

R Statistical Application
Development by Example
Beginner's Guide

Learn R Statistical Application Development from scratch
in a clear and pedagogical manner

Prabhanjan Narayanachar Tattar

BIRMINGHAM - MUMBAI

R Statistical Application Development by Example
Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1170713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-944-1

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

Credits

Author

Prabhanjan Narayanachar Tattar

Reviewers

Mark ver der Loo

Mzabalazo Z. Ngwenya

A Ohri

Tengfei Yin

Acquisition Editor

Usha Iyer

Lead Technical Editor

Arun Nadar

Technical Editors

Madhuri Das

Mausam Kothari

Amit Ramadas

Varun Pius Rodrigues

Lubna Shaikh

Project Coordinator

Anurag Banerjee

Proofreaders

Maria Gould

Paul Hindle

Indexer

Hemangini Bari

Graphics

Ronak Dhruv

Production Coordinators

Melwyn D'sa

Zahid Shaikh

Cover Work

Melwyn D'sa

Zahid Shaikh

About the Author
Prabhanjan Narayanachar Tattar has seven years of experience with R software and
has also co-authored the book A Course in Statistics with R published by Narosa Publishing
House. The author has built two packages in R titled gpk and ACSWR. He has obtained a PhD
(Statistics) from Bangalore University under the broad area of Survival Analysis and published
several articles in peer-reviewed journals. During the PhD program, the author received
the young Statistician honors in IBS(IR)-GK Shukla Young Biometrician Award (2005) and
Dr. U.S. Nair Award for Young Statistician (2007) and also held a Junior and Senior Research
Fellowship of CSIR-UGC.

Prabhanjan is working as a Business Analysis Advisor at Dell Inc, Bangalore. He is working
for the Customer Service Analytics unit of the larger Dell Global Analytics arm of Dell.

I would like to thank Prof. Athar Khan, Aligarh Muslim University, whose
teaching during a shared R workshop inspired me to a very large extent.
My friend Veeresh Naidu has gone out of his way in helping and inspiring
me complete this book and I thank him for everything that defines our
friendship.

Many of my colleagues at the Customer Service Analytics unit of Dell Global
Analytics, Dell Inc. have been very tolerant of my stat talk with them and it
is their need for the subject which has partly influenced the writing of the
book. I would like to record my thanks to them and also my manager Debal
Chakraborty.

My wife Chandrika has been very cooperative and without her permission to
work on the book during weekends and housework timings this book would
have never been completed. Pranathi at 2 years and 9 months has started
school, the pre-kindergarten, and it is genuinely believed that one day she
will read this entire book.

I am also grateful to the reviewers whose constructive suggestions and
criticisms have helped the book reach a higher level than where it would
have ended up being without their help. Last and not least, I would like to
take the opportunity to thank Usha Iyer and Anurag Banerjee for their inputs
with the earlier drafts, and also their patience with my delays.

About the Reviewers
Mark van der Loo obtained his PhD at the Institute for Theoretical Chemistry at the
University of Nijmegen (The Netherlands). Since 2007 he has worked at the statistical
methodology department of the Dutch official statistics office (Statistics Netherlands).
His research interests include automated data cleaning methods and statistical computing.
At Statistics Netherlands he is responsible for the local R center of expertise, which supports
and educates users on statistical computing with R. Mark has coauthored a number of R
packages that are available via CRAN, namely editrules, deducorrect, rspa, extremevalues,
and stringdist. Together with Edwin de Jonge he authored the book Learning RStudio for R
Statistical Computing. A list of his publications can be found at www.markvanderloo.eu.

Mzabalazo Z. Ngwenya has worked extensively in the field of statistical consulting and
currently works as a biometrician. He holds an MSC in Mathematical Statistics from the
University of Cape Town and is at present studying towards a PhD (School of Information
Technology, University of Pretoria) in the field of Computational Intelligence. His research
interests include statistical computing, machine learning, spatial statistics, and simulation and
stochastic processes. Previously he was involved in reviewing Learning RStudio for R Statistical
Computing by Mark P.J. van der Loo and Edwin de Jonge, Packt Publishing

A Ohri is the founder of analytics startup Decisionstats.com. He has pursued graduation
studies from the University of Tennessee, Knoxville and the Indian Institute of Management,
Lucknow. In addition, he has a Mechanical Engineering degree from the Delhi College of
Engineering. He has interviewed more than 100 practitioners in analytics, including leading
members from all the analytics software vendors. He has written almost 1300 articles on
his blog besides guest writing for influential analytics communities. He teaches courses
in R through online education and has worked as an analytics consultant in India for the
past decade. He was one of the earliest independent analytics consultants in India and his
current research interests include spreading open source analytics, analyzing social media
manipulation, simpler interfaces to cloud computing, and unorthodox cryptography.

He is the author of R for Business Analytics.

http://www.springer.com/statistics/book/978 1 4614 4342 1

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

The work is dedicated to my father Narayanachar, the very first engineer who
influenced my outlook towards Science and Engineering. For the same reason,

my mother Lakshmi made me realize the importance of life and philosophy.

Table of Contents
Preface 1

Chapter 1: Data Characteristics 7
Questionnaire and its components 8

Understanding the data characteristics in an R environment 12
Experiments with uncertainty in computer science 14
R installation 15

Using R packages 16
RSADBE – the book's R package 17
Discrete distribution 18
Discrete uniform distribution 19
Binomial distribution 20
Hypergeometric distribution 24
Negative binomial distribution 24
Poisson distribution 26

Continuous distribution 26
Uniform distribution 27
Exponential distribution 28
Normal distribution 29

Summary 31

Chapter 2: Import/Export Data 33
data.frame and other formats 33

Constants, vectors, and matrices 34
Time for action – understanding constants, vectors, and basic arithmetic 35
Time for action – matrix computations 41

The list object 44
Time for action – creating a list object 44

The data.frame object 45

Table of Contents

[ii]

Time for action – creating a data.frame object 45
The table object 49

Time for action – creating the Titanic dataset as a table object 51
read.csv, read.xls, and the foreign package 52
Time for action – importing data from external files 55

Importing data from MySQL 58
Exporting data/graphs 60

Exporting R objects 60
Exporting graphs 60

Time for action – exporting a graph 61
Managing an R session 62
Time for action – session management 62
Summary 64

Chapter 3: Data Visualization 65
Visualization techniques for categorical data 66

Bar charts 66
Going through the built-in examples of R 66

Time for action – bar charts in R 68
Dot charts 74

Time for action – dot charts in R 74
Spine and mosaic plots 76

Time for action – the spine plot for the shift and operator data 77
Time for action – the mosaic plot for the Titanic dataset 80

Pie charts and the fourfold plot 81
Visualization techniques for continuous variable data 84

Boxplot 84
Time for action – using the boxplot 85

Histograms 88
Time for action – understanding the effectiveness of histograms 90

Scatter plots 93
Time for action – plot and pairs R functions 94

Pareto charts 97
A brief peek at ggplot2 99
Time for action – qplot 100
Time for action – ggplot 101
Summary 102

Chapter 4: Exploratory Analysis 103
Essential summary statistics 104

Percentiles, quantiles, and median 104
Hinges 104

Table of Contents

[iii]

The interquartile range 105
Time for action – the essential summary statistics for
"The Wall" dataset 105
The stem-and-leaf plot 109
Time for action – the stem function in play 110
Letter values 113
Data re-expression 114
Bagplot – a bivariate boxplot 116
Time for action – the bagplot display for a multivariate dataset 117
The resistant line 118
Time for action – the resistant line as a first regression model 120
Smoothing data 122
Time for action – smoothening the cow temperature data 124
Median polish 125
Time for action – the median polish algorithm 125
Summary 128

Chapter 5: Statistical Inference 129
Maximum likelihood estimator 130

Visualizing the likelihood function 131
Time for action – visualizing the likelihood function 133

Finding the maximum likelihood estimator 135
Using the fitdistr function 136

Time for action – finding the MLE using mle and fitdistr functions 137
Confidence intervals 139
Time for action – confidence intervals 141
Hypotheses testing 144

Binomial test 144
Time for action – testing the probability of success 145

Tests of proportions and the chi-square test 147
Time for action – testing proportions 147

Tests based on normal distribution – one-sample 149
Time for action – testing one-sample hypotheses 152

Tests based on normal distribution – two-sample 156
Time for action – testing two-sample hypotheses 159
Summary 160

Chapter 6: Linear Regression Analysis 161
The simple linear regression model 162

What happens to the arbitrary choice of parameters? 163
Time for action – the arbitrary choice of parameters 164

Building a simple linear regression model 167

Table of Contents

[iv]

Time for action – building a simple linear regression model 167
ANOVA and the confidence intervals 169

Time for action – ANOVA and the confidence intervals 170
Model validation 171

Time for action – residual plots for model validation 172
Multiple linear regression model 176

Averaging k simple linear regression models or a multiple linear
regression model 177

Time for action – averaging k simple linear regression models 177
Building a multiple linear regression model 179

Time for action – building a multiple linear regression model 179
The ANOVA and confidence intervals for the multiple linear regression model 181

Time for action – the ANOVA and confidence intervals for the multiple linear
regression model 182

Useful residual plots 183
Time for action – residual plots for the multiple linear regression model 184
Regression diagnostics 186

Leverage points 187
Influential points 188
DFFITS and DFBETAS 189

The multicollinearity problem 189
Time for action – addressing the multicollinearity problem for the Gasoline data 191
Model selection 192

Stepwise procedures 192
The backward elimination 192
The forward selection 193

Criterion-based procedures 194
Time for action – model selection using the backward, forward, and AIC criteria 194
Summary 199

Chapter 7: The Logistic Regression Model 201
The binary regression problem 202
Time for action – limitations of linear regression models 202
Probit regression model 204
Time for action – understanding the constants 204
Logistic regression model 206
Time for action – fitting the logistic regression model 207

Hosmer-Lemeshow goodness-of-fit test statistic 210
Time for action – the Hosmer-Lemeshow goodness-of-fit statistic 211
Model validation and diagnostics 213

Residual plots for the GLM 213

Table of Contents

[v]

Time for action – residual plots for the logistic regression model 214
Influence and leverage for the GLM 216

Time for action – diagnostics for the logistic regression 216
Receiving operator curves 220
Time for action – ROC construction 221
Logistic regression for the German credit screening dataset 223
Time for action – logistic regression for the German credit dataset 225
Summary 227

Chapter 8: Regression Models with Regularization 229
The overfitting problem 230
Time for action – understanding overfitting 231
Regression spline 234

Basis functions 234
Piecewise linear regression model 235

Time for action – fitting piecewise linear regression models 235
Natural cubic splines and the general B-splines 238

Time for action – fitting the spline regression models 239
Ridge regression for linear models 243
Time for action – ridge regression for the linear regression model 244
Ridge regression for logistic regression models 248
Time for action – ridge regression for the logistic regression model 248
Another look at model assessment 250
Time for action – selecting lambda iteratively and other topics 250
Summary 256

Chapter 9: Classification and Regression Trees 257
Recursive partitions 258
Time for action – partitioning the display plot 259

Splitting the data 260
The first tree 260

Time for action – building our first tree 261
The construction of a regression tree 265
Time for action – the construction of a regression tree 266
The construction of a classification tree 276
Time for action – the construction of a classification tree 279
Classification tree for the German credit data 284
Time for action – the construction of a classification tree 284
Pruning and other finer aspects of a tree 288
Time for action – pruning a classification tree 289
Summary 291

Table of Contents

[vi]

Chapter 10: CART and Beyond 293
Improving CART 294
Time for action – cross-validation predictions 296
Bagging 297

The bootstrap 297
Time for action – understanding the bootstrap technique 298

The bagging algorithm 300
Time for action – the bagging algorithm 301
Random forests 303
Time for action – random forests for the German credit data 304
The consolidation 308
Time for action – random forests for the low birth weight data 308
Summary 314

Appendix: References 315

Index 317

Preface
The open source software R is fast becoming one of the preferred companions of Statistics
even as the subject continues to add many friends in Machine Learning, Data Mining, and so
on among its already rich scientific network. The era of mathematical theory and statistical
applications embeddedness is truly a remarkable one for the society and the software has
played a very pivotal role in it. This book is a humble attempt at presenting Statistical Models
through R for any reader who has a bit of familiarity with the subject. In my experience of
practicing the subject with colleagues and friends from different backgrounds, I realized that
many are interested in learning the subject and applying it in their domain which enables
them to take appropriate decisions in analyses, which involves uncertainty. A decade earlier
my friends would be content with being pointed to a useful reference book. Not so anymore!
The work in almost every domain is done through computers and naturally they do have
their data available in spreadsheets, databases, and sometimes in plain text format. The
request for an appropriate statistical model is invariantly followed by a one word question
"Software?" My answer to them has always been a single letter reply "R!" Why? It is really a
very simple decision and it has been my companion over the last seven years. In this book,
this experience has been converted into detailed chapters and a cleaner breakup of model
building in R.

A by-product of the interaction with colleagues and friends who are all aspiring statistical
model builders has been that I have been able to pick up the trough of their learning
curve of the subject. The first attempt towards fixing the hurdle has been to introduce
the fundamental concepts that the beginners are most familiar with, which is data.
The difference is simply in the subtleties and as such I firmly believe that introducing the
subject on their turf motivates the reader for a long way in their journey. As with most
statistical software, R provides modules and packages which mostly cover many of the
recently invented statistical methodology. The first five chapters of the book focus on the
fundamental aspects of the subject and the R software and hence cover R basics, data
visualization, exploratory data analysis, and statistical inference.

Preface

[2]

The foundational aspects are illustrated using interesting examples and sets up the
framework for the later five chapters. Regression models, linear and logistic regression
models being at the forefront, are of paramount interest in applications. The discussion is
more generic in nature and the techniques can be easily adapted across different domains.
The last two chapters have been inspired by the Breiman school and hence the modern
method of Classification and Regression Trees has been developed in detail and illustrated
through a practical dataset.

What this book covers
Chapter 1, Data Characteristics, introduces the different types of data through a
questionnaire and dataset. The need of statistical models is elaborated in some interesting
contexts. This is followed by a brief explanation of R installation and the related packages.
Discrete and continuous random variables are discussed through introductory R programs.

Chapter 2, Import/Export Data, begins with a concise development of R basics. Data frames,
vectors, matrices, and lists are discussed with clear and simpler examples. Importing of data
from external files in csv, xls, and other formats is elaborated next. Writing data/objects from
R for other software is considered and the chapter concludes with a dialogue on R session
management.

Chapter 3, Data Visualization, discusses efficient graphics separately for categorical and
numeric datasets. This translates into techniques of bar chart, dot chart, spine and mosaic
plot, and four fold plot for categorical data while histogram, box plot, and scatter plot for
continuous/numeric data. A very brief introduction to ggplot2 is also provided here.

Chapter 4, Exploratory Analysis, encompasses highly intuitive techniques for preliminary
analysis of data. The visualizing techniques of EDA such as stem-and-leaf, letter values, and
modeling techniques of resistant line, smoothing data, and median polish give a rich insight
as a preliminary analysis step.

Chapter 5, Statistical Inference, begins with the emphasis of likelihood function and
computing the maximum likelihood estimate. Confidence intervals for the parameters
of interest is developed using functions defined for specific problems. The chapter also
considers important statistical tests of Z-test and t-test for comparison of means and
chi-square tests and F-test for comparison of variances.

Chapter 6, Linear Regression Analysis, builds a linear relationship between an output and a
set of explanatory variables. The linear regression model has many underlying assumptions
and such details are verified using validation techniques. A model may be affected by a
single observation, or a single output value, or an explanatory variable. Statistical metrics
are discussed in depth which helps remove one or more kinds of anomalies. Given a large
number of covariates, the efficient model is developed using model selection techniques.

Preface

[3]

Chapter 7, The Logistic Regression Model, is useful as a classification model when the output
is a binary variable. Diagnostic and model validation through residuals are used which lead
to an improved model. ROC curves are next discussed which helps in identifying of a better
classification model.

Chapter 8, Regression Models with Regularization, discusses the problem of over fitting
arising from the use of models developed in the previous two chapters. Ridge regression
significantly reduces the possibility of an over fit model and the development of natural
spine models also lays the basis for the models considered in the next chapter.

Chapter 9, Classification and Regression Trees, provides a tree-based regression model.
The trees are initially built using R functions and the final trees are also reproduced using
rudimentary codes leading to a clear understanding of the CART mechanism.

Chapter 10, CART and Beyond, considers two enhancements of CART using bagging and
random forests. A consolidation of all the models from Chapter 6 to Chapter 10 is also given
through a dataset.

Chapter 1 to Chapter 5 form the basics of R software and the Statistics subject. Practical
and modern regression models are discussed in depth from Chapter 6 to Chapter 10.

Appendix, References, lists names of the books that have been referred to in this book.

What you need for this book
R is the only required software for this book and you can download it from http://www.
cran.r-project.org/. R packages will be required too though this task is done within a
working R session. The datasets used in the book is available in the R package RSADBE, which
is an abbreviation of the book's title, at http://cran.r-project.org/web/packages/
RSADBE/index.html.

Who this book is for
This book will be useful for readers who have flair and a need for statistical applications
in their own domains. The first seven chapters are also useful for any masters students in
Statistics and the motivated student can easily complete the rest of the book and obtain
a working knowledge of CART.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

http://www.cran.r-project.org/
http://www.cran.r-project.org/

Preface

[4]

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own
understanding.

Have a go hero – heading
These are practical challenges that give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The operator %% on two objects, say x and y,
returns remainder following an integer division, and the operator %/% returns the integer
division." In certain cases the complete code cannot be included within the action list and
in such cases you will find the following display:

Plot the "Response Residuals" against the "Fitted Values" of the pass_logistic model
with the following values assigned:

plot(fitted(pass_logistic), residuals(pass_logistic,"response"),
col= "red", xlab="Fitted Values", ylab="Residuals",cex.axis=1.5,
cex.lab=1.5)

In such a case you need to run the code starting with plot(up to cex.lab=1.5) in R.

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from http://www.packtpub.com/sites/default/files/
downloads/9441OS_R-Statistical-Application-Development-by-Example-
Color-Graphics.pdf.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Data Characteristics

Data consists of observations across different types of variables, and it is vital
that any Data Analyst understands these intricacies at the earliest stage of
exposure to statistical analysis. This chapter recognizes the importance of data
and begins with a template of a dummy questionnaire and then proceeds with
the nitty-gritties of the subject. We then explain how uncertainty creeps in to
the domain of computer science. The chapter closes with coverage of important
families of discrete and continuous random variables.

We will cover the following topics:

 � Identification of the main variable types as nominal, categorical,
and continuous variables

 � The uncertainty arising in many real experiments

 � R installation and packages

 � The mathematical form of discrete and continuous random variables
and their applications

1

Data Characteristics

[8]

Questionnaire and its components
The goal of this section is introduction of numerous variable types at the first possible
occasion. Traditionally, an introductory course begins with the elements of probability theory
and then builds up the requisites leading to random variables. This convention is dropped in
this book and we begin straightaway with data. There is a primary reason for choosing this
path. The approach builds on what the reader is already familiar with and then connects it
with the essential framework of the subject.

It is very likely that the user is familiar with questionnaires. A questionnaire may be asked
after the birth of a baby with a view to aid the hospital in the study about the experience
of the mother, the health status of the baby, and the concerns of immediate guardians
of the new born. A multi-store department may instantly request the customer to fill in a
short questionnaire for capturing the customer's satisfaction after the sale of a product.
A customer's satisfaction following the service of their vehicle (see the detailed example
discussed later) can be captured through a few queries. The questionnaires may arise in
different forms than just merely on paper. They may be sent via e-mail, telephone, short
message service (SMS), and so on. As an example, one may receive an SMS that seeks a
mandatory response in a Yes/No form. An e-mail may arrive in the Outlook inbox, which
requires the recipient to respond through a vote for any of these three options, "Will attend
the meeting", "Can't attend the meeting", or "Not yet decided".

Suppose the owner of a multi-brand car center wants to find out the satisfaction percentage
of his customers. Customers bring their car to a service center for varied reasons. The owner
wants to find out the satisfaction levels post the servicing of the cars and find the areas
where improvement will lead to higher satisfaction among the customers. It is well known
that the higher the satisfaction levels, the greater would be the customer's loyalty towards
the service center. Towards this, a questionnaire is designed and then data is collected from
the customers. A snippet of the questionnaire is given in figure 1, and the information given
by the customers lead to different types of data characteristics. The variables Customer ID
and Questionnaire ID may be serial numbers or randomly generated unique numbers. The
purpose of such variables is unique identification of people's response. It may be possible that
there are follow-up questionnaires as well. In such cases, the Customer ID for a responder will
continue to be the same, whereas the Questionnaire ID needs to change for identification of
the follow up. The values of these types of variables in general are not useful for
analytical purpose.

Chapter 1

[9]

Figure 1: A hypothetical questionnaire

The information of Full Name in this survey is a starting point to break the ice with
the responder. In very exceptional cases the name may be useful for profiling purposes.
For our purposes the name will simply be a text variable that is not used for analysis
purposes. Gender is asked to know the person's gender, and in quite a few cases it may
be an important factor explaining the main characteristics of the survey, in this case it may
be mileage. Gender is an example of a categorical variable.

Age in Years is a variable that captures the age of the customer. The data for this field is
numeric in nature and is an example of a continuous variable.

The fourth and fifth questions help the multi-brand dealer in identifying the car model
and its age. The first question here enquires about the type of the car model. The car models
of the customers may vary from Volkswagen Beetle, Ford Endeavor, Toyota Corolla, Honda
Civic, to Tata Nano, see the next screenshot. Though the model name is actually a noun, we
make a distinction from the first question of the questionnaire in the sense that the former is
a text variable while the latter leads to a categorical variable. Next, the car model may easily
be identified to classify the car into one of the car categories, such as a hatchback, sedan,
station wagon, or utility vehicle, and such a classifying variable may serve as one of the
ordinal variable, as per the overall car size. The age of the car in months since its manufacture
date may explain the mileage and odometer reading.

Data Characteristics

[10]

The sixth and seventh questions simply ask the customer if their minor/major problems
were completely fixed or not. This is a binary question that takes either of the values,
Yes or No. Small dents, power windows malfunctioning, niggling noises in the cabin, music
speakers low output, and other similar issues, which do not lead to good functioning of the
car may be treated as minor problems that are expected to be fixed in the car. Disc brake
problems, wheel alignment, steering rattling issues, and similar problems that expose the user
and co-users of the road to danger are of grave concern, as they affect the functioning of a
car and are treated as major problems. Any user will expect all of his/her issues to be resolved
during a car service. An important goal of the survey is to find the service center efficiency in
handling the minor and major issues of the car. The labels Yes/No may be replaced by +1 and
-1, or any other label of convenience.

The eighth question, "What is the mileage (km/liter) of car?", gives a measure of the average
petrol/diesel consumption. In many practical cases this data is provided by the belief of
the customer who may simply declare it between 5 km/liter to 25 km/liter. In the case of
a lower mileage, the customer may ask for a finer tune up of the engine, wheel alignment,
and so on. A general belief is that if the mileage is closer to the assured mileage as marketed
by the company, or some authority such as Automotive Research Association of India (ARAI),
the customer is more likely to be happy. An important variable is the overall kilometers done
by the car up to the point of service. Vehicles have certain maintenances at the intervals
of 5,000 km, 10,000 km, 20,000 km, 50,000 km, and 100,000 km. This variable may also be
related with the age of the vehicle.

Chapter 1

[11]

Let us now look at the final question of the snippet. Here, the customer is asked to rate
his overall experience of the car service. A response from the customer may be sought
immediately after a small test ride post the car service, or it may be through a questionnaire
sent to the customer's e-mail ID. A rating of Very Poor suggests that the workshop has served
the customer miserably, whereas the rating of Very Good conveys that the customer is
completely satisfied with the workshop service. Note that there is some order in the response
of the customer, in that we can grade the ranking in a certain order of Very Poor < Poor <
Average < Good < Very Good. This implies that the structure of the ratings must be respected
when we analyze the data of such a study. In the next section, these concepts are elaborated
through a hypothetical dataset.

Satisfaction
Rating

Good

Average

Good

Average

Very Good

Good

Good

Good

Very Poor

Very Good

Good

Poor

Poor

Good

Very Poor

Good

Good

Poor

Poor

Average

Odometer

18892

22624

42008

32556

48172

25207

41449

28555

36841

1755

2007

28265

27997

27491

29527

2702

6903

40873

15274

9934

Mileage

23

17

24

23

8

21

14

23

19

23

17

14

23

7

25

17

21

6

8

22

Questionnaire_ID

QC601FAKNQXM

QC5HZ8CP1NFB

QCY72H4J0V1X

QCH1NZO5VCD8

QCV1Y10SFW7N

QCXO04WUYQAJ

QCJQZAYMI59Z

QCIZTA35PW19

QC12XU9J0OAT

QCXWBT0V17G

QC5YOUIZ7PLC

QCYF269HVUO

QCAIE3Z0SYK9

QCE09UZHDP63

QCDWJ6ESYPZR

QCH7XRZ6W9JQ

QCGXATR9DQEK

QCYQO5RFIPK1

QCG1SZ8IDURP

QCTUSRQDX396

Customer_ID

C601FAKNQXM

C5HZ8CP1NFB

CY72H4J0V1X

CH1NZO5VCD8

CV1Y10SFW7N

CXO04WUYQAJ

CJQZAYMI59Z

CIZTA35PW19

C12XU9J0OAT

CXWBT0V17G

C5YOUIZ7PLC

CYF269HVUO

CAIE3Z0SYK9

CE09UZHDP63

CDWJ6ESYPZR

CH7XRZ6W9JQ

CGXATR9DQEK

CYQO5RFIPK1

CG1SZ8IDURP

CTUSRQDX396

J. Ram

Sanjeev Joshi

John D

Pranathi PT
Pallavi M Daksh

Mohammed Khan

Anand N T

Arun Kumar T

Prakash Prabhak

Pramod R.K.

Mithun Y.

S.P. Bala

Swamy J

Julfikar

Chris John

Naveed Khan

Prem Kashmiri

Sujana Rao

Josh K

Aravind

Name

Male

Male

Female

Female

Female

Male

Male

Male

Male

Male

Male

Male

Male

Male

Male

Male

Female

Male

Male

Male

Gender

57

53

20

54

32

20

53

65

50

22

49

37

42

47

31

24

47

54

39

61

Age

Beetle

Camry

Nano

Civic

Civic

Corolla

Civic

Endeavor

Beetle

Nano

Nano

Beetle

Nano

Camry

Endeavor

Fortuner

Civic

Camry

Endeavor

Fiesta

Car_Model

Apr-11

Feb-09

Apr-10

Oct-11

Mar-12

Dec-10

Mar-12

Aug-11

Mar-09

Mar-11

Apr-11

Jul-11

Dec-09

Jan-12

May-12

Aug-09

Oct-11

Mar-10

Jul-11

May-10

Car
Manufacture
Year

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Minor
Problems

Yes

Yes

Yes

Yes

No

No

No

Yes

No

No

No

No

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Minor
Problems

A hypothetical dataset of a Questionnaire

Data Characteristics

[12]

Understanding the data characteristics
in an R environment
A snippet of an R session is given in Figure 2. Here we simply relate an R session with the
survey and sample data of the previous table. The simple goal here is to get a feel/buy-in
of R and not necessarily follow the R codes. The R installation process is explained in the R
installation section. Here the user is loading the SQ R data object (SQ simply stands for sample
questionnaire) in the session. The nature of the SQ object is a data.frame that stores a
variety of other objects in itself. For more technical details of the data.frame function, see
The data.frame object section of Chapter 2, Import/Export Data. The names of a data.frame
object may be extracted using the function variable.names. The R function class helps
to identify the nature of the R object. As we have a list of variables, it is useful to find all of
them using the function sapply. In the following screenshot, the mentioned steps have been
carried out:

Figure 2: Understanding the variable types of an R object

Chapter 1

[13]

The variable characteristics are also on expected lines, as they truly should be, and
we see that the variables Customer_ID, Questionnaire_ID, and Name are character
variables; Gender, Car_Model, Minor_Problems, and Major_Problems are factor
variables; DoB and Car_Manufacture_Year are date variables; Mileage and Odometer
are integer variables; and finally the variable Satisfaction_Rating is an ordered
and factor variable.

In the remainder of this chapter we will delve into more details about the nature of various
data types. In a more formal language a variable is called a random variable, abbreviated
as RV in the rest of the book, in statistical literature. A distinction needs to be made here.
In this book we do not focus on the important aspects of probability theory. It is assumed that
the reader is familiar with probability, say at the level of Freund (2003) or Ross (2001). An RV
is a function that maps from the probability (sample) space to the real line. From
the previous example we have Odometer and Satisfaction_Rating as two examples of a
random variable. In a formal language, the random variables are generally denoted by letters
X, Y, …. The distinction that is required here is that in the applications what we observe are
the realizations/values of the random variables. In general, the realized values are denoted by
the lower cases x, y, …. Let us clarify this at more length.

Suppose that we denote the random variable Satisfaction_Rating by X. Here,
the sample space consists of the elements Very Poor, Poor, Average, Good, and Very
Good. For the sake of convenience we will denote these elements by O1, O2, O3, O4, and
O5 respectively. The random variable X takes one of the values O1,…, O5 with respective
probabilities p1,…, p5. If the probabilities were known, we don't have to worry about statistical
analysis. In simple terms, if we know the probabilities of the Satisfaction_Rating RV, we
can simply use it to conclude whether more customers give Very Good rating against Poor.
However, our survey data does not contain every customer who have availed car service from
the workshop, and as such we have representative probabilities and not actual probabilities.
Now, we have seen 20 observations in the R session, and corresponding to each row we had
some values under the Satisfaction_Rating column. Let us denote the satisfaction rating
for the 20 observations by the symbols X1,…, X20. Before we collect the data, the random
variables X1,…, X20 can assume any of the values in . Post the data collection, we see that the
first customer has given the rating as Good (that is, O4), the second as Average (O3), and so on
up to the twentieth customer's rating as Average (again O3). By convention, what is observed
in the data sheet is actually x1,…, x20, the realized values of the RVs X1,…, X20.

Data Characteristics

[14]

Experiments with uncertainty in computer science
The common man of the previous century was skeptical about chance/randomness and
attributed it to the lack of accurate instruments, and that information is not necessarily
captured in many variables. The skepticism about the need for modeling for randomness
in the current era continues for the common man, as he feels that the instruments are too
accurate and that multi-variable information eliminates uncertainty. However, this is not
the fact, and we will look here at some examples that drive home this point. In the previous
section we dealt with data arising from a questionnaire regarding the service level at a car
dealer. It is natural to accept that different individuals respond in distinct ways, and further
the car being a complex assembly of different components responds differently in near
identical conditions. A question then arises whether we may have to really deal with such
situations in computer science, which involve uncertainty. The answer is certainly affirmative
and we will consider some examples in the context of computer science and engineering.

Suppose that the task is installation of software, say R itself. At a new lab there has been
an arrangement of 10 new desktops that have the same configuration. That is, the RAM,
memory, the processor, operating system, and so on are all same in the 10 different machines.
For simplicity, assume that the electricity supply and lab temperature are identical for all the
machines. Do you expect that the complete R installation, as per the directions specified in
the next section, will be the same in milliseconds for all the 10 installations? The run time
of an operation can be easily recorded, may be using other software if not manually. The
answer is a clear "No" as there will be minor variations of the processes active in the different
desktops. Thus, we have our first experiment in the domain of computer science which
involves uncertainty.

Suppose that the lab is now two years old. As an administrator do you expect all the 10
machines to be working in the same identical conditions, as we started with identical
configuration and environment? The question is relevant as according to general experience
a few machines may have broken down. Despite warranty and assurance by the desktop
company, the number of machines that may have broken down will not be exactly as assured.
Thus, we again have uncertainty.

Assume that three machines are not functioning at the end of two years. As an administrator,
you have called the service vendor to fix the problem. For the sake of simplicity, we assume
that the nature of failure of the three machines is the same, say motherboard failure on the
three failed machines. Is it practical that the vendor would fix the three machines within
identical time? Again, by experience we know that this is very unlikely. If the reader thinks
otherwise, assume that 100 identical machines were running for two years and 30 of them
are now having the motherboard issue. It is now clear that some machines may require a
component replacement while others would start functioning following a repair/fix.

Let us now summarize the preceding experiments through the set of following questions:

Chapter 1

[15]

 � What is the average installation time for the R software on identically configured
computer machines?

 � How many machines are likely to break down after a period of one year, two years,
and three years?

 � If a failed machine has issues related to motherboard, what is the average
service time?

 � What is the fraction of failed machines that have failed motherboard component?

The answers to these types of questions form the main objective of the Statistics subject.
However, there are certain characteristics of uncertainty that are very richly covered by the
families of probability distributions. According to the underlying problem, we have discrete or
continuous RVs. The important and widely useful probability distributions form the content of
the rest of the chapter. We will begin with the useful discrete distributions.

R installation
The official website of R is the Comprehensive R Archive Network (CRAN) at www.cran.r-
project.org. As of writing of this book, the most recent version of R is 2.15.1. This software
can be downloaded for the three platforms Linux, Mac OS X, and Windows.

Figure 3: The CRAN website (a snapshot)

Data Characteristics

[16]

A Linux user may simply key in sudo apt-get install r-base in the terminal, and post
the return of right password and privilege levels, the R software will be installed. After the
completion of download and installation, the software can be started by simply keying in R
at the terminal.

A Windows user first needs to click on Download R for Windows as shown in the preceding
screenshot, and then in the base subdirectory click on install R for the first time. In the new
window, click on Download R 3.0.0 for Windows and download the .exe file to a directory
of your choice. The completely downloaded R-3.0.0-win.exe file can be installed as any
other .exe file. The R software may be invoked either from the Start menu, or from the icon
on the desktop.

Using R packages
The CRAN repository hosts 4475 packages as of May 01, 2013. The packages are written and
maintained by Statisticians, Engineers, Biologists, and others. The reasons are varied and the
resourcefulness is very rich, and it reduces the need of writing exhaustive, new functions
and programs from scratch. These additional packages can be obtained from http://www.
cran.r-project.org/web/packages/. The user can click on Table of available packages,
sorted by name, which directs to a new web package. Let us illustrate the installation of an R
package named gdata.

We now wish to install the package gdata. There are multiple ways of completing this task.
Clicking on the gdata label leads to the web page http://www.cran.r-project.org/
web/packages/gdata/index.html. In this HTML file we can find a lot of information
about the package from Version, Depends, Imports, Published, Author, Maintainer, License,
System Requirements, Installation, and CRAN checks. Further, the download options may be
chosen from Package source, MacOS X binary, and Windows binary depending on whether
the user's OS is Unix, MacOS, or Windows respectively. Finally, a package may require
other packages as a prerequisite, and it may itself be a prerequisite for other packages.
This information is provided in the Reverse dependencies section in the options Reverse
depends, Reverse imports, and Reverse suggests.

Suppose that the user is having Windows OS. There are two ways to install the package
gdata. Start R as explained earlier. At the console, execute the code install.
packages("gdata"). A CRAN mirror window will pop up asking the user to select one
of the available mirrors. Select one of the mirrors from the list, you may need to scroll
down to locate your favorite mirror, and then click on the Ok button. A default setting is
dependencies=TRUE, which will then download and install all other required packages.
Unless there are some violations, such as the dependency requirement of the R version
being at least 2.13.0 in this case, the packages are successfully installed.

Chapter 1

[17]

A second way of installing the gdata package is as follows. In the gdata web page click on the
link gdata_2.11.0.zip. This action will then attempt to download the package through the File
download window. Choose the option Save and specify the path where you wish to download
the package. In my case, I have chosen the path C:\Users\author\Downloads. Now go to
the R window. In the menu ribbon, we have seven options: File, Edit, View, Misc, Packages,
Windows, and Help. Yes, your guess is correct and you would have wisely selected Packages
from the menu. Now, select the last option of Packages, the Install Package(s) from local zip
files option and direct it to the path where you have downloaded the .zip file. Select the
file gdata_2.11.0 and R will do the required remaining part of installing the package. One
of the drawbacks of doing this process manually is that if there are dependencies, the user
needs to ensure that all such packages have been installed before embarking on this second
task of installing the R packages. However, despite the problem, it is quite useful to know this
technique, as we may not be connected to Internet all the time and install the packages as
it is convenient.

RSADBE – the book's R package
The book uses a lot of datasets from the Web, statistical text books, and so on. The file format
of the datasets have been varied and thus to help the reader, we have put all the datasets
used in the book in an R package, RSADBE, which is the abbreviation of the book's title.
This package will be available from the CRAN website as well as the book's web page.
Thus, whenever you are asked to run data(xyz), the datasets xyz will be available
either in the RSADBE package or datasets package of R.

The book also uses many of the packages available on CRAN. The following table gives the list
of packages and the reader is advised to ensure that these packages are installed before you
begin reading the chapter. That is, the reader needs to ensure that, as an example, install.
packages(c("qcc","ggplot2")) is run in the R session before proceeding with Chapter
3, Data Visualization.

Chapter number Packages required

2 foreign, RMySQL

3 qcc, ggplot2

4 LearnEDA, aplpack

5 stats4, PASWR, PairedData

6 faraway

7 pscl, ROCR

8 ridge, DAAG

9 rpart, rattle

10 ipred, randomForest

Data Characteristics

[18]

Discrete distribution
The previous section highlights the different forms of variables. The variables such as
Gender, Car_Model, and Minor_Problems possibly take one of the finite values.
These variables are particular cases of the more general class of discrete variables.

It is to be noted that the sample space of a discrete variable need not be finite. As an
example, the number of errors on a page may take values as a set of positive integers, {0, 1, 2,
…}. Suppose that a discrete random variable X can take values among with respective
probabilities , that is, . Then, we require that the probabilities be non-
zero and further that their sum be 1:

where the Greek symbol represents summation over the index i.

The function is called the probability mass function (pmf) of the discrete RV X. We will
now consider formal definitions of important families of discrete variables. The engineers
may refer to Bury (1999) for a detailed collection of useful statistical distributions in their
field. The two most important parameters of a probability distribution are specified by mean
and variance of the RV X. In some cases, and important too, these parameters may not exist
for the RV. However, we will not focus on such distributions, though we caution the reader
that this does not mean that such RVs are irrelevant. Let us define these parameters for the
discrete RV. The mean and variance of a discrete RV are respectively calculated as:

The mean is a measure of central tendency, whereas the variance gives a measure
of the spread of the RV.

The variables defined so far are more commonly known as categorical variables.
Agresti (2002) defines a categorical variable as a measurement scale consisting
of a set of categories.

Let us identify the categories for the variables listed in the previous section. The categories
for the variable Gender are Male and Female; whereas the car category variables derived
from Car_Model are hatchback, sedan, station wagon, and utility vehicles. The variables
Minor_Problems and Major_Problems have common but independent categories Yes and
No; and finally the variable Satisfaction_Rating has the categories, as seen earlier, Very
Poor, Poor, Average, Good, and Very Good. The variable Car_Model is just labels of the name
of car and it is an example of nominal variable.

Chapter 1

[19]

Finally, the output of the variable Satistifaction_Rating has an implicit order in it, Very
Poor < Poor < Average < Good < Very Good. It may be realized that this difference poses subtle
challenges in their analysis. These types of variables are called ordinal variables. We will look
at another type of categorical variable that has not popped up thus far.

Practically, it is often the case that the output of a continuous variable is put in certain bin for
ease of conceptualization. A very popular example is the categorization of the income level
or age. In the case of income variables, it has been realized in one of the earlier studies that
people are very conservative about revealing their income in precise numbers. For example,
the author may be shy to reveal that his monthly income is Rs. 34,892. On the other hand,
it has been revealed that these very same people do not have a problem in disclosing their
income as belonging to one of such bins: < Rs. 10,000, Rs. 10,000-30,000, Rs. 30,000-50,000,
and > Rs. 50,000. Thus, this information may also be coded into labels and then each of the
labels may refer to any one value in an interval bin. Hence, such variables are referred as
interval variables.

Discrete uniform distribution
A random variable X is said to be a discrete uniform random variable if it can take any one
of the finite M labels with equal probability.

As the discrete uniform random variable X can assume one of the 1, 2, …, M with equal
probability, this probability is actually . As the probability remains same across the labels,
the nomenclature "uniform" is justified. It might appear at the outset that this is not a very
useful random variable. However, the reader is cautioned that this intuition is not correct. As
a simple case, this variable arises in many cases where simple random sampling is needed in
action. The pmf of discrete RV is calculated as:

A simple plot of the probability distribution of a discrete uniform RV is demonstrated next:

> M = 10
> mylabels=1:M
> prob_labels=rep(1/M,length(mylabels))
> dotchart(prob_labels,labels=mylabels,xlim=c(.08,.12),
+ xlab="Probability")
> title("A Dot Chart for Probability of Discrete Uniform RV")

Data Characteristics

[20]

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Figure 4: Probability distribution of a discrete uniform random variable

The R programs here are indicative and it is not absolutely necessary that you
follow them here. The R programs will actually begin from the next chapter and
your flow won't be affected if you do not understand certain aspects of them.

Binomial distribution
Recall the second question in the Experiments with uncertainty in computer science section,
which asks "How many machines are likely to break down after a period of one year, two
years, and three years?". When the outcomes involve uncertainty, the more appropriate
question that we ask is related to the probability of the number of break downs being x.
Consider a fixed time frame, say 2 years. To make the question more generic, we assume
that we have n number of machines. Suppose that the probability of a breakdown for a
given machine at any given time is p. The goal is to obtain the probability of x machines with
breakdown, and implicitly (n-x) functional machines. Now consider a fixed pattern where
the first x units have failed and the remaining are functioning properly. All the n machines
function independently of other machines. Thus, the probability of observing x machines
in the breakdown state is .

Chapter 1

[21]

Similarly, each of the remaining (n-x) machines have the probability of (1-p) of being in the
functional state, and thus the probability of these occurring together is ()1 n xp −− . Again by
the independence axiom value, the probability of x machines with breakdown is then given
by . Finally, in the overall setup, the number of possible samples with breakdown
(being x and (n-x) samples) being functional is actually the number of possible combinations
of choosing x-out-of-n items, which is the combinatorial n

x

. As each of these samples is
equally likely to occur, the probability of exactly x broken machines is given by .
The RV X obtained in such a context is known as the binomial RV and its pmf is called the
binomial distribution. In mathematical terms, the pmf of the binomial RV is calculated as:

The pmf of binomial distributions is sometimes denoted by (); ,b x n p . Let us now look at
some important properties of a binomial RV. The mean and variance of a binomial RV X
are respectively calculated as:

As p is always a number between 0 and 1, the variance of a binomial RV
is always lesser than its mean.

Example 1.3.1: Suppose n = 10 and p = 0.5. We need to obtain the probabilities
p(x), x=0, 1, 2, …, 10. The probabilities can be obtained using the built-in R function dbinom.
The function dbinom returns the probabilities of a binomial RV. The first argument of this
function may be a scalar or a vector according to the points at which we wish to know the
probability. The second argument of the function needs to know the value of n, the size of
the binomial distribution. The third argument of this function requires the user to specify the
probability of success in p. It is natural to forget the syntax of functions and the R help system
becomes very handy here. For any function, you can get details of it using ? followed by the
function name. Please do not give a space between CIT and the function name.
Here, you can try ?dbinom.

> n <- 10; p <- 0.5
> p_x <- round(dbinom(x=0:10, n, p),4)
> plot(x=0:10,p_x,xlab="x", ylab="P(X=x)")

Data Characteristics

[22]

The R function round fixes the accuracy of the argument up to the specified number
of digits.

Figure 5: Binomial probabilities

We have used the dbinom function in the previous example. There are three utility facets
for the binomial distribution. The three facets are p, q, and r. These three facets respectively
help us in computations related to cumulative probabilities, quantiles of the distribution,
and simulation of random numbers from the distribution. To use these functions, we simply
augment the letters with the distribution name, binom here, as pbinom, qbinom, and
rbinom. There will be of course a critical change in the arguments. In fact, there are many
distributions for which the quartet of d, p, q, and r are available, check ?Distributions.

Example 1.3.2: Assume that the probability of a key failing on an 83-set keyboard (the authors
laptop keyboard has 83 keys) is 0.01. Now, we need to find the probability when at a given
time there are 10, 20, and 30 non-functioning keys on this keyboard. Using the dbinom
function these probabilities are easy to calculate. Try to do this same problem using a scientific
calculator or by writing a simple function in any language that you are comfortable with.

> n <- 83; p <- 0.01
> dbinom(10,n,p)
[1] 1.168e-08
> dbinom(20,n,p)
[1] 4.343e-22
> dbinom(30,n,p)
[1] 2.043e-38
> sum(dbinom(0:83,n,p))
[1] 1

Chapter 1

[23]

As the probabilities of 10-30 keys failing appear too small, it is natural to believe that may
be something is going wrong. As a check, the sum clearly equals 1. Let us have a look at the
problem from a different angle. For many x values, the probability p(x) will be approximately
zero. We may not be interested in the probability of an exact number of failures, though we
are interested in the probability of at least x failures occurring, that is, we are interested in
the cumulative probabilities ()P X x≤ . The cumulative probabilities for binomial distribution
are obtained in R using the pbinom function. The main arguments of pbinom include size
(for n), prob (for p), and q (the x argument). For the same problem, we now look at the
cumulative probabilities for various p values:

> n <- 83; p <- seq(0.05,0.95,0.05)
> x <- seq(0,83,5)
> i <- 1
> plot(x,pbinom(x,n,p[i]),"l",col=1,xlab="x",ylab=
+ expression(P(X<=x)))
> for(i in 2:length(p)) { points(x,pbinom(x,n,p[i]),"l",col=i)}

Figure 6: Cumulative binomial probabilities

Try to interpret the preceding screenshot.

Data Characteristics

[24]

Hypergeometric distribution
A box of N = 200 pieces of 12 GB pen drives arrives at a sales center. The carton contains
M = 20 defective pen drives. A random sample of n units is drawn from the carton. Let X
denote the number of defective pen drives obtained from the sample of n units. The task is to
obtain the probability distribution of X. The number of possible ways of obtaining the sample
of size n is . In this problem we have M defective units and N-M working pen drives, and
x defective units can be sampled in Mx

 different ways and n-x good units can be obtained in
N M
n x
−

 −
 distinct ways. Thus, the probability distribution of the RV X is calculated as:

where x is an integer between ()max 0,n N M− + and ()min ,n M . The RV is called
as the hypergeometric RV and its probability distribution is called as the
hypergeometric distribution.

Suppose that we draw a sample of n = 10 units. The function dhyper in R can be used to find
the probabilities of the RV X assuming different values.

> N <- 200; M <- 20
> n <- 10
> x <- 0:11
> round(dhyper(x,M,N,n),3)
 [1] 0.377 0.395 0.176 0.044 0.007 0.001 0.000 0.000 0.000 0.000 0.000
0.000

The mean and variance of a hypergeometric distribution are stated as follows:

Negative binomial distribution
Consider a variant of the problem described in the previous subsection. The 10 new desktops
need to be fitted with an add-on, 5 megapixel external cameras to help the students attend a
certain online course. Assume that the probability of a non-defective camera unit is p. As an
administrator you keep on placing order until you receive 10 non-defective cameras. Now, let X
denote the number of orders placed for obtaining the 10 good units. We denote the required
number of success by k, which in this discussion has been k = 10. The goal in this unit is to
obtain the probability distribution of X.

Chapter 1

[25]

Suppose that the xth order placed results in the procurement of the kth non-defective unit.
This implies that we have received (k-1) non-defective units among the first (x-1) orders
placed, which is possible in 1

1
x
k
−

 −
 distinct ways. At the xth order, the instant of having received

the kth non-defective unit, we have k successes and x-k failures. Hence, the probability
distribution of the RV is calculated as:

Such an RV is called the negative binomial RV and its probability distribution is the negative
binomial distribution. Technically, this RV has no upper bound as the next required success
may never turn up. We state the mean and variance of this distribution as follows:

A particular and important special case of the negative binomial RV occurs for k = 1,
which is known as the geometric RV. In this case, the pmf is calculated as:

Example 1.3.3. (Baron (2007). Page 77) Sequential Testing: In a certain setup, the probability
of an item being defective is (1-p) = 0.05. To complete the lab setup, 12 non-defective units
are required. We need to compute the probability that at least 15 units need to be tested.
Here we make use of the cumulative distribution of negative binomial distribution pnbinom
function available in R. Similar to the pbinom function, the main arguments that we require
here would be size, prob, and q. This problem is solved in a single line of code:

> 1-pnbinom(3,size=12,0.95)
[1] 0.005467259

Note that we have specified 3 as the quantile point (the x argument) as the size parameter
of this experiment is 12 and we are seeking at least 15 units which translate into 3 more
units than the size parameter. The function pnbinom computes the cumulative distribution
function and the requirement is actually the complement, and hence the expression in the
code is 1–pnbinom. We may equivalently solve the problem using the dnbinom function,
which straightforwardly computes the required probability:

> 1-(dnbinom(3,size=12,0.95)+dnbinom(2,size=12,0.95)+dnbinom(1,
+ size=12,0.95)+dnbinom(0,size=12,0.95))
[1] 0.005467259

Data Characteristics

[26]

Poisson distribution
The number of accidents on a 1 km stretch of road, total calls received during a one-hour
slot on your mobile, the number of "likes" received on a status on a social networking site
in a day, and similar other cases are some of the examples which are addressed by the Poisson
RV. The probability distribution of a Poisson RV is calculated as:

Here λ is the parameter of the Poisson RV with X denoting the number of events. The Poisson
distribution is sometimes also referred to as the law of rare events. The mean and variance of
the Poisson RV are surprisingly the same and equal λ, that is, () ()E X Var X λ= = .

Example 1.3.4: Suppose that Santa commits errors in a software program with a mean
of three errors per A4-size page. Santa's manager wants to know the probability of
Santa committing 0, 5, and 20 errors per page. The R function dpois helps to determine
the answer.

> dpois(0,lambda=3); dpois(5,lambda=3); dpois(20, lambda=3)
[1] 0.04978707
[1] 0.1008188
[1] 7.135379e-11

Note that Santa's probability of committing 20 errors is almost 0.

We will next focus on continuous distributions.

Continuous distribution
The numeric variables in the survey, Age, Mileage, and Odometer, can take any values over
a continuous interval and these are examples of continuous RVs. In the previous section we
dealt with RVs which had discrete output. In this section we will deal with RVs which have
continuous output. A distinction from the previous section needs to be pointed explicitly.
In the case of a discrete RV, there is a positive number for the probability of an RV taking on
a certain value which is determined by the pmf. In the continuous case, an RV necessarily
assumes any specific value with zero probability. These technical issues will not be discussed
in this book. In the discrete case, the probabilities of certain values are specified by the pmf,
and in the continuous case the probabilities, over intervals, are decided by probability density
function, abbreviated as pdf.

Chapter 1

[27]

Suppose that we have a continuous RV, X, with the pdf f(x) defined over the possible x values,
that is, we assume that the pdf f(x) is well defined over the range of the RV X, denoted by xR .
It is necessary that the integration of f(x) over the range xR is necessarily 1, that is, () 1

xR
f s ds =∫ .

The probability that the RV X takes a value in an interval [a, b] is defined by:

[]() (),
b

a
P X a b f x dx∈ = ∫

In general we are interested in the cumulative probabilities of a continuous RV, which is
the probability of the event P(X<x). In terms of the previous equations, this is obtained as:

A special name for this probability is the cumulative density function. The mean and variance
of a continuous RV are then defined by:

As in the previous section, we will begin with the simpler RV in uniform distribution.

Uniform distribution
An RV is said to have uniform distribution over the interval []0, , 0θ θ > if its probability density
function is given by:

In fact, it is not necessary to restrict our focus on the positive real line. For any two
real numbers a and b, from the real line, with b > a, the uniform RV can be defined by:

Data Characteristics

[28]

The uniform distribution has a very important role to play in simulation, as will be seen
in Chapter 6, Linear Regression Analysis. As with the discrete counterpart, in the continuous
case any two intervals of the same length will have equal probability of occurring. The mean
and variance of a uniform RV over the interval [a, b] are respectively given by:

Example 1.4.1. Horgan's (2008), Example 15.3: The International Journal of Circuit Theory
and Applications reported in 1990 that researchers at the University of California, Berkely,
had designed a switched capacitor circuit for generating random signals whose trajectory
is uniformly distributed over the unit interval [0, 1]. Suppose that we are interested
in calculating the probability that the trajectory falls in the interval [0.35, 0.58].
Though the answer is straightforward, we will obtain it using the punif function:

> punif(0.58)-punif(0.35)
[1] 0.23

Exponential distribution
The exponential distribution is probably one of the most important probability distributions in
Statistics, and more so for Computer Scientists. The numbers of arrivals in a queuing system,
the time between two incoming calls on a mobile, the lifetime of a laptop, and so on, are
some of the important applications where this distribution has a lasting utility value.
The pdf of an exponential RV is specified by (); , 0, 0xf x e xλλ λ λ−= ≥ > .

The parameter λ is sometimes referred to as the failure rate. The exponential RV enjoys
a special property called the memory-less property which conveys that :

This mathematical statement states that if X is an exponential RV, then its failure in the future
depends on the present, and the past (age) of the RV does not matter. In simple words this
means that the probability of failure is constant in time and does not depend on the age of
the system. Let us obtain the plots of a few exponential distributions.

> par(mfrow=c(1,2))
> curve(dexp(x,1),0,10,ylab="f(x)",xlab="x",cex.axis=1.25)
> curve(dexp(x,0.2),add=TRUE,col=2)
> curve(dexp(x,0.5),add=TRUE,col=3)
> curve(dexp(x,0.7),add=TRUE,col=4)
> curve(dexp(x,0.85),add=TRUE,col=5)
> legend(6,1,paste("Rate = ",c(1,0.2,0.5,0.7,0.85)),col=1:5,pch=

Chapter 1

[29]

+ "___")
> curve(dexp(x,50),0,0.5,ylab="f(x)",xlab="x")
> curve(dexp(x,10),add=TRUE,col=2)
> curve(dexp(x,20),add=TRUE,col=3)
> curve(dexp(x,30),add=TRUE,col=4)
> curve(dexp(x,40),add=TRUE,col=5)
> legend(0.3,50,paste("Rate = ",c(1,0.2,0.5,0.7,0.85)),col=1:5,pch=
+ "___")

Figure 7: The exponential densities

The mean and variance of this exponential distribution are shown as follows:

Normal distribution
The normal distribution is in some sense an all-pervasive distribution that arises sooner or
later in almost any statistical discussion. In fact it is very likely that the reader may already be
familiar with certain aspects of the normal distribution, for example, the shape of a normal
distribution curve is bell-shaped. The mathematical appropriateness is probably reflected
through the reason that though it has a simpler expression, and its density function includes
the three most famous irrational numbers .

Data Characteristics

[30]

Suppose that X is normally distributed with mean µ and variance 2σ . Then, the probability
density function of the normal RV is given by:

If mean is zero and variance is one, the normal RV is referred as the standard normal RV,
and the standard is to denote it by Z.

Example 1.4.2. Shady Normal Curves: We will again consider a standard normal random
variable, which is more popularly denoted in Statistics by Z. Some of the most needed
probabilities are P(Z > 0) and P(-1.96 < Z < 1.96). These probabilities are now shaded.

> par(mfrow=c(3,1))
> # Probability Z Greater than 0
> curve(dnorm(x,0,1),-4,4,xlab="z",ylab="f(z)")
> z <- seq(0,4,0.02)
> lines(z,dnorm(z),type="h",col="grey")
> # 95% Coverage
> curve(dnorm(x,0,1),-4,4,xlab="z",ylab="f(z)")
> z <- seq(-1.96,1.96,0.001)
> lines(z,dnorm(z),type="h",col="grey")
> # 95% Coverage
> curve(dnorm(x,0,1),-4,4,xlab="z",ylab="f(z)")
> z <- seq(-2.58,2.58,0.001)
> lines(z,dnorm(z),type="h",col="grey")

Figure 08: Shady normal curves

Chapter 1

[31]

Summary
You should now be clear with the distinct nature of variables that arise in different scenarios.
In R, you should be able to verify that the data is in the correct format. Further, the important
families of random variables are introduced in this chapter, which should help you in dealing
with them when they crop up in your experiments. Computation of simple probabilities were
also introduced and explained.

In the next chapter you will learn how to perform the basic R computations, creating data
objects, and so on. As data can seldom be constructed completely in R, we need to import
data from external foreign files. The methods explained help you to import data in file formats
such as .csv and .xls. Similar to importing, it is also important to be able to export data/
output to other software. Finally, R session management will conclude the next chapter.

Import/Export Data

The main goals of this chapter are to familiarize you with the various classes of
objects in R, help the reader extract data from various popular formats, connect
R with popular databases such as MySQL, and finally the best export options
of the R output. The main purpose is that the practitioner frequently has data
available in a fixed format, and sometimes the dataset is available in popular
database systems.

This chapter helps you to extract the data from various sources, and then also recommends
the best export options of the R output. We will though begin with a better understanding of
the various formats in which R stores the data. Updated information about the import/export
options is maintained at http://cran.r-project.org/doc/manuals/R-data.html.
To summarize, the main learning from this chapter would be the following:

 � Basic and essential computations in R

 � Importing data from CSV, XLS, and few more

 � Exporting data for other software

 � R session management

data.frame and other formats
Any software comes with its structure and nuances. The Questionnaire and its component
section of Chapter 1, Data Characteristics, introduced various facets of data. In the current
section we will go into the details of how R works with data of different characteristics.
Depending on the need we have different formats of the data. In this section, we will begin
with simpler objects and move up the ladder towards some of the more complex ones.

2

Import/Export Data

[34]

Constants, vectors, and matrices
R has five inbuilt objects which store certain constant values. The five objects are LETTERS,
letters, month.abb, month.name, and pi. The first two objects contain the letters A-Z
in upper and lower cases. The third and fourth objects have month's abbreviated form and
the complete month names. Finally, the object pi contains the value of the famous irrational
number. So, the exercise here is for you to find the value of the irrational number e. The
details about these R constant objects may be obtained using the function ?Constants
or example(Constants), of course by executing these commands in the console.

There is also another class of constants in R which is very useful. These constants are called
NumericConstants and include Inf for infinite numbers, NaN for not a number, and so on.
You are encouraged to find more details and other useful constants. R can handle numerical,
character, logical, integer, and complex kind of vectors and it is the class of the object which
characterizes the vector. Typically, we deal with vectors which may be numeric, characters
and so on. A vector of the desired class and number of elements may be initiated using
the vector function. The length argument declares the size of the vector, which is the
number of elements for the vector, whereas mode characterizes the vector to take one of the
required classes. The elements of a vector can be assigned names if required. The R names
function comes handy for this purpose.

