
Pyhab	User	Manual
v0.6

Fall 2018

Dr. Jonathan F. Kominsky

1

1. What is PyHab? 2

2. Getting PyHab 3

3. How to build your study in PyHab 7

a. Relevant concepts 7

b. Creating your first experiment 9

c. Saving and sharing your experiment 36

4. Running a study in PyHab 37

a. Starting a PyHab study 38

b. Running a PyHab study 42

c. Data and computing reliability 46

d. Preferential looking studies 49

5. Troubleshooting 50

scrivlnk://B745CC8A-222F-4087-8B48-B5B2556DC091
scrivlnk://B745CC8A-222F-4087-8B48-B5B2556DC091
scrivlnk://51017C12-D636-4F8A-A615-CBFD35A65DD6
scrivlnk://51017C12-D636-4F8A-A615-CBFD35A65DD6
scrivlnk://F8309D1D-592B-4DDB-8135-5E9D28558BD3
scrivlnk://F8309D1D-592B-4DDB-8135-5E9D28558BD3
scrivlnk://8B712CEC-9CAE-4140-AB8B-3305F9E22ACC
scrivlnk://8B712CEC-9CAE-4140-AB8B-3305F9E22ACC
scrivlnk://A70DAB77-7893-48D9-B4A0-C1614AFB23CE
scrivlnk://A70DAB77-7893-48D9-B4A0-C1614AFB23CE
scrivlnk://0DCA0A19-B1F1-40F2-A882-7531750FD7A4
scrivlnk://0DCA0A19-B1F1-40F2-A882-7531750FD7A4
scrivlnk://3F0EF030-2620-48C9-8D93-5350FA2E2020
scrivlnk://3F0EF030-2620-48C9-8D93-5350FA2E2020
scrivlnk://3106B81A-820F-463D-BD30-E5669E360F7F
scrivlnk://3106B81A-820F-463D-BD30-E5669E360F7F
scrivlnk://FE6DEAF1-37DB-425C-9AC3-8075072F1804
scrivlnk://FE6DEAF1-37DB-425C-9AC3-8075072F1804
scrivlnk://2AE9663F-D114-4F4D-A015-2689A18E83E4
scrivlnk://2AE9663F-D114-4F4D-A015-2689A18E83E4
scrivlnk://AB8C1ED5-6DC4-45FE-8DB0-61EF20DE53D6
scrivlnk://AB8C1ED5-6DC4-45FE-8DB0-61EF20DE53D6
scrivlnk://B71D78ED-5148-4B63-A0C2-47927F80C6DD
scrivlnk://B71D78ED-5148-4B63-A0C2-47927F80C6DD

2

1. What is PyHab?

Infant and toddler looking-time studies primarily rely on manual looking-time coding

software like jHab and xHab, which are old, opaque, and not open-source. PyHab is a script

written for PsychoPy, a free, open-source python-based stimulus presentation software (with

which the author is not affiliated), that fully replicates the capabilities of xHab and jHab while

adding several features.

The biggest advantages of PyHab over its predecessors are that it can be used to directly

control stimulus presentation, and it’s free and open-source. xHab and jHab needed one person

coding looking times and a second person controlling the stimuli, and communicating when to

end one trial and advance to the next, and when to advance from habituation trials to test trials.

This introduces logistical hassle and imprecise timing. PyHab can present movie files or

animated stimuli and advance trials and trial types appropriately based on live looking time

coding. One person can run an entire experiment. It’s similar to Habit2, but open-source and with

slightly different capabilities.

You might worry that this means you can’t run these studies with a blind coder. Not at all!

Provided that the coder can’t determine what the participant is seeing or hearing (which will just

depend on your setup), PyHab can be configured to tell a coder only when a trial starts and ends,

and use a masked condition file so that the coder only needs to input a code and not know what

condition is being presented. In habituation designs when the test trial can come after a variable

number of habituation trials, PyHab doesn’t even need to tell the coder when the test trial

happens, in some ways making it more blind than other programs can achieve!

If you want to be kept up-to-date on new versions, please join the Pyhab announcements

mailing list: https://groups.google.com/d/forum/pyhab-announcements/join

3

2. Getting PyHab

• You need PsychoPy, first of all. PyHab is a script that runs in a PsychoPy environment.

You will want at least version 1.90.2, and you will want the standalone .dmg file for

Mac or a .exe file for Windows. You can download it here: https://github.com/

psychopy/psychopy/releases. Py2 or Py3 does not matter. As of this writing, 1.90.3 is

the most recent stable build, you may have to scroll down to find it. I have not tested

it with the PsychoPy3 beta builds.

• You DON’T need to know Python! There is a rudimentary builder interface that should

allow you to build and conduct studies with no programming at all. For people who

do know Python, the code is documented on ReadTheDocs: https://

pyhab.readthedocs.io/en/latest/

• To use PyHab for stimulus presentation, you will also need a computer with a two-screen

setup. One screen will be your stimulus presentation screen, which will display

stimuli to your participant. The other will be the coder’s screen, which will display a

small graphical interface telling you when a trial begins and ends. The displays

cannot be mirrored, you need to have an extended desktop (like you would for a slide

show with presenter view).

• If you want to present movie files, you will want your stimuli in .mov, .mp4, or .m4v

format for the most reliable performance. PsychoPy’s movie presentation system

works with other formats, but I have not tested all of them with PyHab and I’m not

sure how well they work. Some formats work better on Mac than windows.

• In addition, you will want to design movies that have about two to four frames of

buffer at the end. This is because of the way that PsychoPy plays movies. If a movie

file gets to the absolute end (i.e. past the last frame), the movie is unloaded from

memory. In order to loop movies without having to reload the movie every time, I had

to basically force PyHab to stop about 50ms before the end of the movie (roughly 1.5

https://github.com/psychopy/psychopy/releases
https://github.com/psychopy/psychopy/releases
https://pyhab.readthedocs.io/en/latest/
https://pyhab.readthedocs.io/en/latest/

4

frames at 30fps, or 3 frames at 60) to guarantee that the movie doesn’t unload itself.

• You will need to install VLC media player on any computer that you plan to use to

present stimuli. VLC ensures that the right codecs are available on your system for

playing movie files. Fortunately, VLC is completely free and can be found here:

https://www.videolan.org/vlc/index.html

• On Windows, you will need ffmpeg installed to be able to use the stimulus presentation

features. If you attempt to run a study with stimuli and get an imageio crash, follow

these directions: In PsychoPy, open a coder window, then at the bottom select the tab

labeled “shell”. At the prompt in this tab, type “import imageio” and hit return, then

type “imageio.plugins.ffmpeg.download()” and hit return. This should download and

install ffmpeg for PsychoPy. If it fails, close PsychoPy and then run PsychoPy as an

administrator (right click > run as administrator).

