
Ultra Messaging (Version 6.11.1)

Quick Start Guide
Copyright (C) 2004-2018, Informatica Corporation. All Rights Reserved.

Contents

1 Introduction 5

2 Ultra Messaging Binary Quick Start 7

2.1 Binary Quick Start on Microsoft Windows . 7

2.2 Binary Quick Start on Unix . 8

2.3 Binary Evaluation Notes . 9

3 Ultra Messaging Programming Quick Start 11

3.1 Building Notes: Windows . 11

3.2 Building Notes: Unix . 12

3.3 Minimal Ultra Messaging Source Implementation . 12

3.4 Minimal Ultra Messaging Receiver Implementation . 14

4 Unicast-Only Operation 19

5 Starting Ultra Messaging Daemons 21

5.1 Starting Ultra Messaging Dynamic Routing Option . 21

5.2 Starting UMM Daemon . 21

5.3 Persistent Store Daemon . 22

6 Next Steps 23

Chapter 1

Introduction

This document provides step-by-step instructions on how to rapidly get started using Ultra Messaging high perfor-
mance message streaming. It gets you started using our pre-compiled evaluation binaries to test performance, and
then walks you through the steps of writing minimal source (publisher) and receiver (subscriber) applications.

Attention

See the Documentation Introduction for important information on copyright, patents, infor-
mation resources (including Knowledge Base, and How To articles), Marketplace, Support, and other
information about Informatica and its products.

See UM Glossary for Ultra Messaging terminology, abbreviations, and acronyms.

6 Introduction

Chapter 2

Ultra Messaging Binary Quick Start

Ultra Messaging software consists of the documentation package and one or more binary packages. These instruc-
tions help get you started evaluating Ultra Messaging quickly. You can run pre-compiled commands from an Ultra
Messaging binary distribution to get some quick performance numbers in your environment. A subsequent section
guides you through creation of simple programs for local compilation.

A binary package consists of:

• Binary versions of source code examples, in the bin directory.

• Header files, in the include directory.

• Link libraries, in the lib directory.

• Shared libraries, in the lib directory on Unix for .so files or the bin directory on Windows for .dll files.

The Ultra Messaging code and documentation are copyrighted and confidential information owned by Informatica
and are covered under the terms of our Software License Agreement or Non-Disclosure Agreement as appropriate.
Use of this code and documentation without a valid Non-Disclosure Agreement or Software License Agreement with
Informatica Corporation is strictly prohibited. If this code and documentation is being supplied under the terms of
a Non Disclosure Agreement, all copies, in any form, must be returned or destroyed at the end of the evaluation
period or as requested by Informatica.

2.1 Binary Quick Start on Microsoft Windows

The following steps assume that the windows package is installed on all test machines in the standard place:

C:\Program Files\Informatica\rel-id\platform-id

where rel-id is the release identifier and platform-id describes the ABI (Application Binary Interface). For example:

C:\Program Files\Informatica\UMQ_6.0\Win2k-x86_64

where rel-id is the release identifier. It is also assumed that the \bin directory is included in the windows PATH
environment variable. This is needed so that the .EXE and .DLL files can be found.

1. Open a command prompt window on the machine you want to use for receiving messages and enter the
command lbmrcv topic to start a receiver. Note that topic can be any string. You should see output that looks
something like this:

1.006 secs. 0.0 Kmsgs/sec. 0.0 Kbps
1.019 secs. 0.0 Kmsgs/sec. 0.0 Kbps
1.010 secs. 0.0 Kmsgs/sec. 0.0 Kbps

8 Ultra Messaging Binary Quick Start

A new line will be printed about once per second showing the elapsed time, messages received, and data
received. As long as there are no sources yet running on topic, the number of messages received will continue
to be zero.

2. Open a command prompt window on the machine you want to use for sending messages and enter the
command lbmsrc topic to start sending messages. The receiver will automatically discover the source, at
which time its output will change to something like this:

1.010 secs. 451.9 Kmsgs/sec. 90.4 Mbps
1.010 secs. 451.4 Kmsgs/sec. 90.3 Mbps
1.010 secs. 445.1 Kmsgs/sec. 89.0 Mbps

3. With no options given, the source will send 10,000,000 small (25 byte) messages. If you would like to test
different size packets or number of packets sent, you can set options. Enter lbmsrc -h at the command line,
you will get a list of options you can control.