Arithmetic on numeric vector objects can be performed in an easier way. The operators
(+, -, *, /, and ^) are respectively used for (addition, subtraction, multiplication, division,
and power). The characteristics of a vector object may be obtained using functions such as
sum, prod, min, max, and so on. Accuracy of a vector up to certain decimals may be fixed
using options in digits, round, and so on.

Now, two vectors need not have the same number of elements and we may carry the
arithmetic operation between them, say addition. In a mathematical sense two vectors of
unequal length cannot be added. However, R goes ahead and performs the operations just
the same. Thus, there is a necessity to understand how operations are carried out in such
cases. To begin with the simpler case, let us consider two vectors with an equal number of
elements. Suppose that we have a vector x = (1, 2, 3, …, 9, 10), and y = (11, 12, 13, …, 19, 20).
If we add these two vectors, x + y, the result is an element-wise addition of the respective
elements in x and y, that is, we will get a new vector with elements 12, 14, 16, …, 28, 30.
Now, let us increase the number of elements of y from 10 to 12 with y = (11, 12, 13, …, 19,
20, 21, 22). The operation is carried out in the order that the elements of x (the smaller
object one) are element-wise added to the first ten elements of y. Now, R finds that there
are two more elements of y in 11 and 12 which have not been touched as of now. It now
picks the first two elements of x in 1 and 2 and adds them to 11 and 12. Hence, the 11 and
12 elements of the output are 11+1 =12 and 12 + 2 = 14. The warning says that longer
object length is not a multiple of shorter object length, which has now
been explained.

Chapter 2

[35]

Let us have a brief peep at a few more operators related to the vectors. The operator %% on
two objects, say x and y, returns a remainder following an integer division, and the operator
%/% returns the integer division.

Time for action – understanding constants, vectors, and basic
arithmetic

We will look at a few important and interesting examples. You will understand the structure of
vectors in R and would also be able to perform the basic arithmetic related to this requirement.

1. Key in LETTERS at the R console and hit the Enter key.

2. Key in letters at the R console and hit the Enter key.

3. To obtain the first five and the last five alphabets, try the following code:
LETTERS[c(1:5,22:26)] and letters[c(1:5,22:26)].

4. Month names and their abbreviations are available in the base package and explore
them using ?Constants at the console.

5. Selected month names and their abbreviations can be obtained using month.
abb[c(1:3,8:10)] and month.name[c(1:3,8:10)]. Also, the value of pi in R
can found by entering pi at the console.

6. To generate a vector of length 4, without specifying the class, try
vector(length=4). In specific classes, vector objects can be generated
by declaring the "mode" values for a vector object. That is, a numeric vector
(with default values 0) is obtained by the code vector(mode = "numeric",
length=4). You can similarly generate logical, complex, character, and integer
vectors by specifying them as options in the mode argument.

The next screenshot shows the results as you run the preceding codes in R.

7. Creating new vector objects and name assignment: A generated vector can be
assigned to new objects using either =, <-, or ->. The last two assignments are in
the order from the generated vector of the tail end to the new variables at the end
of the arrow.

1. First assign the integer vector 1:10 to x by using x <- 1:10.

2. Check the names of x by using names(x).

3. Assign first 10 letters of the alphabets as names for elements of x by using
names(x)<- letters[1:10], and verify that the assignment is done
using names(x).

4. Finally, display the numeric vector x by simply keying in x at the console.

Import/Export Data

[36]

8. Basic arithmetic: Create new R objects by entering x<-1:10; y<-11:20; a<-
10; b<--4; c<-0.5 at the console. In a certain sense, x and y are vectors while
a, b, and c are constants.

1. Perform simple addition of numeric vectors with x + y.

2. Scalar multiplication of vectors and then summing the resulting vectors is
easily done by using a*x + b*y.

3. Verify the result (a + b)x = ax + bx by checking that the result of ((a+b)*x
== a*x + b*x results is a logical vector of length 10, each having TRUE
value.

4. Vector multiplication is carried by x*y.

5. Vector division in R is simply element-wise division of the two vectors, and
does not have an interpretation in mathematics. We obtain the accuracy up
to 4 digits using round(x/y,4).

6. Finally, (element-wise) exponentiation of vectors is carried out through x^2.

9. Adding two unequal length vectors: The arithmetic explained before applies to
unequal length vectors in a slightly different way. Run the following operations:
x=1:10; x+c(1:12), length(x+c(1:12)), c(1:3)^c(1,2), and
(9:11)-c(4,6).

10. The integer divisor and remainder following integer division may be obtained
respectively using %/% and %% operators. Key in -3:3 %% 2, -3:3 %% 3, and -3:3
%% c(2,3) to find remainders between the sequence -3, -2, …, 2, 3 and 2, 3, and
c(2,3). Replace the operator %% by %/% to find the integer divisors.

Now, we will first give the required R codes so you can execute them in the software:

LETTERS
letters
LETTERS[c(1:5,22:26)]
letters[c(1:5,22:26)]
?Constants

Chapter 2

[37]

month.abb[c(1:3,8:10)]
month.name[c(1:3,8:10)]
pi
vector(length=4)
vector(mode="numeric",length=4)
vector(mode="logical",length=4)
vector(mode="complex",length=4)
vector(mode="character",length=4)
vector(mode="integer",length=4)
x=1:10
names(x)
names(x)<- letters[1:10]
names(x)
x
x=1:10
y=11:20
a=10
b=-4
x + y
a*x + b*y
sum((a+b)*x == a*x + b*x)
x*y
round(x/y,4)
x^2
x=1:10
x+c(1:12)
length(x+c(1:12))
c(1:3)^c(1,2)
(9:11)-c(4,6)
-3:3 %% 2
-3:3 %% 3
-3:3 %% c(2,3)
-3:3 %/% 2
-3:3 %/% 3
-3:3 %/% c(2,3)

Execute the preceding code in your R session.

Import/Export Data

[38]

What just happened?
We have split the output into multiple screenshots for ease of explanation.

Introducing constants and vectors functioning in R

LETTERS is a character vector available in R that consists of the 26 uppercase letters of the
English language, whereas letters contains the alphabets in smaller letters. We have used
the integer vector c(1:5,22:26) in the index to extract the first and last five elements of
both the character vectors. When the ?Constants command is executed, R pops out an
HTML file in your default internet browser and opens a page with the link http://my_IP/
library/base/html/Constants.html. You can find more details about Constants
from the base package on this web page. Months, as in January-December, are available
in the character vector month.name whereas the popular abbreviated forms of the months
are available in the character vector month.abb. Finally, the numeric object pi contains
the value of pi up to the first three decimals only.

Chapter 2

[39]

Next, we consider, generation of various types of vector using the R vector function.
Now, the code vector(mode="numeric",length=4) creates a numeric vector with
default values of 0 and required length of four. Similarly, the other vectors are created.

Vector arithmetic in R

An integer vector object is created by the code x = 1:10. We could have alternatively
used options such as x<- 1:10 or 1:10 -> x. The final result is of course the same.
The choice of the assignment operator—find more details by running ?assignOps at the R
console<-— is far more popular in the R community and it can be used during any part of R
programming. By default, there won't be any names assigned for either vectors or matrices.
Thus, the output NULL. names is a function in R which is useful for assigning appropriate
names. Our task is to assign the first 10 smaller letters of the alphabets to the vector x.
Hence, we have the code names(x) <- letters[1:10]. We verify if the names have
been properly assigned and the change on the display of x following the assignment of the
names using names(x) and x.

Import/Export Data

[40]

Next, we create two integer vectors in x and y, and two objects a and b, which may be treated
as scalars. Now, x + y; a*x + b*y; sum((a+b)*x == a*x + b*x) performs three
different tasks. First, it performs addition of vectors and returns the result of element-wise
addition of the two vectors leading to the answer 12, 14, …, 28, 30. Second, we are verifying
the result of scalar multiplication of vectors, and third, the result of (a + b)x = ax + bx.

In the next round of R codes, we ran x*y; round(x/y,4); x^2. Similar to the addition
operator, the * operator performs element-wise multiplication for the two vectors. Thus,
we get the output as 11, 24, …, 171, 200. In the next line, recall that ; executes the code
on the next line/operation, first the element-wise division is carried out. For the resulting
vector (a numeric one), the round function gives the accuracy up to four digits as specified.
Finally, x^2 gives us the square of each element of x. Here, 2 can be replaced by any other
real number.

In the last line of code, we repeat some of the earlier operations with a minor difference
that the two vectors are not of the same length. As predicted earlier, R issues a warning
that the length of the longer vector is not a multiple of the length of the shorter vector.
Thus, for the operation x+c(1:12);, first all the elements of x (which is the shorter length
vector here) are added with the first 10 elements of 1:12. Then the last two elements of
1:12 at 11 and 12 need to be added with elements from x, and for this purpose R picks
the first two elements of x. If the longer length vector is a multiple of the shorter one, the
entire elements of the shorter vector are repeatedly added over the in cycles. The remaining
results as a consequence of running c(1:3)^c(1,2); (9:11)-c(4,6) are left to the
reader for interpretation.

Let us look at the output after the R codes for an integer and a remainder between two
objects are carried out.

Integer divisor and remainder operations

Chapter 2

[41]

In the segment -3:3 %% 2, we are first creating a sequence -3, -2, …, 2, 3 and then we
are asking for the remainder if we divide each of them by 2. Clearly, the remainder for any
integer if divided by 2 is either 0 or 1, and for a sequence of consecutive integers, we expect
an alternate sequence of 0s and 1s, which is the output in this case. Check the expected
result for -3:3 %% 3. Now, for the operation -3:3 %% c(2,3), first look at the complete
sequence -3:3 as -3, -2, -1, 0, 1, 2, 3. Here, the elements -3, -1, 1, 3 are divided by 2 and the
remainder is returned, whereas -2, 0, 2 are divided by 3 and the remainders are returned.
The operator %/% returns the integer divisor and interpretation of the results are left to the
reader. Please refer to the previous screenshot for the results.

We now look at the matrix objects. Similar to the vector function in R, we have matrix as a
function, that creates matrix objects. A matrix is an array of numbers with a certain number
of rows and columns. By default, the elements of a matrix are generated as NA, that is, not
available. Let r be the number of rows and c the number of columns. The order of a matrix
is then r x c. A vector object of length rc in R can be converted into a matrix by the code
matrix(vector, nrow=r, ncol=c, byrow=TRUE). The rows and columns of a matrix
may be assigned names using the dimnames option in the matrix function.

The mathematics of matrices in R is preserved in relation to the matrix arithmetic. Suppose
we have two matrices A and B with respective dimensions m x n and n x o. The cross-product
A x B is then a matrix of order m x o, which is obtained in R by the operation A %*% B. We
are also interested in the determinant of square matrix, the number of rows being equal to
the number of columns, and this is obtained in R using the det function on the matrix, say
det(A). Finally, we also more often than not require the computation of the inverse of a
square matrix. The first temptation is to obtain the same by using A^{-1}. This will give a
wrong answer, as this leads to an element-wise reciprocal and not the inverse of a matrix.
The solve function in R if executed on a square matrix gives the inverse of a matrix. Fine!
Let us now do these operations using R.

Time for action – matrix computations
We will see the basic matrix computations in the forthcoming steps. The matrix computations
such as the cross-product of matrices, transpose, and inverse will be illustrated.

1. Generate a 2 x 2 matrix with default values using matrix(nrow=2, ncol=2).

2. Create a matrix from the 1:4 vector by running matrix(1:4,nrow=2,ncol=2,
byrow="TRUE").

3. Assign row and column names for the preceding matrix by using the option
dimnames, that is, by running A <- matrix(data=1:4, nrow=2, ncol=2,
byrow=TRUE, dimnames = list(c("R_1", "R_2"),c("C_1", "C_2")))
at the R console.

Import/Export Data

[42]

4. Find the properties of the preceding matrices by using the commands nrow, ncol,
dimnames, and few more, with dim(A); nrow(A); ncol(A); dimnames(A).

5. Create two matrices X and Y of order 3 * 4 and 4 * 3, and obtain their
cross-product with the code X <- matrix(c(1:12),nrow=3,ncol=4); Y =
matrix(13:24, nrow=4) and X %*% Y.

6. The transpose of a matrix is obtained using the t function, t(X).

7. Create a new matrix A <- matrix(data=c(13,24,34,23,67,32,
45,23,11), nrow=3) and find its determinant and inverse by using det(A)
and solve(A) respectively.

The R code for the preceding action list is given in the following code snippet:

matrix(nrow=2,ncol=2)
matrix(1:4,nrow=2,ncol=2, byrow="TRUE")
A <- matrix(data=1:4, nrow=2, ncol=2, byrow=TRUE, dimnames =
list(c("R_1", "R_2"),c("C_1", "C_2")))
dim(A); nrow(A); ncol(A); dimnames(A)
X <- matrix(c(1:12),nrow=3,ncol=4)
Y <- matrix(13:24, nrow=4)
X %*% Y
t(Y)
A <- matrix(data=c(13,24,34,23,67,32,45,23,11),nrow=3)
det(A)
solve(A)

Note the use of a semicolon (;) in line 5 of the preceding code. The result of this usage
is that the code separated by a semicolon is executed as if it was entered on a new line.
Execute the preceding code in your R console. The output of the R code is given in the
following screenshot:

Chapter 2

[43]

Matrix computations in R

What just happened?
You were able to create matrices in R and learned the basic operations. Remember
that solve and not (^-1) gives you the inverse of a matrix. It is now seen that matrix
computations in R are really easy to carry out.

The options, nrow and ncol, are used to specify the dimensions of a matrix. Data for
a matrix can be specified through the data argument. The first two lines of code in the
previous screenshot create a bare-bone matrix. Using the dimnames argument, we have
created a more elegant matrix and assigned the matrix to a matrix object named A.

We next focus on the list object. It has already been used earlier to specify the dimnames
of a matrix.

Import/Export Data

[44]

The list object
In the preceding subsection we saw different kinds of objects such as constants, vectors,
and matrices. Sometimes it is required that we pool them together in a single object. The
framework for this task is provided by the list object. From the online source http://
cran.r-project.org/doc/manuals/R-intro.html#Lists-and-data-frames,
we define a list as "an object consisting of an ordered collection of objects known as its
components." Basically, various types of objects can be brought under a single umbrella
using the list function. Let us create list which contains a character vector, an integer
vector, and a matrix.

Time for action – creating a list object
Here, we will have a first look at the creation of list objects, which can contain in them
objects of different classes:

1. Create a character vector containing the first six capital letters with A <-
LETTERS[1:6]. Create an integer vector of the first ten integers 1-10 with B <-
1:10, and a matrix with C <- matrix(1:6,nrow=2).

2. Create a list which has the three objects created in the previous steps as its
components with Z <- list(A = A, B = B, C = C).

3. Ensure that the class of Z and its three components in A, B, and C are indeed
retained as follows: class(Z); class(Z$A); class(Z$B); class(Z$C).

The consolidated R codes are given next, which you will have to enter at the R console:

A <- LETTERS[1:6]; B <- 1:10; C <- matrix(1:6,nrow=2)
Z <- list(A = A, B = B, C = C)
Z
class(Z); class(Z$A); class(Z$B); class(Z$C)

Creating and understanding a list object

Chapter 2

[45]

What just happened?
Different classes of objects can be easily brought under a single umbrella and their structures
are also preserved within the newly created list object. Especially, here we put a character
vector, an integer vector, and a matrix under a single list object. Next, we check for the
class of the Z object and find the answer to be list as it should be. A new extraction tool
has been introduced in the dollar symbol $, which needs an explanation. Elements/objects
from a list vector can be extracted using the $ option on similar lines of the [and [[
extracting tools. In our example, Z$A extracts the A object from the Z list, and we use the
class function wrapper on Z$A to find its class. It is then confirmed that the classes of A, B,
and C are preserved under the list object. More details about the extraction tools may be
obtained by running ?Extract at the R console.

Yes, you have successfully created your first list object. This utility is particularly useful
when building big programs and we need certain actions within a single object.

The data.frame object
In Figure 2 of Chapter 1, Data Characteristics we saw that when the class function is
applied on the SQ object, the output resulted in data.frame. The details about this
function can be obtained by executing ?data.frame at the R console. The first noticeable
aspect is data.frame {base}, which means that this function is in the base library.
Further, the description says: "This function creates data frames, tightly-coupled collections
of variables, which share many of the properties of matrices and of lists, used as the
fundamental data structure by most of R's modeling software." This description is seen to
be correct as in the same figure we have different numeric, character, and factor variables
contained in the same data.frame object. Thus, we know that a data.frame object can
contain different kinds of variables.

A data frame can contain different types of objects. That is, we can create two different
classes of vectors and bind them together in a single data frame. A data frame can also be
updated with new vectors and existing components can also be dropped from it. As with
vectors, and matrices, we can assign names to a data frame as is convenient for us.

Time for action – creating a data.frame object
Here, we create data.frame from vectors. New objects are then added to an existing data
frame and some preliminary manipulations are demonstrated.

1. Create a numeric and character vector of length 3 each with x <- c(2,3,4); y
<- LETTERS[1:3].

2. Create a new data frame with df1<-data.frame(x,y).

Import/Export Data

[46]

3. Verify the variable names of the data frame, the classes of the components,
and display the variables distinctly with variable.names(df1); sapply
(df1, class); df1$x; df1$y.

4. Add a new numeric vector to df1 with df1$z <- c(pi,sqrt(2), 2.71828)
and verify the changes in df1 by entering df1 at the console.

5. Nullify the x component of df1 and verify the change.

6. Bring back the original x values with df1$x <- x.

7. Add a fourth observation with df1[4,]<- list(y=LETTERS[2], z=3,x=5)
and then remove the second observation with df1 <- df1[-2,] and verify the
change again.

8. Find the row names (or the observation names) of the data frame object by using
row.names(df1).

9. Obtain the column names (which should be actually x, y, and z) with
colnames(df1). Change the row and column names using row.names(df1)<-
1:3; colnames(df1)=LETTERS[1:3] and display the final form of the data frame.

Following is the consolidated code that you have to enter in the R console:

The data.frame Object
x <- c(2,3,4); y <- LETTERS[1:3]
df1<-data.frame(x,y)
variable.names(df1)
sapply(df1,class)
df1$x
df1$y
df1$z <- c(pi,sqrt(2), 2.71828)
df1
df1$x <- NULL
df1
df1$x <- x
df1[4,]<- list(y=LETTERS[2],z=3,x=5)
df1 <- df1[-2,]
df1
row.names(df1)
dim(df1)
colnames(df1)
row.names(df1)<- 1:3
colnames(df1)<-LETTERS[1:3]
df1

Chapter 2

[47]

On running the preceding code in R, you will see the output as shown in the
following screenshot:

Understanding a data.frame object

Let us now look at a larger data.frame object. iris is a very famous datasets and we will
use it to check out some very useful tools for data display.

1. Load the iris data from the datasets package with data(iris).

2. Check the first 10 observations of the dataset with head(iris,10).

3. A compact display of a data.frame object is obtained with the str function
in the following way: str(iris).

4. Using the $ extractor tool, inspect the different Species in the iris data in the
following way: iris$Species.

Import/Export Data

[48]

5. We are asked to get the first 10 observations with the Sepal.Length and
Petal.Length variables only. Now, we use the [extractor in the following way:
iris[1:10,c("Sepal.Length","Petal.Length")].

Different ways of extracting objects from a data.frame object

What just happened?
A data frame may be a complex structure. Here, we first created two vectors of same length
with different structures, one being an integer and the other one a character vector. Using
the data.frame function we created a new object df1, which contains both the vectors.
The variable names of df1 are then verified with the variable.names function. After
verifying that the names are indeed as expected, we verify that the variable classes are
preserved with the application of two functions: sapply and class. lapply is a useful
utility in R which applies a function over a list or vector and sapply is a more friendly
version of lapply. In our particular example earlier, we need R to return us the classes of
variables from the df1 data frame.

Chapter 2

[49]

Have a go hero
As an exercise, explain yourself the rest of the R code that you have executed here.

We have thus seen how to create a data frame, add and remove components, observations,
change the component names, and so on.

The table object
Data displayed in a table format is easy to understand. We will begin with the famous
Titanic dataset, as it is very unlikely that you will not have heard about it. That the gigantic
ship sinks at the end, that there are many beautiful movies about it, novels, documentaries,
and many more, make this dataset a very interesting example. It is known that the ship had
some survivors post its unfortunate and premature end. The ship had children, women,
and different classes of passenger onboard. This dataset is shipped (again) in the datasets
package along with the software. The dataset relates to the passengers' survival post
the tragedy.

The Titanic dataset has four variables: Class, Sex, Age, and Survived. For each
combination of the values for the four variables we have a count of that combination. The
Class variable is specified at four levels of 1st, 2nd, 3rd, and Crew class. The gender is
specified for the passengers, and the age classification is Child or Adult. It is also known
through the Survived variable whether the onboard passengers survived the clash of the
ship with the iceberg. Thus, we have 4 x 2 x 2 x 2 = 32 different combinations of the Age,
Sex, Class, and Survived statuses.

Import/Export Data

[50]

The following screenshot gives a display of the dataset in two formats. On the right-hand
side we can see the dataset in a spreadsheet style, while the left-hand side displays the
frequencies according to a combinatorial group. The question is how do we create table
displays as on the left-hand side of the screenshot. The present section addresses this
aspect of table creation.

Two different views of the Titanic dataset

The left-hand side display of the screenshot is obtained by simply keying in Titanic at the R
console, and the data format on the right-hand side is obtained by running View(Titanic)
at the console. In general, we have our dataset available as on the right-hand side. Hence,
we will pretend that we have the dataset available in the later format.

Chapter 2

[51]

Time for action – creating the Titanic dataset as a table object
The goal is to create a table object from the raw dataset. We will be using the expand.grid
and xtabs function towards this end.

1. First, create four character vectors for the four types of variables:

Class.Level <- c("1st","2nd","3rd", "Crew")
Sex.Level <- c("Male", "Female")
Age.Level <- c("Child", "Adult")
Survived.Level <- c("No", "Yes")

2. Create a list object which takes into account the variable names and their possible
levels with Data.Level <- list(Class = Class.Level, Sex = Sex.
Level, Age = Age.Level, Survived = Survived.Level)

3. Now, create a data.frame object for the levels of the four variables using
the expand.grid function by entering T.Table <- expand.grid(Class
= Class.Level, Sex = Sex.Level, Age = Age.Level, Survived
= Survived.Level) at the console. It is advised to view the T.Table and
appreciate the changes that are occurring in this step.

4. The Titanic dataset is ready except for the frequency count at each combinatorial
level. Specify the counts with T.freq <- c(0,0,35,0,0,0,17,0, 118,
154,387,670,4,13,89,3, 5,11, 13,0,1,13,14,0,57,14,75,192,140,
80,76,20)

5. Augment T.Table with T.freq by using T.Table <- cbind(T.Table,
count=T.freq). Again, if you view the T.Table, you will find the display
on the left-hand side of the previous screenshot.

6. To obtain the display on the right-hand side, enter xtabs(count~ Class + Sex
+ Age + Survived , data = T.Table).

The complete R code is given next, which needs to be compiled in the software:

Class.Level <- c("1st","2nd","3rd", "Crew")
Sex.Level <- c("Male", "Female")
Age.Level <- c("Child", "Adult")
Survived.Level <- c("No", "Yes")
Data.Level <- list(Class = Class.Level, Sex = Sex.Level,
Age = Age.Level, Survived = Survived.Level)
T.Table <- expand.grid(Class = Class.Level, Sex =
Sex.Level, Age = Age.Level, Survived = Survived.Level)
T.freq = c(0,0,35,0,0,0,17,0,118,154,387,670,4,13,89,3,
5,11, 13,0,1,13,14,0,57,14,75,192,140,80, 76,20)
T.Table = cbind(T.Table, count=T.freq)
xtabs(count~ Class + Sex + Age + Survived, data = T.Table)

Import/Export Data

[52]

What just happened?
In practice we may often have data in frequency format. It will be seen in later chapters
that the table object is required for carrying out statistical analysis. To translate frequency
formated data into a table object, we first defined four variables through Class.Level,
Sex.Level, Age.Level, and Survived.Level. The levels for the required table object
have been specified through the list object Data.Level. The function expand.grid
creates all possible combinations of the factors of four variables. The table of all possible
combinations is then stored in the T.Table object. Next, the frequencies are assigned
through the T.freq integer vector. Finally, the xtabs function creates the count according
to the various levels of the variables and the result is a table object, which is the same
as Titanic!

Have a go hero
UCBAdmissions is one of the benchmark datasets in Statistics. It is available in the
datasets package and it has data on the admission counts of six departments. The
admissions data shows that there is a favored bias towards admitting male candidates over
females, and it led to an allegation against the University of California, Berkeley. The details
of this problem may be found on the web at http://www.unc.edu/~nielsen/soci708/
cdocs/Berkeley_admissions_bias.pdf. Information about the dataset is obtained
with ?UCBAdmissions. Identify all the variables and their classes and regenerate the entire
table from the raw codes.

read.csv, read.xls, and the foreign package
Data is generally available in an external file. The type of external files is certainly varied and
it is important to learn which of them may be imported in R. The probable spreadsheet files
may exist in a CSV (comma separated variable) format, XLS or XLSX (Microsoft Excel) form,
or ODS (OpenOffice/LibreOffice Calc). There are more possible formats and we restrict our
attention to those described earlier. A snapshot of two files, Employ.dat and SCV.csv,
in gedit and MS Excel is given in the following screenshot. The brief characteristics of the two
files are summarized in the following list:

 � The first row lists the names of variables of the dataset

 � Each observation begins on a new line

 � In the DAT file, the delimiter is a tab (\t) whereas for the CSV file it is a comma (,)

 � All the three columns of the DAT file are numeric in nature

 � The first five columns of the CSV file are numeric while the last column is a character

 � Overall, both the files have a well-defined structure going for them

Chapter 2

[53]

The following screenshot underlines the theme that when the external files have
a well-defined structure, it is vital that we make the most of the structure when importing
it in R.

Screenshot of the two spreadsheet files

The core function for importing files in R is the read.table function from the utils
package, shipped with R core. The first argument of this function is the filename; see the
following screenshot. We can use header=TRUE to specify that the header names are the
variable names of the columns. The separator option sep needs to be properly specified.
For example, for the Employ dataset, it is a tab \t whereas for the CSV file, it is a comma ,.
Frequently, each row may also have a name. For example, the customer name in a survey
dataset, or serial number, and so on. This can be specified through row.names. The row
names may or may not be present in the external file. That is, either the row names or the
column names need not be part of the file from which we are importing the data.

The read.table syntax

Import/Export Data

[54]

In many files, there may be missing observations. Such data can be appropriately imported
by specifying the missing values in na.strings. The missing values may be represented by
blank cells, a period, and so on. You may find more details about the other options in the
read.table function. We note that read.csv, read.delim, and so on are other variants
of the read.table function. An Excel file of the type XLS or XLSX may be imported into R
with the use of the read.xls function from the gdata package.

Let us begin with importing simpler data files into R.

Example 2.2.1. Reading from a DAT file: The datasets analyzed in Ryan (2007) are available
on the web at ftp://ftp.wiley.com/public/sci_tech_med/engineering_
statistics/. Download the file engineering_statistics.zip and unzip the contents
to the working directory of the R session. The problem is described in Exercise 1.82 of
Ryan. The monthly data on the number of employees over a period of five years for three
Wisconsin industries in the wholesale and retail trade, food and kindred products, and
fabricated metals is available in the file Employ.dat. The task is to import this dataset in
the R session. Note that the three variables, namely the number of employees in the three
industries, are numeric in their characteristics. These characteristics should be retained in
our session too.

A useful practice is to actually open the source file and check the nature of the data in it.
For example, you should question how you will interpret the number 3.220000000e+002
specified in the original DAT file. In the Time for action – importing data from external files
section that follows, we will use the read.table function to import this data file.

Example 2.2.2. Reading from a CSV file: Ryan (2007) uses a dataset analyzed by Gupta
(1997). In this case study related to antibiotic suspension products the response variable
is Separated Clear Volume whose smaller value indicates better quality. This experiment
hosts five variables, each at two different levels, that is each of the five variables is a factor
variable, and the goal of the experiment is the determination of the best combination of
these factors which yields the minimum value for the response variable.

Now, sometimes the required dataset may be available in various CSV files. In such cases,
we first read them from the various destinations and then combine them to obtain a single
metafile. A trick is the usage of the merge function. Suppose that the preceding dataset is
divided in two datasets SCV_Usual.csv and SCV_Modified.csv according to the variable
E. We read them in two separate data objects and then merge them into a single object.

Chapter 2

[55]

We will carry out the importing of these files in the next time for action section.

Example 2.2.3. Reading files using foreign package: SPSS, SAS, STATA, and so on, are some
of the very popular statistical software packages. Each of the software packages has their
own file structure for the datasets. The foreign package, which is shipped along with the R
software , helps to read datasets used in these software packages. The rootstock dataset is
a very popular dataset in the area of multivariate statistics, and it is available on the web at
http://www.stata-press.com/data/r10/rootstock.dta. Essentially, the dataset is
available for the STATA software. We will now see how R reads this dataset.

Let us set for the action.

Time for action – importing data from external files
The external files may be imported into R using the right functions available in it. Here, we
will use read.table, read.csv, and read.sta functions to drive home the point.

1. Verify that you have the necessary files, Employ.dat, SCV.csv, SCV_Usual.csv,
and SCV_Modified.csv in the working directory by using list.files().

2. If the files are not available in the list displayed, find your working directory
using getwd() and then copy the files to the working directory. Alternatively,
you can set the working directory to the folder where the files are with setwd
("C:/my_files_are_here").

3. Read the data in Employ.dat with the code employ <- read.table(Employ.
dat", header=TRUE)

4. View the data with View(employ) and ensure that the data file has been properly
imported into R.

5. Check that the class of employ and its variables have been imported in the correct
format with class(employ); sapply(employ,class).

6. Import the Separated Clear Volume data from the SCV.csv file using the code SCV
<- read.csv("SCV.csv",header=TRUE)

7. Run sapply(SCV, class). You will find that variables A-D are of the numeric
class. Convert the class of variable A to factor with either class(SCV$A) <-
'factor' or SCV$A <- as.factor(SCV$A)

8. Repeat the preceding step for variables B-D.

Import/Export Data

[56]

9. The data in the SCV.csv file is split into two files by the E variable values and is
available in SCV_Usual.csv and SCV_Modified.csv. Import the data in these
two files using the appropriate modifications in Step 6 and label the respective R
data frame objects as SCV_Usual and SCV_Modified.

10. Combine the data from the two latest objects with SCV_Combined <- erge(SCV_
Usual,SCV_Modified,by.y=c("Response","A","B","C","D","E"),all.
x=TRUE,all.y=TRUE)

11. Initialize the library package foreign with library(foreign).

12. Tell R where on the web the dataset is available using rootstock.url <-
http://www.stata-press.com/data/r10/rootstock.dta.

An Internet connection is required to perform this step.

13. Use the read.dta function from the foreign package to import the dataset
from the Web into R: rootstock <- read.dta(rootstock.url)

The necessary R codes are given next in a consolidate format:

employ <- read.table("Employ.dat",header=TRUE)
View(employ)
class(employ)
sapply(employ,class)
SCV <- read.csv("SCV.csv",header=TRUE)
sapply(SCV, class)
class(SCV$A) <- 'factor'
class(SCV$B) <- 'factor'
class(SCV$C) <- 'factor'
class(SCV$D) <- 'factor'
SCV_Usual <- read.csv("SCV_Usual.csv",header=TRUE)
SCV_Modified <- read.csv("SCV_Modified.csv",header=TRUE)
SCV_Combined <- merge(SCV_Usual,SCV_Modified,by.y=c("Response",
"A","B","C","D","E"),all.x=TRUE,all.y=TRUE)
SCV_Combined
library(foreign)
rootstock.url <- "http://www.stata-press.com/data/r10/rootstock.dta"
rootstock <- read.dta(rootstock.url)
rootstock

Chapter 2

[57]

What just happened?
Functions from the utils package help the R users in importing data from various
external files. The following screenshot, edited in a graphics tool, shows the result
of running the previous code:

Importing data from external files

The read.table function succeeded in importing the data from the Employ.dat file.
The utils function View confirms that the data has been imported with the desired classes.
The function read.csv has been used to import data from SCV.csv, SCV_Usual.csv, and
SCV_Modified.csv files. The merge function combined the data in the usual and modified
objects and created a new object, which is same as the one obtained using the SCV.csv file.

Import/Export Data

[58]

Next, we used the function read.sta from the foreign package to complete the reading
of a STATA file, which is available on the web.

What just happened?
You learned to import data in many different formats into R. The preceding program shows
how to change the class of variables within the object itself. You also learned how to merge
multiple data objects.

Importing data from MySQL
Data will be often available in databases (DB) such as SQL, MySQL, and so on. To emphasize
the importance of databases is beyond the scope of this section, and we will be content with
importing data from a DB. The right-hand side of the following screenshot shows a snippet
of the test DB in MySQL. This DB has a single table in IO_Time and it has two variables
No_of_IO and CPU_Time. The IO_Time has 10 observations, and we will be using this
dataset for many concepts later in the book. The goal of this section is to show how to
import this table in to R.

An R package, RMySQL, is available from CRAN, which can be installed easily for Linux users.
Unfortunately, for Windows users, the package is not available in a readily implementable
installation, in the sense that install.packages("RMySQL") won't work for them. The
best help for Windows users is available at http://www.r-bloggers.com/installing-
the-rmysql-package-on-windows-7/, though some of the codes there are a bit
outdated. However, the problem is certainly solvable! The program and illustration here
works neatly for Linux users, and the following screenshot is performed on the Ubuntu 12.04
platform. Though simple installation of R and MySQL generally does not help in installing
the RMySQL package, running sudo apt-get install libmysqlclient-dev first and
then install.packages("RMySQL") helps! If you still get an error, make a note that the
downloaded package is saved in the /tmp/RtmpeLu7CG/downloaded_packages folder of
the local machine with the name RMySQL_0.x.x.tar.gz.

Chapter 2

[59]

You can then move to that directory and execute sudo R CMD INSTALL
RMySQL_0.x.x.tar.gz. We are now set to use the RMySQL package.

Importing data from MySQL

Note that on the Ubuntu 12.04 terminal we begin R with R –q. This suppresses the general
details we get about the R software. First invoke the library with library(RMySQL). Set
up the DB driver with d <- dbDriver("MySQL"). Specify the DB connector with con <-
dbConnect(d,dbname='test') and then run your query to fetch the IO_Time table from
MySQL with io_data <- dbGetQuerry(con,'select * from IO_Time'). Finally,
verify that the data has been properly imported into R with io_data. The right-hand side
of the previous screenshot confirms that the data has been correctly imported into R.

Import/Export Data

[60]

Exporting data/graphs
In the previous section, we learned how to import data from external files. Now, there will
be many instances where we would be keen to export data from R into suitable foreign files.
The need may arise in an automated system, reporting, and so on, where the other software
requires making good use of the R output.

Exporting R objects
The basic R function that exports data is write.table, which is not surprising as we saw
the utility of the read.table function. The following screenshot gives a snippet of the
write.table function. While reading, we assign the imported file to an R object, and when
exporting, we first specify the R object and then mention the filename. By default, R assigns
row names while exporting the object. If there are no row names, R will simply choose serial
numbers beginning with 1. If you do not need such row names, you need needs to specify
row.names = FALSE in the program.

Exporting data using the write.table function

Example 2.3.1. Exporting the Titanic data: In the Two different views of the Titanic dataset
figure, we saw the Titanic dataset in two formats. It is the display on the right-hand side
of the figure which we would like to export in a .csv format. We will use the write.csv
function for this purpose.

> write.csv(Titanic,"Titanic.csv",row.names=FALSE)

The Titanic.csv file will be exported to the current working directory. The reader can
open the CSV file in either Excel or LibreOffice Calc and confirm that it is of the desired format.

The other write/export options are also available in the foreign package. The write.
xport, write.systat, write.dta, and write.arff functions are useful if the
destination software is any of the following: SAS, SYSTAT, STATA, and Weka.

Exporting graphs
In Chapter 3, Data Visualization, we will be generating a lot of graphs. Here, we will explain
how to save the graphs in a desired format.

In the next screenshot, we have a graph generated by execution of the code plot(sin,
-pi, 2*pi) at the terminal. This line of code generates the sine wave over the interval
[-π, 2π].

Chapter 2

[61]

Time for action – exporting a graph
Exporting of graph will be explored here:

1. Plot the sin function over the range [-π, 2π] by running plot(sin, -pi, 2*pi).

2. A new window pops up with the title R Graphics Device 2 (ACTIVE).

3. In the menu bar, go to File | Save as | Png.

Saving graphs

4. Save the file as sin_plot.png, or any other name felt appropriate by you.

What just happened?
A file named sin_plot.png would have been created in the directory as specified by
you in the preceding Step 4.

Unix users do not have the luxury of saving the graph in the previously mentioned way.
If you are using Unix, you have different options of saving a file. Suppose we wish to save
the file when running R in a Linux environment.

Import/Export Data

[62]

The grDevices library gives different ways of saving a graph. Here, the user can use the
pdf, jpeg, bmp, png, and a few more functions to save the graph. An example is given in the
following code:

> jpeg("My_File.jpeg")
> plot(sin, -pi, 2*pi)
> dev.off()
null device
 1
> ?jpeg
> ?pdf

Here, we first invoke the required device and specify the file name to save the output, the
path directory may be specified as well along with the file name. Then, we plot the function
and finally close the device with dev.off. Fortunately, this technique works on both Linux
and Windows platforms.

Managing an R session
We will close the chapter with a discussion of managing the R session. In many ways, this
section is similar to what we do to a dining table after we have completed the dinner. Now,
there are quite a few aspects about saving the R session. We will first explain how to save the
R codes executed during a session.

Time for action – session management
Managing a session is very important. Any well developed software gives multiple options
for managing a technical session and we explore some of the methods available in R.

1. You have decided to stop the R session! At this moment, we would like to save all
the R code executed at the console. In the File menu, we have an option in Save
History. Basically, it is the action File | Save History…. After selecting the option,
as with previous section, we can save the history of that R session in a new text file.
Save the history with the filename testhist. Basically, R saves it as a RHISTORY
file which may be easily viewed/modified through any text editor. You may also save
the R history in any appropriate directory, which is the destination.

2. Now, you want to reload the history testhist at the beginning of a new R session.
The direction is File | Load History…, and choose the testhist file.

Chapter 2

[63]

3. In an R session, you would have created many objects with different characteristics.
All of them can be saved in an .Rdata file with File | Save Workspace…. In a new
session, this workspace can be loaded with File | Load Workspace….

R session management

4. Another way of saving the R codes (history and workspace) is when we close the
session either with File | Exit, or by clicking on the X of the R window; a window will
pop up as displayed in the previous screenshot. If you click on Yes, R will append
the RHISTORY file in the working directory with the codes executed in the current
session and also save the workspace.

5. If you want to save only certain objects from the current list, you can use the save
function. As an example if you wish to save the object x, run save(x,file="x.
Rdata"). In a later session, you can reinstate the object x with load("x.Rdata").

However, the libraries that were invoked in the previous session are not available again.
They again need to be explicitly invoked using the library() function. Therefore, you
should be careful about this fact.

Saving the R session

Import/Export Data

[64]

What just happened?
The session history is very important, and also the objects created during a session. As you
get deeper into the subject, it is soon realized that it is not possible to complete all the tasks
in a single session. Hence, it is vital to manage the sessions properly. You learned how to
save code history, workspace, and so on.

Have a go hero
You have two matrices A = 1

6
2
5

3
0 and B =

2
9
1

1
-12
6

. Obtain the cross-product AB and
find the inverse of AB. Next, find (BTAT) then the transpose of its inverse. What will
be your observation?

Summary
In this chapter we learned how to carry out the essential computations. We also learned
how to import the data from various foreign formats and then to export R objects and
output suitable for other software. We also saw how to effectively manage an R session.

Now that we know how to create R data objects, the next step is the visualization of such
data. In the spirit of Chapter 1, Data Characteristics, we consider graph generation according
to the nature of the data. Thus, we will see specialized graphs for data related to discrete as
well as continuous random variables. There is also a distinction made for graphs required
for univariate and multivariate data. The next chapter must be pleasing on the eyes! Special
emphasis is made on visualization techniques related to categorical data, which includes bar
charts, dot charts, and spine plots. Multivariate data visualization is more than mere 3D plots
and the R methods such as pairs plot discussed in the next chapter will be useful.

3
Data Visualization

Data is possibly best understood, wherever plausible, if it is displayed in a
reasonable manner. Chen, et. al. (2008) has compiled articles where many
scientists of data visualization give a deeper, historical, and modern trend of
data display. Data visualization may probably be as historical as data itself. It
emerges across all the dimensions of science, history, and every stream of life
where data is captured. The reader may especially go through the rich history
of data visualization in the article of Friendly (2008) from Chen, et. al. (2008).
The aesthetics of visualization has been elegantly described in Tufte (2001).
The current chapter will have a deep impact on the rest of the book, and
moreover this chapter aims to provide the guidance and specialized graphics
in the appropriate context in the rest of the book.

This chapter provides the necessary stimulus for understanding the gist that discrete
and continuous data needs appropriate tools, and the validation may be seen through
the distinct characteristics of such plots. Further, this chapter is also more closely related
to Chapter 4, Exploratory Analysis, and many visualization techniques here indeed are
"exploratory" in nature. Thus, the current chapter and the next complement mutually.
It has been observed that in many preliminary courses/text, a lot of emphasis is on the type
of the plots, say histogram, boxplot, and so on, which are more suitable for data arising for
continuous variables. Thus, we need to make a distinction among the plots for discrete and
continuous variable data, and towards this we first begin with techniques which give more
insight on visualization of discrete variable data.

In R there are four main frameworks for producing graphics: basic graphs, grids, lattice,
and ggplot2. In the current chapter, the first three are used mostly and there is a brief
peek at ggplot2 at the end.

Data Visualization

[66]

This chapter will mainly cover the details on effective data visualization:

 � Visualization of categorical data using a bar chart, dot chart, spine and mosaic plots,
and the pie chart and its variants

 � Visualization of continuous data using a boxplot, histogram, scatter plot and its
variants, and the Pareto chart

 � A very brief introduction to the rich school of ggplot2

Visualization techniques for categorical data
In Chapter 1, Data Characteristics, we came across many variables whose outcomes
are categorical in nature. Gender, Car_Model, Minor_Problems, Major_Problems,
and Satisfaction_Rating are examples of categorical data. In a software product
development cycle, various issues or bugs are raised at different severity levels such as
Minor and Show Stopper. Visualization methods for the categorical data require special
attention and techniques, and the goal of this section is to aid the reader with some useful
graphical tools.

In this section, we will mainly focus on the dataset related to bugs, which are of primary
concern for any software engineer. The source of the datasets is http://bug.inf.usi.ch/
and the reader is advised to check the website before proceeding further in this section. We
will begin with the software system Eclipse JDT Core, and the details for this system may be
found at http://www.eclipse.org/jdt/core/index.php. The files for download are
available at http://bug.inf.usi.ch/download.php.

Bar charts
It is very likely that you are familiar with bar charts, though you may not be aware of
categorical variables. Typically, in a bar chart one draws the bars proportional to the
frequency of the category. An illustration will begin with the dataset Severity_Counts
related to the Eclipse JDT Core software system. The reader may also explore the built-in
examples in R.

Going through the built-in examples of R
The bar charts may be obtained using two options. The function barplot, from the
graphics library, is one way of obtaining the bar charts. The built-in examples for this
plot function may be reviewed with example(barplot). The second option is to load the
package lattice and then use the example(barchart) function. The sixth plot, after you
click for the sixth time on the prompt, is actually an example of the barchart function.

Chapter 3

[67]

The main purpose of this example is to help the reader get flair of the bar charts that may
be obtained using R. It happens that often we have a specific variant of a plot in our mind
and find it difficult to recollect it. Hence, it is a suggestion to explore the variety of bar charts
you can produce using R. Of course, there are a lot more possibilities than the mere samples
given by example().

Example 3.1.2. Bar charts for the Bug Metrics dataset: The software system Eclipse JDT Core
has 997 different class environments related to the development. The bug identified on each
occasion is classified by its severity as Bugs, NonTrivial, Major, Critical, and High.
We need to plot the frequency of the severity level, and also require the frequencies to be
highlighted by Before and After release of the software to be neatly reflected in the graph.
The required data is available in the RSADBE package in the Severity_Counts object.

Example 3.1.3. Bar charts for the Bug Metrics of the five software: In the previous example,
we had considered the frequencies only on the JDT software. Now, it will be a tedious
exercise if we need to have five different bar plots for different software. The frequency
table for the five software is given in the Bug_Metrics_Software dataset of the
RSADBE package.

Software BA_Ind Bugs
NonTrivial
Bugs

Major
Bugs Critical Bugs

High Priority
Bugs

JDT
Before 11,605 10,119 1,135 432 459

After 374 17 35 10 3

PDE
Before 5,803 4,191 362 100 96

After 341 14 57 6 0

Equinox
Before 325 1,393 156 71 14

After 244 3 4 1 0

Lucene
Before 1,714 1,714 0 0 0

After 97 0 0 0 0

Mylyn
Before 14,577 6,806 592 235 8,804

After 340 187 18 3 36

It would be nice if we could simply display the frequency table across two graphs only.
This is achieved using the option beside in the barplot function. The data from the
preceding table is copied from an XLS/CSV file, and then we execute the first line of the
following R program in the Time for action – bar charts in R section.

Let us begin the action and visualize the bar charts.

Data Visualization

[68]

Time for action – bar charts in R
Different forms of bar charts will be displayed with datasets. The type of bar chart also
depends on the problem (and data) on hand.

1. Enter example(barplot) in the console and hit the Return key.

2. A new window pops up with the heading Click or hit Enter for next page.
Click (and pause between the clicks) your way until it stops changing.

3. Load the lattice package with library(lattice).

4. Try example(barchart) in the console. The sixth plot is an example of the
bar chart.

5. Load the dataset on severity counts for the JDT software from the RSADBE package
with data(Severity_Counts). Also, check for this data.

A view of this object is given in the screenshot in step 7. We have five severities
of bugs: general bugs (Bugs), non-trivial bugs (NT.Bugs), major bugs (Major.Bugs),
critical bugs (Critical), and high priority bugs (H.Priority). For the JDT software, these
bugs are counted before and after release, and these are marked in the object with
suffixes BR and AR. We need to understand this count data and as a first step, we
use the bar plots for the purpose.

6. To obtain the bar chart for the severity-wise comparison before and after release
of the JDT software, run the following R code:

barchart(Severity_Counts,xlab="Bug Count",xlim=c(0,12000),
col=rep(c(2,3),5))

The barchart function is available from the lattice package. The range
for the count is specified with xlim=c(0,12000). Here, the argument
col=rep(c(2,3),5) is used to tell R that we need two colors for BR and AR
and that this should be repeated five times for the five severity levels of the bugs.

Chapter 3

[69]

Figure 1: Bar graph for the Bug Metrics dataset

7. An alternative method is to use the barplot function from the graphics package:

barplot(Severity_Counts,xlab="Bug Count",xlim=c(0,12000), horiz
=TRUE,col=rep(c(2,3),5))

Here, we use the argument horiz = TRUE to get a horizontal display of the bar
plot. A word of caution here that the argument horizontal = TRUE in barchart
of the lattice package works very differently.

Data Visualization

[70]

We will now focus on Bug_Metrics_Software, which has the bug count data for
all the five software: JDT, PDE, Equinox, Lucene, and Mylyn.

Figure 2: View of Severity_Counts and Bug_Metrics_Software

8. Load the dataset related to all the five software with data(Bug_Metrics_
Software).

9. To obtain the bar plots for before and after release of the software on the same
window, run par(mfrow=c(1,2)).

What is the par function? It is a function frequently used to set the parameters
of a graph. Let us consider a simple example. Recollect that when you tried the
code example(dotchart), R would ask you to Click or hit Enter for next page
and post the click or Enter action, the next graph will be displayed. However, this
prompt did not turn up when you ran barplot(Severity_Counts,xlab="Bug
Count",xlim=c(0,12000), horiz =TRUE,col=rep(c(2,3),5)). Now,
let us try using par, which will ask us to first click or hit Enter so that we get the bar
plot. First run par(ask=TRUE), and then follow it with the bar plot code. You will
now be asked to either click or hit Enter. Find more details of the par function with
?par. Let us now get into the mfrow argument. The default plot options displays
the output on one device and on the next one, the former will be replaced with the
new one. We require the bar plots of before and after release count to be displayed
in the same window. The option, mfrow = c(1,2), ensures that both the bar plots
are displayed in the same window with one row and two columns.

Chapter 3

[71]

10. To obtain the bar plot of bug frequencies before release where each of the software
bug frequencies are placed side by side for each type of the bug severity, run
the following:

barplot(Bug_Metrics_Software[,,1],beside=TRUE,col = c("lightblue",
"mistyrose", "lightcyan", "lavender", "cornsilk"),legend = c("JDT"
,"PDE","Equinox","Lucene", "Mylyn"))

title(main = "Before Release Bug Frequency", font.main = 4)

Here, the code Bug_Metrics_Software[,,1] ensures that only before release
are considered. The option beside = TRUE ensures that the columns are displayed
as juxtaposed bars, otherwise, the frequencies will be distributed in a single bar
with areas proportional to the frequency of each software. The option col =
c("lightblue", …) assigns the respective colors for the software. Finally, the
title command is used to designate an appropriate title for the bar plot.

11. Similarly, to obtain the bar plot for after release bug frequency, run the following:

barplot(Bug_Metrics_Software[,,2],beside=TRUE,col = c("lightblue",
"mistyrose", "lightcyan", "lavender", "cornsilk"),legend = c("JDT"
,"PDE","Equinox","Lucene", "Mylyn"))

title(main = "After Release Bug Frequency",font.main = 4)

Data Visualization

[72]

The reader can extend the code interpretation for the before release to the after
release bug frequencies.

Figure 3: Bar plots for the five software

First notice that the scale on the y-axis for before and after release bug frequencies
is drastically different. In fact, before release bug frequencies are in thousands while
after release are in hundreds. This clearly shows that the engineers have put a lot of
effort to ensure that the released products are with minimum bugs. However, the
comparison of bug counts is not fair since the frequency scales of the bar plots in
the preceding screenshot are entirely different. Though we don't expect the results
to be different under any case, it is still appropriate that the frequency scales remain
the same for both before and after release bar plots. A common suggestion is to plot
the diagrams with the same range on the y-axes (or x-axes), or take an appropriate
transformation such as a logarithm. In our problem, neither of them will work, and
we resort to another variant of the bar chart from the lattice package.

Now, we will use the formula structure for the barchart function and bring the
BR and AR on the same graph.

Chapter 3

[73]

12. Run the following code in the R console:

barchart(Software~Freq|Bugs,groups=BA_Ind, data= as.data.
frame(Bug_Metrics_Software),col=c(2,3))

The formula Software~Freq|Bugs requires that we obtain the bar chart for the
software count Freq according to the severity of Bugs. We further specify that
each of the bar chart a be further grouped according to BA_Ind. This will result in
the following screenshot:

Figure 4: Bar chart for Before and After release bug counts on the same scale

To find the colors available in R, run try colors() in the console and you will find the
names of 657 colors.

Data Visualization

[74]

What just happened?
barplot and barchart were the two functions we used to obtain the bar charts. For
common recurring factors, AR and BR here, the colors can be correctly specified through the
rep function. The argument beside=TRUE helped us to keep the bars for various software
together for the different bug types. We also saw how to use the formula structure of the
lattice package. We saw the diversity of bar charts and learned how to create effective
bar charts depending on the purpose of the day.

Have a go hero
Explore the option stack=TRUE in the barchart(Software~Freq|Bugs,groups= BA_
Ind,…). Also, observe that Freq for bars in the preceding screenshot begins a little earlier
than 0. Reobtain the plots by specifying the range for Freq with xlim=c(0,15000).

Dot charts
Cleveland (1993) proposed an alternative to the bar chart where dots are used to represent
the frequency associated with the categorical variables. The dot charts are useful for small
to moderate size datasets. The dot charts are also an alternative to the pie chart, refer to
The default examples section. The dot charts may be varied to accommodate continuous
variable dataset too. The dot charts are known to obey the Tukey's principle of achieving an
as high as possible information-to-ink ratio.

Example 3.1.4. (Continuation of Example 3.1.2): In the screenshot in step 6 in the Time for
action – bar charts in R section, we saw that the bar charts for the frequencies of bugs for
after release are almost non-existent. This is overcome using the dot chart, see the following
action list on the dot chart.

Time for action – dot charts in R
The dotchart function from the graphics package and dotplot from the lattice
package will be used to obtain the dot charts.

1. To view the default examples of dot charts, enter example(dotplot);
example(dotchart); in the console and hit the Return key.

Chapter 3

[75]

2. To obtain the dot chart of the before and after release bug frequencies, run the
following code:

dotchart(Severity_Counts,col=15:16,lcolor="black",pch=2:3,labels
=names(Severity_Counts),main="Dot Plot for the Before and After
Release Bug Frequency",cex=1.5)

Here, the option col=15:16 is used to specify the choice of colors; lcolor is used
for the color of the lines on the dot chart which gives a good assessment of the
relative positions of frequencies for the human eye. The option pch=2:3 picks up
circles and squares for indicating the positions of after and before frequencies. The
options labels and main are trivial to understand, whereas cex magnifies the size
of all labels by 1.5 times. On execution of the preceding R code, we get a graph as
displayed in the following screenshot:

Figure 5: Dot chart for the Bug Metrics dataset

Data Visualization

[76]

3. The dot plot can be easily extended for all the five software as we did with the
bar charts.

> par(mfrow=c(1,2))
> dotchart(Bug_Metrics_Software[,,1],gcolor=1:5,col=6:
10,lcolor= "black",pch=15:19,labels=names(Bug_Metrics_
Software[,,1]),main="Before Release Bug Frequency",xlab="Frequency
Count")
> dotchart(Bug_Metrics_Software[,,2],gcolor=1:5,col=6:
10,lcolor= "black",pch=15:19,labels=names(Bug_Metrics_
Software[,,2]),main="After Release Bug Frequency",xlab="Frequency
Count")

Figure 6: Dot charts for the five software bug frequency

For a matrix input in barchart, the gcolor option gets the same color each column. Note
that though the class of Bug_Metrics_Software is both xtabs and table, the class of
Bug_Metrics_Software[,,1] is a matrix, and hence we create a dot chart of it. This
means that the R code dotchart(Bug_Metrics_Software) leads to errors! The dot
chart is able to display the bug frequency in a better way as compared to the bar chart.

What just happened?
Two different ways of obtaining the dot plot were seen, and a host of other options were
also clearly indicated in the current section.

Chapter 3

[77]

Spine and mosaic plots
In the bar plot, the length (height) of the bar varies, while the width for each bar is kept the
same. In a spine/mosaic plot the height is kept constant for the categories and the width
varies in accordance with the frequency. The advantages of a spine/mosaic plot becomes
apparent when we have frequencies tabulated for several variables via a contingency table.
The spline plot is a particular case of the mosaic plot. We first consider an example for
understanding the spine plot.

Example 3.1.5. Visualizing Shift and Operator Data (Page 487, Ryan, 2007): In a manufacturing
factory, operators are rotated across shifts and it is a concern to find out whether the time of
shift affects the operator's performance. In this experiment, there are three operators who in a
given month work in a particular shift. Over a period of three months, data is collected for the
number of nonconforming parts an operator obtains during a given shift. The data is obtained
from page 487 of Ryan (2007) and is reproduced in the following table:

 Operator 1 Operator 2 Operator 3

Shift 1 40 35 28

Shift 2 26 40 22

Shift 3 52 46 49

We will obtain a spine plot towards an understanding of the spread of the number
of non-conforming units an operator does during the shifts in the forthcoming action
time. Let us ask the following questions:

 � Does the total number of non-conforming parts depend on the operators?

 � Does it depend on the shift?

 � Can we visualize the answers to the preceding questions?

Time for action – the spine plot for the shift and operator data
Spine plots are drawn using the spineplot function.

1. Explore the default examples for the spine plot with example(spineplot).

2. Enter the data for the shift and operator example with:

ShiftOperator <- matrix(c(40, 35, 28, 26, 40, 22, 52, 46, 49),nro
w=3,dimnames=list(c("Shift 1", "Shift 2", "Shift 3"), c("Operator
1", "Opereator 2", "Operator 3")),byrow=TRUE)

3. Find the number of non-conforming parts of the operators with the
colSums function:

> colSums(ShiftOperator)
 Operator 1 Opereator2 Operator 3
 118 121 99

Data Visualization

[78]

The non-conforming parts for operators 1 and 2 are close enough, and it is lesser
by about 20 percent for the third operator.

4. Find the number of non-conforming parts according to the shifts using the
rowSums function:

> rowSums(ShiftOperator)
Shift 1 Shift 2 Shift 3
 103 88 147

Shift 3 appears to have about 50 percent more non-conforming parts in
comparison with shifts 1 and 2. Let us look out for the spine plot.

5. Obtain the spine plot for the ShiftOperator data with
spineplot(ShiftOperator).

Now, we will attempt to make the spine plot a bit more interpretable. Under the
absence of any external influence, we would expect the shifts and operators to
have a near equal number of non-conforming objects.

6. Thus, on the overall x and y axes, we plot lines at approximately the one-thirds
and check if we get approximate equal regions/squares.

abline(h=0.33,lwd=3,col="red")
abline(h=0.67,lwd=3,col="red")
abline(v=0.33,lwd=3,col="green")
abline(v=0.67,lwd=3,col="green")

The output in the graphics device window will be the following screenshot:

Figure 7: Spine plot for the Shift Operator problem

Chapter 3

[79]

It appears from the partition induced by the red lines that all the operators have
a nearly equal number of non-conforming parts. However, the spine chart shows
that most of the non-conforming parts occur during Shift 3.

What just happened?
Data summaries were used to understand the behavior of the problem, and the spine
plot helped in clear identification of Shift 3 as a major source of the non-conforming units
manufactured. The use of abline function was particularly more insightful for this dataset
and needs to be explored whenever there is a scope for it.

Spine plot is a special case of the mosaic plot. Friendly (2001) has pioneered the concept
of mosaic plots and Chapter 4, Exploratory Analysis, is an excellent reference for the same.
For a simple understanding of the construction of mosaic plot, you can go through slides
7-12 at http://www.stat.auckland.ac.nz/~ihaka/120/Lectures/lecture17.
pdf. As explained there, suppose that there are three categorical variables, each with two
levels. Then, the mosaic plot begins with a square and divides it into two parts with each
part having an area proportional to the frequency of the two levels of the first categorical
variable. Next, each of the preceding two parts is divided into two parts each according to
the predefined frequency of the two levels of the second categorical variable. Note that we
now have four divisions of the total area. Finally, each of the four areas are further divided
into two more parts, each with an area reflecting the predefined frequency of the two levels
of the third categorical variable.

