP[:DEFINITE]. A grammar syntax rule like
PRED->VP NP will apply to NP[:DEFINITE] as well as to plain NP. With a new syntax
type like DNP, we would also have to add the rule PRED->VP DNP.

PyElly syntactic features are expressed by an optional bracketed qualifier appended to a
syntactic structural type specified in a rule. The qualifier takes the form

[oF1,F2,F3,...,Fn]

Page �52

PyElly User’s Manual

where “o” is a single-character identifier for a set of feature names for a specific subset
of syntactic types and F1, …, Fn are the actual names composed of alphanumeric
characters, possibly preceded by a prefix ‘-’ or ‘+’. For clarity, set identifiers should be
punctuation characters, but never be from the set { ‘+’ , ‘-’ , ‘*’ , ‘[’ , ‘]’ , ‘,’ }.

Allowing multiple sets of feature names is for convenience only. Each set will have to
refer to the same FMAX feature bits defined for each phrase node in a PyElly parse tree.
When defining multiple name sets, make sure that their usage is consistent. PyElly will
reject a syntactic type occurring with syntactic feature names from more than one set
because features with the same name in different rules may refer to different bits.

Bracketed syntactic features in language rules must follow a syntactic type name with no
intervening space. Spaces may follow a comma in a list of syntactic feature names for
easier reading, but any before or after a starting left bracket ([) will be seen as an error.

A syntax rule with feature names might appear as follows:

G:NP[:DEFINITE,*RIGHT]->THE NP[:-DEFINITE,*RIGHT]

This specifies a rule of the form NP->THE NP, but with additional restrictions on
applicability. The NP as specified on the right side of the rule must have the feature
*RIGHT, but not DEFINITE. If the condition is met, then the resulting NP structure as
specified on the left of the rule is defined with the features DEFINITE and *RIGHT. The
‘:’ is the feature class identifier here for the DEFINITE and *RIGHT feature names.

PyElly has no upper limit on the number of different sets, but have as many as you want
as long as you can tell them apart. Remember that syntactic features are supposed to
simplify grammars and let you define fewer rules. A syntactic feature name should
include only ASCII letters and digits, with the case of letters not mattering.

The special feature name *RIGHT (or equivalently *R) will be defined automatically for
all syntactic feature sets. Setting this feature on the left side of a syntactic rule will have
the side effect of making that constituent structure inherit any and all syntactic features
of its rightmost immediate subconstituent as specified in the rule. This provides a
convenient mechanism for passing syntactic features up a parse tree without having to
say what exactly they are.

The special feature name *LEFT (or equivalently *L) will also be defined automatically.
This will work like *RIGHT, except that inheritance will be from the leftmost immediate
subconstituent. It is permissible to inherit both ways. The *LEFT and *RIGHT syntactic
features for a phrase node will be mutually exclusive, however; setting one will turn off
the other. With a one-branch rule, *LEFT and *RIGHT will be the same for inheritance,
though remaining distinct as syntactic features.

A third special feature name *UNIQUE (or equivalently *U or *X) will also be in every
PyElly syntactic feature set. Its main purpose is to prevent a phrase from matching any
other phrase in PyElly ambiguity checking while parsing; it cannot be inherited. It can,

Page �53

PyElly User’s Manual

however, be a regular syntactic feature at a leaf node where there is no inheritance. No
starred (*) special syntactic features should ever be redefined by a PyElly user.They will
always be counted in the total number of syntactic features available for any grammar.

A feature F can be marked with a ‘-’ on the left side of a grammatical rule; for example,
X[:*L,-F]—>Y[:F,-G]. This has a different interpretation than that for a feature on
the right side of a rule, such as G for the syntactic category Y in the example rule. It
serves to turn off a particular feature that might have been inherited, in this case F.

You may also turn off a feature that was just set as in Z[:*R,-*R]—>W[:H]; this makes
sense only with the special *L and *R syntactic features, which have side effects when
turned on that will persist even after they are turned back off. The result here is that the
resulting Z phrase node will inherit the feature H, but will not have *R also turned on in
the end. The action is inherent to the PyElly implementation of feature inheritance, but
can be helpful when you use the *L and *R features to distinguish leaf phrase nodes.

8.2 The ... Syntactic Type
When the ... type shows up in a grammar, PyElly automatically defines a syntax rule
that allows phrases to be empty. If you could write it out, the rule would take the form

...->

This is sometimes called a zero rule, which PyElly will not allow you to specify explicitly
in a *.g.elly file for any syntactic type on the left. In strict context-free grammars, any
rule having a syntactic structural type going to an empty phrase is forbidden. Such rules
are allowed only in so-called type 0 grammars, the most unrestricted of all; but the
languages described by such grammars tend to be avoided in text processing because of
the difficulty in parsing them.

With ... as a special syntactic type, however, PyElly achieves much of the power of type
0 grammars without giving up the parsing advantages of context-free grammars. The
advantage with using ... in PyElly is that it allows a grammar to be more compact
when this syntactic type is applicable. For example, suppose that we have the rules

z->x a
z->x b
z->x c
z->x d
z->a
z->b
z->c
z->c
x->unkn
x->x unkn

Page �54

PyElly User’s Manual

where unkn is the predefined PyElly syntactic category introduced in Section 4 (this will
be explained more fully in Section 9.1). Now if x is not of interest to us in an eventual
translation, then we can replace all the above with just the rules

z->... a
z->... b
z->... c
z->... d
...->unkn
...->... unkn

The ... type was intended specifically to support keyword parsing, which tries to
recognize a limited number of words in input text and more or less ignores anything
else. A PyElly grammar to support such parsing can always be written without ..., but
may be unwieldy. The doctor application for PyElly illustrates how this kind of
keyword grammar would be set up; it includes syntax rules like the following:

g:ss->x ...
__
g:x[@*right]-> ... key
__
g:...->unkn ...

The syntactic type key here represents all the various kinds of key phrases to recognize
in a psychiatric dialog; for example, “mother” and “dream”. We can get away with only
one syntactic type here because, with about a dozen syntactic features available for it, we
can distinguish between 4095 different kinds of key phrases.

The actual responses of our script will be produced by semantic procedures for the rules
defining x[@*right] phrases. Note that different responses to the same keyword must
be listed as separate rules with the same syntactic category and features. A simplified
listing of grammar rules here might be

g:sent[@*right]->ss
__
g:x->... key
__
g:key[@ 0,1]->fmly
__
g:ss[.*right]->x[@ 0, 1,-2,-3,-4,-5,-6] ...
_
 append TELL ME MORE ABOUT YOUR FAMILY
__
g:ss[.*right]->x[@ 0, 1,-2,-3,-4,-5,-6] ...
_
 append WHO ELSE IN YOUR FAMILY
__
d:mother <- fmly

Page �55

PyElly User’s Manual

__
g:...->unkn
__
g:...->unkn ...
__

This defines two different possible responses for key[@ 0,1] in our input. PyElly
ambiguity handling will then automatically alternate between them (see Section 10).

The grammar here is incomplete, recognizing only sentences with a single keyword and
nothing else. To allow for sentences without a keyword, we also need a rule like

g:ss->...
__

The ... syntactic type also has the restriction that you cannot specify syntactic features
for it. If you do put something like ...[.F1,F2,F3] in a PyElly rule, it be treated as
just This is mainly to help out the PyElly parser, which is already working quite
hard here; but it also is because PyElly needs to use such features for its own internal
purposes (see Subsection 12.3.3).

PyElly will also block you from defining a rule like

g:...->...
__

or like

g:X->... ...
__

where X is any PyElly syntactic type, including

The ... syntactic type can be quite tricky to use effectively in a language description,
but it is also tricky for PyElly to handle as an extension to its basic context-free parsing.
The various restrictions here are a reasonable compromise to let us do most of what we
really need to do. See Subsection 12.3.3 for details on how PyElly parsing actually uses
grammar rules containing the syntactic type

Page �56

PyElly User’s Manual

9. Advanced Capabilities: Vocabulary
PyElly operates by reading in, analyzing, and rewriting out sentences. To do this, it
requires syntactic and semantic information for every text element that it encounters:
words, names, numbers, identifiers, punctuation, and so forth. Certain text elements
like punctuation will be fairly limited, but defining all the rest can be a big undertaking
even for fairly simple applications.

In all our PyElly examples here so far, we have already seen several ways of defining text
elements in a language.

• An explicit D: rule in a grammar.

• Assignment of syntactic information through matching of specified patterns.

• Using the predefined UNKN syntactic type when a definition is lacking.

These are fine with small vocabularies, but useful natural language applications must
deal with hundreds or even tens of thousands of distinct terms. These may not fall into
obvious patterns; and stuffing them all into a *.g.elly grammar file will demand more
keyboard entry than most people care to do. Treating most text elements as UNKN is
always a fallback option, but this works well only with simple grammars.

There is no perfect solution here. PyElly can only try to provide a user enough
vocabulary definition options to make the overall task a little less painful. So, in addition
to the methods above, PyElly also incorporates builtin morphological analysis of
unknown words to infer a syntactic type, plug-in code for recognizing complex entities
like numbers, time, and dates, and vocabulary tables loaded from external databases.
These will be described in separate subsections below, but we first should explain better
how the UNKN syntactic type works.

9.1 More on the UNKN Syntactic Type
We have run across the UNKN syntactic type several times already in this manual.
Whenever text element xxxx in its input cannot be otherwise identified by PyElly, it will
be assigned the type UNKN. In effect, PyElly generates a temporary rule of the form:

D:xxxx <- UNKN
_
 OBTAIN
__

Such a rule is in effect only while PyElly is processing the current input sentence.

By itself, UNKN solves nothing. It just gives PyElly a handle for working with unknown
elements, and you still are responsible for supplying the grammar rules and associated
semantics to tell PyElly how to interpret a sentence having UNKN as one of its
subconstituents. The simplest possibility here is to make some guesses; for example, 

Page �57

PyElly User’s Manual

G:NOUN->UNKN

G:VERB->UNKN
__

These two rules allow an unknown word to be treated as either a noun or a verb. So,
when given a sentence containing unknown xxxx, PyElly can try to analyze it as either a
noun or a verb. If only one results in a successful parse, then we have managed to get
past the problem of having no definition for xxxx. If neither works out, we have lost
nothing; if both work out, then PyElly can try to figure out which is the more plausible
using the cognitive semantic facilities described in Section 10.

9.2 Breaking Down Unknown Words
An unknown word can also be resolved by looking at how it is put together. For
example, the word UNREALIZABLE may be missing from a vocabulary, but it could be
broken down into UN+ +REAL -IZE -ABLE, allowing us to identify it as an adjective
based on the root word REAL, which is more likely to be defined already in a vocabulary.
PyElly develops this idea further, and this will be described in the immediately following
subsections.

Text document search engines fifty years ago were already using word analysis to reduce
the size of their keyword indexes. This was to manage the many variations a search term
might take: MYSTERY versus MYSTERIES as well as MYSTIFY, MYSTICISM, and
MYSTERIOUS. Since these all revolve around a common concept, many system builders
opt to reduce them all to the single term MYSTERY in a search index. This is also helpful
for maximizing the number of relevant documents retrieved for a query.

Consequently, many kinds of rule- and table-driven word stemming exist. These can
often be rather crude like the Porter algorithm, but we can do it much more reliably if
we work long enough at refining the rules for stemming. For English at least, PyElly now
has two quite separate PyElly tools for analyzing the structure of words as a way of
dealing with unknown terms.

9.2.1 Inflectional Stemming

An inflection is a change in the form of a word reflecting its grammatical use in a
sentence. Indo-European languages, which include English, tend to be highly inflected;
and in instances like Russian, the form of most words can vary greatly to indicate
person, number, tense, aspect, mood, and case. Modern English, however, has kept only
a few of the inflections of Old English, and so it has been easier to formulate rules to
characterize how a particular word can vary.

PyElly inflectional stemming currently recognizes only five endings for English: -S, -ED,
-ING, -N, and -T. These each have their own associated stemming logic and also share
additional logic related to recovering the uninflected form of a word. All that logic is

Page �58

PyElly User’s Manual

based on American English spelling rules and recognizing special cases. PyElly
coordinates its execution through the module inflectionStemmerEN.py.

If an unknown word ends in -S, -ED, -ING, -N, or -T, PyElly will apply the logic for the
ending to see whether it is an inflection and, if so, what the uninflected word should be.
Though such logic is necessarily incomplete, it has been refined by forty years of use in
various systems and is generally accurate for American spellings of most English words.
For example,

winnings ==> win -ing -s
placed ==> place -ed
judging ==> judge -ing
cities ==> city -s
bring ==> bring
sworn ==> swear -n
meant ==> mean -t

PyElly stemming will automatically prepend a hyphen (-) on any split off word ending
so that it can be recognized. The original word in the PyElly input stream is then
replaced by the uninflected word followed by the removed endings as shown. Each
ending will be taken as a separate token in PyElly parsing.

In some applications, you may just want to ignore the removed word endings, but these
can be quite valuable for figuring out unknown words. The -ED, -ING, -N, and -T
endings indicate a verb, and you can provide grammar rules to exploit that syntactic
information. For example,

D:-ED <- ED
__
D:-T <- ED
__
D:-N <- ED
__
G:VERB[|ED]->UNKN ED
__

To use English inflectional stemming in PyElly, setting the language variable in the
ellyConfiguration.py file to EN. To override such stemming just for a particular
word, define that word in a vocabulary table entry so that it will also be known in its
inflected form. This does not work for D: internal dictionary entries.

The logic for an ending X is defined by a text file X.sl loaded by PyElly at runtime. You
can also define your own inflectional stemming logic by editing the current *.sl files or
by writing new ones. The current files for English are Stbl.sl, EDtbl.sl,
INGtbl.sl, Ntbl.sl, Ttbl.sl, rest-tbl.sl, spec-tbl.sl, and undb-tbl.sl.
To do inflectional stemming for a new language ZZ, you will have to write the *.sl files
and a inflectionStemmerZZ.py. Use inflectionStemmerEN.py as a model here.

Page �59

PyElly User’s Manual

Here is a segment of actual logic from Stbl.sl, which tells PyElly what to check in
identifying a -S inflectional ending when it is preceded by an IE. The literal strings for
comparison in the logic below have their characters in reverse order because PyElly will
be matching from the end of a word towards its start.

IF ei
 IF tros {SU}
 IF koo {SU}
 IF vo {SU}
 IF rola {SU}
 IF ppuy {SU}
 IF re
 IF s
 IF im {SU 2 y}
 END {FA}
 IF to {SU}
 END {SU 2 y}
 IF t
 IS iu {SU 2 y}
 LEN = 6 {SU}
 END
 END {SU 2 y}

This approximately translates to

if you see an IE at the current character position, back up and
 if you then see SORT, succeed.
 if you then see OOK, succeed.
 if you then see OV, succeed.
 if you then see ALOR, succeed.
 if you then see YUPP, succeed.
 if you then see ER, back up and
 if you then see S, back up and
 if you then see MI, succeed, but drop the word’s last two letters and add Y.
 otherwise fail.
 if you then see OT, then succeed.
 otherwise succeed, but drop the word’s last two letters and add Y.
 if you then see T, then back up and
 if you then see a I or a U, then succeed, but drop the word’s last two letters and add Y.
 if the word’s length is 6 characters, then succeed.
 otherwise succeed, but drop the word’s last two letters and add Y.

This stemming logic is equivalent to a finite state automaton (FSA). Its operation should
be fairly transparent, although the total number of different rules for English inflections
has grown to be quite extensive. You may nevertheless eventually run into a case that is
handled incorrectly and that you will want to add to the rules. Make sure, however, to
test out every change so that you can avoid making other things worse.

The module deinflectedMatching has a simplified inflectional stemmer for looking up a
word in a table of roots. This covers only the most regular forms of English inflection. 

Page �60

PyElly User’s Manual

9.2.2 Morphology

Morphology in general is about how words are put together, including processes like
BLACK + BIRD ==> BLACKBIRD, EMBODY + -MENT ==> EMBODIMENT, and
KOREAN + POP ==> K-POP. PyElly morphological analysis is currently limited to that
involving the addition of prefixes or suffixes to a root, which is not necessarily a word.

The morphology component of PyElly started out as simple decision tree logic for just
removing common endings from English words, including -S, -ED, and -ING. It has now
evolved to focus on non-inflectional endings and to output the actual affixes removed as
well as the final root form.

Earlier above, we saw “unrealizable” broken down into UN+, +REAL, -IZE, and -ABLE.
True morphological analysis here would also tell us that the -IZE suffix changes the
word REAL into a verb, the -ABLE suffix changes the verb REALIZE into an adjective
again, and the prefix UN+ negates the sense of the adjective REALIZABLE. This is what
PyElly can now do, which is useful in figuring out the syntactic type of unknown words.

For an application A, PyElly will work with prefixes and suffixes through two language
rule tables defined by files A.ptl.elly and A.stl.elly, respectively. These are akin
to the grammar, macro substitution, and word pattern tables already described. We
have two separate files here because suffixes tend to be more significant for analyses
than prefixes, and it is common to do nothing at all with prefixes.

PyElly morphological analysis will be applied only to words that otherwise would have
the UNKN syntactic type after all other lookup and pattern matching has been done. The
result will be similar to what we see with inflectional stemming; and to take advantage
of them, you will also have to add the grammar rules to recognize prefixes and suffixes
and incorporate them into an overall analysis of an input sentence.

9.2.2.1 Word Endings (A.stl.elly)

PyElly suffix analysis will be done only after removal of any inflectional endings. For
application A, the A.stl.elly file guiding this will contain a series of patterns and
actions like the following:

abular 2 2 le.
dacy 1 2 te. 1
entry 1 4 .
gual 2 3 . 0a
ilitation 2 6 &,
ion 2 0 .
lenger 2 5 . 0e
oarsen 1 5 .

Page �61

PyElly User’s Manual

piracy 1 4 te. 1
santry 1 4
tention 1 3 d.
uriate 2 2 y.
worship 0 0 .
|carriage 0 0 .
|safer 1 5 . 0e

Each line of a *.stl.elly file defines a single pattern plus actions to be taken upon
matching. The format of a rule is as follows from left to right:

• A word ending to look for. This does not have to correspond exactly to an actual
morphological suffix and its context; the actions associated with a rule will define that
suffix. The vertical bar (|) at the start of a pattern string matches the start of a word.

• A single digit specifying a contextual condition for an ending to match: 0= avoid any
stemming for this match, 1= no conditions apply, 2= the ending must be preceded by a
consonant, and 3= the ending must be preceded by a consonant or U.

• A number specifying how many of the characters of the matched characters to keep as
a part of a word after removal of a morphological suffix. A starting vertical bar (|) in a
listed ending will count as one character here.

• A string specifying what letters to add to a word after removal of a morphological
suffix. An & in this string is conditional addition of e in English words, applying a
method defined in English inflectional stemming.

• A period (.) indicates that no further morphological analysis be applied to the result
of matching a suffix rule and carrying out the associated actions; a comma (,) here
means to continue morphological analysis recursively. This is mandatory.

• A number indicating how many of the starting characters of the unkept part of a
matching ending to drop to get a morphological suffix to be reported in an analysis.

• A string specifying what letters to add to the front of the reduced unkept part of a
matching ending in order to make a full morphological suffix.

In applying such pattern rules to analyze a word, PyElly will always take the longest
match. For example, if the end of a word matches the LENGER pattern above, then
PyElly will ignore the shorter matches of a ENGER pattern or a GER pattern.

In the LENGER rule above, PyElly will accept a match at the end of word only if
preceded by a consonant in the word. On a match, the rule specifies to keep 5 of the
matched characters in the resulting root word. From the rest of a matched ending,
PyElly will drop no characters, but add an E in front to get the actual suffix removed.

So the word CHALLENGER will be analyzed as follows according to the suffix patterns
above:

Page �62

PyElly User’s Manual

CHAL LENGER (split off matched ending and check preceding letter)

CHALLENGE R (move five characters of matched ending to resulting word)

CHALLENGE ER (add E to remaining matched ending to get actual suffix -ER)

The period (.) in the action for LENGER specifies no further morphological analysis.
With a comma (,), PyElly would continue, possibly producing a sequence of different
suffixes by reapplying its rules to the word resulting from preceding analyses. This can
continue indefinitely, with the only restriction being that PyElly will stop trying to
remove endings when a word is shorter than three letters.

To recognize the stripped off morphological suffixes in a grammar, you should define
rules like

D:-ion <- SUFFIX[:NOUN]
__

and then add G: grammar rules for dealing with these syntactic types as in the case of
inflections. For example,

G:NOUN->UNKN SUFFIX[:NOUN]
__

A full grammar would of course have to be ready to deal with many different
morphological suffixes.

The PyElly file default.stl.elly is a fairly comprehensive compilation of English
word endings evolving over the past fifty years and covering most of the non-foreign
irregular forms listed in WordNet exception files. If there is more than one possible
analysis, PyElly cannot handle; for example RENT is not reduced to REND. If you want
to do something like this, then you have to supply your own grammar rules.

The default.stl.elly file also includes transformations of English irregular
inflectional forms, which actually involve no suffix removal. For example, DUG becomes
DIG -ED. This cannot be handled by PyElly inflectional stemming logic.

9.2.2.2 Word Beginnings (A.ptl.elly)

For prefixes, PyElly works with patterns exactly as with suffixes, except that they are
matched from the beginning of a word. For example

contra 1 0 .
hydro 1 0 .
non 2 0.
noness 1 3. # for nonessential
pseudo 1 0 .
quasi 1 0 .

Page �63

PyElly User’s Manual

retro 1 0 .
tele 1 0 .
trans 1 0 .
under 1 0 .

The format for patterns and actions here is the same as for word endings. As with
endings, PyElly will take the action for the longest pattern matched at the beginning of a
word being analyzed.

Prefixes will be matched after suffixes and inflections have been removed. Removing a
prefix must leave at least three characters in the remaining word. Actions associated
with the match of a prefix will typically be much simpler than those for suffixes, and
rules for prefixes will tend to be as simple as those in the example above.

PyElly removal of prefixes will be slightly different from for suffixes. With suffixes, the
word STANDING becomes analyzed as STAND -ING, but with the prefix rules above,
UNDERSTAND would become UNDER+ +STAND. Note that a trailing + is used to
mark a removed prefix instead of a leading – for suffixes. Unlike with suffixes, only a
single prefix rule at a time can be applied to a word being looked up.

In the overall scheme of PyElly processing of an unknown word, inflections are checked
first, then suffixes, and finally prefixes. If there is any overlap between the suffixes and
the prefixes here, then inflections and suffixes takes priority. Prefix rules tend to be
more unreliable than suffix rules except in special domains like chemical names.

For example, NONFUNCTIONING becomes NON+ +FUNCT -ION -ING with the
morphology rules above. A grammar would then have to stitch these parts back together
in an analysis.

To work with prefixes in a grammar, you will need a dictionary rule like

D:non+ <- PREFIX[+NEG]
__

and you should by now know how to supply the required grammar rules yourself.

9.3 Entity Extraction
In computational linguistics, an entity is some phrase in text that stands for something
specific that we can talk about. This is often a name like George R. R. Martin or North
Carolina or a title like POTUS or the Bambino; but it also can be insubstantial like Flight
VX 84, 888-CAR-TALK, 2.718281828, NASDAQ APPL, or orotidine 5'-phosphate.

The main problem with entities is that almost none of them will normally be found in a
predefined vocabulary. People seem to handle them in stride while reading text,
however, even when they are unsure what a given entity means exactly. This is in fact
the purpose of much text that we read: to inform us about something we might be
unfamiliar with. A fully competent natural language system must be able to function in
this kind of situation.

Page �64

PyElly User’s Manual

At the beginning of the 21st Century, systems for automatic entity extraction from text
were all the rage for a short while. Various commercial products with impressive
capabilities came on the market, but unfortunately, just identifying entities is
insufficient to build a compelling application, and so entity extraction systems mostly
fell by the wayside in the commercial marketplace. In a tool like PyElly, however, some
builtin entity extraction support can be quite valuable.

9.3.1 Numbers

PyElly no longer has a predefined NUM syntactic type. The PyElly predecessor written in
C did have compiled code for number recognition, but this covered only a few possible
formats and was dropped later in Jelly and PyElly for a more flexible solution. If you
want PyElly to recognize literal numbers in text input, you must make use of special
patterns in files *.p.elly as described in Section 4.2.

PyElly, however, also has gone further here. It also has some builtin capabilities for
automatic normalizations of number references so that you need fewer patterns to
recognize them. In particular,

• Automatic stripping out of commas in numbers as an alternative to doing this with
special pattern matching:

 1,000,000 ==> 1000000.

• Automatic mapping of spelled out numbers to a numerical form:

 one hundred forty-third ==> 143rd

 fifteen hundred and eight ==> 1508

Here you still need patterns to recognize the rewritten numbers so that PyElly can
process them. You can disable all such number rewriting by setting the variable
ellyConfiguration.rewriteNumbers to False.

9.3.2 Dates and Times

Dates and Times could be handled as PyElly patterns, but their forms can vary so much
that this would take an extremely complicated finite-state automaton. For example, here
are just two of many possible kinds of dates:

the Fourth of July, 1776
2001/9/11

To recognize such entities, the PyElly module extractionProcedure.py defines
some date and time extraction methods written in Python that can be called
automatically when processing input text.

Page �65

PyElly User’s Manual

To make such methods available to PyElly, they just have to be listed in the
ellyConfiguration.py module. Here is some actual Python code to do so:

import extractionProcedure

extractors = [# list out extraction procedures
 [extractionProcedure.date , 'date'] ,
 [extractionProcedure.time , 'time']
]

You can disable date or time extraction by just removing its method name from the
extractors list. The second element in each listed entry is a syntax specification string,
generally indicating a syntactic category plus syntactic features to be given to a
successfully extracted entity; these should be coordinated with other PyElly grammar
rules. An optional third element is a semantic feature specification string, which can be
‘-’ for no features. An optional fourth element is an integer plausibility scoring.

The date and time methods above are part of the standard PyElly distribution. These
will do some normalization of text before trying to recognize dates and times. Dates will
be rewritten in the form

mm/dd/yyyyXX

For example, 09/11/2001ad. Times will be converted to a 24-hour notation

hh:mm:ssZZZ

For example, 15:22:17est. If date or time extraction is turned on, then your grammar
rules should expect to expect to see these forms when a generative semantic procedure
executes an OBTAIN command. The XX epoch indicator in a date and the ZZZ zone
indicator in a time may be omitted in PyElly input.

9.3.3 Names of Persons (A.n.elly)

Natural language text often contains the names of persons and of things. These can be
handled in various ways within PyElly, but names generally will present unique
problems for both syntactic and semantic analysis. For example, entirely new names or
old names with unusual spellings often show up in text, but it is hard to anticipate them
in a vocabulary table or even a pattern table. Also, a name can appear in multiple forms
in the same text: Joanne Rowling, J.K. Rowling, Rowling, Ms. Rowling.

To help out here, PyElly incorporates a capability for heuristically recognizing personal
names and their variations in natural language text. This will automatically be
configured into PyElly whenever a user runs an application A that includes a A.n.elly
rule file. Name recognition will run independently of other PyElly language analysis, but
will create parse tree leaf nodes with the syntactic type NAME for any names that it is
able to identify.

Page �66

PyElly User’s Manual

Each rule in an A.n.elly file will be in one of two forms:

X : T

=PPPP

The first form associates a type with a specified name component; it consists of a pattern
X for a component followed by a colon (:) with optional spaces around it and followed
by a name component type T. The second form lists a phonetic pattern PPPP (see below)
that will be used to validate inferred component types that are otherwise unknown; the
pattern must be preceded by an equal sign (=) with no space after it.

9.3.3.1 Explicit Name Component Patterns and Types

PyElly predefines 12 component types for name recognition; these are not syntactic
categories. Currently these are indicated by three-letter identifiers as follows:

One of these types must be the T part of a X : T rule in an A.n.elly. Anything else
will cause an error exception during table generation. The case of an identifier here will
be unimportant.

The X pattern part of a X : T rule must be a string of ASCII letters possibly including
spaces; a string without spaces can also optionally start or end with a + or -. The
possibilities here are

REJ reject name with this component

STP stop any scan for a name

TTL a title like “Captain”

HON an honorific like “The Honorable”

PNM a personal name

SNM a surname

XNM a personal name or surname

SNG possible single name

INI an initial like “C.”

REL a relation like “von”

CNJ a conjunction like ‘y’

GEN a generation tag like ‘Jr.’

Page �67

PyElly User’s Manual

The X part of a type rule will always delineate a single name component, although this
might have multiple parts like de la.as in George de la Tour. The basic idea here is to
provide the various possible parts of a name, which will then be combined by hard-
coded PyElly logic to report actual names and name fragments in input text within the
existing framework of PyElly entity extraction.

Here some name rules in a PyElly *.n.elly file:

simple name table definition
example.n.elly

John : PNM
Smith : SNM
Kelly : XNM
Mr. : TTL
Sir : TTL
III : GEN
de la : REL
Fitz- : SNM
+son : SNM
-aux : SNM
y : CNJ
prince: SNG
university : REJ

With these rules, “Fitzgerald” and “FitzABBA” will be recognized as surname
components, while “Peterson” will be recognized as a surname only if “Peter” is also
recognized as a name component. Upper and lower case will not matter in the rules
here, nor will the ordering of the rules. Comments for documentation take the same
form as in other PyElly rule files, a line starting with ‘#’ or the rest of a line after ‘ # ‘.

abc de matches the exact string “abc de”

abc- matches a string of letters starting with “abc”

abc+ matches a string of letters starting with “abc”, but the rest of
the string must also match another table entry

-abc matches a string of letters ending with “abc”

+abc matches a string of letters ending with “abc”, but the rest of
the string must also match another table entry

Page �68

PyElly User’s Manual

9.3.3.2 Implicit Name Components

In any PyElly application that has to recognize personal names, the most reliable
approach is to maintain lists of the most commonly expected name components. These
are fairly easy to compile with the resources available on the Worldwide Web, but no
listing here will ever be complete. Various rules of thumb can help us to find unknown
names, but this is guessing, and we really have to make only a few mistakes here.

