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DISCLAIMER

É PyTorch is a moving target, Deep Learning ecosystem moves
fast and big changes happens every week;

É This is not a talk to teach you the basics of PyTorch or how to
train your network, but to teach you how PyTorch
components works under the hood in a intuitive way;

É This talk is updated to the PyTorch v.1.0.1 version;



PyTorch under the hood - Christian S. Perone (2019)

TENSORS JIT PRODUCTION Q&A

DISCLAIMER

É PyTorch is a moving target, Deep Learning ecosystem moves
fast and big changes happens every week;

É This is not a talk to teach you the basics of PyTorch or how to
train your network, but to teach you how PyTorch
components works under the hood in a intuitive way;

É This talk is updated to the PyTorch v.1.0.1 version;



PyTorch under the hood - Christian S. Perone (2019)

TENSORS JIT PRODUCTION Q&A

DISCLAIMER

É PyTorch is a moving target, Deep Learning ecosystem moves
fast and big changes happens every week;

É This is not a talk to teach you the basics of PyTorch or how to
train your network, but to teach you how PyTorch
components works under the hood in a intuitive way;

É This talk is updated to the PyTorch v.1.0.1 version;



PyTorch under the hood - Christian S. Perone (2019)

TENSORS JIT PRODUCTION Q&A

Section I

[ TENSORS \



PyTorch under the hood - Christian S. Perone (2019)

TENSORS JIT PRODUCTION Q&A

TENSORS

Simply put, TENSORS are a generalization of vectors and matrices.
In PyTorch, they are a multi-dimensional matrix containing elements
of a single data type.

>>> import torch
>>> t = torch.tensor([[1., -1.], [1., -1.]])
>>> t
tensor([[ 1., -1.]

[ 1., -1.]])

>>> t.dtype # They have a type
torch.float32

>>> t.shape # a shape
torch.Size([2, 2])

>>> t.device # and live in some device
device(type='cpu')
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TENSORS

É Although PyTorch has an elegant python first design, all PyTorch
heavy work is actually implemented in C++.

É In Python, the integration of C++ code is (usually) done using
what is called an extension;

É PyTorch uses ATen, which is the foundational tensor operation
library on which all else is built;

É To do automatic differentiation, PyTorch uses Autograd, which
is an augmentation on top of the ATen framework;

É In the Python API, PyTorch previously had separate
Variable and a Tensor types, after v.0.4.0 they were

merged into Tensor .
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QUICK RECAP PYTHON OBJECTS

typedef struct {
PyObject_HEAD
double ob_fval;

} PyFloatObject;

typedef struct _object {
Py_ssize_t ob_refcnt;
struct _typeobject *ob_type;

} PyObject;

struct _typeobject *ob_type
 

Py_ssize_t ob_refcnt

objectPyObject

double ob_fval
 

PyObject_HEAD

objectPyFloatObject
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QUICK RECAP PYTHON OBJECTS

struct THPVariable {
PyObject_HEAD
torch::autograd::Variable cdata;
PyObject* backward_hooks;

};

(object fields)
 

PyObject_HEAD (w/ ref counter)

objectTHPVariable

variable_a

variable_b

Ref Count = 1

Ref Count = 2

The TH prefix is from TorcH, and P means Python.
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IN PYTHON, EVERYTHING IS AN OBJECT

>>> a = 300
>>> b = 300
>>> a is b
False

>>> a = 200
>>> b = 200
>>> a is b
True (object fields)

 

PyObject_HEAD

objectPyIntObject

a

b

Ref Count = 1

Ref Count = 2

(object fields)
 

PyObject_HEAD

objectPyIntObject

(object fields)
 

PyObject_HEAD

objectPyIntObject

a

b

Ref Count = 1

Ref Count = 1

A typical Python program spend much of its time
allocating/deallocating integers. CPython then caches the small
integers.
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ZERO-COPYING TENSORS

It is very common to load tensors in numpy and convert them to
PyTorch, or vice-versa;
>>> np_array = np.ones((2,2))
>>> np_array
array([[1., 1.],

[1., 1.]])

>>> torch_array = torch.tensor(np_array)
>>> torch_array
tensor([[1., 1.],

[1., 1.]], dtype=torch.float64)

>>> torch_array.add_(1.0)

>>> np_array
array([[1., 1.], # array is intact, a copy was made

[1., 1.]])

