
ptg999

L A R R Y U L L M A N

T O B Y D O N A L D S O N

Python

Third Edition

 LEARN THE QUICK AND EASY WAY!

VISUAL QUICKSTART GUIDE

From the Library of Mo Medwani

ptg999

Peachpit Press

V I S U A L Q U I C K S TA R T G U I D E

Python
TOBY DONALDSON

From the Library of Mo Medwani

ptg999

Visual QuickStart Guide

Python, Third Edition
Toby Donaldson

Peachpit Press

www.peachpit.com

To report errors, please send a note to errata@peachpit.com

Peachpit Press is a division of Pearson Education

Copyright © 2014 by Toby Donaldson

Editor: Scout Festa

Production Editor: Katerina Malone

Compositor: David Van Ness

Indexer: Valerie Haynes Perry

Cover Design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press

Interior Design: Peachpit Press

Logo Design: MINE™ www.minesf.com

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the

publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has

been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any

person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the

instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson Education.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,

the designations appear as requested by the owner of the trademark. All other product names and services

identified throughout this book are used in editorial fashion only and for the benefit of such companies with no

intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey

endorsement or other affiliation with this book.

ISBN-13: 978-0-321-92955-6

ISBN-10: 0-321-92955-1

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

From the Library of Mo Medwani

http://www.peachpit.com
http://www.minesf.com

ptg999

Acknowledgments
Thanks to Clifford Colby and Scout Festa for their expertise and

patience in bringing this edition of the book to life; to the many students

at SFU who continue to teach me how best to learn Python; to John

Edgar and the other computer science teachers at SFU with whom I’ve

had the pleasure to work; and to Bonnie, Thomas, and Emily for rec-

ommending I avoid using the word blithering more than once in these

acknowledgments. And a special thank you to Guido van Rossum and

the rest of the Python community for creating a programming language

that is so much fun to use.

From the Library of Mo Medwani

ptg999

iv Contents at a Glance

Contents at a Glance

Chapter 1 Introduction to Programming 1

Chapter 2 Arithmetic, Strings, and Variables 9

Chapter 3 Writing Programs . 31

Chapter 4 Flow of Control . 43

Chapter 5 Functions . 67

Chapter 6 Strings . 83

Chapter 7 Data Structures . 101

Chapter 8 Input and Output . 123

Chapter 9 Exception Handling 143

Chapter 10 Object-Oriented Programming 153

Chapter 11 Case Study: Text Statistics 177

Appendix A Popular Python Packages 195

Appendix B Comparing Python 2 and Python 3 199

Index . 203

From the Library of Mo Medwani

ptg999

Table of Contents v

Table of Contents

Chapter 1 Introduction to Programming 1

The Python Language . 2

What Is Python Useful For? 3

How Programmers Work 4

Installing Python . 6

Chapter 2 Arithmetic, Strings, and Variables 9

The Interactive Command Shell 10

Integer Arithmetic . 11

Floating Point Arithmetic 13

Other Math Functions 16

Strings . 17

String Concatenation . 19

Getting Help . 20

Converting Between Types 22

Variables and Values . 24

Assignment Statements 26

How Variables Refer to Values 28

Multiple Assignment . 29

Chapter 3 Writing Programs . 31

Using IDLE’s Editor . 32

Compiling Source Code 35

Reading Strings from the Keyboard 36

Printing Strings on the Screen 39

Source Code Comments 41

Structuring a Program 42

Chapter 4 Flow of Control . 43

Boolean Logic . 44

If-Statements . 49

Code Blocks and Indentation 51

Loops . 54

From the Library of Mo Medwani

ptg999

vi Table of Contents

Comparing For-Loops and While-Loops 59

Breaking Out of Loops and Blocks 64

Loops Within Loops . 66

Chapter 5 Functions . 67

Calling Functions . 68

Defining Functions . 70

Variable Scope . 73

Using a main Function 75

Function Parameters . 76

Modules . 80

Chapter 6 Strings . 83

String Indexing . 84

Characters . 87

Slicing Strings . 89

Standard String Functions 92

Regular Expressions . 98

Chapter 7 Data Structures . 101

The type Command . 102

Sequences . 103

Tuples . 104

Lists . 108

List Functions . 110

Sorting Lists . 113

List Comprehensions . 115

Dictionaries . 118

Sets . 122

Chapter 8 Input and Output . 123

Formatting Strings . 124

String Formatting . 126

Reading and Writing Files 128

Examining Files and Folders 131

Processing Text Files 134

Processing Binary Files 138

Reading Webpages . 141

From the Library of Mo Medwani

ptg999

Table of Contents vii

Chapter 9 Exception Handling 143

Exceptions . 144

Catching Exceptions 146

Clean-Up Actions . 150

Chapter 10 Object-Oriented Programming 153

Writing a Class . 154

Displaying Objects . 156

Flexible Initialization 160

Setters and Getters . 162

Inheritance . 168

Polymorphism . 171

Learning More . 175

Chapter 11 Case Study: Text Statistics 177

Problem Description 178

Keeping the Letters We Want 180

Testing the Code on a Large Data File 182

Finding the Most Frequent Words 184

Converting a String to a Frequency Dictionary 187

Putting It All Together 188

Exercises . 190

The Final Program . 192

Appendix A Popular Python Packages 195

Some Popular Packages 196

Appendix B Comparing Python 2 and Python 3 199

What’s New in Python 3 200

Index . 203

From the Library of Mo Medwani

ptg999

This page intentionally left blank

From the Library of Mo Medwani

ptg999

1
Introduction to
Programming

In This Chapter
The Python Language 2

What Is Python Useful For? 3

How Programmers Work 4

Installing Python 6

Before we dive into the details of Python

programming, it helps to learn a bit about

what Python is and what kinds of programs

it is used for. We will also outline exactly

what it is that programmers do. Finally,

we’ll learn how to install Python and run

the IDLE editor that comes with it.

If you are new to programming, this short

introduction should help you get your foot-

ing in preparation for learning the Python

programming language.

If you already have a grasp of the basic

concepts, feel free to jump ahead to the

sections on how to install Python and run

the editor.

From the Library of Mo Medwani

ptg999

2 Chapter 1

The Python Language
So what is Python? Briefly, it is a computer

programming language and a correspond-

ing set of software tools and libraries. It was

originally developed in the early 1990s by

Guido van Rossum, and it is now actively

maintained by dozens of programmers

around the world (including van Rossum).

Python was designed to be easy to read

and learn. Compared with programs writ-

ten in most other programming languages,

Python programs look neat and clean:

Python has few unnecessary symbols, and

it uses straightforward English names.

Python is a very productive language:

Once you’re proficient with Python, you

can get more done with it in less time

than you can in most other programming

languages. Python supports—but doesn’t

force you to use—object-oriented pro-
gramming (OOP).

Python comes with a wide range of ready-

made libraries that can be used in your

own programs; as some Python program-

mers like to say, Python comes with “bat-

teries included.”

A very practical feature of Python is its

maintainability. Since Python programs are

relatively easy to read and modify, they are

easy for programmers to keep up to date.

Program maintenance can easily account

for 50 percent or more of the work a

programmer does, and so Python’s support

for maintenance is a big win in the eyes of

many professionals.

Finally, a word about the name. According

to Python’s originator, Guido van Rossum,

Python was named after the Monty Python

comedy troupe. Despite this mirthful origin,

Python now uses a pair of iconic blue and

yellow snakes—presumably pythons—as its

standard symbol.

From the Library of Mo Medwani

ptg999

Introduction to Programming 3

What Is Python
Useful For?
While Python is a general-purpose lan-

guage that can be used to write any kind

of program, it is especially popular for the

following applications:

■ Scripts. These short programs auto-

mate common administrative tasks,

such as adding new users to a system,

uploading files to a website, download-

ing webpages without using a browser,

and so on.

■ Website development. A number of

Python projects—such as Django

(www.djangoproject.com), Bottle

(www.bottlepy.org), and Zope

(www.zope.org)—are popular among

developers as tools for quickly creat-

ing dynamic websites. For instance, the

popular news site www.reddit.com was

written using Python.

■ Text processing. Python has excellent

support for handling strings and text

files, including regular expressions and

Unicode.

■ Scientific computing. Many superb

scientific Python libraries are available

on the web, providing functions for

statistics, mathematics, and graphing.

■ Education. Thanks to its relative

simplicity and utility, Python is becom-

ing more and more popular as a first

programming language in schools.

Of course, Python isn’t the best choice

for all projects. It is often slower than

languages such as Java, C#, or C++. So,

for example, you wouldn’t use Python to

create a new operating system.

But when you need to minimize the

amount of time a programmer spends on a

project, Python is often an excellent choice.

From the Library of Mo Medwani

http://www.djangoproject.com
http://www.bottlepy.org
http://www.zope.org
http://www.reddit.com

ptg999

4 Chapter 1

How Programmers
Work
While there is no strict recipe for writing

programs, most programmers follow a

similar process.

The programming process
1. Determine what your program is sup-

posed to do—that is, figure out its

requirements.

2. Write the source code (in our case, the

Python code) in IDLE (Python’s inte-

grated development environment) or

any other text editor. This is often the

most interesting and challenging step,

and it often involves creative prob-

lem solving. Python source code files

end with .py: web.py, urlexpand.py,

clean.py, and so on.

3. Convert the source code to object
code using the Python interpreter.
Python puts object code in .pyc files.

For example, if your source code is in

urlexpand.py, its object code will be

put in urlexpand.pyc.

4. Run, or execute, the program. With

Python, this step is usually done imme-

diately and automatically after step 2 is

finished. In practice, Python program-

mers rarely work directly with object

code or .pyc files.

From the Library of Mo Medwani

ptg999

Introduction to Programming 5

5. Finally, check the program’s output.

If errors are discovered, go back to

step 2 to try to fix them. The process of

fixing errors is called debugging. For

large or complex programs, debugging

can sometimes take up most of the

program development time, so experi-

enced programmers try to design their

programs in ways that will minimize

debugging time.

As A shows, this is an iterative process:

You write your program, test it, fix errors,

test it again, and so on until the program

behaves correctly.

A The basic steps of writing any computer

program. Typically, after you check your program

output, you find errors and so must go back to the

code-writing step to fix them.

Lingo Alert
We typically call the contents of a .py file

a program, source code, or just code.

Object code is sometimes referred to

as executable code, the executable, or

even just software.

From the Library of Mo Medwani

ptg999

6 Chapter 1

Installing Python
Python is a hands-on language, so now we

will see how to install it on your computer.

To install Python on Windows:
1. Go to the Python download page at

www.python.org/download.

2. Choose the most recent version of

Python 3 (it should have a name like

Python 3.x, where x is some small num-

ber). This will take you to the appropri-

ate download page with instructions

for downloading Python on different

computer systems.

3. Click the appropriate installer link for

your computer. For instance, if you are

running Windows, click Windows x86

MSI Installer (3.x).

4. Once the installer has finished down-

loading, run it by double-clicking it.

5. After the installation has finished (which

could take a few minutes), test to see

that Python is installed properly. Open

the Windows Start menu and choose

All Programs. You should see an entry

for Python 3.0 (often highlighted in

yellow). Select IDLE (Python GUI), and

wait a moment for the IDLE program to

launch B.

6. Try typing in 24 * 7 and pressing Return.

The number 168 should appear.

B The starting screen of the IDLE editor. The

first line tells you which version of Python you are

using—in this case, it is version 3.0b1.

From the Library of Mo Medwani

http://www.python.org/download

ptg999

Introduction to Programming 7

Installing Python on the Mac
OS X comes with a version of Python

already installed, although it lacks the

IDLE editor and is typically not the most

up-to-date version. To install a more recent

version of Python, follow the instructions

given at www.python.org/download/mac/.

Or, just download and run an installer from

www.pythonmac.org/packages/. Be careful

to ensure that you have the right version of

Python (3.0 or better) and that the Mac OS

version number matches yours.

Installing Python on Linux
If you are using Linux, chances are you

already have Python installed. To find out,

open a command-line window and type

python. If you get something similar to the

text shown in B, then Python is working.

Be sure to check the version number: This

book covers Python 3. If you have Python

2.x or earlier, then you should install

Python 3.

The exact details for doing so will depend

upon your Linux system. For example, on

Ubuntu Linux, you would search for Python

in the Synaptic Package Manager. You

can also get Linux installation help from

www.python.org/download.

From the Library of Mo Medwani

http://www.python.org/download/mac/
http://www.pythonmac.org/packages/
http://www.python.org/download

ptg999

This page intentionally left blank

From the Library of Mo Medwani

ptg999

2
Arithmetic, Strings,

and Variables

In This Chapter
The Interactive Command Shell 10

Integer Arithmetic 11

Floating Point Arithmetic 13

Other Math Functions 16

Strings 17

String Concatenation 19

Getting Help 20

Converting Between Types 22

Variables and Values 24

Assignment Statements 26

How Variables Refer to Values 28

Multiple Assignment 29

The first step in learning how to program is

to understand the basic Python data types:

integers (whole numbers), floating point

numbers (numbers with a decimal point),

and strings. All programs use these (and

other) data types, so it is important to have

a good grasp of their basic uses.

Strings, in particular, are used in so many

different kinds of programs that Python

provides a tremendous amount of support

for them. In this chapter, we’ll introduce the

basics of strings, and then we’ll return to

them in a later chapter.

We’ll also introduce the important concept

of a programming variable. Variables are

used to store and manipulate data, and

it’s hard to write a useful program without

employing at least a few of them.

Just like learning how to play the piano or

speak a foreign language, the best way to

learn how to program is to practice. Thus,

we’ll introduce all of this using the interac-

tive command shell IDLE, and ideally you

should follow along on your own computer

by typing the examples as we go.

From the Library of Mo Medwani

ptg999

10 Chapter 2

The Interactive
Command Shell
Let’s see how to interact with the Python

shell. Start IDLE; you should find it listed as

a program in your Start menu on Windows.

On Mac or Linux you should be able to run

it directly from a command line by typing

python. The window that pops up is the

Python interactive command shell, and it

looks something like what’s shown in A.

The shell prompt
In a Python transcript, >>> is the Python

shell prompt. A >>> marks a line of input

from you, the user, while lines without a

>>> are generated by Python. Thus it is

easy to distinguish at a glance what is from

Python and what is from you.

Transcripts
A shell transcript is a snapshot of the com-

mand shell showing a series of user inputs

and Python replies. We’ll be using them

frequently; they’re a great way to learn

Python by seeing real examples in action.

AWhat you should see when you first launch the Python interactive command shell. The top two lines tell

you what version of Python you are running. The version you see here is Python 3.30, and it was created a

little before 11 a.m. on September 29, 2012.

Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>>

Lingo Alert
The interactive command shell is

often abbreviated as interactive
shell, command shell, shell, or even

command line.

Shell transcripts are sometimes called

transcripts, interactive sessions, or just

sessions.

From the Library of Mo Medwani

ptg999

Arithmetic, Strings, and Variables 11

Integer Arithmetic
An integer is a whole number, such as 25,

−86, or 0. Python supports the four basic

arithmetic operations: + (addition), − (sub-

traction), * (multiplication), and / (division).

Python also uses ** for exponentiation

and % to calculate remainders (for example,

25 % 7 is 4 because 7 goes into 25 three

times, with 4 left over). For example:

>>> 5 + 9

14

>>> 22 - 6

16

>>> 12 * 14

168

>>> 22 / 7

3.1428571428571428

>>> 2 ** 4

16

>>> 25 % 7

4

>>> 1 + 2 * 3

7

>>> (1 + 2) * 3

9

Integer division
Python also has an integer division opera-

tor, //. It works like /, except that it always

returns an integer. For example, 7 // 3
evaluates to the integer 2; the digits after

the decimal are simply chopped off

(// doesn’t round!).

From the Library of Mo Medwani

ptg999

12 Chapter 2

Order of evaluation
Table 2.1 summarizes Python’s basic arith-

metic operators. They are grouped from

lowest precedence to highest precedence.

For example, when Python evaluates

the expression 1 + 2 * 3, it evaluates *
before + because * has higher precedence

(so the expression evaluates to 7—not 9!).

Operators at the same level of precedence

are evaluated in the order they are written.

You can use round brackets, (), to change

the order of evaluation—so, for example,

(1 + 2) * 3 evaluates to 9. In other

words, Python arithmetic follows the same

evaluation rules as regular arithmetic.

Unlimited size
Unlike most other programming languages,

Python puts no limit on the size of an

integer. You can do calculations involv-

ing numbers with dozens (or hundreds, or

thousands) of digits:

>>> 27 ** 100

136891479058588375991326027382088315
➝ 966463695625337436471480190078368
➝ 997177499076593800206155688941388
➝ 250484440597994042813512732765695
➝ 774566001

TABLE 2.1 Basic Arithmetic Operators

Name Operator Example

addition + >>>3 + 4

7

subtraction – >>> 5 – 3

2

multiplication * >>> 2 * 3

6

division / >>> 3 / 2

1.5

integer division // >>> 3 // 2

1

remainder % >>> 25 % 3

1

exponentiation ** >>> 3 ** 3

27

From the Library of Mo Medwani

ptg999

Arithmetic, Strings, and Variables 13

Floating Point
Arithmetic
Floating point arithmetic is done with float-
ing point numbers, which in Python are

numbers that contain a decimal point. For

instance, –3.1, 2.999, and –4.0 are floating

point numbers. We’ll call them floats for

short.

All the basic arithmetic operations that

work with integers also work with floats,

even % (remainder) and // (integer divi-

sion). See B for some examples.

Float literals
Very large or small floats are often written

in scientific notation:

>>> 8.8 ** -5.4

7.939507629591553e-06

The e-06 means to multiply the preced-

ing number by 10–6. You can use scientific

notation directly if you like:

>>> 2.3e02

230.0

Python is quite forgiving about the use of

decimal points:

>>> 3.

3.0

>>> 3.0

3.0

You can write numbers like 0.5 with or

without the leading 0:

>>> .5

0.5

>>> 0.5

0.5

B Examples of basic floating point arithmetic

using the Python command shell. Notice that

approximation errors are quite common, so exact

values are often not printed.

>>> 3.8 + -43.2
-39.400000000000006
>>> 12.6 * 0.5
6.3
>>> 12.6 + 0.01
12.61
>>> 365.0 / 12
30.416666666666668
>>> 8.8 ** -5.4
7.939507629591553e-06
>>> 5.6 // 2
2.0
>>> 5.6 % 3.2
2.3999999999999995

It’s usually clearer to write 5.0 instead

of 5., as the latter notation can be quite con-

fusing—it looks like the end of a sentence.

The difference between 5 and 5.0
matters: 5 is an integer, while 5.0 is a floating

point number. Their internal representations

are significantly different.

From the Library of Mo Medwani

ptg999

14 Chapter 2

Overflow
Unlike integers, floating point numbers

have minimum and maximum values that,

if exceeded, will cause overflow errors.

An overflow error means you’ve tried to

calculate a number that Python cannot

represent as a float, because it is either too

big or too small C. Overflow errors can be

silent errors, meaning that Python does the

calculation incorrectly without telling you

that anything bad has happened. Generally

speaking, it is up to you, the programmer,

to avoid overflow errors.

Limited precision
Precision (or accuracy) is a fundamen-

tal difficulty with floats on all computers.

Numbers are represented in binary (base

2) in a computer, and it turns out that not all

floating point numbers can be represented

precisely in binary. Even the simplest

examples can have problems:

>>> 1 - 2 / 3

0.33333333333333337

This should have an infinite number of 3s

after the decimal, but there are only (!) 17

digits here. Plus, the last digit is wrong

(the 7 should be a 3).

C Floating point overflow: 500.0 ** 10000 is too

big to store as a float.

>>> 500.0 ** 10000
Traceback (most recent call last):
 File "<pyshell#7>", line 1, in <module>
 500.0 ** 10000
OverflowError: (34, 'Result too large')

From the Library of Mo Medwani

ptg999

Arithmetic, Strings, and Variables 15

These small errors are not usually a prob-

lem: 17 digits after the decimal is enough

for most programs. However, little errors

like this have a nasty habit of becom-

ing big errors when you are doing lots of

calculations. If you are, say, computing

the stresses on a newly designed bridge,

it is necessary to take small floating point

errors into account to ensure that they

don’t balloon into significant errors.

In general, you should prefer integers

to floating point numbers. They are always

accurate and never suffer overflow.

Complex numbers
Python has built-in support for complex

numbers—that is, numbers that involve the

square root of –1. In Python, 1j denotes

the square root of –1:

>>> 1j

1j

>>> 1j * 1j

(-1+0j)

Complex numbers are useful in certain

engineering and scientific calculations; we

won’t be using them again in this book.

From the Library of Mo Medwani

ptg999

16 Chapter 2

Other Math Functions
Python comes with many different mod-
ules of prewritten code, including the math
module. Table 2.2 lists some of the most

commonly used math module functions.

Using return values
We say that these functions return a value.

That means they evaluate to either an inte-

ger or a floating point number, depending

on the function.

You can use these functions anywhere that

you can use a number. Python automati-

cally evaluates the function and replaces it

with its return value.

Importing a module
To use the math module, or any existing

Python module, you must first import it:

>>> import math

You can now access any math function by

putting math. in front of it:

>>> math.sqrt(5)

2.2360679774997898

>>> math.sqrt(2) * math.tan(22)

0.012518132023611912

An alternative way of importing a module

is this:

>>> from math import *

Now you can call all the math module func-

tions without first appending math.:

>>> log(25 + 5)

3.4011973816621555

>>> sqrt(4) * sqrt(10 * 10)

20.0

TABLE 2.2 Some math Module Functions

Name Description

ceil(x) Ceiling of x

cos(x) Cosine of x

degrees(x) Converts x from radians to

degrees

exp(x) e to the power of x

factorial(n) Calculates n! = 1*2*3*…*n

n must be an integer

log(x) Base e logarithm of x

log(x, b) Base b logarithm of x

pow(x, y) x to the power of y

radians(x Converts x from degrees to

radians

sin(x) Sine of x

sqrt(x) Square root of x

tan(x) Tangent of x

When using the from math import *
style of importing, if you have functions with

the same name as any of the functions in the

math module, the math functions will over-

write them!

Thus, it’s generally safer to use the

import math style of importing. This will

never overwrite existing functions.

You can also import specific functions

from the math module. For example, from
math import sqrt, tan imports just the

sqrt and tan functions.

From the Library of Mo Medwani

ptg999

Arithmetic, Strings, and Variables 17

Strings
A string is a sequence of one or more char-

acters, such as "cat!", "567-45442", and

"Up and Down". Characters include letters,

numbers, punctuation, plus hundreds of

other special symbols and unprintable

characters.

Indicating a string
Python lets you write string literals in three

main ways:

■ Single quotes, such as 'http', 'open
house', or 'cat'

■ Double quotes, such as "http", "open
house", or "cat"

■ Triple quotes, such as """http""", or

multiline strings, such as

"""

Me and my monkey

Have something to hide

"""

Many Python programmers prefer using

single quotes to indicate strings, simply

because they involve less typing than double

quotes (which require pressing the Shift key).

One of the main uses of single and

double quotes is to conveniently handle

" and ' characters inside strings:

"It's great"
'She said "Yes!"'

You’ll get an error if you use the wrong

kind of quote within a string.

Triple quotes are useful when you need

to create long, multiline strings. They can also

contain " and ' characters at the same time.

From the Library of Mo Medwani

ptg999

18 Chapter 2

String length
To determine the number of characters in a

string, use the len(s) function:

>>> len('pear')

4

>>> len('up, up, and away')

16

>>> len("moose")

5

>>> len("")

0

The last example uses the empty string,
usually denoted by '' or "". The empty

string has zero characters in it.

Since len evaluates to (that is, returns) an

integer, we can use len anywhere that an

integer is allowed—for example:

>>> 5 + len('cat') * len('dog')

14

From the Library of Mo Medwani

ptg999

Arithmetic, Strings, and Variables 19

String Concatenation
You can create new strings by “adding”

together old strings:

>>> 'hot ' + 'dog'

'hot dog'

>>> 'Once' + " " + 'Upon' + ' ' +
➝ "a Time"

'Once Upon a Time'

This operation is known as concatenation.

There’s a neat shortcut for concatenating

the same string many times:

>>> 10 * 'ha'

'hahahahahahahahahaha'

>>> 'hee' * 3

'heeheehee'

>>> 3 * 'hee' + 2 * "!"

'heeheehee!!'

The result of string concatenation is always

another string, so you can use concatena-

tion anywhere that requires a string:

>>> len(12 * 'pizza pie!')

120

>>> len("house" + 'boat') * '12'

'121212121212121212'

From the Library of Mo Medwani

ptg999

20 Chapter 2

Getting Help
Python is a largely self-documenting lan-

guage. Most functions and modules come

with brief explanations to help you figure

out how to use them without resorting to a

book or website.

Listing functions in a module
Once you’ve imported a module, you can

list all of its functions using the dir(m)
function:

>>> import math

>>> dir(math)

['__doc__', '__name__',
➝ '__package__', 'acos', 'acosh',
➝ 'asin', 'asinh', 'atan', 'atan2',
➝ 'atanh', 'ceil', 'copysign',
➝ 'cos', 'cosh', 'degrees', 'e',
➝ 'exp', 'fabs', 'factorial',
➝ 'floor', 'fmod', 'frexp', 'hypot',
➝ 'isinf', 'isnan', 'ldexp', 'log',
➝ 'log10', 'log1p', 'modf', 'pi',
➝ 'pow', 'radians', 'sin', 'sinh',
➝ 'sqrt', 'sum', 'tan', 'tanh',
➝ 'trunc']

This gives you a quick overview of the

functions in a module, and many Python

programmers use dir(m) all the time.

For now, you can ignore the names begin-

ning with a double underscore __; they

are used only in more advanced Python

programming.

From the Library of Mo Medwani

ptg999

Arithmetic, Strings, and Variables 21

To see a list of all the built-in functions

in Python, type dir(__builtins__) at the

command prompt.

An alternative way to see the doc

string for a function f is to use the help(f)
function.

You can run the Python help utility by

typing help() at a prompt. This will provide

you with all kinds of useful information, such

as a list of all available modules, help with

individual functions and keywords, and more.

You can also get help from the Python

documentation (www.python.org/doc/). There

you’ll find helpful tutorials, plus complete

details of all the Python language and stan-

dard modules.

Printing documentation strings
Another useful trick is to print a function’s

documentation string (doc string for short):

>>> print(math.tanh.__doc__)

tanh(x)

Return the hyperbolic tangent of x.

Most built-in Python functions, along with

most functions in Python’s standard mod-

ules (such as math), have short doc strings

you can access in this way.

As another example, here’s the doc string

for the built-in function bin:

>>> print(bin.__doc__)

bin(number) -> string

Return the binary representation of
➝ an integer or long integer.

>>> bin(25)

'0b11001'

From the Library of Mo Medwani

http://www.python.org/doc/

ptg999

22 Chapter 2

Converting
Between Types
Converting from one type of data to

another is a common task, and Python

provides a number of built-in functions to

make this easy.

Converting integers and
strings to floats:
To convert the integer 3 to a float, use the

float(x) function:

>>> float(3)

3.0

Converting a string to a float is similar:

>>> float('3.2')

3.2000000000000002

>>> float('3')

3.0

Converting integers and
floats to strings:
The str(n) function converts any number

to a corresponding string:

>>> str(85)

'85'

>>> str(-9.78)

'-9.78'

Implicit Conversions
Sometimes Python will convert

between numeric types without requir-

ing an explicit conversion function. For

example:

>>> 25 * 8.5

212.5

Here, 25 is automatically converted to

25.0, and then multiplied by 8.5. In gen-

eral, when you mix integers and floats in

the same expression, Python automati-
cally converts the integers to floats.

From the Library of Mo Medwani

ptg999

Arithmetic, Strings, and Variables 23

Converting a float to an integer:
This is a little tricky because you must

decide how to handle any digits after the

decimal in your float. The int(x) func-

tion simply chops off extra digits, while

round(x) does the usual kind of rounding

off:

>>> int(8.64)

8

>>> round(8.64)

9

>>> round(8.5)

8

Converting strings to numbers:
This is easily done with the int(s) and

float(s) functions:

>>> int('5')

5

>>> float('5.1')

5.1

For most applications, you should

be able to handle numeric conversions

using int(x), float(x), and round(x).

However, for more specific conversions,

the Python math module has a number of

functions for removing digits after decimals:

math.trunc(x), math.ceil(x), and

math.floor(x).

The int(s) and float(s) conversions

from strings to floats/integers assume that

the string s “looks” like a Python float/integer.

If not, you’ll get an error message saying the

conversion could not be done.

Rounding
Many people are surprised that

round(8.5) is 8 in Python, and not 9.

In elementary school, you were prob-

ably taught that numbers ending with

.5 should always be rounded up.

But always rounding up leads to a bias

that can cause inaccurate calculations.

So Python uses a different strategy for

rounding, called “round half to even,”

or, sometimes, “bankers rounding.” The

idea is that numbers ending in .5 are

rounded to the nearest even integer.

Thus, sometimes numbers ending in

.5 are rounded down, and sometimes

they are rounded up.

This strategy might seem strange at

first, and it is different from how round-

ing works in Python 2. But it is gener-

ally accepted as the standard way to

round numbers on a computer. If you

are curious about the details, take a

look at the Wikipedia entry on rounding:

http://en.wikipedia.org/wiki/Rounding.

From the Library of Mo Medwani

http://en.wikipedia.org/wiki/Rounding

ptg999

24 Chapter 2

Variables and Values
Variables are one of the most important

concepts in all of programming. In Python,

variables label, or point to, a value.

For example:

>>> fruit = "cherry"

>>> fruit

'cherry'

Here, fruit is a variable name, and it

points to the string value "cherry". Notice

that variables are not surrounded by quo-

tation marks.

The line fruit = "cherry" is called an

assignment statement. The = (equals sign)

is called the assignment operator and is

used to make a variable point to a value.

When Python encounters a variable, it

replaces it with the value it points to. Thus:

>>> cost = 2.99

>>> 0.1 * cost

0.29900000000000004

>>> 1.06 * cost + 5.99

9.1594000000000015

Lingo Alert
Just like variables, functions, modules,

and classes all have names. We refer to

these names collectively as identifiers.

From the Library of Mo Medwani

ptg999

Arithmetic, Strings, and Variables 25

Rules for making variable names
Variable names must follow a few basic

rules (see Table 2.3 for some examples):

■ A variable name can be of any length,

although the characters in it must be

either letters, numbers, or the under-

score character (_). Spaces, dashes,

punctuation, quotation marks, and other

such characters are not allowed.

■ The first character of a variable name

cannot be a number; it must be a letter

or an underscore character.

■ Python is case sensitive—it distin-

guishes between uppercase and low-

ercase letters. Thus TAX, Tax, and tax
are three completely different variable

names.

