
Field Engineering Education
Student Self-Study Course

~~---------------------------------------

Introductory Programming
Book 4 - Branching, Logical and Decimal Operations

Preface

This is Book 4 of the System/360 Introductory
Programming Student Self-Study Course.

Course Contents
Book 1: Introduction R23-2933
Book 2: Program Control

and Execution R23-2950
Book 3: Fixed Point Binary

Operations R23-2957

• Book 4: Branching, Logical
and Decimal
Operations R23-2958

Book 5: Input/Output
Operations R23-2959

Prerequis i te
• Systems experience (1400 series with

tapes, '7000 series with tapes) or a
basic computer concepts course.

• Books 1, 2, and 3 of this Introductory
Programming course.

Instructions to the student and advisor
• This course is to be used by the student

in accordance with the procedure in the
Instructions to the Student section
in Book 1 of this course.

18 The course is to be administered in
accordance with the procedure in the
System/360 Introductory Progralnming
Administrator Guide, Form #R2~~·-2972.

This edition, H23-2958-1, is a minor revision of
the preceding edition, but it does not obsolete
H23-2958-0. Numerous changes of a minor
nature have been made throughout the manual.

Issued to:

Branch Office: _____ _ _ No: __ _

Department: __ _

Address: __

If this manual is mislaid, please return it to the above address.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices. Address comments concerning the content of this publication
to: IBM, FE Education Planning, Dept. 911, Poughkeepsie, N. Y., 12602

© by International Business Machines Corporation 1964. 1965

How to use this book

There are four sections to this text. At the beginning of each section,
there is a list of Learning Objectives which you will be expected to
learn as a result of studying that particular section. Instead of having
review questions at the end of each section, this book has a program·
ming exercise in the last section and review questions for the entire
book. You can evaluate your understanding of the book as you do this
exercise. You will go through this book in a serial fashion. That is,
you will not be expected to skip or branch around. The answer to
each frame is in the next frame. You may find it helpful to use a standard
IBM card to cover the answers as you read the frames.

Periodically, as you go through this book, you will be directed to study
areas of the System/360 Principles of Operation manual. This will help
you to become familiar with the manual so that it may be used as
reference material at a later date.

THE CONTENTS OF THIS BOOK

This book deals mainly with the "branching, logical and decimal"
instructions of the System/360. Some of these instructions are part of
the Standard Instruction set and some are part of the Decimal Feature
Instruction set.

SECTION I Branching Operations

SECTION II Logical Operations

SECTION III Decimal Operations

SECTION IV Analyzing Decimal Feature Programs

ALPHABETICAL INDEX

ii Branchin!!, OPerations

System/3S0 Branching/ Logical and Decimal Operations

• Section I:
Section IT:
Section lIT:
Section IV:

SECTION I

Branching Operations
Logical Operations
Decimal Operations
Analyzing Decimal Feature Programs

LEARNING OBJECTIVES

At the end of this section, you should be able to do the following when given
the mnemonic of any "branching" instruction.

1. State instruction length and format.

2. State location and format of operands.

3. Determine the result and where it will be located.

4. State effect on condition code.

5. State which program checks are possible.

PSW

40
63
2
4
6

Branching Operations

The first section of this text deals with the "branch" instructions
of the System/360. 'You have previously learned how the PSW is
used to control the sequence of instruction fetching and execution. You
have also learned how the normal sequence of instruction fetching can be
changed by (a) an interrupt, (b) the "load PSW" instruction and, (c) a
"branch" instruction. You have also studied one of the "branch"
instructions: "branch on condition. "

In the IBM System/360 Principles of Operations manual, briefly
study the following areas of the Branching section.

Branching
Normal Sequential Operation
Branch On Condition

After completing these areas, you may proceed to the next frame.

The address of the next instruction to be fetched is contained in bits
40-63 of the -- -- --

After an instruction has been fetched, bits 0 and 1 of its Op code are
used to update bits _ through _ of the PSWo Updating thts
instruction address portion (bits 40-63) of the PSW consists of
increasing it by __ , __ or __ 0

If bits 0 and 1 of the "current" instruction's Op code are 00 (RR
format), the instruction address is increased by __ 0

If bits 0 and 1 of the "current" instruction's Op code are 01 or 10,
the instruction address is increased by __ 0

If bits 0 and 1 of the "current" instruction's Op code are 11, the instruction
address is increased by __ 0

Branching Operations 1

2

4
6

2068; Each instruction
increased the address
by 4.

Given the following symbolic program, indicate (decimally) the contents of
bits 40-63 of the PSW after the program is executed. (If necessary, use
the Alphabetic List of Instructions in the Appendix of the Principles of
Operation manual as a reference.)

BITS 40-63 OF PSW
AT END OF PROGRAM ,I ~

THIS IS THE ADDRESS OF
THE 1ST I NSTRUGTI ON.

L
AH
MH
S
ST

3, ° (0,. 1)
3, 4 (0, 1)
3, 6 (0, 1)
3, 8 (0,. 1)
3, 12 (0, 1)

The sequential manner of instruction fetching can be changed by means of
a "branch" instruction. When a branch is taken, the address of the
"branch to" location replaces

_______ • __________ .~ ______ h __ • ____________________ __

The instruction
address (bits 40-63)
in the PSW.

10

2 BranchiJlR Operations

BRANCH ON CONDITION INSTRUCTION - REVIEW

The second operand fields in all "branch" instructions indicate the
"branch to" location. Given the following BCR instruction, bits 40-63 of
the PSW will be replaced by bits 8-31 of register __

BCR 07 F A IN HEX

Given the follOWing BC instruction, bits 40-63 of the PSW will be replaced
by .. __ (the effective generated address/
the contents of the storage area).