For example, if every capitalized word is a possible name component, then we can get
text items like ABC, The, University, Gminor. and Ltd. Such results will diminish the
value of the true names that we do find. So, we have to be quite strict about the criteria
for judging a string to be a possible name component:

1. The string is alphabetic, with at least four letters. Anything shorter can be listed
explicitly in a name table to eliminate guessing.

2. Its first letter is capitalized. An explicitly known name component can leave off
capitals, but any inference of a name must have as much support as possible.

3. Its adjacent digraphs (e.g. ab, bc, and cd in the string abcd) are all in common
digraphs for first names in the 2010 U.S. census when a candidate string has six or
fewer characters. It may have all but one of its digraphs be common when a string
has seven or more characters.

4. It occurs along with at least one explicitly known name component. That is, a name
cannot consist completely of inferred name components.

5. If the first three conditions above are met, and its phonetic signature matches the
signature for common name components explicitly known, then an inferred name
component can also be used to corroborate another inferred component with respect
to condition 4.

A PyElly phonetic signature is based on a kind of Soundex encoding of a name
component. This is a method of approximating the pronunciation of names in English
by mapping its consonants to phonological equivalence classes. That is a big mouthful,
but in classical Soundex, its six equivalence classes are actually understandable:

• { B , F , P , V }

• { C , G , J , K , Q , S , X , Z }

• { D , T }

• { L }

• { M , N }

• { R }

Page �69

PyElly User’s Manual

In Soundex, all consonants of an equivalence class map into its representative letter,
shown boldface above. All other letters are ignored, and two consecutive letters going
to the same class will have only a single representative: “Brandt” becomes BRNT.

Soundex also prepends the first letter of a name to get the complete code bBRNT, but
PyElly simplifies that scheme by prepending an ‘a’ only if the first letter is a true vowel
Otherwise, no extra letter is added.

To be more phonetic, PyElly will split the biggest Soundex equivalence class so that
hard-C and hard-G are together with in a new class with representative K and soft-C and
soft-G are together in another new class with representative S. This complicates the
mapping of consonants to equivalence classes, but is still fairly easy to implement. So
“Eugene” becomes aSN and Garibaldi becomes KRPLT.

PyElly will also encode the letters ‘h’, ‘w’, or ‘y’ when used as semi-consonants as H, W,
or Y. So both “Rowen” and “Rowan” become RWM, while “Foyer” becomes FYR, and
“Ayer” becomes aYR. The three extra semi-consonant equivalence classes here allow for
finer phonetic distinctions than with plain Soundex.

Finally, PyElly will transform certain letter combinations the spelling of names in
English to get phonetic signatures better representing their pronunciation. For example,
“Alex” becomes aLKS, “Eustacia” becomes YSTS, and “Wright” becomes RT.

The necessary phonetic signatures for supporting inferred name component will have to
be listed in the definition file for a PyElly name table. They should appear one per line
starting with an equal sign (=) to distinguish them from the listing of explicit name
components and their types. For example,

=aSN
=KRPLT

After getting known or inferred name components, PyElly will string together as many
as possible to make a complete name. This will be done under the following constraints:

a. Any particular name component type may occur only once, unless they are
consecutive.

b. A TTL name component will always start the accumulation of the next name; a GEN
will always end any name being accumulated.

c. A CNJ or REL cannot be at the end of a name.

d. There must be at least one instance of PNM, SNM, XNM, or SNG, or a TTL and an INI.

e. A name with a single component must be a SNG or locally known (see below).

When any complete name is accepted, all of its individual components will be
remembered in a non-persistent local PyElly table. This will be kept only until the end of
the current PyElly session.

Page �70

PyElly User’s Manual

Name recognition is implemented as part of PyElly entity extraction. When the ellyBase
module sees a *.n.elly definition file to load, it will automatically put the
nameRecognition.scan on its list of extractors with the NAME syntactic type. Any
recognized name will then enter PyElly sentence analysis just like any other kind of
entity. In particular, any longer text element found at the sentence position for a
recognized name will supersede the name.

9.3.4 Compound Entities Defined by Templates (A.t.elly)

PyElly will let you define various kinds of multiword text entities by applying user-
provided templates to sequences of tokens in an input stream. An element in a template
may be specified explicitly or by referencing a class of words, either predefined by PyElly
itself or listed out by a user in a rule file A.t.elly for an application A. Matching of
word variants with some inflectional endings is automatically supported for English.

A template is specified as a list of literal words or word classes; for example, %s of %c
is a three-part template. A % followed by a single letter like s or c indicates a word class,
which can match any one word in that class. User-defined classes also allow you to set
additional restrictions on capitalization sequences (see below). The predefined word
classes for any PyElly application currently are

So, if a user-defined class %s has the words [school , institute , college , academy],
then the template %s of %c will match School of Rock, Academy of Sciences,
or Colleges of Dentistry. This capability will be helpful for more efficient parsing
if an application has to recognize many entities of a similar form.

Limited recognition of inflectional stemming is built into the matching of input text with
words in a user-defined class. We see this above where the regular plural colleges is
matched by a template expecting college. This stemming will apply only to regular
forms of -s, -ed, and -ing and will be less comprehensive than PyElly standalone
inflectional stemming for English. It can, however, match reaches with reach,
dimmed with dim, and dying with die.

Such simplified stemming will sometimes make a mistake. To get around any resulting
bad match, you can always list out inflected forms explicitly in a template, instance by

%n a sequence of digits like “01234”

%c a sequence of letters with at least the first letter capitalized

%u a sequence of letters with no first capitalization

%x an uncapitalized letter sequence, but not including certain common words like “the” and “of”

%b [is , am , are , was , were , be , being , been]

%p [in , of , on , for]

Page �71

PyElly User’s Manual

instance. For irregular inflected forms like shook matched with shake, this will be the
only option.

There is a special type of class that is specified by a template element of the form %*xyz.
This will match an uncapitalized sequence of letters ending in some xyz as specified by
a user. It will have no implied inflectional matching. For example, %*ly will match
only or euphemistically. Note, however, that there is no check on the semantic
sense of a final -ly. The %*ly class will match smelly, unruly, and rally.

A *.t.elly file will have two kinds of rules:

CLASS := WORD,WORD,WORD,WORD,WORD

TEMPLATE : SYNTAX-SPECIFICATION

A CLASS will be indicated by %x, where x is a single PyElly letter, possibly with
diacritical marks to get us beyond only 26 possible word classes. Class rules may be
anywhere in a definition file. If a template specifies any undefined class, loading of a
definition file will halt with an error message. The “ := “ separator is mandatory in an
explicitly specified class. You may specify any number of words separated by commas in
a class rule.

A rule defining a template to match will have two parts separated by a mandatory “ : “
separator. The left part will be a list of at least two elements: words, word classes, or
embedded punctation to be matched, all separated by spaces. The right part will be any
PyElly syntactic specification to be assigned to text matching a template. For example,

put %p : VERB
%d - %d : ADJ[%cnj]

A word in a template must be alphanumeric only, except possibly for a completely
embedded comma. Hyphens, periods, and apostrophes all have to be matched explicitly,
as shown in the second example above, which will recognize 01234-56789 . Uppercase
letters in a template will always be converted to lowercase. The only way you can do any
uppercase matching in a template is with the %c word class.

To match a template, a sequence of words in input text must match every element of the
template, including any implied spaces between the components. More than one
template can be matched by input text, but in line with other kinds of PyElly vocabulary
lookup, only the longest matches will kept.

On the whole, template rules are intended for entities of at least two components. A
simple application can dispense with them entirely by relying instead on literal
vocabulary tables as described below in Subsection 9.4. Templates can, however, be
useful for processing text like biomedical literature, which can have quite complex
nomenclature that may be hard to parse out syntactically.

Page �72

PyElly User’s Manual

9.3.5 Coding Your Own Entity Extractors in Python

You can write your own entity extraction methods in Python and add them to the
extractors list for PyElly in ellyConfiguration.py. This should be done as follows:

1. The name of a method can be anything legal in Python for such names.

2. The method should be defined at the level of a module, outside of any Python class.
This should be in a separate Python source file, which can then be imported into
ellyConfiguration.py.

3. The method takes a single argument, a list of individual Unicode characters taken
from the current text being analyzed. PyElly will prepare that list. The method may
alter the list as a side effect, but you will have be careful in how you do this if you
want the changes to persist after returning from the method. That is because Python
always passes arguments to a method by value.

4. The method returns the count of characters found for an entity or 0 if nothing is
found. The count will always be from the start of an input list after any rewriting. If
no entity is at the current position input text, return 0.

5. If a non-zero character count is returned, these characters are used to generate a
parse tree leaf node of a syntactic type specified in the ellyConfiguration.py
extractors list.

6. PyElly will always apply entity extraction methods in the order that they appear in
the extractors list. Note that any rewriting of input by a method will affect what a
subsequent method will see. All extractor methods will be tried.

7. An extraction method will usually do additional checks beyond simple pattern
matching. Otherwise, you may as well just use PyElly finite-state automatons
described in Section 4.2.

8. Install a new method by editing the extractors list in the PyElly module
ellyConfiguration.py to append a method and a syntax specification to the list.
You will have to import the actual module containing your method. For example, to
add a method called yourModule.yourExtractor to the default list of PyElly
entity extractors.import yourModule

extractors = [# entity extraction procedures to use
 [extractionProcedure.date , 'date'] ,
 [extractionProcedure.time , 'time'] ,
 [yourModule.yourExtractor , 'type']
]

The module extractionProcedure.py defines the method stateZIP, which looks
for a U.S. state name followed by a five- or nine-digit postal ZipCode. This will give you a
model for writing your own extraction methods; it is currently not installed.

Page �73

PyElly User’s Manual

9.4 PyElly Vocabulary Tables (A.v.elly)
PyElly can maintain large vocabulary tables in external files created and managed with
the SQLite package, a standard part of Python libraries. PyElly formerly used Berkeley
Database for vocabulary, but changes in its open-source licensing made it awkward for
unencumbered educational use. For more details here, please refer to Appendix C.

You can run PyElly without vocabulary tables, but these can make life easier for you
even when working with only a few hundred different terms. They provide the most
convenient way to handle multi-word terms and terms including punctuation. They also
can be more easily reused with different grammar tables and generally will be more
compact and easier to set up than D: rules of a grammar. Without them, PyElly will be
limited to fairly simple applications.

PyElly vocabulary table entries will be defined in a *.v.elly definition file where each
entry can be only a single text line and can have only extremely limited semantics. This
is mainly so that one may generate large numbers of entries automatically through
scripts. For example, the PyElly distribution file default.v.elly has 155,229 entries
generated with bash shell scripts from WordNet 3.0 data files.

Each vocabulary entry in a PyElly *.v.elly definition file should be a single text line
that usually takes one of the following formats:

TERM : SYNTAX

TERM : SYNTAX =TRANSLATION

TERM : SYNTAX x=Tx, y=Ty, z=Tz

TERM : SYNTAX (procedure)

A ‘ : ’ indicates where a term ends; the spaces before and after the colon (:) are
mandatory. Other definition formats will be described later in Subsection 10.3.2.

The TERM : SYNTAX part is mandatory for any vocabulary entry. A TERM can be

Lady Gaga

Lili St. Cyr

Larry O’Doule

“The Robe”

ribulose bisphosphate carboxylase oxygenase

No wildcards are allowed in a TERM, and it may start or end with a letter, digit, or a
punctuation mark. Upper and lower case in a TERM will not matter; PyElly will always
ignore case when matching up entries with input text.

Page �74

PyElly User’s Manual

An external vocabulary entry must start with a letter or digit or one of the following
punctuation marks: period (.) , hyphen-minus (-), left double quotation mark (“) ,
comma (‘,’) , percent sign (%) , em dash (—) , and hyphen (-). The last is Unicode and is
treated differently by PyElly than the ASCII hyphen-minus character. You can change
this list by editing the assignment to initChar in the source code for vocabularyTable.

In general, a vocabulary table entry may containing spaces and arbitrary punctuation.
This is not allowed with internal dictionary rules or with FSA-defined patterns.

SYNTAX is just the usual PyElly specification of syntactic type plus optional syntactic
features; for example, VERB[^PTCL].

The final translation part of a vocabulary entry is optional and can take one of the forms
shown above. If the translation is omitted, then the generative semantic procedure for
the entry will be just the operation OBTAIN. This is equivalent to no translation at all.

An explicit TRANSLATION is a literal string to be used in rewriting a vocabulary entry;
the ‘=’ is mandatory here. The x=Tx, y=Ty, z=Tz alternate form is a generalization of
the simpler TRANSLATION; it maps to the generative semantic operation

PICK lang (x=Tx#y=Ty#z=Tz#)

One of the x or y or z in the translation options of a vocabulary entry can be the null
string. In this case, the PICK operation will treat the corresponding translation as the
default to be taken when the value of the lang PyElly local variable is undefined or
matches none of the other specified options.

If there is no default and lang is undefined or not set to one of the pick options, then a
null translation will be selected. This may sometimes be helpful, but is probably not
what you really want.

A (procedure) in parentheses is a call to a generative semantic subprocedure defined
elsewhere in a *.g.elly grammar rule file.

Here are some full examples of possible vocabulary table entries in a *.v.elly file:

Lady Gaga : noun =Stefani Joanne Angelina Germanotta
Lili St. Cyr : noun[:name] 0
horse : noun FR=cheval, ES=caballo, CN=⾺馬, RU=лошадь
twerk : verb[|intrans]

All references to syntactic types, syntactic and semantic features, and procedures will be
stored in a vocabulary table as an encoded numerical form according to a symbol table
associated with a PyElly grammar.

Syntactic features must be immediately after a syntactic category name with no space in
between. Otherwise, PyElly will be unable to differentiate between syntactic and

Page �75

PyElly User’s Manual

semantic features in a *.v.elly file. Individual syntactic or semantic features inside of
brackets may be preceded by a space, however.

Unlike the dictionary definitions of words in a grammar, there are no permanent rules
associated with the terms in a vocabulary table. When a term is found in a vocabulary
table, PyElly automatically generates a temporary internal dictionary rule to define that
term. This rule will persist only for the duration of the current sentence analysis.

Often, a vocabulary table may have overlapping entries like

manchester : noun [^city]
manchester united : noun [^pro,soccer,team]

PyElly will always take the longest matching entry consistent with the analysis of an
input sentence and ignore any shorter matches. Long matches will also supersede that of
shorter matches for other PyElly lookup methods.

When comparing a vocabulary entry with text, the entry must match in the text up to a
nonalphanumeric delimiter. That is, the entry “jigsaw puzzle” will match the text “jigsaw
puzzle?”, but not “jigsaw puzzlement”. A exception is made here, though, for inflectional
endings and the English possessive endings -’S and -S’. This will let “jigsaw puzzle”
match “jigsaw puzzles”, “jigsaw puzzled”, “jigsaw puzzling”, “jigsaw puzzle’s”, and
“jigsaw puzzles’”. PyElly will take these endings into account automatically, sharing the
code employed by PyElly template matching.

You can turn off this English inflectional analysis by using a subclass of the PyElly
VocabularyTable that has its doMatchUp() method overridden appropriately. The
default inflectional analysis complicates vocabulary lookup, but can be helpful in
providing limited world knowledge to facilitate PyElly parsing.

An external vocabulary entry can contain arbitrary characters that PyElly normally
would take to mean that a word or other token has ended and that another has started.
For example, the vocabulary entry “R&B” can be matched as a whole in text even though
PyElly would analyze “R&B” in text as separate “R”, “&”, and “B” without the vocabulary
entry. This capability can be quite useful in many PyElly applications. A vocabulary
entry may not match across sentences, however.

For a given application A, PyElly first will look for vocabulary definitions in A.v.elly.
If this is missing, default.v.elly is taken, which includes most of the nouns, verbs,
adjectives, and adverbs in WordNet 3.0. Always define A.v.elly if you do not want a
huge vocabulary, which can take a long time to load. PyElly will save a compiled
vocabulary data base for an application A in the file A.vocabulary.elly.bin. If you
change A.v.elly, PyElly will automatically recompile any A.vocabulary.elly.bin
at startup. Recompilation will also happen if A.g.elly has changed. Otherwise, PyElly
will just read in the last saved A.vocabulary.elly.bin.

Note that the A.vocabulary.elly.bin file created by PyElly must always be paired
only with the A.rules.elly.bin file it was created with. This is because syntactic

Page �76

PyElly User’s Manual

types and features are encoded as numbers in *.elly.bin files, which may be
inconsistent when they are created at different times. If you want to reuse language
rules, always start from the *.*.elly files. If PyElly has to recompile
A.rules.elly.bin at startup, then it will also automatically recompile
A.vocabulary.elly.bin. It will also recompile if the grammar rule file is more
recent that the vocabulary rule file.

Page �77

PyElly User’s Manual

10. Logic for PyElly Cognitive Semantics
The generative semantic part of a grammar rule tells PyElly how to translate its input
into output, while the cognitive semantic part evaluates the plausibility for any
particular translation. Generative semantics is always the final step in PyElly processing;
cognitive semantics will run each time a new phrase node is created in PyElly sentence
analysis. This gets ready to resolve any subsequent ambiguities.

With a large grammar, we cannot expect every input sentence to break down in only one
way into subconstituents according to the rules of that grammar. In most languages, for
example, a particular word might be assigned multiple parts of speech, and each
possibility here can result in a different syntactic analysis for an input sentence. All such
alternate analyses must be evaluated to find the best interpretation of a sentence.

PyElly takes a wait-and-see approach in ambiguous situations. Multiple interpretations
might exist at lower levels of a parse tree, but some could end up not fitting into any
final analysis for an entire sentence. In this case, an ambiguity will resolve itself within a
bigger context, and so we really want to hold off any decision on interpretation until as
late as possible.

PyElly looks at differing interpretations only when it comes across two or more phrase
nodes of the same syntactic type with the same syntactic features over the same tokens
of an input sentence, and without the *unique feature set. At that point, PyElly will
compare the cognitive semantic plausibility scores already computed for each alternate
phrase node and then go forward only with the highest ranking of them to reach a full
sentence analysis.

There is only one exception to this requirement for exact matching of syntactic category
and features. At the end of processing a sentence, PyElly may have two or more phrase
nodes of type SENT over the entire sentence, but with different syntactic features. PyElly
will then ignore any differing features here and just choose one interpretation according
to its semantic plausibility.

PyElly will see ambiguity only when its language rules actually allow for it. For instance,
“I love rock” could be about music or landscaping in normal human understanding, but
if the grammar rules of a language definition fail to produce two different syntactic
analyses with co-extensive phrase nodes of the same type and same features, PyElly will
see only a single interpretation. If you want to find ambiguity here, you must provide
PyElly with two separate vocabulary entries for “rock.”

Let us consider the following simple set of grammar rules:

Page �78

PyElly User’s Manual

g:sent[:*r]->x
__
g:sent[:*r]->y
__
d:wwww<-x[:f]
_
 (xgen)
__
d:wwww<-y[:g]
_
 (ygen)
__

where wwww is an internal dictionary word associated with two different syntactic types
x and y. A sentence consisting only of the word wwww will therefore be ambiguous at the
lowest level of analysis because the generative semantics for the overall sentence must
call either(xgen) or (ygen) as a subprocedure, but not both.

Two PyElly sentence analyses are possible here, given the rules for inheriting syntactic
features through the predefined *R syntactic feature described in Subsection 8.1:

SENT[:*r,f] SENT[:*r,g]
 | |
 X[:f] Y[:g]
 | |
 wwww wwww

There are no PyElly ambiguities here, however, because none of the constituents in the
two alternate analyses of the sentence “wwww” have the same syntactic type and the same
syntactic features. We do, however, end up with two possible parse trees for the type
SENT at the end of processing and will then choose one of them from which to produce a
translation here regardless of syntactic features.

The choice between alternate sentence analyses or between different interpretations of
individual phrases will be through a numerical plausibility score assigned to each phrase
node in a parse tree. A score of 0 here will be neutral, increasingly positive will be more
plausible, and increasingly negative will be more implausible. Various characteristics of
a phrase node can be examined to decide whether to be increase or decrease its
plausibility. The highest plausibility score wins.

This section of the PyElly User’s Manual tells how to assign a score to each possible
subtree in a PyElly sentence analysis from the rules from a PyElly language definition
used to generate an analysis. You can choose to write language descriptions without
such scoring, but plausibility is built into the PyElly parsing algorithm and provides
another way to control how PyElly runs.

The PyElly plausibility score for an analyzed constituent of a sentence will always be an
integer value. The score for a particular phrase node generally will add up the scores of

Page �79

PyElly User’s Manual

its immediate phrase subconstituents plus an adjustment from the cognitive semantics
of the grammatical rule combining those subconstituents into one resulting phrase.

For example, suppose that we have a constituent described by a grammar rule A->X Y.
We will expect that plausibility scores were computed already for subconstituent X and
for subconstituent Y in earlier PyElly parsing. So we can then run the cognitive semantic
logic for the grammar rule A->X Y, producing an adjustment to the summed
plausibility scores for X and Y to get an overall plausibility score for our phrase of type A.

With competing analyses, if only one phrase has the top score, PyElly chooses it and is
done. If more than one phrase has the highest score, then PyElly will arbitrarily pick one
of them. When there are multiple choices and they differ by at most one between the
highest score and the next highest, PyElly will also tag the rule for the phrase that was
picked. This will then favor a different choice the next time a similar ambiguity arises.

10.1 The Form of Cognitive Semantic Clauses
PyElly allows us to define special logic for determining the contribution of a grammar
rule to an overall plausibility score for a phrase that it describes. The logic consists of a
series of clauses; each one specifying the conditions under which the clause will apply.
PyElly cognitive semantics will check the clauses in sequence, the first to have all its
conditions satisfied will be applied. All other clauses will be disregarded.

 In a *.g.elly file providing grammar rules for a PyElly language description, the
clauses in the cognitive semantic logic for a rule will come just after the G: or a D: line
introducing the rule and will end at the first _ or __ line (see Section 4). Each clause will
be a single line separated into two parts by the character sequence ‘>>’, with its left part
containing zero or more conditions for applicability and its right part specifying an
action to take and an adjustment to apply. For example, here is a rule with three
cognitive semantic clauses, but no explicit generative semantics:

G:NP->ADJ NOUN
 L[^EXTENS] R[^ABSTRACT]>>*R-
 R[^GENERIC] >>*L+
 >>*R
__

The ‘>>’ is mandatory in any clause even if there are no conditions. If one or more
conditions are specified, they must all be satisfied for the clause to take effect. Spaces
between the conditions of the left part of a clause are optional.

The conditions here can be of three types: (1) testing the semantic features associated
with the constituents to be combined by a grammar rule into a single phrase; (2)
checking the starting position of the constituents, the number of characters in resulting
phrase, and the total number of tokens covered by the constituents combined; and (3)
measuring the semantic distance between the concepts associated with each constituent
in the case of a 2-branch rule.

Page �80

PyElly User’s Manual

Having nothing on the left side of a clause is an always-satisfied condition, and this will
always make any following clauses irrelevant. It is possible also that no listed clauses for
a rule apply. In that case, a zero plausibility adjustment is assumed for a phrase. That is,
just the sum of subconstituent plausibility scores will be reported for the phrase.

Each of the three types of conditions for a clause will have a distinct form (see below).
You may freely mix all the different types in the left side of a single clause. The
conditions will be independent and may appear in any order. Be careful, however, to
avoid contradictory conditions, which can never be satisfied.

A special cognitive semantic clause allows for tracing the execution of logic in which it
appears. It will have the fixed form

?>>?

The ? condition on the left side is always False, so that right side of the clause will never
be run. This clause will have the side-effect, however, of getting PyElly to identify the
phrase and generating rule being processed. Here is a sample trace message:

tracing phrase 0 : rule= 29 with current bias=0
cog sem at clause 4 of 4
l: phrase 1 @0: type=0 syn[00 00] sem[00 00] : bia=0 use=0
r: phrase 2 @1: type=0 syn[00 00] sem[00 00] : bia=0 use=0
raw plausibility= 0
adjustment= 1 sem[00 00]
3 token(s) spanned @0

This specifies the phrase node where the cognitive semantic logic is being executed, the
grammar rule generating the node, and the subconstituents involved. If an action is then
taken subsequently for the kth clause out of n in the logic being traced, then this will be
reported as in the second line. In general, this will be as follows:

cog sem at clause k of n

Whether or not the action for any clause is taken, tracing output will then show the total
computed plausibility increment plus the resulting semantic features (see Subsection
10.2.3 below) for a phrase.

incremental scoring= -2 sem[24 00]

Cognitive semantic tracing will show how a PyElly parse tree is being assembled node by
node. Generative semantic tracing will show the order of execution for individual
semantic procedures and subprocedures after a parse tree is completely built.

A grammar rule may have cognitive semantic clauses even if it has no explicit generative
semantic procedure. In this case, the listing of clauses will be terminated by a double
underscore (__) line without a preceding single underscore (_). 

Page �81

http://www.apple.com

PyElly User’s Manual

10.2 Kinds of Cognitive Semantic Conditions
PyElly cognitive semantics mainly shows up in the grammar rule logic for evaluating the
plausibility of phrase nodes in an analysis, but can appear elsewhere in PyElly as well.
Four different kinds of conditions are currently supported: semantic features, starting
token position and token count, and semantic concepts. Cognitive semantic logic can
also have no conditions, which allows a grammar rule to have fixed scoring.

10.2.1 Fixed Scoring

The simplest and most common cognitive semantic clause will have no condition. This is
always satisfied and will specify fixed positive or negative adjustment for a grammar
rule when computing plausibility scores in a phrase analysis. Such clauses may take one
of the following forms:

>>-
>>+
>>+++
>>———-
>>+5
>>-20

The initial + or - signs are mandatory in the scoring. A string of n +’s or -’s is equivalent
to +n or -n. Here is an example of use in a grammar rule:

G:NP->ADJ UNKNOWN
 >>-- # cognitive semantics disfavoring this rule by -2
_
 RIGHT # generative semantics
 LEFT #
__

If no cognitive semantic clauses are specified for a grammar rule, this is equivalent to

>>+0

a special case of fixed scoring. Note that the “+” is necessary here if you actually want to
be explicit here about a zero score. This can be expressed more simply, however, by
specifying no scoring increment or decrement, which is a neutral zero plausibility.

10.2.2 Starting Position, Token Count, and Character Count

Each PyElly phrase node in a parse tree records its starting token position and the
number of input tokens and the number of text characters that it encompasses. A
cognitive semantic scoring for a phrase can be conditional on whether its token position

Page �82

PyElly User’s Manual

p or comparing its token count n or its character count c to some reference value This
will happen on the left side of the >> in a clause. For example,

p<1 >> -1
n>1>>+1
n<8>>+1
c>4>>-1
n>1n<8 >> +2
n>2 n<7 >> +1

A test of starting token position is with p< or p>, of token count with n< or n>. and
character count with c< or c>, In the last clause above, a phrase will be scored as +1
only if its token count is 7 > n > 2. You may insert spaces in any clause for readability,
but no spaces are allowed before or after a < or a > in any comparison.

Normally a leaf node in a parse tree will have a token count of 1, but a leaf node with
the ... syntactic type may have a count of 0. Note also that a multiword vocabulary
table entry like flash flood is always counted as a single token. Character count will
include the embedded spaces in multiword vocabulary, but will count no text spaces
between separate tokens.

10.2.3 Semantic Features

Semantic features are similar to syntactic features as defined above in Section 8, but
play no role in distinguishing between different grammar rules. They are assigned to
particular phase nodes and are specified in the same bracketed notation as syntactic
features; for example:

[&ANIMATE,ARMORED]

The & is the feature set identifier, and ANIMATE and ARMORED are two specific features.
Semantic features will have completely separate lookup tables from syntactic features.
In particular, a syntactic feature set and a semantic feature set can have the same set
identifier without any conflict, but always make the identifiers different just for clarity.

As with syntactic features, you may have up to 16 semantic feature names, with the rules
for legal names being the same. Semantic feature names must include only ASCII letters
or digits, with the case of letters not mattering, just as with syntactic feature names.

Unlike syntactic features, however, they will have only one predefined feature name:
*CAPITAL or equivalently *C, which indicates that a phrase is capitalized and so is
probably a name or a proper noun. This name is reserved in every semantic feature set. 

Page �83

PyElly User’s Manual

10.2.3.1 Semantic Features in Cognitive Semantic Clauses

A cognitive semantic clause for a 2-branch splitting G: grammar rule will have the
following general form when semantic features appear:

L[oLF1,...,LFn] R[oRF1,...,RFn]>>x[oF1,...,Fn]#

Semantic features can appear on both the left and the right side of a clause. The symbol
“o” is a feature set identifier; “x” may be either *L or *R, and the “#” is a fixed scoring
action as in Subsection 10.1 above; for example, +++ or -3.

Here is an example:

l[!coord]r[$*c]>>*r-2

This tells PyElly that a phrase with a left part marked as coord and a capitalized right
part inherit the semantic features from the right part and will lose two points from its
semantic plausibility score.

As with syntactic features, a semantic feature F can be preceded by a ‘-’ in a clause. On
the left side, this means that feature F must not be associated with a matching phrase
structure. On the right side, this means that any inherited F must be turned off in the
new phrase being created for a grammar rule.

The prefixes L and R on the left side of a clause specify the constituent substructures to
be tested, respectively left and right descendant. You may test none, one, or both
descendants in a 2-branch rule; this is the most common kind of condition when you
want something different from fixed scoring.

