
Merlin++

A Quick Start Guide

R. Barlow, S. Rowan, S. Tygier

on behalf of the

Merlin Collaboration

Updated: March 2019

Welcome to Merlin++!

Merlin++ is a particle accelerator simulation software package. Its functional-

ity is similar to that of Methodical Accelerator Design (MAD), but with many

additional features. Merlin++ is written in C++ and comprises a library of

flexible and modular C++ classes, taking full advantage of the benefits of

object orientated techniques and methodologies in the process. To run Mer-

lin++, a user therefore constructs their own script or simulation program and

compiles it against the class library.

The following document provides information on how to get up and running

with Merlin++, going over the basics as well as walking-through a few choice

use-case examples.

1

Contents

1 A Brief History 3

2 Getting Started 4

2.1 Information and Support . 4

2.2 Downloading and Installation . 4

2.3 Doxygen Class Documentation . 7

2.4 Running Merlin++ in Eclipse CDT 8

3 Code Base & Design Philosophy 11

3.1 Merlin++ Design Philosophy . 11

3.2 Understand the Design Fundamentals 11

3.2.1 Accelerator Model . 12

3.2.2 Particle Tracking . 13

3.2.3 The ‘Process’ Concept . 14

4 Writing A User Script 15

4.1 Merlin++ user script fundamentals 15

5 Tutorials 17

5.1 Tutorial 1 - LatticeConfiguration 17

5.2 Tutorial 2 - LatticeConfigurationMAD 19

5.3 Tutorial 3 - LatticeManipulation 20

5.4 Tutorial 4 - ParticleTracking . 22

5.5 Tutorial 5 - ParticleBunchTracking 23

5.6 Tutorial 6 - LHClattice . 25

5.7 Tutorial 7 - CollimationAndScattering 26

2

Chapter 1

A Brief History

Merlin++, formerly just Merlin, is a C++ accelerator simulation and parti-

cle tracking software package, originally developed by Nick Walker et al. at

DESY/LBNL in the late 1990’s for International Linear Collider (ILC) simu-

lations, i.e. electron linac beamlines. In the mid 2000’s, Merlin was further

adapted to allow for proton tracking as well as circular accelerator simula-

tions and has been used in High Luminosity Large Hadron Collider (HL-LHC)

studies ever since. In recent years, Merlin++ has been optimized for high-

throughput tracking and loss simulations through the addition of conventional

and Hollow-Electron Lens (HEL) collimation capabilities as well as the ap-

propriate pomeron scattering physics processes. Furthermore, recent develop-

ments have also focused on updating the code base to adhere to modern open

source and software sustainability practices. In this regard, we find Merlin++

to be one of the most powerful, versatile and accessible software packages

available in particle accelerator design.

3

Chapter 2

Getting Started

2.1 Information and Support

Information on Merlin++, including general documentation, class library and

developers guide can be found either in the ‘MerlinDocumentation’ folder in-

cluded with the software package or via our website:

url: http://www.accelerators.manchester.ac.uk/merlin/

Support for both users and developers can be sought by contacting any of the

current developers through github at:

url: https://github.com/Merlin-Collaboration

2.2 Downloading and Installation

Prior to downloading Merlin++, it is important that you have all the required

prerequisites.

Below is a step-by-step guide to properly downloading, configuring and in-

stalling all prerequisites as well as Merlin++ itself. The following only provides

install command examples specific to Ubuntu, for other linux distros, please

use as close to the equivalent commands as possible.

NOTE: If necessary, Merlin++ can be downloaded and run without the fol-

lowing prerequisites. However, it is advised that user/developer installs Mer-

lin+ in accordance with the following to prevent compatibility issues.

4

http://www.accelerators.manchester.ac.uk/merlin/
https://github.com/Merlin-Collaboration

Prerequisites

• Update system

sudo apt install update

• C++ compiler, such as g++

sudo apt install build-essential

• CMake, including CCMake

sudo apt install cmake cmake-curses-gui

• Python, including numpy & scipy

sudo apt install python python-numpy python-scipy

• Git version control system

sudo apt install git

• Java Runtime Environment (Only required for Eclipse CDT IDE)

sudo apt install openjdk-8-jre

• OPTIONAL: Doxygen

sudo apt install doxygen graphviz -y

• OPTIONAL: ROOT

Download from url: root.cern.ch

Downloading and Installing

For the purposes of this quick start guide, we only discuss how to download

and install Merlin++ for a Linux OS via git.