[L..-----_·-~-_;---_···-,_'__I-._-~-....J--T~·--_~--....I.J_-_o --t..I=_-.-_F_F F __ J

the effective gen
erated address

Show the binary bit structure of bits 40-63 of the PSW after executing the
previous instruction.

40 63

51
PSW

0000 0000 0000 1111 1111 1111

M1 or Mask

condition code

00

01

10
11

0011

In the "branch on condition" instruction, the condition code is tested
against the R1 field or (as it is sometimes referred to) the field.

Each bit of the mask field (bits 8-11) is used to test for a specific setting
of the PSW

Bit position 8 is used to test for a condition code setting of

Bit position 9 tests for a condition code s~tting of

Bit position 10 tests for a condition setting of
used to test for a condition code setting of __ .

and bit position 11 is

More than one condition code setting can be tested for at the same time
by setting the appropriate bits of the mask field. Show the mask field bits
that will test for a condition code setting of 10 or 11.

8 11

S I I) BC INSTRUCTION MASK FIELD

Show the mask field bits that are necessary to branch on an equal or
high indication after a "compare" instruction.

8 11

S I 15 BC INSTRUCTION MASK FIELD

Branchinf!, Operations 3

1010

1111 (expressed
hexadecimally as F)

0000

cannot

The "branch on condition" instruction can be used as an "unconditional
branch" instruction. Show the mask field bits that would accomplish this.

8 11

S I I) Be INSTRUCTION MASK FIELD

The "branch on condition" instruction will never result in a branch if the
mask field contains

If the R2 field of a BCR (not BC) instruction contains 000, a branch
________ ___ (canl cannot) occur.

.- . .. _ _ ... _._ ... _ _----_._- -_._---_._----_ .. _--- - --_._--------------------

Which of the following "branch" instructions will not result in a branch?
(Circle one or more.)

a. I 07 T~I
b. C~--I 0 I 0 I 000]

I 07 -EI 0
c.

d. I 47 EI 0 0 000]

-------_._------------------_._------------_._----------,

b. because the mask field is zero
c. because the R2 field is zero

Answers a and d above will result in a branch if the condition code is 11.

4 Branching Operations

BRANCH AND UNK INSTRUCTION

Let's continue now and study another "branch" instruction. Read the
description of the "branch and link" instruction in the Branching section
of your Principles of Operation manual.

The mnemonic for the "branch and link" instruction is

The "branch and link" instruction can be either of the RR format or the
RX format. The mnemonic used for the RR "branch and link" is

BAL
BALR

zero

Rl

Reg 1 = 2058

8TH

The BAL instruction always results in a branch. The BALR instruction
will not result in a branch if the R2 field is

------_. ---
In all cases (even when the R2 field is zero), bits 32-63 of the P8W are
stored in the register specified by the ___ field.

The address that is stored by a "branch and link" instruction is the
address of the instruction that would have been executed if the branch
were not taken.

Given the following symbolic program, show what bits 8-31 of register 1
will contain after the BALR instruction is executed.

40 63 8 31

<;1 2048 J
DECIMAL CONTENTS OF psw

ADORE SS OF 1ST I NSTRUCTI ON

LH
AH
BALR
8TH

0, ° (0, 7)
0, 2 (0, 7)
1, 3
0, 4 (0, 7)

DECIMAL RESULT IN REG 1

Write the mnemonic of the instruction whose address was stored in
register 1 in the previous problem.

The reason for storing the address of the next sequential instruction during
a "branch and link" operation is to provide a linkage between routines.
This is illustrated as follows:

LOCATION
2048~ LH

AH
0, ° (0, 7)
0, 2 (0, 7)

LOCATION

~'~ 8H 0, 6 (0, 7)-1
INSTRUCTION

-BALR 1, 3 -
INSTRUCTION l 8TH 0, 4 (0, 7) 0(BCR 15, 1

INSTRUCTION

J r INSTRUCTION

ROUTINE A ROUTINE B

As you can see above, the "branch and link" instruction will:

1. Cause the address of the 8TH instruction of routine A to be stored
in register 1.

2. A branch will be taken to the 8H instruction in routine B (as specified
by the contents of register 3).

3. The last instruction in routine B is an unconditional branch (because
the mask field contains 15) back to the 8TH instruction in routine A.

4. The address of the 8TH instruction was obtained from register 1
where it was stored from the preceding BALR instruction.

Branchinf!. Operations 5

1
is not

BALR
AR

1, 0
2, 2

In the above program, the BALR instruction will ca.use bits 32-63 of the
P8W to be stored in register , and a branch (is/is not) taken.

The BALR instruction, with an R2 field of zero, may be used to load a base
address into a general register. Examine the following program; then
read the following frames.

40 63 ~BALR 12, 0

<)1 2000 I ~= 1, 1000 (0, 12)
1, 1002 (0, 12)

DECIMAL CONTENTS OF psw 8H 1, 1004 (0, 12)
ADDRESS OF 1ST INSTRUCTION 8TH 1, 1006 (0, 12)

BCR 15, 12

Assuming that 2000 is the address of the BALR instruction, what address
will be placed in register 12?

---------_ .. _._--_._--_ .. _ .. _--_ ... _------_ _ .. _ -.--.... ----- .. - - .. -.---------

2002; Note that only bits 40-63 of the P8W are referred to in our discussions. Although bits 32-39
are also placed in register 12, they are ignored in generating addresses later on. Only bits
8-31 of a register are used in address generation.