4. Press Ctrl-C to kill the source or receiver.

2.2 Binary Quick Start on Unix

The following steps assume that the Unix package is installed on all test machines under a normal user account:

/home/user-id/lbmeval/rel-id/platform-id

where rel-id is the release identifier and platform-id describes the ABI (Application Binary Interface). For example:

/home/jsmith/UMQ_6.0/Linux-glibc-2.5-x86_64

It is also assumed that the /bin directory is included in the PATH environment variable and the /lib directory is in
the appropriate loader library search path environment variable (e.g. LD_LIBRARY_PATH for Linux; see http←↩
://bhami.com/rosetta.html for equivalences in other flavors of Unix).

1. Open a command prompt window on the machine you want to use for receiving messages and enter the
command lbmrcv topic to start a receiver. Note that topic can be any string. You should see output that looks
something like this:

1.006 secs. 0.0 Kmsgs/sec. 0.0 Kbps
1.019 secs. 0.0 Kmsgs/sec. 0.0 Kbps
1.010 secs. 0.0 Kmsgs/sec. 0.0 Kbps

A new line will be printed about once per second showing the elapsed time, messages received, and data
received. As long as there are no sources yet running on topic, the number of messages received will continue
to be zero.

2. Open a command prompt window on the machine you want to use for sending messages and enter the
command lbmsrc topic to start sending messages. The receiver will automatically discover the source, at
which time its output will change to something like this:

1.010 secs. 451.9 Kmsgs/sec. 90.4 Mbps
1.010 secs. 451.4 Kmsgs/sec. 90.3 Mbps
1.010 secs. 445.1 Kmsgs/sec. 89.0 Mbps

3. With no options given, the source will send 10,000,000 small (25 byte) messages. If you would like to test
different size packets or number of packets sent, you can set options. Enter lbmsrc -h at the command line,
you will get a list of options you can control.

4. Press Ctrl-C to kill the source or receiver.

http://bhami.com/rosetta.html
http://bhami.com/rosetta.html

2.3 Binary Evaluation Notes 9

2.3 Binary Evaluation Notes

1. There are many other example programs available. See:

• C examples

• Java examples

• .NET examples

2. For general information on measuring performance, see LBM Reference Performance Tests and
UMP Performance Testing Sample Applications.

3. For information on testing the LBT-RM (multicast) transport, see the following UM Knowledgebase articles:

• Testing with LBT-RM

• Interpreting LBT-RM Source Statistics

• Tuning LBT-RM Questions

4. Microsoft has batching issues in its networking stack, so the performance results can vary. We have a work
around if this is an issue for you.

5. The Linux version was compiled on Fedora Core 1.

6. The Windows version was compiled on Windows XP with Microsoft Visual C++ version 7.

https://kb.informatica.com/faq/5/Pages/80055.aspx
https://kb.informatica.com/whitepapers/4/Pages/1/304989.aspx
https://kb.informatica.com/faq/5/Pages/80071.aspx
https://kb.informatica.com/faq/5/Pages/80072.aspx
https://kb.informatica.com/faq/5/Pages/80074.aspx

10 Ultra Messaging Binary Quick Start

Chapter 3

Ultra Messaging Programming Quick Start

The C programs below contain the minimum code and supporting material. Their purpose is to verify that the user's
build and run-time environments are set up correctly. They also give a basic introduction to the Ultra Messaging
API.

We also have equivalent Java and C# programs available in source form. See MinSrc.java and MinRcv.←↩
java or MinSrc.cs and MinRcv.cs. We also have an example of how application callbacks are coded in C++
programs. See minrcv.cpp.

(Most browsers let you right-click on a link and use the "save link target" function, or some variation.)

Note that these programs do not allow the user to override any of the default configuration values. As a result,
operation is fixed according to the normal LBM defaults; for example TCP is the transport protocol, topic resolution
is performed using multicast, etc. See the Ultra Messaging Configuration Guide.

The Source Code Examples tab on the left panel provides a much richer set of source files that use a wide variety
of features. However, those programs double as performance testing tools, so they tend to be more complex than
just demonstrating the features. We recommend to first build and run these minimal examples.