Example 3.1.6. The Titanic dataset: In the The table object section in Chapter 2, Import/
Export Data, we came across the Titanic dataset. The dataset was seen in two different
forms and we also constructed the data from scratch. Let us now continue the example.
The main problems in this dataset are the following:

 � The distribution of the passengers by Class, and then the spread of Survived
across Class.

 � The distribution of the passengers by Sex and its distribution across the survivors.

 � The distribution by Age followed by the survivors among them. We now want to
visualize the distribution of Survived first by Class, then by Sex, and finally by
the Age group.

Let us see the detailed action.

Data Visualization

[80]

Time for action – the mosaic plot for the Titanic dataset
The goal here is to understand the survival percentages of the Titanic ship with respect to
Class of the crew, Sex, and Age. We use first xtabs and prop.table to gain the insight
for each of these variables, and then visualize the overall picture using mosaicplot.

1. Get the frequencies of Class for the Titanic dataset with
xtabs(Freq~Class,data=Titanic).

2. Obtain the Survived proportions across Class with prop.table(xtabs(Freq
~Class+Survived,data=Titanic),margin=1).

3. Repeat the preceding two steps for Sex: xtabs(Freq~Sex,data=Titanic)
and prop.table(xtabs(Freq~Sex+Survived,data=Titanic),margin=1).

4. Repeat this exercise for Age: xtabs(Freq~Age,data=Titanic) and prop.tab
le(xtabs(Freq~Age+Survived,data=Titanic), margin=1).

5. Obtain the mosaic plot for the dataset with mosaicplot(Titanic,col=c("red"
,"green")).

The entire output is given in the following screenshot:

Figure 8: Mosaic plot for the Titanic dataset

Chapter 3

[81]

The preceding output shows that the people traveling in higher classes survived better than
the lower class ones. The analysis also shows that females were given more priority over
males when the rescue system was in action. Finally, it may be seen that children were given
priority over adults.

The mosaic plot division process proceeds as follows. First, it divides the region into four
parts with the regions proportional to the frequencies of each Class; that is, the width of
the regions are proportionate to the Class frequencies. Each of the four regions are further
divided using the predefined frequencies of the Sex categories. Now, we have eight regions.
Next, each of these regions is divided using the predefined frequencies of the Age group
leading to 16 distinct regions. Finally, each of the regions is divided into two parts according
to the Survived status. The Yes regions of Child for the first two classes are larger than the
No regions. The third Class has more non-survivors than survivors, and this appears to be
true across Age and Gender. Note that there are no children among the Crew class.
The rest of the regions' interpretation is left to the reader.

What just happened?
A clear demystification of the working of the mosaic plot has been provided. We applied it to
the Titanic dataset and saw how it obtains clear regions which enable to deep dive into a
categorical problem.

Pie charts and the fourfold plot
Pie charts are hugely popular among many business analysts. One reason for its popularity is
of course its simplicity. That pie chart is easy to interpret is actually not a fact. In fact, the pie
chart is seriously discouraged for analysis and observations, refer to the caution of Cleveland
and McGill, and also Sarkar (2008), page 57. However, we will still continue an illustration
of it.

Example 3.1.7. Pie chart for the Bugs Severity problem: Let us obtain the pie chart for the
bug severity levels.

> pie(Severity_Counts[1:5])
> title("Severity Counts Post-Release of JDT Software")
> pie(Severity_Counts[6:10])
> title("Severity Counts Pre-Release of JDT Software")

Data Visualization

[82]

Can you find the drawback of the pie chart?

Figure 9: Pie chart for the Before and After Bug counts (output edited)

The main drawback of the pie chart stems from the fact that humans have a problem in
deciphering relative areas. A common recommendation is the use of a bar chart or a dot
chart instead of the pie chart, as the problem of judging relative areas does not exist when
comparing linear measures.

The fourfold plot is a novel way of visualizing a 2 2× × k contingency table. In this method,
we obtain k plots for each 2 2× frequency table. Here, the cell frequency of each of the four
cells is represented by a quarter circle whose radius is proportional to the square root of the
frequency. In contrast to the pie chart where the radius is constant and area is varied by the
perimeter, the radius in a fourfold plot is varied to represent the cell.

Chapter 3

[83]

Example 3.1.8. The fourfold plot for the UCBAdmissions dataset: An in-built R function
which generates the required plot is fourfoldplot. The R code and its resultant
screenshots are displayed as follows:

> fourfoldplot(UCBAdmissions,mfrow=c(2,3),space=0.4)

Figure 10: The fourfold plot of the UCBAdmissions dataset

In this section, we focused on graphical techniques for categorical data. In many books,
the graphical methods begin with tools which are more appropriate for data arising for
continuous variables. Such tools have many shortcomings if applied to categorical data.
Thus, we have taken a different approach where the categorical data gets the right tools,
which it truly deserves. In the next section, we deal with tools which are seemingly more
appropriate for data related to continuous variables.

Data Visualization

[84]

Visualization techniques for continuous variable data
Continuous variables have a different structure and hence, we need specialized methods
for displaying them. Fortunately, many popular graphical techniques are suited very well for
continuous variables. As the continuous variables can arise from different phenomenon, we
consider many techniques in this section. The graphical methods discussed in this section
may also be considered as a part of the next chapter on exploratory analysis.

Boxplot
The boxplot is based on five points: minimum, lower quartile, median, upper quartile, and
maximum. The median forms the thick line near the middle of the box, and the lower and
upper quartiles complete the box. The lower and upper quartiles along with the median,
which is the second quartile, divide the data into four regions with each containing equal
number of observations. The median is the middle-most value among the data sorted in
the increasing (decreasing) order of magnitude. On similar lines, the lower quartile may be
interpreted as the median of observations between the minimum and median data values.
These concepts are dealt in more detail in Chapter 4, Exploratory Analysis. The boxplot is
generally used for two purposes: understanding the data spread and identifying the outliers.
For the first purpose, we set the range value at zero, which will extend the whiskers to the
extremes at minimum and maximum, and give the overall distribution of the data.

If the purpose of boxplot is to identify outliers, we extend the whiskers in a way which
accommodate tolerance limits to enable us to capture the outliers. Thus, the whiskers are
extended 1.5 times the default value, the interquartile range (IQR), which is the difference
between the third and first quartiles from the median. The default setting of boxplot is the
identification of the outliers. If any point is found beyond the whiskers, such observations
may be marked as outliers. The boxplot is also sometimes called a box-and-whisker plot, and
it is the whiskers, which are obtained by drawing lines from the box, ends to the minimum
and maximum points. We will begin with an example of the boxplot.

Example 3.2.1. Example (boxplot): For a quick tutorial on the various options of the boxplot
function, the user may run the following code at the R console. Also, the reader is advised
to explore the bwplot function from the lattice package. Try example(boxplot) and
example(bwplot) from the respective graphics and lattice packages.

Example 3.2.2. Boxplot for the resistivity data: Gunst (2002) has 16 independent
observations from eight pairs on the resistivity of a wire. There are two processes under
which these observations are equally distributed. We would like to see if resistivity of the
wires depends on the processes, and which of the processes leads to a higher resistivity.
A numerical comparison based on the summary function will be first carried out, and then
we will visualize the two processes through boxplot to conclude whether the effects are
same, and if not which process leads to higher resistivity.

Chapter 3

[85]

Example 3.2.3. The Michelson-Morley experiment: This is a famous physics experiment in
the late nineteenth century, which helped in proving the non-existence of ether. If the ether
existed, one expects a shift of about 4 percent in the speed of light. The speed of light is
measured 20 times in five different experiments. We will use this dataset for two purposes:
is the drift of 4 percent evidenced in the data, and setting the whiskers at the extremes.
The first one is a statistical issue and the latter is a software setting.

For the preceding three examples, we will now read the required data into R, and then
look at the necessary summary functions, and finally visualize them using the boxplots.

Time for action – using the boxplot
Boxplots will be obtained here using the function boxplot from the graphics package as well
as bwplot from the lattice package.

1. Check the variety of boxplots with example(boxplot) from the graphics
package and example(bwplot) for the variants in the lattice package.

2. The resistivity data from the RSADBE package contains two processes'
information which we need to compare. Load in to the current session with
data(resistivity).

3. Obtain the summary of the two processes with the following:

> summary(resistivity)
 Process.1 Process.2
Min. 0.138 0.142
1st Qu. 0.140 0.144
Median 0.142 0.146
Mean 0.142 0.146
3rd Qu. 0.143 0.148
Max. 0.146 0.150

Clearly, Process 2 has approximately 0.004 higher resistivity as compared
to Process 1 across all the essential summaries. Let us check if the boxplot
captures the same.

4. Obtain the boxplot for the two processes with boxplot(resistivity,
range=0).

The argument range=0 is to ensure that the whiskers are extended to the
minimum and maximum data values. The boxplot diagram (left-hand side of the
next screenshot) clearly shows that Process.2 has higher resistivity in comparison
with Process.1. Next, we will consider the bwplot function from the lattice
package. A slightly different rearrangement of the resistivity data frame will be
required, in that we will specify all the resistivity values in a single column and their
corresponding processes in another column.

Data Visualization

[86]

An important option for boxplots is that of notch, which is especially useful for
the comparison of medians. The top and bottom notches for a set of observations
are defined at the point's median ± 1.57(IQR)/n1/2. If notches of two boxplots do
not overlap, it can be concluded that the medians of the groups are significantly
different. Such an option can be specified in both boxplot and bwplot functions.

5. Convert resistivity to another useful form which will help the application of the
bwplot function with resistivity2 <- data.frame(rep(names(re
sistivity),each=8),c(resistivity[,1],resistivity[,2])).
Assign variable names to the new data frame with names(resistivity2)<-
c("Process","Resistivity").

6. Run the bwplot function on resistivity2 with
bwplot(Resistivity~Process, data=resistivity2,notch=TRUE).

Figure 11: Boxplots for resistivity data with boxplot, bwplot, and notches

The notches are overlapping and hence, we can't conclude from the boxplot that the
resistivity medians are very different from each other.

With the data on speed of light from the morley dataset, we have an important
goal of identifying outliers. Towards this purpose the whiskers are extended 1.5
times the default value, the interquartile range (IQR), from the median.

Chapter 3

[87]

7. Create a boxplot with whiskers which enable identification of the outliers beyond
the 1.5 IQR of the median with the following:

boxplot(Speed~Expt,data=morley,main = "Whiskers at Lower- and
Upper- Confidence Limits")

8. Add the line which helps to identify the presence of ether with abline(
h=792.458,lty=3).

The resulting screenshot is as follows:

Figure 12: Boxplot for the Morley dataset

It may be seen from the preceding screenshot that experiment 1 has one outlier, while
experiment 3 has three outlier values. Since the line is well below the median of the
experiment values (speed, actually), we conclude that there is no experimental evidence
for the existence of ether.

What just happened?
Varieties of boxplots have been elaborated in this section. The boxplot has also been put in
action to identify the presence of outliers in a given dataset.

Data Visualization

[88]

Histograms
Histogram is one of the earliest graphical techniques and undoubtedly one of the most
versatile and adaptive graphs whose relevance is legitimate as it ever had. The invention
of histogram is a credit to the great statistician, Karl Pearson. Its strength is also in its
simplicity. In this technique, a variable is divided over intervals and the height of an interval
is determined by the frequency of the observations falling in that interval. In the case of
an unbalanced division of the range of the variable values, histograms are especially very
informative in revealing the shape of the probability distribution of the variable. We will see
more about these points in the following examples.

The construction of a histogram is explained with the famous dataset of Galton, where an
attempt has been made for understanding the relationship between the heights of a child
and parent. In this dataset, there are 928 pairs of observation of the height of the child and
parent. Let us have a brief peek at the dataset:

> data(galton) > names(galton)
[1] "child" "parent"
> dim(galton)
[1] 928 2
> head(galton)
child parent
1 61.7 70.5
2 61.7 68.5
3 61.7 65.5
4 61.7 64.5
5 61.7 64.0
6 62.2 67.5
> sapply(galton,range)
 child parent
[1,] 61.7 64
[2,] 73.7 73
> summary(galton)
 child parent
 Min. :61.7 Min. :64.0
 1st Qu.:66.2 1st Qu.:67.5
 Median :68.2 Median :68.5
 Mean :68.1 Mean :68.3
 3rd Qu.:70.2 3rd Qu.:69.5
 Max. :73.7 Max. :73.0

Chapter 3

[89]

We need to cover all the 928 observations in the intervals, also known as bins, which need to
cover the range of the variable. The natural question is how does one decide on the number
of intervals and the width of these intervals? If the bin width, denoted by h, is known, the
number of bins, denoted by k, can be determined by:

max min−
=

ii i i

h

x x
k

Here, the argument denotes the ceiling of the number. Similarly, if the number of bins k
is known, the width is determined by ()max min= − i i i ih x x / k .

There are many guidelines for these problems. The three options available for the hist
function in R are formulas given by Sturges, Scott, and Freedman-Diaconis, the details of
which may be obtained by running ?nclass.Sturges, or ?nclass.FD and ?nclass.
scott in the R console. The default setting runs the Sturges option. The Sturges formula
for the number of bins is given by:

[]2log 1= +k n

This formula works well when the underlying distribution is approximately distributed as a
normal distribution. The Scott's normal reference rule for the bin width, using the sample
standard deviation σ̂ is:

3

3 5σ
=

ˆ.h
n

Finally, the Freedman-Diaconis rule for the bin width is given by:

3

2
=

IQRh
n

In the following, we will construct a few histograms describing the problems through their
examples and their R setup in the Time for action – understanding the effectiveness of
histogram a section.

Example 3.2.4. The default examples: To get a first preview on the generation of histograms,
we suggest the reader to go through the built-in examples, try example(hist) and
example(histogram).

Data Visualization

[90]

Example 3.2.5. The Galton dataset: We will obtain histograms for the height of child and
parent from the Galton dataset. We will use the Freedman-Diaconis and Sturges choice of
bin widths.

Example 3.2.6. Octane rating of gasoline blends: An experiment is conducted where the
octane rating of gasoline blends can be obtained using two methods. Two samples are
available for testing each type of blend, and Snee (1981) obtains 32 different blends over
an appropriate spectrum of the target octane ratings. We obtain histograms for the ratings
under the two different methods.

Example 3.2.7. Histogram with a dummy dataset: A dummy dataset has been created by the
author. Here, we need to obtain histograms for the two samples in the Samplez data from
the RSADBE package.

Time for action – understanding the effectiveness of histograms
Histograms are obtained using the hist and histogram functions. The choice of bin widths
is also discussed.

1. Have a buy-in of the R capability of the histograms through example(hist) and
example(histogram) for the respective histogram functions from the graphics
and lattice packages.

2. Invoke the graphics editor with par(mfrow=c(2,2)).

3. Create the histogram for the height of Child and Parent from the galton dataset
seen in the earlier part of the section for the Freedman-Diaconis and Sturges
choice of bin widths:

par(mfrow=c(2,2))
hist(galton$parent,breaks="FD",xlab="Height of Parent",
main="Histogram for Parent Height with Freedman-Diaconis
Breaks",xlim=c(60,75))
hist(galton$parent,xlab="Height of Parent",main= "Histogram for
Parent Height with Sturges Breaks",xlim=c(60,75))
hist(galton$child,breaks="FD",xlab="Height of Child",
main="Histogram for Child Height with Freedman-Diaconis
Breaks",xlim=c(60,75))
hist(galton$child,xlab="Height of Child",main="Histogram for Child
Height with Sturges Breaks",xlim=c(60,75))

Chapter 3

[91]

Consequently, we get the following screenshot:

Figure 13: Histograms for the Galton dataset

Note that a few people may not like histograms for the height of parent for the
Freedman-Diaconis choice of bin width.

4. For the experiment mentioned in Example 3.2.9. Octane rating of gasoline blends,
first load the data into R with data(octane).

5. Invoke the graphics editor for the ratings under the two methods with
par(mfrow=c(2,2)).

6. Create the histograms for the ratings under the two methods for the Sturges choice
of bin widths with:

hist(octane$Method_1,xlab="Ratings Under Method I",main="Histogram
of Octane Ratings for Method I",col="mistyrose")

hist(octane$Method_2,xlab="Ratings Under Method
II",main="Histogram of Octane Ratings for Method II",col="
cornsilk")

The resulting histogram plot will be the first row of the next screenshot.

A visual inspection suggests that under Method_I, the mean rating is around 90
while under Method_II it is approximately 95. Moreover, the Method_II ratings
look more symmetric than the Method_I ratings.

Data Visualization

[92]

7. Load the required data here with data(Samplez).

8. Create the histogram for the two samples under the Samplez data frame with:

hist(Samplez$Sample_1,xlab="Sample 1",main="Histogram: Sample 1"
,col="magenta")
hist(Samplez$Sample_2,xlab="Sample 2",main="Histogram: Sample 2"
,col="snow")

We obtain the following histogram plot:

Figure 14: Histogram for the Octane and Samples dummy dataset

The lack of symmetry is very apparent in the second row display of the preceding screenshot.
It is very clear from the preceding screenshot that the left histogram exhibits an example of
a positive skewed distribution for Sample_1, while the right histogram for Sample_2 shows
that the distribution is a negatively skewed distribution.

What just happened?
Histograms have traditionally provided a lot of insight into the understanding of the
distribution of variables. In this section, we dived deep into the intricacies of its construction,
especially related to the options of bin widths. We also saw how the different nature of
variables are clearly brought out by their histogram.

Chapter 3

[93]

Scatter plots
In the previous subsection, we used histograms for understanding the nature of the
variables. For multiple variables, we need multiple histograms. However, we need different
tools for understanding the relationship between two or more variables. A simple, yet
effective technique is the scatter plot. When we have two variables, the scatter plot simply
draws the two variables across the two axes. The scatter plot is powerful in reflecting the
relationship between the variables as in it reveals if there is a linear/nonlinear relationship.
If the relationship is linear, we may get an insight if there is a positive or negative relationship
among the variables, and so forth.

Example 3.2.8. The drain current versus the ground-to-source voltage: Montgomery and
Runger (2003) report an article from IEEE (Exercise 11.64) about an experiment where the
drain current is measured against the ground-to-source voltage. In the scatter plot, the drain
current values are plotted against each level of the ground-to-source voltage. The former
value is measured in milliamperes and the latter in volts. The R function plot is used for
understanding the relationship. We will soon visualize the relationship between the current
values against the level of the ground-to-source voltage. This data is available as DCD in the
RSADBE package.

The scatter plot is very flexible when we need to understand the relationship between more
than two variables. In the next example, we will extend the scatter plot to multiple variables.

Example 3.2.9. The Gasoline mileage performance data: The mileage of a car depends on
various factors; in fact, it is a very complex problem. In the next table, the various variables
x1 to x11 are described which are believed to have an influence on the mileage of the car. We
need a plot which explains the inter-relationships between the variables and the mileage.
The exercise of repeating the plot function may be done 11 times, though most people may
struggle to recollect the influence of the first plot when they are looking at the sixth or maybe
the seventh plot. The pairs function returns a matrix of scatter plots, which is really useful.
Let us visualize the matrix of scatter plots:

> data(Gasoline)
> pairs(Gasoline) # Output suppressed

It may be seen that this matrix of scatter plots is a symmetric plot in the sense that the
upper and lower triangle of this matrix are simply copies of each other (transposed copies
actually). We can be more effective in representing the data in the matrix of scatter plots by
specifying additional parameters. Even as we study the inter-relationships, it is important to
understand the variable distribution itself. Since the diagonal elements are just indicating the
name of the variable, we can instead replace them by their histograms. Further, if we can
give the measure of the relationship between two variables, say the correlation coefficient,
we can be more effective. In fact, we do a step better by displaying the correlation coefficient
by increasing the font size according to its stronger value. We first define the necessary
functions and then use the pairs function.

Data Visualization

[94]

Variable
Notation

Variable Description Variable
Notation

Variable Description

Y Miles/gallon x6 Carburetor (barrels)

x1 Displacement (cubic inches) x7 No. of transmission speeds

x2 Horsepower (foot-pounds) x8 Overall length (inches)

x3 Torque (foot-pounds) x9 Width (inches)

x4 Compression ratio x10 Weight (pounds)

x5 Rear axle ratio x11 Type of transmission

(A-automatic, M-manual)

Time for action – plot and pairs R functions
The scatter plot and its important multivariate extension with pairs will be considered in
detail now.

1. Consider the data data(DCD).

Use the options xlab and ylab to specify the right labels for the axes. We specify
xlim and ylim to get a good overview of the relationship.

2. Obtain the scatter plot for Example 3.2.8. The Drain current versus the ground-
to-source voltage using plot(DCD$Drain_Current, DCD$GTS_Voltage,t
ype="b",xlim=c(1,2.2),ylim=c(0.6,2.4),xlab="Current Drain",
ylab="Voltage").

Figure 15: The scatter plot for DCD

Chapter 3

[95]

We can easily see from the preceding scatter plot that as the ground-to-source
voltage increases, there is an appropriate increase in the drain current. This is an
indication of a positive relationship between the two variables. However, the lab
assistant now comes to you and says that the measurement error of the instrument
has actually led to 15 percent higher recordings of the ground-to-source voltage.
Now, instead of dropping the entire diagram, we may simply prefer to add the
corrected figures to the existing one. The points option helps us to add the new
corrected data points to the figure.

3. Now, first obtain the correct GTS_Voltage readings with DCD$GTS_
Voltage/1.15 and add them to the existing plot with points(DCD$Drain_
Current,DCD$GTS_Voltage/1.15,type="b",col="green").

4. We first create two functions panel.hist and panel.cor defined as follows:

panel.hist<- function(x, ...)
{
usr<- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5))
h <- hist(x, plot = FALSE)
breaks<- h$breaks; nB<- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)
}
panel.cor<- function(x, y, digits=2, prefix="", cex.cor, ...) {
usr<- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x,y,use="complete.obs"))
txt<- format(c(r, 0.123456789), digits=digits)[1]
txt<- paste(prefix, txt, sep="")
if(missing(cex.cor)) cex.cor<- 0.8/strwidth(txt)
text(0.5, 0.5, txt, cex = cex.cor * r)
}

The preceding two defined functions are taken from the code of example(pairs).

Data Visualization

[96]

5. It is time to put these two functions in to action:

pairs(Gasoline,diag.panel=panel.hist,lower.panel=panel.
smooth,upper.panel=panel.cor)

Figure 16: The pairs plot for the Gasoline dataset

In the upper triangle of the display, we can see that the mileage has strong
association with the displacement, horsepower, torque, number of transmission
speeds, the overall length, width, weight, and the type of transmission. We can say
a bit more too. The first three variables x1 to x3 relate to the engine characteristics,
and there is a strong association within these three variables. Similarly, there is a
strong association between x8 to x10 and together they form the vehicle dimension.
Also, we have done a bit more than simply obtaining the scatter plots in the lower
triangle of the display. A smooth approximation of the relationship between the
variables is provided here.

6. Finally, we resort to the usual trick by looking at the capabilities of the plot
and pairs functions with example(plot), example(pairs),
and example(xyplot).

We have seen how multi-variables can be visualized. In the next subsection, we will explore
more about Pareto charts.

Chapter 3

[97]

What just happened?
Starting with a simple scatter plot and its effectiveness, we went to great lengths for the
extension to the pairs function. The pairs function has been greatly explored using the
panel.hist and panel.cor functions for truly understanding the relationships between
a set of multiple variables.

Pareto charts
The Pareto rule, also known as the 80-20 rule or the law of vital few, says that approximately 80
percent of the defects are due to 20 percent of the causes. It is important as it can identify 20
percent vital causes whose elimination annihilates 80 percent of the defects. The qcc package
contains the function pareto.chart, which helps in generating the Pareto chart. We will give
a simple illustration of this chart.

The Pareto chart is a display of the cause frequencies along two axes. Suppose that we have
10 causes C1 to C10 which have occurred with defect counts 5, 23, 7, 41, 19, 4, 3, 4, 2,
and 1. Causes 2, 4, and 5 have high frequencies (dominating?) and other causes look a bit
feeble. Now, let us sort these causes by decreasing the order and obtaining their cumulative
frequencies. We will also obtain their cumulative percentages.

> Cause_Freq <- c(5, 23, 7, 41, 19, 4, 3, 4, 2, 1)
> names(Cause_Freq) <- paste("C",1:10,sep="")
> Cause_Freq_Dec <- sort(Cause_Freq,dec=TRUE)
> Cause_Freq_Cumsum <- cumsum(Cause_Freq_Dec)
> Cause_Freq_Cumsum_Perc <- Cause_Freq_Cumsum/sum(Cause_Freq)
> cbind(Cause_Freq_Dec,Cause_Freq_Cumsum,Cause_Freq_Cumsum_Perc)
 Cause_Freq_Dec Cause_Freq_Cumsum Cause_Freq_Cumsum_Perc
C4 41 41 0.3761
C2 23 64 0.5872
C5 19 83 0.7615
C3 7 90 0.8257
C1 5 95 0.8716
C6 4 99 0.9083
C8 4 103 0.9450
C7 3 106 0.9725
C9 2 108 0.9908
C10 1 109 1.0000

This appears to be a simple trick, and yet it is very effective in revealing that causes 2, 4,
and 5 are contributing more than 75 percent of the defects. A Pareto chart completes the
preceding table with bar chart in a decreasing count of the causes with a left vertical axis
for the frequencies and a cumulative curve on the right vertical axis. We will see the Pareto
chart in action for the next example.

Data Visualization

[98]

Example 3.2.10. The Pareto chart for incomplete applications: A simple step-by-step
illustration of Pareto chart is available on the Web at http://personnel.ky.gov/nr/
rdonlyres/d04b5458-97eb-4a02-bde1-99fc31490151/0/paretochart.pdf. The
reader can go through the clear steps mentioned in the document.

In the example from the precedingly mentioned web document, a bank which issues credit
cards rejects application forms if they are deemed incomplete. An application form may be
incomplete if information is not provided for one or more of the details sought in the form.
For example, an application can't be processed further if the customer/applicant has not
provided address, has illegible handwriting, there is a signature missing, or if the customer
is an existing credit card holder among other reasons. The concern of the manager of the
credit card wing is to ensure that the rejections for incomplete applications should decline,
since a cost is incurred on issuing the form which is generally not charged for. The manager
wants to focus on certain reasons which may be leading to the rejection of the forms.

Here, we consider the frequency of the different causes which lead to the rejection of
the applications.

>library(qcc)
>Reject_Freq = c(9,22,15,40,8)
>names(Reject_Freq) = c("No Addr.", "Illegible", "Curr. Customer", "No
Sign.", "Other")
>Reject_Freq
 No Addr. Illegible Curr.CustomerNo Sign. Other
 9 22 15 40 8
>options(digits=2)
>pareto.chart(Reject_Freq)
Pareto chart analysis for Reject_Freq
Frequency Cum.Freq.Percentage Cum.Percent.
 No Sign. 40.0 40.0 42.6 42.6
 Illegible 22.0 62.0 23.4 66.0
 Curr. Customer 15.0 77.0 16.0 81.9
 No Addr. 9.0 86.0 9.6 91.5
 Other 8.0 94.0 8.5 100.0

Chapter 3

[99]

Figure 17: The Pareto chart for incomplete applications

In the screenshot given in step 5 of the Time for action – plot and pairs R functions section,
the frequency of the five reasons of rejections is represented by bars as in a bar plot with
the distinction of being displayed in a decreasing magnitude of frequency. The frequency of
the reasons is indicated on the left vertical axis. At the mid-point of each bar, the cumulative
frequency up to that reason is indicated, and the reference for this count is the right vertical
axis. Thus, we can see that more than 75 percent of the rejections is due to the three causes
No Signature, Illegible, and Current Customer. This is the main strength of a Pareto chart.

A brief peek at ggplot2
Tufte (2001) and Wilkinson (2005) emphasize a lot on the aesthetics of graphics. There is
indeed more to graphics than mere mathematics, and the subtle changes/corrections in
a display may lead to an improved, enhanced, and pleasing feeling on the eye diagrams.
Wilkinson emphasizes on what he calls grammar of graphics, and an R adaptation of it is
given by Wickham (2009).

Data Visualization

[100]

Thus far, we have used various functions, such as barchart, dotchart, spineplot,
fourfoldplot, boxplot, plot, and so on. The grammar of graphics emphasizes that a
statistical graphic is a mapping from data to aesthetic attributes of geometric objects. The
aesthetics aspect consists of color, shape, and size, while the geometric objects are composed
of points, lines, and bars. A detailed discussion of these aspects is unfortunately not feasible in
our book, and we will have to settle with a quick introduction to the grammar of graphics.
To begin with, we will simply consider the qplot function from the ggplot2 package.

Time for action – qplot
Here, we will first use the qplot function for obtaining various kinds of plots. To keep the
story short, we are using the earlier datasets only and hence, a reproduction of the similar
plots using qplot won't be displayed. The reader is encouraged to check ?qplot and
its examples.

1. Load the library with library(ggplot2).

2. Rearrange the resistivity dataset in a different format and obtain the boxplots:

test <- data.frame(rep(c("R1","R2"),each=8),c(resistivity[,1],
resistivity[,2]))
names(test) <- c("RES","VALUE")
qplot(factor(RES),VALUE,data=test,geom="boxplot")

The gplot function needs to be explicitly specified that RES is a factor variable
and according to its levels, we need to obtain the boxplot for the resistivity values.

3. For the Gasoline dataset, we would like to obtain a boxplot of the mileage
accordingly as the gear system could be manual or automatic. Thus, the qplot
can be put to action with qplot(factor(x11),y,data=Gasoline,geom=
"boxplot").

4. A histogram is also one of the geometric aspects of ggplot2, and we next obtain
the histogram for the height of child with qplot(child,data=galton,geom="
histogram", binwidth = 2,xlim=c(60,75),xlab="Height of Child",
ylab="Frequency").

5. The scatter plot for the height of parent against child is fetched with qplot(pare
nt,child,data=galton,xlab="Height of Parent", ylab="Height of
Child", main="Height of Parent Vs Child").

Chapter 3

[101]

What just happened?
The qplot under the argument of geom allows a good family of graphics under a single
function. This is particularly advantageous for us to perform a host of tricks under a
single umbrella.

Of course, there is the all the more important ggplot function from the ggplot2 library,
which is the primary reason for the flexibility of grammar of graphics. We will close the
chapter with a very brief exposition to it. The main strength of ggplot stems from the fact
that you can build a plot layer by layer. We will illustrate this with a simple example.

Time for action – ggplot
ggplot, aes, and layer will be put in action to explore the power of the grammar
of graphics.

1. Load the library with library(ggplot2).

2. Using the aes and ggplot functions, first create a ggplot object with galton_gg
<- ggplot(galton,aes(child,parent)) and find the most recent creation in
R by running galton_gg. You will get an error, and the graphics device will show a
blank screen.

3. Create a scatter plot by adding a layer to galton_gg with galton_gg <-
galton_gg + layer(geom="point"), and then run galton_gg to check for
changes. Yes, you will get a scatter plot of the height of child versus parent.

4. The labels of the axes are not satisfactory and we need better ones. The strength
of ggplot is that you can continue to add layers to it with varied options. In
fact, you can change the xlim and ylim on an existing plot and check each time
the difference in the plot. Run the following code in a step-by-step manner and
appreciate the strength of the grammar:

galton_gg <- galton_gg + xlim(60,75)
galton_gg
galton_gg <- galton_gg + ylim(60,75)
galton_gg
galton_gg<-galton_gg+ylab("Height of Parent")+xlab("Height
ofChild")
galton_gg
galton_gg <- galton_gg + ggtitle("Height of Parent Vs Child")
galton_gg

Data Visualization

[102]

What just happened?
The layer-by-layer approach of ggplot is very useful, and we have seen an illustration of it
on the scatter plot for the Galton dataset. In fact, the reach of ggplot is much richer than
our simple illustration, of course, and the interested reader may refer to Wickham (2009)
for more details.

Have a go hero
If you run par(list(cex.lab=2,ask=TRUE)) followed by barplot(
Severity_Counts,xlab="Bug Count",xlim=c(0,12000), horiz =TRUE,
col=rep(c(2,3),5)), what do you expect R to do?

Summary
In this chapter, we have visualized different types of graphs for different types of variables.
We have also explored how to gain insights into data through the graphs. It is important to
realize that without a clear understanding of the data structure, the plots are meaningless if
they are generated without exercising enough caution. The GIGO adage is very true and no
rich visualization technique helps overcome this problem.

In the previous chapter, we learned the important methods of importing/exporting data, and
visualized the data in different forms. Now that we have an understanding and visual insight
of the data, we need to take the next step, namely quantitative analysis of the data. There
are roughly two streams of analysis: exploratory and confirmative analysis. It is the former
analysis technique that forms the core of the next chapter. As an instance, the scatter plot
reveals whether there is a positive, negative, or no association between the two variables.
If the association is not zero, the numeric answer of the positive or negative relationship is
then required. Techniques such as these and extensions form the core of next chapter.

4
Exploratory Analysis

Tukey (1977) in his benchmark book Exploratory Data Analysis, abbreviated
popularly as EDA, describes "best methods" as:

We do not guarantee to introduce you to the "best" tools, particularly since we
are not sure that there can be unique bests.

The goal of this chapter is to emphasize on EDA and its strengths.

In the previous chapter, we have seen visualization techniques for data of different
characteristics. Analytical insight is also important and this chapter considers EDA techniques.
Further, the more popular measures include the mean, standard error, and so on. It has been
proved many times that the mean has several drawbacks; one of them being that it is very
sensitive to outliers/extremes. Thus, in exploratory analysis the focus is on measures which
are robust to the extremes. Many techniques considered in this chapter are discussed in
more detail by Velleman and Hoaglin (1981), and an eBook has been kindly made available at
http://dspace.library.cornell.edu/handle/1813/62. In the first section, we will
have a peek at the often used measures for exploratory analysis. The main learnings from this
chapter are listed as follows:

 � Summary statistics based on median and its variants, which are robust to outliers

 � Visualization techniques in stem-and-leaf, letter values, and bagplots

 � First regression model in Resistant line and refined methods in smoothing data
and median polish

Exploratory Analysis

[104]

Essential summary statistics
We have seen useful summary statistics of mean and variance in the Discrete distributions
and Continuous distributions sections of Chapter 1, Data Characteristics. The concepts
therein have their own utility value. The drawback of such statistical metrics is that they are
very sensitive to outliers, in the sense that a single observation may completely distort the
entire story. In this section, we discuss some exploratory analysis metrics which are intuitive
and more robust than the metrics such as mean and variance.

Percentiles, quantiles, and median
For a given dataset and a number 0 < k < 1, the 100k% percentile divides the dataset into
two partitions with 100k% of the values below it and 100(1-k) percent of the values above
it. The fraction k is referred as a quantile. In Statistics, quantiles are used more often than
percentiles. The difference being that the quantiles vary over the unit interval (0, 1),
whereas 100 times the quantiles gives us the percentiles. It is important to note that
the minimum (maximum) is the 0% (100%) percentile.

The median is the fiftieth percentile, which divides the data values into two equal parts with
itself being the mid-point of these parts. The lower and upper quartiles are respectively the
25% and 75% percentiles. The standard notation for the lower, mid (median), and upper
quantiles respectively are Q1, Q2, and Q3. By extension, Q0 and Q5 respectively denote the
minimum and maximum quantities in a dataset.

Example 4.1.1. Rahul Dravid – The Wall: The game of Cricket is hugely popular in India, and
many cricketers have given a lot of goose bumps to those watching. Sachin Tendulkar, Anil
Kumble, Javagal Srinath, Sourav Ganguly, Rahul Dravid, and VVS Laxman are some of the
iconic names across the world. The six players mentioned here have especially played a huge
role in taking India to the number one position in the Test cricket rankings, and it is widely
believed that Rahul Dravid has been the main backbone of the success. A century is credited
to a cricketer on scoring 100 or more runs in a single innings. He has scored 36 Test centuries
across the globe, quite a handful of them were so resolute in nature that it earned him the
nickname "The Wall", and we will seek some percentiles/quantiles for these scores soon.

Next, we will focus on a statistic which is similar to the quantiles.

Hinges
The nomenclature of the concept of hinges is basically from the hinges seen on a door. For
a door's frame, the mid-hinge is at the middle of the height of the frame, whereas the lower
and upper hinges are respectively observed at the middle from the mid-hinge to bottom and
top of the frame. In exploratory analysis, the hinges are defined by arranging the data in an
increasing order, and to start the median is identified as the mid-hinge.

Chapter 4

[105]

The lower hinge for the (ordered) data is defined as the middle-most observation from the
minimum to the median. The upper hinge is defined similarly for the upper part of the data.
In the first occasion, it may appear that the lower and upper hinges are the same as lower
and upper quantiles. Consider the data as the first 10 integers. Here, the median is 5.5 as
the average of the two middle-most numbers 5 and 6. Using the quantile function on 1:10,
it may be checked that here Q1 = 3.25 and Q3 = 7.75. The lower hinge is the middlemost
number between 1 to the median 5.5, which turns out as 3, and the upper hinge as 8.
Thus, it may be seen that the hinges are different from the quartiles.

An extension of the concept of the hinges will be seen in the Letter values section.
We will next look at exploratory measures of dispersion.

The interquartile range
Range, the difference between the minimum and maximum of the data values, is one
measure of the spread of the variable. This measure is susceptible to the extreme points.
The interquartile range, abbreviated as IQR, is defined as the difference between the upper
and lower quartile, that is:

3 1= −IQR Q Q

The R function IQR calculates the IQR for a given numeric object. All the concepts
theoretically described up to this point will be put into action.

Time for action – the essential summary statistics for
"The Wall" dataset

We will understand the summary measures for EDA through the data on centuries scored
by Rahul Dravid in test matches.

1. Load the useful EDA package: library(LearnEDA).

2. Load the dataset TheWALL from the RSADBE package: data(TheWALL).

3. Obtain the quantiles of the centuries with quantile(TheWALL$Score),
and the difference between the quantiles using the diff function
diff(quantile(TheWALL$Score)). The output is as follows:

> quantile(TheWALL$Score)
 0% 25% 50% 75% 100%
100.0 111.8 140.0 165.8 270.0
> diff(quantile(TheWALL$Score))
 25% 50% 75% 100%
11.75 28.25 25.75 104.25

Exploratory Analysis

[106]

As we are considering Rahul Dravid's centuries only, the beginning point is 100. The
median of his centuries is 140.0, where the first and third quartiles are respectively
111.8 and 165.8. The median of the centuries is 140 runs, which can be interpreted
as having a 50 percent chance of The Wall reaching 140 runs if he scores a century.
The highest ever score of Dravid is of course 270. Interpret the difference between
the quantiles.

4. The percentiles of Dravid's centuries can be obtained by using the quantile
function again: quantile(TheWALL$Score,seq(0,1,.1)), here seq(0,1,.1)
creates a vector which incrementally increases 0.1 beginning with 0 until 1, and the
inter-difference between the percentiles with diff(quantile(TheWALL$Score,
seq(0,1,.1))):

>quantile(TheWALL$Score,seq(0,1,.1))
 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
100.0 103.5 111.0 116.0 128.0 140.0 146.0 154.0 180.0 208.5 270.0
> diff(quantile(TheWALL$Score,seq(0,1,.1)))
 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
3.5 7.5 5.0 12.0 12.0 6.0 8.0 26.0 28.5 61.5

The Wall is also known for his resolve of performing well in away Test matches.
Let us verify that using the data on the centuries score.

5. The Home and Away number of centuries is obtained using the table function.
Further, we obtain a boxplot of the home and away centuries.

> table(HA_Ind)
HA_Ind
Away Home
 21 15

The R function table returns frequencies of the various categories for a categorical
variable. In fact, it is more versatile in obtaining frequencies for more than one
categorical variable. The Wall is also known for his resolve of performing well in
away Test matches. This is partly confirmed by the fact that 21 of his 36 centuries
came in away Tests. However, the boxplot says otherwise:

>boxplot(Score~HA_Ind,data=TheWALL)

Chapter 4

[107]

Figure 1: Box plot for Home/Away centuries of The Wall

It may be tempting for The Wall's fans to believe that if they remove the outliers of
scores above 200, the result may say that his performance of Away Test centuries is
better/equal to Home ones. However, this is not the case, which may be verified
as follows.

6. Generate the boxplot for centuries whose score is less than 200 with
boxplot(Score~HA_Ind,subset=(Score<200),data=TheWALL).

Figure 2: Box plot for Home/Away centuries of The Wall (less than 200 runs)

What do you conclude from the preceding screenshot?

Exploratory Analysis

[108]

7. The fivenum summary for the centuries is:

>fivenum(TheWALL$Score)
[1] 100.0 111.5 140.0 169.5 270.0

The fivenum function returns minimum, lower-hinge, median, upper-hinge,
and maximum values for the input data. The numbers 111.5 and 169.5 are
lower- and upper-hinges, and it may be seen that they are certainly different
values than lower- and upper-quartiles of 111.5 and 169.5. Thus far, we have
focused on measures of location, so let us now look at some measures of dispersion.

The range function in R actually returns the minimum and maximum value of the
data frame. Thus, to obtain the range as a measure of spread, we get that using
diff(range()). We use the IQR function to obtain the interquartile range.

8. Using range, diff, and IQR functions, obtain the spread of Dravid's centuries
as follows:

> range(TheWALL$Score)
[1] 100 270
> diff(range(TheWALL$Score))
[1] 170
> IQR(TheWALL$Score)
[1] 54
>IQR(TheWALL$Score[TheWALL$HA_Ind=="Away"])
[1] 36
> IQR(TheWALL$Score[TheWALL$HA_Ind=="Home"])
[1] 63.5

Here, we are extracting the home centuries from Score using the logic that
consider only those elements of Score when HA_Ind is Home.

What just happened?
The data summaries in the EDA framework are slightly different. Here, we first used the
quantile function to obtain quartiles and the deciles (10 percent difference) of a numeric
variable. The diff function has been used to find the difference between the consecutive
elements of a vector. The boxplot function has been used to compare the home and away
Test centuries, which led to the conclusion that the median score of Dravid's centuries at
home is higher than the away centuries. The restriction of the Test centuries under 200 runs
further confirmed in particular that Dravid's centuries at home have a higher median value
than those in away series, and in general that median is robust to outliers.

Chapter 4

[109]

The IQR function gives us the interquartile range for a vector, and the fivenum function
gives us the hinges. Though intuitively it appears that hinges and quartiles are similar, it is
not always true. In this section, you also learned the usage of functions, such as quantile,
fivenum, IQR, and so on.

We will now move to the main techniques of exploratory analysis.

The stem-and-leaf plot
The stem-and-leaf plot is considered as one of the seven important tools of Statistical
Process Control (SPC), refer to Montgomery (2005). It is a bit similar in nature to the
histogram plot.

The stem-and-leaf plot is an effective method of displaying data in a (partial) tree form. Here,
each datum is split into two parts: the stem part and the leaf part. In general, the last digit
of a datum forms the leaf part; the rest form the stem. Now, consider a datum 235. If the
split criteria is the units place, the stem and leaf parts here will be respectively 23 and 5; if it
is tens, then 2 and 3; and finally if it is hundreds, it will be 0 and 2. The left-hand side of the
split datum is called as the leading digits and the right-hand side as the trailing digits.

In the next step, all the possible leading digits are arranged in an increasing order. This
includes even those stems for which we may not have data for the leaf part, which ensures
that the final stem-and-leaf plot truly depicts the distribution of the data. All the possible
leading digits are called stems. The leaves are then displayed to the right-hand side of the
stems, and for each stem the leaves are again arranged in an increasing order.

Example 4.2.1. A simple illustration: Consider a data of eight elements as 12, 22, 42, 13, 27,
46, 25, and 52. The leading digits for this data are 1, 2, 4, and 5. On inserting 3, the leading
digits complete the required stems to be 1 to 5. The leaves for stem 1 are 2 and 3. The
unordered leaves for stem 2 are 2, 7, and 5. The display leaves for stem 2 are then 2, 5,
and 7. There are no leaves for stem 3. Similarly, the leaves for stems 4 and 5 respectively
are the sets {2, 6} and {2} only. The stem function in R will be used for generating the
stem-and-leaf plots.

Example 4.2.1. Octane Rating of Gasoline Blends: (Continued from the Vizualization
techniques for continuous variable data section of Chapter 3, Data Vizualization):
In the earlier study, we used the histogram for understanding the octane ratings under
two different methods. We will use the stem function in the forthcoming Time for
action – the stem function in play section for displaying the octane ratings under Method_1
and Method_2.

Exploratory Analysis

[110]

Tukey (1977), being the benchmark book for EDA, produces the stem-and-leaf plot in a
slightly different style. For example, the stem plots for Method_1 and Method_2 are better
understood if we can put both the stem and leaf sides adjacent to each other instead of one
below the other. It is possible to achieve this using the stem.leaf.backback function
from the aplpack package.

Time for action – the stem function in play
The R function stem from the base package and stem.leaf.backback from aplpack are
fundamental for our purpose to create the stem-and-leaf plots. We will illustrate these two
functions for the examples discussed earlier.

1. As mentioned in Example 4.2.1. Octane Rating of Gasoline Blends, first create the
x vector, x<-c(12,22,42,13,27,46,25,52).

2. Obtain the stem-and-leaf plot with:

> stem(x)
 The decimal point is 1 digit(s) to the right of the |
 1 | 23
 2 | 257
 3 |
 4 | 26
 5 | 2

To obtain the median from the stem display we proceed as follows. Remove one
point each from either side of the display. First we remove 52 and 12, and then
remove 46 and 13. The trick is to proceed until we are left with either one point, or
two. In the former case, the remaining point is the median, and in the latter case,
we simply take the average. Finally, we are left with 25 and 27 and hence, their
average 26 is the median of x.

We will now look at the octane dataset.

3. Obtain the stem plots for both the methods: data(octane),
stem(octane$Method_1,scale=2) and stem(octane$Method_2, scale=2).

Chapter 4

[111]

The output will be similar to the following screenshot:

Figure 3: The stem plot for the octane dataset (R output edited)

Of course, the preceding screenshot has been edited. To generate such
a back-to-back display, we need a different function.

4. Using the stem.leaf.backback function from aplpack and the code
library(aplpack) and stem.leaf.backback(Method_1, Method_2,back.
to.back=FALSE, m=5), we get the output in the desired format.

Figure 4: Tukey's stem plot for octane data

Exploratory Analysis

[112]

The preceding screenshot has many unexplained, and a bit mysterious, symbols! Prof. J.
W. Tukey has taken a very pragmatic approach when developing EDA. You are is strongly
suggested to read Tukey (1977), as this brief chapter barely does justice to it. Note that 18
of the 32 observations for Method_1 are in the range 80.4 to 89.3. Now, if we have stems as
8, 9, and 10, the spread at stem 8 will be 18, which will not give a meaningful understanding
of the data. The stems can have substems, or be stretched out, and for which a very novel
solution is provided by Prof. Tukey. For very high frequency stems, the solution is to squeeze
out five more stems. For the stem 8 here, we have the trailing digits at 0, 1, 2, …, 9. Now,
adopt a scheme of tagging lines which leads towards a clear reading of the stem-and-leaf
display. Tukey suggests to use * for zero and one, t for two and three, f for four and five, s for
six and seven, and a period (.) for eight and nine. Truly ingenious! Thus, if you are planning to
write about stem-and-leaf in your local language, you may not require *, t, f, s, .! Go back to
the preceding screenshot and now it looks much more beautiful.

Following the leaf part for each method, we are given cumulative frequencies from the top
and the bottom too. Why? Now, we know that the stem-and-leaf display has increasing
values from the top and decreasing values from the bottom. In this particular example,
we have n: 32 observations. Thus, in a sorted order, we know that the median is a value
between the sixteenth and seventeenth sorted observation. The cumulative frequencies
when exceeds 16 from either direction, lead to the median. This is indicated by (2) for
Method_1 and (6) for Method_2. Can you now make an approximate guess of the median
values? Obviously, depending on the dataset, we may require m = 5, 1, or 2.

We have used the argument back.to.back=FALSE to ensure that the two stem-and-leafs
can be seen independently. Now, it is fairly easy to compare these two displays by setting
back.to.back=TRUE, in which case the stem line will be common for both the methods
and thus, we can simply compare their leaf distributions. That is, you need to run stem.
leaf.backback(octane$Method_1,octane$Method_2,back.to.back=TRUE, m=5)
and investigate the results.

We can clearly see that the median for Method_2 is higher than that of Method_1.

What just happened?
Using the basic stem function and stem.leaf.backback from the aplpack, we got two
efficient exploratory displays of the datasets. The latter function can be used to compare two
stem-and-leaf displays. Stems can be further squeezed to reveal more information with the
options of m as 1, 2, and 5.

We will next look at the EDA technique which extends the scope of hinges.

Chapter 4

[113]

Letter values
The median, quartiles, and the extremes (maximum and minimum) indicate how the data
is spread over the range of the data. These values can be used to examine two or more
samples. There is another way of understanding the data offered by letter values. This
small journey begins with the use of a concept called depth, which measures the minimum
position of the datum in the ordered sample from either of the extremes. Thus, the extremes
have a depth of 1, the second largest and smallest datum have a depth of 2, and so on.

Now, consider a sample data of size n, assumed to be an odd number for convenience sake.
Then, the depth of the median is (n + 1)/2. The depth of a datum is denoted by d, and for the
median it is indicated by d(M). Since the hinges, lower and upper, do the same to the divided
samples (by median), the depth of the hinges is given by () ()()1 2= + d H d M / . Here, [] denotes
the integer part of the argument. As hinges, including the mid-hinge which is the median,
divide the data into four equal parts, we can define eights as the values which divide the
data into eight equal parts. The eights are denoted by E. The depth of eights is given by the
formula () ()()1 2= + d E d H / . It may be seen that the depth of the median, hinges, and eights
of the datum depends on the sample size.

Using the eights, we can further carry out the division of the data for obtaining the sixteenths,
and then thirty seconds, and so on. The process of division should continue till we end up
with the extremes where we cannot further proceed with the division any longer. The letter
values continue the search until we end at the extremes. The process of the division is well
understood when we augment the lower and upper values for the hinges, the eights, the
sixteenths, the thirty seconds, and so on. The difference between the lower and upper values
of these metrics, concept similar to mid-range, is also useful for understanding the data.
The R function lval from the LearnEDA package gives the letter values for the data.

Example 4.3.1. Octane Rating of Gasoline Blends (Continued): We will now obtain the letter
values for the octane dataset:

>library(LearnEDA)
>lval(octane$Method_1)
depth lo hi mids spreads
M 16.5 88.00 88.0 88.000 0.00
H 8.5 85.55 91.4 88.475 5.85
E 4.5 84.25 94.2 89.225 9.95
D 2.5 82.25 101.5 91.875 19.25
C 1.0 80.40 105.5 92.950 25.10
> lval(octane$Method_2)
depth lo hi mids spreads
M 16.5 97.20 97.20 97.200 0.00
H 8.5 93.75 99.60 96.675 5.85
E 4.5 90.75 101.60 96.175 10.85
D 2.5 87.35 104.65 96.000 17.30
C 1.0 83.30 106.60 94.950 23.30

Exploratory Analysis

[114]

The letter values, look at the lo and hi in the preceding code, clearly show that the
corresponding values for Method_1 are always lower than those under Method_2.
Particularly, note that the lower hinge of Method_2 is greater than the higher hinge
of Method_1. However, the spread under both the methods are very identical.

Data re-expression
The presence of an outlier or overspread of the data may lead to an incomplete picture of
the graphical display and hence, statistical inference may be inappropriate in these scenarios.
In many such scenarios, re-expression of the data on another scale may be more useful,
refer to Chapter 3, The Problem of Scale, Tukey (1977). Here, we list the scenarios from Tukey
where the data re-expression may help circumvent the limitations cited in the beginning.

The first scenario where re-expression is useful is when the variables assume non-negative
values, that is, the variables never assume a value lesser than zero. Examples of such
variables are age, height, power, area, and so on. A thumb rule for the application of
re-expression is when the ratio of the largest to the smallest value in the data is very large,
say 100. This is one reason that most regression analysis variables such as age are almost
always re-expressed on the logarithmic scale.

The second scenario explained by Tukey is about variables like balance and
profit-and-loss. If there is a deposit to an account, the balance increases, and if there
is a withdrawal it decreases. Thus, the variables can assume positive as well as negative
values. Since re-expression of these variables like balance rarely helps; re-expression of the
amount or quantity before subtraction helps on some occasions. Fraction and percentage
counts form the third scenario where re-expression of the data is useful, though you need
special techniques. The scenarios mentioned are indicative and not exhaustive. We will now
look at the data re-expression techniques which are useful.

Example 4.4.1. Re-expression for the Power of 62 Hydroelectric Stations: We need to
understand the distribution of the ultimate power in megawatts of 62 hydroelectric stations
and power stations of the Corps of Engineers. The data for our illustration has actually been
regenerated from the Exhibit 3 of Tukey (1977). First, we simply look at the stem-and-leaf
display of the original data on the power of 62 hydroelectric stations. We use the stem.
leaf function from the aplpack package.

> hydroelectric <- c(14,18,28,26,36,30,30,34,30,43,45,54,52,60,68, +
68,61,75,76,70,76,86,90,96,100,100,100,100,100,100,110,112,
+ 118,110,124,130,135,135,130,175,165,140,250,280,204,200,270,
+ 40,320,330,468,400,518,540,595,600,810,810,1728,1400,1743,2700)
>stem.leaf(hydroelectric,unit=1)
1 | 2: represents 12
leaf unit: 1

Chapter 4

[115]

n: 62
 2 1 | 48
 4 2 | 68
 9 3 | 00046
 …
 24 9 | 06
 30 10 | 000000
 (4) 11 | 0028
 28 12 | 4
 27 13 | 0055
 23 14 | 0
 15 |
 22 16 | 5
 21 17 | 5
 18 |
 19 |
 20 20 | 04
 21 |
 24 |
 …

 7 60 | 0
HI: 810 810 1400 1728 1743 2700

The data begins with values as low as 14, and grows modestly to hundreds, such as 100, 135,
and so on. Further, the data grows to five hundreds and then literally explodes into thousands
running up to 2700. If all the leading digits must be mandatorily displayed, we have 270
leading digits. With an average of 35 lines per page, the output requires approximately eight
pages, and between the last two values of 1743 and 2700, we will have roughly 100 empty
leading digits. The stem.leaf function has already removed all the leading digits after the
hydroelectric plant producing 600 megawatts.

Let us look at the ratio of the largest to smallest value, which is as follows:

>max(hydroelectric)/min(hydroelectric)
[1] 192.8571

By the thumb rule, it is an indication that a data re-expression is in order. Thus, we
take the log transformation (with base 10) and obtain the stem-and-leaf display for
the transformed data.

>stem.leaf(round(log(hydroelectric,10),2),unit=0.01)
1 | 2: represents 0.12
leaf unit: 0.01
n: 62

Exploratory Analysis

[116]

 1 11 | 5
 2 12 | 6
 13 |
 …
 24 19 | 358
 (11) 20 | 00000044579
 27 21 | 11335
 22 22 | 24
 20 23 | 110
 …
 30 |
 4 31 | 5
 3 32 | 44
HI: 3.43

The compactness of the stem-and-leaf display for the transformed data is indeed more
useful, and we can further see that the leading digits are just about 30. Also, the display
is more elegant and comprehensible.

Have a go hero
The stem-and-leaf plot is considered a particular case of the histogram from a certain point
of view. You can attempt to understand the hydroelectric distribution using histogram too.
First, obtain the histogram of the hydroelectric variable, and then repeat the exercise on its
logarithmic re-expression.

Bagplot – a bivariate boxplot
In Chapter 3, Data Visualization, we saw the effectiveness of boxplot. For independent
variables, we can simply draw separate boxplots for the variables and visualize the
distribution. However, when there is dependency between two variables, distinct boxplot
loses the dependency among the two variables. Thus, we need to see if there is a way to
visualize the data through a boxplot. The answer to the question is provided by bagplot
or bivariate boxplot.

The bagplot characteristic is described in the following steps:

 � The depth median, denoted by * in the bagplot, is the point with the highest half
space depth.

Chapter 4

[117]

 � The depth median is surrounded by a polygon, called bag, which covers n/2
observations with the largest depth.

 � The bag is then magnified by a factor of 3 which gives the fence. The fence is not
plotted since it will drive the attention away from the data.

 � The observations between the bag and fence are covered by a loop.

 � Points outside the fence are flagged as outliers.

For technical details of the bagplot, refer to the paper (http://venus.unive.it/
romanaz/ada2/bagplot.pdf) by Rousseeuw, Ruts, and Tukey (1999).

Example 4.5.1. Bagplot for the Gasoline mileage problem: The pairs plot of the gasoline
mileage problem in Example 3.2.9. Octane rating of gasoline blends gave a good insight in to
understanding the nature of the data. Now, we will modify that plot and replace the upper
panel with the bagplot function for a cleaner comparison of the bagplot with the scatter
plot. However, in the original dataset, variables x4, x5, and x11 are factors that we remove
from the bagplot study. The bagplot function is available in the aplpack package. We first
define panel.bagplot, and then generate the matrix of the scatter plot with the bagplots
produced in the upper matrix display.

Time for action – the bagplot display for a multivariate dataset
1. Load the aplpack package with library(aplpack).

2. Check the default examples of the bagplot function with example(bagplot).

3. Create the panel.bagplot function with:

panel.bagplot <- function(x,y)

{

require(aplpack)

bagplot(x,y,verbose=FALSE,create.plot = TRUE,add=TRUE)

}

Here, the panel.bagplot function is defined to enable us to obtain the bagplot
for the upper panel region of the pairs function.

Exploratory Analysis

[118]

4. Apply the panel.bagplot function within the pairs function on the Gasoline
dataset: pairs(Gasoline[-19,-c(1,4,5,13)],upper.panel =panel.
bagplot).

We obtain the following display:

Figure 5: Bagplot for the Gasoline dataset

What just happened?
We created the panel.bagplot function and augmented it in the pairs function for
effective display of the multivariate dataset. The bagplot is an important EDA tool towards
getting exploratory insight in the important case of multivariate dataset.

The resistant line
In Example 3.2.3. The Michelson-Morley experiment of Chapter 3, Data Visualization,
we visualized data through the scatter plot which indicates possible relationships between
the dependent variable (y) and independent variable (x). The scatter plot or the x-y plot is
again an EDA technique. However, we would like a more quantitative model which explains
the interrelationship in a more precise manner. The traditional approach would be taken in
Chapter 7, The Logistic Regression Model. In this section, we would take an EDA approach for
building our first regression model.

