
1.1

1.2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.3

2.3.1

2.3.2

2.3.3

2.4

2.4.1

2.4.2

2.4.3

2.4.4

2.4.4.1

2.4.4.2

2.4.5

2.4.6

2.5

2.5.1

Table	of	Contents

About
Preface

Pycom	Products

1.	Getting	Started
1.0	Introduction

1.1	Hardware	Setup

1.1.1	LoPy

1.1.2	LoPy4

1.1.1	SiPy

1.1.1	GPy

1.1.1	FiPy

1.1.1	WiPy

1.2	Software

1.2.1	Drivers

1.2.2	Updating	Firmware

1.2.3	Pymakr

1.3	Programming	the	modules

1.3.1	Introduction	to	MicroPython

1.3.2	MicroPython	Examples

1.3.3	Your	first	Pymakr	project

1.3.4	REPL

1.3.4.1	Serial	USB

1.3.4.2	Telnet

1.3.5	FTP

1.3.6	Safe	boot

1.4	Device	Registration

1.4.1	Sigfox

1

2.5.2

2.5.3

2.5.3.1

2.5.3.2

3.1

3.1.1

3.1.2

3.2

3.3

4.1

4.2

4.2.1

4.2.2

4.2.3

4.3

4.3.1

4.3.2

4.3.3

5.1

5.2

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

1.4.2	Cellular

1.4.3	LoRaWAN

1.4.3.2	The	Things	Network

1.4.3.2	Objenious

2.	Pymakr	Plugin
2.1	Installation

2.1.1	Atom

2.1.2	Visual	Studio	Code

2.2	Tools/Features

2.3	Settings

3.	Pysense	&	Pytrack
3.1	Introduction

3.2	Installing	Software

3.2.1	Updating	Firmware

3.2.2	Installing	Drivers	-	Windows	7

3.2.3	Installing	Libraries

3.3	API	Reference

3.3.1	Pytrack

3.3.2	Pysense

3.3.3	Sleep

4.	Tutorials	&	Examples
4.1	Introduction

4.2	All	Pycom	Device	Examples

4.2.1	REPL

4.2.2	WLAN

4.2.3	Bluetooth

4.2.4	HTTPS

4.2.5	MQTT

2

5.2.6

5.2.7

5.2.8

5.2.9

5.2.10

5.2.11

5.2.12

5.2.13

5.2.14

5.2.15

5.2.16

5.3

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

5.4

5.4.1

5.4.2

5.5

5.5.1

5.5.2

5.5.3

5.5.4

5.6

5.7

6.1

6.2

4.2.6	AWS

4.2.7	ADC

4.2.8	I2C

4.2.9	Onewire	Driver

4.2.10	Threading

4.2.11	RGB	LED

4.2.12	Timers

4.2.13	PIR	Sensor

4.2.14	Modbus

4.2.15	OTA	update

4.2.16	RMT

4.3	LoRa	Examples

4.3.1	LoRa-MAC	(Raw	LoRa)

4.3.2	LoRaWAN	with	OTAA

4.3.3	LoRaWAN	with	ABP

4.3.4	LoRa-MAC	Nano-Gateway

4.3.5	LoPy	to	LoPy

4.3.6	LoRaWAN	Nano-Gateway

4.3.7	RN2483	to	LoPy

4.4	Sigfox	Examples

4.4.1	Register	Device

4.4.2	Disengage	Sequence	Number

4.5	LTE	Examples

4.5.1	CAT-M1

4.5.2	NB-IoT

4.5.3	Module	IMEI

4.5.3	Modem	Firmware	Update

4.6	Pytrack	Examples

4.7	Pysense	Examples

5.	Firmware	&	API	Reference
5.1	Introduction

5.2	Pycom	Modules

3

6.2.1

6.2.1.1

6.2.1.2

6.2.1.3

6.2.1.4

6.2.1.5

6.2.1.6

6.2.1.7

6.2.1.8

6.2.1.9

6.2.1.10

6.2.1.11

6.2.1.12

6.2.1.13

6.2.2

6.2.2.1

6.2.2.2

6.2.2.3

6.2.2.3.1

6.2.2.3.2

6.2.2.3.3

6.2.2.3.4

6.2.2.3.5

6.2.2.3.6

6.2.2.4

6.2.2.5

6.2.2.6

6.2.3

6.2.4

6.3

6.3.1

6.3.2

6.3.3

6.3.4

5.2.1	machine

5.2.1.1	ADC

5.2.1.2	DAC

5.2.1.3	I2C

5.2.1.4	Pin

5.2.1.5	PWM

5.2.1.6	RTC

5.2.1.7	SPI

5.2.1.8	UART

5.2.1.9	WDT

5.2.1.10	Timer

5.2.1.11	SD

5.2.1.12	CAN

5.2.1.13	RMT

5.2.2	network

5.2.2.1	WLAN

5.2.2.2	Server

5.2.2.3	Bluetooth

5.2.2.3.1	GATT

5.2.2.3.2	GATTCConnection

5.2.2.3.3	GATTCService

5.2.2.3.4	GATTCCharacteristic

5.2.2.3.5	GATTSService

5.2.2.3.6	GATTSCharacteristic

5.2.2.4	LoRa

5.2.2.5	Sigfox

5.2.2.6	LTE

5.2.3	AES

5.2.4	pycom

5.3	MicroPython	Modules

5.3.1	micropython

5.3.2	uctypes

5.3.3	sys

5.3.4	uos

4

6.3.5

6.3.6

6.3.7

6.3.8

6.3.9

6.3.10

6.3.11

6.3.12

6.3.13

6.3.14

6.3.15

6.3.16

6.3.17

6.3.18

6.3.19

6.3.20

7.1

7.2

7.2.1

7.2.2

7.2.3

7.2.4

7.2.5

7.2.6

7.2.7

7.3

7.3.1

7.3.2

7.3.3

7.3.4

5.3.5	array

5.3.6	cmath

5.3.7	math

5.3.8	gc

5.3.9	ubinascii

5.3.10	ujson

5.3.11	ure

5.3.12	usocket

5.3.13	select

5.3.14	utime

5.3.15	uhashlib

5.3.16	ussl

5.3.17	ucrypto

5.3.18	ustruct

5.3.19	_thread

5.3.20	Builtin

6.	Product	Info
6.0	Introduction

6.1	Development	Modules

6.1.1	WiPy	2.0

6.1.2	WiPy	3.0

6.1.3	LoPy

6.1.4	LoPy	4

6.1.5	SiPy

6.1.6	GPy

6.1.7	FiPy

6.2	OEM	Modules

6.2.1	W01

6.2.2	L01

6.2.3	L04

6.2.4	G01

5

7.3.5

7.3.6

7.4

7.4.1

7.4.2

7.4.3

7.4.4

7.4.5

7.4.6

7.4.6.1

7.5

8.1

8.1.1

8.1.2

8.1.3

8.1.4

8.1.5

8.1.6

8.1.7

8.2

8.2.1

8.2.2

8.2.3

8.2.4

8.3

8.3.1

8.3.2

8.3.3

8.3.4

6.2.5	L01	OEM	Baseboard	Reference

6.2.6	Universal	OEM	Baseboard	Reference

6.3	Expansion	Boards	and	Shields

6.3.1	Expansion	Board	3.0

6.3.2	Pytrack

6.3.3	Pysense

6.3.4	Pyscan

6.3.5	Expansion	Board	2.0

6.3.6	Deep	Sleep	Shield

6.3.6.1	Deep	Sleep	API

6.4	Notes

7.	Datasheets
7.1	Development	Modules

7.1.1	WiPy	2.0

7.1.2	WiPy	3.0

7.1.3	LoPy

7.1.4	LoPy	4

7.1.5	SiPy

7.1.6	GPy

7.1.7	FiPy

7.2	OEM	Modules

7.2.1	W01

7.2.2	L01

7.2.3	L04

7.2.4	G01

7.3	Expansion	Boards	and	Shields

7.3.1	Expansion	Board	3.0

7.3.2	Pytrack

7.3.3	Pysense

7.3.4	Expansion	Board	2.0

6

ref://chapter/datasheets/downloads/wipy2-specsheet.pdf
ref://chapter/datasheets/downloads/wipy3-specsheet.pdf
ref://chapter/datasheets/downloads/lopy-specsheet.pdf
ref://chapter/datasheets/downloads/lopy4-specsheet.pdf
ref://chapter/datasheets/downloads/sipy-specsheet.pdf
ref://chapter/datasheets/downloads/gpy-specsheet.pdf
ref://chapter/datasheets/downloads/fipy-specsheet.pdf
ref://chapter/datasheets/downloads/w01-specsheet.pdf
ref://chapter/datasheets/downloads/l01-specsheet.pdf
ref://chapter/datasheets/downloads/l04-specsheet.pdf
ref://chapter/datasheets/downloads/g01-specsheet.pdf
ref://chapter/datasheets/downloads/expansion3-specsheet.pdf
ref://chapter/datasheets/downloads/pytrack-specsheet.pdf
ref://chapter/datasheets/downloads/pysense-specsheet.pdf
ref://chapter/datasheets/downloads/expansion2-specsheet.pdf

9.1

9.2

9.3

9.3.1

9.3.2

9.4

10.1

10.2

10.3

11.1

11.2

11.3

12.1

8.	Pybytes
8.1	Introduction

8.2	Getting	Started

8.3	Add	a	device	to	Pybytes

8.3.1	Connect	to	Pybytes:	Quick	Add

8.3.2	Connect	to	Pybytes:	Flash	Pybytes	library	manually

8.4	Visualise	data	from	your	device

9.	Documentation	Notes
9.1	Introduction

9.2	Syntax

9.3	REPL	vs	Scripts

10.	Advanced	Topics
10.1	Firmware	Downgrade

10.2	CLI	Updater

10.3	SecureBoot	and	Encryption

11.	License
11.1	License

7

Pycom	Documentation
Welcome	to	the	Pycom	documentation	site.	The	documentation	is	split	into	5	sections;	we
recommend	reading	through	all	the	sections	to	familiarise	yourself	with	the	various	tools	and
features	available	to	you	to	help	you	develop	on	your	Pycom	module.

To	get	started,	read	through	the	Getting	Started	Guide	then	feel	free	to	jump	straight	into	the
tutorials	and	examples	in	Tutorials	&	Examples	to	begin	building	your	projects.

Products

Getting	Started

Tutorials

Preface

8

Product	Info

API	Documentation

Pybytes

Preface

9

Pycom	Products
Below	you	will	find	tables	of	all	Pycom	products.	These	tables	illustrate	the	functionality	of
our	various	products,	their	compatibility	with	each	other,	as	well	as	what	accessories	are
required	to	utilise	certain	functionality.

Development	Boards

Pycom	Products

10

Module WiFi Bluetooth LoRa Sigfox LTE	CAT-M1	
NB-IoT

WiPy	3.0

✔ ✔

SiPy

✔ ✔ ✔

GPy

✔ ✔ ✔

LoPy

✔ ✔ ✔

LoPy4

✔ ✔ ✔ ✔

FiPy

✔ ✔ ✔ ✔ ✔

Antennas

External	WiFi/BT	
Antenna	Kit

LoRa	&	Sigfox	
Antenna	Kit

LTE-M	
Antenna	Kit

Accessories

Accessory
Expansion

Pycom	Products

11

https://pycom.io/product/external-wifi-antenna/
https://pycom.io/product/lora-antenna-kit/
https://pycom.io/product/lte-m-antenna-kit/

Board Pysense Pytrack Pyscan

PyCase

✔

IP67	Case	for	
Expansion	Board

✔

IP67	Case	for	
Pysense/Pytrack/Pyscan

✔ ✔ ✔

IP67	Case	
(universal)

✔ ✔ ✔ ✔

LiPo	Battery	
(user-supplied)

✔ ✔ ✔ ✔

Micro	USB	Cable	
Required	

(user-supplied)

✔ ✔ ✔ ✔

Pycom	Products

12

https://pycom.io/product/pycase/
https://pycom.io/product/ip67-expansion-board-case/
https://pycom.io/product/ip67-case/
https://pycom.io/product/universal-ip67-case/

Pyscan	Modules
OLED
Module 2MP	Camera Barcode

Reader

Fingerprint
Scanner

IR	Image
Sensor

✔

OEM	Modules

Pycom	Products

13

https://pycom.io/product/oled-screen/
https://pycom.io/product/2mp-camera/
https://pycom.io/product/barcode-reader
https://pycom.io/product/fingerprint-scanner/
https://pycom.io/product/infared-image-sensor/

OEM	Module

L01/W01	Reference	Board Universal	Reference	Board

W01

✔ ✔

L01

✔ ✔

L04

✔

G01

✔

Pycom	Products

14

Getting	Started
So,	you've	decided	to	order	a	Pycom	development	module.	Firstly	we	would	like	to
congratulate	you	in	making	an	excellent	decision.	If	you	haven't	yet	placed	your	order	we
highly	recommend	you	check	out	the	products	page	before	you	place	your	order	to	ensure
you	know	which	accessories	you	might	require.

Step	1:	Setting	up	the	hardware
In	the	first	part	of	this	getting	started	guide,	we	will	take	you	through	setting	up	your	device.
Firstly	we	will	cover	how	to	connect	the	module	to	your	computer	either	via	USB	or	WiFi.
Secondly	we	will	explain	how	to	connect	various	accessories	such	as	antennas	or	SIM	cards
to	your	module.

Step	2:	Setting	up	your	computer
Now	that	your	module	is	successfully	connected,	you	will	need	to	install	some	software	on
your	computer	to	interface	with	it.	The	second	part	of	this	guide	will	guide	you	through
installing	drivers;	performing	firmware	updates	for	your	module/accessories	to	ensure	you
have	the	most	stable	and	feature	packed	version;	and	how	to	setup	the	software	use	to
program	the	device.

1.0	Introduction

15

Step	3:	Using	your	module
Now	that	you	have	a	connected	module	and	all	the	required	software	installed	it	is	time	to
begin	programming	your	device.	This	part	of	the	guide	will	get	you	started	with	a	basic
example	and	point	you	in	the	right	direction	for	getting	your	device	connected	to	your	chosen
network.

Step	4:	Connecting	to	a	network
Now	that	you	familiar	with	programming	your	device	you	will	no	doubt	be	keen	to	get	it
connected	to	one	of	the	advertised	wireless	networks.	This	usually	requires	some
registration.	This	step	will	detail	how	to	get	registered	and	connected	to	various	wireless
networks.

You	can	navigate	through	this	guide	using	the	arrow	buttons	on	the	left	and	right	of	the
screen	(or	at	the	bottom	if	you	are	using	mobile).

1.0	Introduction

16

Setting	up	the	hardware
This	chapter	of	the	documentation	will	show	you	how	to	connect	you	Pycom	module.	For
each	device	there	are	detailed	instructions	on	how	to	connect	your	module	to	one	of	our
base	boards,	a	USB	UART	adapter	or	WiFi	as	well	as	what	antennas	you	might	need	to
connect.	Please	select	your	module	below	to	be	taken	to	the	appropriate	guide.

1.1	Hardware	Setup

17

1.1	Hardware	Setup

18

1.1	Hardware	Setup

19

LoPy

Basic	connection
Exp	Board	2.0
Exp	Board	3.0
Pysense/Pytrack/Pyscan
USB	UART	Adapter
WiFi

Look	for	the	reset	button	on	the	module	(located	at	a	corner	of	the	board,	next	to	the
LED).
Locate	the	USB	connector	on	the	expansion	board.
Insert	the	LoPy	module	on	the	the	expansion	board	with	the	reset	button	pointing
towards	the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no
longer	be	visible.

Before	connecting	your	module	to	an	Expansion	Board	3.0,	you	should	update	the
firmware	on	the	Expansion	Board	3.0.	Instructions	on	how	to	do	this	can	be	found	here.

Look	for	the	reset	button	on	the	module	(located	at	a	corner	of	the	board,	next	to	the
LED).

1.1.1	LoPy

20

Locate	the	USB	connector	on	the	expansion	board.
Insert	the	LoPy	module	on	the	Expansion	Board	with	the	reset	button	pointing	towards
the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no	longer
be	visible.

Before	connecting	your	module	to	a	Pysense/Pytrack/Pyscan	board,	you	should	update
the	firmware	on	the	Pysense/Pytrack/Pyscan.	Instructions	on	how	to	do	this	can	be
found	here.
Look	for	the	reset	button	on	the	LoPy	module	(located	at	a	corner	of	the	board,	next	to
the	LED).
Locate	the	USB	connector	on	the	Pysense/Pytrack/Pyscan.
Insert	the	module	on	the	Pysense/Pytrack/Pyscan	with	the	reset	button	pointing	towards
the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no	longer
be	visible.

1.1.1	LoPy

21

Once	you	have	completed	the	above	steps	successfully	you	should	see	the	on-board	LED
blinking	blue.	This	indicates	the	device	is	powered	up	and	running.

Firstly	you	will	need	to	connect	power	to	your	LoPy.	You	will	need	to	supply
	3.5v	-	5.5v		to	the		Vin		pin.	Note:	Do	not	feed		3.3v		directly	to	the		3.3v		supply	pin,
this	will	damage	the	regulator.
The	connect	the		RX		and		TX		of	your	USB	UART	to	the		TX		and		RX		of	the	LoPy
respectively.	Note:	Please	ensure	you	have	the	signal	level	of	the	UART	adapter	set	to
	3.3v		before	connecting	it.
In	order	to	put	the	LoPy	into	bootloader	mode	to	update	the	device	firmware	you	will
need	to	connect		P2		to		GND	.	We	recommend	you	connect	a	button	between	the	two	to
make	this	simpler.

Note:	This	method	of	connection	is	not	recommended	for	first	time	users.	It	is	possible	to
lock	yourself	out	of	the	device,	requiring	a	USB	connection.

1.1.1	LoPy

22

In	order	to	access	the	LoPy	via	WiFi	you	only	need	to	provide		3.5v		-		5.5v		on	the
	Vin		pin	of	the	LoPy:

By	default,	when	the	LoPy	boots,	it	will	create	a	WiFi	access	point	with	the	following
credentials:

SSID:		lopy-wlan	
password:		www.pycom.io	

Once	connected	to	this	network	you	will	be	able	to	access	the	telnet	and	FTP
servers	running	on	the	LoPy.	For	both	of	these	the	login	details	are:

username:		micro	
password:		python	

Antennas

LoRa

If	you	intend	on	using	the	LoRa	connectivity	of	the	LoPy	you	must	connect	a	LoRa
antenna	to	your	LoPy	before	trying	to	use	LoRa	otherwise	you	risk	damaging	the	device.

1.1.1	LoPy

23

The	LoPy	only	supports	LoRa	on	the	868MHz	or	915MHz	bands.	It	does	not	support
433MHz.	For	this	you	will	require	a	LoPy4.

Firstly	you	will	need	to	connect	the	U.FL	to	SMA	pig	tail	to	the	LoPy	using	the	U.FL
connector	on	the	same	side	of	the	LoPy	as	the	LED.

If	you	are	using	a	pycase,	you	will	next	need	to	put	the	SMA	connector	through	the
antenna	hole,	ensuring	you	align	the	flat	edge	correctly,	and	screw	down	the	connector
using	the	provided	nut.
Finally	you	will	need	to	screw	on	the	antenna	to	the	SMA	connector.

WiFi/Bluetooth	(optional)

All	Pycom	modules,	including	the	LoPy,	come	with	a	on-board	WiFi	antenna	as	well	as	a
U.FL	connector	for	an	external	antenna.	The	external	antenna	is	optional	and	only	required	if
you	need	better	performance	or	are	mounting	the	LoPy	in	such	a	way	that	the	WiFi	signal	is

1.1.1	LoPy

24

blocked.	Switching	between	the	antennas	is	done	via	software,	instructions	for	this	can	be
found	here.

Deep	Sleep	current	issue
The	LoPy,	SiPy,	and	WiPy	2.0	experience	an	issue	where	the	modules	maintain	a	high
current	consumption	in	deep	sleep	mode.	This	issue	has	been	resolved	in	all	newer
products.	The	cause	for	this	issue	is	the	DC	to	DC	switch	mode	converter	remains	in	a	high
performance	mode	even	when	the	device	is	in	deep	sleep.	The	flash	memory	chip	also	does
not	power	down.	A	more	detailed	explanation	can	be	found	here.

1.1.1	LoPy

25

https://forum.pycom.io/topic/1022/root-causes-of-high-deep-sleep-current

LoPy4

Basic	connection
Exp	Board	2.0
Exp	Board	3.0
Pysense/Pytrack/Pyscan
USB	UART	Adapter
WiFi

Look	for	the	reset	button	on	the	module	(located	at	a	corner	of	the	board,	next	to	the
LED).
Locate	the	USB	connector	on	the	expansion	board.
Insert	the	LoPy4	module	on	the	the	expansion	board	with	the	reset	button	pointing
towards	the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no
longer	be	visible.

Before	connecting	your	module	to	an	Expansion	Board	3.0,	you	should	update	the
firmware	on	the	Expansion	Board	3.0.	Instructions	on	how	to	do	this	can	be	found	here.

Look	for	the	reset	button	on	the	module	(located	at	a	corner	of	the	board,	next	to	the
LED).

1.1.2	LoPy4

26

Locate	the	USB	connector	on	the	expansion	board.
Insert	the	LoPy4	module	on	the	Expansion	Board	with	the	reset	button	pointing	towards
the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no	longer
be	visible.

Before	connecting	your	module	to	a	Pysense/Pytrack/Pyscan	board,	you	should	update
the	firmware	on	the	Pysense/Pytrack/Pyscan.	Instructions	on	how	to	do	this	can	be
found	here.
Look	for	the	reset	button	on	the	LoPy4	module	(located	at	a	corner	of	the	board,	next	to
the	LED).
Locate	the	USB	connector	on	the	Pysense/Pytrack/Pyscan.
Insert	the	module	on	the	Pysense/Pytrack/Pyscan	with	the	reset	button	pointing	towards
the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no	longer
be	visible.

1.1.2	LoPy4

27

Once	you	have	completed	the	above	steps	successfully	you	should	see	the	on-board	LED
blinking	blue.	This	indicates	the	device	is	powered	up	and	running.

Firstly	you	will	need	to	connect	power	to	your	LoPy4.	You	will	need	to	supply
	3.5v	-	5.5v		to	the		Vin		pin.	Note:	Do	not	feed		3.3v		directly	to	the		3.3v		supply	pin,
this	will	damage	the	regulator.
The	connect	the		RX		and		TX		of	your	USB	UART	to	the		TX		and		RX		of	the	LoPy4
respectively.	Note:	Please	ensure	you	have	the	signal	level	of	the	UART	adapter	set	to
	3.3v		before	connecting	it.
In	order	to	put	the	LoPy4	into	bootloader	mode	to	update	the	device	firmware	you	will
need	to	connect		P2		to		GND	.	We	recommend	you	connect	a	button	between	the	two	to
make	this	simpler.

1.1.2	LoPy4

28

Note:	This	method	of	connection	is	not	recommended	for	first	time	users.	It	is	possible	to
lock	yourself	out	of	the	device,	requiring	a	USB	connection.

In	order	to	access	the	LoPy4	via	WiFi	you	only	need	to	provide		3.5v		-		5.5v		on	the
	Vin		pin	of	the	LoPy4:

By	default,	when	the	LoPy4	boots,	it	will	create	a	WiFi	access	point	with	the	following
credentials:

SSID:		lopy4-wlan	
password:		www.pycom.io	

Once	connected	to	this	network	you	will	be	able	to	access	the	telnet	and	FTP
servers	running	on	the	LoPy4.	For	both	of	these	the	login	details	are:

username:		micro	
password:		python	

Antennas

LoRa/Sigfox

If	you	intend	on	using	the	LoRa/Sigfox	connectivity	of	the	LoPy4	you	must	connect	a
LoRa/Sigfox	antenna	to	your	LoPy4	before	trying	to	use	LoRa/Sigfox	otherwise	you	risk
damaging	the	device.

1.1.2	LoPy4

29

Firstly	you	will	need	to	connect	the	U.FL	to	SMA	pig	tail	to	the	LoPy4	using	one	of	the
two	the	U.FL	connectors	on	the	same	side	of	the	LoPy4	as	the	LED.	The	one	on	the	left
hand	side	is	for	433MHz	(LoRa	only),	the	one	of	the	right	hand	side	is	for
868MHz/915MHz	(LoRa	&	Sigfox).	Note:	This	is	different	from	the	LoPy.

If	you	are	using	a	pycase,	you	will	next	need	to	put	the	SMA	connector	through	the
antenna	hole,	ensuring	you	align	the	flat	edge	correctly,	and	screw	down	the	connector
using	the	provided	nut.
Finally	you	will	need	to	screw	on	the	antenna	to	the	SMA	connector.

WiFi/Bluetooth	(optional)

1.1.2	LoPy4

30

All	Pycom	modules,	including	the	LoPy4,	come	with	a	on-board	WiFi	antenna	as	well	as	a
U.FL	connector	for	an	external	antenna.	The	external	antenna	is	optional	and	only	required	if
you	need	better	performance	or	are	mounting	the	LoPy4	in	such	a	way	that	the	WiFi	signal
is	blocked.	Switching	between	the	antennas	is	done	via	software,	instructions	for	this	can	be
found	here.

1.1.2	LoPy4

31

SiPy

Basic	connection
Exp	Board	2.0
Exp	Board	3.0
Pysense/Pytrack/Pyscan
USB	UART	Adapter
WiFi

Look	for	the	reset	button	on	the	module	(located	at	a	corner	of	the	board,	next	to	the
LED).
Locate	the	USB	connector	on	the	expansion	board.
Insert	the	SiPy	module	on	the	the	expansion	board	with	the	reset	button	pointing
towards	the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no
longer	be	visible.

Before	connecting	your	module	to	an	Expansion	Board	3.0,	you	should	update	the
firmware	on	the	Expansion	Board	3.0.	Instructions	on	how	to	do	this	can	be	found	here.

Look	for	the	reset	button	on	the	module	(located	at	a	corner	of	the	board,	next	to	the
LED).

1.1.1	SiPy

32

Locate	the	USB	connector	on	the	expansion	board.
Insert	the	SiPy	module	on	the	Expansion	Board	with	the	reset	button	pointing	towards
the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no	longer
be	visible.

Before	connecting	your	module	to	a	Pysense/Pytrack/Pyscan	board,	you	should	update
the	firmware	on	the	Pysense/Pytrack/Pyscan.	Instructions	on	how	to	do	this	can	be
found	here.
Look	for	the	reset	button	on	the	SiPy	module	(located	at	a	corner	of	the	board,	next	to
the	LED).
Locate	the	USB	connector	on	the	Pysense/Pytrack/Pyscan.
Insert	the	module	on	the	Pysense/Pytrack/Pyscan	with	the	reset	button	pointing	towards
the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no	longer
be	visible.

1.1.1	SiPy

33

Once	you	have	completed	the	above	steps	successfully	you	should	see	the	on-board	LED
blinking	blue.	This	indicates	the	device	is	powered	up	and	running.

Firstly	you	will	need	to	connect	power	to	your	SiPy.	You	will	need	to	supply		3.5v	-	5.5v	
to	the		Vin		pin.	Note:	Do	not	feed		3.3v		directly	to	the		3.3v		supply	pin,	this	will
damage	the	regulator.
The	connect	the		RX		and		TX		of	your	USB	UART	to	the		TX		and		RX		of	the	SiPy
respectively.	Note:	Please	ensure	you	have	the	signal	level	of	the	UART	adapter	set	to
	3.3v		before	connecting	it.
In	order	to	put	the	SiPy	into	bootloader	mode	to	update	the	device	firmware	you	will
need	to	connect		P2		to		GND	.	We	recommend	you	connect	a	button	between	the	two	to
make	this	simpler.

Note:	This	method	of	connection	is	not	recommended	for	first	time	users.	It	is	possible	to
lock	yourself	out	of	the	device,	requiring	a	USB	connection.

1.1.1	SiPy

34

In	order	to	access	the	SiPy	via	WiFi	you	only	need	to	provide		3.5v		-		5.5v		on	the
	Vin		pin	of	the	SiPy:

By	default,	when	the	SiPy	boots,	it	will	create	a	WiFi	access	point	with	the	following
credentials:

SSID:		sipy-wlan	
password:		www.pycom.io	

Once	connected	to	this	network	you	will	be	able	to	access	the	telnet	and	FTP
servers	running	on	the	SiPy.	For	both	of	these	the	login	details	are:

username:		micro	
password:		python	

Antennas

Sigfox

If	you	intend	on	using	the	Sigfox	connectivity	of	the	SiPy	you	must	connect	a	Sigfox
antenna	to	your	SiPy	before	trying	to	use	Sigfox	otherwise	you	risk	damaging	the
device.

Firstly	you	will	need	to	connect	the	U.FL	to	SMA	pig	tail	to	the	SiPy	using	the	U.FL

1.1.1	SiPy

35

connector	on	the	same	side	of	the	SiPy	as	the	LED.

If	you	are	using	a	pycase,	you	will	next	need	to	put	the	SMA	connector	through	the
antenna	hole,	ensuring	you	align	the	flat	edge	correctly,	and	screw	down	the	connector
using	the	provided	nut.
Finally	you	will	need	to	screw	on	the	antenna	to	the	SMA	connector.

WiFi/Bluetooth	(optional)

All	Pycom	modules,	including	the	SiPy,	come	with	a	on-board	WiFi	antenna	as	well	as	a
U.FL	connector	for	an	external	antenna.	The	external	antenna	is	optional	and	only	required	if
you	need	better	performance	or	are	mounting	the	SiPy	in	such	a	way	that	the	WiFi	signal	is
blocked.	Switching	between	the	antennas	is	done	via	software,	instructions	for	this	can	be
found	here.

1.1.1	SiPy

36

Deep	Sleep	current	issue
The	LoPy,	SiPy,	and	WiPy	2.0	experience	an	issue	where	the	modules	maintain	a	high
current	consumption	in	deep	sleep	mode.	This	issue	has	been	resolved	in	all	newer
products.	The	cause	for	this	issue	is	the	DC	to	DC	switch	mode	converter	remains	in	a	high
performance	mode	even	when	the	device	is	in	deep	sleep.	The	flash	memory	chip	also	does
not	power	down.	A	more	detailed	explanation	can	be	found	here.

1.1.1	SiPy

37

https://forum.pycom.io/topic/1022/root-causes-of-high-deep-sleep-current

GPy

Basic	connection
Exp	Board	2.0
Exp	Board	3.0
Pysense/Pytrack/Pyscan
USB	UART	Adapter
WiFi

Look	for	the	reset	button	on	the	module	(located	at	a	corner	of	the	board,	next	to	the
LED).
Locate	the	USB	connector	on	the	expansion	board.
Insert	the	GPy	module	on	the	the	expansion	board	with	the	reset	button	pointing
towards	the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no
longer	be	visible.

Before	connecting	your	module	to	an	Expansion	Board	3.0,	you	should	update	the
firmware	on	the	Expansion	Board	3.0.	Instructions	on	how	to	do	this	can	be	found	here.

Look	for	the	reset	button	on	the	module	(located	at	a	corner	of	the	board,	next	to	the
LED).

1.1.1	GPy

38

Locate	the	USB	connector	on	the	expansion	board.
Insert	the	GPy	module	on	the	Expansion	Board	with	the	reset	button	pointing	towards
the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no	longer
be	visible.

Before	connecting	your	module	to	a	Pysense/Pytrack/Pyscan	board,	you	should	update
the	firmware	on	the	Pysense/Pytrack/Pyscan.	Instructions	on	how	to	do	this	can	be
found	here.
Look	for	the	reset	button	on	the	GPy	module	(located	at	a	corner	of	the	board,	next	to
the	LED).
Locate	the	USB	connector	on	the	Pysense/Pytrack/Pyscan.
Insert	the	module	on	the	Pysense/Pytrack/Pyscan	with	the	reset	button	pointing	towards
the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no	longer
be	visible.

1.1.1	GPy

39

Once	you	have	completed	the	above	steps	successfully	you	should	see	the	on-board	LED
blinking	blue.	This	indicates	the	device	is	powered	up	and	running.

Firstly	you	will	need	to	connect	power	to	your	GPy.	You	will	need	to	supply		3.5v	-	5.5v	
to	the		Vin		pin.	Note:	Do	not	feed		3.3v		directly	to	the		3.3v		supply	pin,	this	will
damage	the	regulator.
The	connect	the		RX		and		TX		of	your	USB	UART	to	the		TX		and		RX		of	the	GPy
respectively.	Note:	Please	ensure	you	have	the	signal	level	of	the	UART	adapter	set	to
	3.3v		before	connecting	it.
In	order	to	put	the	GPy	into	bootloader	mode	to	update	the	device	firmware	you	will
need	to	connect		P2		to		GND	.	We	recommend	you	connect	a	button	between	the	two	to
make	this	simpler.

1.1.1	GPy

40

Note:	This	method	of	connection	is	not	recommended	for	first	time	users.	It	is	possible	to
lock	yourself	out	of	the	device,	requiring	a	USB	connection.

In	order	to	access	the	GPy	via	WiFi	you	only	need	to	provide		3.5v		-		5.5v		on	the
	Vin		pin	of	the	GPy:

By	default,	when	the	GPy	boots,	it	will	create	a	WiFi	access	point	with	the	following
credentials:

SSID:		gpy-wlan	
password:		www.pycom.io	

Once	connected	to	this	network	you	will	be	able	to	access	the	telnet	and	FTP
servers	running	on	the	GPy.	For	both	of	these	the	login	details	are:

username:		micro	
password:		python	

Antennas

LTE	Cat-M1/NB-IoT

If	you	intend	on	using	the	LTE	CAT-M1	or	NB-IoT	connectivity	of	the	GPy	you	must	connect
a	LTE	CAT-M1/NB-IoT	antenna	to	your	GPy	before	trying	to	use	LTE	Cat-M1	or	NB-IoT
otherwise	you	risk	damaging	the	device.

1.1.1	GPy

41

You	will	need	to	connect	the	antenna	to	the	GPy	using	the	U.FL	connector	on	the	same
side	of	the	GPy	as	the	LED.

WiFi/Bluetooth	(optional)

All	Pycom	modules,	including	the	GPy,	come	with	a	on-board	WiFi	antenna	as	well	as	a
U.FL	connector	for	an	external	antenna.	The	external	antenna	is	optional	and	only	required	if
you	need	better	performance	or	are	mounting	the	GPy	in	such	a	way	that	the	WiFi	signal	is
blocked.	Switching	between	the	antennas	is	done	via	software,	instructions	for	this	can	be
found	here.

1.1.1	GPy

42

SIM	card
If	you	intend	on	using	the	LTE	CAT-M1	or	NB-IoT	connectivity	of	the	GPy	you	will	need	to
insert	a	SIM	card	into	your	GPy.	It	should	be	noted	that	the	GPy	does	not	support	regular
LTE	connectivity	and	you	may	require	a	special	SIM.	It	is	best	to	contact	your	local	cellular
providers	for	more	information	on	acquiring	a	LTE	CAT-M1/NB-IoT	enabled	nano	SIM.

1.1.1	GPy

43

FiPy

Basic	connection
Exp	Board	2.0
Exp	Board	3.0
Pysense/Pytrack/Pyscan
USB	UART	Adapter
WiFi

When	using	the	expansion	board	with	a	FiPy,	you	will	need	to	remove	the	CTS	and	RTS
jumpers	as	these	interfere	with	communication	with	the	cellular	modem.

Look	for	the	reset	button	on	the	module	(located	at	a	corner	of	the	board,	next	to	the
LED).

Locate	the	USB	connector	on	the	expansion	board.
Insert	the	FiPy	module	on	the	the	expansion	board	with	the	reset	button	pointing
towards	the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no
longer	be	visible.

Before	connecting	your	module	to	an	Expansion	Board	3.0,	you	should	update	the
firmware	on	the	Expansion	Board	3.0.	Instructions	on	how	to	do	this	can	be	found	here.

1.1.1	FiPy

44

When	using	the	expansion	board	with	a	FiPy,	you	will	need	to	remove	the	CTS	and	RTS
jumpers	as	these	interfere	with	communication	with	the	cellular	modem.

Look	for	the	reset	button	on	the	module	(located	at	a	corner	of	the	board,	next	to	the
LED).

Locate	the	USB	connector	on	the	expansion	board.
Insert	the	FiPy	module	on	the	Expansion	Board	with	the	reset	button	pointing	towards
the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no	longer
be	visible.

Before	connecting	your	module	to	a	Pysense/Pytrack/Pyscan	board,	you	should	update
the	firmware	on	the	Pysense/Pytrack/Pyscan.	Instructions	on	how	to	do	this	can	be
found	here.
Look	for	the	reset	button	on	the	FiPy	module	(located	at	a	corner	of	the	board,	next	to
the	LED).
Locate	the	USB	connector	on	the	Pysense/Pytrack/Pyscan.
Insert	the	module	on	the	Pysense/Pytrack/Pyscan	with	the	reset	button	pointing	towards
the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no	longer
be	visible.

1.1.1	FiPy

45

Once	you	have	completed	the	above	steps	successfully	you	should	see	the	on-board	LED
blinking	blue.	This	indicates	the	device	is	powered	up	and	running.

Firstly	you	will	need	to	connect	power	to	your	FiPy.	You	will	need	to	supply		3.5v	-	5.5v	
to	the		Vin		pin.	Note:	Do	not	feed		3.3v		directly	to	the		3.3v		supply	pin,	this	will
damage	the	regulator.
The	connect	the		RX		and		TX		of	your	USB	UART	to	the		TX		and		RX		of	the	FiPy
respectively.	Note:	Please	ensure	you	have	the	signal	level	of	the	UART	adapter	set	to
	3.3v		before	connecting	it.
In	order	to	put	the	FiPy	into	bootloader	mode	to	update	the	device	firmware	you	will
need	to	connect		P2		to		GND	.	We	recommend	you	connect	a	button	between	the	two	to
make	this	simpler.

Note:	This	method	of	connection	is	not	recommended	for	first	time	users.	It	is	possible	to
lock	yourself	out	of	the	device,	requiring	a	USB	connection.

In	order	to	access	the	FiPy	via	WiFi	you	only	need	to	provide		3.5v		-		5.5v		on	the

1.1.1	FiPy

46

	Vin		pin	of	the	FiPy:

By	default,	when	the	FiPy	boots,	it	will	create	a	WiFi	access	point	with	the	following
credentials:

SSID:		fipy-wlan	
password:		www.pycom.io	

Once	connected	to	this	network	you	will	be	able	to	access	the	telnet	and	FTP
servers	running	on	the	FiPy.	For	both	of	these	the	login	details	are:

username:		micro	
password:		python	

Antennas

LoRa/Sigfox

If	you	intend	on	using	the	LoRa/Sigfox	connectivity	of	the	FiPy	you	must	connect	a
LoRa/Sigfox	antenna	to	your	FiPy	before	trying	to	use	LoRa/Sigfox	otherwise	you	risk
damaging	the	device.

1.1.1	FiPy

47

The	FiPy	only	supports	LoRa	on	the	868MHz	or	915MHz	bands.	It	does	not	support
433MHz.	For	this	you	will	require	a	LoPy4.

Firstly	you	will	need	to	connect	the	U.FL	to	SMA	pig	tail	to	the	FiPy	using	the	U.FL
connector	on	the	same	side	of	the	FiPy	as	the	LED.

If	you	are	using	a	pycase,	you	will	next	need	to	put	the	SMA	connector	through	the
antenna	hole,	ensuring	you	align	the	flat	edge	correctly,	and	screw	down	the	connector
using	the	provided	nut.
Finally	you	will	need	to	screw	on	the	antenna	to	the	SMA	connector.

LTE	Cat-M1/NB-IoT

If	you	intend	on	using	the	LTE	CAT-M1	or	NB-IoT	connectivity	of	the	FiPy	you	must	connect
a	LTE	CAT-M1/NB-IoT	antenna	to	your	FiPy	before	trying	to	use	LTE	Cat-M1	or	NB-IoT
otherwise	you	risk	damaging	the	device.

1.1.1	FiPy

48

You	will	need	to	connect	the	antenna	to	the	FiPy	using	the	U.FL	connector	on	the	under
side	of	the	FiPy.

WiFi/Bluetooth	(optional)

All	Pycom	modules,	including	the	FiPy,	come	with	a	on-board	WiFi	antenna	as	well	as	a
U.FL	connector	for	an	external	antenna.	The	external	antenna	is	optional	and	only	required	if
you	need	better	performance	or	are	mounting	the	FiPy	in	such	a	way	that	the	WiFi	signal	is
blocked.	Switching	between	the	antennas	is	done	via	software,	instructions	for	this	can	be
found	here.

1.1.1	FiPy

49

SIM	card
If	you	intend	on	using	the	LTE	CAT-M1	or	NB-IoT	connectivity	of	the	FiPy	you	will	need	to
insert	a	SIM	card	into	your	FiPy.	It	should	be	noted	that	the	FiPy	does	not	support	regular
LTE	connectivity	and	you	may	require	a	special	SIM.	It	is	best	to	contact	your	local	cellular
providers	for	more	information	on	acquiring	a	LTE	CAT-M1/NB-IoT	enabled	nano	SIM.

1.1.1	FiPy

50

WiPy

Basic	connection
Exp	Board	2.0
Exp	Board	3.0
Pysense/Pytrack/Pyscan
USB	UART	Adapter
WiFi

Look	for	the	reset	button	on	the	module	(located	at	a	corner	of	the	board,	next	to	the
LED).
Locate	the	USB	connector	on	the	expansion	board.
Insert	the	WiPy	module	on	the	the	expansion	board	with	the	reset	button	pointing
towards	the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no
longer	be	visible.

Before	connecting	your	module	to	an	Expansion	Board	3.0,	you	should	update	the
firmware	on	the	Expansion	Board	3.0.	Instructions	on	how	to	do	this	can	be	found	here.

Look	for	the	reset	button	on	the	module	(located	at	a	corner	of	the	board,	next	to	the
LED).

1.1.1	WiPy

51

Locate	the	USB	connector	on	the	expansion	board.
Insert	the	WiPy	module	on	the	Expansion	Board	with	the	reset	button	pointing	towards
the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no	longer
be	visible.

Before	connecting	your	module	to	a	Pysense/Pytrack/Pyscan	board,	you	should	update
the	firmware	on	the	Pysense/Pytrack/Pyscan.	Instructions	on	how	to	do	this	can	be
found	here.
Look	for	the	reset	button	on	the	WiPy	module	(located	at	a	corner	of	the	board,	next	to
the	LED).
Locate	the	USB	connector	on	the	Pysense/Pytrack/Pyscan.
Insert	the	module	on	the	Pysense/Pytrack/Pyscan	with	the	reset	button	pointing	towards
the	USB	connector.	It	should	firmly	click	into	place	and	the	pins	should	now	no	longer
be	visible.

1.1.1	WiPy

52

Once	you	have	completed	the	above	steps	successfully	you	should	see	the	on-board	LED
blinking	blue.	This	indicates	the	device	is	powered	up	and	running.

Firstly	you	will	need	to	connect	power	to	your	WiPy.	You	will	need	to	supply
	3.5v	-	5.5v		to	the		Vin		pin.	Note:	Do	not	feed		3.3v		directly	to	the		3.3v		supply	pin,
this	will	damage	the	regulator.
The	connect	the		RX		and		TX		of	your	USB	UART	to	the		TX		and		RX		of	the	WiPy
respectively.	Note:	Please	ensure	you	have	the	signal	level	of	the	UART	adapter	set	to
	3.3v		before	connecting	it.
In	order	to	put	the	WiPy	into	bootloader	mode	to	update	the	device	firmware	you	will
need	to	connect		P2		to		GND	.	We	recommend	you	connect	a	button	between	the	two	to
make	this	simpler.

Note:	This	method	of	connection	is	not	recommended	for	first	time	users.	It	is	possible	to
lock	yourself	out	of	the	device,	requiring	a	USB	connection.

1.1.1	WiPy

53

In	order	to	access	the	WiPy	via	WiFi	you	only	need	to	provide		3.5v		-		5.5v		on	the
	Vin		pin	of	the	WiPy:

By	default,	when	the	WiPy	boots,	it	will	create	a	WiFi	access	point	with	the	following
credentials:

SSID:		wipy-wlan	
password:		www.pycom.io	

Once	connected	to	this	network	you	will	be	able	to	access	the	telnet	and	FTP
servers	running	on	the	WiPy.	For	both	of	these	the	login	details	are:

username:		micro	
password:		python	

Antennas

WiFi/Bluetooth	(optional)

All	Pycom	modules,	including	the	WiPy,	come	with	a	on-board	WiFi	antenna	as	well	as	a
U.FL	connector	for	an	external	antenna.	The	external	antenna	is	optional	and	only	required	if
you	need	better	performance	or	are	mounting	the	WiPy	in	such	a	way	that	the	WiFi	signal	is
blocked.	Switching	between	the	antennas	is	done	via	software,	instructions	for	this	can	be
found	here.

1.1.1	WiPy

54

Deep	Sleep	current	issue
The	LoPy,	SiPy,	and	WiPy	2.0	experience	an	issue	where	the	modules	maintain	a	high
current	consumption	in	deep	sleep	mode.	This	issue	has	been	resolved	in	all	newer
products.	The	cause	for	this	issue	is	the	DC	to	DC	switch	mode	converter	remains	in	a	high
performance	mode	even	when	the	device	is	in	deep	sleep.	The	flash	memory	chip	also	does
not	power	down.	A	more	detailed	explanation	can	be	found	here.

WiPy	2.0	vs	WiPy	3.0
The	WiPy	3.0	is	an	upgraded	version	of	the	WiPy	2.0	with	the	following	changes:

The	FLASH	has	been	upgraded	from	4MB	to	8MB.
The	RAM	has	been	upgraded	from	512KB	to	4MB.
The	deepsleep	current	consumption	issue	has	been	fixed
The	antenna	select	pin	has	moved	to	GPIO21	(P12)

1.1.1	WiPy

55

https://forum.pycom.io/topic/1022/root-causes-of-high-deep-sleep-current

Setting	up	your	computer
To	get	you	up	and	running,	Pycom	provides	a	suite	of	tools	to	assist	with	developing	and
programming	your	Pycom	Devices:

1.	 Drivers:	If	you	are	using	Microsoft	Windows,	you	might	be	required	to	install	drivers	for
our	products	to	function	correctly.

2.	 Pycom	firmware	update	utility:	This	tool	automates	the	process	of	upgrading	the
firmware	of	your	Pycom	device.	It	is	important	that	you	use	this	tool	before	you	attempt
to	use	your	device.	Not	only	to	ensure	you	have	the	most	stable	and	feature	packed
firmware,	but	also	to	ensure	all	the	functionality	of	your	device	is	enable.	E.g.	this	tool
also	activates	your	two	year	free	sigfox	connectivity.

3.	 Development	Environment:	Pymakr	is	a	plug-in	for	Atom	and	Visual	Studio	Code
developed	by	Pycom	to	make	development	for	Pycom	modules	super	easy.	It	allows
you	to	use	your	favourite	text	editor	while	simplifying	the	process	of	uploading	code	to
the	device.

1.2	Software

56

Drivers

Linux
You	should	not	need	to	install	any	drivers	for	our	devices	to	be	recognised	by	Linux.	You
may	how	ever	need	to	adjust	permissions	to	make	sure	you	have	access	to	the	serial	port.
On	most	distributions	this	can	be	done	by	adding	your	user	to	the		dialout		user	group.
Please	check	the	specific	instructions	for	your	linux	distribution	for	how	to	do	this.

macOS
On	macOS	you	shouldn't	need	to	do	anything	special	to	get	our	device	to	work.

Windows
All	our	products	will	work	out	of	the	box	for	Windows	8/10/+.	If	using	Windows	7,	drivers	to
support	the	Pysense/Pytrack/Pyscan/Expansion	Board	3.0	boards	will	need	to	be	installed.

Download

Please	download	the	driver	software	from	the	link	below.

Pysense/Pytrack/Pyscan/Expansion	Board	3.0	Serial	Driver

Installation

First	navigate	open	the	Windows	start	menu	and	search/navigate	to	`Device	Manager.	You
should	see	your	Pytrack/Pysense	in	the	dropdown	under	other	devices.

1.2.1	Drivers

57

Right	click	the	device	and	select		Update	Driver	Software	.

Select	the	option	to	Browse	my	computer	for	driver	software.

1.2.1	Drivers

58

Next	you	will	need	to	navigate	to	where	you	downloaded	the	driver	to	(e.g.	Downloads
Folder).

Specify	the	folder	in	which	the	drivers	are	contained.	If	you	haven't	extracted	the		.zip		file,
please	do	this	before	selecting	the	folder.

1.2.1	Drivers

59

You	may	receive	a	warning,	suggesting	that	Windows	can't	verify	the	publisher	of	this	driver.
Click		Install	this	driver	software	anyway		as	this	link	points	to	our	official	driver.

If	the	installation	was	successful,	you	should	now	see	a	window	specifying	that	the	driver
was	correctly	installed.

1.2.1	Drivers

60

To	confirm	that	the	installation	was	correct,	navigate	back	to	the		Device	Manager		and	click
the	dropdown	for	other	devices.	The	warning	label	should	now	be	gone	and
Pytrack/Pysense	should	be	installed.

1.2.1	Drivers

61

Firmware	Update	Tools
We	strongly	recommend	you	to	upgrade	your	firmware	to	the	latest	version	as	we	are
constantly	making	improvements	and	adding	new	features	to	the	devices.

Here	are	the	download	links	to	the	update	tool.	Please	download	the	appropriate	one	for
your	OS	and	follow	the	instructions	on	the	screen.

Windows
macOS	(10.11	or	Higher)
Linux	(requires		dialog		and		python-serial		package)

Previous	versions	of	firmware	are	available	for	download	here.

Updating	Device	Firmware

The	basic	firmware	upgrade	procedure	can	be	found	below,	please	follow	these	steps
carefully:

Expansion	Board	2.0
Pysense/Pytrack/Pyscan/Expansion	Board	3.0

1.	 Disconnect	your	device	from	your	computer
2.	 Insert	module	into	the	Expansion	Board
3.	 Connect	a	jumper	cable	or	wire	between		G23		and		GND	
4.	 Reconnect	the	board	via	USB	to	your	computer,	this	puts	the	device	in	‘firmware	update

mode’.
5.	 Run	the	Firmware	Upgrade	tool

1.2.2	Updating	Firmware

62

https://software.pycom.io/findupgrade?product=pycom-firmware-updater&type=all&platform=win32&redirect=true
https://software.pycom.io/findupgrade?product=pycom-firmware-updater&type=all&platform=macos&redirect=true
https://software.pycom.io/findupgrade?product=pycom-firmware-updater&type=all&platform=unix&redirect=true

6.	 Remove	the		G23		to		GND		jumper	cable/wire
7.	 Reboot	the	device	(button	or	power	off	then	on),	your	device	is	now	ready	to	use

If	you	are	having	any	issues,	make	sure	the	TX	and	RX	jumpers	are	present	on	your
Expansion	Board,	as	the	jumpers	sometimes	come	loose	in	the	box	during	transport.
Without	these	jumpers,	the	updater	will	fail.

When	using	a	Pysense/Pytrack/Pyscan/Expansion	Board	3.0	to	update	your	module	you	are
not	required	to	make	a	connection	between		G23		and		GND	,	the
Pysense/Pytrack/Pyscan/Expansion	Board	3.0	will	do	this	automatically.

1.	 Before	connecting	your	module	to	a	Pysense/Pytrack	board,	you	should	update	the
firmware	on	the	Pysense/Pytrack.	Instructions	on	how	to	do	this	can	be	found	here.

2.	 Disconnect	your	device	from	your	computer
3.	 Insert	module	into	Expansion	Board
4.	 Reconnect	the	board	via	USB	to	your	computer
5.	 Run	the	Firmware	Upgrade	tool

1.2.2	Updating	Firmware

63

6.	 Disconnect	the	USB	cable	from	the	board	and	reconnect	it,	your	device	is	now	ready	to
use

After	you’re	done	with	upgrading,	you	can	use	the	Pymakr	Plugins	to	upload	and	run
programs	in	your	device.

1.2.2	Updating	Firmware

64

Pymakr	Plugins
To	make	it	as	easy	as	possible	Pycom	has	developed	a	plugin	for	two	popular	text	editors,
called	Pymakr.	These	plugins	have	been	built	and	are	available	for	the	following	platforms:

1.2.3	Pymakr

65

1.2.3	Pymakr

66

Using	your	module
Now	that	you	have	connected	and	updated	your	pycom	module	and	installed	all	the	required
software	on	your	computer,	we	can	begin	programming	your	Pycom	module.

If	this	is	your	first	time	using	a	Pycom	module	we	highly	recommend	you	read	through	the
following	pages:

Introduction	to	MicroPython:	This	page	will	explain	what	Micropython	is	and	its
relation	to	Python.

MicroPython	Examples:	We	also	recommend	you	browse	these	short	MicroPython
examples	to	familiarise	yourself	with	its	syntax.	This	is	not	meant	as	a	comprehensive
guide	to	MicroPython	programming	but	rather	a	reference	to	those	who	already	know
programming.	If	you	are	new	to	python,	or	programming	all	together,	we	highly
recommend	searching	the	internet	for	Python	tutorials.	There	are	many	very	good
tutorials	available	for	free	and	the	skills	you	learn	will	be	easily	transferable	to	our
platform.

Your	first	Pymakr	project:	Once	you	understand	what	MicroPython	is,	this	guide	will
take	you	through	setting	up	your	first	Pymakr	project	to	blink	the	on-board	RGB	LED.
This	guide	will	explain	the	structure	of	a	MicroPython	project	as	well	as	how	to	upload	it
to	your	module.

Once	you	are	familiar	with	MicroPython	and	Pymakr,	the	recommended	way	of	uploading
code	to	your	module,	you	can	explore	the	pages	below.	These	will	discuss	in	greater	detail
the	various	mechanisms	for	running	code	on	your	device	as	well	as	how	to	recover	it	if
something	goes	wrong.

REPL:	The	REPL	(Read	Evaluate	Print	Loop)	is	an	interactive	terminal	that	allows	you
to	type	in	and	test	your	code	directly	on	the	device,	just	like	interactive	python
interpreter.	It	can	be	accessed	via	UART	or	Telnet.	This	is	accessed	easiest	by	using
Pymakr	but	if	you	wish	to	use	other	tools,	this	page	will	explain	how.

FTP:	All	Pycom	modules	start	up	with	a	WiFi	access	point	enabled,	and	a	simple	FTP
server	running	on	it.	Once	connected	to	the	WiFi	network,	you	can	use	FTP	to	transfer
files	over	to	your	device	wirelessly.	This	can	be	very	useful	if	you	do	not	have	physical
access	to	your	device.

Safe	Boot:	It	is	possible	that	some	code	you	upload	to	your	module	will	prevent	you
accessing	the	REPL	or	FTP	server,	preventing	you	from	updating	your	scripts.	This
guide	will	detail	how	to	safe	boot	your	module	and	how	to	remove	the	offending	scripts

1.3	Programming	the	modules

67

from	it.

1.3	Programming	the	modules

68

Introduction	to	MicroPython
Our	boards	work	with	MicroPython;	a	Python	3.5	implementation	that	is	optimised	to	run	on
micro	controllers.	This	allows	for	much	faster	and	more	simple	development	process	than
using	C.

Booting	into	MicroPython

When	booting,	two	files	are	executed	automatically:	first		boot.py		and	then		main.py	.	These
are	placed	in	the		/flash		folder	on	the	board.	Any	other	files	or	libraries	can	be	placed	here
as	well,	and	can	be	included	or	used	from		boot.py		or		main.py	.

The	folder	structure	in		/flash		looks	like	the	picture	below.	The	files	can	be	managed	either
using	FTP	or	using	the	Pymakr	Plugin.

Tips	&	Tricks

Micropython	shares	majority	of	the	same	syntax	as	Python	3.5.	The	intention	of	this	design
is	to	provide	compatibility	upwards	from	Micropython	to	Python	3.5,	meaning	that	code
written	for	Micropython	should	work	in	a	similar	manner	in	Python	3.5.	There	are	some	minor
variations	and	these	should	taken	viewed	as	implementation	differences.

1.3.1	Introduction	to	MicroPython

69

https://micropython.org/

Micropython	also	has	a	number	of	Micropython	specific	libraries	for	accessing	hardware
level	features.	Specifics	relating	to	those	libraries	can	be	found	in	the	Firmware	API
Reference	section	of	this	documentation.

Micropython,	unlike	C/C++	or	Arduino,	does	not	use	braces	{}	to	indicate	blocks	of
code	specified	for	class	and	function	definitions	or	flow	control.	Blocks	of	code	are
denoted	by	line	indentation,	which	is	strictly	enforced.

The	number	of	spaces	in	the	indentation	is	variable	but	all	statements	within	a	block
must	be	indented	the	same	amount.

1.3.1	Introduction	to	MicroPython

70

MicroPython	Examples
To	get	you	started	with	Python	(MicroPython)	syntax,	we've	provided	you	with	a	number	of
code	examples.

Variable	Assignment

As	with	Python	3.5,	variables	can	be	assigned	to	and	referenced.	Below	is	an	example	of
setting	a	variable	equal	to	a	string	and	then	printing	it	to	the	console.

variable	=	"Hello	World"

print(variable)

Conditional	Statements

Conditional	statements	allow	control	over	which	elements	of	code	run	depending	on	specific
cases.	The	example	below	shows	how	a	temperature	sensor	might	be	implemented	in	code.

temperature	=	15

target	=	10

if	temperature	>	target:

				print("Too	High!")

elif	temperature	<	target:

				print("Too	Low!")

else:

				print("Just	right!")

Loops	(For	&	While	loop)

Loops	are	another	important	feature	of	any	programming	language.	This	allows	you	to	cycle
your	code	and	repeat	functions/assignments/etc.

	for		loops	allow	you	to	control	how	many	times	a	block	of	code	runs	for	within	a	range.

x	=	0

for	y	in	range(0,	9):

				x	+=	1

print(x)

1.3.2	MicroPython	Examples

71

	while		loops	are	similar	to		for		loops,	however	they	allow	you	to	run	a	loop	until	a	specific
conditional	is		true/false	.	In	this	case,	the	loop	checks	if		x		is	less	than		9		each	time	the
loop	passes.

x	=	0

while	x	<	9:

				x	+=	1

print(x)

Functions

Functions	are	blocks	of	code	that	are	referred	to	by	name.	Data	can	be	passed	into	it	to	be
operated	on	(i.e.	the	parameters)	and	can	optionally	return	data	(the	return	value).	All	data
that	is	passed	to	a	function	is	explicitly	passed.

The	function	below	takes	two	numbers	and	adds	them	together,	outputting	the	result.

def	add(number1,	number2):

				return	number1	+	number2

add(1,	2)	#	expect	a	result	of	3

The	next	function	takes	an	input	name	and	returns	a	string	containing	a	welcome	phrase.

def	welcome(name):

				welcome_phrase	=	"Hello,	"	+	name	+	"!"

				print(welcome_phrase)

welcome("Alex")	#	expect	"Hello,	Alex!"

Data	Structures

Python	has	a	number	of	different	data	structures	for	storing	and	manipulating	variables.	The
main	difference	(regarding	data	structures)	between	C	and	Python	is	that	Python	manages
memory	for	you.	This	means	there’s	no	need	to	declare	the	sizes	of	lists,	dictionaries,
strings,	etc.

Lists

A	data	structure	that	holds	an	ordered	collection	(sequence)	of	items.

1.3.2	MicroPython	Examples

72

networks	=	['lora',	'sigfox',	'wifi',	'bluetooth',	'lte-m']

print(networks[2])	#	expect	'wifi'

Dictionaries

A	dictionary	is	like	an	address-book	where	you	can	find	the	address	or	contact	details	of	a
person	by	knowing	only	his/her	name,	i.e.	keys	(names)	are	associate	with	values	(details).

address_book	=	{'Alex':'2604	Crosswind	Drive','Joe':'1301	Hillview	Drive','Chris':'323

6	Goldleaf	Lane'}

print(address_book['Alex'])	#	expect	'2604	Crosswind	Drive'

Tuple

Similar	to	lists	but	are	immutable,	i.e.	you	cannot	modify	tuples	after	instantiation.

pycom_devices	=	('wipy',	'lopy',	'sipy',	'gpy',	'fipy')

print(pycom_devices[0])	#	expect	'wipy'

For	more	Python	examples,	check	out	these	tutorials.	Be	aware	of	the	implementation
differences	between	MicroPython	and	Python	3.5.

1.3.2	MicroPython	Examples

73

https://www.tutorialspoint.com/python3/

Your	First	Pymakr	Project
This	guide	will	take	you	through	how	to	setup	your	first	project	with	Pymakr	and	make	the
on-board	RGB	LED	flash	various	colours.

Creating	a	project	in	Pymakr
1.	 Firstly	you	will	need	to	create	a	new,	empty,	directory	on	your	computer.	For	this

example	we	will	create	one	called		RGB-Blink	.
2.	 Next	you	will	need	to	open	either	Atom	or	Visual	Studio	Code	depending	on	which	you

setup	previously.
3.	 Once	the	text	editor	has	loaded	you	will	need	to	click		File		>		Open	,	and	open	the

directory	you	created	in	step	1

If	you	are	using	Atom,	it	is	important	to	check	at	this	point	that	Atom	has
successfully	identified	the	project.	The	name	of	the	directory	you	created	in	step	1
(RGB-Blink		in	this	case)	should	be	shown	in	the	Pymakr	pane	like	so:

If	this	is	not	the	case	you	can	press		alt-ctrl-r		on	Windows/Linux	or		ctrl-alt-
cmd-l		on	macOS,	in	order	to	reload	Atom	and	fix	the	issue.

4.	 Now	that	you	have	a	project	created,	we	need	to	add	some	files	to	it.	A	standard
MicroPython	project	has	the	following	structure:

RGB-Blink

|-lib

|		|-	some_library.py

|-boot.py

|-main.py

	boot.py		This	is	the	first	script	that	runs	on	your	module	when	it	turns	on.	This	is
often	used	to	connect	a	module	a	a	WiFi	network	so	that	Telnet	and	FTP	can	be
used	without	connecting	to	the	WiFi	AP	created	by	the	module	and	not	cluttering	up
the		main.py		file.	As	a	beginner	you	do	not	need	to	use	a		boot.py	.

1.3.3	Your	first	Pymakr	project

74

	main.py		This	script	runs	directly	after		boot.py		and	should	contain	the	main	code
you	wish	to	run	on	your	device.
	lib		It	is	often	a	good	idea	to	split	out	re-usable	code	into	libraries.	If	you	want	to
create	or	use	libraries	created	by	others,	you	will	need	to	create	a		lib		directory
and	put	the	library	files	in	this.	It	is	important	that	you	put		.py		files	directly	into
	lib		rather	than	creating	a	directory	tree.	By	default	MicroPython	will	not	detect
any	libraries	within	sub-directories.

For	this	example,	you	will	just	need	to	create	a		main.py		file.

Now	that	the	project	structure	is	setup,	you	may	wish	to	configure	project	specific	settings	for
Pymakr	e.g.	Which	serial	port	to	use.	On	Atom	you	need	to	click	the	 	̂ 		button	on	the
Pymakr	pane,	then	click		Project	Settings	.	On	Visual	Studio	Code	you	need	to	click	the
	All	commands		button	on	the	bottom	of	the	windows,	then	click		Pymakr	>	Project	Settings	.
This	creates	a	file	called		pymakr.conf		inside	your	project	and	populates	it	with	default
settings	copied	over	from	your	global	settings.	A	detailed	explanation	of	these	settings	can
be	found	here.

Controlling	the	on-board	LED
Now	that	you	have	setup	and	configured	your	project,	we	can	move	on	to	programming	your
module.	The	first	thing	we	will	need	to	do	is	import	some	libraries	in	order	to	interact	with	the
on-board	LED.	The	Pycom	firmware	comes	with	a	large	amount	of	libraries	for	standard
functionality	built-in.	You	can	find	out	more	about	these	in	the	API	documentation.	For	this
example	you	will	need	to	open	the		main.py		file	and	add	the	following	code:

import	pycom

import	time

This	will	import	two	libraries,		Pycom		which	is	responsible	for	Pycom	specific	features,	such
as	the	on-board	LED	and		time		which	is	a	standard	library	used	timing	and	delays.

You	may	have	noticed	that	when	you	power	up	your	Pycom	module,	the	on-board	LED
blinks	blue	on	a	regular	basis.	This	"heartbeat"	is	used	as	a	way	of	know	that	your	module
has	powered	up	and	started	correctly.	Before	we	can	change	the	colour	of	this	LED	we	need
to	disable	this	heart	beat.	Below	your	imports	you	will	need	to	add	the	following:

pycom.heartbeat(False)

1.3.3	Your	first	Pymakr	project

75

Now	it's	time	to	test	your	code.	On	the	Pymakr	pane/bottom	of	the	window	you	will	see	a
	run		button.	(If	you	haven't	connected	to	your	device	yet,	you	will	need	to	do	that	first).
When	you	click	the	run	button,	the	code	in	the	currently	open	file	will	be	executed	on	the
device,	but	it	won't	copy	it	to	the	device.	After	running	this	code,	you	should	see	that	that	on-
board	LED	stops	blinking	blue.

Now	that	we	can	confirm	the	device	is	connected	and	Pymakr	is	able	to	run	code	on	it,	we
can	complete	our	script	to	blink	the	LED	like	so:

import	pycom

import	time

pycom.heartbeat(False)

while	True:

				pycom.rgbled(0xFF0000)		#	Red

				time.sleep(1)

				pycom.rgbled(0x00FF00)		#	Green

				time.sleep(1)

				pycom.rgbled(0x0000FF)		#	Blue

				time.sleep(1)

Once	you	run	the	above	script,	it	will	run	forever.	You	will	notice	this	prevents	you	from
accessing	the	interactive	REPL	on	the	device	(You	cannot	see	the		>>>		prompt).	In	order	to
stop	the	script,	click	onto	the	Pymakr	terminal,	and	press		ctrl-c		on	your	keyboard.	This
should	stop	the	script	running	and	return	you	to	the	interactive	REPL.

Uploading	to	your	module
In	the	previous	section	we	got	code	running	on	on	your	Pycom	module	using	the		run	
feature	of	Pymakr.	This	is	useful	for	quick	testing	but	has	a	couple	of	drawbacks.	Firstly	the
code	does	not	remain	on	the	device	permanently.	If	you	reboot	the	device,	it	will	no	longer
be	running	your	code.	Secondly,	it	will	only	work	if	you	are	using	libraries	built	into	the
firmware.	If	you	need	any	extra	libraries,	these	need	to	be	copied	to	the	device	first.	This	is
where	the		upload		feature	comes	in.	If	instead	of		run		you	click		upload	,	Pymakr	will
upload	all	the	files	in	the	project	(so	long	as	their	type	is	in	the		sync_file_types		setting	for
your	project).	These	then	persist	on	your	device	even	between	reboots,	and	allows	you	to
use	libraries	from	the		lib		folder	in	your	project.