This source code example is provided by Informatica for educational and evaluation purposes only.

Error handling in these programs is primitive. A production program would want to have better error handling, but for
the purposes of a minimal example, it would just be a distraction. Also, a production program would want to support
a configuration file to override default values on options.

3.1 Building Notes: Windows

When building on Windows, the following notes are applicable.

• Make sure the preprocessor variable "WIN32" is defined.

• Add the '...\include\lbm' (under the package install directory) as an additional include directory.

• Add lbm.lib and wsock32.lib as Object/library modules.

• Add the '...\lib' as an additional library path.

• The install procedure should already have added the LBM bin directory to the Windows PATH. This is neces-
sary so that lbm.dll can be found when a program is run.

12 Ultra Messaging Programming Quick Start

3.2 Building Notes: Unix

When building on Unix, the following notes are applicable.

• Sample build command:

cc -I$HOME/lbm/<VERS>/<PLATFORM>/include
-L$HOME/lbm/<VERS>/<PLATFORM>/lib -llbm -lm -o min_src min_src.c

(This should be all one line.)

• The appropriate library search path should be updated to include the Ultra Messaging lib/ directory. For
example, on Linux:

LD_LIBRARY_PATH="$HOME/lbm/<VERS>/<PLATFORM>/lib:$LD_LIBRARY_PATH"
export LD_LIBRARY_PATH

(For other flavors of Unix, see http://bhami.com/rosetta.html.) Alternatively, the shared library
can be copied from the LBM lib/ directory to a directory which is already in the library search path.

3.3 Minimal Ultra Messaging Source Implementation

This is a source code listing of a minimal source (sender) program. Examples also include equivalent Java and C#
programs available in source form. See MinSrc.java and MinSrc.cs.

/

*
"minsrc.c: minimal application that sends to a given topic.

*
* Copyright (c) 2005-2018 Informatica Corporation. All Rights Reserved.

* Permission is granted to licensees to use

* or alter this software for any purpose, including commercial applications,

* according to the terms laid out in the Software License Agreement.

*
* This source code example is provided by Informatica for educational

* and evaluation purposes only.

*
* THE SOFTWARE IS PROVIDED "AS IS" AND INFORMATICA DISCLAIMS ALL WARRANTIES

* EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF

* NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

* PURPOSE. INFORMATICA DOES NOT WARRANT THAT USE OF THE SOFTWARE WILL BE

* UNINTERRUPTED OR ERROR-FREE. INFORMATICA SHALL NOT, UNDER ANY CIRCUMSTANCES, BE

* LIABLE TO LICENSEE FOR LOST PROFITS, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR

* INDIRECT DAMAGES ARISING OUT OF OR RELATED TO THIS AGREEMENT OR THE

* TRANSACTIONS CONTEMPLATED HEREUNDER, EVEN IF INFORMATICA HAS BEEN APPRISED OF

* THE LIKELIHOOD OF SUCH DAMAGES.

*//

* Explanatory notes referenced in this file are in the Quick Start guide. */

#include <stdio.h>

#if defined(_MSC_VER)/

* Windows-only includes */
#include <winsock2.h>
#define SLEEP(s) Sleep((s)*1000)
#else/

* Unix-only includes */

http://bhami.com/rosetta.html

3.3 Minimal Ultra Messaging Source Implementation 13

#include <stdlib.h>
#include <unistd.h>
#define SLEEP(s) sleep(s)
#endif

#include <lbm/lbm.h>

main()
{

lbm_context_t *ctx; / * pointer to context object */
lbm_topic_t *topic; / * pointer to topic object */
lbm_src_t *src; / * pointer to source (sender) object */
int err; / * return status of lbm functions (true=error) */