■ You cannot use Python keywords as

variable names. For example, if, else,

while, def, or, and, not, in, and is are

some of Python’s keywords (we’ll learn

what these are used for later in the

book). If you try to use one as a vari-

able, you’ll get an error D.

TABLE 2.3 Legal and Illegal Variable Names

Legal Illegal

M "m"

x1 1x

tax_rate tax rate

taxRate taxRate!

Else else

D else is a Python keyword, so it cannot be used

as a variable.

>>> else = 25
SyntaxError: invalid syntax

From the Library of Mo Medwani

ptg999

26 Chapter 2

Assignment
Statements
Assignment statements have three main

parts: a left-hand side, the assignment
operator, and a right-hand side E.

Assignment statements have two pur-

poses: They define new variable names,

and they make already-defined variables

point to values. For instance:

>>> x = 5

>>> 2 * x + 1

11

>>> x = 99

The first assignment statement, x = 5,

does double duty: It is an initialization
statement. It tells Python to create a new

variable named x and that it should be

assigned the value 5. We can now use x
anywhere an integer can be used.

The second assignment statement, x = 99,

reassigns x to point to a different value.

It does not create x, because x already

exists thanks to the previous assignment

statement.

If you don’t initialize a variable, Python

complains with an error:

>>> 2 * y + 1

Traceback (most recent call last):

 File "<pyshell#6>", line 1, in
➝ <module>

 2 * y + 1

NameError: name 'y' is not defined

E Anatomy of an assignment statement. This

makes var point to value. The left-hand side must

always be a variable, while the right-hand side

can be a variable, a value, or any expression that

evaluates to a value.

From the Library of Mo Medwani

ptg999

Arithmetic, Strings, and Variables 27

This error message tells you that the vari-

able y has not been defined, and so Python

does not know what value to replace it with

in the expression 2 * y + 1.

A variable can be assigned any value, even

if it comes from other variables. Consider

this sequence of assignments:

>>> x = 5

>>> x

5

>>> y = 'cat'

>>> y

'cat'

>>> x = y

>>> x

'cat'

>>> y

'cat'

Lingo Alert
A number of terms are commonly used to

describe variables and values. We some-

times say a variable is assigned a value,

or given a value.

A variable with an assigned value is said

to point to its value, or label it, or simply

have it.

Sometimes programmers say a variable

contains its value, as if the variable were

a bucket and the value was inside of

it. The problem with this is that Python

variables don’t quite follow the rules you

would expect a “containment” model to

follow. For instance, an object can be in

only one bucket at a time, but multiple

values are allowed to point to the same

value in Python.

From the Library of Mo Medwani

ptg999

28 Chapter 2

How Variables
Refer to Values
A Python assignment statement of the form

x = expr can be summarized in English

like this: Make x point to the value that
expr evaluates to.

Keep in mind that expr can be any Python

expression that evaluates to a value.

There’s a nice way of drawing diagrams

to help understand sequences of assign-

ments. For example, after the assignment

rate = 0.04, you can imagine that your

computer’s memory looks like F. Then,

after rate_2008 = 0.06, we get G. Finally,

rate = rate_2008 gives us H.

When a value no longer has any variable

pointing to it (for example, 0.04 in H),

Python automatically deletes it. In gen-

eral, Python keeps track of all values and

automatically deletes them when they are

no longer referenced by a variable. This is

called garbage collection, and so Python

programmers rarely need to worry about

deleting values themselves.

Assignments don’t copy
It’s essential to understand that assignment

statements don’t make a copy of the value

they point to. All they do is label, and re-

label, existing values. Thus, no matter how

big or complex the object a variable points

to, assignment statements are always

exceedingly efficient.

Numbers and strings are immutable
An important feature of Python numbers

and strings is that they are immutable—

that is, they cannot be changed in any
way, ever. Whenever it seems that you are

modifying a number or string, Python is in

fact making a modified copy I.

F After running the statement rate = 0.04.

G After rate_2008 = 0.06.

H After rate = rate_2008. Notice that the value

0.04 no longer has any variable pointing to it. Thus

Python automatically deletes it, a process known

as garbage collection.

IWhenever it appears that you are modifying a

string, Python is in fact making a copy. There is no

way to modify numbers or strings in Python.

>>> s = 'apple'
>>> s + 's'
'apples'
>>> s
'apple'
>>> 5 = 1
SyntaxError: can't assign to literal

From the Library of Mo Medwani

ptg999

Arithmetic, Strings, and Variables 29

Multiple Assignment
Python has a convenient trick that lets you

assign more than one variable at a time:

>>> x, y, z = 1, 'two', 3.0

>>> x

1

>>> y

'two'

>>> z

3.0

>>> x, y, z

(1, 'two', 3.0)

As the last statement shows, you can also

display multiple values on one line by writ-

ing them as a tuple. Tuples always begin

with an open round bracket (() and end

with a closed round bracket ()).

From the Library of Mo Medwani

ptg999

30 Chapter 2

Swapping variable values
A useful trick you can do with multiple

assignment is to swap the values of two

variables:

>>> a, b = 5, 9

>>> a, b

(5, 9)

>>> a, b = b, a

>>> a, b

(9, 5)

The statement a, b = b, a is said to assign

values to a and b in parallel. Without using

multiple assignment, the standard way to

swap variables is like this:

>>> a, b = 5, 9

>>> temp = a

>>> a = b

>>> b = temp

>>> a, b

(9, 5)

Multiple assignment doesn’t do anything

you can’t already do with regular assign-

ment. It is just a convenient shorthand that

we will sometimes be using.

From the Library of Mo Medwani

ptg999

3
Writing Programs

In This Chapter
Using IDLE’s Editor 32

Compiling Source Code 35

Reading Strings from the Keyboard 36

Printing Strings on the Screen 39

Source Code Comments 41

Structuring a Program 42

Up to now, we’ve been writing single

Python statements and running them at the

interactive command line. While that’s use-

ful for learning about Python functions, it

quickly becomes tiresome when you need

to write many lines of Python code.

Thus we turn to writing programs (also

known as scripts). Programs are just text

files containing a collection of Python

commands. When you run (or execute) a

program, Python performs each statement

in the file one after the other.

In this chapter, we’ll learn how to write and

run programs in IDLE and from the com-

mand line. We’ll see how to get keyboard

input from the user and print strings to the

screen.

You should make an effort to type the

code yourself, since it is an excellent way

to get used to the various rules of writ-

ing Python. For larger programs, you can

download the code from this book’s web-

site: http://pythonintro.googlecode.com.

From the Library of Mo Medwani

http://pythonintro.googlecode.com

ptg999

32 Chapter 3

Using IDLE’s Editor
IDLE comes with a Python-aware text

editor. The best way to learn about it is to

write a simple program.

To write a new program in IDLE:
1. Launch IDLE.

2. Choose File > New Window.

A blank editor window should pop up.

3. To test it, enter the following into it:

print('Welcome to Python!')

4. Save your program by choosing

File > Save. Save it in your Python

programs folder with the name

welcome.py; the .py at the end

indicates that this is a Python file.

5. Run your program by choosing

Run > Run Module.

A Python shell should appear, and

you should see Welcome to Python!
within it.

When you start to get more familiar with

the IDLE editor, you may want to start using

some of the key commands listed in Table

3.1. They can really speed up your editing.

Create a special folder called, say,

python on your computer’s Desktop to store

all your Python programs. Never save them in

the Python directory; otherwise, you run the

risk of accidentally overwriting one of Python’s

core files.

You must type in Python programs

exactly as you see them, character for charac-

ter. A single wrong character—an extra space,

an l instead of a 1—can cause errors.

If you do see an error when you run your

program, go back to the editor window and

carefully check that your program was typed

correctly, character for character.

TABLE 3.1 Some Useful IDLE Shortcuts

Command What It Does

Ctrl-N Open a new editor window.

Ctrl-O Open a new file for editing.

Ctrl-S Save the current program.

F5 Run the current program.

Ctrl-Z Undo the last action.

Shift-Ctrl-Z Redo the last undo.

From the Library of Mo Medwani

ptg999

Writing Programs 33

Running programs from
the command line
Another common way to run a Python

program is from the command line. For

example, to run welcome.py, you can open

a command-line window and run it by typ-

ing this:

C:\> python welcome.py

Welcome to Python!

You can also just call Python without a pro-

gram and get a bare-bones (but still quite

useful) version of the interactive interpreter.

To call Python from the
command line:
Type the following:

C:\> python

Python 3.0b2 (r30b2:65106, Jul 18
➝ 2008, 18:44:17) [MSC v.1500 32 bit
➝ (Intel)] on win32

Type "help", "copyright", "credits"
➝ or "license" for more information.

>>>

Calling Python from the command line is

most commonly used when you run Python

scripts as parts of other programs.

Other Editors
IDLE is an excellent editor for begin-

ners, and even some professionals use

it all the time. But if IDLE is not to your

liking, a quick web search for “program-

ming editors” will give you many other

suggestions. For instance, on Windows,

Notepad++ is a popular free program-

ming editor. Another popular, although

not free, choice is Sublime Text, which

works on Windows, Mac, and Linux

systems.

Take a look at http://wiki.python.org/

moin/PythonEditors for many more

suggestions.

From the Library of Mo Medwani

http://wiki.python.org/moin/PythonEditors
http://wiki.python.org/moin/PythonEditors

ptg999

34 Chapter 3

The easiest way to open a command

window in Windows is to click the Start menu;

then type cmd in the search box and press

Return. This should give you a command-line

window.

Running Python from the command line

is similar on Mac and Linux systems: run a

command shell (the exact details for doing this

differ from system to system, but try browsing

programs available through menus on your

Desktop), and then type python followed by

the name of the program you want to run.

One annoyance with running Python

from the command line is that it is often nec-

essary to configure environment variables, in

particular your system’s path variable, so that

your system knows where to find Python on

your computer. The details are finicky and sys-

tem specific, and are beyond the scope of this

book. However, it is not hard to find detailed

instructions online if you want to set this up.

For instance, just type set windows path into

your favorite search engine. Take care when

you are modifying environment variables: If

you are not sure exactly what you are doing,

it is quite possible to “break” your system so

that programs no longer run correctly. In that

case, your best option is usually to start over

and reinstall Python.

From the Library of Mo Medwani

ptg999

Writing Programs 35

Compiling Source Code
We often refer to the statements inside

a Python program as source code, and

so a program file is sometimes called a

source code file, or source file. By conven-

tion, all Python source code files end with

the extension .py. This makes it easy for

people and programs to see at a glance

that the file contains Python source code.

Object code
When you run a .py file, Python auto-

matically creates a corresponding .pyc
file A. A .pyc file contains object code, or

compiled code. Object code is essentially

a Python-specific language that represents

your Python source code in a way that is

easier for the computer to run efficiently.

It is not meant for humans to read, and so

most of the time you should just ignore the

.pyc files that start to appear.

A Python program runs using a special

piece of software called a virtual machine.

This is essentially a software simulation of

a computer designed just to run Python,

and it is part of the reason why many .pyc
files can run on different computer systems

without any change.

You will rarely, if ever, have to worry

about .pyc files. Python automatically creates

them when needed, and also automatically

updates them when you change the corre-

sponding .py files. Don’t delete, rename, or

modify the .pyc files!

Since they are meant to be read only by

the computer, .pyc files are not stored as text

files. If you try to view a .pyc file in a text edi-

tor, you’ll see nothing but junk characters.

A Python consists of three major components:

an interpreter for running single statements; a

compiler for converting .py files to .pyc files; and

a virtual machine for running .pyc files. Note that

IDLE is not strictly part of Python; it is a separate

application that sits on top of Python to make it

easier to use.

From the Library of Mo Medwani

ptg999

36 Chapter 3

Reading Strings
from the Keyboard
Reading a string from the keyboard is one

of the most basic ways of getting informa-

tion from a user. For example, consider this

simple program:

name.py

name = input('What is your first
➝ name? ')

print('Hello ' + name.capitalize()
➝ + '!')

To run this in IDLE, open name.py in an

IDLE window, and then to run it press

F5 (or, equivalently, choose Run > Run

Module).

You should see this in the window that

appears:

What is your first name? jack

Hello Jack!

You, the user, must type in the name (in this

case, the string 'jack').

Tracing the program
Let’s look carefully at each line of the

program. The first line is a source code
comment, or comment for short. A com-

ment is just a note to the programmer, and

Python ignores it. Python comments always

start with a # symbol and continue to the

end of the line. This particular comment

tells you that the program is stored in a file

called name.py.

The second line calls the input function,

which is the standard built-in function for

reading strings from the keyboard. When it

runs, the prompt 'What is your name?'
appears in the output window, followed by

a blinking cursor. The program waits until

the user enters a string and presses Enter.

From the Library of Mo Medwani

ptg999

Writing Programs 37

The input function evaluates to whatever

string the user enters, and so the variable

name ends up labeling the string that the

user types in.

The third and final line of the program

displays a greeting. The function

name.capitalize() ensures that the

first character of the string is uppercase

and the remaining characters are lower-

case. This way, if the user happens to

enter a name that isn’t correctly capital-

ized, Python will correct it.

To see what functions are available for

strings, type dir('') at IDLE’s interactive

command line.

If you run name.py with a number of

sample strings, you’ll soon discover that enter-

ing a name like 'Jack Aubrey' will actually

uncapitalize the last name: 'Hello Jack
aubrey!'. That’s because the capitalize
function is very simpleminded—it knows noth-

ing about words or spaces.

Another common and useful trick when

reading strings from the keyboard is to use the

strip() function to remove any leading/trail-

ing whitespace characters. For instance:

>>> ' oven '.strip()
'oven'

Stripping a string of unwanted spaces is so

common that we often write calls to input

like this:

name = input('Enter age: ').strip()

From the Library of Mo Medwani

ptg999

38 Chapter 3

Reading numbers from the keyboard
The input function only returns strings, so

if you need a number data type (for exam-

ple, to do arithmetic), you must use one of

Python’s numeric conversion functions. For

example, consider this program:

age.py

age = input('How old are you
➝ today? ')

age10 = int(age) + 10

print('In 10 years you will be ' +
➝ str(age10) + ' years old.')

Suppose the user types in 22 in response

to this program. Then the variable age
labels the string '22'—Python does not
automatically convert strings that look

like numbers to integer or float values. If

you want to do arithmetic with a string,

you must first convert it to a number using

either int(s) (if you want an integer) or

float(s) (if you want a float).

The one final trick to notice is that in the

print statement, it’s necessary to convert

the variable age10 (which labels an integer)

back into a string so that it can be printed.

If you forget this conversion, Python issues

an error saying it can’t add numbers and

strings.

Different Types of Numbers
All the different types of numbers can

be confusing at first. Consider these four

different values: 5, 5.0, '5', and '5.0'.

While they look similar, they have very

different internal representations.

5 is an integer and can be used directly

for arithmetic.

5.0 is a floating point number that can

also be used for arithmetic, but it allows

for digits after the decimal place.

'5' and '5.0' are strings consisting of

one and three characters, respectively.

Strings are meant for being displayed

on the screen or for doing character-

based operations (such as removing

whitespace or counting characters).

Strings can’t be used to do numeric

arithmetic. Of course, strings can be

used with concatenation, although the

results might be a bit jarring at first—for

example:

>>> 3 * '5'

'555'

>>> 3 * '5.0'

'5.05.05.0'

From the Library of Mo Medwani

ptg999

Writing Programs 39

Printing Strings
on the Screen
The print statement is the standard built-in

function for printing strings to the screen.

As we will see, it is extremely flexible and

has many useful features for formatting

strings and numbers in just the right way.

You can pass any number of strings to

print:

>>> print('jack', 'ate', 'no', 'fat')

jack ate no fat

By default, it prints out each string in the

standard output window, separating the

strings with a space. You can easily change

the string separator like this:

>>> print('jack', 'ate', 'no', 'fat',
➝ sep = '.')

jack.ate.no.fat

By default, a printed string ends with a

newline character: \n. A newline charac-

ter causes the cursor to move to the next

line when the string is printed, and so, by

default, you can’t print anything on the

same line after calling print:

jack1.py

print('jack ate ')

print('no fat')

This prints two lines of text:

jack ate

no fat

To put all the text on a single line, you can

specify the end character of the first line to

be the empty string:

jack2.py

print('jack ate ', end = '')

print('no fat')

Lingo Alert
Programmers often use the terminology

standard output, abbreviated stdout,
to refer to the window where text goes

when printed. Typically, stdout is a

simple text window that does little more

than display strings: No graphics of any

kind are allowed.

Similarly, standard input, abbreviated

stdin, is the location from where the

input function reads strings. Usually this

is the same window as stdout, but it is

possible to change one or both of stdout

and stdin if necessary.

You will sometimes also see the term

standard error, abbreviated stderr, to

refer to where error messages are dis-

played. By default, error messages are

usually displayed on stdout.

From the Library of Mo Medwani

ptg999

40 Chapter 3

The print function is one of the major

differences between Python 2 and Python 3.

Before Python 3, print was not technically

a function, but instead was a built-in part of

the language. The one advantage of this was

that you didn’t have to type the brackets—for

example, you would type print('jack ate
no fat'). However, despite that small conve-

nience, print’s not being a function made it

very difficult to change the default separator

and ending strings, which is often necessary in

more advanced programs.

Another difference between Python 2

and 3 is that Python 3’s input function was

called raw_input in Python 2. Python 2 also

had a function called input, but it evaluated

the string that the user entered, which was

occasionally handy. There is no equivalent

of the Python 2 input function in Python 3,

although you can easily simulate it by typing

eval(input(prompt)). For example:

>>> eval(input('? '))
? 4 + 5 * 6
34

From the Library of Mo Medwani

ptg999

Writing Programs 41

Source Code
Comments
We’ve already seen source code com-

ments used to specify the name of a file.

But comments are useful for any kind of

note that you might want to put into a pro-

gram, such as documentation, reminders,

explanations, or warnings. Python ignores

all comments, and they are only there to be

read by you and other programmers who

might read the source code.

Here’s a sample program that shows some

more uses of comments:

coins_short.py

This program asks the user how
➝ many

coins of various types they have,

and then prints the total amount

of money in pennies.

get the number of nickels, dimes,

and quarters from the user

n = int(input('Nickels? '))

d = int(input('Dimes? '))

q = int(input('Quarters? '))

calculate the total amount of
➝ money

total = 5 * n + 10 * d + 25 * q

print the results

print() # prints a blank line

print(str(total) + ' cents')

From the Library of Mo Medwani

ptg999

42 Chapter 3

Structuring a Program
As you start to write more programs, you

will soon notice that they tend to follow

a common structure. Typically, programs

are organized as in B: They have an input

part, a processing part, and an output part.

For the small programs that we are starting

out with, this structure is usually obvious

and does not require much thought. But as

your programs get bigger and more com-

plex, it is easy to lose sight of this overall

structure, which often results in messy

code that is hard to understand.

Thus, indicating in comments what parts

are for input, processing, and output is a

good habit to get into. It helps clarify the

different tasks your program performs; and,

when we start writing functions, it provides

a natural way of dividing up your programs

into sensible functions.

BMost programs have the structure shown here:

First you get input (for example, from the user

using the input function), then you process it, and

then you display the results for the user to see.

From the Library of Mo Medwani

ptg999

4
Flow of Control

In This Chapter
Boolean Logic 44

If-Statements 49

Code Blocks and Indentation 51

Loops 54

Comparing For-Loops and While-Loops 59

Breaking Out of Loops and Blocks 64

Loops Within Loops 66

The programs we’ve written so far are

straight-line programs that consist of a

sequence of Python statements executed

one after the other. The flow of execution is

simply a straight sequence of statements,

with no branching or looping back to previ-

ous statements.

In this chapter, we look at how to change

the order in which statements are executed

by using if-statements and loops. Both are

essential in almost any nontrivial program.

Both if-statements and loops are controlled

by logical expressions, and so the first part

of this chapter will introduce the idea of

Boolean logic.

Read the sample programs in this chapter

carefully. Take the time to try them out and

make your own modifications.

From the Library of Mo Medwani

ptg999

44 Chapter 4

Boolean Logic
In Python, as in most programming lan-

guages, decisions are made using Boolean
logic. Boolean logic is all about manipulat-

ing so-called truth values, which in Python

are written True and False. Boolean logic

is simpler than numeric arithmetic, and is

a formalization of logical rules you already

know.

We combine Boolean values using four

main logical operators (or logical con-
nectives): not, and, or, and ==. All deci-

sions that can be made by Python—or any

computer language, for that matter—can

be made using these logical operators.

Suppose that p and q are two Python vari-

ables each labeling Boolean values. Since

each has two possible values (True or

False), altogether there are four different

sets of values for p and q (see the first two

columns of Table 4.1). We can now define

the logical operators by specifying exactly

what value they return for the different

truth values of p and q. These kinds of

definitions are known as truth tables, and

Python uses an internal version of them to

evaluate Boolean expressions.

TABLE 4.1 Truth Table for Basic Logical Operators

p q p == q p != q p and q p or q not p

False False True False False False True

False True False True False True True

True False False True False True False

True True True False True True False

From the Library of Mo Medwani

ptg999

Flow of Control 45

Logical equivalence
Let’s start with ==. The expression p == q
is True only when p and q both have the

same truth value—that is, when p and q
are either both True or both False. The

expression p != q tests if p and q are not

the same, and returns True only when they

have different values.

>>> False == False

True

>>> True == False

False

>>> True == True

True

>>> False != False

False

>>> True != False

True

>>> True != True

False

Logical “and”
The Boolean expression p and q is True
only when both p is True and q is True. In

every other case it is False. The fifth col-

umn of Table 4.1 summarizes each case.

>>> False and False

False

>>> False and True

False

>>> True and False

False

>>> True and True

True

Logical “or”
The Boolean expression p or q is True
exactly when p is True or q is True, or

when both are True. This is summarized

in the sixth column of Table 4.1. The only

slightly tricky case is when both p and q
are True. In this case, the expression p or
q is True.

>>> False or False

False

>>> False or True

True

>>> True or False

True

>>> True or True

True

Logical negation
Finally, the Boolean expression not p is

True when p is False, and False when p
is True. It essentially flips the value of the

variable.

>>> not True

False

>>> not False

True

From the Library of Mo Medwani

ptg999

46 Chapter 4

Evaluating larger Boolean
expressions
Since Boolean expressions are used to

control both if-statements and loops, it is

important to understand how they are eval-

uated. Just as with arithmetic expressions,

Boolean expressions use both brackets and

operator precedence to specify the order in

which their sub-parts are evaluated.

To evaluate a Boolean
expression with brackets:
Suppose we want to evaluate the expres-

sion not (True and (False or True)).

We can do it by following these steps:

■ not (True and (False or True))

Expressions in brackets are always

evaluated first, and so we first evalu-

ate False or True, which is True.

This makes the original expres-

sion equivalent to this simpler one:

not (True and True).

■ not (True and True)

To evaluate this expression, we again

evaluate the expression in brackets

first: True and True evaluates to True,

which gives us the equivalent expres-

sion: not True.

■ not True

Finally, to evaluate this expression, we

simply look up the answer in the last

column of Table 4.1: not True evaluates

to False. Thus, the entire expression

not (True and (False or True))
evaluates to False. You can easily

check that this is the correct answer in

Python itself:

>>> not (True and (False or
➝ True))

False

From the Library of Mo Medwani

ptg999

Flow of Control 47

To evaluate a Boolean
expression without brackets:
Suppose we want to evaluate the expres-

sion not True and False or True. This is

the same as the previous one, but this time

there are no brackets.

■ not True and False or True

We first evaluate the operator with

the highest precedence, as listed in

Table 4.2. In this case, not has the high-

est precedence, and so not True is

evaluated first (the fact that it happens

to be at the start of the expression is a

coincidence). This simplifies the expres-

sion to False and False or True.

■ False and False or True

We again evaluate the operator with the

highest precedence. According to Table

4.2, and has higher precedence than

or, and so False and True is evalu-

ated first. The expression simplifies to

False or True.

■ False or True

This final expression evaluates to True,

which is found by looking up the answer

in Table 4.1. Thus the original expres-

sion, False and not False or True,

evaluates to True.

Writing complicated Boolean expressions

without brackets is usually a bad idea because

they are hard to read and evaluate—not all

programmers remember the order of prece-

dence of Boolean operators!

One exception is when you use the same
logical operator many times in a row. Then it

is usually easier to read without the brackets.

For example:

>>> (True or (False or (True or
➝ False)))
True
>>> True or False or True or False
True

TABLE 4.2 Boolean Operator Priority
(Highest to Lowest)

p == q

p != q

not p

p and q

p or q

From the Library of Mo Medwani

ptg999

48 Chapter 4

Short-circuit evaluation
The definition of the logical operators

given in Table 4.1 is the standard definition

you would find in any logic textbook. How-

ever, like most modern programming lan-

guages, Python uses a simple trick called

short-circuit evaluation to speed up the

evaluation of some Boolean expressions.

Consider the Boolean expression False
and X, where X is any Boolean expres-

sion. It turns out that no matter whether X
is True or X is False, the entire expres-

sion is False. The reason is that the initial

False makes the whole and-expression

False. The value of False and X does not

depend on X—it is always False. In such

cases, Python does not evaluate X at all—it

simply stops and returns the value False.

This can speed up the evaluation of Bool-

ean expressions.

Similarly, Boolean expressions of the form

True or X are always True, no matter

the value of X. The precise rules for how

Python does short-circuiting are given in

Table 4.3.

Most of the time you can ignore short-

circuiting and just reap its performance

benefits. However, it is useful to remem-

ber that Python does this, since every

once in a while it could be the source of a

subtle bug.

It’s possible to use the definitions of and
and or from Table 4.3 to write short and tricky

code that simulates if-statements (which we

will see in the next section). However, such

expressions are usually quite difficult to read,

so if you ever run across such expressions in

other people’s Python code (you should never

put anything so ugly in your programs!), you

may need to refer to Table 4.3 to figure out

exactly what they are doing.

TABLE 4.3 Definition of Boolean Operators
in Python

Operation Result

p or q if p is False, then q, else p

p and q if p is False, then p, else q

From the Library of Mo Medwani

ptg999

Flow of Control 49

If-Statements
If-statements let you change the flow of

control in a Python program. Essentially,

they let you write programs that can

decide, while the programming is running,

whether or not to run one block of code

or another. Almost all nontrivial programs

use one or more if-statements, so they are

important to understand.

If/else-statements
Suppose you are writing a password-

checking program. The user enters their

password, and if it is correct, you log them

in to their account. If it is not correct, then

you tell them they’ve entered the wrong

password:

password1.py

pwd = input('What is the password? ')

if pwd == 'apple': # note use of == #
➝ instead of =

 print('Logging on ...')

else:

 print('Incorrect password.')

print('All done!')

It’s pretty easy to read this program: If

the string that pwd labels is 'apple', then

a login message is printed. But if pwd is

anything other than 'apple', the message

incorrect password is printed.

An if-statement always begins with the

keyword if. It is then (always) followed

by a Boolean expression called the

if-condition, or just condition for short.

After the if-condition comes a colon (:).

As we will see, Python uses the : token

to mark the end of conditions in

if-statements, loops, and functions.

From the Library of Mo Medwani

ptg999

50 Chapter 4

Everything from the if to the : is referred

to as the if-statement header. If the con-

dition in the header evaluates to True,

then the statement print('Logging
on ...') is immediately executed, and

print('Incorrect password.') is

skipped and never executed.

If the condition in the header evalu-

ates to False, then print('Logging on
...') is skipped, and only the statement

print('Incorrect password.') is

executed.

In all cases, the final print('All done!')
statement is executed.

The general structure of an if/else-statement

is shown in A.

We will often refer to the entire multiline

if structure as a single if-statement.

You must put at least one space after

the if keyword.

The if keyword, the condition, and the

terminating : must appear all on one line

without breaks.

The else-block of an if-statement is

optional. Depending on the problem you are

solving, you may or may not need one.

A This flow chart shows the general format and behavior of an if/else-statement.

The code blocks can consist of any number of Python statements (even other

if-statements!).

From the Library of Mo Medwani

ptg999

Flow of Control 51

Code Blocks and
Indentation
One of the most distinctive features of

Python is its use of indentation to mark

blocks of code. Consider the if-statement

from our password-checking program:

if pwd == 'apple':

 print('Logging on ...')

else:

 print('Incorrect password.')

print('All done!')

The lines print('Logging on ...') and

print('Incorrect password.') are two

separate code blocks. These ones happen

to be only a single line long, but Python

lets you write code blocks consisting of

any number of statements.

To indicate a block of code in Python, you

must indent each line of the block by the

same amount. The two blocks of code in

our example if-statement are both indented

four spaces, which is a typical amount of

indentation for Python.

In most other programming languages,

indentation is used only to help make

the code look pretty. But in Python, it is

required for indicating what block of code

a statement belongs to. For instance, the

final print('All done!') is not indented,

and so is not part of the else-block.

Programmers familiar with other languages

often bristle at the thought that indentation

matters: Many programmers like the free-

dom to format their code how they please.

However, Python’s indentation rules follow

a style that many programmers already use

to make their code readable. Python simply

takes this idea one step further and gives

meaning to the indentation.

IDLE is designed to automatically indent

code for you. For instance, pressing Return

after typing the : in an if-header automatically

indents the cursor on the next line.

The amount of indentation matters: A

missing or extra space in a Python block could

cause an error or unexpected behavior. State-

ments within the same block of code need to

be indented at the same level.

From the Library of Mo Medwani

ptg999

52 Chapter 4

If/elif-statements
An if/elif-statement is a generalized if-

statement with more than one condition.

It is used for making complex decisions.

For example, suppose an airline has the

following “child” ticket rates: Kids 2 years

old or younger fly for free, kids older than 2

but younger than 13 pay a discounted child

fare, and anyone 13 years or older pays a

regular adult fare. This program determines

how much a passenger should pay:

airfare.py

age = int(input('How old are you? '))

if age <= 2:

 print(' free')

elif 2 < age < 13:

 print(' child fare)

else:

 print('adult fare')

After Python gets age from the user, it

enters the if/elif-statement and checks

each condition one after the other in the

order they are given. So first it checks if

age is less than 2, and if so, it indicates

that the flying is free and jumps out of the

elif-condition. If age is not less than 2, then

it checks the next elif-condition to see if

age is between 2 and 13. If so, it prints the

appropriate message and jumps out of the

if/elif-statement. If neither the if-condition

nor the elif-condition is True, then it

executes the code in the else-block.

elif is short for else if, and you can use

as many elif-blocks as needed.

Each of the code blocks in an if/elif-

statement must be consistently indented the

same amount.

As with a regular if-statement, the else-

block is optional. In an if/elif-statement with
an else-block, exactly one of the if/elif-blocks

will be executed. If there is no else-block, then

it is possible that none of the conditions are

True, in which case none of the if/elif-blocks

are executed.

From the Library of Mo Medwani

ptg999

Flow of Control 53

Conditional expressions
Python has one more logical operator that

some programmers like (and some don’t!).