• Also on Windows, you will need your movie files to be relatively small. For unknown

reasons, MoviePy will use a prohibitive amount of memory to load larger movie files.

Your movie files may need to be only a few hundred KB and have a low bitrate. You

may find that you need to export them using VLC in windows to get access to these

settings. If your experiment hangs on “loading movies”, this is why. Macs, for some

reason, do not have this problem.

https://www.videolan.org/vlc/index.html

5

Installation instructions

Assuming you have PsychoPy already installed, all you need to do is go to https://

github.com/jfkominsky/PyHab/releases and click “Source code (zip)”. This will download a .zip

file called PyHab-master, which you can then unzip into a folder. This folder has everything you

need to get started. Put it wherever you want, but don’t modify anything inside the folder or

move anything into or out of it.

Once you’ve got your PyHab folder where you want it, open PsychoPy in coder view.

Then go to file > open and find the script called “NewPyHabProject.py” in the PyHab-

master folder. This will open a very, very short script in the coder window. All you need to do is

hit “Run” (the green running man icon) to launch the PyHab builder (see Chapter 3).

https://github.com/jfkominsky/PyHab/releases
https://github.com/jfkominsky/PyHab/releases
scrivlnk://F8309D1D-592B-4DDB-8135-5E9D28558BD3

6

If you want to see a PyHab study in action, from the coder, go to file > open, find the

PyHab-master folder, the open the “PyHabDemo” folder within it, and finally select

“PyHabDemoLauncher.py”. This will open a somewhat longer script. Again, just hit the “Run”

button, and this will open a dialog that will allow you to either run the demo experiment (see

Chapter 4) or open its builder view to see how it is put together.

scrivlnk://3F0EF030-2620-48C9-8D93-5350FA2E2020

7

3. How to build your study in PyHab

a. Relevant concepts

Let’s define a few important terms:

• Launcher: The script you run initially, which gives you access to both running studies

and editing them in the builder.

• PyHab Builder: A rudimentary GUI that allows you to construct your experiment. This

is not to be confused with the (much, much superior) PsychoPy builder. Rather, this is

something I built for PyHab specifically that is a little less refined but perfectly

functional. Future updates may better integrate it into the PsychoPy builder.

• Experimenter window: The window presented to the experimenter running the study,

which includes information about the current trial and (optionally) the live status of the

coding keys.

• Stimulus window: The window on which the stimuli appear, if PyHab is being used for

stimulus presentation.

• Trial type: PyHab builds studies in terms of trial types, each with its own label. Each

label is enclosed in single quotes and is usually text (e.g., ‘A’). Avoid symbols like \ or /

or %, which can confuse Python in various ways (especially \). Also, I recommend that

you not name trial types with just numbers (mixes of numbers and letters are fine). It

should work, in theory, but Python sometimes gets weird about text that it can interpret as

numbers.

⁃ There is exactly one special trial type that changes the behavior of the program:

'Hab'. The ‘Hab’ trial type will create a series of habituation trials that will go

until a habituation criterion is met (see Habituation Settings). If you aren’t

running a habituation study, don’t call any of your trial types ‘Hab’, but literally

any other series of letters should be fine.

• Stimulus file/stimuli: PyHab expects all stimuli to be in the form of movie files, which

scrivlnk://EEB8D25F-79FB-4CBC-9F11-1158CEBC30E7

8

you tell PyHab where to find in the settings. You can also run PyHab just as a looking-

time coding software with no stimulus presentation, in which case no stimulus files are

needed.

• Stimulus library: When you add media files to PyHab, you create a “library” of files

which can then be associated with different trial types.

• Attention-getter: A short sound and/or animation designed to attract an infant’s attention

to the stimulus screen.

• Primary coder and Secondary coder: When to advance through trials, PyHab only pays

attention to the primary coder. The secondary coder is someone coding at the same time

for determining reliability, but is completely optional.

• Verbose data vs. Summary data: Summary data is a single file that gives one line per

trial, and some summary statistics for that trial. Verbose data is a data file where each line

is one gaze on or gaze off. Verbose data is much more granular and is necessary for

calculating certain forms of inter-rater reliability. Each coder gets their own verbose data

file.

• Preferential looking version: PyHab behaves slightly differently when you are running a

preferential looking study. The “normal” PyHab only allows you to code whether they are

looking at the screen or not. The preferential looking version does not allow for multiple

coders and does not compute reliability (but reliability can be computed after the fact).

9

b. Creating your first experiment

Open the “NewPyHabProject.py” script in the PsychoPy coder window (see Chapter 2).

You will see something like this. Hit the green running man icon on the right to launch the

builder window.

This may take a few seconds to start up, but a new window should open that looks like

this.

10

This is your main builder view, and what you will be dealing with most of the time. The

top area with the grey background is the study flow, which will ultimately show you the order in

which your trials will be presented. The area on the right is the trial types palette, where you can

define new trial types for your study, edit existing trial types, or delete trial types. All of the other

settings can be accessed through the six buttons in the lower half of the screen.

Each of the buttons here will open up a separate dialog box to let you change the settings.

Note that, on Windows, the builder window will close while the dialog box is present. This is

intended behavior. It will reopen when you click “OK” or “Cancel” in the dialog. On Mac, the

builder window will remain open, just in the background.

11

Trial types

The first thing to do is create a trial type. In the white area in the top-right corner of the

builder window, there are three buttons: “New Trial Type”, “Add Hab Block” and “Delete Trial

Type.” The “Add Hab Block” button will create a new “Hab” trial type, which is a block of

habituation trials. Habituation blocks have certain special properties, and the name of the trial

type MUST be “Hab”. You cannot name any other trial type “Hab”, it is the only reserved trial

type name.

When you click “New Trial Type”, a window will appear that looks like this1:

The top line is the name of your trial type. “TrialTypeNew” is a default, you can replace

it with whatever you want (except Hab). The second line sets the maximum duration of the trial,

in seconds. By default this is set to 60 seconds.

The next line is a drop-down menu that lets you set whether the trial type is gaze-

contingent, which has three settings. If this is set to “no”, the trial will run until its max duration,

every time, regardless of infant’s looking behavior. If it is set to “OnOnly”, the trial will run until

the maximum duration or the “Minimum on-time” criterion has been met. In other words, this is

for a trial you want to end after the infant has looked at it, but regardless of whether they look

away. If it is set to “Yes”, it will end either at the max duration or when the minimum-on AND

1 A different version of this window will appear when you add a habituation block.

12

look-away criterion are met.

The minimum-on and maximum-off criteria for the trial type are set in the next two lines.

If the trial is not gaze-contingent, these values are ignored. If it is set to “OnOnly”, the first value

is ignored. The numbers are given in seconds. By default, the infant must look at the screen for at

least one second, and then the trial will end when they look away for two consecutive seconds or

the maximum duration has been reached, whichever comes first.