If	you	need	to	remove	files	from	your	device	you	have	two	options,	either	connect	via	FTP
and	manage	your	files	that	way	or	format	the	device's	internal	flash	like	so:

1.3.3	Your	first	Pymakr	project

76

import	os

os.mkfs('/flash')

1.3.3	Your	first	Pymakr	project

77

REPL	(Read	Evaluate	Print	Loop)
REPL	stands	for	Read	Evaluate	Print	Loop,	and	is	the	name	given	to	the	interactive
MicroPython	prompt	that	is	accessible	on	the	Pycom	devices.	Using	the	REPL	is	by	far	the
easiest	way	to	test	out	Python	code	and	run	commands.	You	can	use	the	REPL	in	addition
to	writing	scripts	in		main.py	.

The	following	pages	will	explain	how	to	use	the	REPL	with	both	Serial	USB	and	Telnet
connections.

The	REPL	includes	the	following	features:

Input	history:	use	arrow	up	and	arrow	down	to	scroll	through	the	history
Tab	completion:	press	tab	to	auto-complete	variables	or	module	names
Halt	any	executing	code:	with		Ctrl-C	
Copy/paste	code	or	output:		Ctrl-C		and		Ctrl-V	

There	are	a	number	of	useful	shortcuts	for	interacting	with	the	MicroPython	REPL.	See
below	for	the	key	combinations;

	Ctrl-A		on	a	blank	line	will	enter	raw	REPL	mode.	This	is	similar	to	permanent
paste	mode,	except	that	characters	are	not	echoed	back.
	Ctrl-B		on	a	blank	like	goes	to	normal	REPL	mode.
	Ctrl-C		cancels	any	input,	or	interrupts	the	currently	running	code.
	Ctrl-D		on	a	blank	line	will	do	a	soft	reset.
	Ctrl-E		enters	‘paste	mode’	that	allows	you	to	copy	and	paste	chunks	of	text.	Exit
this	mode	using		Ctrl-D	.
	Ctrl-F		performs	a	"safe-boot"	of	the	device	that	prevents		boot.py		and		main.py	
from	executing

1.3.4	REPL

78

Serial	USB	REPL	(UART)
To	use	the	REPL,	a	Pycom	device	must	be	connected	to	the	host	computer	with	a	USB
connection	either	to	an	Expansion	Board	or	to	serial	converter	(a	diagram	of	how	to	do	this
can	be	found	the	the	getting	started	page	for	your	module).

In	order	to	connect	to	the	REPL	over	USB	serial,	there	are	multiple	methods.	Detailed	below
are	the	explanations	of	how	to	do	it	in	MacOS,	Linux	and	Windows.

All	platforms

By	far	the	easiest	way	to	access	the	USB	UART	REPL	is	via	the	our	Pymakr	plug-in	for
Atom	and	Visual	Studio	Code.	This	adds	a	pane	to	the	bottom	of	the	editors	that	allows	you
to	directly	access	the	REPL	and	any	output	from	the	device.	Detailed	instructions	on	how	to
setup	Pymakr	can	be	found	here.

macOS	and	Linux

To	open	a	serial	USB	connection	from	macOS,	any	serial	tool	may	be	used;	in	this	example,
the	terminal	tool		screen		will	be	used.

Open	a	terminal	instance	and	run	the	following	commands:

$	screen	/dev/tty.usbmodem*	115200

Upon	exiting		screen	,	press		CTRL-A	CTRL-\	.	If	the	keyboard	does	not	support	the		\	-key
(i.e.	an	obscure	combination	for		\		like		ALT-SHIFT-7		is	required),	the	key	combination	can
be	remapped	for	the		quit		command:

create		~/.screenrc	
add	bind		q		to	the		exit		command

This	will	allow	screen	to	exited	by	pressing		CTRL-A	Q	.

On	Linux,		picocom		or		minicom		may	be	used	instead	of		screen	.	The	usb	serial
address	might	also	be	listed	as		/dev/ttyUSB01		or	a	higher	increment	for		ttyUSB	.
Additionally,	the	elevated	permissions	to	access	the	device	(e.g.	group	uucp/dialout	or
use		sudo)	may	be	required.

1.3.4.1	Serial	USB

79

Windows

A	terminal	emulator	is	needed	to	open	the	connection	from	Windows;	the	easiest	option	is	to
download	the	free	program,	PuTTY.

COM	Port

To	use	PuTTY	the	serial	port	(COM	port)	in	which	the	Pycom	device	is	connected,	must	be
located.	In	Windows,	this	information	can	be	found	from	the	'Device	Manager'	program.

1.	 Open	the	Windows	start	menu	and	search	for	'Device	Manager'
2.	 The	COM	port	for	the	Pycom	device	will	be	listed	as	'USB	Serial	Device'	or	a	similar

name
3.	 Copy/Write	down	the	associated	COM	port	(e.g.		COM4)

Using	Putty

1.	 With	PuTTY	open,	click	on		Session		in	the	left-hand	panel
2.	 Next	click	the		Serial		radio	button	on	the	right	and	enter	the	associated	COM	port	(e.g.

	COM4)	in	the		Serial	Line		box
3.	 Finally,	click	the		Open		button

1.3.4.1	Serial	USB

80

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Telnet	REPL
Pycom	devices	also	support	a	connection	via		telnet	,	using	the	device's	on	board
WiFi/WLAN.	Connect	to	the	device's	WiFi	Access	Point	(AP)	and	using	the	following
credentials	to	connect	to	the	AP.	The	WiFi		SSID		will	appear	upon	powering	on	a	Pycom
Device	for	the	first	time	(e.g.		lopy-).	To	re-enable	this	feature	at	a	later	date,	please	see
network.WLAN.

password:		www.pycom.io	

Telnet	Server

Additionally,	to	use	the	MircoPython	REPL	over	telnet,	further	authentication	is	required.	The
default	credentials	for	the	telnet	server	are:

username:		micro	
password:		python	

See	network.server	for	info	on	how	to	change	the	default	authentication.

All	platforms

By	far	the	easiest	way	to	access	the	Telnet	REPL	is	via	the	our	Pymakr	plug-in	for	Atom	and
Visual	Studio	Code.	This	adds	a	pane	to	the	bottom	of	the	editors	that	allows	you	to	directly
access	the	REPL	and	any	output	from	the	device.	Detailed	instructions	on	how	to	setup
Pymakr	can	be	found	here.

macOS	and	Linux

Once	the	host	machine	is	connected	to	the	Pycom	device's	Access	Point,	a	telnet
connection	may	be	opened	from	a	terminal	instance.

$	telnet	192.168.4.1

Upon	connection,	the	telnet	program	will	prompt	for	the		username		and		password		in	the
section	above.

Windows

1.3.4.2	Telnet

81

A	terminal	emulator	is	needed	to	open	a	telnet	connection	from	Windows;	the	easiest	option
is	to	download	the	free	program,	PuTTY.

1.	 With	PuTTY	open,	select	telnet	as	connection	type	and	leave	the	default	port	(23)
2.	 Next	enter	the	IP	address	of	the	Pycom	device	(e.g.		192.168.4.1)
3.	 Finally	click		Open	

When	using	a	Pycom	device	with	a	personal,	home	or	office	WiFi	access	point,	the
telnet	connection	may	still	be	used.	In	this	instance,	the	user	will	need	to	determine	the
Pycom	device's	local	IP	address	and	substitute	this	for		192.168.4.1	,	referred	to	in	the
earlier	sections.

1.3.4.2	Telnet

82

http://www.putty.org/

FTP	(Local	File	System)
There	is	a	small	internal	file	system	accessible	with	each	Pycom	device,	called		/flash	.
This	is	stored	within	the	external	serial	flash	memory.	If	a	microSD	card	is	also	connected
and	mounted,	it	will	be	available	as	well.	When	the	device	starts	up,	it	will	always	boot	from
the		boot.py		located	in	the		/flash		file	system.

The	file	system	is	accessible	via	the	native	FTP	server	running	on	each	Pycom	device.
Open	an	FTP	client	and	connect	to:

url:		ftp://192.168.4.1	
username:		micro	
password:		python	

See	network.server	for	information	on	how	to	change	the	defaults.	The	recommended	clients
are:

macOS/Linux:	default	FTP	client
Windows:	Filezilla	and	FireFTP

For	example,	from	a	macOS/Linux	terminal:

$	ftp	192.168.4.1

The	FTP	server	doesn’t	support	active	mode,	only	passive	mode.	Therefore,	if	using	the
native	unix	FTP	client,	immediately	after	logging	in,	run	the	following	command:

ftp>	passive

The	FTP	server	only	supports	one	connection	at	a	time.	If	using	other	FTP	clients,	please
check	their	documentation	for	how	to	limit	the	maximum	allowed	connections	to	one	at	a
time.

FileZilla

If	using	FileZilla,	it's	important	to	configure	the	settings	correctly.

Do	not	use	the	quick	connect	button.	Instead,	open	the	site	manager	and	create	a	new
configuration.	Within	the		General		tab,	ensure	that	encryption	is	set	to:		Only	use	plain	FTP
(insecure)	.

1.3.5	FTP

83

In	the		Transfer	Settings		tab,	limit	the	max	number	of	connections	to	one.	Other	FTP	clients
may	behave	in	a	similar	ways;	visit	their	documentation	for	more	specific	information.

1.3.5	FTP

84

Boot	Modes
If	powering	up	normally	or	upon	pressing	the	reset	button,	a	Pycom	module	will	boot	into
standard	mode;	the		boot.py		file	will	be	executed	first,	followed	by		main.py	.	It	is	possible	to
alter	the	boot	procedure	of	the	module	by	tying	certain	pins		high		or		low		when	the	module
boots.

Bootloader

If	you	updated	your	device	before	using	it,	you	have	already	put	the	device	into	bootloader
mode.	This	is	achieved	by	connecting		G23		to		GND		while	the	device	boots.	If	you	used	a
Pysense/Pytrack	to	update,	it	did	this	automatically	for	you.	You	only	need	to	put	your
Pycom	module	into	bootloader	mode	if	you	are	updating	its	firmware,	or	are	programming
your	own	low	level	code.	This	is	not	required	if	you	are	updating	your	MicroPython	code.

Safe	Boot

Some	times	the	code	you	have	written	will	prevent	you	gaining	access	to	the	REPL	or
prevent	you	updating	your	code.	Some	example	may	be:

You	disabled	the	WiFi/UART
Your	code	gets	stuck	before	reaching	the	REPL
You	set	a	socket	as	blocking	but	never	receive	any	data

In	order	to	fix	this	you	can	safe	boot	your	module.	This	will	prevent		boot.py		and		main.py	
from	being	executed	and	will	drop	you	straight	into	the	interactive	REPL.	After	reset,	if		P12	
pin	is	held		high		(i.e.	connect	it	to	the		3V3		output	pin),	the	heartbeat	LED	will	begin
flashing	orange	slowly.	If	after	3	seconds	the	pin	is	still	held	high,	the	LED	will	start	blinking
faster.	In	this	mode	the	module	will	do	the	same	as	previously	explained	but	it	will	also	select
the	previous	OTA	image	to	boot	if	you	have	updated	the	module	via	the	OTA	update
procedure	(updates	performed	via	the	firmware	update	tool	do	not	count).	This	is	useful	if
you	flashed	a	OTA	update	that	breaks	the	device.

Pin		P12		released	during:

1st	3	secs	window 2nd	3	secs	window

Disable		boot.py		and		main.py	 same	as	previous	but	using	previous	OTA	firmware

The	selection	made	during	safe	boot	is	not	persistent,	therefore	after	the	next	normal	reset,
the	latest	firmware	will	proceed	to	run	again.

1.3.6	Safe	boot

85

If	problems	occur	within	the	filesystem	or	you	wish	to	factory	reset	your	module	to	remove
your	code,	run	following	code	in	the	REPL:

>>>	import	os

>>>	os.mkfs('/flash')

Be	aware,	resetting	the	flash	filesystem	will	delete	all	files	inside	the	internal	device
storage	(not	the	SD	card)	and	they	cannot	be	recovered.

Reset

Pycom	devices	support	both	soft	and	hard	resets.	A	soft	reset	clears	the	state	of	the
MicroPython	virtual	machine	but	leaves	hardware	peripherals	unaffected.	To	do	a	soft	reset,
press		Ctrl+D		on	the	REPL	or	from	within	a	script,	run:

>>>	import	sys

>>>	sys.exit()

A	hard	reset	is	the	same	as	performing	a	power	cycle	to	the	device.	In	order	to	hard	reset
the	device,	press	the		reset		switch	or	run:

>>>	import	machine

>>>	machine.reset()

1.3.6	Safe	boot

86

Registering	a	Pycom	Device
Some	of	our	devices	require	registration	before	you	can	utilise	specific	features	such	as
certain	types	of	networking.	Please	see	the	list	below	for	setup	guides	to	ensure	that	your
device	is	registered	and	activated	on	the	various	platforms	required	to	access	all	of	the
available	features.

Not	all	Pycom	devices	require	activation;	most	features	work	immediately	out	of	the
box!

1.4	Device	Registration

87

Registering	with	Sigfox
To	ensure	the	device	has	been	provisioned	with	Device	ID	and	PAC	number,	please	update
to	the	latest	firmware.

In	order	to	send	a	Sigfox	message,	the	device	need	to	register	with	the	Sigfox	Backend.
Navigate	to	https://backend.sigfox.com/activate	to	find	the	list	of	Sigfox	enabled
development	kits.

Select		Pycom		to	proceed.

Next	choose	a	Sigfox	Operator	for	the	country	where	the	device	will	be	activated.	Find	the
specific	country	and	select	the	operator	to	continue.

1.4.1	Sigfox

88

https://backend.sigfox.com/activate

Now	need	to	enter	the	device's	Device	ID	and	PAC	number.

The	Device	ID	and	PAC	number	are	retrievable	through	a	couple	of	commands	via	the
REPL.

from	network	import	Sigfox

import	binascii

#	initalise	Sigfox	for	RCZ1	(You	may	need	a	different	RCZ	Region)

sigfox	=	Sigfox(mode=Sigfox.SIGFOX,	rcz=Sigfox.RCZ1)

#	print	Sigfox	Device	ID

print(binascii.hexlify(sigfox.id()))

#	print	Sigfox	PAC	number

print(binascii.hexlify(sigfox.pac()))

See		Sigfox		for	more	info	about	the	Sigfox	Class	and	which	RCZ	region	to	use.

1.4.1	Sigfox

89

Once	the	device's	Device	ID	and	PAC	number	have	been	entered,	create	an	account.
Provide	the	required	information	including	email	address	and	click	to	continue.

An	email	confirming	the	creation	of	a	Sigfox	Backend	account	and	the	successful
registration	of	the	device	should	arrive	at	the	users	inbox.

1.4.1	Sigfox

90

Cellular	registration
In	order	to	use	your	GPy/FiPy	on	a	cellular	network	you	are	required	to	get	a	SIM	card	from
a	local	provider.	Note:	This	might	differ	from	a	standard	SIM	you	can	buy	in	a	store,	our
devices	do	not	support	standard	LTE.

Currently	we	are	not	able	to	provide	any	specific	details	about	how	to	get	such	a	SIM	card
and	how	to	register	it	as	most	deployments	are	closed	trials,	each	carrier	has	it’s	own	rules
(for	example,	whether	they	require	special	SIMs	or	not).

We	recommend	contacting	your	local	cellular	providers	to	check	their	plans	surrounding	LTE
CAT-M1	and	NB-IoT.	By	contacting	them,	you	will	show	the	carriers	that	there	is	local
interest	in	deploying	such	networks.

You	can	find	a	map	of	deployed	networks	and	open	labs	here.

1.4.2	Cellular

91

https://www.gsma.com/iot/deployment-map/#deployments

LoRaWAN	Registration

Raw	LoRa

When	using	raw	LoRa,	you	do	not	have	to	register	your	module	in	any	way.	The	modules
can	talk	to	each	other	directly.

LoRaWAN

In	order	to	connect	your	LoRa	capable	Pycom	module	to	a	LoRaWAN	network	you	will	have
to	register	your	device	with	the	desired	network.	We	are	unable	to	provide	instructions	for	all
LoRaWAN	networks	but	below	you	will	find	some	generic	instructions,	along	with	links	to	any
specific	guides	we	are	aware	of.

Generic	instructions

Firstly	you	will	need	to	get	your	modules		Device	EUI	,	this	can	be	achieved	using	the
following	code:

from	network	import	LoRa

import	ubinascii

lora	=	LoRa(mode=LoRa.LORAWAN)

print(ubinascii.hexlify(lora.mac()).upper().decode('utf-8'))

The	output	will	be	a	hex	string	like:		70B3D5499585FCA1	.	Once	you	have	this	you	will	need	to
provide	it	to	your	LoRaWAN	network	which	will	then	provide	you	with	the	details	need	to
connect	via	Over-the-Air	Activation	(OTAA)	or	Activation	by	Personalisation	(ABP)

OTAA

If	you	wish	to	connect	via	OTAA	(which	is	the	recommended	method)	the	network	will
provide	you	with	an		Application	EUI		and		Application	Key	.	The	former	identifies	what
application	your	device	is	connecting	to,	the	latter	is	a	shared	secret	key	unique	to	your
device	to	generate	the	session	keys	that	prove	its	identity	to	the	network.	Once	you	have
these	you	can	use	the	LoRaWAN	OTAA	example	code	to	connect	to	the	network.

ABP

1.4.3	LoRaWAN

92

With	ABP	the	encryption	keys	enabling	communication	with	the	network	are	preconfigured	in
the	device.	The	network	will	need	to	provide	you	with	a		Device	Address	,		Network	Session
Key		and		Application	Session	Key	.	Once	you	have	these	you	can	use	the	LoRaWAN	ABP
example	code	to	connect	to	the	network.

Networks

1.4.3	LoRaWAN

93

If	you	cannot	find	your	favourite	LoRaWAN	network	in	the	list	above,	please	consider
writing	a	tutorial	for	how	to	connect	a	Pycom	module	with	it	and	contribute	it	to	this
documentation	via	a	GitHub	pull	request.

1.4.3	LoRaWAN

94

https://github.com/pycom/pycom-documentation

The	Things	Network
In	order	to	use	The	Things	Network	(TTN)	you	should	navigate	to	their	website	and
create/register	an	account.	Enter	a	username	and	an	email	address	to	verify	with	their
platform.

Once	an	account	has	been	registered,	you	can	register	your	Pycom	module	as	either	a	node
or	a	nano-gateway.	The	steps	below	will	detail	how	to	do	this.

Create	an	application
In	order	to	register	your	device	to	connect	to	the	things	network,	you	must	first	create	an
application	for	these	devices	to	belong	to.	This	way	the	Network	will	know	where	to	send	the
devices	data	to.

1.4.3.2	The	Things	Network

95

Selecting	the		Applications		tab	at	the	top	of	the	TTN	console,	will	bring	up	a	screen	for
registering	applications.	Click	register	and	a	new	page,	similar	to	the	one	below,	will	open.

Enter	a	unique		Application	ID		as	well	as	a	Description	&	Handler	Registration.

Now	the	Pycom	module	nodes	can	be	registered	to	send	data	up	to	the	new	Application.

Register	a	Device
To	connect	nodes	to	a	things	network	gateway,	devices	need	to	be	added	to	the	application.
To	do	this,	navigate	to	the		Devices		tab	on	the		Application		home	page	and	click	the
	Register	Device		button.

In	the		Register	Device		panel,	complete	the	forms	for	the		Device	ID		and	the		Device	EUI	.
The		Device	ID		is	user	specified	and	is	unique	to	the	device	in	this	application.	The		Device
EUI		should	be	a	globally	unique	identifier	for	the	device.	You	can	run	the	following	on	you
Pycom	module	to	retrieve	its	EUI.

1.4.3.2	The	Things	Network

96

from	network	import	LoRa

import	ubinascii

lora	=	LoRa()

print("DevEUI:	%s"	%	(ubinascii.hexlify(lora.mac()).decode('ascii')))

Once	the	device	has	been	added,	change	the		Activation	Method		between		OTAA		and		ABP	
depending	on	user	preference.	This	option	can	be	found	under	the		Settings		tab.

Register	a	Nano-Gateway
You	can	also	setup	your	Pycom	module	to	act	as	a	gateway	with	The	Things	Network.	The
code	required	to	do	this	can	be	found	here.

Inside	the	TTN	Console,	there	are	two	options,		Applications		and		Gateways	.	Select
	Gateways		and	then	click	on		register	Gateway	.	This	will	allow	for	the	set	up	and	registration
of	a	new	nano-gateway.

On	the	Register	Gateway	page,	you	will	need	to	set	the	following	settings:

1.4.3.2	The	Things	Network

97

These	are	unique	to	each	gateway,	location	and	country	specific	frequency.	Please	verify
that	correct	settings	are	selected	otherwise	the	gateway	will	not	connect	to	TTN.

You	need	to	tick	the	"I'm	using	the	legacy	packet	forwarder"	to	enable	the	right
settings.	This	is	because	the	Nano-Gateway	uses	the	'de	facto'	standard	Semtech	UDP
protocol.

Option Value

Protocol Packet	Forwarder

Gateway	EUI User	Defined	(must	match		config.py)

Description User	Defined

Frequency	Plan Select	Country	(e.g.	EU	-	868	MHz)

Location User	Defined

Antenna	Placement Indoor	or	Outdoor

Most	LoRaWAN	network	servers	expect	a	Gateway	ID	in	the	form	of	a	unique	64-bit
hexadecimal	number	(called	a	EUI-64).	The	recommended	practice	is	to	produce	this	ID
from	your	board	by	expanding	the	WiFi	MAC	address	(a	48-bit	number,	called	MAC-48).	You
can	obtain	that	by	running	this	code	prior	to	configuration:

1.4.3.2	The	Things	Network

98

	from	network	import	WLAN

	import	binascii

	wl	=	WLAN()

	binascii.hexlify(wl.mac())[:6]	+	'FFFE'	+	binascii.hexlify(wl.mac())[6:]

Once	these	settings	have	been	applied,	click		Register	Gateway	.	A	Gateway	Overview	page
will	appear,	with	the	configuration	settings	showing.	Next	click	on	the		Gateway	Settings		and
configure	the	Router	address	to	match	that	of	the	gateway	(default:
	router.eu.thethings.network).

The		Gateway		should	now	be	configured.

1.4.3.2	The	Things	Network

99

Connecting	to	Objenious	LoRaWAN	'Spot'
network

Identifiers
To	connect	a	Pycom	LoRa	device	(LoPy,	LoPy4,	FiPy)	to	Objenious	you'll	need	to	provision
it.	This	requires	three	pieces	of	information

Device	EUI	(DevEUI)
Application	EUI	(AppEUI)
Application	Key	(AppKey)

Device	EUI

This	comes	from	the	device	itself	and	can	be	obtained	from		lora.mac()	.
To	obtain	the	required	hexadecimal	representation	you	can	run	the	following	code	on	your
LoPy:

from	network	import	LoRa

import	ubinascii

lora	=	LoRa()

print("DevEUI:	%s"	%	(ubinascii.hexlify(lora.mac()).decode('ascii')))

Application	EUI	and	Application	Key

Application	EUI	and	Key	are	two	LoRaWAN	parameters	that	should	ideally	by	generated	by
you,	if	supplying	devices	to	end	customers.
The	Application	EUI	is	a	EUI-64	(8	bytes)	identifier	which	should	be	universally	unique	-	it's
usually	allocated	from	a	MA-S	block	purchased	from	the	IEEE	Registration	Authority.
The	Application	Key	should	be	a	randomly	generated,	secure,	128	bit	(16	byte)	token.

For	testing	purposes	we	provide	a	script	which	generates	a	random	Application	EUI	from	our
assignment	and	a	series	of	Application	Keys:

EUI/Key	generator	for	testing

(note:	the	Application	EUI	produced	by	this	script	is	not	guaranteed	to	be	unique)

1.4.3.2	Objenious

100

http://standards.ieee.org/develop/regauth/oui36/index.html
https://github.com/pycom/pycom-scripts/blob/master/lorakeys/generate_keys.py

To	use	the	script	make	sure	you	are	using	Python	3.6	on	your	computer	and	run	it	(on	your
computer,	not	on	the	Pycom	board)	as:

	python	generate_keys.py	1	

The	output	will	be	similar	to:

AppEUI:	70b3d54923e36a89

AppKeys:

78fe712d96f46784a98b574a8cd616fe

If	you	are	registering	multiple	devices	you	can	generate	more	Applications	Keys	by	changing
	1		to	your	desired	number	of	devices.

Provisioning
Once	you	have	the	three	identifiers	for	your	device	you	need	to	register	them	on	the
Objenius	portal.
Follow	"Importer	des	capteurs"	under	"Statuc	do	Parc"	and	select	"Provisioning	Unitaire":

Once	there	give	your	device	a	name	and	enter	the	DevEUI,	AppEUI	and	AppKey	obtained
from	the	steps	above:

1.4.3.2	Objenious

101

1.4.3.2	Objenious

102

Pymakr	Plugins
To	make	it	as	easy	as	possible	Pycom	has	developed	a	plugin	for	two	popular	text	editors,
called	Pymakr.	These	plugins	have	been	built	and	are	available	for	the	following	platforms:

2.1	Installation

103

2.1	Installation

104

Pymakr	Plugin	Installation	for	Atom
For	beginners,	users	getting	started	with	MicroPython	&	Pycom	as	well	as	Atom	text	editor
users,	we	recommend	the	Pymakr	Plugin	for	Atom.	This	section	will	help	you	get	started
using	the	Atom	Text	Editor	&	Pymakr	Plugin.

Please	follow	these	steps	to	install	the	Pymakr	Plugin:

1.	 Ensure	that	you	have	Atom	installed	and	open.

2.	 Navigate	to	the	Install	page,	via		Atom	>	Preferences	>	Install	

2.1.1	Atom

105

3.	 Search	for		Pymakr		and	select	the	official	Pycom	Pymakr	Plugin.

4.	 You	should	now	see	and	click	the	Install	button.	This	will	download	and	install	the
Pymakr	Plugin.

5.	 That’s	it!	You’ve	installed	the	Pymakr	Plugin	for	Atom.

2.1.1	Atom

106

Connecting	via	Serial	USB
After	installing	the	Pymakr	Plugin,	you	need	to	take	a	few	seconds	to	configure	it	for	first
time	use.	Please	follow	these	steps:

1.	 Connect	your	Pycom	device	to	your	computer	via	USB.	If	you	are	using	an	Expansion
Board	2.0,	and	have	just	finished	a	firmware	upgrade,	be	sure	to	remove	the	wire
between	GND	and	G23	and	reset	your	device	by	pressing	the	button.	Note:	you	don't
need	the	wire	for	Expansion	Board	3.0

2.	 Open	Atom	and	ensure	that	the	Pymakr	Plugin	has	correctly	installed.

3.	 Open	the	Pymakr	console	by	clicking	the	 	̂ 		button,	located	in	the	lower	right	side	of
the	Atom	window.

4.	 Click,		More		followed	by		Get	Serial	Ports	.	This	will	copy	the	serial	address	of	your
expansion	board	to	your	clipboard.

2.1.1	Atom

107

5.	 Navigate	to		Settings	>	Global	Settings	

6.	 Paste	the	serial	address	you	copied	earlier	into	the	text	field		Device	Address	

7.	 Press	connect	and	the	Pymakr	console	should	show	three	arrows		>>>	,	indicating	that
you	are	connected

2.1.1	Atom

108

These	settings	can	also	be	applied	on	a	per	project	basis	by	clicking		Settings		then
	Project	Settings	.	This	will	open	a	JSON	file	which	you	can	edit	to	enter	your	desired
settings.

This	process	is	easiest	with	either	a	Pycom	Expansion	Board	or	a	Pytrack/Pysense	as
the	addresses	are	automatically	selected.	For	external	products	such	as	FTDI	USB
Serial	Cables,	the	serial	address	may	need	to	be	copied	manually.	Additionally,	the	reset
button	on	the	device	may	also	need	to	be	pressed	before	a	connection	message
appears.

Connecting	via	Telnet
After	installing	the	Pymakr	Plugin,	a	device	may	be	connected	via	the	telnet	interface.
Please	see	the	following	steps:

1.	 Ensure	that	Pycom	device	is	turned	on
2.	 Connect	the	host	computer	to	the	WiFi	Access	Point	named	after	your	board	(the	SSID

will	be	as	follows	e.g.		lopy-wlan-xxxx	,		wipy-wlan-xxxx	,	etc.).	The	password	is
	www.pycom.io	.

3.	 Follow	the	steps	as	above	in	the	"Connecting	via	Serial	USB"	section	but	enter
	192.168.4.1		as	the	address.

4.	 The	default	username	and	password	are		micro		and		python	,	respectively.
5.	 Click		Connect		in	the	Pymakr	pane,	Pymakr	will	now	connect	via	telnet.

2.1.1	Atom

109

2.1.1	Atom

110

Pymakr	Plugin	Installation	for	Visual
Studio	Code
Pycom	also	supports	Microsoft's	Visual	Studio	Code	IDE	platform	with	the	Pymakr	Plugin.	To
download	Visual	Studio	Code,	navigate	to	VS	Code.

You	will	also	need	NodeJS	installed	on	your	PC.	Please	download	the	latest	LTS	version
available	from	the	NodeJS	website.

Please	follow	these	steps	to	install	the	Pymakr	VSCode	Extension:

1.	 Ensure	that	you	have	VSCode	installed	and	open.

2.	 Navigate	to	the	Extensions	page,	using	the	5th	button	in	the	left	navigation

3.	 Search	for		Pymakr		and	click	the	install	button	next	to	it.

2.1.2	Visual	Studio	Code

111

https://code.visualstudio.com/
https://nodejs.org/

4.	 Within	a	few	minutes,	a	reload	button	should	appear.	Press	it	to	reload	VSCode.

2.1.2	Visual	Studio	Code

112

5.	 That’s	it!	You’ve	installed	the	Pymakr	Extension	for	VSCode

2.1.2	Visual	Studio	Code

113

Connecting	via	Serial	USB
After	installing	the	Pymakr	Plugin,	you	need	to	take	a	few	seconds	to	configure	it	for	first
time	use.	Please	follow	these	steps:

1.	 Connect	your	Pycom	device	to	your	computer	via	USB.	If	you	are	using	an	expansion
board,	and	have	just	finished	a	firmware	upgrade,	be	sure	to	Remove	the	wire
between	GND	and	G23	and	reset	your	device	by	pressing	the	button.

2.	 Open	Visual	Studio	Code	and	ensure	that	the	Pymakr	Plugin	has	correctly	installed.

3.	 Click		All	commands		on	the	bottom	of	the	Visual	Studio	Code	window

4.	 In	the	list	that	appears,	click		Pymakr	>	Extra	>	List	Serial	Ports	

5.	 This	will	list	the	available	serial	ports.	If	Pymakr	is	able	to	auto-detect	which	to	use,	this
will	be	copied	to	your	clipboard.	If	not	please	manually	copy	the	correct	serial	port.

6.	 Once	again	click		All	commands	,	then	click		Pymakr	>	Global	Settings	.	This	will	open	a
JSON	file.	Paste	the	serial	address	you	copied	earlier	into	the	field		address		and	save
the	file.

2.1.2	Visual	Studio	Code

114

7.	 Finally	close	the	JSON	file,	click		All	commands	,	then		Pymakr	>	Connect		to	connect	your
device.	The	Pymakr	console	should	show	three	arrows		>>>	,	indicating	that	you	are
connected

These	settings	can	also	be	applied	on	a	per	project	basis	by	clicking		All	commands		then
	Pymakr	>	Project	Settings	.	This	will	open	a	JSON	file	which	you	can	edit	to	enter	your
desired	settings	for	the	currently	open	project.

This	process	is	easiest	with	either	a	Pycom	Expansion	Board	or	a	Pytrack/Pysense	as
the	addresses	are	automatically	selected.	For	external	products	such	as	FTDI	USB
Serial	Cables,	the	serial	address	may	need	to	be	copied	manually.	Additionally,	the	reset
button	on	the	device	may	also	need	to	be	pressed	before	a	connection	message
appears.

Connecting	via	Telnet
After	installing	the	Pymakr	Plugin,	a	device	may	be	connected	via	the	telnet	interface.
Please	see	the	following	steps:

1.	 Ensure	that	Pycom	device	is	turned	on
2.	 Connect	the	host	computer	to	the	WiFi	Access	Point	named	after	your	board	(the	SSID

will	be	as	follows	e.g.		lopy-wlan-xxxx	,		wipy-wlan-xxxx	,	etc.).	The	password	is
	www.pycom.io	.

3.	 Follow	the	steps	as	above	in	the	"Connecting	via	Serial	USB"	section	but	enter
	192.168.4.1		as	the	address.

2.1.2	Visual	Studio	Code

115

4.	 The	default	username	and	password	are		micro		and		python	,	respectively.
5.	 Finally	close	the	JSON	file,	click		All	commands	,	then		Pymakr	>	Connect	,	Pymakr	will

now	connect	via	telnet.

2.1.2	Visual	Studio	Code

116

Tools	and	Features

Console	(REPL)

MicroPython	has	an	interactive	code	tool	known	as	the	REPL	(Read	Evaluate	Print	Line).
The	REPL	allows	you	to	run	code	on	your	device,	line	by	line.	To	begin	coding,	go	to	the
Pymakr	Plugin	Console	and	start	typing	your	code.	Start	by	making	the	LED	change	colour.

import	pycom	#	we	need	this	module	to	control	the	LED

pycom.heartbeat(False)	#	disable	the	blue	blinking

pycom.rgbled(0x00ff00)	#	make	the	LED	light	up	green	in	colour

You	can	change	the	colour	by	adjusting	the	hex	RGB	value.

pycom.rgbled(0xff0000)	#	now	make	the	LED	light	up	red	in	colour

The	console	can	be	used	to	run	any	python	code,	also	functions	or	loops.

Use		print()		to	output	contents	of	variables	to	the	console	for	you	to	read.	Returned	values
from	functions	will	also	be	displayed	if	they	are	not	caught	in	a	variable.	This	will	not	happen
for	code	running	from	the	main	or	boot	files.	Here	you	need	to	use		print()		to	output	to	the
console.

Note	that	after	writing	or	pasting	any	indented	code	like	a	function	or	a	while	loop,	the
user	will	have	to	press	enter	up	to	three	times	to	tell	MicroPython	the	code	is	to	be
closed	(this	is	standard	MicroPython	&	Python	behaviour).

Also	be	aware	that	code	written	into	the	REPL	is	not	saved	after	the	device	is	powered
off/on	again.

Run

To	test	code	on	a	device,	create	a	new		.py		file	or	open	an	existing	one,	type	the	desired
code,	save	the	file	and	then	press	the		Run		button.	This	will	run	the	code	directly	onto	the
Pycom	board	and	output	the	results	of	the	script	to	the	REPL.

2.2	Tools/Features

117

Changes	made	to	files	won’t	be	automatically	uploaded	to	the	board	upon	restarting	or
exiting	the		Run		feature,	as	the	Pycom	board	will	not	store	this	code.	In	order	to	push
the	code	permanently	to	a	device,	use	the		Upload		feature.

Projects

Pymakr	Plugin	supports	user	projects,	allowing	for	pre-configured	settings	such	as	default
serial	address/credentials,	files	to	be	ignored	and	folders	to	sync.

pymakr.conf

Pymakr	Plugin	supports	local	project	settings	using	a	file	called		pymakr.conf	.	This	can	be
used	to	store	the	default	serial	address	of	a	device,	which	files	to	ignore	and	other	settings.
An	example		pymakr.conf		is	shown	below:

{

				"address":	"/dev/cu.usbserial-AB001234",

				"username":	"micro",

				"password":	"python",

				"sync_folder":	"scripts"

}

Upload

The	Pymakr	Plugins	have	a	feature	to	sync	and	upload	code	to	a	device.	This	can	be	used
for	both	uploading	code	to	a	device	as	well	as	testing	out	scripts	by	running	them	live	on	the
device.	The	following	steps	demonstrate	how	to	use	this	feature.

To	start	using	the		Upload		feature,	ensure	that	a	project	folder	has	been	created	for	the
device.	For	example,	if	using	the		pymakr.conf		from	above,	this	project	folder	should	be
named		scripts	.	This	folder	should	have	the	following	structure:

Library	files	should	be	placed	into	the		lib		folder,	certificates	into	the		cert		folder	and	so
on.	The		Upload		button	will	take	the	highest	level	folder	(currently	open)	and	upload	this	to
the	connected	Pycom	device.	The	files	will	be	pushed	to	the	device	in	exactly	the	same

2.2	Tools/Features

118

structure	as	within	the	code	editor's	file	directory.

More

Clicking	the		More		button	within	the	Pymakr	Plugin	allows	for	some	additional	features.	See
the	options	below	for	specific	functionality.

Get	Firmware	Version

Retrieves	the	firmware	version	of	the	Pycom	device	connected	to	the	Pymakr	Plugin
instance.

Get	WiFi	AP	SSID

Retrieves	the	default	WiFi	Access	Point	SSID	of	the	Pycom	device	connected	to	the	Pymakr
Plugin	instance.

Get	Serial	Ports

Retrieves	the	various	serial	ports	that	are	available	to	the	Pymakr	Plugin	instance.

2.2	Tools/Features

119

Pymakr	settings
Below	you	will	find	a	description	of	the	various	settings	available	for	Pymakr.

address
This	is	the	address	of	the	Pycom	module	you	want	Pymakr	can	connect	to.	This	can	be
either	a	serial	port	(e.g		COM1		on	windows	or		/dev/cu.usbserial-DQ0054ES		on	Linux/macOS)
or	an	IP	address	(Telnet)	(e.g.		192.168.4.1		if	connected	to	the	AP	created	by	the	Pycom
module).

username
If	a	IP	address	was	provided	for	the		address		therefore	Pymakr	is	connecting	via	Telnet,	you
will	also	need	to	provide	a	username,	the	default	is		micro	.

password
If	an	IP	address	was	provided	for	the	address,	Pymakr	is	connecting	via	Telnet.	You	will	also
need	to	provide	a	password,	the	default	is		python	.

sync_folder
If	left	blank,	all	directories	inside	the	project	will	be	synced	to	the	device	when	the	user	clicks
	upload	.	If	directories	are	specified,	only	these	directories	will	be	synced,	all	others	will	be
ignored

open_on_start
If	set	to		true	,	the	Pymakr	console	will	open	and	try	to	connect	when	the	editor	is	started,	or
a	project	is	opened.

safe_boot_on_upload

2.3	Settings

120

If	set	to		true	,	Pymakr	will	reboot	the	connected	device	into	safe-mode	before	uploading.
This	is	useful	if	your	code	uses	a	lot	of	RAM	causing	issues	with	the	upload	procedure.

This	feature	is	only	available	on	modules	running	firmware	version		1.17.0.b1		or	higher.

sync_file_types
Only	files	ending	with	the	extensions	listed	in	this	setting	will	be	synced	to	the	device	when
performing	an	upload.	All	other	files	are	ignored.	By	default	this	is	set	to	include:		py,	txt,
log,	json,	xml	

ctrl_c_on_connect
If	set	to		true	,	Pymakr	will	sent	the		ctrl-c		signal	to	the	connected	module	before
uploading.	This	should	stop	the	script	currently	running	on	the	device	and	improve	the
reliability	of	the	upload	process.

2.3	Settings

121

Pytrack	&	Pysense
In	addition	to	the	Expansion	Board,	Pycom	also	offers	two	additional	sensor	boards,	which
are	ideal	for	quickly	building	a	fully	functioning	IoT	solution!	Whether	the	application	is
environment	sensing	or	asset	tracking,	these	additional	boards	support	a	variety	of	sensors.

Pytrack

Pytrack	is	a	location	enabled	version	of	the	Expansion	Board,	intended	for	use	in	GPS
applications	such	as	asset	tracking	or	monitoring.

Features	&	Hardware

The	Pytrack	is	has	a	number	of	features	including	GPS,	3-Axis	Accelerometer	and	Battery
Charger.	See	the	list	below	for	detailed	specifics	about	each	sensor,	including	datasheets.

Serial	USB
3-Axis	Accelerometer	(LIS2HH12)
Battery	Charger	(BQ24040	with	JST	connector)
GPS	and	GLONASS	(L76-L)
MicroSD	Card	Reader

All	of	the	included	sensors	are	connected	to	the	Pycom	device	via	the	I2C	interface.	These
pins	are	located	at	P22	(SDA)	and	P21	(SCL).

Pysense

3.1	Introduction

122

Pysense	is	a	sensor	packed	version	of	the	Expansion	Board,	intended	for	use	in
environment	sensing	applications	such	as	temperature,	humidity	monitoring,	and	light
sensing.

Features	&	Hardware

The	Pysense	is	packed	with	a	number	of	sensors	and	hardware,	see	the	list	below	for
detailed	specifics	about	each	sensor,	including	datasheets.

Serial	USB
3-Axis	Accelerometer	(LIS2HH12)
Battery	Charger	(BQ24040	with	JST	connector)
Digital	Ambient	Light	Sensor	(LTR-329ALS-01)
Humidity	and	Temperature	Sensor	(SI7006-A20)
Barometric	Pressure	Sensor	with	Altimeter	(MPL3115A2)
MicroSD	Card	Reader

All	of	the	included	sensors	are	connected	to	the	Pycom	device	via	the	I2C	interface.	These
pins	are	located	at		GPI09		(SDA)	and		GPI08		(SCL).

3.1	Introduction

123

Installing	Software
As	the	development	for	these	devices	are	on	going	with	additional	features	being	added,
every	week,	it	is	essential	to	ensure	you	frequently	check	for	updates	on	the
Pytrack/Pysense.	As	well	as	updating	the	device	firmware,	it	is	important	to	check	the
GitHub	repository	for	the	respective	library	files	as	they	as	also	being	updated,	to	include
additional	features/functionality.

3.2	Installing	Software

124

https://github.com/pycom/pycom-libraries

Updating	Firmware
To	update	the	firmware	on	the	Pysense/Pytrack/Pyscan/Expansion	Board	v3,	please	see	the
following	instructions.	The	firmware	of	Pysense/Pytrack/Pyscan/Expansion	Board	v3	can	be
updated	via	the	USB	port	using	the	terminal	tool,		DFU-util	.

The	latest	firmware	DFU	file	can	be	downloaded	from	the	links	below:

Pytrack	DFU
Pysense	DFU
Expansion	Board	DFU

While	in	the	normal,	application	mode,	the	Pysense/Pytrack/Pyscan/Expansion	Board	v3
require	a	Serial	USB	CDC	driver,	in	DFU,	bootloader	mode,	the	DFU	driver	is	required.
Below,	the	USB	Product	ID	is	depicted	for	each	case.

Board DFU	bootloader	(update
mode)

Application	firmware	(normal
mode)

Pytrack 	0xF014	 	0xF013	

Pysense 	0xF011	 	0xF012	

Pyscan 	0xEF37	 	0xEF38	

Expansion	Board
v3

	0xEF99	 	0xEF98	

Note:	USB	Vendor	ID	is	always		0x04D8	.

Installing	the	DFU-util	Tools

macOS

If	using		homebrew	:

$	brew	install	dfu-util

If	using		MacPorts	:

port	install	libusb	dfu-util

Linux

3.2.1	Updating	Firmware

125

https://software.pycom.io/findupgrade?key=pytrack.dfu&type=all&redirect=true
https://software.pycom.io/findupgrade?key=pysense.dfu&type=all&redirect=true
https://software.pycom.io/findupgrade?key=expansion3.dfu&type=all&redirect=true

Ubuntu	or	Debian:

$	sudo	apt-get	install	dfu-util

Fedora:

$	sudo	yum	install	dfu-util

Arch:

$	sudo	pacman	-Sy	dfu-util

Windows

DFU-util	v0.9	–	Tool	to	upload	the	firmware	to	the	Pytrack/Pysense
Zadig	–	Installer	tool	for	the	Pytrack/Pysense	board	DFU	Firmware

To	uploaded	the	latest	DFU	firmware	to	the	Pytrack/Pysense,	first	install	the	DFU	drivers
to	the	host	computer.	Open	Zadig	and	select		libusbK		as	the	driver.

To	install	the	drivers,	the	Pytrack/Pysense	board	must	be	in	DFU-mode:

1.	 Disconnect	the	USB	cable
2.	 Hold	down	the	button	on	the	shield
3.	 Connect	the	USB	cable
4.	 Keep	the	button	pressed	for	at	least	one	second
5.	 Release	the	button.	When	the	board	is	connected	in	DFU-mode,	it	will	be	in	this	state

for	7	seconds.
6.	 Click	the	“Install	Driver		button	immediately.	If	the	driver	was	unsuccessful,	repeat

from	step	1.
Here	the	USB	ID	has	to	be	the	DFU-bootloader	one	(0xF014	for	Pytrack	or		0xF011	
for	Pysense).
This	is	a	successful	DFU	driver	installation	for	Pytrack:

3.2.1	Updating	Firmware

126

http://dfu-util.sourceforge.net/releases/dfu-util-0.9-win64.zip
http://zadig.akeo.ie/

Open	the	command	prompt	and	navigate	to	the	directory	where	the	DFU-util	and	the
firmware	was	downloaded	(must	be	in	same	directory).	Repeat	the	procedure	to	get	the
board	in	DFU-mode	and	run	the	command	below	but	replace		X.X.X		with	the	firmware
version	and	replace	Pysense	with	Pytrack	if	it	is	the	Pytrack	that	is	to	be	updated	(e.g:
	pytrack_0.0.8.dfu):

dfu-util-static.exe	-D	pysense_X.X.X.dfu

If	the	update	was	successful,	a	message,"Done!"	should	appear	in	the	bottom	of	the
command	prompt.

Double-check	Serial	USB	(CDC)	driver	is	installed	in	Application	mode:	if,	by	mistake,
the		libusbk		driver	was	installed	while	the	USB	ID	is	the	Application	mode	(0xF013		for
Pytrack	or		0xF012		for	Pysense),	then	the		Serial	USB	(CDC)		driver	has	to	be	installed	for
application	mode.	This	will	allow	Windows	to	allocate	a	COM	port,	which	is	required	for
REPL	console.

3.2.1	Updating	Firmware

127

Using	DFU-util	with	Pytrack,	Pysense	and	Expansion	Board
v3

To	enter	update	mode	follow	these	steps:

1.	 Unplug	the	device
2.	 Press	the	button	and	keep	it	held	(on	the	Expansion	Board	the		S1		button)
3.	 Plug	in	the	USB	cable	to	the	host	computer	and	wait	1	second	before	releasing	the

button
4.	 After	this	you	will	have	approximately	7	seconds	to	run	the	DFU-util	tool

MacOS	and	Linux:

$	dfu-util	-D	pytrack_0.0.8.dfu

An	output,	similar	to	the	one	below,	will	appear	upon	successful	installation:

3.2.1	Updating	Firmware

128

dfu-util	0.9

Copyright	2005-2009	Weston	Schmidt,	Harald	Welte	and	OpenMoko	Inc.

Copyright	2010-2016	Tormod	Volden	and	Stefan	Schmidt

This	program	is	Free	Software	and	has	ABSOLUTELY	NO	WARRANTY

Please	report	bugs	to	http://sourceforge.net/p/dfu-util/tickets/

Match	vendor	ID	from	file:	04d8

Match	product	ID	from	file:	f014

Opening	DFU	capable	USB	device...

ID	04d8:f014

Run-time	device	DFU	version	0100

Claiming	USB	DFU	Runtime	Interface...

Determining	device	status:	state	=	dfuIDLE,	status	=	0

dfu-util:	WARNING:	Runtime	device	already	in	DFU	state	?!?

Claiming	USB	DFU	Interface...

Setting	Alternate	Setting	#0	...

Determining	device	status:	state	=	dfuIDLE,	status	=	0

dfuIDLE,	continuing

DFU	mode	device	DFU	version	0100

Device	returned	transfer	size	64

Copying	data	from	PC	to	DFU	device

Download				[=========================]	100%								16384	bytes

Download	done.

state(2)	=	dfuIDLE,	status(0)	=	No	error	condition	is	present

Done!

Debugging

Using		lsusb		command,	the	Pytrack/Pysense	device	should	be	visible	in	both	normal	and
bootloader	modes.

For	exemple,	a	Pytrack	board	is	visible	as	either:

	Bus	020	Device	004:	ID	04d8:f014	Microchip	Technology	Inc.	Application	Specific

Device	

this	is	bootloader	mode	(f014		is	USB	PID),	active	just	for	7-8	seconds,	if	the	reset
button	was	just	pressed	before	plugging	USB	connector.

	Bus	020	Device	005:	ID	04d8:f013	Microchip	Technology	Inc.	Pytrack	Serial:	Pyabcde0	

this	is	normal,	application	mode	(f013		is	USB	PID),	this	means	the	bootloader
verified	application	partition	and	it	boot-up	correctly.

3.2.1	Updating	Firmware

129

Windows	7	Drivers
Pytrack	and	Pysense	will	work	out	of	the	box	for	Windows	8/10/+,	macOS	as	well	as	Linux.
If	using	Windows	7,	drivers	to	support	the	boards	will	need	to	be	installed.

Please	follow	the	instructions	below	to	install	the	required	drivers.

Download

Please	download	the	driver	software	from	the	link	below.

Pytrack/Pysense/Pyscan/Expansion	board	3	Driver

Installation

First	navigate	open	the	Windows	start	menu	and	search/navigate	to		Device	Manager	.	You
should	see	your	Pytrack/Pysense	in	the	dropdown	under	other	devices.

Right	click	the	device	and	select		Update	Driver	Software	.

3.2.2	Installing	Drivers	-	Windows	7

130

Select	the	option	to	Browse	my	computer	for	driver	software.

Next	you	will	need	to	navigate	to	where	you	downloaded	the	driver	to	(e.g.	Downloads
Folder).

3.2.2	Installing	Drivers	-	Windows	7

131

Specify	the	folder	in	which	the	drivers	are	contained.	If	you	haven't	extracted	the		.zip		file,
please	do	this	before	selecting	the	folder.

You	may	receive	a	warning,	suggesting	that	windows	can't	verify	the	publisher	of	this	driver.
Click		Install	this	driver	software	anyway		as	this	link	points	to	our	official	driver.

3.2.2	Installing	Drivers	-	Windows	7

132

If	the	installation	was	successful,	you	should	now	see	a	window	specifying	that	the	driver
was	correctly	installed.

To	confirm	that	the	installation	was	correct,	navigate	back	to	the		Device	Manager		and	click
the	dropdown	for	other	devices.	The	warning	label	should	now	be	gone	and
Pytrack/Pysense	should	be	installed.

3.2.2	Installing	Drivers	-	Windows	7

133

3.2.2	Installing	Drivers	-	Windows	7

134

Installing	Libraries
To	utilise	the	sensors	on	the	Pytrack	and	Pysense,	Pycom	has	written	libraries	to	make
reading	to/from	the	various	sensors	accessible	via	an	API.	These	libraries	reside	at	the
Pycom	GitHub	repository	and	the	latest	versions	can	be	found	under	the	releases	page.

GitHub	Repository

Download	the	repository	as	a		.zip		file,	navigate	to	the	correct	device	(Pysense/Pytrack),
extract	the	files	and	then	upload	the	desired	files	to	the	device	in	the	instructions	below.

Uploading	the	Libraries	to	a	Device

These	libraries	should	be	uploaded	to	a	device	(LoPy,	SiPy,	WiPy	2.0,	etc.)	in	the	same
process	as	a	standard	MicroPython	library.	The	various		.py		files	should	be	placed	into	the
	/lib		folder	on	the	device.	For	example,	if	using	the	Pysense	and	the	user	wishes	to	enable
the	only	Accelerometer	and	the	Light	Sensor,	they	should	place	the	following		.py		files	into
the	device's		/lib		folder:

-	pysense.py

-	LIS2HH12.py

-	LTR329ALS01.py

Add	as	many	or	as	few	of	the	libraries	that	are	required.

In	addition	to	the	Pysense	or	Pytrack	specific	libraries,	you	also	need	to	upload	the
	pycoproc.py		file	from	the		_lib/pycoproc_		folder	inside	the	libraries	archive.

The	Pytrack	and	Pysense	boards	behave	the	same	as	the	Expansion	Board.		Upload	,
	Run		and	upload	code	to	Pycom	modules	via	the	Pymakr	Plugin,	in	exactly	the	same
process.

Importing/Using	the	Libraries

Once	the	libraries	are	uploaded	to	the	device,	they	can	be	used/imported	as	a	typical
MicroPython	library	would	be.	For	example,	importing	and	using	the	light	sensor	on	the
Pysense:

3.2.3	Installing	Libraries

135

https://github.com/pycom/pycom-libraries

from	pysense	import	Pysense

from	LTR329ALS01	import	LTR329ALS01

py	=	Pysense()

lt	=	LTR329ALS01(py)

print(lt.light())

3.2.3	Installing	Libraries

136

API	Reference
To	simplify	usability,	APIs	for	the	libraries	have	been	created,	abstracting	away	the	low	level
interactions	with	the	sensors.	The	next	following	pages	refer	to	the	respective	libraries	for
the	Pytrack	and	Pysense.

3.3	API	Reference

137

Pytrack	API
This	chapter	describes	the	various	libraries	which	are	designed	for	the	Pytrack	board.	This
includes	details	about	the	various	methods	and	classes	available	for	each	of	the	Pytrack’s
sensors.

3-Axis	Accelerometer	(LIS2HH12)

Pytrack	has	a	3-Axis	Accelerometer	that	provides	outputs	for	acceleration	as	well	as	roll,
pitch	and	yaw.

Constructors

class	LIS2HH12(pytrack	=	None,	sda	=	'P22',	scl	=	'P21')

Creates	a		LIS2HH12		object,	that	will	return	values	for	acceleration,	roll,	pitch	and	yaw.
Constructor	must	be	passed	a	Pytrack	or	I2C	object	to	successfully	construct.

Methods

LIS2HH12.acceleration()

Read	the	acceleration	from	the		LIS2HH12	.	Returns	a	tuple	with	the	3	values	of	acceleration
(G).

LIS2HH12.roll()

Read	the	current	roll	from	the		LIS2HH12	.	Returns	a	float	in	degrees	in	the	range	-180	to
180.

LIS2HH12.pitch()

Read	the	current	pitch	from	the		LIS2HH12	.	Returns	a	float	in	degrees	in	the	range	-90	to	90.
Once	the	board	tilts	beyond	this	range	the	values	will	repeat.	This	is	due	to	a	lack	of	yaw
measurement,	making	it	not	possible	to	know	the	exact	orientation	of	the	board.

GPS	with	GLONASS	(Quectel	L76-L	GNSS)

Pytrack	has	a	GPS	(with	GLONASS)	that	provides	outputs	longitude/latitude,	speed	and
other	information	about	the	Pytrack's	location.

3.3.1	Pytrack

138

Constructors

class	L76GNSS(pytrack	=	None,	sda	=	'P22',	scl	=	'P21',	timeout	=	None)

Creates	a		L76GNSS		object,	that	will	return	values	for	longitude	and	latitude.	Constructor	must
be	passed	a	Pytrack	or	I2C	object	to	successfully	construct.	Set	the		timeout		to	a	time
period	(in	seconds)	for	the	GPS	to	search	for	a	lock.	If	a	lock	is	not	found	by	the	time	the
	timeout		has	expired,	the		coordinates		method	will	return		(None,	None)	.

Methods

L76GNSS.coordinates(debug	=	False)

Read	the	longitude	and	latitude	from	the		L76GNSS	.	Returns	a	tuple	with	the	longitude	and
latitude.	With		debug		set	to		True		the	output	from	the	GPS	is	verbose.

Please	note	that	more	functionality	is	being	added	weekly	to	these	libraries.	If	a	required
feature	is	not	available,	feel	free	to	contribute	with	a	pull	request	at	the	Libraries	GitHub
repository

3.3.1	Pytrack

139

https://github.com/pycom/pycom-libraries

Pysense	API
This	chapter	describes	the	various	libraries	which	are	designed	for	the	Pysense	Board.	This
includes	details	about	the	various	methods	and	classes	available	for	each	of	the	Pysense’s
sensors.

3-Axis	Accelerometer	(LIS2HH12)

Pysense	has	a	3-Axis	Accelerometer	that	provides	outputs	for	acceleration	as	well	as	roll,
pitch	and	yaw.

Constructors

class	LIS2HH12(pysense	=	None,	sda	=	'P22',	scl	=	'P21')

Creates	a		LIS2HH12		object,	that	will	return	values	for	acceleration,	roll,	pitch	and	yaw.
Constructor	must	be	passed	a	Pysense	or	I2C	object	to	successfully	construct.

Methods

LIS2HH12.acceleration()

Read	the	acceleration	from	the		LIS2HH12	.	Returns	a	tuple	with	the	3	values	of	acceleration
(G).

LIS2HH12.roll()

Read	the	current	roll	from	the		LIS2HH12	.	Returns	a	float	in	degrees	in	the	range	-180	to
180.

LIS2HH12.pitch()

Read	the	current	pitch	from	the		LIS2HH12	.	Returns	a	float	in	degrees	in	the	range	-90	to	90.
Once	the	board	tilts	beyond	this	range	the	values	will	repeat.	This	is	due	to	a	lack	of	yaw
measurement,	making	it	not	possible	to	know	the	exact	orientation	of	the	board.

Digital	Ambient	Light	Sensor	(LTR-329ALS-01)

Pysense	has	a	dual	light	sensor	that	provides	outputs	for	external	light	levels	in	lux.	See	the
datasheet	for	more	information	about	the	wavelengths	of	the	two	sensors.

3.3.2	Pysense

140

Constructors

class	LTR329ALS01(pysense	=	None,	sda	=	'P22',	scl	=	'P21',	gain	=	ALS_GAIN_1X,
integration	=	ALS_INT_100,	rate	=	ALS_RATE_500)

Creates	a		LTR329ALS01		object,	that	will	return	values	for	light	in	lux.	Constructor	must	be
passed	a	Pysense	or	I2C	object	to	successfully	construct.

Methods

LTR329ALS01.light()

Read	the	light	levels	of	both		LTR329ALS01		sensors.	Returns	a	tuple	with	two	values	for	light
levels	in	lux.

Arguments

The	following	arguments	may	be	passed	into	the	constructor.

gain

ALS_GAIN_1X,	ALS_GAIN_2X,	ALS_GAIN_4X,	ALS_GAIN_8X,	ALS_GAIN_48X,
ALS_GAIN_96X
integration

ALS_INT_50,	ALS_INT_100,	ALS_INT_150,	ALS_INT_200,	ALS_INT_250,	ALS_INT_300,
ALS_INT_350,	ALS_INT_400
rate

ALS_RATE_50,	ALS_RATE_100,	ALS_RATE_200,	ALS_RATE_500,	ALS_RATE_1000,
ALS_RATE_2000

Humidity	and	Temperature	Sensor	(SI7006A20)

Pysense	has	a	Humidity	and	Temperature	sensor	that	provides	values	of	relative	humidity
and	external	temperature.

Constructors

class	SI7006A20(pysense	=	None,	sda	=	'P22',	scl	=	'P21')

Creates	a		SI7006A20		object,	that	will	return	values	for	humidity	(%)	and	temperature	('C).
Constructor	must	be	passed	a	Pysense	or	I2C	object	to	successfully	construct.

3.3.2	Pysense

141

Methods

SI7006A20.humidity()

Read	the	relative	humidity	of	the		SI7006A20	.	Returns	a	float	with	the	percentage	relative
humidity.

SI7006A20.temperature()

Read	the	external	temperature	of	the		SI7006A20	.	Returns	a	float	with	the	temperature.

Barometric	Pressure	Sensor	with	Altimeter	(MPL3115A2)

Pysense	has	a	Barometric	Pressure	sensor	that	provides	readings	for	pressure,	altitude	as
well	as	an	additional	temperature	sensor.

Constructors

class	MPL3115A2(pysense	=	None,	sda	=	'P22',	scl	=	'P21',	mode	=	PRESSURE)

Creates	a		MPL3115A2		object,	that	will	return	values	for	pressure	(Pa),	altitude	(m)	and
temperature	('C).	Constructor	must	be	passed	a	Pysense	or	I2C	object	to	successfully
construct.

Methods

MPL3115A2.pressure()

Read	the	atmospheric	pressure	of	the		MPL3115A2	.	Returns	a	float	with	the	pressure	in	(Pa).

MPL3115A2.altitude()

Read	the	altitude	of	the		MPL3115A2	.	Returns	a	float	with	the	altitude	in	(m).

MPL3115A2.temperature()

Read	the	temperature	of	the		MPL3115A2	.	Returns	a	float	with	the	temperature	in	('C).

Arguments

The	following	arguments	may	be	passed	into	the	constructor.

mode

3.3.2	Pysense

142

PRESSURE,	ALTITUDE

Please	note	that	more	functionality	is	being	added	weekly	to	these	libraries.	If	a	required
feature	is	not	available,	feel	free	to	contribute	with	a	pull	request	at	the	Libraries	GitHub
repository

3.3.2	Pysense

143

https://github.com/pycom/pycom-libraries

Sleep	and	Wakeup	for	Pytrack/Pysense
API
This	chapter	describes	the	various	methods	for	sleep	and	wakeup	which	are	embedded	in
Pytrack	and	Pysense	libraries.	Both	Pytrack	and	Pysense	have	the	same	methods,	although
the	appropriate	class,	either		pytrack		or		pysense	,	has	to	be	instantiated.

Quick	Usage	Example
The	following	example	is	also	available	at	Sleep	Wakeup	Example	Libraries	GitHub
repository

3.3.3	Sleep

144

https://github.com/pycom/pycom-libraries/blob/master/examples/accelerometer_wake/main.py

#from	pytrack	import	Pytrack

from	pysense	import	Pysense

from	LIS2HH12	import	LIS2HH12

import	time

#py	=	Pytrack()

py	=	Pysense()

#	display	the	reset	reason	code	and	the	sleep	remaining	in	seconds

#	possible	values	of	wakeup	reason	are:

#	WAKE_REASON_ACCELEROMETER	=	1

#	WAKE_REASON_PUSH_BUTTON	=	2

#	WAKE_REASON_TIMER	=	4

#	WAKE_REASON_INT_PIN	=	8

print("Wakeup	reason:	"	+	str(py.get_wake_reason()))

print("Approximate	sleep	remaining:	"	+	str(py.get_sleep_remaining())	+	"	sec")

time.sleep(0.5)

#	enable	wakeup	source	from	INT	pin

py.setup_int_pin_wake_up(False)

acc	=	LIS2HH12()

#	enable	activity	and	also	inactivity	interrupts,	using	the	default	callback	handler

py.setup_int_wake_up(True,	True)

#	set	the	acceleration	threshold	to	2000mG	(2G)	and	the	min	duration	to	200ms

acc.enable_activity_interrupt(2000,	200)

#	go	to	sleep	for	5	minutes	maximum	if	no	accelerometer	interrupt	happens

py.setup_sleep(300)

py.go_to_sleep()

Methods
pytrack.get_sleep_remaining()

In	the	event	of	a	sleep	session	that	was	awoken	by	an	asynchronous	event	(Accelerometer,
INT	pin	or	Reset	button)	the	approximate	sleep	remaining	interval	(expressed	in	seconds)
can	be	found	out.	The	user	has	to	manually	use		setup_sleep()		to	configure	the	next	sleep
interval.

pytrack.get_wake_reason()

Returns	the	last	wakeup	reason.	Possible	values	are:

3.3.3	Sleep

145

#	WAKE_REASON_ACCELEROMETER	=	1	#	Accelerometer	activity/inactivity	detection

#	WAKE_REASON_PUSH_BUTTON	=	2			#	Pytrack/Pysense	reset	buttom

#	WAKE_REASON_TIMER	=	4									#	Normal	timeout	of	the	sleep	interval

#	WAKE_REASON_INT_PIN	=	8							#	INT	pin

Note:	the		WAKE_REASON_INT_PIN		can	be	used	if	the	PIC_RC1	pin	(pin#6	on	External	IO
Header)	is	toggled.

As	in	the	above	example,	this	method	should	be	called	at	the	beginning	of	the	script,	to	find
out	the	reset	(wakeup)	reason.

pytrack.go_to_sleep([gps=True])

Puts	the	board	in	sleep	mode,	for	the	duration,	which	has	to	be	set	previously	with
	pytrack.setup_sleep(timout_sec)	.	The	optional	boolean	parameter	sets	the	GPS	state
during	sleep.

MicroPython	code,	which	is	after	this	function,	is	not	executed,	as	wakeup	will	restart
MicroPython.

pytrack.setup_int_wake_up(rising,	falling])

Enables	as	wakeup	source,	the	accelerometer	INT	pin	(PIC	-	RA5).	The	boolean	parameters
will	indicate	rising	edge	(activity	detection)	and/or	falling	edge	(inactivity	detection)	is
configured.

The	accelerometer	(class		LIS2HH12)	has	to	be	also	configured	for	a	certain	acceleration
threshold	and	duration.	Code	snippet:

from	pytrack	import	Pytrack

from	LIS2HH12	import	LIS2HH12

py	=	Pytrack()

acc	=	LIS2HH12()

#	enable	activity	and	also	inactivity	interrupts,	using	the	default	callback	handler

py.setup_int_wake_up(True,	True)

#	set	the	acceleration	threshold	to	2000mG	(2G)	and	the	min	duration	to	200ms

acc.enable_activity_interrupt(2000,	200)

pytrack.setup_int_pin_wake_up([rising_edge	=	True])

Enables	as	wakeup	source,	the	INT	pic	(PIC	-	RC1,	pin#6	on	External	IO	Header).	Either
rising	or	falling	edge	has	to	be	set,	by	default	it's	rising	edge.

3.3.3	Sleep

146

pytrack.setup_sleep(time_seconds)

Sets	the	sleep	interval,	specified	in	seconds.	The	actual	sleep	will	be	started	by	calling
	go_to_sleep()		method.

Please	note	that	more	functionality	is	being	added	weekly	to	these	libraries.	If	a	required
feature	is	not	available,	feel	free	to	contribute	with	a	pull	request	at	the	Libraries	GitHub
repository

3.3.3	Sleep

147

https://github.com/pycom/pycom-libraries

Tutorials	and	Examples
This	section	contains	tutorials	and	examples	for	use	with	Pycom	modules	and	Expansion
boards.

General	Pycom	tutorials	contains	tutorials	that	may	be	run	on	any	Pycom	device,	such	as
connecting	to	a	WiFi	network,	Bluetooth,	controlling	I/O	pins	etc.	Later	sections	are	specific
to	the	LoPy	and	SiPy	devices	such	as	setting	up	a	LoRa	node	or	connecting	to	the	Sigfox
network.	The	final	sections	are	related	to	examples	using	the	Pytrack	and	Pysense.

Before	starting,	ensure	that	any	Pycom	devices	are	running	the	latest	firmware;	for
instructions	see	Firmware	Updates.

The	source	code	for	these	tutorials,	along	with	the	required	libraries	can	be	found	in	in	the
pycom-libraries	repository.

4.1	Introduction

148

https://github.com/pycom/pycom-libraries

All	Pycom	Device	Examples
This	section	contains	generic	examples	that	will	work	across	all	Pycom	devices	and
Expansion	Boards.