Chapter 4

[119]

Consider a pair of n observations: () () ()1 1 2 2 n nx , y , x , y ,..., x , y . We can easily visualize the data
using the scatter plot. We need to obtain a model of the form = +y a bx , where a is the
intercept term while b is the slope. This model is an attempt to explain the relationship
between the variables x and y. Basically, we need to obtain the values of the slope and
intercept from the data. In most real data, a single line will not pass through all the n pairs of
observations. In fact, it is even a difficult task for the determined line to pass through even a
very few observations. As a simple task, we may choose any two observations and determine
the slope and intercept. However, the difficulty lies in the choice of the two points. We will
now explain how the resistant line determines the two required terms.

The scatter plot (part A of the next screenshot) is divided into three regions, using x-values,
where each region has approximately same number of data points, refer to part B of the next
screenshot. The three regions, from the left-hand to the right-hand side, are called the lower,
middle, and upper regions. Note that the y-values are distributed among the three regions
corresponding to their x-values. Hence, there is a possibility of some y-values of lower regions
to be higher than a few values in the higher regions. Within each region, we find the medians
of the x- and y-values independently. That is, for the lower region, the median yL is determined
by the y-values falling in this region, and similarly, the median xL is determined by the x-values
of the region. Similarly, the medians xM , xH , yM , and yH are determined, refer to part C of the
following screenshot. Using these median values, we now form three pairs: (xL , yL), (xM , yM),
and (xH , yH). Note that these pairs need not be one of the data points.

To determine the slope b, two points suffice. The resistant line theory determines the slope
by using the two pairs of points (xL , yL) and (xH , yH). Thus, we obtain the following:

−
=

−
H L

H L

y yb
x x

For obtaining the intercept value a, we use all the three pairs of medians. The value of a is
determined using ()1

3
= + + − + + L M H L M Ha y y y b x x x .

Exploratory Analysis

[120]

Note that the median properties are what exactly make the solutions resistant enough.
As an example, the lower and upper median would not be affected by the outliers
(at the extreme ends).

a= yL+ yM+ yH b()xL+ xM+ xH
1
3

[]

yH yL

xH xL
b=

Obtaining the and valuesa b

y-axis

A

x-axis

x

x

x
x

x

x

x

x x

x
x

x
x

x

x

x
x

x
x

x

x

y-axis

B

x-axis

x

x

x
x

x

x

x

x x

x
x

x
x

x

x

x
x

x
x

x

x

Dividing into three
portions by x-values

y-axis

C

x-axis

x

x

x
x

x

x

x
x x

x
x

x
x

x

x

x
x

x
x

x

x

y-axis

D

x-axis

x

x

x
x

x

x

x

x x

x
x

x
x

x

x

x
x

x
x

x

x

y
L

yM

yH

xL

for y-values
for x-values

(x ,y)H H

(x ,y)M M

(x ,y)L L

xM
xH

The x-y Scatter Plot

Figure 6: Understanding the resistant line

We will use the rline function from the LearnEDA package.

Example 4.6.1. Resistant line for the IO-CPU time: The CPU time is known to depend on the
number of IO processes running at any given point of time. A simple dataset is available at
http://www.cs.gmu.edu/~menasce/cs700/files/SimpleRegression.pdf.
We aim at fitting a resistant line for this dataset.

Time for action – the resistant line as a first regression model
We use the rline function from the LearnEDA package for fitting the resistant line on
a dataset.

1. Load the LearnEDA package: library(LearnEDA).

2. Understand the default example with example(rline).

3. Load the dataset data(IO_Time).

4. Create the IO_rline resistant line for CPU_Time as the output and No_of_IO
as the input with IO_rline <- rline(IO_TimeNo_of_IO, IO_TimeCPU_
Time,iter=10) for 10 iterations.

Chapter 4

[121]

5. Find the slope and intercept with IO_rline$a and IO_rline$b. The output will
then be:

>IO_rline$a
[1] 0.2707
>IO_rline$b
[1] 0.03913

6. Obtain the scatter plot of CPU_Time against No_of_IO with plot(IO_Time$No_
of_IO, IO_Time$CPU_Time).

7. Add the resistant line on the generated scatter plot with abline(a= IO_
rline$a,b=IO_rline$b).

8. Finally, give a title to the plot: title("Resistant Line for the IO-CPU
Time").

We then get the following screenshot:

Figure 7: Resistant line for CPU_Time

What just happened?
The rline function from the LearnEdA package fits a resistant line given the input and
output vectors. It calculated the slope and intercept terms which are driven by medians.
The main advantage of the rline fit is that the model is not susceptible to outliers. We can
see from the preceding screenshot that the resistant line model, IO_rline, provides a very
good fit for the dataset. Well! You have created your first exploratory regression model.

Exploratory Analysis

[122]

Smoothing data
In The resistant line section, we constructed our first regression model for the relationship
between two variables. In some instances, the x-values are so systematic that their values
are almost redundant, and yet we need to understand the behavior of the y-values with
respect to them. Consider the case where the x-values are equally spaced; the shares price
(y) at the end of day (x) is an example where the difference between two consecutive
x-values is exactly one. Here, we are more interested in smoothing the data along the
y-values, as one expects more variation in their direction. Time series data is a very good
example of this type. In the time series data, we typically have xn + 1 = xn + 1 , and hence
we can precisely define the data in a compact form by yt , t = 1, 2, … .The general model
may then be specified by 1 2= + + ε =ty a bt ,t , ,... .

In the standard EDA notation, this is simply expressed as:

data = fit + residual

In the context of time series data, the model is succinctly expressed as:

data = smooth + rough

The fundamental concept of the smoothing data technique makes use of the running
medians. In a free hand curve, we can simply draw a smooth curve using our judgment
by ignoring the out-of-curve points and complete the picture. A computer finds this task
only difficult when it needs specific instructions for obtaining the smooth points across
which it needs to draw a curve. For a sequence of points, such as the sequence yt, the
smoothing needs to be carried over a sequence of overlapping segments. Such segments are
predefined of specific length. As a simple example, we may have a three-length overlapping
segment sequence in {y1 , y2 , y3 }, {y2 , y3 , y4 }, {y3 , y4 , y5 }, and so on. It is on similar lines that
four-length or five-length overlapping segment sequences may be defined as required. It is
within each segment that smoothing needs to be carried out. Two popular choices are mean
and median. Of course, in exploratory analysis our natural choice is the median. Note that
median of the segment {y1 , y2 , y3 } may be any of y1 , y2 , or y3 values.

The general smoothing techniques, such as LOESS, are nonparametric techniques and
require good expertise in the subject. The ideas discussed here are mainly driven by median
as the core technique.

Chapter 4

[123]

A three-moving median cannot correct for more than two consecutive outliers, and similarly,
a five-moving median for three consecutive outliers, and so on. A solution, or work around
in an engineer's language, for this is to continue the smoothing of the sequence obtained in
the previous iteration until there is no further change in the smoothness part. We may also
consider a moving median of span 4. Here, the median is the average of the two mid-points.
However, considering that the x values are integers, the four-moving median actually does
not correspond to any of the time points t. Using the simplicity principle, it is easily possible
to re-center the points at t by taking a two-moving median of the values obtained in the step
of the four-moving median.

A notation for the first iteration in EDA is simply the number 3, or 5 and 7 as used. The notation
for repeated smoothing is denoted by 3R where R stands for repetitions. For a four-moving
median re-centered by a two-moving median, the notation will be 42. On many occasions, a
smoother operation giving more refinement than 42 may be desired. It is on such occasion that
we may use the running weighted average, which gives different weights to the points under a
span. Here, each point is replaced by a weighted average of the neighboring points. A popular
choice of weights for a running weighted average of 3 is (¼, ½, ¼), and this smoothing process
is referred to as hanning. The hanning process is denoted by H.

Since the running median smoothens the data sequence a bit more than appropriate and
hence removes any interesting patterns, patterns can be recovered from the residuals which
in this context are called rough. This is achieved by smoothing the rough sequence and
adding them back to the smooth sequence. This operation is called as reroughing. Velleman
and Hoaglin (1984) point out that the smoothing process which performs better in general is
4253H. That is, here we first begin with running median of 4 which is re-centered by 2.
The re-smoothing is then done by 5 followed by 3, and the outliers are removed by H. Finally,
re-roughing is carried out by smoothing the roughs and then adding them to the smoothed
sequence. This full cycle is denoted by 4253H, twice. Unfortunately, we are not aware of any
R function or package which implements the 4253H smoother. The options available in the
LearnEDA package are 3RSS and 3RSSH.

We have not explained what the smoothers 3RSS and 3RSSH are. The 3R smoothing chops
off peaks and valleys and leaves behind mesas and dales two points long. What does this
mean? Mesa refers to an area of high land with a flat top and two or more steep cliff-like sides,
whereas dale refers a valley. To overcome this problem, a special splitting is used at each
two-point mesa and dale where the data is split into three pieces: a two-point flat segment,
the smooth data to the left of the two points, and the smooth sequence to their right. Now, let
yf-1, yf refer to the two-point flat segment, and yf+1 , yf+2 , … refer to the smooth sequence to the
left of these two-point flat segments. Then the S technique predicts the value of yf-1 if it were
on the straight line formed by yf+1 and yf+2. A simple method is to obtain yf-1 as 3yf+1 – 2yf+2. The yf
value is obtained as the median of the predicted yf-1, yf+1, and yf+2. After removing all the mesas
and dales, we again repeat the 3R cycle. Thus, we have the notation 3RSS and the reader
can now easily connect with what 3RSSH means. Now, we will obtain the 3RSS for the cow
temperature dataset of Velleman and Hoaglin.

Exploratory Analysis

[124]

Example 4.7.1. Smoothing Data for the Cow temperature: The temperature of a cow is
measured at 6:30 a.m. for 75 consecutive days. We will use the smooth function from the
base package and the han function from the LearnEDA package to achieve the required
smoothing sequence. We will build the necessary R program in the forthcoming action list.

Time for action – smoothening the cow temperature data
First we use the smooth function from the stats package on the cow temperature dataset.
Next; we will use the han function from LearnEDA.

1. Load the cow temperature data in R by data(CT).

2. Plot the time series data using the plot.ts function: plot.ts(CT$Temperature
,col="red",pch=1).

3. Create a 3RSS object for the cow temperature data using the smooth function
and the kind option: CT_3RSS <- smooth(CT$Temperature,kind="3RSS").

4. Han the preceding 3RSS object using the han function from the LearnEDA package:
CT_3RSSH <- han(smooth(CT$Temperature,kind="3RSS")).

5. Impose a line of the 3RSS data points with lines.
ts(CT_3RSS,col="blue",pch=2).

6. Impose a line of the hanned 3RSS data points with lines.
ts(CT_3RSSH,col="green",pch=3).

7. Add a meaningful legend to the plot: legend(20,90,c("Original","3RSS","3
RSSH"),col=c("red","blue","green"),pch="___").

We get a useful smoothened plot of the cow temperature data as follows:

Smoothening cow temperature data

Chapter 4

[125]

The original plot shows a lot of variation for the cow temperature measurements. The edges
of the 3RSS smoother shows many sharp edges in comparison with the 3RSSH smoother,
though it is itself a lot smoother than the original display. The plot further indicates that
there has been a lot of decrease in the cow temperature measurements from the fifteenth
day of observation. This is confirmed by all the three displays.

What just happened?
The discussion of the smoothing function looked very promising in the theoretical
development. We took a real dataset and saw its time series plot. Then we plotted
two versions of the smoothening process and found both to be very smooth over
the original plot.

Median polish
In Example 4.6.1. Resistant line for the IO-CPU time, we had IO as the only independent
variable which explained the variations of the CPU time. In many practical problems, the
dependent variable depends on more than one independent variable. In such cases, we need
to factor the effect of such independent variables using a single model. When we have two
independent variables, and median polish helps in building a robust model. A data display in
which the rows and columns hold different factors of two variables is called a two-way table.
Here, the table entries are values of the independent variables.

An appropriate model for the two-way table is given by:

β γ= + + + εij i j ijy a

Here, α is the intercept term, βi denotes the effect of the i-th row, yj the effect of the j-th
column, and εij is the error term. All the parameters are unknown. We need to find the
unknown parameters through the EDA approach. The basic idea is to use row-medians and
column-medians for obtaining the row- and column-effect, and then find the basic intercept
term. Any unexplained part of the data is considered as the residual.

Time for action – the median polish algorithm
The median polish algorithm (refer to http://www-rohan.sdsu.edu/~babailey/
stat696/medpolishalg.html) is given next:

1. Obtain the row medians of the two-way table and upend it to the right-hand side
of the data matrix. From each element of every row, subtract the respective
row median.

Exploratory Analysis

[126]

2. Find the median of the row median and record it as the initial grand effect value.
Also, subtract the initial grand effect value from each row median.

3. For the original data columns in the previously upended matrix, obtain the column
median and append it with the previous matrix at the bottom. As in step 1, subtract
from each column element their corresponding column median.

4. For the bottom row of column medians in the previous table, obtain the median,
and then add the obtained value to the initial grand effect value. Next, subtract the
modified grand effect median value from each of the column medians.

5. Iterate steps 1-4 until the changes in row or column median is insignificant.

We use the medpolish function from the stats library for the computations involved in
median polish. For more details about the model, you can refer to Chapter 8, Velleman and
Hoaglin (1984).

Example 4.7.1. Male death rates: The dataset related to the male death rate per 1000 by the
cause of death and the average amount of tobacco smoked daily is available on page 221 of
Velleman and Hoaglin (1984). Here, the row effect is due to the cause of death, whereas the
column constitutes the amount of tobacco smoked (in grams). We are interested in modeling
the effect of these two variables on the male death rates in the region.

> data(MDR)
> MDR2 <- as.matrix(MDR[,2:5])
>rownames(MDR2) <- c("Lung", "UR","Sto","CaR","Prost","Other_
Lung","Pul_TB","CB","RD_Other", "CT","Other_
Cardio","CH","PU","Viol","Other_Dis")
> MDR_medpol <- medpolish(MDR2)
1 : 8.38
2 : 8.17
Final: 8.1625
>MDR_medpol$row
 Lung UR StoCaR Prost Other_
LungPul_TB CB RD_Other CT Other_Cardio
 0.1200 -0.4500 -0.2800 -0.0125 -0.3050
0.2050 -0.3900 -0.2050 0.0000 4.0750
1.6875
 CH PU Viol Other_Dis

Chapter 4

[127]

 1.4725 -0.4325 0.0950 0.9650
>MDR_medpol$col
 G0 G14 G24 G25
-0.0950 0.0075 -0.0050 0.1350
>MDR_medpol$overall
[1] 0.545
>MDR_medpol$residuals
 G0 G14 G24 G25
Lung -0.5000 -0.2025 2.000000e-01 0.8600
UR 0.0000 0.0275 0.000000e+00 -0.0200
Sto 0.2400 0.0875 -1.600000e-01 -0.0900
CaR 0.0025 0.0000 -1.575000e-01 0.0725
Prost 0.4050 0.0125 -1.500000e-02 -0.0350
Other_Lung -0.0150 -0.0375 1.500000e-02 0.1350
Pul_TB -0.0600 -0.0025 3.000000e-02 0.0000
CB -0.1250 -0.0575 5.500000e-02 0.2450
RD_Other 0.2400 -0.0025 1.387779e-17 -0.2800
CT -0.3050 0.0125 -1.500000e-02 1.2350
Other_Cardio 0.0925 -0.0900 2.425000e-01 -0.1175
CH 0.0875 -0.0850 -1.525000e-01 0.1775
PU -0.0175 0.0200 5.250000e-02 -0.0275
Viol -0.1250 0.1725 -1.850000e-01 0.1250
Other_Dis 0.0350 0.2925 -3.500000e-02 -0.0750

What just happened?
The output associated with MDR_medpol$row gives the row effect, while MDR_medpol$col
gives the column effect. The negative value of -0.0950 for the non-consumers of tobacco
shows that the male death rate is lesser for this group, whereas the positive values of 0.0075
and 0.1350 for the group under 14 grams and above 25 grams respectively is an indication
that tobacco consumers are more prone to death.

Have a go hero
For the variables G0 and G25 in the MDR2 matrix object, obtain a back-to-back
stem-leaf display.

Exploratory Analysis

[128]

Summary
Median and its variants form the core measures of EDA and you would have got a hang
of it by the first section. The visualization techniques of EDA also compose more than just
the stem-and-leaf plot, letter values, and bagplot. As EDA is basically about your attitude
and approach, it is important to realize that you can (and should) use any method that is
instinctive and appropriate for the data on hand. We have also built our first regression
model in the resistant line and seen how robust it is to the outliers. Smoothing data and
median polish are also advanced EDA techniques which the reader is acquainted in their
respective sections.

EDA is exploratory in nature and its findings may need further statistical validations. The next
chapter on statistical inference addresses which Tukey calls confirmatory analysis. Especially,
we look at techniques which give good point estimates of the unknown parameters. This is
then backed with further techniques such as goodness-of-fit and confidence intervals for the
probability distribution and the parameters respectively. Post the estimation method, it is a
requirement to verify whether the parameters meet certain specified levels. This problem is
addressed through hypotheses testing in the next chapter.

Statistical Inference

In the previous chapter, we came across numerous tools that gave first
insights of exploratory evidence into the distribution of datasets through visual
techniques as well as quantitative methods. The next step is the translation
of these exploratory results to confirmatory ones and the topics of the
current chapter pursue this goal. In the Discrete distributions and Continuous
distributions sections of Chapter 1, Data Characteristics, we came across many
important families of probability distribution. In practical scenarios, we have
data on hand and the goal is to infer about the unknown parameters of the
probability distributions. This chapter focuses on one method of inference
for the parameters using the maximum likelihood estimator (MLE). Another
way of approaching this problem is by fitting a probability distribution for
the data. The MLE is a point estimate of the unknown parameter that needs
to be supplemented with a range of possible values. This is achieved through
confidence intervals. Finally, the chapter concludes with the important topic
of hypothesis testing.

You will learn the following things after reading through this chapter:

 � Visualizing the likelihood function and identifying the MLE

 � Fitting the most plausible statistical distribution for a dataset

 � Confidence intervals for the estimated parameters

 � Hypothesis testing of the parameters of a statistical distribution

5

Statistical Inference

[130]

Using exploratory techniques we had our first exposition with the understanding of a dataset.
As an example in the octane dataset we found that the median of Method_2 was larger
than that of Method_1. As explained in the previous chapter, we need to confirm whatever
exploratory findings we had with a dataset. Recall that the histograms and stem-and-leaf
displays suggest a normal distribution. A question that arises then is how do we assert the
center values, typically the mean, of a normal distribution and how do we conclude that
average of the Method_2 procedure exceeds that of Method_1. The former question is
answered by estimation techniques and the later with testing hypotheses. This forms the
core of Statistical Inference.

Maximum likelihood estimator
Let us consider the discrete probability distributions as seen in the Discrete distributions
section of Chapter 1, Data Characteristics. We saw that a binomial distribution is
characterized by the parameters in n and p, the Poisson distribution by λ , and so on. Here,
the parameters completely determine the probabilities of the x values. However, when
the parameters are unknown, which is the case in almost all practical problems, we collect
data for the random experiment and try to infer about the parameters. This is essentially
inductive reasoning, and the subject of Statistics is essentially inductive driven as opposed
to the deductive reasoning of Mathematics. This forms the core difference between the
two beautiful subjects. Assume that we have n observations X1, X2,…, Xn from an unknown
probability distribution (),f x θ , where θ may be a scalar or a vector whose values are not
known. Let us consider a few important definitions that form the core of statistical inference.

Random sample: If the observations X1, X2,…, Xn are independent of each other, we say
that it forms a random sample from (),f x θ . A technical consequence of the observations
forming a random sample is that their joint probability density (mass) function can be
written as product of the individual density (mass) function. If the unknown parameter
θ is same for all the n observations we say that we have an independent and identical
distributed (iid) sample.

Let X denote the score of Rahul Dravid in a century innings, and let Xi denote the runs
scored in the i th century, i = 1, 2, …, 36. The assumption of independence is then appropriate
for all the values of Xi. Consider the problem of the R software installation on 10 different
computers of same configuration. Let X denote the time it takes for the software to install.
Here, again, it may be easily seen that the installation time on the 10 machines, X1, …, X10,
are identical (same configuration of the computers) and independent. We will use the vector
notation here to represent a sample of size n, X = (X1, X2,…, Xn) for the random variables, and
denote the realized values of random variable with the small case x = (x1, x2,…, xn) with x i
representing the realized value of random variable Xi . All the required tools are now ready,
which enable us to define the likelihood function.

Chapter 5

[131]

Likelihood function: Let (),f x θ be the joint pmf (or pdf) for an iid sample of n observations
of X. Here, the pmf and pdf respectively correspond to the discrete and continuous random
variables. The likelihood function is then defined by:

() () ()1| | |n
i iL x f x f xθ θ θ== = Π

Of course, the reader may be amused about the difference between a likelihood function
and a pmf (or pdf). The pmf is to be seen as a function of x given that the parameters are
known, whereas in the likelihood function we look at a function where the parameters are
unknown with x being known. This distinction is vital as we are looking for a tool where we
do not know the parameters. The likelihood function may be interpreted as the probability
function of θ conditioned on the value of x and this is the main reason for identifying that
value of θ , say θ , which leads to the maximum of ()|L xθ , that is, () ()ˆ | |L x L xθ θ≥ . Let us
visualize the likelihood function for some important families of probability distribution.
The importance of visualizing the likelihood function is emphasized in Chapter 7, The Logistic
Regression Model and Chapters 1-4 of Pawitan (2001).

Visualizing the likelihood function
We had seen a few plots of the pmf/pdf in Discrete distributions and Continuous distributions
sections of Chapter 1, Data Characteristics. Recall that we were plotting the pmf/pdf over
the range of x. In those examples, we had assumed certain values for the parameters of
the distributions. For the problems of statistical inference, we typically do not know the
parameter values. Thus, the likelihood functions are plotted against the plausible parameter
values θ . What does this mean? For example, the pmf for a binomial distribution is plotted
for x values ranging from 0 to n. However, the likelihood function needs to be plot against p
values ranging over the unit interval [0, 1].

Example 5.1.1. The likelihood function of a binomial distribution: A box of electronic
chips is known to contain a certain number of defective chips. Suppose we take a random
sample of n chips from the box and make a note of the number of non-defective chips. The
probability of a non-defective chip is p, and that being defective is 1 – p. Let X be a random
variable, which takes the value 1 if the chip is non-defective and 0 if it is defective. Then
X~b(1,p), where p is not known. Define

1

n
x ii
t x

=
=∑ . The likelihood function is then given by:

() ()| , 1 xx
n tt

x
x

n
L p t n p p

t
−

= −

Statistical Inference

[132]

Suppose that the observed value of x is 7, that is, we have 7 successes out of 10 trials.
Now, the purpose of likelihood inference is to understand the probability distribution of p
given the data tx. This gives us an idea about the most plausible value of p and hence it is
worthwhile to visualize the likelihood function ()| ,xL p t n .

Example 5.1.2. The likelihood function of a Poisson distribution: The number of accidents
at a particular traffic signal of a city, the number of flight arrivals during a specific time
interval at an airport, and so on are some of the scenarios where assumption of a Poisson
distribution is appropriate to explain the numbers. Now let us consider a sample from
Poisson distribution. Suppose that the number of flight arrivals at an airport during the
duration of an hour follows a Poisson distribution with an unknown rate λ . Suppose that
we have the number of arrivals over ten distinct hours as 1, 2, 2, 1, 0, 2, 3, 1, 2, and 4. Using
this data, we need to infer about λ . Towards this we will first plot the likelihood function.
The likelihood function for a random sample of size n is given by:

()
1

1

|
!

n
i ixn

n
i i

eL x
x

λλλ
=Σ−

=

=
Π

Before we consider R program for visualizing the likelihood function for the samples from
binomial and Poisson distribution, let us look at the likelihood function for a sample from
the normal distribution.

Example 5.1.3. The likelihood function of a normal distribution: The CPU_Time variable
from IO_Time may be assumed to follow a normal distribution. For this problem, we will
simulate n = 25 observations from a normal distribution, for more details about the
simulation, refer the next chapter. Though we simulate the n observations with mean as 10
and standard deviation as 2, we will pretend that we do not actually know the mean value
with the assumption that the standard deviation is known to be 2. The likelihood function
for a sample from normal distribution with known a standard deviation is given by:

()
()

()22 1
1
21| ,

2

n
ii
x

nL x e
µ

σµ σ
πσ

=
− −∑

=

In our particular example, it is:

()
()

()23
1

1
2

1| , 2
2 2

n

i
i

n expx xL µ µ
π =

 − −

= ∑

It is time for action!

Chapter 5

[133]

Time for action – visualizing the likelihood function
We will now visualize the likelihood function for the binomial, Poisson, and normal
distributions discussed before:

1. Initialize the graphics windows for the three samples using par(mfrow= c(1,3)).

2. Declare the number of trials n and the number of success x by n <- 10; x <- 7.

3. Set the sequence of p values with p_seq <- seq(0,1,0.01).

For p_seq, obtain the probabilities for n = 10 and x = 7 by using the dbinom
function: dbinom(x=7,size=n,prob=p_seq).

4. Next, obtain the likelihood function plot by running plot(p_seq, dbinom(
x=7,size=n,prob=p_seq), xlab="p", ylab="Binomial Likelihood
Function", "l").

5. Enter the data for the Poisson random sample into R using x <- c(1,2,2,1,
0,2,3,1,2,4) and the number of observations by n <- length(x).

6. Declare the sequence of possible λ values through lambda_seq <-
seq(0,5,0.1).

7. Plot the likelihood function for the Poisson distribution with plot(lambda_seq,
dpois(x=sum(x),lambda=n*lambda_seq)…).

We are generating random observations from a normal distribution using the rnorm
function. Each run of the rnorm function results in different values and hence to
ensure that you are able to reproduce the exact output as produced here, we will
set the initial seed for random generation tool with set.seed(123).

8. For generation of random numbers, fix the seed value with set.seed(123).
This is to simply ensure that we obtain the same result.

9. Simulate 25 observations from the normal distribution with mean 10 and standard
deviation 2 using n<-25; xn <- rnorm(n,mean=10,sd=2).

10. Consider the following range of µ values mu_seq <- seq(9,11,0.05).

11. Plot the normal likelihood function with plot(mu_seq,dnorm(x= mean(xn),
mean=mu_seq,sd=2)).

The detailed code for the preceding action is now provided:

Time for Action: Visualizing the Likelihood Function
par(mfrow=c(1,3))
Visualizing the Likelihood Function of a Binomial Distribution.
n <- 10; x <- 7
p_seq <- seq(0,1,0.01)

Statistical Inference

[134]

plot(p_seq, dbinom(x=7,size=n,prob=p_seq), xlab="p", ylab="Binomial
Likelihood Function", "l")
Visualizing the Likelihood Function of a Poisson Distribution.
x <- c(1, 2, 2, 1, 0, 2, 3, 1, 2, 4); n = length(x)
lambda_seq <- seq(0,5,0.1)
plot(lambda_seq,dpois(x=sum(x),lambda=n*lambda_seq),
xlab=expression(lambda),ylab="Poisson Likelihood Function", "l")
Visualizing the Likelihood Function of a Normal Distribution.
set.seed(123)
n <- 25; xn <- rnorm(n,mean=10,sd=2)
mu_seq <- seq(9,11,0.05)
plot(mu_seq,dnorm(x=mean(xn),mean=mu_seq,sd=2),"l",
xlab=expression(mu),ylab="Normal Likelihood Function")

Run the preceding code in your R session.

You will find an identical copy of the next plot on your computer screen too. What does the
plot tells us? The likelihood function for the binomial distribution has very small values up to
0.4, and then it gradually peaks up to 0.7 and then declines sharply. This means that the values
in the neighborhood of 0.7 are more likely to be the true value of p than the points away from
it. Similarly, the likelihood function plot for the Poisson distribution says that λ values lesser
than 1 and greater than 3 are very unlikely to be the true value of the actual λ . The peak of
the likelihood function appears at a value little lesser than 2. The interpretation for the normal
likelihood function is left as an exercise to the reader.

Figure 1: Some likelihood functions

Chapter 5

[135]

What just happened?
We took our first step in the problem of estimation of parameters. Visualization of the
likelihood function is a very important aspect and is often overlooked in many introductory
textbooks. Moreover, and as it is natural, we did it in R!

Finding the maximum likelihood estimator
The likelihood function plot indicates the plausibility of the data generating mechanism
for different values of the parameters. Naturally, the value of the parameter for which the
likelihood function has the highest value is the most likely value of the parameter. This forms
the crux of maximum likelihood estimation.

The value of θ that leads to the maximum value of the likelihood function ()|L xθ is referred
as the maximum likelihood estimate, abbreviated as MLE.

For the reader familiar with numerical optimization, it is not a surprise that calculus is useful
for finding the optimum value of a function. However, we will not indulge in mathematics
more than what is required here. We will note some finer aspects of numerical optimization.
For an independent sample of size n, the likelihood function is a product of n functions
and it is very likely that we may very soon end up in the mathematical world of intractable
functions. To a large extent, we can circumvent this problem by resorting to the logarithm of
the function, which then transforms the problem of optimizing the product of functions to
the sum of functions. That is, we will focus on optimizing ()log |L xθ instead of ()|L xθ .
An important consequence of using the logarithm is that the maximization of a product
function translates into that of a sum function since log(ab) = log(a) + log(b). It may also be
seen that the maximum point of the likelihood function is preserved under the logarithm
transformation since for a > b, log(a) > log(b). Further, many numerical techniques know how
to minimize a function rather than maximize it. Thus, instead of maximizing the log-likelihood
function ()log |L xθ , we will minimize ()-log |L xθ in R.

In the R package stats4 we are provided with a mle function, which returns the MLE.
There are a host of probability distributions for which it is possible to obtain the MLE.
We will continue the illustrations for the examples considered earlier in the chapter.

Example 5.1.4. Finding the MLE of a binomial distribution (continuation of Example 5.1.1):
The negative log-likelihood function of binomial distribution, sans the constant values, the
combinatorial term is excluded since its value is independent of p, is given by:

() () ()-log | , log log 1x x xL p t n t p n t p= − − − −

Statistical Inference

[136]

The maximum likelihood estimator of p, differentiating the preceding equation with
respect to p and equating the result to zero and then solving the equation, is given by
the sample proportion:

ˆ xtp
n

=

An estimator of a parameter is denoted by accentuation the parameter with a hat.
Though this is very easy to compute, we will resort to the useful function mle.

Example 5.1.5. MLE of a Poisson distribution (continuation of Example 5.1.2):
The negative log-likelihood function is given by:

()
1
lolog | g

n

i
i

L x n xλ λ λ
=

− = −∑

The MLE for λ admits a closed form, which can be obtained from calculus arguments,
and it is given by:

1ˆ
n
i ix
n

λ =Σ=

To obtain the MLE, we need to write exclusive code for the negative log-likelihood function.
For the normal distribution, we will use the mle function. There is another method of finding
the MLE than the mle function available in the stats4 package. We consider it next. The R
codes will be given in the forthcoming action.

Using the fitdistr function
In the previous examples, we needed to explicitly specify the negative log-likelihood
function. The fitdistr function from the MASS package can be used to obtain the
unknown parameters of a probability distribution, for a list of the probability functions for
which it applies see ?fitdistr, and the fact that it uses the maximum likelihood fitting
complements our approach in this section.

Example 5.1.6. MLEs for Poisson and normal distributions: In the next action, we will use
the fitdistr function from the MASS package for obtaining the MLEs in Example 5.1.2 and
Example 5.1.3. In fact, using the function, we get the answers readily without the need to
specify the negative log-likelihood explicitly.

Chapter 5

[137]

Time for action – finding the MLE using mle and fitdistr functions
The mle function from the stats4 package will be used for obtaining the MLE from popular
distributions such as binomial, normal, and so on. The fitdistr function will be used too,
which fits the distributions using the MLEs.

1. Load the library package CIT with library(stats4).

2. Specify the number of success in a vector format and the number of observations

with x<-rep(c(0,1),c(3,7)); n <- length(x).

3. Define the negative log-likelihood function with a function:

binomial_nll <- function(prob) -sum(dbinom(x,size=1,prob,
log=TRUE))

The code works as follows. The dbinom function is invoked from the stats package
and the option log=TRUE is exercised to indicate that we need a log of the
probability (actually likelihood) values. The dbinom function returns a vector of
probabilities for all the values of x. The sum, multiplied by -1, now returns us the
value of negative log-likelihood.

4. Now, enter fit_binom <- mle(binomial_nll,start=list(
prob=0.5),nobs=n) on the R console. Now, mle as a function optimizes the
binomial_nll function defined in the previous step. Initial values, a guess or a
legitimate value are specified for the start option, and we also declare the number
of observations available for this problem.

5. summary(fit_binom) will give details of the mle function applied on
binomial_nll. The output is displayed in the next screenshot.

6. Specify the data for the Poisson distribution problem in x <- c(1,2,2,1,0,
2,3,1,2,4); n <- length(x).

7. Define the negative log-likelihood function on parallel lines of a
binomial distribution:

pois_nll <- function(lambda) -sum(dpois(x,lambda,log=TRUE))

8. Explore different options of the mle function by specifying the method, a guess of
the least and most values of the parameter, and the initial value as the median of
the observations:

fit_poisson <- mle(pois_nll,start=list(lambda=median(x)),nobs=n,
method = "Brent", lower = 0, upper = 10)

9. Get the answer by entering summary(fit_poisson).

10. Define the negative log-likelihood function for the normal distribution by:

normal_nll <- function(mean) -sum(dnorm(xn,mean,sd=2,log=TRUE))

Statistical Inference

[138]

11. Find the MLE of the normal distribution with fit_normal <- mle(normal_nll
,start=list(mean=8),nobs=n).

12. Get the final answer with summary(fit_normal).

13. Load the MASS package: library(MASS).

14. Fit the x vector with a Poisson distribution by running fitdistr(x,"poisson")
in R.

15. Fit the xn vector with a normal distribution by running fitdistr(xn,"normal").

Figure 2: Finding the MLE and related summaries

What just happened?
You have explored the possibility of finding the MLEs for many standard distributions using
mle from the stats4 package and fitdistr from the MASS package. The main key
in obtaining the MLE is the right construction of the log-likelihood function.

Chapter 5

[139]

Confidence intervals
The MLE is a point estimate and as such on its own it is almost not of practical use. It would
be more appropriate to give coverage of parameter points, which is most likely to contain
the true unknown parameter. A general practice is to specify the coverage of the points
through an interval and then consider specific intervals which have a specified probability.
A formal definition is in order.

A confidence interval for a population parameter is an interval that is predicted to contain
the parameter with a certain probability.

The common choice is to obtain either 95 percent or 99 percent confidence intervals. It is
common to specify the coverage of the confidence through a significance level α , more
about this in the next section, which is a small number closer to 0. The 95 percent and 99
percent confidence intervals then correspond to ()100 1 α− percent intervals with respective
α equal to 0.05 and 0.01. In general, a ()100 1 α− percent confidence interval says that if
the experiment is performed many times over, we expect the result to fall in the confidence
interval by ()100 1 α− percent.

Example 5.2.1. Confidence interval for binomial proportion: Consider n Bernoulli trials

1,..., nX X with the probability of success being p. We saw earlier that the MLE of p is:

ˆ xtp
n

=

where
1

n
x ii
t x

=
=∑ . Theoretically, the expected value of p̂ is p and its standard deviation is

()1 /p p n− . An estimate of the standard deviation is ()ˆ ˆ1 /p p n− . For large n and when both
np and np(1-p) are greater than 5, using a normal approximation, by virtue of the central
limit theorem, a ()100 1 α− percent confidence interval for p is given by:

() ()
/2 /2

ˆ ˆ ˆ ˆ1 1
ˆ ˆ,

p p p p
p z p z

n nα α

 − −
 − +

where /2zα is the / 2α quantile of the standard normal distribution. The confidence
intervals obtained by using the normal approximation are not reliable when the p value is
near 0 or 1. Thus, if the lower confidence limit falls below 0, or the upper confidence limit
exceeds 0, we will adapt the convention of taking them as 0 and 1 respectively.

Statistical Inference

[140]

Example 5.2.2. Confidence interval for normal mean with known variance: Consider a
random sample of size n from a normal distribution with an unknown mean µ and a known
standard deviation σ . It may be shown that the MLE of mean µ is the sample mean

1
/

n

i
i

X x n
=

=∑
and that the distribution of X is again normal with mean µ and standard deviation
/ nσ . Then, the ()100 1 α− percent confidence interval is given by:

/2 /2,X Z X Z
n nα α
σ σ − +

where /2zα is the / 2α quantile of the standard normal distribution. The width of the
preceding confidence interval is /22 /z nα σ . Thus, when the sample size is increased by
four times, the width will decrease by half.

Example 5.2.3. Confidence interval for normal mean with unknown variance: We continue
with a sample of size n. When the variance is not known, the steps become very different.
Since the variance is not known, we replace it by the sample variance:

()22

1

1
1

n

i
i

S X X
n =

= −
− ∑

The denominator is n - 1 since we have already estimated µ using the n observations.
To develop the confidence interval for µ, consider the following statistic:

2 /
XT
S n

µ−
=

This new statistic T has a t-distribution with n - 1 degrees of freedom. The ()100 1 α− percent
confidence interval for µ is then given by the following interval:

1, /2 1, /2,n n
S SX t X t
n nα α− −

 − +

where 1, /2nt α− is the / 2α quantile of a t random variable with n - 1 degrees of freedom.

We will create functions for obtaining the confidence intervals for the preceding three
examples. Many statistical tests in R return confidence intervals at desired levels. However,
we will be encountering these tests in the last section of the chapter, and hence up to that
point, we will contain ourselves to defined functions and applications.

Chapter 5

[141]

Time for action – confidence intervals
We create functions that will enable us to obtain confidence intervals of the desired size:

1. Create a function for obtaining the confidence intervals of the proportion from
a binomial distribution with the following function:

binom_CI = function(x, n, alpha) {
 phat = x/n
 ll=phat-qnorm(alpha/2,lower.tail=FALSE)*sqrt(phat*(1-phat)/n)
 ul=phat+qnorm(alpha/2,lower.tail=FALSE)*sqrt(phat*(1-phat)/n)
 return(paste("The ", 100*(1-alpha),"% Confidence Interval for
Binomial Proportion is (", round(ll,4),",", round(ul,4),")",
sep=''))
 }

The arguments of the functions are x, n, and alpha. That is, the user of the function
needs to specify the x number of success out of the n Bernoulli trials, and the
significance level α . First, we obtain the MLE p̂ of the proportion p by calculating
phat = x/n. To obtain the value of /2zα , we use the qnorm quantile function
qnorm(alpha/2,lower.tail= FALSE). The quantity ()ˆ ˆ1 /p p n− is computed
with sqrt(phat*(1-phat)/n). The rest of the code for ll and ul is
self-explanatory. We use the paste function to get the output in a convenient
format along with the return function.

2. Consider the data in Example 5.2.1 where we have x = 7, and n = 10. Suppose that
we require 95 percent and 99 percent confidence intervals. The respective α values
for these confidence intervals are 0.05 and 0.01. Let us execute the binom_CI
function on this data. That is, we need to run binom_CI(x=7,n=10,alpha
=0.05) and binom_CI(x=7,n=10,alpha=0.01) on the R console. The output
will be as shown in the next screenshot.

Thus, (0.416, 0.984) is the 95 percent confidence interval for p and (0.3267,
1.0733) is the 99 percent confidence interval for it. Since the upper confidence
limit exceeds 1, we will use (0.3267, 1) as the 99 percent confidence interval
for p.

3. We first give the function for construction of confidence intervals for the mean µ
of a normal distribution when the standard deviation is known:

normal_CI_ksd = function(x,sigma,alpha) {
 xbar = mean(x)
 n = length(x)
 ll = xbar-qnorm(alpha/2,lower.tail=FALSE)*sigma/sqrt(n)
 ul = xbar+qnorm(alpha/2,lower.tail=FALSE)*sigma/sqrt(n)
 return(paste("The ", 100*(1-alpha),"% Confidence Interval for
the Normal mean is (", round(ll,4),",",round(ul,4),")",sep=''))
 }

Statistical Inference

[142]

The function normal_CI_ksd works differently from the earlier binomial one. Here,
we provide the entire data to the function and specify the known value of standard
deviation and the significance level. First, we obtain the MLE X of the mean µ with
xbar = mean(x). The R code qnorm(alpha/2,lower.tail=FALSE) is used to
obtain /2zα . Next, / nσ is computed by sigma/sqrt(n). The code for ll and ul
is straightforward to comprehend. The return and paste have the same purpose
as in the previous example. Compile the code for the normal_CI_ksd function.

4. Let us see a few examples, continuation of Example 5.1.3, for obtaining the
confidence interval for the mean of a normal distribution with the standard
deviation known. To obtain the 95 percent and 99 percent confidence interval
for the xn data, where the standard deviation was known to be 2, run
normal_CI_ksd(x=xn,sigma=2,alpha=0.05) and normal_CI_ksd(x=
xn,sigma=2,alpha=0.01) on the R console. The output is consolidated in the
next screenshot.

Thus, the 95 percent confidence interval for µ is (9.1494, 10.7173) and the 99
percent confidence interval is (8.903, 10.9637).

5. Create a function, normal_CI_uksd, for obtaining the confidence intervals for µ
of a normal distribution when the standard deviation is unknown:

normal_CI_uksd = function(x,alpha) {
 xbar = mean(x); s = sd(x)
 n = length(x)
 ll = xbar-qt(alpha/2,n-1,lower.tail=FALSE)*s/sqrt(n)
 ul = xbar+qt(alpha/2,n-1,lower.tail=FALSE)*s/sqrt(n)
 return(paste("The ", 100*(1-alpha),"% Confidence Interval for
the Normal mean is (", round(ll,4),",",round(ul,4),")",sep=''))
 }

We have an additional computation here in comparison with the earlier function.
Since the standard deviation is unknown, we estimate it with s = sd(x).
Furthermore, we need to obtain the quantile from t-distribution with n - 1 degrees
of freedom, and hence we have qt(alpha/2,n-1,lower.tail=FALSE) for the
computation of 1, /2nt α− . The rest of the details follow the previous function.

6. Let us obtain confidence intervals, 95 percent and 99 percent, for the vector xn
under the assumption that the variance is not known. The codes for achieving the
results are given in normal_CI_uksd(x=xn,alpha=0.05) and normal_CI_
uksd(x=xn,alpha=0.01).

Chapter 5

[143]

Thus, the 95 percent confidence interval for the mean is (9.1518, 10.7419) and the 99
percent confidence interval is (8.8742, 10.9925).

Figure 3: Confidence intervals: Some raw programs

What just happened?
We created special functions for obtaining the confidence intervals and executed them for
three different cases. However, our framework is quite generic in nature and with a bit of
care and caution, it may be easily extended to other distributions too.

Statistical Inference

[144]

Hypotheses testing
"Best consumed before six months from date of manufacture", "Two years warranty",
"Expiry date: June 20, 2015", and so on, are some of the likely assurances that you would
have easily come across. An analyst will have to arrive at such statements using the related
data. Let us first define a hypothesis.

Hypothesis: A hypothesis is an assertion about the unknown parameter of the probability
distribution. For the quote of this section, denoting the least time (in months) till which
an eatery will not be losing its good taste by θ , the hypothesis of interest will be 0 : 6H θ ≥ .
It is common to denote the hypothesis of interest by 0H and it called the null hypothesis.
We want to test the null hypothesis against the alternative hypothesis that the consumption
time is well before the six months' time, which in symbols is denoted by 1 : 6H θ < . We will
begin with some important definitions followed by related examples.

Test statistic: A statistic that is a function of the random sample is called as test statistic.

For an observation X following a binomial distribution b(n, p), the test statistic for p will be
X/n, whereas for a random sample from the normal distribution, the test statistic may be
mean 1

/n
ii

X X n
=

=∑ or the sample variance () ()
2

2
1

/ 1n
ii

S X X n
=

= − −∑ depending on whether the
testing problem is for 2orµ σ . The statistical solution to reject (or not) the null hypothesis
depends on the value of test statistic. This leads us to the next definition.

Critical region: The set of values of the test statistic which leads to the rejection of the null
hypothesis is known as the critical region.

We have made various kinds of assumptions for the random experiments. Naturally,
depending on the type of the probability family, namely binomial, normal, and so on,
we will have an appropriate testing tool. Let us look at the very popular tests arising
in statistics.

Binomial test
A binomial random variable X, distribution represented by b(n, p), is characterized by two
parameters n and p. Typically, n represents the number of trials and is known in most cases
and it is the probability of success p that one is generally interested in the hypotheses
related to it.

For example, an LCD panel manufacturer would like to test if the number of defectives is at
most four percent. The panel manufacturer has randomly inspected 893 LCDs and found 39
to be defective. Here the hypotheses testing problem would be 0 1vs: 0.04 : 0.04H p H p≤ ≤ .

Chapter 5

[145]

A doctor would like to test whether the proportion of people in a drought-effected area
having a viral infection such as pneumonia is 0.2, that is, 0 1vs: 0.2 : 0.2H p H p= ≠ . The
drought-effected area may encompass a huge geographical area and as such it becomes
really difficult to carry out a census over a very short period of a day or two. Thus the doctor
selects the second-eldest member of a family and inspects 119 households for pneumonia.
He records that 28 out of 119 inspected people are suffering from pneumonia. Using this
information, we need to help the doctor in testing the hypothesis of interest for him.
In general, the hypothesis-testing problems for the binomial distribution will be along the
lines of 0 0 1 0vs: :H p p H p p≤ > , 0 0 1 0vs: :H p p H p p≥ > , or 0 0 1 0vs: :H p p H p p= ≠ .

Let us see how the binom.test function in R helps in testing hypotheses problems related
to the binomial distribution.

Time for action – testing the probability of success
We will use the R function binom.test for testing hypotheses problems related to p. This
function takes as arguments n number of trials, x number of successes, p as the probability
of interest, and alternative as one of greater, less, or greater.

1. Discover the details related to binom.test using ?binom.test, and then run
example(binom.test) and ensure that you understand the default example.

2. For the LCD panel manufacturer, we have n = 893 and x = 39. The null hypothesis
occurs at p = 0.04. Enter this data first in R with the following code:

n_lcd <- 893; x_lcd <- 39; p_lcd <- 0.04

3. The alternative hypothesis is that the proportion of success p is greater
than 0.04, which is listed to the binom.test function with the option
alternative="greater", and hence the complete binom.test function
for the LCD panel is delivered by:

binom.test(n=n_lcd,x=x_lcd,p=p_lcd,alternative="greater")

The output, following screenshot, shows that the estimated probability of success
is 0.04367, which is certainly greater than 0.04. However, the p-value =
0.3103 indicates that we do not have enough evidence in the data to reject
the null hypothesis 0 : 0.04H p ≤ . Note that the binom.test also gives us a 95
percent confidence interval for p as (0.033, 1.000) and since the hypothesized
probability lies in this interval we arrive at the same conclusion. This confidence
interval is recommended over the one developed in the previous section, and
in particular we don't have to worry about the confidence limits either being lesser
than 0 or greater than one. Also, you may obtain any confidence interval of your
choice ()100 1 α− percent CI with the argument conf.int.

Statistical Inference

[146]

4. For the doctors problem, we have the data as:

n_doc <- 119; x_doc <- 28; p_doc <- 0.2

5. We need to test the null hypothesis against a two-sided alternative hypothesis and
though this is the default setting of the binom.test, it is a good practice to specify
it explicitly, at least until the expertise is felt by the user:

binom.test(n=n_doc,x=x_doc,p=p_doc,alternative="two.sided")

The estimated probability of success, actually a patient's probability of having the viral
infection, is 0.3193. Since the p-value associated with the test is p-value = 0.001888,
we reject the null hypothesis that 0 : 0.2H p = . All the output is given in the following
screenshot. The 95 percent confidence interval is (0.2369, 0.4110), again given by
the binom.test, which does not contain the hypothesized value of 0.2, and hence we
can reject the null hypothesis based on the confidence interval.

Figure 4: Binomial tests for probability of success

What just happened?
Binomial distribution arises in a large number of proportionality test problems. In this section
we used the binom.test for testing problems related to the probability of success. We also
note that the confidence intervals for p are given as a side-product of the application of the
binom.test. The confidence intervals are also given as a by-product of the application of
the binom.test.

Chapter 5

[147]

Tests of proportions and the chi-square test
In Chapter 3, Data Visualization, we came across the Titanic and UCBAdmissions
datasets. For the Titanic dataset, we may like to test if the Survived proportion across
the Class is same for the two Sex groups. Similarly, for the UCBAdmissions dataset, we
may wish to know if the proportion of the Admitted candidates for the Male and Female
group is same across the six Dept. Thus, there is a need to generalize the binom.test
function to a group of proportions. In this problem, we may have k-proportions and the
probability vector is specified by ()1,..., kp p p= . The hypothesis problem may be
specified as testing the null hypothesis 0 0:H p p= against the alternative hypothesis
1 0:H p p≠ . Equivalently, in the vector form the problem is testing () ()0 1 01 0: ,..., ,...,k kH p p p p=

against () ()1 1 01 0: ,..., ,...,k kH p p p p≠ . The R extension of binom.test is given in prop.test.

Time for action – testing proportions
We will use the prop.test R function here for testing the equality of proportions for the
count data problems.

1. Load the required dataset with data(UCBAdmissions). For the UCBAdmissions
dataset, first obtain the Admitted and Rejected frequencies for both the genders
across the six departments with:

UCBA.Dept <- ftable(UCBAdmissions, row.vars="Dept", col.vars =
c("Gender", "Admit"))

2. Calculate the Admitted proportions for Female across the six departments with:

p_female <- prop.table(UCBA.Dept[,3:4],margin=1)[,1]

Check p_female!

3. Test whether the proportions across the departments for Male matches with
Female using the prop.test:

prop.test(UCBA.Dept[,1:2],p=p_female)

The proportions are not equal across the Gender as p-value < 2.2e-16 rejects
the null hypothesis that they are equal.

4. Next, we want to investigate whether the Male and Female survivors
proportions are the same in the Titanic dataset. The approach is similar
to the UCBAdmissions problem; run the following code:

T.Class <- ftable(Titanic, row.vars="Class", col.vars = c("Sex",
"Survived"))

Statistical Inference

[148]

5. Compute the Female survivor proportions across the four classes with p_female
<- prop.table(T.Class[,3:4],margin=1)[,1]. Note that this new variable,
p_female, will overwrite the same named variable from the earlier steps.

6. Display p_female and then carry out the comparison across the two genders:

prop.test(T.Class[,1:2],p=p_female)

The p-value < 2.2e-16 clearly shows that the survivor proportions are not the
same across the genders.

Figure 5: prop.test in action

Indeed, there is more complexity to the two datasets than mere proportions for
the two genders. The web page http://www-stat.stanford.edu/~sabatti/
Stat48/UCB.R has detailed analysis of the UCBAdmissions dataset and here we
will simply apply the chi-square test to check if the admission percentage within
each department is independent of the gender.

7. The data for the admission/rejection for each department is extractable through the
third index in the array, that is, UCBAdmissions[,,i] across the six departments.
Now, we apply the chisq.test to check if the admission procedure is independent
of the gender by running chisq.test(UCBAdmissions[,,i]) six times.
The result has been edited in a foreign text editor and then a screenshot of it is
provided next.

Chapter 5

[149]

It appears that the Dept = A admits more males than females.

Figure 6: Chi-square tests for the UCBAdmissions problem

What just happened?
We used prop.test and chisq.test to test the proportions and independence
of attributes. Functions such as ftable and prop.table and arguments such as row.
vars, col.vars, and margin were useful to get the data in the right format for the
analysies purpose.

We will now look at important family of tests for the normal distribution.

Tests based on normal distribution – one-sample
The normal distribution pops up in many instances of statistical analysis. In fact
Whittaker and Robinson have quoted on the popularity of normal distribution
as follows:

Everybody believes in the exponential law of errors [that is, the normal
distribution]: the experimenters, because they think it can be proved by
mathematics; and the mathematicians, because they believe it has been
established by observation.

We will not make an attempt to find out whether the experimenters are correct
or the mathematicians, well, at least not in this section.

Statistical Inference

[150]

In general we will be dealing with either one-sample or two-sample tests. In the one-sample
problem we have a random sample of size n from ()2,N µ σ in ()1 2, ,..., nX X X . The hypotheses
testing problem may be related to either or both of the parameters ()2,µ σ . The interesting
and most frequent hypotheses testing problems for the normal distribution are listed here:

 � Testing for mean with known variance 2σ :

 � 0 0 1 0vs: :H Hµ µ µ µ< ≥

 � 0 0 1 0vs: :H Hµ µ µ µ> ≤

 � 0 0 1 0vs: :H Hµ µ µ µ= ≠

 � Testing for mean with unknown variance 2σ : this is the same set of hypotheses
problems as in the preceding point

 � Testing for the variance with unknown mean:

 � 0 0 1 0vs: :H Hσ σ σ σ> ≤

 � 0 0 1 0vs: :H Hσ σ σ σ< ≥

 �
0 0 1 0vs: :H Hσ σ σ σ= ≠

In the case of known variance, the hypotheses testing problem for the mean is based
on the Z-statistic given by:

0

/
XZ

n
µ

σ
−

=

where 1
/n

ii
X X n

=
=∑ . The test procedure, known as Z-test, for the hypotheses testing problem

0 0 1 0vs: :H Hµ µ µ µ< ≥ is to reject the null hypothesis at α -level of significance 0 0:H µ µ>
if 0/X z nασ µ> + , where zα is the α percentile of a standard normal distribution. For
the hypotheses testing problem 0 0 1 0vs: :H Hµ µ µ µ> ≤ , the critical/reject region is

0/X z nασ µ< + . Finally, for the testing problem of 0 0 1 0vs: :H Hµ µ µ µ= ≠ , we reject the
null hypothesis if:

0
/2/

X
z

n α

µ

σ

−
≥

Chapter 5

[151]

An R function, z.test, is available in the PASWR package, which carries out the Z-test for
each type of the hypotheses testing problem. Now, we consider the case when the variance
2σ is not known. In this case, we first find an estimate of the variance using () ()22 / 1

1

n
S X X ni

i
= − −
=
∑ .

The test procedure is based on the well-known t-statistic:

2 /
Xt
S n

µ−
=

The test procedure based on the t-statistic is highly popular as the t-test or student's t-test,
and its implementation is there in R with the t.test function in the base package. The
distribution of the t-statistic, under the null hypothesis is the t-distribution with (n - 1)
degrees of freedom. The rationale behind the application of the t-test for the various types
of hypotheses remains the same as the Z-test.

 � For the hypotheses testing problem concerning the variance 2σ of the normal
distribution, we need to first compute the sample variance using () ()22 / 1

1

n
S X X ni

i
= − −
=
∑

and define the chi-square statistic:

() 2
2

2
0

1n S
χ

σ
−

=

Under the null hypothesis, the chi-square statistic is distributed as a chi-square random
variable with n - 1 degrees of freedom. In the case of known mean, which is seldom
the case, the test procedure is based on the test statistic ()

22 2
0/

1

n
Xi

i
χ µ σ= −

=
∑ , which follows a

chi-square random variable with n degrees of freedom. For the hypotheses problem
0 0 1 0vs: :H Hσ σ σ σ> ≤ , the test procedure is to reject 0 0:H σ σ> if 2 2

1X αχ −< . Similarly, for
the hypotheses problem 0 0 1 0vs: :H Hσ σ σ σ< ≥ , the procedure is to reject 0 0:H σ σ< if

2 2X αχ> ; and finally for the problem 0 0 1 0vs: :H Hσ σ σ σ= ≠ , the test procedure rejects
0 0:H σ σ= if either 2 2

1 /2X αχ −< or 2 2
/2X αχ> .

Test examples. Let us consider some situations when the preceding set of hypotheses arise
in a natural way:

 � A certain chemical experiment requires that the solution used as a reactant has
a pH level greater than 8.4. It is known that the manufacturing process gives
measurements which follow a normal distribution with a standard deviation
of 0.05. The ten random observations are 8.30, 8.42, 8.44, 8.32, 8.43, 8.41,
8.42, 8.46, 8.37, and 8.42. Here, the hypotheses testing problem of interest is

0 1vs: 8.4 : 8.4H Hµ µ> ≤ . This problem is adopted from page 408 of Ross (2010).

Statistical Inference

[152]

 � Following a series of complaints that his company's LCD panels never last more than
a year, the manufacturer wants to test if his LCD panels indeed fail within a year.
Using historical data, he knows the standard deviation of the panel life due to the
manufacturing process is two years. A random sample of 15 units from a freshly
manufactured lot gives their lifetimes as 13.37, 10.96, 12.06, 13.82, 12.96, 10.47,
10.55, 16.28, 12.94, 11.43, 14.51, 12.63, 13.50, 11.50, and 12.87. You need to help
the manufacturer validate his hypothesis.

 � Freund and Wilson (2003). Suppose that the mean weight of peanuts put in jars
is required to be 8 oz. The variance of the weights is known to be 0.03, and the
observed weights for 16 jars are 8.08, 7.71, 7.89, 7.72, 8.00, 7.90, 7.77, 7.81,
8.33, 7.67, 7.79, 7.79, 7.94, 7.84, 8.17, and 7.87. Here, we are interested
in testing 0 1vs: 8.0 : 8.0H Hµ µ= ≠ .

 � New managers have been appointed at the respective places in the preceding
bullets. As a consequence the new managers are not aware about the standard
deviation for the processes under their control. As an analyst, help them!

 � Suppose that the variance in the first example is not known and that it is a critical
requirement that the variance be lesser than 7, that is, the null hypothesis is

2
0 : 7H σ < while the alternative is 2

1 : 7H σ ≥ .

 � Suppose that the variance test needs to be carried out for the third method,
that is, the hypotheses testing problem is then 2 2

0 1vs: 0.03 : 0.03H Hσ σ= ≠ .

We will perform the necessary test for all the problems described before.

Time for action – testing one-sample hypotheses
We will require R packages PASWR and PairedData here. The R functions such as t.test,
z.test, and var.test will be useful for testing one-sample hypotheses problems related
to a random sample from normal distributions.

1. Load the library library(PASWR).

2. Enter the data for pH in R:

pH_Data <-c(8.30,8.42,8.44,8.32,8.43,8.41,8.42,8.46,8.37,8.42)

3. Specify the known variance of pH in pH_sigma <- 0.05.

4. Use z.test from the PASWR library to test the hypotheses described in the first
example with:

z.test(x=pH_Data,alternative="less",sigma.x=pH_sigma,mu=8.4)

Chapter 5

[153]

The data is specified in the x option, the type of the hypotheses problem is specified
by stating the form of the alternative hypothesis, the known variance is fed
through the sigma.x option, and finally, the mu option is used to specify the value
of the mean under the null hypothesis. The output of the complete R program is
collected in the forthcoming two screenshots.

The p-value is 0.4748 which means that we do not have enough evidence
to reject the null hypothesis 0 : 8.4H µ > and hence we conclude that mean
pH value is above 8.4.