The “x” prefix on the right is optional for specifying inheritance of features. An *L
means to copy the semantic features of the left subconstituent into the current phrase;
*R means to copy the right. You cannot have both; a missing “x” means no inheritance
at all. Any explicit semantic feature appearing in the right part of the clause will indicate
any additional features to turn on or off for a phrase node.

A full cognitive semantic clause for a 1-branch extending G: grammar rule will have the
following general form in its semantic features:

L[oLF1,...,LFn]>>x[oF1,...,Fn]#

Here is an example:

L[^animate]>>*L[^actor]+1

Page �84

PyElly User’s Manual

A D: grammar rule defines a phrase without any constituent substructures. The
semantic features in a clause must take the form

>>[oF1,...,Fn]#

That is, you can set semantic features for a D: rule, but may not test or inherit any. Here
is an example

>>[^animate]+1

For both splitting and extending grammar rules, any of the left side of a cognitive
semantic clause can be omitted. If all are omitted here, then a clause always applies. It
becomes a case of fixed scoring.

10.2.3.2 Semantic Features in Generative Semantics

PyElly also allows a generative semantic procedure to look at the semantic features for
the phrase node to which it is attached. This is done in a special form of the IF command
where the testing of a local variable is replaced by the checking of semantic features as
done in cognitive semantics. For example,

IF [&F1,-F2,F4]
 (do-SOMETHING)
 END

The testing here is like that on syntactic features to determine the applicability of a 1- or
2-branch grammar rule in PyElly parsing. The IF here cannot be negated with ~. If you
want negation, you have to specify it for the individual features.

10.2.4 Semantic Concepts

PyElly is a currently being used experimentally in applying conceptual information from
WordNet to infer the intended sense of ambiguous words in English text. This now an
option for cognitive semantics in PyElly and may appear on both the left and right sides
of a clause attached to a grammar rule and in other places.

PyElly allows you to establish a set of concepts each identified by a unique alphanumeric
string and related to one other by a conceptual hierarchy defined in the language
description for an application. This can be done any way that you want, but WordNet
provides a good starting point here since it contains over two hundred thousand
different related synonym sets (or synsets) as potential concepts to work with.

(WordNet is produced manually by professional lexicographers affiliated with the
Cognitive Science Laboratory at Princeton University and is an evolving linguistic
resource now at version 3.1. [George A. Miller (1995). WordNet: A Lexical Database for

Page �85

PyElly User’s Manual

English. Communications of the ACM Vol. 38, No. 11: 39-41.] This notice is required by
the WordNet license.)

In WordNet, each possible dictionary sense of a term will be represented as a set of
synonyms (synset) in a given language. This can be uniquely identifiable as an offset into
one of four WordNet data files associated with the main parts of speech—data.noun,
data.verb, data.adj, and data.adv.

For disambiguation experiments in PyElly, trying to work with all the synsets of
WordNet is too cumbersome. So we instead focused on concepts from a small subset of
WordNet synsets related to interesting kinds of ambiguity in English. We can identify
each such concept as an 8-digit decimal string combining the unique WordNet offset for
its corresponding synset plus a single appended letter to indicate its part of speech. For
example,

13903468n : (=STAR) a plane figure with 5 or more points; often used as an emblem

01218092a : (=LOW) used of sounds and voices; low in pitch or frequency

The standard WordNet letter abbreviation for a part of speech is n = noun, v = verb, a =
adjective, r = adverb.

For any set of such concepts, we can then map selected semantic relations for them from
WordNet into a simple PyElly conceptual hierarchy structure, which will be laid out in a
PyElly language definition file A.h.elly. The current disambig example application
in the PyElly package has a hierarchy with over 800 such related concepts, all taken
from WordNet 3.1.

You can of course also define your own hierarchy of concepts with their special
hierarchy of semantic relations. The only restriction here is that each concept name
must be an alphanumeric string like aAA0123bcdef00. Upper and lower case will be
ignored in letters. Such semantic concepts can be explicitly employed by cognitive
semantic clauses on their left side and can be explicitly employed in one way and
implicitly employed in two ways on the right side.

10.2.4.1 Concepts in Cognitive Semantic Logic

Semantic concepts serve to provide another aspect to consider when computing
plausibility scores to choose between alternate interpretations in case of ambiguity. This
will happen in the cognitive semantic logic associated with each syntax rule, and the
concepts will have different roles when they are on the left and on the right sides of a
cognitive semantic clause. 

Page �86

PyElly User’s Manual

10.2.4.1.1 Concepts on the Left Side of Cognitive Semantic Clauses

The left half of a clause is for testing its applicability to a particular phrase, and PyElly
allows the semantic concepts associated with its subconstituents to be checked out. The
syntax here is similar to how you test semantic features of subconstituents, except you
will use parentheses () to enclose a concept name instead of the [] around semantic
features. Here is an example of a concept check:

L(01218092a) R(13903468n) >>+

This checks whether the left subconstituent of a phrase has a concept on a path down
from concept 01218092a in a conceptual hierarchy and whether the right
subconstituent has a concept on a path down from concept 13903468n. The ordering of
testing here does not matter, and you may omit either the L or the R test or both.

You can mix concept testing with semantic feature testing in the conditional part of a
cognitive semantic clause. For example,

L(01218092a) L[^PERSON] >>++

You may also specify more than one concept per test. For example,

L(00033319n,08586507n) >>+

Here, PyElly will check for either L(00033319n) or L(08586507n).

You of course can define more self-descriptive concept names for your own application.
You are not limited to WordNet 3.1 synset ID’s.

10.2.4.1.2 Concepts on the Right Side of Cognitive Semantic Clauses

A single concept can be explicitly appended on the right side of a clause with a
separating space. For example,

>>++ CONCEPT

This must always come after a plausibility scoring expression. If you want a neutral
scoring here, you must specify it explicitly here as

>>+0 CONCEPT

Normally, this kind of concept reference will be useful only for the cognitive semantics
of D: dictionary rules of a grammar, but nothing keeps you from trying it out in G: rules
as well.

Page �87

PyElly User’s Manual

Concepts can also be referenced implicitly of the right side of a clause. When a
subconstituent of a phrase has an associated concept, the *L or *R inheritance actions
specified by a clause will apply to concepts as well. So, a clause like

>> *L++

will cause not only the inheritance of semantic features from a left subconstituent, but
also the inheritance of any semantic concept from that left subconstituent. That is also
true for *R with a right subconstituent.

To use semantic concepts on the right side of a clause, you generally must use the *L or
*R mechanism even if you have no semantic features defined. This must be done to pass
concepts in a parse tree for later checking. Note that you cannot have both *L and *R in
a cognitive semantic clause.

Semantic concepts also implicitly come into play in two ways when PyElly is computing
a plausibility score for a phrase:

1. When a subconstituent has a semantic concept specified, PyElly will check whether
it is on a downward path from a concept previously seen in the current or an earlier
sentence. PyElly will maintain a record of such previous concepts to check against. If
such a path is found, the plausibility score of a phrase will be incremented by one. If
a phrase has one subconstituent, the total increment possible here is 0 or 1; if the
phrase has two, the total increment could be 0, 1, or 2.

2. If a phrase has two subconstituents with semantic concepts, PyElly will compute a
semantic distance between their two concepts in our inverted tree by following the
upward paths for each concept until they intersect. The distance here will be the
number of levels from the top of the tree to the point of intersection. If the
intersection is at the very top, then the distance will be zero. The lower the
intersection in the tree, the higher the semantic relatedness. This distance will be
added to the plausibility score of a phrase containing the two subconstituents.

If no semantic concepts are specified in the subconstituents of a phrase, then a semantic
plausibility score will be computed exactly as before.

10.2.4.2 Language Definition Files for Semantic Concepts

To use semantic concepts, you must define them in a PyElly language definition. For an
application A, this must happen in the files A.h.elly, A.g.elly, or A.v.elly. They
can be omitted entirely if you have no interest in them.

10.2.4.2.1 Conceptual Hierarchy Definition (A.h.elly)

This specifies all the concepts in a language definition and their semantic relationships.
You can define everything arbitrarily, but to ensure consistency, start from some

Page �88

PyElly User’s Manual

existing language database like WordNet. Here are some entries from
disambig.h.elly, a conceptual hierarchy definition file based on WordNet 3.1
concepts for a PyElly example application:

14831008n > 14842408n
14610438n > 14610949n
00033914n > 13597304n
05274844n > 05274710n
07311046n > 07426451n
07665463n > 07666058n
04345456n > 02818735n
03319968n > 03182015n
08639173n > 08642231n
00431125n > 00507565n

The “>” separates two concept names to be interpreted as a link in a conceptual
hierarchy, where the left concept is the parent and the right concept is a child. In this
particular definition file, each concept name is an offset in a WordNet 3.1 part of speech
data file plus a single letter indicating which part of speech (n, v, a, r). Both offset and
part of speech are necessary to identify any WordNet concept uniquely.

For convenience, a *.h.elly file may also have entries of the form

=xxxx yyyy
=zzzz wwww

These let you to define equivalences of concept names, where the right concept becomes
the same as the left. For example, the entries make yyyy to be the same as xxxx and
wwww to be the same as zzzz. The left concept must occur elsewhere in the hierarchy
definition, though. An equivalence can be specified anywhere in a *.h.elly file. It
specifies only a convenient alias for a concept name without defining a new concept,
which can be helpful in documentation of semantic relationships.

10.2.4.2.2 Semantic Concepts in Grammar Rules (A.g.elly)

This was already discussed briefly in Subsection 10.3.2 above. Here is an example of a
grammar dictionary rule with cognitive semantics referencing semantic concepts:

D:xxxx <- NOUN
 >>+0 CONCEPT
_
 APPEND xxxx-C
__

Similarly with a regular syntax rule: 

Page �89

PyElly User’s Manual

G:X -> Y Z
 >>*L+0 CONCEPT
_
 RIGHT
 SPACE
 LEFT
__

Note here that the *L action will also cause any concept associated with Y to be
inherited by X, but the explicit assignment of CONCEPT here will always override any
such inheritance.

10.3 Adding Cognitive Semantics to Other PyElly Tables
Earlier sections described various PyElly language definition tables, but without
mention of cognitive semantics, since they were as yet undefined. Because cognitive
semantics helps in resolving ambiguity, however, we now need to take care of that
omission so that we can better define PyElly language elements.

Currently, vocabulary tables, pattern tables, template tables, and entity extractors all
optionally allow fixed plausibility scoring and semantic features in definitions. You can
also specify semantic concepts in vocabulary tables; but elsewhere, you can bring them
in only though special grammatical rules for the syntactic types associated with them.

10.3.1 Cognitive Semantics for Vocabulary Tables
Vocabulary table rules can include all basic cognitive semantics, but no logic. This is
because vocabulary can appear only at the bottom of a PyElly parse tree.

10.3.1.1 Semantic Features in Vocabulary Table Entries (A.v.elly)

In addition to the rule forms listed in Subsection 9.4, PyElly also recognizes

TERM : SYNTAX SEMANTIC-FEATURES PLAUSIBILITY

TERM : SYNTAX SEMANTIC-FEATURES PLAUSIBILITY =TRANSLATION

TERM : SYNTAX SEMANTIC-FEATURES PLAUSIBILITY x=Tx, y=Ty, z=Tz

TERM : SYNTAX SEMANTIC-FEATURES PLAUSIBILITY (procedure)

SEMANTIC-FEATURES are the bracketed semantic features for cognitive semantics (see
Subsection 10.2); it can be “0” or “-” if no features are set. PLAUSIBILITY is an integer
value for scoring a phrase formed from a vocabulary entry; this value may include an
attached semantic concept name separated by a “/” (see Subsection 10.3). Both

Page �90

PyElly User’s Manual

SEMANTIC-FEATURES and PLAUSIBILITY may be omitted, but if either is present,
then the other must be specified also.

Here are some expansions of vocabulary definitions from Subsection 9.4:

Lady Gaga : noun [^celeb] +2 =Stefani Joanne Angelina Germanotta
Lili St. Cyr : noun[:name] [^celeb] 0

horse : noun [$animate] 0 FR=cheval, ES=caballo, CN=⾺馬, RU=лошадь
twerk : verb[|intrans] [^sexy] -1 (xxxx)

Semantic features are helpful in distinguishing words with multiple senses as multiple
vocabulary table entries; for example,

bank : noun [^institution] 0
bank : noun [^geology] 0
bank : verb [|intrans] - -2
bank : verb [|trans] 0

If the word BANK shows up in input text, then all of these entries will be tried out in
possible PyElly analyses, with the most plausible taken for final PyElly output. Try to
give higher plausibility to the part of speech that is most likely.

10.3.1.2 Semantic Concepts in Vocabulary Table Entries (A.v.elly)

For a vocabulary table entry, we extend the plausibility field in an A.v.elly input file
to allow appending a concept name separated by a “/” (See Subsection 9.4 above) with
no spaces. Omitting a concept name here will be equivalent to a null concept.

Here are some entries from disambig.v.elly, a vocabulary table definition file
making use of the concepts above.

finances : noun[:*unique] - 0/13377127n =funds0n
monetary resource : noun[:*unique] - 0/13377127n =funds0n
cash in hand : noun[:*unique] - 0/13377127n =funds0n
pecuniary resource : noun[:*unique] - 0/13377127n =funds0n
assets : noun[:*unique] - 0/13350663n =assets0n
reaction : noun[:*unique] - 0/00860679n =reaction0n
response : noun[:*unique] - 0/00860679n =reaction0n
covering : noun[:*unique] - 0/09280855n =covering0n
natural covering : noun[:*unique] - 0/09280855n =covering0n
cover : noun[:*unique] - 0/09280855n =covering0n

The *UNIQUE syntactic feature in each entry is to disable PyElly ambiguity resolution at
lower levels of sentence analysis, a requirement for the disambig example application.
The translation provided for each entry above is the WordNet sense ID for a particular
word sense, which ends with a single letter specifying its part of speech.

Page �91

PyElly User’s Manual

You may name the concepts in your own A.h.elly hierarchy definitions however you
wish, but with two exceptions: the name “-” will be reserved to denote a null concept
explicitly in grammar rules; and the name “^” will be reserved for the top of a hierarchy
to which every other concept is linked eventually. You must have “^” somewhere in a
A.h.elly hierarchy definition file for it to be accepted by vocabularyTable.py as a
language definition file.

10.3.2 Cognitive Semantics for Pattern Rules
PyElly pattern rules for determining the syntactic type of an arbitrary string were first
presented in Section 4.2. With the definition of semantic features and plausibility scores
here, we can now also talk about how pattern rules can specify them. This can be done
by inserting one or two extra fields into a pattern rule specification. The four-part
format defined in Section 4.2 is still valid.

STATE PATTERN SYNTACTIC TYPE NEXT

PyElly will allow two other formats as well.

STATE PATTERN SYNTACTIC TYPE SEMANTIC FEATURES NEXT

STATE PATTERN SYNTACTIC TYPE SEMANTIC FEATURES SCORE NEXT

a. The STATE, PATTERN, SYNTACTIC TYPE, and NEXT are the same as before.
b. SEMANTIC FEATURES is a bracketed list of feature names as seen in a vocabulary rule or

in the cognitive semantics of a grammar rule. These features are optional and may be set
or left unset.

c. SCORE is a possibly signed integer value to be assigned as an initial plausibility for a
token matching a pattern in a final state.

d. If a SCORE is specified in a pattern rule, then the SEMANTIC FEATURES must also be
present. As in the case of a vocabulary entry; a simple - place holder can be specified
here to indicate no setting of features.

Here some examples of some pattern rules with cognitive semantics:

0 &#@$ XID [!nom] -1
3 \#&#$ ORD - 2 -1
3 \#&#@#$ ORD - -1 -1
11 &@mab$ PHRM[:sgl] [$cancer] 1 -1

Note that PyElly allows basic cognitive semantics only at a final state of a pattern-
matching automaton. A final state is always indicated with a -1 as the next state of a
pattern rule, which will always be the last part of a rule. An error will be flagged for
cognitive semantics if there is a next state.

Assigning a base cognitive semantic score allows you to favor or disfavor a syntactic type
assigned to a token by pattern matching versus by another possibility like lookup in an
internal dictionary or in an external vocabulary table. Semantic features allow pattern-

Page �92

PyElly User’s Manual

matched interpretations of a token to be tested by the cognitive semantic logic in rules
when ambiguity resolution is required.

10.3.3 Cognitive Semantics for Template Matching
Cognitive semantics for template matching will be the same as for vocabulary table
entries. After the syntax specification for a template rule, you can also optionally add
semantic features and a plausibility score. The full form of a template rule is

TEMPLATE : SYNTAX-SPECIFICATION SEMANTIC-FEATURES PLAUSIBILITY

If a rules specifies semantic features, it must also specify a plausibility; for example

%s of %c : NOUN[:*l] [&cmpd] -1

The semantic features can be just a hyphen (-), if none are to be set. This is the same as
with vocabulary table entries. A semantic concept name preceded by / can immediately
follow the PLAUSIBILITY as with a vocabulary table rule.

10.3.4 Cognitive Semantics for Entity Extraction
You can define the cognitive semantics for an entity extractor listed in the PyElly
module ellyConfiguration.py. This can be done by adding one or two optional
elements in a list entry for an extractor to specify semantic features or a plausibility
scoring. For example, we can rewrite the listing of Subsection 9.3.2 as

import extractionProcedure

extractors = [# list out extraction procedures
 [extractionProcedure.date , 'date' , '-' , 0] ,
 [extractionProcedure.time , 'time'] , '[^x]']
]

Note that semantic features must be specified as a bracketed string in a third list
element and a plausibility scoring must be specified as an integer in a fourth list
argument. Semantic features may not be omitted if a plausibility scoring is present; but
these can be specified as a non-committal ‘-’ as done in vocabulary table entries.

Currently, semantic concepts may not be specified for any entity recognized by
procedural extractor. If you need an associated concept for such an entity, then you have
to assign one via the cognitive semantics for an X->Y grammatical rule. Entities in
general will not be found in resources like WordNet.

Name recognition operates the same way as entity extraction. When turned on by a
commandline flag, PyElly will insert the method nameRecognition.scan into the
extractors array in the PyElly module ellyConfiguration.py, but without
specifying any cognitive semantics.

Page �93

PyElly User’s Manual

This is because personal names are strictly denotative, which means they are purely
identifiers and typically do not convey any meaning that could be captured in a concept.
This is unlike other entities, which can be both denotative and connotative like
INTERNATIONAL MONETARY FUND and can be treated conceptually.

If you absolutely must have cognitive semantics for name recognition, you can also just
use the trick mentioned above to define a grammar rule X->Y with the cognitive
semantics to define both semantic features and semantic concepts. This is a highly
unlikely eventuality. 

Page �94

PyElly User’s Manual

11. Sentences and Punctuation
Formal grammars typically describe the structure only of single sentences in a language.
PyElly accordingly is set up to analyze one sentence at a time through its ellyBase
module. In real-world text, however, sentences are all jumbled together, and we have to
divide them up properly before doing anything with them. That task is harder than one
might think; for example,

I met Mr. J. Smith at 10 p.m. in St. Louis.

This sentence contains six periods (.), but only the final one should stop the sentence. It
is not hard to recognize non-stopping exceptions, but this is yet one more detail to take
care of on top of the many other basic tasks of natural language processing.

Furthermore, we have to deal with special instances of punctuation like

He said “No.”
(Turn to page 6.)

where punctuation after the stop (.) really should be tacked onto the sentence that it
ends. PyElly is prebuilt to handle all of this.

PyElly divides text input into sentences with its ellySentenceReader module, which
looks for various patterns of punctuation to detect sentence boundaries in text. While
doing this, PyElly also normalizes each sentence to make it easier to process. The
algorithm is simple and tends to find too many sentences, but we can always help PyElly
out with various special-case logic to give it more smarts .

Currently, the PyElly stopException module lets a user provide a list of patterns to
determine whether a particular instance of punctuation like a period (.) should actually
stop a sentence. The PyElly exoticPunctuation module tries to normalize various kinds
of unorthodox punctuation found in informal text. This solution is imperfect, but we can
extend or modify it as needed. See Subsection 11.2 below for details.

The approach of PyElly here is to provide sentence recognition a notch or two better
than what one can cobble together just using Python regular expressions or the standard
sentence recognition methods provided by libraries in a language like Java. If you really
need more than this, then there are other resources available; for example, NLTK can be
trained on sample data to discover its own stop exceptions. Builtin PyElly sentence
recognition should be adequate for most applications, however.

PyElly sentence reading currently operates as a pipeline configured as follows:

raw text => ellyCharInputStream => ellySentenceReader => ellyBase

where raw text is an input stream of Unicode encoded as UTF-8 and read in line by line
with the Python readline() method. The ellyCharInputStream module is a filter that
removes extra white space, substitutes for Unicode characters not recognized by PyElly,

Page �95

PyElly User’s Manual

converts hyphens used as dashes when appropriate, and replaces single new line
characters with spaces. The ellyCharInputStream and ellySentenceReader modules both
operate at the character level and together will divide input text into individual
sentences for subsequent PyElly processing.

A single input line could contain multiple sentences, or a single sentence may extend
across multiple input lines. There is also no limit on how long an input line may be; it
could be an entire paragraph terminated by a final linefeed as found in many word
processing files. PyElly can also read text divided into short lines terminated by
linefeeds, carriage returns, or carriage returns plus linefeeds. It currently will not splice
back a hyphenated word split across two lines, however.

The ellySentenceReader module currently recognizes five kinds of sentence stopping
punctuation: period (.), exclamation point (!), question mark (?), colon (:), and
semicolon (;). By default, any of these followed by whitespace except for a Unicode thin
space will indicate the end of a sentence. A blank line consisting of two new line
characters together will imply the end of a sentence without any final punctuation.

The ellyMain module, the standard top-level module for PyElly, employs
ellySentenceReader. You can run ellyMain interactively from a keyboard, but since it
expects general text input, you may have to add an extra <RETURN> to get the module to
recognize the end of a sentence and start processing.

11.1 Basic PyElly Punctuation in Grammars
The PyElly punctuationRecognizer module automatically defines a small set of single
Unicode characters as punctuation for text. These include the stop punctuation already
recognized by ellySentenceReader, plus comma (,) , bracketing and parentheses ([]),
apostrophe ('), and double-quote (") in ASCII, and a few non-ASCII Unicode characters
like (“) and (”) seen in formatted text. These are defined in the Python source file
punctuationRecognizer.py.

The punctuationRecognizer module is a builtin extension of the grammar rules in a
X.g.elly definition file for an PyElly application X. It has the effect of automatically
creating default internal dictionary entries for single-character punctuation in every
PyElly application. This is currently biased toward English, but can be adapted for other
languages by changing the basic punctuationRecognizer table and recompiling or by
adding explicit internal dictionary rules to override the table.

The punctuationRecognizer module can be replaced in PyElly by a stub with an empty
table and a match() method that always returns False. In that case, you will have to
supply all your own punctuation rules, but most of the time, you can just take the PyElly
defaults. This was the approach in all twelve of the functioning example applications in
the current PyElly distribution package.

All predefined PyElly single- and multi-character punctuation will be associated with
the syntactic type PUNC. If you want to make your own system of punctuation, define

Page �96

PyElly User’s Manual

your own syntactic types here and then use them in your grammar and vocabulary rules.
You can even reuse PUNC, but remember that this will come with prior definitions.

PyElly also will qualify the syntactic type PUNC with syntactic features under the ID
[|] and semantic features under the ID [!]. These are pre-defined in the Python
code of PyElly and can be changed only there. Their names currently are as follows:

You can add your own features under the [|] or[!] IDs, but will have to give them
new unique names and assign them only to feature bits that are still free. It is easy to get
into trouble when you do not know exactly what you are doing.

Remember that punctuation, like all other input text elements, may be translated by
PyElly into something else in its output, but may be kept unchanged. You will have to
decide on the proper action and lay out the necessary rules for PyElly.

Including the full punctuationRecognizer module in PyElly is equivalent to putting the
following internal dictionary rules into every A.g.elly language definition file:

syntactic
feature Indication

start can start a sentence

stop can stop a sentence

*l is a left bracket or quotation mark (special use of predefined feature name)

*r is a right bracket or quotation mark (special use of predefined feature name)

quo is quotation mark

com is comma

hyph is hyphen

emb can be included within a PyElly token

*x indicates a square bracket when occurring with *L or *R, a period when occurring
with STOP, or an m dash otherwise (special use of predefined feature name)

semantic
feature Indication

brk can divide a sentence without ending it

Page �97

PyElly User’s Manual

d:[<- PUNC[|*l,*x,start]
__
d:] <- PUNC[|*r,*x]
__
d:(<- PUNC[|*l,start]
__
d:) <- PUNC[|*r]
 >>[!spcs]
__
d:“ <- PUNC[|*l,quo,start]
__
d:” <- PUNC[|*r,quo]
__
d:" <- PUNC[|*l,*r,quo,start]
__
d:‘ <- PUNC[|*l,quo,start]
__
d:’ <- PUNC[|*r,quo]
__
d:` <- PUNC[|*l,quo,start]
__
d:' <- PUNC[|*l,*r,quo,start]
__
d:, <- PUNC[|com]
 >>[!brk]
__
d:. <- PUNC[|stop,emb,*x]
__
d:! <- PUNC[|stop,emb]
__
d:? <- PUNC[|stop,emb]
__
d:: <- PUNC[|stop,emb]
__
d:; <- PUNC[|stop]
__
d:… <- PUNC # horizontal ellipsis
__
d:™ <- PUNC # TM
__
d:– <- PUNC # en dash
__
d:— <- PUNC[|*x] # em dash
__
d:- <- PUNC[|hyph] # hyphen or minus
__

All PyElly predefined punctuation will translate into itself with neutral cognitive
semantic plausibility. You can override this action by defining a vocabulary rule with a
different rewriting for a specific punctuation, but if this has the same syntactic features
as a default rule, make sure that the new rule has a positive semantic plausibility
increment so that PyElly will always choose it instead of the default.

You can also use the ellyCharInputStream module to change the form of punctuation in
text before it is looked up. This is how PyElly now handles ellipsis written as three dots. 

Page �98

PyElly User’s Manual

11.2 Extending Stop Punctuation Recognition
The division of text into sentences by ellySentenceReader can currently be modified in
two ways: by the stopException module that recognizes special cases when certain
punctuation should not terminate a sentence and by the exoticPunctuation module that
checks for cases where sentence punctuation can be more than a single character.

11.2.1 Stop Punctuation Exceptions (A.sx.elly)

When PyElly starts up an application A, its stopException module will try to read in a
file called A.sx.elly, or failing that, default.sx.elly. This file specifies various
patterns for when a regular stop punctuation character (. ! ? : ;) should not
terminate a sentence. These patterns will only be checked when the punctuation is
followed by a space character in input text.

A pattern in a *.sx.elly file must each be expressed in the following form:

l...lp|r

where p is the punctuation character for the exception, l...l is a sequence of literal
characters or wildcards for the immediate left context of p, and r is a single literal
character or wildcard for the immediate right context of p plus the space after it. The
vertical bar (|) marks the start of a right context and must be present.

The l and r parts of a pattern may have only certain Elly wildcards:

@ matches a single letter

matches a single digit

~ matches a single nonalphanumeric character

! matches an uppercase letter (exclamation point)

¡ matches a lowercase letter (inverted exclamation point)

You may also have * wildcard at the right end of a left context, as long there is
something else to match. The right context of an exception pattern may be omitted.

Here are some examples of actual exception patterns from default.sx.elly:

@.|
!*:|!
dr.|
mr.|
mrs.|
u.s.s.|

Page �99

PyElly User’s Manual

The first pattern above picks up initials, which consist of a single letter followed by a
period and a space character. The second lets a sentence continue past a colon (:) and a
space when this is preceded by a capitalized word, indicated by !*, and followed by a
capital letter, indicated by the ! wildcard alone. The other patterns match formal titles
for names and work as you expect them to. The file default.sx.elly has an
extensive list of stop exceptions that might be helpful for handling typical text. You may
enlarge this or make up your own list for an application.

As with PyElly patterns elsewhere, lowercase letters in a pattern will match the same
letter in text irrespective of case. So the third pattern above will match DR., Dr., dR.,
and dr.. If the exception pattern were Dr.|, then it would match only DR. and Dr..
Uppercase in a pattern must match uppercase in text.

Note also that ordering makes a difference in the listing of patterns here. PyElly will
always take the first match from a listing, which should do the right thing. The problem
is when a longer and a shorter pattern can both match input text. You probably would
want to list the longer pattern first, or otherwise it may never be matched.

PyElly will apply some additional conditions before accepting a match of the left context
pattern of stop exception rule. It will limit the range of a left context to the longest
sequence of characters preceding a candidate stop punctuation that can appear in a
simple token. Rule patterns cannot refer to anything outside that range. In particular, a
space wildcard can never be matched.

If a left context pattern ends with a * wildcard, then will be compared without the *
wildcard against the starting characters of the actual left context in input text. If this
matches, then any extra characters in the left context will have to be alphanumeric in
order to make a full pattern match.

If a left context pattern has no * wildcard, then it will be compared against the ending
characters in the actual input left context. If this matches, then if the first element of
matching input text is alphanumeric, then any preceding input character may not be
alphanumeric or ampersand (&). For example, with the rule dr.|, the input text XDR.
will match the left context pattern by itself, but PyElly will reject this because of the X.

The handling of right context patterns will examine only one text character at most, but
this will be the first character after the candidate stop punctuation and its following
space. The * wildcard is forbidden in a right context pattern; and there must be an
actual input text character here if a right context pattern is specified.

As of PyElly release v1.3.23, the stopException module includes hardwired logic to
bypass the stop exception table in a few special cases. This currently is only to handle
the abbreviations A.M. and P.M. in time expressions, which requires going beyond the
simple pattern matching in the stop exception table. The hardwired logic cannot be
overridden except by changing the Python code in the class method nomatch().