After that is a check box determining whether you want the experiment to auto-advance

into that trial. PyHab’s default behavior is that each trial must be started manually. In stimulus

presentation studies this typically means pressing a key to present the attention-getter and then

starting the next trial. If this box is checked, PyHab will instead automatically begin trials of this

type after ending the previous trial, as soon as the ITI in the universal settings has passed. If you

also turn off the built-in attention-getter (see stimulus settings), then this will automatically start

playing the next movie as well.

Following that is a drop-down list of attention-getters, so you can select which one you

want to use for that trial. The default attention-getter is a looming, spinning yellow rectangle

accompanied by a rising musical scale. I’ve found it to be pretty effective. You can also add a

customized attention-getter that you have made. If you do not want an attention-getter, simply

select “None”. Note that if you do not have an attention-getter, you won’t be able to pause

between the attention-getter and the rest of the stimulus, it will just start playing the stimulus as

soon as you start the trial. The attention-getter also affects coding when you are not using PyHab

for stimulus presentation: PyHab extracts the duration of the attention-getter and will emulate a

delay of that length when coding off-line.

The final check-box is a little complex. Say you are using a movie or audio stimulus, and

you don’t want the movie to end anywhere in the middle, but instead, once some criteria have

been met you want the trial to end at the end of the media’s current loop. In that case, you would

check this box. However, this can make the timing of your trials different depending on

whether you are running in stimulus presentation mode or not. This is the only setting that

can really do that. If you aren’t using PyHab to control your stimulus presentation, or using still

images as stimuli, this check-box does nothing.

scrivlnk://72975696-C21D-424C-88F3-B0A5C7DBCEFB

13

Tip: If you want a non-gaze-contingent trial to play a movie exactly once and then end,
check this box and set the “max duration” value to less than the length of the movie. This
checkbox takes precedence: It will play to exactly the end of the movie and then end the
trial.

Once you have named your trial type and set the options, hit “OK”. This will add the trial

type to your trial type palette on the right. At current, PyHab supports a maximum of eight

distinct trial types. Note that these are not the number of trials in the experiment, just the number

of different kinds of trials. There is no hard limit on the number of trials in your experiment

(though after 40 you will run out of room in the study flow).

Now your trial type palette will look something like this:

From here, there are three things you can do:

• Left-click on the name of the trial type to add an instance of that trial type to the study

flow.

• Right-click on the name to edit the trial type, like changing its maximum duration or

whether it is gaze-contingent, or to remove stimuli from it (adding stimuli uses a different

button).

14

• Click the “Delete a trial type” button to remove the trial type from the palette (and all

instances of the trial type from the study flow).

We’ll go through each of these in turn.

Making your study flow

The “study flow” is the order in which different trial types will be presented. Say you

have three trial types, intro, familiarization, and test. Your palette might look something like this.

Now say you wanted participants to go through two intro trials, four familiarization trials,

and two test trials. You would click the intro button twice, the “fam” button four times, and the

“test” button twice. This would leave you with a study flow that looked like this.

15

To move trials around in the study flow, or to remove them altogether, simply click on the

trial in the flow. Say you wanted to move the second intro trial so that it was between the last

familiarization trial and the first test trial. First, click on the second intro trial, which will

highlight it, like so.

The instructions at the bottom are pretty self-explanatory. To move the intro trial to after

the last Fam trial, simply click on the last Fam trial and they will switch places.

Note that this is ALL you can do with the study flow directly. If you want to change the

order of stimuli within a trial type, or change the settings of a trial type, all of that has to be done

in their respective menus.

16

Habituation trials are the one special exception, here and everywhere else. You do not

insert each habituation trial manually. Rather, you insert a habituation block, which includes a

number of trials or meta-trials (see “Habituation Blocks”) determined by the habituation settings.

To indicate this, “Hab” blocks are double the width of trials in the study flow.

This study flow could have any number of trials, based on the settings for the Hab block. All the

flow will show you is the trials before and after the habituation block, not those during.

PyHab can render up to 40 items in the study flow. After that it will render 39 and a

counter of how many additional trials are not being rendered.

New in v0.6: PyHab now marks auto-advancing trials in the study flow. Say “Fam” is an

auto-advance trial, meaning that as soon as the trial before it finishes, it will start. To indicate

this, instances of “Fam” in the study flow will now be immediately adjacent to the trials

preceding them, except at the start of the next row in the flow (i.e., trials 1, 11, 21, or 31).

Adding stimuli to the experiment library

In PyHab, the basic logic of the stimulus system is that you add stimuli to an internal

scrivlnk://06794381-E951-48CA-B136-D42CDD904857

17

experiment library, and then assign stimuli from the library to different trial types.

When you click the “Add stimuli to library” button, you will see the following dialog:

The first line lets you select what kind of stimuli you want to add. The second line

specifies how many stimuli of that type you want to add. You can only add one type of stimuli at

a time, but you can add as many of that type as you want. There are four types of stimuli you can

use in PyHab:

• Movie files: On Mac, .mov files with MPEG-4 or H.264 encoding seem the most reliable.

On everything else, .m4v and .mp4 files seem to work most of the time, but on Windows

you might have trouble with movies that are too long (this is an issue with PsychoPy and

really with Python itself, not PyHab-specific). Other file formats should work in theory,

but the way Python plays movies is a little temperamental, so you may just need to try

different file types and find out what works (and let me know!).

• Images: Virtually any common image format will work. Animated GIFs may not play,

however. For any kind of animation, you will probably want a movie file.

• Audio: Most audio formats should work. PyHab will not be able to modify the file in any

way, however, it will just play it as-is.

• Images with audio: If you want a still image with an audio file rather than a movie,

PyHab can do this. These are treated as a separate category of stimuli in PyHab, treating

each one as an image/audio pair.

When you hit “OK”, you will then select each file, one at a time. For everything but “images

with audio”, you will just see the normal “file open” dialog as many times as you specified for

how many you want to add. For “images with audio”, you will get extra pop-ups telling you

18

when you are selecting the audio file, and when you are selecting the image file.

When you are done, you will have added a bunch of stimuli to your library. This won’t be

visible to you, except that there will be an additional button on the main screen, in the bottom-

right.

This button allows you to assign stimuli from your library to different trial types.

Currently there’s no way to remove stimuli from your experiment’s library. That will be

added soon. However, if you want to replace one stimulus file with another, you can simply do it

in the stimuli folder of your experiment. As long as the name of the new file is the same as the

old one, it will work without any modification to the experiment.