5. Get the data of LCD panel in your session with:

LCD_Data <- c(13.37, 10.96, 12.06, 13.82, 12.96, 10.47,
10.55, 16.28, 12.94, 11.43, 14.51, 12.63, 13.50, 11.50, 12.87)

6. Specify the known variance LCD_sigma <- 2 and run the z.test with:

z.test(x=LCD_Data,alternative="greater",sigma.x=LCD_sigma,mu=12)

The p-value is seen to be 0.1018 and hence we again do not have enough data
evidence to reject the null hypothesis that the average mean lifetime of an LCD
panel is at least a year.

7. The complete program for third problem can be given as follows:

peanuts <- c(8.08, 7.71, 7.89, 7.72, 8.00, 7.90, 7.77,
7.81, 8.33, 7.67, 7.79, 7.79, 7.94, 7.84, 8.17, 7.87)
peanuts_sigma <- 0.03
z.test(x=peanuts,sigma.x=peanuts_sigma,mu=8.0)

Since the p-value associated with this test 2.2e-16, that is, it is very close to zero,
we reject the null hypothesis 0 : 8.0H µ = .

8. If the variance(s) are not known and a test of the sample means is required,
we need to move from the z.test (in the PASWR library) to the t.test
(in the base library):

t.test(x=pH_Data,alternative="less",mu=8.4)
t.test(x=LCD_Data,alternative="greater",mu=12)
t.test(x=peanuts,mu=8.0)

If the variance is not known, the conclusions for the problems related to pH
and peanuts do not change. However, the conclusion changes for the LCD panel
problem, and here the null hypothesis is rejected as p-value is 0.06414.

Statistical Inference

[154]

For the problem of testing variances related to the one-sample problem, my initial
idea was to write raw R codes as there did not seem to be a function, package, and
so on, which readily gives the answers. However, a more appropriate search at
google.com revealed that an R package titled PairedData and created by
Stephane Champely did certainly have a function, var.test, not to be confused
with the same named function in the stats library, which is appropriate for testing
problems related to the variance of a normal distribution. The problem is that the
routine method of fetching the package using install.packages("PairedData")
gives a warning message, namely package 'PairedData' is not available (for R
version 2.15.1). This is the classic case of "so near, yet so far…". However, a deeper
look into this will lead us to http://cran.r-project.org/src/contrib/
Archive/PairedData/. This web page shows the various versions of the
PairedData package. A Linux user should have no problem in using it, though
the other OS users can't be helped right away. A Linux user needs to first download
one of the zipped file, say PairedData_1.0.0.tar.gz, to a specific directory
and with the path of GNOME Terminal in that directory execute R CMD INSTALL
PairedData_1.0.0.tar.gz. Now, we are ready to carry out the tests related
to the variance of a normal distribution. A Windows user need not be discouraged
with this scenario, and the important function var1.test is made available in the
RSADBE package of the book. A more recent check on the CRAN website reveals that
the PairedData package is again available for all OS platforms since April 18, 2013.

Figure 7: z.test and t.test for one-sample problem

Chapter 5

[155]

9. Load the required library with library(PairedData).

10. Carry out the two testing problems in the fifth problem with:

var.test(x=pH_Data,alternative="greater",ratio=7)
var.test(x=peanuts,alternative="two.sided",ratio=0.03)

11. It may be seen from the next screenshot that the data does not lead to rejection
of the null hypotheses. For a Windows user, the alternative is to use the var1.test
function from the RSADBE package. That is, you need to run:

var1.test(x=pH_Data,alternative="greater",ratio=7)
var1.test(x=peanuts,alternative="two.sided",ratio=0.03)

You'll get same results:

Figure 8: var.test from the PairedData library

What just happened?
The tests z.test, t.test, and var.test (from the PairedData library) have been
used for the testing hypotheses problems under varying degrees of problems.

Statistical Inference

[156]

Have a go hero
Consider the testing problem 0 0 1 0vs: :H Hσ σ σ σ= ≠ . The test statistic for this hypothesis
testing problem is given by:

()212
2
0

n
i i iX X

χ
σ

=∑ −
=

which follows a chi-square distribution with n - 1 degrees of freedom. Create your own new
function for the testing problems and compare it with the results given by var.test of
PairedData package.

With the testing problem of parameters of normal distribution in the case of one sample
behind us, we will next focus on the important two-sample problem.

Tests based on normal distribution – two-sample
The two-sample problem has data from two populations where ()1 2, ,..., nX X X are n1
observations from ()21 1,N µ σ and ()21 2, ,..., nY Y Y are n2 observations from ()22 2,N µ σ . We assume
that the samples within each population are independent of each other and further that
the samples across the two populations are also independent. Similar to the one-sample
problem, we have the following set of recurring and interesting hypotheses testing problems.

 � Mean comparison with known variances 2
1σ and 2

2σ :

 � 0 1 2 1 1 2vs: :H Hµ µ µ µ> ≤

 � 0 1 2 1 1 2vs: :H Hµ µ µ µ< ≥
 � 0 1 2 1 1 2vs: :H Hµ µ µ µ= ≠

 � Mean comparison with unknown variances 2
1σ and 2

2σ : the same set of hypotheses
problems as before. We make an additional assumption here that the variances 2

1σ
and 2

2σ are assumed to be equal, though unknown.

 � The variances comparison:

 � 0 1 2 1 1 2vs: :H Hσ σ σ σ> ≤

 � 0 1 2 1 1 2vs: :H Hσ σ σ σ< ≥

 � 0 1 2 1 1 2vs: :H Hσ σ σ σ= ≠

First define the sample means for the two populations with 1
11

/n
ii

X X n
=

=∑
and 2

21
/n

ii
Y X n

=
=∑ . For the case of known variances 2

1σ and 2
2σ , the test statistic

is defined by:

Chapter 5

[157]

()1 2
2 2
1 1 2 2/ /

X Y
Z

n n
µ µ

σ σ
− − −

=
+

Under the null hypotheses, () 2 2
1 1 2 2/ / /Z X Y n nσ σ= − + follows a standard normal distribution.

The test procedure for the problem 0 1 2 1 1 2vs: :H Hµ µ µ µ> ≤ is to reject H0 if z zα≥ , and the
procedure for 0 1 2 1 1 2vs: :H Hµ µ µ µ< ≥ is to reject H0 if z zα< . As expected and on earlier
intuitive lines, the test procedure for the hypotheses problem 0 1 2 1 1 2vs: :H Hµ µ µ µ= ≠ is to
reject H0 as /2z zα≥ .

Let us now consider the case when the variances 2
1σ and 2

2σ are not known and assumed
(or known) to be equal. In this case, we can't use the Z-test any further and need to look at
the estimator of the common variance. For this, we defined the pooled variance estimator
as follows:

2 2 21 2

1 2 1 2

1 1
2 2p x y

n nS S S
n n n n

− −
= +

+ − + −

where 2
xS and 2

yS are the sampling variances of the two populations. Define the t-statistic
as follows:

()2
1 21/ 1/p

X Yt
S n n

−
=

+

The test procedure for the set of the three hypotheses testing problems is then to reject
the null hypotheses if

1 2 2,n nt t α+ −< ,
1 2 2,n nt t α+ −> , or

1 2 2, /2n nt t α+ −< .

Finally, we focus on the problem of testing variances across two samples. Here, the test
statistic is given by:

2

2
x

y

SF
S

=

The test procedures would be to respectively reject the null hypotheses of the
testing problems 0 1 2 1 1 2vs: :H Hσ σ σ σ> ≤ , 0 1 2 1 1 2vs: :H Hσ σ σ σ< ≥ , and

0 1 2 1 1 2vs: :H Hσ σ σ σ= ≠ if
1 21, 1,n nF F α− −< ,

1 21, 1,n nF F α− −> ,
1 21, 1, /2n nF F α− −< .

Statistical Inference

[158]

Let us now consider some scenarios where we have the previously listed hypotheses
testing problems.

Test examples. Let us consider some situations when the preceding set of hypotheses arise
in a natural way.

 � In continuation of the chemical experiment problem, let us assume that the
chemists have come up with a new method of obtaining the same solution as
discussed in the previous section. For the new technique, the standard deviation
continues to be 0.05 and 12 observations for the new method yield the following
measurements: 8.78, 8.85, 8.74, 8.83, 8.82, 8.79, 8.82, 8.74, 8.84, 8.78, 8.75, 8.81.
Now, this new solution is acceptable if its mean is greater than that for the earlier
one. Thus, the hypotheses testing problem is now 0 1vs: :NEW OLD NEW OLDH Hµ µ µ µ> ≤ .

 � Ross (2008), page 451. The precision of instruments in metal cutting is a much
serious business and the cut pieces can't be significantly lesser than the target
nor be greater than it. Two machines are used to cut 10 pieces of steel, and their
measurements are respectively given in 122.4, 123.12, 122.51, 123.12, 122.55,
121.76, 122.31, 123.2, 122.48, 121.96, and 122.36, 121.88, 122.2, 122.88, 123.43,
122.4, 122.12, 121.78, 122.85, 123.04. The standard deviation of the length of a cut
is known to be equal to 0.5. We need to test if the average cut length is same for the
two machines.

 � For both the preceding problems assume that though the variances are equal,
they are not known. Complete the hypotheses testing problems using t.test.

 � Freund and Wilson (2003), page 199. The monitoring of the amount of
peanuts being put in jars is an important issue in quality control viewpoint.
The consistency of the weights is of prime importance and the manufacturer has
been introduced to a new machine, which is supposed to give more accuracy
in the weights of the peanuts put in the jars. With the new device, 11 jars were
tested for their weights and found to be 8.06, 8.64, 7.97, 7.81, 7.93, 8.57, 8.39,
8.46, 8.28, 8.02, 8.39, whereas a sample of nine jars from the previous machine
weighed at 7.99, 8.12, 8.34, 8.17, 8.11, 8.03, 8.14, 8.14, 7.87. Now, the task is to test

0 1vs: :NEW OLD NEW OLDH Hσ σ σ σ= ≥ .

Let us do the tests for the preceding four problems in R.

Chapter 5

[159]

Time for action – testing two-sample hypotheses
For the problem of testing hypotheses for the means arising from two populations, we will
be using the functions z.test and t.test.

1. As earlier, load the library(PASWR) library.

2. Carry out the Z-test using z.test and the options x, y, sigma.x, and sigma.y:

pH_Data <- c(8.30, 8.42, 8.44, 8.32, 8.43, 8.41, 8.42,
8.46, 8.37, 8.42)
pH_New <- c(8.78, 8.85, 8.74, 8.83, 8.82, 8.79, 8.82,
8.74, 8.84, 8.78, 8.75, 8.81)
z.test(x=pH_Data,y=pH_New,sigma.x=sigma.y=0.05,alternative="less")

The p-value is very small (2.2e-16) indicating that we reject the null hypothesis
that 0 : NEW OLDH µ µ> .

3. For the steel length cut data problem, run the following code:

length_M1 <- c(122.4, 123.12, 122.51, 123.12, 122.55,
121.76, 122.31, 123.2, 122.48, 121.96)
length_M2 <- c(122.36, 121.88, 122.2, 122.88, 123.43,
122.4, 122.12, 121.78, 122.85, 123.04)
z.test(x=length_M1,y=length_M2,sigma.x=0.5,sigma.y=0.5)

The display of p-value = 0.8335 shows that the machines do not cut the steel
in different ways.

4. If the variances are equal but not known, we need to use t.test instead of the
z.test:

t.test(x=pH_Data,y=pH_New,alternative="less")
t.test(x=length_M1,y=length_M2)

5. The p-values for the two hypotheses problems are p-value = 3.95e-13
and p-value = 0.8397. We leave the interpretation aspect to the reader.

6. For the fourth problem, we have the following R program:

machine_new <- c(8.06, 8.64, 7.97, 7.81, 7.93, 8.57, 8.39, 8.46,
8.28, 8.02, 8.39)
machine_old <- c(7.99, 8.12, 8.34, 8.17, 8.11, 8.03, 8.14, 8.14,
7.87)
t.test(machine_new,machine_old, alternative="greater")

Again, we have p-value = 0.1005!

Statistical Inference

[160]

What just happened?
The functions t.test and z.test were simply extensions from the one-sample case to the
two-sample test.

Have a go hero
In the one-sample case you used var.test for the same datasets, which needed
a comparison of means with some known standard deviation. Now, test for the variance in
the two-sample case using var.test using appropriate hypotheses for them. For example,
test whether the variances are equal for pH_Data and pH_New. Find more details of the test
with ?var.test.

Summary
In this chapter we have introduced "statistical inference", which in a common usage term
consists of three parts: estimation, confidence intervals, and hypotheses testing. We began
the chapter with the importance of likelihood and to obtain the MLE in many of the standard
probability distributions using built-in modules. Later, simply to maintain the order of
concepts, we defined functions exclusively for obtaining the confidence intervals. Finally,
the chapter considered important families of tests that are useful across many important
stochastic experiments. In the next chapter we will introduce the linear regression model,
which more formally constitutes the applied face of the subject.

6
Linear Regression Analysis

In the Visualization techniques for continuous variable data section of Chapter
3, Data Visualization, we have seen different data visualization techniques
which help in understanding the data variables (boxplots and histograms) and
their interrelationships (matrix of scatter plots). We had seen in Example 4.6.1.
Resistant line for the IO-CPU time an illustration of the resistant line, where
CPU_Time depends linearly on the No_of_IO variable. The pair function's
output in Example 3.2.9. Octane rating of gasoline blends indicated that the
mileage of a car has strong correlations with the engine-related characteristics,
such as displacement, horsepower, torque, the number of transmission speeds,
and the type of transmission being manual or automatic. Further, the mileage
of a car also strongly depends on the vehicle dimensions, such as its length,
width, and weight. The question addressed in this chapter is meant to further
these initial findings through a more appropriate model. Now, we take the next
step forward and build linear regression models for the problems. Thus, in this
chapter we will provide more concrete answers for the mileage problem.

Linear Regression Analysis

[162]

The first linear regression model was built by Sir Francis Galton in 1908. The word regression
implies towards-the-center. The covariates, also known as independent variables, features,
or regressors, have a regressive effect on the output, also called dependent or regressand
variable. Since the covariates are allowed, actually assumed, to affect the output in linear
increments, we call the model the linear regression model. The linear regression models
provide an answer for the correlation between the regressand and the regressors, and as
such do not really establish causation. As it will be seen later in the chapter, using data,
we will be able to understand the mileage of a car as a linear function of the car-related
dynamics. From a pure scientific point of view, the mileage should really depend on
complicated formulas of the car's speed, road conditions, the climate, and so on. However,
it will be seen that linear models work just fine for the problem despite not really going
into the technical details. However, there will also be a price to pay, in the sense that most
regression models work well when the range of the variables is well defined, and that an
attempt to extrapolate the results usually does not result in satisfactory answers. We will
begin with a simple linear regression model where we have one dependent variable
and one covariate.

At the conclusion of the chapter, you will be able to build a regression model through
the following steps:

 � Building a linear regression model and their interpretation

 � Validation of the model assumptions

 � Identifying the effect of every single observation, covariates, as well as the output

 � Fixing the problem of dependent covariates

 � Selection of the optimal linear regression model

The simple linear regression model
In Example 4.6.1. Resistant line for the IO-CPU time of Chapter 4, Exploratory Analysis,
we built a resistant line for CPU_Time as a function of the No_of_IO processes. The
results were satisfactory in the sense that the fitted line was very close to covering all the
data points, refer to Figure 7 of Chapter 4, Exploratory Analysis. However, we need more
statistical validation of the estimated values of the slope and intercept terms. Here we take
a different approach and state the linear regression model in more technical details.

Chapter 6

[163]

The simple linear regression model is given by 0 1Y Xβ β ε= + + ,where X is the covariate/
independent variable, Y is the regressand/dependent variable, and ε is the unobservable
error term. The parameters of the linear model are specified by 0β and 1β . Here 0β is the
intercept term and corresponds to the value of Y when x = 0. The slope term 1β reflects
the change in the Y value for a unit change in X. It is also common to refer to the 0β and 1β
values as regression coefficients. To understand the regression model, we begin with n pairs
of observations () ()1 1 n nY ,X ,..., Y ,X with each pair being completely independent of the other.
We make an assumption of normal and independent and identically distributed (iid) for
the error term ε , specifically, ()20N ,ε σ∼ , where 2σ is the variance of the errors. The core
assumptions of the model are listed as follows:

 � All the observations are independent

 � The regressand depends linearly on the regressors

 � The errors are normally distributed, that is ()20N ,ε σ∼

We need to find all the unknown parameters in 0 1,β β and 2σ . Suppose we have n
independent observations. Statistical inference for the required parameters may be carried
out using the maximum likelihood function as described in the Maximum likelihood estimator
section of Chapter 5, Statistical Inference. The popular technique for the linear regression
model is the least squares method which identifies the parameters by minimizing the error
sum of squares for the model, and under the assumptions made thus far agrees with the
MLE. Let 0β and 1β be a choice of parameters. Then the residuals, the distance between the
actual points and the model predictions, made by using the proposed choice of 0 1,β β on the
i-th pair of observation ()i iY ,X is defined by:

0 1 1 2i i ie Y X ,i , ,...,nβ β= − + =� �

Let us now specify different values for the pair ()0 1,β β and visualize the residuals for them.

What happens to the arbitrary choice of parameters?
For the IO_Time dataset, the scatter plot suggests that the intercept term is about 0.05.
Further, the resistant line gives an estimate of the slope at about 0.04. We will have three
pairs for guesses for ()0 1,β β as (0.05, 0.05), (0.1, 0.04), and (0.15, 0.03). We will now plot the
data and see the different residuals for the three pairs of guesses.

Linear Regression Analysis

[164]

Time for action – the arbitrary choice of parameters
1. We begin with reasonable guesses of the slope and intercept terms for a

simple linear regression model. The idea is to inspect the difference between
the fitted line and the actual observations. Invoke the graphics windows using
par(mfrow=c(1,3)).

2. Obtain the scatter plot of the CPU_Time against No_of_IO with:

plot(No_of_IO,CPU_Time,xlab="Number of Processes",ylab="CPU Time",
ylim=c(0,0.6),xlim=c(0,11))

3. For the guessed regression line with the values of ()0 1,β β being (0.05, 0.05), plot a
line on the scatter plot with abline(a=0.05,b=0.05,col= "blue").

4. Define a function which will find the y value for the guess of the pair (0.05, 0.05)
using myline1 = function(x) 0.05*x+0.05.

5. Plot the error (residuals) made due to the choice of the pair (0.05, 0.05) from the
actual points using the following loop and give a title for the first pair of the guess:

for(i in 1:length(No_of_IO)){
 lines(c(No_of_IO[i], No_of_IO[i]), c(CPU_Time[i],
myline1(No_of_IO[i])),col="blue", pch=10)
 }
title("Residuals for the First Guess")

6. Repeat the preceding exercise for the last two pairs of guesses for the regression
coefficients ()0 1,β β .

The complete R program is given as follows:

par(mfrow=c(1,3))
plot(IO_TimeNo_of_IO,IO_TimeCPU_Time,xlab="Number of
Processes",ylab="CPU Time",ylim=c(0,0.6),xlim=c(0,11))
abline(a=0.05,b=0.05,col="blue")
myline1 <- function(x) 0.05*x+0.05
for(i in 1:length(IO_Time$No_of_IO)){
 lines(c(IO_Time$No_of_IO[i],IO_Time$No_of_IO[i]),c(IO_Time$CPU_
Time[i],myline1(IO_Time$No_of_IO[i])),col="blue",pch=10)
 }
title("Residuals for the First Guess")
plot(IO_TimeNo_of_IO,IO_TimeCPU_Time,xlab="Number of
Processes",ylab="CPU Time",ylim=c(0,0.6),xlim=c(0,11))
abline(a=0.1,b=0.04,col="green")
myline2 <- function(x) 0.04*x+0.1
for(i in 1:length(IO_Time$No_of_IO)){
 lines(c(IO_Time$No_of_IO[i],IO_Time$No_of_IO[i]),c(IO_Time$CPU_
Time[i],myline2(IO_Time$No_of_IO[i])),col="green",pch=10)

Chapter 6

[165]

 }
title("Residuals for the Second Guess")
plot(IO_TimeNo_of_IO,IO_TimeCPU_Time,xlab="Number of
Processes",ylab="CPU Time",ylim=c(0,0.6),xlim=c(0,11))
abline(a=0.15,b=0.03,col="yellow")
myline3 <- function(x) 0.03*x+0.15
for(i in 1:length(IO_Time$No_of_IO)){
 lines(c(IO_Time$No_of_IO[i],IO_Time$No_of_IO[i]),c(IO_Time$CPU_
Time[i],myline3(IO_Time$No_of_IO[i])),col="yellow",pch=10)
 }
title("Residuals for the Third Guess")

Figure 1: Residuals for the three choices of regression coefficients

What just happened?
We have just executed an R program which displays the residuals for arbitrary choices of the
regression parameters. The displayed result is the preceding screenshot.

In the preceding R program, we first plot CPU_Time against No_of_IO. The first choice of
the line is plotted by using the abline function, and we specify the required intercept and
slope through a = 0.05 and b = 0.05. From this straight line (color blue), we need to obtain
the magnitude of error, through perpendicular lines from the points to the line, from the
original points. This is achieved through the for loop, where the lines function joins the
points and the line.

Linear Regression Analysis

[166]

For the pair (0.05, 0.05) as a guess of ()0 1,β β , we see that there is a progression in the
residual values as x increases, and it is the other way for the guess of (0.15, 0.03). In either
case, we are making large mistakes (residuals) for certain x values. The middle plot for the
guess (0.1, 0.04) does not seem to have large residual values. This choice may be better over
the other two choices. Thus, we need to define a criterion which enables us to find the best
values ()0 1,β β in some sense. The criterion is to minimize the sum of squared errors:

()0 1

2

1
min

n

i, i
e

β β
=
∑

Where:

(){ }22
0 1

1 1

n n

i i i
i i
e y xβ β

= =

= − +∑ ∑

Here, the summation is over all the observed pairs () 1 2i iy ,x ,i , ,...,n= . The technique of
minimizing the error sum of squares is known as the method of least squares, and for the
simple linear regression model, the values of ()0 1,β β which meet the criterion are given by:

1 0 1
xy

xx

Sˆ ˆ ˆ, y x
S

β β β= = −

Where:

1 1and
n n
i i i ix yx , y
n n
− −∑ ∑

= =

And:

() ()2 2

1 1
and

n n

xx i xx i i
i i

S x x , S y x x
= =

= − = −∑ ∑

We will now learn how to use R for building a simple linear regression model.

Chapter 6

[167]

Building a simple linear regression model
We will use the R function lm for the required construction. The lm function creates
an object of class lm, which consists of an ensemble of the fitted regression model.
Through the following exercise, you will learn the following:

 � The basic construction of an lm object

 � The criteria which signifies the model significance

 � The criteria which signifies the variable significance

 � The variation of the output explained by the inputs

The relationship is specified by a formula in R, and the details related to the generic form
may be obtained by entering ?formula in the R console. That is, the lm function accepts
a formula object for the model that we are attempting to build. data.frame may also be
explicitly specified, which consists of the required data. We need to model CPU_Time as a
function of No_of_IO, and this is carried out by specifying CPU_Time ~ No_of_IO.
The function lm is wrapped around the formula to obtain our first linear regression model.

Time for action – building a simple linear regression model
We will build the simple linear regression model using the lm function with its
useful arguments.

1. Create a simple linear regression model for CPU_Time as a function of No_of_IO
by keying in IO_lm <- lm(CPU_Time ~ No_of_IO, data=IO_Time).

2. Verify that IO_lm is of the lm class with class(IO_lm).

3. Find the details of the fitted regression model using the summary function:
summary(IO_lm).

Linear Regression Analysis

[168]

The output is given in the following screenshot:

Figure 2: Building the first simple linear regression model

The first question you should ask yourself is, "Is the model significant overall?".
The answer is provided by the p-value of the F-statistic for the overall model. This appears
in the final line of summary(IO_lm). If the p-value is closer to 0, it implies that the model is
useful. A rule of thumb for the significance of the model is that it should be less than 0.05.
The general rule is that if you need the model significance at a certain percentage, say P,
then the p-value of the F-statistic should be lesser than (1-P/100).

Now that we know that the model is useful, we can ask whether the independent variable
as well as the intercept term, are significant or not. The answer to this question is provided
by Pr(>|t|) for the variables in the summary. R has a general way of displaying the highest
significance level of a term by using ***, **, * and . in the Signif. codes:. This display may be
easily compared with the review of a movie or a book! Just as with general ratings, where
more stars indicate a better product, in our context, the higher the number of stars indicate
the variables are more significant for the built model. In our linear model, we find No_of_IO
to be highly significant. The estimate value of No_of_IO is given as 0.04076. This coefficient
has the interpretation that for a unit increase in the number of IOs; CPU_Time is expected to
increase by 0.04076.

Chapter 6

[169]

Now that we know that the model, as well as the independent variable, are significant, we
need to know how much of the variability in CPU_Time is explained by No_of_IO. The answer
to this question is provided by the measure R2, not to be confused with the letter R for the
software, which when multiplied by 100 gives the percentage of variation in the regressand
explained by the regressor. The term R2 is also called as the coefficient of determination. In
our example, 98.76 percent of the variation in CPU_Time is explained by No_of_IO, see the
value associated with Multiple R-squared in the summary(IO_lm). The R2 measure does not
consider the number of parameters estimated or the number of observations n in a model.
A more robust explanation, which takes into consideration the number of parameters and
observations, is provided by Adjusted R-squared which is 98.6 percent.

We have thus far not commented on the first numerical display as a result of using the
summary function. This relates to the residuals and the display is about the basic summary
of the residual values. The residuals vary from -0.016509 to 0.024006, which are not
very large in comparison with the CPU_Time values, check with summary(CPU_Time)
for instance. Also, the median of the residual values is very close to zero, and this is an
important criterion as the median of the standard normal distribution is 0.

What just happened?
You have fitted a simple linear regression model where the independent variable is No_of_
IO and the dependent variable (output) is CPU_Time. The important quantities to look for
the model significance, the regression coefficients, and so on have been clearly illustrated.

Have a go hero
Load the dataset anscombe from the datasets package. The anscombe dataset has four
pairs of datasets in x1, x2, x3, x4, y1, y2, y3, and y4. Fit a simple regression model for
all the four pairs and obtain the summary for each pair. Make your comments on the
summaries. Pay careful attention to the details of the summary function. If you need further
help, simply try out example(anscombe).

We will next look at the ANOVA (Analysis of Variance) method for the regression model,
and also obtain the confidence intervals for the model parameters.

ANOVA and the confidence intervals
The summary function of the lm object specifies the p-value for each variable in the model,
including the intercept term. Technically, the hypothesis problem is testing 0 0 0 1j

jH : , j ,β = =
against the corresponding alternative hypothesis, 1 0 0 1j

jH : , j ,β ≠ = . This testing problem
is technically different from the simultaneous hypothesis testing 0 0 1 0:H β β= = against the
alternative that at least one of the regression coefficients is different from 0. The ANOVA
technique gives the answer to the latter null hypothesis of interest.

Linear Regression Analysis

[170]

For more details about the ANOVA technique, you may refer to http://en.wikipedia.
org/wiki/Analysis_of_variance. Using the anova function, it is very simple in R to
obtain the ANOVA table for a linear regression model. Let us apply it for our IO_lm linear
regression model.

Time for action – ANOVA and the confidence intervals
The R functions anova and confint respectively help obtain the ANOVA table
and confidence intervals from the lm objects. Here, we use them for the IO_lm
regression object.

1. Use the anova function on the IO_lm lm object to obtain the ANOVA table by using
IO_anova <- anova(IO_lm).

2. Display the ANOVA table by keying in IO_anova in the console.

3. The 95 percent confidence intervals for the intercept and the No_of_IO variable
is obtained by confint(IO_lm).

The output in R is as follows:

Figure 3: ANOVA and the confidence intervals for the simple linear regression model

The ANOVA table confirms that the variable No_of_IO is significant indeed. Note
the difference of the criteria for confirming this with respect to summary(IO_lm).
In the former case, the significance was arrived at using the t-statistics and here we have
used the F-statistic. Precisely, we check for the variance significance of the input variable.
We now give the tool for obtaining confidence intervals.

Chapter 6

[171]

Check whether or not the estimated value of the parameters fall within the 95 percent
confidence intervals. The preceding results show that we indeed have a very good linear
regression model. However, we also made a host of assumptions in the beginning of the
section, and a good practice is to ask how valid they are in the experiment. We next consider
the problem of validation of the assumptions.

What just happened?
The ANOVA table is a very fundamental block for a regression model, and it gives the split
of the sum of squares for the variable(s) and the error term. The difference between ANOVA
and the summary of the linear model object is in the respectively p-values reported by them
as Pr(>F) and Pr(>|t|). You also found a method for obtaining the confidence intervals for
the independent variables of the regression model.

Model validation
The violations of the assumptions may arise in more than one way. Tattar, et. al. (2012),
Kutner, et. al. (2005) discusses the numerous ways in which the assumptions are violated
and an adaption of the methods mentioned in these books is now considered:

 � The regression function is not linear. In this case, we expect the residuals to have
a pattern which is not linear when viewed against the regressors. Thus, a plot of the
residuals against the regressors is expected to indicate if this assumption is violated.

 � The error terms do not have constant variance. Note that we made an assumption
stating that ()20N ,ε ∼ σ , that is the magnitude of errors do not depend on the
corresponding x or y value. Thus, we expect the plot of the residuals against the
predicted y values to reveal if this assumption is violated.

 � The error terms are not independent. A plot of the residuals against the serial
number of the observations indicated if the error terms are independent or not.
We typically expect this plot to exhibit a random walk if the errors are
independent. If any systematic pattern is observed, we conclude that the errors
are not independent.

 � The model fits all but one or a few outlier observations. Outliers are a huge concern
in any analytical study as even a single outlier has a tendency to destabilize the
entire model. A simple boxplot of the residuals indicates the presence of an outlier.
If any outlier is present, such observations need to be removed and the model
needs to be rebuilt. The current step of model validation needs to be repeated for
the rebuilt model. In fact the process needs to be iterated until there are no more
outliers. However, we need to caution the reader that if the subject experts feel
that such outliers are indeed expected values, it may convey that some appropriate
variables are missing in the regression model.

Linear Regression Analysis

[172]

 � The error terms are not normally distributed. This is one of the most crucial
assumptions of the linear regression model. The violation of this assumption is
verified using the normal probability plot in which the predicted values (actually
cumulative probabilities) are plotted against the observed values. If the values fall
along a straight line, the normality assumption for errors holds true. The model is to
be rejected if this assumption is violated.

The next section shows you how to obtain the residual plots for the purpose
of model validation.

Time for action – residual plots for model validation
The R functions resid and fitted can be used to extract residuals and fitted values from
an lm object.

1. Find the residuals of the fitted regression model using the resid function: IO_lm_
resid <- resid(IO_lm).

2. We need six plots, and hence we invoke the graphics editor with par(mfrow =
c(3,2)).

3. Sketch the plot of residuals against the predictor variable with plot(No_of_IO,
IO_lm_resid).

4. To check whether the regression model is linear or not, obtain the plots of absolute
residual values against the predictor variable and also that of squared residual
values against the predictor variable respectively with plot(No_of_IO, abs(IO_
lm_resid),…) and plot(No_of_IO, IO_lm_resid^2,…).

5. The assumption that errors have constant variance may be verified by the plot of
residuals against the fitted values of the regressand. The required plot is obtained by
using plot(IO_lm$fitted.values,IO_lm_resid).

6. The assumption that the errors are independent of each other may be verified
plotting the residuals against their index numbers: plot.ts(IO_lm_resid).

Chapter 6

[173]

7. Finally, the presence of outliers is investigated by the boxplot of the residuals:
boxplot(IO_lm_resid).

8. Finally, the assumption of normality for the error terms is verified through the
normal probability plot. This plot is on a new graphics editor.

The complete R program is as follows:

IO_lm_resid <- resid(IO_lm)
par(mfrow=c(3,2))
plot(No_of_IO, IO_lm_resid,main="Plot of Residuals Vs
Predictor Variable",ylab="Residuals",xlab="Predictor Variable")
plot(No_of_IO, abs(IO_lm_resid), main="Plot ofAbsolute Residual Values
Vs Predictor Variable",ylab="Absolute Residuals", xlab="Predictor
Variable")
Equivalently
plot(No_of_IO, IO_lm_resid^2,main="Plot of Squared Residual Values
Vs Predictor Variable", ylab="Squared Residuals", xlab="Predictor
Variable")
plot(IO_lm$fitted.values,IO_lm_resid, main="Plot of Residuals Vs
Fitted Values",ylab="Residuals", xlab="Fitted Values")
plot.ts(IO_lm_resid, main="Sequence Plot ofthe Residuals")
boxplot(IO_lm_resid,main="Box Plot of the Residuals")
rpanova = anova(IO_lm)
IO_lm_resid_rank=rank(IO_lm_resid)
tc_mse=rpanova$Mean[2]
IO_lm_resid_expected=sqrt(tc_mse)*qnorm((IO_lm_resid_rank-0.375)/
(length(CPU_Time)+0.25))
plot(IO_lm_resid,IO_lm_resid_expected,xlab="Expected",ylab="Residuals"
,main="The Normal Probability Plot")
abline(0,1)

Linear Regression Analysis

[174]

The resulting plot for the model validation plot is given next. If you run the preceding R
program up to the rpanova code, you will find the plot similar to the following:

Figure 4: Checking for violations of assumptions of IO_lm

We have used the resid function to extract the residuals out of the lm object. The first plot
of residuals against the predictor variable No_of_IO shows that more the number of IO
processes, the larger is the residual value, as is also confirmed by Plot of Absolute Residual
Values Vs Predictor Variable and Plot of Squared Residual Values Vs Predictor Variable.
However, there is no clear non-linear pattern suggested here. The Plot of Residuals Vs
Fitted Values is similar to the first plot of residuals against the predictor. The time series plot
of residuals does not indicate a strict deterministic trend and appears a bit similar to the
random walk. Thus, these plots do not give any evidence of any kind of dependence among
the observations. The boxplot does not indicate any presence of an outlier.

The normal probability plot for the residuals is given next:

Chapter 6

[175]

Figure 5: The normal probability plot for IO_lm

As all the points fall close to the straight line, the normality assumption for the errors does
not appear to be violated.

What just happened?
The R program given earlier gives various residual plots, which help in validation of the
model. It is important that these plots are always checked whenever a linear regression
model is built. For CPU_Time as a function of No_of_IO, the linear regression model is
a fairly good model.

Linear Regression Analysis

[176]

Have a go hero
From a theoretical perspective and my own experience, the seven plots obtained earlier
were found to be very useful. However, R, by default, also gives a very useful set of residual
plots for an lm object. For example, plot(my_lm) generates a powerful set of model
validation plots. Explore the same for IO_lm with plot(IO_lm). You can explore more
about plot and lm with the plot.lm function.

We will next consider the general multiple linear regression model for the Gasoline problem
considered in the earlier chapters.

Multiple linear regression model
In the The simple linear regression model section, we considered an almost (un)realistic
problem of having only one predictor. We need to extend the model for the practical
problems when one has more than a single predictor. In Example 3.2.9. Octane rating
of gasoline blends we had a graphical study of mileage as a function of various vehicle
variables. In this section, we will build a multiple linear regression model for the mileage.

If we have X1, X2, …, Xp independent set of variables which have a linear effect on the
dependent variable Y, the multiple linear regression model is given by:

0 1 1 2 2 p pY X X ... Xβ β β β ε= + + + + + +

This model is similar to the simple linear regression model, and we have the same
interpretation as earlier. Here, we have additional independent variables in X2, …, Xp and their
effect on the regressand Y are respectively through the additional regression parameters
2 p,...,β β . Now, suppose we have n pairs of random observations () ()1 1 n nY ,X ,..., Y ,X for

understanding the multiple linear regression model, here ()i i ipX X ,...,X ,i ,...,n= = . A matrix
form representation of the multiple linear regression model is useful in the understanding of
the estimator for the vector of regression coefficients. We define the following quantities:

()
()

()
11 12 12

21 22 2

1 2

1

1

0 1 and

1
1

X =

1

p

p

n

n

n n n

p

Y

X X X
X X X

Y ,...,Y '

,..., ',

, ,... '

X X X

, ,

ε ε ε

β β β β

=

=

=

�
�

� � �
�

Chapter 6

[177]

The multiple linear regression model for n observations can be written in a compact matrix
form as:

Y X ' β ε= +

The least squares estimate of β is given by:

() 1ˆ X X X 'Yβ −′=

Let us fit a multiple linear regression model for the Gasoline mileage data considered earlier.

Averaging k simple linear regression models or a multiple linear
regression model
We already know how to build a simple linear regression model. Why should we learn
another theory when an extension is possible in a certain manner? Intuitively, we can build
k models consisting of the kth variable and then simply average out over the k models. Such
an averaging can also be considered for the univariate case too. Here, we may divide the
covariate over distinct intervals, then build the simple linear regression model over the
intervals, and finally average over the different models. Montgomery, et. al. (2001) highlights
the drawback of such an approach, pages 120-122. Typically, the simple linear regression
model may indicate the wrong sign for the regression coefficients. The wrong sign of such
a naïve approach may arise as a result of multiple reasons: restricting the range of some
regressors, critical regressors may have been omitted from the model building, or some
computational errors may have crept in.

To drive home the point, we consider an example from Montgomery, et. al.

Time for action – averaging k simple linear regression models
We will build three models here. We have a vector of regressand y and two covariates: x1
and x2.

1. Enter the dependent variable and the independent variables with y <- c(1,
5,3,8,5,3,10,7), x1 = c(2,4,5,6,8,10,11,13), and x2 <- c(1,2,
2,4,4,4,6,6).

2. Visualize the relationships among the variables with:

par(mfrow=c(1,3))
plot(x1,y)
plot(x2,y)
plot(x1,x2)

Linear Regression Analysis

[178]

3. Build the individual simple linear regression model and our first multiple regression
model with:

summary(lm(y~x1))
summary(lm(y~x2))
summary(lm(y~x1+x2)) # Our first multiple regression model

Figure 6: Averaging k simple linear regression models

Chapter 6

[179]

What just happened?
The visual plot (the preceding screenshot) indicates that both x1 and x2 have a positive
impact on y, and this is also captured in lm(y~x1) and lm(y~x2), see the next R output
display. We have omitted the scatter plot, though you should be able to see the same on
your screen after running the R code after step 2 in the next section. However, both the
models are under the assumption that the information contained in x1 and x2 is complete.
The variables are also seen to have a significant effect on the output. However, the metrics
such as Multiple R-squared and Adjusted R-squared are very poor for both simple (linear)
regression models. This is one of the indications that we need to collect more information
and thus, we include both the variables and build our first multiple linear regression model,
see the next section for more details. There are two important changes worth registering
now. First, the sign of the regression coefficient x1 now becomes negative, which is now
contradicting the intuition. The second observation is the great increase in the R-squared
metric value.

To summarize our observations here, it suffices to say that the sum of the parts may
sometimes fall way short of the entire picture.

Building a multiple linear regression model
The R function lm remains the same as earlier. We will continue Example 3.2.9. Octane rating
of gasoline blends from the Visualization techniques for continuous variable data section of
Chapter 3, Data Visualization. Recall that the variables, independent and dependent as well,
are stored in the dataset Gasoline in the RSADBE package. Now, we tell R that y, which is
the mileage, is the dependent variable, and we need to build a multiple linear regression
model which includes all other variables of the Gasoline object. Thus, the formula is
specified by y~. indicating that all other variables from the Gasoline object need to be
treated as the independent variables. We proceed as earlier to obtain the summary of the
fitted multiple linear regression model.

Time for action – building a multiple linear regression model
The method of building a multiple linear regression model remains the same as earlier.
If all the variables in data.frame are to be used, we use the formula y ~ .. However,
if we need specific variables, say x1 and x3, the formula would be y ~ x1 + x3.

1. Build the multiple linear regression model with gasoline_lm <- lm(y~.,
data=Gasoline). Here, the formula y~. considers the variable y as the
dependent variable and all the remaining variables in the Gasoline data
frame as independent variables.

2. Get the details of the fitted multiple linear regression model with
summary(gasoline_lm).

Linear Regression Analysis

[180]

The R screen then appears as follows:

Figure 7: Building the multiple linear regression model

As with the simple model, we need to first check whether the overall model is significant
by looking at the p-value of the F-statistics, which appears as the last line of the summary
output. Here, the value 0.0003 being very close to zero, the overall model is significant.
Of the 11 variables specified for modeling, only x1 and x3, that is, the engine displacement
and torque, are found to have a meaningful linear effect on the mileage. The estimated
regression coefficient values indicate that the engine displacement has a negative impact
on the mileage, whereas the torque impacts positively. These results are in confirmation
with the basic science of vehicle mileage.

Chapter 6

[181]

We have a tricky output for the eleventh independent variable, which for some strange
reasons R has been renamed as x11M. We need to explain this. You should verify
the output as a consequence of running sapply(Gasoline,class) on the console.
Now, the x11 variable is a factor variable assuming two possible values A and M, which stand
for the transmission box being Automatic or Manual. As the categorical variables are of a
special nature, they need to be handled differently. The user may be tempted to skip this,
as the variable is seen to be insignificant in this case. However, the interpretation is very
useful and the "skip" part may prove really expensive later. For computational purposes,
an m-level factor variable is used to create m-1 new different variables. If the variable
assumes the level l, the lth variable takes value 1, else 0, for l = 1, 2, …, m-1. If the variable
assumes level m, all the (m-1) new variables take the value 0. Now, R takes the lth factor
level and names that vector by concatenating the variable name and the factor level. Hence,
we have x11M as the variable name in the output. Here, we found the factor variable to be
insignificant. If in certain experiments we find some factor levels to be significant at certain
p-value, we can't ignore the other factor levels even if their p-values suggest them
as insignificant.

What just happened?
The building of a multiple linear regression model is a straightforward extension of the
simple linear regression model. The interpretation is where one has to be more careful
with the multiple linear regression model.

We will now look at the ANOVA and confidence intervals for the multiple linear regression
model. It is to be noted that the usage is not different from the simple linear regression
model, as we are still dealing with the lm object.

The ANOVA and confidence intervals for the multiple linear
regression model
Again, we use the anova and confint functions to obtain the required results. Here,
the null hypothesis of interest is whether all the regression coefficients equal 0, that is

0 0 1 0pH : β β β= = = =� against the alternative that at least one of the regression
coefficients is different from 0, that is 1 0 0H : β ≠ for at least one j = 0, 1, …, p.

Linear Regression Analysis

[182]

Time for action – the ANOVA and confidence intervals for the
multiple linear regression model

The use of anova and confint extend in a similar way as lm is used for simple and multiple
linear regression models.

1. The ANOVA table for the multiple regression model is obtained in the same way as
for the simple regression model, after all we are dealing with the object of class lm:
gasoline_anova<-anova(gasoline_lm).

2. The confidence intervals for the independent variables are obtained by using
confint(gasoline_lm).

The R output is given as follows:

Figure 8: The ANOVA and confidence intervals for the multiple linear regression model

Chapter 6

[183]

Note the difference between the anova and summary results. Now, we find only the first
variable to be significant. The interpretation of the confidence intervals is left to you.

What just happened?
The extension from simple to multiple linear regression model in R, especially for the ANOVA
and confidence intervals, is really straightforward.

Have a go hero
The ANOVA table in the preceding screenshot and the summary of gasoline_lm in the
screenshot given in step 2 of the Time for action – building a multiple linear regression model
section build linear regression models using the significant variables only. Are you amused?

Useful residual plots
In the context of multiple linear regression models, modifications of the residuals have been
found to be more useful than the residuals themselves. We have assumed the residuals to
follow a normal distribution with mean zero and unknown variance. An estimator of the
unknown variance is provided by the mean residual sum of squares. There are four useful
types of residuals for the current model:

 � Standardized Residuals: We know that the residuals have zero mean. Thus,
the standardized residuals are obtained by scaling the residuals with the estimator
of the standard deviation, that is the square root of the mean residual sum of
squares. The standardized residuals are defined by:

i
i

Res

ed
MS

=

Here, ()2
1

n
Res i iMS e / n p== ∑ − , and p is the number of covariates in the model.

The residual is expected to have mean 0 and ResMS is an estimate of its variance.
Hence, we expect the standardized residuals to have a standard normal distribution.
This in turn helps us to verify whether the normality assumption for the residuals is
meaningful or not.

 � Semi-studentized Residuals: The semi-studentized residuals are defined by:

()
1

1
i

i
Res ii

er ,i ,...,n
MS h

= =
−

Linear Regression Analysis

[184]

Here, hii is the ith diagonal element of the matrix () 1H X X ' X X '−= .

The variance of a residual depends on the covariate value and hence, a flat
scaling by ResMS is not appropriate. A correction is provided by ()1 iih− , and

()1Res iiMS h− turns out to be an estimate of the variance of ei. This is the
motivation for the semi-studentized residual ri.

 � PRESS Residuals: The predicted residual, PRESS, for observation i is the difference
between the actual value yi and the value predicted for it, by using a regression
model based on the remaining (n-1) observations. Now let ()iβ̂ be the estimator
of regression coefficients based on the (n-1) observations (not including the ith
observations). Then, PRESS for observations i is given by:

() () 1i ii i
ˆe y x ,i ,...,nβ= − =

Here, the idea is that the estimate of residual for an observation is more appropriate
when obtained from a model which is not influenced by its own value.

 � R-student Residuals: This residual is especially useful for the detection of outliers.

() ()1
i

i
iiRes i

et
MS h

=
−

Here, ()Res iMS is an estimator of the variance 2σ based on the remaining (n-1)
observations.

The scaling change is on similar lines as with the studentized residuals.

The task of building n linear models may look daunting! However, there are very
useful formulas in Statistics and functions in R which save the day for us. It is
appropriate that we use those functions and develop the residual plots for the
Gasoline dataset. Let us set ourselves for some action.

Time for action – residual plots for the multiple linear
regression model

R functions resid, hatvalues, rstandard, and rstudent are available, which can be
applied on an lm object to obtain the required residuals.

Chapter 6

[185]

1. Get the MSE of the regression model with gasoline_lm_mse <- gasoline_
anova$Mean[length(gasoline_anova$Mean)].

2. Extract the residuals with the resid function, and standardize the residuals
using stan_resid_gasoline <- resid(gasoline_lm)/sqrt(gasoline_
lm_mse).

3. To obtain the semi-studentized residuals, we first need to get the hii elements
which are obtainable using the hatvalues function: hatvalues(gasoline_lm).
The remaining code is given at the end of this list.

4. The PRESS residuals are calculated using the rstandard function available in R.

5. The R-student residuals can be obtained using the rstudent function in R.
The detailed code is as follows:

Useful Residual Plots
gasoline_lm_mse<-gasoline_anova$Mean[length(gasoline_anova$Mean)]
stan_resid_gasoline <- resid(gasoline_lm)/sqrt(gasoline_lm_mse)
#Standardizing the residuals
studentized_resid_gasoline <- resid(gasoline_lm)/ (sqrt(gasoline_
lm_mse*(1-hatvalues(gasoline_lm))))
#Studentizing the residuals
pred_resid_gasoline <- rstandard(gasoline_lm)
pred_student_resid_gasoline<-rstudent(gasoline_lm)
returns the R-Student Prediction Residuals
par(mfrow=c(2,2))
plot(gasoline_fitted,stan_resid_gasoline,xlab="Fitted",
ylab="Residuals")
title("Standardized Residual Plot")
plot(gasoline_fitted,studentized_resid_gasoline,xlab="Fitted",ylab
="Residuals")
title("Studentized Residual Plot")
plot(gasoline_fitted,pred_resid_gasoline,xlab="Fitted",
ylab="Residuals")
title("PRESS Plot")
plot(gasoline_fitted,pred_student_resid_gasoline,xlab="Fitted",yla
b="Residuals")
title("R-Student Residual Plot")

Linear Regression Analysis

[186]

All the four residual plots in the screenshot given in the Time for action – residual plots for
model navigation section look identical though there is a difference in their y-scaling. It is
apparent from the residual plots that there are no patterns which show the presence of
non-linearity, that is the linearity assumption appears valid. In the standardized residual
plot, all the observations are well within -3 and 3. Thus, it is correct to say that there are
no outliers in the dataset.

Figure 9: Residual plots for the multiple linear regression model

What just happened?
Using the resid, rstudent, rstandard, and other functions, we have obtained useful
residual plots for the multiple linear regression models.

Regression diagnostics
In the Useful residual plots subsection, we saw how outliers may be identified using
the residual plots. If there are outliers, we need to ask the following questions:

Chapter 6

[187]

 � Is the observation an outlier due to an anomalous value in one or more
covariate values?

 � Is the observation an outlier due to an extreme output value?

 � Is the observation an outlier because of both the covariate and output values being
extreme values?

The distinction in the nature of an outlier is vital as one needs to be sure of its type. The
techniques for outlier identification are certainly different as is their impact. If the outlier
is due to the covariate value, the observation is called a leverage point, and if it is due to
the y value, we call it an influential point. The rest of the section is for the exact statistical
technique for such an outlier identification.

Leverage points
As noted, a leverage point has an anomalous x value. The leverage points may be
theoretically proved not to impact the estimates of the regression coefficients. However,
these points are known to drastically affect the 2R value. The question then is, how do
we identify such points? The answer is by looking at the diagonal elements of the hat matrix

() 1H X X ' X X '−= . Note that the matrix H is of the order n n× . The (i, i) element of the hat
matrix iih may be interpreted as the amount of leverage by the observation, i, on the fitted
value iŷ . The average size of a leverage is h p / n= , where p is the number of covariates and
n is the number of observations. It is better to leave out an observation if its leverage value is
greater than twice of p / n, and we then conclude that the observation is a leverage point.
Let us go back to the Gasoline problem and see the leverage of all the observations. In R,
we have a function, hatvalues which readily extracts the diagonal elements of H . The R
output is given in the next screenshot.

Clearly, we have 10 observations which are leverage points. This is indeed a matter of
concern as we have only about 25 observations. Thus, the results of the linear model need
to be interpreted with caution! Let us now identify the influential points for the Gasoline
linear model.

Linear Regression Analysis

[188]

Influential points
An influential point has a tendency to pull the regression line (plane) towards its direction
and hence, they drastically affect the values of the regression coefficients. We want to
identify the impact of an observation on the regression coefficients, and one approach is
to consider how much the regression coefficient values change if the observation was not
considered. The relevant mathematics for identification of influential points is beyond the
scope of the book, so we simply help ourselves with the metric Cook's distance which finds
the influential points. The R function, cooks.distance, returns the values of the Cook's
distance for each observation, and the thumb rule is that if the distance is greater than 1,
the observation is an influential point. Let us use the R function and identify the influential
points for the Gasoline problem.

Figure 10: Leverage and influential points of the gasoline_lm fitted model

For this dataset, we have only one influential point in Eldorado. The plot of Cook's distance
against the observation numbers and that of Cook's distance against the leverages may be
easily obtained with plot(gasoline_lm,which=c(4,6)).

Chapter 6

[189]

DFFITS and DFBETAS
Belsley, Kuh, and Welsch (1980) proposed two additional metrics for finding the influential
points. The DFBETAS metric indicates the change of regression coefficients (in standard
deviation units) if the ith observation is removed. Similarly, DFFITS is a metric which gives
the impact on the fitted values iŷ . The rule which indicates the presence of an influential
point using the DFFITS is 2i| DFFITS | / p / n> , where p is the number of covariates and n
is the number of observations.

Finally, an observation i is influential for regression coefficient j if 2j ,iDFBETAS / n> .

Figure 11: DFFITS and DFBETAS for the Gasoline problem

We have given the DFFITS and DFBETAS values for the Gasoline dataset. It is left as an
exercise to the reader to identify the influential points from the outputs given above.

The multicollinearity problem
One of the important assumptions of the multiple linear regression model is that the
covariates are linearly independent. The linear independence here is the sense of Linear
Algebra that a vector (covariate in our context) cannot be expressed as a linear combination
of others. Mathematically, this assumption translates into an implication that () 1X ' X − is
nonsingular, or that its determinant is non-zero. If this is not the case then we have one or
more of the following problems:

Linear Regression Analysis

[190]

 � The estimated will be unreliable, and there is a great chance of the regression
coefficients having the wrong sign

 � The relevant significant factors will not be identified by either the t-tests or the
F-tests

 � The importance of certain predictors will be undermined

Let us first obtain the correlation matrix for the predictors of the Gasoline dataset.
We will exclude the final covariate, as it is factor variable.

Figure 12: The correlation matrix of the Gasoline covariates

We can see that covariate x1 is strongly correlated with all other predictors except x4.
Similarly, x8 to x10 are also strongly correlated. This is a strong indication of the presence
of the multicollinearity problem.

Define () 1C X ' X −= . Then it can be proved that, refer Montgomery, et. al. (2003), the
jth diagonal element of C can be written as () 121jj jC R

−
= − , where 2

jR is the coefficient
of determination obtained by regressing all other covariates for xj as the output. Now,
the variable xj is independent of all the other covariates; we expect the coefficient of
determination to be zero, and hence jjC to be closer to unity. However, if the covariate
depends on the others, we expect the coefficient of determination to be a high value, and
hence the jjC to be a large number. The quantity jjC is also called the variance inflation
factor, denoted by VIFj. A general guideline for a covariate to be linearly independent of
other covariates is that its VIFj should be lesser than 5 or 10.

Chapter 6

[191]

Time for action – addressing the multicollinearity problem for
the Gasoline data

The multicollinearity problem is addressed using the vif function, which is available from
two libraries: car and faraway. We will use it from the faraway package.

1. Load the faraway package with library(faraway).

2. We need to find the variance inflation factor (VIF) of the independent variables
only. The covariate x11 is a character variable, and the first column of the Gasoline
dataset is the regressand. Hence, run vif(Gasoline[,-c(1,12)]) to find the VIF
of the eligible independent variables.

3. The VIF for x3 is highest at 217.587. Hence, we remove it to find the VIF among the
remaining variables with vif(Gasoline[,-c(1,4,12)]). Remember that x3 is
the fourth column in the Gasoline data frame.

4. In the previous step, we find x10 having the maximum VIF at 77.810. Now, run
vif(Gasoline[,-c(1,4,11,12)]) to find if all VIFs are less than 10.

5. For the first variable x1 the VIF is 31.956, and we now remove it with
vif(Gasoline[,-c(1,2,4,11,12)]).

6. At the end of the previous step, we have the VIF of x1 at 10.383. Thus, run
vif(Gasoline[,-c(1,2,3,4,11,12)]).

7. Now, all the independent variables have VIF lesser than 10. Hence, we stop
at this step.

8. Removing all the independent variables with VIF greater than 10, we arrive at the
final model, summary(lm(y~x4+x5+x6+x7+x8+x9,data= Gasoline)).

Figure 13: Addressing the multicollinearity problem for the Gasoline dataset

Linear Regression Analysis

[192]

What just happened?
We used the vif function from the faraway package to overcome the problem of
multicollinearity in the multiple linear regression model. This helped to reduce the
number of independent variables from 10 to 6, which is a huge 40 percent reduction.
The function vif from the faraway package is applied to the set of covariates. Indeed,
there is another function of the same name from the car package which can be directly
applied on an lm object.

Model selection
The method of removal of covariates in the The multicollinearity problem section depended
solely on the covariates themselves. However, it may happen more often that the covariates
in the final model will be selected with respect to the output. Computational cost is almost
a non-issue these days and especially for not-so-very-large datasets! The question that
arises then is can one retain all possible covariates in the model, or do we have any choice
of covariates which meet a certain regression metric, say R2 > 60 percent? The problem
is that having more covariates increases the variance of the model which having lesser of
them will have large bias. The philosophical Occam's Razor principle applies here, and the
best model is the simplest model. In our context, the smallest model which fits the data is
the best. There are two types of model selection: stepwise procedures and criterion-based
procedures. In this section, we will consider both the procedures.

Stepwise procedures
There are three methods of selecting covariates for inclusion in the final model: backward
elimination, forward selection, and stepwise regression. We will first describe the backward
elimination approach and develop the R function for it.

The backward elimination
In this model, one first begins with all the available covariates. Suppose we wish to retain all
covariates for whom the p-value is at the most α . The value α is referred to as critical alpha.
Now, we first eliminate that covariate whose p-value is maximum among all the covariates
having p-value greater than α . The model is refitted for the current covariates. We continue
the process until we have all the covariates whose p-value is less than α . In summary, the
backward elimination algorithm is as explained next:

Chapter 6

[193]

1. Consider all the available covariates.

2. Remove the covariate with maximum p-value among all the covariates which have
p-value greater than α .

3. Refit the model and go to the first step.

4. Continue the process until all p-values are less than α .

Typically, the user investigates the p-values in the summary output and then carries out the
preceding algorithm. Tattar, et. al. (2013) gives a function which right away executes the
entire algorithm, and we adapt the same function here and apply it on the linear regression
model gasoline_lm.

The forward selection
In the previous procedure we started with all covariates. Here, we begin with an empty
model and look forward for the most significant covariates with p-value lesser than α .
That is, we build k new linear models with the k-th covariate for the k-th model. Naturally,
by "most significant" we mean that the p-value should be the least among all the covariates
whose p-value is lesser than α . Then, we build the model with the selected covariate.
A second covariate is selected by treating the previous model as the initial empty model.
The model selection is continued until we fail to add any more covariates. This is summarized
in the following algorithm:

1. Begin with an empty model.

2. For each covariate, obtain the p-value if it is added to the model. Select the
covariates with the least p-value among all the covariates whose p-value is
lesser than α .

3. Repeat the preceding step until no more covariates can be updated for the model.

We again use the function created in Tattar, et. al. (2013) and apply it for
the gasoline problem.

There is yet another method of model selection. Here, we begin with the empty model. We
add a covariate as in the forward selection step and then perform a backward elimination to
remove any unwanted covariate. Then, the forward and backward steps are continued until
we can't either add a new covariate or remove an existing covariate. Of course, the alpha
critical values for forward and backward steps are specified distinctly. This method is called
stepwise regression. This method is however skipped here for the purpose of brevity.

Linear Regression Analysis

[194]

Criterion-based procedures
A useful tool for the model selection problem is to evaluate all possible models and select
one of them according to certain criteria. The Akaike Information Criteria (AIC) is one such
criterion which can be used to select the best model. Let ()()2

0 1log p
ˆ ˆ ˆ ˆL , ,..., , | yβ β β σ denote the

log likelihood function of the fitted regression model. Define K = p + 2 which is the total
number of estimated parameters. The AIC for the fitted regression model is given by:

()()2
0 1AIC -log2 p
ˆ ˆ ˆ ˆL , ,..., , | y Kβ β β σ = +

Now, the model which has the least AIC among the candidate models is the best model.
The step function available in R gets the job done for us, and we will close the chapter
with the continued illustration of the Gasoline problem.