NOTE: It is, otherwise, also possible to download the Merlin++ source code

directly via either our online public github repository:

url: https://github.com/Merlin-Collaboration/Merlin

5

https://github.com/Merlin-Collaboration/Merlin

• Firstly, call your desired directory, we will assume home as default

cd ∼

• Subsequently, create and enter a suitable git repository directory

mkdir git

cd git

• Initialize this directory as an empty git repository

git init

• Download the latest release of Merlin++ from our public github reposi-

tory (check github link for most recent release version)

git clone -b Release-X.XX \

https://github.com/MERLIN-Collaboration/Merlin ./Merlin

• Now that you have a clone of the source code, you are ready to install

and run Merlin++! First, enter the cloned directory

cd Merlin

• Create and enter a suitable build directory

NOTE: Merlin++ does not allow in-source builds

mkdir build

cd build

• Create the release version makefile with the cmake command

NOTE: Interactive configuration is available using ccmake instead

cmake -DCMAKE_BUILD_TYPE=Release ..

// OR

ccmake ..

• Start building Merlin++!

make -jN // where N is the number of available CPUs, e.g. -j8

• To confirm the installation has been successful, run the make test suite

make test

6

• Pending successful installation you should see something similar to the

following (more tests may have been developed):

Figure 1: Successful installation test results.

2.3 Doxygen Class Documentation

Doxygen is a common tool for generating class documentation from annotated

C++ source. Merlin++ has descriptive class comments in the header files

of all major classes formatted such that they are picked-up by doxygen. To

generate the class library for Merlin++, simply enter the following command

following successful installation. If using Eclipse CDT, use Build Targets in a

similar manner to how ‘make test’ is run.

• Generate class documentation via doxygen

make doxygen

7

The above command generates a ‘Doxygen’ folder and a full interactive .html

site in the build directory. To load, simply open the index.html file.

Within the html site, one can find class and class member function descrip-

tions as well as inheritence information, namespace list and information and

file structure. Furthermore, developers have begun using this location to doc-

ument information on any recent API changes. A screenshot of the interactive

html class library is shown.

Figure 2: Interactive html Merlin++ class library procduced by doxygen.

2.4 Running Merlin++ in Eclipse CDT

As many developers and script writers alike prefer using an IDE, the following

details how to get Merlin++ up and running within the Eclipse CDT IDE. If

you are happy running Merlin++ from a command window, feel free to skip

this section.

NOTE: The following assumes you have followed through the guide thus far,

i.e. have installed all prerequisites and have configured Merlin++ successfully.

8

• Download the latest .tar.gz Eclipse IDE for C/C++ Developers

https://www.eclipse.org/downloads/packages/

• Uncompress then remove the .tar.gz file

sudo tar -xvf eclipse.cpp...tar.gz

sudo rm eclipse.cpp...tar.gz

• Move the eclipse file to your prefered install location, e.g. /opt/

sudo mv -r ./eclipse /opt

• Configure the eclipse launch command

sudo cd /usr/local/bin

sudo ln -s /opt/eclipse/eclipse

• Launch eclipse and provide an appropriate workspace name

eclipse

• Install cmake4eclipse plugin through the Eclipse Marketplace

> Help > Eclipse Marketplace

- search for and install cmake4eclipse

- agree to licence and select ’Install Anyway’ if an error appears

• Configure Eclipse Console

- While on ‘Console’ tab, click on the drop down menu at far right

and select ‘1 C\C++ Build Console’ to display all make outputs

• Configure the Merlin++ Project

NOTE: At this stage it is advised that you delete any build directory

created thus far (assuming you followed the command line instructions).

Within Eclipse CDT:

> File > New > C/C++ project

- Select ‘All’ > ‘C++ Managed Build’

- Enter a suitable Project name, such as ‘Merlin++’

- Uncheck ‘Use default location’ and enter Merlin++ source directory

> /home/username/git/Merlin

- Select ‘Executable > Empty Project’ and ‘Linux GCC’

9

- Click ‘Finish’

- Your should now have a project ‘Merlin [Merlin Release-X.XX] within

the ‘Project Explorer’ window’

- Right-click project, select Properties

IMPORTANT: For all of the following you must do for both Debug and

Release configurations seperately (drop down menu at the top) -

the ‘All configurations’ option is not supported by Merlin++.