4.2	All	Pycom	Device	Examples

149

Using	the	REPL	Prompt
Using	the	Pymakr	Plugin,	open	and	connect	a	device	or	use	serial	terminal	(PuTTY,	screen,
picocom,	etc).	Upon	connecting,	there	should	be	a	blank	screen	with	a	flashing	cursor.	Press
Enter	and	a	MicroPython	prompt	should	appear,	i.e.		>>>	.	Let’s	make	sure	it	is	working	with
the	obligatory	test:

>>>	print("Hello	LoPy!")

Hello	LoPy!

In	the	example	above,	the		>>>		characters	should	not	be	typed.	They	are	there	to	indicate
that	the	text	should	be	placed	after	the	prompt.	Once	the	text	has	been	entered
	print("Hello	LoPy!")		and	pressed		Enter	,	the	output	should	appear	on	screen,	identical	to
the	example	above.

Basic	Python	commands	can	be	tested	out	in	a	similar	fashion.

If	this	is	not	working,	try	either	a	hard	reset	or	a	soft	reset;	see	below.

Here	are	some	other	example,	utilising	the	device's	hardware	features:

>>>	from	machine	import	Pin

>>>	led	=	Pin('G16',	mode=Pin.OUT,	value=1)

>>>	led(0)

>>>	led(1)

>>>	led.toggle()

>>>	1	+	2

3

>>>	5	/	2

2.5

>>>	20	*	'py'

'py'

Resetting	the	Device

If	something	goes	wrong,	the	device	can	be	reset	with	two	methods.	The	first	is	to	press
	CTRL-D		at	the	MicroPython	prompt,	which	will	perform	a	soft	reset.	A	message,	as	following,
will	appear:

4.2.1	REPL

150

>>>

PYB:	soft	reboot

MicroPython	v1.4.6-146-g1d8b5e5	on	2016-10-21;	LoPy	with	ESP32

Type	"help()"	for	more	information.

>>>

If	that	still	isn’t	working	a	hard	reset	can	be	performed	(power-off/on)	by	pressing	the		RST	
switch	(the	small	black	button	next	to	the	RGB	LED).	Using	telnet,	this	will	end	the	session,
disconnecting	the	program	that	was	used	to	connect	to	the	Pycom	Device.

4.2.1	REPL

151

WLAN
The	WLAN	is	a	system	feature	of	all	Pycom	devices,	therefore	it	is	enabled	by	default.

In	order	to	retrieve	the	current	WLAN	instance,	run:

>>>	from	network	import	WLAN

>>>	wlan	=	WLAN()	#	we	call	the	constructor	without	params

The	current	mode	(WLAN.AP		after	power	up)	may	be	checked	by	running:

>>>	wlan.mode()

When	changing	the	WLAN	mode,	if	following	the	instructions	below,	the	WLAN
connection	to	the	Pycom	device	will	be	broken.	This	means	commands	will	not	run
interactively	over	WiFi.

There	are	two	ways	around	this:

1.	 Put	this	setup	code	into	the		boot.py		file	of	the	Pycom	device	so	that	it	gets
executed	automatically	after	reset.

2.	 Duplicate	the	REPL	on	UART.	This	way	commands	can	be	run	via	Serial	USB.

Connecting	to	a	Router

The	WLAN	network	class	always	boots	in		WLAN.AP		mode;	to	connect	it	to	an	existing
network,	the	WiFi	class	must	be	configured	as	a	station:

from	network	import	WLAN

wlan	=	WLAN(mode=WLAN.STA)

Now	the	device	may	proceed	to	scan	for	networks:

4.2.2	WLAN

152

nets	=	wlan.scan()

for	net	in	nets:

				if	net.ssid	==	'mywifi':

								print('Network	found!')

								wlan.connect(net.ssid,	auth=(net.sec,	'mywifikey'),	timeout=5000)

								while	not	wlan.isconnected():

												machine.idle()	#	save	power	while	waiting

								print('WLAN	connection	succeeded!')

								break

Assigning	a	Static	IP	Address	at	Boot	Up

If	the	users	wants	their	device	to	connect	to	a	home	router	upon	boot	up,	using	with	a	fixed
IP	address,	use	the	following	script	as		/flash/boot.py	:

import	machine

from	network	import	WLAN

wlan	=	WLAN()	#	get	current	object,	without	changing	the	mode

if	machine.reset_cause()	!=	machine.SOFT_RESET:

				wlan.init(mode=WLAN.STA)

				#	configuration	below	MUST	match	your	home	router	settings!!

				wlan.ifconfig(config=('192.168.178.107',	'255.255.255.0',	'192.168.178.1',	'8.8.8.

8'))

if	not	wlan.isconnected():

				#	change	the	line	below	to	match	your	network	ssid,	security	and	password

				wlan.connect('mywifi',	auth=(WLAN.WPA2,	'mywifikey'),	timeout=5000)

				while	not	wlan.isconnected():

								machine.idle()	#	save	power	while	waiting

Notice	how	we	check	for	the	reset	cause	and	the	connection	status,	this	is	crucial	in
order	to	be	able	to	soft	reset	the	LoPy	during	a	telnet	session	without	breaking	the
connection.

Multiple	Networks	using	a	Static	IP	Address

The	following	script	holds	a	list	with	nets	and	an	optional	list	of		wlan_config		to	set	a	fixed	IP

4.2.2	WLAN

153

import	os

import	machine

uart	=	machine.UART(0,	115200)

os.dupterm(uart)

known_nets	=	{

				'<net>':	{'pwd':	'<password>'},

				'<net>':	{'pwd':	'<password>',	'wlan_config':		('10.0.0.114',	'255.255.0.0',	'10.0

.0.1',	'10.0.0.1')},	#	(ip,	subnet_mask,	gateway,	DNS_server)

}

if	machine.reset_cause()	!=	machine.SOFT_RESET:

				from	network	import	WLAN

				wl	=	WLAN()

				wl.mode(WLAN.STA)

				original_ssid	=	wl.ssid()

				original_auth	=	wl.auth()

				print("Scanning	for	known	wifi	nets")

				available_nets	=	wl.scan()

				nets	=	frozenset([e.ssid	for	e	in	available_nets])

				known_nets_names	=	frozenset([key	for	key	in	known_nets])

				net_to_use	=	list(nets	&	known_nets_names)

				try:

								net_to_use	=	net_to_use[0]

								net_properties	=	known_nets[net_to_use]

								pwd	=	net_properties['pwd']

								sec	=	[e.sec	for	e	in	available_nets	if	e.ssid	==	net_to_use][0]

								if	'wlan_config'	in	net_properties:

												wl.ifconfig(config=net_properties['wlan_config'])

								wl.connect(net_to_use,	(sec,	pwd),	timeout=10000)

								while	not	wl.isconnected():

												machine.idle()	#	save	power	while	waiting

								print("Connected	to	"+net_to_use+"	with	IP	address:"	+	wl.ifconfig()[0])

				except	Exception	as	e:

								print("Failed	to	connect	to	any	known	network,	going	into	AP	mode")

								wl.init(mode=WLAN.AP,	ssid=original_ssid,	auth=original_auth,	channel=6,	anten

na=WLAN.INT_ANT)

Connecting	to	a	WPA2-Enterprise	network

Connecting	with	EAP-TLS:

Before	connecting,	obtain	and	copy	the	public	and	private	keys	to	the	device,	e.g.	under
location		/flash/cert	.	If	it	is	required	to	validate	the	server’s	public	key,	an	appropriate	CA
certificate	(chain)	must	also	be	provided.

4.2.2	WLAN

154

from	network	import	WLAN

wlan	=	WLAN(mode=WLAN.STA)

wlan.connect(ssid='mywifi',	auth=(WLAN.WPA2_ENT,),	identity='myidentity',	ca_certs='/f

lash/cert/ca.pem',	keyfile='/flash/cert/client.key',	certfile='/flash/cert/client.crt'

)

Connecting	with	EAP-PEAP	or	EAP-TTLS:

In	case	of	EAP-PEAP	(or	EAP-TTLS),	the	client	key	and	certificate	are	not	necessary,	only	a
username	and	password	pair.	If	it	is	required	to	validate	the	server’s	public	key,	an
appropriate	CA	certificate	(chain)	must	also	be	provided.

from	network	import	WLAN

wlan	=	WLAN(mode=WLAN.STA)

wlan.connect(ssid='mywifi',	auth=(WLAN.WPA2_ENT,	'username',	'password'),	identity='my

identity',	ca_certs='/flash/cert/ca.pem')

4.2.2	WLAN

155

Bluetooth
At	present,	basic	BLE	functionality	is	available.	More	features	will	be	implemented	in	the
near	future,	such	as	pairing.	This	page	will	be	updated	in	line	with	these	features.

Full	info	on		bluetooth		can	be	found	within	Bluetooth	page	of	the	Firmware	API	Reference.

Scan	for	BLE	Devices

Scan	for	all	of	the	advertising	devices	within	range	of	the	scanning	device.

bluetooth.start_scan(10)		#	starts	scanning	and	stop	after	10	seconds

bluetooth.start_scan(-1)		#	starts	scanning	indefinitely	until	bluetooth.stop_scan()	i

s	called

Raw	Data	from	a	BLE	Device

A	quick	usage	example	that	scans	and	prints	the	raw	data	from	advertisements.

from	network	import	Bluetooth

bluetooth	=	Bluetooth()

bluetooth.start_scan(-1)				#	start	scanning	with	no	timeout

while	True:

				print(bluetooth.get_adv())

Connect	to	a	BLE	Device

Connecting	to	a	device	that	is	sending	advertisements.

4.2.3	Bluetooth

156

from	network	import	Bluetooth

import	ubinascii

bluetooth	=	Bluetooth()

#	scan	until	we	can	connect	to	any	BLE	device	around

bluetooth.start_scan(-1)

adv	=	None

while	True:

				adv	=	bluetooth.get_adv()

				if	adv:

								try:

												bluetooth.connect(adv.mac)

								except:

												#	start	scanning	again

												bluetooth.start_scan(-1)

												continue

								break

print("Connected	to	device	with	addr	=	{}".format(ubinascii.hexlify(adv.mac)))

Connect	to	a	BLE	Device	and	Retrieve	Data

Connecting	to	a	device	named	'Heart	Rate'	and	receiving	data	from	it’s	services.

4.2.3	Bluetooth

157

from	network	import	Bluetooth

import	time

bt	=	Bluetooth()

bt.start_scan(-1)

while	True:

		adv	=	bt.get_adv()

		if	adv	and	bt.resolve_adv_data(adv.data,	Bluetooth.ADV_NAME_CMPL)	==	'Heart	Rate':

						try:

										conn	=	bt.connect(adv.mac)

										services	=	conn.services()

										for	service	in	services:

														time.sleep(0.050)

														if	type(service.uuid())	==	bytes:

																		print('Reading	chars	from	service	=	{}'.format(service.uuid()))

														else:

																		print('Reading	chars	from	service	=	%x'	%	service.uuid())

														chars	=	service.characteristics()

														for	char	in	chars:

																		if	(char.properties()	&	Bluetooth.PROP_READ):

																						print('char	{}	value	=	{}'.format(char.uuid(),	char.read()))

										conn.disconnect()

										break

						except:

										pass

		else:

						time.sleep(0.050)

Retrieve	the	Name	&	Manufacturer	from	a	BLE	Device

Using		resolve_adv_data()		to	attempt	to	retrieve	the	name	and	manufacturer	data	from	the
advertiser.

4.2.3	Bluetooth

158

import	ubinascii

from	network	import	Bluetooth

bluetooth	=	Bluetooth()

bluetooth.start_scan(20)

while	bluetooth.isscanning():

				adv	=	bluetooth.get_adv()

				if	adv:

								#	try	to	get	the	complete	name

								print(bluetooth.resolve_adv_data(adv.data,	Bluetooth.ADV_NAME_CMPL))

								mfg_data	=	bluetooth.resolve_adv_data(adv.data,	Bluetooth.ADV_MANUFACTURER_DAT

A)

								if	mfg_data:

												#	try	to	get	the	manufacturer	data	(Apple's	iBeacon	data	is	sent	here)

												print(ubinascii.hexlify(mfg_data))

4.2.3	Bluetooth

159

HTTPS
Basic	connection	using		ssl.wrap_socket()	.

import	socket

import	ssl

s	=	socket.socket()

ss	=	ssl.wrap_socket(s)

ss.connect(socket.getaddrinfo('www.google.com',	443)[0][-1])

Below	is	an	example	using	certificates	with	the	blynk	cloud.

Certificate	was	downloaded	from	the	blynk	examples	folder	and	placed	in		/flash/cert/		on
the	device.

import	socket

import	ssl

s	=	socket.socket()

ss	=	ssl.wrap_socket(s,	cert_reqs=ssl.CERT_REQUIRED,	ca_certs='/flash/cert/ca.pem')

ss.connect(socket.getaddrinfo('cloud.blynk.cc',	8441)[0][-1])

For	more	info,	check	the		ssl		module	in	the	API	reference.

4.2.4	HTTPS

160

https://github.com/wipy/wipy/tree/master/examples/blynk
https://docs.pycom.io/chapter/firmwareapi/micropython/ussl.html

MQTT
MQTT	is	a	lightweight	messaging	protocol	that	is	ideal	for	sending	small	packets	of	data	to
and	from	IoT	devices	via	WiFi.

The	broker	used	in	this	example	is	the	IO	Adafruit)	platform,	which	is	free	and	allows	for
tinkering	with	MQTT.

Visit	IO	Adafruit	and	create	an	account.	You'll	need	to	get	hold	of	an	API	Key	as	well	as	your
credentials.	Visit	this	guide	for	more	information	about	MQTT	and	how	to	use	it	with
Adafruit's	Broker.

This	example	will	send	a	message	to	a	topic	on	the	Adafruit	MQTT	broker	and	then	also
subscribe	to	the	same	topic,	in	order	to	show	how	to	use	the	subscribe	functionality.

from	mqtt	import	MQTTClient

from	network	import	WLAN

import	machine

import	time

def	sub_cb(topic,	msg):

			print(msg)

wlan	=	WLAN(mode=WLAN.STA)

wlan.connect("yourwifinetwork",	auth=(WLAN.WPA2,	"wifipassword"),	timeout=5000)

while	not	wlan.isconnected():		

				machine.idle()

print("Connected	to	WiFi\n")

client	=	MQTTClient("device_id",	"io.adafruit.com",user="your_username",	password="you

r_api_key",	port=1883)

client.set_callback(sub_cb)

client.connect()

client.subscribe(topic="youraccount/feeds/lights")

while	True:

				print("Sending	ON")

				client.publish(topic="youraccount/feeds/lights",	msg="ON")

				time.sleep(1)

				print("Sending	OFF")

				client.publish(topic="youraccount/feeds/lights",	msg="OFF")

				client.check_msg()

				time.sleep(1)

4.2.5	MQTT

161

https://io.adafruit.com
https://learn.adafruit.com/adafruit-io/mqtt-api

4.2.5	MQTT

162

Amazon	Web	Services
The	AWS	IoT	platform	enables	devices	to	connect	to	the	Amazon	cloud	and	lets	applications
in	the	cloud	interact	with	Internet-connected	things.	Common	IoT	applications	either	collect
and	process	telemetry	from	devices	or	enable	users	to	control	a	device	remotely.	Things
report	their	state	by	publishing	messages,	in	JSON	format,	on	MQTT	topics.

For	more	information	see	this	PDF	File.

Getting	Started	with	AWS	IoT

Creating	the	message	broker	(Amazon	website):

Sign	in	to	the	AWS	Management	Console
Navigate	to	the	IoT	Console	by	clicking	on	the	AWS	IoT	link
In	the	left	navigation	pane,	choose	Register/Manage
Click	on	the	create	button,	give	your	device	a	name	and	press	create
Click	on	the	device	that	has	been	created
On	the	Details	page,	in	the	left	navigation	pane,	choose	Security
On	the	Certificates	page,	choose	Create	certificate
Download	all	the	certificates,	then	press	the	Activate	and	the	Attach	a	Policy	buttons.
See	image
Click	on	the	Create	New	Policy	button
On	the	Create	Policy	page,	choose	a	policy	name	and	the	actions	to	authorise.
Go	to	the	certificates	page,	click	on	the	three	dots	of	your	certificate	and	attach	the
policy	to	the	certificate	as	shown	in	the	diagram

Setting	up	the	device	(Pycom	device):

Download	the	latest	sample	code	from	the	Pycom	GitHub	Repository.
Connect	to	the	device	via	FTP	and	put	the	root	CA	certificate,	the	client	certificate
(*.pem.crt)	and	the	private	key	(*.private.pem.key)	in	the		/flash/cert		folder.
Update	the	config	file	with	your	WiFi	settings,	the	AWS	Host	and	the	certificate	paths.
Put	the		config.py		and	the		main.py		in	the	device	flash

Configuration	(config.py):

4.2.6	AWS

163

http://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf
https://aws.amazon.com/console/
https://github.com/pycom/aws-pycom

This	file	contains	the	WiFi,	certificate	paths	and	application	specific	settings	that	need	to	be
updated	by	the	user.

#	WiFi	configuration

WIFI_SSID	=	'my_wifi_ssid'

WIFI_PASS	=	'my_wifi_password'

#	AWS	general	configuration

AWS_PORT	=	8883

AWS_HOST	=	'aws_host_url'

AWS_ROOT_CA	=	'/flash/cert/aws_root.ca'

AWS_CLIENT_CERT	=	'/flash/cert/aws_client.cert'

AWS_PRIVATE_KEY	=	'/flash/cert/aws_private.key'

##################	Subscribe	/	Publish	client	#################

CLIENT_ID	=	'PycomPublishClient'

TOPIC	=	'PublishTopic'

OFFLINE_QUEUE_SIZE	=	-1

DRAINING_FREQ	=	2

CONN_DISCONN_TIMEOUT	=	10

MQTT_OPER_TIMEOUT	=	5

LAST_WILL_TOPIC	=	'PublishTopic'

LAST_WILL_MSG	=	'To	All:	Last	will	message'

#######################	Shadow	updater	########################

#THING_NAME	=	"my	thing	name"

#CLIENT_ID	=	"ShadowUpdater"

#CONN_DISCONN_TIMEOUT	=	10

#MQTT_OPER_TIMEOUT	=	5

#######################	Delta	Listener	########################

#THING_NAME	=	"my	thing	name"

#CLIENT_ID	=	"DeltaListener"

#CONN_DISCONN_TIMEOUT	=	10

#MQTT_OPER_TIMEOUT	=	5

#######################	Shadow	Echo	########################

#THING_NAME	=	"my	thing	name"

#CLIENT_ID	=	"ShadowEcho"

#CONN_DISCONN_TIMEOUT	=	10

#MQTT_OPER_TIMEOUT	=	5

Subscibe	/	Publish	(main.py)

To	subscribe	to	a	topic:

Go	to	the	AWS	Iot	page,	click	on	manage	and	choose	your	device
From	the	left	hand	side,	choose	Activity	and	then	click	MQTT	client.
Choose	the	topic	name	you	entered	in	the	configuration	file.

4.2.6	AWS

164

Messages	should	be	published	as	shown	in	the	diagram

#	user	specified	callback	function

def	customCallback(client,	userdata,	message):

				print("Received	a	new	message:	")

				print(message.payload)

				print("from	topic:	")

				print(message.topic)

				print("--------------\n\n")

#	configure	the	MQTT	client

pycomAwsMQTTClient	=	AWSIoTMQTTClient(config.CLIENT_ID)

pycomAwsMQTTClient.configureEndpoint(config.AWS_HOST,	config.AWS_PORT)

pycomAwsMQTTClient.configureCredentials(config.AWS_ROOT_CA,	config.AWS_PRIVATE_KEY,	co

nfig.AWS_CLIENT_CERT)

pycomAwsMQTTClient.configureOfflinePublishQueueing(config.OFFLINE_QUEUE_SIZE)

pycomAwsMQTTClient.configureDrainingFrequency(config.DRAINING_FREQ)

pycomAwsMQTTClient.configureConnectDisconnectTimeout(config.CONN_DISCONN_TIMEOUT)

pycomAwsMQTTClient.configureMQTTOperationTimeout(config.MQTT_OPER_TIMEOUT)

pycomAwsMQTTClient.configureLastWill(config.LAST_WILL_TOPIC,	config.LAST_WILL_MSG,	1)

#Connect	to	MQTT	Host

if	pycomAwsMQTTClient.connect():

				print('AWS	connection	succeeded')

#	Subscribe	to	topic

pycomAwsMQTTClient.subscribe(config.TOPIC,	1,	customCallback)

time.sleep(2)

#	Send	message	to	host

loopCount	=	0

while	loopCount	<	8:

				pycomAwsMQTTClient.publish(config.TOPIC,	"New	Message	"	+	str(loopCount),	1)

				loopCount	+=	1

				time.sleep(5.0)

Shadow	updater	(main.py)

4.2.6	AWS

165

#	user	specified	callback	functions

def	customShadowCallback_Update(payload,	responseStatus,	token):

				if	responseStatus	==	"timeout":

								print("Update	request	"	+	token	+	"	time	out!")

				if	responseStatus	==	"accepted":

								payloadDict	=	json.loads(payload)

								print("Update	request	with	token:	"	+	token	+	"	accepted!")

								print("property:	"	+	str(payloadDict["state"]["desired"]["property"]))

				if	responseStatus	==	"rejected":

								print("Update	request	"	+	token	+	"	rejected!")

def	customShadowCallback_Delete(payload,	responseStatus,	token):

				if	responseStatus	==	"timeout":

								print("Delete	request	"	+	token	+	"	time	out!")

				if	responseStatus	==	"accepted":

								print("Delete	request	with	token:	"	+	token	+	"	accepted!")

				if	responseStatus	==	"rejected":

								print("Delete	request	"	+	token	+	"	rejected!")

#	configure	the	MQTT	client

pycomAwsMQTTShadowClient	=	AWSIoTMQTTShadowClient(config.CLIENT_ID)

pycomAwsMQTTShadowClient.configureEndpoint(config.AWS_HOST,	config.AWS_PORT)

pycomAwsMQTTShadowClient.configureCredentials(config.AWS_ROOT_CA,	config.AWS_PRIVATE_K

EY,	config.AWS_CLIENT_CERT)

pycomAwsMQTTShadowClient.configureConnectDisconnectTimeout(config.CONN_DISCONN_TIMEOUT

)

pycomAwsMQTTShadowClient.configureMQTTOperationTimeout(config.MQTT_OPER_TIMEOUT)

#	Connect	to	MQTT	Host

if	pycomAwsMQTTShadowClient.connect():

				print('AWS	connection	succeeded')

deviceShadowHandler	=	pycomAwsMQTTShadowClient.createShadowHandlerWithName(config.THIN

G_NAME,	True)

#	Delete	shadow	JSON	doc

deviceShadowHandler.shadowDelete(customShadowCallback_Delete,	5)

#	Update	shadow	in	a	loop

loopCount	=	0

while	True:

				JSONPayload	=	'{"state":{"desired":{"property":'	+	str(loopCount)	+	'}}}'

				deviceShadowHandler.shadowUpdate(JSONPayload,	customShadowCallback_Update,	5)

				loopCount	+=	1

				time.sleep(5)

Delta	Listener	(main.py)

4.2.6	AWS

166

#	Custom	Shadow	callback

def	customShadowCallback_Delta(payload,	responseStatus,	token):

				payloadDict	=	json.loads(payload)

				print("property:	"	+	str(payloadDict["state"]["property"]))

				print("version:	"	+	str(payloadDict["version"]))

				#	configure	the	MQTT	client

pycomAwsMQTTShadowClient	=	AWSIoTMQTTShadowClient(config.CLIENT_ID)

pycomAwsMQTTShadowClient.configureEndpoint(config.AWS_HOST,	config.AWS_PORT)

pycomAwsMQTTShadowClient.configureCredentials(config.AWS_ROOT_CA,	config.AWS_PRIVATE_K

EY,	config.AWS_CLIENT_CERT)

pycomAwsMQTTShadowClient.configureConnectDisconnectTimeout(config.CONN_DISCONN_TIMEOUT

)

pycomAwsMQTTShadowClient.configureMQTTOperationTimeout(config.MQTT_OPER_TIMEOUT)

#	Connect	to	MQTT	Host

if	pycomAwsMQTTShadowClient.connect():

				print('AWS	connection	succeeded')

deviceShadowHandler	=	pycomAwsMQTTShadowClient.createShadowHandlerWithName(config.THIN

G_NAME,	True)

#	Listen	on	deltas

deviceShadowHandler.shadowRegisterDeltaCallback(customShadowCallback_Delta)

#	Loop	forever

while	True:

				time.sleep(1)

4.2.6	AWS

167

ADC
This	example	is	a	simple	ADC	sample.	For	more	information	please	see		ADC	.

from	machine	import	ADC

adc	=	ADC(0)

adc_c	=	adc.channel(pin='P13')

adc_c()

adc_c.value()

Calibration
Currently	the	ESP32's	ADC	is	not	calibrated	from	the	factory.	This	means	it	must	be
calibrated	each	time	you	wish	to	use	it.	To	do	this	you	must	firstly	measure	the	internal
voltage	reference.	The	following	code	will	connect	the	1.1v	reference	to		P22	

from	machine	import	ADC

adc	=	ADC()

#	Output	Vref	of	P22

adc.vref_to_pin('P22')

Now	that	the	voltage	reference	is	externally	accessible	you	should	measure	it	with	the	most
accurate	voltmeter	you	have	access	to.	Note	down	the	reading	in	millivolts,	e.g.		1120	.	To
disconnect	the	1.1v	reference	from		P22		please	reset	your	module.	You	can	now	calibrate
the	ADC	by	telling	it	the	true	value	of	the	internal	reference.	You	should	then	check	your
calibration	by	connecting	the	ADC	to	a	known	voltage	source.

#	Set	calibration	-	see	note	above

adc.vref(1100)

#	Check	calibration	by	reading	a	known	voltage

adc_c	=	adc.channel(pin='P16',	attn=ADC.ATTN_11DB)

print(adc_c.voltage())

4.2.7	ADC

168

I2C
The	following	example	receives	data	from	a	light	sensor	using	I2C.	Sensor	used	is	the
BH1750FVI	Digital	Light	Sensor.

import	time

from	machine	import	I2C

import	bh1750fvi

i2c	=	I2C(0,	I2C.MASTER,	baudrate=100000)

light_sensor	=	bh1750fvi.BH1750FVI(i2c,	addr=i2c.scan()[0])

while(True):

								data	=	light_sensor.read()

								print(data)

				time.sleep(1)

Drivers	for	the	BH1750FVI

Place	this	sample	code	into	a	file	named		bh1750fvi.py	.	This	can	then	be	imported	as	a
library.

#	Simple	driver	for	the	BH1750FVI	digital	light	sensor

class	BH1750FVI:

				MEASUREMENT_TIME	=	const(120)

				def	__init__(self,	i2c,	addr=0x23,	period=150):

								self.i2c	=	i2c

								self.period	=	period

								self.addr	=	addr

								self.time	=	0

								self.value	=	0

								self.i2c.writeto(addr,	bytes([0x10]))	#	start	continuos	1	Lux	readings	every	1

20ms

				def	read(self):

								self.time	+=	self.period

								if	self.time	>=	MEASUREMENT_TIME:

												self.time	=	0

												data	=	self.i2c.readfrom(self.addr,	2)

												self.value	=	(((data[0]	<<	8)	+	data[1])	*	1200)	//	1000

								return	self.value

4.2.8	I2C

169

Light	sensor	and	LoRa

This	is	the	same	code,	with	added	LoRa	connectivity,	sending	the	lux	value	from	the	light
sensor	to	another	LoRa	enabled	device.

import	socket

import	time

import	pycom

import	struct

from	network	import	LoRa

from	machine	import	I2C

import	bh1750fvi

LORA_PKG_FORMAT	=	"!BH"

LORA_CONFIRM_FORMAT	=	"!BB"

DEVICE_ID	=	1

pycom.heartbeat(False)

lora	=	LoRa(mode=LoRa.LORA,	tx_iq=True,	region=LoRa.EU868)

lora_sock	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

lora_sock.setblocking(False)

i2c	=	I2C(0,	I2C.MASTER,	baudrate=100000)

light_sensor	=	bh1750fvi.BH1750FVI(i2c,	addr=i2c.scan()[0])

while(True):

				msg	=	struct.pack(LORA_PKG_FORMAT,	DEVICE_ID,	light_sensor.read())

				lora_sock.send(msg)

				pycom.rgbled(0x150000)

				wait	=	5

				while	(wait	>	0):

								wait	=	wait	-	0.1

								time.sleep(0.1)

								recv_data	=	lora_sock.recv(64)

								if	(len	(recv_data)	>=	2):

												status,	device_id	=	struct.unpack(LORA_CONFIRM_FORMAT,	recv_data)

												if	(device_id	==	DEVICE_ID	and	status	==	200):

																pycom.rgbled(0x001500)

																wait	=	0

				time.sleep(1)

4.2.8	I2C

170

4.2.8	I2C

171

Onewire	Driver
This	tutorial	explains	how	to	connect	and	read	data	from	a	DS18x20	temperature	sensor.
The	onewire	library	is	also	available	at	the	pycom-libraries	GitHub	Repository.

Basic	usage

import	time

from	machine	import	Pin

from	onewire	import	DS18X20

from	onewire	import	OneWire

#	DS18B20	data	line	connected	to	pin	P10

ow	=	OneWire(Pin('P10'))

temp	=	DS18X20(ow)

while	True:

				print(temp.read_temp_async())

				time.sleep(1)

				temp.start_conversion()

				time.sleep(1)

Library

#!/usr/bin/env	python3

"""

OneWire	library	for	MicroPython

"""

import	time

import	machine

class	OneWire:

				CMD_SEARCHROM	=	const(0xf0)

				CMD_READROM	=	const(0x33)

				CMD_MATCHROM	=	const(0x55)

				CMD_SKIPROM	=	const(0xcc)

				def	__init__(self,	pin):

								self.pin	=	pin

								self.pin.init(pin.OPEN_DRAIN,	pin.PULL_UP)

				def	reset(self):

								"""

4.2.9	Onewire	Driver

172

https://github.com/pycom/pycom-libraries/tree/master/lib/onewire

								Perform	the	onewire	reset	function.

								Returns	True	if	a	device	asserted	a	presence	pulse,	False	otherwise.

								"""

								sleep_us	=	time.sleep_us

								disable_irq	=	machine.disable_irq

								enable_irq	=	machine.enable_irq

								pin	=	self.pin

								pin(0)

								sleep_us(480)

								i	=	disable_irq()

								pin(1)

								sleep_us(60)

								status	=	not	pin()

								enable_irq(i)

								sleep_us(420)

								return	status

				def	read_bit(self):

								sleep_us	=	time.sleep_us

								enable_irq	=	machine.enable_irq

								pin	=	self.pin

								pin(1)	#	half	of	the	devices	don't	match	CRC	without	this	line

								i	=	machine.disable_irq()

								pin(0)

								sleep_us(1)

								pin(1)

								sleep_us(1)

								value	=	pin()

								enable_irq(i)

								sleep_us(40)

								return	value

				def	read_byte(self):

								value	=	0

								for	i	in	range(8):

												value	|=	self.read_bit()	<<	i

								return	value

				def	read_bytes(self,	count):

								buf	=	bytearray(count)

								for	i	in	range(count):

												buf[i]	=	self.read_byte()

								return	buf

				def	write_bit(self,	value):

								sleep_us	=	time.sleep_us

								pin	=	self.pin

								i	=	machine.disable_irq()

								pin(0)

								sleep_us(1)

4.2.9	Onewire	Driver

173

								pin(value)

								sleep_us(60)

								pin(1)

								sleep_us(1)

								machine.enable_irq(i)

				def	write_byte(self,	value):

								for	i	in	range(8):

												self.write_bit(value	&	1)

												value	>>=	1

				def	write_bytes(self,	buf):

								for	b	in	buf:

												self.write_byte(b)

				def	select_rom(self,	rom):

								"""

								Select	a	specific	device	to	talk	to.	Pass	in	rom	as	a	bytearray	(8	bytes).

								"""

								self.reset()

								self.write_byte(CMD_MATCHROM)

								self.write_bytes(rom)

				def	crc8(self,	data):

								"""

								Compute	CRC

								"""

								crc	=	0

								for	i	in	range(len(data)):

												byte	=	data[i]

												for	b	in	range(8):

																fb_bit	=	(crc	^	byte)	&	0x01

																if	fb_bit	==	0x01:

																				crc	=	crc	^	0x18

																crc	=	(crc	>>	1)	&	0x7f

																if	fb_bit	==	0x01:

																				crc	=	crc	|	0x80

																byte	=	byte	>>	1

								return	crc

				def	scan(self):

								"""

								Return	a	list	of	ROMs	for	all	attached	devices.

								Each	ROM	is	returned	as	a	bytes	object	of	8	bytes.

								"""

								devices	=	[]

								diff	=	65

								rom	=	False

								for	i	in	range(0xff):

												rom,	diff	=	self._search_rom(rom,	diff)

												if	rom:

																devices	+=	[rom]

												if	diff	==	0:

4.2.9	Onewire	Driver

174

																break

								return	devices

				def	_search_rom(self,	l_rom,	diff):

								if	not	self.reset():

												return	None,	0

								self.write_byte(CMD_SEARCHROM)

								if	not	l_rom:

												l_rom	=	bytearray(8)

								rom	=	bytearray(8)

								next_diff	=	0

								i	=	64

								for	byte	in	range(8):

												r_b	=	0

												for	bit	in	range(8):

																b	=	self.read_bit()

																if	self.read_bit():

																				if	b:	#	there	are	no	devices	or	there	is	an	error	on	the	bus

																								return	None,	0

																else:

																				if	not	b:	#	collision,	two	devices	with	different	bit	meaning

																								if	diff	>	i	or	((l_rom[byte]	&	(1	<<	bit))	and	diff	!=	i):

																												b	=	1

																												next_diff	=	i

																self.write_bit(b)

																if	b:

																				r_b	|=	1	<<	bit

																i	-=	1

												rom[byte]	=	r_b

								return	rom,	next_diff

class	DS18X20(object):

				def	__init__(self,	onewire):

								self.ow	=	onewire

								self.roms	=	[rom	for	rom	in	self.ow.scan()	if	rom[0]	==	0x10	or	rom[0]	==	0x28

]

				def	isbusy(self):

								"""

								Checks	wether	one	of	the	DS18x20	devices	on	the	bus	is	busy

								performing	a	temperature	conversion

								"""

								return	not	self.ow.read_bit()

				def	start_conversion(self,	rom=None):

								"""

								Start	the	temp	conversion	on	one	DS18x20	device.

								Pass	the	8-byte	bytes	object	with	the	ROM	of	the	specific	device	you	want	to	r

ead.

								If	only	one	DS18x20	device	is	attached	to	the	bus	you	may	omit	the	rom	paramet

er.

								"""

								rom	=	rom	or	self.roms[0]

4.2.9	Onewire	Driver

175

								ow	=	self.ow

								ow.reset()

								ow.select_rom(rom)

								ow.write_byte(0x44)		#	Convert	Temp

				def	read_temp_async(self,	rom=None):

								"""

								Read	the	temperature	of	one	DS18x20	device	if	the	conversion	is	complete,

								otherwise	return	None.

								"""

								if	self.isbusy():

												return	None

								rom	=	rom	or	self.roms[0]

								ow	=	self.ow

								ow.reset()

								ow.select_rom(rom)

								ow.write_byte(0xbe)		#	Read	scratch

								data	=	ow.read_bytes(9)

								return	self.convert_temp(rom[0],	data)

				def	convert_temp(self,	rom0,	data):

								"""

								Convert	the	raw	temperature	data	into	degrees	celsius	and	return	as	a	fixed	po

int	with	2	decimal	places.

								"""

								temp_lsb	=	data[0]

								temp_msb	=	data[1]

								if	rom0	==	0x10:

												if	temp_msb	!=	0:

																#	convert	negative	number

																temp_read	=	temp_lsb	>>	1	|	0x80		#	truncate	bit	0	by	shifting,	fill	h

igh	bit	with	1.

																temp_read	=	-((~temp_read	+	1)	&	0xff)	#	now	convert	from	two's	comple

ment

												else:

																temp_read	=	temp_lsb	>>	1		#	truncate	bit	0	by	shifting

												count_remain	=	data[6]

												count_per_c	=	data[7]

												temp	=	100	*	temp_read	-	25	+	(count_per_c	-	count_remain)	//	count_per_c

												return	temp

								elif	rom0	==	0x28:

												return	(temp_msb	<<	8	|	temp_lsb)	*	100	//	16

								else:

												assert	False

4.2.9	Onewire	Driver

176

Threading
MicroPython	supports	spawning	threads	by	the		_thread		module.	The	following	example
demonstrates	the	use	of	this	module.	A	thread	is	simply	defined	as	a	function	that	can
receive	any	number	of	parameters.	Below	3	threads	are	started,	each	one	perform	a	print	at
a	different	interval.

import	_thread

import	time

def	th_func(delay,	id):

				while	True:

								time.sleep(delay)

								print('Running	thread	%d'	%	id)

for	i	in	range(3):

				_thread.start_new_thread(th_func,	(i	+	1,	i))

Using	Locks:

import	_thread

a_lock	=	_thread.allocate_lock()

with	a_lock:

				print("a_lock	is	locked	while	this	executes")

4.2.10	Threading

177

RGB	LED
By	default	the	heartbeat	LED	flashes	in	blue	colour	once	every	4s	to	signal	that	the	system
is	alive.	This	can	be	overridden	through	the		pycom		module.

import	pycom

pycom.heartbeat(False)

pycom.rgbled(0xff00)											#	turn	on	the	RGB	LED	in	green	colour

The	heartbeat	LED	is	also	used	to	indicate	that	an	error	was	detected.

The	following	piece	of	code	uses	the	RGB	LED	to	make	a	traffic	light	that	runs	for	10	cycles.

import	pycom

import	time

pycom.heartbeat(False)

for	cycles	in	range(10):	#	stop	after	10	cycles

				pycom.rgbled(0x007f00)	#	green

				time.sleep(5)

				pycom.rgbled(0x7f7f00)	#	yellow

				time.sleep(1.5)

				pycom.rgbled(0x7f0000)	#	red

				time.sleep(4)

Here	is	the	expected	result:

4.2.11	RGB	LED

178

4.2.11	RGB	LED

179

Timers
Detailed	information	about	this	class	can	be	found	in		Timer	.

Chronometer

The	Chronometer	can	be	used	to	measure	how	much	time	has	elapsed	in	a	block	of	code.
The	following	example	uses	a	simple	stopwatch.

from	machine	import	Timer

import	time

chrono	=	Timer.Chrono()

chrono.start()

time.sleep(1.25)	#	simulate	the	first	lap	took	1.25	seconds

lap	=	chrono.read()	#	read	elapsed	time	without	stopping

time.sleep(1.5)

chrono.stop()

total	=	chrono.read()

print()

print("\nthe	racer	took	%f	seconds	to	finish	the	race"	%	total)

print("		%f	seconds	in	the	first	lap"	%	lap)

print("		%f	seconds	in	the	last	lap"	%	(total	-	lap))

Alarm

The	Alarm	can	be	used	to	get	interrupts	at	a	specific	interval.	The	following	code	executes	a
callback	every	second	for	10	seconds.

4.2.12	Timers

180

from	machine	import	Timer

class	Clock:

				def	__init__(self):

								self.seconds	=	0

								self.__alarm	=	Timer.Alarm(self._seconds_handler,	1,	periodic=True)

				def	_seconds_handler(self,	alarm):

								self.seconds	+=	1

								print("%02d	seconds	have	passed"	%	self.seconds)

								if	self.seconds	==	10:

												alarm.callback(None)	#	stop	counting	after	10	seconds

clock	=	Clock()

There	are	no	restrictions	to	what	can	be	done	in	an	interrupt.	For	example,	it	is	possible
to	even	do	network	requests	with	an	interrupt.	However,	it	is	important	to	keep	in	mind
that	interrupts	are	handled	sequentially,	so	it’s	good	practice	to	keep	them	short.	More
information	can	be	found	in		Interrupt	Handling	.

4.2.12	Timers

181

PIR	Sensor
This	code	reads	PIR	sensor	triggers	from	this	simple	PIR	sensor	and	sends	an	HTTP
request	for	every	trigger,	in	this	case	to	a	Domoticz	installation.	When	motion	is	constantly
detected,	this	PIR	sensor	keeps	the	pin	high,	in	which	case	this	code	will	keep	sending
HTTP	requests	every	10	seconds	(configurable	with	the	hold_time	variable).

Main	(main.py)

import	time

from	network	import	WLAN

from	machine	import	Pin

from	domoticz	import	Domoticz

wl	=	WLAN(WLAN.STA)

d	=	Domoticz("<ip>",	8080	,"<hash>")

#config

hold_time_sec	=	10

#flags

last_trigger	=	-10

pir	=	Pin('G4',mode=Pin.IN,	pull=Pin.PULL_UP)

#	main	loop

print("Starting	main	loop")

while	True:

				if	pir()	==	1:

								if	time.time()	-	last_trigger	>	hold_time_sec:

												last_trigger	=	time.time()

												print("Presence	detected,	sending	HTTP	request")

												try:

																return_code	=	d.setVariable('Presence:LivingRoom','1')

																print("Request	result:	"+str(return_code))

												except	Exception	as	e:

																print("Request	failed")

																print(e)

				else:

								last_trigger	=	0

								print("No	presence")

				time.sleep_ms(500)

print("Exited	main	loop")

4.2.13	PIR	Sensor

182

https://www.kiwi-electronics.nl/PIR-Motion-Sensor
https://domoticz.com/

Boot	(boot.py)

For	more	WiFi	scripts,	see	the	wlan	step	by	step	tutorial.

import	os

import	machine

uart	=	machine.UART(0,	115200)

os.dupterm(uart)

known_nets	=	{

				'NetworkID':								{'pwd':	'<password>',	'wlan_config':		('10.0.0.8',	'255.255.0.

0',	'10.0.0.1',	'10.0.0.1')},

}

from	network	import	WLAN

wl	=	WLAN()

if	machine.reset_cause()	!=	machine.SOFT_RESET:

				wl.mode(WLAN.STA)

				original_ssid	=	wl.ssid()

				original_auth	=	wl.auth()

				print("Scanning	for	known	wifi	nets")

				available_nets	=	wl.scan()

				nets	=	frozenset([e.ssid	for	e	in	available_nets])

				known_nets_names	=	frozenset([key	for	key	in	known_nets])

				net_to_use	=	list(nets	&	known_nets_names)

				try:

								net_to_use	=	net_to_use[0]

								net_properties	=	known_nets[net_to_use]

								pwd	=	net_properties['pwd']

								sec	=	[e.sec	for	e	in	available_nets	if	e.ssid	==	net_to_use][0]

								if	'wlan_config'	in	net_properties:

												wl.ifconfig(config=net_properties['wlan_config'])

								wl.connect(net_to_use,	(sec,	pwd),	timeout=10000)

								while	not	wl.isconnected():

												machine.idle()	#	save	power	while	waiting

								print("Connected	to	"+net_to_use+"	with	IP	address:"	+	wl.ifconfig()[0])

				except	Exception	as	e:

								print("Failed	to	connect	to	any	known	network,	going	into	AP	mode")

								wl.init(mode=WLAN.AP,	ssid=original_ssid,	auth=original_auth,	channel=6,	anten

na=WLAN.INT_ANT)

Domoticz	Wrapper	(domoticz.py)

4.2.13	PIR	Sensor

183

import	socket

class	Domoticz:

				def	__init__(self,	ip,	port,		basic):

								self.basic	=	basic

								self.ip	=	ip

								self.port	=	port

				def	setLight(self,	idx,	command):

								return	self.sendRequest("type=command¶m=switchlight&idx="+idx+"&switchcmd="

+command)

				def	setVariable(self,	name,	value):

								return	self.sendRequest("type=command¶m=updateuservariable&vtype=0&vname="

+name+"&vvalue="+value)

				def	sendRequest(self,	path):

								try:

												s	=	socket.socket()

												s.connect((self.ip,self.port))

												s.send(b"GET	/json.htm?"+path+"	HTTP/1.1\r\nHost:	pycom.io\r\nAuthorizatio

n:	Basic	"+self.basic+"\r\n\r\n")

												status	=	str(s.readline(),	'utf8')

												code	=	status.split("	")[1]

												s.close()

												return	code

								except	Exception:

												print("HTTP	request	failed")

												return	0

4.2.13	PIR	Sensor

184

Modbus	Protocol
Modbus	is	a	messaging	protocol	that	defines	the	packet	structure	for	transferring	data
between	devices	in	a	master/slave	architecture.	The	protocol	is	independent	of	the
transmission	medium	and	is	usually	transmitted	over	TCP	(MODBUS	TCP)	or	serial
communication	(MODBUS	RTU).	Modbus	is	intended	as	a	request/reply	protocol	and
delivers	services	specified	by	function	codes.	The	function	code	in	the	request	tells	the
addressed	slave	what	kind	of	action	to	perform.	The	function	codes	most	commonly
supported	by	devices	are	listed	below.

Function	Name Function	Code

Read	Coils 0x01

Read	Discrete	Inputs 0x02

Read	Holding	Registers 0x03

Read	Input	Registers 0x04

Write	Single	Coil 0x05

Write	Single	Register 0x06

Write	Multiple	Coils 0x0F

Write	Multiple	Registers 0x10

For	more	information	on	the	MODBUS	RTU	see	the	following	PDF	File.	Information	on	the
MODBUS	TCP	can	be	found	here.

Pycom	Modbus	Library
Python	libraries	and	sample	code	that	support	Modbus	TCP	and	Modbus	RTU	are	available
at	the	following	GitHub	Repository.	To	use	this	library,	connect	to	the	target	Pycom	device
via	ftp	and	upload	the	uModbus	folder	to		/flash	.	A	description	of	the	supported	function
codes	is	found	below.

Read	Coils

This	function	code	requests	the	status	(ON/OFF)	of	discrete	coils	on	a	remote	device.	The
slave	device	address,	the	address	of	the	first	coil	and	the	number	of	coils	must	be	specified
in	the	request.	The	address	of	the	first	coil	is	0	and	a	maximum	of	2000	contiguous	coils	can
be	read.	Python	sample	code	is	shown	below.

4.2.14	Modbus

185

http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
https://github.com/pycom/pycom-modbus

slave_addr=0x0A

starting_address=0x00

coil_quantity=100

coil_status	=	modbus_obj.read_coils(slave_addr,	starting_address,	coil_quantity)

print('Coil	status:	'	+	'	'.join('{:d}'.format(x)	for	x	in	coil_status))

Read	Discrete	Inputs

This	command	is	used	to	read	the	status	(ON/OFF)	of	discrete	inputs	on	a	remote	device.
The	slave	address,	the	address	of	the	first	input,	and	the	quantity	of	inputs	to	be	read	must
be	specified.	The	address	of	the	first	input	is	0	and	a	maximum	of	2000	continuous	inputs
can	be	read.	The	Python	sample	code	is	shown	below.

slave_addr=0x0A

starting_address=0x0

input_quantity=100

input_status	=	modbus_obj.read_discrete_inputs(slave_addr,	starting_address,	input_qua

ntity)

print('Input	status:	'	+	'	'.join('{:d}'.format(x)	for	x	in	input_status))

Read	Holding	Registers

This	function	code	is	used	to	read	the	contents	of	analogue	output	holding	registers.	The
slave	address,	the	starting	register	address,	the	number	of	registers	to	read	and	the	sign	of
the	data	must	be	specified.	Register	addresses	start	at	0	and	a	maximum	of	125	continuous
registers	can	be	read.

slave_addr=0x0A

starting_address=0x00

register_quantity=100

signed=True

register_value	=	modbus_obj.read_holding_registers(slave_addr,	starting_address,	regis

ter_quantity,	signed)

print('Holding	register	value:	'	+	'	'.join('{:d}'.format(x)	for	x	in	register_value))

Read	Input	Registers

This	command	is	used	to	read	up	to	125	continuous	input	registers	on	a	remote	device.	The
slave	address,	the	starting	register	address,	the	number	of	input	registers	and	the	sign	of	the
data	must	be	specified.	The	address	of	the	first	input	registers	is	0.

4.2.14	Modbus

186

slave_addr=0x0A

starting_address=0x00

register_quantity=100

signed=True

register_value	=	modbus_obj.read_input_registers(slave_addr,	starting_address,	registe

r_quantity,	signed)

print('Input	register	value:	'	+	'	'.join('{:d}'.format(x)	for	x	in	register_value))

Write	Single	Coil

This	function	code	is	used	to	write	the	state	of	a	discrete	coil	on	a	remote	device.	A	value	of
	0xFF00		means	the	coil	should	be	set	to	ON,	while	a	value	of		0x0000		means	the	coil	should
be	set	to	OFF.	The	Python	sample	code	to	set	the	coil	at	address		0x00	,	to	an	ON	state	is
shown	below.

slave_addr=0x0A

output_address=0x00

output_value=0xFF00

return_flag	=	modbus_obj.write_single_coil(slave_addr,	output_address,	output_value)

output_flag	=	'Success'	if	return_flag	else	'Failure'

print('Writing	single	coil	status:	'	+	output_flag)

Write	Single	Register

This	command	is	used	to	write	the	contents	of	an	analog	output	holding	register	on	a	remote
device.	The	slave	address,	the	register	address,	the	register	value,	and	the	signature	of	the
data	must	be	specified.	As	for	all	the	other	commands,	the	register	addresses	start	from	0.

slave_addr=0x0A

register_address=0x01

register_value=-32768

signed=True

return_flag	=	modbus_obj.write_single_register(slave_addr,	register_address,	register_

value,	signed)

output_flag	=	'Success'	if	return_flag	else	'Failure'

print('Writing	single	coil	status:	'	+	output_flag)

Write	Multiple	Coils

4.2.14	Modbus

187

This	function	code	is	used	to	set	a	continuous	sequence	of	coils,	in	a	remote	device,	to
either	ON	or	OFF.	The	slave	address,	the	starting	address	of	the	coils	and	an	array	with	the
coil	states	must	be	specified.

slave_addr=0x0A

starting_address=0x00

output_values=[1,1,1,0,0,1,1,1,0,0,1,1,1]

return_flag	=	modbus_obj.write_multiple_coils(slave_addr,	starting_address,	output_val

ues)

output_flag	=	'Success'	if	return_flag	else	'Failure'

print('Writing	multiple	coil	status:	'	+	output_flag)

Write	Multiple	Registers

This	command	is	used	to	write	the	contents	of	a	continuous	sequence	of	analogue	registers
on	a	remote	device.	The	slave	address,	the	starting	register	address,	the	register	values,
and	the	signature	of	the	data	must	be	specified.	The	address	of	the	first	register	is	0	and	a
maximum	of	125	register	values	can	be	written.	The	Python	sample	code	is	shown	below.

slave_addr=0x0A

register_address=0x01

register_values=[2,	-4,	6,	-256,	1024]

signed=True

return_flag	=	modbus_obj.write_multiple_registers(slave_addr,	register_address,	regist

er_values,	signed)

output_flag	=	'Success'	if	return_flag	else	'Failure'

print('Writing	multiple	register	status:	'	+	output_flag)

4.2.14	Modbus

188

Overview
Pycom	modules	come	with	the	ability	to	update	the	devices	firmware,	while	it	is	still	running,
we	call	this	an	"over	the	air"	(OTA)	update.	The	pycom	library	provides	several	functions	to
achieve	this.	This	example	will	demonstrate	how	you	could	potentially	use	this	functionality
to	update	deployed	devices.	The	full	source	code	of	this	example	can	be	found	here.

Method
Here	we	will	describe	one	possible	update	methodology	you	could	use	that	is	implemented
by	this	example.

Imagine	you	a	smart	metering	company	and	you	wish	to	roll	out	an	update	for	your	Pycom
based	smart	meter.	These	meters	usually	send	data	back	via	LoRa.	Unfortunately	LoRa
downlink	messages	have	a	very	limited	size	and	several	hundred	if	not	thousand	would	be
required	to	upload	a	complete	firmware	image.	To	get	around	this	you	can	have	your	devices
sending	their	regular	data	via	LoRa	and	when	they	receive	a	special	command	via	a
downlink	message,	the	devices	will	connect	to	a	WiFi	network.	It	is	unfeasible	to	ask
customers	to	allow	your	device	to	connect	to	their	home	network	so	instead	this	network
could	be	provided	by	a	vehicle.	This	vehicle	will	travel	around	a	certain	geographic	area	in
which	the	devices	have	been	sent	the	special	downlink	message	to	initiate	the	update.	The
devices	will	look	for	the	WiFi	network	being	broadcast	by	the	vehicle	and	connect.	The
devices	will	then	connect	to	a	server	running	on	this	WiFi	network.	This	server	(also	shown
in	this	example)	will	generate	manifest	files	that	instruct	the	device	on	what	it	should	update,
and	where	to	get	the	update	data	from.

Server
Code	available	here.

This	script	runs	a	HTTP	server	on	port		8000		that	provisions	over	the	air	(OTA)	update
manifests	in	JSON	format	as	well	as	serving	the	update	content.	This	script	should	be	run	in
a	directory	that	contains	every	version	of	the	end	devices	code,	in	the	following	structure:

4.2.15	OTA	update

189

https://github.com/pycom/pycom-libraries/tree/master/examples/OTA
https://github.com/pycom/pycom-libraries/blob/master/examples/OTA/OTA_server.py

		-	server	directory

				|-	this_script.py

				|-	1.0.0

				|		|-	flash

				|		|			|-	lib

				|		|			|		|-	lib_a.py

				|		|			|-	main.py

				|		|			|-	boot.py

				|		|-	sd

				|					|-	some_asset.txt

				|					|-	asset_that_will_be_removed.wav

				|-	1.0.1

				|		|-	flash

				|		|			|-	lib

				|		|			|		|-	lib_a.py

				|		|			|		|-	new_lib.py

				|		|			|-	main.py

				|		|			|-	boot.py

				|		|-	sd

				|					|-	some_asset.txt

				|-	firmware_1.0.0.bin

				|-	firmware_1.0.1.bin

The	top	level	directory	that	contains	this	script	can	contain	one	of	two	things:

Update	directory:	These	should	be	named	with	a	version	number	compatible	with	the
python	LooseVersion	versioning	scheme
(http://epydoc.sourceforge.net/stdlib/distutils.version.LooseVersion-class.html).	They
should	contain	the	entire	file	system	of	the	end	device	for	the	corresponding	version
number.
Firmware:	These	files	should	be	named	in	the	format		firmare_VERSION.bin	,	where
VERSION	is	a	a	version	number	compatible	with	the	python	LooseVersion	versioning
scheme	(http://epydoc.sourceforge.net/stdlib/distutils.version.LooseVersion-class.html).
This	file	should	be	in	the	format	of	the		appimg.bin		created	by	the	Pycom	firmware	build
scripts.

How	to	use
Once	the	directory	has	been	setup	as	described	above	you	simply	need	to	start	this	script
using	python3.	Once	started	this	script	will	run	a	HTTP	server	on	port		8000		(this	can	be
changed	by	changing	the	PORT	variable).	This	server	will	serve	all	the	files	in	directory	as
expected	along	with	one	additional	special	file,		manifest.json	.	This	file	does	not	exist	on

4.2.15	OTA	update

190

http://epydoc.sourceforge.net/stdlib/distutils.version.LooseVersion-class.html
http://epydoc.sourceforge.net/stdlib/distutils.version.LooseVersion-class.html

the	file	system	but	is	instead	generated	when	requested	and	contains	the	required	changes
to	bring	the	end	device	from	its	current	version	to	the	latest	available	version.	You	can	see
an	example	of	this	by	pointing	your	web	browser	at:

	http://127.0.0.1:8000/manifest.json?current_ver=1.0.0	

The		current_ver		field	at	the	end	of	the	URL	should	be	set	to	the	current	firmware	version	of
the	end	device.	The	generated	manifest	will	contain	lists	of	which	files	are	new,	have
changed	or	need	to	be	deleted	along	with	SHA1	hashes	of	the	files.	Below	is	an	example	of
what	such	a	manifest	might	look	like:

{

			"delete":	[

						"flash/old_file.py",

						"flash/other_old_file.py"

],

			"firmware":	{

							"URL":	"http://192.168.1.144:8000/firmware_1.0.1b.bin",

							"hash":	"ccc6914a457eb4af8855ec02f6909316526bdd08"

			},

			"new":	[

							{

											"URL":	"http://192.168.1.144:8000/1.0.1b/flash/lib/new_lib.py",

											"dst_path":	"flash/lib/new_lib.py",

											"hash":	"1095df8213aac2983efd68dba9420c8efc9c7c4a"

							}

],

			"update":	[

							{

											"URL":	"http://192.168.1.144:8000/1.0.1b/flash/changed_file.py",

											"dst_path":	"flash/changed_file.py",

											"hash":	"1095df8213aac2983efd68dba9420c8efc9c7c4a"

							}

],

			"version":	"1.0.1b"

}

The	manifest	contains	the	following	fields:

	delete	:	A	list	of	paths	to	files	which	are	no	longer	needed
	firmware	:	The	URL	and	SHA1	hash	of	the	firmware	image
	new	:	the	URL,	path	on	end	device	and	SHA1	hash	of	all	new	files
	update	:	the	URL,	path	on	end	device	and	SHA1	hash	of	all	files	which	existed	before
but	have	changed.
	version	:	The	version	number	that	this	manifest	will	update	the	client	to
	previous_version	:	The	version	the	client	is	currently	on	before	applying	this	update

4.2.15	OTA	update

191

Note:	The	version	number	of	the	files	might	not	be	the	same	as	the	firmware.	The	highest
available	version	number,	higher	than	the	current	client	version	is	used	for	both	firmware	and
files.	This	may	differ	between	the	two.

In	order	for	the	URL's	to	be	properly	formatted	you	are	required	to	send	a	"host"	header
along	with	your	HTTP	get	request	e.g:

GET	/manifest.json?current_ver=1.0.0	HTTP/1.0\r\nHost:	192.168.1.144:8000\r\n\r\n

Client	Library
A	MicroPyton	library	for	interfacing	with	the	server	described	above	is	available	here.

This	library	is	split	into	two	layers.	The	top	level		OTA		class	implements	all	the	high	level
functionality	such	as	parsing	the	JSON	file,	making	back	copies	of	files	being	updated
incase	the	update	fails,	etc.	The	layer	of	the	library	is	agnostic	to	your	chosen	transport
method.	Below	this	is	the		WiFiOTA		class.	This	class	implements	the	actual	transport
mechanism	of	how	the	device	fetches	the	files	and	update	manifest	(via	WiFi	as	the	class
name	suggests).	The	reason	for	this	split	is	so	that	the	high	level	functionality	can	be	reused
regardless	of	what	transport	mechanism	you	end	up	using.	This	could	be	implemented	on
top	of	Bluetooth	for	example,	or	the	sever	changed	from	HTTP	to	FTP.

Although	the	above	code	is	functional,	it	is	provided	only	as	an	example	of	how	an	end
user	might	implement	a	OTA	update	mechanism.	It	is	not	100%	feature	complete	e.g.
even	though	it	does	backup	previous	versions	of	files,	the	roll	back	procedure	is	not
implemented.	This	is	left	of	the	end	user	to	do.

Example
Below	is	am	example	implementing	the	methodology	previously	explained	in	this	tutorial	to
initiate	an	OTA	update.

The	example	below	will	only	work	on	a	Pycom	device	with	LoRa	capabilities.	If	want	to
test	it	out	on	a	device	without	LoRa	functionality	then	simply	comment	out	any	code
relating	to	LoRa.	Leaving	just	the		WiFiOTA		initialisation	and	they		ota.connect()		and
	ota.update()	

4.2.15	OTA	update

192

https://github.com/pycom/pycom-libraries/blob/master/examples/OTA/1.0.0/flash/lib/OTA.py

from	network	import	LoRa,	WLAN

import	socket

import	time

from	OTA	import	WiFiOTA

from	time	import	sleep

import	pycom

import	ubinascii

from	config	import	WIFI_SSID,	WIFI_PW,	SERVER_IP

#	Turn	on	GREEN	LED

pycom.heartbeat(False)

pycom.rgbled(0xff00)

#	Setup	OTA

ota	=	WiFiOTA(WIFI_SSID,

														WIFI_PW,

														SERVER_IP,		#	Update	server	address

														8000)		#	Update	server	port

#	Turn	off	WiFi	to	save	power

w	=	WLAN()

w.deinit()

#	Initialise	LoRa	in	LORAWAN	mode.

lora	=	LoRa(mode=LoRa.LORAWAN,	region=LoRa.EU868)

app_eui	=	ubinascii.unhexlify('70B3D57ED0008CD6')

app_key	=	ubinascii.unhexlify('B57F36D88691CEC5EE8659320169A61C')

#	join	a	network	using	OTAA	(Over	the	Air	Activation)

lora.join(activation=LoRa.OTAA,	auth=(app_eui,	app_key),	timeout=0)

#	wait	until	the	module	has	joined	the	network

while	not	lora.has_joined():

				time.sleep(2.5)

				print('Not	yet	joined...')

#	create	a	LoRa	socket

s	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

#	set	the	LoRaWAN	data	rate

s.setsockopt(socket.SOL_LORA,	socket.SO_DR,	5)

#	make	the	socket	blocking

#	(waits	for	the	data	to	be	sent	and	for	the	2	receive	windows	to	expire)

s.setblocking(True)

while	True:

				#	send	some	data

				s.send(bytes([0x04,	0x05,	0x06]))

4.2.15	OTA	update

193

				#	make	the	socket	non-blocking

				#	(because	if	there's	no	data	received	it	will	block	forever...)

				s.setblocking(False)

				#	get	any	data	received	(if	any...)

				data	=	s.recv(64)

				#	Some	sort	of	OTA	trigger

				if	data	==	bytes([0x01,	0x02,	0x03]):

								print("Performing	OTA")

								#	Perform	OTA

								ota.connect()

								ota.update()

				sleep(5)

4.2.15	OTA	update

194

RMT
Detailed	information	about	this	class	can	be	found	in		RMT	.

The	RMT	(Remote	Control)	peripheral	of	the	ESP32	is	primarily	designed	to	send	and
receive	infrared	remote	control	signals	that	use	on-off-keying	of	a	carrier	frequency,	but	due
to	its	design	it	can	be	used	to	generate	various	types	of	signals,	this	class	will	allow	you	to
do	this.

The	RMT	has	7	channels,	of	which	5	are	available	and	can	be	mapped	to	any	GPIO	pin
(Note:	Pins		P13		-	P18		can	only	be	used	as	inputs).

Channel Resolution Maximum	Pulse	Width

0 Used	by	on-board	LED

1 Used	by		pycom.pulses_get()	

2 100nS 3.2768	ms

3 100nS 3.2768	ms

4 1000nS 32.768	ms

5 1000nS 32.768	ms

6 3125nS 102.4	ms

7 3125nS 102.4	ms

Transmitting
The	following	examples	create	an	RMT	object	on	channel	4,	configure	it	for	transmission
and	send	some	data	in	various	forms.	The	resolution	of	channel	4	is	1000	nano	seconds,	the
given	values	are	interpreted	accordingly.

In	this	first	example,	we	define	the	signal	as	a	tuple	of	binary	values	that	define	the	shape	of
the	desired	signal	along	with	the	duration	of	a	bit.

4.2.16	RMT

195

from	machine	import	RMT

#	Map	RMT	channel	4	to	P21,	when	the	RMT	is	idle,	it	will	output	LOW

rmt	=	RMT(channel=4,	gpio="P21",	tx_idle_level=RMT.LOW)

#	Produces	the	pattern	shown	in	data,	where	each	bit	lasts

#	duration	*	channel	resolution	=	10000	*	1000ns	=	10ms

data	=	(1,0,1,1,1,0,1,0,1)

duration	=	10000

rmt.pulses_send(duration,	data)

In	this	example	we	define	the	signal	by	a	tuple	of	durations	and	what	state	the	signal	starts
in.

from	machine	import	RMT

#	Map	RMT	channel	4	to	P21,	when	the	RMT	is	idle,	it	will	output	LOW

rmt	=	RMT(channel=4,	gpio="P21",	tx_idle_level=RMT.LOW)

#	The	list	of	durations	for	each	pulse	to	be,	these	are	in	units	of	the	channels

#	resolution:

#				duration	=	Desired	pulse	length	/	Channel	Resolution

duration	=	(8000,11000,8000,11000,6000,13000,6000,3000,8000)

#	`start_level`	defines	if	the	signal	starts	off	as	LOW	or	HIGH,	it	will	then

#	toggle	state	between	each	duration

rmt.pulses_send(duration,	start_level=RMT.HIGH)

4.2.16	RMT

196

This	third	example,	is	a	combination	of	the	above	two	styles	of	defining	a	signal.	Each	pulse
has	a	defined	duration	as	well	as	a	state.	This	is	useful	if	you	don't	always	want	the	signal	to
toggle	state.

from	machine	import	RMT

#	Map	RMT	channel	4	to	P21,	when	the	RMT	is	idle,	it	will	output	LOW

rmt	=	RMT(channel=4,	gpio="P21",	tx_idle_level=RMT.LOW)

#	Produces	the	pattern	shown	in	data,	where	each	bit	lasts

#	duration[i]	*	channel	resolution	=	duration[i]	*	1000ns

data	=	(1,0,1,1,0,1)

duration	=	(400,200,100,300,200,400)

rmt.pulses_send(duration,	data)

The	following	example	creates	an	RMT	object	on	channel	4	and	configures	it	for
transmission	with	carrier	modulation.

from	machine	import	RMT

rmt	=	RMT(channel=4,

										gpio="P21",

										tx_idle_level=RMT.LOW,

										#	Carrier	=	100Hz,	80%	duty,	modules	HIGH	signals

										tx_carrier	=	(100,	70,	RMT.HIGH))		

data	=	(1,0,1)

duration	=	10000

rmt.pulses_send(duration,	data)

4.2.16	RMT

197

The	following	example	creates	an	RMT	object	on	channel	2,	configures	it	for	receiving,	then
waits	for	the	first,	undefined	number	of	pulses	without	timeout

from	machine	import	RMT

rmt	=	machine.RMT(channel=2)

rmt.init(gpio="P21",	rx_idle_threshold=1000)

data	=	rmt.pulses_get()

If		tx_idle_level		is	not	set	to	the	opposite	of	the	third	value	in	the		tx_carrier		tuple,
the	carrier	wave	will	continue	to	be	generated	when	the	RMT	channel	is	idle.