Underline after an operation means an in-place operation.
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ZERO-COPYING TENSORS

É Now imagine that you have a batch of 128 images, 3 channels
each (RGB) and with size of 224x224;
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É This will yield a size in memory of ∼ 74MB. We don’t want to
duplicate memory (except when copying them to discrete GPUs
of course);
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ZERO-COPYING TENSORS

Let’s see now a slightly different code using the function
torch.from_numpy() this time:

>>> np_array
array([[1., 1.],

[1., 1.]])
>>> torch_array = torch.from_numpy(np_array)

>>> torch_array.add_(1.0)

>>> np_array
array([[2., 2.],

[2., 2.]])

The original numpy array was changed, because it used a zero-copy
operation.
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ZERO-COPYING TENSORS

Difference between in-place and standard operations might not be
so clear in some cases:

>>> np_array
array([[1., 1.],

[1., 1.]])
>>> torch_array = torch.from_numpy(np_array)

>>> np_array = np_array + 1.0

>>> torch_array
tensor([[1., 1.],

[1., 1.]], dtype=torch.float64)

However, if you use np_array += 1.0 , that is an in-place

operation that will change torch_array memory.
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ZERO-COPYING TENSORS

at::Tensor tensor_from_numpy(PyObject* obj) {
// (...) - omitted for brevity
auto array = (PyArrayObject*)obj;
int ndim = PyArray_NDIM(array);
auto sizes = to_aten_shape(ndim, PyArray_DIMS(array));
auto strides = to_aten_shape(ndim, PyArray_STRIDES(array));
// (...) - omitted for brevity
void* data_ptr = PyArray_DATA(array);
auto& type = CPU(dtype_to_aten(PyArray_TYPE(array)));
Py_INCREF(obj);
return type.tensorFromBlob(data_ptr, sizes, strides,

[obj](void* data) {
AutoGIL gil;
Py_DECREF(obj);

});
}

Pay attention to the reference counting using Py_INCREF() and the

call to tensorFromBlob() function.
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DATA POINTERS

(object fields)
 

data_pointer*

objectPyArrayObject

(object fields)
 

data_pointer*

objectFloatTensor

The tensor FloatTensor did a copy of the numpy array data
pointer and not of the contents. The reference is kept safe by the
Python reference counting mechanism.
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TENSOR STORAGE

The abstraction responsible for holding the data isn’t actually the
Tensor , but the Storage .

struct C10_API StorageImpl final : (...) {
// (...)
private:

// (...)
caffe2::TypeMeta data_type_;
DataPtr data_ptr_;
int64_t numel_;
Allocator* allocator_;

}

É Holds a pointer to the raw data and contains information such as
the size and allocator;

É Storage is a dumb abstraction, there is no metadata telling us
how to interpret the data it holds;
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TENSOR STORAGE

É The Storage abstraction is very powerful because it decouples
the raw data and how we can interpret it;

É We can have multiple tensors sharing the same storage, but
with different interpretations, also called views, but without
duplicating memory:

>>> tensor_a = torch.ones((2, 2))
>>> tensor_b = tensor_a.view(4)
>>> tensor_a_data = tensor_a.storage().data_ptr()
>>> tensor_b_data = tensor_b.storage().data_ptr()
>>> tensor_a_data == tensor_b_data
True

É tensor_b is a different view (interpretation) of the same data
present in the underlying storage that is shared between both
tensors.
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MEMORY ALLOCATORS (CPU/GPU)

É The tensor storage can be allocated either in the CPU memory
or GPU, therefore a mechanism is required to switch between
these different allocations:

struct Allocator {
virtual ~Allocator() {}
virtual DataPtr allocate(size_t n) const = 0;
virtual DeleterFnPtr raw_deleter() const {...}
void* raw_allocate(size_t n) {...}
void raw_deallocate(void* ptr) {...}

};

É There are Allocator s that will use the GPU allocators such as
cudaMallocHost() when the storage should be used for the

GPU or posix_memalign() POSIX functions for data in the
CPU memory.
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virtual DeleterFnPtr raw_deleter() const {...}
void* raw_allocate(size_t n) {...}
void raw_deallocate(void* ptr) {...}

};

É There are Allocator s that will use the GPU allocators such as
cudaMallocHost() when the storage should be used for the

GPU or posix_memalign() POSIX functions for data in the
CPU memory.
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THE BIG PICTURE

(object fields)
Storage *storage

objectTensor

Allocator *allocator
(object fields)

DataPtr data_ptr

objectStorage

raw_deallocate()
(object fields)

raw_allocate()

objectAllocator

Raw Data

É The Tensor has a Storage which in turn has a pointer to

the raw data and to the Allocator to allocate memory
according to the destination device.
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JIT - JUST-IN-TIME COMPILER

É PyTorch is eager by design, which means that it is easily
hackable to debug, inspect, etc;

É However, this poses problems for optimization and for
decoupling it from Python (the model itself is Python code);

É PyTorch 1.0 introduced torch.jit , which has two main
methods to convert a PyTorch model to a serializable and
optimizable format;

É TorchScript was also introduced as a statically-typed subset of
Python;
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JIT - JUST-IN-TIME COMPILER

Two very different worlds with their own requirements.