- Go to ‘C/C++ Build’ and click on the ‘Behaviour’ tab. Check ‘Enable

parallel build’

- Go to ‘C/C++ Build > CMake’ and click on the ‘General’ tab. Check

‘Force cmake to run with each build’ under ‘Build Behavior’

- Go to ‘C/C++ Build > Tool Chain Editor’ and set ‘Current builder:’

to ‘CMake Builder (portable)’ via the drop down menu

- Click ‘Apply’

- Once you have done each of the above for both Debug and Release

Configurations, click ‘Apply and Close’

- Build Merlin++ using the hammer icon on the main workspace toolbar

• Confirm configuration with the Merlin++ test suite within Eclipse CDT

- Go back to the ‘Project Explorer’ window

- Within the newly created ‘build’ directory, right-click ‘Debug’ or

‘Release’ folders and select ‘Build Targets > Create...’

- Enter the ‘Target Name:’ ‘test’ and click OK

- A ‘Build Targets’ directory should have appeared within your build

sub-directory

- To launch the test suite simply double-click ‘Build Targets > test’

NOTE: This is same as running ‘make test’ from the command line.

Similarly, to run ‘make doxygen’ or equivalent, simply create a

new build target with the corresponding name. Eclipse can provide

some additional benefits in this regard as it provides a built-in

browser, useful for navigating the Merlin++ doxygen class library

- If configuration was successful, all tests should pass as before

• Launching Merlin++ UserSim or other individual applications

- With the ‘Project Explorer’, navigate to ‘build > Debug/Release >

UserSim > UserSim

- Right-click and select ‘Run As > (2) Local C++ Application’

- You should now be greeted with the Merlin++ welcome message

• Congratulations! Merlin++ is successfully configured in Eclipse CDT and

you are now ready to start constructing your own user script.

10

Chapter 3

Code Base & Design Philosophy

3.1 Merlin++ Design Philosophy

Merlin++ is a result of the requirement for object-orientated design (OOD)

methodologies in particle accelerator design software. This is mostly due to the

extensive lifetime accelerator design software packages tend to have (decades),

giving rise to a need for code maintainability and sustainability. C++ was

chosen as it excels in this regard, while also allowing for low-level processes to

written where necessary to maintain optimal performance. There are two key

design philosophies behind Merlin++ (not mutually exclusive):

1. To be able to do the job required in the simplest, but most flexible form

2. To produce a set of loosely coupled software components which are easily

maintainable, extendible, and re-usable

The Merlin++ developers encourage that all users and future developers ad-

here to this design philosophy, too.

3.2 Understand the Design Fundamentals

Merlin++ is a C++ class library for performing charged particle tracking and

particle accelerator simulations. The library can be loosely divided into two

parts:

1. Accelerator Model construction

2. Beam dynamics and tracking simulation

The model of the accelerator system being studied contains only a descrip-

tion of the physical components e.g. magnets, diagnostics, vacuum chambers,

11

cavities, power supplies, support structures. The classes responsible for per-

forming the required beam dynamics simulations use this information to con-

struct the more abstract algorithm related representation of the model (e.g.

construction of a map for particle tracking.) In this respect, the accelerator

model can be thought of as a form of database.

This separation allows (in principle) the same accelerator model to be used

repeatedly for different forms of beam dynamics simulations, without the need

to modify the accelerator model code directly. Currently, the only beam dy-

namics package supported is particle tracking (i.e. ray tracing.)

3.2.1 Accelerator Model

The accelerator model (class AcceleratorModel) is constructed from model

elements (class ModelElement). All accelerator components types have a com-

mon base class, AcceleratorComponent, and have specific list of associated

attributes, see Table 1. The majority of these model elements represent the

more tradition beamline components found in other optics codes, see Table 2.

Table 1: Accelerator component attributes and their corresponding classes.

Component Attribute Merlin++ class

Aperture class Aperture

Electro-Magnetic Field class EMField

Geometry class AcceleratorGeometry

Table 2: Accelerator component types and their corresponding classes.

Component Type Merlin++ class

Drift Section class Drift

Sector Bend class SectorBend

Quadrupole class Quadrupole

Sextupole class Sextupole

Octupole class Octupole

Skew-Quadrupole class SkewQuadrupole

Skew-Sextupole class SkewSextupole

Standing-wave RF Cavity class SWRFStructure

Traveling-wave RF Cavity class TWRFStructure

Horizontal Correctors (xcor) class XCor

Vertical Correctors (ycor) class YCor

Beam Position Monitors (BPM) class BPM

Profile Monitors class RMSProfileMonitor

12

An Aperture defines the physical aperture of the component. An EMField

represents the electro-magnetic field of a component; it can be time-dependent.