---_ ... _---_. __ .. _-_ .. _--_._----_ ... _- _ .. - ... _ ... _.--' -_._---- ... _ -----_. -_ .. _._.- --- _ ... _ .. _._-- _ ... _--_._--_.- -_ ... _--_.. _ .. __ ._---_ .. _----_._----- -_ .. __ ..

will not

Because the R2 field of the BALR instruction is zero, a branch
(will/will not) be taken.

The second operand of the LH instruction will have a base address of
____ and a displacement of

----_._-----------_. __ _-----.. _ -----_ .. __ .. __ ._----_ .. _---------_._ .. _._-----

2002
1000

The second operands of the second through the fifth instructions will all
have a base address of

2002 The last instruction (BCR) will cause an "unconditional branch to" location

2002 Write the mnemonic of the instruction at location 2002.

-----_ ... _-_ _....... -_ .. __ ._-----_._---_._--------_ .. _-_._----

6 Branchinf!, Operations

LH; Actually this
progr.am will never
end because of the
"unconditional branch
back to" the LH
instruction.

address
general register

RR
RX

BCTR

zero

one

has not

before

Thus far you have seen two main uses for the "branch and link" instruction.
It can be used to:

1. Branch to some routine and automatically provide the programmer
with an to branch back to. Hence, the name of the
instruction: "branch and link. "

2. Provide the programmer with a way to load his initial base address
into a g _r ____ _

BRANCH ON COUNT INSTRUCTION

The next "branch" instruction you will study is used to control the number
of times a program loop is executed. Read the description of the "branch
on count" instructions in the Branching section of your Principles of
Operation manual.

Just like the "branch on condition" and the "branch and link" instructions,
the "branch on count'; instruction can be in two formats. List them:
____ , ____ 0

BCT is the mnemonic for the RX format of "branch on count." The
mnemonic for the RR format is

Like the BCR and BALR instructions, the Be TR instruction will not result
in a branch if the R2 field contains

The "branch on count", instruction (either BCT or BCTR) will always
reduce the 1st operand by a value of ___ .

The "branch on count" instruction will result in a branch if the 1st operand
(has/has not) been reduced to zero.

The reduction of the 1st operand occurs
whether to branch.

~ __ ~ ___ 7 __ ~_3 __ ~ IN HEX

(before/after) deeiding

Assuming that register 7 contains a value of + 1, the above "branch on
count" instruction (will/will not) result in a branch.

Branching Operations 7

will not; This is because the BeT instruction will reduce register 7 by 1 before deciding whether or
not to branch. This will bring the contents of register 7 to zero.

06 7 3

Assuming that register 7 contains a value of zero, the above "branch on
count" instruction (will/will not) result in a branch.

will; Since the register is reduced by 1 before testing for a branch, register 7 was reduced to a
value of -1 and the branch did occur. In this case, the preceding instruction would have to be
executed 232 times before register 7 could be reduced to zero.

Examine the foLLowing program.

40 63

I ----------
BALR 11, 0

2000
BALR 1~~ , 0
LH 1, 1000 (0, 12)

psw AH 1, 1002 (0, 12)
NOTE: ASSUME THAT BITS SH 1, 1004 (0, 12)

32-39 OF THE PSW
BCTR IJL, 12 ARE ZERO.

Assuming that 2000 is the address of the first instruction, how many times
will the above program be executed? Circle one of the following:

a. 2000
b. 4000
c. 2002
d. 2004
e. None of the above

c; A value of 2002 was placed in register 11 by the first instruction. Each time the last instruction
(BCTR) was executed, this value was reduced by 1 and a branch was taken back to the second
instruction. On the 2002nd time through the program, the contents of register 11 was reduced
to zero by the Be TR instruction and a branch would not occur.

8 Branching Operations

BRANCH ON INDEX HIGH INSTRUCTION

The next "branch" instruction you will learn is "branch on index high. "
This is a complex instruction, so take your time. Read the description of
this instruction in the Branching section of your Principles of Operation
manual.

BXH

The "branch on index high" instruction has a mnemonic of

The BXH instruction uses the RS format. Label the fields of the RS
format.

--

OP CODE R1 R3 82 02

As with the other "branch" instructions you have learned, the generated
storage address (B2 and D2 fields) is the

-- - --- -_.-

"branch to" location

first
second

The R1 field in the BXH instruction is the address of the
operand.

Normally the number in an instruction field specifies which operand it
is. For example, R1 specifies the 1st operand. However, in the case
of the BXH instruction, the R3 field is used to specify the __ operand .

. _------ --- --

The second operand is the R3 field register.

The third operand of a BXH instruction is also in a register. If the U3
field is even, the third operand is in the next odd-numbered register.
That is, if the R3 field is 4, the second operand is in register and
the third operand is in register __ .

4
5

5
5

If the R3 field of a BXH instruction is odd, the second and third operands
are in the same register. That is, if the R3 field is 5, the sec~nd
operand is in register __ and the third operand is also in register ___ .

Given the following "branch on index high" instruction, indicate the
locations of the three operands.

86 4 6 o

1st operand is in register
2nd operand is in register
3rd operand is in register __ .

100

Branching Operations 9

4

6
7

3
5
5

Given the following "branch on index high" instruction, indicate the
locations of the three operands.

86 3.--GI~--C 100 J
1st operand is in register
2nd operand is in register
3rd operand is in register

86 7-r:
I

0 100]

In the BXH instruction, the second operand is added to the 1st operand and
the sum is algebraically compared to the 3rd operand. Given the above
instruction, register __ will be added to register and the sum
will be compared algebraically to register __ .