Assigning stimuli to trial types

You need to create your trial types before you add stimuli to them. Let’s look at the demo

19

experiment. Say we’ve added the six movie files to the experiment library, and we’ve created

three trial types, “Intro”, “Fam”, and “Test”. Now, when you click “Add stimuli to trial types”,

you will see the following window:

The first line lets you select which trial type you want to assign stimuli to. The second

line is how many stimuli you want to add to that trial type. Let’s say we want to add two movies

to the “Intro” trial type. So, we select “Intro”, put 2 in the second box, and hit “OK”. Then, you

will see this window:

This will have as many drop-down lists as the number you put in the second line of the

previous window. Order matters! Say we have two intro trials. By default, unless we set up

conditions to change it, the first intro trial will play whatever you select for the first line, and the

second will play whatever you select for the second line.

If you add more stimuli to the trial type later, it will simply be added on to the end of the

list. If you want to remove stimuli from a trial type, you need to go into that trial type’s own

settings to do it (right-click on the trial type in the trial type palette). This will bring up the trial

type window, but with some additional pieces:

scrivlnk://9EBBE8BF-DC18-434D-AEEE-29EE85FFC75F
scrivlnk://079225C5-9CBF-4C98-B443-3F2136A337CC
scrivlnk://079225C5-9CBF-4C98-B443-3F2136A337CC

20

Note the two check-boxes after “Max duration”. These are all of the stimuli assigned to

this trial type. If you want to remove a stimulus from the trial type (but not from the

experiment’s stimulus library), uncheck the box next to its name. Again, order matters. The

stimuli in a trial type will always appear in the order in which they will be presented by default.

If you remove a stimulus from the trial type, everything below it will move up in that order. This

will also scramble your conditions a little bit, and you may need to re-make them.

Deleting trial types

The “delete a trial type” button at the bottom of the trial palette is straightforward. Click

it, and a dialog will open with a drop-down list of the trial types you have created. Select the one

you wish to delete and hit “OK”. This will remove everything associated with that trial type. Any

instances of that trial type will be erased from the study flow, all stimuli associated with it will

remain in the experiment library, but not assigned to any trial, and any settings that were specific

to that trial type (e.g., maximum duration) will be forgotten.

21

Habituation blocks

Habituation blocks are not like normal trial types. Clicking the “Add Hab Block” button

will do two things. First, it will create the ‘Hab’ trial type, which is the trial that will be used to

compute habituation criteria and when those criteria have been met. It’s a trial that is in most

ways like any other trial type, but with certain restrictions. If you just have a simple habituation

design where you present a single habituation trial over and over again, that’s all you need.

However, it also gives you the option to create Habituation meta-trials that actually consist of

multiple distinct trial types. These are a little complicated, but allow you to make very

sophisticated designs.

For example, say you wanted a design where, on every habituation trial, the habituation

criterion was computed on the basis of looking at a still frame at the end of a video, but not

counting the infants’ looking to the video itself. To accomplish this in PyHab, you would first

create a trial type for the video alone (call it ‘A’ for convenience), and then create a Habituation

meta-trial that consisted of two sub-trials, one of type ‘A’ and one of type ‘Hab’, where the

content of the ‘Hab’ trial type was the still frame of the video.2

The key features of these meta-trials are:

• Habituation criteria, both setting the criteria and determining when they have been met,

will only pay attention to looking behavior during ‘Hab’ trials within a meta-trial, but

data for all sub-trials will be recorded.

• You must create the trial types other than ‘Hab’ before creating the meta-trial. The ‘Hab’

trial is created when you create the meta-trial.

• The habituation block will consist of repetitions of these meta-trials. You cannot change

the content of the meta-trials within a given run of the study. If you set it to be ‘A’, ‘B’,

‘Hab’, it will always be ‘A’, ‘B’, ‘Hab’.

• If you want some videos to only be played before the first habituation trial, but not before

all subsequent habituation trials, you would not make a meta-trial, you would just put the

2 Under current implementation this would actually be a looping video of the final frame. Upcoming versions will
allow still images as stimuli.

22

other trial before the habituation block in the study flow.

• You can have trial types that only appear as part of habituation blocks and not in any

other part of the study.

When you click “Add Hab block”, this window will open:

The first three settings define the features of the habituation trial type itself, which is a trial

type much like other trial types you have created, except it will always be named ‘Hab’ and it

will always be gaze-contingent. Again, it is this ‘Hab’ trial type ALONE that will be used when

computing looking times for habituation criteria. If you just want a simple habituation trial, you

can stop there and ignore the last two lines.

The last two lines allow you to create habituation meta-trials, that consist of multiple sub-

trials. You check the box, and enter the number of trials in the habituation meta-trial in the next

box. Note that this number must include the ‘Hab’ trial itself. So, for example, if you wanted

each habituation meta-trial to consist of one trial of type A, one of type B, and the actual ‘Hab’

trial, you would set the number in the final box to 3.

If you have checked the sub-trials box and entered a number greater than 1 in the last box,

a new dialog will open that looks like this. In this example, we put 3 in the final box.

23

This is like a miniature study-flow for each of your habituation meta-trials. Each drop-

down has a list of all the trial types, including the ‘Hab’ type you have just created. Exactly one

of these drop-downs must be set to ‘Hab’, not more, not less. So, for example, we might set up a

meta-trial like this:

This says that during your habituation block, participants will see an instance of trial type

A, an instance of trial type B, and an instance of the ‘Hab’ trial type, and this sequence of three

will repeat until the habituation criteria have been met.

When we put that into our study flow, it looks like this:

24

Note that trial types A and B do not actually appear in the study flow, but they are

included in the “Hab” block. This flow would present ‘A’, ‘B’, ‘Hab’, looping in that order, until

the habituation criteria were met, and then present a single trial of type ‘C’.

To change the content of a meta-trial, simply click the “Mod Hab Block” button that

replaces the “Add Hab Block” button. This will bring up the first dialog again, and as long as

“use sub-trials” is checked, when you hit “OK” you will be able to re-organize the meta-trial.

25

Settings windows

Universal settings

The “Universal Settings” button will bring up the universal settings dialog, which allows

you to control various aspects of the experiment that apply regardless of anything else. Whether

or not you are using PyHab for stimulus presentation, no matter what kinds of trials you have,

these settings apply to everything you do!

The “experiment name” is the prefix that will be associated with the launcher script for

your experiment (see “saving and sharing your experiment”) as well as the prefix for all data

files.

The ISI between loops (minimum) is for when you want to enforce a pause between

loops of your stimuli during a trial. Decimals are allowed. If you are not using PyHab for

stimulus presentation, this is used to determine the timing of a trial (so if the stimuli have an ISI,

you can make sure your timing lines up by putting that value here).

There is a separate setting for short delays at the start of a trial, after the attention-getter,

but this is “how long after the end of a trial do you want to wait before the experimenter can start

the attention-getter for the next trial?” The number is in seconds. Decimals are allowed. That can

be found in the Stimuli Settings.