Both the Aperture and EMField are defined in the local coordinate frame of

the component, which is a property of its AcceleratorGeometry. In Merlin,

an AcceleratorGeometry is an important concept and serves several functions.

Primarily it is responsible for calculating coordinate transformations to and

from the local component coordinate frame during tracking operations.

3.2.2 Particle Tracking

By ‘tracking’, we generally mean either tracking some representation of the

beam through the accelerator beamline, or propagating some map. The Merlin

class library has been designed to allow addition of different forms of tracking

without the need to modify existing code (in particular the accelerator model

classes.) Currently, the Merlin library only supports particle tracking (i.e. ray

tracing.)

Merlin separates the responsibilities for tracking (iterating) over a beamline

and performing the necessary coordinate transformations between component

(frames), and actually tracking, or integrating through a component (e.g. a

quadrupole.) The latter is the job of the ComponentTracker class, which

supplies the primary tracking interface to the accelerator components.

A ComponentTracker contains a set of Integrators which perform the physi-

cal tracking through a component. Typically, there is one integrator object per

component class in the accelerator model, although there are often less inte-

grators than component types, e.g. the particle tracker uses a single integrator

to deal with all rectangular multipoles magnets. The job of the Component-

Tracker class, therefore is to simple select the correct integrator for the current

component.

To add a new tracking module, we must perform the following to steps:

• Derive a new class from ComponentTracker

• Construct a set of integrators specific to that tracker for each relevant

component in the accelerator model.

Once the ComponentTracker object has been initialised with an accelerator

component, it can be told to track either the entire component in one go, or

take a specific step through the component. The integration step is therefore

under the control of the application, avoiding having to split magnets in the

model description (input deck), which is so often necessary in existing optics

codes.

13

3.2.3 The ‘Process’ Concept

The ComponentTracker concept dealt with in the last section is responsible for

performing some concrete tracking algorithm though individual components.

Generally, we perform such tracking on a sequence of such components that

represents some lattice or beamline. The applications programmer could sim-

ple write a do-loop that iterated over the components, but Merlin supplies a

much higher-level concept to do this, under the control of one or more so-called

Processes.

The TrackingSimulation class is a top-level abstraction for performing some

accelerator simulation. Exactly what form that simulation takes is defined by

one or more processes (class BunchProcess). Generally, processes fall into two

categories:

• A process which increments the independent variable (usual s), i.e. ac-

tually tracks through a step ds; these processes are know as Transport

Processes

• A process that does not actual increment s, but applies some impulse to

the bunch; these are know as Impulse Processes

Processes normally represent some physics process (e.g. particle scattering,

space charge, synchrotron radiation), but one could easily have a process that

formed part of the application (e.g. output at certain point during tracking

could be under control of a process.) A TrackingSimulation generally has at

least one Transport Process that does the ‘tracking. As an example, the class

ParticleTracker provides the primary interface to the particle tracking module.

ParticleTracker inherits from TrackingSimulation, and on construction, auto-

matically adds a ParticleTransportProcess to its list of processes. Additional

processes (e.g. SynchRadParticleProcess) can be added if required. Particle-

TransportProcess uses a ComponentTracker to track through each component.

The real power behind a process is that taken together, the list of processes

defines the finite steps taken through each component. As an example, you

can tell the SynchRadParticleProcess to take twenty equidistant steps through

each magnet. TrackingSimulation is responsible for managing the step length.

It determines the next step to take (ds) after interrogating each of its processes

in turn, after which it tells each process to take that step.

Note that processes can be turned on or off, or made active for only certain

types of/specific components.

14

Chapter 4

Writing A User Script

4.1 Merlin++ user script fundamentals

Merlin++ follows a relatively simple overarching design in that a user script

can be thought of in just five parts.

1. Defining the lattice

2. Defining the beam

3. Defining the tracker

4. Running the simulation

5. Post-processing & output of results

The following provides a code snippet corresponding to each part. Note that

this is simply an example of the most basic implementation and more advanced

methods exist as can be found in the tutorials.