It’s essentially a shorthand notation for if-

statements that can be used directly within

expressions. Consider this code:

food = input("What's your favorite
➝ food? ")

reply = 'yuck' if food == 'lamb'
➝ else 'yum'

The expression on the right-hand side of

= in the second line is called a conditional
expression, and it evaluates to either

'yuck' or 'yum'. It’s equivalent to the

following:

food = input("What's your favorite
➝ food? ")

if food == 'lamb':

 reply = 'yuck'

else:

 reply = 'yum'

Conditional expressions are usually shorter

than the corresponding if/else-statements,

although not always as flexible or easy

to read. In general, you should use them

when they make your code simpler.

From the Library of Mo Medwani

ptg999

54 Chapter 4

Loops
Now we turn to loops, which are used to

repeatedly execute blocks of code. Python

has two main kinds of loops: for-loops and

while-loops. For-loops are generally easier

to use and less error prone than while-

loops, although not quite as flexible.

For-loops
The basic for-loop repeats a given block

of code some specified number of times.

For example, this snippet of code prints the

numbers 0 to 9 on the screen:

count10.py

for i in range(10):

 print(i)

The first line of a for-loop is called the for-
loop header. A for-loop always begins with

the keyword for. After that comes the loop
variable, in this case i. Next is the key-

word in, typically (but not always) followed

by range(n) and a terminating : token. A

for-loop repeats its body, the code block

underneath it, exactly n times.

Each time the loop executes, the loop

variable i is set to be the next value. By

default, the initial value of i is 0, and it

goes up to n - 1 (not n!) by ones. Starting

numbering at 0 instead of 1 might seem

unusual, but it is common in programming.

If you want to change the starting value of

the loop, add a starting value to range:

for i in range(5, 10):

 print(i)

This prints the numbers from 5 to 9.

Lingo Alert
Programmers often use the variable i
because it is short for index, and is also

commonly used in mathematics. When

we start using loops within loops, it is

common to use j and k as other loop

variable names.

From the Library of Mo Medwani

ptg999

Flow of Control 55

If you want to print the numbers from 1

to 10 (instead of 0 to 9), there are two common

ways of doing so. One is to change the start

and end of the range:

for i in range(1, 11):
 print(i)

Or, you can add 1 to i inside the loop body:

for i in range(10):
 print(i + 1)

If you would like to print numbers in

reverse order, there are again two standard

ways of doing so. The first is to set the range
parameters like this:

for i in range(10, 0, -1):
 print(i)

Notice that the first value of range is 10, the

second value is 0, and the third value, called

the step, is −1. Alternatively, you can use a sim-

pler range and modify i in the loop body:

for i in range(10):
 print(10 - i)

For-loops are actually more general than

described in this section: They can be used

with any kind of iterator, which is a special

kind of programming object that returns

values. For instance, we will see later that for-

loops are the easiest way to read the lines of

a text file.

From the Library of Mo Medwani

ptg999

56 Chapter 4

While-loops
The second kind of Python loop is a while-
loop. Consider this program:

while10.py

i = 0

while i < 10:

 print(i)

 i = i + 1 # add 1 to i

This prints out the numbers from 0 to 9 on

the screen. It is noticeably more compli-

cated than a for-loop, but it is also more

flexible.

The while-loop itself begins on the line

beginning with the keyword while; this line

is called the while-loop header, and the

indented code underneath it is called the

while-loop body. The header always starts

with while and is followed by the while-
loop condition. The condition is a Boolean

expression that returns True or False.

The flow of control through a while-loop

goes like this: First, Python checks if the

loop condition is True or False. If it’s

True, it executes the body; if it’s False, it

skips over the body (that is, it jumps out of

the loop) and runs whatever statements

appear afterward. When the condition

is True, the body is executed, and then

Python checks the condition again. As long

as the loop condition is True, Python keeps

executing the loop. B shows a flow chart

for this program.

The very first line of the sample program

is i = 0, and in the context of a loop it is

known as an initialization statement, or

an initializer. Unlike with for-loops, which

automatically initialize their loop variable, it

is the programmer’s responsibility to give

initial values to any variables used by a

while-loop.

B This is a flow chart for code that counts from 0

to 9. Notice that when the loop condition is False
(that is, the no branch is taken in the decision box),

the arrow does not go into a box. That’s because

in our sample code there is nothing after the

while-loop.

From the Library of Mo Medwani

ptg999

Flow of Control 57

The last line of the loop body is i = i + 1.

As it says in the source code comment, this

line causes i to be incremented by 1. Thus,

i increases as the loop executes, which

guarantees that the loop will eventually

stop. In the context of a while-loop, this

line is called an increment, or incrementer,
since its job is to increment the loop

variable.

The general form of a while-loop is shown

in the flow chart of C.

Even though almost all while-loops need

an initializer and an incrementer, Python

does not require that you include them. It

is entirely up to you, the programmer, to

remember these lines. Even experienced

programmers find that while-loop initial-

izers and incrementers are a common

source of errors.

C A flow chart for the general form of a while-loop. Note that the

incrementer is not shown explicitly: It is embedded somewhere in

body_block, often (but not always) at the end of that block.

From the Library of Mo Medwani

ptg999

58 Chapter 4

While-loops are extremely flexible. You

can put any code whatsoever before a while-

loop to do whatever kind of initialization is

necessary. The loop condition can be any
Boolean expression, and the incrementer can

be put anywhere within the while-loop body,

and it can do whatever you like.

A loop that never ends is called an infi-
nite loop. For instance, this runs forever:

while True:
 print('spam')

Some programmers like to use infinite

loops as a quick way to write a loop. However,

this is generally considered to be poor style

because such loops often become complex

and hard to understand.

Many Python programmers try to use for-

loops whenever possible and use while-loops

only when absolutely necessary.

While-loops can be written with an else-

block. However, this unusual feature is rarely

used in practice, so we haven’t discussed

it. If you are curious, you can read about it

in the online Python documentation—for

example, http://docs.python.org/3/reference/

compound_stmts.html.

From the Library of Mo Medwani

http://docs.python.org/3/reference/compound_stmts.html
http://docs.python.org/3/reference/compound_stmts.html

ptg999

Flow of Control 59

Comparing For-Loops
and While-Loops
Let’s take a look at a few examples of how

for-loops and while-loops can be used to

solve the same problems. Plus we’ll see a

simple program that can’t be written using

a for-loop.

Calculating factorials
Factorials are numbers of the form 1 × 2
× 3 × … × n, and they tell you how many

ways n objects can be arranged in a line.

For example, the letters ABCD can be

arranged in 1 × 2 × 3 × 4 = 24 different

ways. Here’s one way to calculate factori-

als using a for-loop:

forfact.py

n = int(input('Enter an integer
➝ >= 0: '))

fact = 1

for i in range(2, n + 1):

 fact = fact * i

print(str(n) + ' factorial is ' +
➝ str(fact))

Here’s another way to do it using a

while-loop:

whilefact.py

n = int(input('Enter an integer
➝ >= 0: '))

fact = 1

i = 2

while i <= n:

 fact = fact * i

 i = i + 1

print(str(n) + ' factorial is ' +
➝ str(fact))

continues on next page

From the Library of Mo Medwani

ptg999

60 Chapter 4

Both of these programs behave the same

from the user’s perspective, but the inter-

nals are quite different. As is usually the

case, the while-loop version is a little more

complicated than the for-loop version.

In mathematics, the notation n! is used to

indicate factorials. For example, 4! = 1 × 2 × 3 ×

4 = 24. By definition, 0! = 1. Interestingly, there

is no simple formula for calculating factorials.

Python has no maximum integer, so you

can use these programs to calculate very large

factorials. For example, a deck of cards can be

arranged in exactly 52! ways:

Enter an integer >= 0: 52
52 factorial is 80658175170943878571
➝ 6606368564037669752895054408832778
➝ 24000000000000

From the Library of Mo Medwani

ptg999

Flow of Control 61

Summing numbers from the user
The following programs ask the user to

enter some numbers, and then prints their

sum. Here is a version using a for-loop:

forsum.py

n = int(input('How many numbers to
➝ sum? '))

total = 0

for i in range(n):

 s = input('Enter number ' +
➝ str(i + 1) + ': ')

 total = total + int(s)

print('The sum is ' + str(total))

Here’s a program that does that same thing

using a while-loop:

whilesum.py

n = int(input('How many numbers to
➝ sum? '))

total = 0

i = 1

while i <= n:

 s = input('Enter number ' +
➝ str(i) + ': ')

 total = total + int(s)

 i = i + 1

print('The sum is ' + str(total))

Again, the while-loop version is a little

more complex than the for-loop version.

These programs assume that the user

is entering integers. Floating point numbers

will be truncated when int(s) is called.

Of course, you can easily change this to

float(s) if you want to allow floating point

numbers.

From the Library of Mo Medwani

ptg999

62 Chapter 4

Summing an unknown
number of numbers
Now here’s something that can’t be done

with the for-loops we’ve seen so far. Sup-

pose we want to let users enter a list of

numbers to be summed without asking

them ahead of time how many numbers

they have. Instead, they just type 'done'
when they have no more numbers to add.

Here’s how to do it using a while-loop:

donesum.py

total = 0

s = input('Enter a number (or
➝ "done"): ')

while s != 'done':

 num = int(s)

 total = total + num

 s = input('Enter a number (or
➝ "done"): ')

print('The sum is ' + str(total))

The idea here is to keep asking users to

enter a number, quitting only when they

enter 'done'. The program doesn’t know

ahead of time how many times the loop

body will be executed.

From the Library of Mo Medwani

ptg999

Flow of Control 63

Notice a few more details:

■ We must call input in two different

places: before the loop and inside the

loop body. This is necessary because

the loop condition decides whether or

not the input is a number or 'done'.

■ The ordering of the statements in the

loop body is very important. If the loop

condition is True, then we know s is

not 'done', and so we assume it is an

integer. Thus we can convert it to an

integer, add it to the running total, and

then ask the user for more input.

■ We convert the input string s to an

integer only after we know s is not the

string 'done'. If we had written

s = int(input('Enter a number
➝ (or "done"): '))

as we had previously, the program would

crash when the user typed 'done'.

■ There is no need for the i counter

variable anymore. In the previous sum-

ming programs, i tracked how many

numbers had been entered so far. As

a general rule, a program with fewer

variables is easier to read, debug, and

extend.

From the Library of Mo Medwani

ptg999

64 Chapter 4

Breaking Out of
Loops and Blocks
The break statement is a handy way for

exiting a loop from anywhere within the

loop’s body. For example, here is an alter-

native way to sum an unknown number of

numbers:

donesum_break.py

total = 0

while True:

 s = input('Enter a number (or
➝ "done"): ')

 if s == 'done':

 break # jump out of the loop

 num = int(s)

 total = total + num

print('The sum is ' + str(total))

The while-loop condition is simply True,

which means it will loop forever unless

break is executed. The only way for break
to be executed is if s equals 'done'.

An advantage of this program over

donesum.py is that the input statement is

not repeated. But a disadvantage is that

the reason for why the loop ends is buried

in the loop body. It’s not so hard to see it in

this small example, but in larger programs

break statements can be tricky to see. Fur-

thermore, you can have as many breaks as

you want, which adds to the complexity of

understanding the loop.

From the Library of Mo Medwani

ptg999

Flow of Control 65

Generally, it is wise to avoid the break
statement, and to use it only when it makes

your code simpler or clearer.

A relative of break is the continue state-

ment: When continue is called inside

a loop body, it immediately jumps up to

the loop condition—thus continuing with

the next iteration of the loop. It is a little

less common than break, and generally it

should be avoided altogether.

Both break and continue also work

with for-loops.

From the Library of Mo Medwani

ptg999

66 Chapter 4

Loops Within Loops
Loops within loops, also known as nested
loops, occur frequently in programming.

For instance, here’s a program that prints

the times tables up to 10:

timestable.py

for row in range(1, 10):

 for col in range(1, 10):

 prod = row * col

 if prod < 10:

 print(' ', end = '')

 print(row * col, ' ', end = '')

 print()

Look carefully at the indentation of the

code in this program: It’s how you tell what

statements belong to what blocks. The

final print() statement lines up with the

second for, meaning it is part of the outer

for-loop (but not the inner).

Note that the statement if prod < 10 is

used to make the output look neatly for-

matted. Without it, the numbers won’t line

up nicely.

When using nested loops, be careful with

loop index variables: Do not accidentally reuse

the same variable for a different loop. Most of

the time, every individual loop needs its own

control variables.

You can nest as many loops within

loops as you need, although the complexity

increases greatly as you do so.

As mentioned previously, if you use

break or continue with nested loops,

break only breaks out of the innermost

loop, and continue only “continues” the

innermost loop.

From the Library of Mo Medwani

ptg999

5
Functions

In This Chapter
Calling Functions 68

Defining Functions 70

Variable Scope 73

Using a main Function 75

Function Parameters 76

Modules 80

A function is a reusable chunk of code. It

is a block of code with a name that takes

input, provides output, and can be stored

in files for later use. Pretty much any use-

ful piece of Python code is stored in a

function.

Python has excellent support for functions.

For instance, it provides many ways to pass

data into a function. It also lets you include

documentation strings within the function

itself so that you—or other programmers—

can read how the function works.

You need to learn a number of details

in order to completely understand func-

tions. With practice, they will soon become

second nature, so be sure to try out the

examples from this chapter.

From the Library of Mo Medwani

ptg999

68 Chapter 5

Calling Functions
We’ve been calling functions quite a bit so

far, so let’s take a moment to look a little

more carefully at a function call.

Consider the built-in function pow(x, y),

which calculates x ** y—that is to say, x
raised to the power y:

>>> pow(2, 5)

32

Here, we say that pow is the function
name, and that the values 2 and 5 are

arguments that are passed into pow. The

value 32 is the return value, so we say that

pow(2, 5) returns 32. Figure A gives a

high-level overview of a function call.

When you call a function within an expres-

sion, Python essentially replaces the func-

tion call with its return value. For example,

the expression pow(2, 5) + 8 is the same

as 32 + 8, which evaluates to 40.

When a function takes no input (that is to

say, it has zero arguments), you must still

include the round brackets () after the

function name:

>>> dir()

['__builtins__', '__doc__',
➝ '__name__', '__package__']

The () tells Python to execute the function.

If you leave off the (), then you get this:

>>> dir

<built-in function dir>

Without the (), Python does not execute

the dir function and instead tells you that

dir labels a function.

A It’s often useful to think of functions as being

black boxes that accept an input (2 and 5 in this

case) and return an output (32). From the point

of view of a programmer calling the pow function,

there is no (easy) way to see inside of pow. All we

know is what the documentation tells us, and what

the function does when we call it.

Calculating Powers
Calling pow(x, y) is the same as calling

x ** y. You may notice that pow(0, 0)
(and also 0 ** 0) is 1 in Python, and

this has been a matter of some debate.

According to some mathematicians,

pow(0, 0) ought to be indeterminate,

or undefined. But others say that it is

more sensible to define pow(0, 0) as

1. Python has obviously sided with the

latter group.

From the Library of Mo Medwani

ptg999

Functions 69

Functions that don’t return a value
Some functions, such as print, are not

meant to return values. Consider:

>>> print('hello')

hello

>>> x = print('hello')

hello

>>> x

>>> print(x)

None

Here the variable x has been assigned a

special value called None. None indicates

“no return value”: It is not a string or a num-

ber, so you can’t do any useful calculations

with it.

Reassigning function names
You need to take care not to accidentally

make a built-in function name refer to

some other function or value. Unfortu-

nately, Python doesn’t stop you from writ-

ing code like this:

>>> dir = 3

>>> dir

3

>>> dir()

Traceback (most recent call last):

 File "<pyshell#28>", line 1, in
➝ <module>

 dir()

TypeError: 'int' object is not
➝ callable

Here we’ve made dir label the number

3, so the function that dir used to refer to

is no longer accessible! You will need to

restart Python to get it back.

From the Library of Mo Medwani

ptg999

70 Chapter 5

Defining Functions
Now we turn to creating our own functions.

As an example, let’s write a function to

calculate the area of a circle. Recall that a

circle’s area is pi times its radius squared.

Here is a Python function that does this

calculation:

area.py

import math

def area(radius):

 """ Returns the area of a circle

 with the given radius.

 For example:

 >>> area(5.5)

 95.033177771091246

 """

 return math.pi * radius ** 2

Save this function inside a Python file

(area.py would be a good name); then

load it into the IDLE editor and run it by

pressing F5. If everything is typed cor-

rectly, a prompt should appear and nothing

else; a function is not executed until you

call it. To call it, just type the name of the

function, with the radius in brackets:

>>> area(1)

3.1415926535897931

>>> area(5.5)

95.033177771091246

>>> 2 * (area(3) + area(4))

157.07963267948966

The area function can be called just like

any other function, the difference being

that you have written the function and so

you have control over what it does and

how it works.

Naming Functions
As with variable names, a function name

must be one or more characters long and

consist of letters, numbers, or the under-

score (_) character. The first character of

the name cannot be a number.

In general, give functions simple English

names that hint at their purpose. Don’t

make them too long or too short. Other

programmers reading your code or using

your functions (including you, a few

months down the road!) will thank you for

choosing helpful names.

From the Library of Mo Medwani

ptg999

Functions 71

Parts of a function
Let’s look at each part of the area function.

The first line, the one that begins with def,

is called the function header; all the code

indented beneath the header is called the

function body.

Function headers always begin with the

keyword def (short for definition), followed

by a space, and then the name of the func-

tion (in this case, area). Function names

follow essentially the same rules as names

for variables.

After the function name comes the func-

tion parameter list. This is a list of variable

names that label the input to the func-

tion. The area function has a single input,

radius, although a function can have any

number of inputs. If a function has 0 inputs,

then only the round brackets are written, ().

Finally, like loops and if-statements, a func-

tion header ends with a colon (:).

After the function header comes an

optional documentation string, or doc
string for short. A doc string briefly

explains what the function will do, and it

may include examples or other helpful

information. While doc strings are optional,

they are almost always a good idea: When

you start writing a lot of functions, it is easy

to forget exactly what they do and how

they work, and a well-written doc string

can be a good reminder.

After the doc string comes the main body
of the function. This is simply an indented

block of code that does whatever you need

it to do. The code in this block is allowed to

use the variables from the function header.

Finally, the function should return a value

using the return keyword. When a return
statement is executed, Python jumps out

of the function and back to the point in the

program where it was called.

A Formatting Convention
Python doc strings tend to follow a stan-

dard formatting convention. Triple quotes

are used to mark the beginning and end

of the doc string. The first line is a suc-

cinct one-line description of the function

useful to a programmer. After the first

line come more details and examples.

Extra Benefits of Doc Strings
Just as with built-in functions, you can

easily access the doc strings for your

own functions, like this:

>>> print(area.__doc__)

Returns the area of a circle
➝ with the given radius.

For example:

 >>> area(5.5)

 95.033177771091246

As you will see when you call area in the

IDLE editor, IDLE automatically reads the

function doc string and pops it up as an

automatic tool tip.

Python also has a useful tool called

doctest that can be used to automati-

cally run example Python code found in

doc strings. This is a good way to test

your code, and to help ensure that the

documentation accurately describes the

function. We won’t go into the details of

doctest in this book, but it is easy to use

and quite helpful, and you can read more

about it here: http://docs.python.org/3/

library/doctest.html.

From the Library of Mo Medwani

http://docs.python.org/3/library/doctest.html
http://docs.python.org/3/library/doctest.html

ptg999

72 Chapter 5

In the case of the area function, the

return statement is the last line of the

function, and it simply returns the value of

the area of a circle using the standard for-

mula. Note that it uses the radius param-

eter in its calculation; the value for radius
is set when the area function is called.

A return is usually the last line of a func-

tion to be executed (the only time it isn’t is

when the function ends unexpectedly due

to an exception being thrown, which we

will talk about in a later chapter). You can

put a return anywhere inside a function

body, although it is typically the last physi-

cal line of the function.

A function is not required to have an

explicit return statement. For example:

hello.py

def say_hello_to(name):

 """ Prints a hello message.

 """

 cap_name = name.capitalize()

 print('Hello ' + cap_name + ', how
➝ are you?')

If you don’t put a return anywhere in a

function, Python treats the function as if it

ended with this line:

return None

The special value None is used to indicate

that the function is not meant to be return-

ing a useful value. This is fairly common:

Functions are often used to perform tasks

where the return values don’t matter, such

as printing output to the screen.

Lingo Alert
When a function makes a change in any

way other than returning a value, we call

that change a side effect. Printing to the

screen, writing to a file, and download-

ing a webpage are all examples of side

effects.

A style of programming known as

functional programming is character-

ized by its near-complete banishment of

side effects. In functional programming,

the only changes you can make are via

return values. Python has a lot of support

for functional programming, including the

ability to define functions within func-

tions and to pass functions as values to

other functions. When used correctly,

functional programming can be a very

elegant and powerful way of writing

programs.

Although we won’t be covering func-

tional programming in detail in this book,

it is nonetheless wise to avoid function

side effects whenever possible.

From the Library of Mo Medwani

ptg999

Functions 73

Variable Scope
An important detail that functions bring up

is the issue of scope. The scope of a vari-

able (or function) is where in a program it is

accessible, or visible. Consider these two

functions:

local.py

import math

def dist(x, y, a, b):

 s = (x - a) ** 2 + (y - b) ** 2

 return math.sqrt(s)

def rect_area(x, y, a, b):

 width = abs(x - a)

 height = abs(y - b)

 return width * height

Any variable assigned for the first time

within a function is called a local variable.

The function dist has one local variable,

s, while rect_area has two local variables,

width and height.

The parameters of a function are also con-

sidered local. Thus dist has a total of five

local variables—x, y, a, b, and s; rect_area
has a total of six. Notice that variables x, y,

a, and b appear in both functions, but they

generally label different values.

Importantly, local variables are usable only

within the function they are local to. No

code outside of the function can access its

local variables.

When a function ends, its local variables

are automatically deleted.

From the Library of Mo Medwani

ptg999

74 Chapter 5

Nothing changed—name still labels the

value 'Jack'. The problem is that Python

treated name inside the change_name
function as being a local variable, and so

ignored the global name variable.

To access the global variable, you must use

the global statement:

global_correct.py

name = 'Jack'

def say_hello():

 print('Hello ' + name + '!')

def change_name(new_name):

 global name

 name = new_name

This makes all the difference. Both func-

tions now work as expected:

>>> say_hello()

Hello Jack!

>>> change_name('Piper')

>>> say_hello()

Hello Piper!

Global variables
Variables declared outside of any func-

tion are called global variables, and they

are readable anywhere by any function or

code within the program. However, there

is a wrinkle in reassigning global variables

within functions you need to be aware of.

Consider the following:

global_error.py

name = 'Jack'

def say_hello():

 print('Hello ' + name + '!')

def change_name(new_name):

 name = new_name

The variable name is a global variable

because it is not declared inside any func-

tion. The say_hello() function reads the

value of name and prints it to the screen as

you would expect:

>>> say_hello()

Hello Jack!

However, things don’t work as expected

when you call change_name:

>>> change_name('Piper')

>>> say_hello()

Hello Jack!

From the Library of Mo Medwani

ptg999

Functions 75

Main in Other Languages
The idea of using a main function is quite

common, and some other programming

languages, notably C, C++, and Java,

actually define the use of main as part of

the language. In Python, however, main
is entirely optional, and used only as a

helpful convention.

Using a main Function
It is usually a good idea to use at least one

function in any Python program you write:

main(). A main() function is, by conven-

tion, assumed to be the starting point of

your program. For instance, you could write

the password program from the previous

chapter using a main function:

password2.py

def main():

 pwd = input('What is the
➝ password? ')

 if pwd == 'apple':

 print('Logging on ...')

 else:

 print('Incorrect password.')

 print('All done!')

Notice that all the code is indented under-

neath the main function header.

When you run password2.py in IDLE, noth-

ing happens—only the prompt appears.

You must type main() to execute the code

within in it.

The advantage of using a main function is

that it is now easier to rerun programs and

pass in input values.

From the Library of Mo Medwani

ptg999

76 Chapter 5

Function Parameters
Parameters pass data into a function, and

Python has several kinds of parameters.

Pass by reference
Python passes parameters to a function

using a technique known as pass by
reference. This means that when you pass

parameters, the function refers to the origi-
nal passed values using new names. For

example, consider this simple program:

reference.py

def add(a, b):

 return a + b

Run IDLE’s interactive command line and

type this:

>>> x, y = 3, 4

>>> add(x, y)

7

After you set x and y in the first line,

Python’s memory looks like B. Now

when add(x, y) is called, Python creates

two new variables, a and b, that refer to

the values of x and yC. The values are

assigned in the order they occur—thus a
refers to x because x is the first argument.

Notice that the values are not copied: They

are simply given new names that the func-

tion uses to refer to them.

After a and b are summed and the func-

tion returns, references a and b are

automatically deleted. The original x and y
are untouched throughout the entire

function call.

Pass by Value
Some programming languages, such as

C++, can pass parameters using pass by
value. When a parameter is passed by

value, a copy of it is made and passed to

the function. If the value being passed

is large, the copying can take up a lot of

time and memory. Python does not sup-

port pass by value.

B The state of memory after setting x to 3 and y
to 4.

C The state of memory just after add(x, y) is

called, and a and b have been set to refer to the

values of x and y, respectively.

From the Library of Mo Medwani

ptg999

Functions 77

D After x is assigned 1 in the function call

set1(m), m is unchanged and still refers to its

original value of 5. However, the local variable x
has indeed been set to 1.

An important example
Passing by reference is simple and effi-

cient, but there are some things it cannot

do. For example, consider this plausibly

named function:

reference.py

def set1(x):

 x = 1

The purpose of set1 is to set the value of

the passed-in variable to 1. But when you

try it, it does not work as expected:

>>> m = 5

>>> set1(m)

>>> m

5

Surprisingly, the value of m has not
changed. The reason why is a conse-

quence of pass by reference. It’s helpful to

break the example down into steps:

1. Assign 5 to m.

2. Call set1(m): Assign the value of x to

the value of m (so now both m and x
point to 5).

3. Assign 1 to m. Now the situation is as

shown in D.

4. When the set1 function ends, x is

deleted.

The variable m is simply not accessible

within set1, so there is no way to change

what it points to.

From the Library of Mo Medwani

ptg999

78 Chapter 5

Default values
It’s often useful to include a default value
with a parameter. For example, here we

have given the greeting parameter a

default value of 'Hello':

greetings.py

def greet(name, greeting = 'Hello'):

 print(greeting, name + '!')

You can now call greet in two distinct

ways:

>>> greet('Bob')

Hello Bob!

>>> greet('Bob', 'Good morning')

Good morning Bob!

Default parameters are quite handy and

are used all the time in Python.

A function can use as many default

parameters as it needs, although no parameter

without a default value can appear before a

parameter with one.

An important detail about default param-

eters is that they are evaluated only once,

the first time they are called. In complicated

programs, this can sometimes be the source

of subtle bugs, so it is useful to keep this fact

in mind.

From the Library of Mo Medwani

ptg999

Functions 79

Keyword parameters
Another useful way to specify parameters in

Python is by using keywords. For example:

shopping.py

def shop(where = 'store',

 what = 'pasta',

 howmuch = '10 pounds'):

 print('I want you to go to the',
➝ where)

 print('and buy', howmuch, 'of',
➝ what + '.')

To call a function that uses keyword param-

eters, pass data in the form param = value.

For example:

>>> shop()

I want you to go to the store

and buy 10 pounds of pasta.

>>> shop(what = 'towels')

I want you to go to the store

and buy 10 pounds of towels.

>>> shop(howmuch = 'a ton', what =
➝ 'towels')

I want you to go to the store

and buy a ton of towels.

>>> shop(howmuch = 'a ton', what =
➝ 'towels', where = 'bakery')

I want you to go to the bakery

and buy a ton of towels.

Keyword parameters have two big ben-

efits. First, they make the parameter values

clear, and thus help to make your programs

easier to read. Second, the order in which

you call keyword parameters does not

matter. Both of these are quite helpful in

functions with many parameters; for such

functions it can be difficult to remember

the exact order in which to put the param-

eters, and what they mean.

From the Library of Mo Medwani

ptg999

80 Chapter 5

Modules
A module is collection of related functions

and variables.

To create a Python module:
■ Create a .py file containing your func-

tions and assignments. For example,

here is a simple module for printing

shapes to the screen:

shapes.py

"""A collection of functions

 for printing basic shapes.

"""

CHAR = '*'

def rectangle(height, width):

 """ Prints a rectangle. """

 for row in range(height):

 for col in range(width):

 print(CHAR, end = '')

 print()

def square(side):

 """ Prints a square. """

 rectangle(side, side)

def triangle(height):

 """ Prints a right triangle. """

 for row in range(height):

 for col in range(1, row + 2):

 print(CHAR, end = '')

 print()

The only difference between this and a

regular Python program is the intended

use: A module is a toolbox of helpful

functions that you can use when writing

From the Library of Mo Medwani

ptg999

Functions 81

other programs. Thus a module usually

does not have a main() function.

■ To use a module, you simply import it.

For example:

>>> import shapes

>>> dir(shapes)

['CHAR', '__builtins__',
➝ '__doc__', '__file__',
➝ '__name__', '__package__',
➝ 'rectangle', 'square',
➝ 'triangle']

>>> print(shapes.__doc__)

A collection of functions

for printing basic shapes.

>>> shapes.CHAR

'*'

>>> shapes.square(5)

>>> shapes.triangle(3)

*

**

■ You can also import everything at once:

>>> from shapes import *

>>> rectangle(3, 8)

From the Library of Mo Medwani

ptg999

82 Chapter 5

Namespaces
A very useful fact about modules is that

they form namespaces. A namespace

is essentially a set of unique variable

and function names. The names within a

module are visible outside the module only

when you use an import statement.

To see why this is important, suppose

Jack and Sophie are working together on

a large programming project. Jack is on

the West Coast, and Sophie is on the East.

They agree that Jack will put all his code in

the module jack.py, and Sophie will put all

her code into sophie.py. They work inde-

pendently, and it turns out that they both

wrote a function called save_file(fname).

However, only the headers of their func-

tions are the same; they do radically differ-

ent things. Having two functions with the

same name is fine because the functions

are in different modules, so the names are

in different namespaces. The full name of

Jack’s function is jack.save_file(fname),

and the full name of Sophie’s is sophie.
save_file(fname).

Thus modules support independent devel-

opment, by preventing name clashes. Even

if you are not working with other program-

mers, name clashes can be an annoying

problem in your own programs, especially

as they get larger and more complex.

Of course, you can still run into name

clashes as follows:

>>> from jack import *

>>> from sophie import *

These kinds of import statements essen-

tially dump everything from each module

into the current namespace, overwriting

anything with the same name as they

go. Thus, it is generally wise to avoid

from ... import * statements in larger

programs.