The experimenter blinding settings determine how much information is available to the

experimenter while running the study (see Ch. 4). There are three settings:

• 0: Maximum information is presented to the experimenter, including trial number, trial

type, upcoming trial type, and when each coder is indicating that the infant is looking at

scrivlnk://F86D2C90-C130-46BF-BA4D-E5D5DE252D31
scrivlnk://3F0EF030-2620-48C9-8D93-5350FA2E2020

26

the screen or not.

• 1: Experimenter is blind to trial type, but can see trial number and looking coding on/off

for each coder. Good for standard blinding to condition/trial type.

• 2: Maximum blinding. The only information the experimenter sees is whether the trial is

active or not. If it is, the coder display box(es) will be blue, and when a trial is not active,

they will be black. Great for doing reliability coding.

Finally, the very last setting may be the most important of all: Whether your experiment is

single-target or preferential looking. A single-target experiment is one in which you only care

whether the participant is looking at the display or not. Preferential looking is when you want to

know not just whether they are looking at the display but which part of the display they are

looking at. Preferential looking enables PyHab to code gaze-on L and R, whereas single-target

only codes gaze-on and gaze-off. If you have any preferential-looking trials in your experiment,

this must be set to preferential looking.

27

Stimuli settings

Clicking the “stimuli settings” button will bring up this dialog. If you are not using

PyHab to control your stimulus presentation, the last two lines are relevant, but nothing else is. If

you are using PyHab to control stimulus presentation, then all of this matters.

The top two lines are the width and height of the stimulus display area. Generally

speaking this will be the resolution of your presentation screen If you’re using a 1024x768

resolution, for example, you would put 1024 in the top box and 768 in the second.

The next line is the background color of the window. By default, it is black, but you can

also make it white or gray.

The next two lines are the width and height of the stimuli within that display area. If you

want your stimuli to fill the entire screen, these numbers should match the first two. If they are

not the same, the blank background will be visible behind the stimuli.

The “Screen index” is basically “which monitor should the stimuli appear on”. By

default, on most computers, the “secondary monitor” will be screen index 1, while the primary

display will be screen index 0. If you have more than two screens, you can put this up to 2 if you

want. Notably, the experimenter interface will typically appear on screen index 0, but if that’s

your presentation screen you can manually move it to a different screen.

The final line imposes a minimum delay between the end of the attention-getter and the

start of the stimulus. I recommend setting this to at least .1 if you are using PyHab to control

stimulus presentation, because if there is no delay the sound from the attention-getter can conflict

28

with any sound in your stimuli. If you aren’t using PyHab for stimulus presentation and auto-

advance is not checked for a given trial type, then when you hit the attention-getter key there is a

delay of 500ms + whatever is in this box. This is useful for matching the duration of an attention-

getter in a recording, for example.

Habituation settings

If you click the “Habituation settings” button, you will see this dialog. These settings

only matter if your experiment includes a “Hab” trial type, in other words a block of habituation

trials (or meta-trials) the length of which is determined by the habituation criterion.

The first line is the maximum number of habituation trials, period. Even if the infant

never reaches your habituation criterion, after this many habituation trials, another trial type will

be shown. For example, in this study flow:

After at most 14 habituation trials, the test trial will be shown, no matter what.

The next three lines determine how the criterion is determined initially. The first number

29

is how many trials you sum the looking time across. The second number is what you divide that

total looking time by to set your criterion. So, with the settings pictured, the habituation criterion

would be the sum of the looking time across the first three habituation trials, divided by two. The

last line determines what trials are examined when setting the criteria. “First” means it will

always be calculated from the first Hab trial. “Peak” means that it will check after every Hab trial

whether the criterion is greater if it were set over the most recent N trials, where N is the number

you put in the first line. If so, it updates the criterion to the greater value. In short, it’s setting

criteria based on the window of peak looking. “Max” is similar to “Peak”, but instead of looking

for three contiguous Hab trials, it will just take the three Hab trials with the longest looking time,

period.

The next three lines determine what looking time is compared to the habituation criterion

to determine if the participant has habituated to the stimuli. The first number is again the number

of trials to sum looking times across. This picks up from the first Hab trial after the criterion has

been set initially. The second number is then what the total looking time in those trials is divided

by before comparing it to the criterion. The last line determines whether the criterion is evaluated

over a moving window of trials (so the most recent N trials, where N is the number of trials to

sum across), or fixed windows (after every N trials).

With the settings above, after the 6th habituation trial, the program would compare the

sum of looking times across trials 4-6 (divided by 1, so, just the sum) to half the sum of the

looking times of trials 1-3, and if that value was less than the criterion, the participant would be

considered habituated and the test trial would be shown. If the sum of looking times across those

three trials was greater than the criterion, after the next habituation trial the program would sum

looking times across trials 5-7, and so on and so forth until the sum is less than the criterion or

the maximum number of habituation trials has been reached. If it the criterion were set to

“Fixed” rather than moving, it would only check against the criterion again on trial 9, and if it is

not met then, trial 12.

30

Attention-getters

As of version 0.5, PyHab has the ability to let you customize your attention-getters, and

use different attention-getters for different trials. There is a default attention-getter which is

always available, which consists of a looming yellow rectangle and a rising musical scale.

However, you can make your own, either a movie file, or an audio file with a procedurally-built

shape.

When you click the “customize attention-getter” button, the first window you will see is

this one:

If you have already made some attention-getters, they will be in the list. Otherwise, the

list will only have the “Make New” option. The “Make New” option will always be present.

When you hit OK, the next window that pops up will look like this:

The first line lets you name your attention-getter. This name will appear in the trial type

dialog’s list of attention-getters. The second line lets you choose what kind of attention-getter

you want to make. There are only two, audio and video. Select which one you want, and hit OK.

Video is in some ways the simplest: An open-file dialog will appear, and you select a

movie file that you have made to use as your attention-getter. The same movie formats that work

for stimuli should work for your attention-getter as well.

scrivlnk://079225C5-9CBF-4C98-B443-3F2136A337CC
scrivlnk://079225C5-9CBF-4C98-B443-3F2136A337CC

31

For audio, there are two steps. The first step is to customize the shape that goes with the

audio. A window will appear that looks like this:

The shape will be rotating and looming. You can choose a rectangle, cross, or star, and

one of six colors. When you hit OK, you will then see an open-file dialog and select the audio

file you want to use. Again, all the formats that work for stimuli should work for this as well, and

for audio that’s most of them. The rotation and looming will be synchronized to the length of the

audio file automatically.

Data settings

The data settings window is just a long list of fields that will appear in your summary

data file, with a check-box next to every field. Most field names are self-explanatory, with a few

exceptions:

• GNG: Usable/not usable trial. 1 if the trial is usable, 0 if trial was aborted or redone.