1. Defining the Lattice (A OR B)

A Define lattice apertures manually within Merlin++

AcceleratorModelConstructor newModel();

newModel.NewModel();

newModel.AppendComponent(new Quadrupole(QF ,1.0,5.5));

newModel.AppendComponent(new Drift(D1 ,12.55));

newModel.AppendComponent(new SectorBend(BFD ,5.0,0.0255,11.23));

newModel.AppendComponent(new Drift(D1 ,12.55));

newModel.AppendComponent(new Quadrupole(QD ,1.0,-5.5));

// etc..

AcceleratorModel* theModel = newModel.GetModel();

15

B Importing MAD optices/lattice apertures file

MADInterface madInterface("/path/to/lattice.tfs", beamenergy);

AcceleratorModel* theModel = madInterface.ConstructModel();

2. Defining the Beam

ParticleBunch* theBunch = new ParticleBunch(beamenergy);

particleBunch->AddParticle(co);

3. Defining the Tracker

ParticleTracker tracker(theModel->GetBeamline(), theBunch);

4. Running the Simulation

tracker.Run();

5. Processing & Output of Results

// Prior to running the tracker:

ofstream trackingLog("build/trackinginfo.out");

// Post running the tracker:

ParticleBunch& tracked = tracker.GetTrackedBunch();

tracked.Output(trackingLog);

// Tracking data can be imported and plotted in python/octave etc

For a more in-depth look at how to write user scripts for varying use-cases,

please continue on to the tutorials in Chapter 5.

16

Chapter 5

Tutorials

In the chapter, we walk-through a number of short tutorials to demonstrate

some of the key features of the Merlin++ framework. Each section corresponds

to an tutorial as provided with the Merlin++ source package as default. Note

that the provided tutorials focus on simulating with a circular accelerator -

linac tutorials will be added in future. Includes, namespaces, defines and

typedefs will not be discussed as basic C++ knowledge is assumed. Further-

more, the tutorials are designed to done methodically in order, i.e. only new

code will be discussed in each subsequent tutorial section.

5.1 Tutorial 1 - LatticeConfiguration

The provided ManualConstruction tutorial demonstrates how to build an ac-

celerator model manually using the Merlin++ API. The script constructs a

FODO lattice storage ring made solely of quadrupole and dipoles.

LatticeConfiguration

• The following snippet shows how to construct a manually defined simple

FODO lattice within Merlin++. This tutorial goes on to show how to

calculate and plot the lattice horizontal beta function.

First, an instance of a AcceleratorModelConstructor is opened and a Ac-

celeratorModelConstructor::NewModel() is defined. Subsequently, a loop

(only for periodic lattices) appends individual components with defined

length, field and distance from the previous component. A final drift

is appended at the end of the loop to complete the circle. Finally, and

instance of AcceleratorModel is defined by the member function Acceler-

atorModelConstructor::GetModel().

17

AcceleratorModelConstructor latticeConstructor;

latticeConstructor.NewModel();

double rigidity = beamenergy/eV/SpeedOfLight;

double curv = (2*pi/(4*ncell));

//FODO lattice periodic

for (int n=1;n<(ncell+1);++n) {

latticeConstructor.AppendComponent(new

Quadrupole("QF",lquad,0.0098*rigidity), n==1 ? 0 :

0.15*lcell-ldipole);

latticeConstructor.AppendComponent(new

SectorBend("MB",ldipole,curv,rigidity*curv), 0.15*lcell-lquad);

latticeConstructor.AppendComponent(new

SectorBend("MB",ldipole,curv,rigidity*curv), 0.2*lcell-ldipole);

latticeConstructor.AppendComponent(new

Quadrupole("QD",lquad,-0.0098*rigidity), 0.15*lcell-ldipole);

latticeConstructor.AppendComponent(new

SectorBend("MB",ldipole,curv,rigidity*curv), 0.15*lcell-lquad);

latticeConstructor.AppendComponent(new

SectorBend("MB",ldipole,curv,rigidity*curv), 0.2*lcell-ldipole);

}

latticeConstructor.AppendDrift(0.15*lcell-ldipole);

AcceleratorModel* lattice = latticeConstructor.GetModel();

• To confirm the lattice is viable for tracking it we calculate the closed orbit

of a single reference particle following:

ClosedOrbit theClosedOrbit(lattice,beamenergy);

Particle particle(0);

theClosedOrbit.FindClosedOrbit(particle);

• Finally, lattice functions are calculated and stored using the LatticeFunc-

tionTable class. Note that due to the linearity of this lattice and no active

RF component we must force longitudinal stability prior to calculation.