The Zen of Python
To see an interesting Python Easter egg,

try importing the module this at the

interactive command line:

>>> import this

From the Library of Mo Medwani

ptg999

6
Strings

In This Chapter
String Indexing 84

Characters 87

Slicing Strings 89

Standard String Functions 92

Regular Expressions 98

After numbers, strings are the most

important data type in Python. Strings are

ubiquitous: You print them to the screen,

you read them from the user, and as we

will see in Chapter 8, files are often treated

as big strings. The World Wide Web can

be thought of as a collection of webpages,

most of which consist of text.

Strings are an example of an aggregate
data structure, and they provide our first

look at indexing and slicing—techniques

that are used to extract substrings from

strings.

The chapter also contains a brief introduc-

tion to Python’s regular expression library,

which is a supercharged mini-language

designed for processing strings.

From the Library of Mo Medwani

ptg999

84 Chapter 6

String Indexing
We introduced strings in Chapter 2, so you

may want to go back to it if you need a

refresher on string basics.

When working with strings, we often want

to access their individual characters. For

example, suppose you know that s is a

string, and you want to print its individual

characters. String indexing is how you do it:

>>> s = 'apple'

>>> s[0]

'a'

>>> s[1]

'p'

>>> s[2]

'p'

>>> s[3]

'l'

>>> s[4]

'e'

Python uses square brackets to index

strings: The number in the brackets indi-

cates which character to get A. Python’s

index values always start at 0 and always

end at one less than the length of the string.

So if s labels a string of length n, s[0] is

the first character, s[1] is the second char-

acter, s[2] is the third character, and so on

up to s[n-1], which is the last character.

If you try to index past the right end of the

string, you will get an “out of range” error:

>>> s[5]

Traceback (most recent call last):

 File "<pyshell#6>", line 1, in
➝ <module>

 s[5]

IndexError: string index out of range

A This diagram shows the index values for the

string 'apple'. Square-bracket indexing notation

is used to access individual characters within

the string.

Why Start at 0?
Beginning programmers often find it odd

that Python indexes begin at 0 instead of

1. It does take some getting used to and

can be the source of off-by-one errors
that plague many programmers. It can

be helpful to think of an index value as

measuring the distance from the first

character of the string, just like a ruler

(which also starts at 0). This makes some

calculations with indexes a little simpler,

and it also fits nicely with the % (mod)

function, which is often used with index

calculations and naturally returns 0s.

From the Library of Mo Medwani

ptg999

Strings 85

Negative indexing
Suppose instead of the first character of s,

you want to access the last character of

s. The ungainly expression s[len(s) - 1]
works, but it’s rather complicated.

Fortunately, Python has a more convenient

way of accessing characters near the right

end of a string: negative indexing. The

idea is that the characters of a string are

indexed with negative numbers going from

right to left:

>>> s = 'apple'

>>> s[-1]

'e'

>>> s[-2]

'l'

>>> s[-3]

'p'

>>> s[-4]

'p'

>>> s[-5]

'a'

Thus the last character of a string is simply

s[-1]. Figure B shows how negative

index values work.

B Python strings have both positive and negative

indexes. In practice, programmers usually use

whatever index is most convenient.

From the Library of Mo Medwani

ptg999

86 Chapter 6

Accessing characters with a for-loop
If you need to access every character of a

string in sequence, a for-loop can be help-

ful. For example, this program calculates

the sum of the character codes for a given

string:

codesum.py

def codesum1(s):

 """ Returns the sums of the

 character codes of s.

 """

 total = 0

 for c in s:

 total = total + ord(c)

 return total

Here is a sample call:

>>> codesum1('Hi there!')

778

When you use a for-loop like this, at the

beginning of each iteration the loop vari-

able c is set to be the next character in s.

The indexing into s is handled automati-

cally by the for-loop.

Compare codesum1 with this alternative

implementation, which uses regular string

indexing:

def codesum2(s):

 """ Returns the sums of the

 character codes of s.

 """

 total = 0

 for i in range(len(s)):

 total = total + ord(s[i])

 return total

This gives the same results as codesum1,

but the implementation is a little more com-

plex and harder to read.

From the Library of Mo Medwani

ptg999

Strings 87

Characters
Strings consist of characters, and charac-

ters themselves turn out to be a surpris-

ingly complex issue. As mentioned in

Chapter 2, all characters have a corre-

sponding character code that you can find

using the ord function:

>>> ord('a')

97

>>> ord('b')

98

>>> ord('c')

99

Given a character code number, you can

retrieve its corresponding character using

the chr function:

>>> chr(97)

'a'

>>> chr(98)

'b'

>>> chr(99)

'c'

Character codes are assigned using

Unicode, which is a large and complex

standard for encoding all the symbols and

characters that occur in all the world’s

languages.

The Rise of Unicode
In the 1960s, ’70s, and ’80s, the most

popular character encoding scheme

was ASCII (American Standard Code

for Information Interchange). ASCII is far

simpler than Unicode, but its fatal flaw

is that it can represent only 256 dif-

ferent characters—enough for English

and French and a few other similar

languages, but nowhere near enough to

represent the huge variety of characters

and symbols found in other languages.

For instance, Chinese alone has thou-
sands of ideograms that could appear in

text documents.

Essentially, Unicode provides a far larger

set of character codes. Conveniently,

Unicode mimics the ASCII code for the

first 256 characters, so if you are only

dealing with English characters (as we

are in this book), you’ll rarely need to

worry about the details of Unicode. For

more information, see the Unicode home

page (www.unicode.org).

From the Library of Mo Medwani

http://www.unicode.org

ptg999

88 Chapter 6

Escape characters
Not all characters have a standard vis-

ible symbol. For example, you can’t see a

newline character, a return character, or a

tab (although you can certainly see their

effects). They are whitespace characters,

characters that appear as blanks on the

printed page.

To handle whitespace and other unprint-

able characters, Python uses a special

notation called escape sequences, or

escape characters. Table 6.1 shows the

most commonly used escape characters.

The backslash, single-quote, and double-

quote escape characters are often needed

for putting those characters into a string.

For instance:

>>> print('\' and \" are quotes')

' and " are quotes

>>> print('\\ must be written \\\\')

\ must be written \\

The standard way in Python for ending a

line is to use the \n character:

>>> print('one\ntwo\nthree')

one

two

three

It’s important to realize that an escape

character is only a single character. The

leading \ is needed to tell Python that this

is a special character, but that \ does not

count as an extra character when deter-

mining a string’s length. For example:

>>> len('\\')

1

>>> len('a\nb\nc')

5

TABLE 6.1 Some Common Escape Characters

Character Meaning

\\ Backslash

\' Single quote

\" Double quote

\n Newline (linefeed)

\r Return (carriage return)

\t Tab (horizontal tab)

Ending Lines
Different operating systems follow dif-

ferent standards for ending a line of text.

For instance, Windows uses \r\n to

mark the end of a line, whereas OS X and

Linux use just \n; Mac operating systems

before OS X used \r.

Most good editors handle at least the

\r\n and \n styles. Occasionally you

will run into programs (such as Notepad

on Windows) that do not recognize one

of these line-end formats, so text might

appear all on the same line, contain extra

line breaks, or have a ^M character at the

end of each line. The easiest way to deal

with this problem is to use a text editor

that handles line endings correctly.

From the Library of Mo Medwani

ptg999

Strings 89

Slicing Strings
Slicing is how Python lets you extract a

substring from a string. To slice a string,

you indicate both the first character you

want and one past the last character you

want. For example:

>>> food = 'apple pie'

>>> food[0:5]

'apple'

>>> food[6:9]

'pie'

The indexing for slicing is the same as for

accessing individual characters: The first

index location is always 0, and the last

is always one less than the length of the

string. In general, s[begin:end] returns

the substring starting at index begin and

ending at index end - 1.

Note that if s is a string, then you can

access the character at location i using

either s[i] or s[i:i+1].

From the Library of Mo Medwani

ptg999

90 Chapter 6

Slicing shortcuts
If you leave out the begin index of a slice,

then Python assumes you mean 0; and

if you leave off the end index, Python

assumes you want everything to the end of

the string. For instance:

>>> food = 'apple pie'

>>> food[:5]

'apple'

>>> food[6:]

'pie'

>>> food[:]

'apple pie'

Here’s a useful example of slicing in prac-

tice. This function returns the extension of

a filename:

extension.py

def get_ext(fname):

 """ Returns the extension of file

 fname.

 """

 dot = fname.rfind('.')

 if dot == -1: # no . in fname

 return ''

 else:

 return fname[dot + 1:]

Here’s what get_ext does:

>>> get_ext('hello.text')

'text'

>>> get_ext('pizza.py')

'py'

>>> get_ext('pizza.old.py')

'py'

>>> get_ext('pizza')

''

From the Library of Mo Medwani

ptg999

Strings 91

The get_ext function works by determin-

ing the index position of the rightmost

'.' (hence the use of rfind to search

for it from right to left). If there is no '.'
in fname, the empty string is returned;

otherwise, all the characters from the '.'
onward are returned.

Slicing with negative indexes
You can also use negative index values

with slicing, although it can be more con-

fusing. For example:

>>> food = 'apple pie'

>>> food[-9:-4]

'apple'

>>> food[:-4]

'apple'

>>> food[-3:0]

''

>>> food[-3:]

'pie'

When working with negative slicing, or

negative indexes in general, it is often

useful to write the string you are working

with on a piece of paper, and then write the

positive and negative index values over

the corresponding characters (as in Figure

6.2). While this does take an extra minute

or two, it’s a good way to prevent common

indexing errors.

From the Library of Mo Medwani

ptg999

92 Chapter 6

Standard String
Functions
Python strings come prepackaged with a

number of useful functions; use dir on any

string (for example, dir('')) to see them

all. While it’s not necessary to memorize

precisely what all these functions do, it is

a good idea to have a general idea of their

abilities so that you can use them when

you need them. Thus, in this section we

present a list of all the functions that come

with a string, grouped together by type.

This is not meant to be a complete refer-

ence: A few infrequently used parameters

are left out, and not every detail of every

function is explained. For more complete

details, read a function’s doc string or the

online Python documentation (http://docs.

python.org/3/).

Testing functions
The first and largest group of functions is

composed of ones that test if a string has

a certain form. The testing functions in

Table 6.2 all return either True or False.

Testing functions are sometimes called

Boolean functions, or predicates.

TABLE 6.2 String-Testing Functions

Name Returns true just when …

s.endswith(t) s ends with string t

s.startsswith(t) s starts with string t

s.isalnum() s contains only letters or

numbers

s.isalpha() s contains only letters

s.isdecimal() s contains only decimal

characters

s.isdigit() s contains only digits

s.isidentifier() s is a valid Python

identifier (that is, name)

s.islower() s contains only lowercase

letters

s.isnumeric() s contains only numeric

characters

s.isprintable() s contains only printable

characters

s.isspace() s contains only whitespace

characters

s.istitle() s is a title-case string

s.isupper() s contains only uppercase

letters

t in s s contains t as a substring

From the Library of Mo Medwani

http://docs.python.org/3/
http://docs.python.org/3/

ptg999

Strings 93

Searching functions
As shown in Table 6.3, there are several

ways to find substrings within a string. The

difference between index and find func-

tions is what happens when they don’t find

what they are looking for. For instance:

>>> s = 'cheese'

>>> s.index('eee')

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in
➝ <module>

 s.index('eee')

ValueError: substring not found

>>> s.find('eee')

-1

The find function raises a ValueError;

this is an example of an exception, which

we will talk about in more detail in Chap-

ter 9. The index function returns -1 if the

string being searched for is not found.

Normally, string-searching functions search

the string from left to right, beginning to

end. However, functions beginning with an

r search from right to left. For example:

>>> s = 'cheese'

>>> s.find('e')

2

>>> s.rfind('e')

5

In general, find and index return the

smallest index where the passed-in string

starts, and rfind and rindex return the

largest index where it starts.

TABLE 6.3 String-Searching Functions

Name Return Value

s.find(t) –1, or index where t starts in s

s.rfind(t) Same as find, but searches

right to left

s.index(t) Same as find, but raises

ValueError if t is not in s

s.rindex(t) Same as index, but searches

right to left

From the Library of Mo Medwani

ptg999

94 Chapter 6

Case-changing functions
Python gives you a variety of functions for

changing the case of letters (Table 6.4).

Keep in mind that Python never modifies

a string: For all these functions, Python

creates and returns a new string. We often

talk as if the string were being modified,

but this is only a convenient phrasing and

does not mean the string is really being

changed.

Formatting functions
The string-formatting functions listed in

Table 6.5 help you to make strings look

nicer for presenting to the user or printing

to a file.

The string format function is especially

powerful, and it includes its own mini-

language for formatting strings. To use

format, you supply it variables or values—

for example:

>>> '{0} likes {1}'.format('Jack',
➝ 'ice cream')

'Jack likes ice cream'

The {0} and {1} in the string refer to the

arguments in format: They are replaced by

the values of the corresponding strings or

variables. You can also refer to the names

of keyword parameters:

>>> '{who} {pet} has fleas'.format
➝ (pet = 'dog', who = 'my')

'my dog has fleas'

These examples show the most basic use

of format; there are many other options

for spacing strings, converting numbers

to strings, and so on. All the details are

provided in Python’s online documenta-

tion (http://docs.python.org/3/library/string.

html#format-string-syntax).

TABLE 6.4 String-Searching Functions

Name Returned String

s.capitalize() s[0] is made uppercase

s.lower() All letters of s are made

lowercase

s.upper() All letters of s are made

uppercase

s.swapcase() Lowercase letters are made

uppercase, and uppercase

letters are made lowercase

s.title() Title-case version of s

TABLE 6.5 String-Formatting Functions

Name Returned String

s.center(n, ch) Centers s within a string of

n ch characters

s.ljust(n, ch) Left-justifies s within a string

of n ch characters

s.rjust(n, ch) Right-justifies s within a

string of n ch characters

s.format(vars) See text

From the Library of Mo Medwani

http://docs.python.org/3/library/string.html#format-string-syntax
http://docs.python.org/3/library/string.html#format-string-syntax

ptg999

Strings 95

Stripping functions
The stripping functions shown in Table 6.6

are used for removing unwanted characters

from the beginning or end of a string. By

default, whitespace characters are stripped,

and if a string argument is given, the charac-

ters in that string are stripped. For example:

>>> name = ' Gill Bates '

>>> name.lstrip()

'Gill Bates '

>>> name.rstrip()

' Gill Bates'

>>> name.strip()

'Gill Bates'

>>> title = '_-_- Happy Days!! _-_-'

>>> title.strip()

'_-_- Happy Days!! _-_-'

>>> title.strip('_-')

' Happy Days!! '

>>> title.strip('_ -')

'Happy Days!!'

Splitting functions
The splitting functions listed in Table 6.7

chop a string into substrings.

The partition and rpartition functions

divide a string into three parts:

>>> url = 'www.google.com'

>>> url.partition('.')

('www', '.', 'google.com')

>>> url.rpartition('.')

('www.google', '.', 'com')

These partitioning functions always return

a value consisting of three strings in the

form (head, sep, tail). This kind of return

value is an example of a tuple, which we

will learn about in more detail in Chapter 7.

TABLE 6.6 String-Stripping Functions

Name Returned String

s.strip(ch) Removes all ch characters in

t occurring at the beginning

or end of s

s.lstrip(ch) Removes all ch characters in

t occurring at the beginning

(that is, the left side) of s

s.rstrip(ch) Removes all ch characters in

t occurring at the end (that

is, the right side) of s

TABLE 6.7 String-Splitting Functions

Name Returned String

s.partition(t) Chops s into three strings

(head, t, tail), where

head is the substring before

t and tail is the substring

after t

s.rpartition(t) Same as partition but

searches for t starting at the

right end of s

s.split(t) Returns a list of substrings

of s that are separated by t

s.rsplit(t) Same as split, but starts

searching for t at the right

end of s

s.splitlines() Returns a list of lines in s

From the Library of Mo Medwani

http://www.google.com

ptg999

96 Chapter 6

The split function divides a string into

substrings based on a given separator

string. For example:

>>> url = 'www.google.com'

>>> url.split('.')

['www', 'google', 'com']

>>> story = 'A long time ago, a
➝ princess ate an apple.'

>>> story.split()

['A', 'long', 'time', 'ago,', 'a',
➝ 'princess', 'ate', 'an', 'apple.']

The split function always returns a list of

strings; a Python list always begins with a

[and ends with a], and uses commas to

separate elements. As we’ll see in Chapter

7, lists and tuples are very similar, the main

difference being that lists can be modified,

but tuples are constant.

Replacement functions
Python strings come with two replacing

functions, as shown in Table 6.8. Note that

the replace function can easily be used to

delete substrings within a string:

>>> s = 'up, up and away'

>>> s.replace('up', 'down')

'down, down and away'

>>> s.replace('up', '')

', and away'

TABLE 6.8 String-Replacement Functions

Name Returned String

s.replace(old, new) Replaces every

occurrence of old
within s with new

s.expandtabs(n) Replaces each tab

character in s with n
spaces

From the Library of Mo Medwani

http://www.google.com

ptg999

Strings 97

Other functions
Finally, Table 6.9 lists the remaining string

functions.

The translate and maketrans functions

are useful when you need to convert one

set of characters into another. For instance,

here’s one way to convert strings to

“leet-speak”:

>>> leet_table = ''.maketrans
➝ ('EIOBT', '31087')

>>> 'BE COOL. SPEAK LEET!'.translate
➝ (leet_table)

'83 C00L. SP3AK L337!'

The online documentation (http://docs.

python.org/3/library/stdtypes.html#str.

maketrans) also explains how to replace

more than single characters.

The zfill function is used for formatting

numeric strings:

>>> '23'.zfill(4)

'0023'

>>> '-85'.zfill(5)

'-0085'

TABLE 6.9 Other String Functions

Name Returned Value

s.count(t) Number of times t occurs within s

s.encode() Sets the encoding of s; see the online documentation (http://docs.python.org/3/

library/stdtypes.html#str.encode) for more details

s.join(seq) Concatenates the strings in seq, using s as a separator

s.maketrans(old, new) Creates a translation table used to change the characters in old with the

corresponding characters in new; note that s can be any string—it has no

influence on the returned table

s.translate(table) Makes the replacements in s using the given translation table (created with

maketrans)

s.zfill(width) Adds enough 0s to the left of s to make a string of length width

However, it’s not a very flexible func-

tion, so most programmers prefer using

one of Python’s other string-formatting

techniques.

The join function can be quite useful. It

concatenates a sequence of strings, includ-

ing a separator string. For example:

>>> ' '.join(['once', 'upon', 'a',
➝ 'time'])

'once upon a time'

>>> '-'.join(['once', 'upon', 'a',
➝ 'time'])

'once-upon-a-time'

>>> ''.join(['once', 'upon', 'a',
➝ 'time'])

'onceuponatime'

From the Library of Mo Medwani

http://docs.python.org/3/library/stdtypes.html#str.maketrans
http://docs.python.org/3/library/stdtypes.html#str.maketrans
http://docs.python.org/3/library/stdtypes.html#str.maketrans
http://docs.python.org/3/library/stdtypes.html#str.encode
http://docs.python.org/3/library/stdtypes.html#str.encode

ptg999

98 Chapter 6

Regular Expressions
While Python strings provide many use-

ful functions, real-world string processing

often calls for more powerful tools.

Thus, programmers have developed a

mini-language for advanced string pro-

cessing known as regular expressions.

Essentially, a regular expression is a way to

compactly describe a set of strings. They

can be used to efficiently perform common

string-processing tasks such as matching,

splitting, and replacing text. In this section,

we’ll introduce the basic ideas of regular

expressions, as well as a few commonly

used operators (Table 6.10).

Simple regular expressions
Consider the string 'cat'. It represents a

single string consisting of the letters c, a,

and t. Now consider the regular expression

'cats?'. Here, the ? does not mean an

English question mark but instead repre-

sents a regular expression operator, mean-

ing that the character to its immediate left

is optional. Thus the regular expression

'cats?' describes a set of two strings:

'cat' and 'cats'.

Another regular expression operator is |,

which means “or.” For example, the regular

expression 'a|b|c' describes the set of

three strings 'a', 'b', and 'c'.

The regular expression 'a*' describes

an infinite set of strings: '', 'a', 'aa',

'aaa', 'aaaa', 'aaaaa', and so on. In

other words, 'a*' describes the set of all

strings consisting of a sequence of 0 or

more 'a's. The regular expression 'a+' is

the same as 'a*' but excludes the empty

string ''.

TABLE 6.10 Some Regular Expression
Operators

Operator Set of Strings Described

xy? x, xy

x|y x, y

x* ' ', x, xx, xxx, xxxx, ...

x+ x, xx, xxx, xxxx, …

From the Library of Mo Medwani

ptg999

Strings 99

object otherwise. We don’t care about the

details of the match object in this example,

so we only check to see if the result is

None or not.

In such a simple example, the regular

expression version is not much shorter

or better than the first version; indeed,

is_done1 is probably preferable! However,

regular expressions really start to shine

as your programs become larger and

more complex. For instance, suppose we

decide to add a few more possible stop-

ping strings. For the regular expression

version, we just rewrite the regular expres-

sion string to be, say, 'done|quit|over|
finished|end|stop'. In contrast, to make

the same change to the first version, we’d

need to include or s == for each string we

added, which would make for a very long

line of code that would be hard to read.

Here’s a more complex example. Sup-

pose you want to recognize funny strings,

which consist of one or more 'ha' strings

followed immediately by one or more '!'s.

For example, 'haha!', 'ha!!!!!', and

'hahaha!!' are all funny strings. It’s easy

to match these using regular expressions:

funny.py

import re

def is_funny(s):

 return re.match('(ha)+!+', s)
➝ != None

Notice that the only essential difference

between this is_funny and is_done2 is

that a different regular expression is used

inside match. If you try writing this same

function without using regular expres-

sions, you will quickly see how much work

'(ha)+!+' is doing for us.

continues on next page

Finally, within a regular expression you can

use round brackets to indicate what sub-

string an operator ought to apply to. For

example, the regular expression '(ha)+!'
describes these strings: 'ha!', 'haha!',

'hahaha!', and so on. In contrast, 'ha+!'
describes a very different set: 'ha!',

'haa!', 'haaa!', and so on.

You can mix and match these (and many

other) regular expression operators in any

way you want. This turns out to be a very

useful way to describe many commonly

occurring types of strings, such as phone

numbers or email addresses.

Matching with regular expressions
A common application of regular expres-

sions is string matching. For example,

suppose you are writing a program where

the user must enter a string such as done
or quit to end the program. To help

recognize these strings, you could write a

function like this:

allover.py

def is_done1(s):

 return s == 'done' or s == 'quit'

Using regular expressions, an identically

behaving function might look like this:

allover.py

import re # use regular expressions

def is_done2(s):

 return re.match('done|quit', s)
➝ != None

The first line of this new version imports

Python’s standard regular expression

library. To match a regular expression, we

use the re.match(regex, s) function,

which returns None if regex does not match

s, and a special regular expression match

From the Library of Mo Medwani

ptg999

100 Chapter 6

More regular expressions
We have barely scratched the surface of

regular expressions: Python’s re library

is large and has many regular expression

functions that can perform string-pro-

cessing tasks such as matching, splitting,

and replacing. There are also tricks for

speeding up the processing of commonly

used regular expressions, and numerous

shortcuts for matching commonly used

characters. The documentation for the re
module contains more examples (http://

docs.python.org/3/library/re.html).

From the Library of Mo Medwani

http://docs.python.org/3/library/re.html
http://docs.python.org/3/library/re.html

ptg999

7
Data Structures

In This Chapter
The type Command 102

Sequences 103

Tuples 104

Lists 108

List Functions 110

Sorting Lists 113

List Comprehensions 115

Dictionaries 118

Sets 122

In this chapter, we introduce the impor-

tant idea of data structures: collections of

values along with commonly performed

functions. Python’s programmer-friendly

philosophy is to provide a few power-

ful and efficient data structures—tuples,

lists, dictionaries, and sets—that can

be combined as needed to make more

complex ones.

In the previous chapter we discussed

strings, which can be thought of as data

structures restricted to storing sequences

of characters. The data structures in this

chapter can contain not just characters

but almost any kind of data.

Python’s two workhorse data structures

are lists and dictionaries. Lists store data

in sequential order, and dictionaries are

like little databases that efficiently store

and retrieve data using keys.

From the Library of Mo Medwani

ptg999

102 Chapter 7

The type Command
It’s occasionally useful to check the data

type of a value or a variable. This is easily

done with the built-in type command:

>>> type(5)

<class 'int'>

>>> type(5.0)

<class 'float'>

>>> type('5')

<class 'str'>

>>> type(None)

<class 'NoneType'>

>>> type(print)

<class 'builtin_function_or_method'>

Notice that the output of the type com-

mand uses the term class. Roughly speak-

ing, classes and types are synonymous.

The type command can be quite useful for

debugging. For instance, it is not unusual in

Python to work with data collections where

you don’t know the exact type of the data

items, or where you don’t even know the

exact type of the container holding them.

Using type, you can always determine the

exact type of a Python object.

From the Library of Mo Medwani

ptg999

Data Structures 103

Sequences
In Python, a sequence is an ordered col-

lection of values. Python has three built-in

sequence types: strings, tuples, and lists.

One very nice feature of sequences is that

they can be indexed and sliced, just as

we saw for strings in the previous chapter.

Thus, all sequences have the following

characteristics:

■ Their first positive index is 0, and it is at

the left end.

■ Their first negative index is –1, and it

starts at the right end.

■ Slice notation can be used to make

copies of sub-sequences. For example,

seq[begin:end] returns a copy of

the elements of seq starting at index

location begin and ending at location

end - 1.

■ They can be concatenated (i.e., com-

bined) using + and *. The sequences

must be of the same type for this to

work—that is to say, you cannot concat-

enate a tuple and a list.

■ Their length is calculated by the len
function. For example, len(s) is the

number of items in sequence s.

■ The expression x in s tests if the

sequence s contains the element x.

That is, x in s returns True if x is some-

where in s, and False otherwise.

In practice, strings and lists are the most

common kinds of sequences. Tuples have

their uses but appear much less often.

Order Matters
When we say that sequences are

ordered, we mean that the order of

the elements in the sequence matters.

Strings are ordered because 'abc' is dif-

ferent from 'acb'. Later we will see that

dictionaries and sets are not ordered:

They only care if an item is inside of

them, and in fact they can make no

promises about their relative order.

How Big Can a Sequence Be?
Theoretically, there is no limit to the

length of a sequence: It can contain as

many items as needed. Practically, how-

ever, you are restricted by the amount

of RAM available in your computer when

Python is running.

From the Library of Mo Medwani

ptg999

104 Chapter 7

Tuples
A tuple is an immutable sequence of 0

or more values. It can contain any Python

value—even other tuples. For example:

>>> items = (-6, 'cat', (1, 2))

>>> items

(-6, 'cat', (1, 2))

>>> len(items)

3

>>> items[-1]

(1, 2)

>>> items[-1][0]

1

As you can see, the items of a tuple are

enclosed in round brackets and separated

by commas. The empty tuple is repre-

sented by (), but tuples with a single item

(singleton tuples) have the unusual nota-

tion (x,). For instance:

>>> type(())

<class 'tuple'>

>>> type((5,))

<class 'tuple'>

>>> type((5))

<class 'int'>

If you forget the comma at the end of a

singleton tuple, you have not created a

tuple—all you’ve done is put brackets

around an expression.

Trailing Commas
Whereas singleton tuples require a trail-

ing comma, a trailing comma is allowed,

but not required, in longer tuples (and

lists). For example, (1, 2, 3,) is the

same as (1, 2, 3). Some programmers

prefer to always include the trailing

comma so that they never accidentally

leave it out for singleton tuples.

From the Library of Mo Medwani

ptg999

Data Structures 105

Tuple immutability
As mentioned, tuples are immutable,

meaning that once you’ve created a

tuple, you cannot change it. This is not so

unusual: Strings, integers, and floats are

also immutable. If you do need to change

a tuple, then you must create a new tuple

that embodies the changes. For example,

here’s how you can chop off the first ele-

ment of a tuple:

>>> lucky = (6, 7, 21, 77)

>>> lucky

(6, 7, 21, 77)

>>> lucky2 = lucky[1:]

>>> lucky2

(7, 21, 77)

>>> lucky

(6, 7, 21, 77)

On the plus side, immutability makes it

impossible to accidentally modify a tuple,

which helps prevent errors. On the minus

side, making even the smallest change to

a tuple requires copying essentially the

whole thing, and so modifying large tuples

can takes extra time and memory. If you

find yourself needing to make frequent

modifications to a tuple, then you should

be using a list instead.

From the Library of Mo Medwani

ptg999

106 Chapter 7

Tuple functions
Table 7.1 lists the most commonly used

tuple functions. Compared with strings and

lists, tuples have a relatively small number

of functions. Here are some examples of

how they are used:

>>> pets = ('dog', 'cat', 'bird',
➝ 'dog')

>>> pets

('dog', 'cat', 'bird', 'dog')

>>> 'bird' in pets

True

>>> 'cow' in pets

False

>>> len(pets)

4

>>> pets.count('dog')

2

>>> pets.count('fish')

0

>>> pets.index('dog')

0

>>> pets.index('bird')

2

>>> pets.index('mouse')

Traceback (most recent call last):

 File "<pyshell#41>", line 1, in
➝ <module>

 pets.index('mouse')

ValueError: tuple.index(x): x not in
➝ list

TABLE 7.1 Tuple Functions

Name Return Value

x in tup True if x is an element of tup,

False otherwise

len(tup) Number of elements in tup

tup.count(x) Number of times element x
occurs in tup

tup.index(x) Index location of the first

(leftmost) occurrence of x in

tup; if x is not in tup, raises a

ValueError exception

From the Library of Mo Medwani

ptg999

Data Structures 107

As with strings, you can use + and * to

concatenate tuples:

>>> tup1 = (1, 2, 3)

>>> tup2 = (4, 5, 6)

>>> tup1 + tup2

(1, 2, 3, 4, 5, 6)

>>> tup1 * 2

(1, 2, 3, 1, 2, 3)

From the Library of Mo Medwani

ptg999

108 Chapter 7

Lists
Lists are essentially the same as tuples but

with one key difference: Lists are mutable.

That is, you can add, remove, or modify

elements to a list without making a copy.

In practice, lists are used far more fre-

quently than tuples (indeed, some Python

programmers are only faintly aware that

tuples exist!).

The elements of a list are separated by

commas and enclosed in square brackets.