• stimName: The name of the movie file (in a stimulus presentation version, blank

otherwise)

• condLabel: The label of the condition selected by the experimenter, if condition

randomization is used. If you are not using condition randomization, this will simply

match the "cond" field.

There are two extremely important things to know about these settings:

32

1. Anything not checked will not be recorded in your data in any form. There will be no

hidden logs or anything of the sort, that information will simply not exist.

2. If you change your study from single-target to preferential looking, these options

will reset, check every box (so all data is recorded by default), and change the list for

the appropriate set of columns. The data recorded are actually different depending on

what kind of study you are running. The program always defaults to including

everything, but if for whatever reason you want to omit a column, you will have to revisit

these settings if you switch from single-target to preferential looking.

Condition settings

Here is where things get a little complicated. Before you start messing with these settings,

here’s what you need to know:

1. If you are using PyHab for stimulus presentation, you must have all of your movie files

attached to all of your trial types before setting up conditions. If you do not, or if you

change the movie files later, you will need to redo the condition settings.

2. If you are not using PyHab for stimulus presentation, you will be given the option to

manually enter a list of conditions so that you can use a drop-down menu when running

the study, instead of entering the condition manually. This list must be enclosed in square

brackets, each condition label enclosed in single quotes, separated by commas. For

example: [‘Condition A’, ‘Condition B’, ‘Condition C’]

I will focus on condition settings when you are using PyHab for stimulus presentation,

because that’s when it actually matters. Once you have all of your movies associated with their

trial types, click on “condition settings” and you will see this dialog:

33

If you want to use condition randomization, check that box. If you already have a condition

file (and you can create them manually), you can enter the filename in the second line. If you

have movie files associated with trial types, check the box, and hit OK, the whole builder

interface will change to the condition interface, which looks like this:

The “Done” button in the bottom-right exits to the regular builder. Across the top you have

the list of conditions in the left column, and then each trial type in another column. Under each

trial type, with horrible formatting, you have a list of the stimuli files associated with that trial

type. That’s mostly there for reference, and it will probably be cleaned up at some point in the

near future.

When you click the “Add condition” button, you will go through a series of dialogs. In the

first one, you simply set the name of the condition, which will appear in a drop-down menu

when you run the study. Then, you will go through a separate dialog for each trial type

(according to the order in which the trial types were created). In each of those dialogs, you will

34

see a list of all the movies in that trial type, with numbers next to them. For example, in the demo

experiment, if you go to this menu and hit “add condition”, after naming the condition you will

see this dialog for the intro trial type:

The numbers represent the order of the movies in that condition. So, if in this particular

condition you wanted the second movie to appear first, you would simply switch these two

numbers. Remember earlier when I mentioned that when you have multiple instances of a trial

type in your study flow, it goes through the movies associated with that trial type in order, and

loops around as needed? Here is where you determine that order, if you want it to be something

other than the default.

In addition, if you want to have a between-subjects manipulation such that different

participants see entirely different sets of movies, you can do that with this interface as well. If

you do not want a movie to be presented in a given condition, simply leave the field next to it

blank or put a 0. For participants in that condition, it will be as if that movie does not exist.

When you hit “OK”, you will then be prompted to do this again for each of the remaining

trial types. After the last trial type, you will be returned to the condition screen, and the condition

will now be listed.

35

The numbers refer to the default order of movies. So, this condition is identical to the

default.

You can modify a condition by clicking on the row it occupies, and delete it using the

“delete condition” button, which will bring up a list of conditions much like the “delete trial

type” button. You can have as many conditions as you want. When you are finished simply click

“Done” to be returned to the regular builder screen.

36

c. Saving and sharing your experiment

When you first create an experiment, there will be a “save as” button and a “quit” button

in the bottom left of the builder window. The quit button will also prompt you to save before you

quit. When you save a study for the first time, a standard save dialog will open. Choose where

you want to save the study to, type a name for the folder the study will occupy, and hit save.

This will create a completely self-contained folder that includes everything needed to

build and modify your study. In this folder will be a file named “[studyname]Launcher.py”.

Whenever you want to run or modify your study, simply open this script in PsychoPy and run it.

It will launch a dialog that allows you to select whether to run the study or launch builder, and if

you are running the study it will allow you to choose whether to present stimuli.

This folder will also contain a folder with complete copies of the builder and running

scripts, as well as a folder containing all of your stimuli (it will be copied from its original

location, not moved), and a folder where all of your data will be saved.

Because of this, moving your study between computers is trivial. Depending on the size

of your stimuli you could email it, or if not use a flash drive. Best of all, it is trivial to share your

experiment on open science platforms like OSF. Simply upload the folder as-is, and anyone

should be able to download and run it.

There are potential obstacles to this simplicity when it comes to moving between

Windows and Mac, or more accurately only when moving from Mac to Windows. For whatever

reason, PsychoPy’s movie-playing functionality is much, much better on Mac, and some movie

files might not work on Windows machines. Some media files might break, but all the

parameters of the study should still be exactly as they were.

37

4. Running a study in PyHab

You (or your PI) built a study in PyHab and now you’re ready to run some participants! These

instructions are meant to be accessible to anyone, whether you’re the one who designed the study

or an RA helping to run it. Once the study is built, this is everything you need to know.

38

a. Starting a PyHab study

First, open PsychoPy and make sure you are in Coder view. Then, in PsychoPy, open the

“[studyname]Launcher.py” script located in the study folder. There will be a bunch of other .py

scripts in this folder. You can ignore them.

Once you have opened the script, your window will look something like this.

Simply click the green “Run” button in the top right. This will open a dialog that looks

like this.

39

The first line specifies whether you want to run the study or open up the builder view to

modify it. Most of the time you will have it on “Run”. The second line is whether or not you

want PyHab to present stimuli. This can be set to “off” for offline coding or for studies in which

PyHab is not responsible for the stimulus presentation (for example, if your stimuli are a live

puppet show). When you are ready, hit “OK”.

When you hit OK, after a few seconds, a dialog box will pop up. There are a few different

ways it can look, but the simplest one looks like this:

Here’s what each of those fields does:

• The subject number and subject ID go into how the data files are named. Importantly, if

you have already run a participant with the same subject number and ID, it will create

40

a duplicate data file with a number after the subject ID. You can’t leave these fields

blank or the program will crash.

• Sex is just for the data file. It can be left blank.

• The DOB fields are for the participant’s Date of Birth, which is used to compute their age

at the time of the study run. You need to input the month, day, and year separately,

each one in two-digit form. So, for a birthday of January 15, 2015, you would put 1

in the DOB(month) field, 15 in the DOB(day) field, and 15 in the DOB(year) field.

DO NOT put the four-digit year, it will give you a very strange age calculation.3

• Cond is condition the participant is assigned to. It can either be a fill-in-the-blank, as you

see in this image, or a drop-down list of different conditions.