// Calculate beta and dispersion functions

LatticeFunctionTable latticeFunctions = new

LatticeFunctionTable(lattice,beamenergy);

latticeFunctions->SetForceLongitudinalStability(true);

latticeFunctions->Calculate();

// Write lattice functions to output file

ofstream latticeFunctionLog("build/tutorial1.out");

latticeFunctions->PrintTable(latticeFunctionLog);

18

• A corresponding python script is provided to plot the lattice function

output. The result should be as follows:

Figure 3: Horizontal Beta function of a basic manually defined FODO lattice.

5.2 Tutorial 2 - LatticeConfigurationMAD

The provided LatticeConfigurationMAD tutorial demonstrates how to build

an accelerator model by importing a MAD twiss .tfs file with the Merlin++

API. The script constructs a slightly more complex FODO lattice storage con-

sisting of dipoles, quadrupoles and sextupole corrector magnets. This tutorial

also calculates and plots common lattice function calculations, including beta

functions and horizontal dispersion.

LatticeConfigurationMAD

• The following shows how to import a lattice directly from a MAD twiss

output .tfs file. The a MADInterface class is used imported the .tfs via

C++ ifstream and the information is stored in a DataTable. The model

is then constructed using the MADInterface::ConstructModel() function.

// Instantiate MADInterface with lattice file input

MADInterface MADinput(lattice_path, beamenergy);

// Construct Model

AcceleratorModel* theModel = MADinput.ConstructModel();

19

• A corresponding python script is provided to plot the lattice function

output. The result should be as follows:

Figure 4: Beta and dispersion functions of a MAD-imported FODO lattice.

5.3 Tutorial 3 - LatticeManipulation

The LatticeManipulation tutorial shows how to alter individual component

parameters within a user script directly to simulation alignment/field errors

etc. This is done via the MagnetMover and MutipoleField classes.

LatticeManipulation

• The following snippet shows how to manually realignment a magnet com-

ponents using the MagnetMover class. Two examples are shown. The

first offsets the 20th magnet vertically along the y-axis by 100 µm. The

second offsets the 40th magnet horizontally along the x-axis by 50 µm.

// Extract a list of magnet movers from the AcceleratorModel

MagnetMoverList magnetMovers;

theModel->ExtractTypedElements(magnetMovers);

// Offset 20th magnet 10 mm on y-axis

magnetMovers[20]->SetY(10.0e-3);

20

// Offset 40th magnet 50 um on x-axis

magnetMovers[40]->SetX(50.0e-6);

• The following snippet shows how to manually alter component fields. Two

examples are shown. The first increases the 5th quadrupole field by 17%.

The second increases the 21st quadrupole by 12%.

// Extract a list of the quadrupoles from the AcceleratorModel

vector<Quadrupole*> quadVec;

theModel->ExtractTypedElements(quadVec);

// Simulate a 17% gradient error on the 5th quadrupole

MultipoleField& field = quadVec[5]->GetField();

Complex b1a = field.GetComponent(1);

field.SetComponent(1, b1a.real() * 1.17, b1a.imag() * 1.17);

// Simulate a 12% gradient error on the 21st quadrupole

MultipoleField& field2 = quadVec[21]->GetField();

Complex b1b = field2.GetComponent(1);

field2.SetComponent(1, b1b.real() * 1.12, b1b.imag() * 1.12);

• A corresponding python script is provided to plot the changes in lattice

functions as result of the manipulations. The result should be as follows:

Figure 5: Variation in beta functions as a result of magnet manipulation.

21

5.4 Tutorial 4 - ParticleTracking

The ParticleTracking tutorial shows how to create and track a ‘bunch’ of 2

particles at different starting real space coordinates using the Particle, Parti-

cleBunch and ParticleTracker classes.

ParticleTracking

• The follow shows how to use a loop to construct a particle bunch, adding

each defined particle individually.

// Define particle bunch and add individual particles in a loop

Particle p(0);

ParticleBunch* theBunch = new ParticleBunch(beamenergy);

for(int xi = 1; xi <= 2; xi++)

{

p.x() = xi * 0.001; // Each particle offset by 1mm on x-axis

theParticles->AddParticle(p);

}

• The follow shows how to constructor a ParticleTracker using the con-

structed accelerator and particle bunch information.

// Construct a ParticleTracker to perform the tracking

ParticleTracker tracker(theModel->GetBeamline(), theParticles);

• The follow shows how to use a loop to track the constructed particles

around the ring for multiple turns. Phase-space coordinates of each par-

ticle are also recorded after every turn using the ParticleTracker::∼
GetTrackedBunch() and ParticleBunch::Output() member functions.