Receiving
The	following	example	creates	an	RMT	object	on	channel	2,	configures	it	for	receiving	a
undefined	number	of	pulses,	then	waits	maximum	of	1000us	for	the	first	pulse.

from	machine	import	RMT

#	Sets	RMT	channel	2	to	P21	and	sets	the	maximum	length	of	a	valid	pulse	to

#	1000*channel	resolution	=	1000	*	100ns	=	100us

rmt	=	machine.RMT(channel=2,	gpio="P21",	rx_idle_threshold=1000)

rmt.init()

#	Get	a	undefined	number	of	pulses,	waiting	a	maximum	of	500us	for	the	first

#	pulse	(unlike	other	places	where	the	absolute	duration	was	based	on	the	RMT

#	channels	resolution,	this	value	is	in	us)	until	a	pulse	longer	than

#	rx_idle_threshold	occurs.

data	=	rmt.pulses_get(timeout=500)

The	following	example	creates	an	RMT	object	on	channel	2,	configures	it	for	receiving,	filters
out	pulses	with	width	<	20*100	nano	seconds,	then	waits	for	100	pulses

4.2.16	RMT

198

from	machine	import	RMT

rmt	=	machine.RMT(channel=2,		#	Resolution	=	100ns

																		gpio="P21",

																		#	Longest	valid	pulse	=	1000*100ns	=	100us

																		rx_idle_threshold=1000,

																		#	Filter	out	pulses	shorter	than	20*100ns	=	2us

																		rx_filter_threshold=20)

#	Receive	100	pulses,	pulses	shorter	than	2us	or	longer	than	100us	will	be

#	ignored.	That	means	if	it	receives	80	valid	pulses	but	then	the	signal

#	doesn't	change	for	10	hours	and	then	20	more	pulses	occur,	this	function

#	will	wait	for	10h

data	=	rmt.pulses_get(pulses=100)

4.2.16	RMT

199

LoPy	Tutorials
The	following	tutorials	demonstrate	the	use	of	the	LoRa	functionality	on	the	LoPy.	LoRa	can
work	in	2	different	modes;	LoRa-MAC	(which	we	also	call	Raw-LoRa)	and	LoRaWAN	mode.

LoRa-MAC	mode	basically	accesses	de	radio	directly	and	packets	are	sent	using	the	LoRa
modulation	on	the	selected	frequency	without	any	headers,	addressing	information	or
encryption.	Only	a	CRC	is	added	at	the	tail	of	the	packet	and	this	is	removed	before	the
received	frame	is	passed	on	to	the	application.	This	mode	can	be	used	to	build	any	higher
level	protocol	that	can	benefit	from	the	long	range	features	of	the	LoRa	modulation.	Typical
uses	cases	include	LoPy	to	LoPy	direct	communication	and	a	LoRa	packet	forwarder.

LoRaWAN	mode	implements	the	full	LoRaWAN	stack	for	a	class	A	device.	It	supports	both
OTAA	and	ABP	connection	methods,	as	well	as	advanced	features	like	adding	and	removing
custom	channels	to	support	"special"	frequencies	plans	like	the	those	used	in	New	Zealand.

4.3	LoRa	Examples

200

LoRa-MAC	(Raw	LoRa)
Basic	LoRa	connection	example,	sending	and	receiving	data.	In	LoRa-MAC	mode	the
LoRaWAN	layer	is	bypassed	and	the	radio	is	used	directly.	The	data	sent	is	not	formatted	or
encrypted	in	any	way,	and	no	addressing	information	is	added	to	the	frame.

For	the	example	below,	you	will	need	two	LoPys.	A		while		loop	with	a	random	delay	time	is
used	to	minimise	the	chances	of	the	2	LoPy’s	transmitting	at	the	same	time.	Run	the	code
below	on	the	2	LoPy	modules	and	you	will	see	the	word	'Hello'	being	received	on	both	sides.

from	network	import	LoRa

import	socket

import	machine

import	time

#	initialise	LoRa	in	LORA	mode

#	Please	pick	the	region	that	matches	where	you	are	using	the	device:

#	Asia	=	LoRa.AS923

#	Australia	=	LoRa.AU915

#	Europe	=	LoRa.EU868

#	United	States	=	LoRa.US915

#	more	params	can	also	be	given,	like	frequency,	tx	power	and	spreading	factor

lora	=	LoRa(mode=LoRa.LORA,	region=LoRa.EU868)

#	create	a	raw	LoRa	socket

s	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

while	True:

				#	send	some	data

				s.setblocking(True)

				s.send('Hello')

				#	get	any	data	received...

				s.setblocking(False)

				data	=	s.recv(64)

				print(data)

				#	wait	a	random	amount	of	time

				time.sleep(machine.rng()	&	0x0F)

4.3.1	LoRa-MAC	(Raw	LoRa)

201

LoRaWAN	(OTAA)
OTAA	stands	for	Over	The	Air	Authentication.	With	this	method	the	LoPy	sends	a	Join
request	to	the	LoRaWAN	Gateway	using	the		APPEUI		and		APPKEY		provided.	If	the	keys	are
correct	the	Gateway	will	reply	to	the	LoPy	with	a	join	accept	message	and	from	that	point	on
the	LoPy	is	able	to	send	and	receive	packets	to/from	the	Gateway.	If	the	keys	are	incorrect
no	response	will	be	received	and	the		has_joined()		method	will	always	return		False	.

The	example	below	attempts	to	get	any	data	received	after	sending	the	frame.	Keep	in	mind
that	the	Gateway	might	not	be	sending	any	data	back,	therefore	we	make	the	socket	non-
blocking	before	attempting	to	receive,	in	order	to	prevent	getting	stuck	waiting	for	a	packet
that	will	never	arrive.

4.3.2	LoRaWAN	with	OTAA

202

from	network	import	LoRa

import	socket

import	time

import	ubinascii

#	Initialise	LoRa	in	LORAWAN	mode.

#	Please	pick	the	region	that	matches	where	you	are	using	the	device:

#	Asia	=	LoRa.AS923

#	Australia	=	LoRa.AU915

#	Europe	=	LoRa.EU868

#	United	States	=	LoRa.US915

lora	=	LoRa(mode=LoRa.LORAWAN,	region=LoRa.EU868)

#	create	an	OTAA	authentication	parameters

app_eui	=	ubinascii.unhexlify('ADA4DAE3AC12676B')

app_key	=	ubinascii.unhexlify('11B0282A189B75B0B4D2D8C7FA38548B')

#	join	a	network	using	OTAA	(Over	the	Air	Activation)

lora.join(activation=LoRa.OTAA,	auth=(app_eui,	app_key),	timeout=0)

#	wait	until	the	module	has	joined	the	network

while	not	lora.has_joined():

				time.sleep(2.5)

				print('Not	yet	joined...')

#	create	a	LoRa	socket

s	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

#	set	the	LoRaWAN	data	rate

s.setsockopt(socket.SOL_LORA,	socket.SO_DR,	5)

#	make	the	socket	blocking

#	(waits	for	the	data	to	be	sent	and	for	the	2	receive	windows	to	expire)

s.setblocking(True)

#	send	some	data

s.send(bytes([0x01,	0x02,	0x03]))

#	make	the	socket	non-blocking

#	(because	if	there's	no	data	received	it	will	block	forever...)

s.setblocking(False)

#	get	any	data	received	(if	any...)

data	=	s.recv(64)

print(data)

4.3.2	LoRaWAN	with	OTAA

203

LoRaWAN	(ABP)
ABP	stands	for	Authentication	By	Personalisation.	It	means	that	the	encryption	keys	are
configured	manually	on	the	device	and	can	start	sending	frames	to	the	Gateway	without
needing	a	'handshake'	procedure	to	exchange	the	keys	(such	as	the	one	performed	during
an	OTAA	join	procedure).

The	example	below	attempts	to	get	any	data	received	after	sending	the	frame.	Keep	in	mind
that	the	Gateway	might	not	be	sending	any	data	back,	therefore	we	make	the	socket	non-
blocking	before	attempting	to	receive,	in	order	to	prevent	getting	stuck	waiting	for	a	packet
that	will	never	arrive.

4.3.3	LoRaWAN	with	ABP

204

from	network	import	LoRa

import	socket

import	ubinascii

import	struct

#	Initialise	LoRa	in	LORAWAN	mode.

#	Please	pick	the	region	that	matches	where	you	are	using	the	device:

#	Asia	=	LoRa.AS923

#	Australia	=	LoRa.AU915

#	Europe	=	LoRa.EU868

#	United	States	=	LoRa.US915

lora	=	LoRa(mode=LoRa.LORAWAN,	region=LoRa.EU868)

#	create	an	ABP	authentication	params

dev_addr	=	struct.unpack(">l",	binascii.unhexlify('00000005'))[0]

nwk_swkey	=	ubinascii.unhexlify('2B7E151628AED2A6ABF7158809CF4F3C')

app_swkey	=	ubinascii.unhexlify('2B7E151628AED2A6ABF7158809CF4F3C')

#	join	a	network	using	ABP	(Activation	By	Personalization)

lora.join(activation=LoRa.ABP,	auth=(dev_addr,	nwk_swkey,	app_swkey))

#	create	a	LoRa	socket

s	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

#	set	the	LoRaWAN	data	rate

s.setsockopt(socket.SOL_LORA,	socket.SO_DR,	5)

#	make	the	socket	blocking

#	(waits	for	the	data	to	be	sent	and	for	the	2	receive	windows	to	expire)

s.setblocking(True)

#	send	some	data

s.send(bytes([0x01,	0x02,	0x03]))

#	make	the	socket	non-blocking

#	(because	if	there's	no	data	received	it	will	block	forever...)

s.setblocking(False)

#	get	any	data	received	(if	any...)

data	=	s.recv(64)

print(data)

4.3.3	LoRaWAN	with	ABP

205

LoRa	Nano-Gateway	(Raw	LoRa)
This	example	allows	a	raw	LoRa	connection	between	two	LoPys	(nodes)	to	a	single	LoPy
acting	as	a	Nano-Gateway.

For	more	information	and	discussions	about	this	code,	see	this	forum	post.

Gateway	Code

import	socket

import	struct

from	network	import	LoRa

#	A	basic	package	header,	B:	1	byte	for	the	deviceId,	B:	1	byte	for	the	pkg	size,	%ds:

	Formatted	string	for	string

_LORA_PKG_FORMAT	=	"!BB%ds"

#	A	basic	ack	package,	B:	1	byte	for	the	deviceId,	B:	1	byte	for	the	pkg	size,	B:	1	by

te	for	the	Ok	(200)	or	error	messages

_LORA_PKG_ACK_FORMAT	=	"BBB"

#	Open	a	LoRa	Socket,	use	rx_iq	to	avoid	listening	to	our	own	messages

#	Please	pick	the	region	that	matches	where	you	are	using	the	device:

#	Asia	=	LoRa.AS923

#	Australia	=	LoRa.AU915

#	Europe	=	LoRa.EU868

#	United	States	=	LoRa.US915

lora	=	LoRa(mode=LoRa.LORA,	rx_iq=True,	region=LoRa.EU868)

lora_sock	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

lora_sock.setblocking(False)

while	(True):

				recv_pkg	=	lora_sock.recv(512)

				if	(len(recv_pkg)	>	2):

								recv_pkg_len	=	recv_pkg[1]

								device_id,	pkg_len,	msg	=	struct.unpack(_LORA_PKG_FORMAT	%	recv_pkg_len,	recv_

pkg)

#	If	the	uart	=	machine.UART(0,	115200)	and	os.dupterm(uart)	are	set	in	the	boot.py	th

is	print	should	appear	in	the	serial	port

								print('Device:	%d	-	Pkg:		%s'	%	(device_id,	msg))

								ack_pkg	=	struct.pack(_LORA_PKG_ACK_FORMAT,	device_id,	1,	200)

								lora_sock.send(ack_pkg)

4.3.4	LoRa-MAC	Nano-Gateway

206

https://forum.pycom.io/topic/236/lopy-nano-gateway

The		_LORA_PKG_FORMAT		is	used	as	a	method	of	identifying	the	different	devices	within	a
network.	The		_LORA_PKG_ACK_FORMAT		is	a	simple		ack		package	as	a	response	to	the	nodes
package.

Node

4.3.4	LoRa-MAC	Nano-Gateway

207

import	os

import	socket

import	time

import	struct

from	network	import	LoRa

#	A	basic	package	header,	B:	1	byte	for	the	deviceId,	B:	1	byte	for	the	pkg	size

_LORA_PKG_FORMAT	=	"BB%ds"

_LORA_PKG_ACK_FORMAT	=	"BBB"

DEVICE_ID	=	0x01

#	Open	a	Lora	Socket,	use	tx_iq	to	avoid	listening	to	our	own	messages

#	Please	pick	the	region	that	matches	where	you	are	using	the	device:

#	Asia	=	LoRa.AS923

#	Australia	=	LoRa.AU915

#	Europe	=	LoRa.EU868

#	United	States	=	LoRa.US915

lora	=	LoRa(mode=LoRa.LORA,	tx_iq=True,	region=LoRa.EU868)

lora_sock	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

lora_sock.setblocking(False)

while(True):

				#	Package	send	containing	a	simple	string

				msg	=	"Device	1	Here"

				pkg	=	struct.pack(_LORA_PKG_FORMAT	%	len(msg),	DEVICE_ID,	len(msg),	msg)

				lora_sock.send(pkg)

				#	Wait	for	the	response	from	the	gateway.	NOTE:	For	this	demo	the	device	does	an	i

nfinite	loop	for	while	waiting	the	response.	Introduce	a	max_time_waiting	for	you	appl

ication

				waiting_ack	=	True

				while(waiting_ack):

								recv_ack	=	lora_sock.recv(256)

								if	(len(recv_ack)	>	0):

												device_id,	pkg_len,	ack	=	struct.unpack(_LORA_PKG_ACK_FORMAT,	recv_ack)

												if	(device_id	==	DEVICE_ID):

																if	(ack	==	200):

																				waiting_ack	=	False

																				#	If	the	uart	=	machine.UART(0,	115200)	and	os.dupterm(uart)	are	s

et	in	the	boot.py	this	print	should	appear	in	the	serial	port

																				print("ACK")

																else:

																				waiting_ack	=	False

																				#	If	the	uart	=	machine.UART(0,	115200)	and	os.dupterm(uart)	are	s

et	in	the	boot.py	this	print	should	appear	in	the	serial	port

																				print("Message	Failed")

				time.sleep(5)

4.3.4	LoRa-MAC	Nano-Gateway

208

The	node	is	always	sending	packages	and	waiting	for	the		ack		from	the	gateway.

To	adapt	this	code	to	user	specific	needs:

Put	a	max	waiting	time	for	the		ack		to	arrive	and	resend	the	package	or	mark	it	as
invalid
Increase	the	package	size	changing	the		_LORA_PKG_FORMAT		to		BH%ds	.	The		H		will
allow	the	keeping	of	2	bytes	for	size	(for	more	information	about	struct	format)
Reduce	the	package	size	with	bitwise	manipulation
Reduce	the	message	size	(for	this	demo,	a	string)	to	something	more	useful	for
specific	development

4.3.4	LoRa-MAC	Nano-Gateway

209

https://docs.python.org/2/library/struct.html#format-characters

LoRa	Module	to	Module	Connection
This	example	shows	how	to	connect	two	Pycode	LoRa	capable	modules	(nodes)	via	raw
LoRa.

Node	A

from	network	import	LoRa

import	socket

import	time

#	Please	pick	the	region	that	matches	where	you	are	using	the	device:

#	Asia	=	LoRa.AS923

#	Australia	=	LoRa.AU915

#	Europe	=	LoRa.EU868

#	United	States	=	LoRa.US915

lora	=	LoRa(mode=LoRa.LORA,	region=LoRa.EU868)

s	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

s.setblocking(False)

while	True:

				if	s.recv(64)	==	b'Ping':

								s.send('Pong')

				time.sleep(5)

Node	B

from	network	import	LoRa

import	socket

import	time

#	Please	pick	the	region	that	matches	where	you	are	using	the	device:

#	Asia	=	LoRa.AS923

#	Australia	=	LoRa.AU915

#	Europe	=	LoRa.EU868

#	United	States	=	LoRa.US915

lora	=	LoRa(mode=LoRa.LORA,	region=LoRa.EU868)

s	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

s.setblocking(False)

while	True:

				s.send('Ping')

				time.sleep(5)

4.3.5	LoPy	to	LoPy

210

4.3.5	LoPy	to	LoPy

211

LoRaWAN	Nano-Gateway
This	example	allows	to	connect	a	LoPy	to	a	LoRaWAN	network	such	as	The	Things	Network
(TTN)	or	Loriot	to	be	used	as	a	nano-gateway.

This	example	uses	settings	specifically	for	connecting	to	The	Things	Network	within	the
European	868	MHz	region.	For	another	usage,	please	see	the		config.py		file	for	relevant
sections	that	need	changing.

Up	to	date	versions	of	these	snippets	can	be	found	at	the	following	GitHub	Repository.	For
more	information	and	discussion	about	this	code,	see	this	forum	post.

Nano-Gateway

The	Nano-Gateway	code	is	split	into	3	files,		main.py	,		config.py		and		nanogateway.py	.
These	are	used	to	configure	and	specify	how	the	gateway	will	connect	to	a	preferred
network	and	how	it	can	act	as	packet	forwarder.

Gateway	ID

Most	LoRaWAN	network	servers	expect	a	Gateway	ID	in	the	form	of	a	unique	64-bit
hexadecimal	number	(called	a	EUI-64).	The	recommended	practice	is	to	produce	this	ID
from	your	board	by	expanding	the	WiFi	MAC	address	(a	48-bit	number,	called	MAC-48).	You
can	obtain	that	by	running	this	code	prior	to	configuration:

from	network	import	WLAN

import	ubinascii

wl	=	WLAN()

ubinascii.hexlify(wl.mac())[:6]	+	'FFFE'	+	ubinascii.hexlify(wl.mac())[6:]

The	result	will	by	something	like		b'240ac4FFFE008d88'		where		240ac4FFFE008d88		is	your
Gateway	ID	to	be	used	in	your	network	provider	configuration.

Main	(main.py)

This	file	runs	at	boot	and	calls	the	library	and		config.py		files	to	initialise	the	nano-gateway.
Once	configuration	is	set,	the	nano-gateway	is	then	started.

4.3.6	LoRaWAN	Nano-Gateway

212

https://github.com/pycom/pycom-libraries/tree/master/examples/lorawan-nano-gateway
https://forum.pycom.io/topic/810/new-firmware-release-1-6-7-b1-lorawan-nano-gateway-with-ttn-example

"""	LoPy	LoRaWAN	Nano	Gateway	example	usage	"""

import	config

from	nanogateway	import	NanoGateway

if	__name__	==	'__main__':

				nanogw	=	NanoGateway(

								id=config.GATEWAY_ID,

								frequency=config.LORA_FREQUENCY,

								datarate=config.LORA_GW_DR,

								ssid=config.WIFI_SSID,

								password=config.WIFI_PASS,

								server=config.SERVER,

								port=config.PORT,

								ntp_server=config.NTP,

								ntp_period=config.NTP_PERIOD_S

)

				nanogw.start()

				nanogw._log('You	may	now	press	ENTER	to	enter	the	REPL')

				input()

Configuration	(config.py)

This	file	contains	settings	for	the	server	and	network	it	is	connecting	to.	Depending	on	the
nano-gateway	region	and	provider	(TTN,	Loriot,	etc.)	these	will	vary.	The	provided	example
will	work	with	The	Things	Network	(TTN)	in	the	European,	868Mhz,	region.

The	Gateway	ID	is	generated	in	the	script	using	the	process	described	above.

Please	change	the	WIFI_SSID	and	WIFI_PASS	variables	to	match	your	desired	WiFi
network

4.3.6	LoRaWAN	Nano-Gateway

213

"""	LoPy	LoRaWAN	Nano	Gateway	configuration	options	"""

import	machine

import	ubinascii

WIFI_MAC	=	ubinascii.hexlify(machine.unique_id()).upper()

#	Set		the	Gateway	ID	to	be	the	first	3	bytes	of	MAC	address	+	'FFFE'	+	last	3	bytes	o

f	MAC	address

GATEWAY_ID	=	WIFI_MAC[:6]	+	"FFFE"	+	WIFI_MAC[6:12]

SERVER	=	'router.eu.thethings.network'

PORT	=	1700

NTP	=	"pool.ntp.org"

NTP_PERIOD_S	=	3600

WIFI_SSID	=	'my-wifi'

WIFI_PASS	=	'my-wifi-password'

#	for	EU868

LORA_FREQUENCY	=	868100000

LORA_GW_DR	=	"SF7BW125"	#	DR_5

LORA_NODE_DR	=	5

#	for	US915

#	LORA_FREQUENCY	=	903900000

#	LORA_GW_DR	=	"SF7BW125"	#	DR_3

#	LORA_NODE_DR	=	3

Library	(nanogateway.py)

The	nano-gateway	library	controls	all	of	the	packet	generation	and	forwarding	for	the	LoRa
data.	This	does	not	require	any	user	configuration	and	the	latest	version	of	this	code	should
be	downloaded	from	the	Pycom	GitHub	Repository.

"""	LoPy	Nano	Gateway	class	"""

from	network	import	WLAN

from	network	import	LoRa

from	machine	import	Timer

import	os

import	ubinascii

import	machine

import	json

import	time

import	errno

import	_thread

import	socket

4.3.6	LoRaWAN	Nano-Gateway

214

https://github.com/pycom/pycom-libraries/tree/master/examples/lorawan-nano-gateway

PROTOCOL_VERSION	=	const(2)

PUSH_DATA	=	const(0)

PUSH_ACK	=	const(1)

PULL_DATA	=	const(2)

PULL_ACK	=	const(4)

PULL_RESP	=	const(3)

TX_ERR_NONE	=	"NONE"

TX_ERR_TOO_LATE	=	"TOO_LATE"

TX_ERR_TOO_EARLY	=	"TOO_EARLY"

TX_ERR_COLLISION_PACKET	=	"COLLISION_PACKET"

TX_ERR_COLLISION_BEACON	=	"COLLISION_BEACON"

TX_ERR_TX_FREQ	=	"TX_FREQ"

TX_ERR_TX_POWER	=	"TX_POWER"

TX_ERR_GPS_UNLOCKED	=	"GPS_UNLOCKED"

STAT_PK	=	{"stat":	{"time":	"",	"lati":	0,

																			"long":	0,	"alti":	0,

																			"rxnb":	0,	"rxok":	0,

																			"rxfw":	0,	"ackr":	100.0,

																			"dwnb":	0,	"txnb":	0}}

RX_PK	=	{"rxpk":	[{"time":	"",	"tmst":	0,

																		"chan":	0,	"rfch":	0,

																		"freq":	868.1,	"stat":	1,

																		"modu":	"LORA",	"datr":	"SF7BW125",

																		"codr":	"4/5",	"rssi":	0,

																		"lsnr":	0,	"size":	0,

																		"data":	""}]}

TX_ACK_PK	=	{"txpk_ack":{"error":""}}

class	NanoGateway:

				def	__init__(self,	id,	frequency,	datarate,	ssid,	password,	server,	port,	ntp='poo

l.ntp.org',	ntp_period=3600):

												self.id	=	id

								self.frequency	=	frequency

								self.sf	=	self._dr_to_sf(datarate)

								self.ssid	=	ssid

								self.password	=	password

								self.server	=	server

								self.port	=	port

								self.ntp	=	ntp

								self.ntp_period	=	ntp_period

								self.rxnb	=	0

								self.rxok	=	0

																self.rxfw	=	0

																self.dwnb	=	0

4.3.6	LoRaWAN	Nano-Gateway

215

																self.txnb	=	0

								self.stat_alarm	=	None

																self.pull_alarm	=	None

																self.uplink_alarm	=	None

								self.udp_lock	=	_thread.allocate_lock()

								self.lora	=	None

								self.lora_sock	=	None

				def	start(self):

								#	Change	WiFi	to	STA	mode	and	connect

								self.wlan	=	WLAN(mode=WLAN.STA)

								self._connect_to_wifi()

								#	Get	a	time	Sync

								self.rtc	=	machine.RTC()

								self.rtc.ntp_sync(self.ntp,	update_period=self.ntp_period)

								#	Get	the	server	IP	and	create	an	UDP	socket

								self.server_ip	=	socket.getaddrinfo(self.server,	self.port)[0][-1]

								self.sock	=	socket.socket(socket.AF_INET,	socket.SOCK_DGRAM,	socket.IPPROTO_UD

P)

								self.sock.setsockopt(socket.SOL_SOCKET,	socket.SO_REUSEADDR,	1)

								self.sock.setblocking(False)

								#	Push	the	first	time	immediately

								self._push_data(self._make_stat_packet())

								#	Create	the	alarms

								self.stat_alarm	=	Timer.Alarm(handler=lambda	t:	self._push_data(self._make_sta

t_packet()),	s=60,	periodic=True)

								self.pull_alarm	=	Timer.Alarm(handler=lambda	u:	self._pull_data(),	s=25,	perio

dic=True)

								#	Start	the	UDP	receive	thread

								_thread.start_new_thread(self._udp_thread,	())

								#	Initialize	LoRa	in	LORA	mode

								self.lora	=	LoRa(mode=LoRa.LORA,	frequency=self.frequency,	bandwidth=LoRa.BW_1

25KHZ,	sf=self.sf,

																								preamble=8,	coding_rate=LoRa.CODING_4_5,	tx_iq=True)

								#	Create	a	raw	LoRa	socket

								self.lora_sock	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

								self.lora_sock.setblocking(False)

								self.lora_tx_done	=	False

								self.lora.callback(trigger=(LoRa.RX_PACKET_EVENT	|	LoRa.TX_PACKET_EVENT),	hand

ler=self._lora_cb)

				def	stop(self):

								#	TODO:	Check	how	to	stop	the	NTP	sync

4.3.6	LoRaWAN	Nano-Gateway

216

								#	TODO:	Create	a	cancel	method	for	the	alarm

								#	TODO:	kill	the	UDP	thread

								self.sock.close()

				def	_connect_to_wifi(self):

								self.wlan.connect(self.ssid,	auth=(None,	self.password))

								while	not	self.wlan.isconnected():

												time.sleep(0.5)

								print("WiFi	connected!")

				def	_dr_to_sf(self,	dr):

								sf	=	dr[2:4]

								if	sf[1]	not	in	'0123456789':

												sf	=	sf[:1]

								return	int(sf)

				def	_sf_to_dr(self,	sf):

								return	"SF7BW125"

				def	_make_stat_packet(self):

								now	=	self.rtc.now()

								STAT_PK["stat"]["time"]	=	"%d-%02d-%02d	%02d:%02d:%02d	GMT"	%	(now[0],	now[1],

	now[2],	now[3],	now[4],	now[5])

								STAT_PK["stat"]["rxnb"]	=	self.rxnb

								STAT_PK["stat"]["rxok"]	=	self.rxok

								STAT_PK["stat"]["rxfw"]	=	self.rxfw

								STAT_PK["stat"]["dwnb"]	=	self.dwnb

								STAT_PK["stat"]["txnb"]	=	self.txnb

								return	json.dumps(STAT_PK)

				def	_make_node_packet(self,	rx_data,	rx_time,	tmst,	sf,	rssi,	snr):

								RX_PK["rxpk"][0]["time"]	=	"%d-%02d-%02dT%02d:%02d:%02d.%dZ"	%	(rx_time[0],	rx

_time[1],	rx_time[2],	rx_time[3],	rx_time[4],	rx_time[5],	rx_time[6])

								RX_PK["rxpk"][0]["tmst"]	=	tmst

								RX_PK["rxpk"][0]["datr"]	=	self._sf_to_dr(sf)

								RX_PK["rxpk"][0]["rssi"]	=	rssi

								RX_PK["rxpk"][0]["lsnr"]	=	float(snr)

								RX_PK["rxpk"][0]["data"]	=	ubinascii.b2a_base64(rx_data)[:-1]

								RX_PK["rxpk"][0]["size"]	=	len(rx_data)

								return	json.dumps(RX_PK)

				def	_push_data(self,	data):

								token	=	os.urandom(2)

								packet	=	bytes([PROTOCOL_VERSION])	+	token	+	bytes([PUSH_DATA])	+	ubinascii.un

hexlify(self.id)	+	data

								with	self.udp_lock:

												try:

																self.sock.sendto(packet,	self.server_ip)

												except	Exception:

																print("PUSH	exception")

				def	_pull_data(self):

								token	=	os.urandom(2)

4.3.6	LoRaWAN	Nano-Gateway

217

								packet	=	bytes([PROTOCOL_VERSION])	+	token	+	bytes([PULL_DATA])	+	ubinascii.un

hexlify(self.id)

								with	self.udp_lock:

												try:

																self.sock.sendto(packet,	self.server_ip)

												except	Exception:

																print("PULL	exception")

				def	_ack_pull_rsp(self,	token,	error):

								TX_ACK_PK["txpk_ack"]["error"]	=	error

								resp	=	json.dumps(TX_ACK_PK)

								packet	=	bytes([PROTOCOL_VERSION])	+	token	+	bytes([PULL_ACK])	+	ubinascii.unh

exlify(self.id)	+	resp

								with	self.udp_lock:

												try:

																self.sock.sendto(packet,	self.server_ip)

												except	Exception:

																print("PULL	RSP	ACK	exception")

				def	_lora_cb(self,	lora):

								events	=	lora.events()

								if	events	&	LoRa.RX_PACKET_EVENT:

												self.rxnb	+=	1

												self.rxok	+=	1

												rx_data	=	self.lora_sock.recv(256)

												stats	=	lora.stats()

												self._push_data(self._make_node_packet(rx_data,	self.rtc.now(),	stats.time

stamp,	stats.sf,	stats.rssi,	stats.snr))

												self.rxfw	+=	1

								if	events	&	LoRa.TX_PACKET_EVENT:

												self.txnb	+=	1

												lora.init(mode=LoRa.LORA,	frequency=self.frequency,	bandwidth=LoRa.BW_125K

HZ,

																					sf=self.sf,	preamble=8,	coding_rate=LoRa.CODING_4_5,	tx_iq=True)

				def	_send_down_link(self,	data,	tmst,	datarate,	frequency):

								self.lora.init(mode=LoRa.LORA,	frequency=frequency,	bandwidth=LoRa.BW_125KHZ,

																						sf=self._dr_to_sf(datarate),	preamble=8,	coding_rate=LoRa.CODING

_4_5,

																						tx_iq=True)

								while	time.ticks_us()	<	tmst:

												pass

								self.lora_sock.send(data)

				def	_udp_thread(self):

								while	True:

												try:

																data,	src	=	self.sock.recvfrom(1024)

																_token	=	data[1:3]

																_type	=	data[3]

																if	_type	==	PUSH_ACK:

																				print("Push	ack")

																elif	_type	==	PULL_ACK:

4.3.6	LoRaWAN	Nano-Gateway

218

																				print("Pull	ack")

																elif	_type	==	PULL_RESP:

																				self.dwnb	+=	1

																				ack_error	=	TX_ERR_NONE

																				tx_pk	=	json.loads(data[4:])

																				tmst	=	tx_pk["txpk"]["tmst"]

																				t_us	=	tmst	-	time.ticks_us()	-	5000

																				if	t_us	<	0:

																								t_us	+=	0xFFFFFFFF

																				if	t_us	<	20000000:

																								self.uplink_alarm	=	Timer.Alarm(handler=lambda	x:	self._send_d

own_link(ubinascii.a2b_base64(tx_pk["txpk"]["data"]),

																																																																																						

								tx_pk["txpk"]["tmst"]	-	10,	tx_pk["txpk"]["datr"],

																																																																																						

								int(tx_pk["txpk"]["freq"]	*	1000000)),	us=t_us)

																				else:

																								ack_error	=	TX_ERR_TOO_LATE

																								print("Downlink	timestamp	error!,	t_us:",	t_us)

																				self._ack_pull_rsp(_token,	ack_error)

																				print("Pull	rsp")

												except	socket.timeout:

																pass

												except	OSError	as	e:

																if	e.errno	==	errno.EAGAIN:

																				pass

																else:

																				print("UDP	recv	OSError	Exception")

												except	Exception:

																print("UDP	recv	Exception")

												#	Wait	before	trying	to	receive	again

												time.sleep(0.025)

Registering	with	TTN

To	set	up	the	gateway	with	The	Things	Network	(TTN),	navigate	to	their	website	and
create/register	an	account.	Enter	a	username	and	an	email	address	to	verify	with	their
platform.

4.3.6	LoRaWAN	Nano-Gateway

219

Once	an	account	has	been	registered,	the	nano-gateway	can	then	be	registered.	To	do	this,
navigate	to	the	TTN	Console	web	page.

Registering	the	Gateway

Inside	the	TTN	Console,	there	are	two	options,		applications		and		gateways	.	Select
	gateways		and	then	click	on		register	gateway	.	This	will	allow	for	the	set	up	and	registration
of	a	new	nano-gateway.

4.3.6	LoRaWAN	Nano-Gateway

220

On	the	Register	Gateway	page,	you	will	need	to	set	the	following	settings:

These	are	unique	to	each	gateway,	location	and	country	specific	frequency.	Please	verify
that	correct	settings	are	selected	otherwise	the	gateway	will	not	connect	to	TTN.

You	need	to	tick	the	"I'm	using	the	legacy	packet	forwarder"	to	enable	the	right
settings.	This	is	because	the	Nano-Gateway	uses	the	'de	facto'	standard	Semtech	UDP
protocol.

4.3.6	LoRaWAN	Nano-Gateway

221

Option Value

Protocol Packet	Forwarder

Gateway	EUI User	Defined	(must	match		config.py)

Description User	Defined

Frequency	Plan Select	Country	(e.g.	EU	-	868	MHz)

Location User	Defined

Antenna	Placement Indoor	or	Outdoor

The	Gateway	EUI	should	match	your	Gateway	ID	from	the		config.py		file.	We	suggest	you
follow	the	procedure	described	near	the	top	of	this	document	to	create	your	own	unique
Gateway	ID.

Once	these	settings	have	been	applied,	click		Register	Gateway	.	A	Gateway	Overview	page
will	appear,	with	the	configuration	settings	showing.	Next	click	on	the		Gateway	Settings		and
configure	the	Router	address	to	match	that	of	the	gateway	(default:
	router.eu.thethings.network).

The		Gateway		should	now	be	configured.	Next,	one	or	more	nodes	can	now	be	configured	to
use	the	nano-gateway	and	TTN	applications	may	be	built.

LoPy	Node

4.3.6	LoRaWAN	Nano-Gateway

222

There	are	two	methods	of	connecting	LoPy	devices	to	the	nano-gateway,	Over	the	Air
Activation	(OTAA)	and	Activation	By	Personalisation	(ABP).	The	code	and	instructions	for
registering	these	methods	are	shown	below,	followed	by	instruction	for	how	to	connect	them
to	an	application	on	TTN.

It’s	important	that	the	following	code	examples	(also	on	GitHub)	are	used	to	connect	to
the	nano-gateway	as	it	only	supports	single	channel	connections.

OTAA	(Over	The	Air	Activation)

When	the	LoPy	connects	an	application	(via	TTN)	using	OTAA,	the	network	configuration	is
derived	automatically	during	a	handshake	between	the	LoPy	and	network	server.	Note	that
the	network	keys	derived	using	the	OTAA	methodology	are	specific	to	the	device	and	are
used	to	encrypt	and	verify	transmissions	at	the	network	level.

"""	OTAA	Node	example	compatible	with	the	LoPy	Nano	Gateway	"""

from	network	import	LoRa

import	socket

import	ubinascii

import	struct

import	time

#	Initialize	LoRa	in	LORAWAN	mode.

lora	=	LoRa(mode=LoRa.LORAWAN)

#	create	an	OTA	authentication	params

dev_eui	=	ubinascii.unhexlify('AABBCCDDEEFF7778')	#	these	settings	can	be	found	from	T

TN

app_eui	=	ubinascii.unhexlify('70B3D57EF0003BFD')	#	these	settings	can	be	found	from	T

TN

app_key	=	ubinascii.unhexlify('36AB7625FE77776881683B495300FFD6')	#	these	settings	can

	be	found	from	TTN

#	set	the	3	default	channels	to	the	same	frequency	(must	be	before	sending	the	OTAA	jo

in	request)

lora.add_channel(0,	frequency=868100000,	dr_min=0,	dr_max=5)

lora.add_channel(1,	frequency=868100000,	dr_min=0,	dr_max=5)

lora.add_channel(2,	frequency=868100000,	dr_min=0,	dr_max=5)

#	join	a	network	using	OTAA

lora.join(activation=LoRa.OTAA,	auth=(dev_eui,	app_eui,	app_key),	timeout=0)

#	wait	until	the	module	has	joined	the	network

while	not	lora.has_joined():

				time.sleep(2.5)

4.3.6	LoRaWAN	Nano-Gateway

223

				print('Not	joined	yet...')

#	remove	all	the	non-default	channels

for	i	in	range(3,	16):

				lora.remove_channel(i)

#	create	a	LoRa	socket

s	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

#	set	the	LoRaWAN	data	rate

s.setsockopt(socket.SOL_LORA,	socket.SO_DR,	5)

#	make	the	socket	non-blocking

s.setblocking(False)

time.sleep(5.0)

"""	Your	own	code	can	be	written	below!	"""

for	i	in	range	(200):

				s.send(b'PKT	#'	+	bytes([i]))

				time.sleep(4)

				rx	=	s.recv(256)

				if	rx:

								print(rx)

				time.sleep(6)

ABP	(Activation	By	Personalisation)

Using	ABP	join	mode	requires	the	user	to	define	the	following	values	and	input	them	into
both	the	LoPy	and	the	TTN	Application:

Device	Address
Application	Session	Key
Network	Session	Key

4.3.6	LoRaWAN	Nano-Gateway

224

"""	ABP	Node	example	compatible	with	the	LoPy	Nano	Gateway	"""

from	network	import	LoRa

import	socket

import	ubinascii

import	struct

import	time

#	Initialise	LoRa	in	LORAWAN	mode.

lora	=	LoRa(mode=LoRa.LORAWAN)

#	create	an	ABP	authentication	params

dev_addr	=	struct.unpack(">l",	ubinascii.unhexlify('2601147D'))[0]	#	these	settings	ca

n	be	found	from	TTN

nwk_swkey	=	ubinascii.unhexlify('3C74F4F40CAE2221303BC24284FCF3AF')	#	these	settings	c

an	be	found	from	TTN

app_swkey	=	ubinascii.unhexlify('0FFA7072CC6FF69A102A0F39BEB0880F')	#	these	settings	c

an	be	found	from	TTN

#	join	a	network	using	ABP	(Activation	By	Personalisation)

lora.join(activation=LoRa.ABP,	auth=(dev_addr,	nwk_swkey,	app_swkey))

#	remove	all	the	non-default	channels

for	i	in	range(3,	16):

				lora.remove_channel(i)

#	set	the	3	default	channels	to	the	same	frequency

lora.add_channel(0,	frequency=868100000,	dr_min=0,	dr_max=5)

lora.add_channel(1,	frequency=868100000,	dr_min=0,	dr_max=5)

lora.add_channel(2,	frequency=868100000,	dr_min=0,	dr_max=5)

#	create	a	LoRa	socket

s	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

#	set	the	LoRaWAN	data	rate

s.setsockopt(socket.SOL_LORA,	socket.SO_DR,	5)

#	make	the	socket	non-blocking

s.setblocking(False)

"""	Your	own	code	can	be	written	below!	"""

for	i	in	range	(200):

				s.send(b'PKT	#'	+	bytes([i]))

				time.sleep(4)

				rx	=	s.recv(256)

				if	rx:

								print(rx)

				time.sleep(6)

TTN	Applications

4.3.6	LoRaWAN	Nano-Gateway

225

Now	that	the	gateway	&	nodes	have	been	setup,	a	TTN	Application	can	be	built;	i.e.	what
happens	to	the	LoRa	data	once	it	is	received	by	TTN.	There	are	a	number	of	different
setups/systems	that	can	be	used,	however	the	following	example	demonstrates	the	HTTP
request	integration.

Registering	an	Application

Selecting	the		Applications		tab	at	the	top	of	the	TTN	console,	will	bring	up	a	screen	for
registering	applications.	Click	register	and	a	new	page,	similar	to	the	one	below,	will	open.

Enter	a	unique		Application	ID		as	well	as	a	Description	&	Handler	Registration.

Now	the	LoPy	nodes	must	be	registered	to	send	data	up	to	the	new	Application.

Registering	Devices	(LoPy)

To	connect	nodes	to	the	nano-gateway,	devices	need	to	be	added	to	the	application.	To	do
this,	navigate	to	the		Devices		tab	on	the		Application		home	page	and	click	the		Register
Device		button.

In	the		Register	Device		panel,	complete	the	forms	for	the		Device	ID		and	the		Device	EUI	.
The		Device	ID		is	user	specified	and	is	unique	to	the	device	in	this	application.	The		Device
EUI		is	also	user	specified	but	must	consist	of	exactly	8	bytes,	given	in	hexadecimal.

4.3.6	LoRaWAN	Nano-Gateway

226

Once	the	device	has	been	added,	change	the		Activation	Method		between		OTAA		and		ABP	
depending	on	user	preference.	This	option	can	be	found	under	the	Settings	tab.

Adding	Application	Integrations

Now	that	the	data	is	arriving	on	the	TTN	Backend,	TTN	can	be	managed	as	to	where	data
should	be	delivered	to.	To	do	this,	use	the		Integrations		tab	within	the	new	Application’s
settings.

Upon	clicking		add	integration	,	a	screen	with	4	different	options	will	appear.	These	have
various	functionality	and	more	information	about	them	can	be	found	on	the	TTN
website/documentation.

For	this	example,	use	the		HTTP	Integration		to	forward	the	LoRaWAN	Packets	to	a	remote
server/address.

4.3.6	LoRaWAN	Nano-Gateway

227

Click		HTTP	Integration		to	connect	up	an	endpoint	that	can	receive	the	data.

For	testing,	a	website	called	RequestBin	may	be	used	to	receive	the	data	that	TTN	forwards
(via	POST	Request).	To	set	this	up,	navigate	to	RequestBin	and	click	the		Create	a
RequestBin	.

Copy	the	URL	that	is	generated	and	past	this	into	the		URL		form	under	the		Application
Settings	.

4.3.6	LoRaWAN	Nano-Gateway

228

https://requestb.in/
https://requestb.in/

This	is	the	address	that	TTN	will	forward	data	onto.	As	soon	as	a	LoPy	starts	sending
messages,	TTN	will	forward	these	onto		RequestBin		and	they	will	appear	at	the	unique
	RequestBin	URL	.

4.3.6	LoRaWAN	Nano-Gateway

229

RN2483	to	LoPy
This	example	shows	how	to	send	data	between	a	Microchip	RN2483	and	a	LoPy	via	raw
LoRa.

RN2483

mac	pause

radio	set	freq	868000000

radio	set	mod	lora

radio	set	bw	250

radio	set	sf	sf7

radio	set	cr	4/5

radio	set	bw	125

radio	set	sync	12

radio	set	prlen	8

#	Transmit	via	radio	tx:

radio	tx	48656c6C6F		#(should	send	‘Hello’)

LoPy

from	network	import	LoRa

import	socket

lora	=	LoRa(mode=LoRa.LORA,	frequency=	868000000,	bandwidth=LoRa.BW_125KHZ,	sf=7,	prea

mble=8,

				coding_rate=LoRa.CODING_4_5,	power_mode=LoRa.ALWAYS_ON,

				tx_iq=False,	rx_iq=False,	public=False)

s	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

#	This	keeps	listening	for	data	"forever".

while(True):

				s.recv(64)

4.3.7	RN2483	to	LoPy

230

SiPy	Tutorials
To	ensure	your	device	has	been	provisioned	with	Device	ID	and	PAC	number,	please
update	to	the	latest	firmware.

The	following	tutorials	demonstrate	how	to	register	and	get	started	with	the	SiPy.	The	SiPy
can	be	configured	for	operation	in	various	countries	based	upon	specified	RCZ	zones	(see
the		Sigfox		class	for	more	info).	The	SiPy	supports	both	uplink	and	downlink		Sigfox	
messages	as	well	as	device	to	device	communication	via	its	FSK	Mode		Sigfox	.

4.4	Sigfox	Examples

231

Registering	with	Sigfox
To	ensure	the	device	has	been	provisioned	with	Device	ID	and	PAC	number,	please	update
to	the	latest	firmware.

In	order	to	send	a	Sigfox	message,	the	device	need	to	register	with	the	Sigfox	Backend.
Navigate	to	https://backend.sigfox.com/activate	to	find	the	list	of	Sigfox	enabled
development	kits.

Select		Pycom		to	proceed.

Next	choose	a	Sigfox	Operator	for	the	country	where	the	device	will	be	activated.	Find	the
specific	country	and	select	the	operator	to	continue.

4.4.1	Register	Device

232

https://backend.sigfox.com/activate

Now	need	to	enter	the	device's	Device	ID	and	PAC	number.

The	Device	ID	and	PAC	number	are	retrievable	through	a	couple	of	commands	via	the
REPL.

from	network	import	Sigfox

import	ubinascii

#	initalise	Sigfox	for	RCZ1	(You	may	need	a	different	RCZ	Region)

sigfox	=	Sigfox(mode=Sigfox.SIGFOX,	rcz=Sigfox.RCZ1)

#	print	Sigfox	Device	ID

print(ubinascii.hexlify(sigfox.id()))

#	print	Sigfox	PAC	number

print(ubinascii.hexlify(sigfox.pac()))

See		Sigfox		for	more	info	about	the	Sigfox	Class	and	which		RCZ		region	to	use.

4.4.1	Register	Device

233

Once	the	device's	Device	ID	and	PAC	number	have	been	entered,	create	an	account.
Provide	the	required	information	including	email	address	and	click	to	continue.

An	email	confirming	the	creation	of	a	Sigfox	Backend	account	and	the	successful
registration	of	the	device	should	arrive	at	the	users	inbox.

4.4.1	Register	Device

234

How	To	Disengage	Sequence	Number
If	your	are	experiencing	issues	with	Sigfox	connectivity,	this	could	be	due	to	the	sequence
number	being	out	of	sync.	To	prevent	replay	on	the	network,	the	Sigfox	protocol	uses
sequence	numbers.	If	there	is	a	large	difference	between	the	sequence	number	sent	by	the
device	and	the	one	expected	by	the	backend,	your	message	is	dropped	by	the	network.

You	can	use	the		Disengage	sequence	number		button	on	the	device	information	or	on	the
device	type	information	page	of	the	Sigfox	backend	to	reset	the	number	expected	by	the
backend.	If	the	sequence	number	of	your	next	message	is	different	from	the	last	trashed
sequence	number,	the	message	will	be	accepted.

Issues	with	the	sequence	number	can	occur	when	a	lot	of	messages	are	sent	when	outside
of	Sigfox	coverage	for	instance.

Firstly	you	will	need	to	log	into	the	Sigfox	Backend,	navigate	to	device,	and	click	on	the
Sigfox	ID	of	the	affected	SiPy.	

You	should	now	see	the	Information	page	with	an	entry		Device	Type:		followed	by	a	link.
Please	follow	the	link

4.4.2	Disengage	Sequence	Number

235

https://backend.sigfox.com

Finally,	on	this	page	click	on		Disengage	sequence	number		button	in	the	upper	right	corner.

4.4.2	Disengage	Sequence	Number

236

LTE	Tutorials
The	following	tutorials	demonstrate	the	use	of	the	LTE	CAT-M1	and	NB-IoT	functionality	on
cellular	enabled	Pycom	modules.

Our	cellular	modules	support	both	LTE	CAT-M1	and	NB-IoT,	these	are	new	lower	power,
long	range,	cellular	protocols.	These	are	not	the	same	as	the	full	version	of	2G/3G/LTE
supported	by	cell	phones,	and	require	your	local	carriers	to	support	them.	At	the	time	of
writing,	CAT-M1	and	NB-IoT	connectivity	is	not	widely	available	so	be	sure	to	check	with
local	carriers	if	support	is	available	where	you	are.

4.5	LTE	Examples

237

LTE	class	for	Cat	M1

Please	ensure	you	have	the	latest	Sequans	modem	firmware	for	the	best	network
compatibility.	Instructions	for	this	can	be	found	here.

The	LTE	Cat	M1	service	gives	full	IP	access	through	the	cellular	modem.

Once	the		lte.connect()		function	has	completed	all	the	IP	socket	functions	-	including	SSL	-
will	be	routed	through	this	connection.	This	mean	any	code	using	WLAN	can	be	adapted	to
Cat	M1	by	simply	adding	the	connection	setup	step	first	and	disconnect	after.

For	example	to	connect	over	LTE	Cat	M1	to	Google's	web	server	over	secure	SSL:

import	socket

import	ssl

import	time

from	network	import	LTE

lte	=	LTE()									#	instantiate	the	LTE	object

lte.attach()								#	attach	the	cellular	modem	to	a	base	station

while	not	lte.isattached():

				time.sleep(0.25)

lte.connect()							#	start	a	data	session	and	obtain	an	IP	address

while	not	lte.isconnected():

				time.sleep(0.25)

s	=	socket.socket()

s	=	ssl.wrap_socket(s)

s.connect(socket.getaddrinfo('www.google.com',	443)[0][-1])

s.send(b"GET	/	HTTP/1.0\r\n\r\n")

print(s.recv(4096))

s.close()

lte.disconnect()

lte.dettach()

This	also	applies	to	our	MQTT	and	AWS	examples.

IMPORTANT:	Once	the	LTE	radio	is	initialised,	it	must	be	de-initialised	before	going	to
deepsleep	in	order	to	ensure	minimum	power	consumption.	This	is	required	due	to	the	LTE
radio	being	powered	independently	and	allowing	use	cases	which	require	the	system	to	be
taken	out	from	deepsleep	by	an	event	from	the	LTE	network	(data	or	SMS	received	for
instance).

4.5.1	CAT-M1

238

When	using	the	expansion	board	and	the	FiPy	together,	the	RTS/CTS	jumpers	MUST	be
removed	as	those	pins	are	being	used	by	the	LTE	radio.	Keeping	those	jumpers	in	place	will
lead	to	erratic	operation	and	higher	current	consumption	specially	while	in	deepsleep.

4.5.1	CAT-M1

239

LTE	class	for	Narrow	Band	IoT

As	shipped,	Pycom	modules	only	support	CAT-M1,	in	order	to	use	NB-IoT	you	need	to
flash	a	different	firmware	to	the	Sequans	modem.	Instructions	for	this	can	be	found
here.

Current	NB-IoT	limitations
At	the	moment	the	NB-IoT	firmware	supplied	by	Sequans	only	support	Ericsson	base
stations	configured	for	In-Band	mode.	Standalone	and	guard-band	modes	will	be	supported
in	a	later	release.	Support	for	Huawei	base	stations	is	also	limited	and	only	lab	testing	with
Huawei	eNodeB	is	recommended	at	the	moment.	Full	support	for	Huawei	is	planned	for
early	Q2	2018.

NB-IoT	usage:
Example	with	Vodafone:

from	network	import	LTE

lte	=	LTE()

lte.send_at_cmd('AT+CFUN=0')

lte.send_at_cmd('AT!="clearscanconfig"')

lte.send_at_cmd('AT!="addscanfreq	band=20	dl-earfcn=6300"')

lte.send_at_cmd('AT!="zsp0:npc	1"')

lte.send_at_cmd('AT+CGDCONT=1,"IP","nb.inetd.gdsp"')

lte.send_at_cmd('AT+CFUN=1')

while	not	lte.isattached():

				pass

lte.connect()

while	not	lte.isconnected():

				pass

#	now	use	socket	as	usual...

4.5.2	NB-IoT

240

IMPORTANT:	Once	the	LTE	radio	is	initialised,	it	must	be	de-initialised	before	going	to
deepsleep	in	order	to	ensure	minimum	power	consumption.	This	is	required	due	to	the	LTE
radio	being	powered	independently	and	allowing	use	cases	which	require	the	system	to	be
taken	out	from	deepsleep	by	an	event	from	the	LTE	network	(data	or	SMS	received	for
instance).

When	using	the	expansion	board	and	the	FiPy	together,	the	RTS/CTS	jumpers	MUST	be
removed	as	those	pins	are	being	used	by	the	LTE	radio.	Keeping	those	jumpers	in	place	will
lead	to	erratic	operation	and	higher	current	consumption	specially	while	in	deepsleep.

4.5.2	NB-IoT

241

How	to	get	the	IMEI	of	your	module
In	order	to	retrieve	the	IMEI	of	your	cellular	enabled	Pycom	module	you	will	firstly	need	to
make	sure	you	are	on	firmware	version		1.17.0.b1		or	higher.	You	can	check	your	firmware
version	by	running	the	following	code	on	you	device	via	the	interactive	REPL.

>>>	import	os

>>>	os.uname()

(sysname='GPy',	nodename='GPy',	release='1.17.0.b1',	version='v1.8.6-849-d0dc708	on	20

18-02-27',	machine='GPy	with	ESP32')

Once	you	have	a	compatible	firmware,	you	can	run	the	following	code	to	get	your	modules
IMEI	number:

from	network	import	LTE

lte	=	LTE()

lte.send_at_cmd('AT+CGSN=1')

You’ll	get	a	return	string	like	this		\r\n+CGSN:	"354347xxxxxxxxx"\r\n\r\nOK	.	The	value
between	the	double	quotes	is	your	IMEI.

4.5.3	Module	IMEI

242

Firmware	upgrade	tool	for	the	Sequans
Monarch	SQN3330

Description
The	Sequans	Monarch	SQN3330	cellular	radio	found	on	the	Pycom	FiPy,	GPy	and	GO1
modules	requires	a	different	firmware	to	operate	in	CAT-M1	or	NB-IoT	mode.

This	page	will	explain	the	process	to	upgrade	the	firmware	of	the	cellular	radio	The	process
involves	streaming	the	firmware	file	from	the	ESP32	to	the	SQN3330.	Currently,	the	file	has
to	be	stored	in	a	micro	SD	card	first	so	that	the	ESP32	can	access	it	easily.	We	are	current
working	to	add	support	for	streaming	the	file	via	the	updater	tool	as	well.

Requirements
Before	proceeding	you	will	need:

Pycom	cellular	enabled	module	(GPy,	FiPy,	G01)
FAT32	formatted	microSD	card	(with	at	least	6MB	of	free	space)
A	Pycom	Expansion	Board	or	shield	(or	a	microSD	card	socket	breakout	board)

Usage

If	your	module	is	running	the	factory	LTE	chip	firmware,	you	MUST	first	perform	an
update	to	the	latest	CAT-M1	firmware	before	trying	to	upgrade	to	the	NB-IoT	firmware.
Skipping	this	step	will	cause	your	radio	to	become	unresponsive	and	it	will	require
access	to	the	test	points	in	order	to	re-flash	the	firmware.

Firstly,	you	will	need	to	download	the	required	library	files	from	here.	You	will	need	to	place
these	in	a	directory	called	"lib"	just	like	any	other	libraries.	This	can	be	done	using	either
FTP	or	Pymakr

Next	you	need	to	download	the	firmware	file	from	here.	You	will	need	to	place	the	firmware
on	a	FAT32	formatted	microSD	card,	then	insert	the	SD	card	into	a	Expansion	Board,
Pytrack,	Pysense	or	Pyscan.	Power-up	the	system	and	connect	to	the	interactive	REPL	and

4.5.3	Modem	Firmware	Update

243

https://github.com/pycom/pycom-libraries/tree/master/lib/sqnsupgrade
https://software.pycom.io/downloads/sequans.html

run	the	following	code:

import	sqnsupgrade

sqnsupgrade.run(path_to_firmware,	921600)			#	path_to_firmware	example:	'/sd/FIPY_NB1_

35351.dup'

The	whole	process	can	take	between	2	and	3	minutes	and	at	some	points	it	will	seem	to
stall,	this	is	normal,	just	be	patience.	You	should	see	an	output	like	this:

<<<	Welcome	to	the	SQN3330	firmware	updater	>>>

Entering	recovery	mode

Resetting.

Starting	STP	(DO	NOT	DISCONNECT	POWER!!!)

STP	started

Session	opened:	version	1,	max	transfer	8192	bytes

Sending	4560505	bytes:	[##]	100%

Code	download	done,	returning	to	user	mode

Resetting	(DO	NOT	DISCONNECT	POWER!!!).

.........

Deploying	the	upgrade	(DO	NOT	DISCONNECT	POWER!!!)...

Resetting	(DO	NOT	DISCONNECT	POWER!!!)..

...

Upgrade	completed!

Here	is	the	current	firmware	version:

UE6.0.0.0-ER7

LR6.0.0.0-35351

OK

DO	NOT	disconnect	power	while	the	upgrade	process	is	taking	place,	wait	for	it	to	finish!

If	the	module	get's	stuck	in	here	for	more	than	1	minute	while	upgrading	to	the	NB-IoT
firmware,	you	can	cycle	power	and	retry.	In	this	case	it	is	safe.

Sending	4560505	bytes:	[##]			6%

4.5.3	Modem	Firmware	Update

244

Accelerometer
Both	the	Pysense	and	Pytrack	use	the	same	accelerometer.	Please	see	the	Pysense
Examples	to	see	how	to	use	the	accelerometer.

4.6	Pytrack	Examples

245

Sensor	Demos

Accelerometer
This	basic	example	shows	how	to	read	pitch	and	roll	from	the	on-board	accelerometer	and
output	it	in	comma	separated	value	(CSV)	format	over	serial.

from	LIS2HH12	import	LIS2HH12

from	pytrack	import	Pytrack

py	=	Pytrack()

acc	=	LIS2HH12()

while	True:

			pitch	=	acc.pitch()

			roll	=	acc.roll()

			print('{},{}'.format(pitch,	roll))

			time.sleep_ms(100)

If	you	want	to	visualise	the	data	output	by	this	script	a	Processing	sketch	is	available	here
that	will	show	the	board	orientation	in	3D.

4.7	Pysense	Examples

246

https://github.com/pycom/pycom-libraries/tree/master/examples/pytrack_pysense_accelerometer

4.7	Pysense	Examples

247

Introduction
This	chapter	describes	modules	(function	and	class	libraries)	that	are	built	into	MicroPython.
There	are	a	number	of	categories	for	the	available	modules:

Modules	which	implement	a	subset	of	standard	Python	functionality	and	are	not
intended	to	be	extended	by	the	user.
Modules	which	implement	a	subset	of	Python	functionality,	with	a	provision	for
extension	by	the	user	(via	Python	code).
Modules	which	implement	MicroPython	extensions	to	the	Python	standard	libraries.
Modules	specific	to	a	particular	port	and	thus	not	portable.

Note	about	the	availability	of	modules	and	their	contents

This	documentation	in	general	aspires	to	describe	all	modules	and	functions/classes	which
are	implemented	in	MicroPython.	However,	MicroPython	is	highly	configurable,	and	each
port	to	a	particular	board/embedded	system	makes	available	only	a	subset	of	MicroPython
libraries.	For	officially	supported	ports,	there	is	an	effort	to	either	filter	out	non-applicable
items,	or	mark	individual	descriptions	with	“Availability:”	clauses	describing	which	ports
provide	a	given	feature.	With	that	in	mind,	please	still	be	warned	that	some	functions/classes
in	a	module	(or	even	the	entire	module)	described	in	this	documentation	may	be	unavailable
in	a	particular	build	of	MicroPython	on	a	particular	board.	The	best	place	to	find	general
information	of	the	availability/non-availability	of	a	particular	feature	is	the	“General
Information”	section	which	contains	information	pertaining	to	a	specific	port.

Beyond	the	built-in	libraries	described	in	this	documentation,	many	more	modules	from	the
Python	standard	library,	as	well	as	further	MicroPython	extensions	to	it,	can	be	found	in	the
micropython-lib	repository.

5.1	Introduction

248

https://github.com/micropython/micropython-lib

Pycom	Modules
These	modules	are	specific	to	the	Pycom	devices	and	may	have	slightly	different
implementations	to	other	variations	of	MicroPython	(i.e.	for	Non-Pycom	devices).	Modules
include	those	which	support	access	to	underlying	hardware,	e.g.	I2C,	SPI,	WLAN,	Bluetooth,
etc.

5.2	Pycom	Modules

249

module	machine
The		machine		module	contains	specific	functions	related	to	the	board.

Quick	Usage	Example

import	machine

help(machine)	#	display	all	members	from	the	machine	module

machine.freq()	#	get	the	CPU	frequency

machine.unique_id()	#	return	the	6-byte	unique	id	of	the	board	(the	LoPy's	WiFi	MAC	ad

dress)

Reset	Functions

machine.reset()

Resets	the	device	in	a	manner	similar	to	pushing	the	external	RESET	button.

machine.reset_cause()

Get	the	reset	cause.	See	constants	for	the	possible	return	values.

Interrupt	Functions

machine.disable_irq()

Disable	interrupt	requests.	Returns	and	integer	representing	the	previous	IRQ	state.	This
return	value	can	be	passed	to		enable_irq		to	restore	the	IRQ	to	its	original	state.

machine.enable_irq([state])

Enable	interrupt	requests.	The	most	common	use	of	this	function	is	to	pass	the	value
returned	by		disable_irq		to	exit	a	critical	section.	Another	options	is	to	enable	all	interrupts
which	can	be	achieved	by	calling	the	function	with	no	parameters.

Power	Functions

machine.freq()

Returns	CPU	frequency	in	hertz.

5.2.1	machine

250

machine.idle()

Gates	the	clock	to	the	CPU,	useful	to	reduce	power	consumption	at	any	time	during	short	or
long	periods.	Peripherals	continue	working	and	execution	resumes	as	soon	as	any	interrupt
is	triggered	(on	many	ports	this	includes	system	timer	interrupt	occurring	at	regular	intervals
on	the	order	of	millisecond).

machine.deepsleep([time_ms])

Stops	the	CPU	and	all	peripherals,	including	the	networking	interfaces	(except	for	LTE).
Execution	is	resumed	from	the	main	script,	just	as	with	a	reset.	If	a	value	in	milliseconds	is
given	then	the	device	will	wake	up	after	that	period	of	time,	otherwise	it	will	remain	in	deep
sleep	until	the	reset	button	is	pressed.

The	products	with	LTE	connectivity	(FiPy,	GPy,	G01),	require	the	LTE	radio	to	be	disabled
separately	via	the	LTE	class	before	entering	deepsleep.	This	is	required	due	to	the	LTE
radio	being	powered	independently	and	allowing	use	cases	which	require	the	system	to	be
taken	out	from	deepsleep	by	an	event	from	the	LTE	network	(data	or	SMS	received	for
instance).

machine.pin_deepsleep_wakeup(pins,	mode,	enable_pull)

Configure	pins	to	wake	up	from	deep	sleep	mode.	The	pins	which	have	this	capability	are:
	P2,	P3,	P4,	P6,	P8	to	P10	and	P13	to	P23	.

The	arguments	are:

	pins		a	list	or	tuple	containing	the		GPIO		to	setup	for	deepsleep	wakeup.
	mode		selects	the	way	the	configure		GPIO	s	can	wake	up	the	module.	The	possible
values	are:		machine.WAKEUP_ALL_LOW		and		machine.WAKEUP_ANY_HIGH	.
	enable_pull		if	set	to		True		keeps	the	pull	up	or	pull	down	resistors	enabled	during
deep	sleep.	If	this	variable	is	set	to		True	,	then		ULP		or	capacitive	touch	wakeup	cannot
be	used	in	combination	with		GPIO		wakeup.

machine.wake_reason()

Get	the	wake	reason.	See	constants	for	the	possible	return	values.	Returns	a	tuple	of	the
form:		(wake_reason,	gpio_list)	.	When	the	wakeup	reason	is	either	GPIO	or	touch	pad,
then	the	second	element	of	the	tuple	is	a	list	with	GPIOs	that	generated	the	wakeup.

machine.remaining_sleep_time()

Returns	the	remaining	timer	duration	(in	milliseconds)	if	the	ESP32	is	woken	up	from	deep
sleep	by	something	other	than	the	timer.	For	example,	if	you	set	the	timer	for	30	seconds
(30000	ms)	and	it	wakes	up	after	10	seconds	then	this	function	will	return		20000	.

5.2.1	machine

251

Miscellaneous	Functions

machine.main(filename)

Set	the		filename		of	the	main	script	to	run	after		boot.py		is	finished.	If	this	function	is	not
called	then	the	default	file		main.py		will	be	executed.

It	only	makes	sense	to	call	this	function	from	within		boot.py	.

machine.rng()

Return	a	24-bit	software	generated	random	number.

machine.unique_id()

Returns	a	byte	string	with	a	unique	identifier	of	a	board/SoC.	It	will	vary	from	a	board/SoC
instance	to	another,	if	underlying	hardware	allows.	Length	varies	by	hardware	(so	use
substring	of	a	full	value	if	you	expect	a	short	ID).	In	some	MicroPython	ports,	ID	corresponds
to	the	network	MAC	address.

Use		ubinascii.hexlify()		to	convert	the	byte	string	to	hexadecimal	form	for	ease	of
manipulation	and	use	elsewhere.

machine.info()

Returns	the	high	water	mark	of	the	stack	associated	with	various	system	tasks,	in	words	(1
word	=	4	bytes	on	the	ESP32).	If	the	value	is	zero	then	the	task	has	likely	overflowed	its
stack.	If	the	value	is	close	to	zero	then	the	task	has	come	close	to	overflowing	its	stack.

Constants

Reset	Causes

machine.PWRON_RESET	machine.HARD_RESET	machine.WDT_RESET
machine.DEEPSLEEP_RESET	machine.SOFT_RESET	machine.BROWN_OUT_RESET

Wake	Reasons

machine.PWRON_WAKE	machine.PIN_WAKE	machine.RTC_WAKE	machine.ULP_WAKE

Pin	Wakeup	Modes

5.2.1	machine

252

machine.WAKEUP_ALL_LOW	machine.WAKEUP_ANY_HIGH

5.2.1	machine

253

class	ADC	–	Analog	to	Digital	Conversion

Quick	Usage	Example

import	machine

adc	=	machine.ADC()													#	create	an	ADC	object

apin	=	adc.channel(pin='P16')			#	create	an	analog	pin	on	P16

val	=	apin()																				#	read	an	analog	value

Constructors

class	machine.ADC(id=0)

Create	an	ADC	object;	associate	a	channel	with	a	pin.	For	more	info	check	the	hardware
section.

Methods

adc.init(*	,	bits=12)

Enable	the	ADC	block.	This	method	is	automatically	called	on	object	creation.

	Bits		can	take	values	between	9	and	12	and	selects	the	number	of	bits	of	resolution	of
the	ADC	block.

adc.deinit()

Disable	the	ADC	block.

adc.channel(*	,	pin,	attn=ADC.ATTN_0DB)

Create	an	analog	pin.

	pin		is	a	keyword-only	string	argument.	Valid	pins	are		P13		to		P20	.
	attn		is	the	attenuation	level.	The	supported	values	are:	ADC.ATTN_0DB
ADC.ATTN_2_5DB	ADC.ATTN_6DB	ADC.ATTN_11DB

Returns	an	instance	of	ADCChannel.	Example:

#	enable	an	ADC	channel	on	P16

apin	=	adc.channel(pin='P16')

5.2.1.1	ADC

254

adc.vref(vref)

If	called	without	any	arguments,	this	function	returns	the	current	calibrated	voltage	(in
millivolts)	of	the		1.1v		reference.	Otherwise	it	will	update	the	calibrated	value	(in	millivolts)
of	the	internal		1.1v		reference.

adc.vref_to_pin(pin)

Connects	the	internal		1.1v		to	external		GPIO	.	It	can	only	be	connected	to		P22	,		P21		or
	P6	.	It	is	recommended	to	only	use		P6		on	the	WiPy,	on	other	modules	this	pin	is
connected	to	the	radio.