Page �100

PyElly User’s Manual

11.2.2 Bracketing Punctuation

Some punctuation can show up in complementary pairs to bracket segments of text. The
most common of these are parentheses and brackets like (and) or [and] and
quotation marks like “ and ”. The PyElly ellySentenceReader module recognizes such
paired punctuation and will adjust its sentence boundaries accordingly. For example,
the text segment

(He walks along.)

should be a sentence even though the period (.) here is not followed by a space. The
closing right parenthesis will also be included in identified sentence.

Paired quotation marks are handled in the same way, but there is an added complication
here because some text may use the same character for left and right quotation marks.
For example,

"He walks along."

To handle this situation, PyElly automatically interprets " at the beginning of a sentence
or preceded by a space as “ and at the end of a sentence or followed by a space as ”. It
does not replace the original character, however. You can do the replacement yourself
with macro substitutions if you really want to.

Within paired bracketing of any type, colons (:) and semicolons (;) will not be stopping
punctuation and are treated more like a comma (,). The other usual stopping
punctuation (.?!) will also be ignored it if there are fewer than 3 space characters seen
so far within the brackets, not counting the spaces after a previously ignored (.?!)
punctuation marks. This is to avoid highly fragmented sentence analysis.

PyElly currently puts a 80-character limit on any bracketing with respect to sentence
boundaries. If a matching character pair like (“”) is farther apart than that, then no
bracketing is recognized. You can change this limit by editing the parameter NLM in
ellyCharInputStream.py.

The bracketing logic in PyElly is heuristic and may have to be tuned for a particular
application. No information should be lost here, however. The result will just be to
divide text input into a different set of sentences, which may or may not matter. For
example, a long quotation in input text may be broken up instead being taking as a
single segment of text for analysis.

11.2.3 Exotic Punctuation

This is for dealing with punctuation like !!! or !?. The capability is coded into the
Pyelly exoticPunctuation module, and its behavior cannot be modified except by
changing the Python logic of the module. This change will be easy, though.

Page �101

PyElly User’s Manual

The basic procedure here is to look for contiguous sequences of certain punctuation
characters in an input stream. These are then automatically collapsed into a single
character to be passed on to the ellySentenceReader module. The main ellyBase part of
PyElly should therefore always see only standard punctuation.

11.3 How Punctuation Affects Parsing
Typical input sentences processed by PyElly may currently include all kinds of
punctuation, including those recognized by stopException as not breaking a sentence.
When PyElly breaks a sentence into parts for analysis, a single punctuation character by
default will be taken as a token. PyElly will assign common English punctuation to the
predefined syntactic type PUNC unless you provide vocabulary table rules or D:
grammar rules or FSA pattern rules specifying otherwise.

For example, you might put DR. into your vocabulary table, perhaps as the syntactic
type TITLE. Since this will take three characters from an input stream, including the
period, PyElly will no longer see the punctuation here. PyElly tokenization will always
take longest possible match when multiple PyElly rules can apply; a token including
punctuation like quotation marks will probably be longer than anything else.

Identifying punctuation in an input sentence is just the start of PyElly analysis, however.
The grammar rules for a PyElly application will then have to describe how to fit the
punctuation into the overall analysis of a sentence and how eventually to translate it.
This will be entirely your responsibility; and it can get complicated.

In simple text processing applications taking only a sentence at a time and only a small
amount of text, you might choose just to ignore all punctuation by making them
disappear in macro substitutions, but more usually, punctuation occurrences in
sentence will provide important clues about the boundaries of phrases in text input that
can greatly help in keeping your syntactic analyses manageable.

When you choose to work with sentence punctuation, you will need at least one
grammar rule like

g:SENT->SENT PUNC[|STOP]
__

for handling stop punctuation terminating a sentence, although the syntactic feature
reference is often unnecessary. The setting of syntactic features by the PyElly
punctuationRecognizer module will have no on sentence analysis when these are
unreferenced by grammar rules.

PyElly parsing will fail if any part of a sentence cannot be put into a single coherent
syntactic and semantic analysis; and punctuation handling will be a highly probable
point of failure here. Watch out for sentences broken in two by incorrectly interpreted
punctuation; this cannot be corrected with macro substitutions since these rules must
always operate within the sentence boundaries already found. 

Page �102

PyElly User’s Manual

12. PyElly Tokenizing and Parsing
Parsing and tokenization are usually invisible in PyElly operation, which should help to
simplify the development of natural language applications. Still, we do sometimes need
to look under the hood, either when something goes wrong or when efficiency becomes
an issue. So this section will take a deep dive into how PyElly analyzes a sentence, a
procedure that has evolved over many decades to its present elaboration.

PyElly follows the approach of compiler-compilers like YACC. Compilers are the
indispensable programs that translate code written in a high-level programming
language like Java or C++ into the low-level machine instructions that a computer can
execute directly. In the early days of computing, all compilers were written from scratch;
and the crafting of individual compilers was complicated and slow. The results were
often unreliable.

To streamline and rationalize compiler development for a proliferation of new languages
and new target machines, compiler-compilers were invented. These provided
prefabricated and pretested components that could be quickly customized and bolted
together to make new compilers. Such standard components typically included a lexical
analyzer based on a finite-state automaton and a parser of languages describable by a
context-free grammar.

Using a compiler-compiler of course limits the options of programming language
designers. They have to be willing to work with the constraint of context-free languages;
and the individual tokens in that language (variables, constants, and so forth) have to be
recognizable by a simple finite-state automaton. Such restrictions are significant, but
being able to have a reliable compiler running in weeks instead of months is so
advantageous that almost everyone can accept the tradeoffs.

The LINGOL system of Vaughan Pratt adapted compiler-compiler technology to help
build natural language processors. Natural languages are not context-free, but life is
simpler if we can parse them as if they were and then take care of context sensitivities
through other means like local variables in semantic procedures attached to syntax
rules. PyElly follows the LINGOL plan and takes it even further.

12.1 A Bottom-Up Framework
A parser analyzes an input sentence and builds a description of its structure. As noted
earlier, this structure can be represented as a kind of tree, where the root of the tree is a
phrase node of the syntactic type SENT and the branching of the tree shows how
complex structures break down into simpler structures. A tool like PyElly must be able
to build such trees incrementally for a sentence, starting either at the bottom with the
basic tokens from the sentence or at the top by putting together different possible
structures with SENT as root and then matching them up with the parts of the sentence.

One can debate whether bottom up or top down is better, but both should produce the
same parse tree in the end. We can have it both ways by adopting a basic bottom-up

Page �103

PyElly User’s Manual

framework with additional checks to prevent a parse tree phrase node from being
generated if it would not show up in a top-down analysis. PyElly does this through a
true/false matrix m(X,Y) telling whether a syntactic type Y could eventually satisfy a goal
of X at parse position; it is automatically compiled when PyElly loads its grammar rules.

LINGOL and subsequently PyElly both take this restricted bottom-up approach. Doing
so is quite efficient, and the various resulting subtrees can provide helpful information
when parsing fails or when a translation goes wrong. Bottom-up is also more convenient
for computing plausibility scores with PyElly cognitive semantics.

The PyElly bottom-up algorithm operates on a queue that lists the newly created phrase
nodes of a parse tree. These still need to be processed to create the phrase nodes at the
next higher levels of our tree. Initially, the queue is empty, but we then read the next
token in an input sentence and look it up to get some new bottom-level parse tree nodes
to prime our queue. A token can be a single word or phrase, a number, punctuation, an
arbitrary alphanumeric identifier, or a complex entity like a calendar date.

PyElly parsing then runs in a loop, taking the node at the front of its queue and applying
grammar rules to create new nodes to be appended to the back of the queue for further
action. This process keeps going until the queue finally empties out. At that point, PyElly
will then try to read the next token from a sentence to refill the queue and proceed as
before. Parsing will stop after every token in sentence has been seen or when current
grammar rules cannot generate any more phrase nodes past a given token position.

There is one special circumstance when a new node will not be added to the end of a
queue. If there is already a phrase node of the same syntactic type with the same
syntactic features built up from the same sentence tokens and if the new node does not
have the *UNIQUE syntactic feature, PyElly will note an ambiguity here and will attach
the new node as an alternative to the already processed node instead of queueing it
separately for further tree building.

This consolidation of new ambiguous nodes serves to reduce the total number of nodes
generated for the parsing of a single sentence. Otherwise, PyElly would have to build
parallel tree structures for both the old node and the new node without necessarily any
benefit. The *UNIQUE syntactic feature will allow you to override the handling of
ambiguities here if you really want to do so.

In any event, PyElly immediately computes the cognitive semantic plausibility score of
each new phrase as it is generated in bottom-up parse tree building. Whenever an
ambiguity is found, PyElly will find the alternative with the highest plausibility and use
it in all later processing of a sentence. All the other alternatives will, however, be
retained for reporting, for possible backup on a semantic failure, or for automatically
adjusting biases to insure that the same rule will not always be taken when there are
multiple rules with the same semantic plausibility.

Page �104

PyElly User’s Manual

12.2 Token Extraction and Lookup
PyElly token lookup is complicated because it can happen in many different ways:
external vocabulary tables, FSA pattern rules, entity extraction, the internal dictionary
rules for a grammar, and builtin rules like those for punctuation recognition. These
possibilities must also interact with macro substitution, inflectional stemming, and
morphological analysis; and so it can be hard to follow what is going on here.

PyElly breaks up a sentence into a sequence of tokens, each a single- or multi-word
term, a common expression, a word fragment, a name or other complex entity, a string
of defined format like a number, or punctuation. PyElly parsing goes from left to right in
a sentence, applying its language rules to get the longest possible token at the next
sentence position. For an application A, the full lookup procedure is currently as follows:

1. If number rewriting is enabled, rewrite any spelled-out number like SIXTEEN
HUNDRED in the current sentence position as digits plus any ordinal suffix like -ST,
-RD, or -TH. A spelled-out fraction like THREE-EIGHTHS becomes 3/8THS.

2. Apply macro substitution rules at the current position.

3. Try also to match up the next input up to the next space or other separator with the
FSA pattern table for A; queue up matches as leaf phrase nodes at the current
position if they are consistent with top-down parsing expectations (derivability).

4. Try entity extraction at the current position; put matches as phrase nodes into the
PyElly parsing queue if consistent with top-down expectations at the current
position. Entities must be within a single sentence; otherwise, PyElly puts no
restrictions like above on what extraction code (written in Python) can do for
matching. An entity string can include punctuation and spaces.

5. Look up the next input text in the external vocabulary table for A; put matches into
the PyElly parsing queue as parse tree leaf phrase nodes if consistent with top-down
parsing expectations at the current position according to the current grammar rules
for A. PyElly has special punctuation rules on how far ahead to scan for a match.

6. If steps 3, 4, or 5 have queued up phrase nodes, keep only those with the longest
extent. These should be over the same extent of input text.

7. If any queued phrases are longer that the next simple input token, we are done with
the generation of leaf phrase nodes and ready to start the main parsing loop.

8. Otherwise, extract the next token of alphanumeric plus embeddable punctuation
characters from PyElly input with inflectional stemming and macro substitution.

9. If inflectional stemming is enabled, then apply it to the next token. Put any
inflectional endings back into PyElly input.

10. Apply macro substitution rules again. These may override inflectional stemming.

Page �105

PyElly User’s Manual

11. Look up the input token as a single word in both external vocabulary table and the
internal dictionary for A. Queue up a phrase node for any matches here if consistent
with top-down expectations and the match is as long as what has been seen so far.

12. If we have queued phrases from any of the preceding steps, we are done with
tokenization and ready to go into the PyElly main parsing loop.

13. Otherwise, morphologically analyze our current single-word token with the rules in
effect for A. Put any suffixes found here back into PyElly input. If analysis resulted in
a new token, look it up in the external vocabulary table and in the internal dictionary
for A. If found and consistent with top-down expectations and long enough, queue
up phrase nodes for each match.

14. If there are any queued up phrase nodes, we are done.

15. Otherwise, if nothing has been queued up yet, check if the next token is standard
punctuation. If so and the punctuation is consistent with top-down expectations,
enqueue a phrase node of syntactic type PUNC and quit tokenization.

16. If nothing has yet been queued up, then create a phrase node of UNKN type for the
next single token up to a break character. This will be without any top-down
consistency check.

The lookup process should produce a queue of at least one phrase node for the next
token. We then will start in on parse tree building with queued up nodes and continue
until the queue is exhausted. When that happens, it is time to look for another token
from which to refill our queue until all of an input sentence has been processed.

12.3 Building a Parse Tree
Given bottom-level phrase nodes in the PyElly parsing queue, we can start to build up a
parse tree from them. The basic algorithm here is from LINGOL, but it is similar to
other bottom-up parsing procedures in systems driven by context-free grammars. The
next subsection will cover the details of the basic algorithm’s main loop, and the two
following subsections will describe PyElly extensions to that algorithm.

12.3.1 Context-Free Analysis Main Loop

At each step in parsing, we first enqueue the lowest-level phrase nodes for the next piece
of an input sentence, with any ambiguities already identified and resolved. Then for
each queued phrase node, we find all the ways that the node will fit into a parse tree
currently being built. This is called “ramification” in PyElly source code commentary.

For newly enqueued phrase node, PyElly ramification will go through three steps when
the syntactic type of the node is X:

Page �106

PyElly User’s Manual

1. Look for grammar rules of the form Z->Y X that have earlier found a Y and has set a
goal of an X in the current position. For each such goal found, create a new phrase
node of type Z, which will be at the same starting position as phrase Y.

2. Look for rules of the form Z->X. For each such rule, create a new node of type Z at
the same starting position and with the same extent in a sentence as X.

3. Look for rules of the form Z->X Y. For each such rule, set a goal at the next position
to look for a Y to make a Z at the same starting position as X.

A new phrase node will be vetoed in steps 1 and 2 if inconsistent with a top-down
algorithm. The same derivability matrix was employed in token lookup. Each newly
created node will be queued up for further processing with the three steps above. When
all the phrase nodes ending at the current sentence position have been ramified, PyElly
parsing advances to the next position.

The main difference between PyElly basic parsing here and similar bottom-up context-
free parsing elsewhere is in the handling of ambiguities. Artificial languages generally
forbid any ambiguities in their grammar, but natural languages are full of them and so
we have to be ready to handle them. In PyElly, the solution is to resolve ambiguities
outside of its ramification steps.

PyElly sees an ambiguity only when two phrase nodes of the same syntactic types and
features cover the same tokens in a sentence. For example, the single word THOUGHT
could be either a noun or the past tense of a verb. This will have to be resolved at some
point, but if they are marked with different syntactic categories or have different
syntactic features, PyElly will put off making any resolution.

It is possible that a parsing ambiguity may found for a phrase node after it has already
been ramified. This is no problem if that previous node has a higher plausibility than the
new phrase node producing the ambiguity; but if the new phrase is more semantically
plausible, then it must replace the old phrase, and the plausibility scores of all of the old
phrase’s ramifications must also be adjusted upward to reflect the replacement. Such
changes of the plausibility of other phrase nodes may in turn require adjustment of their
previous ramifications as well. PyElly handles all of this automatically.

12.3.2 Special PyElly Modifications

Except for ambiguity handling, basic PyElly parsing is fairly generic. We can be more
efficient here by anticipating how grammar rules for natural language might benefit
from special handling as compared to those for context-free artificial languages. The
first extension of the core algorithm is the introduction of syntactic features as an extra
condition on whether or not a rule is applicable for some aspect of ramification.

On the right side of a rule like Z->X or Z->X Y, you can specify what syntactic features
must and must not be turned on for a queued phrase node of syntactic type X to be

Page �107

PyElly User’s Manual

matched in steps 2 and 3 above and for a queued phrase node of type Y to satisfy a goal
based on a rule Z->X Y in step 1. This checking involves extra code, but it is
straightforward to implement with bit-checking operations.

There is also a special constraint applying to words split into a root and an inflectional
ending or suffix (for example, HIT -ING). The parser will set flags in the first of the
resulting phrase nodes so that only step 3 of ramification will be taken for the root part
and only step 1 will be taken for each inflection part. A parse tree will therefore grow
more slowly than otherwise expected, making for faster parsing and less overflow risk.

12.3.3 Type 0 Grammar Extensions

The introduction of the PyElly ... syntactic type complicates parsing, but handling the
type 0 grammar rules currently allowed by PyElly turns out to require only two localized
changes to its core context-free algorithm.

1. Just before processing a new token at the next position of an input sentence,
generate a new phrase node for the grammar rule …[.1]->nothing. This is not a
normally legal rule! Enqueue the node and get its ramifications immediately.

2. Just after processing the last token of an input sentence, generate a new phrase node
for the grammar rule ...[.2]->nothing. Enqueue it and get its ramifications
immediately.

Those reading this manual closely will note that the two rules here have syntactic
features associated with ..., which Section 8 said was not allowed. That restriction is
still true, and that is because PyElly reserves the syntactic features of ... to make the
type 0 logic handling work properly as done above.

The difficulty here is that the ... syntactic type is prone to producing ambiguities. This
will be especially bad if the PyElly parser cannot distinguish between a ... phrase that
is empty and one that includes actual pieces of a sentence. So PyElly itself keeps track by
using syntactic features here, but keeps that information invisible to users.

The solution will propagate up the syntactic feature [.1] to indicate an empty phrase
due to case 1 and the feature [.2] to indicate an empty phrase due to case 2. Though
invisible, a grammar will still need to guide this explicitly through setting *LEFT or
*RIGHT in rules for syntactic feature inheritance when a rule involves

12.4 Success and Failure in Parsing
For any application, PyElly automatically defines the special grammar rule:

g:SENT->SENT END
__

Page �108

PyElly User’s Manual

This rule will never be realized in an actual phrase node, but the basic PyElly parsing
algorithm uses this rule to set up a goal for the syntactic type END in phase 3 of
ramification. After a sentence has been fully parsed, PyElly will look for an END goal at
the position after the last token extracted from the sentence. If no such goal is found,
then we know that parsing has failed; otherwise, we can then run the generative
semantics for the SENT phrase node that generated the END goal just found.

There may be more than one END goal in the final position, indicating that their
respective generating SENT phrase nodes were not collapsed as an ambiguity because of
syntactic feature mismatch. As a special case, PyElly will compare their cognitive
semantic plausibility scores select the most plausible and run its generative semantic
procedure to get the interpretation for a sentence. This is equivalent to making actual
phrase nodes based on the implicit PyElly SENT->SENT END rule, which would trigger
PyElly ambiguity handling as just described.

Failure in parsing gives us no generative semantic procedure to run, and our only
recourse then is to dump out intermediate results and hope that someone can spot some
helpful clue in the fragments of analysis. If the failure is due to something happening in
semantic interpretation, though, PyElly can automatically try to recover by backing up
in a parse tree to look for an ambiguity and selecting a different alternative at that point.

12.5 Parse Data Dumps and Tree Diagrams
PyElly can produce dumps of parsing data, including all the complete or partial parse
trees built up for a sentence. In a successful analysis, this helps in verifying that PyElly is
running as expected. In a failed analysis, the partial parse trees will provide clues about
what went wrong. For example, you can see where the building of a parse tree had to
stop and whether this was due to a missing rule or unexpected input text.

All this information is written to the standard error stream. Such output originally was
an informal debugging aid, but has proven so useful that it is now built into PyElly
operation. The most important part of parse data dumps are the trees. These will be
presented horizontally, with their highest nodes on the left and with branching laid out
vertically. For example, here is a simple 3-level subtree with 4 phrase nodes:

sent:0000───ss:8001┬noun:8000 @0 [nnnn]
 6 = 3 4 = 2| 1 = 1
 └verb:0000 @1 [vvvv]
 2 = -1

Each phrase node in a tree display will have the form

type:hhhh
 n = p

Where type is the name of a syntactic type truncated to 4 characters, hhhh is
hexadecimal for the associated feature bits (16 are assumed), n is a phrase sequence

Page �109

PyElly User’s Manual

number indicating the order in which it was generated in a parse, and p is the numerical
semantic plausibility score computed for the node. The nodes are connected by Unicode
drawing characters to show the kind of branching in grammar structures.

To interpret the feature bits hhhh here, you should look at the encoding of feature
names produced by grammarTable.py. The feature encoded as 0 will be the leftmost bit
and will show up as the hexadecimal 8000; the feature encoded as 1 will be 4000. In the
above example, the top-level node here for type sent is

sent:0000
 6 = 3

This node above has no syntactic features turned on; its node sequence ID number is 6,
and its plausibility score is +3. Similarly, the node for type ss at the next level is

 ss:8001
 4 = 2

The actual sentence tokens for a PyElly will be in brackets on the far right, preceded by
its sentence position, which starts from 0. In the example above, the tokens are the
“words” nnnn and vvvv in sentence positions 0 and 1, respectively. Every parse tree
branch will end on the far right with a position and token, plus a semantic concept if
your grammar includes them.

With the analysis of a word into components becoming separate tokens, representing
prefixes or suffixes, we can get trees like

sent:0000───ss:0000┬──ss:0000─unit:0000─unkn:0000 @0 [it]
 11 = 0 10 = 0│ 2 = 0 1 = 0 0 = 0
 └unit:0000┬unkn:0000 @1 [live]
 9 = 0│ 4 = 0
 └sufx:0000 @2 [-s]
 8 = 0

When a grammar includes ... rules, the display will be slightly more complicated, but
still follows the same basic format.

sent:0000┬sent:C000───ss:C000┬───x:A400┬─...:4000 @0 []
 11 = 4│ 8 = 4 7 = 4│ 3 = 4│ 0 = -2
 │ │ └─key:2400 @0 [hello]
 │ │ 2 = 2
 │ └─...:4000 @1 []
 │ 6 = -2
 └punc:2000 @1 [.]
 9 = 0

Page �110

PyElly User’s Manual

The empty phrases number 0 and number 6 have sentence positions 0 and 1, but these
positions are shared by two actual sentence elements HELLO and period (.), as you
would expect. Note that the hidden syntactic flags of the ... type will show up in a
displayed tree; just ignore them.

All the examples here show a single analysis of a complete sentence, where PyElly start
from for semantic interpretation. This minimal dump will not show any rejected
alternative analyses, which might have been generated for ambiguities or for dead ends
that led to no full analysis of a sentence recognized as a syntactic type SENT.

When a PyElly analysis fails or when you are unsure whether an analysis is correct,
however, you may want to see all the intermediate results of parsing, including
ambiguities and dead ends. PyElly can do a full tree dump here showing all phrase
nodes in an analysis in the order of their generation.

In a full dump, PyElly first looks for the node with the highest sequence ID number not
yet shown in any parse tree for the current dump. PyElly then shows the subtree under
that node as done above for the subtree under sent and loops back in this way until all
phrase nodes are accounted for. For a long sentence, we may have tens of thousands of
phrase nodes, but each node will show up in only one subtree.

In addition to all the trees and subtrees, a PyElly full dump will also show the goals at
the final position in a sentence analysis, all grammar and internal dictionary rules
applied plus the phrases nodes generated, and all ambiguities found in the process. This
information should allow you to reconstruct how PyElly parsed a sentence.

Full dumps are default when you are running ellyBase.py from a command line,
regardless of whether PyElly succeeded or failed on an input sentence. With
ellyMain.py, you will see only a minimal dump if PyElly succeeded, but a full dump if
PyElly has failed.

For example, suppose that we have the following trivial grammar, which allows for
sentences consisting of either a NOUN plus a VERB or a VERB plus a NOUN:

trivial grammar
p:do
_
 left
 space
 right
__
g:sent->noun verb
_
 (do)
__
g:sent->verb noun
 >>-
_
 (do)
__

Page �111

PyElly User’s Manual

g:noun->noun sufx
_
 (do)
__
g:verb->verb sufx
_
 (do)
__
d:dog <- noun
__
d:dog <- verb
__
d:-s <- sufx
__
d:bark <- verb
__
d:bark <- noun
__

Here is an example of an ellyBase full dump for an analysis of a short sentence:

> dogs bark.

parse FAILed!
dump all

dumping from phrase 8 @0: typ=0 syn[00 00] sem[00 00] : bia=-1 use=0
 sent:0000┬verb:0000┬verb:0000 @0 [dog]
 8 = -1│ 4 = 0│ 1 = 0
 │ └sufx:0000 @1 [-s]
 │ 2 = 0
 └noun:0000 @2 [bark]
 6 = 0

dumping from phrase 7 @0: typ=0 syn[00 00] sem[00 00] : bia=0 use=0
 sent:0000┬noun:0000┬noun:0000 @0 [dog]
 7 = 0│ 3 = 0│ 0 = 0
 │ └sufx:0000 @1 [-s]
 │ 2 = 0
 └verb:0000 @2 [bark]
 5 = 0

rules invoked and associated phrases
rule 2: [7]
rule 3: [8]
rule 4: [3]
rule 5: [4]
rule 6: [0]
rule 7: [1]
rule 8: [2]
rule 9: [5]
rule 10: [6]

3 final goals at position= 3 / 3
 goal 8: sufx typ=6 for [phrase 5 @2: typ=5 syn[00 00] sem[00 00] : bia=0 use=0] rul=5
 goal 9: sufx typ=6 for [phrase 6 @2: typ=4 syn[00 00] sem[00 00] : bia=0 use=0] rul=4
 goal 10: end typ=1 for [phrase 7 @0: typ=0 syn[00 00] sem[00 00] : bia=0 use=0] rul=1

9 phrases altogether

Page �112

PyElly User’s Manual

ambiguities
sent 0000: 7 (+0/0) 8 (-1/0)

4 raw tokens= [[dog]] [[-s]] [[bark]] [[.]]
9 phrases, 11 goals

Parsing fails for the input “dogs bark.” because our simple grammar expects no
punctuation at the end of a sentence. In the full dump, we first see the two subtrees for
the first three tokens of the input sentence. The final position with goals are defined is 3,
and the goals there are listed; the position of the actual last token seen is also 3, but this
may not always be so. In the list of ambiguities we have phrases 7 and 8, both of type
SENT with no syntactic features set; phrase 7 starts the listing because it has a higher
semantic plausibility score as result of the cognitive semantics for rule 3.

If a semantic concept is defined for a phrase at a leaf node in a parse tree, a PyElly tree
dump will show the concept immediately after the bracketed token at the end of an
output line. For example, the augmented printout for tree the first tree from the
example above might become

sent:0000┬noun:0000┬noun:0000 @0 [dog] 02086723N
 4 = 0│ 2 = 0│ 0 = 0
 │ └sufx:0000 @1 [-s]
 │ 1 = 0
 └verb:0000 @2 [bark] 01049617V
 3 = 0

where 02086723N and 011049617V are WordNet-derived concept names as described
in Subsection 10.4.1 above. If no concept is defined for a leaf node, then the tree output
will remain the same as before. This is the case for the suffix -S here.

12.6 Parsing Resource Limits
PyElly is written in Python, a scripting language that can be interpreted on the fly. In
this respect, it is closer to the original LINGOL system written in LISP than to its
predecessors written in Java, C, or FORTRAN. PyElly takes advantage of Python object-
oriented programming and list processing with automatic garbage collection.

Unless you are running on a platform with tight main memory, PyElly should readily
handle sentences of up to a hundred tokens with little difficulty. When writing grammar
tules to describe long and complex sentences, however, you will have to control the
combinations of the possible interpretations from those rules. Too many combinations
here will result in phrase node overflow, producing no translation.

With high degrees of ambiguity in a PyElly grammar, the total number of phrase nodes
allocated in generating a complete parse for a sentence can grow exponentially with the
number of distinct tokens in the input. This will slow processing noticeably and can even
crash your computer. Be careful especially when using the predefined *unique
syntactic feature or when many words have to be treated syntactically as UNKN.

Page �113

PyElly User’s Manual

In general, PyElly will generate every possible parse trees for a sentence. Analyses will
be reduced, though, by immediate resolution of ambiguities of the same syntactic type
with the same syntactic features over the same text, but sentences with many competing
interpretations having to be resolved higher up in a parse tree can still clog up PyElly
processing. Inflectional stemming or morphological analysis will of course produce extra
tokens beyond the basic count of words and punctuation for a sentence.

The PyElly ellyConfiguration module as of v1.2.2 imposes a 50,000 node limit on
the total number of phrases available for a sentence parse tree. This is generous, since
parsing can seem glacially slow when over 10,000 phrase nodes are generated. If a
sentence analysis hits the node cutoff, PyElly will throw an overflow exception that will
be caught at the top level of ellyBase; only a token list dump will be then be shown.

You can raise the phrase node limit by editing the phraseLimit parameter definition
in the file ellyConfiguration.py. This probably will not help much, however. Node
overflow means that your grammar and vocabulary really need to be rethought and
tightened up. A remedy here might be to use syntactic features strategically to restrict
the applicability of alternate syntax rules and to define more terms explicitly, especially
ones with multiple words. Just recognizing a phrase like in the course of as a
single token can often halve the total phrase node count for a long sentence.

Certain words in a language are unusually prone to producing ambiguities. In English, a
few to watch out for are the function words IN, THAT, MAY, and TO. If a sentence
contains many of these words, it may produce an overflow even though it might look
quite short and simple. The content words NEAR and BASE can also be problematic.
Beware when a word has more than three associated syntactic categories in a PyElly
language definition.

As of v1.3.5, you can also insert a control character into your input to force PyElly to
split the analysis of a long sentence into two parts when you provide an appropriate
syntax rule here. This insertion can be done through a macro substitution rule with a
pattern that identifies where you want to put break into input text. The control character
here could be anything not normally found in input text, but in particular, PyElly
predefines ASCII RS (record separator or Unicode u’\u001E) for this purpose.

To make its use easier, the PyElly separator character will automatically be put into the
internal dictionary of every PyElly grammar as a 1-character token of syntactic type
SEPR. The separator character can be specified on the right side of a macro substitution
as \\s. You then just have to define grammar rules of the X->Y SEPR or X->SEPR Y to
tell PyElly where to expect a SEPR token in the input for an application. PyElly parsing
will take care of everything else.