As with strings and tuples, you can eas-

ily get the length of a list (using len), and

concatenate lists (using + and *):

>>> numbers = [7, -7, 2, 3, 2]

>>> numbers

[7, -7, 2, 3, 2]

>>> len(numbers)

5

>>> numbers + numbers

[7, -7, 2, 3, 2, 7, -7, 2, 3, 2]

>>> numbers * 2

[7, -7, 2, 3, 2, 7, -7, 2, 3, 2]

And just as with strings and tuples, you can

use indexing and slicing to access indi-

vidual elements and sublists:

>>> lst = [3, (1,), 'dog', 'cat']

>>> lst[0]

3

>>> lst[1]

(1,)

>>> lst[2]

'dog'

>>> lst[1:3]

[(1,), 'dog']

>>> lst[2:]

['dog', 'cat']

>>> lst[-3:]

[(1,), 'dog', 'cat']

>>> lst[:-3]

[3]

Notice that lists can contain any kinds of

values: numbers, strings, or even other

sequences. The empty list is denoted

by [], and a singleton list containing just

one element x is written [x] (in contrast

to tuples, no trailing comma is necessary

for a singleton list).

From the Library of Mo Medwani

ptg999

Data Structures 109

Mutability
As mentioned earlier, mutability is the key

feature that distinguishes lists from tuples.

For example:

>>> pets = ['frog', 'dog', 'cow',
➝ 'hamster']

>>> pets

['frog', 'dog', 'cow', 'hamster']

>>> pets[2] = 'cat'

>>> pets

['frog', 'dog', 'cat', 'hamster']

As you can see, this sets the second ele-

ment of the list pets to point to 'cat'. The

string 'cow' gets replaced and is automati-

cally deleted by Python.

Figure A shows a helpful diagrammatic

representation of a list. Just as with vari-

ables, it is important to understand that the

elements of a list only point to their values

and do not actually contain them.

The fact that lists point to their values can

be the source of some surprising behavior.

Consider this nasty example:

>>> snake = [1, 2, 3]

>>> snake[1] = snake

>>> snake

[1, [...], 3]

Here, we’ve made an element of a list

point to the list itself: We’ve created a self-
referential data structure. The [...] in the

printout indicates that Python recognizes

the self-reference and does not stupidly

print the list forever(!). Figure B shows dia-

grammatically what snake looks like.

A A Python list points to its values.

B A self-referential list. Note that the second

element is not pointing to the first element of the

list, but to the entire list itself.

Lingo Alert
Many Python programmers speak as if a

list contains its elements. Although that

is not technically accurate, it is a common

and convenient phrasing. Much of the

time it does not cause any confusion. But

when it comes to finding errors in pro-

grams that process lists, it is often essen-

tial to understand that lists actually point

to their values and don’t contain them.

From the Library of Mo Medwani

ptg999

110 Chapter 7

List Functions
Lists come with many useful functions

(Table 7.2). All of these functions, except

for count (which just returns a number),

modify the list you call them with. Thus,

these are mutating functions, so you need

to use them with care. It is distressingly

easy, for instance, to accidentally delete a

wrong element or insert a new value at the

wrong place.

The append function adds an element to

the end of a list. One common program-

ming pattern is to create an empty list at

the beginning of a function and then add

values to it in the rest of the function. For

example, here is a function that creates a

string of messages based on a list of input

numbers:

numnote.py

def numnote(lst):

 msg = []

 for num in lst:

 if num < 0:

 s = str(num) + ' is negative'

 elif 0 <= num <= 9:

 s = str(num) + ' is a digit'

 msg.append(s)

 return msg

For example:

>>> numnote([1, 5, -6, 22])

['1 is a digit', '5 is a digit',

'-6 is negative']

TABLE 7.2 List Functions

Name Return Value

s.append(x) Appends x to the end of s

s.count(x) Returns the number of times

x appears in s

s.extend(lst) Appends each item of lst
to s

s.index(x) Returns the index value of

the leftmost occurrence of x

s.insert(i, x) Inserts x before index

location i (so that s[i] == x)

s.pop(i) Removes and returns the

item at index i in s

s.remove(x) Removes the leftmost

occurrence of x in s

s.reverse() Reverses the order of the

elements of s

s.sort() Sorts the elements of s into

increasing order

From the Library of Mo Medwani

ptg999

Data Structures 111

To print the messages on their own indi-

vidual lines, you could do this:

>>> for msg in numnote([1, 5, -6,
➝ 22]): print(msg)

1 is a digit

5 is a digit

-6 is negative

Or even this:

>>> print('\n'.join(numnote([1, 5,
➝ -6, 22])))

1 is a digit

5 is a digit

-6 is negative

The extend function is similar to append,

but it adds an entire sequence:

>>> lst = []

>>> lst.extend('cat')

>>> lst

['c', 'a', 't']

>>> lst.extend([1, 5, -3])

>>> lst

['c', 'a', 't', 1, 5, -3]

Lingo Alert
In computer programming, the term pop
usually refers to the act of removing the

last element of a list. The related term,

push, refers to adding an element to the

same end (that is, exactly what Python’s

append does). When push and pop are

used on the same list, we often refer

to it as a stack: We say that items are

pushed onto the top of the stack and

then popped from the top of the stack.

Despite their simplicity, stacks form the

basis of a number of more advanced pro-

gramming behaviors, such as recursion

and undo.

From the Library of Mo Medwani

ptg999

112 Chapter 7

The pop function removes an element at

a given index position and then returns it.

For example:

>>> lst = ['a', 'b', 'c', 'd']

>>> lst.pop(2)

'c'

>>> lst

['a', 'b', 'd']

>>> lst.pop()

'd'

>>> lst

['a', 'b']

Notice that if you don’t give pop an index,

it removes and returns the element at the

end of the list.

The remove(x) function removes the first

occurrence of x from a list. However, it

does not return x:

>>> lst = ['a', 'b', 'c', 'a']

>>> lst.remove('a')

>>> lst

['b', 'c', 'a']

As the name suggests, reverse reverses

the order of the elements of a list:

>>> lst = ['a', 'b', 'c', 'a']

>>> lst

['a', 'b', 'c', 'a']

>>> lst.reverse()

>>> lst

['a', 'c', 'b', 'a']

It’s important to realize that reverse does

not make a copy of the list: It moves the

items within the list itself, so we say the

reversal is done in place.

From the Library of Mo Medwani

ptg999

Data Structures 113

Sorting Lists
Sorting data is one of the most common

things that computers do. Sorted data is

usually easier to work with than unsorted

data, for both humans and computers. For

instance, finding the smallest element of a

sorted list requires no searching at all: It is

simply the first element of the list. Humans

often prefer to see data in sorted order—

just imagine a phone book that was not

printed alphabetically!

In Python, sorting is most easily done using

the list sort() function. In practice, it can

be used to quickly sort lists with tens of

thousands of elements. Like reverse(),

sort() modifies the list in place:

>>> lst = [6, 0, 4, 3, 2, 6]

>>> lst

[6, 0, 4, 3, 2, 6]

>>> lst.sort()

>>> lst

[0, 2, 3, 4, 6, 6]

Lingo Alert
The order in which Python sorts a list

of sequences is called lexicographi-
cal ordering. This is just a general term

meaning “alphabetical order,” except that

it applies to any sequence of orderable

values, not just letters. The idea is that

elements are ordered by their initial ele-

ment, then their second element, then

their third element, and so on.

From the Library of Mo Medwani

ptg999

114 Chapter 7

The sort function always sorts elements

into ascending order, from smallest to

largest. If you want the elements sorted in

reverse order, from largest to smallest, the

simple trick of calling reverse after sort
works well:

>>> lst = ['up', 'down', 'cat',
➝ 'dog']

>>> lst

['up', 'down', 'cat', 'dog']

>>> lst.sort()

>>> lst

['cat', 'dog', 'down', 'up']

>>> lst.reverse()

>>> lst

['up', 'down', 'dog', 'cat']

Python also knows how to sort tuples and

lists. For example:

>>> pts = [(1, 2), (1, -1), (3, 5),
➝ (2, 1)]

>>> pts

[(1, 2), (1, -1), (3, 5), (2, 1)]

>>> pts.sort()

>>> pts

[(1, -1), (1, 2), (2, 1), (3, 5)]

Tuples (and lists) are sorted by their first

element, then by their second element,

and so on.

From the Library of Mo Medwani

ptg999

Data Structures 115

List Comprehensions
Lists are used so frequently that Python

provides a special notation for creat-

ing them called list comprehensions.

For example, here’s how you can use a

list comprehension to create a list of the

squares of the numbers from 1 to 10:

>>> [n * n for n in range(1, 11)]

[1, 4, 9, 16, 25, 36, 49, 64, 81,
➝ 100]

The main advantage of this notation is

that it is compact and readable. Com-

pare this with equivalent code without a

comprehension:

result = []

for n in range(1, 11):

 result.append(n * n)

Once you get the hang of them, list com-

prehensions are quick and easy to write,

and you will find many uses for them.

From the Library of Mo Medwani

ptg999

116 Chapter 7

Examples of list comprehensions
Let’s see a few more examples of com-

prehensions. If you want to double each

number on the list and 7, you can do this:

>>> [2 * n + 7 for n in
➝ range(1, 11)]

[9, 11, 13, 15, 17, 19, 21, 23,
➝ 25, 27]

Or if you want the first ten cubes:

>>> [n ** 3 for n in range(1, 11)]

[1, 8, 27, 64, 125, 216, 343, 512,
➝ 729, 1000]

You can also use strings in comprehen-

sions. For example:

>>> [c for c in 'pizza']

['p', 'i', 'z', 'z', 'a']

>>> [c.upper() for c in 'pizza']

['P', 'I', 'Z', 'Z', 'A']

A common application of comprehensions

is to modify an existing list in some way.

For instance:

>>> names = ['al', 'mei', 'jo',
➝ 'del']

>>> names

['al', 'mei', 'jo', 'del']

>>> cap_names = [n.capitalize() for
➝ n in names]

>>> cap_names

['Al', 'Mei', 'Jo', 'Del']

>>> names

['al', 'mei', 'jo', 'del']

From the Library of Mo Medwani

ptg999

Data Structures 117

Filtered comprehensions
List comprehensions can also filter out

elements you don’t want. For example, the

following comprehension returns a list con-

taining just the positive elements of nums:

>>> nums = [-1, 0, 6, -4, -2, 3]

>>> result = [n for n in nums if
➝ n > 0]

>>> result

[6, 3]

Here’s equivalent code without a

comprehension:

result = []

nums = [-1, 0, 6, -4, -2, 3]

for n in nums:

 if n > 0:

 result.append(n)

Again, we see that list comprehensions

are more compact and readable than a

regular loop.

Generator Expressions
There’s one more simplification we could make to eat_vowels: The square brackets in the com-

prehension can be removed:

' '.join(c for c in s if c.lower() not in 'aeiou')

The expression inside join is an example of a generator expression. In more advanced Python

programming, generator expressions can be used to efficiently generate only the needed part of a

list or sequence, with the elements being generated on demand instead of all at once as with a list

comprehension.

Here’s a comprehension that removes all

the vowels from a word written inside a

function:

eatvowels.py

def eat_vowels(s):

 """ Removes the vowels from s.

 """

 return ''.join([c for c in s
➝ if c.lower() not in 'aeiou'])

It works like this:

>>> eat_vowels('Apple Sauce')

'ppl Sc'

The body of eat_vowels looks rather cryp-

tic at first, and the trick to understanding it

is to read it a piece at a time. First, look at

the comprehension:

[c for c in s if c.lower() not in
➝ 'aeiou']

This is a filtered comprehension that scans

through the characters of s one at a time. It

converts each character to lowercase and

then checks to see if it is a vowel. If it is a

vowel, it is skipped and not added to the

resulting list; otherwise, it is added.

The result of this comprehension is a list of

strings, so we use join to concatenate all

the strings into a single string that is then

immediately returned.

From the Library of Mo Medwani

ptg999

118 Chapter 7

Dictionaries
A Python dictionary is an extremely

efficient data structure for storing pairs of

values in the form key:value. For example:

>>> color = {'red' : 1, 'blue' : 2,
➝ 'green' : 3}

>>> color

{'blue': 2, 'green': 3, 'red': 1}

The dictionary color has three members.

One of them is 'blue':2, where 'blue' is

the key and 2 is its associated value.

You access values in a dictionary by their

keys:

>>> color['green']

3

>>> color['red']

1

Accessing dictionary values by their keys

is extremely efficient, even if the dictionary

has many thousands of pairs.

Like lists, dictionaries are mutable: You

can add or remove key:value pairs. For

example:

>>> color = {'red' : 1, 'blue' : 2,
➝ 'green' : 3}

>>> color

{'blue': 2, 'green': 3, 'red': 1}

>>> color['red'] = 0

>>> color

{'blue': 2, 'green': 3, 'red': 0}

Lingo Alert
Dictionaries are also referred to as

associative arrays, maps, or hash
tables.

Hashing
Python’s dictionaries use a clever

programming trick known as hashing.

Essentially, each key in a dictionary is

converted to a number called its hash
value using a specially designed hash
function. The associated values are

stored in an underlying list at the index

location of their hash value. Accessing a

value involves converting the supplied

key to a hash value and then jumping to

that index location in the list. The exact

details of hashing are tricky, but thank-

fully Python takes care of everything

for us.

From the Library of Mo Medwani

ptg999

Data Structures 119

Key restrictions
Dictionary keys have a couple of restric-

tions you need to be aware of. First, keys

are unique within the dictionary: You can’t

have two key:value pairs in the same dic-

tionary with the same key. For example:

>>> color = {'red' : 1, 'blue' : 2,
➝ 'green' : 3, 'red' : 4}

>>> color

{'blue': 2, 'green': 3, 'red': 4}

Even though we’ve written the key 'red'
twice, Python only stores the second pair,

'red':4. There’s simply no way to have

duplicate keys: Dictionary keys must
always be unique.

The second restriction on keys is that they

must be immutable. So, for example, a

dictionary key cannot be a list or another

dictionary. The reason for this requirement

is that the location in a dictionary where a

key:value pair is stored is calculated from

the key. If the key changes even slightly,

the location of the key:value pair in the

dictionary can also change. If that happens,

then pairs in the dictionary can become

lost and inaccessible.

Neither of these restrictions holds for

values. Values can be mutable and can

appear as many times as you like within

the same dictionary.

From the Library of Mo Medwani

ptg999

120 Chapter 7

Dictionary functions
Table 7.3 lists the functions that come with

all dictionaries.

As we’ve seen, the standard way to

retrieve a value from a dictionary is to use

square-bracket notation: d[key] returns

the value associated with key. Calling

d.get(key) will do the same thing. If you

call either function when key is not in d,

you’ll get a KeyError.

If you are not sure whether a key is in a

dictionary ahead of time, you can check by

calling key in d. This expression returns

True if key is in the d, and False other-

wise. It is an extremely efficient check

(especially as compared with using in with

sequences!).

You can also retrieve dictionary values

using the pop(key) and popitem() func-

tions. The difference between pop(key)
and get(key) is that pop(key) returns

the value associated with key and also

TABLE 7.3 Dictionary Functions

Name Return Value

d.items() Returns a view of the (key, value) pairs in d

d.keys() Returns a view of the keys of d

d.values() Returns a view of the values in d

d.get(key) Returns the value associated with key

d.pop(key) Removes key and returns its corresponding value

d.popitem() Returns some (key, value) pair from d

d.clear() Removes all items from d

d.copy() A copy of d

d.fromkeys(s, t) Creates a new dictionary with keys taken from s and values taken from t

d.setdefault(key, v) If key is in d, returns its value; if key is not in d, returns v and adds (key, v) to d

d.update(e) Adds the (key, value) pairs in e to d; e may be another dictionary or a sequence

of pairs

From the Library of Mo Medwani

ptg999

Data Structures 121

removes its pair from the dictionary (get
only returns the value). The popitem()
function returns and removes some (key,

value) pair from the dictionary. You don’t

know ahead of time which pair will be

popped, so it’s useful only when you don’t

care about the order in which you access

the dictionary elements.

The items(), keys(), and values() func-

tions all return a special object known

as a view. A view is linked to the original

dictionary, so that if the dictionary changes,

so does the view. For example:

>>> color

{'blue': 2, 'orange': 4, 'green': 3,
➝ 'red': 0}

>>> k = color.keys()

>>> for i in k: print(i)

blue

orange

green

red

>>> color.pop('red')

0

>>> color

{'blue': 2, 'orange': 4, 'green': 3}

>>> for i in k: print(i)

blue

orange

green

From the Library of Mo Medwani

ptg999

122 Chapter 7

Sets
In Python, sets are collections of 0 or more

items with no duplicates. A set is similar

to a dictionary that only has keys and no

associated values.

Sets come in two categories: mutable sets
and immutable frozensets. You can add

and remove elements from a regular set,

whereas a frozenset can never change

once it is created.

Perhaps the most common use of sets is

to remove duplicates from a sequence.

For example:

>>> lst = [1, 1, 6, 8, 1, 5, 5, 6,
➝ 8, 1, 5]

>>> s = set(lst)

>>> s

{8, 1, 5, 6}

Just as with dictionaries, the order of the

elements in the set cannot be guaranteed.

Calling dir(set) in the interactive com-

mand line will list the functions that all sets

come with—there are quite a few! Since

sets are not as frequently used as lists and

dictionaries, we won’t list them all here.

But keep sets in mind, and when you need

them, refer to their online documenta-

tion at http://docs.python.org/3/library/

stdtypes.html#set-types-set-frozenset.

Sets and Dictionaries
Sets are a relatively new addition to

Python. Before sets, programmers used

dictionaries to simulate sets, and indeed

the first implementations of sets in

Python did the same. If you find yourself

using dictionaries and not caring about

the values, then changing your code to

use sets might make it more readable.

From the Library of Mo Medwani

http://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
http://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

ptg999

8
Input and Output

In This Chapter
Formatting Strings 124

String Formatting 126

Reading and Writing Files 128

Examining Files and Folders 131

Processing Text Files 134

Processing Binary Files 138

Reading Webpages 141

To be useful, a program needs to com-

municate with the world around it. It needs

to interact with the user, or read and write

files, or access webpages, and so on.

In general, we refer to this as input and
output, or I/O for short.

We’ve already seen basic console I/O,

which involves printing messages and

using the input function to read strings

from the user. Now we’ll see some string

formatting that lets you make fancy output

strings for console I/O and anywhere you

need a formatted string.

Then we’ll turn to file I/O, which is all about

reading and writing files. Python provides a

lot of support for basic file I/O, making it as

easy as possible for programmers. In par-

ticular, we’ll see how to use text files, binary

files, and the powerful pickle module.

From the Library of Mo Medwani

ptg999

124 Chapter 8

Formatting Strings
Python provides a number of different

ways to create formatted strings. We will

discuss the older string interpolation and

the newer format strings.

String interpolation
String interpolation is a simple approach

to string formatting that Python borrows

from the C programming language. For

instance, here’s how you can control the

number of decimal places in a float:

>>> x = 1/81

>>> print(x)

0.0123456790123

>>> print('value: %.2f' % x)

value: 0.01

>>> print('value: %.5f' % x)

value: 0.01235

String interpolation expressions always

have the form format % values, where

format is a string containing one or more

occurrences of the % character. In the

example 'x = %.2f' % x, the substring

%.2f is a formatting command that tells

Python to take the first supplied value (x)

and to display it as a floating point value

with two decimal places.

From the Library of Mo Medwani

ptg999

Input and Output 125

Conversion specifiers
The character f in the format string is a

conversion specifier, and it tells Python

how to render the corresponding value.

Table 8.1 lists the most commonly used

conversion specifiers.

The e, E, and f specifiers give you different

ways of representing floats. For example:

>>> x

0.012345679012345678

>>> print('x = %f' % x)

x = 0.012346

>>> print('x = %e' % x)

x = 1.234568e-02

>>> print('x = %E' % x)

x = 1.234568E-02

You can put as many specifiers as you

need in a format string, although you must

supply exactly one value for each specifier.

For example:

>>> a, b, c = 'cat', 3.14, 6

>>> s = 'There\'s %d %ss older than
➝ %.2f years' % (c, a, b)

>>> s

"There's 6 cats older than 3.14
➝ years"

As this example shows, the format string

acts as a simple template that gets filled

in by the values. The values are given in

a tuple, and they must be in the order in

which you want them replaced.

The d, f, and s conversion specifiers are

the most frequently used, so they are the ones

worth remembering. In particular, f is the easi-

est way to control the format of floats.

If you need the % character to appear as

% itself, then you must type '%%'.

TABLE 8.1 Some Conversion Specifiers

Specifier Meaning

d Integer

o Octal (base 8) value

x Lowercase hexadecimal (base 16)

X Uppercase hexadecimal (base 16)

e Lowercase float exponential

E Uppercase float exponential

F Float

s String

% % character

Octal and Hexadecimal
The o and x conversion specifiers, which

convert values to base 8 (octal) and base

16 (hexadecimal), respectively, might

seem to be of questionable value. How-

ever, in many computer-oriented applica-

tions it is convenient to represent values

in base 16 or, less frequently, base 8. As

we will see later in this chapter, hexa-

decimal is commonly used when dealing

with binary files.

From the Library of Mo Medwani

ptg999

126 Chapter 8

String Formatting
A second way to create fancy strings in

Python is to use format strings with the

string function format(value, format_
spec). For example:

>>> 'My {pet} has {prob}'.format
➝ (pet = 'dog', prob='fleas')

'My dog has fleas'

In a format string, anything within curly

braces is replaced. This is called named
replacement, and it is especially readable

in this example.

You can also replace values by position:

>>> 'My {0} has {1}'.format
➝ ('dog', 'fleas')

'My dog has fleas'

Or apply formatting codes similar to inter-

polated strings:

>>> '1/81 = {x}'.format(x=1/81)

'1/81 = 0.0123456790123'

>>> '1/81 = {x:f}'.format(x=1/81)

'1/81 = 0.012346'

>>> '1/81 = {x:.3f}'.format(x=1/81)

'1/81 = 0.012'

Templating Packages
When neither string interpolation

nor format strings are powerful or

flexible enough, you may want to

use a templating package, such as

Cheetah (www.cheetahtemplate.org)

or the one that comes with Django

(www.djangoproject.com). Both allow

you to do some very sophisticated

replacements and are good choices

if you are making, say, a lot of dynami-

cally generated webpages.

From the Library of Mo Medwani

http://www.cheetahtemplate.org
http://www.djangoproject.com

ptg999

Input and Output 127

You can specify formatting parameters

within braces, like this:

>>> 'num = {x:.{d}f}'.format
➝ (x=1/81, d=3)

'num = 0.012'

>>> 'num = {x:.{d}f}'.format
➝ (x=1/81, d=4)

'num = 0.0123'

This is something you can’t do with regular

string interpolation.

If you need the { or }characters to

appear as themselves in a format string, type

them as {{ and }}.

Format strings are more flexible and

powerful than string interpolation, but also

more complicated. If you are creating only a

few simple formatted strings, string interpola-

tion is probably the best choice. Otherwise,

format strings are more useful for larger and

more complex formatting jobs, such as creat-

ing webpages or form letters for email.

From the Library of Mo Medwani

ptg999

128 Chapter 8

Reading and
Writing Files
A file is a named collection of bits stored

on a secondary storage device, such

as a hard disk, USB drive, flash memory

stick, and so on. We distinguish between

two categories of files: text files, which

are essentially strings stored on disk, and

binary files, which are everything else.

Text files have the following characteristics:

■ They are essentially “strings on disk.”

Python source code files and HTML

files are examples of text files.

■ They can be edited with any text edi-

tor. Thus, they are relatively easy for

humans to read and modify.

■ They tend to be difficult for programs to

read. Typically, programs called parsers
are needed to read each different kind

of text file. For instance, Python uses a

special-purpose parser to help read .py
files, and an HTML-specific parser is

needed to read HTML files.

■ They are usually larger than equivalent

binary files. This can be a major prob-

lem when, for instance, you need to

send a large text file over the Internet.

Thus, text files are often compressed

(for example, into zip format) to speed

up transmission and to save disk space.

From the Library of Mo Medwani

ptg999

Input and Output 129

Binary files have the following

characteristics:

■ They are not usually human-readable,

at least within a regular text editor. A

binary file is displayed in a text editor

as a random-looking series of charac-

ters. Some kinds of binary files, such as

JPEG image files, have special viewers

for displaying their content.

■ They usually take up less space than

equivalent text files. For instance, a

binary file might group the information

within it in chunks of 32 bits without

using separator characters, such as

commas or spaces.

■ They are often easier for programs to

read and write than text files. Although

each binary file is different, it’s often not
necessary to write complex parsers to

read them.

■ They are often tied to a specific pro-

gram and are often unusable if you lack

that program. Some popular binary files

may have their file formats published

so that you can, if so motivated, write

your programs to read and write them.

However, this usually requires substan-

tial effort.

From the Library of Mo Medwani

ptg999

130 Chapter 8

Folders
In addition to files, folders (or directories)

are used to store files and other folders.

The folder structure of most file systems is

quite large and complex, forming a hierar-
chical folder structure.

A pathname is the name used to identify

a file or a folder. The full pathname can be

quite long. For example, the Python folder

on my Windows computer has this full

pathname: C:\Documents and Settings\tjd\

Desktop\python.

Windows pathnames use a backward
slash (\) character to separate names in a

path, and they start with the letter of the

disk drive (in this example, C:).

On Mac and Linux systems, a forward slash
(/) is used to separate names. Plus, there

is no drive letter at the start. For example,

here is the full pathname for my Python

folder on Linux: /home/tjd/Desktop/python.

Recall that if you want to write a \ charac-

ter in a Python string, it must be doubled:

'C:\\home\\tjd\\Desktop\\python'

To avoid the double backslashes, you can use

a raw string:

r'C:\home\tjd\Desktop\python'

Getting Python programs to work with

both styles of pathnames is a bit tricky, and

you should read the documentation for

Python’s os.path module for (much!) more

information.

The current working directory
Many programs use the idea of a current
working directory, or cwd. This is simply

one directory that has been designated

as the default directory: Whenever you

do something to a file or a folder without

providing a full pathname, Python assumes

you mean a file or a folder in the current

working directory.

From the Library of Mo Medwani

ptg999

Input and Output 131

Examining Files
and Folders
Python provides many functions that return

information about your computer’s files

and folders (its file system). Table 8.2 lists

a few of the most useful ones.

Let’s write a couple of useful functions to

see how these work. For instance, a com-

mon task is retrieving the files and folders

in the current working directory. Writing

os.listdir(os.getcwd()) is unwieldy, so

we can write this function:

list.py

def list_cwd():

 return os.listdir(os.getcwd())

The following two related helper functions

use list comprehensions to return just the

files and folders in the current working

directory:

list.py

def files_cwd():

 return [p for p in list_cwd()

 if os.path.isfile(p)]

def folders_cwd():

 return [p for p in list_cwd()

 if os.path.isdir(p)]

TABLE 8.2 Useful File and Folder Functions

Name Action

os.getcwd() Returns the name of the current working directory

os.listdir(p) Returns a list of strings of the names of all the files and folders in the folder specified

by path p

os.chdir(p) Sets the current working directory to be path p

os.path.isfile(p) Returns True just when path p specifies the name of a file, and False otherwise

os.path.isdir(p) Returns True just when path p specifies the name of a folder, and False otherwise

os.stat(fname) Returns information about fname, such as its size in bytes and the last modification time

From the Library of Mo Medwani

ptg999

132 Chapter 8

If you just want a list of, say, the .py files

in the current working directory, then this

will work:

list.py

def list_py(path = None):

 if path == None:

 path = os.getcwd()

 return [fname for fname in
➝ os.listdir(path)

 if os.path.isfile(fname)

 if fname.endswith('.py')]

This function plays a useful trick with its

input parameter: If you call list_py()
without a parameter, it runs on the current

working directory. Otherwise, it runs on the

directory you pass in.

Finally, here’s a function that returns the

sum of the sizes of the files in the current

working directory:

list.py

def size_in_bytes(fname):

 return os.stat(fname).st_size

def cwd_size_in_bytes():

 total = 0

 for name in files_cwd():

 total = total +
➝ size_in_bytes(name)

 return total

A Neat Trick
The cwd_size_in_bytes function can

be written as a single-line function:

def cwd_size_in_bytes2():

 return sum(size_in_bytes(f)

 for f in files_cwd())

The details of how cwd_size_in_bytes2
works is beyond the scope of an

introductory book, but if you are curi-

ous about this more compact form,

search the web for python generator
expressions.

From the Library of Mo Medwani

ptg999

Input and Output 133

To save space, we’ve removed the

doc strings for these functions. However,

the supplementary code files on Google’s

“pythonintro” website (http://pythonintro.

googlecode.com) all include doc strings.

You can tell from the name

cwd_size_in_bytes that the return value

will be in bytes. Putting the unit of the return

value in the function name prevents the need

to check the documentation for the units.

In general, it’s a good idea to use lots of

functions. Even single-line functions such as

list_dir() are useful because they make

your programs easier to read and maintain.

The os.stat() function is fairly com-

plex and provides much more information

about files than we’ve shown here. Check

Python’s online documentation for more

information (http://docs.python.org/3/library/

os.html).

From the Library of Mo Medwani

http://pythonintro.googlecode.com
http://pythonintro.googlecode.com
http://docs.python.org/3/library/os.html
http://docs.python.org/3/library/os.html

ptg999

134 Chapter 8

Processing Text Files
Python makes it relatively easy to process

text files. In general, file processing follows

the three steps shown in A.

Reading a text file, line by line
Perhaps the most common way of reading

a text file is to read it one line at a time. For

example, this prints the contents of a file to

the screen:

printfile.py

def print_file1(fname):

 f = open(fname, 'r')

 for line in f:

 print(line, end = '')

 f.close() # optional

The first line of the function opens the file:

open requires the name of the file you want

to process, and also the mode you want it

opened in. We are only reading the file, so

we open the file in read mode 'r'. Table

8.3 lists Python’s main file modes.

The open function returns a special file
object, which represents the file on disk.

Importantly, open does not read the file

into RAM. Instead, in this example, the file

is read a line at a time using a for-loop.

The last line of print_file1 closes the

file. As the comment notes, this is optional:

Python almost always automatically closes

files for you. In this case, variable f is local

to print_file1, so when print_file1
ends, Python automatically closes and then

deletes the file object (not the file itself, of

course!) that f points to.

TABLE 8.3 Python File Modes

Character Meaning

'r' Open for reading (default)

'w' Open for writing

'a' Open for appending to the end of

the file

'b' Binary mode

't' Text mode (default)

'+' Open a file for reading and writing

A The three main steps for processing a text

file. A file must be opened before you can use it,

and then it should be closed when you are done

with it to ensure that all changes are committed

to the file.

From the Library of Mo Medwani

ptg999

Input and Output 135

The print statement in print_file1
sets end = '' because the lines of a file

always end with a \n character. Thus if we

had written just print(line), the file would

be displayed with extra blank lines (try it

and see!).

If errors occur while a file is open, it is

possible that the program could end without

the file being properly closed. In the next chap-

ter, we will see how to handle such errors and

ensure that a file is always correctly closed.

Reading a text file as a string
Another common way of reading a text file

is to read it as one big string. For example:

printfile.py

def print_file2(fname):

 f = open(fname, 'r')

 print(f.read())

 f.close()

This is shorter and simpler than print_
file1, so many programmers prefer it.