Constants

ADC.ATTN_0DB	ADC.ATTN_2_5DB	ADC.ATTN_6DB	ADC.ATTN_11DB
ADC	channel	attenuation	values

class	ADCChannel
Read	analog	values	from	internal/external	sources.	ADC	channels	can	be	connected	to
internal	points	of	the		MCU		or	to		GPIO		pins.	ADC	channels	are	created	using	the
	ADC.channel		method.

Methods

adcchannel()

Fast	method	to	read	the	channel	value.

adcchannel.value()

Read	the	channel	value.

adcchannel.init()

(Re)init	and	enable	the	ADC	channel.	This	method	is	automatically	called	on	object	creation.

adcchannel.deinit()

Disable	the	ADC	channel.

adcchannel.voltage()

Reads	the	channels	value	and	converts	it	into	a	voltage	(in	millivolts)

5.2.1.1	ADC

255

adcchannel.value_to_voltage(value)

Converts	the	provided	value	into	a	voltage	(in	millivolts)	in	the	same	way	voltage	does.

ADC	pin	input	range	is		0-1.1V	.	This	maximum	value	can	be	increased	up	to		3.3V	
using	the	highest	attenuation	of		11dB	.	Do	not	exceed	the	maximum	of	3.3V,	to	avoid
damaging	the	device.

5.2.1.1	ADC

256

class	DAC	–	Digital	to	Analog	Conversion
The	DAC	is	used	to	output	analog	values	(a	specific	voltage)	on	pin		P22		or	pin		P21	.	The
voltage	will	be	between		0		and		3.3V	.

Quick	Usage	Example

import	machine

dac	=	machine.DAC('P22')								#	create	a	DAC	object

dac.write(0.5)																		#	set	output	to	50%

dac_tone	=	machine.DAC('P21')			#	create	a	DAC	object

dac_tone.tone(1000,	0)										#	set	tone	output	to	1kHz

Constructors

class	class	machine.DAC(pin)

Create	a	DAC	object,	that	will	let	you	associate	a	channel	with	a		pin	.		pin		can	be	a	string
argument.

Methods

dac.init()

Enable	the	DAC	block.	This	method	is	automatically	called	on	object	creation.

dac.deinit()

Disable	the	DAC	block.

dac.write(value)

Set	the	DC	level	for	a	DAC	pin.		value		is	a	float	argument,	with	values	between	0	and	1.

dac.tone(frequency,	amplitude)

Sets	up	tone	signal	to	the	specified		frequency		at		amplitude		scale.		frequency		can	be	from
	125Hz		to		20kHz		in	steps	of		122Hz	.		amplitude		is	an	integer	specifying	the	tone	amplitude
to	write	the	DAC	pin.	Amplitude	value	represents:

5.2.1.2	DAC

257

	0		is	0dBV	(~	3Vpp	at	600	Ohm	load)
	1		is	-6dBV	(~1.5	Vpp),		2		is	-12dBV	(~0.8	Vpp)
	3		is	-18dBV	(~0.4	Vpp).	The	generated	signal	is	a	sine	wave	with	an	DC	offset	of
VDD/2.

5.2.1.2	DAC

258

class	I2C	–	Two-Wire	Serial	Protocol
I2C	is	a	two-wire	protocol	for	communicating	between	devices.	At	the	physical	level	it
consists	of	2	wires:	SCL	and	SDA,	the	clock	and	data	lines	respectively.

I2C	objects	are	created	attached	to	a	specific	bus.	They	can	be	initialised	when	created,	or
initialised	later	on.

Example	using	default	Pins

from	machine	import	I2C

i2c	=	I2C(0)																									#	create	on	bus	0

i2c	=	I2C(0,	I2C.MASTER)													#	create	and	init	as	a	master

i2c	=	I2C(0,	pins=('P10','P11'))					#	create	and	use	non-default	PIN	assignments	(P10

=SDA,	P11=SCL)

i2c.init(I2C.MASTER,	baudrate=20000)	#	init	as	a	master

i2c.deinit()																									#	turn	off	the	peripheral

Example	using	non-default	Pins

from	machine	import	I2C

i2c	=	I2C(0,	pins=('P10','P11'))					#	create	and	use	non-default	PIN	assignments	(P10

=SDA,	P11=SCL)

i2c.init(I2C.MASTER,	baudrate=20000)	#	init	as	a	master

i2c.deinit()																									#	turn	off	the	peripheral

Printing	the		i2c		object	gives	you	information	about	its	configuration.

A	master	must	specify	the	recipient’s	address:

i2c.init(I2C.MASTER)

i2c.writeto(0x42,	'123')								#	send	3	bytes	to	slave	with	address	0x42

i2c.writeto(addr=0x42,	b'456')		#	keyword	for	address

Master	also	has	other	methods:

5.2.1.3	I2C

259

i2c.scan()																										#	scan	for	slaves	on	the	bus,	returning

																																				#			a	list	of	valid	addresses

i2c.readfrom_mem(0x42,	2,	3)								#	read	3	bytes	from	memory	of	slave	0x42,

																																				#			starting	at	address	2	in	the	slave

i2c.writeto_mem(0x42,	2,	'abc')					#	write	'abc'	(3	bytes)	to	memory	of	slave	0x42

																																				#	starting	at	address	2	in	the	slave,	timeout	afte

r	1	second

Quick	Usage	Example

from	machine	import	I2C

#	configure	the	I2C	bus

i2c	=	I2C(0,	I2C.MASTER,	baudrate=100000)

i2c.scan()	#	returns	list	of	slave	addresses

i2c.writeto(0x42,	'hello')	#	send	5	bytes	to	slave	with	address	0x42

i2c.readfrom(0x42,	5)	#	receive	5	bytes	from	slave

i2c.readfrom_mem(0x42,	0x10,	2)	#	read	2	bytes	from	slave	0x42,	slave	memory	0x10

i2c.writeto_mem(0x42,	0x10,	'xy')	#	write	2	bytes	to	slave	0x42,	slave	memory	0x10

Constructors

class	machine.I2C(bus,	...)

Construct	an	I2C	object	on	the	given		bus	.		bus		can	only	be		0,	1,	2	.	If	the		bus		is	not
given,	the	default	one	will	be	selected	(0).	Buses		0		and		1		use	the	ESP32	I2C	hardware
peripheral	while	bus		2		is	implemented	with	a	bit-banged	software	driver.

General	Methods

i2c.init(mode,	*	,	baudrate=100000,	pins=(SDA,	SCL))

Initialise	the	I2C	bus	with	the	given	parameters:

	mode		must	be	I2C.MASTER
	baudrate		is	the	SCL	clock	rate
pins	is	an	optional	tuple	with	the	pins	to	assign	to	the	I2C	bus.	The	default	I2C	pins	are
	P9		(SDA)	and		P10		(SCL)

i2c.scan()

Scan	all	I2C	addresses	between		0x08		and		0x77		inclusive	and	return	a	list	of	those	that
respond.	A	device	responds	if	it	pulls	the	SDA	line	low	after	its	address	(including	a	read	bit)
is	sent	on	the	bus.

5.2.1.3	I2C

260

Standard	Bus	Operations

The	following	methods	implement	the	standard	I2C	master	read	and	write	operations	that
target	a	given	slave	device.

i2c.readfrom(addr,	nbytes)

Read		nbytes		from	the	slave	specified	by		addr	.	Returns	a	bytes	object	with	the	data	read.

i2c.readfrom_into(addr,	buf)

Read	into		buf		from	the	slave	specified	by		addr	.	The	number	of	bytes	read	will	be	the
length	of		buf	.

Return	value	is	the	number	of	bytes	read.

i2c.writeto(addr,	buf,	*	,	stop=True)

Write	the	bytes	from		buf		to	the	slave	specified	by		addr	.	The	argument		buf		can	also	be
an	integer	which	will	be	treated	as	a	single	byte.	If		stop		is	set	to		False		then	the	stop
condition	won’t	be	sent	and	the	I2C	operation	may	be	continued	(typically	with	a	read
transaction).

Return	value	is	the	number	of	bytes	written.

Memory	Operations

Some	I2C	devices	act	as	a	memory	device	(or	set	of	registers)	that	can	be	read	from	and
written	to.	In	this	case	there	are	two	addresses	associated	with	an	I2C	transaction:	the	slave
address	and	the	memory	address.	The	following	methods	are	convenience	functions	to
communicate	with	such	devices.

i2c.readfrom_mem(addr,	memaddr,	nbytes,	*,	addrsize=8)

Read		nbytes		from	the	slave	specified	by		addr		starting	from	the	memory	address	specified
by		memaddr	.	The		addrsize		argument	is	specified	in	bits	and	it	can	only	take	8	or	16.

i2c.readfrom_mem_into(addr,	memaddr,	buf,	*,	addrsize=8)

Read	into		buf		from	the	slave	specified	by		addr		starting	from	the	memory	address
specified	by		memaddr	.	The	number	of	bytes	read	is	the	length	of		buf	.	The		addrsize	
argument	is	specified	in	bits	and	it	can	only	take	8	or	16.

The	return	value	is	the	number	of	bytes	read.

i2c.writeto_mem(addr,	memaddr,	buf	*,	addrsize=8)

5.2.1.3	I2C

261

Write		buf		to	the	slave	specified	by		addr		starting	from	the	memory	address	specified	by
	memaddr	.	The	argument		buf		can	also	be	an	integer	which	will	be	treated	as	a	single	byte.
The		addrsize		argument	is	specified	in	bits	and	it	can	only	take	8	or	16.

The	return	value	is	the	number	of	bytes	written.

Constants

I2C.MASTER
Used	to	initialise	the	bus	to	master	mode.

5.2.1.3	I2C

262

class	Pin	–	Control	I/O	Pins
A	pin	is	the	basic	object	to	control	I/O	pins	(also	known	as	GPIO	-	general-purpose
input/output).	It	has	methods	to	set	the	mode	of	the	pin	(input,	output,	etc)	and	methods	to
get	and	set	the	digital	logic	level.	For	analog	control	of	a	pin,	see	the	ADC	class.

Quick	Usage	Example

from	machine	import	Pin

#	initialize	`P9`	in	gpio	mode	and	make	it	an	output

p_out	=	Pin('P9',	mode=Pin.OUT)

p_out.value(1)

p_out.value(0)

p_out.toggle()

p_out(True)

#	make	`P10`	an	input	with	the	pull-up	enabled

p_in	=	Pin('P10',	mode=Pin.IN,	pull=Pin.PULL_UP)

p_in()	#	get	value,	0	or	1

Constructors

class	machine.Pin(id,	...)

Create	a	new	Pin	object	associated	with	the	string		id	.	If	additional	arguments	are	given,
they	are	used	to	initialise	the	pin.	See	pin.init().

from	machine	import	Pin

p	=	Pin('P10',	mode=Pin.OUT,	pull=None,	alt=-1)

Methods

pin.init(mode,	pull,	*	,	alt)

Initialise	the	pin:

	mode		can	be	one	of:
Pin.IN	-	input	pin.
Pin.OUT	-	output	pin	in	push-pull	mode.
Pin.OPEN_DRAIN	-	input	or	output	pin	in	open-drain	mode.

5.2.1.4	Pin

263

	pull		can	be	one	of:
	None		-	no	pull	up	or	down	resistor.
Pin.PULL_UP	-	pull	up	resistor	enabled.
Pin.PULL_DOWN	-	pull	down	resistor	enabled.

	alt		is	the	id	of	the	alternate	function.

Returns:		None	.

pin.id()

Get	the	pin	id.

pin.value([value])

Get	or	set	the	digital	logic	level	of	the	pin:

With	no	argument,	return	0	or	1	depending	on	the	logic	level	of	the	pin.
With	value	given,	set	the	logic	level	of	the	pin.	value	can	be	anything	that	converts	to	a
boolean.	If	it	converts	to	True,	the	pin	is	set	high,	otherwise	it	is	set	low.

pin([value])

Pin	objects	are	callable.	The	call	method	provides	a	(fast)	shortcut	to	set	and	get	the	value
of	the	pin.

Example:

from	machine	import	Pin

pin	=	Pin('P12',	mode=Pin.IN,	pull=Pin.PULL_UP)

pin()			#	fast	method	to	get	the	value

See	pin.value()	for	more	details.

pin.toggle()

Toggle	the	value	of	the	pin.

pin.mode([mode])

Get	or	set	the	pin	mode.

pin.pull([pull])

Get	or	set	the	pin	pull.

pin.hold([hold])

5.2.1.4	Pin

264

Get	or	set	the	pin	hold.	You	can	apply	a	hold	to	a	pin	by	passing		True		(or	clear	it	by
passing		False).	When	a	pin	is	held,	its	value	cannot	be	changed	by	using		Pin.value()		or
	Pin.toggle()		until	the	hold	is	released.	This	Can	be	used	to	retain	the	pin	state	through	a
core	reset	and	system	reset	triggered	by	watchdog	time-out	or	Deep-sleep	events.	Only	pins
in	the	RTC	power	domain	can	retain	their	value	through	deep	sleep	or	reset.	These	are:		P2,
P3,	P4,	P6,	P8,	P9,	P10,	P13,	P14,	P15,	P16,	P17,	P18,	P19,	P20,	P21,	P22,	P23	.

pin.callback(trigger,	handler=None,	arg=None)

Set	a	callback	to	be	triggered	when	the	input	level	at	the	pin	changes.

	trigger		is	the	type	of	event	that	triggers	the	callback.	Possible	values	are:
Pin.IRQ_FALLING	interrupt	on	falling	edge.
Pin.IRQ_RISING	interrupt	on	rising	edge.
Pin.IRQ_LOW_LEVEL	interrupt	on	low	level.
Pin.IRQ_HIGH_LEVEL	interrupt	on	high	level.

The	values	can	be	OR-ed	together,	for	instance		trigger=Pin.IRQ_FALLING	|	Pin.IRQ_RISING	

	handler		is	the	function	to	be	called	when	the	event	happens.	This	function	will	receive
one	argument.	Set		handler		to		None		to	disable	it.

	arg		is	an	optional	argument	to	pass	to	the	callback.	If	left	empty	or	set	to		None	,	the
function	will	receive	the	Pin	object	that	triggered	it.

Example:

from	machine	import	Pin

def	pin_handler(arg):

				print("got	an	interrupt	in	pin	%s"	%	(arg.id()))

p_in	=	Pin('P10',	mode=Pin.IN,	pull=Pin.PULL_UP)

p_in.callback(Pin.IRQ_FALLING	|	Pin.IRQ_RISING,	pin_handler)

For	more	information	on	how	Pycom’s	products	handle	interrupts,	see	here.

Attributes

class	pin.exp_board

Contains	all	Pin	objects	supported	by	the	expansion	board.	Examples:

5.2.1.4	Pin

265

Pin.exp_board.G16

led	=	Pin(Pin.exp_board.G16,	mode=Pin.OUT)

Pin.exp_board.G16.id()

class	pin.module

Contains	all		Pin		objects	supported	by	the	module.	Examples:

Pin.module.P9

led	=	Pin(Pin.module.P9,	mode=Pin.OUT)

Pin.module.P9.id()

Constants

The	following	constants	are	used	to	configure	the	pin	objects.	Note	that	not	all	constants	are
available	on	all	ports.

Pin.IN	Pin.OUT	Pin.OPEN_DRAIN
Selects	the	pin	mode.

Pin.PULL_UP	Pin.PULL_DOWN
Enables	the	pull	up	or	pull	down	resistor.

5.2.1.4	Pin

266

class	PWM	–	Pulse	Width	Modulation

Quick	Usage	Example

from	machine	import	PWM

pwm	=	PWM(0,	frequency=5000)		#	use	PWM	timer	0,	with	a	frequency	of	5KHz

#	create	pwm	channel	on	pin	P12	with	a	duty	cycle	of	50%

pwm_c	=	pwm.channel(0,	pin='P12',	duty_cycle=0.5)

pwm_c.duty_cycle(0.3)	#	change	the	duty	cycle	to	30%

Constructors

class	machine.PWM(timer,	frequency)

Create	a	PWM	object.	This	sets	up	the		timer		to	oscillate	at	the	specified		frequency	.
	timer		is	an	integer	from	0	to	3.		frequency		is	an	integer	from	1	Hz	to	78	KHz	(this	values
can	change	in	future	upgrades).

Methods

pwm.channel(id,	pin	*	,	duty_cycle=0.5)

Connect	a	PWM	channel	to	a	pin,	setting	the	initial	duty	cycle.		id		is	an	integer	from	0	to	7.
	pin		is	a	string	argument.		duty_cycle		is	a	keyword-only	float	argument,	with	values
between	0	and	1.	Returns	an	instance	of		PWMChannel	.

class	PWMChannel	—	PWM	channel
Methods

pwmchannel.duty_cycle(value)

Set	the	duty	cycle	for	a	PWM	channel.		value		is	a	float	argument,	with	values	between	0
and	1.

5.2.1.5	PWM

267

class	RTC	–	Real	Time	Clock
The	RTC	is	used	to	keep	track	of	the	date	and	time.

Quick	Usage	Example

from	machine	import	RTC

rtc	=	RTC()

rtc.init((2014,	5,	1,	4,	13,	0,	0,	0))

print(rtc.now())

Constructors

class	machine.RTC(id=0,	...)

Create	an	RTC	object.	See	init	for	parameters	of	initialisation.

#	id	of	the	RTC	may	be	set	if	multiple	are	connected.	Defaults	to	id	=	0.

rtc	=	RTC(id=0)

Methods

rtc.init(datetime=None,	source=RTC.INTERNAL_RC)

Initialise	the	RTC.	The	arguments	are:

	datetime		when	passed	it	sets	the	current	time.	It	is	a	tuple	of	the	form:		(year,	month,
day[,	hour[,	minute[,	second[,	microsecond[,	tzinfo]]]]])	.
	source		selects	the	oscillator	that	drives	the	RTC.	The	options	are	RTC.INTERNAL_RC
and	RTC.XTAL_32KHZ

For	example:

#	for	2nd	of	February	2017	at	10:30am	(TZ	0)

rtc.init((2017,	2,	28,	10,	30,	0,	0,	0))

	tzinfo		is	ignored	by	this	method.	Use		time.timezone		to	achieve	similar	results.

5.2.1.6	RTC

268

rtc.now()

Get	get	the	current		datetime		tuple:

#	returns	datetime	tuple

rtc.now()

rtc.ntp_sync(server,	*	,	update_period=3600)

Set	up	automatic	fetch	and	update	the	time	using	NTP	(SNTP).

	server		is	the	URL	of	the	NTP	server.	Can	be	set	to		None		to	disable	the	periodic
updates.
	update_period		is	the	number	of	seconds	between	updates.	Shortest	period	is	15
seconds.

Can	be	used	like:

rtc.ntp_sync("pool.ntp.org")	#	this	is	an	example.	You	can	select	a	more	specific	serv

er	according	to	your	geographical	location

rtc.synced()

Returns		True		if	the	last		ntp_sync		has	been	completed,		False		otherwise:

rtc.synced()

Constants

RTC.INTERNAL_RC	RTC.XTAL_32KHZ
Clock	source

5.2.1.6	RTC

269

class	SPI	–	Serial	Peripheral	Interface
SPI	is	a	serial	protocol	that	is	driven	by	a	master.	At	the	physical	level	there	are	3	lines:
SCK,	MOSI,	MISO.

See	usage	model	of	I2C;	SPI	is	very	similar.	Main	difference	is	parameters	to	init	the	SPI
bus:

from	machine	import	SPI

spi	=	SPI(0,	mode=SPI.MASTER,	baudrate=1000000,	polarity=0,	phase=0,	firstbit=SPI.MSB)

Only	required	parameter	is	mode,	must	be	SPI.MASTER.	Polarity	can	be	0	or	1,	and	is	the
level	the	idle	clock	line	sits	at.	Phase	can	be	0	or	1	to	sample	data	on	the	first	or	second
clock	edge	respectively.

Quick	Usage	Example

from	machine	import	SPI

#	configure	the	SPI	master	@	2MHz

#	this	uses	the	SPI	default	pins	for	CLK,	MOSI	and	MISO	(``P10``,	``P11``	and	``P14``)

spi	=	SPI(0,	mode=SPI.MASTER,	baudrate=2000000,	polarity=0,	phase=0)

spi.write(bytes([0x01,	0x02,	0x03,	0x04,	0x05]))	#	send	5	bytes	on	the	bus

spi.read(5)	#	receive	5	bytes	on	the	bus

rbuf	=	bytearray(5)

spi.write_readinto(bytes([0x01,	0x02,	0x03,	0x04,	0x05]),	rbuf)	#	send	a	receive	5	byt

es

Quick	Usage	Example	using	non-default	pins

5.2.1.7	SPI

270

from	machine	import	SPI

#	configure	the	SPI	master	@	2MHz

#	this	uses	the	SPI	non-default	pins	for	CLK,	MOSI	and	MISO	(``P19``,	``P20``	and	``P2

1``)

spi	=	SPI(0,	mode=SPI.MASTER,	baudrate=2000000,	polarity=0,	phase=0,	pins=('P19','P20',

'P21'))

spi.write(bytes([0x01,	0x02,	0x03,	0x04,	0x05]))	#	send	5	bytes	on	the	bus

spi.read(5)	#	receive	5	bytes	on	the	bus

rbuf	=	bytearray(5)

spi.write_readinto(bytes([0x01,	0x02,	0x03,	0x04,	0x05]),	rbuf)	#	send	a	receive	5	byt

es

Constructors

class	machine.SPI(id,	...)

Construct	an	SPI	object	on	the	given	bus.		id		can	be	only	0.	With	no	additional	parameters,
the	SPI	object	is	created	but	not	initialised	(it	has	the	settings	from	the	last	initialisation	of	the
bus,	if	any).	If	extra	arguments	are	given,	the	bus	is	initialised.	See	init	for	parameters	of
initialisation.

Methods

spi.init(mode,	baudrate=1000000,	*	,	polarity=0,	phase=0,	bits=8,	firstbit=SPI.MSB,
pins=(CLK,	MOSI,	MISO))

Initialise	the	SPI	bus	with	the	given	parameters:

	mode		must	be	SPI.MASTER.
	baudrate		is	the	SCK	clock	rate.
	polarity		can	be	0	or	1,	and	is	the	level	the	idle	clock	line	sits	at.
	phase		can	be	0	or	1	to	sample	data	on	the	first	or	second	clock	edge	respectively.
	bits		is	the	width	of	each	transfer,	accepted	values	are	8,	16	and	32.
	firstbit		can	be	SPI.MSB	or	SPI.LSB.
	pins		is	an	optional	tuple	with	the	pins	to	assign	to	the	SPI	bus.	If	the	pins	argument	is
not	given	the	default	pins	will	be	selected	(P10		as	CLK,	P11		as	MOSI	and		P14		as
MISO).	If	pins	is	passed	as	None	then	no	pin	assignment	will	be	made.

spi.deinit()

Turn	off	the	SPI	bus.

spi.write(buf)

5.2.1.7	SPI

271

Write	the	data	contained	in		buf	.	Returns	the	number	of	bytes	written.

spi.read(nbytes,	*	,	write=0x00)

Read	the		nbytes		while	writing	the	data	specified	by		write	.	Return	the	number	of	bytes
read.

spi.readinto(buf,	*	,	write=0x00)

Read	into	the	buffer	specified	by		buf		while	writing	the	data	specified	by		write	.	Return	the
number	of	bytes	read.

spi.write_readinto(write_buf,	read_buf)

Write	from		write_buf		and	read	into		read_buf	.	Both	buffers	must	have	the	same	length.
Returns	the	number	of	bytes	written

Constants

SPI.MASTER
For	initialising	the	SPI	bus	to	master

SPI.MSB
Set	the	first	bit	to	be	the	most	significant	bit

SPI.LSB
Set	the	first	bit	to	be	the	least	significant	bit

5.2.1.7	SPI

272

class	UART	–	Universal	Asynchronous
Receiver/Transmitter
UART	implements	the	standard	UART/USART	duplex	serial	communications	protocol.	At	the
physical	level	it	consists	of	2	lines:	RXD	and	TXD.	The	unit	of	communication	is	a	character
(not	to	be	confused	with	a	string	character)	which	can	be	5,	6,	7	or	8	bits	wide.

UART	objects	can	be	created	and	initialised	using:

from	machine	import	UART

uart	=	UART(1,	9600)																									#	init	with	given	baudrate

uart.init(9600,	bits=8,	parity=None,	stop=1)	#	init	with	given	parameters

Bits	can	be		5,	6,	7,	8	.	Parity	can	be		None	,	UART.EVEN	or	UART.ODD.	Stop	can	be		1,
1.5	or	2	.

A	UART	object	acts	like	a	stream	object	therefore	reading	and	writing	is	done	using	the
standard	stream	methods:

uart.read(10)							#	read	10	characters,	returns	a	bytes	object

uart.readall()						#	read	all	available	characters

uart.readline()					#	read	a	line

uart.readinto(buf)		#	read	and	store	into	the	given	buffer

uart.write('abc')			#	write	the	3	characters

To	check	if	there	is	anything	to	be	read,	use:

uart.any()															#	returns	the	number	of	characters	available	for	reading

Quick	Usage	Example

from	machine	import	UART

#	this	uses	the	UART_1	default	pins	for	TXD	and	RXD	(``P3``	and	``P4``)

uart	=	UART(1,	baudrate=9600)

uart.write('hello')

uart.read(5)	#	read	up	to	5	bytes

Quick	Usage	Example	using	non-default	pins	(TXD/RXD
only)

5.2.1.8	UART

273

from	machine	import	UART

#	this	uses	the	UART_1	non-default	pins	for	TXD	and	RXD	(``P20``	and	``P21``)

uart	=	UART(1,	baudrate=9600,	pins=('P20','P21'))

uart.write('hello')

uart.read(5)	#	read	up	to	5	bytes

Quick	Usage	Example	using	non-default	pins	(TXD/RXD
and	flow	control)

from	machine	import	UART

#	this	uses	the	UART_1	non-default	pins	for	TXD,	RXD,	RTS	and	CTS	(``P20``,	``P21``,	`

`P22``and	``P23``)

uart	=	UART(1,	baudrate=9600,	pins=('P20',	'P21',	'P22',	'P23'))

uart.write('hello')

uart.read(5)	#	read	up	to	5	bytes

Constructors

class	machine.UART(bus,	...)

Construct	a	UART	object	on	the	given		bus	.		bus		can	be		0,	1	or	2	.	If	the		bus		is	not
given,	the	default	one	will	be	selected	(0)	or	the	selection	will	be	made	based	on	the	given
pins.

On	the	GPy/FiPy	UART2	is	unavailable	because	it	is	used	to	communicate	with	the
cellular	radio.

Methods

uart.init(baudrate=9600,	bits=8,	parity=None,	stop=1,	*	,	timeout_chars=2,	pins=(TXD,
RXD,	RTS,	CTS))

Initialise	the	UART	bus	with	the	given	parameters:

	baudrate		is	the	clock	rate.
	bits		is	the	number	of	bits	per	character.	Can	be		5,	6,	7	or	8	.
	parity		is	the	parity,		None	,	UART.EVEN	or	UART.ODD.
	stop		is	the	number	of	stop	bits,		1	or	2	.
	timeout_chars		Rx	timeout	defined	in	number	of	characters.	The	value	given	here	will
be	multiplied	by	the	time	a	characters	takes	to	be	transmitted	at	the	configured
	baudrate	.

5.2.1.8	UART

274

	pins		is	a	4	or	2	item	list	indicating	the	TXD,	RXD,	RTS	and	CTS	pins	(in	that	order).
Any	of	the	pins	can	be		None		if	one	wants	the	UART	to	operate	with	limited	functionality.
If	the	RTS	pin	is	given	the	the	RX	pin	must	be	given	as	well.	The	same	applies	to	CTS.
When	no	pins	are	given,	then	the	default	set	of	TXD	(P1)	and	RXD	(P0)	pins	is	taken,
and	hardware	flow	control	will	be	disabled.	If		pins=None	,	no	pin	assignment	will	be
made.

uart.deinit()

Turn	off	the	UART	bus.

uart.any()

Return	the	number	of	characters	available	for	reading.

uart.read([nbytes])

Read	characters.	If		nbytes		is	specified	then	read	at	most	that	many	bytes.

Return	value:	a	bytes	object	containing	the	bytes	read	in.	Returns		None		on	timeout.

uart.readall()

Read	as	much	data	as	possible.

Return	value:	a	bytes	object	or		None		on	timeout.

uart.readinto(buf[,	nbytes])

Read	bytes	into	the		buf	.	If		nbytes		is	specified	then	read	at	most	that	many	bytes.
Otherwise,	read	at	most		len(buf)		bytes.

Return	value:	number	of	bytes	read	and	stored	into		buf		or		None		on	timeout.

uart.readline()

Read	a	line,	ending	in	a	newline	character.	If	such	a	line	exists,	return	is	immediate.	If	the
timeout	elapses,	all	available	data	is	returned	regardless	of	whether	a	newline	exists.

Return	value:	the	line	read	or		None		on	timeout	if	no	data	is	available.

uart.write(buf)

Write	the	buffer	of	bytes	to	the	bus.

Return	value:	number	of	bytes	written	or	None	on	timeout.

uart.sendbreak()

5.2.1.8	UART

275

Send	a	break	condition	on	the	bus.	This	drives	the	bus	low	for	a	duration	of	13	bits.	Return
value:		None	.

uart.wait_tx_done(timeout_ms)

Waits	at	most		timeout_ms		for	the	last	Tx	transaction	to	complete.	Returns		True		if	all	data
has	been	sent	and	the	TX	buffer	has	no	data	in	it,	otherwise	returns		False	.

Constants

UART.EVEN	UART.ODD
Parity	types	(along	with		None)

UART.RX_ANY
IRQ	trigger	sources

5.2.1.8	UART

276

class	WDT	–	Watchdog	Timer
The	WDT	is	used	to	restart	the	system	when	the	application	crashes	and	ends	up	into	a	non
recoverable	state.	After	enabling,	the	application	must	"feed"	the	watchdog	periodically	to
prevent	it	from	expiring	and	resetting	the	system.

Quick	Usage	Example

from	machine	import	WDT

wdt	=	WDT(timeout=2000)		#	enable	it	with	a	timeout	of	2	seconds

wdt.feed()

Constructors

class	machine.WDT(id=0,	timeout)

Create	a	WDT	object	and	start	it.	The		id		can	only	be		0	.	See	the	init	method	for	the
parameters	of	initialisation.

Methods

wdt.init(timeout)

Initialises	the	watchdog	timer.	The	timeout	must	be	given	in	milliseconds.	Once	it	is	running
the	WDT	cannot	be	stopped	but	the	timeout	can	be	re-configured	at	any	point	in	time.

wdt.feed()

Feed	the	WDT	to	prevent	it	from	resetting	the	system.	The	application	should	place	this	call
in	a	sensible	place	ensuring	that	the	WDT	is	only	fed	after	verifying	that	everything	is
functioning	correctly.

5.2.1.9	WDT

277

class	Timer	–	Measure	Time	and	Set
Alarms
Timers	can	be	used	for	a	great	variety	of	tasks,	like	measuring	time	spans	or	being	notified
that	a	specific	interval	has	elapsed.

These	two	concepts	are	grouped	into	two	different	subclasses:

	Chrono	:	used	to	measure	time	spans.		Alarm	:	to	get	interrupted	after	a	specific	interval.

You	can	create	as	many	of	these	objects	as	needed.

Constructors

class	Timer.Chrono()

Create	a	chronometer	object.

class	Timer.Alarm(handler=None,	s,	*	,	ms,	us,	arg=None,	periodic=False)

Create	an	Alarm	object.

	handler	:	will	be	called	after	the	interval	has	elapsed.	If	set	to		None	,	the	alarm	will	be
disabled	after	creation.
	arg	:	an	optional	argument	can	be	passed	to	the	callback	handler	function.	If		None		is
specified,	the	function	will	receive	the	object	that	triggered	the	alarm.
	s,	ms,	us	:	the	interval	can	be	specified	in	seconds	(float),	miliseconds	(integer)	or
microseconds	(integer).	Only	one	at	a	time	can	be	specified.
	periodic	:	an	alarm	can	be	set	to	trigger	repeatedly	by	setting	this	parameter	to		True	.

Methods

Timer.sleep_us()

Delay	for	a	given	number	of	microseconds,	should	be	positive	or	0	(for	speed,	the	condition
is	not	enforced).	Internally	it	uses	the	same	timer	as	the	other	elements	of	the		Timer		class.
It	compensates	for	the	calling	overhead,	so	for	example,	100us	should	be	really	close	to
100us.	For	times	bigger	than	10,000us	it	releases	the	GIL	to	let	other	threads	run,	so
exactitude	is	not	guaranteed	for	delays	longer	than	that.

5.2.1.10	Timer

278

class	Chrono
Can	be	used	to	measure	time	spans.

Methods

chrono.start()

Start	the	chronometer.

chrono.stop()

Stop	the	chronometer.

chrono.reset()

Reset	the	time	count	to	0.

chrono.read()

Get	the	elapsed	time	in	seconds.

chrono.read_ms()

Get	the	elapsed	time	in	milliseconds.

chrono.read_us()

Get	the	elapsed	time	in	microseconds.

Example:

5.2.1.10	Timer

279

from	machine	import	Timer

import	time

chrono	=	Timer.Chrono()

chrono.start()

time.sleep(1.25)	#	simulate	the	first	lap	took	1.25	seconds

lap	=	chrono.read()	#	read	elapsed	time	without	stopping

time.sleep(1.5)

chrono.stop()

total	=	chrono.read()

print()

print("\nthe	racer	took	%f	seconds	to	finish	the	race"	%	total)

print("		%f	seconds	in	the	first	lap"	%	lap)

print("		%f	seconds	in	the	last	lap"	%	(total	-	lap))

class	Alarm	–	get	interrupted	after	a	specific	interval

Methods

alarm.callback(handler,	*	,	arg=None)

Specify	a	callback	handler	for	the	alarm.	If	set	to		None	,	the	alarm	will	be	disabled.

An	optional	argument		arg		can	be	passed	to	the	callback	handler	function.	If		None		is
specified,	the	function	will	receive	the	object	that	triggered	the	alarm.

alarm.cancel()

Disables	the	alarm.

Example:

from	machine	import	Timer

class	Clock:

				def	__init__(self):

								self.seconds	=	0

								self.__alarm	=	Timer.Alarm(self._seconds_handler,	1,	periodic=True)

				def	_seconds_handler(self,	alarm):

								self.seconds	+=	1

								print("%02d	seconds	have	passed"	%	self.seconds)

								if	self.seconds	==	10:

												alarm.cancel()	#	stop	counting	after	10	seconds

clock	=	Clock()

5.2.1.10	Timer

280

For	more	information	on	how	Pycom’s	products	handle	interrupts,	see	notes.

5.2.1.10	Timer

281

class	SD	–	Secure	digital	Memory	Card
The	SD	card	class	allows	to	configure	and	enable	the	memory	card	module	of	your	Pycom
module	and	automatically	mount	it	as		/sd		as	part	of	the	file	system.	There	is	a	single	pin
combination	that	can	be	used	for	the	SD	card,	and	the	current	implementation	only	works	in
1-bit	mode.	The	pin	connections	are	as	follows:

	P8:	DAT0	,		P23:	SCLK		and		P4:	CMD		(no	external	pull-up	resistors	are	needed)

If	you	have	one	of	the	Pycom	expansion	boards,	then	simply	insert	the	card	into	the	micro
SD	socket	and	run	your	script.

Make	sure	your	SD	card	is	formatted	either	as	FAT16	or	FAT32.

Quick	Example	Usage:

from	machine	import	SD

import	os

sd	=	SD()

os.mount(sd,	'/sd')

#	check	the	content

os.listdir('/sd')

#	try	some	standard	file	operations

f	=	open('/sd/test.txt',	'w')

f.write('Testing	SD	card	write	operations')

f.close()

f	=	open('/sd/test.txt',	'r')

f.readall()

f.close()

Constructors

class	machine.SD(id,	...)

Create	a	SD	card	object.	See	sd.init()	for	parameters	if	initialisation.

Methods

5.2.1.11	SD

282

sd.init(id=0)

Enable	the	SD	card.

sd.deinit()

Disable	the	SD	card.

Please	note	that	the	SD	card	library	currently	supports	FAT16/32	formatted	SD	cards	up
to	32	GB.	Future	firmware	updates	will	increase	compatibility	with	additional	formats	and
sizes.

5.2.1.11	SD

283

class	CAN	–	Controller	Area	Network
The	CAN	class	supports	the	full	CAN	2.0	specification	with	standard	and	extended	frames,
as	well	as	acceptance	filtering.

The	ESP32	has	a	built-in	CAN	controller,	but	the	transceiver	needs	to	be	added	externally.	A
recommended	device	is	the	SN65HVD230.

Quick	Usage	Example

from	machine	import	CAN

can	=	CAN(mode=CAN.NORMAL,	baudrate=500000,	pins=('P22',	'P23'))

can.send(id=12,	data=bytes([1,	2,	3,	4,	5,	6,	7,	8]))

can.recv()

Constructors

class	machine.CAN(bus=0,	...)

Create	an	CAN	object.	See	init	for	parameters	of	initialisation.:

#	only	1	CAN	peripheral	is	available,	so	the	bus	must	always	be	0

can	=	CAN(0,	mode=CAN.NORMAL,	baudrate=500000,	pins=('P22',	'P23'))				#	pin	order	is	

Tx,	Rx

Methods

can.init(mode=CAN.NORMAL,	baudrate=500000,	*,	frame_format=CAN.FORMAT_STD,
rx_queue_len=128,	pins=('P22',	'P23'))

Initialize	the	CAN	controller.	The	arguments	are:

	mode		can	take	either	CAN.NORMAL	or	CAN.SILENT.	Silent	mode	is	useful	for	sniffing
the	bus.
	baudrate		sets	up	the	bus	speed.	Acceptable	values	are	between	1	and	1000000.
	frame_format		defines	the	frame	format	to	be	accepted	by	the	receiver.	Useful	for
filtering	frames	based	on	the	identifier	length.	Can	tale	either	CAN.FORMAT_STD	or
CAN.FORMAT_EXT	or	CAN.FORMAT_BOTH.	If	CAN.FORMAT_STD	is	selected,
extended	frames	won't	be	received	and	vice-versa.

5.2.1.12	CAN

284

	rx_queue_len		defines	the	number	of	messages	than	can	be	queued	by	the	receiver.
Due	to	CAN	being	a	high	traffic	bus,	large	values	are	recommended	(>=	128),	otherwise
messages	will	be	dropped	specially	when	no	filtering	is	applied.
	pins		selects	the		Tx		and		Rx		pins	(in	that	order).

can.deinit()

Disables	the	CAN	bus.

#	disable	the	CAN	bus

can.deinit()

can.send(id,	*	,	data=None,	rtr=False,	extended=False)

Send	a	CAN	frame	on	the	bus

	id		is	the	identifier	of	the	message.
	data		can	take	up	to	8	bytes.	It	must	be	left	empty	is	the	message	to	be	sent	is	a
remote	request	(rtr=True).
	rtr		set	it	to	false	to	send	a	remote	request.
	extnted		specifies	if	the	message	identifier	width	should	be	11bit	(standard)	or	29bit
(extended).

Can	be	used	like:

can.send(id=0x0020,	data=bytes([0x01,	0x02,	0x03,	0x04,	0x05]),	extended=True)			#	sen

ds	5	bytes	with	an	extended	identifier

can.send(id=0x010,	data=bytes([0x01,	0x02,	0x03,	0x04,	0x05,	0x06,	0x07,	0x08]))	#	sen

ds	8	bytes	with	an	standard	identifier

can.send(id=0x012,	rtr=True)									#	sends	a	remote	request	for	message	id=0x12

can.recv(timeout=0)

Get	a	message	from	the	receive	queue,	and	optionally	specify	a	timeout	value	in	s	(can	be	a
floating	point	value	e.g.		0.2).	This	function	returns		None		if	no	messages	available.	If	a
message	is	present,	it	will	be	returned	as	a	named	tuple	with	the	following	form:

	(id,	data,	rtr,	extended)	

>>>	can.recv()

(id=0x012,	data=b'123',	rtr=False,	extended=False)

can.soft_filter(mode,	filter_list)

5.2.1.12	CAN

285

Specify	a	software	filter	accepting	only	the	messages	that	pass	the	filter	test.

There	are	3	possible	filter	modes:

CAN.FILTER_LIST	allows	to	pass	the	list	of	IDs	that	should	be	accepted.
CAN.FILTER_RANGE	allows	to	pass	a	list	or	tuple	of	ID	ranges	that	should	be
accepted.
CAN.FILTER_MASK	allows	to	pass	a	list	of	tuples	of	the	form:		(filer,	mask)	.

With	software	filters	all	messages	in	the	bus	are	received	by	the	CAN	controller	but	only	the
matching	ones	are	passed	to	the	RX	queue.	This	means	that	the	queue	won't	be	filled	up
with	non	relevant	messages,	but	the	interrupt	overhead	will	remain	as	normal.	The
	filter_list		can	contain	up	to	32	elements.

For	example:

can.soft_filter(CAN.FILTER_LIST,	[0x100,	0x200,	0x300,	0x400])		#	only	accept	identifi

ers	from	0x100,	0x200,	0x300	and	0x400

can.soft_filter(CAN.FILTER_RANGE,	[(0x001,	0x010),	(0x020,	0x030),	(0x040,	0x050)])		#

	only	accept	identifiers	from	0x001	to	0x010,	from	0x020	to	0x030	and	from	0x040	to	0x

050.

can.soft_filter(CAN.FILTER_MASK,	[(0x100,	0x7FF),	(0x200,	0x7FC)])	#	more	of	the	class

ic	Filter	and	Mask	method.

can.soft_filter(None)			#	disable	soft	filters,	all	messages	are	accepted

can.callback(trigger,	handler=None,	arg=None)

Set	a	callback	to	be	triggered	when	any	of	this	3	events	are	present:

trigger	is	the	type	of	event	that	triggers	the	callback.	Possible	values	are:
CAN.RX_FRAME	interrupt	whenever	a	new	frame	is	received.
CAN.RX_FIFO_NOT_EMPTY	interrupt	when	a	frame	is	received	on	an	empty
FIFO.
CAN.RX_FIFO_OVERRUN	interrupt	when	a	message	is	received	and	the	FIFO	is
full.

The	values	can	be	OR-ed	together,	for	instance	trigger=CAN.RX_FRAME	|
CAN.RX_FIFO_OVERRUN

handler	is	the	function	to	be	called	when	the	event	happens.	This	function	will	receive
one	argument.	Set	handler	to	None	to	disable	the	callback.

arg	is	an	optional	argument	to	pass	to	the	callback.	If	left	empty	or	set	to	None,	the
function	will	receive	the	CAN	object	that	triggered	it.

5.2.1.12	CAN

286

It	can	be	used	like	this:

from	machine	import	CAN

can	=	CAN(mode=CAN.NORMAL,	baudrate=500000,	pins=('P22',	'P23'))

def	can_cb(can_o):

				print('CAN	Rx:',	can_o.recv())

can.callback(handler=can_cb,	trigger=CAN.RX_FRAME)

can.events()

This	method	returns	a	value	with	bits	sets	(if	any)	indicating	the	events	that	have	occurred	in
the	bus.	Please	note	that	by	calling	this	function	the	internal	events	registry	is	cleared
automatically,	therefore	calling	it	immediately	for	a	second	time	will	most	likely	return	a	value
of	0.

Constants

CAN.NORMAL	CAN.SILENT	CAN.FORMAT_STD	CAN.FORMAT_EXT
CAN.FORMAT_BOTH	CAN.RX_FRAME	CAN.RX_FIFO_NOT_EMPTY
CAN.RX_FIFO_OVERRUN	CAN.FILTER_LIST	CAN.FILTER_RANGE	CAN.FILTER_MASK

5.2.1.12	CAN

287

class	RMT	–	Remote	Controller
The	RMT	(Remote	Control)	module	is	primarily	designed	to	send	and	receive	infrared
remote	control	signals	that	use	on-off-keying	of	a	carrier	frequency,	but	due	to	its	design	it
can	be	used	to	generate	various	types	of	signals.

Quick	Usage	Example:	sending

import	machine

#	create	a	RMT	object	for	transmission

rmt	=	machine.RMT(channel=3,	gpio="P20",	tx_idle_level=0)

#	create	series	of	bits	to	send				

data	=	(1,0,1,0,1,0,1,0,1)

#	define	duration	of	the	bits,	time	unit	depends	on	the	selected	RMT	channel		

duration	=	10000

#	send	the	signal																																									

rmt.send_pulses(duration,	data)

Quick	Usage	Example:	receiving

import	machine

#	create	a	RMT	object

rmt	=	machine.RMT(channel=3)

#	Configure	RTM	for	receiving

rmt.init(gpio="P20",	rx_idle_threshold=12000)					

#	wait	for	any	number	of	pulses	until	one	longer	than	rx_idle_threshold								

data	=	rmt.recv_pulses()

Constructors

class	machine.RMT(channel,...)
Construct	an	RMT	object	on	the	given	channel.		channel		can	be	2-7.	With	no	additional
parameters,	the	RMT	object	is	created	but	not	initialised.	If	extra	arguments	are	given,	the
RMT	is	initialised	for	transmission	or	reception.	See		init		for	parameters	of	initialisation.
The	resolution	which	a	pulse	can	be	sent/received	depends	on	the	selected	channel:

5.2.1.13	RMT

288

Channel Resolution Maximum	Pulse	Width

0 Used	by	on-board	LED

1 Used	by		pycom.pulses_get()	

2 100nS 3.2768	ms

3 100nS 3.2768	ms

4 1000nS 32.768	ms

5 1000nS 32.768	ms

6 3125nS 102.4	ms

7 3125nS 102.4	ms

Methods

rmt.init(gpio,	rx_idle_threshold,	rx_filter_threshold,	tx_idle_level,	tx_carrier)
Initialise	the	RMT	peripheral	with	the	given	parameters:

	gpio		is	the	GPIO	Pin	to	use.
	rx_idle_threshold		is	the	maximum	duration	of	a	valid	pulse.	The	represented	time	unit
(resolution)	depends	on	the	selected	channel,	value	can	be	0-65535.
	rx_filter_threshold		is	the	minimum	duration	of	a	valid	pulse.	The	represented	time
unit	(resolution)	depends	on	the	selected	channel,	value	can	be	0-31.
	tx_idle_level		is	the	output	signal's	level	after	the	transmission	is	finished,	can	be
RMT.HIGH	or	RMT.LOW.
	tx_carrier		is	the	modulation	of	the	pulses	to	send.

Either		rx_idle_threshold		or		tx_idle_level		must	be	defined,	both	cannot	be	given	at	the
same	time	because	a	channel	can	be	configured	in	RX	or	TX	mode	only.
	rx_filter_threshold		is	not	mandatory	parameter.	If	not	given	then	all	pulses	are	accepted
with	duration	less	than		rx_idle_threshold	.		tx_carrier		is	not	mandatory	parameters.	If	not
given	no	modulation	is	used	on	the	sent	pulses.

The		tx_carrier		parameter	is	a	tuple	with	the	following	structure:

	carrier_freq_hz		is	the	carrier's	frequency	in	Hz.
	carrier_duty_percent		is	the	duty	percent	of	the	carrier's	signal,	can	be	0%-100%.
	carrier_level		is	the	level	of	the	pulse	to	modulate,	can	be	RMT.HIGH	or	RMT.LOW.

rmt.deinit()
Deinitialise	the	RMT	object.

5.2.1.13	RMT

289

If	an	RMT	object	needs	to	be	reconfigured	from	RX/TX	to	TX/RX,	then	either	first
	deinit()		must	be	called	or	the		init()		again	with	the	desired	configuration.

rmt.pulses_get(pulses,	timeout)
Reads	in	pulses	from	the	GPIO	pin.

	pulses		if	not	specified,	this	function	will	keep	reading	pulses	until	the
	rx_idle_threshold		is	exceeded.	If	it	is	specified	this	function	will	return	the	exactly	that
number	of	pulses,	ignoring	anything	shorter	than		rx_filter_threshold		or	longer	than
	rx_idle_threshold	.
	timeout		is	specified,	this	function	will	return	if	the	first	pulse	does	not	occur	within
	timeout		microseconds.	If	not	specified,	it	will	wait	indefinitely.

Return	value:	Tuple	of	items	with	the	following	structure:	(level,	duration):

	level		represents	the	level	of	the	received	bit/pulse,	can	be	0	or	1.
	duration		represents	the	duration	of	the	received	pulse,	the	time	unit	(resolution)
depends	on	the	selected	channel.

Maximum	of	128	pulses	can	be	received	in	a	row	without	receiving	"idle"	signal.	If	the
incoming	pulse	sequence	contains	more	than	128	pulses	the	rest	is	dropped	and	the
receiver	waits	for	another	sequence	of	pulses.	The		pulses_get		function	can	be	called
to	receive	more	than	128	pulses,	however	the	above	mentioned	limitation	should	be
kept	in	mind	when	evaluating	the	received	data.

rmt.pulses_send(duration,	data,	start_level)
Generates	pulses	as	defined	by	the	parameters	below

	duration		represents	the	duration	of	the	pulses	to	be	sent,	the	time	unit	(resolution)
depends	on	the	selected	channel.
	data		Tuple	that	represents	the	sequence	of	pulses	to	be	sent,	must	be	composed	of	0
or	1	elements.
	start_level		defines	the	state	(HIGH/LOW)	of	the	first	pulse	given	by		duration		if
	data		is	not	given.

	data		must	be	a	tuple	and		duration		can	be	a	tuple	or	a	single	number,	with		data		being
optional.	In	the	case	that	only		duration		is	provided,	it	must	be	a	tuple	and	you	must	also
provide		start_level		which	will	dictate	the	level	of	the	first	duration,	the	signal	level	then
toggles	between	each	duration	value.	If		data		is	provided	and		duration		is	a	single	number,

5.2.1.13	RMT

290

each	pulse	in		data		will	have	have	an	equal	length	as	set	by		duration	.	If		data		and
	duration		are	provided	as	tuples,	they	must	be	of	the	same	number	of	elements,	with	each
pulse	lasting	its	matching	duration.

Constants

RMT.LOW	RMT.HIGH
Defines	the	level	of	the	pulse.

5.2.1.13	RMT

291

module	network
This	module	provides	access	to	network	drivers	and	routing	configuration.	Network	drivers
for	specific	hardware	are	available	within	this	module	and	are	used	to	configure	specific
hardware	network	interfaces.

5.2.2	network

292

class	WLAN
This	class	provides	a	driver	for	the	WiFi	network	processor	in	the	module.	Example	usage:

import	network

import	time

#	setup	as	a	station

wlan	=	network.WLAN(mode=network.WLAN.STA)

wlan.connect('your-ssid',	auth=(network.WLAN.WPA2,	'your-key'))

while	not	wlan.isconnected():

				time.sleep_ms(50)

print(wlan.ifconfig())

#	now	use	socket	as	usual

Quick	Usage	Example

import	machine

from	network	import	WLAN

#	configure	the	WLAN	subsystem	in	station	mode	(the	default	is	AP)

wlan	=	WLAN(mode=WLAN.STA)

#	go	for	fixed	IP	settings	(IP,	Subnet,	Gateway,	DNS)

wlan.ifconfig(config=('192.168.0.107',	'255.255.255.0',	'192.168.0.1',	'192.168.0.1'))

wlan.scan()					#	scan	for	available	networks

wlan.connect(ssid='mynetwork',	auth=(WLAN.WPA2,	'my_network_key'))

while	not	wlan.isconnected():

				pass

print(wlan.ifconfig())

Constructors

class	network.WLAN(id=0,	...)

Create	a	WLAN	object,	and	optionally	configure	it.	See	init	for	params	of	configuration.

The	WLAN	constructor	is	special	in	the	sense	that	if	no	arguments	besides	the		id		are
given,	it	will	return	the	already	existing	WLAN	instance	without	re-configuring	it.	This	is
because	WLAN	is	a	system	feature	of	the	WiPy.	If	the	already	existing	instance	is	not
initialised	it	will	do	the	same	as	the	other	constructors	an	will	initialise	it	with	default
values.

5.2.2.1	WLAN

293

Methods

wlan.init(mode,	*	,	ssid=None,	auth=None,	channel=1,	antenna=None,
power_save=False,	hidden=False)

Set	or	get	the	WiFi	network	processor	configuration.

Arguments	are:

	mode		can	be	either	WLAN.STA,	WLAN.AP	or	WLAN.STA_AP.
	ssid		is	a	string	with	the	SSID	name.	Only	needed	when	mode	is	WLAN.AP.
	auth		is	a	tuple	with	(sec,	key).	Security	can	be		None	,	WLAN.WEP,	WLAN.WPA	or
WLAN.WPA2.	The	key	is	a	string	with	the	network	password.	If		sec		is	WLAN.WEP	the
key	must	be	a	string	representing	hexadecimal	values	(e.g.		ABC1DE45BF).	Only	needed
when	mode	is	WLAN.AP.
	channel		a	number	in	the	range	1-11.	Only	needed	when	mode	is	WLAN.AP.
	antenna		selects	between	the	internal	and	the	external	antenna.	Can	be	either
WLAN.INT_ANT,	WLAN.EXT_ANT.	With	our	development	boards	it	defaults	to	using
the	internal	antenna,	but	in	the	case	of	an	OEM	module,	the	antenna	pin	(P12)	is	not
used,	so	it’s	free	to	be	used	for	other	things.
	power_save		enables	or	disables	power	save	functions	in	STA	mode.
	hidden		only	valid	in	WLAN.AP	mode	to	create	an	access	point	with	a	hidden	SSID
when	set	to		True	.

For	example,	you	can	do:

#	create	and	configure	as	an	access	point

wlan.init(mode=WLAN.AP,	ssid='wipy-wlan',	auth=(WLAN.WPA2,'www.wipy.io'),	channel=7,	a

ntenna=WLAN.INT_ANT)

or:

#	configure	as	an	station

wlan.init(mode=WLAN.STA)

wlan.deinit()

Disables	the	WiFi	radio.

wlan.connect(ssid,	*	,	auth=None,	bssid=None,	timeout=None,	ca_certs=None,
keyfile=None,	certfile=None,	identity=None)

Connect	to	a	wifi	access	point	using	the	given	SSID,	and	other	security	parameters.

5.2.2.1	WLAN

294

	auth		is	a	tuple	with		(sec,	key)	.	Security	can	be		None	,	WLAN.WEP,	WLAN.WPA,
WLAN.WPA2	or	WLAN.WPA2_ENT.	The	key	is	a	string	with	the	network	password.	If
	sec		is	WLAN.WEP	the	key	must	be	a	string	representing	hexadecimal	values	(e.g.
	ABC1DE45BF).	If		sec		is	WLAN.WPA2_ENT	then	the		auth		tuple	can	have	either	3
elements:		(sec,	username,	password)	,	or	just	1:		(sec,)	.	When	passing	the	3	element
tuple,	the	keyfile		and		certifle		arguments	must	not	be	given.
	bssid		is	the	MAC	address	of	the	AP	to	connect	to.	Useful	when	there	are	several	APs
with	the	same	SSID.
	timeout		is	the	maximum	time	in	milliseconds	to	wait	for	the	connection	to	succeed.
	ca_certs		is	the	path	to	the	CA	certificate.	This	argument	is	not	mandatory.		keyfile		is
the	path	to	the	client	key.	Only	used	if		username		and		password		are	not	part	of	the
	auth		tuple.
	certfile		is	the	path	to	the	client	certificate.	Only	used	if		username		and		password		are
not	part	of	the		auth		tuple.
	identity		is	only	used	in	case	of	WLAN.WPA2_ENT	security.

wlan.scan()

Performs	a	network	scan	and	returns	a	list	of	named	tuples	with		(ssid,	bssid,	sec,
channel,	rssi)	.	Note	that	channel	is	always		None		since	this	info	is	not	provided	by	the
WiPy.

wlan.disconnect()

Disconnect	from	the	WiFi	access	point.

wlan.isconnected()

In	case	of	STA	mode,	returns		True		if	connected	to	a	WiFi	access	point	and	has	a	valid	IP
address.	In	AP	mode	returns		True		when	a	station	is	connected,		False		otherwise.

wlan.ifconfig(id=0,	config=['dhcp'	or	configtuple])

When		id		is	0,	the	configuration	will	be	get/set	on	the	Station	interface.	When		id		is	1	the
configuration	will	be	done	for	the	AP	interface.

With	no	parameters	given	returns	a	4-tuple	of		(ip,	subnet_mask,	gateway,	DNS_server)	.

If		dhcp		is	passed	as	a	parameter	then	the	DHCP	client	is	enabled	and	the	IP	params	are
negotiated	with	the	AP.

If	the	4-tuple	config	is	given	then	a	static	IP	is	configured.	For	instance:

wlan.ifconfig(config=('192.168.0.4',	'255.255.255.0',	'192.168.0.1',	'8.8.8.8'))

5.2.2.1	WLAN

295

wlan.mode([mode])

Get	or	set	the	WLAN	mode.

wlan.ssid([ssid])

Get	or	set	the	SSID	when	in	AP	mode.

wlan.auth([auth])

Get	or	set	the	authentication	type	when	in	AP	mode.

wlan.channel([channel])

Get	or	set	the	channel	(only	applicable	in	AP	mode).

wlan.antenna([antenna])

Get	or	set	the	antenna	type	(external	or	internal).

wlan.mac()

Get	a	6-byte	long		bytes		object	with	the	WiFI	MAC	address.

Constants

WLAN.STA	WLAN.AP	WLAN.STA_AP
WLAN	mode

WLAN.WEP	WLAN.WPA	WLAN.WPA2	WLAN.WPA2_ENT
WLAN	network	security

WLAN.INT_ANT	WLAN.EXT_ANT
Antenna	type

5.2.2.1	WLAN

296

class	Server
The		Server		class	controls	the	behaviour	and	the	configuration	of	the	FTP	and	telnet
services	running	on	the	Pycom	device.	Any	changes	performed	using	this	class’	methods
will	affect	both.

Example:

import	network

server	=	network.Server()

server.deinit()	#	disable	the	server

#	enable	the	server	again	with	new	settings

server.init(login=('user',	'password'),	timeout=600)

Quick	Usage	Example

from	network	import	Server

#	init	with	new	user,	password	and	seconds	timeout

server	=	Server(login=('user',	'password'),	timeout=60)

server.timeout(300)	#	change	the	timeout

server.timeout()	#	get	the	timeout

server.isrunning()	#	check	whether	the	server	is	running	or	not

Constructors

class	network.Server(id,	...)

Create	a	server	instance,	see		init		for	parameters	of	initialisation.

Methods

server.init(*	,	login=('micro',	'python'),	timeout=300)

Init	(and	effectively	start	the	server).	Optionally	a	new		user	,		password		and		timeout		(in
seconds)	can	be	passed.

server.deinit()

Stop	the	server.

server.timeout([timeout_in_seconds])

5.2.2.2	Server

297

Get	or	set	the	server	timeout.

server.isrunning()

Returns		True		if	the	server	is	running	(connected	or	accepting	connections),		False	
otherwise.

5.2.2.2	Server

298

class	Bluetooth
This	class	provides	a	driver	for	the	Bluetooth	radio	in	the	module.	Currently,	only	basic	BLE
functionality	is	available.

Quick	Usage	Example

from	network	import	Bluetooth

import	time

bt	=	Bluetooth()

bt.start_scan(-1)

while	True:

		adv	=	bt.get_adv()

		if	adv	and	bt.resolve_adv_data(adv.data,	Bluetooth.ADV_NAME_CMPL)	==	'Heart	Rate':

						try:

										conn	=	bt.connect(adv.mac)

										services	=	conn.services()

										for	service	in	services:

														time.sleep(0.050)

														if	type(service.uuid())	==	bytes:

																		print('Reading	chars	from	service	=	{}'.format(service.uuid()))

														else:

																		print('Reading	chars	from	service	=	%x'	%	service.uuid())

														chars	=	service.characteristics()

														for	char	in	chars:

																		if	(char.properties()	&	Bluetooth.PROP_READ):

																						print('char	{}	value	=	{}'.format(char.uuid(),	char.read()))

										conn.disconnect()

										break

						except:

										print("Error	while	connecting	or	reading	from	the	BLE	device")

										break

		else:

						time.sleep(0.050)

Bluetooth	Low	Energy	(BLE)

Bluetooth	low	energy	(BLE)	is	a	subset	of	classic	Bluetooth,	designed	for	easy	connecting
and	communicating	between	devices	(in	particular	mobile	platforms).	BLE	uses	a
methodology	known	as	Generic	Access	Profile	(GAP)	to	control	connections	and
advertising.

5.2.2.3	Bluetooth

299

GAP	allows	for	devices	to	take	various	roles	but	generic	flow	works	with	devices	that	are
either	a	Server	(low	power,	resource	constrained,	sending	small	payloads	of	data)	or	a	Client
device	(commonly	a	mobile	device,	PC	or	Pycom	Device	with	large	resources	and
processing	power).	Pycom	devices	can	act	as	both	a	Client	and	a	Server.

Constructors

class	network.Bluetooth(id=0,	...)

Create	a	Bluetooth	object,	and	optionally	configure	it.	See	init	for	params	of	configuration.

Example:

from	network	import	Bluetooth

bluetooth	=	Bluetooth()

Methods

bluetooth.init(id=0,	mode=Bluetooth.BLE,	antenna=None)

	id		Only	one	Bluetooth	peripheral	available	so	must	always	be	0
	mode		currently	the	only	supported	mode	is		Bluetooth.BLE	
	antenna		selects	between	the	internal	and	the	external	antenna.	Can	be	either
Bluetooth.INT_ANT,	Bluetooth.EXT_ANT.	With	our	development	boards	it	defaults	to
using	the	internal	antenna,	but	in	the	case	of	an	OEM	module,	the	antenna	pin	(P12)	is
not	used,	so	it’s	free	to	be	used	for	other	things.

Initialises	and	enables	the	Bluetooth	radio	in	BLE	mode.

bluetooth.deinit()

Disables	the	Bluetooth	radio.

bluetooth.start_scan(timeout)

Starts	performing	a	scan	listening	for	BLE	devices	sending	advertisements.	This	function
always	returns	immediately,	the	scanning	will	be	performed	on	the	background.	The	return
value	is		None	.	After	starting	the	scan	the	function	get_adv()	can	be	used	to	retrieve	the
advertisements	messages	from	the	FIFO.	The	internal	FIFO	has	space	to	cache	16
advertisements.

The	arguments	are:

	timeout		specifies	the	amount	of	time	in	seconds	to	scan	for	advertisements,	cannot	be

5.2.2.3	Bluetooth

300

zero.	If	timeout	is	>	0,	then	the	BLE	radio	will	listen	for	advertisements	until	the	specified
value	in	seconds	elapses.	If	timeout	<	0,	then	there’s	no	timeout	at	all,	and	stop_scan()
needs	to	be	called	to	cancel	the	scanning	process.

Examples:

bluetooth.start_scan(10)								#	starts	scanning	and	stop	after	10	seconds

bluetooth.start_scan(-1)								#	starts	scanning	indefinitely	until	bluetooth.stop_sc

an()	is	called

bluetooth.stop_scan()

Stops	an	ongoing	scanning	process.	Returns		None	.

bluetooth.isscanning()

Returns		True		if	a	Bluetooth	scan	is	in	progress.		False		otherwise.

bluetooth.get_adv()

Gets	an	named	tuple	with	the	advertisement	data	received	during	the	scanning.	The	tuple
has	the	following	structure:		(mac,	addr_type,	adv_type,	rssi,	data)	

	mac		is	the	6-byte	ling	mac	address	of	the	device	that	sent	the	advertisement.
	addr_type		is	the	address	type.	See	the	constants	section	below	for	more	details.
	adv_type		is	the	advertisement	type	received.	See	the	constants	section	below	fro	more
details.
	rssi		is	signed	integer	with	the	signal	strength	of	the	advertisement.
	data		contains	the	complete	31	bytes	of	the	advertisement	message.	In	order	to	parse
the	data	and	get	the	specific	types,	the	method	resolve_adv_data()	can	be	used.

Example	for	getting		mac		address	of	an	advertiser:

import	ubinascii

bluetooth	=	Bluetooth()

bluetooth.start_scan(20)	#	scan	for	20	seconds

adv	=	bluetooth.get_adv()	#

ubinascii.hexlify(adv.mac)	#	convert	hexadecimal	to	ascii

bluetooth.get_advertisements()

Same	as	the		get_adv()		method,	but	this	one	returns	a	list	with	all	the	advertisements
received.

5.2.2.3	Bluetooth

301

bluetooth.resolve_adv_data(data,	data_type)

Parses	the	advertisement	data	and	returns	the	requested		data_type		if	present.	If	the	data
type	is	not	present,	the	function	returns		None	.

Arguments:

	data		is	the	bytes	object	with	the	complete	advertisement	data.
	data_type		is	the	data	type	to	resolve	from	from	the	advertisement	data.	See	constants
section	below	for	details.

Example:

import	ubinascii

from	network	import	Bluetooth

bluetooth	=	Bluetooth()

bluetooth.start_scan(20)

while	bluetooth.isscanning():

				adv	=	bluetooth.get_adv()

				if	adv:

								#	try	to	get	the	complete	name

								print(bluetooth.resolve_adv_data(adv.data,	Bluetooth.ADV_NAME_CMPL))

								mfg_data	=	bluetooth.resolve_adv_data(adv.data,	Bluetooth.ADV_MANUFACTURER_DAT

A)

								if	mfg_data:

												#	try	to	get	the	manufacturer	data	(Apple's	iBeacon	data	is	sent	here)

												print(ubinascii.hexlify(mfg_data))

bluetooth.connect(mac_addr)

Opens	a	BLE	connection	with	the	device	specified	by	the		mac_addr		argument.	This	function
blocks	until	the	connection	succeeds	or	fails.	If	the	connections	succeeds	it	returns	a	object
of	type		GATTCConnection	.

bluetooth.connect('112233eeddff')	#	mac	address	is	accepted	as	a	string

bluetooth.callback(trigger=None,	handler=None,	arg=None)

Creates	a	callback	that	will	be	executed	when	any	of	the	triggers	occurs.	The	arguments
are:

	trigger		can	be	either	Bluetooth.NEW_ADV_EVENT,
Bluetooth.CLIENT_CONNECTED	or	Bluetooth.CLIENT_DISCONNECTED
	handler		is	the	function	that	will	be	executed	when	the	callback	is	triggered.

5.2.2.3	Bluetooth

302

	arg		is	the	argument	that	gets	passed	to	the	callback.	If	nothing	is	given	the	bluetooth
object	itself	is	used.

An	example	of	how	this	may	be	used	can	be	seen	in	the	bluetooth.events()	method.

bluetooth.events()

Returns	a	value	with	bit	flags	identifying	the	events	that	have	occurred	since	the	last	call.
Calling	this	function	clears	the	events.