#if defined(_MSC_VER)/

* windows-specific code */
WSADATA wsadata;
int wsStat = WSAStartup(MAKEWORD(2,2), &wsadata);
if (wsStat != 0) {

printf("line %d: wsStat=%d\n",__LINE__,wsStat); exit(1);
}

#endif

err = lbm_context_create(&ctx, NULL, NULL, NULL); / * See Note #1 */
if (err) {

printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1);
}

err = lbm_src_topic_alloc(&topic, ctx, "Greeting", NULL); / * See Note #2 */
if (err) {

printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1);
}

err = lbm_src_create(&src, ctx, topic, NULL, NULL, NULL); / * See Note #3 */
if (err) {

printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1);
}

SLEEP(1); / * See Note #4 */

err = lbm_src_send(src, "Hello!", 6, LBM_MSG_FLUSH | LBM_SRC_BLOCK); / * See Note
#5 */

if (err) {
printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1);

}

SLEEP(2); / * See Note #6 *//

* Finished all sending to this topic, delete the source object. */

err = lbm_src_delete(src);/

* Do not need to delete the topic object - LBM keeps track of topic

* objects and deletes them as-needed. *//

* Finished with all LBM functions, delete the context object. */
err = lbm_context_delete(ctx);

#if defined(_MSC_VER)
WSACleanup();

#endif
} / * main */

Notes:

14 Ultra Messaging Programming Quick Start

1. Create a context object. A context is an environment in which LBM functions. Note that the first parameter is
a pointer to a pointer variable; lbm_context_create() writes the pointer to the context object into "ctx". Also,
by passing NULL to the context attribute parameter, the default option values are used. For most applications
only a single context is required regardless of how many sources and receivers are created.

2. Allocate a topic object. A topic object is little more than a string (the topic name). During operation, LBM
keeps some state information in the topic object as well. The topic is bound to the containing context, and
will also be bound to a source object. Note that the first parameter is a pointer to a pointer variable; lbm_←↩
src_topic_alloc() writes the pointer to the topic object into "topic". Also, by passing NULL to the source topic
attribute, the default option values are used. The string "Greeting" is the topic string.

3. Create the source object. A source object is used to send messages. It must be bound to a topic. Note that
the first parameter is a pointer to a pointer variable; lbm_src_create() writes the pointer to the source object
to into "src". Use of the third and fourth parameters is optional but recommended in a production program -
some source events can be important to the application. The last parameter is an optional event queue (not
used in this example).

4. Need to wait for receivers to find us before first send. There are other ways to accomplish this, but sleep is
easy. See Avoiding or Minimizing Delay Before Sending for details.

5. Send a message to the "Greeting" topic. The flags make sure the call to lbm_src_send() doesn't return
until the message is sent. Note that while this ensures low latency, flushing every message carries a heavy
efficiency cost. See Intelligent Batching for more information.

6. For some transport types (mostly UDP-based), a short delay before deleting the source is advisable. Even
though the message is sent, there may have been packet loss, and some transports need a bit of time to
request re-transmission. Also, if the above lbm_src_send() call didn't include the flush, some time might also
be needed to empty the batching buffer.

3.4 Minimal Ultra Messaging Receiver Implementation

This is a source code listing of a minimal receiver program. Examples also include equivalent Java, C#, and C++
programs available in source form. See MinRcv.java, MinRcv.cs, and minrcv.cpp.

/

*
"minrcv.c: minimal application that receives messages from a given topic.

*
* Copyright (c) 2005-2018 Informatica Corporation. All Rights Reserved.

* Permission is granted to licensees to use

* or alter this software for any purpose, including commercial applications,

* according to the terms laid out in the Software License Agreement.

*
* This source code example is provided by Informatica for educational

* and evaluation purposes only.

*
* THE SOFTWARE IS PROVIDED "AS IS" AND INFORMATICA DISCLAIMS ALL WARRANTIES

* EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF

* NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

* PURPOSE. INFORMATICA DOES NOT WARRANT THAT USE OF THE SOFTWARE WILL BE

* UNINTERRUPTED OR ERROR-FREE. INFORMATICA SHALL NOT, UNDER ANY CIRCUMSTANCES, BE

* LIABLE TO LICENSEE FOR LOST PROFITS, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR

* INDIRECT DAMAGES ARISING OUT OF OR RELATED TO THIS AGREEMENT OR THE

* TRANSACTIONS CONTEMPLATED HEREUNDER, EVEN IF INFORMATICA HAS BEEN APPRISED OF

* THE LIKELIHOOD OF SUCH DAMAGES.