• If you are not using PyHab for stimulus presentation, there will be three further fields

shown in the screenshot below, that say DOT(month), DOT(day), and DOT(year).

These are for recording the Date of Test, i.e. the day on which the study was run. This

allows you to re-code data after the fact, and still get an accurate age calculation in

the output file.

3 If you are running this program in the year 2100 or later (over 80 years after its initial creation), the age-at-run
computation code will need to be modified for people born in the 2090s. Also holy sh*t.

41

When you’ve entered all this information, hit OK. This will start the study run.

42

b. Running a PyHab study

Once you have hit the “OK” button, if PyHab is being used to present stimuli, the

stimulus window will appear on the stimulus presentation screen. Whether or not it is being used

to present stimuli, a window will pop up on the experimenter screen that looks something like

this:

How much information is present depends on the blinding settings, but this is an example

of the most informative mode. The trial number is displayed at the top. The trial status is the next

line of text, along with the trial type of the next trial. The two boxes are the coding status for two

coders (if verbose is set to N, only one box will be displayed). The left box corresponds to the

primary coder, the right box is the secondary coder. If you hit the “A” key, it will prepare or

begin the first trial, and the display will look like this:

43

The blue color tells you it is now ready to begin the trial. If the trial does not start

automatically (which is an option that can be configured with autoAdvance, see universal

settings), the primary coder can start the trial by initiating the first gaze at the screen by pressing

the ‘B’ key.

Depending on the blinding settings, the boxes may show whether each coder is indicating

that the participant is looking at the screen or not. When a coder’s key is held down, their box

will be green and say “ON”. When they are not holding down a key, it will be red and say

“OFF”. When the trial ends, both boxes will go black. With strict experimenter blinding, the

boxes will not indicate ON or OFF, but remain blue while a trial is active and turn black when

the trial ends.

When the final trial is finished or the “end experiment” key is pressed, PyHab will save

the data and (attempt to) close. For various reasons having to do with PsychoPy, Python, and

certain operating systems, it will sometimes get stuck while closing and you will have to hit the

red “stop” button to close it down completely. The data will still be saved, however.

If PyHab ends the study run normally, it will return to the launcher window it started

with, allowing you to either run it again, go into builder view, or exit.

scrivlnk://38ADD4CA-6F88-48AA-A2C9-4B12302646CE
scrivlnk://38ADD4CA-6F88-48AA-A2C9-4B12302646CE

44

Key commands

Key Function
A Play attention-getter (if PyHab’s attention-

getter is enabled) and ready trial, or start
it if auto-advance is enabled.

B

Primary coder gaze-on (or gaze-on Left
for pref. looking). Hold down as long as
the infant is looking at the screen, release
when they are looking away. If auto-
advance is not enabled, the trial will start
when this key is pressed for the first time.

L
Secondary coder gaze-on. Just like
primary coder, but does not control the
flow of the study.

Y

End experiment/quit. For fuss-outs or
other situations where you need to end
the run early. Immediately saves data and
quits the program.

R

Abort/redo trial. If pressed during a trial,
ends the trial and marks it as no-good,
and then allows the experimenter to
restart that trial from the beginning. If
pressed between trials, allows the
experimenter to redo starting from the
last non-auto-advancing trial, marking
the previously recorded trial(s) as no-
good.

45

J

If you are using a habituation-
dishabituation design, you can press this
between trials during the habituation
block to immediately jump to the test
trials. In other words, it behaves as
though the habituation criterion was met
even when it wasn’t.

I

If your are using a habituation-
dishabituation design and are right before
the test trial (because the criterion has
been met or because of the number of
habituation trials presented), this key will
insert another habituation trial. If you are
using meta-trials, it will insert another
meta-trial.

P

Print trials so far to the output window in
PsychoPy. Only works when not
presenting stimuli, and only works in-
between trials. Will not work if auto-
advancing.

M

Preferential looking version only. Gaze-on
Right. Preferential looking only supports
one coder, so this key can also mark the
beginning of the first gaze-on to start a
trial. In every way identical to the B key,
except indicating that the participant is
looking at the other side of the screen.

46

c. Data and computing reliability

Data

PyHab saves up to four different .csv files at the conclusion of a study:

• Summary data file: Each line is one trial. Columns are determined by the data settings

and can be in whatever order the settings specify. The list of all possible settings is:

⁃ sNum: Subject number (as entered when you start the study)

⁃ months: Participant age in months; days, days is in the next column.

⁃ days: Participant age in days above and beyond the age in months.

⁃ sex: Participant sex

⁃ cond: Condition. If a condition file is used, this will correspond to the right

column of the condition file for that participant’s condition. Otherwise it’s

whatever is entered in the “cond” field.

⁃ condLabel: If a condition file is used, this will correspond to the left column, i.e.

the condition selected. If a condition file is not used, it will be the same as

cond.

⁃ trial: Trial #

⁃ GNG: Good/No-Good. 1 if the trial is usable, 0 if the trial was aborted or redone.

Usually 1.

⁃ trialType: The trial type

⁃ stimName: If stimuli are being presented, this will correspond to the name of the

movie file for that particular trial.

⁃ habCrit: Habituation criterion, if applicable. If the study does not involve a

habituation sequence, this will be 0. If it does, it will be 0 until the trial on

which the criterion is calculated, at which point it will be the habituation

47

criterion.

⁃ sumOnA: Total gaze-on time in the trial, as coded by the primary coder.

⁃ numOnA: Number of gaze onsets in the trial, as coded by the primary coder.

⁃ sumOffA: Total time looking away in the trial, as coded by the primary coder.

⁃ numOffA: Number of gaze offsets in the trial, as coded by the primary coder

⁃ sumOnB, numOnB, sumOffB, numOffB: As above, but for the secondary coder.

• Verbose data file A: The primary coder’s “verbose” data file. The verbose data file is very

similar to the summary file, except that instead of recording summary statistics for each

trial, each row is a single gaze-on or gaze-away. Some of the columns are identical to the

ones in the summary data file, but there are four new ones:

⁃ GazeOnOff: Indicates whether the row is showing a time when the gaze-on button

was held down, or a time when the participant was looking away. 1 if gaze-on, 0

if gaze-off.

⁃ StartTime: The time at which the gaze-on or gaze-off began, relative to the start of

the trial.

⁃ EndTime: The time at which the gaze-on or gaze-off ended, relative to the start of

the trial.

⁃ Duration: The difference between EndTime and StartTime.

• Verbose data file B: If there are two coders, and the secondary coder inputs at least one

gaze, a second verbose file will be created for the secondary coder. It is identical to the

verbose data file for the primary coder.