4 In the BXH instruction, the resulting sum replaces the first operand after
7 being compared with the (lst/2nd/3rd) operand.
5

3rd

1st

Register 4
Register 6
Register 7

OOOOOOOF
Unchanged
Unchanged

Regardless of whether a branch does or does not occur, the sum of the
1st and 2nd operands always replaces the ___ (lst/2nd/3rd) operand.

Given the following, indicate (in hex) the contents of the registers after
execution of the BXH instruction.

86 6

Everything in hex

Register 4
Register 6
Register 7

o

Before
00000010
FFFFFFFF
00000008

100

After

In the preceding problem, a value of -1 was added to a value of + 16
and the sum of + 15 replaced the 1st operand.

The sum of the 1st and 2nd operands is algebraically compared with the
operand.

10 Branching Operations

3rd

higher

3rd

will not

will not; This is
because the sum is
equal to but not
higher than the third
operand.

In an algebraic comparison, positive numbers are
higher) than negative numbers.

(lower/

In the "branch on index high" instruction, the branch occurs if the sum
is higher than the __ (lst/2nd/3rd) operand.

86

Register 4

Register 6

Register 7

4 6

00000000

00000001

00000010

o 100

In Hex

In the above BXH instruction, a branch

86

Register 4

Register 8

Register 9

4 8

00000000

00000010

00000010

o 100

In Hex

In the above BXH instruction, a branch

86

Register 3

Register 6

Register 7

3 6

00000010

00000001

00000010

o 100

In Hex

In the above BXH instruction, a branch

(will/will not) occur.

(will/will not) occur.

(will/will not) occur.

Branching Operations 11

will

will not; The sum of
registers 8 and 3 is
a value of -2. This
is less than the + 1
in register 9.

86

Register 3

Register 8

Register 9

3 8

FFFFFFFF

FFFFFFFF

00000001

100

In Hex

In the above BXH instruction, a branch

86

Register 3

Register 5

Register 6

00000001

00000001

00000002

100

In Hex

In the above BXH instruction, a branch

(will/will not) occur.

(wiU/will not) occur.

will; Register 6 is not used in the preceding problem. The R3 field is odd. As a result, register 5
is used for both the 2nd and 3 rd operands. The sum of registers 5 and 3 is a value of + 2,
which, of course, is higher than the contents of register 5.

86

Register 3

Register 5

Register 6

00000010

FFFFFFFF

00000IFF

100

In Hex

In the above BXH instruction, a branch _____ (will/will not) occur.

will; A 2nd operand of -1 is being added to a 1st operand value of + 16 and the sum of + 15 is high
compared to the 3rd operand value of -1.

12 Branching Operations

000 1 0 0

PSW

Show in hex the contents of bits 40-63 of the PSW after the preceding
instruction has been executed.

40 63

SI
PSW

63

On a successful branch, the generated storage address replaces the instruction address portion of
the PSW.

"branch on index
low or equal"

2nd
1st
3rd

3
6
7

BRANCH ON INDEX LOW OR EQUAL INSTRUCTION

You are now ready to study the "branch on index low or equal" instruction.
It is very similar to the BXH instruction. Read the description of this
instruction (BXLE) in the Branching section of your Principles of
Operation manual.

BXLE is the mnemonic for the " ___ _ on ________ or

" instruction. ----

The BXLE instruction is similar to the BXH instruction in that the
operand is added to the ___ operand and the sum is algebraically
compared to the ___ operand.

Indicate the location of the operands in the following BXLE instruction.

87

1st operand is in register
2nd operand is in register
3rd operand is in register

100

When the sum of 1st and 2nd operands is higher than the 3rd operand,
the BXLE instruction differs from the PXH instruction in that a branch

(does/does not) occur.

Branching Operations 13

does not

low
equal

will; The sum is
lower than the
contents of register 7.

With the BXLE instruction, a branch only occurs when the sum of 1st and
2nd operands is or compared with the 3rd operand.

Register 4

Register 6

Register 7

00000008

00000001

00000010

o 100

In Hex

In the above BXLE instruction, a branch (will/will not) occur.

87 [] 5 o 100

Register 5 00000001 In Hex

When the same register is used for both the 1st and 3rd operands, the sum
is compared with the original contents of the register. In the above BXLE
instruction, a branch (will/will not) occur .

. -----------.-.--------~--.-----------

will not; In this case, the same register is used for all three operands. The 3rd operand is the
original contents of reg 5. Obviously, then the System/360 will have to bring the contents
of this register into ALU (Arithmetic and Logic Unit) and store it in some register so its
original contents will not be lost when the 1st and 2nd operands are added together. If
at a later time, this instruction is executed again, the sum fronl the first execution would
be used as the 3rd operand.

EXECUTE INSTRUCTION

The "branch on condition, branch and link, branch on count, branch on
index high, branch on index low or equal" instructions are the only actual
"branch" instructions in the System/360. There is, however, another
instruction called "execute" which does not change the instruction address
in the PSW. However, it does cause ~ instruction in main storage to be
executed out of sequence. That is, instead of branching from one routine
to another, the "execute" instruction will cause one instruction in another
routine to be executed without leaving the original routine.

Read the description of the "execute" instruction in the Branching section
of your Principles of Operation manual.

14 Branchinf!. Operations

"execute' ,

OOOFFF

zero

2048
2052
8500
2056

No

The R1 field of the
"execute" instruction
was zero.

EX is the IJIDemonic for the " _____ " instruction.

Without branching, the "execute" instruction will cause another instruc
tion to be executed. Given the following EX instruction, indicate with six
hex digits the address of the instruction to be executed.

44 o o o FFF

Address of ipstruction to be executed = -----

The instruction to be executed will be executed as it is if the R1 field of the
EX instruction is

Assuming that the effective generated storage address from the "execute"
instruction is location 8500, write the addresses of the instructions in
the sequence in which they will be executed.