*//

* Explanatory notes referenced in this file are in the Quick Start guide. */

https://kb.informatica.com/faq/5/Pages/80061.aspx

3.4 Minimal Ultra Messaging Receiver Implementation 15

#include <stdio.h>

#if defined(_MSC_VER)/

* Windows-only includes */
#include <winsock2.h>
#define SLEEP(s) Sleep((s)*1000)
#else/

* Unix-only includes */
#include <stdlib.h>
#include <unistd.h>
#define SLEEP(s) sleep(s)
#endif

#include <lbm/lbm.h>/

*
* A global variable is used to communicate from the receiver callback to

* the main application thread.

*/
int msgs_rcvd = 0;

int app_rcv_callback(lbm_rcv_t *rcv, lbm_msg_t *msg, void *clientd) / * See Note #1

*/
{/

* There are several different events that can cause the receiver callback

* to be called. Decode the event that caused this. */
switch (msg->type)
{
case LBM_MSG_DATA: / * a received message */
printf("Received %d bytes on topic %s: ’%.*s’\n", / * See note #2 */

msg->len, msg->topic_name, msg->len, msg->data);/

* Tell main thread that we’ve received our message. */
++ msgs_rcvd;
break;

case LBM_MSG_BOS:
printf("[%s][%s], Beginning of Transport Session\n", msg->topic_name,

msg->source);
break;

case LBM_MSG_EOS:
printf("[%s][%s], End of Transport Session\n", msg->topic_name, msg->source);
break;

default: / * unexpected receiver event */
printf("Received lbm_msg_t type %x [%s][%s]\n", msg->type, msg->topic_name,

msg->source);
break;

} / * switch msg->type */

return 0;
} / * app_rcv_callback */

main()
{

lbm_context_t *ctx; / * pointer to context object */
lbm_topic_t *topic; / * pointer to topic object */
lbm_rcv_t *rcv; / * pointer to receiver object */
int err; / * return status of lbm functions (non-zero=error) */

#if defined(_MSC_VER)/

16 Ultra Messaging Programming Quick Start

* windows-specific code */
WSADATA wsadata;
int wsStat = WSAStartup(MAKEWORD(2,2), &wsadata);
if (wsStat != 0) {

printf("line %d: wsStat=%d\n",__LINE__,wsStat); exit(1);
}

#endif

err = lbm_context_create(&ctx, NULL, NULL, NULL); / * See note #3 */
if (err) {

printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1);
}

err = lbm_rcv_topic_lookup(&topic, ctx, "Greeting", NULL); / * See note #4 */
if (err) {

printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1);
}

err = lbm_rcv_create(&rcv, ctx, topic, app_rcv_callback, NULL, NULL); / * See
note #5 */

if (err) {
printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1);

}

while (msgs_rcvd == 0) {
SLEEP(1);

}/

* Finished all receiving from this topic, delete the receiver object. */
err = lbm_rcv_delete(rcv);
if (err) {

printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1);
}/

* Do not need to delete the topic object - LBM keeps track of topic

* objects and deletes them as-needed. *//

* Finished with all LBM functions, delete the context object. */
err = lbm_context_delete(ctx);
if (err) {

printf("line %d: %s\n", __LINE__, lbm_errmsg()); exit(1);
}

#if defined(_MSC_VER)
WSACleanup();

#endif
} / * main */

Notes:

1. LBM passes received messages to the application by means of a callback. I.e. the LBM context thread reads
the network socket, performs its higher-level protocol functions, and then calls an application-level function
that was set up during initialization. This callback function has some severe limitations placed upon it. It must
execute very quickly; any potentially blocking calls it might make will interfere with the proper execution of the
LBM context thread. One common desire is for the receive function to send an LBM message (via lbm_←↩
src_send()), however this has the potential to produce a deadlock condition. If it is desired for the receive
callback function to call LBM or other potentially blocking functions, it is strongly advised to make use of an
event queue, which causes the callback to be executed from an application thread. See the example tool
lbmrcvq.c for an example of using a receiver event queue.

2. Note - printf can block, which is normally a bad idea for a callback (unless an event queue is being used).
However, for this minimal application, only one message is expected.