Example	of	usage:

from	network	import	Bluetooth

bluetooth	=	Bluetooth()

bluetooth.set_advertisement(name='LoPy',	service_uuid=b'1234567890123456')

def	conn_cb	(bt_o):

				events	=	bt_o.events()			#	this	method	returns	the	flags	and	clears	the	internal	r

egistry

				if	events	&	Bluetooth.CLIENT_CONNECTED:

								print("Client	connected")

				elif	events	&	Bluetooth.CLIENT_DISCONNECTED:

								print("Client	disconnected")

bluetooth.callback(trigger=Bluetooth.CLIENT_CONNECTED	|	Bluetooth.CLIENT_DISCONNECTED,

	handler=conn_cb)

bluetooth.advertise(True)

bluetooth.set_advertisement(*	,	name=None,	manufacturer_data=None,
service_data=None,	service_uuid=None)

Configure	the	data	to	be	sent	while	advertising.	If	left	with	the	default	of		None		the	data	won’t
be	part	of	the	advertisement	message.

The	arguments	are:

	name		is	the	string	name	to	be	shown	on	advertisements.
	manufacturer_data		manufacturer	data	to	be	advertised	(hint:	use	it	for	iBeacons).
	service_data		service	data	to	be	advertised.
	service_uuid		uuid	of	the	service	to	be	advertised.

Example:

bluetooth.set_advertisement(name="advert",	manufacturer_data="lopy_v1")

5.2.2.3	Bluetooth

303

bluetooth.advertise([Enable])

Start	or	stop	sending	advertisements.	The	set_advertisement()	method	must	have	been
called	prior	to	this	one.

bluetooth.service(uuid,	*	,	isprimary=True,	nbr_chars=1,	start=True)

Create	a	new	service	on	the	internal	GATT	server.	Returns	a	object	of	type
	BluetoothServerService	.

The	arguments	are:

	uuid		is	the	UUID	of	the	service.	Can	take	an	integer	or	a	16	byte	long	string	or	bytes
object.
	isprimary		selects	if	the	service	is	a	primary	one.	Takes	a		bool		value.
	nbr_chars		specifies	the	number	of	characteristics	that	the	service	will	contain.
	start		if		True		the	service	is	started	immediately.

bluetooth.service('abc123')

bluetooth.disconnect_client()

Closes	the	BLE	connection	with	the	client.

Constants

Bluetooth	mode

Bluetooth.BLE

Advertisement	type

Bluetooth.CONN_ADV	Bluetooth.CONN_DIR_ADV	Bluetooth.DISC_ADV
Bluetooth.NON_CONN_ADV	Bluetooth.SCAN_RSP

Address	type

Bluetooth.PUBLIC_ADDR	Bluetooth.RANDOM_ADDR	Bluetooth.PUBLIC_RPA_ADDR
Bluetooth.RANDOM_RPA_ADDR

Advertisement	data	type

Bluetooth.ADV_FLAG	Bluetooth.ADV_16SRV_PART	Bluetooth.ADV_T16SRV_CMPL
Bluetooth.ADV_32SRV_PART	Bluetooth.ADV_32SRV_CMPL
Bluetooth.ADV_128SRV_PART	Bluetooth.ADV_128SRV_CMPL

5.2.2.3	Bluetooth

304

Bluetooth.ADV_NAME_SHORT	Bluetooth.ADV_NAME_CMPL	Bluetooth.ADV_TX_PWR
Bluetooth.ADV_DEV_CLASS	Bluetooth.ADV_SERVICE_DATA
Bluetooth.ADV_APPEARANCE	Bluetooth.ADV_ADV_INT
Bluetooth.ADV_32SERVICE_DATA	Bluetooth.ADV_128SERVICE_DATA
Bluetooth.ADV_MANUFACTURER_DATA

Characteristic	properties	(bit	values	that	can	be	combined)

Bluetooth.PROP_BROADCAST	Bluetooth.PROP_READ	Bluetooth.PROP_WRITE_NR
Bluetooth.PROP_WRITE	Bluetooth.PROP_NOTIFY	Bluetooth.PROP_INDICATE
Bluetooth.PROP_AUTH	Bluetooth.PROP_EXT_PROP

Characteristic	callback	events

Bluetooth.CHAR_READ_EVENT	Bluetooth.CHAR_WRITE_EVENT
Bluetooth.NEW_ADV_EVENT	Bluetooth.CLIENT_CONNECTED
Bluetooth.CLIENT_DISCONNECTED	Bluetooth.CHAR_NOTIFY_EVENT

Antenna	type

Bluetooth.INT_ANT	Bluetooth.EXT_ANT

5.2.2.3	Bluetooth

305

Generic	Attribute
GATT	stands	for	the	Generic	Attribute	Profile	and	it	defines	the	way	that	two	Bluetooth	Low
Energy	devices	communicate	between	each	other	using	concepts	called	Services	and
Characteristics.	GATT	uses	a	data	protocol	known	as	the	Attribute	Protocol	(ATT),	which	is
used	to	store/manage	Services,	Characteristics	and	related	data	in	a	lookup	table.

GATT	comes	into	use	once	a	connection	is	established	between	two	devices,	meaning	that
the	device	will	have	already	gone	through	the	advertising	process	managed	by	GAP.	It’s
important	to	remember	that	this	connection	is	exclusive;	i.e.	that	only	one	client	is	connected
to	one	server	at	a	time.	This	means	that	the	client	will	stop	advertising	once	a	connection
has	been	made.	This	remains	the	case,	until	the	connection	is	broken	or	disconnected.

The	GATT	Server,	which	holds	the	ATT	lookup	data	and	service	and	characteristic
definitions,	and	the	GATT	Client	(the	phone/tablet),	which	sends	requests	to	this	server.

5.2.2.3	Bluetooth

306

class	GATTCConnection
The	GATT	Client	is	the	device	that	requests	data	from	the	server,	otherwise	known	as	the
master	device	(commonly	this	might	be	a	phone/tablet/PC).	All	transactions	are	initiated	by
the	master,	which	receives	a	response	from	the	slave.

connection.disconnect()

Closes	the	BLE	connection.	Returns		None	.

connection.isconnected()

Returns		True		if	the	connection	is	still	open.		False		otherwise.

Example:

from	network	import	Bluetooth

import	ubinascii

bluetooth	=	Bluetooth()

#	scan	until	we	can	connect	to	any	BLE	device	around

bluetooth.start_scan(-1)

adv	=	None

while	True:

				adv	=	bluetooth.get_adv()

				if	adv:

								try:

												bluetooth.connect(adv.mac)

								except:

												#	start	scanning	again

												bluetooth.start_scan(-1)

												continue

								break

print("Connected	to	device	with	addr	=	{}".format(ubinascii.hexlify(adv.mac)))

connection.services()

Performs	a	service	search	on	the	connected	BLE	peripheral	(server)	a	returns	a	list
containing	objects	of	the	class	GATTCService	if	the	search	succeeds.

Example:

5.2.2.3	Bluetooth

307

#	assuming	that	a	BLE	connection	is	already	open

services	=	connection.services()

print(services)

for	service	in	services:

				print(service.uuid())

5.2.2.3	Bluetooth

308

class	GATTCService
Services	are	used	to	categorise	data	up	into	specific	chunks	of	data	known	as
characteristics.	A	service	may	have	multiple	characteristics,	and	each	service	has	a	unique
numeric	ID	called	a	UUID.

The	following	class	allows	control	over	Client	services.

service.isprimary()

Returns		True		if	the	service	is	a	primary	one.		False		otherwise.

service.uuid()

Returns	the	UUID	of	the	service.	In	the	case	of	16-bit	or	32-bit	long	UUIDs,	the	value
returned	is	an	integer,	but	for	128-bit	long	UUIDs	the	value	returned	is	a	bytes	object.

service.instance()

Returns	the	instance	ID	of	the	service.

service.characteristics()

Performs	a	get	characteristics	request	on	the	connected	BLE	peripheral	a	returns	a	list
containing	objects	of	the	class	GATTCCharacteristic	if	the	request	succeeds.

5.2.2.3	Bluetooth

309

class	GATTCCharacteristic
The	smallest	concept	in	GATT	is	the	Characteristic,	which	encapsulates	a	single	data	point
(though	it	may	contain	an	array	of	related	data,	such	as	X/Y/Z	values	from	a	3-axis
accelerometer,	longitude	and	latitude	from	a	GPS,	etc.).

The	following	class	allows	you	to	manage	characteristics	from	a	Client.

characteristic.uuid()

Returns	the	UUID	of	the	service.	In	the	case	of	16-bit	or	32-bit	long	UUIDs,	the	value
returned	is	an	integer,	but	for	128-bit	long	UUIDs	the	value	returned	is	a	bytes	object.

characteristic.instance()

Returns	the	instance	ID	of	the	service.

characteristic.properties()

Returns	an	integer	indicating	the	properties	of	the	characteristic.	Properties	are	represented
by	bit	values	that	can	be	OR-ed	together.	See	the	constants	section	for	more	details.

characteristic.read()

Read	the	value	of	the	characteristic,	sending	a	request	to	the	GATT	server.	Returns	a	bytes
object	representing	the	characteristic	value.

characteristic.value()

Returns	the	locally	stored	value	of	the	characteristic	without	sending	a	read	request	to	the
GATT	server.	If	the	characteristic	value	hasn't	been	read	from	the	GATT	server	yet,	the	value
returned	will	be	0.

characteristic.write(value)

Writes	the	given	value	on	the	characteristic.	For	now	it	only	accepts	bytes	object
representing	the	value	to	be	written.

characteristic.write(b'x0f')

characteristic.callback(trigger=None,	handler=None,	arg=None)

This	method	allows	to	register	for	notifications	on	the	characteristic.

5.2.2.3	Bluetooth

310

	trigger		can	must	be	Bluetooth.CHAR_NOTIFY_EVENT.
	handler		is	the	function	that	will	be	executed	when	the	callback	is	triggered.
	arg		is	the	argument	that	gets	passed	to	the	callback.	If	nothing	is	given,	the
characteristic	object	that	owns	the	callback	will	be	used.

5.2.2.3	Bluetooth

311

class	GATTSService
The	GATT	Server	allows	the	device	to	act	as	a	peripheral	and	hold	its	own	ATT	lookup	data,
server	&	characteristic	definitions.	In	this	mode,	the	device	acts	as	a	slave	and	a	master
must	initiate	a	request.

Services	are	used	to	categorise	data	up	into	specific	chunks	of	data	known	as
characteristics.	A	service	may	have	multiple	characteristics,	and	each	service	has	a	unique
numeric	ID	called	a	UUID.

The	following	class	allows	control	over	Server	services.

service.start()

Starts	the	service	if	not	already	started.

service.stop()

Stops	the	service	if	previously	started.

service.characteristic(uuid,	*	,	permissions,	properties,	value)

Creates	a	new	characteristic	on	the	service.	Returns	an	object	of	the	class
GATTSCharacteristic.	The	arguments	are:

	uuid		is	the	UUID	of	the	service.	Can	take	an	integer	or	a	16	byte	long	string	or	bytes
object.
	permissions		configures	the	permissions	of	the	characteristic.	Takes	an	integer	with	a
combination	of	the	flags.
	properties		sets	the	properties.	Takes	an	integer	with	an	OR-ed	combination	of	the
flags.
	value		sets	the	initial	value.	Can	take	an	integer,	a	string	or	a	bytes	object.

service.characteristic('temp',	value=25)

5.2.2.3	Bluetooth

312

class	GATTSCharacteristic
The	smallest	concept	in	GATT	is	the	Characteristic,	which	encapsulates	a	single	data	point
(though	it	may	contain	an	array	of	related	data,	such	as	X/Y/Z	values	from	a	3-axis
accelerometer,	longitude	and	latitude	from	a	GPS,	etc.).

The	following	class	allows	you	to	manage	Server	characteristics.

characteristic.value([value])

Gets	or	sets	the	value	of	the	characteristic.	Can	take	an	integer,	a	string	or	a	bytes	object.

characteristic.value(123)	#	set	characteristic	value	to	an	integer	with	the	value	123

characteristic.value()	#	get	characteristic	value

characteristic.callback(trigger=None,	handler=None,	arg=None)

Creates	a	callback	that	will	be	executed	when	any	of	the	triggers	occurs.	The	arguments
are:

	trigger		can	be	either	Bluetooth.CHAR_READ_EVENT	or
Bluetooth.CHAR_WRITE_EVENT.
	handler		is	the	function	that	will	be	executed	when	the	callback	is	triggered.
	arg		is	the	argument	that	gets	passed	to	the	callback.	If	nothing	is	given,	the
characteristic	object	that	owns	the	callback	will	be	used.

An	example	of	how	this	could	be	implemented	can	be	seen	in	the	characteristic.events()
section.

characteristic.events()

Returns	a	value	with	bit	flags	identifying	the	events	that	have	occurred	since	the	last	call.
Calling	this	function	clears	the	events.

An	example	of	advertising	and	creating	services	on	the	device:

5.2.2.3	Bluetooth

313

from	network	import	Bluetooth

bluetooth	=	Bluetooth()

bluetooth.set_advertisement(name='LoPy',	service_uuid=b'1234567890123456')

def	conn_cb	(bt_o):

				events	=	bt_o.events()

				if		events	&	Bluetooth.CLIENT_CONNECTED:

								print("Client	connected")

				elif	events	&	Bluetooth.CLIENT_DISCONNECTED:

								print("Client	disconnected")

bluetooth.callback(trigger=Bluetooth.CLIENT_CONNECTED	|	Bluetooth.CLIENT_DISCONNECTED,

	handler=conn_cb)

bluetooth.advertise(True)

srv1	=	bluetooth.service(uuid=b'1234567890123456',	isprimary=True)

chr1	=	srv1.characteristic(uuid=b'ab34567890123456',	value=5)

char1_read_counter	=	0

def	char1_cb_handler(chr):

				global	char1_read_counter

				char1_read_counter	+=	1

				events	=	chr.events()

				if		events	&	Bluetooth.CHAR_WRITE_EVENT:

								print("Write	request	with	value	=	{}".format(chr.value()))

				else:

								if	char1_read_counter	<	3:

												print('Read	request	on	char	1')

								else:

												return	'ABC	DEF'

char1_cb	=	chr1.callback(trigger=Bluetooth.CHAR_WRITE_EVENT	|	Bluetooth.CHAR_READ_EVEN

T,	handler=char1_cb_handler)

srv2	=	bluetooth.service(uuid=1234,	isprimary=True)

chr2	=	srv2.characteristic(uuid=4567,	value=0x1234)

char2_read_counter	=	0xF0

def	char2_cb_handler(chr):

				global	char2_read_counter

				char2_read_counter	+=	1

				if	char2_read_counter	>	0xF1:

								return	char2_read_counter

char2_cb	=	chr2.callback(trigger=Bluetooth.CHAR_READ_EVENT,	handler=char2_cb_handler)

5.2.2.3	Bluetooth

314

5.2.2.3	Bluetooth

315

class	LoRa
This	class	provides	a	LoRaWAN	1.0.2	compliant	driver	for	the	LoRa	network	processor	in
the	LoPy	and	FiPy.	Below	is	an	example	demonstrating	LoRaWAN	Activation	by
Personalisation	usage:

from	network	import	LoRa

import	socket

import	ubinascii

import	struct

#	Initialise	LoRa	in	LORAWAN	mode.

#	Please	pick	the	region	that	matches	where	you	are	using	the	device:

#	Asia	=	LoRa.AS923

#	Australia	=	LoRa.AU915

#	Europe	=	LoRa.EU868

#	United	States	=	LoRa.US915

lora	=	LoRa(mode=LoRa.LORAWAN,	region=LoRa.EU868)

#	create	an	ABP	authentication	params

dev_addr	=	struct.unpack(">l",	binascii.unhexlify('00000005'))[0]

nwk_swkey	=	ubinascii.unhexlify('2B7E151628AED2A6ABF7158809CF4F3C')

app_swkey	=	ubinascii.unhexlify('2B7E151628AED2A6ABF7158809CF4F3C')

#	join	a	network	using	ABP	(Activation	By	Personalisation)

lora.join(activation=LoRa.ABP,	auth=(dev_addr,	nwk_swkey,	app_swkey))

#	create	a	LoRa	socket

s	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

#	set	the	LoRaWAN	data	rate

s.setsockopt(socket.SOL_LORA,	socket.SO_DR,	5)

#	make	the	socket	non-blocking

s.setblocking(False)

#	send	some	data

s.send(bytes([0x01,	0x02,	0x03]))

#	get	any	data	received...

data	=	s.recv(64)

print(data)

Please	ensure	that	there	is	an	antenna	connected	to	your	device	before
sending/receiving	LoRa	messages	as	improper	use	(e.g.	without	an	antenna),	may
damage	the	device.

5.2.2.4	LoRa

316

Additional	Examples

For	various	other	complete	LoRa	examples,	check	here	for	additional	examples.

Constructors

class	network.LoRa(id=0,	...)

Create	and	configure	a	LoRa	object.	See	init	for	params	of	configuration.

lora	=	LoRa(mode=LoRa.LORAWAN,	region=LoRa.EU868)

Methods

lora.init(mode,	*	,region=LoRa.EU868,	frequency=868000000,	tx_power=14,
bandwidth=LoRa.BW_125KHZ,	sf=7,	preamble=8,	coding_rate=LoRa.CODING_4_5,
power_mode=LoRa.ALWAYS_ON,	tx_iq=False,	rx_iq=False,	adr=False,	public=True,
tx_retries=1,	device_class=LoRa.CLASS_A)

This	method	is	used	to	set	the	LoRa	subsystem	configuration	and	to	specific	raw	LoRa	or
LoRaWAN.

The	arguments	are:

	mode		can	be	either	LoRa.LORA	or	LoRa.LORAWAN.
	region		can	take	the	following	values:	LoRa.AS923,	LoRa.AU915,	LoRa.EU868	or
LoRa.US915.	If	not	provided	this	will	default	to		LoRaEU868	.	If	they	are	not	specified,	this
will	also	set	appropriate	defaults	for		frequency		and		tx_power	.
	frequency		accepts	values	between	863000000	and	870000000	in	the	868	band,	or
between	902000000	and	928000000	in	the	915	band.
	tx_power		is	the	transmit	power	in	dBm.	It	accepts	between	2	and	14	for	the	868	band,
and	between	5	and	20	in	the	915	band.
	bandwidth		is	the	channel	bandwidth	in	KHz.	In	the	868	band	the	accepted	values	are
LoRa.BW_125KHZ	and	LoRa.BW_250KHZ.	In	the	915	band	the	accepted	values	are
LoRa.BW_125KHZ	and	LoRa.BW_500KHZ.
	sf		sets	the	desired	spreading	factor.	Accepts	values	between	7	and	12.
	preamble		configures	the	number	of	pre-amble	symbols.	The	default	value	is	8.
	coding_rate		can	take	the	following	values:	LoRa.CODING_4_5,	LoRa.CODING_4_6,
LoRa.CODING_4_7	or	LoRa.CODING_4_8.
	power_mode		can	be	either	LoRa.ALWAYS_ON,	LoRa.TX_ONLY	or	LoRa.SLEEP.	In

5.2.2.4	LoRa

317

ALWAYS_ON	mode,	the	radio	is	always	listening	for	incoming	-	packets	whenever	a
transmission	is	not	taking	place.	In	TX_ONLY	the	radio	goes	to	sleep	as	soon	as	the
transmission	completes.	In	SLEEP	mode	the	radio	is	sent	to	sleep	permanently	and
won’t	accept	any	commands	until	the	power	mode	is	changed.
	tx_iq		enables	TX	IQ	inversion.
	rx_iq		enables	RX	IQ	inversion.
	adr		enables	Adaptive	Data	Rate.
	public		selects	between	the	public	and	private	sync	word.
	tx_retries		sets	the	number	of	TX	retries	in	LoRa.LORAWAN	mode.
	device_class		sets	the	LoRaWAN	device	class.	Can	be	either	LoRa.CLASS_A	or
LoRa.CLASS_C.

In	LoRa.LORAWAN	mode,	only		adr	,		public	,		tx_retries		and		device_class		are
used.	All	the	other	params	will	be	ignored	as	they	are	handled	by	the	LoRaWAN	stack
directly.	On	the	other	hand,	in	LoRa.LORA	mode	from	those	4	arguments,	only	the
public	one	is	important	in	order	to	program	the	sync	word.	In	LoRa.LORA	mode		adr	,
	tx_retries		and		device_class		are	ignored	since	they	are	only	relevant	to	the
LoRaWAN	stack.

For	example,	you	can	do:

#	initialize	in	raw	LoRa	mode

lora.init(mode=LoRa.LORA,	tx_power=14,	sf=12)

or:

#	initialize	in	LoRaWAN	mode

lora.init(mode=LoRa.LORAWAN)

lora.join(activation,	auth,	*	,timeout=None,	dr=None)

Join	a	LoRaWAN	network.	Internally	the	stack	will	automatically	retry	every	15	seconds	until
a	Join	Accept	message	is	received.

The	parameters	are:

	activation	:	can	be	either	LoRa.OTAA	or	LoRa.ABP.
	auth	:	is	a	tuple	with	the	authentication	data.
	timeout	:	is	the	maximum	time	in	milliseconds	to	wait	for	the	Join	Accept	message	to
be	received.	If	no	timeout	(or	zero)	is	given,	the	call	returns	immediately	and	the	status
of	the	join	request	can	be	checked	with		lora.has_joined()	.

5.2.2.4	LoRa

318

	dr	:	is	an	optional	value	to	specify	the	initial	data	rate	for	the	Join	Request.	Possible
values	are	0	to	5	for	EU868,	or	0	to	4	for	US915.

In	the	case	of	LoRa.OTAA	the	authentication	tuple	is:		(dev_eui,	app_eui,	app_key)		where
	dev_eui		is	optional.	If	it	is	not	provided	the	LoRa	MAC	will	be	used.	Therefore,	you	can	do
OTAA	in	2	different	ways:

lora.join(activation=LoRa.OTAA,	auth=(app_eui,	app_key),	timeout=0)		#	the	device	MAC	

address	is	used	as	DEV_EUI

or

lora.join(activation=LoRa.OTAA,	auth=(dev_eui,	app_eui,	app_key),	timeout=0)	#	a	custo

m	DEV_EUI	is	specified

Example:

from	network	import	LoRa

import	socket

import	time

import	ubinascii

#	Initialise	LoRa	in	LORAWAN	mode.

#	Please	pick	the	region	that	matches	where	you	are	using	the	device:

#	Asia	=	LoRa.AS923

#	Australia	=	LoRa.AU915

#	Europe	=	LoRa.EU868

#	United	States	=	LoRa.US915

lora	=	LoRa(mode=LoRa.LORAWAN,	region=LoRa.EU868)

#	create	an	OTAA	authentication	parameters

app_eui	=	ubinascii.unhexlify('ADA4DAE3AC12676B')

app_key	=	ubinascii.unhexlify('11B0282A189B75B0B4D2D8C7FA38548B')

#	join	a	network	using	OTAA	(Over	the	Air	Activation)

lora.join(activation=LoRa.OTAA,	auth=(app_eui,	app_key),	timeout=0)

#	wait	until	the	module	has	joined	the	network

while	not	lora.has_joined():

				time.sleep(2.5)

				print('Not	yet	joined...')

In	the	case	of	LoRa.ABP	the	authentication	tuple	is:		(dev_addr,	nwk_swkey,	app_swkey)	.
Example:

5.2.2.4	LoRa

319

from	network	import	LoRa

import	socket

import	ubinascii

import	struct

#	Initialise	LoRa	in	LORAWAN	mode.

#	Please	pick	the	region	that	matches	where	you	are	using	the	device:

#	Asia	=	LoRa.AS923

#	Australia	=	LoRa.AU915

#	Europe	=	LoRa.EU868

#	United	States	=	LoRa.US915

lora	=	LoRa(mode=LoRa.LORAWAN,	region=LoRa.EU868)

#	create	an	ABP	authentication	params

dev_addr	=	struct.unpack(">l",	ubinascii.unhexlify('00000005'))[0]

nwk_swkey	=	ubinascii.unhexlify('2B7E151628AED2A6ABF7158809CF4F3C')

app_swkey	=	ubinascii.unhexlify('2B7E151628AED2A6ABF7158809CF4F3C')

#	join	a	network	using	ABP	(Activation	By	Personalisation)

lora.join(activation=LoRa.ABP,	auth=(dev_addr,	nwk_swkey,	app_swkey))

lora.bandwidth([bandwidth])

Get	or	set	the	bandwidth	in	raw	LoRa	mode	(LoRa.LORA).	Can	be	either	LoRa.BW_125KHZ
(0),	LoRa.BW_250KHZ	(1)	or	LoRa.BW_500KHZ	(2):

#	get	raw	LoRa	Bandwidth

lora.bandwidth()

#	set	raw	LoRa	Bandwidth

lora.bandwidth(LoRa.BW_125KHZ)

lora.frequency([frequency])

Get	or	set	the	frequency	in	raw	LoRa	mode	(LoRa.LORA).	The	allowed	range	is	between
863000000	and	870000000	Hz	for	the	868	MHz	band	version	or	between	902000000	and
928000000	Hz	for	the	915	MHz	band	version.

#	get	raw	LoRa	Frequency

lora.frequency()

#	set	raw	LoRa	Frequency

lora.frequency(868000000)

lora.coding_rate([coding_rate])

5.2.2.4	LoRa

320

Get	or	set	the	coding	rate	in	raw	LoRa	mode	(LoRa.LORA).	The	allowed	values	are:
LoRa.CODING_4_5	(1),	LoRa.CODING_4_6	(2),	LoRa.CODING_4_7	(3)	and
LoRa.CODING_4_8	(4).

#	get	raw	LoRa	Coding	Rate

lora.coding_rate()

#	set	raw	LoRa	Coding	Rate

lora.coding_rate(LoRa.CODING_4_5)

lora.preamble([preamble])

Get	or	set	the	number	of	preamble	symbols	in	raw	LoRa	mode	(LoRa.LORA):

#	get	raw	LoRa	preamble	symbols

lora.preamble()

#	set	raw	LoRa	preamble	symbols

lora.preamble(LoRa.CODING_4_5)

lora.sf([sf])

Get	or	set	the	spreading	factor	value	in	raw	LoRa	mode	(LoRa.LORA).	The	minimum	value
is	7	and	the	maximum	is	12:

#	get	raw	LoRa	spread	factor	value

lora.sf()

#	set	raw	LoRa	spread	factor	value

lora.sf(7)

lora.power_mode([power_mode])

Get	or	set	the	power	mode	in	raw	LoRa	mode	(LoRa.LORA).	The	accepted	values	are:
LoRa.ALWAYS_ON,	LoRa.TX_ONLY	and	LoRa.SLEEP:

lora.stats()

Return	a	named	tuple	with	useful	information	from	the	last	received	LoRa	or	LoRaWAN
packet.	The	named	tuple	has	the	following	form:

	(rx_timestamp,	rssi,	snr,	sftx,	sfrx,	tx_trials,	tx_power,	tx_time_on_air,	tx_counter,

tx_frequency)	

Example:

5.2.2.4	LoRa

321

lora.stats()

Where:

	rx_timestamp		is	an	internal	timestamp	of	the	last	received	packet	with	microseconds
precision.
	rssi		holds	the	received	signal	strength	in	dBm.
	snr		contains	the	signal	to	noise	ratio	id	dB	(as	a	single	precision	float).
	sfrx		tells	the	data	rate	(in	the	case	of	LORAWAN	mode)	or	the	spreading	factor	(in	the
case	of	LORA	mode)	of	the	last	packet	received.
	sftx		tells	the	data	rate	(in	the	case	of	LORAWAN	mode)	or	the	spreading	factor	(in	the
case	of	LORA	mode)	of	the	last	packet	transmitted.
	tx_trials		is	the	number	of	tx	attempts	of	the	last	transmitted	packet	(only	relevant	for
LORAWAN	confirmed	packets).
	tx_power		is	the	power	of	the	last	transmission	(in	dBm).
	tx_time_on_air		is	the	time	on	air	of	the	last	transmitted	packet	(in	ms).
	tx_counter		is	the	number	of	packets	transmitted.
	tx_frequency		is	the	frequency	used	for	the	last	transmission.

lora.has_joined()

Returns		True		if	a	LoRaWAN	network	has	been	joined.		False		otherwise.:

lora.add_channel(index,	*	,	frequency,	dr_min,	dr_max)

Add	a	LoRaWAN	channel	on	the	specified		index	.	If	there’s	already	a	channel	with	that
index	it	will	be	replaced	with	the	new	one.

The	arguments	are:

	index	:	Index	of	the	channel	to	add.	Accepts	values	between	0	and	15	for	EU	and
between	0	and	71	for	US.
	frequency	:	Centre	frequency	in	Hz	of	the	channel.
	dr_min	:	Minimum	data	rate	of	the	channel	(0-7).
	dr_max	:	Maximum	data	rate	of	the	channel	(0-7).

Examples:

lora.add_channel(index=0,	frequency=868000000,	dr_min=5,	dr_max=6)

lora.remove_channel(index)

5.2.2.4	LoRa

322

Removes	the	channel	from	the	specified		index	.	On	the	868MHz	band	the	channels	0	to	2
cannot	be	removed,	they	can	only	be	replaced	by	other	channels	using	the	lora.add_channel
method.	A	way	to	remove	all	channels	except	for	one	is	to	add	the	same	channel,	3	times	on
indexes	0,	1	and	2.	An	example	can	be	seen	below:

lora.remove_channel()

On	the	915MHz	band	there	are	no	restrictions	around	this.

lora.mac()

Returns	a	byte	object	with	the	8-Byte	MAC	address	of	the	LoRa	radio.

lora.callback(trigger,	handler=None,	arg=None)

Specify	a	callback	handler	for	the	LoRa	radio.	The		trigger		types	are
LoRa.RX_PACKET_EVENT,	LoRa.TX_PACKET_EVENT	and	LoRa.TX_FAILED_EVENT

The	LoRa.RX_PACKET_EVENT	event	is	raised	for	every	received	packet.	The
LoRa.TX_PACKET_EVENT	event	is	raised	as	soon	as	the	packet	transmission	cycle	ends,
which	includes	the	end	of	the	receive	windows	(even	if	a	downlink	is	received,	the
LoRa.TX_PACKET_EVENT	will	come	last).	In	the	case	of	non-confirmed	transmissions,	this
will	occur	at	the	end	of	the	receive	windows,	but,	in	the	case	of	confirmed	transmissions,	this
event	will	only	be	raised	if	the		ack		is	received.	If	the		ack		is	not	received
LoRa.TX_FAILED_EVENT	will	be	raised	after	the	number	of		tx_retries		configured	have
been	performed.

An	example	of	how	this	callback	functions	can	be	seen	the	in	method	lora.events().

lora.ischannel_free(rssi_threshold)

This	method	is	used	to	check	for	radio	activity	on	the	current	LoRa	channel,	and	if	the		rssi	
of	the	measured	activity	is	lower	than	the		rssi_threshold		given,	the	return	value	will	be
	True	,	otherwise		False	.	Example:

lora.ischannel_free(-100)

lora.set_battery_level(level)

Set	the	battery	level	value	that	will	be	sent	when	the	LoRaWAN	MAC	command	that
retrieves	the	battery	level	is	received.	This	command	is	sent	by	the	network	and	handled
automatically	by	the	LoRaWAN	stack.	The	values	should	be	according	to	the	LoRaWAN
specification:

5.2.2.4	LoRa

323

	0		means	that	the	end-device	is	connected	to	an	external	power	source.
	1..254		specifies	the	battery	level,	1	being	at	minimum	and	254	being	at	maximum.
	255		means	that	the	end-device	was	not	able	to	measure	the	battery	level.

lora.set_battery_level(127)	#	50%	battery

lora.events()

This	method	returns	a	value	with	bits	sets	(if	any)	indicating	the	events	that	have	triggered
the	callback.	Please	note	that	by	calling	this	function	the	internal	events	registry	is	cleared
automatically,	therefore	calling	it	immediately	for	a	second	time	will	most	likely	return	a	value
of	0.

Example:

def	lora_cb(lora):

				events	=	lora.events()

				if	events	&	LoRa.RX_PACKET_EVENT:

								print('Lora	packet	received')

				if	events	&	LoRa.TX_PACKET_EVENT:

								print('Lora	packet	sent')

lora.callback(trigger=(LoRa.RX_PACKET_EVENT	|	LoRa.TX_PACKET_EVENT),	handler=lora_cb)

lora.nvram_save()

Save	the	LoRaWAN	state	(joined	status,	network	keys,	packet	counters,	etc)	in	non-volatile
memory	in	order	to	be	able	to	restore	the	state	when	coming	out	of	deepsleep	or	a	power
cycle.

lora.nvram_save()

lora.nvram_restore()

Restore	the	LoRaWAN	state	(joined	status,	network	keys,	packet	counters,	etc)	from	non-
volatile	memory.	State	must	have	been	previously	stored	with	a	call	to		nvram_save		before
entering	deepsleep.	This	is	useful	to	be	able	to	send	a	LoRaWAN	message	immediately
after	coming	out	of	deepsleep	without	having	to	join	the	network	again.	This	can	only	be
used	if	the	current	region	matches	the	one	saved.

lora.nvram_restore()

lora.nvram_erase()

5.2.2.4	LoRa

324

Remove	the	LoRaWAN	state	(joined	status,	network	keys,	packet	counters,	etc)	from	non-
volatile	memory.

lora.nvram_erase()

Constants

LoRa.LORA	LoRa.LORAWAN	LoRa	stack	mode

LoRa.OTAA	LoRa.ABP	LoRaWAN	join	procedure

LoRa.ALWAYS_ON	LoRa.TX_ONLY	LoRa.SLEEP	Raw	LoRa	power	mode

LoRa.BW_125KHZ	LoRa.BW_250KHZ	LoRa.BW_500KHZ	Raw	LoRa	bandwidth

LoRa.CODING_4_5	LoRa.CODING_4_6	LoRa.CODING_4_7	LoRa.CODING_4_8	Raw
LoRa	coding	rate

LoRa.RX_PACKET_EVENT	LoRa.TX_PACKET_EVENT	LoRa.TX_FAILED_EVENT
Callback	trigger	types	(may	be	ORed)

LoRa.CLASS_A	LoRa.CLASS_C	LoRaWAN	device	class

LoRa.AS923	LoRa.AU915	LoRa.EU868	LoRa.US915	LoRaWAN	regions

Working	with	LoRa	and	LoRaWAN	Sockets

LoRa	sockets	are	created	in	the	following	way:

import	socket

s	=	socket.socket(socket.AF_LORA,	socket.SOCK_RAW)

And	they	must	be	created	after	initialising	the	LoRa	network	card.

LoRa	sockets	support	the	following	standard	methods	from	the	socket	module:

socket.close()

Usage:

s.close()

socket.bind(port_number)

Usage:

5.2.2.4	LoRa

325

s.bind(1)

The	bind()	method	is	only	applicable	when	the	radio	is	configured	in	LoRa.LORAWAN
mode.

socket.send(bytes)

Usage:

s.send(bytes([1,	2,	3]))

or:

s.send('Hello')

socket.recv(bufsize)

Usage:

s.recv(128)

socket.recvfrom(bufsize)

This	method	is	useful	to	know	the	destination	port	number	of	the	message	received.	Returns
a	tuple	of	the	form:		(data,	port)	

Usage:

s.recvfrom(128)

socket.setsockopt(level,	optname,	value)

Set	the	value	of	the	given	socket	option.	The	needed	symbolic	constants	are	defined	in	the
socket	module	(SO_*		etc.).	In	the	case	of	LoRa	the	values	are	always	integers.	Examples:

5.2.2.4	LoRa

326

#	configuring	the	data	rate

s.setsockopt(socket.SOL_LORA,	socket.SO_DR,	5)

#	selecting	non-confirmed	type	of	messages

s.setsockopt(socket.SOL_LORA,	socket.SO_CONFIRMED,	False)

#	selecting	confirmed	type	of	messages

s.setsockopt(socket.SOL_LORA,	socket.SO_CONFIRMED,	True)

Socket	options	are	only	applicable	when	the	LoRa	radio	is	used	in	LoRa.LORAWAN
mode.	When	using	the	radio	in	LoRa.LORA	mode,	use	the	class	methods	to	change	the
spreading	factor,	bandwidth	and	coding	rate	to	the	desired	values.

socket.settimeout(value)

Sets	the	socket	timeout	value	in	seconds.	Accepts	floating	point	values.

Usage:

s.settimeout(5.5)

socket.setblocking(flag)

Usage:

s.setblocking(True)

5.2.2.4	LoRa

327

class	Sigfox
Sigfox	is	a	Low	Power	Wide	Area	Network	protocol	that	enables	remote	devices	to	connect
using	ultra-narrow	band,	UNB	technology.	The	protocol	is	bi-directional,	messages	can	both
be	sent	up	to	and	down	from	the	Sigfox	servers.

When	operating	in		RCZ2		and		RCZ4		the	module	can	only	send	messages	on	the	default
macro-channel	(this	is	due	to	Sigfox	network	limitations).	Therefore,	the	device	needs	to
reset	automatically	to	the	default	macro-channel	after	every	2	transmissions.	However,
due	to	FCC	duty	cycle	limitations,	there	must	a	minimum	of	a	20s	delay	after	resetting	to
the	default	macro-channel.	Our	API	takes	care	of	this,	(and	in	real	life	applications	you
should	not	be	in	the	need	to	send	Sigfox	messages	that	often),	so	it	will	wait	for	the
necessary	amount	of	time	to	make	sure	that	the	duty	cycle	restrictions	are	fulfilled.

This	means	that	if	you	run	a	piece	of	test	code	like:

for	i	in	range(1,	100):

		#	send	something

		s.send('Hello	'	+	str(i))

There	will	be	a	20	second	delay	after	every	2	packets.

This	class	provides	a	driver	for	the	Sigfox	network	processor	in	the	Sigfox	enabled	Pycom
devices.

Quick	Usage	Example

5.2.2.5	Sigfox

328

from	network	import	Sigfox

import	socket

#	init	Sigfox	for	RCZ1	(Europe)

sigfox	=	Sigfox(mode=Sigfox.SIGFOX,	rcz=Sigfox.RCZ1)

#	create	a	Sigfox	socket

s	=	socket.socket(socket.AF_SIGFOX,	socket.SOCK_RAW)

#	make	the	socket	blocking

s.setblocking(True)

#	configure	it	as	uplink	only

s.setsockopt(socket.SOL_SIGFOX,	socket.SO_RX,	False)

#	send	some	bytes

s.send(bytes([1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12]))

Please	ensure	that	there	is	an	antenna	connected	to	your	device	before
sending/receiving	Sigfox	messages	as	in	proper	use	(e.g.	without	an	antenna),	may
damage	the	device.

Constructors

class	network.Sigfox(id=0,	...)

Create	and	configure	a	Sigfox	object.	See	init	for	params	of	configuration.	Examples:

#	configure	radio	for	the	Sigfox	network,	using	RCZ1	(868	MHz)

sigfox	=	Sigfox(mode=Sigfox.SIGFOX,	rcz=Sigfox.RCZ1)

#	configure	radio	for	FSK,	device	to	device	across	912	MHz

sigfox	=	Sigfox(mode=Sigfox.FSK,	frequency=912000000)

Methods

sigfox.init(mode=Sigfox.SIGFOX,	rcz=Sigfox.RCZ1,	*	,	frequency=None)

Set	the	Sigfox	radio	configuration.

The	arguments	are:

	mode		can	be	either	Sigfox.SIGFOX	or	Sigfox.FSK.	Sigfox.SIGFOX	uses	the	Sigfox
modulation	and	protocol	while	Sigfox.FSK	allows	to	create	point	to	point	communication

5.2.2.5	Sigfox

329

between	2	Devices	using	FSK	modulation.
	rcz		takes	the	following	values:	Sigfox.RCZ1,	Sigfox.RCZ2,	Sigfox.RCZ3,
Sigfox.RCZ4.	The		rcz		argument	is	only	required	if	the	mode	is	Sigfox.SIGFOX.
	frequency		sets	the	frequency	value	in		FSK		mode.	Can	take	values	between	863	and
928	MHz.

The	SiPy	comes	in	2	different	hardware	flavours:	a	+14dBm	Tx	power	version	which	can
only	work	with		RCZ1		and		RCZ3		and	a	+22dBm	version	which	works	exclusively	on
	RCZ2		and		RCZ4	.

sigfox.mac()

Returns	a	byte	object	with	the	8-Byte	MAC	address	of	the	Sigfox	radio.

sigfox.id()

Returns	a	byte	object	with	the	4-Byte	bytes	object	with	the	Sigfox	ID.

sigfox.rssi()

Returns	a	signed	integer	with	indicating	the	signal	strength	value	of	the	last	received	packet.

sigfox.pac()

Returns	a	byte	object	with	the	8-Byte	bytes	object	with	the	Sigfox	PAC.

To	return	human-readable	values	you	should	import		ubinascii		and	convert	binary
values	to	hexidecimal	representation.	For	example:

print(ubinascii.hexlify(sigfox.mac()))

sigfox.frequencies()

Returns	a	tuple	of	the	form:		(uplink_frequency_hz,	downlink_frequency_hz)	

sigfox.public_key([public])

Sets	or	gets	the	public	key	flag.	When	called	passing	a		True		value	the	Sigfox	public	key
will	be	used	to	encrypt	the	packets.	Calling	it	without	arguments	returns	the	state	of	the	flag.

5.2.2.5	Sigfox

330

#	enable	encrypted	packets

sigfox.public_key(True)

#	return	state	of	public_key

sigfox.public_key()

Constants

sigfox.SIGFOX	sigfox.FSK	Sigfox	radio	mode.	SIGFOX	to	specify	usage	of	the	Sigfox	Public
Network.		FSK		to	specify	device	to	device	communication.

sigfox.RCZ1	sigfox.RCZ2	sigfox.RCZ3	sigfox.RCZ4	Sigfox	zones.

	RCZ1		to	specify	Europe,	Oman	&	South	Africa.
	RCZ2		for	the	USA,	Mexico	&	Brazil.	RCZ3	for	Japan.
	RCZ4		for	Australia,	New	Zealand,	Singapore,	Taiwan,	Hong	Kong,	Colombia	&
Argentina.

Working	with	Sigfox	Sockets

Sigfox	sockets	are	created	in	the	following	way:

import	socket

s	=	socket.socket(socket.AF_SIGFOX,	socket.SOCK_RAW)

And	they	must	be	created	after	initialising	the	Sigfox	network	card.

Sigfox	sockets	support	the	following	standard	methods	from	the		socket		module:

socket.close()

Use	it	to	close	an	existing	socket.

socket.send(bytes)

In	Sigfox	mode	the	maximum	data	size	is	12	bytes.	In	FSK	the	maximum	is	64.

#	send	a	Sigfox	payload	of	bytes

s.send(bytes([1,	2,	3]))

#	send	a	Sigfox	payload	containing	a	string

s.send('Hello')

socket.recv(bufsize)

5.2.2.5	Sigfox

331

This	method	can	be	used	to	receive	a	Sigfox	downlink	or	FSK	message.

#	size	of	buffer	should	be	passed	for	expected	payload,	e.g.	64	bytes

s.recv(64)

socket.setsockopt(level,	optname,	value)

Set	the	value	of	the	given	socket	option.	The	needed	symbolic	constants	are	defined	in	the
socket	module	(SO_*		etc.).	In	the	case	of	Sigfox	the	values	are	always	an	integer.
Examples:

#	wait	for	a	downlink	after	sending	the	uplink	packet

s.setsockopt(socket.SOL_SIGFOX,	socket.SO_RX,	True)

#	make	the	socket	uplink	only

s.setsockopt(socket.SOL_SIGFOX,	socket.SO_RX,	False)

#	use	the	socket	to	send	a	Sigfox	Out	Of	Band	message

s.setsockopt(socket.SOL_SIGFOX,	socket.SO_OOB,	True)

#	disable	Out-Of-Band	to	use	the	socket	normally

s.setsockopt(socket.SOL_SIGFOX,	socket.SO_OOB,	False)

#	select	the	bit	value	when	sending	bit	only	packets

s.setsockopt(socket.SOL_SIGFOX,	socket.SO_BIT,	False)

Sending	a	Sigfox	packet	with	a	single	bit	is	achieved	by	sending	an	empty	string,	i.e.:

import	socket

s	=	socket.socket(socket.AF_SIGFOX,	socket.SOCK_RAW)

#	send	a	1	bit

s.setsockopt(socket.SOL_SIGFOX,	socket.SO_BIT,	True)

s.send('')

socket.settimeout(value)

#	set	timeout	for	the	socket,	e.g.	5	seconds

s.settimeout(5.0)

socket.setblocking(flag)

#	specifies	if	socket	should	be	blocking	based	upon	Boolean	flag.

s.setblocking(True)

If	the	socket	is	set	to	blocking,	your	code	will	be	wait	until	the	socket	completes
sending/receiving.

Sigfox	Downlink

5.2.2.5	Sigfox

332

A	Sigfox	capable	Pycom	devices	(SiPy)	can	both	send	and	receive	data	from	the	Sigfox
network.	To	receive	data,	a	message	must	first	be	sent	up	to	Sigfox,	requesting	a	downlink
message.	This	can	be	done	by	passing	a		True		argument	into	the		setsockopt()		method.

s.setsockopt(socket.SOL_SIGFOX,	socket.SO_RX,	True)

An	example	of	the	downlink	procedure	can	be	seen	below:

#	init	Sigfox	for	RCZ1	(Europe)

sigfox	=	Sigfox(mode=Sigfox.SIGFOX,	rcz=Sigfox.RCZ1)

#	create	a	Sigfox	socket

s	=	socket.socket(socket.AF_SIGFOX,	socket.SOCK_RAW)

#	make	the	socket	blocking

s.setblocking(True)

#	configure	it	as	DOWNLINK	specified	by	'True'

s.setsockopt(socket.SOL_SIGFOX,	socket.SO_RX,	True)

#	send	some	bytes	and	request	DOWNLINK

s.send(bytes([1,	2,	3]))

#	await	DOWNLINK	message

s.recv(32)

Sigfox	FSK	(Device	to	Device)

To	communicate	between	two	Sigfox	capable	devices,	it	may	be	used	in	FSK	mode.	Two
devices	are	required	to	be	set	to	the	same	frequency,	both	using	FSK.

Device	1:

sigfox	=	Sigfox(mode=Sigfox.FSK,	frequency=868000000)

s	=	socket.socket(socket.AF_SIGFOX,	socket.SOCK_RAW)

s.setblocking(True)

while	True:

		s.send('Device-1')

		time.sleep(1)

		print(s.recv(64))

Device	2:

5.2.2.5	Sigfox

333

sigfox	=	Sigfox(mode=Sigfox.FSK,	frequency=868000000)

s	=	socket.socket(socket.AF_SIGFOX,	socket.SOCK_RAW)

s.setblocking(True)

while	True:

		s.send('Device-2')

		time.sleep(1)

		print(s.recv(64))

Remember	to	use	the	correct	frequency	for	your	region	(868	MHz	for	Europe,	912	MHz
for	USA,	etc.)

5.2.2.5	Sigfox

334

class	LTE
The	LTE	class	provides	access	to	the	LTE-M/NB-IoT	modem	on	the	GPy	and	FiPy.	LTE-
M/NB-IoT	are	new	categories	of	cellular	protocols	developed	by	the	3GPP	and	optimised	for
long	battery	life	power	and	longer	range.	These	are	new	protocols	currently	in	the	process	of
being	deployed	by	mobile	networks	across	the	world.

The	GPy	and	FiPy	support	both	new	LTE-M	protocols:

Cat-M1:	also	known	as	LTE-M	defines	a	1.4	MHz	radio	channel	size	and	about	375
kbps	of	throughput.	It	is	optimised	for	coverage	and	long	battery	life,	outperforming
2G/GPRS,	while	being	similar	to	previous	LTE	standards.

Cat-NB1	also	known	as	NB-IoT,	defines	a	200	kHz	radio	channel	size	and	around	60
kbps	of	uplink	speed.	It's	optimised	for	ultra	low	throughput	and	specifically	designed	for
IoT	devices	with	a	very	long	battery	life.	NB-IoT	shares	some	features	with	LTE	such	as
operating	in	licensed	spectrum,	but	it's	a	very	different	protocol.	It	should	be	noted	that
NB-IoT	has	many	restrictions	as	does	not	offer	full	IP	connectivity	and	does	not	support
mobility.	When	moving	between	cells,	you	will	need	to	reconnect.

Please	note:	The	GPy	and	FiPy	only	support	the	two	protocols	above	and	are	not
compatible	with	older	LTE	standards.

The	Sequans	modem	used	on	Pycom's	cellular	enabled	modules	can	only	work	in	one
of	these	modes	at	a	time.	In	order	to	switch	between	the	two	protocols	you	need	to	flash
a	different	firmware	to	the	Sequans	modem.	Instructions	for	this	can	be	found	here.

AT	Commands

The	AT	commands	for	the	Sequans	Monarch	modem	on	the	GPy/FiPy	are	available	in	a
PDF	file.

Constructors

class	network.LTE(id=0,	...)

Create	and	configure	a	LTE	object.	See	init	for	params	of	configuration.

5.2.2.6	LTE

335

http://www.3gpp.org

from	network	import	LTE

lte	=	LTE()

Methods

lte.init(*,	carrier=None)

This	method	is	used	to	set	up	the	LTE	subsystem.	After	a		deinit()		this	method	can	take
several	seconds	to	return	waiting	for	the	LTE	modem	to	start-up.	Optionally	specify	a	carrier
name.	The	available	options	are:		verizon,	at&t,	standard	.		standard		is	generic	for	any
carrier,	and	it's	also	the	option	used	when	no	arguments	are	given.

lte.deinit()

Disables	LTE	modem	completely.	This	reduces	the	power	consumption	to	the	minimum.	Call
this	before	entering	deepsleep.

lte.attach(*,	band=None)

Enable	radio	functionality	and	attach	to	the	LTE	Cat	M1	network	authorised	by	the	inserted
SIM	card.	Optionally	specify	the	band	to	scan	for	networks.	If	no	band	(or		None)	is
specified,	all	6	bands	will	be	scanned.	The	possible	values	for	the	band	are:		3,	4,	12,	13,
20	and	28	.

lte.isattached()

Returns		True		if	the	cellular	mode	is	attached	to	the	network.		False		otherwise.

lte.dettach()

Detach	the	modem	from	the	LTE	Cat	M1	and	disable	the	radio	functionality.

lte.connect(*,	cid=1)

Start	a	data	session	and	obtain	and	IP	address.	Optionally	specify	a	CID	(Connection	ID)	for
the	data	session.	The	arguments	are:

-	`cid`	is	a	Connection	ID.	This	is	carrier	specific,	for	Verizon	use	`cid=3`.	For	oth

ers	like	Telstra	it	should	be	`cid=1`.

For	instance,	to	attach	and	connect	to	Verizon:

5.2.2.6	LTE

336

import	time

from	network	import	LTE

lte	=	LTE(carrier="verizon")

lte.attach(band=13)

while	not	lte.isattached():

				time.sleep(0.5)

				print('Attaching...')

lte.connect(cid=3)

while	not	lte.isconnected():

				time.sleep(0.5)

				print('Connecting...')

#	Now	use	sockets	as	usual...

lte.isconnected()

Returns		True		if	there	is	an	active	LTE	data	session	and	IP	address	has	been	obtained.
	False		otherwise.

lte.disconnect()

End	the	data	session	with	the	network.

lte.send_at_cmd(cmd)

Send	an	AT	command	directly	to	the	modem.	Returns	the	raw	response	from	the	modem	as
a	string	object.	IMPORTANT:	If	a	data	session	is	active	(i.e.	the	modem	is	connected),
sending	the	AT	commands	requires	to	pause	and	then	resume	the	data	session.	This	is	all
done	automatically,	but	makes	the	whole	request	take	around	2.5	seconds.

Example:

lte.send_at_cmd('AT+CEREG?')				#	check	for	network	registration	manually	(sames	as	lt

e.isattached())

Optionally	the	response	can	be	parsed	for	pretty	printing:

def	send_at_cmd_pretty(cmd):

				response	=	lte.send_at_cmd(cmd).split('\r\n')

				for	line	in	response:

								print(line)

send_at_cmd_pretty('AT!="showphy"')					#	get	the	PHY	status

send_at_cmd_pretty('AT!="fsm"')									#	get	the	System	FSM

5.2.2.6	LTE

337

lte.imei()

Returns	a	string	object	with	the	IMEI	number	of	the	LTE	modem.

lte.iccid()

Returns	a	string	object	with	the	ICCID	number	of	the	SIM	card.

lte.reset()

Perform	a	hardware	reset	on	the	cellular	modem.	This	function	can	take	up	to	5	seconds	to
return	as	it	waits	for	the	modem	to	shutdown	and	reboot.

5.2.2.6	LTE

338

class	AES	-	Advanced	Encryption
Standard
AES	(Advanced	Encryption	Standard)	is	a	symmetric	block	cipher	standardised	by	NIST.	It
has	a	fixed	data	block	size	of	16	bytes.	Its	keys	can	be	128,	192,	or	256	bits	long.

AES	is	implemented	using	the	ESP32	hardware	module.

Quick	Usage	Example

from	crypto	import	AES

import	crypto

key	=	b'notsuchsecretkey'	#	128	bit	(16	bytes)	key

iv	=	crypto.getrandbits(128)	#	hardware	generated	random	IV	(never	reuse	it)

cipher	=	AES(key,	AES.MODE_CFB,	iv)

msg	=	iv	+	cipher.encrypt(b'Attack	at	dawn')

#	...	after	properly	sent	the	encrypted	message	somewhere	...

cipher	=	AES(key,	AES.MODE_CFB,	msg[:16])	#	on	the	decryption	side

original	=	cipher.decrypt(msg[16:])

print(original)

Constructors

class	ucrypto.AES(key,	mode,	IV,	*	,	counter,	segment_size)

Create	an	AES	object	that	will	let	you	encrypt	and	decrypt	messages.

The	arguments	are:

	key		(byte	string)	is	the	secret	key	to	use.	It	must	be	16	(AES-128),	24	(AES-192),	or
32	(AES-256)	bytes	long.
	mode		is	the	chaining	mode	to	use	for	encryption	and	decryption.	Default	is
AES.MODE_ECB.
	IV		(byte	string)	initialisation	vector.	Should	be	16	bytes	long.	It	is	ignored	in	modes
AES.MODE_ECB	and	AES.MODE_CRT.
	counter		(byte	string)	used	only	for	AES.MODE_CTR.	Should	be	16	bytes	long.	Should
not	be	reused.

5.2.3	AES

339

	segment_size		is	the	number	of	bits		plaintext		and		ciphertext		are	segmented	in.	Is
only	used	in	AES.MODE_CFB.	Supported	values	are	AES.SEGMENT_8	and
AES.SEGMENT_128.

Methods

ucrypto.encrypt()

Encrypt	data	with	the	key	and	the	parameters	set	at	initialisation.

ucrypto.decrypt()

Decrypt	data	with	the	key	and	the	parameters	set	at	initialisation.

Constants

AES.MODE_ECB
Electronic	Code	Book.	Simplest	encryption	mode.	It	does	not	hide	data	patterns	well	(see
this	article	for	more	info).

AES.MODE_CBC
Cipher-Block	Chaining.	An	Initialisation	Vector	(IV)	is	required.

AES.MODE_CFB
Cipher	feedback.		plaintext		and		ciphertext		are	processed	in	segments	of		segment_size	
bits.	Works	a	stream	cipher.

AES.MODE_CTR
Counter	mode.	Each	message	block	is	associated	to	a	counter	which	must	be	unique	across
all	messages	that	get	encrypted	with	the	same	key.

AES.SEGMENT_8	AES.SEGMENT_128
Length	of	the	segment	for	AES.MODE_CFB.

To	avoid	security	issues,	IV	should	always	be	a	random	number	and	should	never	be
reused	to	encrypt	two	different	messages.	The	same	applies	to	the	counter	in	CTR
mode.	You	can	use	crypto.getrandbits()	for	this	purpose.

5.2.3	AES

340

pycom	–	Pycom	Device	Features
The		pycom		module	contains	functions	to	control	specific	features	of	the	Pycom	devices,
such	as	the	heartbeat	RGB	LED.

Quick	Usage	Example

import	pycom

pycom.heartbeat(False)		#	disable	the	heartbeat	LED

pycom.heartbeat(True)			#	enable	the	heartbeat	LED

pycom.heartbeat()							#	get	the	heartbeat	state

pycom.rgbled(0xff00)				#	make	the	LED	light	up	in	green	color

Functions

pycom.heartbeat([enable])

Get	or	set	the	state	(enabled	or	disabled)	of	the	heartbeat	LED.	Accepts	and	returns	boolean
values	(True		or		False).

pycom.heartbeat_on_boot([enable])

Allows	you	permanently	disable	or	enable	the	heartbeat	LED.	Once	this	setting	is	set,	it	will
persist	between	reboots.	Note,	this	only	comes	into	effect	on	the	next	boot,	it	does	not	stop
the	already	running	heartbeat.

pycom.rgbled(color)

Set	the	colour	of	the	RGB	LED.	The	colour	is	specified	as	24	bit	value	representing	red,
green	and	blue,	where	the	red	colour	is	represented	by	the	8	most	significant	bits.	For
instance,	passing	the	value		0x00FF00		will	light	up	the	LED	in	a	very	bright	green.

pycom.nvs_set(key,	value)

Set	the	value	of	the	specified	key	in	the	NVRAM	memory	area	of	the	external	flash.	Data
stored	here	is	preserved	across	resets	and	power	cycles.	Value	can	only	take	32-bit	integers
at	the	moment.	Example:

5.2.4	pycom

341

import	pycom

pycom.nvs_set('temp',	25)

pycom.nvs_set('count',	10)

pycom.nvs_get(key)

Get	the	value	the	specified	key	from	the	NVRAM	memory	area	of	the	external	flash.
Example:

import	pycom

pulses	=	pycom.nvs_get('count')

If	a	non-existing	key	is	given	the	returned	value	will	be		None	.

pycom.nvs_erase(key)

Erase	the	given	key	from	the	NVRAM	memory	area.

pycom.nvs_erase_all()

Erase	the	entire	NVRAM	memory	area.

pycom.wifi_on_boot([enable])

Get	or	set	the	WiFi	on	boot	flag.	When	this	flag	is	set	to		True	,	the	AP	with	the	default	SSID
(lopy-wlan-xxx		for	example)	will	be	enabled	as	part	of	the	boot	process.	If	the	flag	is	set	to
False,	the	module	will	boot	with	WiFi	disabled	until	it's	enabled	by	the	script	via	the		WLAN	
class.	This	setting	is	stored	in	non-volatile	memory	which	preserves	it	across	resets	and
power	cycles.	Example:

import	pycom

pycom.wifi_on_boot(True)			#	enable	WiFi	on	boot

pycom.wifi_on_boot()							#	get	the	wifi	on	boot	flag

pycom.wdt_on_boot([enable])

Enables	the	WDT	at	boot	time	with	the	timeout	in	ms	set	by	the	function
	wdt_on_boot_timeout	.	If	this	flag	is	set,	the	application	needs	to	reconfigure	the	WDT	with	a
new	timeout	and	feed	it	regularly	to	avoid	a	reset.

5.2.4	pycom

342

import	pycom

pycom.wdt_on_boot(True)					#	enable	WDT	on	boot

pycom.wdt_on_boot()									#	get	the	WDT	on	boot	flag

pycom.wdt_on_boot_timeout([timeout])

Sets	or	gets	the	WDT	on	boot	timeout	in	milliseconds.	The	minimum	value	is	5000	ms.

import	pycom

pycom.wdt_on_boot_timeout(10000)					#	set	the	timeout	to	5000ms

pycom.wdt_on_boot_timeout()									#	get	the	WDT	timeout	value

pycom.pulses_get(pin,	timeout)

Return	a	list	of	pulses	at		pin	.	The	methods	scans	for	transitions	at		pin		and	returns	a	list
of	tuples,	each	telling	the	pin	value	and	the	duration	in	microseconds	of	that	value.		pin		is	a
pin	object,	which	must	have	set	to		INP		or		OPEN_DRAIN		mode.	The	scan	stops	if	not
transitions	occurs	within		timeout		milliseconds.

Example:

#	get	the	raw	data	from	a	DHT11/DHT22/AM2302	sensor

from	machine	import	Pin

from	pycom	import	pulses_get

from	time	import	sleep_ms

pin	=	Pin("G7",	mode=Pin.OPEN_DRAIN)

pin(0)

sleep_ms(20)

pin(1)

data	=	pulses_get(pin,	100)

pycom.ota_start()

pycom.ota_write(buffer)

pycom.ota_finish()

Perform	a	firmware	update.	These	methods	are	internally	used	by	a	firmware	update	though
FTP.	The	update	starts	with	a	call	to		ota_start()	,	followed	by	a	series	of	calls	to
	ota_write(buffer)	,	and	is	terminated	with		ota_finish()	.	After	reset,	the	new	image	gets

5.2.4	pycom

343

active.		buffer		shall	hold	the	image	data	to	be	written,	in	arbitrary	sizes.	A	block	size	of
4096	is	recommended.

Example:

#	Firmware	update	by	reading	the	image	from	the	SD	card

#

from	pycom	import	ota_start,	ota_write,	ota_finish

from	os	import	mount

from	machine	import	SD

BLOCKSIZE	=	const(4096)

APPIMG	=	"/sd/appimg.bin"

sd	=	SD()

mount(sd,	'/sd')

with	open(APPIMG,	"rb")	as	f:

				buffer	=	bytearray(BLOCKSIZE)

				mv	=	memoryview(buffer)

				size=0

				ota_start()

				while	True:

								chunk	=	f.readinto(buffer)

								if	chunk	>	0:

												ota_write(mv[:chunk])

												size	+=	chunk

												print("\r%7d	"	%	size,	end="")

								else:

												break

				ota_finish()

Instead	of	reading	the	data	to	be	written	from	a	file,	it	can	obviously	also	be	received	from	a
server	using	any	suitable	protocol,	without	the	need	to	store	it	in	the	devices	file	system.

5.2.4	pycom

344

Micropython	libraries
The	following	list	contains	the	standard	Python	libraries,	MicroPython-specific	libraries	and
Pycom	specific	modules	that	are	available	on	the	Pycom	devices.

The	standard	Python	libraries	have	been	"micro-ified"	to	fit	in	with	the	philosophy	of
MicroPython.	They	provide	the	core	functionality	of	that	module	and	are	intended	to	be	a
drop-in	replacement	for	the	standard	Python	library.

Some	modules	are	available	by	an	u-name,	and	also	by	their	non-u-name.	The	non-u-
name	can	be	overridden	by	a	file	of	that	name	in	your	package	path.	For	example,
	import	json		will	first	search	for	a	file		json.py		or	directory		json		and	load	that
package	if	it's	found.	If	nothing	is	found,	it	will	fallback	to	loading	the	built-in		ujson	
module.

5.3	MicroPython	Modules

345

class	micropython	–	MicroPython	Internals
Controls

Functions

micropython.alloc_emergency_exception_buf(size)

Allocate	size	bytes	of	RAM	for	the	emergency	exception	buffer	(a	good	size	is	around	100
bytes).	The	buffer	is	used	to	create	exceptions	in	cases	when	normal	RAM	allocation	would
fail	(eg	within	an	interrupt	handler)	and	therefore	give	useful	traceback	information	in	these
situations.

A	good	way	to	use	this	function	is	to	place	it	at	the	start	of	a	main	script	(e.g.		boot.py		or
	main.py)	and	then	the	emergency	exception	buffer	will	be	active	for	all	the	code	following	it.

micropython.const(expr)

Used	to	declare	that	the	expression	is	a	constant	so	that	the	compile	can	optimise	it.	The
use	of	this	function	should	be	as	follows:

from	micropython	import	const		

CONST_X	=	const(123)

CONST_Y	=	const(2	*	CONST_X	+	1)

Constants	declared	this	way	are	still	accessible	as	global	variables	from	outside	the	module
they	are	declared	in.	On	the	other	hand,	if	a	constant	begins	with	an	underscore	then	it	is
hidden,	it	is	not	available	as	a	global	variable,	and	does	not	take	up	any	memory	during
execution.

This	const	function	is	recognised	directly	by	the	MicroPython	parser	and	is	provided	as	part
of	the		micropython		module	mainly	so	that	scripts	can	be	written	which	run	under	both
CPython	and	MicroPython,	by	following	the	above	pattern.

micropython.opt_level([level])

If		level		is	given	then	this	function	sets	the	optimisation	level	for	subsequent	compilation	of
scripts,	and	returns		None	.	Otherwise	it	returns	the	current	optimisation	level.

micropython.mem_info([verbose])

5.3.1	micropython

346

Print	information	about	currently	used	memory.	If	the		verbose		argument	is	given	then	extra
information	is	printed.

The	information	that	is	printed	is	implementation	dependent,	but	currently	includes	the
amount	of	stack	and	heap	used.	In	verbose	mode	it	prints	out	the	entire	heap	indicating
which	blocks	are	used	and	which	are	free.

micropython.qstr_info([verbose])

Print	information	about	currently	interned	strings.	If	the		verbose		argument	is	given	then
extra	information	is	printed.

The	information	that	is	printed	is	implementation	dependent,	but	currently	includes	the
number	of	interned	strings	and	the	amount	of	RAM	they	use.	In	verbose	mode	it	prints	out
the	names	of	all	RAM-interned	strings.

micropython.stack_use()

Return	an	integer	representing	the	current	amount	of	stack	that	is	being	used.	The	absolute
value	of	this	is	not	particularly	useful,	rather	it	should	be	used	to	compute	differences	in
stack	usage	at	different	points.

micropython.heap_lock()

micropython.heap_unlock()

Lock	or	unlock	the	heap.	When	locked	no	memory	allocation	can	occur	and	a		MemoryError	
will	be	raised	if	any	heap	allocation	is	attempted.

These	functions	can	be	nested,	i.e.		heap_lock()		can	be	called	multiple	times	in	a	row	and
the	lock-depth	will	increase,	and	then		heap_unlock()		must	be	called	the	same	number	of
times	to	make	the	heap	available	again.

micropython.kbd_intr(chr)

Set	the	character	that	will	raise	a		KeyboardInterrupt		exception.	By	default	this	is	set	to	3
during	script	execution,	corresponding	to		Ctrl-C	.	Passing		-1		to	this	function	will	disable
capture	of		Ctrl-C	,	and	passing		3		will	restore	it.

This	function	can	be	used	to	prevent	the	capturing	of		Ctrl-C		on	the	incoming	stream	of
characters	that	is	usually	used	for	the	REPL,	in	case	that	stream	is	used	for	other	purposes.

5.3.1	micropython

347

uctypes	–	Access	Binary	Data	in	a
Structured	Format
This	module	implements	"foreign	data	interface"	for	MicroPython.	The	idea	behind	it	is
similar	to	CPython’s		ctypes		modules,	but	the	actual	API	is	different,	streamlined	and
optimised	for	small	size.	The	basic	idea	of	the	module	is	to	define	data	structure	layout	with
about	the	same	power	as	the	C	language	allows,	and	the	access	it	using	familiar	dot-syntax
to	reference	sub-fields.