However, if the file you are reading is very
large, it will take up a lot of RAM, which

could slow down, or even crash, your

computer.

Finally, we note that many programmers

would write this as a single line:

print(open(fname, 'r').read())

While this more compact form might take

some getting used to, many programmers

like this style because it is both quick to

type and still relatively readable.

Reading by Default
When reading a text file, you can use

open with just the filename. For example:

f = open(fname)

When no mode parameters are supplied,

Python assumes you are opening a text

file for reading.

From the Library of Mo Medwani

ptg999

136 Chapter 8

Writing to a text file
Writing text files is only a little more

involved than reading them. For example,

this function creates a new text file named

story.txt:

write.py

def make_story1():

 f = open('story.txt', 'w')

 f.write('Mary had a little
➝ lamb,\n')

 f.write('and then she had some
➝ more.\n')

The 'w' tells Python to open the file in

write mode. To put text into the file, you

call f.write with the string you want to put

into the file. Strings are written to the file in

the order in which they are given.

Important: If story.txt already exists,

then calling open('story.txt', 'w') will

delete it! If you want to avoid overwriting

story.txt, you need to check to see if it

exists:

write.py

import os

def make_story2():

 if os.path.isfile('story.txt'):

 print('story.txt already exists)

 else:

 f = open('story.txt', 'w')

 f.write('Mary had a little
➝ lamb,\n')

 f.write('and then she had some
➝ more.\n')

Appending to a text file
One common way of adding strings to a

text file is to append them to the end of the

file. Unlike 'w' mode, this does not delete

anything that might already be in the file.

For example:

def add_to_story(line, fname =
➝ 'story.txt'):

 f = open(fname, 'a')

 f.write(line)

The important thing to note here is that the

file is opened in append mode 'a'.

From the Library of Mo Medwani

ptg999

Input and Output 137

Inserting a string at
the start of a file
Writing a string to the beginning of a file

is not as easy as appending one to the

end because the Windows, Linux, and

Macintosh operating systems don’t directly

support inserting text at the beginning of a

text file. Perhaps the simplest way to insert

text at the beginning of a file is to read the

file into a string, insert the new text into the

string, and then write the string back to the

original file. For example:

def insert_title(title, fname =
➝ 'story.txt'):

 f = open(fname, 'r+')

 temp = f.read()

 temp = title + '\n\n' + temp

 f.seek(0) # reset file pointer

 # to beginning

 f.write(temp)

First, notice that we open the file using

the special mode 'r+', which means the

file can be both read from and written

to. Then we read the entire file into the

string temp and insert the title using string

concatenation.

Before writing the newly created string

back into the file, we first have to tell the

file object f to reset its internal file pointer.
All text file objects keep track of where

they are in the file, and after f.read() is

called, the file pointer is at the very end.

Calling f.seek(0) puts it back at the start

of the file, so that when we write to f, it

begins at the start of the file.

From the Library of Mo Medwani

ptg999

138 Chapter 8

Processing Binary Files
If a file is not a text file, then it is consid-

ered to be a binary file. Binary files are

opened in 'b' mode, and you access the

individual bytes of the file. For example:

def is_gif(fname):

 f = open(fname, 'br')

 first4 = tuple(f.read(4))

 return first4 == (0x47, 0x49,
➝ 0x46, 0x38)

This function tests if fname is a GIF image

file by checking to see if its first four bytes

are (0x47, 0x49, 0x46, 0x38) (all GIFs

must start with those four bytes).

In Python, numbers like 0x47 are base-16

hexadecimal numbers, or hex for short.

They are very convenient for dealing with

bytes, since each hexadecimal digit corre-

sponds to a pattern of four bits, and so one

byte can be described using two hex digits

(such as 0x47).

Notice that the file is opened in 'br'
mode, which means binary reading
mode. When reading a binary file, you call

f.read(n), which reads the next n bytes.

As with text files, binary file objects use

a file pointer to keep track of which byte

should be read next in the file.

From the Library of Mo Medwani

ptg999

Input and Output 139

Pickling
Accessing the individual bytes of binary

files is a very low-level operation that,

while useful in systems programming, is

less useful in higher-level applications
programming.

Pickling is often a much more convenient

way to deal with binary files. Python’s

pickle module lets you easily read

and write almost any data structure. For

example:

picklefile.py

import pickle

def make_pickled_file():

 grades = {'alan' : [4, 8, 10, 10],

 'tom' : [7, 7, 7, 8],

 'dan' : [5, None, 7, 7],

 'may' : [10, 8, 10, 10]}

 outfile = open('grades.dat', 'wb')

 pickle.dump(grades, outfile)

def get_pickled_data():

 infile = open('grades.dat', 'rb')

 grades = pickle.load(infile)

 return grades

Essentially, pickling lets you store a data

structure on disk using pickle.dump and

then retrieve it later with pickle.load.

This is an extremely useful feature in many

application programs, so you should keep

it in mind whenever you need to store

binary data.

Lingo Alert
The Python pickle module performs

what is generally known as object seri-
alization, or just serialization. The idea

is to take a complex data structure and

convert it to a stream of bytes—that is,

create a serial representation of the data

structure.

From the Library of Mo Medwani

ptg999

140 Chapter 8

In addition to data structures, pickling

can store functions.

You can’t use pickling to read or write

binary files that have a specific format, such

as GIF files. For such files, you must work byte

by byte.

Python has a module called shelve that

provides an even higher-level way to store and

retrieve data. The shelve module essentially

lets you treat a file as if it were a dictionary. For

more details, see the Python documentation

(http://docs.python.org/3/library/shelve.html).

Python also has a module named

sqlite3, which provides an interface to the

SQLite database. This lets you write SQL com-

mands to store and retrieve data very much

like using a larger database product such as

Postgres or MySQL. For more details, see the

Python documentation (http://docs.python.

org/3/library/sqlite3.html).

From the Library of Mo Medwani

http://docs.python.org/3/library/shelve.html
http://docs.python.org/3/library/sqlite3.html
http://docs.python.org/3/library/sqlite3.html

ptg999

Input and Output 141

Reading Webpages
Python has good support for accessing the

web. One common task is to have a pro-

gram automatically read a webpage. This is

easily done using the urllib module:

>>> import urllib.request

>>> page = urllib.request.
➝ urlopen('http://www.python.org')

>>> html = resp.read()

>>> html[:25]

b'<!DOCTYPE html PUBLIC "-/'

Now html contains the complete text of

the webpage at www.python.org. It is in

HTML, of course, so it looks just like what

you would see if you were to use the View

Source option on your web browser. Since

the webpage is now a string on your com-

puter, you can use Python’s string-manipula-

tion functions to extract information from it.

The urllib module also lets you pro-

grammatically post information to web forms.

For details of how to do this and more, see the

Python documentation (http://docs.python.

org/3/howto/urllib2.html).

Reading a webpage into a string is the

first step in creating a web browser. The next

major step is to parse the string—to identify

and extract titles, paragraphs, tables, and so

on. Python provides a basic HTML parsing

library in the html.parser module. See the

Python documentation (http://docs.python.

org/3/library/html.parser.html) for details.

Another nifty module is webbrowser,

which lets you programmatically display a

webpage in a browser. For example, when you

type this into Python, the Yahoo home page

should pop up in your default web browser:

>>> import webbrowser

>>> webbrowser.open
➝ ('http://www.yahoo.com')

True

>>>

From the Library of Mo Medwani

http://www.python.org
http://docs.python.org/3/howto/urllib2.html
http://docs.python.org/3/howto/urllib2.html
http://docs.python.org/3/library/html.parser.html
http://docs.python.org/3/library/html.parser.html
http://www.python.org
http://www.yahoo.com

ptg999

This page intentionally left blank

From the Library of Mo Medwani

ptg999

9
Exception Handling

In This Chapter
Exceptions 144

Catching Exceptions 146

Clean-Up Actions 150

Exceptions are a solution to a difficult

problem: How can programs deal with

unexpected errors? For instance, what

happens if a file disappears in the middle

of being read because some other pro-

gram on your computer has deleted it? Or

what if the website your program is down-

loading pages from suddenly crashes?

In these and many other situations, what

Python does is raise an exception. An

exception is a special kind of error object

that you can catch and then examine in

order to determine how to handle the error.

Exceptions can change the flow of control

of your program. Depending on when it

occurs, an exception can cause the flow of

control to jump out of the middle of a func-

tion or loop into another block of code that

does error handling.

Often, you cannot be sure exactly which

line might raise an exception, and this cre-

ates some tricky problems. Thus Python

provides special exception-handling con-

structs for both catching exceptions and

executing clean-up code whether or not

an exception is raised.

From the Library of Mo Medwani

ptg999

144 Chapter 9

Exceptions
An example of an exception is IOError,

which is raised when you try to open a file

that doesn’t exist:

>>> open('unicorn.dat')

Traceback (most recent call last):

 File "<pyshell#1>", line 1, in
➝ <module>

 open('unicorn.dat')

 File "C:\Python30\lib\io.py", line
➝ 284, in __new__

 return open(*args, **kwargs)

 File "C:\Python30\lib\io.py", line
➝ 223, in open

 closefd)

IOError: [Errno 2] No such file or
➝ directory: 'unicorn.dat'

When an exception is raised and is not

caught or handled in any way, Python

immediately halts the program and outputs

a traceback, which is a list of the func-

tions that were called before the excep-

tion occurred. This can be quite useful in

pinning down exactly what line causes an

error.

The last line of the traceback indicates that

an IOError exception has been raised,

and, specifically, it means that unicorn.dat
could not be found in the current working

directory. The error message given by an

IOError differs depending on the exact

reason for the exception.

Lingo Alert
In Python, when an exception occurs, we

say that it has been raised, or has been

thrown. If we do nothing with a raised

exception, the program usually halts

immediately with a traceback, or a stack
trace. However, especially in programs

meant to be used by other people, we

usually catch and handle exceptions, as

we will see shortly.

From the Library of Mo Medwani

ptg999

Exception Handling 145

Raising an exception
As we saw with the open function, Python’s

built-in functions and library functions

usually raise exceptions when something

unexpected happens.

For instance, dividing by zero throws an

exception:

>>> 1/0

Traceback (most recent call last):

 File "<pyshell#0>", line 1, in
➝ <module>

 1/0

ZeroDivisionError: int division or
➝ modulo by zero

Syntax errors can also cause exceptions in

Python:

>>> x := 5

SyntaxError: invalid syntax
➝ (<pyshell#2>, line 1)

>>> print('hello world)

SyntaxError: EOL while scanning
➝ string literal (<pyshell#3>,
➝ line 1)

You can also intentionally raise an excep-

tion anywhere in your code using the

raise statement. For example:

>>> raise IOError('This is a test!')

Traceback (most recent call last):

 File "<pyshell#6>", line 1, in
➝ <module>

 raise IOError('This is a test!')

IOError: This is a test!

Python has numerous built-in exceptions

organized into a hierarchy. See the Python

documentation (http://docs.python.org/3/

library/exceptions.html#bltin-exceptions)

for more details.

From the Library of Mo Medwani

http://docs.python.org/3/library/exceptions.html#bltin-exceptions
http://docs.python.org/3/library/exceptions.html#bltin-exceptions

ptg999

146 Chapter 9

Catching Exceptions
You have essentially two options for deal-

ing with a raised exception:

1. Ignore the exception and let your

program crash with a traceback. This

is usually what you want when you

are developing a program, since the

traceback provides helpful debugging

information.

2. Catch the exception and print a friendly

error message, or possibly even try to

fix the problem. This is almost always

what you want to do with a program

meant to be used by non-programmers.

Regular users don’t want to deal with

tracebacks!

Here’s an example of how to catch an

exception. Suppose you want to read an

integer from the user, prompting repeat-

edly until a valid integer is entered:

def get_age():

 while True:

 try:

 n = int(input('How old are
➝ you? '))

 return n

 except ValueError:

 print('Please enter an integer
➝ value.')

Inside this function’s while-loop is a

try/except block. You put whatever code

you like in the try part of the block, with

the understanding that one or more lines

of that code might raise an exception.

What Exceptions
Do Functions Raise?
How do we know to check for an excep-

tion named ValueError in get_age()?

The answer depends on the function’s

documentation. A well-documented

function will tell you what exceptions

it might raise. For instance, the docu-

mentation for the open function (http://

docs.python.org/3/library/functions.

html?#open) tells you that it might raise

an IOError. However, not all of Python’s

built-in functions are so forthcoming: The

documentation for the int function says

nothing about what exceptions it might

raise. In this case, you have to figure

out the possible exceptions by reading

samples of other Python code, or by

doing command-line experiments.

From the Library of Mo Medwani

http://docs.python.org/3/library/functions.html?#open
http://docs.python.org/3/library/functions.html?#open
http://docs.python.org/3/library/functions.html?#open

ptg999

Exception Handling 147

If any line of the try block does raise an

exception, then the flow of control immedi-

ately jumps to the except block, skipping

over any statements that have not been

executed yet. In this example, the return
statement will be skipped when an excep-

tion is raised.

If the try block raises no exceptions, then

the except ValueError block is ignored

and not executed.

So in this example, the int() function

raises a ValueError if the user enters a

string that is not a valid integer. When that

happens, the flow of control jumps to the

except ValueError block and prints the

error message. When a ValueError is

raised, the return statement is skipped—

the flow of control jumps immediately to

the except block.

If the user enters a valid integer, then no

exception is raised, and Python proceeds

to the following return statement, thus

ending the function.

From the Library of Mo Medwani

ptg999

148 Chapter 9

Try/except blocks
Try/except blocks work a little bit like

if-statements. However, they are differ-

ent in an important way: If-statements

decide what to do based on the evalua-

tion of Boolean expressions, whereas try/

except blocks decide what to do based on

whether or not an exception is raised.

A function can raise more than one kind of

exception, and it can even raise the same

type of exception for different reasons.

Look at these three different int() excep-

tions (the tracebacks have been trimmed

for readability):

>>> int('two')

ValueError: invalid literal for
➝ int() with base 10: 'two'

>>> int(2, 10)

TypeError: int() can't convert non-
➝ string with explicit base

>>> int('2', 1)

ValueError: int() arg 2 must be >= 2
➝ and <= 36

So int() raises ValueError for at least

two different reasons, and it raises

TypeError in at least one other case.

From the Library of Mo Medwani

ptg999

Exception Handling 149

Catching multiple exceptions
You can write try/except blocks to handle

multiple exceptions. For example, you can

group together multiple exceptions in the

except clause:

def convert_to_int1(s, base):

 try:

 return int(s, base)

 except (ValueError, TypeError):

 return 'error'

Or, if you care about the specific exception

that is thrown, you can add extra except
clauses:

def convert_to_int2(s, base):

 try:

 return int(s, base)

 except ValueError:

 return 'value error'

 except TypeError:

 return 'type error'

Catching any exception
If you write an except clause without any

exception name, it will catch any and all

exceptions:

def convert_to_int3(s, base):

 try:

 return int(s, base)

 except:

 return 'error'

This form of except clause will catch any

exception—it doesn’t care about what kind

of error has occurred, just that one has

occurred. In many situations, this is all you

need.

From the Library of Mo Medwani

ptg999

150 Chapter 9

Clean-Up Actions
A finally code block can be added to

any try/except block to perform clean-up

actions. For example:

def invert(x):

 try:

 return 1 / x

 except ZeroDivisionError:

 return 'error'

 finally:

 print('invert(%s) done' % x)

The code block underneath finally will

always be executed after the try block or

the except block. This is quite useful when

you have code that you want to perform

regardless of whether an exception is

raised. For instance, file close statements

are often put in finally clauses so that

files are guaranteed to be closed, even if

an unexpected IOError occurs.

From the Library of Mo Medwani

ptg999

Exception Handling 151

The with statement
Python’s with statement is another way to

ensure that clean-up actions (such as clos-

ing a file) are done as soon as possible,

even if there is an exception. For example,

consider this code, which prints a file to the

screen with numbers for each line:

num = 1

f = open(fname)

for line in f:

 print('%04d %s' % (num, line),
➝ end = '')

 num = num + 1

 # following code

What’s unknown here is when the file

object f is closed. At some point after the

for-loop, f will usually be closed. But we

don’t know when precisely that will hap-

pen; it will remain unclosed but unused for

an indeterminate amount of time, which

might be a problem if other programs try to

access the file.

To ensure that the file is closed as soon

as it is no longer needed, use a with
statement:

num = 1

with open(fname, 'r') as f:

 for line in f:

 print('%04d %s' % (num, line),
➝ end = '')

 num = num + 1

The onscreen results are the same as the

previous code, but when you use a with
statement, the file objects’ clean-up action

(that is to say, closing the file) is automati-

cally called as soon as the for-loop ends.

Thus f does not sit around unclosed.

Alternative Formatting
The print statements in these two snip-

pets of code use string interpolation to

print a right-justified and zero-padded

number before each line of the printed

file. If you prefer string formatting, you

could replace the print statements with

this one:

print('{0:04} {1}'.format(num,
➝ line), end = '')

From the Library of Mo Medwani

ptg999

This page intentionally left blank

From the Library of Mo Medwani

ptg999

10
Object-Oriented

Programming

In This Chapter
Writing a Class 154

Displaying Objects 156

Flexible Initialization 160

Setters and Getters 162

Inheritance 168

Polymorphism 171

Learning More 175

In this chapter, we will briefly look at

object-oriented programming, or OOP for

short. OOP is a methodology for organizing

programs that encourages careful design

and code reuse. Most modern program-

ming languages support it, and it is has

proved to be a practical way to structure

and create large programs.

Essentially, an object is a collection of

data, and functions that operate on that

data. We’ve already been using objects in

Python; numbers, strings, lists, dictionaries,

and functions are all examples of objects.

To create new kinds of objects, you must

first create a class. A class is essentially a

blueprint for creating an object of a par-

ticular kind. The class specifies what data

and functions the objects will contain, and

how they relate to other classes. An object

encapsulates both the data and functions

that operate on that data.

An important OOP feature is inheritance:

You can create new classes that inherit their

data and functions from an existing class.

When used properly, inheritance can save

you from rewriting code, and it can also

make your programs easier to understand.

From the Library of Mo Medwani

ptg999

154 Chapter 10

Writing a Class
Let’s jump right into OOP by creating a

simple class to represent a person:

person.py

class Person:

 """ Class to represent a person

 """

 def __init__(self):

 self.name = ''

 self.age = 0

This defines a class named Person. It

defines the data and functions a Person
object will contain. We’ve started simple

and given Person a name and an age. The

only function so far is __init__, which

is the standard function for initializing an

object’s values. As we will see, Python

automatically calls __init__ when you

create a Person object.

A function defined inside a class is called a

method. Just like __init__, methods must

have self as their first parameter (self will

be discussed in more detail shortly).

We can use Person objects like this:

>>> p = Person()

>>> p

<__main__.Person object at
➝ 0x00AC3370>

>>> p.age

0

>>> p.name

''

>>> p.age = 55

>>> p.age

55

>>> p.name = 'Moe'

>>> p.name

'Moe'

Lingo Alert
In some OOP languages, __init__ is

called a constructor, because it con-

structs the object. A constructor is called

every time a new object is created. In

languages such as Java and C++, an

explicit new keyword is used to indicate

when an object is being constructed.

From the Library of Mo Medwani

ptg999

Object-Oriented Programming 155

To create a Person object, we simply call

Person(). This causes Python to run the

__init__ function in the Person class and

to return a new object of type Person.

The age and name variables are inside an

object, and every newly created Person
object has its own personal copy of age
and name. To access age or name, you must

specify what object holds them using dot
notation.

The self parameter
You’ll notice that we don’t provide

any parameters for Person(), but the

__init__(self) function expects an

input named self. That’s because in OOP,

self is a variable that refers to the object
itself A. This is a simple idea, but one that

trips up many beginners.

All classes should have an

__init__(self) method whose job is to

initialize the object—for example, initializing

an object’s variables. The __init__ method

is only called once when the object is created.

As we will see, you can provide extra param-

eters to __init__ if needed.

We have followed standard Python

terminology and given the first parameter of

__init__ the name self. This name is not

required: You can use any variable name you

like instead of self. However, the use of self
is a universal convention in Python, and using

any other name would likely just cause confu-

sion for any programmer trying to read your

code. Some other languages, such as Java and

C++, use—and require—the name this.

Objects can be used like any other data

type in Python: You can pass them to func-

tions, store them in lists and dictionaries,

pickle them in files, and so on.

A In this example, the variable p points to a

Person object (represented by the circle). As we

know from looking at the Person class, a Person
object contains an age and a name. These can be

used just like regular variables, with the stipulation

that they be accessed using dot notation—that

is, p.age and p.name. The special variable self
is automatically added by Python to all objects; it

points to the object itself and lets functions within

the class unambiguously refer to the data and

functions within the object.

From the Library of Mo Medwani

ptg999

156 Chapter 10

Displaying Objects
As mentioned, a method is a function

defined within an object. Let’s add a

method to the Person class that prints the

contents of a Person object:

person.py

class Person:

 """ Class to represent a person

 """

 def __init__(self):

 self.name = ''

 self.age = 0

 def display(self):

 print("Person('%s', age)" %
➝ (self.name, self.age))

The display method prints the contents of

a Person object to the screen in a format

useful to a programmer:

>>> p = Person()

>>> p.display()

Person('', 0)

>>> p.name = 'Bob'

>>> p.age = 25

>>> p.display()

Person('Bob', 25)

From the Library of Mo Medwani

ptg999

Object-Oriented Programming 157

The display method works fine, but we

can do better: Python provides some spe-

cial methods that let you customize objects

for seamless printing. For instance, the

special __str__ method is used to gener-

ate a string representation of an object:

person.py

class Person:

 # __init__ removed for space

 def display(self):

 print("Person('%s', age)" %
➝ (self.name, self.age))

 def __str__(self):

 return "Person('%s', age)" %
➝ (self.name, self.age)

Now we can write code like this:

>>> p = Person()

>>> str(p)

"Person('', 0)"

We can use str to simplify the display
method:

person.py

class Person:

 # __init__ removed for space

 def display(self):

 print(str(self))

 def __str__(self):

 return "Person('%s', age)" %
➝ (self.name, self.age)

From the Library of Mo Medwani

ptg999

158 Chapter 10

You can also define a special method

named __repr__ that returns the “official”

representation of an object. For example,

the default representation of a Person is

not very helpful:

>>> p = Person()

>>> p

<__main__.Person object at
➝ 0x012C3170>

By adding a __repr__ method, we can

control the string that is printed here. In

most objects, it is the same as the __str__
method:

person.py

class Person:

 # __init__ removed for space

 def display(self):

 print(str(self))

 def __str__(self):

 return "Person('%s', age)" %
➝ (self.name, self.age)

 def __repr__(self):

 return str(self)

Now Person objects are easier to work

with:

>>> p = Person()

>>> p

Person('', 0)

>>> str(p)

"Person('', 0)"

From the Library of Mo Medwani

ptg999

Object-Oriented Programming 159

When creating your own classes and

objects, it is almost always worthwhile to write

__str__ and __repr__ functions. They are

extremely useful for displaying the contents of

your objects, which is helpful when debugging

your programs.

If you define a __repr__ method but

not a __str__ method, then when you call

str() on the object, it will run __repr__.

Once you’ve added the __repr__
method, the display method for Person can

be further simplified:

def display(self):
 print(self)

In practice, it’s often not necessary to write a

display method.

The Python documentation recommends

that the string representation of an object be

the same as the code you would write to cre-

ate that object. This is a very useful conven-

tion: It lets you easily re-create objects by

cutting and pasting the string representation

into the command line.

From the Library of Mo Medwani

ptg999

160 Chapter 10

Flexible Initialization
If you want to create a Person object with a

particular name and age, you must currently

do this:

>>> p = Person()

>>> p.name = 'Moe'

>>> p.age = 55

>>> p

Person('Moe', 55)

A more convenient approach is to pass

the name and age to __init__ when

the object is constructed. So let’s rewrite

__init__ to allow for this:

person.py

class Person:

 def __init__(self, name = '',

 age = 0):

 self.name = name

 self.age = age

Now initializing a Person is much simpler:

>>> p = Person('Moe', 55)

>>> p

Person('Moe', 55)

From the Library of Mo Medwani

ptg999

Object-Oriented Programming 161

Since the parameters to __init__ have

default values, you can even create an

“empty” Person:

>>> p = Person()

>>> p

Person('', 0)

Notice that inside the __init__ method

we use self.name and name (and also

self.age and age). The variable name
refers to the value passed into __init__,

and self.name refers to the value stored

in the object. The use of self helps make

clear which is which.

Although it is easy to create default val-

ues for __init__ parameters and thus allow

the creation of empty Person objects, it is not

so clear if this is a good idea from a design

point of view. An empty Person does not

have a real name or age, so you will need to

check for that in code that processes Person
objects. Constantly checking for special cases

can soon become a real burden that’s easy to

forget about. Thus, many programmers prefer

not to give the __init__ parameters default

values in cases like this.

From the Library of Mo Medwani

ptg999

162 Chapter 10

Setters and Getters
As it stands now, we can both read and

write the name and age values of a Person
object using dot notation:

>>> p = Person('Moe', 55)

>>> p.age

55

>>> p.name

'Moe'

>>> p.name = 'Joe'

>>> p.name

'Joe'

>>> p

Person('Joe', 55)

A problem with this is that we could, acci-

dentally, set the age to be a nonsensical

value, such as –45 or 509. With regular

Python variables, there is no way to restrict

what values they can be assigned. But

within an object, we can write special set-
ter and getter methods that give us control

over how values are accessed.

First, let’s add a setter method that

changes age only if a sensible value

is given:

 def set_age(self, age):

 if 0 < age <= 150:

 self.age = age

From the Library of Mo Medwani

ptg999

Object-Oriented Programming 163

Now we can write code like this:

>>> p = Person('Jen', 25)

>>> p

Person('Jen', 25)

>>> p.set_age(30)

>>> p

Person('Jen', 30)

>>> p.set_age(-6)

>>> p

Person('Jen', 30)

A common complaint about this kind of set-

ter is that typing p.set_age(30) is more

cumbersome than p.age = 30. Property

decorators solve this problem.

Property decorators
Property decorators combine the brevity

of variables with the flexibility of func-

tions. Decorators indicate that a function

or method is special in some way, and

here we use them to indicate setters and

getters.

A getter returns the value of a variable,

and we indicate this using the @property
decorator:

@property

def age(self):

 """ Returns this person's age.

 """

 return self._age

This age method takes no parameters

(other than the required self). We’ve

put @property before it, which indicates

that it’s a getter function. The name of

the method, age, will be used to set the

variable.

Decorators
Decorators are a general-purpose

construct in Python used to systemati-

cally modify existing functions. They are

usually placed at the beginning of a

function, and start with the @ character.

We will use them in this book for this one

example of creating setters and getters.

From the Library of Mo Medwani

ptg999

164 Chapter 10

We have also renamed the underlying

self.age variable to self._age. Putting

an underscore in front of an object variable

is a common convention, and we use it

here to distinguish it from the age method.

You need to replace every occurrence

of self.age in Person with self._age.

For consistency, it is also a good idea

to everywhere replace self.name with

self._name. The modified Person class

should look like this:

person.py

class Person:

 def __init__(self, name = '',

 age = 0):

 self._name = name

 self._age = age

 @property

 def age(self):

 return self._age

 def set_age(self, age):

 if 0 < age <= 150:

 self._age = age

 def display(self):

 print(self)

 def __str__(self):

 return "Person('%s', %s)" %
➝ (self._name, self._age)

 def __repr__(self):

 return str(self)

From the Library of Mo Medwani

ptg999

Object-Oriented Programming 165

To create an age setter, we rename the

set_age method to age and decorate it

with @age.setter:

 @age.setter

 def age(self, age):

 if 0 < age <= 150:

 self._age = age

With these changes, we can now write

code like this:

>>> p = Person('Lia', 33)

>>> p

Person('Lia', 33)

>>> p.age = 55

>>> p.age

55

>>> p.age = -4

>>> p.age

55

The setter and getters for age work just as

if we were using the variable age directly.

The difference is that now when you call,

say, p.age = -4, Python is really calling

the age(self, age) method. Similarly,

when you write p.age, the age(self)
method is called. Thus we get the advan-

tage of the simple assignment syntax

combined with the flexibility of controlling

how variables are set and get.

From the Library of Mo Medwani

ptg999

166 Chapter 10

Private variables
It’s still possible to access self._age
directly:

>>> p._age = -44

>>> p

Person('Lia', -44)

The problem is that _age might be modi-

fied in some way that makes the object

inconsistent, and so we don’t usually want

to allow it.

One way to decrease the chance of this

kind of problem is to rename self._age
to self.__age—that is to say, to put two

underscores in front of the variable name.

The two underscores declare that age is

a private variable that is not meant to be

accessed by any code outside of Person.

To access self.__age directly, you now

have to put _Person on the front, like this:

>>> p._Person__age = -44

>>> p

Person('Lia', -44)

While this does not prevent you from

modifying internal variables, it does make it

almost impossible to do so accidentally.

Lingo Alert
Variables that don’t begin with an under-

score are called public variables, and any

code can access them.

From the Library of Mo Medwani

ptg999

Object-Oriented Programming 167

When writing large programs, a use-

ful rule of thumb is to always make object

variables private (that is, starting with two

underscores) by default, and then change

them to be public if you have a good reason to

do so. That way, you will prevent errors caused

by unintended meddling with the internals of

an object.

The syntax for creating setters and get-

ters is strange at first, but once you get used

to it, it is fairly clear. Keep in mind that you

don’t always need to create special setters

and getters; for simple objects, like the original

Person, regular variables may be fine.

Some programmers prefer to avoid

setters whenever possible, thus making the

object immutable (just like numbers, strings,

and tuples). In an object with no setters, after

you create the object, there is no “official” way

to change anything within it. As with other

immutable objects, this can prevent many

subtle errors and allow different variables to

share the same object (thus saving memory).

The downside, of course, is that if you do need

to modify the object, your only option is to cre-

ate a new object that incorporates the change.

If the programmer tries to set the age to

be something out of range, then age(self,
age) doesn’t make any change. An alternative

approach is to purposely raise an exception,

thus requiring any code that calls it to handle

the exception. The advantage of raising an

exception is that it might help you find more

errors. Trying to set the age to be a nonsensi-

cal value is likely a sign of a problem else-

where in your program.

From the Library of Mo Medwani

ptg999

168 Chapter 10

Inheritance
Inheritance is a mechanism for reusing

classes. Essentially, inheritance allows you

to create a brand new class by adding

extra variables and methods to a copy of

an existing class.