Location

2048
2052
2056

Instruction

LH
EX
STH

1, 1000 (0, 2)
0, 2000 (0, 2)
1, 1002 (0, 2)

Actual Sequence

Was the instruction at location 8500 modified in any way prior to being
executed?

Why not?

Was the address of the instruction at location 8500 placed in bits 40-63
of the PSW?

No; The "execute" instruction is not a "branch" instruction. Instead, it causes an instruction to
be executed that is not in the sequence presently being executed. In the previous progranl
example, the "execute" instruction at 2052 caused the instruction at 8500 to be executed.
Then the normal sequence of instruction execution continued with the instruction at 2056.

If the R1 field of the "execute" instruction is other than zero, the low
order byte of the specified register will be ORed with the __ (1st/2nd)
byte of the instruction to be executed.

Branching Operations 15

2nd

10
15

F

remains the same

A

If you are not familiar with the function of ORing and ANDing bits, go to
the Principles of Operation manual. Read the on and AND examples in
the Instruction Use Examples area of the Appendix.

Given the following, write the instruction that is actually executed.

EX AR

A4 ° 2 '00 I _I _'_A----r.I_o_l_o l
------------~ --L __________ ? t

REG'

1o OFF ° o~ r'~ ~I~
THE INSTRUCTION THAT IS
ACTUALL..V EXECUTED.

The instruction that was actually executed causes the contents of
register __ to be algebraically added to the contents of register

The ORing of the 2nd byte of the instruction with the low-order byte from
the register is done in the ALU. As a result, the instruction in storage

(remains the same/is changed).

Given the following, write the instruction that wi.ll be executed in ALU.
Remember that the bytes are ORed!

EX AR

I 44 ° 2 '00 I I 'A I 2

--- ~ ----L / t
REG'

I ° ° ° OF o~ I

3

l

16 Branching Operations

1A A B

Bits 24-31 of register 1 are ORed with bits 8-15 of the AR instruction as shown below.

11
10

AR

1A

~
I

As a result of the instruction shown in the previous example, the
"execute" instruction would cause (via the "add" instruction) the
contents of register __ to be added to contents of register __ .

Write the AR instruction that remains in storage as a result of the
instruction in the preceding example.

AR

..... __ '_A_ __ 2_ _3 1 THE INSTRUCTION IN STORAGE IS NOT CHANGED

odd; Remember that
all instructions must
start on an even
address.

There are three programming interrupts possible with an Ilexecutell

instruction.

1. Specification exception
2. Addressing exception
3. Execute exception

A specification exception can occur on an "execute" instruction if the
generated effective address of the instruction to be executed is ___ _
(odd/even) .

An addressing exception can occur on aD: Ilexecute" instruction if the
generated effective address of the instruction to be executed
(is/is not) available on the particular System/360 installation.

Branching Operations 17

is not

"exec ute"

specification; The
generated address is
odd.

execute

addressing

An execute exception can occur on an "execute" instruction if the system
is directed to another " " instruction.

~ __ 4_4 __ ... __ 1. 0 0 FF 1 I I 1 A

--------L __ --__ J-

The above "execute" instruction will result in a(n)
exception.

44 0 FFA I ----------~ ----I

44 o 000

The above "execute" instruction will result in a(n)

44 o o 000

REG 1 t
IFF F F F F-~

The above "execute" instruction will probably result in a(n)
exception.

2 3

exception.

18 Branching Operations

BC BCR
BAL BALR
BCT BCTR
BXH
BXLE
EX

Choose the correct branching instruction mnemonic from the list on
the right and write it next to the proper instruction name.

Branch on Condition

B ranch and Link

Branch on Count

B ranch on Index High =

B ranch on Index
Low or Equal

Execute

MNEMONIC

BC BCR BXH

BCTR

BALR

EX

BXLE

BCT

BAL

Go to the IBM System/360 Principles of Operation manual and study the
following areas of the Branching section.

Decision-Making
Instruction Formats
Branc hing Instructions
Branching Exceptions

Branchinf!. Operations 19

20 Logical Operations

System/360 Branching/Logical and Decimal Operations

Section I:
• Section II:

Section Ill:
Section IV:

Branching Operations
Logical Operations
Decimal Operations
Analyzing Decimal Feature Programs

SECTION II LEARNING OBJECTIVES

At the end of this section, you should be able to do the following when
given the mnemonic of any logical instruction.

1. State instruction length and format.

2. State location and format of operands.

3. Determine the result and where it will be located.

4. State effect on condition code.

5. State which program checks are possible.

OP CODE 12 81

Logical Operations

This section of the text covers the group of instructions known as the
logical operations. These "logical" instructions allow you to move data
around in storage, compare alphameric data, AND and OR two data fields,
and also allow you to do other miscellaneous operations. The "logical"
instructions use all give instruction formats and work with both fixed
and variable length data fields. Read the following introductory mater
ial in the Logical Operations section of your Principles of Operation
manual.

Logical Operations
Data Format
Condition Code
Instruction Format
Instructions

A number of the instructions in the Logical Operations section are not
covered in this section of your self-study text. They include the four
"logical shift" instructions (which you learned earlie:r in your text on
Fixed Point Binary Operations) and the two "edit" instructions which
are part of the Decimal Feature on System/360. The two "edit" instruc
tions are covered later in this self-study text in the Decimal Operations
section.

MOVE INSTRUCTION

Read the description of the following instructions in the Logical Operations
section of your Principles of Operation manual.