// Track and record phase-space coords after each turn for 100 turns

ofstream trackingLog("build/tutorial4.out");

for(int turn = 0; turn < 100; turn++)

{

cout << "Tracking... turn: " << turn+1 << endl;

if(turn == 0)

tracker.Run();

else

tracker.Continue();

ParticleBunch& tracked = tracker.GetTrackedBunch();

tracked.Output(trackingLog);

}

22

• A corresponding python script is provided which plots the recorded parti-

cle evolution in phase-space coordinates. The result should be as follows:

Figure 6: Horizontal phase-space evolution of 2 offset particles over 100 turns.

5.5 Tutorial 5 - ParticleBunchTracking

The ParticleTracking tutorial shows how to create and track a normally dis-

tributed particle bunch of 10,000 particles using the ParticleDistributionGener-

ation. When defining a bunch one must also define BeamData. The tutorial

continues to show a different method of tracking, using beam position monitor

(BPM) component buffers. This method records the bunch centroid in real

space coordinates at every BPM component present in the constructed lattice.

ParticleBunchTracking

• The following defines the number of particles to be generated as well as

and initial beam parameters.

// Define number of particles in bunch

size_t npart = (size_t) 1e4;

// Define basic beam parameters (example)

BeamData beam;

beam.charge = 1e8;

beam.beta_x = 0.5500005011 * meter;

beam.beta_y = 0.5499999849 * meter;

23

beam.alpha_x = -7.115569055e-7 * meter;

beam.alpha_y = 1.797781918e-7 * meter;

beam.emit_x = 5.026457122e-10 * meter;

beam.emit_y = 5.026457122e-10 * meter;

beam.sig_z = 75.5 * millimeter;

beam.sig_dp = 0.000113;

beam.p0 = beamenergy;

• The following shows to generator a normally distributed bunch with the

above beam parameters.

// Define distribution type

ParticleDistributionGenerator* bunchDist = new

NormalParticleDistributionGenerator();

// Generate corresponding bunch

ParticleBunch* particleBunch = new ParticleBunch(npart, *bunchDist,

beam);

• The following shows how to initialise the BPM buffers and track real space

coordinate evolution of the bunch centroid.

// Construct a BPMBuffer to record the bunch centroid at each BPM

BPMVectorBuffer* bpmVecBuffer = new BPMVectorBuffer();

BPM::SetDefaultBuffer(bpmVecBuffer);

// While tracking: Write turn tracking results to a file

ofstream bpmLog("build/tutorial5.out");

vector<BPM::Data>& theBPMBuffer = bpmVecBuffer->BPMReading;

for(vector<BPM::Data>::iterator bpm_iter = theBPMBuffer.begin();

bpm_iter != theBPMBuffer.end(); bpm_iter++)

{

bpmLog << std::setw(14) << (bpm_iter->x).value;

bpmLog << std::setw(14) << (bpm_iter->x).error;

bpmLog << std::setw(14) << (bpm_iter->y).value;

bpmLog << std::setw(14) << (bpm_iter->y).error;

bpmLog << endl;

}

• A corresponding python script is provided which plots the recorded bunch

centroid evolution in real space coordinates at each BPM over 2 turns.

The result should be as follows:

24

Figure 7: BPM recorded bunch centroid evolution over 2 turns.

5.6 Tutorial 6 - LHClattice

LHClattice tutorial shows how to import the LHC lattice, aperture and colli-

mator information. A simple closed orbit calculation is performed to confirm

stability and the lattice functions are subsequently calculated and recorded.

LHClattice

• The following snippet shows how to import and initialize the LHC lattice,

aperture and collimator information.

// Import and construct LHC lattice

cout << "Loading MAD lattice file..." << endl;

MADInterface MADinput("Tutorials/input/LHC.tfs", beamenergy);

AcceleratorModel* theModel = MADinput.ConstructModel();

// Import and define component aperture information

cout << "Loading aperture information..." << endl;

ApertureConfiguration* apertures = new

ApertureConfiguration("Tutorials/input/LHCbeam1apertureinfo.tfs");

apertures->ConfigureElementApertures(theModel);

// Define material database

cout << "Loading materials database..." << endl;

25

MaterialDatabase* material_db = new MaterialDatabase();

// Import and define collimator information

cout << "Loading collimators database..." << endl;

CollimatorDatabase* collimator_db = new

CollimatorDatabase("Tutorials/input/LHCcollimatorinfo.dat",

material_db, true);

• A corresponding python script is provided which plots the LHC lattice

transverse beta and horizontal dispersion functions. The result should be

as follows:

Figure 8: Tranverse beta and horizontal dispersion functions of the LHC.