Suppose we are creating a game that has

human players and computer players. Let’s

create a Player class that contains things

common to all players, such as the score

and a name:

players.py

class Player:

 def __init__(self, name):

 self._name = name

 self._score = 0

 def reset_score(self):

 self._score = 0

 def incr_score(self):

 self._score = self._score + 1

 def get_name(self):

 return self._name

 def __str__(self):

 return "name = '%s', score = %s"
➝ % (self._name, self._score)

 def __repr__(self):

 return 'Player(%s)' % str(self)

We can use Player objects this way:

>>> p = Player('Moe')

>>> p

Player(name = 'Moe', score = 0)

>>> p.incr_score()

>>> p

Player(name = 'Moe', score = 1)

>>> p.reset_score()

>>> p

Player(name = 'Moe', score = 0)

From the Library of Mo Medwani

ptg999

Object-Oriented Programming 169

Let’s assume that there are two kinds of

players: humans and computers. The main

difference is that humans enter their moves

from the keyboard, whereas comput-

ers generate their moves from functions.

Otherwise they are the same, each having

a name and a score.

So let’s write a Human class that repre-

sents a Human player. One way to do

that would be to cut and paste a new

copy of the Player class, and then add

a make_move(self) method that asks

the player to make a move. While that

approach certainly would work, a better

way is to use inheritance. We can define

the Human class to inherit all the variables

and methods from the Player class so

that we don’t have to rewrite them:

class Human(Player):

 pass

In Python, the pass statement means

“Do nothing.” This is a complete—and

useful!—definition for the Human class.

It simply inherits the code from Player,

which lets us do the following:

>>> h = Human('Jerry')

>>> h

Player(name = 'Jerry', score = 0)

>>> h.incr_score()

>>> h

Player(name = 'Jerry', score = 1)

>>> h.reset_score()

>>> h

Player(name = 'Jerry', score = 0)

This is pretty impressive given that we

wrote only two lines of code for the

Human class!

Lingo Alert
Many different terms are used to

describe inheritance. Given that class

Human inherits from class Player, we can

say the following:

. Human extends Player.

. Human is derived from Player.

. Human is a subclass of Player, and

Player is a superclass of Human.

. Human isa Player.

The last term, isa, implies that all humans

are players. Thinking about possible isa

relationships between classes is one way

to create class hierarchies.

From the Library of Mo Medwani

ptg999

170 Chapter 10

Overriding methods
One small wart is that the string represen-

tation of h says Player when it would be

more accurate for it to say Human. We can

fix that by giving Human its own __repr__
method:

class Human(Player):

 def __repr__(self):

 return 'Human(%s)' % str(self)

Now we get this:

>>> h = Human('Jerry')

>>> h

Human(name = 'Jerry', score = 0)

This is an example of method overriding:

The __repr__ method in Human over-

rides the __repr__ method inherited from

Player. This is a common way to custom-

ize inherited classes.

Now it’s easy to write a similar Computer
class to represent computer moves:

class Computer(Player):

 def __repr__(self):

 return Computer(%s)' % str(self)

These three classes form a small class
hierarchy, as shown in the class diagram
of B. The Player class is called the

base class, and the other two classes are

derived, or extended, classes.

Essentially, an extended class inherits the

variables and methods from the base class.

Any code you want to be shared by all the

derived classes should be placed inside

the base class.

B A class diagram showing how the Player,

Human, and Computer classes relate. The arrows

indicate inheritance, and the entire diagram is a

hierarchy of classes. The more abstract (that is,

general) classes appear near the top, and the

more concrete (that is, specific) ones nearer the

bottom.

Lingo Alert
It’s also common to use the term parent
class to refer to the base class, and

child class to refer to the derived class.

From the Library of Mo Medwani

ptg999

Object-Oriented Programming 171

Polymorphism
To demonstrate the power of OOP, let’s

implement a simple game called Undercut.
In Undercut, two players simultaneously

pick an integer from 1 to 10 (inclusive). If a

player picks a number one less than the

other player—if he undercuts the other

player by 1—then he wins. Otherwise, the

game is a draw. For example, if Thomas

and Bonnie are playing Undercut, and they

pick the numbers 9 and 10, respectively,

then Thomas wins. If, instead, they choose

4 and 7, the game is a draw.

Here’s a function for playing one game

of Undercut:

def play_undercut(p1, p2):

 p1.reset_score()

 p2.reset_score()

 m1 = p1.get_move()

 m2 = p2.get_move()

 print("%s move: %s" % (p1.get_
➝ name(), m1))

 print("%s move: %s" % (p2.get_
➝ name(), m2))

 if m1 == m2 - 1:

 p1.incr_score()

 return p1, p2, '%s wins!' %
➝ p1.get_name()

 elif m2 == m1 - 1:

 p2.incr_score()

 return p1, p2, '%s wins!' %
➝ p2.get_name()

 else:

 return p1, p2, 'draw: no winner'

If you read this function carefully, you

will note that p1.get_move() and

p2.get_move() are called. We haven’t yet

implemented these functions because they

are game-dependent. So let’s do that now.

From the Library of Mo Medwani

ptg999

172 Chapter 10

Implementing the move functions
Even though moves in Undercut are just

numbers from 1 to 10, humans and comput-

ers determine their moves in very different

ways. Human players enter a number from

1 to 10 at the keyboard, whereas computer

players use a function to generate their

moves. Thus the Human and Computer
classes need their own special-purpose

get_move(self) methods.

Here is a get_move method for the human

(the error messages have been shortened

to save space; fuller and more user-friendly

messages are given in the accompanying

source code on the website):

class Human(Player):

 def __repr__(self):

 return 'Human(%s)' % str(self)

 def get_move(self):

 while True:

 try:

 n = int(input('%s move (1 -
➝ 10): ' % self.get_name()))

 if 1 <= n <= 10:

 return n

 else:

 print('Oops!')

 except:

 print(Oops!')

This code asks the user to enter an integer

from 1 to 10 and doesn’t quit until the user

does so. The try/except structure is used

to catch the exception that the int function

will throw if the user enters a non-integer

(like “two”).

From the Library of Mo Medwani

ptg999

Object-Oriented Programming 173

For the computer’s move, we will simply

have it always return a random number

from 1 to 10 (we can improve the computer

strategy later if we want):

import random

class Computer(Player):

 def __repr__(self):

 return 'Computer(%s)' % str(self)

 def get_move(self):

 return random.randint(1, 10)

Playing Undercut
With all the pieces in place, we can now

start playing Undercut. Let’s try a game

between a human and a computer:

>>> c = Computer('Hal Bot')

>>> h = Human('Lia')

>>> play_undercut(c, h)

Lia move (1 - 10): 7

Hal Bot move: 10

Lia move: 7

(Computer(name = 'Hal Bot',
➝ score = 0), Human(name = 'Lia',
➝ score = 0), 'draw: no winner')

It’s important to realize that the player

objects must be created outside of the

play_undercut function. That’s good

design: The play_undercut function wor-

ries only about playing the game, and not

about how to initialize the player objects.

The play_undercut function returns a

3-tuple of the form (p1, p2, message). The

p1 and p2 values are the player objects

that were initially passed in; if one player

happens to win the game, then her score

will have been incremented. The message
is a string indicating who won the game or

if it was a draw.

From the Library of Mo Medwani

ptg999

174 Chapter 10

It’s possible to pass two computer players

to play_undercut:

>>> c1 = Computer('Hal Bot')

>>> c2 = Computer('MCP Bot')

>>> play_undercut(c1, c2)

Hal Bot move: 8

MCP Bot move: 7

(Computer(name = 'Hal Bot',
➝ score = 0), Computer(name = 'MCP
➝ Bot', score = 1), 'MCP Bot wins!')

There’s no human player in this game, so

the user is not asked to enter a number.

We can also pass in two human players:

>>> h1 = Human('Bea')

>>> h2 = Human('Dee')

>>> play_undercut(h1, h2)

Bea move (1 - 10): 5

Dee move (1 - 10): 4

Bea move: 5

Dee move: 4

(Human(name = 'Bea', score = 0),
➝ Human(name = 'Dee', score = 1),
➝ 'Dee wins!')

Dumb Interface
While play_undercut works if you pass

it two Human objects, it is not a very

sensible interface: The second player will

get to see the first player’s move! For this

to actually be fun for two humans, you

would need to think of some way to keep

the first player’s move hidden from the

second player.

These two examples, plus the earlier one

of a human playing against a computer,

all show the power of polymorphism:

We’ve used the same play_undercut
function to get very different behaviors.

Instead of writing three different func-

tions, we wrote only one and changed

the objects we gave it.

In practice, this often turns out to be a

big win. Although it takes experience

and careful attention to design details to

make polymorphism work out, it is often

worth the extra time and effort.

From the Library of Mo Medwani

ptg999

Object-Oriented Programming 175

Learning More
This chapter introduced a few of the essen-

tials of OOP. Python has many more OOP

features you can learn about by reading

the online documentation.

Creating good object-oriented designs is

a major topic. Using objects well is much

harder than merely using them. One

popular way of organizing object-oriented

programs is to use object-oriented design
patterns, which are proven recipes for

using objects to solve common program-

ming problems.

The most influential book on this topic

is Design Patterns: Elements of Reus-
able Object-Oriented Software, by Erich

Gamma, Richard Helm, Ralph Johnson, and

John Vlissides. Once you’ve learned all the

technical details of OOP, reading this book

would be an excellent next step to learning

about larger design issues.

From the Library of Mo Medwani

ptg999

This page intentionally left blank

From the Library of Mo Medwani

ptg999

11
Case Study:

Text Statistics

In This Chapter
Problem Description 178

Keeping the Letters We Want 180

Testing the Code on a Large Data File 182

Finding the Most Frequent Words 184

Converting a String to a Frequency

Dictionary 187

Putting It All Together 188

Exercises 190

The Final Program 192

So far, most of the code we’ve seen

consists of a few statements that demon-

strate a feature of Python. New program-

mers quickly discover that it is a big step

to go from these small snippets to entire

programs. Bigger programs require more

careful planning, and require some under-

standing of how best to combine individual

Python features. When you first start writ-

ing larger programs, there can be a lot of

trial and error.

In this chapter we will walk through the

development of a larger Python program.

We’ll start with a description of a problem

we want to solve, and then create and test

a Python program that solves it.

It is difficult to show how messy writing a

program can be. It will appear that we go

straight from a clear problem description

to a clean and simple solution. In reality,

the process of writing a program is never

so simple. There is a lot of trial and error,

there are false starts, and you often have

to backtrack to re-do things. By writing pro-

grams, you start to learn how best to com-

bine techniques and what sorts of solutions

tend to work with what sorts of problems.

From the Library of Mo Medwani

ptg999

178 Chapter 11

Problem Description
When asked to write a program that solves

some non-trivial problem, beginning

programmers often don’t know where to

start. At a high level at least, the answer is

simple: You start writing a big program by

first understanding the problem you want

to solve. This sounds simple, but misun-

derstanding what problem you are trying

to solve is an extremely common program-

ming error. Sometimes, writing a program is

hard because you don’t really understand

what it is you want to do.

The problem we want to solve here is to

calculate, and print, statistics about the

contents of a text file. We want to know

how many characters, lines, and words a

given text file contains. In addition to the

number of words, we also want to know

the top ten most frequently occurring

words in the file, sorted by frequency.

Let’s look at an example using a short

piece of text:

A long time ago, in a galaxy far, far

away …

We can see that it contains:

■ One line of text. We assume that the

return-line character, \n, is used to indi-

cate the end of a line, and that every

text file (that is not empty!) is at least

one line long.

■ Forty-six characters, including spaces

and punctuation.

■ Ten words in total. However, there are

only eight unique words, because far
and A both occur twice.

A useful thing to do in Python is to play

with examples in the interpreter. For

example:

>>> s = 'A long time ago, in a
➝ galaxy far, far away ...'

>>> len(s)

46

>>> s.split()

['A', 'long', 'time', 'ago,', 'in',
➝ 'a', 'galaxy', 'far,', 'far',
➝ 'away', '...']

As you can see, the len function tells us

there are 46 characters in the string. The

split function divides a string into words;

ignoring the '...' at the end, we can see

there are ten total words in s.

Look carefully at the list of words that

split returns. The word far occurs twice,

but split treats them as the two different

strings: “far,” (with a comma at the end)

and “far” (without a comma). Similarly, A
and a are the same word, differing only in

capitalization.

From the Library of Mo Medwani

ptg999

Case Study: Text Statistics 179

We can count the number of unique words

by converting the list to a set (recall that a

set never stores duplicates):

>>> set(t.split())

{'a', 'ago', 'far', 'away', 'time',
➝ 'long', 'in', 'galaxy'}

>>> len(set(t.split()))

8

There are some downsides to getting rid of

non-lowercase letters. First, the number of

characters will be wrong since some char-

acters have been removed. But we can

deal with this by counting the characters

before modifying them. Second, there’s no

good way to remove punctuation sym-

bols from some words. For instance, how

should you handle the apostrophe in I’d? If

you delete it (and convert the I to lower-

case), you get id, which is a different word.

If you replace the apostrophe with a space,

then you get I and d—one word, and one

non-word. To solve this problem we will

treat apostrophes—and also hyphens—as

“letters.” Third, changing punctuation

can change the meaning of words. For

instance, uncapitalized versions of some

names are words, such as Polish and

polish, or Bonnie and bonnie. We will just

ignore this particular problem, as it does

not seem to be a very big one.

To handle these sorts of details, we will

give a precise definition of what it means

for a string to be a word. For us, a word will

be a string that is one or more characters

in length, and each character is one of the

lowercase letters a to z. We will ignore

non-letters (e.g., digits and punctuation),

and convert uppercase letters to lower-

case. So our sentence becomes this:

Original: A long time ago, in a galaxy far,

far away …

Modified: a long time ago in a galaxy far

far away

Splitting the modified sentence into words

now gives more accurate results:

>>> t = 'a long time ago in a galaxy
➝ far far away'

>>> t.split()

['a', 'long', 'time', 'ago', 'in',
➝ 'a', 'galaxy', 'far', 'far',
➝ 'away']

>>> len(t.split())

10

From the Library of Mo Medwani

ptg999

180 Chapter 11

Keeping the
Letters We Want
Next, let’s think about how to automatically

convert a string to the format we want.

Converting a string to lowercase is easy:

>>> s = "I'd like a copy!"

>>> s.lower()

"i'd like a copy!"

Getting rid of characters we don’t want is

a bit trickier. One way to do it is to use the

string replace function to replace individ-

ual characters with nothing; for example:

>>> s = "I'd like a copy!"

>>> s.replace('!', '')

"I'd like a copy"

The problem with this way of doing things

is that replace needs to be called many

times; that is, once for each character we

don’t want. There are many more charac-

ters that we don’t want to keep than we do

want to keep, so this turns out to be quite

inefficient.

Another Normalize Function
A more compact way to write this func-

tion is this:

def normalize2(s):

 """Convert s to normalized
➝ string.

 """

 return ''.join(c for c in
➝ s.lower() if c in keep)

Many experienced programmers prefer

this function because it is short and, at

least for them, readable.

From the Library of Mo Medwani

ptg999

Case Study: Text Statistics 181

A better approach is to keep the letters we

want. For example:

Set of all characters to keep

keep = {'a', 'b', 'c', 'd', 'e',

 'f', 'g', 'h', 'i', 'j',

 'k', 'l', 'm', 'n', 'o',

 'p', 'q', 'r', 's', 't',

 'u', 'v', 'w', 'x', 'y',

 'z',

 ' ', '-', "'"}

 def normalize(s):

 """Convert s to a normalized
➝ string.

 """

 result = ''

 for c in s.lower():

 if c in keep:

 result += c

 return result

This function loops through the string s
one character at a time, appending it to

the end of result only if it’s in the set of

characters we want to keep.

Regular Expressions
Another approach to solving this prob-

lem is to use regular expressions. For

instance, you could create a regular

expression defining a word, and then use

the findall function to extract all the

words from a given string. Since we want

to illustrate basic Python programming,

we won't use any regular expressions in

the code that follows.

From the Library of Mo Medwani

ptg999

182 Chapter 11

Testing the Code on
a Large Data File
We’ve written only a small amount of

code, but it is enough to do some useful

experiments. In the examples that fol-

low, we’ll use a file called bill.txt. It is

a 5.4 megabyte text file containing the

complete works of Shakespeare (which

are free on the Project Gutenberg site,

www.gutenberg.org). This is a relatively

large file, and so is a good test of the effi-

ciency of our code.

One way to process a text file is to read

the entire thing into memory as a string.

Let’s try this by hand in the interpreter:

>>> bill = open('bill.txt',
➝ 'r').read()

>>> len(bill)

5465395

>>> bill.count('\n')

124796

>>> len(bill.split())

904087

>>> len(normalize(bill).split())

897610

We can see that the file has about 5.4

million characters, 125 thousand lines, and

about 900 thousand words.

From the Library of Mo Medwani

http://www.gutenberg.org

ptg999

Case Study: Text Statistics 183

Now let’s automate this by putting all the

code in a function:

def file_stats(fname):

 """Print statistics for the given

 file.

 """

 s = open(fname, 'r').read()

 num_chars = len(s)

 num_lines = s.count('\n')

 num_words = len(normalize(s).
➝ split())

 print("The file '%s' has: " %
➝ fname)

 print(" %s characters" %
➝ num_chars)

 print(" %s lines" % num_lines)

 print(" %s words" % num_words)

Calling file_stats prints this:

>>> file_stats('bill.txt')

The file 'bill.txt' has:

 5465395 characters

 124796 lines

 897610 words

On my computer, it takes about 1 second

to run this program. That includes the time

it takes to load the file into memory and to

do all the processing. Not bad for a simple

Python program!

From the Library of Mo Medwani

ptg999

184 Chapter 11

Finding the Most
Frequent Words
Let’s consider the problem of finding the

most frequently occurring words in a text

file. The basic idea will be to use a diction-

ary whose keys are words and whose val-

ues are the counts of the words in the file.

For example, consider our original example

text (in normalized form):

a long time ago in a galaxy far far
away

We can make a count of all the words

like this:

a: 2

long: 1

time: 1

ago: 1

in: 1

galaxy: 1

far: 2

away: 1

If we convert this to a Python dictionary, it

looks like this:

d = {

 'a': 2,

 'long': 1,

 'time': 1,

 'ago': 1,

 'in': 1,

 'galaxy': 1,

 'far': 2,

 'away': 1

 }

From the Library of Mo Medwani

ptg999

Case Study: Text Statistics 185

We can extract a lot of useful information

from this dictionary:

■ d.keys() is the list of all the unique
words in the file.

■ len(d.keys()) is the number of unique
words in the file.

■ sum(d[k] for k in d) is the sum

of all the values in d; that is, the total

number of words (including duplicates)

in the file. The sum function is a built-in

Python function that returns the sum of

a sequence.

Dictionaries do not store their data in

sorted order, and so to get a list of all the

words sorted from most frequent to least

frequent, we’ll need to convert it to a list of

tuples, like this:

lst = []

for k in d:

 pair = (d[k], k)

 lst.append(pair)

#

[(2, 'a'), (1, 'ago'),

(1, 'galaxy'), (1, 'time'),

(2, 'far'), ...]

lst.sort()

#

[(1, 'ago'), (1, 'away'),

(1, 'galaxy'), (1, 'in'),

(1, 'long'), ...]

lst.reverse()

#

[(2, 'far'), (2, 'a'),

(1, 'time'), (1, 'long'),

(1, 'in'), ...]

From the Library of Mo Medwani

ptg999

186 Chapter 11

The for-loop converts the dictionary d to a

list of (count, word) tuples. We do this con-

version so that we can then use the list sort

function to order the data by frequency. By

default, the sort function orders data from

smallest to biggest, and so we reverse the

list to put the most frequently occurring

words—the ones we are usually most inter-

ested in—at the start of the list.

With lst ordered from most frequent word

to least frequent word, we can use slicing

to access, say, the top three most frequent

words on the list:

print(lst[:3])

#

[(2, 'far'), (2, 'a'),

(1, 'time')]

Or, if we want neater formatting, we can

do this:

for count, word in lst:

 print('%4s %s' % (count, word))

Which prints:

2 far

2 a

1 time

1 long

1 in

1 galaxy

1 away

1 ago

Notice that the word counts are preceded

by three blanks each. That’s because the

format command %4s in the print statement

puts the numbers right-justified in a field of

length 4. As long as you have no word with

10,000 or more occurrences, this will keep

the margins of the counts perfectly aligned.

From the Library of Mo Medwani

ptg999

Case Study: Text Statistics 187

Converting a String
to a Frequency
Dictionary
Now let’s write a function that takes any

string, s, and generates a dictionary whose

keys are the words of s, and whose values

are the frequency counts for the words:

def make_freq_dict(s):

 """Returns a dictionary whose keys

 are the words of s, and whose

 values are the counts of those

 words.

 """

 s = normalize(s)

 words = s.split()

 d = {}

 for w in words:

 if w in d: # seen w before?

 d[w] += 1

 else:

 d[w] = 1

 return d

The idea of this function is to scan through

each word of the string s, adding it to the

dictionary d as we go. The if-statement,

if w in d, is true if w is a key in d, and

false otherwise. If w is a key in d, then that

means we’ve seen w before, and so incre-

ment its frequency count by 1. But if w is not

a key in d, then we add it as a new key with

the statement d[w] = 1.

From the Library of Mo Medwani

ptg999

188 Chapter 11

Putting It All Together
We now have all the pieces to make a

function that automatically calculates and

displays statistics for any given text file:

def print_file_stats(fname):

 """Print statistics for the given file.

 """

 s = open(fname, 'r').read()

 num_chars = len(s) # count characters before normalizing s

 num_lines = s.count('\n') # count lines before normalizing s

 d = make_freq_dict(s)

 num_words = sum(d[w] for w in d) # count number of words in s

 # create list of (count, pair) words ordered from

 # most frequent to least frequent

 lst = [(d[w], w) for w in d]

 lst.sort()

 lst.reverse()

 # print the results to the screen

 print("The file '%s' has: " % fname)

 print(" %s characters" % num_chars)

 print(" %s lines" % num_lines)

 print(" %s words" % num_words)

 print("\nThe top 10 most frequent words are:")

 i = 1 # i is the number of the list item

 for count, word in lst[:10]:

 print('%2s. %4s %s' % (i, count, word))

 i += 1

From the Library of Mo Medwani

ptg999

Case Study: Text Statistics 189

Running this on the bill.txt file prints this:

The file 'bill.txt' has:

 5465395 characters

 124796 lines

 897610 words

The top 10 most frequent words are:

 1. 27568 the

 2. 26705 and

 3. 20115 i

 4. 19211 to

 5. 18263 of

 6. 14391 a

 7. 13606 you

 8. 12460 my

 9. 11107 that

10. 11001 in

This list of words is not unexpected,

although perhaps unexciting. In English

text, the most frequent words are almost

always small function words, like the and

and. You need to go farther down the list

to find more interesting words.

This program takes less than 1.5 seconds

to run on my computer (a typical desktop

machine), which is pretty good for such a

large file.

From the Library of Mo Medwani

ptg999

190 Chapter 11

Exercises
1. Modify print_file_stats so that it

also prints the total number of unique

words in the file.

2. Modify print_file_stats so that it

prints the average length of the words

in the file.

3. A hapax legomenon is a word that

occurs exactly once in a file. Modify

print_file_stats so that it prints the

total number of hapax legomena.

4. As mentioned, the ten most frequent

words in bill.txt are function words, like

the and and. Often, we are not inter-

ested in those words, and so we can

create a set of stop words that contain

all the words we want to ignore.

Add a new variable called stop_words
in the programming containing

print_file_stats, like this:

stop_words = {'the', 'and', 'i',
➝ 'to', 'of', 'a', 'you', 'my',
➝ 'that', 'in'}

Of course, you can change the list of

stop words to be anything you like.

Now modify the code in your program

so that the words on stop_list are not

included in any of the statistics.

From the Library of Mo Medwani

ptg999

Case Study: Text Statistics 191

5. (Challenging) The print_file_stats
function takes a file name as input, and

then reads the entire file into a single

string. The problem with this approach

is that storing the entire file as a string

uses a lot of memory if the file is big.

An alternative approach that usually

uses much less memory is to read the

file a line at a time.

Write a new function called

print_file_stats_lines that does

the same thing as print_file_stats,

except it reads the input file line by line.

The output of the two functions should

be the same when they are run on the

same file.

From the Library of Mo Medwani

ptg999

192 Chapter 11

The Final Program
wordstats.py

Set of all allowable characters.

keep = {'a', 'b', 'c', 'd', 'e',

 'f', 'g', 'h', 'i', 'j',

 'k', 'l', 'm', 'n', 'o',

 'p', 'q', 'r', 's', 't',

 'u', 'v', 'w', 'x', 'y',

 'z',

 ' ', '-', "'"}

def normalize(s):

 """Convert s to a normalized string.

 """

 result = ''

 for c in s.lower():

 if c in keep:

 result += c

 return result

def make_freq_dict(s):

 """Returns a dictionary whose keys are the words of s, and whose values

 are the counts of those words.

 """

 s = normalize(s)

 words = s.split()

 d = {}

 for w in words:

 if w in d: # add 1 to its count if w has been seen before

 d[w] += 1

 else:

 d[w] = 1 # initialize to 1 if this is the first time w has been seen

 return d

From the Library of Mo Medwani

ptg999

Case Study: Text Statistics 193

def print_file_stats(fname):

 """Print statistics for the given file.

 """

 s = open(fname, 'r').read()

 num_chars = len(s) # count characters before normalizing s

 num_lines = s.count('\n') # count lines before normalizing s

 d = make_freq_dict(s)

 num_words = sum(d[w] for w in d) # count number of words in s

 # create list of (count, pair) words ordered from

 # most frequent to least frequent

 lst = [(d[w], w) for w in d]

 lst.sort()

 lst.reverse()

 # print the results to the screen

 print("The file '%s' has: " % fname)

 print(" %s characters" % num_chars)

 print(" %s lines" % num_lines)

 print(" %s words" % num_words)

 print("\nThe top 10 most frequent words are:")

 i = 1 # i is the number of the list item

 for count, word in lst[:10]:

 print('%2s. %4s %s' % (i, count, word))

 i += 1

def main():

 print_file_stats('bill.txt')

if __name__ == '__main__':

 main()

From the Library of Mo Medwani

ptg999

This page intentionally left blank

From the Library of Mo Medwani

ptg999

A
Popular Python

Packages

In This Appendix
Some Popular Packages 196

Part of the reason for Python’s popularity is

the availability of many high-quality librar-

ies that help with various software tasks.

In this appendix are descriptions of a few

popular packages.

It is useful to keep in mind that many of

these packages may work only with specific

versions of Python (which you can always

download for free from www.python.org).

In particular, many packages do not yet

support Python 3, so you may need to use

Python 2.6 (or later) to run some of these.

Fortunately, if you already know Python 3,

it is not too hard to step back a version to

use Python 2. Appendix B briefly discusses

some of the major differences between

Python 2 and Python 3.

From the Library of Mo Medwani

http://www.python.org

ptg999

196 Appendix A

Some Popular
Packages

PIL: The Python Imaging Library
PIL (http://www.pythonware.com/products/

pil/index.htm) is an image-processing

library. It works with many different kinds of

image formats, and can do things like crop,

resize, rotate, and filter images.

Tkinter: Python GUIs
Tkinter comes with the Python library

and is the standard means of accessing

the popular Tk GUI tool kit. If you want to

create a graphical user interface (GUI) in

Python, this should be your first stop. See

http://docs.python.org/3/library/tkinter.html

for more information.

Django: Interactive websites
Django (www.djangoproject.com) is a

framework for creating interactive web-

sites. In this way, it is similar to Ruby on

Rails, but it uses Python instead of Ruby as

the underlying programming language.

Bottle: Interactive websites
Bottle (http://bottlepy.org/docs/dev/) is

similar to Django in the sense that it is a

framework for creating interactive web-

sites. In contrast to Django, Bottle is a small

and light framework that might be a better

choice for smaller websites.

From the Library of Mo Medwani

http://www.pythonware.com/products/pil/index.htm
http://www.pythonware.com/products/pil/index.htm
http://www.djangoproject.com
http://docs.python.org/3/library/tkinter.html
http://bottlepy.org/docs/dev/

ptg999

Popular Python Packages 197

Pygame: 2D animation
Pygame (www.pygame.org) lets you create

and control two-dimensional animations,

especially for games. It provides tools for

graphical animation and sound and for

input devices such as joysticks. There

are also introductory tutorials and sample

programs at the Pygame website to help

get you started.

SciPy: Scientific computing
SciPy (www.scipy.org) is a large and popu-

lar library of software tools for scientific

computing (it even has its own associated

conferences!). It provides mathematical

software to do things such as solve optimi-

zation problems, perform numerical linear

algebra calculations, process signals, and

much more.

Twisted: Network programming
Twisted (http://twistedmatrix.com/trac) is a

popular Python library for network pro-

gramming. It supports numerous network-

ing protocols, and includes things like web

servers, mail servers, and chat clients/

servers.

PyPI: The Python Package Index
The Python Package Index (http://pypi.

python.org/pypi) is a frequently updated

list of thousands of user-submitted Python

packages. It’s a good place to look for

special-purpose Python libraries, or just

to browse to see what uses Python has

been put to.

You can easily find thousands of other

Python packages by searching the web.

For almost any programming task that

someone has done before, you are likely

to find a Python library!

From the Library of Mo Medwani

http://www.pygame.org
http://www.scipy.org
http://twistedmatrix.com/trac
http://pypi.python.org/pypi
http://pypi.python.org/pypi

ptg999

This page intentionally left blank

From the Library of Mo Medwani

ptg999

B
Comparing Python 2

and Python 3

In This Appendix
What’s New in Python 3 200

Python 3 was released at the end of

2008 and marked a major update to

Python. Some of the changes introduced

in Python 3 are not backward-compatible

with Python 2, and so development of

Python 2 has continued in parallel with

the newer Python 3.

In this chapter, we’ll summarize some of

the main changes to Python 3 and also

explain how you can convert a Python 2

program to Python 3.

From the Library of Mo Medwani

ptg999

200 Appendix B

What’s New in
Python 3
Python 3 introduced many new features;

the following are some of the most visible:

■ Python 3’s print function is indeed

a function. In Python 2, print was a

language construct, similar to if and

for. The problem with Python 2’s print
was that it was difficult to modify—for

example, changing print statements to

print to a file instead of to the console

is much easier in Python 3 because you

can just reassign the print function.

■ Dividing integers in Python 3 works as

you would expect when fractions are

involved:

Python3>>> 1 / 2

0.5

However, Python 2 chops off all digits

after the decimal when dividing integers:

Python2>>> 1 / 2

0

While Python 2’s way of dividing inte-

gers appears in other programming

languages, many programmers find it

counterintuitive and the cause of subtle

errors.

■ Python 2 has two kinds of classes:

old-style classes and new-style
classes. Python 3 drops old-style

classes completely.

■ Python 3 renames a couple of important

functions: The input and range func-

tions are called raw_input and xrange
in Python 2.

■ The format strings described in Chap-

ter 9 exist only in Python 3, and not

Python 2. Python 2 only has string

interpolation with the % operator.