There may be more than one separator in a given sentence. Each has the effect of
dividing a sentence analysis so that no phrase completely to the left of the separator will
generate a goal to the right of the separator. Fewer goal nodes generated will mean
fewer phrase nodes. To get maximum benefit here, you should have only one 2-branch
syntax rule with SEPR. and define it at the level of the SENT syntactic type.

Page �114

PyElly User’s Manual

With PyElly defaults, the analysis of a sentence with a separator token in input will still
produce a single parse tree. Your generative semantics will work exactly the same as
before to stitch together a proper output translation for the original input sentence.
Unless you have some special requirement, a SEPR phrase node should always translate
to a null string, since it was not in the original input text.

Outside of phrase and goal nodes, the main defined resource restrictions in PyElly are
on the total number of syntactic types (112) and the total number of different syntactic
features or of different semantic features for a phrase node (both 16). These are fixed to
allow for preallocation of various arrays used by the PyElly to simplify lookup of
grammatical symbols when setting up a language definition. The limits also make the
formatting of parse trees easier.

 You can change these limits on syntactic types and syntactic and semantic feature
counts by editing the definitions in the PyElly symbolTable.py module. The current
numbers should be quite enough for ordinary applications, however. If you increase the
feature count past 16, you also must change the parseTreeWithDisplay.py module
so that its formatting of parse trees will allow more than four hexadecimal digits to
represent syntactic feature bits. This will be non-trivial.

You will be better off leaving the limit on the number of syntactic features alone.
Instead, try increasing the number of syntactic feature sets or the number of syntactic
types; although this may make your grammar rules harder to understand. We are taught
in grammar school that there are only eight parts of speech in English, but it is often
advantageous to define many more syntactic types in order to make individual syntactic
rules more specific. Experiment here to see what works best for you.

In simple PyElly applications, the limits here will be unimportant. In the marking
example application with tens of thousands of grammar and vocabulary rules, however,
the language definition has reached over 90 syntactic types, 9 syntactic feature sets, and
3 semantic feature sets. Almost all of the syntactic and semantic feature sets are full. In
a PyElly application that has grown over time, you might want to reorganize its language
definition periodically to be more efficient in its use of symbols. 

Page �115

PyElly User’s Manual

13. Developing Language Rules and Troubleshooting
PyElly rewrites input sentences according to the rules that you provide. A natural
language application can involve up to ten different *.*.elly text files for rule
definition, with some containing hundreds or even thousands of rules. There are plenty
of ways to go wrong here; and so we all have to be systematic in developing PyElly
applications, taking advantage of all the tools available when problems arise.

Even when trying to do something simple, you must always be alert and cultivate good
habits. In general, the best way to use PyElly is to approach a solution bit by bit, trying
to take care of just one sentence at a time. Let PyElly to check everything out for you at
each step and go no further until everything is clean and satisfactory. Remember that a
change in your rules can break previous analyses. Always expect the worst.

Application building will never be a slamdunk, but remember that you are already a
natural language expert! Despite enormous advances in hardware and software, an
intelligent young child nowadays still knows more about natural language than Siri or
Watson. If you can harness some basic analytical skills and add some programming
chops to your innate language expertise, then you should do well with PyElly. Just keep
your goals clear and proceed slowly and carefully.

Start with the simplest sentences requiring only a few rules. Once these can be handled
successfully, move on to more complex sentences, adding more rules as needed to
describe them. With a modular PyElly rule framework, you should be able to build on
your previous rules without having to re-create them. This is one big advantage of
processing sentences recursively around the syntactic structures of sentences.

When testing out a new sentence, you should not only verify that PyElly is producing the
right output, but also inspect its parse tree dump to see that it is doing what you expect
from your current grammar rules. If everything is all right, then add the sentence and its
translation to a list to be run in regression testing with ellyMain.py later. Such testing
will take only seconds or minutes, but must be done.

13.1 Pre-Checks on Language Rule Files
As your language definition files get longer, PyElly can help to verify that each of them is
set up correctly and makes sense by itself before you try to bring everything together.
This can be done by running the unit tests of the modules to read in definition files and
check the acceptability of tables of rules. Running ellyBase.py or ellyMain.py will
also do some of this, but you can sort out issues more easily when looking at only one
definition file at a time. For example, with application X, you can run any or all of the
following unit tests from your command line:

Page �116

PyElly User’s Manual

python grammarTable.py X

python vocabularyTable.py X

python patternTable.py X

python macroTable.py X

python nameTable.py X

python compoundTable.py X

python conceptualHierarchy.py X

Each command will read in the corresponding X.*.elly file, check for errors, and
point out other possible problems. If a table or a hierarchy can be successfully
generated, PyElly will also dump this out entirely for inspection, except for external
vocabularies, which can be too big for a full listing.

The vocabulary, pattern, macro, and name table unit tests will also prompt you for
additional examples to run against their rules for further verification of correct lookup
or matching. This can be helpful when debugging a PyElly language definition with a
specific problematic bit of text.

PyElly error messages from language definition modules will always be written to
sys.stderr and will have a first line starting with “** ”. They may be followed by a
description line starting with “* ” showing the input text triggering the problem. For
example, here is an error message for a bad FSA rule for assigning a part of speech:

** pattern error: bad link
* at [0 *bbbb* ZED start]

PyElly will continue to process an input rule definition file after finding an error so as to
catch as many definition problems as possible in one pass. No line numbers are given in
error messages because PyElly normalizes all its input to simplify processing for
definition modules. This will strip out comments and will eliminate any blank lines, thus
changing the original numbering of lines.

Once each separate table has been validated in isolation, you can run ellyBase.py to
load everything together. Its unit test will run a cross-table check on the consistency of
your syntactic categories and of your syntactic and semantic features. For application X,
do this with the shell command

python ellyBase.py X

This is also how you would normally test the rewriting of individual test sentences, but
the information provided by PyElly from the loading of language rules is a good way to
look for omissions or typos in your language rules, which can be hard to track down
otherwise. Running ellyMain.py will skip this detailed kind of checking.

Page �117

PyElly User’s Manual

13.2 A General Application Development Approach
For those wanting more specifics on setting up PyElly language definition files, here is a
reasonable way to build a completely new application X step by step.

1. Set up initially empty X.g.elly, X.m.elly, X.stl.elly, X.n.elly, and
X.v.elly files. For the other PyElly language definition files, taking the defaults
should be all right as least to start with.

2. Select some representative target sentences for your PyElly application to rewrite.
Five or six should be enough to start with. You can add more as you go.

3. Write G: grammar rules in X.g.elly to handle to handle one of your target
sentences; leave out the cognitive and generative semantics for now. Just check for
correctness of the rules by running the PyElly module grammarTable.py with X as
an argument.

4. Add the words of a target sentence as D: internal dictionary rules in X.g.elly or as
vocabulary entries in X.v.elly. Run grammarTable.py or
vocabularyTable.py with X as an argument to verify correctness of language
definition files as your working vocabulary changes.

5. Run PyElly module ellyBase.py with X as an argument to verify that your
language definition files can be loaded together. Enter single target sentences as
input and inspect the parse data dumps to check that analyses are correct. Ignore
any generated output for now.

6. Write the generative semantic procedures for your grammar rules and check for
correctness by running grammarTable.py. If you have problems with a particular
semantic procedure, copy its code to a text file and run the PyElly module
generativeProcedure.py with the name of that text file as an argument.

7. When everything checks out, run ellyBase.py with X as an argument and verify
that PyElly translates a target sentence as you want.

8. When everything is working for a target sentence, repeat the above from step 2 with
other sentences. Always test your new system against all previous target sentences to
ensure that everything is still all right after any change of language rules. You can
create X.main.txt and X.main.key files to automate such testing with doTest.

13.3 Miscellaneous Tips
This subsection is a grab bag of advice about developing nontrivial PyElly grammars and
vocabularies. It is distills various lessons learned about rule-based language definition
for all kinds of applications since PARLEZ, the original PyElly ancestor. In writing
language rules for a new application, expect to make many mistakes; but try to avoid
repeating the same old ones.

Page �118

PyElly User’s Manual

13.3.1 General Advice

1. PyElly has almost eleven thousand lines of Python code, exclusive of commentary. It
will translate natural language strings into other kinds of strings and nothing more.
In other words, you cannot replicate Watson or Siri with PyElly. Go ahead and push
the limits, but be aware that PyElly is not magic and that developing large sets of
language rules can be hard work.

2. The PyElly ellyMain.py module is the better choice to rewrite batches of raw text
data because of its sentence recognition. If you are working with only one input
sentence at a time, run ellyBase.py. This is friendlier for interactive processing
and also provides more diagnostic information about its translations.

3. PyElly analysis revolves around sentences, but you can define them however you
want and need not follow what you learned in 8th grade. It is all right to break
sentences at colons and semicolons or even at certain subordinate conjunctions.
Shorter sentences will simplify your grammar rules and parsing.

4. In developing a grammar, less is better. You are more likely to hit trouble when you
increase the number of syntactic categories and rules. In many applications, for
example, you can ignore language details like gender, number, tense, and subject-
verb agreement. Avoid making rules for what does not matter to you.

5. Get the syntax of a target input language right before worrying about the semantics.
PyElly automatically supplies you with stubs for both cognitive and generative
semantics in grammar rules. You can replace those stubs later with full-fledged logic
and procedures after you can successfully analyze sentences syntactically.

6. Natural language always has regular and irregular forms. Tackle the regular first in
your grammar rules and make sure you have a good handle on them before taking
on the irregular. The latter can often be handled by macro substitutions: for
example, just change DIDN’T to DID NOT or if tense is unimportant, DO NOT.

13.3.2 Generative Semantics

1. Writing semantic procedures for a grammar is a kind of programming. So, follow
good software engineering practices. Divide the rewriting of text into smaller
subtasks that can be finished quickly and individually tested. Test thoroughly as you
go; never put this off until all your language rules have all been written out.

2. Make your generative semantic procedures short, fewer than twenty lines if possible;
this will make it easier to verify the correctness of your code visually. If a long
procedure is unavoidable, run it first in a separate file using the unit test for the
PyElly module generativeProcedure.py. Throw in some TRACE, SHOW, and
VIEW commands temporarily to monitor what that your code is doing.

Page �119

PyElly User’s Manual

3. Be liberal with named generative semantic subprocedures to shorten large blocks of
code. A subprocedure may have as few as only two or three commands. Calling such
a subprocedure could actually take more memory than equivalent inline commands,
but clarity and ease of maintenance will trump efficiency here. Common code used
in multiple procedures should always be broken out as a named subprocedure.

4. Group the rules for syntactic types into different levels where the semantic
procedures at each level will do similar things. A possible succession of levels here
might be (1) sentence types, (2) subject and predicate types, (3) noun and verb
phrase types, and (4) noun and verb types with inflections. This is also a good way to
organize the definition of local variables for communication between different
generative semantic procedures.

13.3.3 Macro Substitutions

1. Macro substitutions will usually be easier to use than syntax rules plus semantic
procedures, but they have to be fairly specific about the words that they apply to.
Syntax rules are better for patterns that apply to broad categories of words.

2. Macro substitution can be dangerous. Watch out for infinite loops of substitutions,
which can easily arise with * wildcards. Macros can also interact unexpectedly; in
particular, make sure that no macro is reversing what another is doing, which can
also lead to infinite loops.

3. Macros can match multiple tokens in input when the pattern for a substitution
includes one or more ‘_’ wildcards. This will match any space character, including
ASCII HT, NL, CR, US, and SP or Unicode NBSP and thin space. Literal spaces are
prohibited in macro patterns and will halt rule loading if seen by PyElly.

4. You can put the text matched by pattern wildcards into a substitution through the
elements \\1, \\2, \\3, and so forth; remember that a ‘_’ wildcard is always bound
separately, and you must count it correctly in a substitution; for example, the two
alphabetic segments of a string matching the pattern ‘&@_&@’ will be \\1 and \\3.

5. Try to avoid macros in which the result of substitution is longer that the original
substring being replaced. These are sometimes necessary, but can get you into
trouble; PyElly will warn you if it comes across such a macro, but will allow it.

6. The ordering of rules in a macro substitution table is important. Rules at the top of a
definition file can change the input text seen by a macro further down in the file.

7. PyElly macro substitution comes after transformations of spelled out numbers, but
before external vocabulary lookup, and entity extraction. It comes again just before
the next token is taken from its input buffer after any inflectional stemming and
again just before the next token is taken with morphological prefixes and suffixes
split off. This will allow macros to undo word analyses in special cases. Be careful
here; macros actions can undo, but cannot themselves be easily undone.

Page �120

PyElly User’s Manual

8. Macro substitutions and transformations can change the spelling of words in
sentences being processed. Make sure that your internal dictionary and the external
vocabulary rules for an application take such changes into account. Sometimes you
can change the spelling of a word in a specific context to tell PyElly how to interpret
it; for example, you can indicate that an instance of WHAT is a conjunction by
rewriting it as cnjWHAT or WHĀT or WHT, which can then be defined
unambiguously in a vocabulary table.

9. Avoid macros for matching literal phrases like “International Monetary Fund.”
Unless you need the wild card matching in macros or want to keep only part of a
match, use vocabulary tables instead. This will be faster.

10. Macros can be slow because all rules will be checked again after any successful
substitution except when an entire match is deleted by a rule. Each substitution will
involve much copying and recopying of text in a buffer.

13.3.4 Patterns for Identifying Syntactic Types

1. A PyElly finite-state automaton can have wildcards in the patterns to be matched for
going to a next state. More than one such pattern can be matched by the same text
input, allowing for more than one next state. This is no problem for PyElly; it will
automatically keep track of all possibilities here so that everything comes out right in
end. Technically speaking, a PyElly FSA is non-deterministic, although it is still
equivalent to a deterministic FSA with many more states.

2. Currently, an FSA pattern cannot have a space wildcard _. It can still recognize a
token with components joined by hyphens or other punctuation, but not words
separated by spaces. This restriction is mainly to keep a PyElly FSA from becoming
unmanageably complex. To define more general multi-word tokens, use PyElly
external vocabulary table lookup or entity extraction instead.

3. An FSA can have rules just with a 0 as a starting state and -1 as a next state, which
will then look like a deterministic FSA. If any of the patterns to match for a state
transition have a wildcard, however, the FSA can again be non-deterministic.

4. The -2 final state will let you override PyElly default tokenization. This will let you
split a token at a character normally in the middle of a single token or join what
would be separate tokens at a non-space character normally seen as a separator.
This option is for specialized usage and can usually be avoided.

13.3.5 Vocabulary Building

1. Vocabulary building with internal dictionary rules or external vocabulary rules
should be the last thing you do. You should define at least a few terms to support
early testing, but hold off on the bulk of your vocabulary. Adding vocabulary is easy;
adding grammar rules can be tricky because of their many unexpected side effects.

Page �121

PyElly User’s Manual

2. In English and other languages including Chinese, certain combinations of words
are so frequent that they really should be recognized as a single vocabulary table
term; for example, FAKE NEWS. This increases the number of different rules, but
can make parsing much easier. Do this liberally when working with longer sentences
and with multi-word terms containing otherwise highly ambiguous words like IN.

3. You can also absorb punctuation into vocabulary table entries for lookup. This is
most commonly done with hyphens, but quotation marks, commas, apostrophes,
and others are also fair game here. It can help greatly when working with awkward
kinds of syntax involving embedded punctuation.

4. For large ambiguous grammars, predefine as much vocabulary as possible in order
to keep parsing reasonably fast and parse trees smaller. Try to avoid the UNKN
syntactic type in rules. Use ellySurvey.py to find out what tokens appear in the
text data you want to process and what status they have with current language
definition rules. The file default.v.elly (WordNet 3.0) is a good source of
possible vocabulary rules specifying parts of speech for words and phrases. It may be
missing important terms for a particular content area, however. Add in your own
terms as needed, especially multiword terms.

13.3.6 Syntactic and Semantic Features

1. Syntactic and semantic features can be quite helpful. The former lets you be more
selective about which rules to apply to an analysis; the latter lets you better choose
between different interpretations in case of ambiguity. These can reduce the total
number of syntax rules, but will add a different complexity to your grammar.

2. PyElly will allow a syntactic category to be associated with only one set of syntactic
feature names and only one set of semantic feature names. Different syntactic
categories may share the same set of feature names, which makes it possible for
features to be inherited across categories.

3. Features are encoded in a grammar table rule and saved in a parse tree node only as
n anonymous bits. The same feature name may be in different feature sets, but will
not necessarily refer to the same feature bit. This can make for bad surprises when
trying to inherit syntactic and semantic features through the *L or *R mechanisms;
Make sure that inheritance is only with phrases having the same set of feature
names. PyElly will check here, but only when feature names are referenced in rules.

4. You must always say whether feature inheritance in a parse tree is from a left or a
right descendant. There is no default for either syntactic or semantic features. All the
features from a designated descendant will be inherited, but you can always
explicitly turn off particular inherited features afterward.

5. Avoid defining your own feature names beginning with ‘*’. PyElly will allow this, but
it can lead to confusion because such names will normally identify syntactic and

Page �122

PyElly User’s Manual

semantic features predefined by PyElly. Also, do not forget the ‘*’ when you do use
one of these PyElly-defined feature names.

6. The *l, *r, and *x syntactic features can be used in ways that disregard their side
effects in building parse trees for a sentence analysis. This option should be tried
only when you have run short of syntactic features in a grammar; it is most useful at
the leaf level of parse tree nodes, where no inheritance is possible anyway.

13.3.7 Parsing Problems

1. To dump out the entire saved grammar rule file for application A, run
grammarTable.py. with A as an argument. This will also show generative and
cognitive semantics, which ellyBase.py omits in its diagnostic output.

2. Keep PyElly parse data dumps enabled in PyElly language analysis and learn to read
them. This will be the easiest and most helpful way to obtain diagnostic information
when an application is not working as expected (usually the case). Full dumps will
show all subtrees generated for any ambiguous analyses, even those not
incorporated into actual PyElly output; if you want details, this is where to get it.

3. PyElly will cut a tree display off at 25 levels of nodes by default. You can adjust this
limit in the ellyMain and the ellyBase command lines, but deeper trees will be hard
to read when output must be broken up to fit into the width of your display.

4. If you run into a parsing problem with a long input sentence, try to reproduce the
same problem in with a shortened version of that sentence. This will help to isolate
the issue and also make your parse tree dumps easier to read.

5. When a parse fails, the last token in the listing shown in a parse tree dump will show
approximately where the failure occurred. It may be a few tokens before, however.
Check for a token for which no phrase node was generated. Look also at the last set
of goals generated in a bottom-up parsing and see what token position they occur in.

6. If you are working with English input and have not defined syntax rules for handling
the inflectional endings -S, -ED, and -ING, a parse will fail on them. The file
default.p.elly can define certain endings as the syntactic category SUFX, but
you still need something in your grammar rules to do something with them.

13.3.8 Diagnostic Options in Rewriting

1. To verify the execution of a generative semantic procedure, put in a TRACE
command. This will write to the standard error stream whenever it is run. In a
procedure attached to a phrase node, TRACE will show the syntactic type and
starting position of that phrase node and the grammar rule governing the node. In a
named subprocedure, PyElly will also show the first attached generative procedure
calling a chain of subprocedures.

Page �123

PyElly User’s Manual

2. To see the value of local variables during execution for debugging, use the SHOW
generative semantic command, which writes to the standard error stream.
Remember that both local and global variables will always have string values, with
an empty string possible. Local variables may be from further up in a parse tree.

3. To see the contents of your current and your next output buffer at some point in a
generative semantic procedure, use the VIEW command. This is also a good way to
learn what the various PyElly semantic commands do.

4. Minimize the number of TRACE, SHOW, or VIEW commands at one time. Being
overwhelmed with too much instrumentation can be as problematic as having too
little information. Clean up such commands when no longer needed.

13.3.9 Punctuation

1. Punctuation is tricky to handle. Remember that a hyphen will normally be treated as
a token break; for example, GOOD-BYE currently becomes GOOD, - , and BYE
unless specified as a single term by pattern matching, entity extraction, or external
vocabulary lookup. An underscore or an apostrophe is not normally a word break.

2. Quotation marks can be quite troublesome, since this may involve special Unicode
forms as well as ambiguous uses of the ASCII apostrophe character. PyElly
predefines quotation marks, including Unicode variations for formatted text, but
these all must still be properly handled by your grammar rules.

3. Default vocabulary rules for punctuation can be overridden by D: rules defined by a
PyElly application, but only when their cognitive semantic scoring make these
particular interpretations preferred by PyElly.

4. Macro substitution will not apply across sentence boundaries. To override
punctuation otherwise seen as a sentence stop, define PyElly stop exception rules
(described in Subsection 11.1.1). Note that macros can already deal with embedded
periods and commas, since these will be seen as non-stopping punctuation.

13.3.10 Ambiguity

1. Ambiguity is often seen as a problem in language processing, but intentional
ambiguity can sometimes simplify a grammar. For example, the English word IN
can be either a preposition or a verb particle. Define rules for both usages with
appropriate cognitive semantic plausibility scores and let PyElly figure out which
one to apply. To avoid parse node overflow, though, avoid bringing in unnecessary
ambiguity with rare senses of words like IN; for example, THE INS AND OUTS or
AN IN. Have PyElly recognize the whole phrase.

2. Ambiguous grammar rules and alternative external vocabulary definitions should be
assigned different plausibility scores according to their probability in actual text.

Page �124

PyElly User’s Manual

Otherwise, PyElly may switch between them arbitrarily when analyzing different
sentences in the same session, which is probably not what you want.

3. When assigning plausibility scores to rules, try to keep adjustments either mostly
positive or mostly negative. Otherwise, they can cancel each other out in unexpected
and often unfortunate ways. Plausibility for a phrase is computed by adding up all
the plausibility scores for a phrase and all its immediate subconstituents. Note that
scores may change in the middle of an analysis as ambiguities are resolved.

4. To see what is going on in cognitive semantic logic for a particular phrase node,
put ?>>? as the first clause. This will turn on tracing for subsequent clauses in a rule
and write to the standard error stream to verify that the logic is being executed. It
will identify which clause is actually used to compute plausibility. This can track the
generation of new phrase nodes and show what grammar rules are used.

5. When a problem arises in a particular input sentence, run the sentence by itself with
ellyBase.py to get more diagnostic information. This will show what grammar
rule is tied to each phrase node and what ambiguities it is associated with.

6. A common failing is when the wrong interpretation gets the highest plausibility
score. To remedy this, identify the phrase nodes contributing most to that score and
check their ambiguous counterparts for a better interpretation. This should tell you
where scoring in grammar or vocabulary rules needs adjustment. You may have to
go up or down in a parse tree to find which ambiguities to focus on.

7. The predefined *unique syntactic feature allows you to control where PyElly
ambiguity resolution happens. A phrase marked with that feature will remain
unresolved in PyElly parsing even when there is another phrase of the same
syntactic type and with the same syntactic features covering the same set of input
sentence tokens. The *unique feature cannot be inherited.

8. Ambiguity will produce many possible parsings of a sentence, often leading to
exponential growth in total processing. A sentence with four points of ambiguity,
each with two possible interpretations, has sixteen possible analyses. The problem
worsens in longer sentences with more room for ambiguity. To minimize this
problem, avoid input tokens taken to be UNKN, and be sparing with the syntactic
feature *unique in grammar rules. When reasonable, recognize multi-word phrases
as single tokens. Use RS control characters to partition analyses if possible.

13.3.11 Name Recognition

1. The PyElly name recognition capability is based on the idea that we can list out the
most common names in a particular domain of text input and that other names will
be lexically or phonetically similar and can be contextually inferred. This will reduce
the number of UNKN tokens seen by PyElly and will help in recognizing isolated
surnames after the appearance of a full name.

Page �125

PyElly User’s Manual

2. The name.n.elly definition file is quite diverse, being based on U.S. Census data.
For Arabic, Chinese, or Russian names, however, you probably want to extend your
tables with sample names from other sources. Do not expect to get away with only a
little work here. Current PyElly phonetic signatures reflect American pronunciation
and may have to be adjusted to make inferences about foreign names more reliable.

13.3.12 Other Good Practices

1. Experiment. PyElly offers an abundance of language processing capabilities, and
there is often more than one way to do something. Find out what works for you and
share your ideas with others. You may be the first person to employ a particular
combination of PyElly features.

2. Fix any language definition problems due to typos first. It is easy to make mistakes
in keying in names of syntactic categories or names of semantic or syntactic features.
Always check the complete listing of grammar symbols in ellyBase diagnostic output
to verify that there are no unintended ones due to typos.

3. PyElly uses ‘#’ to mark comments in rule files and also as a wildcard matching
numeric characters ‘0’ through ‘9’. This is a hazard. To be safe, use a backslash (\) to
escape a single ‘#’ wildcard in a rule file to make it unambiguous. A space must
appear before and after a ‘#’ marking a comment in the middle of an input line.

4. Whenever a grammar or a vocabulary is complex, something will almost always be
wrong with it. Check underlying analyses to make sure the PyElly is really doing
what you expect; it is not enough for just the final output to look correct. Watch out
especially for ambiguous phrases with the same plausibility score.

5. You need to test thoroughly any new language definition. Always collect sentences
plus their expected translations to cover each grammar rule and each dictionary
entry in a language definition. Repeat some sentences in a test set to check for
possible variations in the resolution of ambiguities depending on context.

6. In natural language processing, you have to be systematic and committed for the
long haul; always rerun your test sets after any significant change in language
definition rules. Slight changes in your language definition rules can result in PyElly
being unable to translate test sentences it previously handled well. Always check as
soon as possible after adjustment of rules; waiting here can only multiply your
problems, which then can be quite difficult to sort out. Be especially careful if you
change a default.*.elly file because it will affect more than one application and
may cause obvious problems in only some of them.

7. Being able to rewrite n sentences properly will not guarantee that you can handle the
next new sentence. To increase the probability of success here, we have to keep
challenging an application with a larger and more diverse sets of target sentences.
The marking example application can give you an idea of how hard you have to

Page �126

PyElly User’s Manual

work here. It currently has been successful with almost 14,000 real-world sentences,
but it is still easy to find new sentences where its rules will fail. Natural language is
complex and hard to model regardless of the approach taken to process it.

8. You may have to scrap some earlier language definitions to make a clean start on
handling especially problematic language features. Learn from failures and always
be ready to change your processing strategy if you hit a roadblock. PyElly rules can
surprise you in many ways.

13.4 Making PyElly Work for You

As a rule-based system based on the simplest kinds of rules, PyElly requires that you
approach natural language in a detailed way. This can be uncomfortable for people who
prefer to take only a high-level view of language and let the details be handled by some
automaton, but this is not how humans pick up a language in the real world. A child
learns sentence by sentence in particular contexts and then has to be taught much later
that various rules might be at work here.

PyElly is set up to let you work with such rules, but will not infer them by itself.
Compiling the needed rules for a particular application can seem formidable when
starting from scratch, but any educated person is already an expert on his or her native
language. PyElly provides a computational framework for codifying this knowledge as
rules, which can then be saved and shared. You may be unable or unwilling to do the
codification, but people who enjoy digging in details can take care of it.

An adult learning a second language soon discovers how hard it is to achieve even a
minimum level of fluency. The same is true for building a non-trivial natural language
application, even in the age of Siri, Watson, and Google Translate. The problem is
always in the details, If you are willing to tackle those details, then tools like PyElly can
take you a long way to credible functionality. This is not the only path to NLP, but it is
consistent with how we humans relate to natural language and is well worth exploring. 

Page �127

PyElly User’s Manual

14. PyElly Applications
PyElly is a collection of basic natural language processing capabilities developed
independently over many decades. Its applications mainly deal only with various low-
level details of language, but together, they comprise a wide range of linguistic
competence that can be quite helpful in support of NLP in general. Within PyElly’s
limitations, you can produce useful results quite quickly from raw text data.

The best way to show what can be done here is to present a broad sample of actual
PyElly applications, both simple and complex. They are diverse both in what they do and
how they are implemented. None of them require PyElly, but it is significant that they all
can be readily handled within the paradigm of rewriting one language into another
according to user-provided rules. PyElly is no one-trick pony.

14.1 Current Example Applications
The example applications included in the PyElly distribution package fall into two
classes: those used for debugging and validation only and those demonstrating
potentially useful NLP functionality. PyElly integration testing consists of running all
debugging and validation applications plus all functional applications on preset test data
input files and checking that the results are as expected (See Appendix D).

Below, we describe each current PyElly example application and list their language
definition files, indicated briefly by file-type designators like .g or .v. These files are in
the subdirectory applcn of the unpacked distribution package. You can look at the rules
in these files to see how to develop those for your own PyElly applications.

Six example applications are just for support, debugging, or validation:

default (.g,.m,.p,.t,.ptl,.stl,.sx,.t,.v) - not really an application, but a set
of language definition files that will be substituted by PyElly if your application does
not specify something explicitly. These include general rules for morphological
stemming (.stl), basic stop punctuation exceptions (.sx), and vocabulary rules
(.v) covering most of the terms in WordNet 3.0.

input: - -
output: - -

echo (.g,.m,.p,.stl,.v) - a minimal application that echoes its input after being
analyzed by PyElly into separate tokens. By default, it will show inflectional
stemming of English words and do basic number transformations. You can disable
that stemming in your ellyMain.py command line (see Section 7) and editing
the .stl file to remove rules for the English comparative endings -er and -est.

input: Her faster reaction startled him two times.
output: her fast -er reaction startle -ed him 2 time -s.