Module	ustruct	Standard	Python	way	to	access	binary	data	structures	(doesn’t	scale
well	to	large	and	complex	structures).

Defining	Structure	Layout

Structure	layout	is	defined	by	a	"descriptor"	-	a	Python	dictionary	which	encodes	field	names
as	keys	and	other	properties	required	to	access	them	as	associated	values.	Currently,
	uctypes		requires	explicit	specification	of	offsets	for	each	field.	Offset	are	given	in	bytes	from
a	structure	start.

Following	are	encoding	examples	for	various	field	types:

Scalar	types:

"field_name":	uctypes.UINT32	|	0

In	other	words,	value	is	scalar	type	identifier	OR-ed	with	field	offset	(in	bytes)	from	the	start
of	the	structure.

Recursive	structures:

"sub":	(2,	{

				"b0":	uctypes.UINT8	|	0,

				"b1":	uctypes.UINT8	|	1,

})

I.e.	value	is	a	2-tuple,	first	element	of	which	is	offset,	and	second	is	a	structure	descriptor
dictionary	(note:	offsets	in	recursive	descriptors	are	relative	to	a	structure	it	defines).

Arrays	of	Primitive	Types:

5.3.2	uctypes

348

"arr":	(uctypes.ARRAY	|	0,	uctypes.UINT8	|	2),

I.e.	value	is	a	2-tuple,	first	element	of	which	is	ARRAY	flag	OR-ed	with	offset,	and	second	is
scalar	element	type	OR-ed	number	of	elements	in	array.

Arrays	of	Aggregate	Types:

"arr2":	(uctypes.ARRAY	|	0,	2,	{"b":	uctypes.UINT8	|	0}),

I.e.	value	is	a	3-tuple,	first	element	of	which	is	ARRAY	flag	OR-ed	with	offset,	second	is	a
number	of	elements	in	array,	and	third	is	descriptor	of	element	type.

Pointer	to	a	primitive	type:

"ptr":	(uctypes.PTR	|	0,	uctypes.UINT8),

I.e.	value	is	a	2-tuple,	first	element	of	which	is	PTR	flag	OR-ed	with	offset,	and	second	is
scalar	element	type.

Pointer	to	an	aggregate	type:

"ptr2":	(uctypes.PTR	|	0,	{"b":	uctypes.UINT8	|	0}),

I.e.	value	is	a	2-tuple,	first	element	of	which	is	PTR	flag	OR-ed	with	offset,	second	is
descriptor	of	type	pointed	to.

Bitfields:

"bitf0":	uctypes.BFUINT16	|	0	|	0	<<	uctypes.BF_POS	|	8	<<	uctypes.BF_LEN,

I.e.	value	is	type	of	scalar	value	containing	given	bitfield	(typenames	are	similar	to	scalar
types,	but	prefixes	with	"BF"),	OR-ed	with	offset	for	scalar	value	containing	the	bitfield,	and
further	OR-ed	with	values	for	bit	offset	and	bit	length	of	the	bitfield	within	scalar	value,
shifted	by	BF_POS	and	BF_LEN	positions,	respectively.	Bitfield	position	is	counted	from	the
least	significant	bit,	and	is	the	number	of	right-most	bit	of	a	field	(in	other	words,	it’s	a
number	of	bits	a	scalar	needs	to	be	shifted	right	to	extra	the	bitfield).

In	the	example	above,	first		UINT16		value	will	be	extracted	at	offset	0	(this	detail	may	be
important	when	accessing	hardware	registers,	where	particular	access	size	and	alignment
are	required),	and	then	bitfield	whose	rightmost	bit	is	least-significant	bit	of	this		UINT16	,	and

5.3.2	uctypes

349

length	is	8	bits,	will	be	extracted	-	effectively,	this	will	access	least-significant	byte	of
	UINT16	.

Note	that	bitfield	operations	are	independent	of	target	byte	endianness,	in	particular,
example	above	will	access	least-significant	byte	of		UINT16		in	both	little-	and	big-endian
structures.	But	it	depends	on	the	least	significant	bit	being	numbered	0.	Some	targets	may
use	different	numbering	in	their	native	ABI,	but		uctypes		always	uses	normalised	numbering
described	above.

Module	Contents

class	uctypes.struct(addr,	descriptor,	layout_type=NATIVE)

Instantiate	a	"foreign	data	structure"	object	based	on	structure	address	in	memory,
descriptor	(encoded	as	a	dictionary),	and	layout	type	(see	below).

uctypes.LITTLE_ENDIAN

Layout	type	for	a	little-endian	packed	structure.	(Packed	means	that	every	field	occupies
exactly	as	many	bytes	as	defined	in	the	descriptor,	i.e.	the	alignment	is	1).

uctypes.BIG_ENDIAN

Layout	type	for	a	big-endian	packed	structure.

uctypes.NATIVE

Layout	type	for	a	native	structure	-	with	data	endianness	and	alignment	conforming	to	the
ABI	of	the	system	on	which	MicroPython	runs.

uctypes.sizeof(struct)

Return	size	of	data	structure	in	bytes.	Argument	can	be	either	structure	class	or	specific
instantiated	structure	object	(or	its	aggregate	field).

uctypes.addressof(obj)

Return	address	of	an	object.	Argument	should	be	bytes,		bytearray		or	other	object
supporting	buffer	protocol	(and	address	of	this	buffer	is	what	actually	returned).

uctypes.bytes_at(addr,	size)

Capture	memory	at	the	given	address	and	size	as	bytes	object.	As	bytes	object	is
immutable,	memory	is	actually	duplicated	and	copied	into	bytes	object,	so	if	memory
contents	change	later,	created	object	retains	original	value.

5.3.2	uctypes

350

uctypes.bytearray_at(addr,	size)

Capture	memory	at	the	given	address	and	size	as		bytearray		object.	Unlike		bytes_at()	
function	above,	memory	is	captured	by	reference,	so	it	can	be	both	written	too,	and	you	will
access	current	value	at	the	given	memory	address.

Structure	Descriptors	and	Instantiating	Structure	Objects

Given	a	structure	descriptor	dictionary	and	its	layout	type,	you	can	instantiate	a	specific
structure	instance	at	a	given	memory	address	using	uctypes.struct()	constructor.	Memory
address	usually	comes	from	following	sources:

Predefined	address,	when	accessing	hardware	registers	on	a	baremetal	system.
Lookup	these	addresses	in	datasheet	for	a	particular	MCU/SoC.
As	a	return	value	from	a	call	to	some	FFI	(Foreign	Function	Interface)	function.
From	uctypes.addressof(),	when	you	want	to	pass	arguments	to	an	FFI	function,	or
alternatively,	to	access	some	data	for	I/O	(for	example,	data	read	from	a	file	or	network
socket).

Structure	objects

Structure	objects	allow	accessing	individual	fields	using	standard	dot	notation:
	my_struct.substruct1.field1	.	If	a	field	is	of	scalar	type,	getting	it	will	produce	a	primitive
value	(Python	integer	or	float)	corresponding	to	the	value	contained	in	a	field.	A	scalar	field
can	also	be	assigned	to.

If	a	field	is	an	array,	its	individual	elements	can	be	accessed	with	the	standard	subscript
operator		[]		-	both	read	and	assigned	to.

If	a	field	is	a	pointer,	it	can	be	dereferenced	using		[0]		syntax	(corresponding	to	C		*	
operator,	though		[0]		works	in	C	too).	Subscripting	a	pointer	with	other	integer	values	but	0
are	supported	too,	with	the	same	semantics	as	in	C.

Summing	up,	accessing	structure	fields	generally	follows	C	syntax,	except	for	pointer
dereference,	when	you	need	to	use		[0]		operator	instead	of		*	.

Limitations

Accessing	non-scalar	fields	leads	to	allocation	of	intermediate	objects	to	represent	them.
This	means	that	special	care	should	be	taken	to	layout	a	structure	which	needs	to	be
accessed	when	memory	allocation	is	disabled	(e.g.	from	an	interrupt).	The
recommendations	are:

5.3.2	uctypes

351

Avoid	nested	structures.	For	example,	instead	of
	mcu_registers.peripheral_a.register1	,	define	separate	layout	descriptors	for	each
peripheral,	to	be	accessed	as		peripheral_a.register1	.
Avoid	other	non-scalar	data,	like	array.	For	example,	instead	of
	peripheral_a.register[0]		use		peripheral_a.register0	.

Note	that	these	recommendations	will	lead	to	decreased	readability	and	conciseness	of
layouts,	so	they	should	be	used	only	if	the	need	to	access	structure	fields	without	allocation
is	anticipated	(it’s	even	possible	to	define	2	parallel	layouts	-	one	for	normal	usage,	and	a
restricted	one	to	use	when	memory	allocation	is	prohibited).

5.3.2	uctypes

352

sys	–	System	Specific	Functions

Functions

sys.exit(retval=0)

Terminate	current	program	with	a	given	exit	code.	Underlyingly,	this	function	raise	as
	SystemExit		exception.	If	an	argument	is	given,	its	value	given	as	an	argument	to
	SystemExit	.

sys.print_exception(exc,	file=sys.stdout)

Print	exception	with	a	traceback	to	a	file-like	object	file	(or		sys.stdout		by	default).

Difference	to	CPython

This	is	simplified	version	of	a	function	which	appears	in	the	traceback	module	in
CPython.	Unlike		traceback.print_exception()	,	this	function	takes	just	exception	value
instead	of	exception	type,	exception	value,	and	traceback	object;	file	argument	should
be	positional;	further	arguments	are	not	supported.	CPython-compatible	traceback
module	can	be	found	in		micropython-lib	.

Constants

sys.argv
A	mutable	list	of	arguments	the	current	program	was	started	with.

sys.byteorder
The	byte	order	of	the	system	("little"	or	"big").

sys.implementation
Object	with	information	about	the	current	Python	implementation.	For	MicroPython,	it	has
following	attributes:

name	-	string	"micropython"
version	-	tuple	(major,	minor,	micro),	e.g.	(1,	7,	0)	This	object	is	the	recommended	way
to	distinguish	MicroPython	from	other	Python	implementations	(note	that	it	still	may	not
exist	in	the	very	minimal	ports).

Difference	to	CPython

5.3.3	sys

353

CPython	mandates	more	attributes	for	this	object,	but	the	actual	useful	bare	minimum	is
implemented	in	MicroPython.

sys.maxsize
Maximum	value	which	a	native	integer	type	can	hold	on	the	current	platform,	or	maximum
value	representable	by	MicroPython	integer	type,	if	it’s	smaller	than	platform	max	value	(that
is	the	case	for	MicroPython	ports	without	long	int	support).

This	attribute	is	useful	for	detecting	"bitness"	of	a	platform	(32-bit	vs	64-bit,	etc.).	It’s
recommended	to	not	compare	this	attribute	to	some	value	directly,	but	instead	count	number
of	bits	in	it:

bits	=	0

v	=	sys.maxsize

while	v:

				bits	+=	1

				v	>>=	1

if	bits	>	32:

				#	64-bit	(or	more)	platform

else:

				#	32-bit	(or	less)	platform

				#	Note	that	on	32-bit	platform,	value	of	bits	may	be	less	than	32

				#	(e.g.	31)	due	to	peculiarities	described	above,	so	use	">	16",

				#	">	32",	">	64"	style	of	comparisons.

sys.modules
Dictionary	of	loaded	modules.	On	some	ports,	it	may	not	include	builtin	modules.

sys.path
A	mutable	list	of	directories	to	search	for	imported	modules.

sys.platform
The	platform	that	MicroPython	is	running	on.	For	OS/RTOS	ports,	this	is	usually	an	identifier
of	the	OS,	e.g.		linux	.	For	baremetal	ports,	it	is	an	identifier	of	a	board,	e.g.		pyboard		for
the	original	MicroPython	reference	board.	It	thus	can	be	used	to	distinguish	one	board	from
another.	If	you	need	to	check	whether	your	program	runs	on	MicroPython	(vs	other	Python
implementation),	use		sys.implementation		instead.

sys.stderr
Standard	error	stream.

sys.stdin
Standard	input	stream.

5.3.3	sys

354

sys.stdout
Standard	output	stream.

sys.version
Python	language	version	that	this	implementation	conforms	to,	as	a	string.

sys.version_info
Python	language	version	that	this	implementation	conforms	to,	as	a	tuple	of	ints.

5.3.3	sys

355

uos	–	Basic	"Operating	System"	Services
The		uos		module	contains	functions	for	filesystem	access	and		urandom		function.

Port	Specifics

The	filesystem	has		/		as	the	root	directory	and	the	available	physical	drives	are	accessible
from	here.	They	are	currently:

	/flash		–	the	internal	flash	filesystem

	/sd		–	the	SD	card	(if	it	exists)

Functions

uos.uname()

Return	information	about	the	system,	firmware	release	version,	and	MicroPython	interpreter
version.

uos.chdir(path)

Change	current	directory.

uos.getcwd()

Get	the	current	directory.

uos.listdir([dir])

With	no	argument,	list	the	current	directory.	Otherwise	list	the	given	directory.

uos.mkdir(path)

Create	a	new	directory.

uos.remove(path)

Remove	a	file.

uos.rmdir(path)

Remove	a	directory.

5.3.4	uos

356

uos.rename(old_path,	new_path)

Rename	a	file.

uos.stat(path)

Get	the	status	of	a	file	or	directory.

The	return	value	is	a	tuple	with	the	following	10	values,	in	order:

	st_mode	:	protection	bits.
	st_ino	:		inode		number.	(not	implemented,	returns	0)
	st_dev	:	device.	(not	implemented,	returns	0)
	st_nlink	:	number	of	hard	links.	(not	implemented,	returns	0)
	st_uid	:	user	id	of	owner.	(not	implemented,	returns	0)
	st_gid	:	group	id	of	owner.	(not	implemented,	returns	0)
	st_size	:	size	of	file	in	bytes.
	st_atime	:	time	of	most	recent	access.
	st_mtime	:	time	of	most	recent	content	modification.
	st_ctime	:	time	of	most	recent	metadata	change.

uos.getfree(path)

Returns	the	free	space	(in	KiB)	in	the	drive	specified	by	path.

uos.sync()

Sync	all	filesystems.

uos.urandom(n)

Return	a	bytes	object	with	n	random	bytes.

uos.unlink(path)

Alias	for	the		remove()		method.

uos.mount(block_device,	mount_point,	*	,	readonly=False)

Mounts	a	block	device	(like	an	SD	object)	in	the	specified	mount	point.	Example:

os.mount(sd,	'/sd')

uos.unmount(path)

Unmounts	a	previously	mounted	block	device	from	the	given	path.

5.3.4	uos

357

uos.mkfs(block_device	or	path)

Formats	the	specified	path,	must	be	either		/flash		or		/sd	.	A	block	device	can	also	be
passed	like	an	SD	object	before	being	mounted.

uos.dupterm(stream_object)

Duplicate	the	terminal	(the	REPL)	on	the	passed	stream-like	object.	The	given	object	must
at	least	implement	the		read()		and		write()		methods.

Constants

uos.sep
Separation	character	used	in	paths

5.3.4	uos

358

array	–	Arrays	of	Numeric	Data
See	Python	array	for	more	information.

Supported	format	codes:		b,	B,	h,	H,	i,	I,	l,	L,	q,	Q,	f,	d		(the	latter	2	depending	on	the
floating-point	support).

Classes

class	array.array(typecode[,	iterable])

Create	array	with	elements	of	given	type.	Initial	contents	of	the	array	are	given	by	an
iterable.	If	it	is	not	provided,	an	empty	array	is	created.

array.append(val)

Append	new	element	to	the	end	of	array,	growing	it.

array.extend(iterable)

Append	new	elements	as	contained	in	an	iterable	to	the	end	of	array,	growing	it.

5.3.5	array

359

cmath	–	Mathematical	Functions	for
Complex	Numbers
The		cmath		module	provides	some	basic	mathematical	functions	for	working	with	complex
numbers.	Floating	point	support	required	for	this	module.

Functions

cmath.cos(z)

Return	the	cosine	of		z	.

cmath.exp(z)

Return	the	exponential	of		z	.

cmath.log(z)

Return	the	natural	logarithm	of		z	.	The	branch	cut	is	along	the	negative	real	axis.

cmath.log10(z)

Return	the	base-10	logarithm	of		z	.	The	branch	cut	is	along	the	negative	real	axis.

cmath.phase(z)

Returns	the	phase	of	the	number		z	,	in	the	range	(-pi,	+pi).

cmath.polar(z)

Returns,	as	a	tuple,	the	polar	form	of		z	.

cmath.rect(r,	phi)

Returns	the	complex	number	with	modulus		r		and	phase		phi	.

cmath.sin(z)

Return	the	sine	of		z	.

cmath.sqrt(z)

Return	the	square-root	of		z	.

5.3.6	cmath

360

Constants

cmath.e
Base	of	the	natural	logarithm

cmath.pi
The	ratio	of	a	circle’s	circumference	to	its	diameter

5.3.6	cmath

361

math	–	Mathematical	Functions
The	math	module	provides	some	basic	mathematical	functions	for	working	with	floating-point
numbers.	Floating	point	support	required	for	this	module.

Functions

math.acos(x)

Return	the	inverse	cosine	of		x	.

math.acosh(x)

Return	the	inverse	hyperbolic	cosine	of		x	.

math.asin(x)

Return	the	inverse	sine	of		x	.

math.asinh(x)

Return	the	inverse	hyperbolic	sine	of		x	.

math.atan(x)

Return	the	inverse	tangent	of		x	.

math.atan2(y,	x)

Return	the	principal	value	of	the	inverse	tangent	of		y/x	.

math.atanh(x)

Return	the	inverse	hyperbolic	tangent	of		x	.

math.ceil(x)

Return	an	integer,	being	x	rounded	towards	positive	infinity.

math.copysign(x,	y)

Return	x	with	the	sign	of		y	.

math.cos(x)

5.3.7	math

362

Return	the	cosine	of		x	.

math.cosh(x)

Return	the	hyperbolic	cosine	of		x	.

math.degrees(x)

Return	radians		x		converted	to	degrees.

math.erf(x)

Return	the	error	function	of		x	.

math.erfc(x)

Return	the	complementary	error	function	of		x	.

math.exp(x)

Return	the	exponential	of		x	.

math.expm1(x)

Return		exp(x)	-	1	.

math.fabs(x)

Return	the	absolute	value	of		x	.

math.floor(x)

Return	an	integer,	being		x		rounded	towards	negative	infinity.

math.fmod(x,	y)

Return	the	remainder	of		x/y	.

math.frexp(x)

Decomposes	a	floating-point	number	into	its	mantissa	and	exponent.	The	returned	value	is
the	tuple		(m,	e)		such	that		x	==	m	*	2**e		exactly.	If		x	==	0		then	the	function	returns
	(0.0,	0)	,	otherwise	the	relation		0.5	<=	abs(m)	<	1		holds.

math.gamma(x)

Return	the	gamma	function	of		x	.

5.3.7	math

363

math.isfinite(x)

Return		True		if		x		is	finite.

math.isinf(x)

Return		True		if		x		is	infinite.

math.isnan(x)

Return		True		if		x		is	not-a-number

math.ldexp(x,	exp)

Return		x	*	(2**exp)	.

math.lgamma(x)

Return	the	natural	logarithm	of	the	gamma	function	of		x	.

math.log(x)

Return	the	natural	logarithm	of		x	.

math.log10(x)

Return	the	base-10	logarithm	of		x	.

math.log2(x)

Return	the	base-2	logarithm	of		x	.

math.modf(x)

Return	a	tuple	of	two	floats,	being	the	fractional	and	integral	parts	of		x	.	Both	return	values
have	the	same	sign	as		x	.

math.pow(x,	y)

Returns		x		to	the	power	of		y	.

math.radians(x)

Return	degrees		x		converted	to	radians.

math.sin(x)

Return	the	sine	of		x	.

5.3.7	math

364

math.sinh(x)

Return	the	hyperbolic	sine	of		x	.

math.sqrt(x)

Return	the	square	root	of		x	.

math.tan(x)

Return	the	tangent	of		x	.

math.tanh(x)

Return	the	hyperbolic	tangent	of		x	.

math.trunc(x)

Return	an	integer,	being		x		rounded	towards		0	.

Constants

math.e
Base	of	the	natural	logarithm

math.pi
The	ratio	of	a	circle’s	circumference	to	its	diameter

5.3.7	math

365

gc	–	Garbage	Collector

Functions

gc.enable()

Enable	automatic	garbage	collection.

gc.disable()

Disable	automatic	garbage	collection.	Heap	memory	can	still	be	allocated,	and	garbage
collection	can	still	be	initiated	manually	using	gc.collect().

gc.collect()

Run	a	garbage	collection.

gc.mem_alloc()

Return	the	number	of	bytes	of	heap	RAM	that	are	allocated.

gc.mem_free()

Return	the	number	of	bytes	of	available	heap	RAM.

5.3.8	gc

366

ubinascii	–	Binary/ASCII	Conversions
This	module	implements	conversions	between	binary	data	and	various	encodings	of	it	in
ASCII	form	(in	both	directions).

Functions

ubinascii.hexlify(data[,	sep])

Convert	binary	data	to	hexadecimal	representation.	Returns	bytes	string.

Difference	to	CPython

If	additional	argument,		sep		is	supplied,	it	is	used	as	a	separator	between	hexadecimal
values.

ubinascii.unhexlify(data)

Convert	hexadecimal	data	to	binary	representation.	Returns	bytes	string.	(i.e.	inverse	of
	hexlify)

ubinascii.a2b_base64(data)

Convert	Base64-encoded	data	to	binary	representation.	Returns	bytes	string.

ubinascii.b2a_base64(data)

Encode	binary	data	in	Base64	format.	Returns	string.

5.3.9	ubinascii

367

ujson	–	JSON	Encoding	and	Decoding
This	modules	allows	to	convert	between	Python	objects	and	the	JSON	data	format.

Functions

ujson.dumps(obj)

Return		obj		represented	as	a	JSON	string.

ujson.loads(str)

Parse	the	JSON		str		and	return	an	object.	Raises		ValueError		if	the	string	is	not	correctly
formed.

ujson.load(fp)

Parse	contents	of		fp		(a		.read()	-supporting	file-like	object	containing	a	JSON	document).
Raises		ValueError		if	the	content	is	not	correctly	formed.

5.3.10	ujson

368

ure	–	regular	expressions
This	module	implements	regular	expression	operations.	Regular	expression	syntax
supported	is	a	subset	of	CPython	re	module	(and	actually	is	a	subset	of	POSIX	extended
regular	expressions).

Supported	operators	are:

	.		Match	any	character.		[]		Match	set	of	characters.	Individual	characters	and	ranges	are
supported.

^

$

?

*

+

??

*?

+?

Counted	repetitions		({m,n})	,	more	advanced	assertions,	named	groups,	etc.	are	not
supported.

Functions

ure.compile(regex)

Compile	regular	expression,	return		regex	object	.

ure.match(regex,	string)

Match	regex	against		string	.	Match	always	happens	from	starting	position	in	a	string.

ure.search(regex,	string)

Search	regex	in	a	string.	Unlike	match,	this	will	search	string	for	first	position	which	matches
regex	(which	still	may	be	0	if	regex	is	anchored).

ure.DEBUG

Flag	value,	display	debug	information	about	compiled	expression.

Regex	objects

5.3.11	ure

369

Compiled	regular	expression.	Instances	of	this	class	are	created	using		ure.compile()	.

regex.match(string)

regex.search(string)

regex.split(string,	max_split=-1)

Match	objects

Match	objects	as	returned	by		match()		and		search()		methods.

match.group([index])

Only	numeric	groups	are	supported.

5.3.11	ure

370

usocket	–	Socket	Module
This	module	provides	access	to	the	BSD	socket	interface.

See	corresponding	CPython	module	for	comparison.

Socket	Address	Format(s)

Functions	below	which	expect	a	network	address,	accept	it	in	the	format	of		(ipv4_address,
port)	,	where		ipv4_address		is	a	string	with	dot-notation	numeric	IPv4	address,	e.g.
	8.8.8.8	,	and	port	is	integer	port	number	in	the	range	1-65535.	Note	the	domain	names	are
not	accepted	as		ipv4_address	,	they	should	be	resolved	first	using		socket.getaddrinfo()	.

Functions

socket.socket(socket.AF_INET,	socket.SOCK_STREAM,	socket.IPPROTO_TCP)

Create	a	new	socket	using	the	given	address	family,	socket	type	and	protocol	number.

socket.getaddrinfo(host,	port)

Translate	the	host/port	argument	into	a	sequence	of	5-tuples	that	contain	all	the	necessary
arguments	for	creating	a	socket	connected	to	that	service.	The	list	of	5-tuples	has	following
structure:

	(family,	type,	proto,	canonname,	sockaddr)		The	following	example	shows	how	to	connect
to	a	given	url:

s	=	socket.socket()

s.connect(socket.getaddrinfo('www.micropython.org',	80)[0][-1])

Exceptions

socket.error	socket.timeout

Constants

socket.AF_INET	socket.AF_LORA

Family	types

5.3.12	usocket

371

socket.SOCK_STREAM	socket.SOCK_DGRAM	socket.SOCK_RAW

Socket	types

socket.IPPROTO_UDP	socket.IPPROTO_TCP

Socket	protocols

socket.SOL_SOCKET	socket.SOL_LORA	socket.SOL_SIGFOX

Socket	options	layers

socket.SO_REUSEADDR

IP	socket	options

socket.SO_CONFIRMED	socket.SO_DR

LoRa	socket	options

socket.SO_RX	socket.SO_TX_REPEAT	socket.SO_OOB	socket.SO_BIT

Sigfox	socket	options

class	Socket

Methods

socket.close()

Mark	the	socket	closed.	Once	that	happens,	all	future	operations	on	the	socket	object	will
fail.	The	remote	end	will	receive	no	more	data	(after	queued	data	is	flushed).

Sockets	are	automatically	closed	when	they	are	garbage-collected,	but	it	is	recommended	to
	close()		them	explicitly,	or	to	use	a	with	statement	around	them.

socket.bind(address)

Bind	the		socket		to		address	.	The	socket	must	not	already	be	bound.	The		address	
parameter	must	be	a	tuple	containing	the	IP	address	and	the	port.

In	the	case	of	LoRa	sockets,	the	address	parameter	is	simply	an	integer	with	the	port
number,	for	instance:		s.bind(1)	

5.3.12	usocket

372

socket.listen([backlog])

Enable	a	server	to	accept	connections.	If	backlog	is	specified,	it	must	be	at	least	0	(if	it’s
lower,	it	will	be	set	to	0);	and	specifies	the	number	of	unaccepted	connections	that	the
system	will	allow	before	refusing	new	connections.	If	not	specified,	a	default	reasonable
value	is	chosen.

socket.accept()

Accept	a	connection.	The	socket	must	be	bound	to	an	address	and	listening	for	connections.
The	return	value	is	a	pair		(conn,	address)		where		conn		is	a	new	socket	object	usable	to
send	and	receive	data	on	the	connection,	and		address		is	the	address	bound	to	the	socket
on	the	other	end	of	the	connection.

socket.connect(address)

Connect	to	a	remote	socket	at		address	.

socket.send(bytes)

Send	data	to	the	socket.	The	socket	must	be	connected	to	a	remote	socket.

socket.sendall(bytes)

Alias	of		socket.send(bytes)	.

socket.recv(bufsize)

Receive	data	from	the	socket.	The	return	value	is	a	bytes	object	representing	the	data
received.	The	maximum	amount	of	data	to	be	received	at	once	is	specified	by		bufsize	.

socket.sendto(bytes,	address)

Send	data	to	the	socket.	The	socket	should	not	be	connected	to	a	remote	socket,	since	the
destination	socket	is	specified	by	address.

socket.recvfrom(bufsize)

Receive	data	from	the	socket.	The	return	value	is	a	pair		(bytes,	address)		where		bytes		is
a	bytes	object	representing	the	data	received	and		address		is	the	address	of	the	socket
sending	the	data.

socket.setsockopt(level,	optname,	value)

5.3.12	usocket

373

Set	the	value	of	the	given	socket	option.	The	needed	symbolic	constants	are	defined	in	the
socket	module	(SO_*		etc.).	The	value	can	be	an	integer	or	a	bytes-like	object	representing
a	buffer.

socket.settimeout(value)

Set	a	timeout	on	blocking	socket	operations.	The	value	argument	can	be	a	nonnegative
floating	point	number	expressing	seconds,	or		None	.	If	a	non-zero	value	is	given,
subsequent	socket	operations	will	raise	a	timeout	exception	if	the	timeout	period	value	has
elapsed	before	the	operation	has	completed.	If	zero	is	given,	the	socket	is	put	in	non-
blocking	mode.	If	None	is	given,	the	socket	is	put	in	blocking	mode.

socket.setblocking(flag)

Set	blocking	or	non-blocking	mode	of	the	socket:	if	flag	is	false,	the	socket	is	set	to	non-
blocking,	else	to	blocking	mode.

This	method	is	a	shorthand	for	certain		settimeout()		calls:

sock.setblocking(True)	is	equivalent	to	sock.settimeout(None)

sock.setblocking(False)	is	equivalent	to	sock.settimeout(0.0)

socket.makefile(mode='rb')

Return	a	file	object	associated	with	the	socket.	The	exact	returned	type	depends	on	the
arguments	given	to	makefile().	The	support	is	limited	to	binary	modes	only	(rb		and		wb).
CPython’s	arguments:		encoding	,		errors	,	and		newline		are	not	supported.

The	socket	must	be	in	blocking	mode;	it	can	have	a	timeout,	but	the	file	object’s	internal
buffer	may	end	up	in	a	inconsistent	state	if	a	timeout	occurs.

Difference	to	CPython

Closing	the	file	object	returned	by		makefile()		WILL	close	the	original	socket	as	well.

socket.read(size)

Read	up	to	size	bytes	from	the	socket.	Return	a	bytes	object.	If		size		is	not	given,	it
behaves	just	like	socket.readall(),	see	below.

socket.readall()

Read	all	data	available	from	the	socket	until	EOF.	This	function	will	not	return	until	the	socket
is	closed.

5.3.12	usocket

374

socket.readinto(buf[,	nbytes])

Read	bytes	into	the		buf	.	If		nbytes		is	specified	then	read	at	most	that	many	bytes.
Otherwise,	read	at	most		len(buf)		bytes.

Return	value:	number	of	bytes	read	and	stored	into		buf	.

socket.readline()

Read	a	line,	ending	in	a	newline	character.

Return	value:	the	line	read.

socket.write(buf)

Write	the	buffer	of	bytes	to	the	socket.

Return	value:	number	of	bytes	written.

5.3.12	usocket

375

select	–	Wait	for	Events	on	a	Set	of
Streams
This	module	provides	functions	to	wait	for	events	on	streams	(select	streams	which	are
ready	for	operations).

Pyboard	specifics

Polling	is	an	efficient	way	of	waiting	for	read/write	activity	on	multiple	objects.	Current
objects	that	support	polling	are:	pyb.UART,	pyb.USB_VCP.

Functions

select.poll()

Create	an	instance	of	the		Poll		class.

select.select(rlist,	wlist,	xlist[,	timeout])

Wait	for	activity	on	a	set	of	objects.

This	function	is	provided	for	compatibility	and	is	not	efficient.	Usage	of		Poll		is
recommended	instead.

class	Poll

Methods

poll.register(obj[,	eventmask])

Register		obj		for	polling.		eventmask		is	logical	OR	of:

	select.POLLIN		-	data	available	for	reading
	select.POLLOUT		-	more	data	can	be	written
	select.POLLERR		-	error	occurred
	select.POLLHUP		-	end	of	stream/connection	termination	detected		eventmask		defaults	to
	select.POLLIN	|	select.POLLOUT	.

poll.unregister(obj)

Unregister		obj		from	polling.

5.3.13	select

376

poll.modify(obj,	eventmask)

Modify	the		eventmask		for		obj	.

poll.poll([timeout])

Wait	for	at	least	one	of	the	registered	objects	to	become	ready.	Returns	list	of	(obj	,		event	,
...)	tuples,		event		element	specifies	which	events	happened	with	a	stream	and	is	a
combination	of		select.POLL*		constants	described	above.	There	may	be	other	elements	in
tuple,	depending	on	a	platform	and	version,	so	don’t	assume	that	its	size	is	2.	In	case	of
timeout,	an	empty	list	is	returned.

Timeout	is	in	milliseconds.

5.3.13	select

377

utime	–	Time	Functions
The		utime		module	provides	functions	for	getting	the	current	time	and	date,	measuring	time
intervals,	and	for	delays.

Time	Epoch:	Pycom’s	ESP32	port	uses	standard	for	POSIX	systems	epoch	of		1970-01-01
00:00:00	UTC	.

Maintaining	actual	calendar	date/time

This	requires	a	Real	Time	Clock	(RTC).	On	systems	with	underlying	OS	(including	some
RTOS),	an	RTC	may	be	implicit.	Setting	and	maintaining	actual	calendar	time	is
responsibility	of	OS/RTOS	and	is	done	outside	of	MicroPython,	it	just	uses	OS	API	to	query
date/time.	On	baremetal	ports	however	system	time	depends	on		machine.RTC()		object.	The
current	calendar	time	may	be	set	using		machine.RTC().datetime(tuple)		function,	and
maintained	by	following	means:

By	a	backup	battery	(which	may	be	an	additional,	optional	component	for	a	particular
board).
Using	networked	time	protocol	(requires	setup	by	a	port/user).
Set	manually	by	a	user	on	each	power-up	(many	boards	then	maintain	RTC	time	across
hard	resets,	though	some	may	require	setting	it	again	in	such	case).

If	actual	calendar	time	is	not	maintained	with	a	system/MicroPython	RTC,	functions	below
which	require	reference	to	current	absolute	time	may	behave	not	as	expected.

Functions

utime.gmtime([secs])

Convert	a	time	expressed	in	seconds	since	the	Epoch	(see	above)	into	an	8-tuple	which
contains:		(year,	month,	mday,	hour,	minute,	second,	weekday,	yearday)		If		secs		is	not
provided	or		None	,	then	the	current	time	from	the	RTC	is	used.

	year		includes	the	century	(for	example	2014).
	month		is	1-12
	mday		is	1-31
	hour		is	0-23
	minute		is	0-59
	second		is	0-59
	weekday		is	0-6	for	Mon-Sun

5.3.14	utime

378

	yearday		is	1-366

utime.localtime([secs])

Like		gmtime()		but	converts	to	local	time.	If		secs		is	not	provided	or		None	,	the	current	time
from	the	RTC	is	used.

utime.mktime()

This	is	inverse	function	of		localtime	.	It’s	argument	is	a	full	8-tuple	which	expresses	a	time
as	per		localtime	.	It	returns	an	integer	which	is	the	number	of	seconds	since		Jan	1,	2000	.

utime.sleep(seconds)

Sleep	for	the	given	number	of		seconds	.		seconds		can	be	a	floating-point	number	to	sleep
for	a	fractional	number	of	seconds.	Note	that	other	MicroPython	ports	may	not	accept
floating-point	argument,	for	compatibility	with	them	use		sleep_ms()		and		sleep_us()	
functions.

utime.sleep_ms(ms)

Delay	for	given	number	of	milliseconds,	should	be	positive	or	0.

utime.sleep_us(us)

Delay	for	given	number	of	microseconds,	should	be	positive	or	0

utime.ticks_ms()

Returns	uptime,	in	milliseconds.

utime.ticks_us()

Just	like		ticks_ms		above,	but	in	microseconds.

utime.ticks_cpu()

Same	as		ticks_us	,	but	faster.

utime.ticks_diff(old,	new)

Measure	period	between	consecutive	calls	to		ticks_ms()	,		ticks_us()	,	or		ticks_cpu()	.
The	value	returned	by	these	functions	may	wrap	around	at	any	time,	so	directly	subtracting
them	is	not	supported.		ticks_diff()		should	be	used	instead.	"old"	value	should	actually
precede	"new"	value	in	time,	or	result	is	undefined.	This	function	should	not	be	used	to

5.3.14	utime

379

measure	arbitrarily	long	periods	of	time	(because		ticks_*()		functions	wrap	around	and
usually	would	have	short	period).	The	expected	usage	pattern	is	implementing	event	polling
with	timeout:

#	Wait	for	GPIO	pin	to	be	asserted,	but	at	most	500us

start	=	time.ticks_us()

while	pin.value()	==	0:

				if	time.ticks_diff(start,	time.ticks_us())	>	500:

								raise	TimeoutError

utime.time()

Returns	the	number	of	seconds,	as	an	integer,	since	the	Epoch,	assuming	that	underlying
RTC	is	set.	If	an	RTC	is	not	set,	this	function	returns	number	of	seconds	since	power	up	or
reset).	If	you	want	to	develop	portable	MicroPython	application,	you	should	not	rely	on	this
function	to	provide	higher	than	second	precision.	If	you	need	higher	precision,	use
	ticks_ms()		and		ticks_us()		functions,	if	you	need	calendar	time,		localtime()		without	an
argument	is	a	better	choice.

utime.timezone([secs])

Set	or	get	the	timezone	offset,	in	seconds.	If		secs		is	not	provided,	it	returns	the	current
value.

In	MicroPython,		time.timezone		works	the	opposite	way	to	Python.	In	Python,	to	get	the
local	time,	you	write		local_time	=	utc	-	timezone	,	while	in	MicroPython	it	is		local_time
=	utc	+	timezone	.

5.3.14	utime

380

https://docs.python.org/3/library/time.html#time.timezone

uhashlib	–	Hashing	Algorithm
This	module	implements	binary	data	hashing	algorithms.	MD5	and	SHA	are	supported.	By
limitations	in	the	hardware,	only	one	active	hashing	operation	is	supported	at	a	time.

Constructors

class	uhashlib.md5([data])

Create	a	MD5	hasher	object	and	optionally	feed	data	into	it.

class	uhashlib.sha1([data])

Create	a	SHA-1	hasher	object	and	optionally	feed	data	into	it.

class	uhashlib.sha224([data])

Create	a	SHA-224	hasher	object	and	optionally	feed	data	into	it.

class	uhashlib.sha256([data])

Create	a	SHA-256	hasher	object	and	optionally	feed	data	into	it.

class	uhashlib.sha384([data])

Create	a	SHA-384	hasher	object	and	optionally	feed	data	into	it.

class	uhashlib.sha512([data])

Create	a	SHA-512	hasher	object	and	optionally	feed	data	into	it.

Methods

hash.update(data)

Feed	more	binary	data	into	hash.

hash.digest()

Return	hash	for	all	data	passed	through	hash,	as	a	bytes	object.	After	this	method	is	called,
more	data	cannot	be	fed	into	hash	any	longer.

hash.hexdigest()

5.3.15	uhashlib

381

This	method	is	NOT	implemented.	Use		ubinascii.hexlify(hash.digest())		to	achieve	a
similar	effect.

5.3.15	uhashlib

382

ussl	–	ssl	module
This	module	provides	access	to	Transport	Layer	Security	(often	known	as	"Secure	Sockets
Layer")	encryption	and	peer	authentication	facilities	for	network	sockets,	both	client-side	and
server-side.

Functions

ssl.wrap_socket(sock,	keyfile=None,	certfile=None,	server_side=False,
cert_reqs=CERT_NONE,	ca_certs=None)

Takes	an	instance		sock		of		socket.socket	,	and	returns	an	instance	of	ssl.SSLSocket,	a
subtype	of		socket.socket	,	which	wraps	the	underlying	socket	in	an	SSL	context.	Example:

import	socket

import	ssl

s	=	socket.socket()

ss	=	ssl.wrap_socket(s)

ss.connect(socket.getaddrinfo('www.google.com',	443)[0][-1])

Certificates	must	be	used	in	order	to	validate	the	other	side	of	the	connection,	and	also	to
authenticate	ourselves	with	the	other	end.	Such	certificates	must	be	stored	as	files	using	the
FTP	server,	and	they	must	be	placed	in	specific	paths	with	specific	names.

For	instance,	to	connect	to	the	Blynk	servers	using	certificates,	take	the	file		ca.pem		located
in	the		blynk		examples	folder	and	put	it	in		/flash/cert/	.	Then	do:

import	socket

import	ssl

s	=	socket.socket()

ss	=	ssl.wrap_socket(s,	cert_reqs=ssl.CERT_REQUIRED,	ca_certs='/flash/cert/ca.pem')

ss.connect(socket.getaddrinfo('cloud.blynk.cc',	8441)[0][-1])

SSL	sockets	inherit	all	methods	and	from	the	standard	sockets,	see	the		usocket		module.

Exceptions

ssl.SSLError

Constants

5.3.16	ussl

383

ssl.CERT_NONE	ssl.CERT_OPTIONAL	ssl.CERT_REQUIRED
Supported	values	in		cert_reqs	

5.3.16	ussl

384

ucrypto	—	Cryptography
This	module	provides	native	support	for	cryptographic	algorithms.	It’s	loosely	based	on
PyCrypto.

Classes

class	AES	-	Advanced	Encryption	Standard

Methods

crypto.getrandbits(bits)

Returns	a	bytes	object	filled	with	random	bits	obtained	from	the	hardware	random	number
generator.

According	to	the	ESP32	Technical	Reference	Manual,	such	bits	"...	can	be	used	as	the
basis	for	cryptographical	operations".	"These	true	random	numbers	are	generated	based	on
the	noise	in	the	Wi-Fi/BT	RF	system.	When	Wi-Fi	and	BT	are	disabled,	the	random	number
generator	will	give	out	pseudo-random	numbers."

The	parameter		bits		is	rounded	upwards	to	the	nearest	multiple	of	32	bits.

Cryptography	is	not	a	trivial	business.	Doing	things	the	wrong	way	could	quickly	result	in
decreased	or	no	security.	Please	document	yourself	in	the	subject	if	you	are	depending
on	encryption	to	secure	important	information.

5.3.17	ucrypto

385

ustruct	–	Pack	and	Unpack	Primitive	Data
Types
See	Python	struct	for	more	information.

Supported	size/byte	order	prefixes:		@,	<,	>,	!	.

Supported	format	codes:		b,	B,	h,	H,	i,	I,	l,	L,	q,	Q,	s,	P,	f,	d		(the	latter	2	depending
on	the	floating-point	support).

Functions

ustruct.calcsize(fmt)

Return	the	number	of	bytes	needed	to	store	the	given		fmt	.

ustruct.pack(fmt,	v1,	v2,	...)

Pack	the	values		v1,	v2,	...		according	to	the	format	string		fmt	.	The	return	value	is	a
bytes	object	encoding	the	values.

ustruct.pack_into(fmt,	buffer,	offset,	v1,	v2,	...)

Pack	the	values		v1,	v2,	...		according	to	the	format	string		fmt		into	a	buffer	starting	at
	offset	.		offset		may	be	negative	to	count	from	the	end	of	buffer.

ustruct.unpack(fmt,	data)

Unpack	from	the		data		according	to	the	format	string		fmt	.	The	return	value	is	a	tuple	of	the
unpacked	values.

ustruct.unpack_from(fmt,	data,	offset=0)

Unpack	from	the		data		starting	at		offset		according	to	the	format	string		fmt	.		offset		may
be	negative	to	count	from	the	end	of	buffer.	The	return	value	is	a	tuple	of	the	unpacked
values.

5.3.18	ustruct

386

https://docs.python.org/3/library/struct.html

thread	-	Low-level	Threading	API
This	module	provides	low-level	primitives	for	working	with	multiple	threads	(also	called	light-
weight	processes	or	tasks)	—	multiple	threads	of	control	sharing	their	global	data	space.	For
synchronisation,	simple	locks	(also	called	mutexes	or	binary	semaphores)	are	provided.

When	a	thread	specific	error	occurs	a		RuntimeError		exception	is	raised.

Quick	Usage	Example

import	_thread

import	time

def	th_func(delay,	id):

				while	True:

								time.sleep(delay)

								print('Running	thread	%d'	%	id)

for	i	in	range(2):

				_thread.start_new_thread(th_func,	(i	+	1,	i))

Functions

_thread.start_new_thread(function,	args[,	kwargs])

Start	a	new	thread	and	return	its	identifier.	The	thread	executes	the	function	with	the
argument	list	args	(which	must	be	a	tuple).	The	optional		kwargs		argument	specifies	a
dictionary	of	keyword	arguments.	When	the	function	returns,	the	thread	silently	exits.	When
the	function	terminates	with	an	unhandled	exception,	a	stack	trace	is	printed	and	then	the
thread	exits	(but	other	threads	continue	to	run).

_thread.exit()

Raise	the		SystemExit		exception.	When	not	caught,	this	will	cause	the	thread	to	exit	silently.

_thread.allocate_lock()

Return	a	new	lock	object.	Methods	of	locks	are	described	below.	The	lock	is	initially
unlocked.

_thread.get_ident()

5.3.19	_thread

387

Return	the		thread	identifier		of	the	current	thread.	This	is	a	nonzero	integer.	Its	value	has
no	direct	meaning;	it	is	intended	as	a	magic	cookie	to	be	used	e.g.	to	index	a	dictionary	of
thread-specific	data.	Thread	identifiers	may	be	recycled	when	a	thread	exits	and	another
thread	is	created.

_thread.stack_size([size])

Return	the	thread	stack	size	(in	bytes)	used	when	creating	new	threads.	The	optional	size
argument	specifies	the	stack	size	to	be	used	for	subsequently	created	threads,	and	must	be
	0		(use	platform	or	configured	default)	or	a	positive	integer	value	of	at	least		4096		(4KiB).
4KiB	is	currently	the	minimum	supported	stack	size	value	to	guarantee	sufficient	stack	space
for	the	interpreter	itself.

Objects

_thread.LockType
This	is	the	type	of	lock	objects.

class	Lock	–	used	for	synchronisation	between	threads

Methods

Lock	objects	have	the	following	methods:

lock.acquire(waitflag=1,	timeout=-1)

Without	any	optional	argument,	this	method	acquires	the	lock	unconditionally,	if	necessary
waiting	until	it	is	released	by	another	thread	(only	one	thread	at	a	time	can	acquire	a	lock	—
that’s	their	reason	for	existence).

If	the	integer		waitflag		argument	is	present,	the	action	depends	on	its	value:	if	it	is	zero,	the
lock	is	only	acquired	if	it	can	be	acquired	immediately	without	waiting,	while	if	it	is	nonzero,
the	lock	is	acquired	unconditionally	as	above.

If	the	floating-point	timeout	argument	is	present	and	positive,	it	specifies	the	maximum	wait
time	in	seconds	before	returning.	A	negative	timeout	argument	specifies	an	unbounded	wait.
You	cannot	specify	a	timeout	if		waitflag		is	zero.

The	return	value	is		True		if	the	lock	is	acquired	successfully,		False		if	not.

lock.release()

Releases	the	lock.	The	lock	must	have	been	acquired	earlier,	but	not	necessarily	by	the
same	thread.

5.3.19	_thread

388

lock.locked()

Return	the	status	of	the	lock:		True		if	it	has	been	acquired	by	some	thread,		False		if	not.

In	addition	to	these	methods,	lock	objects	can	also	be	used	via	the	with	statement,	e.g.:

import	_thread

a_lock	=	_thread.allocate_lock()

with	a_lock:

				print("a_lock	is	locked	while	this	executes")

5.3.19	_thread

389

Builtin	Functions
All	builtin	functions	are	described	here.	They	are	also	available	via	builtins	module.

abs()

all()

any()

bin()

class	bool

class	bytearray

class	bytes

callable()

chr()

class	method()

compile()

5.3.20	Builtin

390

class	complex

class	dict

dir()

divmod()

enumerate()

eval()

exec()

filter()

class	float

class	frozenset

getattr()

globals()

5.3.20	Builtin

391

hasattr()

hash()

hex()

id()

input()

class	int

isinstance()

issubclass()

iter()

len()

class	list

locals()

map()

5.3.20	Builtin

392

max()

class	memoryview

min()

next()

class	object

oct()

open()

ord()

pow()

print()

property()

range()

5.3.20	Builtin

393

repr()

reversed()

round()

class	set

setattr()

sorted()

staticmethod()

class	str

sum()

super()

class	tuple

type()

zip()

5.3.20	Builtin

394

5.3.20	Builtin

395

Product	Info	pages
The	follow	pages	contain	all	information	relating	to	each	product,	for	examples:	pinouts,
spec	sheets,	relevant	examples	and	notes.

Development	Modules
WiPy	2.0
WiPy	3.0
SiPy
LoPy
LoPy4
GPy
FiPy

OEM	modules
W01
L01
L04
G01
L01/W01	Reference	Board
Universal	Reference	Board

Shields	and	Expansion	boards
Expansion	Board	2.0
Pysense
Pytrack
Deep	Sleep	Shield

6.0	Introduction

396

Development	Devices
This	section	contains	all	of	the	datasheets	for	the	Pycom	Development	Devices.	This
includes	the	WiPy	2.0	and	3.0,	LoPy,	LoPy	4,	SiPy,	GPy,	and	FiPy.

6.1	Development	Modules

397

WiPy	2.0

Store:	Discontinued,	See	WiPy3

Getting	Started	Click	Here

Pinout
The	pinout	of	the	WiPy2	is	available	as	a	PDF	File.

Please	note	that	the	PIN	assignments	for	UART1	(TX1/RX1),	SPI	(CLK,MOSI,MISO)
and	I2C	(SDA,SCL)	are	defaults	and	can	be	changed	in	Software.

Datasheet

6.1.1	WiPy	2.0

398

The	datasheet	of	the	WiPy2	is	available	as	a	PDF	File.

Notes

WiFi

By	default,	upon	boot	the	WiPy2	will	create	a	WiFi	access	point	with	the	SSID		wipy-wlan-
XXXX		,	where		XXXX		is	a	random	4-digit	number,	and	the	password		www.pycom.io	.

Power

The		Vin		pin	on	the	WiPy2	can	be	supplied	with	a	voltage	ranging	from		3.5v		to		5.5v	.
The		3.3v		pin	on	the	other	hand	is	output	only,	and	must	not	be	used	to	feed	power	into	the
WiPy2,	otherwise	the	on-board	regulator	will	be	damaged.

Deep	Sleep

Due	to	a	couple	issues	with	the	WiPy2	design	the	module	draws	more	current	than	it	should
while	in	deep	sleep.	The	DC-DC	switching	regulator	always	stays	in	high	performance	mode
which	is	used	to	provide	the	lowest	possible	output	ripple	when	the	modules	is	in	use.	In	this
mode,	it	draws	a	quiescent	current	of	10mA.	When	the	regulator	is	put	into	ECO	mode,	the
quiescent	current	goes	down	to	10uA.	Unfortunately,	the	pin	used	to	control	this	mode	is	out
of	the	RTC	domain,	and	therefore	not	usable	during	deep	sleep.	This	causes	the	regulator	to
always	stay	in	PWM	mode,	keeping	its	quiescent	current	at	10mA.	Alongside	this	the	flash
chip	doesn't	enter	power	down	mode	because	the	CS	pin	is	floating	during	deep	sleep.	This
causes	the	flash	chip	to	consume	around	2mA	of	current.	To	work	around	this	issue	a	"deep
sleep	shield"	is	available	that	attaches	to	the	module	and	allows	power	to	be	cut	off	from	the
device.	The	device	can	then	be	re-enabled	either	on	a	timer	or	via	pin	interrupt.	With	the
deep	sleep	shield	the	current	consumption	during	deep	sleep	is	between	7uA	and	10uA
depending	on	the	wake	sources	configured.

Tutorials
Tutorials	on	how	to	the	WiPy2	module	can	be	found	in	the	examples	section	of	this
documentation.	The	following	tutorials	might	be	of	specific	interest	for	the	WiPy2:

WiFi	connection

BLE

6.1.1	WiPy	2.0

399

6.1.1	WiPy	2.0

400

WiPy	3.0

Store:	Buy	Here

Getting	Started	Click	Here

Pinout
The	pinout	of	the	WiPy3	is	available	as	a	PDF	File.

Please	note	that	the	PIN	assignments	for	UART1	(TX1/RX1),	SPI	(CLK,MOSI,MISO)
and	I2C	(SDA,SCL)	are	defaults	and	can	be	changed	in	Software.

6.1.2	WiPy	3.0

401

http://www.pycom.io/wipy-3

Differences	from	WiPy	2.0
Deep	sleep	current	draw	fixed,	now	only	19.7µA
Upgraded	RAM	from	512KB	to	4MB
Upgraded	External	FLASH	from	4MB	to	8MB
Antenna	select	pin	moved	from	GPIO16	to	GPIO21	(P12)

Datasheet
The	datasheet	of	the	WiPy3	is	available	as	a	PDF	File.

Notes

WiFi

By	default,	upon	boot	the	WiPy3	will	create	a	WiFi	access	point	with	the	SSID		wipy-wlan-
XXXX		,	where		XXXX		is	a	random	4-digit	number,	and	the	password		www.pycom.io	.

The	RF	switch	that	selects	between	the	on-board	and	external	antenna	is	connected	to
	P12	,	for	this	reason	using		P12		should	be	avoided	unless	WiFi	is	disabled	in	your
application.

Power

The		Vin		pin	on	the	WiPy3	can	be	supplied	with	a	voltage	ranging	from		3.5v		to		5.5v	.
The		3.3v		pin	on	the	other	hand	is	output	only,	and	must	not	be	used	to	feed	power	into	the
WiPy3,	otherwise	the	on-board	regulator	will	be	damaged.

Tutorials
Tutorials	on	how	to	the	WiPy3	module	can	be	found	in	the	examples	section	of	this
documentation.	The	following	tutorials	might	be	of	specific	interest	for	the	WiPy3:

WiFi	connection

BLE

6.1.2	WiPy	3.0

402

LoPy

Store:	Buy	Here

Getting	Started	Click	Here

Pinout
The	pinout	of	the	LoPy	is	available	as	a	PDF	File.

Please	note	that	the	PIN	assignments	for	UART1	(TX1/RX1),	SPI	(CLK,MOSI,MISO)
and	I2C	(SDA,SCL)	are	defaults	and	can	be	changed	in	Software.

Datasheet

6.1.3	LoPy

403

http://www.pycom.io/lopy

The	datasheet	of	the	LoPy	is	available	as	a	PDF	File.

Notes

WiFi

By	default,	upon	boot	the	LoPy	will	create	a	WiFi	access	point	with	the	SSID		lopy-wlan-
XXXX		,	where		XXXX		is	a	random	4-digit	number,	and	the	password		www.pycom.io	.

Power

The		Vin		pin	on	the	LoPy	can	be	supplied	with	a	voltage	ranging	from		3.5v		to		5.5v	.	The
	3.3v		pin	on	the	other	hand	is	output	only,	and	must	not	be	used	to	feed	power	into	the
LoPy,	otherwise	the	on-board	regulator	will	be	damaged.

Deep	Sleep

Due	to	a	couple	issues	with	the	LoPy	design	the	module	draws	more	current	than	it	should
while	in	deep	sleep.	The	DC-DC	switching	regulator	always	stays	in	high	performance	mode
which	is	used	to	provide	the	lowest	possible	output	ripple	when	the	modules	is	in	use.	In	this
mode,	it	draws	a	quiescent	current	of	10mA.	When	the	regulator	is	put	into	ECO	mode,	the
quiescent	current	goes	down	to	10uA.	Unfortunately,	the	pin	used	to	control	this	mode	is	out
of	the	RTC	domain,	and	therefore	not	usable	during	deep	sleep.	This	causes	the	regulator	to
always	stay	in	PWM	mode,	keeping	its	quiescent	current	at	10mA.	Alongside	this	the	flash
chip	doesn't	enter	power	down	mode	because	the	CS	pin	is	floating	during	deep	sleep.	This
causes	the	flash	chip	to	consume	around	2mA	of	current.	To	work	around	this	issue	a	"deep
sleep	shield"	is	available	that	attaches	to	the	module	and	allows	power	to	be	cut	off	from	the
device.	The	device	can	then	be	re-enabled	either	on	a	timer	or	via	pin	interrupt.	With	the
deep	sleep	shield	the	current	consumption	during	deep	sleep	is	between	7uA	and	10uA
depending	on	the	wake	sources	configured.

Tutorials
Tutorials	on	how	to	the	LoPy	module	can	be	found	in	the	examples	section	of	this
documentation.	The	following	tutorials	might	be	of	specific	interest	for	the	LoPy:

WiFi	connection

LoRaWAN	node

6.1.3	LoPy

404

LoRaWAN	nano	gateway

BLE

6.1.3	LoPy

405

LoPy4

Store:	Buy	Here

Getting	Started	Click	Here

Pinout
The	pinout	of	the	LoPy4	is	available	as	a	PDF	File.

Please	note	that	the	PIN	assignments	for	UART1	(TX1/RX1),	SPI	(CLK,MOSI,MISO)
and	I2C	(SDA,SCL)	are	defaults	and	can	be	changed	in	Software.

6.1.4	LoPy	4

406

http://www.pycom.io/lopy4

Datasheet
The	datasheet	of	the	LoPy4	is	available	as	a	PDF	File.

Notes

WiFi

By	default,	upon	boot	the	LoPy4	will	create	a	WiFi	access	point	with	the	SSID		lopy4-wlan-
XXXX		,	where		XXXX		is	a	random	4-digit	number,	and	the	password		www.pycom.io	.

The	RF	switch	that	selects	between	the	on-board	and	external	antenna	is	connected	to
	P12	,	for	this	reason	using		P12		should	be	avoided	unless	WiFi	is	disabled	in	your
application.

Power

The		Vin		pin	on	the	LoPy4	can	be	supplied	with	a	voltage	ranging	from		3.5v		to		5.5v	.	The
	3.3v		pin	on	the	other	hand	is	output	only,	and	must	not	be	used	to	feed	power	into	the
LoPy4,	otherwise	the	on-board	regulator	will	be	damaged.

Tutorials
Tutorials	on	how	to	the	LoPy4	module	can	be	found	in	the	examples	section	of	this
documentation.	The	following	tutorials	might	be	of	specific	interest	for	the	LoPy4:

WiFi	connection

LoRaWAN	node

LoRaWAN	nano	gateway

Sigfox

BLE

6.1.4	LoPy	4

407

SiPy

Store:	Buy	Here

Getting	Started	Click	Here

Pinout
The	pinout	of	the	SiPy	is	available	as	a	PDF	File.

Please	note	that	the	PIN	assignments	for	UART1	(TX1/RX1),	SPI	(CLK,MOSI,MISO)
and	I2C	(SDA,SCL)	are	defaults	and	can	be	changed	in	Software.

Datasheet

6.1.5	SiPy

408

http://www.pycom.io/sipy

The	datasheet	of	the	SiPy	is	available	as	a	PDF	File.

Notes

WiFi

By	default,	upon	boot	the	SiPy	will	create	a	WiFi	access	point	with	the	SSID		sipy-wlan-XXXX	
,	where		XXXX		is	a	random	4-digit	number,	and	the	password		www.pycom.io	.

Power

The		Vin		pin	on	the	SiPy	can	be	supplied	with	a	voltage	ranging	from		3.5v		to		5.5v	.	The
	3.3v		pin	on	the	other	hand	is	output	only,	and	must	not	be	used	to	feed	power	into	the
SiPy,	otherwise	the	on-board	regulator	will	be	damaged.

Deep	Sleep

Due	to	a	couple	issues	with	the	SiPy	design	the	module	draws	more	current	than	it	should
while	in	deep	sleep.	The	DC-DC	switching	regulator	always	stays	in	high	performance	mode
which	is	used	to	provide	the	lowest	possible	output	ripple	when	the	modules	is	in	use.	In	this
mode,	it	draws	a	quiescent	current	of	10mA.	When	the	regulator	is	put	into	ECO	mode,	the
quiescent	current	goes	down	to	10uA.	Unfortunately,	the	pin	used	to	control	this	mode	is	out
of	the	RTC	domain,	and	therefore	not	usable	during	deep	sleep.	This	causes	the	regulator	to
always	stay	in	PWM	mode,	keeping	its	quiescent	current	at	10mA.	Alongside	this	the	flash
chip	doesn't	enter	power	down	mode	because	the	CS	pin	is	floating	during	deep	sleep.	This
causes	the	flash	chip	to	consume	around	2mA	of	current.	To	work	around	this	issue	a	"deep
sleep	shield"	is	available	that	attaches	to	the	module	and	allows	power	to	be	cut	off	from	the
device.	The	device	can	then	be	re-enabled	either	on	a	timer	or	via	pin	interrupt.	With	the
deep	sleep	shield	the	current	consumption	during	deep	sleep	is	between	7uA	and	10uA
depending	on	the	wake	sources	configured.

Tutorials
Tutorials	on	how	to	the	SiPy	module	can	be	found	in	the	examples	section	of	this
documentation.	The	following	tutorials	might	be	of	specific	interest	for	the	SiPy:

WiFi	connection

Sigfox

6.1.5	SiPy

409

BLE

6.1.5	SiPy

410

GPy

Store:	Buy	Here

Getting	Started	Click	Here

Pinout
The	pinout	of	the	GPy	is	available	as	a	PDF	File.

Please	note	that	the	PIN	assignments	for	UART1	(TX1/RX1),	SPI	(CLK,MOSI,MISO)
and	I2C	(SDA,SCL)	are	defaults	and	can	be	changed	in	Software.

Datasheet

6.1.6	GPy

411

http://www.pycom.io/gpy

The	datasheet	of	the	GPy	is	available	as	a	PDF	File.

Notes

WiFi

By	default,	upon	boot	the	GPy	will	create	a	WiFi	access	point	with	the	SSID		gpy-wlan-XXXX		,
where		XXXX		is	a	random	4-digit	number,	and	the	password		www.pycom.io	.

The	RF	switch	that	selects	between	the	on-board	and	external	antenna	is	connected	to
	P12	,	for	this	reason	using		P12		should	be	avoided	unless	WiFi	is	disabled	in	your
application.

Power

The		Vin		pin	on	the	GPy	can	be	supplied	with	a	voltage	ranging	from		3.5v		to		5.5v	.	The
	3.3v		pin	on	the	other	hand	is	output	only,	and	must	not	be	used	to	feed	power	into	the
GPy,	otherwise	the	on-board	regulator	will	be	damaged.

AT	Commands

The	AT	commands	for	the	Sequans	Monarch	modem	on	the	GPy	are	available	in	a	PDF	file.

Tutorials
Tutorials	on	how	to	the	GPy	module	can	be	found	in	the	examples	section	of	this
documentation.	The	following	tutorials	might	be	of	specific	interest	for	the	GPy:

WiFi	connection

LTE	CAT-M1

NB-IoT

BLE

6.1.6	GPy

412

FiPy

Store:	Buy	Here

Getting	Started	Click	Here

Pinout
The	pinout	of	the	FiPy	is	available	as	a	PDF	File.

Please	note	that	the	PIN	assignments	for	UART1	(TX1/RX1),	SPI	(CLK,MOSI,MISO)
and	I2C	(SDA,SCL)	are	defaults	and	can	be	changed	in	Software.

Datasheet

6.1.7	FiPy

413

http://www.pycom.io/fipy

The	datasheet	of	the	FiPy	is	available	as	a	PDF	File.

Notes

WiFi

By	default,	upon	boot	the	FiPy	will	create	a	WiFi	access	point	with	the	SSID		fipy-wlan-XXXX	
,	where		XXXX		is	a	random	4-digit	number,	and	the	password		www.pycom.io	.

The	RF	switch	that	selects	between	the	on-board	and	external	antenna	is	connected	to
	P12	,	for	this	reason	using		P12		should	be	avoided	unless	WiFi	is	disabled	in	your
application.

Power

The		Vin		pin	on	the	FiPy	can	be	supplied	with	a	voltage	ranging	from		3.5v		to		5.5v	.	The
	3.3v		pin	on	the	other	hand	is	output	only,	and	must	not	be	used	to	feed	power	into	the
FiPy,	otherwise	the	on-board	regulator	will	be	damaged.

AT	Commands

The	AT	commands	for	the	Sequans	Monarch	modem	on	the	FiPy	are	available	in	a	PDF	file.

Tutorials
Tutorials	on	how	to	the	FiPy	module	can	be	found	in	the	examples	section	of	this
documentation.	The	following	tutorials	might	be	of	specific	interest	for	the	FiPy:

WiFi	connection

LoRaWAN	node

LoRaWAN	nano	gateway

Sigfox

LTE	CAT-M1

NB-IoT

BLE

6.1.7	FiPy

414

6.1.7	FiPy

415

OEM	Devices
This	section	contains	all	of	the	datasheets	for	the	Pycom	OEM	Devices.	This	includes	the
W01,	L01,	L04,	and	G01.

6.2	OEM	Modules

416

W01

Pinout

The	pinout	of	the	W01	is	available	as	a	PDF	File.

Specsheets

The	specsheet	of	the	W01	is	available	as	a	PDF	File.

6.2.1	W01

417

Drawings

The	drawings	for	the	W01	is	available	as	a	PDF	File.

Please	note	that	the	PIN	assignments	for	UART1	(TX1/RX1),	SPI	(CLK,	MOSI,	MISO)	and
I2C	(SDA,	SCL)	are	defaults	and	can	be	changed	in	Software.

Tutorials
Tutorials	on	how	to	the	W01	module	can	be	found	in	the	examples	section	of	this
documentation.	The	following	tutorials	might	be	of	specific	interest	for	the	W01:

WiFi	connection

BLE

6.2.1	W01

418

L01

Pinout

The	pinout	of	the	L01	is	available	as	a	PDF	File.

Specsheets

The	specsheet	of	the	L01	is	available	as	a	PDF	File.

6.2.2	L01

419

Drawings

The	drawings	for	the	L01	is	available	as	a	PDF	File.

Please	note	that	the	PIN	assignments	for	UART1	(TX1/RX1),	SPI	(CLK,	MOSI,	MISO)	and
I2C	(SDA,	SCL)	are	defaults	and	can	be	changed	in	Software.

Tutorials
Tutorials	on	how	to	the	L01	module	can	be	found	in	the	examples	section	of	this
documentation.	The	following	tutorials	might	be	of	specific	interest	for	the	L01:

WiFi	connection

LoRaWAN	node

LoRaWAN	nano	gateway

BLE

6.2.2	L01

420

L04

Pinout

The	pinout	of	the	L04	is	available	as	a	PDF	File.

Specsheets

The	specsheet	of	the	L04	is	available	as	a	PDF	File.

6.2.3	L04

421

Drawings

The	drawings	for	the	L04	is	available	as	a	PDF	File.

Please	note	that	the	PIN	assignments	for	UART1	(TX1/RX1),	SPI	(CLK,	MOSI,	MISO)	and
I2C	(SDA,	SCL)	are	defaults	and	can	be	changed	in	Software.

Tutorials
Tutorials	on	how	to	the	L04	module	can	be	found	in	the	examples	section	of	this
documentation.	The	following	tutorials	might	be	of	specific	interest	for	the	L04:

WiFi	connection

LoRaWAN	node

LoRaWAN	nano	gateway

Sigfox

BLE

6.2.3	L04

422

G01

Pinout

The	pinout	of	the	G01	is	available	as	a	PDF	File.

Specsheets

The	specsheet	of	the	G01	is	available	as	a	PDF	File.