Mnemonic

MVI
MVC

Descriptive Title

Move Immediate
Move Characters

The "move immediate" instruction uses the SI format. Label the fields
of the SI format.

01

Logical Operations 21

immediate

byte
2nd
storage

instruction
does not; Any byte in

main storage can be
addressed.

only one; Only the
immediate byte in
the instruction.

Operands that are carried in the instruction itself are called
operands.

In the MVI instruction, the immediate operand is one long and is
the (1st/2nd) operand. The instruction will move the byte of
immediate data to main

The MVI instruction will cause the byte in main storage to be replaced by
a byte from the The main storage address
(does/does not) have to be even.

The MVI instruction can move
byte of data.

(more than one/only one)

Given the following (in hex) show the contents of main storage after the
MVI instruction is executed.

MVI

I 92 I FA 0 I 100 I
........... --- ..--

I
BEFORE f
I 00 I 00 I 00 00 00

AFTER MAl N STORAGE

I I =.I

[00 I FA I 00 I 00 I 00]

move characters

22 LOf!.ical Operations

MVI is the mnemonic for the move immediate. MVC is the mnemonic for

The MVC instruction uses the SS format because both operands are
(fixed/variable) length fields in main storage.

variable

L1

255
one

256

256
3840
2048

The MVC instruction moves bytes (characters) from one area of main
storage to another. The number of characters is determined by the 2nd
byte of the MVC instruction. This byte is called the __ field.

The length code (L1) can represent a count of from zero to ___ Since
the number of bytes in a field is equal to the length code + 1, a length code
of zero would mean ___ byte.

A length code of 255 in the MVC instruction would cause
be moved.

255 2048 3840

bytes to

As in most System/360 operations, the 1st operand receives the results.
In the above MVC instruction, ___ bytes would be moved from location

to location

Given the following, show the contents of the indicated storage area after
the MVC instruction is executed. Everything is shown in hex.

MVC

I 02 07 0 I 800 I 0 FOO 1
-..........

../ ---------------2048 3840

C1 C2 C3 C4 C5 C6 C7 C8 C9 CA]
2048

I FO I FO FO FO FO FO FO FO FO FO

3840

2048

Logical OPerations 23

FO FO FO FO FO FO FO FO C9 CA

-----------.... ~--~-----~ --------2048-
8 BYTES MOVED IN

The bytes moved by the MVC instruction: (Circle one of the following)
a. Must be packed decimal data.
b. Must be in the halfword signed binary format.
c. Can be in any format.
d. Must be EBCDIC characters.

c; The bytes that are moved are not checking for coding. The title of the instruction (move
characters) implies, however, that this instruction could be used to m.ove EBCDIC characters
from one area of storage to another. For instance, data could be moved from an input area to
a work area without being changed. After the data has been processedl in a work area, it could
be moved to an output area.

The following drawing illustrates this point.

r---------------------l
I MAIN STORAGE I
I I

GCARD J: I INPUT !MVC I WORK jMVC OUTPUT : I
READER ~ AREA ~ AREA ~ AREA ~

------...... : ,
CARD PUNCH 1

I ,
I I
L ______________ -------J

Because the bytes are moved one at a time, the MVC instruction can also
be used to propagate one character throughout an area. Given the follow
ing, show the resulting storage contents.

02 GI 801

2048

~0~0~ __ -F-1~--F-2----F-3~--F-4~--F-5----F-6-----F-7--~BEFORE
+ 2048

t
~ __ ~_o __ I ________ ~ __ ~ ___ ~ _______ ~ ____ ,~AFTER

24 Logical Operations

00 I 00 I 00 I 00 I 00 I 00 I 00 I 00 I 00

uuuuuuuu

In the preceding problem, the following occurred:

1st; The instruction looks at the first location (2048), finds the 00 and moves it to 2049 where
it replaces the F 1.

2nd; The instruction looks at the next location (2049), finds the 00 and moves it to 2050.

3rd; The leftmost byte continues to be moved (propagated) to the right.

MOVE NUMERICS INSTRUCTION

Read the description of the "move numerics" instruction in the Logical
Operations section of your Principles of Operation manual.

MVN is the mnemonic for the " ___ _ _____ " instruction.

"move numerics" The MV~ instruction moved the entire byte from the 2nd operand.

4-7

2nd
1st

The MVN instruction only moves bits __ (0-3/4-7).

TheMVN instruction moves bits 4-7 of each byte from the
2nd) operand to bits 4-7 of the __ (1st/2nd) operand.

(lst/

Given the following, show the resulting contents of the 1st operand.

C1 C2 C3 C4 C5 C6 C7 I C8 I
t

I
MVN ,...".. -......

I 01 07 I 0 I 800 I 0 I FOO
.
'- ""'""

.,.-

1 ST OPERAND If: I

I FO I FO FO FO FO FO FO FO I BEFORE

..
2048 ...

I AFTER

Logical OPerations 25

F4 F5

. ---- .. __ ._._ -._---------_ .. ----_._-_._ .. _-_._. __ .---------_.-----

Given the following, show the resulting contents of the main storage area.

MVN

06 801

Fl C2 --I F3 C4 BEFORE

+
2048

t

LI.--T....I.-----I....--T_-J.L.-..-....I..-I ~-'---,.D AFTER

~ICI I FI I CI]--::r:-I FI CI

The numeric portion of the leftmost byte was moved (propagated) to the right, byte by byte, 7 times.

"move zones"

0, 3

26 Logical Operations

MOVE ZONES INSTRUCTION

Read the description of the "move zones" instruction in the Logical
Operations section of your Principles of Operation manual.