Page �128

PyElly User’s Manual

test (.g,.m,.p,.ptl,.stl,.t,.v) - for testing with a vocabulary of mostly short
fake words for faster keyboard entry; its grammar defines only simple phrase
structures with a minuscule vocabulary. This essentially replicates most of the
testing done to validate PyElly through its early alpha versions and after introduction
of various new modules to extend PyElly capabilities.

input: nn ve on september 11, 2001.
output: nn ve+on 09/11/2001.

stem (.g,.m,.p,.v) - to check that PyElly English inflectional stemming is properly
integrated with both internal and external vocabulary lookup. Such stemming
happens across multiple PyElly modules, which requires integration testing to detect
possible interaction problems.

input: Dog's xx xx xx.
output: dog-'s xx xx xx.

fail (.g,.m,.p,.v) - to check that PyElly generative semantic FAIL command is
properly implemented. A failure will trigger some complicated context switching,
which has to be coordinate across multiple modules.

input: xyz.
output: generative semantic FAIL
 generative semantic FAIL
 /Test 1/== aaxyz

The sample output here shows two warning messages from PyElly that the
generative semantic FAIL command has been executed, causing a translation to back
up to a prior point of ambiguity in a sentence analysis. This eventually should lead to
the output as shown above.

bad (.g,.h,.m,.n,.p,.sx,.v) - deliberately malformed language rules to test PyElly
error detection, reporting, and recovery. No grammar or vocabulary table will be
generated here because of the malformed rules, and so PyElly can do no translation.
The files bad.main.txt and bad.main.key are supplied for use with doTest, but
are both empty.

input: - -
output: - -

The integration test here is just to verify that PyElly can read in ill-formed language
definitions without crashing.

A second, more substantial, class of example applications are mostly derived from
various demonstrations developed for PyElly or its predecessors. These have nontrivial
language definitions, show a broad range of PyElly capabilities, and provide a basis for
extensive integration testing of PyElly. They range from skeletal prototypes to nearly
functional capabilities. You can flesh them out for your own purposes by adding in your
own vocabulary and grammar rules.  

Page �129

PyElly User’s Manual

indexing (.g,.p,.ptl,.v) - removes purely grammatical words (stopwords) and
does stemming, morphological analysis, and dictionary lookup. By obtaining roots of
content words from arbitrary input text, it can predigest input English text for
information searching, statistical data mining, or machine learning systems. This
application was written for PyElly. It uses default.stl.elly.

input: We never had the satisfaction.
output: - - - - satisfy -

Note that PyElly will replace each non-content word and each broken-out word
prefix or suffix from its input with a hyphen (-) in its output to give an idea of the
extent of original text rewritten by PyElly.

texting (.g,.m,.p,.ptl,.stl,.v) - with a big grammar and a special-case
vocabulary plus nontrivial generative semantic procedures. This implements a more
or less readable text compression similar to what we would see in mobile messaging.
This was a demonstration written originally for the Jelly predecessor of PyElly and
shows how a full-fledged texting compression application might be organized.

input: Government is the problem.
output: govt d'prblm.

doctor (.g,.m,.ptl,.stl,.v) - This has a big grammar taking advantage of PyElly
ambiguity handling to choose one of several scripted responses for user input
containing specific keywords. It uses the PyElly ... syntactic type to set up
grammar rules to emulate Joseph Weizenbaum’s Doctor program for Rogerian
psychoanalysis, incorporating the full keyw0rd-based script published by him in
1966. The language definition rules were first written for the nlf predecessor of
PyElly and then adapted for Jelly and now PyElly.

input: My mother is always after me.
output: CAN YOU THINK OF A SPECIFIC EXAMPLE.

chinese (.g,.m,.p,.ptl,.v) - a test of PyElly Unicode handling, translating simple
English into either traditional [tra] or simplified [sim] Chinese characters. Both
the grammar and the vocabulary of this application are still in progress.

input: they sold those three big cars.

output: [sim]他们卖了了那三辆⼤大汽⻋车.

output: [tra]他們賣了了那三輛⼤大汽⾞車車.

In actual operation, only one form of Chinese output will be shown at a time. You get
traditional character output when ellyMain.py is run with the flag -g tra . The
default is simplified output with the option -g sim. The current integration test is
run with traditional characters. Work on this application started in Jelly, but this
was greatly expanded in PyElly where most of the rule development has been done.

Page �130

PyElly User’s Manual

querying (.g,.m,.ptl,.stl,.v) - heuristically rewrites English queries into SQL
commands directed at a structured database of Soviet Cold War aircraft organized
into multiple tables. This is a reworking of language definition files for the very first
nontrivial application written for the PARLEZ and AQF predecessors of PyElly; it
was updated in PyElly to produce SQL output.

input: how high can the foxbat fly?
output: from Ai a,AiPe b
 select ALTD
 where NTNM=foxbat,a.NTNM=b.NTNM
 ;

Table and field names here are abbreviations: Ai is “aircraft,” AiPe is “aircraft
performance, ALTD is “altitude,” NTNM is “NATO name,” and so forth. The original
AQF system aimed to make such cryptic names transparent to database users as well
as to hide the mechanics of query formation.

marking (.g,.m,.p,.v) - rewrite raw text with shallow XML tagging, a canonic
PyElly application. This shows how a data scientist might preprocess unrestricted
raw text for deeper mining. It has evolved to have the most complex grammar and
vocabulary rules of all PyElly example applications by orders of magnitude and is
especially notable in its extensive cognitive semantics.

input: The rocket booster will carry two satellites into orbit.
output: <sent>
 <nclu><det>the</det><noun>rocket booster</noun></nclu>
 <vclu><aux>will</aux><verb>carry</verb></vclu>
 <nclu><num>2</num><noun>satellite -s</noun></nclu>
 <nclu><prep>into</prep><noun>orbit</noun></nclu>
 <punc>.</punc></sent>

This application is still evolving in its language definition rules. It is the biggest part
of the PyElly integration test suite with about a thousand sentences from the
Worldwide Web. Such test data has been quite challenging and should give you a
better appreciation of the complexity of processing any natural language. See
Appendix F for more discussion.

name (.g, .m,.n,.p,.ptl,.stl,.v) - identify personal names in part or in whole
within raw text both by lookup and by inference. This capability could eventually be
merged with other example applications like marking, but it has been kept separate
as an integration test validating the special name recognition modules. It became
available in PyElly entity extraction as of release v1.1.

input: John Adams married Abigail Smith of Weymouth in 1764.
output: "John Adams"
 "Abigail Smith"

The application uses a rule table based on 2010 U.S. Census data. It recognizes the
1,000 most common surnames, the 900 most common male names, and the 1,000

Page �131

PyElly User’s Manual

most common female names; and it can infer other name components from context
and from their similarity to known names. This heuristic logic is still experimental; it
is a reworking of a name searching demonstration built in the 1990’s using C.

disambig (.g,.h,.stl,.v) - disambiguation with a PyElly conceptual hierarchy by
checking the semantic context of an ambiguous term. This is only a first try and still
crude compared to the other applications listed here. It was written mainly as an
integration test focusing on cognitive semantics. Its output is a numerical scoring of
semantic relatedness between pairs of possibly ambiguous terms in its input and
showing the generality of their intersection in a conceptual hierarchy. Output will
show with the actual WordNet 3.1 concepts assigned to input words by PyElly.

input: bass fish.
output: 11 00015568N=animal0n: bass0n/[bass] fish0n/[fish]

This uses the PyElly output option to show the plausibility of a translation along with
the translation itself, which is right of the second colon (:) in the output line. The
plausibility will be left of that colon. The output score seen above is 11, which is high,
and the output also includes the concepts associated with a sentence analysis. The
example above shows that the intersection of bass and fish is under the WordNet
concept 00015568n, which bears the label animal0n.

chemic (.g,.m,.p,.ptl,.stl,.v) - identify chemical nomenclature within raw text
both by syntax and by morphology rules. The rules were developed from lists of
chemical names compiled by the American Chemical Society (ACS) as examples of
major issues involved in the proper indexing of technical publications.

input: Is 1,2-propadiene available?

output: is〖1,2-propadiene〗 available?

The output puts Unicode double brackets 〖 〗 around any chemical name found.
This is still an evolving application and works so far only for only a small set of input
examples. Nomenclature is a much harder problem than one might first think.

These nine example applications show just some of the simple translations of natural
language that can be done. All the processing is still rudimentary—no deep learning or
detailed world models, but it calls for many kinds of linguistic competence. You can
accomplish much with text data without turning to deep artificial intelligence.

14.2 Building Your Own Applications
The PyElly example applications are just a few possibilities for NLP short of full
understanding. They cover many levels of possible linguistic competence, from simple
recognition and breakdown of words to detailed markup of complex sentences. Other
useful functions undoubtedly can be automated, and one should never disdain them in
favor of more glamorous feats. Someone has to take care of the small chores that
facilitate technological progress, and this work often can be quite interesting.

Page �132

PyElly User’s Manual

From an educational standpoint, PyElly exists to encourage you to explore NLP through
the creation of your own projects. This will require thinking and tinkering, but then you
will be the one learning, not some neural net. In general, a good candidate application
for PyElly implementation should meet the following conditions:

1. Your input data is UTF-8 Unicode text divisible into sentences consisting of ASCII,
Latin 1 Supplement, Latin Extender A and B, and special punctuation characters.
This need not be English, but that is where PyElly offers the most builtin support.

2. Your intended output will be translations of fairly short input sentences into
arbitrary Unicode text in UTF-8 encoding, not necessarily into sentences.

3. No world knowledge is required in the translation of input to output except for what
might be expected in a standard dictionary or glossary.

4. You understand broadly what your translation process involves and mainly need
some support in implementing the details here.

5. Your defined vocabulary is limited enough for you to specify manually with the help
of a text editor like vi or emacs, and you can tolerate some terms being treated as the
UNKN syntactic type.

6. Your computing platform has Python 2.7.* installed. This will be needed both to
develop your language rules and to run your intended application.

7. You are comfortable with trial and error development of language definition files
and are willing to put up with idiosyncratic non-commercial software.

Familiarity with the Python language will help, but is not mandatory. You will, however,
definitely have to write out all the code for PyElly cognitive and generative semantics.
This should be straightforward for someone with programming experience.

The various *.*.elly text files will follow different formats that you will have to learn.
In a rudimentary application X, such as that defined by the example in Section 6.2 for
French verb conjugation, you can get by with just the language definition file X.g.elly
(grammar). The rules in such a file can fill dozens of line, but most other types of rules
have been limited to only a single line.

In the extreme case for a PyElly application A, you can have up to ten different language
definition files: A.g.elly (grammar), A.v.elly (vocabulary), A.m.elly (macro
substitutions), A.p.elly (syntactic type patterns), A.n.elly (name components),
A.t.elly (multiword templates), A.ptl.elly (prefix removal rules), A.stl.elly
(suffix removal rules), A.h.elly (semantic concept hierarchy), and A.sx.elly (stop
punctuation exceptions). Files other than A.g.elly can be empty. If you omit a
definition file, however, the corresponding file from default will be loaded instead.

Here are three fairly simple application projects you could quickly build as a way of
getting to know PyElly better:

Page �133

PyElly User’s Manual

• A translator from English to pig Latin.

• A bowdlerizer to replace objectionable terms in text with sanitized ones.

• A part of speech tagger for English words using only morphological analysis.

If you are more ambitious, you might want to tackle something more challenging or
even invent a completely new application. These may be inappropriate for a short-term
project, but you can approach a grander goal in stages. Here are some possibilities:

translit - transliterate English words or names into a non-Latin alphabetic or
syllabic representation. This will require you to know how to pronounce a sequence
of written symbols in a target language, which of course can often be irregular.

editing - detect and rewrite verbose English into concise English, correcting
common misspellings and removing clichés.

anonymizing - remove identifying elements from text: names, telephone numbers,
addresses, and so forth.

preprocessing - a reformatter of raw text data into more structured input
friendlier to the input layer of a deep neural network. This is probably more
appropriate for long-term research, but it should be instructive to see whether
computational linguistics can somehow reduce the dimensionality of text input data
for a particular learning problem.

stylistic - analyzing text at the phrase level to score the similarity of two
documents. This can be done just by counting simple function words like THE, AND,
and OF; but we can get less noisy statistics by looking at more complex text features
that requires some morphological and syntactic analysis of text.

You might also try combining the rules from several current example applications, like
the grammar rules of marking with the name recognition of name with a big vocabulary
from WordNet and domain experts. In the example applications already implemented
other than marking, PyElly grammar rules have only been in the hundreds and
vocabulary rules only in the tens of thousands, but these can be extended further with
the investment of a few months or even a few weeks of work.

If any project requires change to a default.*.elly definition file, make sure that
other applications referring to it will still work. To be fully safe, always delete every
saved *.elly.bin file after such a change so that PyElly rebuilds them all. Then rerun
all PyElly integration tests as well as any of your own.

Eventually, someone could write an application for non-English input. PyElly currently
can recognize input characters from the first four Unicode blocks plus a few extras as
text, allowing to you process French, Spanish, German, Czech, Hungarian, and other
Western European language as well as Pinyin for Chinese. You will need new rules for
inflectional and morphological analysis for other inflected languages, though, as PyElly
has builtin resources so far for American English only. 

Page �134

PyElly User’s Manual

15. Going Forward
PyElly offers many different tools and resources for practical computational linguistics.
Most of them are still evolving in both code and documentation; but the overall Python
system has been extensively tested since 2013 and should be fairly reliable for non-
critical applications. You need to understand the limitations of PyElly, but within them,
you can achieve useful results and learn firsthand about the structure of language.

Natural language is complex and hard to process if the goal is to approximate how a
human understands it. Using simplified models of text can expedite some kinds of
processing, but we must not throw away too much information here. Text as yet cannot
be reduced automatically into a clean and logical encoding of information; to dig into
text data and mine it more effectively, we still really need tools like PyElly at some point.

15.1 What PyElly Tries To Do
PyElly is old-fashioned in its use of manually crafted rules to describe text data for
rewriting. This contrasts with current NLP practices favoring unsupervised automatic
machine learning of language structure from large samples of text data. Machine
learning does reduce human labor; but a rule-based approach can still be advantageous
if someone else has already laid out most of the rules in a usable form.

The challenge here is that natural language operates at many different levels:
orthography (spelling), morphology, lexicography (parts of speech), syntax, semantics,
and pragmatics (intended meaning). Competence in processing text at higher levels is
the Holy Grail, but it depends on achieving competence first at lower levels, where a
system like PyElly is strong. If we want to build higher-level NLP systems quickly, we
should not force ourselves to reinvent the wheel in every project.

Creating a PyElly language definition is a non-trivial problem, given the sheer amount of
knowledge required to deal effectively with a language like English. Earlier efforts in
building rule-based systems for artificial intelligence foundered because the number of
rules for real-world applications soon became unmanageable. PyElly tries to avoid this
fate by focusing on low-level linguistic knowledge, which is still difficult, but has been
well studied by linguists and can be approached incrementally.

In particular, PyElly provides various integrated prebuilt capabilities like English
inflectional stemming and morphological analysis, American name recognition, and
sentence delineation. None of these are “game-changing” technologies, but they can
provide critical basic support. Even when your primary analysis will rely mainly on
machine learning, some linguistic awareness about your data can greatly reduce the
dimensionality of your problem space and speed the finding of solutions.

For example, take issues like punctuation, capitalization, and diacritical marks in raw
text data. A data scientist might be tempted to ignore these details, but someone did
take all the trouble to put them into text for a good reason. They can help to break up
text into sentences and to determine the roles of words in text. Humans can tell if a

Page �135

PyElly User’s Manual

word is being used denotatively in a name like “Tendersweet Clams™” or connotatively
in a description like “sweet potato.” This kind of low-level competence can add up to a
major difference in deriving a big picture of language.

In a sense, we can be seduced by how much we can accomplish with simplistic
processing strategies. Treating text as a bag of words is often good enough for a
basement level of understanding; but if we want to be smarter about language than an
eight-year-old, then we have to buckle down. A neural net will hide many confusing
linguistic details from us, but if English, Japanese, Arabic, Mayan, and Turkish then all
look the same to us, then our approach may be starting from too naive a basis.

In processing English, knowledge about its -S, -ED, and -ING inflectional endings can
help in parsing it more effectively. Add in all the other kinds of knowledge built into
PyElly or captured by PyElly rules supplied by users, and we can quickly get ahead of the
game in NLP. The extent of such rules will be much larger than most people expect.
Otherwise, why do most non-native speakers make so many mistakes in English even
after many years of being immersed in it?

PyElly will let users control what aspects of their text data to focus on. For example, to
process text from a large corpus of recipes, we might want to identify beforehand basic
elements such as equipment, measurements, cooking techniques, common ingredients,
and descriptions of texture and taste. This can greatly reduce noise in deep learning so
that we can avoid getting terms like “one tsp” as a major feature for distinguishing
between recipes. In NLP, we should never be dumber than we have to be.

Any PyElly application will of course translate its text input imperfectly, but even this
will often be a significant improvement over completely ignoring the structure of the
text data. If a PyElly translation needs to improve, we can always add rules to address
specific deficiencies. You can also change PyElly code itself. In line with modern
software engineering, no real code will ever be completely finished.

Remember that PyElly applications are never meant to pass any kind of Turing test.
PyElly works with minimal world knowledge and lacks full reasoning and common
sense, limiting its degree of language understanding. This sounds like a handicap, but it
means that PyElly can focus on what it is good at. Think of it as being like a high-end
food processor in the kitchen, which can make a skilled chef more productive, but will
by itself be no guarantee of Michelin three-star cuisine at every meal.

PyElly has already gone far beyond its original PARLEZ roots. If its development can be
carried on, one would hope to improve various existing capabilities like entity
extraction, handling of semantic concepts, and name recognition. Basic PyElly
algorithms could also be better tuned for efficiency and resilience, especially in
ambiguity resolution. Eventually this should all lead to a successor to PyElly, for we are
still learning about natural languages in general and how to process them better.

A major breakthrough would be welcome of course, but PyElly and its predecessors have
been more about continually accumulating and integrating various kinds of basic
linguistic competence over time. As we gain experience in building more applications,

Page �136

PyElly User’s Manual

this should guide PyElly development in new directions. Progress may seem slow, but
we are engaged with NLP for the long term; and whatever rules we learn stay learned.

15.2 Practical Experience in PyElly Usage
The PyElly marking example application can give you an idea of what to expect in a big
NLP project. It started out as a way to test the limits of PyElly by carrying out a shallow
XML markup of actual English text from the Worldwide Web. At the outset, it was
unclear how best to attack this problem and whether PyElly could even handle complex
“wild” input. Shallow markup was likely to require at least an order of magnitude more
rules than any previous PyElly example application.

Appendix F describes how the marking application evolved. Our focus here will be on
just the results of that effort. As with most PyElly applications, the basic strategy was to
start with a simple grammar and vocabulary and then try to extend the rules to handle
an ever larger sample of sentences from the Web. Any set of PyElly rules will often fail
on unfamiliar input, but by adjusting and expanding our rules, we can usually get an
acceptable markup even for hard sentences. The catch, however, is that any rule changes
have to preserve any previous successful markups.

The marking language definition started out with only 132 grammar rules, 161
vocabulary rules, 28 pattern rules, and 0 macro substitution rules. This had been
checked out beforehand with some simple input before moving on to real Web text. The
first data sample from the Web for processing consisted of segments of text taken from
22 different sources totaling 129 sentences altogether. Every segment was processed as
continuous input in which PyElly had to figure out the sentence boundaries.

The hope was that PyElly would be flexible enough to let us to produce acceptable
markups eventually for every test sample segment through enough rule adjustments,
possibly highly specific to a problem sentence. The exercise was also useful in
uncovering many previously undetected problems in PyElly’s Python code; the hope was
that both PyElly and the marking application in particular would keep improving.

Eventually, PyElly did process all 129 sentences of the first Web sample acceptably. This
showed that PyElly was capable of heavy-duty work, although the viability of a general
markup application remained in question. More testing was called for, and so another
five samples with 759 sentences were eventually collected from eighty new Web sources.
These took about another two years to mark up successfully. Over that time, the
marking language definition grew to 612 grammar rules, 6,157 vocabulary rules, 97
pattern rules, and 50 macro substitution rules.

The marking application is still unfinished. The failures when processing the last
segment of the sixth sample for the first time were similar to those for the first segment
of the first sample. Nevertheless, the PyElly shallow markup rules were actually getting
better and so it seemed reasonable to collect even more data from the Web to see how
far we could go. This led eventually to the collection of almost 13,000 real-world
sentences from Google news text.

Page �137

PyElly User’s Manual

Natural language now seems to be too complicated for complete success in shallow
markup anytime soon, but PyElly has now marked up all the news text data— no minor
feat. And the set of marking language definition rules has kept growing and PyElly
itself has kept evolving. The current marking rule count is 726 grammar, 39,538
vocabulary, 148 pattern, and 73 macro. The biggest growth over time has been in
vocabulary rules.

The marking example application has shown that PyElly handle a large number of
grammar and vocabulary rules; and it does need all of them. The loading of those rules
from definition files has so far been manageable for PyElly, and processing with them
has yet to push PyElly anywhere near a breaking point. Sentences in the latest news data
now take an average of about 2 seconds for markup on a laptop, although most
sentences can be processed in less than a second. This performance seems reasonable
for Python code running interpretively without concerted optimization.

On the whole, the results of the markup project have been positive. It has helped to
uncover problems of understanding English text and also to test out PyElly code more
thoroughly. We now know that a purely combinatoric approach to ambiguity runs into
difficulty with long sentences having many unknown tokens; that will remain a big
challenge in the future. We have shown that PyElly can operate beyond a sandbox and
could reasonably claim to have achieved shallow markup with a failure rate of fewer
than one out of ten sentences in news text.

There is plenty of work left to do. One direction going forward is to feed still more Web
text to the marking application until we hit some kind of hard wall. The actual details of
markup also need to be checked out fully; so far, the priority has been just to get a
markup for every sentence in our news data sample by adjusting our language rules to
get past any PyElly parsing failure. In this way, the PyElly marking application should
continue to improve and PyElly should gain credibility as an integrated NLP toolkit.

15.3 Where We Now Stand
PyElly is a work in progress. It started out as a fairly simple syntax-driven rule-based
system, but practical usage in building many different applications has pushed it to
evolve in many directions. To handle specific processing problems discovered along the
way, all of the original types of rules in the initial version of PyElly had to become more
complex, and various new rule types have been added. As people try to do more things
with PyElly, even more evolution is in store.

The PyElly open-source package so far remains compact, however, with less than 11,000
lines of code. Even with all the language definition files of the various example
applications, it is easy to download and run on a regular home computer. Unless you
want to go far beyond the marking example application, no high-performance
computing is required beyond what is usually needed to stream HD video. The PyElly
software is also free and unencumbered, which should fit in well with student projects in
educational settings.

Page �138

PyElly User’s Manual

PyElly operates at a fine level of detail, which may put off many people. Some
researchers refer to hide the linguistic complexity of their text data, but this will severely
limit their options in processing it. Seeing rules for the structure and mechanics of
natural language should help students and experimenters to learn where all the potholes
lie on the road to NLP and to become ready to maneuver around them.

PyElly can be intimidating in its many different kinds of language rules must somehow
be coordinated to produce a coherent result. This is entirely appropriate for natural
language, however. No one sat down to design a language like English, Chinese,
Amharic, or Quechua from clean logical first principles. These all evolved haphazardly
over thousands of years driven by changing local requirements and peculiarities. We
should not expect that any set of rules for describing them will be simple and short.

Having many rules in an application can be workable, however, if most of them can be
kept simple. Simpler rules will generally be easier to formulate as well as to debug. Some
PyElly rules sometimes can get quite complex, but the recommended approach in PyElly
is to employ simple ones to handle most kinds of language in a given application and
resort to complex rules only when necessary to address a special problem.

The rule-based framework of PyElly seems to hold up at least to a level of many
hundreds of grammar rules and tens of thousands of vocabulary rules. There are also
other types for token patterns, macro substitution, morphology and other basic kinds
linguistic analysis in NLP. All these various rules can be a chore to compile for the first
time, but such hard-won linguistic knowledge can often be adapted and carried over for
a head start in the building of other applications.

One could easily spend another forty years just tinkering with various computational
linguistic tools in PyElly. In the 1980s, artificial intelligence researchers thought that
they had everything needed to understand natural language within a decade or so, but
no one should be so confident today, even with deep machine learning. A more realistic
agenda is for us just to continue making progress through sustained small efforts along
with the occasional sudden inspiration. Everyone can help to blaze some new trails here;
and the more people at work on it, the better.

The takeaway here is that, for any nontrivial natural language processing, success
requires paying some serious attention to details. Our own human skills for language
understanding are extraordinary and need to be matched somehow in our basic NLP
algorithms. The marking samples of real-world data show clearly how even shallow text
analysis will require having nontrivial knowledge of both a target language and its world
of discourse to resolve ambiguities. Linguistic expertise is far from being obsolete yet for
serious data scientists seeking to wring the most value out of their text data.

Yes, an unsupervised neural net in theory can learn everything automatically with
enough training data, but one would have to re-create the equivalent of the twelve years
of exposure to language that a human child gets in the home, the streets, schools, and
the media around us. Except in cases of child abuse, much of that learning while
growing up also involves extensive supervision; a neural net “child” deserves no less.

Page �139

PyElly User’s Manual

We may never find a magic bullet for NLP. Lack of knowledge about the inner and outer
workings of language is not the problem, however. As an educational system, PyElly is
about collecting all kinds of such available linguistic competence and then letting
researchers loose to experiment and what a little linguistic help can make possible. In
most cases, PyElly code is only mostly unremarkable, but it is nontrivial and has been
around the Horn a few times already.

Try PyElly on your favorite text corpora and see whether its analyses can help your
current or future data analysis and mining technology. Share with others any new PyElly
rules you develop or old rules you have refined. Any criticisms or suggestions about
PyElly itself will be welcome, and of course, you may freely improve on the PyElly open-
source Python code and share your accomplishments with everyone else. You might
even decide to build your own comprehensive open-source natural language processing
tool. The world lies wide open before us. Let us boldly go out into it!  

Page �140

PyElly User’s Manual

Appendix A. Python Implementation
This appendix is for Python programmers. You can run PyElly without knowing its
underlying implementation, but at some point, you may want to modify PyElly or embed
it within some larger information system. The Python source code for PyElly is released
under a BSD license, which allows you to change it freely as needed. You can download
it from

https://github.com/prohippo/pyelly.git

PyElly was written in Python 2.7.5 under Mac OS X 10.9 and 10.10; it will not run under
earlier versions of Python because of changes in the language. To implement its external
vocabulary tables, PyElly v1.2+ no longer requires the Berkeley Database (BDb)
database manager or the bsddb3 third-party BDb Python API wrapper. The PyElly code
with BDb in release v1.1 or earlier should be discarded because a GPL copyleft license
would be required for it, greatly limiting freedom of use. Vocabulary table lookup code
has also evolved greatly in PyElly v1.2 and v1.3.

Currently, the PyElly v1.3+ source code consists of 66 Python modules, each a text file
named with the suffix .py. All modules were written to be self-documenting through
the standard Python pydoc utility. When executed in the directory of PyElly modules,
the command

pydoc -w x

will create an x.HTML file describing the Python module x.py.

The code was written neither for speed of execution nor for space efficiency. This is
normal in Python development practice, however, because it is an interpreted language,
and it is consistent with PyElly’s emphasis on quickly putting together a broad range of
functionality for doing useful language processing right now. Although the code has
become fairly stable through extensive testing, it remains experimental and still keeps
many debugging print statements that can be reactivated by uncommenting them.

The algorithms underlying PyElly have become somewhat intricate after decades of
tinkering. Section 12 of this manual does describe the bottom-up parsing approach of
PyElly, but other important aspects of the system have to be gleaned from source code.
The most notable of these are wildcard string matching, macro substitution, the non-
deterministic finite automaton for token pattern matching, compiling PyElly code for
generative and cognitive semantics, and multi-element vocabulary table lookup.

Here is a listing of all 66 current PyElly Python modules grouped by functionality. Some
non-code definition and data files are also included below when integral to the
operation or builtin unit testing of the modules there. They are shown in the dark-
shaded rows of the tables.