6.2.4	G01

423

Drawings

The	drawings	for	the	G01	is	available	as	a	PDF	File.

Please	note	that	the	PIN	assignments	for	UART1	(TX1/RX1),	SPI	(CLK,	MOSI,	MISO)	and
I2C	(SDA,	SCL)	are	defaults	and	can	be	changed	in	Software.

AT	Commands

The	AT	commands	for	the	Sequans	Monarch	modem	on	the	G01	are	available	in	a	PDF	file.

Tutorials
Tutorials	on	how	to	the	G01	module	can	be	found	in	the	examples	section	of	this
documentation.	The	following	tutorials	might	be	of	specific	interest	for	the	G01:

WiFi	connection

LTE	CAT-M1
NB-IoT

BLE

6.2.4	G01

424

L01	reference	design

The	L01	OEM	reference	board	is	a	reference	design	suitable	L01	as	well	as	W01	making	it
possible	to	have	a	single	PCB	design	that	can	accommodate	both	OEM	modules.

If	you	require	a	reference	board	for	the	L04	or	G01,	this	design	is	not	suitable	as	it	does
not	feature	a	SIM	slot	or	the	double	antenna	connection.	For	the	G01	or	L04	please	use
the	Universal	OEM	Baseboard	Reference

Features
Suits	both	L01	or	W01	OEM	Modules
U.FL	connector	for	the	L01's	LoRa	output.
On-board	2.4GHz	antenna	for	WiFi	and	Bluetooth,	with	the	ability	to	switch	to	a	external
antenna	via	a	U.FL	connector.
WS2812B	RGB	LED
3.5-5.5	Input	switch	mode	DC-DC	regulator	with	low	current	draw	during	deep	sleep
Reset	button

Layout
The	layout	of	the	L01	baseboard	reference	is	available	as	a	PDF	File.

6.2.5	L01	OEM	Baseboard	Reference

425

Schematic
The	schematic	of	the	L01	baseboard	reference	is	available	as	a	PDF	File.

Altium	Project	and	Gerber	Files
The	Altium	Project	and	Gerber	files	are	also	available	as	a	ZIP	File.

6.2.5	L01	OEM	Baseboard	Reference

426

6.2.5	L01	OEM	Baseboard	Reference

427

OEM	Baseboard	Reference	Design	Files

The	universal	OEM	reference	board	is	a	reference	design	suitable	W01,	L01,	L04	and	G01
OEM	modules,	making	it	possible	to	have	a	single	PCB	design	that	can	accommodate	all
our	OEM	modules.

If	you	require	a	reference	board	for	the	G01,	only	this	design	is	suitable.	The	L01
reference	board	does	not	contain	the	necessary	SIM	slot.

Features
Suits	all	OEM	modules	(L01,	L04,	W01,	G01)
On-board	2.4GHz	antenna	for	WiFi	and	Bluetooth,	with	the	ability	to	switch	to	a	external
antenna	via	a	U.FL	connector.
3	U.FL	connectors	for	all	the	outputs	available	on	the	OEM	modules
WS2812B	RGB	LED
3.5-5.5	Input	switch	mode	DC-DC	regulator	with	low	current	draw	during	deep	sleep
Reset	button

Layout
The	layout	of	the	OEM	baseboard	reference	is	available	as	a	PDF	File.

6.2.6	Universal	OEM	Baseboard	Reference

428

Schematic
The	schematic	of	the	OEM	baseboard	reference	is	available	as	a	PDF	File.

Altium	Project	and	Gerber	Files
The	Altium	Project	and	Gerber	files	are	also	available	as	a	ZIP	File.

6.2.6	Universal	OEM	Baseboard	Reference

429

6.2.6	Universal	OEM	Baseboard	Reference

430

Expansion	Boards	and	Shields
This	section	contains	all	of	the	datasheets	for	the	Pycom	Expansion	Boards	and	Shields.
This	includes	the	Expansion	Board,	Pytrack,	Pysense	and	Deep	Sleep	Shield.

6.3	Expansion	Boards	and	Shields

431

Expansion	Board	3.0

Pinout

The	pinout	of	the	Expansion	Board	is	available	as	a	PDF	File.

Be	gentle	when	plugging/unplugging	from	the	USB	connector.	Whilst	the	USB	connector
is	soldered	and	is	relatively	strong,	if	it	breaks	off	it	can	be	very	difficult	to	fix.

Battery	Charger

6.3.1	Expansion	Board	3.0

432

The	Expansion	Board	features	a	single	cell	Li-Ion/Li-Po	charger.	When	the	board	is	being
powered	via	the	micro	USB	connector,	the	Expansion	Board	will	charge	the	battery	(if
connected).	When	the		CHG		jumper	is	present	the	battery	will	be	charged	at		450mA	.	If	this
value	is	too	high	for	your	application,	removing	the	jumper	lowers	the	charge	current	to
	100mA	.

Specsheets

The	specsheet	of	the	Expansion	Board	is	available	as	a	PDF	File.

Differences	between	v2.0	and	v3.0

The	FTDI	chip	as	been	replaced	with	a	custom	programmed	PIC	like	on	the
Pysense/Pytrack/Pyscan	boards.	This	allows	our	firmware	update	tool	to	automatically
put	the	module	into	bootloader	mode.
Added	a	"Safe	boot"	button	to	enter	safe	boot	easier.	This	button	connects		P12		to
	3.3v		and	if	pressed	and	held	while	the	reset	button	is	pressed	on	a	Pycom	module,
the	module	will	enter	safe	boot.

6.3.1	Expansion	Board	3.0

433

Pytrack

Pinout

The	pinout	of	the	Pytrack	is	available	as	a	PDF	File.

Battery	Charger

The	board	features	a	single	cell	Li-Ion/Li-Po	charger.	When	the	board	is	being	powered	via
the	micro	USB	connector,	it	will	charge	the	battery	(if	connected).

Specsheets

6.3.2	Pytrack

434

The	specsheet	of	the	Pytrack	is	available	as	a	PDF	File.

6.3.2	Pytrack

435

Pysense

Pinout

The	pinout	of	the	Pysense	is	available	as	a	PDF	File.

Battery	Charger

The	board	features	a	single	cell	Li-Ion/Li-Po	charger.	When	the	board	is	being	powered	via
the	micro	USB	connector,	it	will	charge	the	battery	(if	connected).

Specsheets

6.3.3	Pysense

436

The	specsheet	of	the	Pysense	is	available	as	a	PDF	File.

6.3.3	Pysense

437

Pyscan

Pyscan	Libraries

Pyscan	libraries	to	use	the	RFID/NFC	reader	are	located	here:
https://github.com/pycom/pycom-libraries/tree/master/pyscan	The	accelerometer	library	is
here:	https://github.com/pycom/pycom-libraries/blob/master/pytrack/lib/LIS2HH12.py

For	the	time	being,	we	recommend	to	upload	the		MFRC630.mpy		file	via	FTP	due	to	current
limitations	of	Pymakr	that	will	be	fixed	shortly.

Libraries	for	the	rest	of	the	components	will	be	added	soon.

Pyscan	components:

Accelerometer:	ST	LIS2HH12
Ambient	light	sensor:	Lite-on	LTR-329ALS-01
RFID/NFC	reader:	NXP	MFRC63002HN,	151

Driver

The	Windows	7	driver	for	Pyscan	is	located	in:
https://docs.pycom.io/chapter/pytrackpysense/installation/drivers.html	For	other	Operating
Systems	there's	no	driver	required.

Pinout

The	pinout	of	the	Pyscan	is	available	as	a	PDF	File.

6.3.4	Pyscan

438

https://github.com/pycom/pycom-libraries/tree/master/pyscan
https://github.com/pycom/pycom-libraries/blob/master/pytrack/lib/LIS2HH12.py
https://docs.pycom.io/chapter/pytrackpysense/installation/drivers.html

Battery	Charger

The	board	features	a	single	cell	Li-Ion/Li-Po	charger.	When	the	board	is	being	powered	via
the	micro	USB	connector,	it	will	charge	the	battery	(if	connected).

Specsheets

The	specsheet	of	the	Pyscan	is	available	as	a	PDF	File.

6.3.4	Pyscan

439

Expansion	Board	2.0

Pinout

The	pinout	of	the	Expansion	Board	is	available	as	a	PDF	File.

6.3.5	Expansion	Board	2.0

440

Be	gentle	when	plugging/unplugging	from	the	USB	connector.	Whilst	the	USB	connector
is	soldered	and	is	relatively	strong,	if	it	breaks	off	it	can	be	very	difficult	to	fix.

Battery	Charger

The	Expansion	Board	features	a	single	cell	Li-Ion/Li-Po	charger.	When	the	board	is	being
powered	via	the	micro	USB	connector,	the	Expansion	Board	will	charge	the	battery	(if
connected).	When	the		CHG		jumper	is	present	the	battery	will	be	charged	at		450mA	.	If	this
value	is	too	high	for	your	application,	removing	the	jumper	lowers	the	charge	current	to
	100mA	.

Specsheets

The	specsheet	of	the	Expansion	Board	is	available	as	a	PDF	File.

6.3.5	Expansion	Board	2.0

441

Deep	Sleep	Shield
The	schematic	of	the	Deep	Sleep	Shield	is	available	as	a	PDF	File.

Pinout

The	pinout	of	the	Deep	Sleep	Shield	is	available	as	a	PDF	File.

To	correctly	connect	a	WiPy	2.0,	LoPy	or	SiPy	to	the	Deep	Sleep	Shield,	align	the	white
triangle	on	the	Shield	with	the	LED	of	the	Pycom	Device.	Once	the	Pycom	Device	is
seated	onto	the	Deep	Sleep	Shield,	this	can	then	be	connected	to	the	Expansion	Board.

6.3.6	Deep	Sleep	Shield

442

6.3.6	Deep	Sleep	Shield

443

Deep	Sleep	API
This	chapter	describes	the	library	which	controls	the	Deep	Sleep	Shield.	This	includes	the
controls	for	external	interrupts	and	timer	setup	of	the	deep	sleep	functionality.

To	use	this	library,	please	upload	the	associated	Deep	Sleep	Library	to		/lib		on	the	target
Pycom	device.

Quick	Example

from	deepsleep	import	DeepSleep

import	deepsleep

ds	=	DeepSleep()

#	get	the	wake	reason	and	the	value	of	the	pins	during	wake	up

wake_s	=	ds.get_wake_status()

print(wake_s)

if	wake_s['wake']	==	deepsleep.PIN_WAKE:

				print("Pin	wake	up")

elif	wake_s['wake']	==	deepsleep.TIMER_WAKE:

				print("Timer	wake	up")

else:		#	deepsleep.POWER_ON_WAKE:

				print("Power	ON	reset")

ds.enable_pullups('P17')		#	can	also	do	ds.enable_pullups(['P17',	'P18'])

ds.enable_wake_on_fall('P17')	#	can	also	do	ds.enable_wake_on_fall(['P17',	'P18'])

ds.go_to_sleep(60)		#	go	to	sleep	for	60	seconds

DeepSleep

The	Deep	Sleep	Shield	allows	for	waking	up	via	a	user	trigger	and	also	via	an	external
interrupt	(i.e.	Accelerometer,	Button).

Constructors

class	DeepSleep()

Creates	a	DeepSleep	object,	that	will	control	the	board's	sleep	features.	For	example;

ds	=	DeepSleep()

6.3.6.1	Deep	Sleep	API

444

https://github.com/pycom/pycom-libraries/tree/master/deepsleep

Methods

deepsleep.enable_auto_poweroff()

This	method	allows	for	a	critical	battery	voltage	to	be	set.	For	example,	if	the	external	power
source	(e.g.	LiPo	Cell)	falls	below		3.3V	,	turn	off	the	Pycom	device.	This	is	intended	to
protect	the	hardware	from	under	voltage.

deepsleep.enable_pullups(pins)

This	method	allows	for	pull-up	pins	to	be	enabled.	For	example,	if	an	external	trigger	occurs,
wake	the	Pycom	device	from	Deep	Sleep.		pins		may	be	passed	into	the	method	as	a	list,
i.e.		['P17',	'P18']	.

deepsleep.disable_pullups(pins)

This	method	allows	for	pull-up	pins	to	be	disabled.	For	example,	if	an	external	trigger	occurs,
wake	the	Pycom	device	from	Deep	Sleep.		pins		may	be	passed	into	the	method	as	a	list,
i.e.		['P17',	'P18']	.

deepsleep.enable_wake_on_raise(pins)

This	method	allows	for	pull-up	pins	to	trigger	on	a	rising	voltage.	For	example,	if	an	external
rising	voltage	triggers	occurs,	wake	the	Pycom	device	from	Deep	Sleep.		pins		may	be
passed	into	the	method	as	a	list,	i.e.		['P17',	'P18']	.

deepsleep.disable_wake_on_raise(pins)

This	method	allows	for	disabling	pull-up	pins	that	trigger	on	a	rising	voltage.		pins		may	be
passed	into	the	method	as	a	list,	i.e.		['P17',	'P18']	.

deepsleep.enable_wake_on_fall(pins)

This	method	allows	for	pull-up	pins	to	trigger	on	a	falling	voltage.	For	example,	if	an	external
falling	voltage	triggers	occurs,	wake	the	Pycom	device	from	Deep	Sleep.		pins		may	be
passed	into	the	method	as	a	list,	i.e.		['P17',	'P18']	.

deepsleep.disable_wake_on_fall(pins)

This	method	allows	for	disabling	pull-up	pins	that	trigger	on	a	falling	voltage.		pins		may	be
passed	into	the	method	as	a	list,	i.e.		['P17',	'P18']	.

deepsleep.get_wake_status()

This	method	returns	the	status	of	the	pins	at	wakeup	from	deep	sleep.	The	method	returns	a
	dict		with	the	states	of		wake	,		P10	,		P17	,		P18	.

6.3.6.1	Deep	Sleep	API

445

deepsleep.set_min_voltage_limit(value)

This	method	relates	to	the		enable_auto_poweroff		method	and	allows	the	user	to	specify	the
minimum	power	off	voltage	as	a	value.

deepsleep.go_to_sleep(seconds)

This	method	sends	the	board	into	deep	sleep	for	a	period	of		seconds		or	until	an	external
interrupt	has	triggered	(see		set_pullups).

deepsleep.hw_reset()

This	method	resets	the	PIC	controller	and	resets	it	to	the	state	previous	to	the	pins/min-
voltage	being	set.

Please	note	that	more	functionality	is	being	added	weekly	to	these	libraries.	If	a	required
feature	is	not	available,	feel	free	to	contribute	with	a	pull	request	at	the	Pycom	Libraries
GitHub	repository.

6.3.6.1	Deep	Sleep	API

446

https://github.com/pycom/pycom-libraries

Notes

Powering	with	an	external	power	source

The	devices	can	be	powered	by	a	battery	or	other	external	power	source.

Be	sure	to	connect	the	positive	lead	of	the	power	supply	to		VIN	,	and	ground	to		GND	.

When	powering	via		VIN	:

The	input	voltage	must	be	between		3.4V		and		5.5V	.

Please	DO	NOT	power	the	board	via	the		3.3V		pin	as	this	may	damage	the	device.
ONLY	use	the		VIN		pin	for	powering	Pycom	devices.

The	battery	connector	for	the	Expansion	Board	is	a	JST	PHR-2	variant.	The	Expansion
Board	exposes	the	male	connector	and	an	external	battery	should	use	a	female	adapter	in
order	to	connect	and	power	the	expansion	board.	The	polarity	of	the	battery	should	be
checked	before	being	plugged	into	the	expansion	board,	the	cables	may	require	swapping.

The		GPIO		pins	of	the	modules	are	NOT		5V		tolerant,	connecting	them	to	voltages
higher	than		3.3V		might	cause	irreparable	damage	to	the	device.

Static	electricity	can	damage	components	on	the	device	and	may	destroy	them.	If	there
is	a	lot	of	static	electricity	in	the	area	(e.g.	dry	and	cold	climates),	take	extra	care	not	to
shock	the	device.	If	the	device	came	in	a	ESD	bag	(Silver	packaging),	the	best	way	to
store	and	carry	the	device	is	inside	this	bag	as	it	will	be	protected	against	static
discharges.

6.4	Notes

447

Development	Modules	Datasheets
7.1.1	WiPy	2.0
7.1.2	WiPy	3.0
7.1.3	LoPy
7.1.4	LoPy	4
7.1.5	SiPy
7.1.6	GPy
7.1.7	FiPy

7.1	Development	Modules

448

ref://../downloads/wipy2-specsheet.pdf
ref://../downloads/wipy3-specsheet.pdf
ref://../downloads/lopy-specsheet.pdf
ref://../downloads/lopy4-specsheet.pdf
ref://../downloads/sipy-specsheet.pdf
ref://../downloads/gpy-specsheet.pdf
ref://../downloads/fipy-specsheet.pdf

OEM	Module	Datasheets
7.2.1	W01
7.2.2	L01
7.2.3	L04
7.2.4	G01

7.2	OEM	Modules

449

ref://../downloads/w01-specsheet.pdf
ref://../downloads/l01-specsheet.pdf
ref://../downloads/l04-specsheet.pdf
ref://../downloads/g01-specsheet.pdf

Expansion	Board	and	Shield	Datasheets
7.3.1	Expansion	Board	3.0
7.3.2	Pytrack
7.3.3	Pysense
7.3.4	Expansion	Board	2.0

7.3	Expansion	Boards	and	Shields

450

ref://../downloads/expansion3-specsheet.pdf
ref://../downloads/pytrack-specsheet.pdf
ref://../downloads/pysense-specsheet.pdf
ref://../downloads/expansion2-specsheet.pdf

What	is	Pybytes?
Pybytes	is	an	IoT	Ecosystem	that	empowers	you	by	granting	full	control	of	all	your	Pycom
devices.

With	Pybytes	you	have	control	over	your	device's	data	stream	and	more:

Visualise	sensors	data	according	to	your	interests	using	our	customisable	dashboard;
Check	the	status	of	your	entire	fleet;
Keep	track	of	your	assets	with	our	geolocation	feature;
Distribute	firmware	updates	on	a	scalable	approach.

In	a	nutshell,	Pybytes	is	an	environment	designed	to	optimise	your	IoT	applications	using
Pycom	boards.

What	Pybytes	offers	you?
Data	Visualisation:	Pybytes	dashboard	is	customisable,	allowing	you	to	freely	set	up	key
performance	indicators	and	time	series	data	from	all	your	sensors.
Intelligent	notifications:	Keep	track	of	your	device's	status,	battery	level,	data	streaming
and	measurements	with	pre-defined	alarms.	Receive	notifications	via	email	or	SMS.
Terminal:	Execute	commands	to	gather	accurate	information	from	your	devices	using
Pybytes	terminal	shell.
Firmware	updates	over	the	air:	Upgrade	or	downgrade	firmware	versions	with	our
exclusive	firmware	update.
Track	your	assets	position:	Google	Maps	API	empowers	your	view	over	your	device's
geolocation.

Let's	get	started!
Getting	started	with	Pybytes

Connect	your	Pycom	module	to	Pybytes

8.1	Introduction

451

http://pybytes.io/

Visualise	data	from	your	device

8.1	Introduction

452

Create	your	Pybytes	account
Follow	these	steps	to	create	a	Pybytes	account:

Step	1:	Go	to	the	registration	page
1.	 Go	to	this	link.
2.	 Enter	your	full	name,	email	address	and	a	password	to	your	account.
3.	 Confirm	the	verification	message	sent	to	your	email	address.
4.	 Click	on	the	link	and	complete	your	login.

Go	Invent!
Now	it's	time	to	explore	Pybytes.	You	can	start	by	connecting	your	Pycom	board	to	Pybytes.
Check	here!

8.2	Getting	Started

453

https://pyauth.pybytes.pycom.io/register

Add	a	device	to	pybytes
In	this	section,	we	will	explain	to	you	how	to	add	a	device	to	Pybytes

Step	1:	Add	device	wizard
In	Pybytes,	go	to		Devices		Page:

1.	 Click	on		Add	Device	.

2.	 Select	your	device	(e.g.,	WiPy,	LoPy,	SiPy,	etc.);

8.3	Add	a	device	to	Pybytes

454

3.	 Select	your	shield	(e.g.,	PySense,	PyTrack,	PyScan	or	other);

4.	 Select	your	network	option;

8.3	Add	a	device	to	Pybytes

455

5.	 Enter	a	unique	name	and	the	network	credentials	(SSID	and	password)	for	your	device;

Step	2:	Connect	your	device	to	Pybytes
At	the	end	of	the	"Add	Device"	wizard,	Pybytes	will	give	you	two	options	for	you	to	connect
your	device	to	Pybytes:

8.3	Add	a	device	to	Pybytes

456

Select	how	you	would	like	to	connect	your	device	to	Pybytes:

1.	 CONNECT	YOUR	DEVICE	QUICKLY	(RECOMMENDED)
2.	 CONNECT	YOUR	DEVICE	BY	FLASHING	PYBYTES	LIBRARY

From	firmware	1.16.x	onwards	all	Pycom	devices	come	with	Pybytes	library	build-in
	/frozen		folder.	That	means	that	you	can	choose	between	adding	your	device	quickly
with	the	firmware	updater	or	you	can	flash	Pybytes	library	manually.

8.3	Add	a	device	to	Pybytes

457

Connecting	a	device	to	Pybytes	quickly	by
using	the	Firmware	Updater
In	this	section,	we	explain	to	you	how	to	connect	your	device	to	Pybytes	quickly	using	the
Firmware	Updater.

In	case	you	want	to	extend	Pybytes	library	you	can	flash	Pybytes	library	manually.	Click
here	for	more	information.

Step	1:	Download	the	firmware	updater
At	the	last	step	of	the	"Add	Device"	process:

1.	 Download	the	firmware	updater	for	your	operating	system;

8.3.1	Connect	to	Pybytes:	Quick	Add

458

https://pycom.io/downloads/

2.	 Copy	the	device	token.

Step	2:	Firmware	updater
Install	the	Firmware	updater	on	your	computer.

1.	 Start	the		Firmware	updater	;

8.3.1	Connect	to	Pybytes:	Quick	Add

459

2.	 Select	your	device	serial	port	(Make	sure	your	device	is	connected	to	your	computer);

3.	 Mark	the	options	"Erase	flash	file	system"	and	"Force	update	Pybytes	registration";

4.	 Paste	your	device	token	from	Pybytes;

8.3.1	Connect	to	Pybytes:	Quick	Add

460

5.	 The	firmware	updater	will	update	the	device's	firmware.

8.3.1	Connect	to	Pybytes:	Quick	Add

461

Next	step:	Set	up	your	device's
dashboard!
Now	it's	time	to	display	data	from	your	device	into	Pybytes	dashboard.	You	can	check	more
about	it	here!

8.3.1	Connect	to	Pybytes:	Quick	Add

462

Connecting	a	device	to	Pybytes	by
flashing	Pybytes	library	manually
In	this	section,	we	will	explain	to	you	how	to	connect	your	device	to	Pybytes	by	flashing
Pybytes	library	manually.

From	firmware	1.16.x	onwards	all	Pycom	devices	come	with	Pybytes	library	build-in
	/frozen		folder.	That	means	that	you	can	add	your	device	quickly	without	the	need	of
flashing	Pybytes	library	manually.	Click	here	for	more	information.

Step	1:	Download	your	Pybytes	Library
At	the	last	step	of	the	"Add	Device"	process:

1.	Click	on	download	*Pybytes	library*

8.3.2	Connect	to	Pybytes:	Flash	Pybytes	library	manually

463

You	can	also	download	Pybytes	library	at	the	device's	settings	page:

1.	 Navigate	to	your	device	in	Pybytes;
2.	 On	your	device's	page	click	on	settings	tab;
3.	 Click	on	the	button	Download	at	Pybytes	library;

Step	2.	Flash	your	device	with	Pymakr

In	case	you	haven't	installed	Pymakr	plugin,	follow	these	instructions.

1.	 Connect	your	device	to	your	computer	with	USB	cable.
2.	 Extract	download	Pybytes	library	and	open	extracted	folder	with	Atom.
3.	 Get	your	device	serial	port:	in	Pymakr	plugin	click	on	More	>	get	serial	ports
4.	 Paste	your	device's	serial	port	to		pymakr.conf		file:

8.3.2	Connect	to	Pybytes:	Flash	Pybytes	library	manually

464

	{

					"address":	"PASTE_YOUR_SERIAL_PORT_HERE",

					"username":	"micro",

					"password":	"python",

					"sync_folder":	"flash"

	}

5.	 Checkout	your		flash/pybytes_config.json		file.	It	will	be	pre-filled	with	your	information
from	Pybytes	Like	deviceToken	or	WiFi	credentials.	You	can	change	e.g.	your	WiFy
password	here.

6.	 Put	your	device	in	safe	boot	mode.
7.	 Upload	code	to	your	device	by	clicking	on	Upload	button	in	Pymakr.	After	all	Pybytes

library	files	are	uploaded	to	device,	device	will	restart	and	will	connect	to	Pybytes.

Pybytes	library	is	written	to		/flash		folder	and	will	take	precedence	over	build	in
firmware	libraries	in		/frozen		folder.

Next	step:	Set	up	your	device's
dashboard!
Now	it's	time	to	display	data	from	your	device	into	Pybytes	dashboard.	You	can	check	more
about	it	here!

8.3.2	Connect	to	Pybytes:	Flash	Pybytes	library	manually

465

Visualise	data	from	your	device.
In	this	section,	we	will	explain	to	you	how	to	create	widgets	for	data	visualisation	and	set	up
your	device's	dashboard	on	Pybytes.

We	assume	that	you	already	have	your	device	connected	to	Pybytes.	In	case	you
haven't,	check	how	to	add	your	device	here.	After	your	done	with	that,	you	can	proceed
to	the	next	example.

Step	1:	Set	up	your	application	(main.py)
The	first	step	is	to	have	an	application	running	on	your	device.	The	application	in	this
example	sends	data	from	a	vector	every	10	seconds	to	Pybytes.

1.	 Open	the		main.py		file	on	Pymakr;

2.	 Insert	the	following	code	on	your		main.py	;

8.4	Visualise	data	from	your	device

466

#	#	Import	what	is	necessary	to	create	a	thread

import	_thread

from	time	import	sleep

#	#	Increment	index	used	to	scan	each	point	from	vector	sensors_data

def	inc(index,	vector):

				if	index	<	len(vector)-1:

								return	index+1

				else:

								return	0

#	#	Define	your	thread's	behaviour,	here	it's	a	loop	sending	sensors	data	every	10	sec

onds

def	send_env_data():

				idx	=	0

				sensors_data	=	[0,	-0.2,	-0.5,	-0.7,	-0.8,	-0.9,	-0.9,	-0.9,	-0.8,	-0.6,	-0.4,	-0.2

,	0,	0.3,	0.5,	0.7,	0.8,	0.9,	0.9,	0.9,	0.8,	0.6,	0.4,	0.1]

				while	(pybytes):

								pybytes.send_virtual_pin_value(False,	1,	sensors_data[idx])

								idx	=	inc(idx,	sensors_data)

								sleep(10)

#	#	Start	your	thread

_thread.start_new_thread(send_env_data,	())

1.	 Upload	the	code	into	your	device.	Now	your	device	is	sending	data	to	Pybytes.

In	this	code,	we're	calling	the	function		pybytes.send_virtual_pin_value(persistent,
pin,	value))		to	communicate	with	Pybytes.	This	function	is	part	of	the	Pybytes
library,	and	it	has	three	arguments:		persistent	,		pin		and		value	.

	persistent		denotes	information	that	is	infrequently	accessed	and	not	likely	to
be	modified;
	pin		represents	which	virtual	pin	is	receiving	data;
	value		is	the	value	being	attributed	to	that	particular	pin.

Step	2:	Add	a	signal	from	your	device
Go	to	Pybytes.

1.	 On		Devices		page	select	a	device;

8.4	Visualise	data	from	your	device

467

2.	 On	your	device's	page	click	on		Data		tab.

3.	 Click	on	the		Define	New	Signal		button.

8.4	Visualise	data	from	your	device

468

4.	 Define	the	new	signal	by	entering	a	number,	a	name,	a	data	type	and	a	unit.	Finally,
click	on	the	button		Define	.

5.	 Your	signal	was	added!

8.4	Visualise	data	from	your	device

469

The	name	and	unit	are	labels	used	to	identify	your	signal	inside	Pybytes	(In	this
example	we	defined		Sinwave		as	the	name	of	the	signal	and		Rad		as	the	unit).

The	signal	number	has	to	match	the	pin	number	that	you	defined	on
	pybytes.send_virtual_pin_value		function	call,	inside	your		main.py		code	(In	this
example	we	defined		pin	=	1);

The	datatype	also	has	to	match	the	variable	used	as	argument	on
	pybytes.send_virtual_pin_value		function	call,	inside	your		main.py		code	(In	this
example	our	variable	is	a	floating	number;	therefore	we	defined	as	a		Float32).

Step	3:	Add	a	widget	for	the	signal
1.	 Click	on	the	signal	card.

8.4	Visualise	data	from	your	device

470

2.	 Click	on	the	button		Create	a	new	display	.

3.	 Select	the	type	of	visualisation	(e.g.	Bar	chart	or	Line	chart).

8.4	Visualise	data	from	your	device

471

4.	 You	can	adjust	the	parameters	of	your	widget	at		Settings	.	After,	click	on	the	button
	Create	.

5.	 Your	widget	was	created.	Now,	add	your	widget	to	your	device's	dashboard.	Click	on	the
button		Edit		on	your	widget.

8.4	Visualise	data	from	your	device

472

6.	 Mark	the	checkbox		Display	on	Dashboard		at		Settings	.	Finally,	click	on	the	button
	Save	.

7.	 Click	on	the	tab		Dashboard	.	Your	widget	was	successfully	added	there!

8.4	Visualise	data	from	your	device

473

Step	4:	Organise	your	dashboard
1.	 Click	on	the	button		Organise	.	Now	the	dashboard's	grid	will	enter	the	edit	mode	and

allow	you	to	resize	and	reposition	its	widgets.

2.	 Resize	a	widget	by	clicking	on	the	triangle	icon	at	the	bottom	right	corner	of	the	widget
and	drag	the	cursor	over	the	grid.	After,	click	on	the	button		Save		to	save	this	action.

8.4	Visualise	data	from	your	device

474

3.	 Change	the	widget's	position	by	drag-and-dropping	it	over	the	grid.	After,	click	on	the
button		Save		to	save	this	action.

Done!
Now	you've	learned	how	to	set	up	your	device's	dashboard	to	display	data.	Also,	you	can
add	more	widgets	to	other	pins	of	your	device.

8.4	Visualise	data	from	your	device

475

8.4	Visualise	data	from	your	device

476

Documentation	Notes
The	Pycom	documentation	aims	to	be	straightforward	and	to	adhere	to	typical	Python
documentation	to	allow	for	ease	of	understanding.	However,	there	may	be	some	unusual
features	for	those	not	used	to	Python	documentation	or	that	are	new	to	the	MicroPython
Language.	This	section	of	the	documentation	aims	to	provide	clarity	for	any	of	the	design
specifics	that	might	be	confusing	for	those	new	to	Python	and	this	style	of	documentation.

9.1	Introduction

477

Documentation	Syntax
The	Pycom	documentation	follows	standard	Python	Library	format	using	the	popular	Sphinx
Docs	tool.	There	are	some	notable	points	regarding	the	syntax	of	classes,	methods	and
constants.	Please	see	the	notes	below	and	familiarise	yourself	with	the	specific	details
before	reviewing	the	documentation.

Keyword	Arguments

	Keyword	Arguments		refer	to	the	arguments	that	are	passed	into	a	constructor	(upon
referencing	a	class	object).	When	passing	values	into	a	MicroPython	constructor	it	is	not
always	required	to	specify	the	name	of	the	argument	and	instead	rely	on	the	order	of	the
arguments	passed	as	to	describe	what	they	refer	to.	In	the	example	below,	it	can	be	seen
that	the	argument		mode		is	passed	into	the		i2c.init()		method	without	specifying	a	name.

The	values	of	the	arguments	(as	seen	in	the	examples/docs)	refer	to	the	default	values	that
are	passed	into	the	constructor	if	nothing	is	provided.

i2c.init(mode,	*	,	baudrate=100000,	pins=(SDA,	SCL))
An	example	of	how	this	method	might	be	called:

i2c.init(I2C.MASTER,	pins=('P12',	'P11'))

It	can	be	seen	that	a	value	for		baudrate		was	not	passed	into	the	method	and	thus
MicroPython	will	assume	a	default	value	of		100000	.	Also	the	first	argument		mode		was	not
specified	by	name,	as	the	constructor	does	not	require	it,	denoted	by	the	lack	of	an		=	
symbol	in	the	constructor	documentation.

Passing	Arguments	into	a	Method

It	is	important	to	note	that	there	are	certain	class	methods	that	can	only	accept	a		keyword	
for	certain	arguments	as	well	as	some	that	only	accept	a		value	.	This	is	intentional	by
design	but	is	not	always	apparent	to	the	user	calling	specific	methods.	The	differences
between	the	two	are	outlined	below,	with	examples	referencing	where	differences	might
apply	and	what	to	be	aware	of.

Keyword

9.2	Syntax

478

An	astrik		*		in	a	method	description	(in	the	docs),	denotes	that	the	following	arguments
require	a	keyword,	i.e.		pin='P16'		in	the	example	below.

adc.channel(*	,	pin,	attn=ADC.ATTN_0DB)

from	machine	import	ADC

adc	=	ADC()																					#	create	an	ADC	object

apin	=	adc.channel(pin='P16')			#	create	an	analog	pin	on	P16

	pin		is	a	required	argument	and	the	method		channel		will	not	execute	unless	it	is	passed
as	with	a	keyword.

Another	example	shows	how	the		PWM		class,		pwm.channel()		requires	a	keyword	argument
for		pin		but	does	not	for		id	.

from	machine	import	PWM

pwm	=	PWM(0,	frequency=5000)

pwm_c	=	pwm.channel(0,	pin='P12')	#	no	keyword	argument	requires	for	id	(0)	but	is	req

uired	for	pin	(pin='P12')

Value

The	documentation	may	refer	to	a	method	that	takes	an	argument	listed	by	name	but	does
allow	for	a	keyword	to	be	passed.	For	example,	the		pycom		class	contains	a	method
	rgbled	.	This	lists	that	the	method	accepts	a	value	for		color	,	however	this	may	not	be
specified	by		keyword	,	only		value	.	This	is	intentional	as	the		value		being	passed	is	the
only	argument	valid	for	this	method

pycom.rgbled(color)
If	the	argument	is	passed	into	the	method	with	a	keyword,	it	will	return	an	error	stating
TypeError:	function	does	not	take	keyword	arguments.

import	pycom

pycom.rgbled(color=0xFF0000)	#	Incorrect

pycom.rgbled(0xFF0000)	#	Correct

Another	example	of	a	method	that	only	accepts	value	input.	In	this	case,	the		RTC.init()	
method	require	a	value	(tuple)	input	for	the		datetime	.	It	will	not	accept	a	keyword.

rtc.init(datetime)

9.2	Syntax

479

from	machine	import	RTC

rtc	=	RTC()

rtc.init(datetime=(2014,	5,	1,	4,	13,	0,	0,	0))	#	Incorrect

rtc.init((2014,	5,	1,	4,	13,	0,	0,	0))	#	Correct

Constants

The		constants		section	of	a	library	within	the	docs	refers	to	specific	values	from	that	library’s
class.	These	might	be	used	when	constructing	an	object	from	that	class	or	when	utilising	a
method	from	within	that	class.	These	are	generally	listed	by	the	library	name	followed	by	the
specific	value.	See	the	example	below:

I2C.MASTER()

Be	aware	that	you	can	only	reference	these	constants	upon	importing	and	constructing
a	object	from	a	library.

9.2	Syntax

480

REPL	vs	Scripts
Users	of	this	documentation	should	be	aware	that	examples	given	in	the	docs	are	under	the
expectation	that	they	are	being	executed	using	the	MicroPython	REPL.	This	means	that
when	certain	functions	are	called,	their	output	may	not	necessarily	be	printed	to	the	console
if	they	are	run	from	a	script.	When	using	the	REPL	many	classes/functions	automatically
produce	a	printed	output	displaying	the	return	value	of	the	function	to	the	console.	The	code
snippet	below	demonstrates	some	examples	of	classes/functions	that	might	display	this
behaviour.

Basic	Arithmetic

1	+	1	#	REPL	will	print	out	'2'	to	console

1	+	1	#	Script	will	not	return	anything	the	console

print(1	+	1)	#	Both	the	REPL	and	a	script	will	return	'2'	to	the	console

Calling	Methods

import	ubinascii

ubinascii.hexlify(b'12345')	#	REPL	will	print	out	"b'3132333435'"	to	the	console

ubinascii.hexlify(b'12345')	#	Script	will	not	return	any	the	console

In	order	to	use	these	functions	that	do	not	print	out	any	values,	you	will	need	to	either	wrap
them	in	a		print()		statement	or	assign	them	to	variables	and	call	them	later	when	you	wish
to	use	them.

For	example:

#	immediately	print	to	console	when	using	a	script

print(1	+	1)

#	or	save	variable	to	for	later

value	=	1	+	1

#	do	something	here...

print(value)

9.3	REPL	vs	Scripts

481

Firmware	Downgrade
The	firmware	upgrade	tool	usually	updates	your	device	to	the	latest	available	firmware
version.	If	you	require	to	downgrade	your	device	to	a	previous	firmware	there	are	two
methods	to	achieve	this.

If	you	are	using	an	Expansion	Board	1.0	or	2.0,	you	will	need	to	have	a	jumper
connected	between		G23		and		GND		to	use	either	procedure	below.	You	will	also	need	to
press	the	reset	button	before	beginning.

You	can	obtain	previous	firmware	versions	here:

WiPy
LoPy
SiPy
GPy
FiPy
LoPy4

Note:	Prior	to	version		1.16.0.b1		the	firmware	for	modules	with	LoRa	functionality	was
frequency	specific.	From		1.16.0.b1		and	onward,	the	firmware	is	region	agnostic	and	this
can	either	be	set	programatically	or	via	the	config	block	(see	here).

GUI
As	of	version		1.12.0.b0		of	the	firmware	update	tool,	you	can	now	provide	a		.tar		or
	.tar.gz		archive	of	the	firmware	you	wish	to	upload	to	the	board.

When	you	start	the	update	tool	you	will	see	the	following	screen:

10.1	Firmware	Downgrade

482

https://software.pycom.io/downloads/WiPy.html
https://software.pycom.io/downloads/LoPy.html
https://software.pycom.io/downloads/SiPy.html
https://software.pycom.io/downloads/GPy.html
https://software.pycom.io/downloads/FiPy.html
https://software.pycom.io/downloads/LoPy4.html

When	you	tick	the		Flash	from	local	file		option,	an	address	bar	will	appear.	Click	the		...	
button	and	locate	the		.tar(.gz)		file	with	the	firmware	you	wish	to	flash	to	your	device.
From	this	point	the	updater	will	behave	just	like	a	regular	update	but	using	the	local	file
instead	of	downloading	the	latest.

Command	line
You	can	also	use	the	CLI	version	of	the	update	tool	to	downgrade	your	device.	Will	need	to
get	a		.tar		or		.tar.gz		archive	of	the	firmware	you	wish	to	upload	to	the	board.	Then	run
the	following	commands:

$	pycom-fwtool-cli	-v	-p	PORT	flash	-t	/path/to/firmware/archive.tar.gz

10.1	Firmware	Downgrade

483

Command	Line	Update	Utility

Windows

After	installing	the	Windows	version	of	the	updater	tool,	the	CLI	tool		pycom-fwtool-cli.exe	
can	be	found	here:

32-Bit	Windows:		C:\Program	Files\Pycom\Pycom	Firmware	Update\	
64-Bit	Windows:		C:\Program	Files	(x86)\Pycom\Pycom	Firmware	Update\	

macOS

In	order	to	get	access	to	the	CLI	tool	on	macOS,	you	will	need	to	right	click	on	the	Mac
version	of	the	updater	tool	and	click		Show	Package	Contents	,	then	navigate	to
	Contents/Resources	,	here	you	will	find	the		pycom-fwtool-cli	.

Linux

In	the	Ubuntu	14.04	LTS	(and	newer)	version	of	the	updater	tool,		pycom-fwtool-cli		is
installed	in		/usr/local/bin	.	In	the	Generic	Linux	package,	the	tool	is	extracted	into	folder
	./pyupgrade	

Usage

10.2	CLI	Updater

484

https://software.pycom.io/findupgrade?product=pycom-firmware-updater&type=all&platform=win32&redirect=true
https://software.pycom.io/findupgrade?product=pycom-firmware-updater&type=all&platform=macos&redirect=true
https://software.pycom.io/findupgrade?product=pycom-firmware-updater&type=all&platform=unix&redirect=true
https://software.pycom.io/findupgrade?product=pycom-firmware-updater&type=all&platform=unix&redirect=true

usage:	pycom-fwtool-cli	[-h]	[-v]	[-d]	[-q]	[-p	PORT]	[-s	SPEED]	[-c]	[-x]

																								[--ftdi]	[--pic]	[-r]

																								{list,chip_id,wmac,smac,sigfox,exit,flash,copy,write,write_rem

ote,wifi,pybytes,cb,nvs,ota,lpwan,erase_fs,erase_all}

																								...

Update	your	Pycom	device	with	the	specified	firmware	image	file	For	more

details	please	see	https://docs.pycom.io/chapter/advance/cli.html

positional	arguments:

		{list,chip_id,wmac,smac,sigfox,exit,flash,copy,write,write_remote,wifi,pybytes,cb,nv

s,ota,lpwan,erase_fs,erase_all}

				list																Get	list	of	available	COM	ports

				chip_id													Show	ESP32	chip_id

				wmac																Show	WiFi	MAC

				smac																Show	LPWAN	MAC

				sigfox														Show	sigfox	details

				exit																Exit	firmware	update	mode

				flash															Write	firmware	image	to	flash

				copy																Read/Write	flash	memory	partition

				write															Write	to	flash	memory

				wifi																Get/Set	default	WIFI	parameters

				pybytes													Read/Write	pybytes	configuration

				cb																		Read/Write	config	block

				nvs																	Read/Write	non	volatile	storage

				ota																	Read/Write	ota	block

				lpwan															Get/Set	LPWAN	parameters	[EU868	US915	AS923	AU915]

				erase_fs												Erase	flash	file	system	area

				erase_all											Erase	entire	flash!

optional	arguments:

		-h,	--help												show	this	help	message	and	exit

		-v,	--verbose									show	verbose	output	from	esptool

		-d,	--debug											show	debuggin	output	from	fwtool

		-q,	--quiet											suppress	success	messages

		-p	PORT,	--port	PORT		the	serial	port	to	use

		-s	SPEED,	--speed	SPEED

																								baudrate

		-c,	--continuation				continue	previous	connection

		-x,	--noexit										do	not	exit	firmware	update	mode

		--ftdi																force	running	in	ftdi	mode

		--pic																	force	running	in	pic	mode

		-r,	--reset											use	Espressif	reset	mode

How	to	use	the	Parameters

The	CLI	tool	uses	a	combination	of	global	and	command	specific	parameters.	The	order
of	parameters	is	important	to	avoid	ambiguity.

10.2	CLI	Updater

485

	pycom-fwtool-cli	[global	parameters]	[command]	[command	parameters]	

While		pycom-fwtool-cli	-h		shows	help	for	global	parameters	and	a	list	of	available
commands,	command	specific	parameters	can	be	viewed	using		pycom-fwtool-cli
[command]	-h	

The	parameter		-r,	--reset		has	been	added	as	a	courtesy	for	users	of	3rd	party
ESP32	products.	This	functionality	is	not	supported	by	the	Expansion	Board	2.0	and
may	cause	this	tool	to	crash	or	hang	in	certain	circumstances.

Global	Parameters

`-h	/	--help`				:	shows	above	help	(you	can	also	get	detailed	help	for	each	sub-comma

nd

`-v	/	--verbose`	:	show	verbose	output	from	esptool.

`-d	/	--debug`			:	show	debug	output	from	fwtool.

`-q	/	--quiet`			:	suppress	most	output,	used	for	scripting

`-p	/	--port`				:	specifies	the	serial	port	to	be	used.	Can	also	be	set	via	**environ

ment	variable	ESPPORT**

`-s	/	--speed`			:	specifies	the	serial	speed	to	be	used.	Can	also	be	set	via	**enviro

nment	variable	ESPBAUD**

`-c	/	--continuation`	:	continue	previous	connection	in	FTDI	mode.	This	allows	running

	multiple	commands	sequentially	without	having	to	reset	the	module.	This	option	is	ign

ored	in	PIC	mode	as	the	module	can	be	reset	via	the	serial	connection.

`-x	/	--noexit`		:	This	will	prevent	the	PIC	from	leaving	firmware	update	mode.

`--ftdi`									:	This	will	force	the	CLI	updater	to	run	in	FTDI	mode.

`--pic`										:	This	will	force	the	CLI	updater	to	run	in	PIC	mode.

`-r,	--reset`				:	This	will	force	the	CLI	updater	to	use	Espressif's	workaround	to	sw

itch	into	Firmware	update	mode.	This	reset	method	is	intended	for	3rd	party	hardware	o

nly	and	is	not	supported	by	the	Expansion	Board	2.0

Commands

list

Get	list	of	available	serial	ports	ports.

usage:	pycom-fwtool-cli	list	[-h]

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

Example:	On	macOS:

10.2	CLI	Updater

486

$	pycom-fwtool-cli		list

/dev/cu.usbmodemPy343431		[Pytrack]	[USB	VID:PID=04D8:F013	SER=Py343434	LOCATION=20-2]

/dev/cu.Bluetooth-Incoming-Port		[n/a]	[n/a]

On	Windows:

COM6		[Pytrack]	[USB	VID:PID=04D8:F013	SER=Py343434	LOCATION=20-2]

This	is	the	only	command	that	does	not	require	any	additional	parameters.

All	other	commands	require	that	the	serial	port	is	specified	either	through	the		-p		/
	--port		option	or	through	environment	variable		ESPPORT		You	can	optionally	specify
the	speed	either	through		-s		/		--speed		or	via	environment	variable		ESPBAUD	.	The
default	speed	is		921600	.	The	maximum	speed	for	read	operations	on	PIC	based
expansion	boards	&	shields	is		230400	.	The	speed	will	be	reduced	automatically	if
necessary.

Special	note	for	Expansion	Board	2.0

You	will	need	to	have	a	jumper	wire	connected	between		G23		and		GND		to	use	any	of
the	commands	below.	You	will	also	need	to	press	the	reset	button	either	before
running	each	command	or	at	least	before	running	the	first	command.	To	avoid	having	to
press	the	reset	button	again	after	each	command,	you	can	use	the		-c		/		--
continuation		option.	The	first	command	connecting	to	the	device	MUST	NOT	use	the		-
c		/		--continuation		option.	This	is	to	make	sure	a	program	called		_stub_		is	uploaded
onto	the	device.	This		_stub_		cannot	be	uploaded	more	than	once,	so	you	need	to	tell
the	cli	tool	that	the		_stub_		is	already	running,	which	is	done	through	using	the		-c		/		--
continuation		option.

chip_id

Shows	the	unique	ID	of	the	ESP32	on	the	connected	module.

usage:	pycom-fwtool-cli		-p	PORT	exit	[-h]

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

wmac

10.2	CLI	Updater

487

Shows	the	WiFi	MAC	of	the	connected	module.

usage:	pycom-fwtool-cli		-p	PORT	wmac	[-h]

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

smac

Shows	the	LPWAN	MAC	of	the	connected	module.

usage:	pycom-fwtool-cli		-p	PORT	smac	[-h]

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

sigfox

Show	sigfox	details

usage:	pycom-fwtool-cli		-p	PORT	sigfox	[-h]

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

exit

If	a	Pysense/Pytrack/Expansion	3	has	previously	been	left	in	firmware	update	mode	by	using
the		-x		option,	this	command	can	be	used	to	exit	the	firmware	update	mode.

usage:	pycom-fwtool-cli		-p	PORT	exit	[-h]

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

flash

Writes	firmware	image	to	flash,	must	be	as	a		.tar(.gz)		file	as	provided	by	Pycom.	These
files	can	be	found	on	GitHub.

10.2	CLI	Updater

488

https://github.com/pycom/pycom-micropython-sigfox/releases

usage:	pycom-fwtool-cli		-p	PORT	flash	[-h]	[-t	TAR]

optional	arguments:

		-h,	--help									show	this	help	message	and	exit

		-t	TAR,	--tar	TAR		perform	the	upgrade	from	a	tar[.gz]	file

copy

Read/Write	flash	memory	partition	from/to	local	file

usage:	pycom-fwtool-cli		-p	PORT	[-h]	[-p	PARTITION]	[-f	FILE]	[-r]	[-b]

optional	arguments:

		-h,	--help												show	this	help	message	and	exit

		-p	PARTITION,	--partition	PARTITION

																								The	partition	to	read/write	(all,	fs,	nvs,	factory,

																								secureboot,	bootloader,	partitions,	otadata,	fs1,

																								ota_0,	config)

		-f	FILE,	--file	FILE		name	of	the	binary	file	(default:	<wmac>-<part>.bin)

		-r,	--restore									restore	partition	from	binary	file

		-b,	--backup										backup	partition	to	binary	file	(default)

write

Write	to	a	specific	location	in	flash	memory.

usage:	pycom-fwtool-cli		-p	PORT	write	[-h]	[-a	ADDRESS]	[--contents	CONTENTS]

optional	arguments:

		-h,	--help												show	this	help	message	and	exit

		-a	ADDRESS,	--address	ADDRESS

																								address	to	write	to

		--contents	CONTENTS			contents	of	the	memory	to	write	(base64)

wifi

Get/Set	default	WiFi	parameters.

usage:	pycom-fwtool-cli	wifi	[-h]	[--ssid	SSID]	[--pwd	PWD]	[--wob	[WOB]]

optional	arguments:

		-h,	--help			show	this	help	message	and	exit

		--ssid	SSID		Set	Wifi	SSID

		--pwd	PWD				Set	Wifi	PWD

		--wob	[WOB]		Set	Wifi	on	boot

10.2	CLI	Updater

489

pybytes

Read/Write	pybytes	configuration.

usage:	pycom-fwtool-cli	pybytes	[-h]	[--token	TOKEN]	[--mqtt	MQTT]	[--uid	UID]

																																[--nwprefs	NWPREFS]	[--extraprefs	EXTRAPREFS]

optional	arguments:

		-h,	--help												show	this	help	message	and	exit

		--token	TOKEN									Set	Device	Token

		--mqtt	MQTT											Set	mqttServiceAddress

		--uid	UID													Set	userId

		--nwprefs	NWPREFS					Set	network	preferences

		--extraprefs	EXTRAPREFS

																								Set	extra	preferences

Note:	The	local		pybytes_config.json		file	is	overwritten	when	making	any	modifications
using	this	command	(requires	Pybytes	firmware		1.17.5.b6		or	higher	and	Firmware
updater		1.14.3).

cb

Read/Write	config	block	(LPMAC,	Sigfox	PAC	&	ID,	etc.).	You	can	find	the	structure	of	this
block	here.

usage:	pycom-fwtool-cli		-p	PORT	cb	[-h]	[-f	FILE]	[-b]	[-r]

optional	arguments:

		-h,	--help												show	this	help	message	and	exit

		-f	FILE,	--file	FILE		name	of	the	backup	file

		-b,	--backup										backup	cb	partition	to	file

		-r,	--restore									restore	cb	partition	from	file

If	neither		-b		or		-r		is	provided,	the	command	will	default	to	backup.	If	no	file	name	is
provided,		<WMAC>.cb		is	used.

To	backup	your	config	block:		$pycom-fwtool-cli	-p	PORT	cb	

To	restore	your	config	block:		$pycom-fwtool-cli	-p	PORT	cb	-r	-f	backup.cb	

nvs

Read/Write	non-volatile	storage.

10.2	CLI	Updater

490

https://github.com/pycom/pycom-micropython-sigfox/blob/master/esp32/pycom_config.h#L24

usage:	pycom-fwtool-cli		-p	PORT	nvs	[-h]	[-f	FILE]	[-b]	[-r]

optional	arguments:

		-h,	--help												show	this	help	message	and	exit

		-f	FILE,	--file	FILE		name	of	the	backup	file

		-b,	--backup										backup	cb	partition	to	file

		-r,	--restore									restore	cb	partition	from	file

If	neither		-b		or		-r		is	provided,	the	command	will	default	to	backup.	If	no	file	name	is
provided,		<WMAC>.nvs		is	used.

To	backup	your	NVS:		$pycom-fwtool-cli	-p	PORT	nvs	

To	restore	your	NVS:		$pycom-fwtool-cli	-p	PORT	nvs	-r	-f	backup.nvs	

ota

Read/Write	ota	block,	this	contains	data	relating	to	OTA	updates	such	as	the	hash	of	the
OTA	firmware.

usage:	pycom-fwtool-cli		ota	[-h]	[-f	FILE]	[-b]	[-r]

optional	arguments:

		-h,	--help												show	this	help	message	and	exit

		-f	FILE,	--file	FILE		name	of	the	backup	file

		-b,	--backup										backup	cb	partition	to	file

		-r,	--restore									restore	cb	partition	from	file

If	neither		-b		nor		-r		is	provided,	the	command	will	default	to	backup.	If	no	file	name	is
provided,		<WMAC>.ota		is	used.

To	backup	your	OTA	block:		$pycom-fwtool-cli	-p	PORT	ota	

To	restore	your	OTA	block:		$pycom-fwtool-cli	-p	PORT	ota	-r	-f	backup.ota	

lpwan

Get/Set	LPWAN	parameters	saved	to	non-volatile	storage.	Please	see	here	for	more	details.

10.2	CLI	Updater

491

usage:	pycom-fwtool-cli		-p	PORT	lpwan	[-h]	[--region	REGION]

optional	arguments:

		-h,	--help							show	this	help	message	and	exit

		--region	REGION		Set	default	LORA	region

		--erase_region			Erase	default	LORA	region

		--lora_region				Output	only	LORA	region

erase_fs

Erase	flash	file	system	area.	This	is	useful	if	some	code	running	on	the	device	is	preventing
access	to	the	REPL.

usage:	pycom-fwtool-cli		-p	PORT	erase_fs	[-h]

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

erase_all

Erase	entire	flash,	only	use	this	if	you	are	sure	you	know	what	you	are	doing.	This	will
remove	your	devices	lpwan	mac	addresses	etc.

usage:	pycom-fwtool-cli	erase_all	[-h]

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

10.2	CLI	Updater

492

Steps	for	using	Secure	Boot	and	Flash
Encryption

Summary

In	order	to	encrypt	your	firmware,	you	will	need	to	build	it	from	source.	Our	firmware	source
code	can	be	found	here,	along	with	instructions	on	how	to	build	it.	Below	you	will	find
specific	instructions	on	how	generate	keys,	build	and	flash	encrypted	firmware.

1.	 Obtain	keys	(for	Secure	Boot	and	Flash	Encryption)
2.	 Flash	keys	and	parameters	in		efuses	
3.	 Compile	bootloader	and	application	with		make	SECURE=on	
4.	 Flash:	bootloader-digest	at	address		0x0		and	encrypted;	all	the	others	(partitions	and

application)	encrypted,	too.

Prerequisites

Firstly	you	will	need	to	setup	the	tool	chain	and	download	the	source	code.	detailed
instructions	on	how	to	achieve	this	can	be	found	here.	Once	you	have	complete	this,	you	will
need	to	open	a	terminal	in	the		esp32		folder	of	the	firmware	source	code	repo.

Next	you	will	need	keys	for	Flash	Encryption	and	Secure	Boot;	they	can	be	generated
randomly	with	the	following	commands:

				python	$IDF_PATH/components/esptool_py/esptool/espsecure.py	generate_flash_encrypt

ion_key	flash_encryption_key.bin

				python	$IDF_PATH/components/esptool_py/esptool/espsecure.py	generate_signing_key	s

ecure_boot_signing_key.pem

The	Secure	Boot	key		secure_boot_signing_key.pem		has	to	be	transformed	into		secure-
bootloader-key.bin	,	to	be	burnt	into	efuses.	This	can	be	done	in	2	ways:

				python	$IDF_PATH/components/esptool_py/esptool/espsecure.py	extract_public_key	--k

eyfile	secure_boot_signing_key.pem	signature_verification_key.bin

or,	as	an	artifact	of	the	make	build	process,	on	the	same	directory	level	as	Makefile

				make	BOARD=GPY	SECURE=on	TARGET=boot

10.3	SecureBoot	and	Encryption

493

https://github.com/pycom/pycom-micropython-sigfox/
https://github.com/pycom/pycom-micropython-sigfox/blob/master/README.md#the-esp32-version_

To	flash	the	keys	(flash_encryption_key.bin		and		secure-bootloader-key.bin)	into	the
efuses	(write	and	read	protected)	run	the	following	commands	(ignoring	the	lines	that	start
with		#):

Note:	Irreversible	operations

				#	Burning	Encryption	Key

				python	$IDF_PATH/components/esptool_py/esptool/espefuse.py	--port	/dev/ttyUSB0	bur

n_key	flash_encryption	flash_encryption_key.bin

				#	Burning	Secure	Boot	Key

				python	$IDF_PATH/components/esptool_py/esptool/espefuse.py	--port	/dev/ttyUSB0	bur

n_key	secure_boot	secure-bootloader-key.bin

				#	Enabling	Flash	Encryption	mechanism

				python	$IDF_PATH/components/esptool_py/esptool/espefuse.py	--port	/dev/ttyUSB0	bur

n_efuse	FLASH_CRYPT_CNT

				#	Configuring	Flash	Encryption	to	use	all	address	bits	together	with	Encryption	ke

y	(max	value	0x0F)

				python	$IDF_PATH/components/esptool_py/esptool/espefuse.py	--port	/dev/ttyUSB0	bur

n_efuse	FLASH_CRYPT_CONFIG	0x0F

				#	Enabling	Secure	Boot	mechanism

				python	$IDF_PATH/components/esptool_py/esptool/espefuse.py	--port	/dev/ttyUSB0	bur

n_efuse	ABS_DONE_0

If	the	keys	are	not	written	in	efuse,	before	flashing	the	bootloader,	then	random	keys
will	be	generated	by	the	ESP32,	they	can	never	be	read	nor	re-written,	so	bootloader
can	never	be	updated.	Even	more,	the	application	can	be	re-flashed	(by	USB)	just	3
more	times.

Makefile	options:

				make	BOARD=GPY	SECURE=on	SECURE_KEY=secure_boot_signing_key.pem	ENCRYPT_KEY=flash_

encryption_key.bin	TARGET=[boot|app]

	SECURE=on		is	the	main	flag;	it's	not	optional
if		SECURE=on		the	following	defaults	are	set:

encryption	is	enable
	secure_boot_signing_key.pem		is	the	secure	boot	key,	located	relatively	to	Makefile
	flash_encryption_key.bin		is	the	flash	encryption	key,	located	relatively	to	Makefile

For	flashing	the	bootloader	digest	and	the	encrypted	versions	of	all	binaries:

				make	BOARD=GPY	SECURE=on	flash

Flashing

10.3	SecureBoot	and	Encryption

494

For	flashing	the		bootloader-reflash-digest.bin		has	to	be	written	at	address	0x0,	instead	of
the		bootloader.bin		(at	address		0x1000).

Build	is	done	using		SECURE=on		option;	additionally,	all	the	binaries	are	pre-encrypted.

				make	BOARD=GPY	clean

				make	BOARD=GPY	SECURE=on	TARGET=boot

				make	BOARD=GPY	SECURE=on	TARGET=app

				make	BOARD=GPY	SECURE=on	flash

Manual	flash	command:

				python	$IDF_PATH/components/esptool_py/esptool/esptool.py	--chip	esp32	--port	/dev

/ttyUSB0	--baud	921600	--before	no_reset	--after	no_reset	write_flash	-z	--flash_mode	

dio	--flash_freq	80m	--flash_size	detect	0x0	build/GPY/release/bootloader/bootloader-r

eflash-digest.bin_enc	0x8000	build/GPY/release/lib/partitions.bin_enc	0x10000	build/GP

Y/release/gpy.bin_enc_0x10000

OTA	update

The	OTA	should	be	done	using	the	pre-encrypted	application	image.

Because	the	encryption	is	done	based	on	the	physical	flash	address,	there	are	2	application
binaries	generated:

	gpy.bin_enc_0x10000		which	has	to	be	written	at	default	factory	address:		0x10000	
	gpy.bin_enc_0x1A0000		which	has	to	be	written	at	the		ota_0		partition	address
(0x1A0000)

Hint:	on	MicroPython	interface,	the	method		pycom.ota_slot()		responds	with	the
address	of	the	next	OTA	partition	available	(either		0x10000		or		0x1A0000).

10.3	SecureBoot	and	Encryption

495

MicroPython	License	Information
The	MIT	License	(MIT)

Copyright	(c)	2013-2015	Damien	P.	George,	and	others

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of	this	software
and	associated	documentation	files	(the	“Software”),	to	deal	in	the	Software	without
restriction,	including	without	limitation	the	rights	to	use,	copy,	modify,	merge,	publish,
distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to	permit	persons	to	whom	the
Software	is	furnished	to	do	so,	subject	to	the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all	copies	or
substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	“AS	IS”,	WITHOUT	WARRANTY	OF	ANY	KIND,
EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF
MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR	PURPOSE	AND
NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS
BE	LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN
ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN
CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE
SOFTWARE.

Copyright	(c)	2017,	Pycom	Limited.

This	software	is	licensed	under	the	GNU	GPL	version	3	or	any	later	version,	with	permitted
additional	terms.	For	more	information	see	the	Pycom	Licence	v1.0	document	supplied	with
this	file,	or	available	at	https://www.pycom.io/opensource/licensing

11.1	License

496

https://www.pycom.io/opensource/licensing

	Preface
	Pycom Products
	1.0 Introduction
	1.1 Hardware Setup
	1.1.1 LoPy
	1.1.2 LoPy4
	1.1.1 SiPy
	1.1.1 GPy
	1.1.1 FiPy
	1.1.1 WiPy

	1.2 Software
	1.2.1 Drivers
	1.2.2 Updating Firmware
	1.2.3 Pymakr

	1.3 Programming the modules
	1.3.1 Introduction to MicroPython
	1.3.2 MicroPython Examples
	1.3.3 Your first Pymakr project
	1.3.4 REPL
	1.3.4.1 Serial USB
	1.3.4.2 Telnet

	1.3.5 FTP
	1.3.6 Safe boot

	1.4 Device Registration
	1.4.1 Sigfox
	1.4.2 Cellular
	1.4.3 LoRaWAN
	1.4.3.2 The Things Network
	1.4.3.2 Objenious

	2.1 Installation
	2.1.1 Atom
	2.1.2 Visual Studio Code

	2.2 Tools/Features
	2.3 Settings
	3.1 Introduction
	3.2 Installing Software
	3.2.1 Updating Firmware
	3.2.2 Installing Drivers - Windows 7
	3.2.3 Installing Libraries

	3.3 API Reference
	3.3.1 Pytrack
	3.3.2 Pysense
	3.3.3 Sleep

	4.1 Introduction
	4.2 All Pycom Device Examples
	4.2.1 REPL
	4.2.2 WLAN
	4.2.3 Bluetooth
	4.2.4 HTTPS
	4.2.5 MQTT
	4.2.6 AWS
	4.2.7 ADC
	4.2.8 I2C
	4.2.9 Onewire Driver
	4.2.10 Threading
	4.2.11 RGB LED
	4.2.12 Timers
	4.2.13 PIR Sensor
	4.2.14 Modbus
	4.2.15 OTA update
	4.2.16 RMT

	4.3 LoRa Examples
	4.3.1 LoRa-MAC (Raw LoRa)
	4.3.2 LoRaWAN with OTAA
	4.3.3 LoRaWAN with ABP
	4.3.4 LoRa-MAC Nano-Gateway
	4.3.5 LoPy to LoPy
	4.3.6 LoRaWAN Nano-Gateway
	4.3.7 RN2483 to LoPy

	4.4 Sigfox Examples
	4.4.1 Register Device
	4.4.2 Disengage Sequence Number

	4.5 LTE Examples
	4.5.1 CAT-M1
	4.5.2 NB-IoT
	4.5.3 Module IMEI
	4.5.3 Modem Firmware Update

	4.6 Pytrack Examples
	4.7 Pysense Examples
	5.1 Introduction
	5.2 Pycom Modules
	5.2.1 machine
	5.2.1.1 ADC
	5.2.1.2 DAC
	5.2.1.3 I2C
	5.2.1.4 Pin
	5.2.1.5 PWM
	5.2.1.6 RTC
	5.2.1.7 SPI
	5.2.1.8 UART
	5.2.1.9 WDT
	5.2.1.10 Timer
	5.2.1.11 SD
	5.2.1.12 CAN
	5.2.1.13 RMT

	5.2.2 network
	5.2.2.1 WLAN
	5.2.2.2 Server
	5.2.2.3 Bluetooth
	5.2.2.4 LoRa
	5.2.2.5 Sigfox
	5.2.2.6 LTE

	5.2.3 AES
	5.2.4 pycom

	5.3 MicroPython Modules
	5.3.1 micropython
	5.3.2 uctypes
	5.3.3 sys
	5.3.4 uos
	5.3.5 array
	5.3.6 cmath
	5.3.7 math
	5.3.8 gc
	5.3.9 ubinascii
	5.3.10 ujson
	5.3.11 ure
	5.3.12 usocket
	5.3.13 select
	5.3.14 utime
	5.3.15 uhashlib
	5.3.16 ussl
	5.3.17 ucrypto
	5.3.18 ustruct
	5.3.19 _thread
	5.3.20 Builtin

	6.0 Introduction
	6.1 Development Modules
	6.1.1 WiPy 2.0
	6.1.2 WiPy 3.0
	6.1.3 LoPy
	6.1.4 LoPy 4
	6.1.5 SiPy
	6.1.6 GPy
	6.1.7 FiPy

	6.2 OEM Modules
	6.2.1 W01
	6.2.2 L01
	6.2.3 L04
	6.2.4 G01
	6.2.5 L01 OEM Baseboard Reference
	6.2.6 Universal OEM Baseboard Reference

	6.3 Expansion Boards and Shields
	6.3.1 Expansion Board 3.0
	6.3.2 Pytrack
	6.3.3 Pysense
	6.3.4 Pyscan
	6.3.5 Expansion Board 2.0
	6.3.6 Deep Sleep Shield
	6.3.6.1 Deep Sleep API

	6.4 Notes
	7.1 Development Modules
	7.2 OEM Modules
	7.3 Expansion Boards and Shields
	8.1 Introduction
	8.2 Getting Started
	8.3 Add a device to Pybytes
	8.3.1 Connect to Pybytes: Quick Add
	8.3.2 Connect to Pybytes: Flash Pybytes library manually

	8.4 Visualise data from your device
	9.1 Introduction
	9.2 Syntax
	9.3 REPL vs Scripts
	10.1 Firmware Downgrade
	10.2 CLI Updater
	10.3 SecureBoot and Encryption
	11.1 License