MVZ is the mnemonic for the" " instruction. --- ---

The MVN instruction moved bits 4-7 of each byte from the 2nd operand to
the ls,~ operand.

The MVZ instruction moves bits through

Just like the MVC and MVN instructions, the 1\1VZ instruction processes
the data field from left-to-right, one at a time.

-_.- -_ ... _ _-... ._ ... --_._-------_ .. _---_.- _ .. _--_._._-

byte Given the following, show the resulting contents of the 1st operand.

FO FO FO FO FO I FO]

t
l

MVZ /""

D3 05 0 800 I 0 FOO J
"'""'- ~

BEFORE C1 C2 C3 C4

1ST OPERAND

AFTER L--.....-I ~~~J

F1 F2 F3 F4 F5 F6

Given the following, show the resulting contents of the 1st operand.

MVZ

D3 04 o 801 800

~--------~--------~
2048

F1 C2 F3 C4 F5 C6 BEFORE

2048

F1 AFTER

F1 F2 F3 F4 F5 F6

The zone portion of the leftmost byte was moved (propagated) to the right.

f.ogical Operations 27

right

MVI
MVC
MVN
MVZ

MVI

256; As specified by
their 8-bit long
length code.

protection

b; The protection key
in the PSW being zero
will allow the data to
be stored and a pro
tection exception will
not result.

addressing

protection
addressing

28 Logical Operations

Assume that the MVN, MVC or MVZ instruction has a 1st operand address
that is one higher than the 2nd operand address. The corresponding
numerics, character, or zones of the first byte from the 2nd operand will
be propagated to the (left/right).

You have been studying four "move" instructions. List their mnemonics.

Which of the "move" instructions can move only one byte?

The MVC. MVN, MVZ instructions can move information into a
maximum of bytes.

In the preceding four "moye" instructions, the results always change the
contents of a main storage area. Assume that the protection key in the
PSW does not match the key for the affected storage area. A program
interrupt is possible because of the exception.

The protection and storage keys do not have to match if: (Circle the most
correct statement.)

a. the PSW key is 15.
b. the PSW key is O.
c. the storage key is 15.
d. the storage key is O.
e. either key is 15.
f. either key is 0

If a generated storage address in the preceding group of "move" instruc-
tions is not available. an exception will occur.

The two programming exceptions possible on the "move" instructions are
and

The "move" instructions
condition code.

(change/do not change) the

do not change

00000000

11111111
4095

MOVE INSTRUCTIONS - PROGRAMMING EXAMPLES

Let's take a look at a few symbolic programming examples using the
instructions you have learned. First let's review the RR, RX, and
RS formats.

Format
RR
RX
RS

Symbolic
Mnemonic R1, R2
Mnemonic R1, D2 (X2, B2)
Mnemonic R1, R3, D2 (B2)

The SI format will be shown like this:

Mnemonic D1 (B1), 12
Such as:

MVI 2048 (0), 0

Example
AR 2, 3
AH 2, 1000 (0, 3)
BXH 2, 4, 1000 (3)

The preceding would look like this in actual machine language:

92 00 o 800 IN HEX

MVI 2048 (0), 0

Show the binary bit structure of the byte placed in location 2048 after the
execution of the above instruction. 2048 = ---------------------

MVI 4095 (0), 255

The above instruction would cause a binary bit structure of
to· be placed in location

The SS format will be shown like this:

Mnemonic D1 (L, B1), D2 (B2)
Such as:

MVC 2048 (8, 0), 3840 (0)

The preceding instruction would look like this in actual machine language.

02 07 o 800

IN HEX

Notice that the length code in the symbolic example showed the number of
bytes while the length code in machine language is one less than the total
number of bytes.

Logical OPerations 29

3840, 3855
2048, 2063

30 Logical Operations

MVC 2048 (16, 0), 3840 (0)

The above instruction would cause the bytes in locations through
to be moved to locations through

Given the following, show the resulting contents of the storage area.

MVI 2048 (0), 0
MVC 2049 (7, 0), 2048 (0)

F1 F2

+
2048

t

00 00 00

In the preceding problem, the MVI instruction placed a byte of all zero
bits in location 2048. Then the MVC instruction propagated this byte into
the seven bytes to the right (2049-2055).

10

01

COMPARE LOGICAL INSTRUCTION

------------------------- - "--"-~--- -- "-

You learned three "compare" instructions when you were studying the
fixed point instructions. Their mnemonics are:

CR
C
CH

Compare, RR format
Compare, RX format
Compare Haifword, RX format

These three "compare" instructions compared on an algebraic basis. In
other words, they treated the operands as Signed binary integers. The
operands were either positive or negative numbers. The "compare logical"
instructions you will now learn also treat the operands as binary infor
mation. However, they will be considered as unsigned binary fields. For
example, consider the comparison of the following binary fields on an
algebraic basis.

Sign Integer

t t -----------compare} o 0 0 o 0 001 1st Operand

Algebraic 1 1 1 1 1 1 1 1 2nd Operand

Because the 1st operand is a positive number (+ 1) and the 2nd operand is
a negative number (-1), the 1st operanq...is high and the PSW condition
code would be set to

If the same fields were compared on a logical basis, they would be treated
as unsigned integers and the absolute values would be compared as
follows:

compare}

Logical

0000000 1

1 1 1 1 1 1 1 1

1st Operand

2nd Operand

In the above example, the 1st operand would compare low and the PSW
condition code would be set to This occurs because an unsigned
value of 1 is being compared with an unsigned value of 255.