Time for action – model selection using the backward, forward,
and AIC criteria

For the forward and backward selection procedure under the stepwise procedures of the
model selection problem, we first define two functions: backwardlm and forwardlm.
However, for the criteria-based model selection, say AIC, we use the step function, which
can be performed on the fitted linear models.

1. Create a function pvalueslm which extracts the p-values related to the covariates
of an lm object:

pvalueslm <- function(lm) {summary(lm)$coefficients[-1,4]}

2. Create a backwardlm function defined as follows:

backwardlm <- function(lm,criticalalpha) {
lm2=lm
while(max(pvalueslm(lm2))>criticalalpha) {
lm2=update(lm2,paste(".~.-",attr(lm2$terms,
"term.labels")[(which(pvalueslm(lm2)==max(pvalueslm(lm2))))],s
ep=""))
}
return(lm2)
}

Chapter 6

[195]

The code needs to be explained in more detail. There are two new functions created
here for the implementation of the backward elimination procedure. Let us have a
detailed look at them. The function pvalueslm extracts the p-values related to the
covariates of an lm object. The choice of summary(lm)$coefficients[-1,4]
is vital, as we are interested in the p-values of the covariates and not the intercept
term. The p-values are available once the summary function is applied on the lm
object. Now, let us focus on the backwardlm function. Its arguments are the lm
object and the value of critical α . Our goal is to carry out the iterations until we
do not have any more covariates with p-value greater than α . Thus, we use the
while function which is typical of algorithm, where the last step appears during
the beginning of a function/program. We want our function to work for all the
linear models and not just gasoline_lm, and we need to get the names of the
covariates which are specified in the lm object. Remember, we conveniently used
the formula lm(y~.) and this will try to haunt us! Thankfully, attr(lm$terms,
"term.labels") extracts all the covariate names of an lm object. The argument
[(which(pvalueslm(lm2)==max (pvalueslm (lm2))))] identifies the
covariate number which has the maximum p-value above α . Next, paste(".~.-
",attr(), sep="") returns the formula which would have removed the
unwanted covariate. The explanation of the formula is lengthier than the function
itself, which is not surprising, as R is object-oriented and a few lines of code do more
actions than detailed prose.

3. Obtain the efficient linear regression model by applying the backwardlm function,
with the critical alpha at 0.20 on the Gasoline lm object:

gasoline_lm_backward <- backwardlm(gasoline_lm,criticalalpha=0.20)

4. Find the details of the final model obtained in the previous step:

summary(gasoline_lm_backward)

Linear Regression Analysis

[196]

The output as a result of applying the backward selection algorithm is the following:

Figure 14: The backward selection model for the Gasoline problem

5. The forwardlm function is given by:

forwardlm <- function(y,x,criticalalpha) {
yx <- data.frame(y,x)
mylm <- lm(y~-.,data=yx)
avail_cov <- attr(mylm$terms,"dataClasses")[-1]
minpvalues <- 0
while(minpvalues<criticalalpha){
pvalues_curr <- NULL
for(i in 1:length(avail_cov)){
 templm <- update(mylm,paste(".~.+",names(avail_cov[i])))
 mypvalues <- summary(templm)$coefficients[,4]
 pvalues_curr <- c(pvalues_curr,mypvalues[length(mypvalues)])
 }
minpvalues <- min(pvalues_curr)

Chapter 6

[197]

if(minpvalues<criticalalpha){
include_me_in <- min(which(pvalues_curr<criticalalpha))
mylm <- update(mylm,paste(".~.+",names(avail_cov[include_me_in])))
avail_cov <- avail_cov[-include_me_in]
}
}
return(mylm)
}

6. Apply the forwardlm function on the Gasoline dataset:

gasoline_lm_forward <- forwardlm(Gasoline$y,Gasoline[,-1],
criticalalpha=0.2)

7. Obtain the details of the finalized model with summary(gasoline_lm_
forward).

The output in R is as follows:

Figure 15: The forward selection model for the Gasoline dataset

Note that the forward selection and backward elimination have resulted in two
different models. This is to be expected and is not a surprise, and in such scenarios,
one can pick up either of the models for further analysis/implementation.
The understanding of the construction of the forwardlm function is left as
an exercise to the reader.

Linear Regression Analysis

[198]

8. The step function in R readily gives the best model using AIC: step
(gasoline_lm, direction="both").

Figure 16: Stepwise AIC

Backward and forward selection can be easily performed using AIC with the options
direction= "backward" and direction= "forward".

What just happened?
We used two customized functions backwardlm and forwardlm for backward and forward
selection criteria. The step function has been used for the model selection problem based
on the AIC.

Have a go hero
The supervisor performance data is available in the SPD dataset from the RSADBE package.
Here, Y (the regressand) represents the overall rating of the job done by a supervisor.
The overall rating depends on six other inputs/regressors. Find more details about
the dataset with ?SPD. First, visualize the dataset with the pairs function. Fit a multiple
linear regression model for Y and complete the necessary regression tasks, such as model
validation, regression diagnostics, and model selection.

Chapter 6

[199]

Summary
In this chapter, we learned how to build a linear regression model, check for violations in the
model assumptions, fix the multicollinearity problem, and finally how to find the best model.
Here, we were aided by two important assumptions: the output being a continuous variable,
and the normality assumption for the errors. The linear regression model provides the best
footing for the general regression problems. However, when the output variable is discrete,
binary, or multi-category data, the linear regression model lets us down. This is not actually
a let down, as it was never intended to solve this class of problem. Thus, our next chapter
will focus on the problem of regression models for binary data.

The Logistic Regression Model

In this chapter we will consider regression models when the regressand is
dichotomous or binary in nature. The data is of the form () () ()1 1 2 2 n nY ,X , Y ,X ,..., Y ,X ,
where the dependent variable Yi, i = 1, …, n are the observed binary outputs
assumed to be independent (in the statistical sense) of each other, the vector Xi,
i = 1,…, n, are the covariates (independent variables in the sense of a regression
problem) associated with Yi. In the previous chapter we considered the linear
regression model where the regressand was assumed to be continuous along
with the assumption of normality for the error distribution. Here, we will
consider a Gaussian (normal) model for the binary regression model, which is
more widely known as the probit model.

A more generic model has emerged during the past four decades in the form of a logistic
regression model. We will consider the logistic regression model for rest of the chapter.
The approach in this chapter will be on the following lines:

 � The binary regression problem

 � The probit regression model

 � The logistic regression model

 � Model validation and diagnostics

 � Receiving operator curves

 � Logistic regression for the German credit screening dataset

7

The Logistic Regression Model

[202]

The binary regression problem
Consider the problem of modeling the completion of a stat course by students based
on their Scholastic Assessment Test in the subject of mathematics SAT-M scores at the
time of their admission. After the completion of the final exams we know which students
successfully completed the course and which of them failed. Here, the output pass/fail
may be represented by a binary number 1/0. It may be fairly said that higher the SAT-M
scores at the time of admission to the course, the more likelihood of the candidate
completing the course. This problem has been discussed in detail in Johnson and Albert
(1999) and Tattar, et. al. (2013).

Let us begin by denoting the pass/fail indicator by Y and the entry SAT-M score by X. Suppose
that we have n pairs of observations on the students' scores and their course completion
results. We can build the simple linear regression model for the probability of course
completion pi = P(Yi = 1) as a function of the SAT-M score with 0 0i i ip Xβ β ε= + + . The data
from page 77 of Johnson and Albert (1999) is available in the sat dataset of the book's R
package. The columns that contain the data on the variables Y and X are named Pass and
Sat respectively. To build a linear regression model for the probability of completing the
course, we take pi as 1 if Yi = 1, and 0 otherwise. A scatter plot of Pass against Sat indicates
the students with higher SAT-M scores are more likely to complete the course. The SAT score
varies from 463-649 and then we attempt to predict whether students with SAT scores of
400 and 700 would have successfully completed the course or not.

Time for action – limitations of linear regression models
A linear regression model is built for the dataset with a binary output. The model is used
to predict the probabilities for some cases, which shows the limitations:

1. Load the dataset from the RSADBE package with data(sat).

2. Visualize the scatter plot of Pass against Sat with plot(sat$Sat,
sat$Pass,xlab="SAT Score", ylab = "Final Result").

3. Fit the simple linear regression model with passlm <- lm(Pass~Sat,
data=sat) and obtain its summary by summary(passlm). Add the fitted
regression line to the scatter plot using abline(passlm).

4. Make a prediction for students with SAT-M scores of 400 and 700 by using the R
code predict(passlm,newdata=list(Sat=400)) and predict(passlm,
newdata=list(Sat=700),interval="prediction").

Chapter 7

[203]

Figure 1: Drawbacks of the linear regression model for the classification problem

The linear model is significant as seen by p-value: 0.000179 associated with the
F-statistic. Next, Pr(>|t|) associated with the Sat variable is 0.00018, which is again
significant. However, the predicted value for SAT-M marks at 400 and 700 are respectively
seen as -0.4793 and 1.743. The problem with the model is that the predicted values can
be negative as well as greater than 1. It is essentially these limitations which restrict the use
of the linear regression model when the regressand is a binary outcome.

What just happened?
We used the simple linear regression model for the probability prediction of a binary
outcome and observed that the probabilities are not bound in the unit interval [0,1]
as they are expected to be. This shows that we need to have special/different statistical
models for understanding the relationship between the covariates and the binary output.

We will use two regression models that are appropriate for binary regressand: probit
regression, and logistic regression. The former model will continue the use of normal
distribution for the error through a latent variable, whereas the latter uses the binomial
distribution and is a popular member of the more generic generalized linear models.

The Logistic Regression Model

[204]

Probit regression model
The probit regression model is constructed as a latent variable model. Define a latent
variable, also called as auxiliary random variable, Y * as follows:

Y* X' β ε= +

which is same as the earlier linear regression model with Y replaced by Y *. The error term
ε is assumed to follow a normal distribution ()20N ,σ . Then Y can be considered as 1 if the
latent variable is positive, that is:

if 0 equivalently
otherwise

1
0

y* , X ',
Y

,
β ε> −

=
>

Without loss of generality, we can assume that ()0 1N ,ε ∼ . Then, the probit model
is obtained by:

() () ()
() ()

1 0P Y | X P Y* P X '

P X ' X '

ε β

ε β β

= = > = > −

= < = φ

The method of maximum likelihood estimation is used to determine β . For a random
sample of size n, the log likelihood function is given by:

() () () ()()()
1

log log 1 log 1
n

i i i i
i

L y x ' y x 'β β β
=

= φ + − −φ∑

Numerical optimization techniques can be deployed to find the MLE of β . Fortunately,
we don't have to undertake this daunting task and R helps us out with the glm function.
Let us fit the probit model for the Sat dataset seen earlier.

Time for action – understanding the constants
The probit regression model is built for the Pass variable as a function of the Sat score
using the glm R function and the argument binomial(probit).

1. Using the glm function and the binomial(probit) option we can fit the probit
model for Pass as a function of the Sat score:

pass_probit <- glm(Pass~Sat,data=sat,binomial(probit))

Chapter 7

[205]

2. The details about the pass_probit glm object are fetched using
summary(pass_probit).

The summary function does not give a measure of R2, the coefficient of
determination, as we obtained for the linear regression model. In general such a
measure is not exactly available for the GLMs. However, certain pseudo-R2 measures
are available and we will use pR2 function from the pscl package. This package
has been developed at the Political Science Computational Laboratory, Stanford
University, which explains the name of the package as pscl.

3. Load the pscl package with library(pscl), and apply the pR2 function
on pass_probit to obtain the measures of pseudo R2.

Finally, we check how the probit model overcomes the problems posed by
application of the linear regression model.

4. Find the probability of passing the course for students with a SAT-M score of 400
and 700 with the following code:

predict(pass_probit,newdata=list(Sat=400),type = "response")
predict(pass_probit,newdata=list(Sat=700),type = "response")

The following picture is the screenshot of R action:

Figure 2: The probit regression model for SAT problem

The Logistic Regression Model

[206]

The Pr(>|z|) for Sat is 0.0052, which shows that the variable has a significant say
in explaining whether the student successfully completes the course or not. The regression
coefficient value for the Sat variable indicates that if the Sat variable increases by one
mark, the influence on the probit link increases by 0.0334. In easy words, the SAT-M
variable has a positive impact on the probability of success for the student. Next, the pseudo
R2 value of 0.3934 for the McFadden metric indicates that approximately 39.34 percent of
the output is explained by the Sat variable. This appears to suggest that we need to collect
more information about the students. That is, the experimenter may try to get information
on how many hours did the student spend exclusively for the course/examination, the
students' attendance percentages, and so on. However, the SAT-M score, which may have
been obtained nearly two years before the final exam of the course, continues to have
a good explanatory power!

Finally, it may be seen that the probability of completing the course for students with SAT-M
scores of 400 and 700 are respectively 2.019e-06 and 1. It is important for the reader to
note the importance of the type = "response" option. More details may be obtained
running ?predict.glm at the R terminal.

What just happened?
The probit regression model is appropriate for handling the binary outputs and is certainly
much more appropriate than the simple linear regression model. The reader learned how to
build the probit model using the glm function which is in fact more versatile as will be seen in
the rest of the chapter. The prediction probabilities were also seen to be in the range of 0 to 1.

The glm function can be conveniently used for more than one covariate. In fact, the formula
structure of glm remains the same as lm. Model-related issues have not been considered
in full details till now. The reason being that there is more interest in the logistic regression
model, as it will be focus for the rest of the chapter, and the logic does not change. In fact
we will return to the probit model diagnostics in parallel with the logistic regression model.

Logistic regression model
The binary outcomes may be easily viewed as failures or successes, and we have done
the same on many earlier occasions. Typically, it is then common to assume that we
have a binomial distribution for the probability of an observation to be successful.
The logistic regression model specifies the linear effect of the covariates as a specific
function of the probability of success. The probability of success for observation is
denoted by () ()1x P Yπ = = and the model is specified through the logistic function:

()
0 1 1

0 1 11

p p

p p

x ... x

x ... x
ex
e

β β β

β β βπ
+ + +

+ + +=
+

Chapter 7

[207]

The choice of this function is for fairly good reasons. Define 0 1 1 p pw x ... xβ β β= + + + . Then,
it may be easily seen that () () ()1 1 1w w wx e / e / eπ −= + = + . Thus, as w decreases to negative of
infinity, ()xπ approaches 0, and if w increases towards infinity, ()xπ reaches 1. For w = 0, ()xπ
takes the value 0.5. The ratio of probability of success to that of failure is known as the odds
ratio, denoted by OR, and following some simple arithmetic steps, it may be shown that:

()
()

0 1 1

1
p px ... xx

OR e
x

β β βπ
π

+ + += =
−

Taking a logarithm of the odds ration gets us:

()
() 0 0 1log log

1 p p

x
OR x ... x

x
π

β β β
π

= = + + + −

And thus, we finally see that the logarithm of the odds ratio as a linear function of the
covariates. It is actually the second term () ()()()log 1i ix / xπ π− , which is the form of a logit
function that this model derives its name from.

The log-likelihood function based on the data () () ()1 1 2 2 n ny ,x , y ,x ,..., y ,x is then:

() ()0

1 0 1
log log 1

p
j ijj

pn n
x

i j ij
i j i

L y x e ββ β =∑

= = =

= − +

∑ ∑ ∑

The preceding expression is indeed a bit complex in nature to obtain an explicit form for an
estimate of β . Indeed, a specialized algorithm is required here and it is known as the iterative
reweighted least-squares (IRLS) algorithm. We will not go into the details of the algorithm and
refer the readers to an online paper of Scott A. Czepiel available at http://czep.net/stat/
mlelr.pdf. A raw R implementation of the IRLS is provided in Chapter 19 of Tattar, et. al.
(2013). For our purpose, we will be using the solution as provided from the glm function.
Let us now fit the logistic regression model for the Sat-M dataset considered hitherto.

Time for action – fitting the logistic regression model
The logistic regression model is built using the glm function with the family =
'binomial' option. We will obtain the pseudo-R2 values using the pR2 function from
the pscl package.

1. Fit the logistic regression model for the Pass as a function of the Sat using
the option family = 'binomial' in the glm function:

pass_logistic <- glm(Pass~Sat,data=sat,family = 'binomial')

The Logistic Regression Model

[208]

2. The details of the fitted logistic regression model is obtained using the summary
function: summary(pass_logistic).

In the summary you will see two statistics called Null deviance and Residual deviance.
In general, a deviance is a measure useful for assessing the goodness-of-fit, and for
the logistic regression model it plays the analogous role of residual sum of squares
for the linear regression model. The null deviance is the measure of a model that is
built without using any information, such as Sat, and thus we would expect such
a model to have a large value. If the Sat variable is influencing Pass, we expect
the residuals of such a fitted model to be significantly lesser than the null deviance
model. If the residual deviance is significantly smaller than the null deviance, we
conclude that the covariates have significantly improved the model fit.

3. Find the pseudo-R2 with pR2(pass_logistic) from the pscl package.

4. The overall model significance of the fitted logistic regression model is obtained with

with(pass_logistic, pchisq(null.deviance - deviance,
df.null - df.residual, lower.tail = FALSE))

The p-value is 0.0001496 which shows that the model is indeed significant. The
p-values for the Sat covariate Pr(>|z|) is 0.011, which means that this variable
is indeed valuable for understanding Pass. The estimated regression coefficient for
Sat of 0.0578 indicates that for the increase of a single mark increases the odds of
the candidate to pass the course by 0.0578.

A brief explanation of this R code! It may be seen from the output following the
summary.glm(pass_logistic) that we have all the terms null.deviance,
deviance, df.null, and df.residual. So, the with function extracts all these
terms from the pass_logistic object and finds the p-value using the pchisq
function based on the difference between the deviances (null.deviance -
deviance) and the correct degrees of freedom (df.null - df.residual).

Chapter 7

[209]

Figure 3: Logistic regression model for the Sat dataset

5. The confidence intervals, with a default 95 percent requirement, for the
parameters of the regression coefficients, is extracted using the confint
function: confint(pass_logistic).

The ranges of the 95 percent confidence intervals do not contain 0 among them,
and hence we conclude that the intercept term and Sat variable are both significant.

6. The prediction for the unknown scores are obtained as in the probit regression model:

predict.glm(pass_logistic,newdata=list(Sat=400),type = "response")
predict.glm(pass_logistic,newdata=list(Sat=700),type = "response")

7. Let us compare the logistic and probit model. Consider a sequence of hypothetical
SAT-M scores: sat_x = seq(400,700, 10). For the new sequence sat_x, we
predict the probability of course completion using both the pass_logistic and
pass_probit models and visualize them if their predictions are vastly different:

pred_l <- predict(pass_logistic,newdata=list(Sat=sat_x), type=
"response")
pred_p <- predict(pass_probit,newdata=list(Sat=sat_x), type=
"response")
plot(sat_x,pred_l,type="l",ylab="Probability",xlab="Sat_M")
lines(sat_x,pred_p,lty=2)

The Logistic Regression Model

[210]

The prediction says that a candidate with a SAT-M score of 400 is very unlikely to
complete the course successfully while the one with SAT-M score of 700 is almost
guaranteed to complete it. The predictions with probabilities closer to 0 or 1 need
to be taken with a bit caution since we rarely have enough observations at the
boundaries of the covariates.

Figure 4: Prediction using the logistic regression

What just happened?
We fitted our first logistic regression model and viewed its various measures which tell
us whether the fitted model is a good model or not. Next, we learnt how to interpret
the estimated regression coefficients and also had a peek at the pseudo-R2 value.
The importance of confidence intervals is also emphasized. Finally, the model has
been used to make predictions for some unobserved SAT-M scores too.

Hosmer-Lemeshow goodness-of-fit test statistic
We may be satisfied with the analysis thus far, and there is always a lot more that we
can do. The testing hypothesis problem is of the form ()0

0 01
p p

j ij j ijj jx x
H : E Y e / e

β β= =∑ ∑ = +

 versus
()1

0 01
p p

j ij j ijj jx x
H : E Y e / e

β β= =∑ ∑ ≠ +

. An answer to this hypothesis testing problem is provided by
the Hosmer-Lemeshow goodness-of-fit test statistic. The steps of the construction of this
test statistic are first discussed:

Chapter 7

[211]

1. Order the fitted values using sort and fitted functions.

2. Group the fitted values into g classes, the preferred values of g vary between 6-10.

3. Find the observed and expected number in each group.

4. Perform a chi-square goodness-of-fit test on the these groups. That is, denote Ojk
for the number of observations of class k, k = 0, 1, in the group j, j = 1, 2, …, g, and
by Ejk the corresponding expected numbers. The chi-square test statistic is then
given by:

()22

1 0 1

g
jk jk

j k . jk

O E
E

χ
= =

−
=∑ ∑

And it may be proved that under the null-hypothesis 2 2
2gχ χ −∼ .

We will use an R program available at http://sas-and-r.blogspot.in/2010/09/
example-87-hosmer-and-lemeshow-goodness.html. It is important to note here
that when we use the code available on the web we verify and understand that such code
is indeed correct.

Time for action – The Hosmer-Lemeshow goodness-of-fit
statistic

The Hosmer-Lemeshow goodness-of-fit statistic for logistic regression is one of the very
important metrics for evaluating a logistic regression model. The hosmerlem function
from the preceding web link will be used for the pass_logistic regression model.

1. Extract the fitted values for the pass_logistic model with pass_hat <-
fitted(pass_logistic).

2. Create the function hosmerlem from the previously-mentioned URL:

hosmerlem <- function(y, yhat, g=10) {
 cutyhat = cut(yhat,
 breaks = quantile(yhat, probs=seq(0,
 1, 1/g)), include.lowest=TRUE)
 obs = xtabs(cbind(1 - y, y) ~ cutyhat)
 expect = xtabs(cbind(1 - yhat, yhat) ~ cutyhat)
 chisq = sum((obs - expect)^2/expect)
 P = 1 - pchisq(chisq, g - 2)
 return(list(chisq=chisq,p.value=P))
}

The Logistic Regression Model

[212]

What is the hosmerlem function exactly doing here? Obviously, it is a function of
three variables, the real output values in y, the predicted (probabilities) in yhat,
and the number of groups g. The cutyhat variable uses the cut function on the
predicted probabilities among the ten groups and assigns them one of the 10
groups. The obs matrix obtains the count Ojk using the xtabs function and a similar
action is repeated for Ejk. The code chisq = sum((obs - expect)^2/expect)
then obtains the value of the Hosmer-Lemeshow chi-square test statistic, and
using it we obtain the related p-value using P = 1 - pchisq(chisq, g - 2).
Finally, the required values are returned with return(list(chisq=chisq,p.
value=P)).

3. Complete the computations of the Hosmer-Lemeshow goodness-of-fit test statistic
for the fitted model pass_logistic with hosmerlem(pass_logistic$y,
pass_hat).

Figure 5: Hosmer-Lemeshow goodness-of-fit test

Since there is no significant difference between the observed and predicted y values, we
concluded that the fitted model is a good fit. Now that we know that we have got a good
model on hand, it is time to investigate how valid are the model assumptions.

What just happened?
We used an R code from the Web and successfully adapted it to the problem on our hand!
Particularly, the Hosmer-Lemeshow goodness-of-fit test is a vital metric for understanding
the appropriateness of a logistic regression model.

Chapter 7

[213]

Model validation and diagnostics
In the previous chapter we saw the utility of residual techniques. A similar technique is also
required for the logistic regression model and we will develop these methods for the logistic
regression model in this section.

Residual plots for the GLM
In the case of the linear regression model, we had explored the role of residuals for the
purpose of model validation. In the context of logistic regression, actually GLM, we have
five different types of residuals for the same purpose:

 � Response residual: The difference between the actual values and the fitted values
is the response residual, that is, i iˆy π− , and in particular it is 1 iπ̂− if yi = 1 and iπ̂−
for yi = 0.

 � Deviance residual: For an observation i, the deviance residual is the signed square
root of the contribution of the observation to the sum of the model deviance. That
is, it is given by:

() () (){ }1 22 log 1 log 1
/dev

i i i i iˆ ˆr Y Yπ π= ± − + − −

where the sign is positive if i iˆy π− , and negative otherwise, and iπ̂ is the predicted
probability of success.

 � Pearson residual: The Pearson residual is defined by:

()1
P i i
i

i i

ˆYr
ˆ ˆ

π
π π

−
=

−

 � Partial residual: The partial residual of the jth predictor, j = 1, 2, …, p, for the ith
observation is defined by:

()
1 1

1
part i i
ij j ij

i i

ˆyˆr x ,i ,...,n, j ,..., p
ˆ ˆ

πβ
π π

−
= + = =

−

The partial residuals are very useful for identification of the type of transformation
that needs to be performed on the covariates.

 � Working residual: The working residual for the logistic regression model is given by:

()1
W i i
i

i i

ˆyr
ˆ ˆ

π
π π

−
=

−

The Logistic Regression Model

[214]

Each of the preceding residual variants is easily obtained using the residuals function, see
? glm.summaries for details. The residual variant is specified through the option type in
the residuals function. We have not given the details related to the probit regression model,
however, the same functions for logistic regression apply here nevertheless. We will obtain
the residual plots against the fitted values and examine the appropriateness of the logistic
and probit regression models.

Time for action – residual plots for the logistic regression
model

The residuals and fitted functions will be used to obtain the residual plots from the
probit and logistic regression models.

1. Initialize a graphics windows for three panels with par(mfrow=c(1,3),
oma = c(0,0,3,0)). The oma option ensures that we can appropriately title
the grand output.

2. Plot Response Residuals against the Fitted Values of the pass_logistic
model with:

plot(fitted(pass_logistic), residuals(pass_logistic,"response"),
col= "red", xlab="Fitted Values", ylab="Residuals",cex.axis=1.5,
cex.lab=1.5)

The reason of xlab and ylab has been explained in the earlier chapters.

3. For the purpose of comparison with the probit regression model, add their response
residuals to the previous plot with:

points(fitted(pass_probit), residuals(pass_probit,"response"),
col= "green")

And add a suitable legend and title as follows:

legend(0.6,0,c("Logistic","Probit"),col=c("red","green"),pch="-")
title("Response Residuals")

4. Add the horizontal line at 0 with abline(h=0).

5. Repeat the preceding steps for deviance and Pearson residuals with:

plot(fitted(pass_logistic), residuals(pass_logistic,"deviance"),
col= "red", xlab="Fitted Values", ylab="Residuals",cex.axis=1.5,
cex.lab=1.5)
points(fitted(pass_probit), residuals(pass_probit,"deviance"),
col= "green")

Chapter 7

[215]

legend(0.6,0,c("Logistic","Probit"),col=c("red","green"),pch="-")
abline(h=0)
title("Deviance Residuals")
plot(fitted(pass_logistic), residuals(pass_logistic,"pearson"),
col= "red",xlab="Fitted Values",ylab="Residuals",cex.axis=1.5,
cex.lab= 1.5)
points(fitted(pass_probit), residuals(pass_probit,"pearson"), col=
"green")
legend(0.6,0,c("Logistic","Probit"),col=c("red","green"),pch="-")
abline(h=0)
title("Pearson Residuals")

6. Give an appropriate title with title(main="Response, Deviance, and
Pearson Residuals Comparison for the Logistic and Probit
Models",outer=TRUE, cex.main=1.5).

Figure 6: Residual plots for the logistic regression model

In each of the three preceding residual plots we observe two trends of decreasing residuals
whose slope is -1. The reason for such a trend is that the residuals take one of two values at
a point Xi, either 1 iπ̂− or iπ̂− . Thus, in these residual plots we always get two linear trends
with slope -1. Clearly, there is not much difference between the residuals of the logistic and
probit models. The Pearson residual graph also indicates the presence of an outlier for the
observation with residual value lesser than -3.

The Logistic Regression Model

[216]

What just happened?
The residuals function along with the type option helps in model validation and
identification of some residuals. A good thing is that the same function applies on the
logistic as well as the probit regression model.

Have a go hero
In the previous exercise, we have left out the investigation using partial and working type
of residuals. Obtain these plots!

Influence and leverage for the GLM
In the previous chapter we saw how the influential and leverage points are identified in
a linear regression model. It will be a bit difficult to go into the appropriate formulas and
theory for the logistic regression model.

Time for action – diagnostics for the logistic regression
The influence and leverage points will be identified through the application of the functions,
such as hatvalues, cooks.distance, dffits, and dfbetas for the pass_logistic
fitted model.

1. The high leverage points of a logistic regression model are obtained with
hatvalues(pass_logistic) while the Cooks distance is fetched with cooks.
distance(pass_logistic). The DFFITS and DFBETAS measures of influence are
obtained by running dfbetas(pass_logistic) and dffits(pass_logistic).

2. The influence and leverage measures are put together using the cbind function:

cbind(hatvalues(pass_logistic),cooks.distance(pass_
logistic),dfbetas(pass_logistic),dffits(pass_logistic))

Chapter 7

[217]

The output is given in the following screenshot:

Figure 7: Influence measures for the logistic regression model

It is time to interpret these measures.

3. If the hatvalues associated with an observation is greater than ()2 1p / n+ , where
p is the number of covariates considered in the model and n is the number of
observations, it is considered as a high leverage point. For the pass_logistic
object, we find the high leverage points with:
hatvalues(pass_logistic)>2*(length(pass_logistic$coefficients)-1)/
length(pass_logistic$y)

The Logistic Regression Model

[218]

4. An observation is considered to have great influence on the parameter estimates
if the Cooks distance, as given by cooks.distance, is greater than 10 percent
quantile of the ()1 1p ,n pF + − + distribution, and it is considered highly influential if it
exceeds 50 percent quantile of the same distribution. In terms of R program,
we need to execute:

cooks.distance(pass_logistic)>qf(0.1,length(pass_logistic$
coefficients),length(pass_logistic$y)-length(pass_logistic$
coefficients))
cooks.distance(pass_logistic)>qf(0.5,length(pass_logistic$
coefficients),length(pass_logistic$y)-length(pass_logistic$
coefficients))

Figure 8: Identifying the outliers

The previous screenshot shows that there are eight high leverage points. We also
see that at the 10 percent quantile of the F-distribution we have two influential
points whereas we don't have any highly influential points.

5. Use the plot function to identify the influential observations suggested by the
DFFITS and DFBETAS measure:

par(mfrow=c(1,3))
plot(dfbetas(pass_logistic)[,1],ylab="DFBETAS - INTERCEPT")
plot(dfbetas(pass_logistic)[,2],ylab="DFBETAS - SAT")
plot(dffits(pass_logistic),ylab="DFFITS")

Chapter 7

[219]

Figure 9: DFFITS and DFBETAS for the logistic regression model

As with the linear regression model, the DFFITS and DFBETAS are measures of influence of
the observations on the regression coefficients. The thumb rule for the DFBETAS is that if
their absolute value exceeds 1, the observations have significant influence on the covariates.
In our case it is not correct and we conclude that we do not have influential observations.
The interpretation of DFFITS is left as an exercise.

What just happened?
We adapted the influential measures in the context of generalized linear models,
and especially in the context of logistic regression.

Have a go hero
The influence and leverage measures were executed on the logistic regression model,
the pass_logistic object in particular. You also have the pass_probit object!
Repeat the entire exercise of hatvalues, cooks.distance, dffits, and dfbetas
on the pass_probit fitted probit model and draw your inference.

The Logistic Regression Model

[220]

Receiving operator curves
In the binary classification problem, we have certain scenarios where the comparison
between the predicted and actual class is of great importance. For example, there is
a genuine problem in the banking industry for identifying fraudulent transactions against
the non-fraudulent transactions. There is another problem of sanctioning loans to customers
who may successfully repay the entire loan and the customers who will default at some stage
during the loan tenure. Given the historical data, we will build a classification model, for
example the logistic regression model.

Now with the logistic regression model, or any other classification model for that matter,
if the predicted probability is greater than 0.5, the observation is predicted as a successful
observation, and a failure otherwise. We remind ourselves again that success/failure is
defined according to the experiment. At least with the data on hand, we know the true
labels of the observations and hence a comparison of the true labels with the predicted
label makes a lot of sense. In an ideal scenario we expect the predicted labels to match
perfectly with the actual labels, that is, whenever the true label stands for success/failure,
the predicted label is also success/failure. However, in the real scenario it is rarely the case.
This means that there are some observations which are predicted as success/failure when
the true labels are actually failure/success. In other words, we make mistakes! It is possible
to put these notes in the form of a table widely known as the confusion matrix.

 Observed

Predicted

 Success Failure

Success True Positive (TP) False Positive (FP)

 Failure False Negative (FN) True Negative (TN)

Table 1: The confusion matrix

The number in parenthesis is the count of the cases. It may be seen from the preceding
table that the cells colored in green are the correct predictions made by the model, whereas
the red colored are the ones with mistakes. The following metrics may be considered for
comparison across multiple models:

 � Accuracy: TP TN
TP TN FP FN

+
+ + +

 � Precision: TP
TP FP+

 � Recall: TP
TP FN+

However, it is known that these metrics have a lot of limitations and more robust steps
are required. The answer is provided by the receiver operator characteristic (ROC) curve.
We need two important metrics towards the construction of an ROC. The true positive rate
(tpr) and false positive rate (fpr) are respectively defined by:

Chapter 7

[221]

TP FPtpr , fpr
TP FN TN FP

= =
+ +

The ROC graphs are constructed by plotting the tpr against the fpr. We will now explain this
in detail. Our approach will be explaining the algorithm in an Action framework.

Time for action – ROC construction
A simple dataset is considered and the ROC construction is explained in a very simple
step-by-step approach:

1. Suppose that the predicted probabilities of n = 10 observations are 0.32, 0.62, 0.19,
0.75, 0.18, 0.18, 0.95, 0.79, 0.24, 0.59. Create a vector of it as follows:

pred_prob<-c(0.32, 0.62, 0.19, 0.75, 0.18, 0.18, 0.95, 0.79, 0.24,
0.59)

2. Sort the predicted probabilities in a decreasing order:

> (pred_prob=sort(pred_prob,decreasing=TRUE))
 [1] 0.95 0.79 0.75 0.62 0.59 0.32 0.24 0.19 0.18 0.18

3. Normalize the predicted probabilities in the preceding step to the unit interval:

> pred_prob<-(pred_prob-min(pred_prob))/(max(pred_prob)-min(pred_
prob))
> pred_prob
 [1] 1.00000 0.79221 0.74026 0.57143 0.53247 0.18182 0.07792
0.01299 0.00000 0.00000

Now, at each percentage of the previously sorted probability, we commit false
positives as well as false negatives. Thus, we want to check at each part of our
prediction percentiles, the quantum of tpr and fpr. Since ten points are very less,
we now consider a dataset of predicted probabilities and the true labels.

4. Load the illustrative dataset from the RSADBE package with data(simpledata).

5. Set up the threshold vector threshold <- seq(1,0,-0.01).

6. Find the number of positive (success) and negative (failure) cases in the dataset P
<- sum(simpledata$Label==1) and N <- sum(simpledata$Label ==0).

7. Initialize the fpr and tpr with tpr <- fpr <- threshold*0.

The Logistic Regression Model

[222]

8. Set up the following loop which computes tpr and fpr at each point of the
threshold vector:

for(i in 1:length(threshold)) {
 FP=TP=0
 for(j in 1:nrow(simpledata)) {
 if(simpledata$Predictions[j]>=threshold[i]) {
 if(simpledata$Label[j]==1) TP=TP+1 else FP=FP+1
 }
 }
 tpr[i]=TP/P
 fpr[i]=FP/N
 }

9. Plot the tpr against the fpr with:

plot(fpr,tpr,"l",xlab="False Positive Rate", ylab="True Positive
Rate",col="red")
abline(a=0,b=1)

Figure 10: An ROC illustration

The diagonal line is about the performance of a random classifier in that it simply says
"Yes" or "No" without looking at any characteristic of an observation. Any good classifier
must sit, rather be displayed, above this line. The classifier, albeit an unknown one, seems
a much better classifier than the random classifier. The ROC curve is useful in comparison
to the competitive classifiers in the sense that if one classifier is always above another,
we select the former.

Chapter 7

[223]

An excellent introductory exposition of the ROC curves is available at the website http://
ns1.ce.sharif.ir/courses/90-91/2/ce725-1/resources/root/Readings/
Model%20Assessment%20with%20ROC%20Curves.pdf.

What just happened?
The construction of ROC has been demystified! The preceding program is a very primitive
one. In the later chapters we will use the ROCR package for the construction of ROC.

We will next look at a real-world problem.

Logistic regression for the German credit screening
dataset
Millions of applications are made to a bank for a variety of loans! The loan may be a personal
loan, home loan, car loan, and so forth. From a bank's perspective, loans are an asset for them
as obviously the customer pays them interest and over a period of time the bank makes profit.
If all the customers promptly pay back their loan amount, all their tenure equated monthly
installment (EMI) or the complete amount on preclosure of the principal amount, there is
only money to be made. Unfortunately, it is not always the case that the customers pay back
the entire amount. In fact, the fraction of people who do not complete the loan duration may
also be very small, say about five percent. However, a bad customer may take away the profits
of may be 20 or more customers. In this hypothetical case, the bank eventually makes more
losses than profit and this may eventually lead to its own bankruptcy.

Now, a loan application form seeks a lot of details about the applicant. The data from these
details in the application can help the bank build appropriate classifiers, such as a logistic
regression model, and make predictions about which customers are most likely to turn up as
fraudulent. The customers who have been predicted to default in the future are then declined
the loan. A real dataset of 1,000 customers who had borrowed loan from a bank is available
on the web at http://www.stat.auckland.ac.nz/~reilly/credit-g.arff and
http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data).
This data has been made available by Prof. Hofmann and it contains details on 20 variables
related to the customer. It is also known whether the customers defaulted or not. The
variables are described in the following table.

The Logistic Regression Model

[224]

A detailed analysis of the dataset using R has been done by Sharma and his very useful
document can be downloaded from cran.r-project.org/doc/contrib/Sharma-
CreditScoring.pdf.

No Variable Characteristic Description No Variable Characteristic Description

1 checking integer

Status of
existing
checking
account 12 property factor Property

2 duration integer
Duration in
month 13 age numeric Age in years

3 history integer Credit history 14 other integer

Other
installment
plans

4 purpose factor Purpose 15 housing integer Housing

5 amount numeric Credit amount 16 existcr integer

Number of
existing credits
at this bank

6 savings integer
Savings
account/bonds 17 job integer Job

7 employed integer

Present
employment
since 18 depends integer

Number
of people
being liable
to provide
maintenance
for

8 installp integer

Installment
rate in
percentage
of disposable
income 19 telephon integer Telephone

9 marital integer
Personal status
and sex 20 foreign integer Foreign worker

10 coapp integer
Other debtors/
guarantors 21 good_bad factor Loan defaulter

11 resident integer

Present
residence
since 22 default integer

good_bad in
numeric

We have the German credit dataset with us in the GC data from the RSADBE package.
Let us build a classifier for identifying the good customers from the bad ones.

Chapter 7

[225]

Time for action – logistic regression for the German credit
dataset

The logistic regression model will be built for credit card application scoring model and an
ROC curve fit to evaluate the fit of the model.

1. Invoke the ROCR library with library(ROCR).

2. Get the German credit dataset in your current session with data(GC).

3. Build the logistic regression model for good_bad with GC_LR <- glm
(good_bad~.,data=GC,family=binomial()).

4. Run summary(GC_LR) and identify the significant variables. Also answer the
question of whether the model is significant?

5. Get the predictions using the predict function:

LR_Pred <- predict(GC_LR,type='response')

6. Use the prediction function from the ROCR package to set up a prediction object:

GC_pred <- prediction(LR_Pred,GC$good_bad)

The function prediction sets up different manipulations required computations
as required for constructing the ROC curve. Get more details related to it with
?prediction.

7. Set up the performance vector required to obtain the ROC curve with GC_perf <-
performance(GC_pred,"tpr","fpr").

The performance function uses the prediction object to set up the ROC curve.

The Logistic Regression Model

[226]

8. Finally, visualize the ROC curve with plot(GC_perf).

Figure 11: Logistic regression model for the German credit data

The ROC curve shows that the logistic regression is indeed effective in identifying
fraudulent customers.

What just happened?
Now, we considered a real world problem with enough data points. The fitted logistic
regression model gives a good explanation of the fraudulent customers in terms of the
data that is collected about them.

Have a go hero
For simpledata, a raw program was written to draw the ROC curve. Redo the exercise with
red colour for the curve. Using the prediction and performance functions from the ROCR
package, add the curve for simpledata obtained in the previous step with green colour.
What do you expect?

Chapter 7

[227]

Summary
We started with a simple linear regression model for the binary classification problem
and saw the limitedness of the same. The probit regression model, which is an adaption
of the linear regression model through a latent variable, overcomes the drawbacks of the
straightforward linear regression model. The versatile logistic regression model has been
considered in details and we considered the various kinds of residuals that help in the model
validation. The influential and leverage point detection has been discussed too, which helps
us build a better model by removing the outliers. A metric in the form of ROC helps us in
understanding the performance of a classifier. Finally, we concluded the chapter with an
application to the important problem of identifying good customers from the bad ones.

Despite the advantages of linearity, we still have many drawbacks with either the linear
regression model or the logistic regression model. The next chapter begins with the family
of polynomial regression model and later considers the impact of regularization.

8
Regression Models with

Regularization

In Chapter 6, Linear Regression Analysis, and Chapter 7, The Logistic Regression
Model, we focused on the linear and the logistic regression model. In the model
selection issues with the linear regression model, we found that a covariate
is either selected or not depending on the associated p-value. However, the
rejected covariates are not given any kind of consideration once the p-value
is lesser than the threshold. This may lead to discarding the covariates even if
they have some say on the regressand. Particularly, the final model may thus
lead to overfitting of the data, and this problem needs to be addressed.

We will first consider fitting a polynomial regression model, without the technical details,
and see how higher order polynomials give a very good fit, which actually comes with a
higher price. A more general framework of B-splines is considered next. This approach leads
us to the smooth spline models, which are actually ridge regression models. The chapter
concludes with an extension of the ridge regression for the linear and logistic regression
models. For more details of the coverage, refer to Chapter 2 of Berk (2008) and Chapter 5
of Hastie, et. al. (2008). This chapter will unfold on the following topics:

 � The problem of overfitting in a general regression model

 � The use of regression splines for certain special cases

 � Improving estimators of the regression coefficients, and overcoming the
problem of overfitting with ridge regression for linear and logistic models

 � The framework of train + validate + test for regression models

Regression Models with Regularization

[230]

The overfitting problem
The limitation of the linear regression model is best understood through an example. I have
created a hypothetical dataset for understanding the problem of overfitting. A scatterplot of
the dataset is shown in the following figure.

It appears from the scatterplot that for x values up to 6, there is a linear increase in y, and an
eye-bird estimate of the slope is (50 - 10) / (5.5 - 1.75) = 10.67. This slope may
be on account of a linear term or even a quadratic term. On the other hand, the decline in
y-values for x-values greater than 6 is very steep, approximately (10 - 50) / (10 - 6)
= -10. Now, looking at the complete picture, it appears that the output Y depends upon
the higher order of the covariate X. Let us fit polynomial curves of various degrees and
understand the behavior of the different linear regression models. A polynomial regression
model of degree k is defined as follows:

0 1 2Y X X ... Xβ β β β ε= + + + + +

Here, the terms 2 kX ,X ,...,X are treated as distinct variables, in the sense that one may
compare the preceding model with the one introduced in the multiple linear regression
model of Chapter 6, Linear Regression Analysis, by defining 2

1 2
k

kX X ,X X ,...,X X= = = .
The inference for the polynomial regression model proceeds in the same way as the
multiple linear regression with k terms:

Figure 1: A non-linear relationship displayed by a scatter plot

Chapter 8

[231]

The data for the previous figure is available in the dataset OF from RSADBE. The option poly
is used in the right-hand side of the formula of the lm function for fitting the polynomial
regression models.

Time for action – understanding overfitting
Polynomial regression models are built using the lm function, as we saw earlier, with the
option poly.

1. Read the hypothetical dataset into R by using data(OF).

2. Plot Y against X by using plot(OFX, OFY,"b",col="red",xlab="X",
ylab="Y").

3. Fit the polynomial regression models of orders 1, 2, 3, 6, and 9, and add their fitted
lines against the covariates X with the following code:

lines(OF$X,lm(Y~poly(X,1,raw=TRUE),data=OF)$fitted.
values,"b",col="green")
lines(OF$X,lm(Y~poly(X,2,raw=TRUE),data=OF)$fitted.
values,"b",col="wheat")
lines(OF$X,lm(Y~poly(X,3,raw=TRUE),data=OF)$fitted.
values,"b",col="yellow")
lines(OF$X,lm(Y~poly(X,6,raw=TRUE),data=OF)$fitted.
values,"b",col="orange")
lines(OF$X,lm(Y~poly(X,9,raw=TRUE),data=OF)$fitted.
values,"b",col="black")

Regression Models with Regularization

[232]

The option poly is used to specify the polynomial degree:

Figure 2: Fitting higher-order polynomial terms in a regression model

4. Enhance the graph with a suitable legend:

legend(6,50,c("Poly 1","Poly 2","Poly 3","Poly 6","Poly 9"),
col=c("green","wheat","yellow","orange","black"),pch=1,ncol=3)

5. Initialize the following vectors:

R2 <- NULL; AdjR2 <- NULL; FStat <- NULL
Mvar <- NULL; PolyOrder<-1:9

6. Now, fit the regression models beginning with order 1 up to order 9 (since we only
have ten points) and extract their R2, Adj- R2, F-statistic value, and model variability:

for(i in 1:9) {
 temp <- summary(lm(Y~poly(X,i,raw=T),data=OF))
 R2[i] <- temp$r.squared
 AdjR2[i] <- temp$adj.r.squared
 FStat[i] <- as.numeric(temp$fstatistic[1])
 Mvar[i] <- temp$sigma
 }
cbind(PolyOrder,R2,AdjR2,FStat,Mvar)

Chapter 8

[233]

We will more formally define polynomial regression models in the next section.
The output is given in the next figure.

7. Let us also look at the magnitude of the regression coefficients:

as.numeric(lm(Y~poly(X,1,raw=T),data=OF)$coefficients)
as.numeric(lm(Y~poly(X,2,raw=T),data=OF)$coefficients)
as.numeric(lm(Y~poly(X,3,raw=T),data=OF)$coefficients)
as.numeric(lm(Y~poly(X,4,raw=T),data=OF)$coefficients)
as.numeric(lm(Y~poly(X,5,raw=T),data=OF)$coefficients)
as.numeric(lm(Y~poly(X,6,raw=T),data=OF)$coefficients)
as.numeric(lm(Y~poly(X,7,raw=T),data=OF)$coefficients)
as.numeric(lm(Y~poly(X,8,raw=T),data=OF)$coefficients)

The following screenshot shows the large size of the regression coefficients,
particularly, as the degree of the polynomial increases, so does the coefficient
magnitude. This is a problem! As the complexity of a model increases, the
interpretability becomes very difficult. In the next section, we will discuss various
techniques in polynomial regression.

Figure 3: Regression coefficients of polynomial regression models

What just happened?
The scatter plot indicated that a polynomial regression model may be appropriate.
Fitting higher order polynomial curves gives a closer approximation of the fit.
The regression coefficients have been observed to increase with the degree
of the polynomial fit.

In the next section, we consider the more general regression spline model.

Regression Models with Regularization

[234]

Have a go hero
The R2 value for gasoline_lm is at 0.895, see Figure 7: Building Multiple Linear Regression
Model, of Chapter 6, Linear Regression Analysis. Add higher order terms for the covariates
and make an attempt to reach an R2 value of 0.95.

Regression spline
In this section, we will consider various enhancements/generalizations of the linear
regression model. We will begin with a piecewise linear regression model and then consider
the polynomial regression extension. The term spline refers to a thin strip of wood that can
be easily bent along a curved line.

Basis functions
In the previous section, we made multiple transformations of the input variable X with

2
1 2

k
kX X ,X X ,...,X X= = = . In the Data Re-expression section of Chapter 4, Exploratory

Analysis, we saw how a useful log transformation gave a better stem-and-leaf display than
the original variable itself. In many applications, it has been found that the transformed
variables are more important than the original variable itself. Thus, we need a more generic
framework to consider the transformations of the variables. Such a framework is provided by
the basis functions. For a single covariate X, the set of transformations may be defined
as follows:

() ()
1

M

m m
m

f X h Xβ
=

=∑

Here, ()mh X is the m-th transformation of X, and mβ is the associated regression coefficient.
In the case of a simple linear regression model, we have ()1 1h X = and ()2h X X= . For the
polynomial regression model, we have () 1 2m mh X X ,m , ,...,k= = , and for the logarithmic
transformation () logh X X= . In general, for the p multiple linear regression model,
we have the basis transformation as follows:

() ()1
1 1

jMp

p jm jm j
j m

f X ,...,X h Xβ
= =

=∑∑

For the multiple linear regression model, we have ()1 1j j jh X X , j ,...p= = . In general, the
transformation includes functions such as sine, cosine, exponentiation, and indicator functions.

Chapter 8

[235]

Piecewise linear regression model
Consider the scatter plot of the dataset, which is available in the dataset PWR_Illus, in
the next screenshot. We see a slanted letter N in Figure 4: Scatterplot of a dataset (A) and
the fitted values using piecewise linear regression model (B), where in the beginning Y
increases with X up to the point, approximately, 15, then there is a steep decline, or negative
relationship, till 30, and finally there is an increase in the y values beyond that. In a certain
way, we can imagine the x values of 15 and 30 as break-down points. It is apparent from the
scatterplot display that a linear relationship between the x- and y-values over the real line
intervals less than 15, between 15 to 30, and greater than 30 is appropriate. The question
then is how do we build a regression model for such a phenomenon? The answer is provided
by the piecewise linear regression model. In this particular case, we have a two-piece linear
regression model.

In general, let xa and xb denote the two points, where we believe the linear regression model
has the breakpoints. Further more, we denote an indicator function by Ia to represent that it
equals 1 when the x value is greater than xa and takes the value 0 in other cases. Similarly, the
second breakpoint indicator Ib is defined. The piecewise linear regression model is defined
as follows:

() ()0 1 2 3a a b bY X X x I X x Iβ β β β ε= + + − + − +

In this piecewise linear regression model, we have four transformations, including ()1 1h X = ,
()2h X X= , () ()3 a ah X X x I= − , and () ()4 b bh X X x I= − . The regression model needs to be

interpreted with a bit of care. If the x value is less than xa, then average Y value would
be 0 1Xβ β+ . For the x value greater than xa but lesser than xb, the average of Y is
() ()0 2 3 1 2 3a bx x Xβ β β β β β+ − + + + . Finally, for values greater than xb, it will be 0β . The
intercept term in these intervals will be ()0 2 axβ β− , ()0 2 3a bx xβ β β− − , and , respectively,
whereas the slopes are 1β , ()1 2β β+ and ()1 2 3β β β+ + . Of course, we are now concerned
about fitting the piecewise linear regression model in R. Let us set ourselves up for this task!

Time for action – fitting piecewise linear regression models
A piecewise linear regression model can be easily fitted in R by using the same lm function
and a bit of caution. A loop is used to find the points at which the model is supposed to have
changed its trajectory.

1. Read the dataset into R with data(PW_Illus).

2. For convenience, attach the variables in the PW_Illus object by using attach
(PW_Illus).

Regression Models with Regularization

[236]

3. To be on the safe side, we will select a range of the x values, which may be either of
the breakpoints:

break1 <- X[which(X>=12 & X<=18)]
break2 <- X[which(X>=27 & X<=33)]

4. Get the number of points that are candidates for being the breakpoints with n1 <-
length(break1) and n2 <- length(break2).

We do not have a clear defining criterion to select one of the n1 or n2 x values to be
the breakpoints. Hence, we will run various linear regression models and select that
pair of points (xa, xb) to be the breakpoints, which return the least mean residual
sum of squares. Towards this, we set up a matrix, which will have three columns
with the first two columns for the possible potential pair of breakpoints, and the
third column will contain the mean residual sum of squares. The choice of points,
which corresponds to the least mean residual sum of squares, will be selected as the
best model in the current case.

5. Set up the required matrix, build all the possible regression models with the pair
of potential breakpoints, and note their mean residual sum of squares through the
following program:

MSE_MAT <- matrix(nrow=(n1*n2), ncol=3)
colnames(MSE_MAT) = c("Break_1","Break_2","MSE")
curriter=0
for(i in 1:n1){
 for(j in 1:n2) {
 curriter=curriter+1
 MSE_MAT[curriter,1]<-break1[i]
 MSE_MAT[curriter,2]<-break2[j]
 piecewise1 <- lm(Y ~ X*(X<break1[i])+X*(X>=break1[i] &
X<break2[j])+X*(X>=break2[j]))
 MSE_MAT[curriter,3] <- as.numeric(summary(piecewise1)[6])
 }
 }

Note the use of the formula ~ in the specification of the piecewise linear
regression model.

6. The time has arrived to find the pair of breakpoints:

MSE_MAT[which(MSE_MAT[,3]==min(MSE_MAT[,3])),]

The pair of breakpoints is hence (14.000, 30.000). Let us now look at how good
the model fit is!

Chapter 8

[237]

7. First, reobtain the scatter plot with plot(PW_Illus). Fit the piecewise linear
regression model with breakpoints at (14,30) with pw_final <- lm(Y ~
X*(X<14)+X*(X>=14 & X<30)+X*(X>=30)). Add the fitted values to the scatter
plot with points(PW_IllusX,pw_finalfitted.values,col ="red").

Note that the fitted values are a very good reflection of the original data values,
(Figure 4 (B)). The fact that linear models can be extended to such different
scenarios makes it very promising to study this in even more detail as will be
seen in the later part of this section.

Figure 4: Scatterplot of a dataset (A) and the fitted values using piecewise linear regression model (B)

What just happened?
The piecewise linear regression model has been explored for a hypothetical scenario, and we
investigated how to identify breakpoints by using the criterion of the mean residual sum
of squares.

The piecewise linear regression model shows a useful flexibility, and it is indeed a very useful
model when there is a genuine reason to believe that there are certain breakpoints in the
model. This has some advantages and certain limitations too. From a technical perspective,
the model is not continuous, whereas from an applied perspective, the model possesses
problems in making guesses about the breakpoint values and also the problem of extensions
to multi-dimensional cases. It is thus required to look for a more general framework, where we
need not be bothered about these issues. Some answers are provided in the following sections.

Regression Models with Regularization

[238]

Natural cubic splines and the general B-splines
We will first consider the polynomial regression splines model. As noted in the previous
discussion, we have a lot of discontinuity in the piecewise regression model. In some sense,
"greater continuity" can be achieved by using the cubic functions of x and then constructing
regression splines in what are known as "piecewise cubics", see Berk (2008) Section 2.2.
Suppose that there are K data points at which we require the knots. Suppose that the knots
are located at the points 1 2 K, ,...,ξ ξ ξ , which are between the boundary points 0 1and kξ ξ + ,
such that 0 1 2 1K K...ξ ξ ξ ξ ξ +< < < < . The piecewise cubic polynomial regression model is
given as follows:

()32 3
0 1 2 3

1

K

j j
j

Y X X X Xβ β β β θ ξ ε
+

=

= + + + + − +∑

Here, the function ()3. + represents that the positive values from the argument are accepted
and then the cube power performed on it; that is:

() ()33 if

othe0 rwise
jj

j
XX X

,

ξ
ξ

ξ
+

 −− =
>

For this model, the K+4 basis functions are as follows:

() () () () () ()32 3
1 2 3 4 41 1j jh X ,h X X ,h X X ,h X X ,h X X , j ,...,Kξ+ +

= = = = = − =

We will now consider an example from Montgomery, et. al. (2005), pages 231-3. It is
known that the battery voltage drop in a guided missile motor has a different behavior as a
function of time. The next screenshot displays the scatterplot of the battery voltage drop for
different time points; see ?VD from the RSADBE package. We need to build a piecewise cubic
regression spline for this dataset with knots at time t = 6.5 and t = 13 seconds since it
is known that the missile changes its course at these points. If we denote the battery voltage
drop by Y and the time by t, the model for this problem is then given as follows:

() ()3 32 3
0 1 2 3 1 26 5 13Y t t t t . tβ β β β θ θ ε

+ +
= + + + + − + − +

It is not possible with the math scope of this book to look into the details related to the
natural cubic spline regression models or the B-spline regression models. However, we can fit
them by using the ns and bs options in the formula of the lm function, along with the knots
at the appropriate places. These models will be built and their fit will be visualized too. Let us
now fit the models!

Chapter 8

[239]

Time for action – fitting the spline regression models
A natural cubic spline regression model will be fitted for the voltage drop problem.

1. Read the required dataset into R by using data(VD).

2. Invoke the graphics editor by using par(mfrow=c(1,2)).

3. Plot the data and give an appropriate title:

plot(VD)
title(main="Scatter Plot for the Voltage Drop")

4. Build the piecewise cubic polynomial regression model by using the lm function
and related options:

VD_PRS<-lm(Voltage_Drop~Time+I(Time^2)+I(Time^3)+I(((Ti
me-6.5)^3)*(sign(Time-6.5)==1))+I(((Time-13)^3)*(sign(Time-
13)==1)),data=VD)

The sign function returns the sign of a numeric vector as 1, 0, and -1, accordingly
as the arguments are positive, zero, and negative respectively. The operator I is
an inhibit interpretator operator, in that the argument will be taken in an as is
format, check ?I. This operator is especially useful in data.frame and the formula
program of R.

5. To obtain the fitted plot along with the scatterplot, run the following code:

plot(VD)

points(VD$Time,fitted(VD_PRS),col="red","l")

title("Piecewise Cubic Polynomial Regression Model")

Figure 5: Voltage drop data - scatter plot and a cubic polynomial regression model

Regression Models with Regularization

[240]

6. Obtain the details of the fitted model with summary(VD_PRS).

The R output is given in the next screenshot. The summary output shows that each
of the basis function is indeed significant here.

Figure 6: Details of the fitted piecewise cubic polynomial regression model

7. Fit the natural cubic spline regression model using the ns option:

VD_NCS <-lm(Voltage_Drop~ns(Time,knots=c(6.5,13),intercept= TRUE,
degree=3), data=VD)

8. Obtain the fitted plot as follows:

par(mfrow=c(1,2))
plot(VD)
points(VD$Time,fitted(VD_NCS),col="green","l")
title("Natural Cubic Regression Model")

Chapter 8

[241]

9. Obtain the details related to VD_NCS with the summary function summary(VD_
NCS); see Figure 09: A first look at the linear ridge regression.