Page �141

PyElly User’s Manual

Inflectional Stemmer (English)

ellyStemmer.py base class for inflection stemming

inflectionStemmerEN.py English inflection stemming

stemLogic.py class for stemming logic

Stbl.sl remove -S ending

EDtbl.sl remove -ED ending

Ttbl.sl remove -T ending, equivalent to -ED

Ntbl.sl remove -N ending, a marker of a past participle

INGtbl.sl remove -ING ending

rest-tbl.sl restore root as word

spec-tbl.sl restore special cases

undb-tbl.sl undouble final consonant of stemming result

deinflectedMatching.py for simple English inflectional stemming in lookups only

Tokenization

ellyToken.py class for linguistic tokens in PyElly analysis

ellyBuffer.py for manipulating text input

ellyBufferEN.py manipulating text input with English inflectional stemming

substitutionBuffer.py manipulating text input with macro substitutions

macroTable.py for storing macro substitution rules

patternTable.py extraction and syntactic typing by FSA with pattern matching

Page �142

PyElly User’s Manual

Parsing

symbolTable.py for names of syntactic types, syntactic features, generative
semantic subprocedures, global variables

syntaxSpecification.py syntax specification for PyElly grammar rules

featureSpecification.py syntactic and semantic features for PyElly grammar rules

grammarTable.py for grammar rules and internal dictionary entries

grammarRule.py for representing syntax rules

derivabilityMatrix.py for establishing derivability of one syntax type from another so
that one can make bottom-up parsing do nothing that top-down
parsing would not

ellyBits.py bit-handling for parsing and semantics

parseTreeBase.py low-level parsing structures and methods

parseTreeBottomUp.py bottom-up parsing structures and methods

parseTree.py the core PyElly parsing algorithm

parseTreeWithDisplay.py parse tree with methods to dump data for diagnostics

Semantics

generativeDefiner.py define generative semantic procedure

generativeProcedure.py generative semantic procedure

cognitiveDefiner.py define cognitive semantic logic

cognitiveProcedure.py cognitive semantic logic

semanticCommand.py cognitive and generative semantic operations

conceptualHierarchy.py concepts for cognitive semantics

Sentences and Punctuation

ellyCharInputStream.py single char input stream reading with unread() and reformatting

ellySentenceReader.py divide text input into sentences

stopExceptions.py recognize stop punctuation exceptions in text

exoticPunctuation.py recognize nonstandard punctuation

punctuationRecognizer.py define single-character punctuation defaults for English

Page �143

PyElly User’s Manual

Morphology

treeLogic.py binary decision logic base class for affix matching

suffixTreeLogic.py for handling suffixes

prefixTreeLogic.py for handling prefixes

morphologyAnalyzer.py do morphological analysis of tokens

Entity Extraction

entityExtractor.py runs Python entity extraction procedures

extractionProcedure.py some predefined Python entity extraction procedures

simpleTransform.py basic support for text transformations and handling of spelled
out numbers

dateTransform.py extraction procedure to recognize and normalize dates

timeTransform.py extraction procedure to recognize and normalize times of day

nameRecognition.py identify personal names

digraphEN.py letter digraphs to establish plausibility of possible new name
component

phondexEN.py get phonetic encoding of possible name component

nameTable.py defines specific name components

compoundTable.py miscellaneous multiword entities defined by template rules

Top Level

ellyConfiguration.py define PyElly parameters for input translation

ellySession.py save parameters of interactive session

ellyDefinition.py language rules and vocabulary saving and loading

ellyPickle.py basic loading and saving of Elly language definition objects

interpretiveContext.py handles integration of sentence parsing and interpretation

ellyBase.py principal module for processing single sentences

ellyMain.py top-level main module with sentence recognition

ellySurvey.py top-level vocabulary analysis and development tool

dumpEllyGrammar.py methods to dump out an entire grammar table

Page �144

PyElly User’s Manual

All *.py and *.sl files listed above are distributed together in a single directory along
with *.main.* integration test files. The *.txt files for unit testing will be in a
subdirectory forTesting. The *GN*.txt files are in the subdirectory extra.

The first v0.1beta version of the Python code in PyElly was written in 2013 with some
preparatory work done in November and December of 2012. This was an extensive
reworking and expansion of the Java code for its Jelly predecessor, making it no longer
compatible with Jelly language definition files. PyElly v1.0 moved beyond beta status as
of December 14, 2014, but active development continues. The latest release is v1.5.8.3.

The emphasis in PyElly is now moving away from adding on new Python modules and
towards better reliability and usability. Existing modules will also continue to evolve,
but mainly to provide better support for building real-world applications to process
unrestricted natural language text. This will involve the construction of big grammars
and big vocabularies, the ultimate test of any natural language toolkit. 

External Database

vocabularyTable.py interface to external vocabulary database

vocabularyElement.py internal binary form of external vocabulary record

Test Support

parseTest.py support unit testing of parse tree modules

stemTest.py test stemming with examples from standard input

procedureTestFrame.py support unit test of semantic procedures

generativeDefinerTest.txt to support unit test for building of generative semantic
procedures

cognitiveDefinerTest.txt to support unit test for building of cognitive semantic
procedures

suffixTest.txt to support comprehensive unit test with list of cases to handle

morphologyTest.txt to support unit test with prefix and suffix tree logic plus
inflectional stemming

sentenceTestData.txt to support unit test of sentence extraction

testProcedure.*.txt to run with the generativeProcedure.py unit test to verify correct
implementation of generative semantic operations

*.main.txt Input text for integration testing

*.main.key expected output text for integration testing with provided input

GN.txt daily Google News text samples for markup testing

Page �145

PyElly User’s Manual

Appendix B. Historical Background
PyElly natural language tools have evolved greatly in the course of being completely
written or rewritten five times in five different languages over the past forty years.
Nevertheless, it retains much of the flavor of the original PDP-11 assembly language
implementation of PARLEZ. Writing such low-level code forced PyElly software
architecture to be simple, a help in porting the system to later computing platforms.

The PARLEZ system, for example, had its own stripped-down custom language for
generative semantics because nothing else was available at the time on a DEC PDP-11.
That solution is platform-independent, however, and so has been carried along with
only a few changes and additions in systems up to and including PyElly for generating
text output. And, sorry, arithmetic is still unsupported.

PyElly departs in major ways even from its immediate predecessor Jelly.

• The English inflectional stemmer has simplified its atomic operations and has
eliminated internal recursive calling. Stemming logic is now in editable text files
loaded at run-time. The number of rules for has greatly expanded.

• Morphological analysis now includes proper identification of removed prefixes and
suffixes as well as returning stems (lemmas). This results in a true analytic stemmer,
befitting a general natural language tool. Current rules are still only for English,
but,they have greatly expanded, now covering most WordNet “exceptions.”

• The syntactic type recognizer was upgraded to employ an explicit non-deterministic
finite-state automaton with transitions made when an initial part of an input string
matches a specified pattern with both literal characters and wildcards in a state. A
special null pattern was added for more flexibility in defining automata state changes.

• New execution control options were added to generative semantics. Local and global
variables were changed to store string values, and list and queue operations were
defined for local variables. Deleted buffer text can now be recovered in a local variable.
Support for debugging and tracing semantic procedures has expanded.

• Vocabulary tables have become more easily managed by employing the SQLite
package to manage persistent external data. External vocabulary rules have been
limited to single input lines to facilitate automatic compilation of definitions.

• Support for recognizing and remembering personal names or name fragments is now
available in PyElly entity extraction. This is based on 2010 U.S. Census data.

• Templates for recognizing multiword compounds as entities were added.

• A new interpretive context class was introduced to coordinate execution of generative
semantic procedures and consolidate data structures for parsing and rewriting.

• Handling of Unicode was improved. UTF-8 is now allowed in all language definition
files and in interactive PyElly input and output. Non-data parts of rules remain ASCII.

Page �146

PyElly User’s Manual

• Ambiguity resolution was completely overhauled with expanded cognitive semantics,
which can now test capitalization, the token and character counts of phrases, and the
starting position of a phrase.

• Semantic concepts were added to cognitive semantics for ambiguity handling. This
makes use of a new semantic hierarchy with information derived from WordNet.

• Control character recognition in input allows for closer management of the explosion
of possible phrase nodes due to ambiguity of natural language.

• Sentence and punctuation processing is cleaner and more comprehensive. Unicode
formatted punctuation like “ and ” and small Greek letters are now recognized.
Standard ASCII and Unicode punctuation is predefined in a special Python module.

• The PyElly command line interface was reworked to support new initialization and
rewriting options.

• Error handling and reporting has been broadened in the definition of language rules.
Warnings have also been added for common problems in definitions.

• New unit tests have been attached to major modules. Integration tests have been set
up with current example applications to exercise a broad range of PyElly features.

• New example applications have also been written to show the broad range of PyElly
processing. Older example applications from Jelly and earlier systems were converted
to run in PyElly.

• Many bugs from Jelly or earlier were uncovered by extensive testing and fixed.

Jelly is now superseded and retired, reflecting the current greater importance of
scripting languages like Python in software development and education.

PyElly is by no means complete and might be rewritten in yet another programming
language. The goal here, however, is less a utopian system than an integrated set of
reliable tools and resources immediately helpful for practical natural language
processing. Many PyElly tools and resources will seem dated to some; but they have had
time prove their usefulness. There is no need to keep reinventing them.

Going forward, we want to implement and demonstrate a robust capability to process
arbitrary English text in a nontrivial way. Currently, this goal has been explored in the
context of the marking example application begun just after the v1.0 release of PyElly.
The language definition problem in marking is quite complex and has been helpful in
exercising almost all of PyElly except for conceptual hierarchies and name recognition.

This PyElly User’s Manual reorganizes and greatly extends the earlier one for Jelly, but
still retains major parts from the original PARLEZ Non-User’s Guide, first printed out
on an early dot-matrix printer. Editing for clarity, accuracy, and completeness
continues. Check https://github.com/prohippo/pyelly.git for the latest PDF version. 

Page �147

https://github.com/prohippo/pyelly.git

PyElly User’s Manual

Appendix C. Berkeley Database and SQLite
Berkeley Database is an open-source database package available by license from Oracle
Corporation, which in 2006 bought SleepyCat, the company holding the BDb copyright.
BDb was the original basis for PyElly external vocabulary tables, but has been replaced
by SQLite because of changes in Oracle licensing policy for BDb.

The current PyElly v1.2+ vocabulary tables with SQLite should incur no noticeable
performance penalty despite having to access all persistent data through an SQL
interface instead of function calls. SQLite will allow PyElly to remain under a BSD
license, since SQLite is included in the Python 2.7.* and 3.* libraries. It does not have to
be downloaded separately.

If running with Berkeley Database is really important, you can download it yourself and
return to the former PyElly vocabulary table code in v1.1. The latest versions of BDb do
come with a full GNU copyleft license, though, with possible unattractive legal
implications. The apparent intent of Oracle here is to compel many users of BDb to buy
a commercial license instead of using free open-source code.

The Python source of vocabularyTable.py in the previous PyElly v1.1 release has
NOT been updated, however, to display a GNU copyleft license as required for use of
Bdb. That will not happen unless there is a reason to fork off a specific BDb version of
PyElly in the future.

Downloading Berkeley Database and making it available in Python is a complex process
depending on your target operating system. You will typically need Unix utilities to
unpack, compile, and link source code. For background on Berkeley Database, see

 http://en.wikipedia.org/wiki/Berkeley_DB

For software downloads, you must go to the Oracle website

 http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html

to get the latest Berkeley Database distribution file. The instructions for doing so on a
Unix system can be viewed in a browser by opening the Berkeley Database
documentation file:

db-*/docs/installation/build_unix.html

The installation procedure should be fairly straightforward for anyone familiar with
Unix. An actual MacOS X walkthrough of such compilation and installation can be
found on the Web at

 https://code.google.com/p/tonatiuh/wiki/InstallingBerkeleyDBForMac

To access Berkeley Database from Python, you must next download and install the
bsddb3 package from the web. This is available from

 https://pypi.python.org/pypi/bsddb3

Page �148

http://en.wikipedia.org/wiki/Berkeley_DB
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
https://code.google.com/p/tonatiuh/wiki/InstallingBerkeleyDBForMac

PyElly User’s Manual

The entire installation procedure turns out to be quite complicated, however, and
difficult to carry out directly from a command line. The problem is with dependencies
where a module A cannot be installed unless module B is first installed. Unfortunately,
such dependencies can cascade unpredictably in different environments, so that one
fixed set of instructions cannot always guarantee success.

To avoid missteps and all the ensuing frustrations, the best approach is use a software
package manager that will trace out all module dependencies and formulate a workable
installation path automatically. On MacOS X, several package managers are available,
but the current favorite is homebrew. See this link for general details:

 http://en.wikipedia.org/wiki/Homebrew_(package_management_software)

As it turns out, homebrew will also handle the installation of Berkeley Database and the
upgrading of Python on MacOS X to version 2.7.5 (recommended for bsddb3). If you
have a MacOS system with Xcode already installed, you can follow these steps to
download the homebrew package and use its brew and pip commands to get Berkeley
Database:

get homebrew
ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)”

get latest Python
brew install python —framework

get BdB
brew install berkeley-db
sudo BERKELEYDB_DIR=/usr/local/Cellar/berkeley-db/5.3.21/ pip install bsddb3

(This procedure is subject to change. See the latest pertinent webpages for the most
current information.)

This web page explains what is going on here:

 http://stackoverflow.com/questions/16003224/installing-bsddb-package-python

The homebrew package manager is helpful because it maintains a shared community
library of tested installation “formulas” to work with. These resources are specific to
MacOS X, however, making homebrew inapplicable to Windows or even Linux or other
Unix operating systems. If you are running on a non-MacOS X platform, you have to
turn to other software package managers; see

 http://en.wikipedia.org/wiki/List_of_software_package_management_systems

Some of these managers implement parallels to homebrew commands, but you will
have to check what parts are actually equivalent. 

Page �149

http://stackoverflow.com/questions/16003224/installing-bsddb-package-python
http://en.wikipedia.org/wiki/List_of_software_package_management_systems

PyElly User’s Manual

Appendix D. PyElly System Testing
After any major change to PyElly source code, you should thoroughly validate the
resulting system. Check that every module passes muster with the PyElly interpreter and
run the current suite of unit and integration tests in the PyElly package.

The following PyElly Python modules have builtin unit tests, executed with the
command python M.py, where M is the module name:

cognitiveDefiner cognitiveProcedure compoundTable
conceptualHierarchy conceptualWeighting dateTransform
deinflectedMatching derivabilityMatrix dumpEllyGrammar
ellyBits ellyBuffer ellyBufferEN
ellyChar ellyCharInputStream ellyDefinition
ellyDefinitionReader ellySentenceReader ellySurvey
ellyWildcard entityExtractor extractionProcedure
featureSpecification generativeDefiner generativeProcedure
grammarRule grammarTable inflectionStemmerEN
macroTable morphologyAnalyzer nameRecognition
nameTable parseTree parseTreeBase parseTreeBottomUp
parseTreeWithDisplay patternTable phondexEN
prefixTreeLogic punctuationRecognizer simpleTransform
stemLogic stopExceptions substitutionBuffer
suffixTreeLogic syntaxSpecification timeTransform
treeLogic vocabularyTable

Most of these unit tests are self-contained with predefined input test data, but some also
will read sys.stdin to get additional input for testing:

ellyBase ellyBufferEN ellyCharInputStream
entityExtractor inflectionStemmerEN macroTable
morphologyAnalyzer nameRecognizer nameTable
patternTable phondexEN stemLogic
substitutionBuffer suffixTreeLogic vocabularyTable

Running your own examples with the unit test of one of these modules can help you
track down a specific problem in a language description. Enter as many inputs as you
want; just type a <RETURN> by itself to terminate the input loop here. Manually entered
test examples will be optional for pre-release PyElly unit validation, however.

The following PyElly modules have specific test input files included in the standard
distribution from GitHub. Their associations are as follows:

 cognitiveDefiner: cognitiveDefinerTest.txt
 ellySentenceReader: sentenceTestData.txt
 generativeDefiner: generativeDefinerTest.txt
 generativeProcedure: testProcedure.*.txt
 morphologicalAnalyzer: suffixTest.txt

In unit testing, these files are either specified in a commandline argument or read from
redirected standard input. See the Python code for each tested PyElly module to find out
how to do this. Unit test output can usually be quickly evaluated by inspection.

Page �150

PyElly User’s Manual

For integration testing, the doTest shell script with argument A will run ellyMain.py
with preselected parameters for application A while reading input from A.main.txt. In
full integration testing, run doTest with each of the PyElly applications having
language definition files in the applcn subdirectory of the PyElly download package:

./doTest echo

./doTest test

./doTest stem

./doTest fail

./doTest indexing

./doTest texting

./doTest doctor

./doTest chinese

./doTest querying

./doTest marking

./doTest name

./doTest disambig

./doTest chemic

The doTest script will automatically compare PyElly output for A.main.txt input
with the corresponding A.main.key file with the builtin diff shell command. For
example, doTest querying might produce

test application= querying, input= querying.main.txt

real 0m0.404s
user 0m0.345s
sys 0m0.040s

 < ACTUAL
 > EXPECTED

 . . .

This reports the running time of the test along with any significant output differences
found by diff listed out below. A successful test should produce no differences.

The comparison here is always with the PyElly translation as the first argument to diff
(ACTUAL) and with the .key file (EXPECTED) as the second. The doTest script will try to
ignore any PyElly output that is not part of a translation. If your application produces
any extra output, however, such as from PyElly execution monitoring commands in your
rule semantics, then it may show up as a difference. Please make the appropriate
adjustments in your interpretation of the test results.

The bad application will always fail to generate a language definition because its rules
are deliberately malformed. Nevertheless, you should run it with doTest as part of
integration testing to verify that PyElly can recover from and report on errors in rules.
There should be no uncaught exceptions arising from rule input. Error messages from
table building also should be appropriate.

Page �151

PyElly User’s Manual

Integration testing will be the main way to verify that a new version of PyElly or
application rules can still handle what it used to do correctly. This is important to do
frequently, even with only small changes in PyElly code or in application rules. This will
catch problems early, so that translation issues will not accumulate and compound,
making debugging much more difficult.

If you do change PyElly code or either the language definitions for a test application or
its integration test input, you should also update the *.main.key files to reflect any
expected changes in output that will show up in PyElly translations.

With doTest, you can also process input from a particular file x.main.txt while
running with the language definition files for an application A. Do this with the
command line for doTest:

./doTest A x

The output will be checked against the file x.main.key, which must be present.

The marking integration test in the PyElly package now includes five extra test input
files marking.more*.main.txt, to run in the above way for extended testing with
more sentences. There are corresponding marking.more*.main.key files to compare
with the translations done by PyElly with the marking language definition rules. This
splitting of test data into multiple files is mainly historic; but it allows for faster
checking when trying to fix an isolated problem found in integration testing.

The main part of the marking integration test rewrites 878 sentences from a variety of
Web sources; processing them and comparing results with key files take only about 13
minutes altogether. This test data has been augmented with a set of 116 problematic
sentences from almost thirteen thousand Google News top stories collected to test the
marking application on a large text sample. These 116 sentences are in the input file
marking.news.main.txt; expected results are in marking.news.main.key.

The new data presented new difficulties. Sentences of Web news text typically lack the
fairly careful editing of print journalism or even of the 878-sentence test sample. The
fast publication cycles for news result in sprawling sentences and often tortured syntax.
This forces a reader to work hard, and a PyElly language definition has to capture major
amounts of world knowledge in rules to avoid parsing overflows. A set of only 116
especially challenging news text sentences chosen for integration testing will take about
25 minutes to mark up.

The broad suite of integration test applications along with marking serves to validate
the range of actual processing demonstrated historically in PyElly and its predecessors.
The test instances are still limited, however, so that we can never guarantee that any
given language definition will be able to mark up all future uncontrolled input. We can
only achieve a reasonable level of competence at some point with some set of language
definition rules and then continually try to do better.

Page �152

PyElly User’s Manual

Although all the other tests are necessary, the marking integration test currently is the
most important. It has by far the most grammar and vocabulary rules and includes more
test sentences than all the other integration tests combined. Its input is actually from
the Worldwide Web and are not sentences cooked up with nice linguistic characteristics.
Such “wild” data has always been a challenge for any natural language system to process
and so provides a serious shakedown of both PyElly code and language definition rules
for an application.

Further PyElly work will push testing with even more “wild” data. Fortunately or
unfortunately, finding sentence examples to break PyElly processing is still quite easy
with any application. Validation therefore always has to be tentative for any kind of
language competence; but then that is how human beings themselves naturally learn
language. We can hope only to develop our rules through enough examples so as to
cover most of what the world can throw at us.

In the marking, chinese, and name example applications, a major goal is to see how
far we can go with PyElly before language definitions become too complicated or too
bloated for users to manage. So far, experience with marking has been encouraging;
despite many unexpected issues and many bugs uncovered, the PyElly approach to
natural language has held up. Problems of phrase node overflow with long sentences
have been the most serious issue so far.

A new release of PyElly will be uploaded to the Web only after it passes all current unit
and integration tests and the pylint tool has checked any modified PyElly Python code
for common problems in source code. The ellyMain.py module should also be run with
the bad language rules to verify that this will not crash PyElly. PyElly will receive a new
version number only for significant code changes, which will usually mean that
previously saved language rule tables have to be regenerated. Any change in how PyElly
works will also have to be described in an update of this PyElly User’s Manual; that
should be done even for releases with no change in version number. 

Page �153

PyElly User’s Manual

Appendix E. PyElly as a Framework for Learning NLP
PyElly is about doing computational linguistics with rules. It calls for some serious
digging into the structure of text, which many data scientists nowadays would rather
avoid. With many kinds of text processing, minimizing prior language expertise can be a
good strategy for system building; but real-world language in general will be hard, and
will usually defeat simple solutions. We need to be both smart and knowledgeable to do
NLP more effectively. PyElly brings many resources together to let students experiment
freely and to give practitioners proven capabilities right out of the box.

Lately, machine learning and artificial intelligence have been hot areas in computing
applications. Notable successes have come out of image recognition and playing of
games like chess, go, and poker; and deep neural nets have become the go-to technology
for automatic machine translation of natural language. Neural nets in particular are
able to learn without supervision when given sufficient training data, and so one must
ask whether the rule-based techniques of 20th Century computational linguistics still
matter. The hope here is simply to turn AI loose on big data, sit back, and clip coupons.

If you look at some actual machine translation on the Web like Google Translate,
however, it is easy to find atrocious results even with deep learning. This is especially
bad when the languages come from quite different family groups like Chinese and
English. In theory, one might think that a neural net able to learn how to translate well
from Spanish to English would be immediately applicable to learning to go from Chinese
to English. In reality, translation can be problematic even with closely related languages.

Much has already been written about the complexities and idiosyncrasies of human
language. Its structure is messy, usually with many different dialects well on their way to
evolving into different languages. Any data scientist should at least be aware of such
problems, but to be really serious about processing text data effectively, one needs
deeper understanding possible only with extensive practical experience. PyElly will let
students get it by tackling and digging into real-world text.

The PyElly toolkit currently includes a non-deterministic finite-state automaton, macro
substitutions with wildcard matching, bottom-up parsing driven by a grammar,
ambiguity handling through semantics, support for large external dictionaries with
multiword terms, basic text entity extraction for dates and times, template matching to
recognize common phrases, punctuation handling and sentence demarcation, and
special logic for recognizing the names of people. You can combine these resources in
various ways to build nontrivial text processing systems like the example applications in
the PyElly distribution package.

The PyElly tools should all be familiar to computer science students and remain useful
despite the new technologies like automatic programming or artificial intelligence with
deep learning. Not every data scientist has to be an expert on low-level text processing,
but someone on a major project should be conversant about its ins and outs, if only to
temper any magical thinking about breeze through it given enough training data.
Students and practitioners both need to learn some humility here.

Page �154

PyElly User’s Manual

With PyElly, a student will see how computational linguistics actually works, whether
this is in analyzing the structure of sentences or just extracting stemmed keywords. All
the rules for PyElly language processing will be fully visible, never buried in the entrails
of some deep neural network. Appropriate rules for a new application will take time to
compile and develop, and analyses with them may be hard to follow, but such difficulty
is inherent to all natural languages and is the challenge in processing them.

PyElly encourages students to play with language and makes it easy to build toy
applications that nevertheless carry out real NLP. Such simple exercises may be of little
interest for academic research or for commercial exploitation, but they are excellent for
learning and opens the way to more ambitious projects down the road. It could
conceivably even be fun, even for students uninterested in eventually becoming a
professional computational linguist.

A good way to employ PyElly in secondary schools is to let students take on individual or
group projects focused on a single narrow NLP task like those described in Section 14,
not necessarily covering all the supported features of PyElly. You probably want to avoid
something as complex as the PyElly marking example application, but something like
chinese or texting is quite doable. Avoid projects involving extensive extra-linguistic
background research, since that alone could easily eat up all available time; let students
focus instead on natural language and NLP.

A reasonable PyElly project should take from two to six weeks and may involve defining
about a hundred rules altogether. Experimentation is important; no one should be
satisfied with initial success in processing a given set of text data input. Instead,
students should try to expand the coverage of their applications as much as possible and
to see what happens when small changes are made to language definition rules. It is all
too easy to get rules tangled up, and future practitioners need to know the hazards.

Unsuccessful projects can be as valuable for learning as successful ones. Natural
language processing of unrestricted text is hard and can fail. The varieties of
grammatical structure and the exponential possibilities for alternate interpretations of a
sentence with ambiguities can be overwhelming. This problem will not go away with
approaches like unsupervised deep learning. Students will have to confront their text
data and get a clear sense of its nature just like a tailor needs to be an expert on cloth.

As always, it is best to start with something simple and gradually build up rules step by
step to into something more elaborate. This can take quite a while. Students should
expect to make many mistakes and to spend plenty of time in debugging, reworking, and
clarifying their language descriptions. They should nevertheless try to process as much
real-world text as they can. That experience will undoubtedly be where most important
NLP learning will happen with PyElly or any other system. 

Page �155

PyElly User’s Manual

Appendix F. A Shallow XML Markup Application
The marking example application started out as a limited demonstration of rewriting
English text into XML with shallow markup. The plan was to define just enough PyElly
language definition rules to analyze a small set of randomly chosen raw text from the
Worldwide Web. The initial data for processing consisted of 22 continuous text
segments in English, containing a total of 2,766 words in 129 sentences. This was
expected to be a major challenge for PyElly, but still suitable for a student project.

When putting together demonstrations, one typically selects the input data carefully and
makes sure that everything is clean. Any NLP application targeting the Web, however,
will meet all the unvarnished stuff that people actually write and post. Text that breaks
every rule taught in grammar school is everywhere. Venturing out on the Web is like
taking a vehicle off a controlled test track onto actual streets, highways, and dirt roads,
where you can break an axle, crack a windshield, or blow up a radiator.

PyElly is basically a framework to encapsulate basic linguistic competence in a compact
software package able to run on a home computer. The idea here is to be really good at
the linguistics and to minimize reliance on world knowledge, which can overwhelm an
NLP application. The result will be less than full AI understanding, but as it turns out,
such limited processing can still be quite useful. To show this, we can just turn PyElly
loose on some actual text to see how far it can get.

Shallow markup of Web text would mainly identify simple noun phrases like THE SIX
RED APPLES and simple verb phrases like HAS NOT YET BEEN FOUND plus assign
traditional parts of speech like noun, verb, adjective, and so forth to the various
elements in a sentence. This would also label low-level text entities like numbers, dates,
and times, but would ignore more complex recursive grammatical structures like
relative clauses, participial phrase modifiers, or direct and indirect quotations.

Here is how shallow XML markup of a simple made-up sentence might look:

Several dedicated men promised they would reunite on September 11th, 2021.

<sent>
<nclu><quan>several</quan><adj>dedicate -ed</adj><noun>men</noun></nclu>
<vclu><verb>promise -ed</verb></vclu>
<pro>they</pro>
<vclu><aux>would</aux><verb>reunite</verb></vclu>
<nclu><date><prep>on</prep>09/11/2021</date></nclu>
<punc>.</punc></sent>

Each basic noun phrase is tagged as nclu and each basic verb phrase is tagged as vclu.
The word SEVERAL is a quan (quantifier) in a noun phrase and THEY is a pro
(pronoun). The preposition ON is tagged as a prep attached to a date element, which is
recognized by PyElly as an entity and interpreted syntactically as a noun. The word
WOULD is an aux (auxiliary) in a basic verb phrase. The final period (.) is marked
punc, but the comma (,) in the date was dropped in its rewriting. Finally all the
elements are grouped between <sent> and </sent> tags marking a full sentence.

Page �156

PyElly User’s Manual

This is far from understanding what the sentence means. Reliably tagging each word
with its part of speech and then grouping those words into simple phrases is a good
start, however. In particular, it could provide nontrivial information to support and
guide deeper sentence analysis; and as a kind of text preprocessing, it can greatly reduce
the ambiguity of words that show up in a sentence.

There is of course no single way to mark up a given sentence, but our particular scheme
here should be adequate for a proof of principle. It is consistent with how most of us
understand the grammar of English and fits in with what PyElly language rewriting can
produce. As it turns out, the main difficulty of markup will not be in the form of output,
but in figuring out highly unpredictable input. The magnitude of the task soon becomes
evident when we begin to rewrite actual “wild” text.

Text from the Web often lacks the editorial control of published books and periodicals.
Sentences often run on and on, capitalization and punctuation are irregular, typos are
common, and obscure jargon is rampant. The writing is often a word salad tossed
together with little regard for readability by human or by machine. And even in edited
text, common words like ADVANCE, BEST, DIRECT, INITIAL, LEAN, OKAY, READY,
SMART, WARM, and ZERO can each assume multiple parts of speech, with exploding
combinations of possible meanings for a reader or a parser to sort out.

Low-quality data makes hallow markup harder than one might first think, even with
only a finite number of target sentences to process. A few general language rules actually
will handle most real-world sentences, but for wider coverage, we often also need rules
down to the level of specific words or groups of words. For example, DOUBLE DOWN
ON is a verb. This is not cheating; it is just part of common knowledge about how
language is used. Learning such knowledge is required for mastery of any new language;
and it should be expected that PyElly will hit that problem.

The marking example application at first had only a few grammatical rules just for the
syntactic type NCLU (noun cluster) and a few others for VCLU (verb cluster). An NCLU
was assumed to have the general form QUAN + DET + NUM + ADJ + NOUN; for
example, ALL THE SIX RED BALLS. A VCLU would have the general form AUX + NEG
+ HAVE + VERB; for example, WILL NOT HAVE KNOWN. Some of the components in
an NCLU or a VCLU may of course be omitted in an actual text NCLU and VCLU.

Defining grammatical rules is fairly easy if we postpone thinking about cognitive or
generative semantics. In PyElly, they will be put into the form NCLU->xN NCLU or the
form VCLU->xV VCLU; for example, NCLU->DET NCLU. We can use syntactic features
with the NCLU and VCLU syntactic types to control the order in which the rules will be
applied. Complications will arise later, but can be addressed by rule adjustments. A
showstopper may pop up at some point, but we still want to see how far we can get.

Overall sentence tagging for shallow markup will also have simple rules. They will take
the form SS->ELEM SS, where SENT->SS and where ELEM->NCLU, ELEM->VCLU,
and ELEM->x, where x might be a conjunction, interjection, or a miscellaneous
syntactic type as well as punctuation. It should be easy to see how this will all work with

Page �157

PyElly User’s Manual

the Dick-and-Jane text for teaching young children to read; the trick is to scale up our
language rules to handle Web text in the X-rated wild.