Prototype, debug, train, 
experiment

EAGER MODE

Optimization, other 
languages, deployment

SCRIPT MODE

!
"

#

tracing

scripting
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TRACING

def my_function(x):
if x.mean() > 1.0:

r = torch.tensor(1.0)
else:

r = torch.tensor(2.0)
return r

>>> ftrace = torch.jit.trace(my_function, (torch.ones(2, 2)))

>>> ftrace.graph
graph(%x : Float(2, 2)) {
%4 : Float() = prim::Constant[value={2}]()
%5 : Device = prim::Constant[value="cpu"]()
%6 : int = prim::Constant[value=6]()
%7 : bool = prim::Constant[value=0]()
%8 : bool = prim::Constant[value=0]()
%9 : Float() = aten::to(%4, %5, %6, %7, %8)
%10 : Float() = aten::detach(%9)
return (%10); }
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TRACING

To call the JIT’ed function, just call the forward() method:

>>> x = torch.ones(2, 2)
>>> ftrace.forward(x)
tensor(2.)

However, tracing will not record any control-flow like if statements
or loops, it executes the code with the given context and creates the
graph. You can see this limitation below:

>>> x = torch.ones(2, 2).add_(1.0)
>>> ftrace.forward(x)
tensor(2.)

According to my_function() , result should have been 1.0. Tracing
also checks for differences between traced and Python function, but
what about Dropout ?
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SCRIPTING

Another alternative is to use scripting, where you can use decorators
such as @torch.jit.script :

@torch.jit.script
def my_function(x):

if bool(x.mean() > 1.0):
r = 1

else:
r = 2

return r
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SCRIPTING

>>> my_function.graph
graph(%x : Tensor) {
%2 : float = prim::Constant[value=1]()
%5 : int = prim::Constant[value=1]()
%6 : int = prim::Constant[value=2]()
%1 : Tensor = aten::mean(%x)
%3 : Tensor = aten::gt(%1, %2)
%4 : bool = prim::Bool(%3)
%r : int = prim::If(%4)

block0() {
-> (%5)

}
block1() {

-> (%6)
}
return (%r);

}
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SCRIPTING

The my_function() is now a ScriptModule :

>>> type(my_function)
torch.jit.ScriptModule

When we check the results again:

>>> x = torch.ones(2, 2)
>>> my_function(x)
2

>>> x = torch.ones(2, 2).add_(1.0)
>>> my_function(x)
1

Control-flow logic was preserved !
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WHY TORCHSCRIPT ?

É The concept of having a well-defined Intermediate
Representation (IR) is very powerful, it’s the main concept
behind LLVM platform as well;

É This opens the door to:

É Decouple the model (computationl graph) from Python runtime;

É Use it in production with C++ (no GIL) or other languages;

É Capitalize on optimizations (whole program);

É Split the development world of hackable and easy to debug from
the world of putting these models in production and optimize
them.
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BUILDING THE IR
To build the IR, PyTorch takes leverage of the Python Abstract
Syntax Tree (AST) which is a tree representation of the syntactic
structure of the source code.
>>> ast_mod = ast.parse("print(1 + 2)")
>>> astpretty.pprint(ast_mod.body[0], show_offsets=False)

Expr(
value=Call(

func=Name(id='print', ctx=Load()),
args=[

BinOp(
left=Num(n=1),
op=Add(),
right=Num(n=2),

),
],
keywords=[],

),
)
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BUILDING THE IR

print(1 + 2)
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PYTORCH JIT PHASES

Parsing! Checking" Optimization#

Translation$ Execution○&
AST

'
Code

or
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EXECUTING

Just like Python interpreter executes your code, PyTorch has a
interpreter that executes the IR instructions:

bool runImpl(Stack& stack) {
auto& instructions = function->instructions;
size_t last = instructions.size();

while (pc < last) {
auto& inst = instructions[pc];
try {

loadTensorsFromRegisters(inst.inputs, stack);
size_t new_pc = pc + 1 + inst.callback(stack);
for (int i = inst.outputs.size - 1; i >= 0; --i) {

int reg = get(inst.outputs, i);
registers[reg] = pop(stack);