3.4 Minimal Ultra Messaging Receiver Implementation 17

3. Create a context object. A context is an environment in which LBM functions. Note that the first parameter is
a pointer to a pointer variable; lbm_context_create() writes the pointer to the context object into "ctx". Also,
by passing NULL to the context attribute parameter, the default option values are used. For most applications
only a single context is required regardless of how many sources and receivers are created.

4. Lookup a topic object. A topic object is little more than a string (the topic name). During operation, LBM
keeps some state information in the topic object as well. The topic is bound to the containing context, and will
also be bound to a receiver object. Note that the first parameter is a pointer to a pointer variable; lbm_rcv←↩
_topic_lookup() writes the pointer to the topic object into "topic". Also, by passing NULL to the source topic
attribute, the default option values are used. The string "Greeting" is the topic string.

5. Create the receiver object and bind it to a topic. Note that the first parameter is a pointer to a pointer variable;
lbm_rcv_create() writes the pointer to the source object to into "rcv". The second and third parameters
are the function and application data pointers. When a message is received, the function is called with the
data pointer passed in as its last parameter. The last parameter is an optional event queue (not used in this
example).

18 Ultra Messaging Programming Quick Start

Chapter 4

Unicast-Only Operation

One of Ultra Messaging's great strengths is its use of the network hardware and protocols to achieve very high
performance and scalability. By default, Ultra Messaging uses multicast for topic resolution so that data sources
and receivers can find each other.

In general, we recommend the use of multicast whenever possible because it provides the best performance and
scalability. However, we recognize that it is not always possible to provide multicast connectivity between the
machines. For those cases, we support unicast-only operation.

There are two parts to unicast-only operation. One is to use a unicast form of transport. Ultra Messaging uses TCP
by default for transport, but LBT-RU is also available and has some performance advantages. For initial "quick start"
testing, we recommend not changing the default TCP.

The second part of unicast-only operation is to use the lbmrd (UM Resolver Daemon) for topic resolution. (NOTE:
this does not route message data through a daemon. This is a helper process that lets data sources and receivers
find each other.) To enable unicast topic resolution, do the following:

1. Choose one machine to host the resolver daemon and enter the lbmrd command (use lbmrd -h for full instruc-
tions).

2. Create a Ultra Messaging configuration file containing:
context resolver_unicast_daemon [Iface[:Src_Port]->]IP:Dest_Port where:

• Iface is the interface to use (previously set via resolver_unicast_interface).

• Src_Port is the source port to use (previously resolver_unicast_port).

• IP is the resolver daemon's IP address (previously resolver_unicast_address).

• Dest_Port is the resolver daemon's UDP port (previously resolver_unicast_destination_port).

For more information, see resolver_unicast_daemon (context).

3. Run the test applications with the option -c filename where filename is the configuration file created in step 2.

Due to the fact that the minimal source programs presented in this document (minsrc.c and minrcv.c) do not allow
the use of a configuration file, it is not possible to configure them for unicast-only operation. If multicast operation is
not possible on your network, then please use the binary test programs (described in Ultra Messaging Binary Quick
Start) which which do allow unicast-only configuration.

20 Unicast-Only Operation

Chapter 5

Starting Ultra Messaging Daemons

5.1 Starting Ultra Messaging Dynamic Routing Option

The UM Router bridges disjoint topic resolution domains by forwarding multicast and/or unicast topic resolution
traffic. Before installing and starting a UM Router daemon (tnwgd) clear objectives and proper planning are very
important. Approach this planning with the consideration that a UM Router condenses your network into a single
process. You must be clear about the traffic you expect to forward through a UM Router. The following highlights
some other specifics.

• Know your Topic Resolution Domains. See Topic Resolution Domains.

• Consider the size and quality of network paths into and out of your UM Routers. For example, UM Routers
cannot efficiently forward messages from a 1GB path to a 100MB path.

• Fully examine any use of Late Join, taking care to configure retransmission options correctly.

5.2 Starting UMM Daemon

The UMM Daemon manages UM XML configuration information defined in the GUI as well as user and license
information. It serves license and configuration information to UM applications. The UMM Daemon requires either a
MySQL or Oracle database installation. Informatica does not supply MySQL or Oracle nor any licensing to use them.
For additional information about the steps in this process, see the Ultra Messaging Manager Guide.