PyElly will have to deal with explicit vocabulary here. In a minimal language definition,
we might try to define only functional words like THE, OF, AND, and NOT along with
inflectional word endings like -S, -ED, and -ING and common morphological word
endings like -LY, -MENT, and -ION. The idea is to allow most words in a sentence to be
unknown (UNKN). We would then define some grammar rules like VERB->UNKN -ED,
ADJ->UNKN -ICAL, and ADV->ADJ -LY. For example, an unknown word
XXXXICALLY could be recognized as an adverb in this way.

When we attack our initial target sample of 129 sentences, however, a minimum explicit
vocabulary approach quickly fails. Some cases of markup are easy, but unless PyElly is
more specifically restrained, it can do some strange tagging. Our rules really have to be
much more detailed; and we really have to work carefully to avoid cringe-worthy results.
A bit of luck also helps; and some “wild” text data of course could defy any markup. In
extreme cases, we could have run out of rule options or found that adding a rule to
address one markup problem will derail markups for previous sentences.

Fortunately, PyElly passed its initial test, even though our “wild” data kept uncovering
processing problems in almost every new segment of text. These included bugs in PyElly
Python code, various errors in the definition of rules, unexpected Unicode characters,
new kinds of text entities not covered by existing rules, idiomatic expressions requiring
special rules for handling, and tricky cognitive semantic scoring. With persistent
reworking of both PyElly modules and marking rules, however, PyElly did eventually
manage to mark up all our initial 129 target sentences with a single set of rules.

That result was a victory of sorts, but required so much work that it cast doubt on any
hope for a general markup capability. Yet, the number of rules really must be finite for a
natural language, or else no one would ever be able to learn it. So, we then might hope to
see some kind of eventual convergence where fewer new rules are needed to process new
sentences. In a practical markup application, we in any event may have to be satisfied
with reasonable markups of only some large fraction of new sentences.

With an inconclusive result, one has to collect more test data, and so another 13 text
segments were collected from the Web, containing 1,773 words in 91 sentences. In the
best of worlds, PyElly would sail through the new data, but the bad news was that
former pattern of failures repeated with each new text segment. We again and again had
to change both PyElly modules and marking rules before we could mark up all 220
sentences of our expanded test corpus—not a win, but not a total loss either.

PyElly lived to fight another day, and its code was getting better through all the testing.
So we got four more text samples from various other Web sources to keep on testing.
These included 7 segments with 1,289 words in 62 sentences, 10 segments with 1,149
words in 61 sentences, 13 segments with 2,752 words in 133 sentences, and 37 segments
with 8,033 words in 403 sentences. We still saw the same pattern of failure with each

Page �158

PyElly User’s Manual

new segment in that data, but got better at extending rules to get acceptable markups for
all sampled sentences eventually.

We are still unable to declare victory here; but the PyElly rule-based approach has held
up so far. It usually takes only a day or two of adjusting to take our marking rules to a
new level where they can handle new sentences without failing on old ones. This kind of
steady improvement is encouraging. If we can sustain such progress through more and
more “wild” Web text, then it might be possible to achieve a respectable level of
competence in markup in perhaps only a year or two.

The overall problem in PyElly for shallow markup is now fairly clear, boiling down to
combinatorics. When we have to add more grammar and vocabulary rules, they multiply
possible analyses. Unless we can somehow hold down consequent ambiguity in a
sentence analysis, the number of possible interpretations of the sentence will grow
exponentially. PyElly parsing will then get glacially slow, and our odds against choosing
a good markup through cognitive semantic scoring will become quite unfavorable.

The easiest way to reduce ambiguity in PyElly analysis is with a big external vocabulary
table with many multi-word terms. Just having fewer unknown terms will help PyElly,
but multi-word terms are even better. For example, defining DEPARTMENT OF
JUSTICE will combine three separate tokens into one much less ambiguous term. This
reduces the degrees of freedom in parsing a sentence; and finding only four or five such
long tokens in a text segment can speed up PyElly parsing by an order of magnitude.

To identify possible single- and multi-word vocabulary for PyElly, we can turn to any
large digital dictionary of English. WordNet in particular works out quite well here
because of its comprehensiveness, its organization into ASCII text files, and its liberal
open-source licensing. The file default.v.elly distributed with PyElly is mostly
WordNet 3.0 without some numerical terms already handled elsewhere in PyElly and
without some terms including punctuation.

The marking example application uses only a subset of default.v.elly because the
full file takes a long time to load, and it includes many rare senses of common words
unnecessarily increasing ambiguity. The current marking vocabulary table starts out
with recognizable single words and some names in our target text, which may or may
not be in WordNet. WordNet is quite comprehensive, but it omits irregular forms of
nouns and verbs, most inflected variants, most names, specialized jargon, many
common idioms, and of course new terms coined after WordNet 3.0. These non-
WordNet additions have been kept separate in the marking.v.elly definition file.

To obtain multi-word vocabulary, we can start by looking for WordNet terms in target
text with their first two words already in the marking vocabulary table. After a little
manual pruning of rare or obscure terms that would would be unhelpful, the marking
vocabulary table has grown to almost 40,000 entries, with about half being compounds
of two or more words. In comparison, the PyElly marking application has just over 700
grammar syntax rules, about 140 pattern rules, and about 70 macro substitution rules.

Page �159

PyElly User’s Manual

Here are some actual markups for sentences taken at random from the various original
target text samples. The first is from Robert Louis Stevenson’s “Treasure Island”:

He had taken me aside one day and promised me a silver fourpenny on the first of every
month if I would only keep my ‘weather-eye open for a seafaring man with one leg’ and let
him know the moment he appeared.

 <sent>
 <pro>he</pro>
 <vclu><aux>had</aux><verb>taken</verb></vclu>
 <pro>me</pro>
 <adv>aside</adv>
 <nclu><num>1</num><noun>day</noun></nclu>
 <conj>and</conj>
 <vclu><verb>promise -ed</verb></vclu>
 <pro>me</pro>
 <nclu><det>a</det><adj>silver</adj><noun>fourpenny</noun></nclu>
 <nclu><prep>on</prep><noun>the 1st</noun></nclu>
 <nclu><prep>of</prep><quan>every</quan><noun>month</noun></nclu>
 <conj>if</conj>
 <pro>i</pro>
 <vclu><aux>would</aux><adv>only</adv><verb>keep</verb></vclu>
 <nclu><dem>my</dem>
 <punc>‘</punc>
 <noun>weather-eye</noun><adj>open</adj>
 <prep>for</prep><det>a</det><noun>seafaring man</noun>
 <prep>with</prep><num>1</num><noun>leg</noun>
 <punc>’</punc></nclu>
 <conj>and</conj>
 <vclu><verb>let</verb></vclu>
 <pro>him</pro>
 <vclu><verb>know</verb></vclu>
 <nclu><det>the</det><noun>moment</noun></nclu>
 <pro>he</pro>
 <vclu><verb>appear -ed</verb></vclu>
 <punc>.</punc></sent>

Our second example comes from a website for the Mennonite Church:

Mennonites value the sense of family and community that comes with a shared vision of
following Jesus Christ, accountability to one another and the ability to agree and disagree
in love.

 <sent>
 <nclu><noun>mennonite -s</noun></nclu>
 <vclu><verb>value</verb></vclu>
 <nclu><det>the</det><noun>sense</noun></nclu>
 <nclu><prep>of</prep><noun>family</noun></nclu>
 <conj>and</conj>
 <nclu><noun>community</noun></nclu>
 <>that</>
 <vclu><verb>come -s</verb></vclu>
 <nclu><prep>with</prep><det>a</det><adj>share -ed</adj><noun>vision</noun></nclu>
 <vclu><prep>of</prep><verb>follow -ing</verb></vclu>
 <nclu><noun>jesus christ</noun></nclu>
 <punc>,</punc>
 <nclu><noun>accountability</noun></nclu>
 <pro><prep>to</prep>one another</pro>
 <conj>and</conj>
 <nclu><det>the</det><noun>ability</noun></nclu>
 <vclu>to<verb>agree</verb></vclu>
 <conj>and</conj>
 <vclu><verb>disagree</verb></vclu>

Page �160

PyElly User’s Manual

 <nclu><prep>in</prep><noun>love</noun></nclu>
 <punc>.</punc></sent>

A third example comes from a conspiracy-theory blog that loves quotation marks:

There are a lot of people hearing alarm bells going off in their heads with the recent
announcement of multiple Walmart Supercenters closing, all at once, in multiple states
(some of which are states being prepared for the Jade Helm military exercises), all
claiming a "plumbing" issue, with recent news of some type of underground tunnel
projects involving Walmart and DHS.

 <sent>
 <vclu><adv>there</adv><verb>are</verb></vclu>
 <nclu><quan>a lot of</quan><noun>people</noun></nclu>
 <vclu><verb>hear -ing</verb></vclu>
 <nclu><noun>alarm bell -s</noun></nclu>
 <vclu><verb>go -ing off</verb></vclu>
 <nclu><prep>in</prep><dem>their</dem><noun>head -s</noun></nclu>
 <nclu><prep>with</prep><det>the</det><adj>recent</adj><noun>announcement</noun></nclu>
 <nclu><prep>of</prep><quan>multiple</quan><noun>walmart supercenter -s</noun></nclu>
 <vclu><verb>close -ing</verb></vclu>
 <punc>,</punc>
 <adv>all at once</adv>
 <punc>,</punc>
 <nclu><prep>in</prep><quan>multiple</quan><noun>state -s</noun></nclu>
 <punc>(</punc>
 <conj>some of which</conj>
 <vclu><verb>are</verb></vclu>
 <nclu><noun>state -s</noun></nclu>
 <vclu><aux>being</aux><verb>prepare -ed</verb></vclu>
 <nclu><prep>for</prep><det>the</det><noun>jade helm military exercise -s</noun></nclu>
 <punc>)</punc>
 <punc>,</punc>
 <nclu><quan>all</quan></nclu>
 <vclu><verb>claim -ing</verb></vclu>
 <nclu><det>a</det>
 <punc>"</punc>
 <noun>plumbing</noun>
 <punc>"</punc></nclu>
 <vclu><verb>issue</verb></vclu>
 <punc>,</punc>
 <nclu><prep>with</prep><adj>recent</adj><noun>news</noun></nclu>
 <nclu><prep>of</prep><quan>some</quan><noun>type</noun></nclu>
 <nclu><prep>of</prep><adj>underground</adj><noun>tunnel project -s</noun></nclu>
 <vclu><verb>involve -ing</verb></vclu>
 <nclu><noun>walmart</noun></nclu>
 <conj>and</conj>
 <nclu><noun>dhs</noun></nclu>
 <punc>.</punc></sent>

A fourth and final example comes from a Wikipedia article about a highway in Missouri:

The route reaches a roundabout where it intersects Route VV and Prathersville Road, the
latter providing access to the southbound direction of US 63.

 <sent>
 <nclu><det>the</det><noun>route</noun></nclu>
 <vclu><verb>reach -s</verb></vclu>
 <nclu><det>a</det><noun>roundabout</noun></nclu>
 <conj>where</conj>
 <pro>it</pro>
 <vclu><verb>intersect -s</verb></vclu>
 <nclu><noun>route vv</noun></nclu>

Page �161

PyElly User’s Manual

 <conj>and</conj>
 <nclu><noun>prathersville road</noun></nclu>
 <punc>,</punc>
 <nclu><det>the</det><noun>latter</noun></nclu>
 <vclu><verb>providing</verb></vclu>
 <nclu><noun>access</noun></nclu>
 <nclu><prep>to</prep><det>the</det><adj>southbound</adj><noun>direction</noun></nclu>
 <nclu><prep>of</prep><noun>us 63</noun></nclu>
 <punc>.</punc></sent>

As can be seen, actual text from the Web is much more complex and irregular than the
sentence cooked up to illustrate shallow markup at the start of this appendix.
Nevertheless, we can successfully mark up such sentences with fairly reasonable rules.
Doing 878 real sentences like the above four examples required many rule adjustments,
some nontrivial, but nothing outrageous.

Here are some general take-aways for anyone also planning to tackle English Web text:
• Function words like A, AND, OF, and THE are the bones of English and not the meat of any text. These

are omitted from WordNet, which lists only nouns, verbs, adjectives, and adverbs. In PyElly, function
words are usually defined in the internal dictionary of a grammar. They together tend to be quite
frequent in text; but most are individually infrequent and easily overlooked in a language definition.
Unidentified function words will almost always be handled wrong by PyElly because we have no
reliable way to tell whether they are a preposition, conjunction, or something else. Listing them all out
with parts of speech is a chore, but makes life easier. Word sequences like AS WELL AS or AS A
RESULT OF often should taken together as a compound function word in a proper markup.

• Common content words like ACCESS, FACE, NEED, and WAGE can be more than one part of speech
and may be hard to tag correctly all the time. PyElly cognitive semantic rules are supposed to take care
of this problem, but sometimes the logic can get so complex that it may not always produce a desired
result. A proliferation of interpretations also makes parsing more likely to hit a phrase node overflow.
The best solution here is to recognize such words in compounds as much as possible, like MINIMUM
WAGE, WAGE WAR, or WAGE SLAVE, which will reduce ambiguity.

• Punctuation can often be difficult, especially enclosing punctuation like parentheses and quotation
marks. For example, in the noun phrase A (RED) KNIT CAP, (RED) is meant as an adjective; but we
need to introduce some special rules here so that the PyElly parser can figure this out. Otherwise, KNIT
CAP will be a separate noun phrase and A (RED) will just be some unknown construction. The extra
rules are not hard to define, but without them, markup will fail. Quotation marks are especially
troublesome in Web text because many writers use them willy-nilly.

• Our original concepts of NCLU and VCLU phrases as described above turned out to be quite limited;
For example, the simple NCLU defined above does not cover common kinds of English expressions like
ACT 2, Sagittarius A*, US 63, or VERSION 10.1.2B. These and many other similar arbitrary forms
required more grammar rules.

• Some function words like THAT, FOR, IN, TO, FIRST, CAN, LIKE, MAY, and ONE are extra difficult to
tag because they have patterns of usage unlike any other words in English. For example, THAT can be a
demonstrative, a conjunction starting a relative clause, or an optional marker of an indirect quotation,
TO can also identify the English infinitive form of a verb, FOR can be a conjunction in some contexts,
IN can also be a noun, adjective or adverb, and MAY can be part of a name, a noun, or part of a date. In
the marking example application, we see only a handful of such difficult function words, but they can
wreak havoc with parsing and must be handled through a coordinated combination of grammar,
vocabulary, and macro substitution rules.

• Many idiomatic expressions need to be recognized explicitly in a proper markup. For example: FROM
BEGINNING TO END, ROCKET SCIENCE, PURCHASING POWER, FOR EXAMPLE, BETTER OFF,
and BEAT AROUND THE BUSH are respectively an adverb, a noun, another noun, an adjective or
adverb, an adjective, and a verb. WordNets lists many idiomatic expressions, but not all. PURCHASING
POWER had to be added as a noun in the PyElly vocabulary table for marking. This was done despite
the fact that the alternative interpretation of buying electricity is not implausible.

Page �162

PyElly User’s Manual

• Names like JOHN JONES need special treatment because they generally do not follow the same rules
as ordinary words; for example, we do not want to see JONES split into JONE -S or BAKER into BAKE
-ER. PyElly can extract personal names from text as text, but to keep everything simple, the marking
rules will just list names and name components as straight vocabulary. When new names occur in text
for markup, they often also need to be identified as vocabulary. Profligate name dropping is a major
cause of parsing overflow especially when many of the name components may be unknown to PyElly.

• Unicode is often a problem. Hyphens are often replaced inappropriately by the Unicode en dash. Other
troublesome Unicode characters are ellipsis, non-breaking space, narrow space, trademark ™, Greek
letters, letters with diacritical marks, and numerical exponents as in CM². These all have to be
recognized and handled properly within PyElly language definition rules. See Appendix G.

• Much of text on the Web is poorly written or poorly edited. It will often be a challenge for humans to
read in the absence of context and other cues, and so we cannot really expect that an automated system
would be able to process it any better. Lazy writing full of clichés and buzzwords can be a big problem
in Web text for sports, business, technology, and politics. They make sentences longer and more likely
to result in parsing overflows when analyzed word by word.

These various issues with Web text data are not peculiar to PyElly, but working within
the PyElly framework is a good way to uncover them. A black box approach to natural
language with machine-learning framework would be challenged by the same issues, but
the problems there may be harder to diagnose. Leaving the dirty work to a neural net
can speed up system building, but more or less assumes that the messiness of actual text
data can be safely swept under a rug. Such confidence is premature.

With PyElly, we are obliged to take time to explore the structure of natural language. If
nothing else, experience with the marking example application shows us that no one
should expect smooth sailing in real-world text processing. There is still much to learn
about English even after analyzing thousands of Web sentences. An incremental strategy
of getting more rules for text seems to be workable, however, and offers a reasonable
way toward validating (or invalidating) the rule-based approach to NLP.

Testing in the marking example application has now continued beyond the original six
Web text samples. The new data comes from taking a batch of initial paragraphs from
the top 12 stories listed on Google News for given days. This usually amounts to about
90 to 100 sentences per day, or about 12 or 13 thousand characters of text. The writing
tends to be in a tossed-off short-deadline style, where sentences tend to be longer and
quirkier than those in the six Web samples previously seen by the marking application.

With the Google News data, we were less concerned with quality of markup than with
expanding our vocabulary and finding major processing problems and remedying them.
In every day’s sample so far, PyElly has run into many parsing overflows and other
failures; but continued editing of rules has been adequate for successful parsing and a
reasonable markup. Most of the adjustments have been in vocabulary rules; but
sometimes new grammar, pattern, and macro substitution rules were needed.

Parsing overflows in PyElly sentence analysis have been particularly troublesome. In the
previous six mixed Web data samples, this occurred in only three or four sentences, but
in the Google News data, four or five sentences in each one-day sample typically will
overflow in parsing on a first pass through PyElly. When this happens, PyElly will run
for long time before finally abandoning an analysis with an error message. After rule
adjustments, a problem sentence may take only about ten seconds or less to process.

Page �163

PyElly User’s Manual

Here is an actual Google News sentence where overflow had to be remedied by multiple
rule additions:

Special Counsel Robert Mueller’s sprawling investigation has spawned a new guessing
game in Washington centered on retired Lt. Gen. Michael Flynn, President Trump's
former national security adviser.

This comes from an article in The Hill, a Washington political publication with good
editing. The sentence is only about average length for Google News, but with the
marking rules in the distribution package for PyElly release v1.4.17, PyElly parsing will
overflow on it. At this point, we can then successively add new multi-word vocabulary to
reduce the number of degrees of freedom in the analysis. Here is what happens with the
total time for parsing the sentence after each new vocabulary entry:

PyElly continued to overflow even after the addition of the first two multi-word terms.
With the third term, parsing did finish, but took about 3 minutes, which is slow. With
the 4th and 5th terms, parsing time drops dramatically, but adding the 6th term makes
almost no difference. Adding the 7th term once again speeds up parsing significantly.
The parsing times are for a MacBook Pro running a 2.7 GHz Intel Core i5 under MacOS
11.13.* (High Sierra) with Python 2.7.9.

The impact of combinatorics is obvious here, and reducing the number of degrees of
freedom in a PyElly analysis can greatly speed up parsing. The multi-word vocabulary
here is definitely a kind of outside world knowledge, helping to reduce ambiguity and
make parsing easier. Except for GUESSING GAME, none of the added multi-word terms
are in WordNet 3.0, but most people would agree that we have good reason to put them
into our vocabulary table beyond just enabling the processing of one particular sentence.

For example, ROBERT MUELLER is name that will not be found in a standard printed
dictionary of English. Yet recognizing it as a unit, either by knowledge of the
contemporary political scene or perhaps just by capitalization, seems critical for
successful analysis. In our example sentence, having it in a vocabulary table made the
difference between an overflow in processing or a completed markup. We see this
happening over and over with other long Google News sentences.

Vocabulary Term Added PyElly Parsing Time

1 national security adviser ∞

2 guessing game ∞

3 Robert Mueller 2m57.9s

4 special counsel 30.4s

5 Lt. Gen. 9.3s

6 President Trump 9.1s

7 Michael Flynn 2.9s

Page �164

PyElly User’s Manual

Here is some of the extra-linguistic knowledge added to the vocabulary table so that the
marking example application could handle particular Google News problem sentences.

announced the discovery of : VERB
another front in the culture wars : NOUN
armed with fresh ammunition : ADJ
complex new modeling : NOUN
counts of murder : NOUN[:plur]
disappeared from the fever swamps : VERB[^ed]
effectively acknowledging : VERB[^ing]
making a false statement to the FBI : VERB[^ing]
repeatedly used the flag : VERB[^ed]

Although these rules are not unreasonable additions, they go far beyond describing
simple syntactic relationships between broad categories of words. Such extensive
attention to individual special cases may be surprising, but this is only due recognition
of the complexity of natural language. In a rule-based system going up against actual
Web text, we almost certainly cannot get by with only simple rules.

So, how many special case rules will we eventually need to define? Given that natural
language seems to follow Zipf’s Law, we can reasonably expect that a small fraction of
possible special cases will account for most of their occurrences in actual text. This
means that we have a good chance of achieving a respectable competence in markup just
by processing more and more text to discover what rules we need. The critical question
here is how long one can keep this up with a tool like PyElly.

As we go through more web text, it becomes more and more likely that we run into
pathological sentences beyond the current framework of PyElly language definition
rules. We can tolerate a few of these, but if they still show up with steady frequency in
most new data batches with no dropping off, then this may indicate that the incremental
approach with special case language rules has reached an impasse. This would then
require a reassessment of the PyElly processing framework, which could take a long
time if PyElly code has to be reworked extensively.

The good news is that, after seeing more than 130 daily batches of Google News of about
a hundred sentences each, we are still in business. The general procedure here has been
to adjust marking rules to handle the latest batch as well as all the preceding batches
before moving on to the next batch. Initial processing of each batch typically produce
markup failures in about ten sentences, either because of a parse tree overflow or
because of the inadequacy of rules to support a complete analysis.

The following table shows some statistics for the processing of daily batches in twenty-
six groups labeled a through z for analysis and reporting: the date of the last batch, the
total number of sentences in a group, the number of sentences with rule failure in the
first batch of a group, the number of sentences with parse tree overflow in the first
batch, processing time after adjustment of rules to handle the group, and reprocessing
time with the final rules after adjustments were made for all twenty-six groups.

Page �165

PyElly User’s Manual

Each daily batch was processed only after all previous batches have been marked up
acceptably. Since this required the addition of rules to get around the various problems
in each previous batch, the marking language definition that was getting larger and
more comprehensive. This could have resulted in a steady reduction in the parsing
failures and overflows for the first batch of each group, but we instead seem to get little
improvement.

What we do see is that new batches are being processed faster on an initial run. This
would be due to the percentage of unknown terms dropping with each batch, since the
total vocabulary for a given language has to be finite. Still, even with over 32 thousand
WordNet 3.0 definitions in the final markup vocabulary, more new WordNet terms
continue to turn up with each new batch. These terms will tend to be rarer in web text,
but any one of them can still trip up PyElly processing.

Batch
Group

Last Batch
Date

Sentence
Count

Initial Batch
Rule Failure

Initial Batch
Tree Overflow

Processing
Time 1st Try

Processing
Time Nth Try

a 11/15/2017 385 23m 10s 20m 31s

b 11/20/2017 510 27m 0s 21m 52s

c 11202017 358 23m 28s 14m 44s

d 12/1/2017 397 5 7 32m 19s 14m 18s

e 12/7/2017 389 5 0 29m 53s 22m 57s

f 12/13/2017 428 4 4 35m 15s 18m 21s

g 2/27/2018 443 3 5 40m 10s 21m 27s

h 3/6/2018 527 5 4 28m 45s 16m 42s

i 3/19/2018 467 11 6 32m 39s 23m 44s

j 3/25/2018 447 4 5 19m 48s 16m 1s

k 3/31/2018 471 8 7 38m 24s 26m 57s

l 4/7/2018 482 6 4 35m 28s 17m 33s

m 4/14/2018 521 4 6 45m 30s 32m 32s

n 5/3/2018 545 5 4 38m 31s 30m 31s

o 5/8/2018 551 5 6 44m 31s 34m 25s

p 5/13/2018 536 2 8 27m 25s 22m 4s

q 5/18/2018 549 7 7 40m 28s 29m 7s

r 5/23/2018 527 6 5 50m 21s 44m 47s

s 5/28/2018 547 5 5 41m 4s 34m 51s

t 6/3/2018 546 3 6 33m 2s 30m 18s

u 6./8/2018 517 3 4 29m 38s 25m 39s

v 6/15/2018 553 5 2 35m 8s 27m 31s

w 6/28/2018 556 6 4 36m 22s 23m 24s

x 7/4/2018 557 4 0 35m 56s 26m 3s

y 7/9/2018 542 5 2 39m 6s 30m 17s

z 7/14/2018 537 7 1 43m 24s 37m 50s

Page �166

PyElly User’s Manual

The batches vary in sentence count because each text sample was collected as a whole
number of paragraphs. This makes performance numbers in the table harder to
compare, but the important thing is that nothing catastrophic has happened so far. Our
language rules could have gotten so complicated that changing them to get past the next
markup failure might become too hard. We are now already at 12,895 Google News
sentences, however, and no big problem has arisen.

The next batch of text may of course cause PyElly processing will hit another spike of
failures. That is unavoidable: no given set of language definition rules will ever be able
to handle everything posted on the Web. On the whole, however, an incremental
approach to building a language definition seems to be holding up. It is, after all, how
human children learn language. If we can keep advancing along this avenue, PyElly
should only keep getting more competent at shallow markup. 

Page �167

PyElly User’s Manual

Appendix G. Unicode Issues
You might think that processing natural language text in Unicode should be easy when
you can already handle ASCII text. After all, any decent programming language like
Python or Java will have libraries that work with Unicode in exactly the same way as
with ASCII. There are some complications, however, that we all have to get around.

The first issue is what subset of Unicode we want to recognize. It is impractical to try to
do anything with 136,755 distinct glyphs in 139 different alphabets plus all the special
symbols, including emoji. Even if our processing strategy had been to map everything
into plain ASCII, we still have to decide what actually to convert and what just to ignore.
This can make a big difference in the kind of toolkit we end up with.

PyElly opts to recognize characters from the first four pages of Unicode from 0000
through 034F plus a few characters more; that includes the ASCII character set. This
range is mostly unneeded for English but it has been a useful exercise to gain some
experience with more general text processing. It also lets us deal with the spelling of
European names and with occasional foreign phrases showing up in mainly English text.

PyElly v1.0 worked with only the first two pages of Unicode, but that coverage has
steadily grown after working with more and more “wild” text from the Web. A serious
general natural language toolkit really needs to address diacritical marks, extended
punctuation like “ and ”, Greek letters, special symbols like © and º, some exponents
like cm², currency symbols like € and £, different kinds of Unicode spaces, Chinese
pinyin tone markers like ā and ǎ, and even musical notation like B♭.

Most of PyElly handling of Unicode is done by the ellyChar module, which currently
runs to 328 lines of Python code. This is hardly trivial, but it will have to be expanded
many times further to deal with Russian, Chinese, Arabic, or any of the Indic languages
at any reasonable level of competence. It is only one of the reasons why natural language
processing is hard even with deep neural nets.

An unexpected issue arose with UTF-8, which is a standard byte-encoding of Unicode.
Pure Unicode is written out to files in 32- or 64-bit codes. Current practice on the Web is
to use UTF-8 instead, which has the advantage of allowing ASCII-only text to look the
same as it did before. This requires, however, up-to-date libraries for programming
languages be able to convert UTF-8 into 32-bit Unicode for internal processing in main
memory and reconvert Unicode for output to external devices.

Python 2.7 turns out to be awkward at writing UTF-8 to files, especially when
redirecting the standard output and standard error streams. One has to experiment to
see what solutions actually work on a given computing platform. PyElly as of v1.4.2+
now works for redirected Unicode output for MacOS 10 Unix, but this called for a bit of
hackery that may not transfer cleanly to other coding environments.

Unicode also allows for some tricks in processing that may surprise someone unfamiliar
with all its various corners. In particular, the Unicode Consortium has defined three

Page �168

PyElly User’s Manual

“private usage areas” (PUA) that are permanently unassigned. That is, we should not
expect any conforming Unicode text to use any of these codes. PyElly takes advantage of
the PUA starting at E000 to encode the character and string wildcards used in its
language definition rules. That allows a pattern of literal characters and wildcards to be
saved conveniently as a straight Unicode string in a binary file.

Another Unicode issue arose with the requirement that a search key for SQLite had to be
ASCII-only for vocabulary table lookup. Python does provide a low-level function for
ASCII conversion, but PyElly implements its own for flexibility here, included in its
ellyChar module as the toLowerCaseASCII() method

PyElly release v1.4.24 also experiments with using Unicode to pass information between
various stages of processing. This involves the ASCII hyphen-minus =002D, which is
currently treated as non-embedding in default token formation and which also will fail
to match the $ wildcard for the end of a token. This can sometimes be problematic when
trying to get around certain common text irregularities with hyphens.

As of v1.4.24, we can use a macro substitution to change a hyphen-minus =002D in
certain contexts into a Unicode hyphen =2010. The Unicode hyphen in particular will
match the PyElly $ wildcard. This may seem like a strange kind of natural language
processing, but it can solve some non-trivial problems in PyElly rule definition. We have
no such option when working with ASCII-only text data.

The bottom line is we have to get our hands dirty with Unicode text as it exists in the
wild before we can understand how to process it properly in PyElly. That is only a
narrow detail of computational linguistics, but it is still something unwise to gloss over.
Natural language is hard, and we need to apply all available knowledge to give us the
most traction possible in developing practical solutions.

Page �169