}
pc = new_pc;

// (...) omitted
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OPTIMIZATIONS

Many optimizations can be used on the computational graph of the
model, such as Loop Unrolling:

for i.. i+= 1 for i.. i+= 4
for j.. for j..

code(i, j) code(i, j)
code(i+1, j)
code(i+2, j)
code(i+3, j)

remainder loop
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OPTIMIZATIONS

Also Peephole optimizations such as:

x.t().t() = x

Example:
def dumb_function(x):

return x.t().t()

>>> traced_fn = torch.jit.trace(dumb_function,
... torch.ones(2,2))
>>> traced_fn.graph_for(torch.ones(2,2))
graph(%x : Float(*, *)) {
return (%x);
}

Other optimizations include Constant Propagation, Dead Code
Elimination (DCE), fusion, inlining, etc.
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SERIALIZATION

>>> resnet = torch.jit.trace(models.resnet18(),
... torch.rand(1, 3, 224, 224))
>>> resnet.save("resnet.pt")

$ file resnet.pt
resnet.pt: Zip archive data

$ unzip resnet.pt
Archive: resnet.pt
extracting: resnet/version
extracting: resnet/code/resnet.py
extracting: resnet/model.json
extracting: resnet/tensors/0
(...)
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SERIALIZATION

code/resnet.py
op_version_set = 0
def forward(self, input_1: Tensor) -> Tensor:

input_2 = torch._convolution(input_1, self.conv1.weight, ...)
# (...)
input_3 = torch.batch_norm(input_2, self.bn1.weight, self.bn1.bias,

self.bn1.running_mean, self.bn1.running_var, ...)
# (...)

model.json
{"parameters":
[{ "isBuffer": false,
"tensorId": "1",
"name": "weight" }],
"name": "conv1",
"optimize": true}

model.json
[{"isBuffer": true,
"tensorId": "4",
"name": "running_mean"},
{"isBuffer": true,
"tensorId": "5",
"name": "running_var"}],
"name": "bn1",
"optimize": true}
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USING THE MODEL IN C++
PyTorch also has a C++ API that you can use to load/train models in
C++. This is good for production, mobile, embedded devices, etc.

Example of loading a traced model in PyTorch C++ API:

#include <torch/script.h>
int main(int argc, const char* argv[])
{

auto module = torch::jit::load("resnet.pt");
std::vector<torch::jit::IValue> inputs;
inputs.push_back(torch::ones({1, 3, 224, 224}));
at::Tensor output = module->forward(inputs).toTensor();

}
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USING THE MODEL IN NODEJS

Complete tutorial at https://goo.gl/7wMJuS.

https://goo.gl/7wMJuS
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ISSUES WITH TUTORIALS

É Be careful with online tutorials using Flask, etc. They are simple,
but they often fail on good practices:
É They often use JSON and base64 to serialize images. This adds ∼

33% overhead per call (uncompressed);

É They don’t pay attention to zero-copy practices, so they often
transform, reshape, convert to numpy, convert to PyTorch, etc;

É They often use HTTP/1;

É They seldom do batching (important for GPUs);

É They never put that "production" code in production.
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PREFER BINARY SERIALIZATION FORMATS

Prefer using good binary serialization methods such as Protobuf
that offers a schema and a schema evolution mechanism.

Example from EuclidesDB RPC message:

message AddImageRequest {
int32 image_id = 1;
bytes image_data = 2;
// This field can encode JSON data
bytes image_metadata = 3;
repeated string models = 4;

}

* http://euclidesdb.readthedocs.io

http://euclidesdb.readthedocs.io
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AVOID EXTRA COPIES

É Be careful to avoid extra copies of your tensors, especially during
pre-processing;

É You can use in-place operations. It is a functional anti-pattern
because it introduces side-effects, but it’s a fair price to pay for
performance;

É Caveat: in-place operations doesn’t make much sense when you
need gradients. PyTorch uses tensor versioning to catch that:
>>> a = torch.tensor(1.0, requires_grad=True)
>>> y = a.tanh()
>>> y.add_(2.0)
>>> y.backward() # error !
>>> a._version
0
>>> y._version
1
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A TALE OF TWO HTTPS

Client Server

Ti
m
e

HTTP 1.0

Client Server

Ti
m
e

HTTP 1.1 - Pipelining
Client Server

Ti
m
e

HTTP 1.1 - HoL
Client Server

Ti
m
e

HTTP 2.0 - Multiplexing

É Use HTTP 2.0 if possible, and avoid the head-of-line blocking;
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Thanks !
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