10. Fit the B-spline regression model by using the bs option:

VD_BS <- lm(Voltage_Drop~bs(Time,knots=c(6.5,13),intercept=TRUE,
degree=3), data=VD)

11. Obtain the fitted plot for VD_BS with the R program:

plot(VD)
points(VD$Time,fitted(VD_BS),col="brown","l")

title("B-Spline Regression Model")

Figure 7: Natural Cubic and B-Spline Regression Modeling

12. Finally, get the details of the fitted B-spline regression model by using
summary(VD_BS).

The main purpose of the B-spline regression model is to illustrate that the splines
are smooth at the boundary points in contrast with the natural cubic regression
model. This can be clearly seen in Figure 8: Details of the natural cubic and B-spline
regression models.

Regression Models with Regularization

[242]

Both the models, VD_NCS and VD_BS, have good summary statistics and have really
modeled the data well.

Figure 8: Details of the natural cubic and B-spline regression models

What just happened?
We began with the fitting of a piecewise polynomial regression model and then had a
look at the natural cubic spline regression and B-spline regression models. All the three
models provide a very good fit to the actual data. Thus, with a good guess or experimental/
theoretical evidence, the linear regression model can be extended in an effective way.

Chapter 8

[243]

Ridge regression for linear models
In Figure 3: Regression coefficients of polynomial regression models, we saw that the
magnitude of the regression coefficients increase in a drastic manner as the polynomial
degree increases. The right tweaking of the linear regression model, as seen in the previous
section, gives us the right results. However, the models considered in the previous section
had just one covariate and the problem of identifying the knots in the multiple regression
model becomes an overtly complex issue. That is, if we have a problem where there are
large numbers of covariates, naturally there may be some dependency amongst them,
which cannot be investigated for certain reasons. In such problems, it may happen that
certain covariates dominate other covariates in terms of the magnitude of their regression
coefficients, and this may mar the overall usefulness of the model. Further more, even in
the univariate case, we have the problem that the choice of the number of knots, their
placements, and the polynomial degree may be manipulated by the analyzer. We have an
alternative to this problem in the way we minimize the residual sum of squares 2

1
min

n

i
i
e

β
=
∑ .

The least-squares solution leads to an estimator of β :

() 1ˆ X ' X X ' Yβ −=

We saw in Chapter 6, Linear Regression Analysis, how to guard ourselves against the outliers,
the measures of model fit, and model selection techniques. However, these methods are
in action after the construction of the model, and hence though they offer protection in a
certain sense to the problem of overfitting, we need more robust methods. The question
that arises is can we guard ourselves against overfitting when building the model itself? This
will go a long way in addressing the problem. The answer is obviously an affirmative, and we
will check out this technique.

The least-squares solution is the optimal solution when we have the squared loss function.
The idea then is to modify this loss function by incorporating a penalty term, which will give
us additional protection against the overfitting problem. Mathematically, we add the penalty
term for the size of the regression coefficients; in fact, the constraint would be to ensure that
the sum of squares of the regression coefficients is minimized. Formally, the goal would be to
obtain an optimal solution of the following problem:

2 2

1 1
min

pn

i j
i j
e

β
λ β

= =

+

∑ ∑

Regression Models with Regularization

[244]

Here, 0λ > is the control factor, also known as the tuning parameter, and 2
1

p
jj

β
=∑ is the

penalty. If the λ value is zero, we get the earlier least-squares solution. Note that the
intercept has been deliberately kept out of the penalty term! Now, for the large values of

2
1

p
jj

β
=∑ , the residual sum of squares will be large. Thus, loosely speaking, for the minimum

value of 2 2
1 1

n p
i ji j
e λ β

= =
+∑ ∑ , we will require 2

1

p
jj

β
=∑ to be at a minimum value too. The optimal

solution for the preceding minimization problem is given as follows:

() 1Ridge
ˆ X ' X I X ' Yβ λ −= +

The choice of λ is a critical one. There are multiple options to obtain it:

 � Find the value of λ by using the cross-validation technique (discussed in the last
section of this chapter)

 � Find the value of a semi-automated method as described at http://arxiv.org/
pdf/1205.0686.pdf for the value of λ

For the first technique, we can use the function lm.ridge from the MASS package, and
the second method of semi-automatic detection can be obtained from the linearRidge
function of the ridge package.

In the following R session, we use the functions lm.ridge and linearRidge.

Time for action – ridge regression for the linear regression
model

The linearRidge function from ridge package and lm.ridge from the MASS package are
two good options for developing the ridge regression models.

1. Though the OF object may still be there in your session, let us again load it by using
data(OF).

2. Load the MASS and ridge package by using library(MASS); library(ridge).

3. For a polynomial regression model of degree 3 and various values of lambda,
including 0, 0.5, 1, 1.5, 2, 5, 10, and 30, obtain the ridge regression coefficients
with the following single line R code:

LR <-linearRidge(Y~poly(X,3),data=as.data.frame(OF),lambda =c(0,
0.5,1,1.5,2,5,10,30))
LR

Chapter 8

[245]

The function linearRidge from the ridge package performs the ridge regression
for a linear model. We have two options. First, we specify the values of lambda,
which may either be a scalar or a vector. In the case of a scalar lambda, it will simply
return the set of (ridge) regression coefficients. If it is a vector, it returns the related
set of regression coefficients.

4. Compute the value of 2
1

p
jj

β
=∑ for different lambda values:

LR_Coef <- LR$coef
colSums(LR_Coef^2)

Note that as the lambda value increases, the value of 2
1

p
jj

β
=∑ decreases. However,

this is not to say that higher lambda value is preferable, since the sum 2
1

p
jj

β
=∑

will decrease to 0, and eventually none of the variables will have a significant
explanatory power about the output. The choice of selection of the lambda value
will be discussed in the last section.

5. The linearRidge function also finds the "best" lambda value:

linearRidge(Y~poly(X,3),data=as.data.
frame(OF),lambda="automatic").

6. Fetch the details of the "best" ridge regression model with the following line
of code:

summary(linearRidge(Y~poly(X,3),data=as.data.frame(OF),lambda="
automatic")).

The summary shows that the value of lambda is chosen at 0.07881, and that it
used three PCs. Now, what is a PC? PC is an abbreviation of principal component,
and unfortunately we can't really go into the details of this aspect. Enthusiastic
readers may refer to Chapter 17 of Tattar, et. al. (2013). Compare these results with
those in the first section.

7. For the same choice of different lambda values, use the lm.ridge function from
the MASS package:

LM <-lm.ridge(Y~poly(X,3),data = as.data.frame(OF),lambda
=c(0,0.5,1,1.5,2,5,10,30))
LM

8. The lm.ridge function obviously works a bit differently from linearRidge. The
results are given in the next image. Comparison of the results is left as an exercise
to the reader. As with the linearRidge model, let us compute the value of 2

1

p
jj

β
=∑

for lm.ridge fitted models too.

Regression Models with Regularization

[246]

9. Use the colSums function to get the required result:

LM_Coef <- LM$coef
colSums(LM_Coef^2)

Figure 09: A first look at the linear ridge regression

So far, we are still working with a single covariate only. However, we need to consider the
multiple linear regression models and see how ridge regression helps us. To do this, we will
return to the gasoline mileage considered in Chapter 6, Linear Regression Analysis.

Chapter 8

[247]

1. Read the Gasoline data into R by using data(Gasoline).

2. Fit the ridge regression model (and the multiple linear regression model again)
for the mileage as a function of other variables:

gasoline_lm <- lm(y~., data=Gasoline)
gasoline_rlm <- linearRidge(y~., data=Gasoline,lambda=
"automatic")

3. Compare the lm coefficients with the linearRidge coefficients:

sum(coef(gasoline_lm)[-1]^2)-sum(coef(gasoline_rlm)[-1]^2)

4. Look at the summary of the fitted ridge linear regression model by using
summary(gasoline_rlm).

5. The difference between the sum of squares of the regression coefficients for the
linear and ridge linear model is indeed very large. Further more, the gasoline_
rlm details reveal that there are four variables, which have significant explanatory
power for the mileage of the car. Note that the gasoline_lm model had only one
significant variable for the car's mileage. The output is given in the following figure:

Figure 10: Ridge regression for the gasoline mileage problem

Regression Models with Regularization

[248]

What just happened?
We made use of two functions, namely lm.ridge and linearRidge, for fitting ridge
regression models for the linear regression model. It is observed that the ridge regression
models may sometimes reveal more significant variables.

In the next section, we will fit consider the ridge penalty for the logistic regression model.

Ridge regression for logistic regression models
We will not be able to go into the math of the ridge regression for the logistic regression
model, though we will happily make good use of the logisticRidge function from the
ridge package, to illustrate how to build the ridge regression for logistic regression model. For
more details, we refer to the research paper of Cule and De Iorio (2012) available at http://
arxiv.org/pdf/1205.0686.pdf. In the previous section, we saw that gasoline_rlm
found more significant variables than gasoline_lm. Now, in Chapter 7, Logistic Regression
Model, we fit a logistic regression model for the German credit data problem in GC_LR. The
question that arises is if we obtain a ridge regression model of the related logistic regression
model, say GC_RLR, can we expect to find more significant variables?

Time for action – ridge regression for the logistic regression
model

We will use the logisticRidge function here from the ridge package to fit the ridge
regression, and check if we can obtain more significant variables.

1. Load the German credit dataset with data(German).

2. Use the logisticRidge function to obtain GC_RLR, a small manipulation required
here, by using the following line of code:

GC_RLR<-logisticRidge(as.numeric(good_bad)-1~.,data= as.data.
frame(GC), lambda = "automatic")

Chapter 8

[249]

3. Obtain the summaries of GC_LR and GC_RLR by using summary(GC_LR) and
summary(GC_RLR).

The detailed summary output is given in the following screenshot:

Figure 11: Ridge regression with the logistic regression model

It can be seen that the ridge regression model offers a very slight improvement over the
standard logistic regression model.

What just happened?
The ridge regression concept has been applied to the important family of logistic
regression models. Although in the case of the German credit data problem we found slight
improvement in identification of the significant variables, it is vital that we should always be
on the lookout to fit better models, as in sensitiveness to outliers, and the logisticRidge
function appears as a good alternative to the glm function.

Regression Models with Regularization

[250]

Another look at model assessment
In the previous two sections, we used the automatic option for obtaining the optimum λ
values, as discussed in the work of Cule and De Iorio (2012). There is an iterative technique
for finding the penalty factor λ . This technique is especially useful when we do not have
sufficient well-developed theory for regression models beyond the linear and logistic
regression model. Neural networks, support vector machines, and so on, are some very useful
regression models, where the theory may not have been well developed; well at least to the
best known practice of the author. Hence, we will use the iterative method in this section.

For both the linearRidge and lm.ridge fitted models in the Ridge regression for linear
models section, we saw that for an increasing value of λ , the sum of squares of regression
coefficients, 2

1

p
jj

β
=∑ , decreases. The question then is how to select the "best" λ value. A

popular technique in the data mining community is to split the dataset into three parts, namely
Train, Validate, and Test part. There are no definitive answers for what needs to be the split
percentage for the three parts and a common practice is to split them into either 60:20:20
percentages or 50:25:25 percentages. Let us now understand this process:

 � Training dataset: The models are built on the data available in this data part.

 � Validation dataset: For this part of the data, we pretend as though we do not know
the output values and make predictions based upon the covariate values. This step
is to ensure that overfitting is minimized. The errors (residual squares for regression
model and accuracy percentages for classification model) are then compared with
respect to the counterpart errors in the training part. If the errors decrease in the
training set while they remain the same for the validation part, it means that we are
overfitting the data. A threshold, after which this is observed, may be chosen as the
better lambda value.

 � Testing dataset: In practice, these are really unobserved cases for which the model
is applied for forecasting purposes.

For the gasoline mileage problem, we will split the data into three parts and use the training
and validation part to select the λ value.

Time for action – selecting lambda iteratively and other topics
Iterative selection of the penalty parameter for ridge regression will be covered in this
section. The useful framework of train + validate + test will also be considered for the
German credit data problem.

1. For the sake of simplicity, we will remove the character variable of the dataset
by using Gasoline <- Gasoline[,-12].

Chapter 8

[251]

2. Set the random seed by using set.seed(1234567). This step is to ensure that the
user can validate the results of the program.

3. Randomize the observations to enable the splitting part:

data_part_label = c("Train","Validate","Test")

indv_label=sample(data_part_label,size=nrow(Gasoline),replace=TRUE
,prob=c(0.6,0.2,0.2))

4. Now, split the gasoline dataset:

G_Train <- Gasoline[indv_label=="Train",]
G_Validate <- Gasoline[indv_label=="Validate",]
G_Test <- Gasoline[indv_label=="Test",]

5. Define the λ vector with lambda <- seq(0,10,0.2).

6. Initialize the training and validation errors:

Train_Errors <- vector("numeric",length=length(lambda))
Val_Errors <- vector("numeric",length=length(lambda))

7. Run the following loop to get the required errors:

8. Plot the training and validation errors:

plot(lambda,Val_Errors,"l",col="red",xlab=expression(lambda),ylab=
"Training and Validation Errors",ylim=c(0,600))
points(lambda,Train_Errors,"l",col="green")
legend(6,500,c("Training Errors","Validation Errors"),col=c(
"green","red"),pch="-")

Regression Models with Regularization

[252]

The final output will be the following:

Figure 12: Training and validation errors

The preceding plot suggests that the lambda value is between 0.5 and 1.5. Why?
The technique of train + validate + test is not simply restricted to selecting the
lambda value. In fact, for any regression/classification model, we can try to
understand if the selected model really generalizes or not. For the German credit
data problem in the previous chapter, we will make an attempt to see what the
current technique suggests.

9. The program and its output (ROC curves) is displayed following it.

Chapter 8

[253]

10. The ROC plot is given in the following screenshot:

Figure 13: ROC plot for the train + validate + test partition of the German data

We will close the chapter with a short discussion. In the train + validate + test
partitioning, we had one technique of avoiding overfitting. A generalization of this
technique is the well-known cross-validation method. In an n-fold cross-validation
approach, the data is randomly partitioned into n divisions. In the first step, the
first part is held for validation and the model is built using the remaining n-1 parts
and the accuracy percentage is calculated. Next, the second part is treated as the
validation dataset and the remaining 1, 3, …, n-1, n parts are used to build
the model and then tested for accuracy on the second part. This process is then
repeated for the remaining n-2 parts. Finally, an overall accuracy metric is reported.
At the surface, this process is complex enough and hence we will resort to the
well-defined functions available in the DAAG package.

Regression Models with Regularization

[254]

11. As the cross-validation function itself carries out the n-fold partitioning, we build it
over the entire dataset:

library(DAAG)
data(VD) CVlm(df=VD,form.lm=formula(Voltage_Drop~Time+I(Time^2)+I(
Time^3)+I(((Time-6.5)^3)*(sign(Time-6.5)==1))
+I(((Time-13)^3)*(sign(Time-13)==1))),m=10,plotit="Observed")

The VD data frame has 41 observations, and the output in Figure 14: Cross-
validation for the voltage-drop problem shows that the 10-fold cross-validation has
10 partitions with fold 2 containing five observations and the rest of them having
four each. Now, for each fold, the cubic polynomial regression model fits the model
by using the data in the remaining folds:

Figure 14: Cross-validation for the voltage-drop problem

Chapter 8

[255]

Using the fitted polynomial regression model, a prediction is made for the units in
the fold. The observed versus predicted regressand values plot is given in Figure
15: Predicted versus observed plot using the cross-validation technique. A close
examination of the numerical predicted values and the plot indicate that we have a
very good model for the voltage drop phenomenon.

The generalized cross-validation (GCV) errors are also given with the details of a
lm.ridge fit model. We can use this information to arrive at the better value for
the ridge regression models:

Figure 15: Predicted versus observed plot using the cross-validation technique

12. For the OF and G_Train data frames, use the lm.ridge function to obtain the
GCV errors:

> LM_OF <- lm.ridge(Y~poly(X,3),data=as.data.frame(OF),
+ lambda=c(0,0.5,1,1.5,2,5,10,30))
> LM_OF$GCV
 0.0 0.5 1.0 1.5 2.0 5.0 10.0 30.0
 5.19 5.05 5.03 5.09 5.21 6.38 8.31 12.07
> LM_GT <- lm.ridge(y~.,data=G_Train,lambda=seq(0,10,0.2))
> LM_GT$GCV
 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
1.777 0.798 0.869 0.889 0.891 0.886 0.877 0.868 0.858 0.848
 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

Regression Models with Regularization

[256]

0.838 0.830 0.821 0.813 0.806 0.798 0.792 0.786 0.780 0.774
 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8
0.769 0.764 0.760 0.755 0.751 0.748 0.744 0.740 0.737 0.734
 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8
0.731 0.729 0.726 0.723 0.721 0.719 0.717 0.715 0.713 0.711
 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8
0.710 0.708 0.707 0.705 0.704 0.703 0.701 0.700 0.699 0.698
 10.0
0.697

For the OF data frame, the value appears to lie in the interval (1.0, 1.5).
On the other hand for the GT data frame, the value appears in (0.2, 0.4).

What just happened?
The choice of the penalty factor is indeed very crucial for the success of a ridge regression
model, and we saw different methods for obtaining this. This step included the automatic
choice of Cule and De Iorio (2012) and the cross-validation technique. Further more, we also
saw the application of the popular train + validate + test approach. In practical applications,
these methodologies will go a long way to obtain the best models.

Pop quiz
What do you expect as the results if you perform the model selection task step function
on a polynomial regression model? That is, you are trying to select the variables for the
polynomial model lm(Y~poly(X,9,raw=TRUE),data=OF), or say VD_PRS. Verify your
intuition by completing the R programs.

Summary
In this chapter, we began with a hypothetical dataset and highlighted the problem of
overfitting. In case of a breakpoint, also known as knots, the extensions of the linear model
in the piecewise linear regression model and the spline regression model were found to be
very useful enhancements. The problem of overfitting can also sometimes be overcome by
using the ridge regression. The ridge regression solution has been extended for the linear
and logistic regression models. Finally, we saw a different approach of model assessment
by using the train + validate + test approach and the cross-validation approach. In spite of
the developments where we have intrinsically non-linear data, it becomes difficult for the
models discussed in this chapter to emerge as useful solutions. The past two decades has
witnessed a powerful alternative in the so-called Classification and Regression Trees (CART).
The next chapter discusses CART in greater depth and the final chapter considers modern
development related to it.

9
Classification

and Regression Trees

In the previous chapters, we focused on regression models, and the majority
of the emphasis was on the linearity assumption. In what appears as the next
extension must be non-linear models, we will instead deviate to recursive
partitioning techniques, which are a bit more flexible than the non-linear
generalization of the models considered in the earlier chapters. Of course, the
recursive partitioning techniques, in most cases, may be viewed as non-linear
models.

We will first introduce the notion of recursive partitions through a hypothetical dataset.
It is apparent that the earlier approach of the linear models changes in an entirely different
way with the functioning of the recursive partitions. Recursive partitioning depends upon
the type of problem we have in hand. We develop a regression tree for the regression
problem when the output is a continuous variable, as in the linear models. If the output is
a binary variable, we develop a classification tree. A regression tree is first created by using
the rpart function from the rpart package. A very raw R program is created, which clearly
explains the unfolding of a regression tree. A similar effort is repeated for the classification
tree. In the final section of this chapter, a classification tree is created for the German credit
data problem along with the use of ROC curves for understanding the model performance.
The approach in this chapter will be on the following lines:

 � Understanding the basis of recursive partitions and the general CART.

 � Construction of a regression tree

 � Construction of a classification tree

 � Application of a classification tree to the German credit data problem

 � The finer aspects of CART

Classification and Regression

[258]

Recursive partitions
The name of the library package rpart, shipped along with R, stands for Recursive
Partitioning. The package was first created by Terry M Therneau and Beth Atkinson,
and is currently maintained by Brian Ripley. We will first have a peek at means
recursive partitions are.

A complex and contrived relationship is generally not identifiable by linear models. In the
previous chapter, we saw the extensions of the linear models in piecewise, polynomial,
and spline regression models. It is also well known that if the order of a model is larger
than 4, then interpretation and usability of the model becomes more difficult. We consider
a hypothetical dataset, where we have two classes for the output Y and two explanatory
variables in X1 and X2. The two classes are indicated by filled-in green circles and red
squares. First, we will focus only on the left display of Figure 1: A complex classification
dataset with partitions, as it is the actual depiction of the data. At the outset, it is clear that
a linear model is not appropriate, as there is quite an overlap of the green and red indicators.
Now, there is a clear demarcation of the classification problem accordingly, as X1 is greater
than 6 or not. In the area on the left side of X1=6, the mid-third region contains a majority
of green circles and the rest are red squares. The red squares are predominantly identifiable
accordingly, as the X2 values are either lesser than or equal to 3 or greater than 6. The green
circles are the majority values in the region of X2 being greater than 3 and lesser than 6. A
similar story can be built for the points on the right side of X1 greater than 6. Here, we first
partitioned the data according to X1 values first, and then in each of the partitioned region,
we obtained partitions according to X2 values. This is the act of recursive partitioning.

Figure 1: A complex classification dataset with partitions

Let us obtain the preceding plot in R.

Chapter 9

[259]

Time for action – partitioning the display plot
We first visualize the CART_Dummy dataset and then look in the next subsection at how CART
gets the patterns, which are believed to exist in the data.

1. Obtain the dataset CART_Dummy from the RSADBE package by using
data(CART_Dummy).

2. Convert the binary output Y as a factor variable, and attach the data frame
with CART_Dummy$Y <- as.factor(CART_Dummy$Y).

attach(CART_Dummy)

In Figure 1: A complex classification dataset with partitions, the red squares
refer to 0 and the green circles to 1.

3. Initialize the graphics windows for the three samples by using
par(mfrow= c(1,2)).

4. Create a blank scatter plot:

plot(c(0,12),c(0,10),type="n",xlab="X1",ylab="X2").

5. Plot the green circles and red squares:

points(X1[Y==0],X2[Y==0],pch=15,col="red")
points(X1[Y==1],X2[Y==1],pch=19,col="green")
title(main="A Difficult Classification Problem")

6. Repeat the previous two steps to obtain the identical plot on the right side of the
graphics window.

7. First, partition according to X1 values by using abline(v=6,lwd=2).

8. Add segments on the graph with the segment function:

segments(x0=c(0,0,6,6),y0=c(3.75,6.25,2.25,5),x1=c(6,6,12,12),y1=c
(3.75,6.25,2.25,5),lwd=2)
title(main="Looks a Solvable Problem Under Partitions")

What just happened?
A complex problem is simplified through partitioning! A more generic function, segments,
has nicely slipped in our program, which you may use for many other scenarios.

Classification and Regression

[260]

Now, this approach of recursive partitioning is not feasible all the time! Why? We seldom
deal with two or three explanatory variables and data points as low as in the preceding
hypothetical example. The question is how one creates recursive partitioning of the dataset.
Breiman, et. al. (1984) and Quinlan (1988) have invented tree building algorithms, and we
will follow the Breiman, et. al. approach in the rest of book. The CART discussion in this book
is heavily influenced by Berk (2008).

Splitting the data
In the earlier discussion, we saw that partitioning the dataset can benefit a lot in reducing
the noise in the data. The question is how does one begin with it? The explanatory
variables can be discrete or continuous. We will begin with the continuous (numeric
objects in R) variables.

For a continuous variable, the task is a bit simpler. First, identify the unique distinct values
of the numeric object. Let us say, for example, that the distinct values of a numeric object,
say height in cms, are 160, 165, 170, 175, and 180. The data partitions are then obtained
as follows:

 � data[Height<=160,], data[Height>160,]

 � data[Height<=165,], data[Height>165,]

 � data[Height<=170,], data[Height>170,]

 � data[Height<=175,], data[Height>175,]

The reader should try to understand the rationale behind the code, and certainly this is just
an indicative one.

Now, we consider the discrete variables. Here, we have two types of variables, namely
categorical and ordinal. In the case of ordinal variables, we have an order among the distinct
values. For example, in the case of the economic status variable, the order may be among
the classes Very Poor, Poor, Average, Rich, and Very Rich. Here, the splits are similar to the
case of continuous variable, and if there are m distinct orders, we consider m-1 distinct splits
of the overall data. In the case of a categorical variable with m categories, for example the
departments A to F of the UCBAdmissions dataset, the number of possible splits becomes
2m-1-1. However, the benefit of using software like R is that we do not have to worry about
these issues.

The first tree
In the CART_Dummy dataset, we can easily visualize the partitions for Y as a function of the
inputs X1 and X2. Obviously, we have a classification problem, and hence we will build the
classification tree.

Chapter 9

[261]

Time for action – building our first tree
The rpart function from the library rpart will be used to obtain the first classification tree.
The tree will be visualized by using the plot options of rpart, and we will follow this up
with extracting the rules of a tree by using the asRules function from the rattle package.

1. Load the rpart package by using library(rpart).

2. Create the classification tree with CART_Dummy_rpart <- rpart
(Y~ X1+X2,data=CART_Dummy).

3. Visualize the tree with appropriate text labels by using plot(CART_Dummy_
rpart); text(CART_Dummy_rpart).

Figure 2: A classification tree for the dummy dataset

Now, the classification tree flows as follows. Obviously, the tree using the rpart
function does not partition as simply as we did in Figure 1: A complex classification
dataset with partitions, the working of which will be dealt within the third section of
this chapter. First, we check if the value of the second variable X2 is less than 4.875.
If the answer is an affirmation, we move to the left side of the tree; the right side in
the other case. Let us move to the right side. A second question asked is whether X1
is lesser than 4.5 or not, and then if the answer is yes it is identified as a red square,
and otherwise a green circle. You are now asked to interpret the left side of the first
node. Let us look at the summary of CART_Dummy_rpart.

Classification and Regression

[262]

4. Apply the summary, an S3 method, for the classification tree with summary(CART_
Dummy_rpart).

That one is a lot of output!

Figure 3: Summary of a classification tree

Our interests are in the nodes numbered 5 to 9! Why? The terminal nodes, of course!
A terminal node is one in which we can't split the data any further, and for the
classification problem, we arrive at a class assignment as the class that has a majority
count at the node. The summary shows that there are indeed some misclassifications
too. Now, wouldn't it be great if R gave the terminal nodes asRules. The function
asRules from the rattle package extracts the rules from an rpart object.
Let's do it!

Chapter 9

[263]

5. Invoke the rattle package library(rattle) and using the asRules function,
extract the rules from the terminal nodes with asRules(CART_Dummy_rpart).

The result is the following set of rules:

Figure 4: Extracting "rules" from a tree!

We can see that the classification tree is not according to our "eye-bird" partitioning.
However, as a final aspect of our initial understanding, let us plot the segments
using the naïve way. That is, we will partition the data display according to the
terminal nodes of the CART_Dummy_rpart tree.

6. The R code is given right away, though you should make an effort to find the logic
behind it. Of course, it is very likely that by now you need to run some of the earlier
code that was given previously.

abline(h=4.875,lwd=2)
segments(x0=4.5,y0=4.875,x1=4.5,y1=10,lwd=2)
abline(h=1.75,lwd=2)
segments(x0=3.5,y0=1.75,x1=3.5,y1=4.875,lwd=2)
title(main="Classification Tree on the Data Display")

Classification and Regression

[264]

It can be easily seen from the following that rpart works really well:

Figure 5: The terminal nodes on the original display of the data

What just happened?
We obtained our first classification tree, which is a good thing. Given the actual data display,
the classification tree gives satisfactory answers.

We have understood the "how" part of a classification tree. The "why" aspect is very
vital in science, and the next section explains the science behind the construction of
a regression tree, and it will be followed later by a detailed explanation of the working
of a classification tree.

Chapter 9

[265]

The construction of a regression tree
In the CART_Dummy dataset, the output is a categorical variable, and we built a classification
tree for it. In Chapter 6, Linear Regression Analysis, the linear regression models were built
for a continuous random variable, while in Chapter 7, The Logistic Regression Model, we built
a logistic regression model for a binary random variable. The same distinction is required in
CART, and we thus build classification trees for binary random variables, where regression
trees are for continuous random variables. Recall the rationale behind the estimation
of regression coefficients for the linear regression model. The main goal was to find the
estimates of the regression coefficients, which minimize the error sum of squares between
the actual regressand values and the fitted values. A similar approach is followed here, in the
sense that we need to split the data at the points that keep the residual sum of squares to
a minimum. That is, for each unique value of a predictor, which is a candidate for the node
value, we find the sum of squares of y's within each partition of the data, and then add them
up. This step is performed for each unique value of the predictor, and the value, which leads
to the least sum of squares among all the candidates, is selected as the best split point for
that predictor. In the next step, we find the best split points for each of the predictors, and
then the best split is selected across the best split points across the predictors. Easy!

Now, the data is partitioned into two parts according to the best split. The process of finding
the best split within each partition is repeated in the same spirit as for the first split. This
process is carried out in a recursive fashion until the data can't be partitioned any further.
What is happening here? The residual sum of squares at each child node will be lesser than
that in the parent node.

At the outset, we record that the rpart function does the exact same thing. However, as a
part of cleaner understanding of the regression tree, we will write raw R codes and ensure
that there is no ambiguity in the process of understanding CART. We will begin with a simple
example of a regression tree, and use the rpart function to plot the regression function.
Then, we will first define a function, which will extract the best split given by the covariate
and dependent variable. This action will be repeated for all the available covariates, and
then we find the best overall split. This will be verified with the regression tree. The data will
then be partitioned by using the best overall split, and then the best split will be identified
for each of the partitioned data. The process will be repeated until we reach the end of the
complete regression tree given by the rpart. First, the experiment!

Classification and Regression

[266]

The cpus dataset available in the MASS package contains the relative performance measure
of 209 CPUs in the perf variable. It is known that the performance of a CPU depends
on factors such as the cycle time in nanoseconds (syct), minimum and maximum main
memory in kilobytes (mmin and mmax), cache size in kilobytes (cach), and minimum and
maximum number of channels (chmin and chmax). The task in hand is to model the perf
as a function of syct, mmin, mmax, cach, chmin, and chmax. The histogram of perf—try
hist(cpus$perf)—will show a highly skewed distribution, and hence we will build a
regression tree for the logarithm transformation log10(perf).

Time for action – the construction of a regression tree
A regression tree is first built by using the rpart function. The getNode function is
introduced, which helps in identifying the split node at each stage, and using it we build
a regression tree and verify that we had the same tree as returned by the rpart function.

1. Load the MASS library by using library(MASS).

2. Create the regression tree for the logarithm (to the base 10) of perf as a function
of the covariates explained earlier, and display the regression tree:

cpus.ltrpart <- rpart(log10(perf)~syct+mmin+mmax+cach+chmin+chmax,
data=cpus)
plot(cpus.ltrpart); text(cpus.ltrpart)

The regression tree will be indicated as follows:

Figure 6: Regression tree for the "perf" of a CPU

Chapter 9

[267]

We will now define the getNode function. Given the regressand and the
covariate, we need to find the best split in the sense of the sum of squares criterion.
The evaluation needs to be done for every distinct value of the covariate. If there are
m distinct points, we need m-1 evaluations. At each distinct point, the regressand
needs to be partitioned accordingly, and the sum of squares should be obtained for
each partition. The two sums of squares (in each part) are then added to obtain the
reduced sum of squares. Thus, we create the required function to meet all
these requirements.

3. Create the getNode function in R by running the following code:

getNode <- function(x,y) {
 xu <- sort(unique(x),decreasing=TRUE)
 ss <- numeric(length(xu)-1)
 for(i in 1:length(ss)) {
 partR <- y[x>xu[i]]
 partL <- y[x<=xu[i]]
 partRSS <- sum((partR-mean(partR))^2)
 partLSS <- sum((partL-mean(partL))^2)
 ss[i]<-partRSS + partLSS
 }
return(list(xnode=xu[which(ss==min(ss,na.rm=TRUE))],
 minss = min(ss,na.rm=TRUE),ss,xu))
 }

The getNode function gives the best split for a given covariate. It returns a list
consisting of four objects:

 � xnode, which is a datum of the covariate x that gives the minimum residual
sum of squares for the regressand y

 � The value of the minimum residual sum of squares

 � The vector of the residual sum of squares for the distinct points of the
vector x

 � The vector of the distinct x values

We will run this function for each of the six covariates, and find the best overall split.
The argument na.rm=TRUE is required, as at the maximum value of x we won't get
a numeric value.

Classification and Regression

[268]

4. We will first execute the getNode function on the syct covariate, and look at the
output we get as a result:

> getNode(cpus$syct,log10(cpus$perf))$xnode
[1] 48
> getNode(cpus$syct,log10(cpus$perf))$minss
[1] 24.72
> getNode(cpus$syct,log10(cpus$perf))[[3]]
 [1] 43.12 42.42 41.23 39.93 39.44 37.54 37.23 36.87 36.51 36.52
35.92 34.91
[13] 34.96 35.10 35.03 33.65 33.28 33.49 33.23 32.75 32.96 31.59
31.26 30.86
[25] 30.83 30.62 29.85 30.90 31.15 31.51 31.40 31.50 31.23 30.41
30.55 28.98
[37] 27.68 27.55 27.44 26.80 25.98 27.45 28.05 28.11 28.66 29.11
29.81 30.67
[49] 28.22 28.50 24.72 25.22 26.37 28.28 29.10 33.02 34.39 39.05
39.29
> getNode(cpus$syct,log10(cpus$perf))[[4]]
 [1] 1500 1100 900 810 800 700 600 480 400 350 330 320
300 250 240
[16] 225 220 203 200 185 180 175 167 160 150 143 140
133 125 124
[31] 116 115 112 110 105 100 98 92 90 84 75 72
70 64 60
[46] 59 57 56 52 50 48 40 38 35 30 29 26
25 23 17

The least sum of squares at a split for the best split value of the syct variable is
24.72, and it occurs at a value of syct greater than 48. The third and fourth list
objects given by getNode, respectively, contain the details of the sum of squares for
the potential candidates and the unique values of syct. The values of interest are
highlighted. Thus, we will first look at the second object from the list output for all
the six covariates to find the best split among the best split of each of the variables,
by the residual sum of squares criteria.

5. Now, run the getNode function for the remaining five covariates:

getNode(cpus$syct,log10(cpus$perf))[[2]]
getNode(cpus$mmin,log10(cpus$perf))[[2]]
getNode(cpus$mmax,log10(cpus$perf))[[2]]
getNode(cpus$cach,log10(cpus$perf))[[2]]
getNode(cpus$chmin,log10(cpus$perf))[[2]]
getNode(cpus$chmax,log10(cpus$perf))[[2]]
getNode(cpus$cach,log10(cpus$perf))[[1]]
sort(getNode(cpus$cach,log10(cpus$perf))[[4]],decreasing=FALSE)

Chapter 9

[269]

The output is as follows:

Figure 7: Obtaining the best "first split" of regression tree

The sum of squares for cach is the lowest, and hence we need to find the best
split associated with it, which is 24. However, the regression tree shows that the
best split is for the cach value of 27. The getNode function says that the best split
occurs at a point greater than 24, and hence we take the average of 24 and the next
unique point at 30. Having obtained the best overall split, we next obtain the first
partition of the dataset.

6. Partition the data by using the best overall split point:

cpus_FS_R <- cpus[cpus$cach>=27,]

cpus_FS_L <- cpus[cpus$cach<27,]

The new names of the data objects are clear with _FS_R indicating the dataset
obtained on the right side for the first split, and _FS_L indicating the left side.
In the rest of the section, the nomenclature won't be further explained.

7. Identify the best split in each of the partitioned datasets:

getNode(cpus_FS_R$syct,log10(cpus_FS_R$perf))[[2]]
getNode(cpus_FS_R$mmin,log10(cpus_FS_R$perf))[[2]]
getNode(cpus_FS_R$mmax,log10(cpus_FS_R$perf))[[2]]
getNode(cpus_FS_R$cach,log10(cpus_FS_R$perf))[[2]]
getNode(cpus_FS_R$chmin,log10(cpus_FS_R$perf))[[2]]
getNode(cpus_FS_R$chmax,log10(cpus_FS_R$perf))[[2]]
getNode(cpus_FS_R$mmax,log10(cpus_FS_R$perf))[[1]]
sort(getNode(cpus_FS_R$mmax,log10(cpus_FS_R$perf))[[4]],
decreasing=FALSE)
getNode(cpus_FS_L$syct,log10(cpus_FS_L$perf))[[2]]

Classification and Regression

[270]

getNode(cpus_FS_L$mmin,log10(cpus_FS_L$perf))[[2]]
getNode(cpus_FS_L$mmax,log10(cpus_FS_L$perf))[[2]]
getNode(cpus_FS_L$cach,log10(cpus_FS_L$perf))[[2]]
getNode(cpus_FS_L$chmin,log10(cpus_FS_L$perf))[[2]]
getNode(cpus_FS_L$chmax,log10(cpus_FS_L$perf))[[2]]
getNode(cpus_FS_L$mmax,log10(cpus_FS_L$perf))[[1]]
sort(getNode(cpus_FS_L$mmax,log10(cpus_FS_L$perf))[[4]],
decreasing=FALSE)

The following screenshot gives the results of running the preceding R code:

Figure 8: Obtaining the next two splits

Chapter 9

[271]

Thus, for the first right partitioned data, the best split is for the mmax value as the
mid-point between 24000 and 32000; that is, at mmax = 28000. Similarly, for the
first left-partitioned data, the best split is the average value of 6000 and 6200,
which is 6100, for the same mmax covariate. Note the important step here. Even
though we used cach as the criteria for the first partition, it is still used with the two
partitioned data. The results are consistent with the display given by the regression
tree, Figure 6: Regression tree for the "perf" of a CPU. The next R program will take
care of the entire first split's right side's future partitions.

8. Partition the first right part cpus_FS_R as follows:

cpus_FS_R_SS_R <- cpus_FS_R[cpus_FS_R$mmax>=28000,]
cpus_FS_R_SS_L <- cpus_FS_R[cpus_FS_R$mmax<28000,]

Obtain the best split for cpus_FS_R_SS_R and cpus_FS_R_SS_L by running the
following code:

cpus_FS_R_SS_R <- cpus_FS_R[cpus_FS_R$mmax>=28000,]
cpus_FS_R_SS_L <- cpus_FS_R[cpus_FS_R$mmax<28000,]
getNode(cpus_FS_R_SS_R$syct,log10(cpus_FS_R_SS_R$perf))[[2]]
getNode(cpus_FS_R_SS_R$mmin,log10(cpus_FS_R_SS_R$perf))[[2]]
getNode(cpus_FS_R_SS_R$mmax,log10(cpus_FS_R_SS_R$perf))[[2]]
getNode(cpus_FS_R_SS_R$cach,log10(cpus_FS_R_SS_R$perf))[[2]]
getNode(cpus_FS_R_SS_R$chmin,log10(cpus_FS_R_SS_R$perf))[[2]]
getNode(cpus_FS_R_SS_R$chmax,log10(cpus_FS_R_SS_R$perf))[[2]]
getNode(cpus_FS_R_SS_R$cach,log10(cpus_FS_R_SS_R$perf))[[1]]
sort(getNode(cpus_FS_R_SS_R$cach,log10(cpus_FS_R_SS_R$perf))[[4]],
decreasing=FALSE)
getNode(cpus_FS_R_SS_L$syct,log10(cpus_FS_R_SS_L$perf))[[2]]
getNode(cpus_FS_R_SS_L$mmin,log10(cpus_FS_R_SS_L$perf))[[2]]
getNode(cpus_FS_R_SS_L$mmax,log10(cpus_FS_R_SS_L$perf))[[2]]
getNode(cpus_FS_R_SS_L$cach,log10(cpus_FS_R_SS_L$perf))[[2]]
getNode(cpus_FS_R_SS_L$chmin,log10(cpus_FS_R_SS_L$perf))[[2]]
getNode(cpus_FS_R_SS_L$chmax,log10(cpus_FS_R_SS_L$perf))[[2]]
getNode(cpus_FS_R_SS_L$cach,log10(cpus_FS_R_SS_L$perf))[[1]]
sort(getNode(cpus_FS_R_SS_L$cach,log10(cpus_FS_R_SS_L$perf))
[[4]],decreasing=FALSE)

Classification and Regression

[272]

For the cpus_FS_R_SS_R part, the final division is according to cach being
greater than 56 or not (average of 48 and 64). If the cach value in this partition is
greater than 56, then perf (actually log10(perf)) ends in the terminal leaf 3,
else 2. However, for the region cpus_FS_R_SS_L, we partition the data further
by the cach value being greater than 96.5 (average of 65 and 128). In the right
side of the region, log10(perf) is found as 2, and a third level split is required
for cpus_FS_R_SS_L with cpus_FS_R_SS_L_TS_L. Note that though the final
terminal leaves of the cpus_FS_R_SS_L_TS_L region shows the same 2 as the
final log10(perf), this may actually result in a significant variability reduction of
the difference between the predicted and the actual log10(perf) values. We will
now focus on the first main split's left side.

Chapter 9

[273]

Figure 9: Partitioning the right partition after the first main split

Classification and Regression

[274]

9. Partition cpus_FS_L accordingly, as the mmax value being greater than 6100
or otherwise:

cpus_FS_L_SS_R <- cpus_FS_L[cpus_FS_L$mmax>=6100,]
cpus_FS_L_SS_L <- cpus_FS_L[cpus_FS_L$mmax<6100,]

The rest of the partition for cpus_FS_L is completely given next.

10. The details will be skipped and the R program is given right away:

cpus_FS_L_SS_R <- cpus_FS_L[cpus_FS_L$mmax>=6100,]
cpus_FS_L_SS_L <- cpus_FS_L[cpus_FS_L$mmax<6100,]
getNode(cpus_FS_L_SS_R$syct,log10(cpus_FS_L_SS_R$perf))[[2]]
getNode(cpus_FS_L_SS_R$mmin,log10(cpus_FS_L_SS_R$perf))[[2]]
getNode(cpus_FS_L_SS_R$mmax,log10(cpus_FS_L_SS_R$perf))[[2]]
getNode(cpus_FS_L_SS_R$cach,log10(cpus_FS_L_SS_R$perf))[[2]]
getNode(cpus_FS_L_SS_R$chmin,log10(cpus_FS_L_SS_R$perf))[[2]]
getNode(cpus_FS_L_SS_R$chmax,log10(cpus_FS_L_SS_R$perf))[[2]]
getNode(cpus_FS_L_SS_R$syct,log10(cpus_FS_L_SS_R$perf))[[1]]
sort(getNode(cpus_FS_L_SS_R$syct,log10(cpus_FS_L_SS_R$perf))[[4]],
decreasing=FALSE)
getNode(cpus_FS_L_SS_L$syct,log10(cpus_FS_L_SS_L$perf))[[2]]
getNode(cpus_FS_L_SS_L$mmin,log10(cpus_FS_L_SS_L$perf))[[2]]
getNode(cpus_FS_L_SS_L$mmax,log10(cpus_FS_L_SS_L$perf))[[2]]
getNode(cpus_FS_L_SS_L$cach,log10(cpus_FS_L_SS_L$perf))[[2]]
getNode(cpus_FS_L_SS_L$chmin,log10(cpus_FS_L_SS_L$perf))[[2]]
getNode(cpus_FS_L_SS_L$chmax,log10(cpus_FS_L_SS_L$perf))[[2]]
getNode(cpus_FS_L_SS_L$mmax,log10(cpus_FS_L_SS_L$perf))[[1]]
sort(getNode(cpus_FS_L_SS_L$mmax,log10(cpus_FS_L_SS_L$perf))
[[4]],decreasing=FALSE)
cpus_FS_L_SS_R_TS_R <- cpus_FS_L_SS_R[cpus_FS_L_SS_R$syct<360,]
getNode(cpus_FS_L_SS_R_TS_R$syct,log10(cpus_FS_L_SS_R_TS_R$
perf))[[2]]
getNode(cpus_FS_L_SS_R_TS_R$mmin,log10(cpus_FS_L_SS_R_TS_R$
perf))[[2]]
getNode(cpus_FS_L_SS_R_TS_R$mmax,log10(cpus_FS_L_SS_R_TS_R$
perf))[[2]]
getNode(cpus_FS_L_SS_R_TS_R$cach,log10(cpus_FS_L_SS_R_TS_R$
perf))[[2]]
getNode(cpus_FS_L_SS_R_TS_R$chmin,log10(cpus_FS_L_SS_R_TS_R$
perf))[[2]]
getNode(cpus_FS_L_SS_R_TS_R$chmax,log10(cpus_FS_L_SS_R_TS_R$
perf))[[2]]
getNode(cpus_FS_L_SS_R_TS_R$chmin,log10(cpus_FS_L_SS_R_TS_R$
perf))[[1]]
sort(getNode(cpus_FS_L_SS_R_TS_R$chmin,log10(cpus_FS_L_SS_R_TS_
R$perf))[[4]],decreasing=FALSE)

Chapter 9

[275]

We will now see how the preceding R code gets us closer to the regression tree:

Figure 10: Partitioning the left partition after the first main split

We leave it to you to interpret the output arising from the previous action.

Classification and Regression

[276]

What just happened?
Using the rpart function from the rpart library we first built the regression tree for
log10(perf). Then, we explored the basic definitions underlying the construction of
a regression tree and defined the getNode function to obtain the best split for a pair of
regressands and a covariate. This function is then applied for all the covariates, and the best
overall split is obtained; using this we get our first partition of the data, which will be in
agreement with the tree given by the rpart function. We then recursively partitioned
the data by using the getNode function and verified that all the best splits in each
partitioned data are in agreement with the one provided by the rpart function.

The reader may wonder if the preceding tedious task was really essential. However, it has
been the experience of the author that users/readers seldom remember the rationale
behind using direct code/functions for any software after some time. Moreover, CART is a
difficult concept and it is imperative that we clearly understand our first tree, and return to
the preceding program whenever the understanding of a science behind CART is forgotten.

The construction of a classification tree uses entirely different metrics, and hence its working
is also explained in considerable depth in the next section.

The construction of a classification tree
We first need to set up the splitting criteria for a classification tree. In the case of a
regression tree, we saw the sum of squares as the splitting criteria. For identifying the split
for a classification tree, we need to define certain measures known as impurity measures.
The three popular measures of impurity are Bayes error, the cross-entropy function, and Gini
index. Let p denote the percentage of success in a dataset of size n. The formulae of these
impurity measures are given in the following table:

Measure Formula

Bayes error () ()min 1B pp , pϕ = −

The cross-entropy measure () () ()log log1 1CE p p p p pϕ = − − − −

Gini index () ()1G p p pϕ = −

Chapter 9

[277]

We will write a short program to understand the shape of these impurity measures as a
function of p:

p <- seq(0.01,0.99,0.01)
plot(p,pmin(p,1-p),"l",col="red",xlab="p",xlim=c(0,1),ylim=c(0,1),
ylab="Impurity Measures")
points(p,-p*log(p)-(1-p)*log(1-p),"l",col="green")
points(p,p*(1-p),"l",col="blue")
title(main="Impurity Measures")
legend(0.6,1,c("Bayes Error","Cross-Entropy","Gini Index"),col=c("red"
,"green","blue"),pch="-")

The preceding R code when executed in an R session gives the following output:

Figure 11: Impurity metrics – Bayes error, cross-entropy, and Gini index

Basically, we have these three choices of impurity metrics as a building block of
a classification tree. The popular choice is the Gini index, and there are detailed
discussions about the reason in the literature; see Breiman, et. al. (1984). However,
we will delve into this aspect and for the development in this section, we will be using
the cross-entropy function.

Classification and Regression

[278]

Now, for a given predictor, assume that we have a node denoted by A. In the initial
stage, where there are no partitions, the impurity is based on the proportion p.
The impurity of node A is taken to be a non-negative function of the probability y = 1,
and is mathematically written as p(y=1|A). The impurity of node A is defined as follows:

() ()1I A p y | Aϕ= =

Here, ϕ is one of the three impurity measures. When A is one of the internal nodes, the tree
gets bifurcated to the left- and right- hand side; that is, we now have left daughter AL and a
right daughter AR. For the moment, we will take the split according to the predictor variable
x; that is, if x c≤ , the observation moves to AL, otherwise to A R. Then, according to the split
criteria, we have the following table; this is the same as Table 3.2 of Berk (2008):

Split criteria x c≤ Failure (0) Success (1) Total

AL x c≤ n11 n12 n1.

AR x > c n21 n22 n2.

n.1 n.2 n..

Using the frequencies in the preceding table, the impurity for the daughter nodes AL and AR,
based on the cross-entropy metric, are given as follows:

() 11 11 12 12

1 1 1 1

log logL
n n n nI A
n n n n

= − −

And:

() 21 21 22 22

2 2 2 2

log logR
n n n nI A
n n n n

= − −

The probability of an observation falling in the left- and right- hand daughter nodes are
respectively given by () 1Lp A n / n= and () 2Rp A n / n= . Then, the benefit of using the node
A is given as follows:

() () () () () ()L L R RA I A p A I A p A I A∆ = − −

Chapter 9

[279]

Now, we capture ()A∆ for all unique values of a predictor, and choose that value as the
best split for which ()A∆ is a maximum. This step is repeated across all the variables, and
the best split is selected, which has a maximum ()A∆ . According to the best split, the data
is partitioned, and as seen earlier during the construction of the regression tree, a similar
search is performed in each of the partitioned data. The process continues until the gain by
the split reaches a threshold minimum in each of the partitioned data.

We will begin with the classification tree as delivered by the rpart function. The illustrative
dataset kyphosis is selected from the rpart library itself. The data relates to children
who had corrective spinal surgery. This medical problem is about the exaggerated outward
curvature of the thoracic region of the spine, which results in a rounded upper back. In
this study, 81 children underwent a spinal surgery and after the surgery, information is
captured to know whether the children still have the kyphosis problem in the column
named Kyphosis. The value of Kyphosis="absent" indicates that the child has been
cured of the problem, and Kyphosis="present" means that child has not been cured for
kyphosis. The other information captured is related to the age of the children, the number
of vertebrae involved, and the number of first (topmost) vertebrae operated on. The task
for us is building a classification tree, which gives the Kyphosis status dependent on the
described variables.

We will first build the classification tree for Kyphosis as a function of the three variables
Age, Start, and Number. The tree will then be displayed and rules will be extracted from
it. The getNode function will be defined based on the cross-entropy function, which will be
applied on the raw data and the first overall optimal split obtained to partition the data.
The process will be recursively repeated until we get the same tree as returned by the
rpart function.

Time for action – the construction of a classification tree
The getNode function is now defined here to help us identify the best split for
the classification problem. For the Kyphosis dataset from the rpart package,
we plot the classification tree by using the rpart function. The tree is reobtained
by using the getNode function.

1. Using the option of split="information", construct a classification tree based
on the cross-entropy information for the kyphosis data with the following code:

ky_rpart <- rpart(Kyphosis ~ Age + Number + Start, data=kyphosis,p
arms=list(split="information"))

Classification and Regression

[280]

2. Visualize the classification tree by using plot(ky_rpart); text(ky_rpart):

Figure 12: Classification tree for the kyphosis problem

3. Extract rules from ex_rpart by using asRules:

> asRules(ky_rpart)
 Rule number: 15 [Kyphosis=present cover=13 (16%) prob=0.69]
 Start< 12.5
 Age>=34.5
 Number>=4.5
 Rule number: 14 [Kyphosis=absent cover=12 (15%) prob=0.42]
 Start< 12.5
 Age>=34.5
 Number< 4.5
 Rule number: 6 [Kyphosis=absent cover=10 (12%) prob=0.10]
 Start< 12.5
 Age< 34.5
 Rule number: 2 [Kyphosis=absent cover=46 (57%) prob=0.04]
 Start>=12.5

4. Define the getNode function for the classification problem:

Chapter 9

[281]

In the preceding function, the key functions would be unique, table, and log.
We use unique to ensure that the search is carried for the distinct elements of
the predictor values in the data. table gets the required counts as discussed earlier in
this section. The if condition ensures that neither the p nor 1-p values become 0, in
which case the logs become minus infinity. The rest of the coding is self-explanatory.
Let us now get our first best split.

5. We will need a few data manipulations to ensure that our R code works on the
expected lines:

KYPHOSIS <- kyphosis
KYPHOSIS$Kyphosis_y <- (kyphosis$Kyphosis=="absent")*1

6. To find the first best split among the three variables, execute the following code;
the output is given in a consolidated screenshot after all the iterations:

getNode(KYPHOSIS$Age,KYPHOSIS$Kyphosis_y)[[2]]
getNode(KYPHOSIS$Number,KYPHOSIS$Kyphosis_y)[[2]]
getNode(KYPHOSIS$Start,KYPHOSIS$Kyphosis_y)[[2]]
getNode(KYPHOSIS$Start,KYPHOSIS$Kyphosis_y)[[1]]
sort(getNode(KYPHOSIS$Start,KYPHOSIS$Kyphosis_y)[[4]],
decreasing=FALSE)

Classification and Regression

[282]

Now, getNode indicates that the best split occurs for the Start variable, and
the point for the best split is 12. Keeping in line with the argument of the previous
section, we split the data into two parts accordingly, as the Start value is greater
than the average of 12 and 13. For the partitioned data, the search proceeds
in a recursive fashion.

7. Partition the data accordingly, as the Start values are greater than 12.5, and find
the best split for the right daughter node, as the tree display shows that a search in
the left daughter node is not necessary:

KYPHOSIS_FS_R <- KYPHOSIS[KYPHOSIS$Start<12.5,]
KYPHOSIS_FS_L <- KYPHOSIS[KYPHOSIS$Start>=12.5,]
getNode(KYPHOSIS_FS_R$Age,KYPHOSIS_FS_R$Kyphosis_y)[[2]]
getNode(KYPHOSIS_FS_R$Number,KYPHOSIS_FS_R$Kyphosis_y)[[2]]
getNode(KYPHOSIS_FS_R$Start,KYPHOSIS_FS_R$Kyphosis_y)[[2]]
getNode(KYPHOSIS_FS_R$Age,KYPHOSIS_FS_R$Kyphosis_y)[[1]]
sort(getNode(KYPHOSIS_FS_R$Age,KYPHOSIS_FS_R$Kyphosis_y)[[4]],
decreasing=FALSE)

The maximum incremental value occurs for the predictor Age, and the split point is
27. Again, we take the average of the 27 and next highest value of 42, which turns
out as 34.5. The (first) right daughter node region is then partitioned in two parts
accordingly, as the Age values are greater than 34.5, and the search for the next
split continues in the current right daughter part.

8. The following code completes our search:

KYPHOSIS_FS_R_SS_R <- KYPHOSIS_FS_R[KYPHOSIS_FS_R$Age>=34.5,]
KYPHOSIS_FS_R_SS_L <- KYPHOSIS_FS_R[KYPHOSIS_FS_R$Age<34.5,]
getNode(KYPHOSIS_FS_R_SS_R$Age,KYPHOSIS_FS_R_SS_R$Kyphosis_y)[[2]]
getNode(KYPHOSIS_FS_R_SS_R$Number,KYPHOSIS_FS_R_SS_R$
Kyphosis_y)[[2]]
getNode(KYPHOSIS_FS_R_SS_R$Start,KYPHOSIS_FS_R_SS_R$
Kyphosis_y)[[2]]
getNode(KYPHOSIS_FS_R_SS_R$Number,KYPHOSIS_FS_R_SS_R$
Kyphosis_y)[[1]]
sort(getNode(KYPHOSIS_FS_R_SS_R$Number,KYPHOSIS_FS_R_SS_R$
Kyphosis_y)[[4]],
decreasing=FALSE)

Chapter 9

[283]

We see that the final split occurs for the predictor Number and the split is 4,
and we again stop at 4.5.

We see that the results from our raw code completely agree with the rpart
function. Thus, the efforts of writing custom code for the classification tree have
paid the right dividends. We now have enough clarity for the construction of the
classification tree:

Figure 13: Finding the best splits for classification tree using the getnode function

Classification and Regression

[284]

What just happened?
A deliberate attempt has been made at demystifying the construction of a classification tree.
As with the earlier attempt of understanding a regression tree, we first deployed the rpart
function, and saw a display of the classification tree for the Kyphosis as a function of Age,
Start, and Number, for the choice of the cross-entropy impurity metric. The getNode
function is defined on the basis of the same impurity metric and in a very systematic fashion;
we reproduced the same tree as obtained by the rpart function.

With the understanding of the basic construction behind us, we will now build the
classification tree for the German credit data problem.

Classification tree for the German credit data
In Chapter 7, The Logistic Regression Model, we constructed a logistic regression model,
and in the previous chapter, we obtained the ridge regression version for the German credit
data problem. However, problems such as these and many others may have non-linearity
built in them, and it is worthwhile to look at the same problem by using a classification
tree. Also, we saw another model performance of the German credit data using the train,
validate, and test approach. We will have the following approach. First, we will partition
the German dataset into three parts, namely train, validate, and test. The classification tree
will be built by using the data in the train set and then it will be applied on the validate
part. The corresponding ROC curves will be visualized, and if we feel that the two curves
are reasonably similar, we will apply it on the test region, and take the necessary action of
sanctioning the customers their required loan.

Time for action – the construction of a classification tree
A classification tree is built now for the German credit data by using the rpart function.
The approach of train, validate, and test is implemented, and the ROC curves are obtained too.

Chapter 9

[285]

1. The following code has been used earlier in the book, and hence there won't be
an explanation of it:

set.seed(1234567)
data_part_label <- c("Train","Validate","Test")
indv_label = sample(data_part_label,size=1000,replace=TRUE,prob
=c(0.6,0.2,0.2))
library(ROCR)
data(GC)
GC_Train <- GC[indv_label==»Train»,]
GC_Validate <- GC[indv_label==»Validate»,]
GC_Test <- GC[indv_label=="Test",]

2. Create the classification tree for the German credit data, and visualize the tree.
We will also extract the rules from this classification tree:

GC_rpart <- rpart(good_bad~.,data=GC_Train)
plot(GC_rpart); text(GC_rpart)
asRules(GC_rpart)

The classification tree for the German credit data appears as in the
following screenshot:

Figure 14: Classification tree for the test part of the German credit data problem

Classification and Regression

[286]

By now, we know how to find the rules of this tree. An edited version of the rules is
given as follows:

Figure 15: Rules for the German credit data

3. We use the tree given in the previous step on the validate region, and plot the ROC
for both the regions:

Pred_Train_Class <- predict(GC_rpart,type='class')
Pred_Train_Prob <- predict(GC_rpart,type='prob')
Train_Pred <- prediction(Pred_Train_Prob[,2],GC_Train$good_bad)
Perf_Train <- performance(Train_Pred,»tpr»,»fpr»)
plot(Perf_Train,col=»green»,lty=2)
Pred_Validate_Class<-predict(GC_rpart,newdata=GC_Validate[,-
21],type='class')
Pred_Validate_Prob<-predict(GC_rpart,newdata=GC_Validate[,-
21],type='prob')
Validate_Pred<-prediction(Pred_Validate_Prob[,2], GC_
Validate$good_bad)

Chapter 9

[287]

Perf_Validate <- performance(Validate_Pred,"tpr","fpr")
plot(Perf_Validate,col="yellow",lty=2,add=TRUE)

We will go ahead and predict for the test part too.