5.7 Tutorial 7 - CollimationAndScattering

The CollimationAndScattering tutorial shows how to initialize a simulation

such that aperture checks are carried out and particles are lost where they ex-

ceed aperture limits. Moreover, if particles are lost in a collimator component,

they follow a collimation process and are scattered following a defined scatter

process. The scattering process used is defined by R. Appleby et al. in [ref].

Each scattered and subsequently lost particle has its loss location record in

a histogram. The following simulation uses the LHC accelerator lattice and

26

tracks 10,000 particles for 20 turns.

CollimationAndScattering

• The following initializes collimator settings and aperture information, us-

ing the CollimatorDatabase and CollimatorAperture member functions.

// Initialize collimator database

collimator_db->MatchBeamEnvelope(false);

collimator_db->EnableJawAlignmentErrors(false);

collimator_db->SetJawPositionError(0.0 * nanometer);

collimator_db->SetJawAngleError(0.0 * microradian);

collimator_db->SelectImpactFactor(start_element, 1.0e-6);

double impact = collimator_db->ConfigureCollimators(theModel,

emittance, emittance, latticefunctions);

// Initialize collimator aperture info

vector<Collimator*> TCP;

int siz = theModel->ExtractTypedElements(TCP, start_element);

Aperture *ap = (TCP[0])->GetAperture();

CollimatorAperture* CollimatorJaw =

dynamic_cast<CollimatorAperture*>(ap);

double h_offset = latticefunctions->Value(1, 0, 0,

start_element_number);

double JawPosition = CollimatorJaw->GetFullWidth() / 2.0;

• For this simulation we show the use of a HorizontalHalo2ParticleDistribution,

which is also filtered in accordance with the collimator jaw parameters.

It is important to set the particle charge and enable scattering physics.

// Define horizontal bunch filter

HorizontalHaloParticleBunchFilter* hFilter = new

HorizontalHaloParticleBunchFilter();

hFilter->SetHorizontalLimit(JawPosition);

hFilter->SetHorizontalOrbit(h_offset);

// Construct corresponding bunch

ProtonBunch* particleBunch = new ProtonBunch(npart,

HorizontalHalo2ParticleDistributionGenerator(), beamData,

hFilter);

particleBunch->SetMacroParticleCharge(beamData.charge);

• The following shows how to enable collimation and scattering. Parti-

cle loss locations are stored and loss maps can be produced using the

LossMapCollimationOutput class.

27

// Enable scattering physics

particleBunch->EnableScatteringPhysics(ProtonBunch::Merlin);

LossMapCollimationOutput* lossOutput = new

LossMapCollimationOutput(tencm);

ScatteringModel* scatterModel = new ScatteringModelMerlin;

CollimateProtonProcess* collimateProcess = new

CollimateProtonProcess(2, 4);

collimateProcess->SetScatteringModel(scatterModel);

collimateProcess->ScatterAtCollimator(true);

collimateProcess->SetLossThreshold(200.0);

collimateProcess->SetOutputBinSize(0.1);

collimateProcess->SetCollimationOutput(lossOutput);

tracker->AddProcess(collimateProcess);

• A corresponding python script is provided which plots the LHC loss map

for 10,000 over 20 turns with the above process properties. The result

should be as follows:

Figure 9: LHC collimation loss map following simulation of 10,000 particles.

28

	A Brief History
	Getting Started
	Information and Support
	Downloading and Installation
	Doxygen Class Documentation
	Running Merlin++ in Eclipse CDT

	Code Base & Design Philosophy
	Merlin++ Design Philosophy
	Understand the Design Fundamentals
	Accelerator Model
	Particle Tracking
	The `Process' Concept

	Writing A User Script
	Merlin++ user script fundamentals

	Tutorials
	Tutorial 1 - LatticeConfiguration
	Tutorial 2 - LatticeConfigurationMAD
	Tutorial 3 - LatticeManipulation
	Tutorial 4 - ParticleTracking
	Tutorial 5 - ParticleBunchTracking
	Tutorial 6 - LHClattice
	Tutorial 7 - CollimationAndScattering