• Reliability: If verbose data file B is created, then PyHab will also attempt to compute

reliability statistics comparing the two coders, which will be output to this file. There are

four reliability statistics:

⁃ Weighted percentage agreement: Percentage of frames on which the two coders

agreed, weighted by the length of the trial.

⁃ Cohen’s Kappa: A reliability statistic between 0 and 1, preferred by some journals

48

and researchers.

⁃ Average Observer Agreement: The raw percentage of frames on which the two

coders agreed.

⁃ Pearsons R: Standard correlation coefficient.

Standalone reliability

There is also a stand-alone reliability script which allows you to take any two verbose data files

and get the afore-mentioned reliability statistics. When run, the script asks for information about

the subject, and when you hit OK, it will open two file-open dialogs, one after the other. Select

the two verbose data files you want to compute reliability for, and it should save a reliability .csv

in whatever folder the script is found in. It will also print the results to the PsychoPy output

window.

49

d. Preferential looking studies

PyHab has a variant for preferential looking designs, in which infants have two possible targets

they can look at and you want to code which one they are looking at, not just whether they are

looking at the screen. Running a preferential looking study is almost identical to running any

other study in PyHab, with a few important differences:

• The preferential looking version only supports one coder. You cannot have two people

simultaneously coding a preferential looking design (just not enough keys on the

keyboard). However, you can still have one person do live coding and another person

do off-line coding and then get reliability using the standalone reliability script.

• The ‘B’ key is now “gaze-on Left”. The ‘M’ key is “gaze-on Right”. They work

completely identically except that one indicates a gaze to the left and the other

indicates a gaze to the right. Either can be used to start a trial, time spent looking

away (for determining when to end a trial) is only computed when neither button is

being held down.

⁃ If your study has some single-target trials and some preferential looking trials,

just use one of the keys for the single target trial.

• In the data, the looking-time columns will now be “sumOnL”, “numOnL”, “sumOnR”,

“numOnR”, “sumOff”, and “numOff”. No more A and B (because only one coder).

As you might expect, if it says L it refers to gazes to the left, if it says R it refers to

gazes to the right.

• The verbose data file now has three codes in the gazeOnOff column: 0 = “off”, 1 = “gaze-

on Left”, 2 = “gaze-on Right”.

Everything else is the same between the two versions.

50

5. Troubleshooting

PyHab is far from perfect. Development will continue for some time. Let me start by

pointing out a few things you don’t need to worry about: Every time you run PyHab, there will

be some number of messages in PsychoPy’s “Output” area at the bottom of the coder interface. If

PyHab crashes unexpectedly, there will probably be some blue text here telling you the nature of

the crash. Even when it runs successfully, there will be some green text that says WARNING or

brown text that says ERROR. Don’t worry about those. They don’t affect the functionality of

PyHab, they’re just quirks of PsychoPy and some of the libraries PsychoPy uses.

As for everything else, here are some known issues you might encounter:

• Program crashes right after pressing the green button, says something involving

“segmentation fault”: This is an issue that occurs mostly on Macs, and it’s not a PyHab

problem. It’s just a known issue with Python and MacOS, and it’s relatively harmless.

Just hit “ignore” on the the error dialog that pops up and try running it again. It

sometimes takes two or three tries but it does eventually work.

• Immediately after entering participant info and hitting OK, the program crashes: If

it doesn’t open a window at all, and just crashes as soon as you hit OK, it’s almost always

due to the DOB or DOT being entered correctly. Leaving other fields blank won’t make

the program crash outright, but the first thing it does, before evening opening the

experimenter window and stimulus window, is try to compute the participant’s age. If that

calculation breaks down for whatever reason, it will crash then and there. Make sure you

are entering TWO-DIGIT values for each line of the DOB and DOT, and make sure

you’re not getting month/day/year mixed up and putting in an impossible value for one or

the other. No letters, no symbols, don’t leave any DOB or DOT line blank.

• The stimulus presentation window opens halfway between the two screens: This is a

problem that seems to mostly occur on Macs with Retina displays running PsychoPy

1.90.1. Upgrade to PsychoPy 1.90.2 or later.

• When running PyHab, the program freezes on “Loading Movies”: This is most likely

51

to occur on Windows, and it basically means your movie files are too big or have too high

a bitrate for PsychoPy’s movie system to handle. The only fix for this is to modify the

movie files themselves. Since you need VLC anyways, you can open the movies in VLC

and use it’s “save/convert” function. Try converting your movies to MP4 and, if possible,

reducing the resolution or framerate slightly. Hopefully future versions of PsychoPy or

the underlying moviepy code will make this less of a problem.

• PyHab runs the experiment successfully, but hangs at the very end and does not

show the launcher menu, but the red stop button remains highlighted and the green

button is grayed out: This is another PsychoPy issue that can’t really be fixed. Again,

more common on MacOS than Windows. In either case, just hit the red stop button. In

either case, your data will be saved, so there’s no risk in doing this (in the first case the

reliability file might not save, but everything else will).

• At any point, it crashes and displays a “permission error”: This is usually a Windows

problem. Make sure you run PsychoPy as an administrator (right click on the icon and

select “run as administrator” or right click and go to properties and change the settings to

always run as administrator). PsychoPy needs to control a lot of very low-level features

of your computer, and your operating system won’t allow that unless you make it. If

something like this happens on Mac, go to your system security settings, “Accessibility”,

and add PsychoPy to the list of programs that are allowed to control your computer.

• The program crashes on load or on a specific trial type while using condition

randomization, or the builder crashes when loading the condition settings screen:

Basically if you change something about the way movies are assigned to trial types after

changing your condition file, and don’t go back and change your condition file as well,

PyHab can get confused. If going into the builder and changing the conditions there

doesn’t work, close PyHab and do the following:

⁃ Delete the “conditions.csv” file in your study folder.

⁃ Open “[studyname]settings.csv” in something OTHER THAN excel, like Notepad

or BBEdit (Excel will reformat some things in a way that breaks PyHab).

⁃ In the settings file, look for three lines: “condList”, “condPath”, and “condFile”.

52

Erase anything after the comma. For “condList", put “” after the comma. Save the

settings file and re-open PyHab.

	1. What is PyHab?
	2. Getting PyHab
	Installation instructions

	3. How to build your study in PyHab
	a. Relevant concepts
	b. Creating your first experiment
	Trial types
	Making your study flow
	Adding stimuli to the experiment library
	Assigning stimuli to trial types
	Deleting trial types
	Habituation blocks

	Settings windows
	Universal settings
	Stimuli settings
	Habituation settings
	Attention-getters
	Data settings
	Condition settings

	c. Saving and sharing your experiment

	4. Running a study in PyHab
	a. Starting a PyHab study
	b. Running a PyHab study
	c. Data and computing reliability
	Data
	Standalone reliability

	d. Preferential looking studies

	5. Troubleshooting