From the Library of Mo Medwani

ptg999

Comparing Python 2 and Python 3 201

Many other technical changes were

made in Python 3. For a complete list

of differences, see “What’s New in

Python 3.0” (http://docs.python.org/3/

whatsnew/3.0.html).

It is often not too difficult to convert a

Python 2 program into Python 3. A useful

tool that helps with this process is 2to3

(http://docs.python.org/3/library/2to3.html).

It can automatically convert almost all

Python 2 programs into equivalent Python

3 programs.

Which version of Python
should you use?
When deciding what version of Python to

use—2 or 3—there are a few things to take

into consideration:

■ If you must work with programs that are

written in Python 2, then you should

probably use Python 2. Otherwise, you

would need to convert all the existing

Python 2 programs into Python 3, which

might be difficult.

■ Some special-purpose libraries may

only work with one version of Python,

and so if you need to use one of

those, your choice of Python may be

constrained.

■ If you are just starting out as a program-

mer and have no old Python programs

to maintain or special-purpose librar-

ies that you must use, then Python 3 is

probably the best choice.

From the Library of Mo Medwani

http://docs.python.org/3/whatsnew/3.0.html
http://docs.python.org/3/whatsnew/3.0.html
http://docs.python.org/3/library/2to3.html

ptg999

This page intentionally left blank

From the Library of Mo Medwani

ptg999

Index 203

Index

Numbers
2to3 tool, using for Python conversions, 201

5 vs. 5.0, 13

Symbols
'+ file module, meaning of, 134, 137

== operator, 44

+ (addition) operator, 12

= (assignment) operator, example of, 24

\ (backward slash)

using with pathnames, 130

writing, 130

) (closed round bracket), using with

tuples, 29

% conversion specifier, meaning of, 125

@ (decorators), using, 163

/ (division) operator, 12

// (division) operator, 11

" (double quote), using with strings, 17

__ (double underscore), use of, 20–21

'' and "" (empty strings), using, 18

\" escape character, 88

\\ escape character, 88

\' escape character, 88

** (exponentiation) operator, 12

// (integer division) operator, 11–12

% (mod) function, using with strings, 84

* (multiplication) operator, 12

(number sign), using with comments, 36

((open round bracket), using with

tuples, 29

% (remainder) operator, 12

() (round brackets)

using with functions, 68

using with regular expressions, 99

using with tuples, 104

>>> (shell prompt), 10

' (single quote), using with strings, 17

[] (square brackets)

using with lists, 108

using with strings, 84

− (subtraction) operator, 12

A
'a file module, meaning of, 134

addition (+) operator, 12

aggregate data structures, strings as, 83

and operator, 44–45

append function, using with lists, 110–111

append mode, using with text files, 134, 136

area function

calling, 70–71

parts of, 71

return statement, 72

arithmetic operators. See also floating point

arithmetic; integer arithmetic; math

functions

addition (+), 12

division (/), 12

exponentiation (**), 12

integer division (//), 11–12

multiplication (*), 12

remainder (%), 12

subtraction (−), 12

ASCII (American Standard Code for Information

Interchange), 87

assignment (=) operator, example of, 24

assignment statements

diagrams, 28

example of, 24

initialization statement, 26

labeling values, 28

left-hand side, 26

multiple, 29

operator, 26

right-hand side, 26

associative arrays. See dictionaries

From the Library of Mo Medwani

ptg999

204 Index

case-changing functions

s.capitalize(), 94

s.lower(), 94

s.swapcase(), 94

s.title(), 94

s.upper(), 94

catching exceptions, 146–149

ceil(x) function, 16

character codes, finding, 87

character length, determining, 178

characters

accessing with for-loop, 86

escape, 88

getting rid of unwanted, 180–181

whitespace, 88

Cheetah templating package, 126

child class, explained, 170

chr function, using, 87

circle, calculating area of, 70

class diagram, example of, 170

class hierarchy, example of, 170

classes

defined, 153

deriving, 169–170

extending, 169–170

and methods, 154

and objects, 153

reusing, 168–170

self parameter, 155

subclasses of, 169–170

writing, 154–155

clean-up actions

finally code block, 150

with statement, 151

closed round bracket ()), using with tuples, 29

code blocks

breaking out of, 64–65

indenting, 51–53

indicating, 51

command line

calling Python from, 33–34

environment variables, 34

path variable, 34

running programs from, 33

command shell

interacting with, 10

shell prompt, 10

B
'b file module, meaning of, 134, 138

backward slash (\)

using with pathnames, 130

writing, 130

base class, explained, 169–170

bill.txt file, using, 182–183, 189

bin built-in function, printing doc string for, 21

binary files, processing, 138–140

binary mode, indicating, 134

binary vs. text files, 128–129

blocks of code

breaking out of, 64–65

indenting, 51–53

indicating, 51

Boolean logic

== operator, 44

and operator, 44–45, 48

with brackets (()), 46

definition of operators, 48

evaluating expressions, 46–47

explained, 44

False values, 44

logical equivalence, 45

logical negation, 44

logical operators, 44

not operator, 44–46

operator priority, 47

or operator, 44–45

or operator, 48

short-circuit evaluation, 48

True values, 44

truth table, 44

truth values, 44

without brackets (()), 47

Bottle framework, 196

brackets, preceding word counts with, 186

break statement, using, 64–65

C
calculating

area of circle, 70

factorials, 59–60

powers, 68

case sensitivity, explained, 25

case study. See text statistics case study

From the Library of Mo Medwani

ptg999

Index 205

self-referential, 109

sequences, 103

sets, 122

sorting lists, 113–114

tuples, 104–107

type command, 102

writing, 139

data types

checking with type command, 102

converting between, 22–23

converting numeric types, 22

explained, 9

floats to strings, 22

implicit conversions, 22–23

integers to floats, 22

integers to strings, 22

strings, 9

strings to floats, 22

decorators (@), using 163

degrees(x) function, 16

derived class, explained, 169–170

dictionaries

converting to, 184, 187

converting to list of tuples, 185–186

defined, 118

extracting information from, 185

key restrictions, 119

and sets, 122

unique keys, 119

dictionary functions

d.clear(), 120

d.copy(), 120

d.fromkeys(), 120

d.get(key), 120

d.items(), 120–121

d.keys(), 120–121

d.popitem(), 120–121

d.pop(key), 120

d.setdefault(), 120

d.update(), 120

d.values(), 120–121

dir ('') command, entering, 37

dir function, using, 92

directory

current working, 130–132

default, 130

dir(m) function, using, 20

command window, opening, 34

comments

defined, 36

using, 41–42

compiled code. See object code

compiling source code, 35

complex numbers, 15

concatenating

strings, 19

tuples, 107

conditional expressions, 53

constructors, explained, 154

continue statement, using, 64–65

conversion specifiers

% character, 125

base 8 value, 125

base 16, 125

float, 125

integers, 125

lowercase float exponential, 125

lowercase hexadecimal, 125

octal value, 125

string, 125

uppercase hexadecimal, 125

uppercase float exponential, 125

converting

floats to integers, 23

floats to strings, 22

integers to floats, 22

integers to strings, 22

strings to floats, 22

strings to numbers, 23

cost(x) function, 16

count function, using with lists, 110

current working directory

cwd_size_in_bytes function, 132

explained, 130

D
d conversion specifier, meaning of, 125

data structures

defined, 101

dictionaries, 118–121

list comprehensions, 115–117

list functions, 110–112

lists, 108–109

reading, 139

From the Library of Mo Medwani

ptg999

206 Index

F
F conversion specifier, meaning of, 125

factorials, calculating, 59–60

factorial(x) function, 16

file modules, 134

file_stats, calling, 183

files

examining, 131–133

functions, 131

reading, 128–130

text vs. binary, 128–129

writing, 128–130

finally code block, adding, 150

find function vs. index, 93

float, conversion specifier for, 125

float literals, 13

floating point arithmetic. See also arithmetic

operators

5 vs. 5.0, 13

complex numbers, 15

decimal points, 13

errors, 15

examples, 13

limited precision, 14–15

overflow, 14

scientific notation, 13

silent errors, 14

truncating, 61

floats

converting integers to, 22

converting strings to, 22

converting to integers, 23

converting to strings, 22

float(s) conversions, making, 23

flow of control

backing out of blocks, 64–65

backing out of loops, 64–65

Boolean logic, 44–48

code blocks, 51–53

explained, 43

for-loops vs. while-loops, 59–63

if-statements, 49–50

indentation, 51–53

loops, 54–58

nested loops, 66

display method, using, 157, 159

division (// and /) operators, 11–12

Django framework, 196

documentation strings

accessing for functions, 71

benefits, 71

formatting convention, 71

printing, 21

documentation website, accessing, 133

dot notation, using with objects, 155

double quote ("), using with strings, 17

double underscore (__), use of, 20–21

E
e conversion specifier, meaning of, 125

E conversion specifier, meaning of, 125

Easter egg example, 82

eat_vowels example, 117

editor window, opening in IDLE, 32

elif (else if) statements, 52

else statements, 49–50

empty lists, denoting, 108

empty strings ('' and ""), using, 18, 39

ending lines of text, 88

environment variables, 34

errors, handling, 143

escape characters

\", 88

\', 88

\\, 88

\n, 88

\r, 88

\t, 88

exceptions

built-in, 145

catching, 146–149

checking for, 146

defined, 143

IOError, 143

outputting tracebacks, 144

raising, 143–145

syntax errors, 145

throwing, 144

executable code. See object code

exponentiation (**) operator, 12

exp(x) function, 16

From the Library of Mo Medwani

ptg999

Index 207

defining, 70–72

files and folders, 131

listing built-in, 21

listing in modules, 20

main(), 75

vs. methods, 154

modules, 80–81

naming, 70

not returning values, 69

ord, 87

side effects, 72

using, 133

using round brackets (()) with, 68

variable scope, 73–74

G
generator expressions

explained, 117

searching for, 132

getters and setters

avoiding setters, 167

decorators, 163

name and age values, 162

private variables, 166

property decorators, 163–165

syntax, 167

using, 162–167

global variables, explained, 74

H
hapax legomenon, explained, 190

hash tables. See dictionaries

hashing, using with dictionaries, 118

help

documentation, 21

listing functions in modules, 20

utility, 21

help(f) function, using, 21

hexadecimal numbers, explained, 138

Human class, writing, 169

I
i (index) variable, use of, 54, 63

identifiers, explained, 24

IDLE (integrated development environment), 4

folders

backward slash (\), 130

functions, 131

pathnames, 130

structure, 130

for-loops

accessing characters with, 86

changing starting value of, 54

headers, 54

i (index) variable, 54, 63

printing numbers, 55

using iterators with, 55

vs. while-loops, 58–63

format function

using, 94

using with strings, 124

format strings

named replacement, 126

using, 126–127

using curly braces ({}), 127

formatting functions for strings. See
string-formatting functions

formatting parameters, specifying, 127

f.read(), calling, 137–138

frequency dictionaries, converting strings

to, 187

f.seek(), calling, 137

function names, reassigning, 69

function parameters

default values, 78

keyword parameters, 79

pass by reference, 76–77

pass by value, 76

state of memory, 76

functional programming style, 72

functions. See also string functions; tuple

functions

accessing doc strings for, 71

append, 110–111

availability to strings, 37

as black boxes, 68

calculating powers, 68

calling, 68–69

chr, 87

count, 110

defined, 67

From the Library of Mo Medwani

ptg999

208 Index

integer arithmetic. See also arithmetic

operators; math functions

defined, 11

division, 11

operators, 12

order of evaluation, 12

unlimited size, 12

integer division (//) operator, 11–12

integers

conversion specifier, 125

converting floats to, 23

converting to floats, 22

converting to strings, 22

lack of maximum, 60

interactive command shell, 10

interpreter, playing with examples in, 178

int(s) conversions, making, 23

I/O (input and output)

console, 123

examining files, 131–133

examining folders, 131–133

explained, 123

formatting strings, 124–125

processing binary files, 138–140

processing text files, 134–137

reading files, 128–130

reading webpages, 141

string formatting, 126–127

writing files, 128–130

IOError, raising, 143

isa terminology, using with inheritance, 169

iterators, using with for-loops, 55

J
join function

using, 97

using with list comprehensions, 117

K
keywords

restriction for variables, 25

using, 79

L
len function, using with characters, 178

letters, keeping desired, 180–181

lexicographical ordering, 113

IDLE editor

alternatives, 33

starting screen, 6

using, 32–34

IDLE shortcuts

opening editor window, 32

opening files for editing, 32

redoing last undo, 32

running programs, 32

saving programs, 32

undoing actions in IDLE, 32

if/elif-statements, 52

if/else-statements, 49–50

if-statements

explained, 49

flow chart, 50

headers, 50

structure, 50

immutable objects, 167

importing

modules, 16, 81

this module at command line, 82

indenting code blocks, 51–53

index function vs. find, 93

indexing

beginning at 0, 84

negative, 85, 91

strings, 84–86

using % (mod) function for, 84

infinite loops, 58

inheritance

defined, 153, 168–169

Human class, 169

isa terminology, 169

overriding methods, 170

Player class, 168–169

__init__ function, using, 155, 160–161

initialization, flexibility of, 160–161

initialization statement, explained, 26

input built-in function

explained, 36–37

using, 123

installing Python

on Linux systems, 7

on Macs, 7

on Windows systems, 6

int function, documentation for, 146

From the Library of Mo Medwani

ptg999

Index 209

math functions. See also arithmetic operators;

integer arithmetic

importing modules, 16

return values, 16

math module

ceil(x) function, 16

cost(x) function, 16

degrees(x) function, 16

exp(x) function, 16

factorial(x) function, 16

log(x) functions, 16

pow(x) function, 16

radians(x) function, 16

sin(x) function, 16

sqrt(x) function, 16

tan(x) function, 16

using, 16

methods

vs. functions, 154

overriding, 170

mod (%) function, using with strings, 84

modules

creating, 80

importing, 16, 81

listing functions in, 20

namespaces, 82

pickle, 140

shelve, 140

sqlite3, 140

urllib, 141

using, 81

webbrowser, 141

move functions, implementing for Undercut

game, 172–173

multiplication (*) operator, 12

N
\n (newline) character, explained, 39, 88

n! notation, using, 60

name clashes, preventing, 82

namespaces

explained, 82

preventing name clashes, 82

negative indexing, 85, 91

nested loops

break statement, 66

continue statement, 66

using, 66

lines of text, ending, 88

Linux, installing Python on, 7

list comprehensions

examples, 116

explained, 115

filtering, 117

generator expressions, 117

list functions

mutating, 110

s.append(), 110–111

s.count(), 110

s.extend(), 110

s.index(), 110

s.insert(), 110

s.pop(), 110

s.remove(), 110, 112

s.reverse(), 110, 112

s.sort(), 110

lists. See also tuples

[] (square brackets), 108

containing elements vs. pointing, 109

empty, 108

lexicographical ordering, 113

mutability, 109

pointing to values, 109

pop and push, 111–112

self-referential data structure, 109

sorting, 113–114

using, 108

local variable, explained, 73

log(x) functions, 16

loops

breaking out of, 64–65

infinite loops, 58

for-loops, 54–55

nesting, 66

while-loops, 56–58

lowercase float exponential, conversion

specifier for, 125

lowercase hexadecimal, conversion specifier

for, 125

M
^M character, handling, 88

Macs, installing Python on, 7

main() function, using, 75

maps. See dictionaries

From the Library of Mo Medwani

ptg999

210 Index

operators. See arithmetic operators;

assignment operator

or operator, 44–45

ord function, using with character codes, 87

order of evaluation, 12

ordered sequences, 103

os.chdir() function, 131

os.getcwd() function, 131

os.listdir() function, 131

os.path.isdir() function, 131

os.path.isfile() function, 131

os.stat() function, 131, 133

overflow errors, 14

P
packages

Bottle, 196

Django, 196

PIL (Python Imaging Library), 196

Pygame, 197

PyPI (Python Package Index), 197

SciPy, 197

Tkinter, 196

Twisted, 197

parent class, explained, 170

partition function, using, 95

pass by reference, explained, 76

pass by value, explained, 76

path variable, 34

pathnames, using with folders, 130

Person class

adding method to, 156

creating, 154

Person objects

with name and age, 160–161

working with, 158

pi calculation, doing, 70

pickle module

restriction, 140

using, 139

PIL (Python Imaging Library) package, 196

play_undercut function, analyzing, 174

Player class, creating, 168

polymorphism

defined, 153

power of, 174

Undercut game, 171–174

pop, using on lists, 111–112

new keyword, using with constructors, 154

newline (\n) character, explained, 39

None value, using with functions, 72

normalize() function, using, 180

not operator, 44–46

number sign (#), using with comments, 41

numbers

converting strings to, 23

floating point, 38

immutable quality, 28

integers, 38

reading from keyboard, 38

as strings, 38

summing, 62

summing from users, 61

types of, 38

O
o conversion specifier, meaning of, 125

object code

converting source code to, 5

explained, 35

object serialization, explained, 139

objects

and classes, 153

creating, 159

defined, 153

displaying, 156–159

dot notation, 155

immutable, 167

string representation of, 159

using, 155

octal values, conversion specifier for, 125

OOP (object-oriented programming), 2

classes, 153–155

constructors, 154

explained, 153

getters, 162–167

inheritance, 168–170

initialization, 160–161

objects, 156–159

polymorphism, 171–174

setters, 162–167

open function

documentation, 146

using, 135

open round bracket ((), using with tuples, 29

From the Library of Mo Medwani

ptg999

Index 211

string interpolation, 200

xrange function, 200

Python 3

dividing integers, 200

format strings, 200

input function, 200

print function, 200

range function, 200

Python components

compiler, 35

interpreter, 35

virtual machine, 35

Python language

calling from command line, 33–34

design, 2

download page, 6

education, 3

installing on Linux, 7

installing on Macs, 7

installing on Windows, 6

libraries, 2

maintainability, 2

origin of name, 2

scientific computing, 3

scripts, 3

text processing, 3

uses, 3

website development, 3

Python packages

Bottle, 196

Django, 196

PIL (Python Imaging Library), 196

Pygame, 197

PyPI (Python Package Index), 197

SciPy, 197

Tkinter, 196

Twisted, 197

pythonintro website, accessing, 133

Q
quotes (' and "), using with strings, 17

quotes, triple, 17

R
'r' file module, meaning of, 134

\r escape character, 88

radians(x) function, 16

powers, calculating, 68

pow(x) function, 16

print statement

using, 39–40, 135

using string interpolation with, 151

printing

documentation strings, 21

numbers in for-loops, 55

strings on screen, 39–40

private variables, 166–167

problems, understanding, 178

programming

process, 4–5

requirements, 4

source code, 5

programming problems, understanding, 178

programs

checking output, 5

defined, 31

flow of execution, 43

managing variables, 167

running, 5

running from command line, 33

running with IDLE, 32

storing, 32

straight-line, 43

structuring, 42

tracing, 36–37

writing in IDLE, 32

property decorators, using, 163–165

public variables, 166

push, using on lists, 111

.py files

versus .pyc files, 35

contents of, 5

listing, 132

running, 35

.pyc files

contents, 35

explained, 4

Pygame 2D animation package, 197

PyPI (Python Package Index) package, 197

Python 2

classes, 200

converting into Python 3, 201

dividing integers, 200

vs. Python 3, 40, 200–201

raw_input function, 200

From the Library of Mo Medwani

ptg999

212 Index

size restriction, 103

serialization, explained, 139

sessions. See shell transcripts

sets

calling dir(set), 122

and dictionaries, 122

explained, 122

immutable frozensets, 122

mutable, 122

online documentation, 122

setters and getters

avoiding setters, 167

decorators, 163

name and age values, 162

private variables, 166

property decorators, 163–165

syntax, 167

using, 162–167

shell prompt (>>>), 10

shell transcript, explained, 10

shelve module, explained, 140

side effects, relationship to functions, 72

sin(x) function, 16

single quote ('), using with strings, 17

slicing strings

explained, 89

with negative indexes, 91

shortcuts, 90–91

software. See object code

sort function, using with lists, 114

sorting

lists, 113–114

tuples, 114

source code

comments, 36, 41–42

compiling, 35

converting to object code, 5

writing, 5

split function, using, 96, 178–179

splitting functions for strings. See string-

splitting functions

sqlite3 module, explained, 140

sqrt(x) function, 16

square brackets ([])

using with lists, 108

using with strings, 84

standard error (stderr), explained, 39

re module, accessing documentation for, 100

reading

files, 128–130

text files as strings, 135

webpages, 141

regular expressions

examples, 98–99

matching with, 99

operators, 98

using, 181

using round brackets (()) with, 99

x* operator, 98

x|y operator, 98

x+ operator, 98

xy? operator, 98

remainder (%) operator, 12

remove function, using with lists, 112

replace function, using with strings, 96, 180

__repr__ method, using, 158–159

return statement, using with area function, 72

return values, using, 16

reverse function, using with lists, 112

round brackets (())

using with functions, 68

using with regular expressions, 99

using with tuples, 104

rpartition function, using, 95

S
s conversion specifier, meaning of, 125

saving programs with IDLE, 32. See also IDLE

(integrated development environment)

scientific notation, using, 13

SciPy scientific computing package, 197

scope. See variable scope

scripts. See programs

searching functions for strings. See string-

searching functions

self parameter, using with classes, 155

sentences, splitting into words, 179

sequence types

lists, 103

strings, 103

tuples, 103–107

sequences. See also values

defined, 103

ordered, 103

From the Library of Mo Medwani

ptg999

Index 213

conversion specifiers, 125

converting floats to, 22

converting integers to, 22

converting to floats, 22

converting to formats, 180–181

converting to frequency dictionaries, 187

converting to numbers, 23

creating, 19

defined, 17

empty, 18

escape characters, 88

extracting substrings from, 89

formatting, 124–127

immutable quality, 28

indexing, 84–86

indicating, 17

inserting at start of files, 137

lengths, 18

number of characters in, 18

printing on screen, 39–40

reading from keyboard, 36–38

regular expressions, 98–100

representations of objects, 159

returning list of, 131

slicing, 89–91

splitting, 178–179

square brackets ([]) for indexing, 84

uses of, 9

using quotes (' and ") with, 17

using strip() function with, 37

as words, 179

string-searching functions

s.find(), 93

s.index(), 93

s.rfind(), 93

s.rindex(), 93

string-splitting functions

s.partition(), 95

s.rpartition(), 95

s.rsplit(), 95

s.split(), 95

s.splitlines(), 95

string-stripping functions

s.lstrip(), 95

s.rstrip(), 95

s.strip(), 95

standard input (stdin), explained, 39

standard output (stdout), explained, 39

stop words, creating set of, 190

string functions. See also functions

case-changing, 94

for contents of substrings, 92

s.count(), 97

for searching, 93

s.encode(), 97

s.endswith(), 92

s.find(), 93

s.index(), 93

s.isalnum(), 92

s.isalpha(), 92

s.isdecimal(), 92

s.isdigit(), 92

s.isidentifier(), 92

s.islower(), 92

s.isnumeric(), 92

s.isprintable(), 92

s.isspace(), 92

s.istitle(), 92

s.isupper(), 92

s.join(), 97

s.maketrans(), 97

split, 95–96

s.rfind(), 93

s.rindex(), 93

s.startswith(), 92

s.translate(), 97

for stripping, 95–96

s.zfill(), 97

for testing, 92

string interpolation, 124, 151

string literals, writing, 17

string-formatting functions

s.center(), 94

s.format(), 94

s.ljust(), 94

s.rjust(), 94

string-replacement functions

s.expandtabs(), 96

s.replace(), 96

strings

as aggregate data structures, 83

characters, 86–88

concatenating, 19

From the Library of Mo Medwani

ptg999

214 Index

regular expressions, 181

strings to frequency dictionary, 187

testing code on data file, 182–183

text vs. binary files, 128–129

this module, importing at command line, 82

Tkinter package, 196

tracebacks, outputting, 144

tracing programs, 36–37

transcripts, explained, 10

True values, returning for paths, 131

try/except blocks

adding finally code block to, 150

examples of, 146–148

in Undercut game, 172

tuple functions. See also functions

len(), 106

tup.count(), 106

tup.index(), 106

x in tup, 106

tuples. See also lists

concatenating, 107

creating list of, 185–186

defined, 103

example of, 95

immutability, 105

round brackets (()), 104

singleton, 104

sorting, 114

trailing commas, 104

writing values as, 29

Twisted network programming package, 197

type command, using, 102

types. See data types

U
Undercut game

implementing, 171–174

move functions, 172–173

playing, 173–174

try/except blocks, 172

Unicode, rise of, 87

uppercase float exponential, conversion

specifier for, 125

uppercase hexadecimal, conversion specifier

for, 125

urllib module, using, 141

string-testing functions

for contents of substrings, 92

s.endswith(), 92

s.isalnum(), 92

s.isalpha(), 92

s.isdecimal(), 92

s.isdigit(), 92

s.isidentifier(), 92

s.islower(), 92

s.isnumeric(), 92

s.isprintable(), 92

s.isspace(), 92

s.istitle(), 92

s.isupper(), 92

s.startswith(), 92

strip() function, using with strings, 37

subclasses, using with classes, 169–170

substrings, extracting from strings, 89

subtraction (−) operator, 12

summing

numbers, 62

numbers from users, 61

syntax errors, causing, 145

T
't file module, meaning of, 134, 137

tan(x) function, 16

templating packages, using, 126

testing functions. See Boolean logic; string-

testing functions

text files

appending to, 136

closing, 134

opening, 134

processing, 134–137

reading as strings, 135

reading line by line, 134–137

writing to, 136

text mode, indicating, 134

text statistics case study

completing, 188–189

converting strings to formats, 180–181

final program, 192–193

finding frequent words, 184–186

normalize() function, 180–181

problem description, 178–179

From the Library of Mo Medwani

ptg999

Index 215

PIL (Python Imaging Library), 196

Pygame, 197

PyPI (Python Package Index), 197

Python download page, 6

pythonintro, 133

re module documentation, 100

SciPy, 197

templating packages, 126

Tkinter, 196

Twisted, 197

Unicode home page, 87

while-loops

flexibility of, 58

flow of control, 56

vs. for-loops, 58–63

form of, 57

incrementers, 57

initializers, 57

sample program, 56

try/except block in, 146

whitespace characters, handling, 88

Windows, installing Python on, 6

with statement, using, 151

word counts, preceding with brackets, 186

words

creating set of stop words, 190

finding frequent, 184–186

getting sorted list of, 185–186

splitting sentences into, 179

strings as, 179

writing

data structures, 139

files, 128–130

opening text files for, 134

to text files, 136

X
x = expr, 28

x conversion specifier, meaning of, 125

X conversion specifier, meaning of, 125

Z
zfill function, using, 97

V
ValueError example, 146–147

values. See also sequences

assigning in parallel, 30

assigning to variables, 27

displaying multiple, 29

referring variables to, 28

replacing by position, 126

and variables, 24–25

writing as tuples, 29

variable names

case sensitivity, 25

first character, 25

keywords, 25

lengths, 25

rules for, 25

variable scope

explained, 73

global variables, 74

local variables, 73

variable values, swapping, 30

variables

adding multiple, 29

assigned values, 27

assigning values to, 27

explained, 9

pointing to values, 27

private vs. public, 166–167

referring to values, 28

terminology, 27

and values, 24–25

virtual machine, explained, 35

von Rossum, Guido, 2

W
'w file module, meaning of, 134

web browsers, creating, 141

webbrowser module, explained, 141

webpages, reading, 141

websites

2to3 conversion for Python, 201

Bottle, 196

Django, 196

online documentation, 133

From the Library of Mo Medwani

ptg999

Unlimited online access to all Peachpit, Adobe
Press, Apple Training and New Riders videos
and books, as well as content from other
leading publishers including: O’Reilly Media,
Focal Press, Sams, Que, Total Training, John
Wiley & Sons, Course Technology PTR, Class
on Demand, VTC and more.

No time commitment or contract required!
Sign up for one month or a year.
All for $19.99 a month

SIGN UP TODAY
peachpit.com/creativeedge

From the Library of Mo Medwani

ptg999

You love our books and you
love to share them with your colleagues and
friends...why not earn some $$ doing it!

If you have a website, blog or even a Facebook page,
you can start earning money by putting a Peachpit
link on your page.

If a visitor clicks on that link and purchases something
on peachpit.com, you earn commissions* on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post an ad and
we’ll take care of the rest.

Apply and get started!
It’s quick and easy to apply.
To learn more go to:
http://www.peachpit.com/affiliates/
*Valid for all books, eBooks and video sales at www.Peachpit.com

Join the
Peachpit
Affiliate Team!

From the Library of Mo Medwani

	Table of Contents
	Chapter 1 Introduction to Programming
	The Python Language
	What Is Python Useful For?
	How Programmers Work
	Installing Python

	Chapter 2 Arithmetic, Strings, and Variables
	The Interactive Command Shell
	Integer Arithmetic
	Floating Point Arithmetic
	Other Math Functions
	Strings
	String Concatenation
	Getting Help
	Converting Between Types
	Variables and Values
	Assignment Statements
	How Variables Refer to Values
	Multiple Assignment

	Chapter 3 Writing Programs
	Using IDLE’s Editor
	Compiling Source Code
	Reading Strings from the Keyboard
	Printing Strings on the Screen
	Source Code Comments
	Structuring a Program

	Chapter 4 Flow of Control
	Boolean Logic
	If-Statements
	Code Blocks and Indentation
	Loops
	Comparing For-Loops and While-Loops
	Breaking Out of Loops and Blocks
	Loops Within Loops

	Chapter 5 Functions
	Calling Functions
	Defining Functions
	Variable Scope
	Using a main Function
	Function Parameters
	Modules

	Chapter 6 Strings
	String Indexing
	Characters
	Slicing Strings
	Standard String Functions
	Regular Expressions

	Chapter 7 Data Structures
	The type Command
	Sequences
	Tuples
	Lists
	List Functions
	Sorting Lists
	List Comprehensions
	Dictionaries
	Sets

	Chapter 8 Input and Output
	Formatting Strings
	String Formatting
	Reading and Writing Files
	Examining Files and Folders
	Processing Text Files
	Processing Binary Files
	Reading Webpages

	Chapter 9 Exception Handling
	Exceptions
	Catching Exceptions
	Clean-Up Actions

	Chapter 10 Object-Oriented Programming
	Writing a Class
	Displaying Objects
	Flexible Initialization
	Setters and Getters
	Inheritance
	Polymorphism
	Learning More

	Chapter 11 Case Study: Text Statistics
	Problem Description
	Keeping the Letters We Want
	Testing the Code on a Large Data File
	Finding the Most Frequent Words
	Converting a String to a Frequency Dictionary
	Putting It All Together
	Exercises
	The Final Program

	Appendix A: Popular Python Packages
	Some Popular Packages

	Appendix B: Comparing Python 2 and Python 3
	What’s New in Python 3

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