4. The necessary code is the following:

Pred_Test_Class<-predict(GC_rpart,newdata=GC_Test[,-
21],type='class')
Pred_Test_Prob<-predict(GC_rpart,newdata=GC_Test[,-
21],type='prob')
Test_Pred<- prediction(Pred_Test_Prob[,2],GC_Test$good_bad)
Perf_Test<- performance(Test_Pred,"tpr","fpr")
plot(Perf_Test,col="red",lty=2,add=TRUE)
legend(0.6,0.5,c("Train Curve","ValidateCurve","Test Curve"),col=c
("green","yellow","red"),pch="-")

The final ROC curve looks similar to the following screenshot:

Figure 16: ROC Curves for German Credit Data

Classification and Regression

[288]

The performance of the classification tree is certainly not satisfactory with the
validate group itself. The only solace here is that the test curve is a bit similar
to the validate curve. We will look at the more modern ways of improving the
basic classification tree in the next chapter. The classification tree in Figure 14:
Classification tree for the test part of the German credit data problem is very large
and complex, and we sometimes need to truncate the tree to make the classification
method a bit simpler. Of course, one of the things that we should suspect whenever
we look at very large trees is that maybe we are again having the problem of
overfitting. The final section deals with a simplistic method of overcoming
this problem.

What just happened?
A classification tree has been built for the German credit dataset. The ROC curve shows that
the tree does not perform well on the validate data part. In the next and concluding section,
we look at the two ways of improving this tree.

Have a go hero
Using the getNode function, verify the first five splits of the classification tree for the
German credit data.

Pruning and other finer aspects of a tree
Recall from Figure 14: Classification tree for the test part of the German credit data problem
that the rules numbered 21, 143, 69, 165, 142, 70, 40, 164, and 16, respectively, covered
only 20, 25, 11, 11, 14, 12, 28, 19, and 22. If we look at the total number of observations,
we have about 600, and individually these rules do not cover even about five percent of
them. This is one reason to suspect that maybe we overfitted the data. Using the option of
minsplit, we can restrict the minimum number of observations each rule should cover at
the least.

Another technical way of reducing the complexity of a classification tree is by "pruning" the
tree. Here, the least important splits are recursively snipped off according to the complexity
parameter; for details, refer to Breiman, et. al. (1984), or Section 3.6 of Berk (2008). We will
illustrate the action through the R program.

Chapter 9

[289]

Time for action – pruning a classification tree
A CART is improved by using minsplit and cp arguments in the rpart function.

1. Invoke the graphics editor with par(mfrow=c(1,2)).

2. Specify minsplit=30, and re-do the ROC plots by using the new classification tree:

GC_rpart_minsplit<- rpart(good_bad~.,data=GC_Train, minsplit=30)
GC_rpart_minsplit <- prune(GC_rpart,cp=0.05)
Pred_Train_Class<- predict(GC_rpart_minsplit,type='class')
Pred_Train_Prob<-predict(GC_rpart_minsplit,type='prob')
Train_Pred<- prediction(Pred_Train_Prob[,2],GC_Train$good_bad)
Perf_Train<- performance(Train_Pred,»tpr»,»fpr»)
plot(Perf_Train,col=»green»,lty=2)
Pred_Validate_Class<-predict(GC_rpart_minsplit,newdata=GC_
Validate[,-21],type='class')
Pred_Validate_Prob<-predict(GC_rpart_minsplit,newdata= GC_
Validate[,-21],type='prob')
Validate_Pred<- prediction(Pred_Validate_Prob[,2],GC_
Validate$good_bad)
Perf_Validate<- performance(Validate_Pred,"tpr","fpr")
plot(Perf_Validate,col="yellow",lty=2,add=TRUE)
Pred_Test_Class<- predict(GC_rpart_minsplit,newdata = GC_Test[,-
21],type='class')
Pred_Test_Prob<-predict(GC_rpart_minsplit,newdata = GC_Test[,-
21],type='prob')
Test_Pred<- prediction(Pred_Test_Prob[,2],GC_Test$good_bad)
Perf_Test<- performance(Test_Pred,"tpr","fpr")
plot(Perf_Test,col="red",lty=2,add=TRUE)
legend(0.6,0.5,c("Train Curve","ValidateCurve","Test Curve"),col=c
("green","yellow","red"),pch="-")
title(main="Improving a Classification Tree with "minsplit"")

3. For the pruning factor cp=0.02, repeat the ROC plot exercise:

GC_rpart_prune <- prune(GC_rpart,cp=0.02)
Pred_Train_Class<- predict(GC_rpart_prune,type='class')
Pred_Train_Prob<-predict(GC_rpart_prune,type='prob')
Train_Pred<- prediction(Pred_Train_Prob[,2],GC_Train$good_bad)
Perf_Train<- performance(Train_Pred,»tpr»,»fpr»)
plot(Perf_Train,col=»green»,lty=2)

Classification and Regression

[290]

Pred_Validate_Class<-predict(GC_rpart_prune,newdata = GC_
Validate[,-21],type='class')
Pred_Validate_Prob<-predict(GC_rpart_prune,newdata = GC_
Validate[,-21],type='prob')
Validate_Pred<- prediction(Pred_Validate_Prob[,2],GC_
Validate$good_bad)
Perf_Validate<- performance(Validate_Pred,"tpr","fpr")
plot(Perf_Validate,col="yellow",lty=2,add=TRUE)
Pred_Test_Class<- predict(GC_rpart_prune,newdata = GC_Test[,-
21],type='class')
Pred_Test_Prob<-predict(GC_rpart_prune,newdata = GC_Test[,-
21],type='prob')
Test_Pred<- prediction(Pred_Test_Prob[,2],GC_Test$good_bad)
Perf_Test<- performance(Test_Pred,"tpr","fpr")
plot(Perf_Test,col="red",lty=2,add=TRUE)
legend(0.6,0.5,c("Train Curve","ValidateCurve","Test Curve"),col=c
("green","yellow","red"),pch="-")
title(main="Improving a Classification Tree with Pruning")

The choice of cp=0.02 has been drawn from the plot of the complexity parameter
and the relative error; try it yourselves with plotcp(GC_rpart).

Figure 17: Pruning the CART

Chapter 9

[291]

What just happened?
Using the minsplit and cp options, we have managed to obtain a reduced set of rules,
and in that sense, the fitted model does not appear to be an overfit. The ROC curves show
that there has been considerable improvement in the performance of the validate region.
Again, as earlier, the validate and test regions have a similar ROC, and it is hence preferable
to use GC_rpart_prune or GC_rpart_minsplit over GC_rpart.

Pop quiz
With the experience of model selection from the previous chapter, justify the choice
of cp=0.02 from the plot obtained as a result of running plotcp(GC_rpart).

Summary
We began with the idea of recursive partitioning and gave a legitimate reason as to why
such an approach is practical. The CART technique is completely demystified by using the
getNode function, which has been defined appropriately depending upon whether we require
a regression or a classification tree. With the conviction behind us, we applied the rpart
function to the German credit data, and with its results, we had basically two problems.
First, the fitted classification tree appeared to overfit the data. This problem may many times
be overcome by using the minsplit and cp options. The second problem was that the
performance was really poor in the validate region. Though the reduced classification trees
had slightly better performance as compared to the initial tree, we still need to improve the
classification tree. The next chapter will focus more on this aspect and discuss the modern
development of CART.

10
CART and Beyond

In the previous chapter, we studied CART as a powerful recursive partitioning
method, useful for building (non-linear) models. Despite the overall generality,
CART does have certain limitations that necessitate some enhancements. It is
these extensions that form the crux of the final chapter of this book. For some
technical reasons, we will focus solely on the classification trees in this chapter.
We will also briefly look at some limitations of the CART tool.

The first improvement that can be made to the CART is provided by the bagging technique.
In this technique, we build multiple trees on the bootstrap samples drawn from the
actual dataset. An observation is put through each of the trees and a prediction is made
for its class, and based on the majority prediction of its class, it is predicted to belong to
the majority count class. A different approach is provided by Random Forests, where you
consider a random pool of covariates against the observations. We finally consider another
important enhancement of a CART by using the boosting algorithms. The chapter will
discuss the following:

 � Cross-validation errors for CART

 � The bootstrap aggregation (bagging) technique for CART

 � Extending the CART with random forests

 � A consolidation of the applications developed from Chapter 6 to Chapter 10,

CART and Beyond

[294]

Improving CART
In the Another look at model assessment section of Chapter 8, we saw that the technique
of train + validate + test may be further enhanced by using the cross-validation technique.
In the case of, linear regression model, we had used the CVlm function from the DAAG
package for the purpose of cross-validation of linear models. The cross-validation technique
for the logistic regression models may be carried out by using the CVbinary function from
the same package.

Profs. Therneau and Atkinson created the package rpart, and a detailed documentation
of the entire rpart package is available on the Web at http://www.mayo.edu/hsr/
techrpt/61.pdf. Recall the slight improvement provided in the Pruning and other finer
aspects of a tree section of the previous chapter. The two aspects considered there related
to the complexity parameter cp and the minimum split criteria minsplit. Now, the problem
of overfitting with the CART may be reduced to an extent by using the cross-validation
technique. In the ridge regression model, we had the problem of selecting the penalty factor

. Similarly, here we have the problem of selecting the complexity parameter, though not
in an analogous way. That is, for the complexity parameter, which is a number between 0
and 1, we need to obtain the predictions based on the cross-validation technique. This may
lead to a small loss of accuracy; however, we will then increase the accuracy by looking at
the generality. An object of the rpart class has many summaries contained with it, and the
various complexity parameters are stored in the cptable matrix. This matrix has values
for the following metrics: CP, nsplit, rel error, xerror, and xstd. Let us understand
this matrix through the default example in the rpart package, which is example(xpred.
rpart); see Figure 1: Understanding the example for the "xpred.rpart" function:

http://www.mayo.edu/hsr/techrpt/61.pdf
http://www.mayo.edu/hsr/techrpt/61.pdf

Chapter 10

[295]

Figure 1: Understanding the example for the "xpred.rpart" function

Here the tree has CP at four values, namely 0.595, 0.135, 0.013, and 0.010.
The corresponding nsplit numbers are 0, 1, 2, and 3, and similarly, the relative error
values xerror and xstd are given in the last part of previous screenshot. The interpretation
for the CP value is slightly different, and the reason being that these have to be considered
as ranges and not values, in the sense that the rest of the performance is not with respect
to the CP values as mentioned previously, rather they are with respect to the intervals
[0.595,1], [0.135, 0.595), [0.013, 0.135), and [0.010, 0.013); see ?xpred.
rpart for more information. Now, the function xpred.rpart returns the predictions based
on the cross-validated technique. Therefore, we will use this function for the German data
problem and for different CP values (actually ranges), to obtain the accuracy of the
cross-validation technique.

CART and Beyond

[296]

Time for action – cross-validation predictions
We will use the xpred.rpart function from rpart to obtain the cross-validation
predictions from an rpart object.

1. Load the German dataset and the rpart package using data(GC);
library(rpart).

2. Fit the classification tree with GC_Complete <- rpart(good_bad~.,
data=GC).

3. Check cptable with GC_Complete$cptable:

 CP nsplit rel error xerror xstd
1 0.05167 0 1.0000 1.0000 0.04830
2 0.04667 3 0.8400 0.9833 0.04807
3 0.01833 4 0.7933 0.8900 0.04663
4 0.01667 6 0.7567 0.8933 0.04669
5 0.01556 8 0.7233 0.8800 0.04646
6 0.01000 11 0.6767 0.8833 0.04652

4. Obtain the cross-validation predictions using GC_CV_Pred <- xpred.rpart(
GC_Complete).

5. Find the accuracy of the cross-validation predictions:

sum(diag(table(GC_CV_Pred[,2],GC$good_bad)))/1000
sum(diag(table(GC_CV_Pred[,3],GC$good_bad)))/1000
sum(diag(table(GC_CV_Pred[,4],GC$good_bad)))/1000
sum(diag(table(GC_CV_Pred[,5],GC$good_bad)))/1000
sum(diag(table(GC_CV_Pred[,6],GC$good_bad)))/1000

The accuracy output is as follows:

> sum(diag(table(GC_CV_Pred[,2],GC$good_bad)))/1000
[1] 0.71
> sum(diag(table(GC_CV_Pred[,3],GC$good_bad)))/1000
[1] 0.744
> sum(diag(table(GC_CV_Pred[,4],GC$good_bad)))/1000
[1] 0.734
> sum(diag(table(GC_CV_Pred[,5],GC$good_bad)))/1000
[1] 0.74
> sum(diag(table(GC_CV_Pred[,6],GC$good_bad)))/1000
[1] 0.741

Chapter 10

[297]

It is natural that when you execute the same code, you will most likely have a different
output. Why is that? Also, you need to answer for yourselves why we did not check the
accuracy for GC_CV_Pred[,1]. In general, for decreasing the CP range, we expect higher
accuracy. We have checked for cross-validation predictions for various CP ranges. There are
also other techniques to enhance the performance of a CART.

What just happened?
We used the xpred.rpart function to obtain the cross-validation predictions for
a range of CP values. The accuracy of a prediction model has been assessed by using
simple functions such as table and diag.

However, the control actions of minsplit and cp are of a reactive nature after the splits
have been already decided. In that sense, when we have a large number of covariates,
the CART may lead to an overfit of the data and may try to capture all the local variations
of the data, and thus lose sight of the overall generality. Therefore, we need useful
mechanisms to overcome this problem.

The classification and regression tree considered in the previous chapter is a single model.
That is, we are seeking the opinion (prediction) of a single model. Wouldn't it be nice if we
could extend this! Alternately, we can seek multiple models instead of a single model.
What does this mean? In the forthcoming sections, we will see the use of multiple models
for the same problem.

Bagging
Bagging is an abbreviation for bootstrap aggregation. The important underlying concept
here is the bootstrap, which was invented by the eminent scientist Bradley Efron. We will
first digress here a bit from the CART technique and consider a very brief illustration of the
bootstrap technique.

The bootstrap
Consider a random sample, 1,..., nX X , of size n from (),f x θ . Let ()1,..., nT X X be an
estimator of θ . To begin with, we first draw a random sample of size n from 1,..., nX X
with replacement; that is, we obtain a random sample * * *

1 2, ,..., nX X X , where some of the
observations from the original sample may have repetitions and some may not be present
at all. There is no one-to-one correspondence between 1,..., nX X and * * *

1 2, ,..., nX X X . Using
* * *
1 2, ,..., nX X X , we compute ()1 * *

1 ,..., nT X X . Repeat this exercise a large number of times, say B.
The inference for θ is carried out by using the sampling distribution of the bootstrap samples

()1 * *
1 ,..., nT X X , …, ()* *

1 ,...,
B

nT X X . Let us illustrate the concept of bootstrap with the famous
aspirin example; see Chapter 8 of Tattar, et. al. (2013).

CART and Beyond

[298]

A surprising double-blind experiment conducted by the New York Times indicated that an
aspirin consumed on alternate days significantly reduces the number of heart attacks within
men. In their experiment, 104 out of 11034 healthy middle-aged men consuming the small
doses of aspirin suffered a fatal/non-fatal heart attack, whereas 189 out of 11037 placebo
individuals had the attack. Therefore, the odds ratio of the aspirin-to-placebo heart attack
possibility is (104 / 11034) / (189 / 11037) = 0.5504. This indicates that only 55
percent of the number of heart attacks observed for the group taking the placebo is likely to
be observed for men consuming small doses of aspirin. That is, the chances of having a heart
attack if taking aspirin are almost halved. The experiment being scientific, the results look
very promising. However, we would like to obtain a confidence interval for the odds ratio of
the heart attack. If we don't know the sampling distribution of the odds ratio, we can use
the bootstrap technique to obtain the same. There is another aspect of the aspirin study. It
has been observed that the aspirin group had about 119 individuals who had strokes. The
strokes number for the placebo group is 98. Therefore, the odds ratio of a stroke is (114
/ 11034) / (98 / 11037) = 1.164. This is shocking! It says that though the aspirin
reduces the heart attack possibility, about 16 percent more people are likely to have a stroke
when compared to the placebo group. Now, let's use the bootstrap technique to obtain the
confidence intervals for the heart attack as well as the strokes.

Time for action – understanding the bootstrap technique
The boot package, which comes shipped with R base, will be used for bootstrapping the
odds ratio.

1. Get the boot package using library(boot).

The boot package is shipped with the R software itself, and thus it does
not require separate installation. The main components for the boot function
will be soon explained.

2. Define the odds-ratio function:

OR <- function(data,i) {
x <- data[,1]; y <- data[,2]
odds.ratio <- (sum(x[i]==1,na.rm=TRUE)/length(na.omit(x[i])))/
(sum(y[i]==1,na.rm=TRUE)/length(na.omit(y[i])))
return(odds.ratio)
 }

Chapter 10

[299]

The OR name stands, of course, for odds-ratio. data for this function consists of
two columns, one of which may have more observations than the other. The option
na.rm is used to ignore the NA data values, whereas the na.omit function will
remove them. It is easier to see that the odds.ratio object indeed computes the
odds-ratio. Note that we have specified i as an input to the function OR, since this
function will be used within boot. Therefore, i is used to indicate that the odds
ratio will be calculated for the ith bootstrap sample. Note that x[i] does not reflect
the ith element of x.

3. Get the data for both the aspirin and placebo groups (the heart attack and stroke
data), with the following code:

aspirin_hattack <- c(rep(1,104),rep(0,11037-104))
placebo_hattack <- c(rep(1,189),rep(0,11034-189))
aspirin_strokes <- c(rep(1,119),rep(0,11037-119))
placebo_strokes <- c(rep(1,98),rep(0,11034-98))

4. Combine the data groups and run 1000 bootstrap replicates, calculating
the odds-ratio for each of the bootstrap samples. Use the following boot function:

hattack <- cbind(aspirin_hattack,c(placebo_hattack,NA,NA,NA))
hattack_boot <- boot(data=hattack,statistic=OR,R=1000)
strokes <- cbind(aspirin_strokes,c(placebo_strokes,NA,NA,NA))
strokes_boot <- boot(data=strokes,statistic=OR,R=1000)

We are using three options of the boot function, namely data, statistic,
and R. The first option accepts the data frame of interest; the second one accepts
the statistic, either an existing R function or a function defined by the user; and
finally, the third option accepts the number of bootstrap replications. The boot
function creates an object of the boot class, and in this case, we are obtaining the
odds-ratio for various bootstrap samples.

5. Using the bootstrap samples and the odds-ratio for the bootstrap samples, obtain
a 95 percent confidence interval by using the quantile function:

quantile(hattack_boot$t,c(0.025,0.975))
quantile(strokes_boot$t,c(0.025,0.975))

The 95 percent confidence interval for the odds-ratio of the heart attack rate is
given as (0.4763, 0.6269), while that for the strokes is (1.126, 1.333).
Since the point estimates lie in the 95 percent confidence intervals, we accept that
the odds-ratio of a heart attack for the aspirin tablet indeed reduces by 55 percent
in comparison with the placebo group.

CART and Beyond

[300]

What just happened?
We used the boot function from the boot package and obtained bootstrap samples for the
odds-ratio.

Now that we have an understanding of the bootstrap technique, let us check out how
the bagging algorithm works.

The bagging algorithm
Breiman (1996) proposed the extension of the CART in the following manner.
Suppose that the values of the n random observations for the classification problem
are () () ()1 1 2 2, , , ,..., ,n ny x y x y x . As with our setup, the dependent variables iy are binary.
As with the bootstrap technique explained earlier, we obtain a bootstrap sample of size n
from the data with replacement and build a tree. If we prune the tree, it is very likely that
we may end up with the same tree on most occasions. Hence, pruning is not advisable here.
Now, using the tree based on the (first) bootstrap sample, a prediction is made for the class
of the i-th observation and the predicted value is noted. This process is repeated a large
number of times, say B. A general practice is to take B = 100. Therefore, we have B number
of predictions for every observation. The decision process is to classify the observation to
the category that has the majority of class predictions. That is, if more than 50 times out of
B = 100 it has been predicted to belong to a particular class, we say that the observation is
predicted to belong to that class. Let us formally state the bagging algorithm.

1. Draw a sample of size n with replacement from the data () () ()1 1 1
1 1 2 2, , , ,..., ,i ny x y x y x ,

and denote the first bootstrap sample with () () ()1
11 1

1 1 2 2, , , ,..., ,i ny x y x y x .

2. Create a classification tree with () () ()1
11 1

1 1 2 2, , , ,..., ,i ny x y x y x . Do not prune the
classification tree. Such a tree may be called a bootstrapped tree.

3. For each terminal node, assign a class; put each observation down the tree and find
its predicted class.

4. Repeat steps 1 to 3 a large number of times, say B.

5. Find the number of times each observation is classified to a particular class out of
the B bootstrapped trees. The bagging procedure classifies an observation to belong
to a particular class that has the majority count.

6. Compute the confusion table from the predictions made in step 5.

Chapter 10

[301]

The advantage of multiple trees is that the problem of overfitting, which happens in the case
of a single tree, is overcome to a large extent, as we expect that resampling will ensure that
the general features are captured and the impact of local features is minimized. Therefore,
if an observation is classified to belong to a particular class because of a local issue, it will
not get repeated over in the other bootstrapped trees. Therefore, with predictions based
on a large number of trees, it is expected that the final prediction of an observation really
depends upon its general features and not on a particular local feature.

There are some measures that are important to be considered with the bagging algorithm.
A good classifier, a single tree, or a bunch of them should be able to predict the class of
an observation with more conviction. For example, we use a probability threshold of 0.5
and above as a prediction for success when using a logistic regression model. If the model
can predict most observations in the neighborhood of either 0 or 1, we will have more
confidence in the predictions. As a consequence, we will be a bit hesitant to classify an
observation as either a success or failure if the predicted probability is in the vicinity of 0.5.
This precarious situation applies to the bagging algorithm too.

Suppose we choose B = 100 for the number of bagging trees. Assume that an observation
belongs to a class, Yes, and let the overall classes for the study be {"Yes", "No"}. If a
large number of trees predict an observation to belong to the Yes class, we are confident
about the prediction. On the other hand, if approximately B/2 number of trees classify the
observation to the Yes class, the decision gets swapped, as a few more trees had predicted
the observation to belong to the No class. Therefore, we introduce a measure called margin
as the difference between the proportion of times an observation is correctly classified and
the proportion of times it is incorrectly classified. If the bagging algorithm is a good model,
we expect the average margin over all the observations to be a large number away from
0. If bagging is not appropriate, we expect the average margin to be near the number 0.
Let us prepare ourselves for action. The bagging algorithm is available in ipred and the
randomForests package.

Time for action – the bagging algorithm
The bagging function from the ipred package will be used for bagging a CART. The options
of coob=FALSE and nbagg=200 are used to specified the appropriate options.

1. Get the ipred package by using library(ipred).

2. Load the German credit data by using data(GC).

CART and Beyond

[302]

3. For B=200, fit the bagging procedure for the GC data:

GC_bagging <- bagging(good_bad~.,data=GC,coob=FALSE,
nbagg=200,keepX=T)

We know that we have fit B =200 number of trees. Would you like to see them?
Fine, here we go.

4. The B =200 trees are stored in the mtrees list of classbagg GC_bagging. That
is, GC_bagging$mtrees[[i]] gives us the i-th bootstrapped tree, and plot(GC_
bagging$mtrees[[i]]$btree) displays that tree. Adding text(GC_bagging$m
trees[[i]]$btree,pretty=1, use.n=T) is also important. Next, put the entire
thing in a loop, execute it, and simply sit back and enjoy the display of the B number
of trees:

for(i in 1:200) {
 plot(GC_bagging$mtrees[[i]]$btree);
 text(GC_bagging$mtrees[[i]]$btree,pretty=1,use.n=T)
 }

We hope that you understand that we can't publish all 200 trees! The next goal
is to obtain the margin of the bagging algorithm.

5. Predict the class probabilities of all the observations with the predict.
classbagg function by using GCB_Margin = round(predict(GC_
bagging,type="prob")*200,0).

Let us understand the preceding code. The predict function returns the
probabilities of an observation to belong to the good and bad classes. We have
used 200 trees, and hence multiplying these probabilities with it gives us the
expected number of times an observation is predicted to belong to these classes.
The round function with the 0 argument completes the prediction to integers.

6. Check the first six predicted classes with head(GCB_Margin):

 bad good
[1,] 17 183
[2,] 165 35
[3,] 11 189
[4,] 123 77
[5,] 101 99
[6,] 95 105

7. To obtain the overall margin of the bagging technique, use the R code
mean(pmax(GCB_Margin[,1],GCB_Margin[,2]) pmin(GCB_
Margin[,1],GCB_Margin[,2]))/200.

Chapter 10

[303]

The overall margin for the author's execution turns out to be 0.5279. You may,
though, get a different answer. Why?

Thus far, the bagging technique made predictions for the observations
from which it built the model. In the earlier chapters, we had championed
the need of validate group and cross-validation techniques. That is,
we did not always rely on the model measures solely from the data on
which it was built. There is always the possibility of failure as a result of
unforeseen examples. Can the bagging technique be built for taking care
of the unforeseen observations? The answer is a definite yes, and this
is well known as out-of-bag validation. In fact, such an option has been
suppressed when building the bagging model in step 3 here, as the option
coob=FALSE. coob stands for an out-of-bag estimate of the error rate. So,
now rebuild the bagging model with coob=TRUE option.

8. Build an out-of-bag bagging model with GC_bagging_oob <- bagging(good_ba
d~.,data=GC,coob=TRUE,nbagg=200,keepX=T). Find the error-rate with GC_
bagging_oob$err.

> GC_bagging_oob <- bagging(good_bad~.,data=GC,coob=TRUE,
nbagg=200,keepX=T)
> GC_bagging_oob$err
[1] 0.241

What Just Happened?
We have seen an important extension of the CART model in the bagging algorithm.
To an extent, this enhancement is vital and vastly different, as seen in the improvements
of earlier models. The bagging algorithm is different, in the sense that we rely on the
predictions based on more than a single model. This ensures that the overfitting problem,
which occurs due to local features, is almost eliminated.

It is important to note that the bagging technique is not without any limitations; refer
to Section 4.5 of Berk (2008). We now move to the final model of the book, which is an
important technique for the CART school.

Random forests
In the previous section, we built multiple models for the same classification problem. The
bootstrapped trees were generated by using resamples of the observations. Breiman (2001)
suggested an important variation—actually, there is more to it than just a variation—where
a CART is built with the covariates (features) being resampled for each of the bootstrap
samples of the dataset. Since the final tree of each bootstrap sample has different covariates,
the ensemble of the collective trees is called a Random Forest. A formal algorithm is
given next.

CART and Beyond

[304]

1. As with the bagging algorithm, draw a sample of size n1, n1 < n with replacement
from the data () () ()1 1 1

1 1 2 2, , , ,..., ,i ny x y x y x , and denote the first resampled data
with () () ()1

11 1
1 1 2 2, , , ,..., ,i ny x y x y x . The remaining n to n1 data form the

out-of-bag dataset.

2. Among the covariate vector x, select a random number of covariates without
replacement. Note that the same covariates are selected for all the observations.

3. Create the CART tree from the data in steps 1 and 2, and, as earlier, do not prune
the tree.

4. For each terminal node, assign a class. Put each out-of-bag data down the tree
and find its predicted class.

5. Repeat steps 1 to 3 a large number of times; say 200 or 500.

6. For each observation, count the number of times it is predicted to belong to a class
only when it is a part of the out-of-bag dataset.

7. The majority count for the observation to belong to a class is considered as it is a
predicted class.

This is quite a complex algorithm. Luckily, the randomForest package helps us out.
We will continue with the German credit data problem.

Time for action – random forests for the German credit data
The function randomForest from the package of the same name will be used to build a
random forest for the German credit data problem.

1. Get the randomForest package by using library(randomForest).

2. Load the German credit data by using data(GC).

3. Create a random forest with 500 trees:

GC_RF <- randomForest(good_bad~.,data=GC,keep.forest=TRUE,
ntree=500).

Chapter 10

[305]

It is very difficult to visualize a single tree of the random forest. A very
ad-hoc approach has been found at http://stats.stackexchange.com/
questions/2344/best-way-to-present-a-random-forest-in-a-
publication. Now we reproduce the necessary function to get the trees, and as
the solution step is not exactly perfect, you may skip this part; steps 4 and 5.

4. Define the to.dendrogram function:

5. Use the getTree function, and with the to.dendrogram function defined
previously, visualize the first 20 trees of the forest:

for(i in 1:20) {
 tree <- getTree(GC_RF,i,labelVar=T)
 d <- to.dendrogram(tree)
plot(d,center=TRUE,leaflab='none',edgePar=list(t.cex=1,p.col=NA,p.
lty=0))
 }

The error rate is of primary concern. As we increase the number of trees in the forest,
we expect a decrease in the error rate. Let us investigate this for the GC_RF object.

http://stats.stackexchange.com/questions/2344/best-way-to-present-a-random-forest-in-a-publication
http://stats.stackexchange.com/questions/2344/best-way-to-present-a-random-forest-in-a-publication
http://stats.stackexchange.com/questions/2344/best-way-to-present-a-random-forest-in-a-publication

CART and Beyond

[306]

6. Plot the out-of-bag error rate against the number of trees with plot(1:500,GC_
RF$err.rate[,1],"l",xlab="No.of.Trees",ylab="OOB Error Rate").

Figure 2: Performance of a random forest

The covariates (features) are selected differently for different trees. It is then
a concern to know which variables are significant. The important variables are
obtained using the varImpPlot function.

7. The function varImpPlot produces a display of the importance of the variables
by using varImpPlot(GC_RF).

Chapter 10

[307]

Figure 3: Important variables of the German credit data problem

Thus, we can see which variables have more relevance over others.

What just happened?
Random forests are a very important extension of the CART concept. In this technique, we
need to know the error-rate distribution as the number of trees increases. This is expected to
decrease with the increase in the number of trees. varImpPlot also gives a very important
display of the importance of the covariates for classifying the customers as good or bad.

In conclusion, we will undertake a classification dataset and revise all the techniques seen
in the book, especially in Chapter 6 to Chapter 10. We will now consider the problem of low
birth weight among the infants.

CART and Beyond

[308]

The consolidation
The goal of this section is to quickly review all of the techniques learnt in the latter half of
the book. Towards this, a dataset has been selected where we have ten variables, including
the output. Low birth weight is a serious concern, and it needs to be understood as a factor
of many other variables. If the weight of a child at birth is lesser than 2500 grams, it is
considered as a low birth weight. This problem has been studied in Chapter 19 of Tattar, et.
al. (2013). The following table gives a description of the variables. Since the dataset may be
studied as a regression problem (variable BWT) as well as a classification problem (LOW), you
can choose any path(s) that you deem fit. Let the final action begin.

Serial number Description Abbreviation

1 Identification code ID

2 Low birth weight LOW

3 Age of mother AGE

4 Weight of mother at last menstrual period LWT

5 Race RACE

6 Smoking status during pregnancy SMOKE

7 History of premature labor PTL

8 History of hypertension HT

9 Presence of uterine irritability UI

10 Number of physician visits during the first trimester FTV

11 Birth weight BWT

Time for action – random forests for the low birth weight data
The techniques learnt from Chapter 6 to Chapter 10 will now be put to the test.
That is, we will use the linear regression model, logistic regression, as well as CART.

1. Read the dataset into R with data(lowbwt).

Chapter 10

[309]

2. Visualize the dataset with the options diag.panel, lower.panel,
and upper.panel:

pairs(lowbwt,diag.panel=panel.hist,lower.panel=panel.smooth,upper.
panel=panel.cor)

Interpret the matrix of scatter plots. Which statistical model seems most appropriate
to you?

Figure 4: Multivariable display of the "lowbwt" dataset

As the correlations look weak, it seems that a regression model may not be
appropriate. Let us check.

3. Create (sub) datasets for the regression and classification problems:

LOW <- lowbwt[,-10]
BWT <- lowbwt[,-1]

CART and Beyond

[310]

4. First, we will check if a linear regression model is appropriate:

BWT_lm <- lm(BWT~., data=BWT)
summary(BWT_lm)

Interpret the output of the linear regression model; refer to Linear Regression
Analysis, Chapter 6, if necessary.

Figure 5: Linear model for the low birth weight data

The low R2 makes it difficult for us to use the model. Let us check out the logistic
regression model.

5. Fit the logistic regression model as follows:

BWT_glm <- glm(BWT~., data=BWT)
summary(BWT_glm).

Chapter 10

[311]

The summary of the model is given in the following screenshot:

Figure 6: Logistic regression model for the low birth weight data

6. The Hosmer-Lemeshow goodness-of-fit test for the logistic regression model is given
by hosmerlem(LOW_glm$y,fitted(LOW_glm)).

Now, the p-value obtained is 0.7813, which shows that there is no significant
difference between the fitted values and the observed values. Therefore, we
conclude that the logistic regression model is a good fit. However, we will go
ahead and perform CART models for this problem as well. Note that the estimated
regression coefficients are not huge values, and hence we do not need to check out
for the ridge regression problem.

CART and Beyond

[312]

7. Fit a classification tree with the rpart function:

LOW_rpart <- rpart(LOW~.,data=LOW)
plot(LOW_rpart)
text(LOW_rpart,pretty=1)

Does the classification tree appear more appropriate than the logistic regression
fitted earlier?

Figure 7: Classification tree for the low birth weight data

8. Get the rules of the classification tree using asRules(LOW_rpart).

Figure 8: Rules for the low birth weight problem

Chapter 10

[313]

You can see that these rules are of great importance to the physician who does the
operations. Let us check the bagging effect on the classification tree.

9. Using the bagging function, find the error rate of the bagging technique with the
following code:

LOW_bagging <- bagging(LOW~., data=LOW,coob=TRUE,nbagg=50,keepX=T)
LOW_bagging$err

The error rate is 0.3228, which seems very high. Let us see if random forests help
us out.

10. Using the randomForest function, find the error rate for the out-of-bag problem:

LOW_RF <- randomForest(LOW~.,data=LOW,keep.forest=TRUE, ntree=50)
LOW_RF$err.rate

The error rate is still around 0.34. The initial idea was that with the number of
observations being less than 200, we developed with only 50 trees. Repeat the task
with 150 trees and check if the error rate decreases.

11. Increase the number of trees to 150 and obtain the error-rate plot:

LOW_RF <- randomForest(LOW~.,data=LOW,keep.forest=TRUE, ntree=150)
plot(1:150,LOW_RF$err.rate[,1],"l",xlab="No.of.Trees",ylab="OOB
Error Rate")

The error rate of about 0.32 seems to be the best solution we can obtain
for this problem.

Figure 9: The error rate for the low birth weight problem

CART and Beyond

[314]

What just happened?
We had a very quick look back at all the techniques used over the last five chapters
of the book.

Summary
The chapter began with two important variations of the CART technique: the bagging
technique and random forests. Random forests are particularly a very modern technique,
invented in 2001 by Breiman. The goal of the chapter was to familiarize you with these
modern techniques. Together with the German credit data and the complete revision of
the earlier techniques with the low birth weight problem, it is hoped that you benefitted a
lot from the book and will have gained enough confidence to apply these tools in your own
analytical problems.

References
The book has been influenced by many of the classical texts on the subject from Tukey
(1977) to Breiman, et. al. (1984). The modern texts of Hastie, et. al. (2009) and Berk (2008)
have particularly influenced the later chapters of the book. We have alphabetically listed
only the books/monographs which have been cited in the text, however, the reader may go
beyond the current list too.

 � Agresti, A. (2002), Categorical Data Analysis, Second Edition. J. Wiley

 � Baron, M. (2007), Probability and Statistics for Computer Scientists, Chapman
and Hall/CRC

 � Belsley, K., Kuh, and Welsch, E. (1980), Regression Diagnostics: Identifying Influential
Data and Sources of Collinearity, J. Wiley

 � Berk, R. A. (2008), Statistical Learning from a Regression Perspective.Springer

 � Breiman, L. (1996), Bagging predictors. Machine learning, 24(2), 123-140

 � Breiman, L. (2001), Random forests. Machine learning, 45(1), 5-32

 � Breiman, L., Friedman, J. H., Olshen, R. A., and Stone. C.J. (1984), Classification
and Regression Trees, Wadsworth

 � Chen, Ch., Härdle, W., and Unwin, A. (2008). Handbook of Data Visualization.
Springer

 � Cleveland, W. S. (1985). The Elements of Graphing Data. Monterey, CA: Wadsworth

 � Cule, E. and De Iorio, M. (2012), A semi-automatic method to guide the choice
of ridge parameter in ridge regression.arXiv:1205.0686v1 [stat.AP]

 � Freund, R.F., and Wilson, W.J. (2003), Statistical Methods, Second Edition,
Academic Press

 � Friendly, M. (2001), Visualizing Categorical Data.SAS

 � Friendly, M. (2008), A brief history of data visualization. In Handbook
of Data Visualization (pp. 15-56), Springer

References

[316]

 � Gunst, R. F. (2002), Finding confidence in statistical significance. Quality Progress,
35 (10), 107–108

 � Gupta, A. (1997), Establishing Optimum Process Levels of Suspending Agents
for a Suspension Product. Quality Engineering, 10,347-350

 � Hastie, T., Tibshirani, R., and Friedman, J. (2009), The Elements of Statistical
Learning, Second Edition, Springer

 � Horgan, J. M. (2008), Probability with R – An Introduction with Computer Science
Applications, J. Wiley

 � Johnson, V. E., and Albert, J. H. (1999), Ordinal Data Modeling, Springer

 � Kutner, M. H., Nachtsheim, C., and Neter, J. (2004), Applied Linear Regression
Models, McGraw Hill

 � Montgomery, D. C. (2007), Introduction to Statistical Quality Contro,. J. Wiley

 � Montgomery, D. C., Peck, E. A., and Vining, G. G. (2012), Introduction to Linear
Regression Analysis, Wiley

 � Montgomery, D.C., and Runger, G. C. (2003), Applied Statistics and Probability
for Engineers, J. Wiley

 � Pawitan, Yudi. (2001), In All Likelihood: Statistical Modelling and Inference Using
Likelihood, OUP Oxford

 � Quinlan, J. R. (1993), C4. 5: Programs for Machine Learning, Morgan Kaufmann

 � Ross, S.M. (2010), Introductory Statistics, 3e, Academic Press

 � Rousseeuw, P.J., Ruts, I., and Tukey, J.W. (1999), The bagplot: a bivariate boxplot,
The American Statistician 53.4: 382-387

 � Ryan, T.P. (2007), Modern Engineering Statistics, J. Wiley

 � Sarkar, D. (2008), Lattice-Springer

 � Tattar, P.T., Suresh. R., and Manjunath. B.G. (2013), A Course in Statistics
with R. Narosa

 � Tufte, E. R. (2001), The Visual Display of Quantitative Information, Graphics Pr

 � Tukey, J.W. (1977), Exploratory Data Analysis, Addison-Wesley

 � Velleman, P.F., and Hoaglin, D.C. (1981), Applications, Basics, and Computing of
Exploratory Data Analysis; available at http://dspace.libraty.comell.edu/

 � Wickham, H. (2009). ggplot2, Springer

 � Wilkinson, L. (2005), The Grammar of Graphics, Second Edition, Springer

Index
Symbols
3RSS 123
3RSSH 123
4253H smoother 123
%% operator 35

A
actual probabilities 13
Age in Years variable 9
Akaike Information Criteria (AIC) 194
alternative hypothesis 144
amount of leverage by the observation 187
ANOVA technique

about 170
obtaining 170

anscombe dataset 169
aplpack package 117
Automotive Research Association of India (ARAI)

10

B
backward elimination approach 192
backwardlm function 195
bagging 297
bagging algorithm 300-302
bagging technique 93
bagplot

about 116
characteristics 116
displaying, for multivariate dataset 117, 118
for gasoline mileage problem 117

barchart function 73
bar charts

built-in examples 66, 67
visualizing 68-73

barplot function 73
basic arithmetic, vectors

performing 36
unequal length vectors, adding 36

basis functions, regression spline 234
best split point 265
binary regression problem 202
binomial distribution

about 20, 21
examples 21-23

binomial test
performing 144
proportions, testing 147, 148
success probability, testing 145, 146

bivariate boxplot 116
boosting algorithms 293
bootstrap 298, 299
bootstrap aggregation 297
bootstrapped tree 300
box-and-whisker plot 84
boxplot

about 84
examples 84, 85
implementing 85-87

boxplot function 86, 108
B-spline regression model

fitting 241, 242
purpose 241

[318]

built-in examples, bar chart
Bug Metrics dataset 67
Bug Metrics of five software 67

bwplot function 86

C
CART

about 293
cross-validation predictions, obtaining 296, 297
improving 294, 295

CART_Dummy dataset
visualizing 259

categorical variable 9, 18, 260
central limit theorem 139
classification tree 257

construction 276-283
pruning 289-291

classification tree, German credit data
construction 284-288

coefficient of determination 169
colSums function 77
Comprehensive R Archive Network. See CRAN
computer science

experiments with uncertainty 14
confidence interval

about 139
for binomial proportion 139
for normal mean with known variance 140
for normal mean with unknown variance 140
obtaining 141, 142, 170, 171

confusion matrix 220
continuous distributions

about 26
exponential distribution 28
normal distribution 29
uniform distribution 27

continuous variable 9
Cooks distance 188
covariate 229
CRAN

about 15
URL 15
criteria-based model selection
about 194
AIC criteria, using 194-197
backward, using 194-197

forward, using 194-197
critical alpha 192
critical region 144
CSV file

reading, from 54
cumulative density function 27
Customer ID variable 8
CVbinary function 294
CVlm function 294

D
data

importing, from external files 55, 57
importing, from MySQL 58, 59
spiltting 260

databases (DB) 58
data characteristics 12, 13
data formats

CSV (comma separated variable) format 52
ODS (OpenOffice/LibreOffice Calc) 52
XLS or XLSX (Microsoft Excel) form 52

data.frame object
about 45
creating 45, 46

data/graphs
exporting 60
graphs, exporting 60, 61
R objects, exporting 60

data re-expression
about 114
for Power of 62 Hydroelectric Stations 114-116

data visualization
about 65
visualization techniques, for categorical data 66
visualization techniques, for continuous variable

data 84
DAT file

reading, from 54
depth 113
deviance residual 213
DFBETAS 189
DFFITS 189
diff function 108
discrete distributions

about 18
binomial distribution 20

[319]

discrete uniform distribution 19
hypergeometric distribution 24
negative binomial distribution 24
poisson distribution 26

discrete uniform distribution 19
dot chart

about 74
example 74
visualizing 74-76

dotchart function 74

E
EDA 103
exponential distribution 28, 29

F
false positive rate (fpr) 220
fence 117
files

reading, foreign package used 55
first tree

building 261-263
fitdistr function

used, for findgin MLE 136
fivenum function 108
forwardlm function 194
forward selection approach 193
fourfold plot

about 82
examples 83

Full Name variable 9

G
Gender variable 9
generalized cross-validation (GCV) errors 255
geometric RV 25
German credit data

classification tree 284-288
German credit screening dataset

logistic regression 223-226
getNode function 267
getTree function 305
ggplot 101

ggplot2
about 99, 100
ggplot 101
qplot function 100

GLM
influential and leverage points, identifying 216
residual plots 213

graphs
exporting 60, 61

H
han function 124
hanning 123
hinges 104, 105
hist function 90
histogram

about 88
construction 88, 89
creating 90-92
effectiveness 90
examples 89

histogram function 90
Hosmer-Lemeshow goodness-of-fit test statistic

210, 212
hypergeometric distribution 24
hypergeometric RV 24
hypotheses testing

about 144
binomial test 144
one-sample hypotheses, testing 152-155
one-sample problems, for normal distribution

150, 151
two-sample hypotheses, testing 159
two sample problems, for normal distribution

156, 157
hypothesis

about 144
alternative hypothesis 144
null hypothesis 144
statistic, testing 144

I
impurity measures 276
independent and identical distributed (iid)

sample 130

[320]

influence and leverage points, GLM
identifying 216

influential point 188
interquartile range (IQR) 84, 105
iterative reweighted least-squares (IRLS)

algorithm 207

L
leading digits 109
letter values 113
leverage point 187
likelihood function

about 131
visualizing 131-134

likelihood function, of binomial distribution 131
likelihood function, of normal distribution 132
likelihood function, of Poisson distribution 132
linear regression model

about 162
limitations 202, 203

linearRidge function 244
list object

about 44
creating 44, 45

lm.ridge fit model 255
lm.ridge function 245, 255
logistic regression, German credit dataset 223-

226
logistic regression model

about 201-207
diagnostics 216
fitting 207- 210
influence and leverage points, identifying

216-218
model validation 213
residuals plots, for GLM 213
ROC 220

logisticRidge function 248
loop 117

M
margin 301
matrix computations

about 41
performing 41-43

maximum likelihood estimator. See MLE
mean 18, 122
mean residual sum of squares 183
median 104, 122
median polish 125
median polish algorithm

about 125, 126
example 126, 127

medpolish function 126
MLE

about 129-131
finding 135
finding, fitdistr function used 137
finding, mle function used 137
likelihood function, visualizing 131

MLE, binomial distribution
finding 135, 136

MLE, Poisson distribution
finding 136

model assessment
about 250
penalty factor, finding 250
penalty parameter, selecting iteratively

250-255
testing dataset 250
training dataset 250
validation dataset 250

model selection
about 192
criterion-based procedures 194
stepwise procedures 192

model validation, simple linear regression model
about 171
residual plots, obtaining 172, 174

mosaic plot
for Titanic dataset 80, 81

mosaicplot function 80
multicollinearity problem

about 189, 190
addressing 191, 192

multiple linear regression model
about 176, 177
ANOVA, obtaining 182
building 179, 180
confidence intervals, obtaining 182
k simple linear regression models, averaging

177-179

[321]

useful residual plots 183
multivariate dataset

bagplot, displaying for 117, 118
MySQL

data, importing from 58, 59

N
natural cubic spline regression model

about 238
fitting 239-241

negative binomial distribution
about 24, 25
examples 25

negative binomial RV 25
nominal variable 18
normal distribution

about 29
examples 30

null hypothesis 144
NumericConstants 34

O
Octane Rating

of Gasoline Blends 109
odds ratio 207
one-sample hypotheses

testing 152-155
operator curves

receiving 220
ordinal variable 9, 19, 260
out-of-bag validation 303
overfitting 230-233

P
pairs function 118
panel.bagplot function 118
Pareto chart

about 97
examples 98, 99

partial residual 213
pdf 26
pearson residual 213
percentiles 104
piecewise cubic 238

piecewise linear regression model
about 235
fitting 235-237

pie charts
about 81
drawbacks 82
examples 81

plot.lm function 176
poisson distribution

about 26
examples 26

polynomial regression model
building 231
fitting 229

pooled variance estimator 157
PRESS residuals 184
principal component (PC) 245
probability density function 26
probability mass function (pmf) 18
probit model 201
probit regression model

about 204
constants 204-206

pruning 288

Q
qplot function 100
quantiles 104
questionnaire

about 8
components 8

Questionnaire ID variable 8

R
R

constants 34
continuous distributions 26
data characteristics 12, 13
data.frame 33
data visualization 65
discrete distributions 18
downloading, for Linux 16
downloading, for Windows 16
session management 62, 64
simple linear regression model 162
vectors 34, 35

[322]

randomForest function 304
Random Forests

about 293, 303
for German credit data 304, 306
for low birth weight data 308-313

random sample 130
random variable 13
range function 108
R databases 33
read.csv 54
read.delim 54
read.table function 53
read.xls function 54
receiving operator curves. See ROC
Recursive Partitioning

about 258
data, splitting 260
display plot, partitioning 259

regression 162
regression diagnostics

about 186
DFBETAS 189
DFFITS 189
influential point 187, 188
leverage point 187

regression spline
about 234
basis functions 234
natural cubic splines 238
piecewise linear regression model 235

regression tree
about 257
construction 265-274

representative probabilities 13
reroughing 123
resid function 174
residual plots, GLM

deviance residual 213
obtaining, fitted function used 214, 215
obtaining, residuals function used 214, 215
partial residual 213
pearson residual 213
response residual 213
working residual 213

residual plots, multiple linear regression model
about 183
PRESS residuals 184

R-student residuals 184, 186
semi-studentized residuals 183, 184
standardized residuals 183

residuals function 216
resistant line

about 118, 120
as regression model 120, 121
for IO-CPU time 120

response residual 213
ridge regression, for linear regression model

243-247
ridge regression, for logistic regression models

248, 249
R installation

about 15, 16
R packages, using 16, 17
RSADBE 17

rline function 120
R names function 34
R objects

about 33
exporting 60
letters 34
LETTERS 34
month.abb 34
month.name 34
pi 34

ROC
about 220
construction 221, 222

rootstock dataset 55
rough 123
R output 33
rowSums function 78
R packages

using 16
rpart class 294
rpart function 257
RSADBE package 17, 105
R-student residuals 184
RV 13

S
scatter plot

about 93
creating 94-96

[323]

examples 93
semi-studentized residuals 183
Separated Clear Volume 54
session management

about 62
performing 62, 64

short message service (SMS) 8
significance level 139
simple linear regression model

about 163
ANOVA technique 169
building 167, 168
confidence intervals, obtaining 170
core assumptions 163
limitation 230
overfitting problem 230
residuals for arbitrary choice of parameters,

displaying 164-166
validation 171

smooth function 124
smoothing data technique

about 122
for cow temperature 124, 125

spine/mosaic plot
about 76
advantages 76
examples 77

spine plot
for shift and operator data 77, 79

spineplot function 77
spline 234
standardized residuals 183
Statistical Process Control (SPC) 109
stem-and-leaf plot 109
stem function

about 110
working 110-112

stems 109
step function 194
stepwise procedures

about 192
backward elimination 192
forward selection 193

stepwise regression 193
summary function 169
summary statistics

about 104

for The Wall dataset 105-108
hinges 104, 105
interquartile range (IQR) 105
median 104
percentiles 104
quantiles 104

T
table object

about 49, 50
Titanic dataset, creating 51, 52

testing dataset 250
text variable 9
Titanic data

exporting 60
to.dendrogram function 305
towards-the-center 162
trailing digits 109
training dataset 250
true positive rate (tpr) 220
two-sample hypotheses

testing 159

U
UCBAdmissions 52
UCBAdmissions dataset 260
uniform distribution

about 27
examples 28

V
validation dataset 250
variance 18
variance inflation factor (VIF) 191
vector

about 34
examples 35
generating 35

vector objects
basic arithmetic 36
creating 35

visualization techniques, for categorical data
about 66
bar chart 66
dot chart 74

[324]

fourfold plot 81
mosaic plot 76
pie charts 81
spline plot 76

visualization techniques, for continuous variable
data

about 84
boxplot 84
histogram 88
Pareto chart 97
scatter plot 93

W
working residual 213
write.table function 60

X
xpred.rpart function 296

Thank you for buying

R Statistical Application Development by Example
Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

NumPy 1.5 Beginner's Guide
ISBN: 978-1-84951-530-6 Paperback: 234 pages

An action-packed guide for the easy-to-use, high
performance, Python based free open source NumPy
mathematical library using real-world examples

1. The first and only book that truly explores NumPy
practically

2. Perform high performance calculations with clean
and efficient NumPy code

3. Analyze large data sets with statistical functions

4. Execute complex linear algebra and mathematical
computations

Matplotlib for Python Developers
ISBN: 978-1-84719-790-0 Paperback: 308 pages

Build remarkable publication-quality plots the easy
way

1. Create high quality 2D plots by using Matplotlib
productively

2. Incremental introduction to Matplotlib, from the
ground up to advanced levels

3. Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as web sites to utilize them in
Python applications

4. Deploy Matplotlib in web applications and expose it
on the Web using popular web frameworks such as
Pylons and Django

Please check www.PacktPub.com for information on our titles

Sage Beginner's Guide
ISBN: 978-1-84951-446-0 Paperback: 364 pages

Unlock the full potential of Sage for simplifying and
automating mathematical computing

1. The best way to learn Sage which is a open source
alternative to Magma, Maple, Mathematica, and
Matlab

2. Learn to use symbolic and numerical computation
to simplify your work and produce publication-
quality graphics

3. Numerically solve systems of equations, find roots,
and analyze data from experiments or simulations

R Graph Cookbook
ISBN: 978-1-84951-306-7 Paperback: 272 pages

Detailed hands-on recipes for creating the most
useful types of graphs in R—starting from the
simplest versions to more advanced applications

1. Learn to draw any type of graph or visual data
representation in R

2. Filled with practical tips and techniques for creating
any type of graph you need; not just theoretical
explanations

3. All examples are accompanied with the
corresponding graph images, so you know what the
results look like

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Data Characteristics
	Questionnaire and its components
	Understanding the data characteristics
in an R environment

	Experiments with uncertainty in computer science
	R installation
	Using R packages
	RSADBE – the book's R package
	Discrete distribution
	Discrete uniform distribution
	Binomial distribution
	Hypergeometric distribution
	Negative binomial distribution
	Poisson distribution

	Continuous distribution
	Uniform distribution
	Exponential distribution
	Normal distribution

	Summary

	Chapter 2: Import/Export Data
	data.frame and other formats
	Constants, vectors, and matrices

	Time for action – understanding constants, vectors, and basic arithmetic
	Time for action – matrix computations
	The list object

	Time for action – creating a list object
	The data.frame object

	Time for action – creating a data.frame object
	The table object

	Time for action – creating the Titanic dataset as a table object
	read.csv, read.xls, and the foreign package
	Time for action – importing data from external files
	Importing data from MySQL

	Exporting data/graphs
	Exporting R objects
	Exporting graphs

	Time for action – exporting a graph
	Managing an R session
	Time for action – session management
	Summary

	Chapter 3: Data Visualization
	Visualization techniques for categorical data
	Bar charts
	Going through the built-in examples of R

	Time for action – bar charts in R
	Dot charts

	Time for action – dot charts in R
	Spine and mosaic plots

	Time for action – the spine plot for the shift and operator data
	Time for action – the mosaic plot for the Titanic dataset
	Pie charts and the fourfold plot

	Visualization techniques for continuous variable data
	Boxplot

	Time for action – using the boxplot
	Histograms

	Time for action – understanding the effectiveness of histograms
	Scatter plots

	Time for action – plot and pairs R functions
	Pareto charts

	A brief peek at ggplot2
	Time for action – qplot
	Time for action – ggplot
	Summary

	Chapter 4: Exploratory Analysis
	Essential summary statistics
	Percentiles, quantiles, and median
	Hinges
	The interquartile range

	Time for action – the essential summary statistics for
"The Wall" dataset
	The stem-and-leaf plot
	Time for action – the stem function in play
	Letter values
	Data re-expression
	Bagplot – a bivariate boxplot
	Time for action – the bagplot display for a multivariate dataset
	The resistant line
	Time for action – the resistant line as a first regression model
	Smoothing data
	Time for action – smoothening the cow temperature data
	Median polish
	Time for action – the median polish algorithm
	Summary

	Chapter 5: Statistical Inference
	Maximum likelihood estimator
	Visualizing the likelihood function

	Time for action – visualizing the likelihood function
	Finding the maximum likelihood estimator
	Using the fitdistr function

	Time for action – finding the MLE using mle and fitdistr functions
	Confidence intervals
	Time for action – confidence intervals
	Hypotheses testing
	Binomial test

	Time for action – testing the probability of success
	Tests of proportions and the chi-square test

	Time for action – testing proportions
	Tests based on normal distribution – one sample

	Time for action – testing one-sample hypotheses
	Tests based on normal distribution – two sample

	Time for action – testing two-sample hypotheses
	Summary

	Chapter 6: Linear Regression Analysis
	The simple linear regression model
	What happens to the arbitrary choice of parameters?

	Time for action – the arbitrary choice of parameters
	Building a simple linear regression model

	Time for action – building a simple linear regression model
	ANOVA and the confidence intervals

	Time for action – ANOVA and the confidence intervals
	Model validation

	Time for action – residual plots for model validation
	Multiple linear regression model
	Averaging k simple linear regression models or a multiple linear regression model

	Time for action – averaging k simple linear regression models
	Building a multiple linear regression model

	Time for action – building a multiple linear regression model
	The ANOVA and confidence intervals for the multiple linear regression model

	Time for action – the ANOVA and confidence intervals for the multiple linear regression model
	Useful residual plots

	Time for action – residual plots for the multiple linear regression model
	Regression diagnostics
	Leverage points
	Influential points
	DFFITS and DFBETAS

	The multicollinearity problem
	Time for action – addressing the multicollinearity problem for the Gasoline data
	Model selection
	Stepwise procedures
	The backward elimination
	The forward selection

	Criterion-based procedures

	Time for action – model selection using the backward, forward, and AIC criteria
	Summary

	Chapter 7: The Logistic Regression Model
	The binary regression problem
	Time for action – limitations of linear regression models
	Probit regression model
	Time for action – understanding the constants
	Logistic regression model
	Time for action – fitting the logistic regression model
	Hosmer-Lemeshow goodness-of-fit test statistic

	Time for action – The Hosmer-Lemeshow goodness-of-fit statistic
	Model validation and diagnostics
	Residual plots for the GLM

	Time for action – residual plots for the logistic regression model
	Influence and leverage for the GLM

	Time for action – diagnostics for the logistic regression
	Receiving operator curves
	Time for action – ROC construction
	Logistic regression for the German credit screening
dataset
	Time for action – logistic regression for the German credit dataset
	Summary

	Chapter 8: Regression Models with Regularization
	The overfitting problem
	Time for action – understanding overfitting
	Regression spline
	Basis functions
	Piecewise linear regression model

	Time for action – fitting piecewise linear regression models
	Natural cubic splines and the general B-splines

	Time for action – fitting the spline regression models
	Ridge regression for linear models
	Time for action – ridge regression for the linear regression model
	Ridge regression for logistic regression models
	Time for action – ridge regression for the logistic regression model
	Another look at model assessment
	Time for action – selecting lambda iteratively and other topics
	Summary

	Chapter 9: Classification and Regression Trees
	Recursive partitions
	Time for action – partitioning the display plot
	Splitting the data
	The first tree

	Time for action – building our first tree
	The construction of a regression tree
	Time for action – the construction of a regression tree
	The construction of a classification tree
	Time for action – the construction of a classification tree
	Classification tree for the German credit data
	Time for action – the construction of a classification tree
	Pruning and other finer aspects of a tree
	Time for action – pruning a classification tree
	Summary

	Chapter 10: CART and Beyond
	Improving CART
	Time for action – cross-validation predictions
	Bagging
	The bootstrap

	Time for action – understanding the bootstrap technique
	The bagging algorithm

	Time for action – the bagging algorithm
	Random forests
	Time for action – random forests for the German credit data
	The consolidation
	Time for action – random forests for the low birth weight data
	Summary

	Appendix: References
	Index