1. Install MySQL or Oracle according to the user documentation.

2. Create a database. (You provide the UMM Daemon with the database name, username and password at
start up. This user name and password should be kept secure.)

3. Log into the database.

4. From the database's command line or home page, execute the /UMM/install_tables_oracle.sql or source /←↩
UMM/install_tables_mysql.sql script. (This script installs the tables required by UMM.)

5. From the database's command line or home page, load /UMM/oracle_templates.txt or /UMM/mysql_←↩
templates.txt. (This script loads the example configuration templates for low latency and high throughput.
These templates appear in the UMM GUI under Templates in the object tree in the left pane.

22 Starting Ultra Messaging Daemons

• For Oracle, load /UMM/oracle_templates.txt.

• For MySQL, run ‘LOAD DATA INFILE 'mysql_templates.txt' INTO TABLE TEMPLATE;‘.

6. Modify the /UMM/umm.properties to indicate the database username, password and driver to reflect your
configuration database.

7. Edit the ummd.bat or ummd.sh file that starts UMM Daemon. The appropriate driver jar file name must be
added to the classpath. Specify your certificate file or Java keystore information if using SSL certificates. The
ummd.bat or ummd.sh provided with installation appears below.
java -cp .;mysql-connector-java-5.0.8-bin.jar;UMMD_1.6.0_02.jar -Xms512m
-Xmx1024m umm.ummd.Server

8. Start the UMM Daemon with /UMM/ummd.bat or /UMM/ummd.sh.

9. Edit the umm.bat or umm.sh file that starts the UMM GUI. The appropriate driver jar file name must be added
to the classpath. The umm.bat or umm.sh provided with installation appears below.
java -cp .;mysql-connector-java-5.0.8-bin.jar;UMM_1.jar; -Xms256m -←↩
Xmx1024m umm.gui.MainFrame

10. Start the UMM GUI with /UMM/umm.bat or /UMM/umm.sh.

11. Log into the UMM GUI with username, default and password default. Either change the default user's
password or create new administrative user and delete the default user. See the Ultra Messaging
Manager Guide.

12. To enable your UM applications to be served configuration information by UMM Daemon, set the following
environment variable for every application/user combination.
export LBM_UMM_INFO=application_name:user_name:password@ip:port

For example:
export LBM_UMM_INFO=lbmrcv:lbmrcv:default:default@10.29.3.95:21273

5.3 Persistent Store Daemon

The daemon, umestored, provides persistent store services. To start umestored, perform the following steps:

1. Create the cache and state directories.
$ mkdir umestored-cache ; mkdir umestored-state

2. Create a simple umestored XML configuration file or use a sample configuration, ume-example-config.xml or
q-example-config.xml. See the Ultra Messaging Guide for Persistence.

3. Start the daemon.
$ umestored config.xml

See also umestored Man Page.

Chapter 6

Next Steps

The Ultra Messaging Concepts Guide introduces the important fundamental concepts you will need to
design and code your applications.

See C example programs for descriptions and source files for the binary tools used for evaluation and perfor-
mance measurements. They can be a valuable resource for seeing how various features can be implemented. Also
available are Java and .NET example programs.

The Ultra Messaging Guide for Persistence contains concepts, tutorials and configuration informa-
tion for UMP, along with discussions about designing persistent applications. It also contains detailed configuration
information for the umestored daemon.

The Ultra Messaging Guide for Queuing contains concepts, tutorials and configuration information for
UMQ, along with discussions about designing queuing applications.

The C API, Java API, .NET API documentation provide reference guides for the Ultra Messaging libraries.

	Introduction
	Ultra Messaging Binary Quick Start
	Binary Quick Start on Microsoft Windows
	Binary Quick Start on Unix
	Binary Evaluation Notes

	Ultra Messaging Programming Quick Start
	Building Notes: Windows
	Building Notes: Unix
	Minimal Ultra Messaging Source Implementation
	Minimal Ultra Messaging Receiver Implementation

	Unicast-Only Operation
	Starting Ultra Messaging Daemons
	Starting Ultra Messaging Dynamic Routing Option
	Starting UMM Daemon
	Persistent Store Daemon

	Next Steps