The programmer must know what format his data is in before he can
compare it. If his data consists of signed binary words or halfwords, he
would use his three "algebraiclt instructions: CR, C, C H. If his data
consists or' unsigned binary fields, he would use the "logical" ins tructions.
As a point of interest, the EBCDIC code is so arranged that the special
and alphameric characters will collate on a binary basis. That is, the
"compare logical" instructions are used to compare EBCDIC characters.

LOf!,icalOperations 31

11000001

11101001

"A"

" Z"

"#"

compare logical

32 Logical Operations

Let's look at the bit sequence of the EBCDIC characters.

Write the EBCDIC code for the character "A. "

Write the EBCDIC code for the character "Z. "

"A" 11000001
"Z" 11101001

On a compare logical basis, which is low? ____ C'A" or "Z")

"1" 11110001
"Z" 11101001

On a compare logical basis, which is low? ____ (" 1" or "Z")

"#" 01111011
"A" 11000001

On a compare logical basis, which is low? ____ ("#" or "A")

The preceding examples should agree with the collating sequence you are
familiar with in your past experience with punched card equipment or
equipment which used the standard BCD code (BA 8421). This is illus
trated as follows:

ILOW m~SPECIAL CHARACTERS

~
I

111~PHABETIC CHARACTERS

I

HIGH

I I I..--.NUMERIC CHARACTERS

You now have an idea of the difference between algebraic and logical
comparisons. You can also see when they are used. Read the descrip
tions of the "compare logical" instructions in the Logical Operations
section of your Principles of Operation manual.

C L is the mnemonic for

The C L instruction uses the RX format. C LR is the mnemonic for the
"compare logical" instruction that uses the format. - -------------------- -------

RR

R1
logical
condition code

1st
2nd
11

01; If the CR (compare
algebraic) instruction
had been used, the 1st
operand would have
been high.

In both the C Land C LR instruction, the 1st operand is the register
specified by the __ field. The instructions cause a
(logical/algebraic) comparison. As a result of the comparison, the

is set.

The condition code settings of 00, 01, 10 indicate that the __ (1st/2nd)
operand is equal, low, or high compared to the __ (1st/2nd) operand.
After a compare operation, it is impossible to have a condition code of

Given the following CLR instruction, indicate the resulting condition code
bits in the PSW.

CL.R

I 15 I 2 I 3 I

1"---0 0-0 0-0 0-'0 01 ~ l~IF F-F F -F F -----'F F lIN HEX

Condition Code

Given the following C L instruction, indicate the resulting condition code.

55 I 2 I o I 0 I 800

oolJ
--- ~

I 8 LE 00000

-
FFFFFFFI

Condition Code

10; By examining the four high-order bits, you can see that the 1st operand is high.
1st operand - 1000
2nd operand - 0111

"compare logical
immediate"

Besides the C LR and C L instructions, System/360 can also compare
logical using the SI and SS formats. eLI is the mnemonic for the

" ______ II instruction.

The "compare logical immediate" instruction uses the SI format. In this
format, the 1st operand is in (main storage/the
instruction) .

Logical Operations 33

main storage

logical
instruction

low
01; In the SI format,
the 1st operand is in
main storage.

high
10

word
byte

SS

SS

34 Logical Operations

The eLI instruction compares on a(n) (algebraic/logical)
basis. The comparison is between one byte in storage and one byte in the

AF

eLI -... ~----~

LOCATION 2048

In the above C I.J instruction, the 1st operand is
the resulting condition code is __ _

95 07 800]
~-------'V-------~

LOCATION 2048

In the above C I.J instruction, the 1st operand is
the resulting condition code is __ _

The e LR and e L instructions compare one
word) of data with another.

(low/high) and

(low/high) and

(byte/word/half-

The eLI instruction compares one
data with another.

(byte/word/halfword) of

--_._-_ .. ,----

The compare logical operation can also be done with the __ (SS/RS)
format.

e LC is the mnemonic for the "compare logical" instruction which uses
the format.

C LC means Compare Logical Characters. This instruction has an 8-bit
length code and can compare up to characters.

256 The name of the C LC instruction indicates that characters are being
compared. Actually, bytes are being compared on an unsigned binary
(logical) basis. As was previously pointed out, however, the EBCDIC
code assigned to characters is arranged so that they will collate on a
binary basis.

CLC

05 00

LOCATION 2048

04 E7

2048

In the above C LC instruction, ___ character(s) will be compared and
the condition code will be set to

two; One from
each operand.
01

"G"; Because hex
C7 = bits 11000111
which equal the
EBCDIC "G. "

"M"

"X"

" 4"

The coding of the byte at location 2048 above could represent the EBCDIC
character" "

The coding of the byte at location 2049 could represent the EBCDIC
character " " ---

The coding of the byte at location 2050 could represent the EBCDIC
character " " --

The coding of the byte at location 2051 could represent the character

" "

L-____ 0_5 ____ ~ ___ 0_3 ____ ~~0--~------8-0-0------~r-~-·-0--~------8-0-4------]
~-------~~~--------

2048

LOCATIONS 2048 - 2051 JOHN

LOCATIONS 2052 - 2055 LUKE

Given the above characters and C LC instruction, the condition code will
be set to

Logical Operations 35

01; In the preceding problem, JOHN was the 1st operand and LUKE was the .2nd operand. The high
order character (J) of the 1st operand was lower than the high-order character (L) of the 2nd
operand. "J"

"L" -
11010001
11010011

05 07 o

LOCATIONS 2048 - 55

LOCATIONS 3840 - 47

800 () FOO

JOHNSTON

JOHANSEN

Given the above characters and C LC instruction, the condition code will
be set to ---

10; On the first three high-order characters (JOR) , both operands are equaL On the fourth charac
ter, the 1st operand will compare high as follows:

left to right

unequal

1st operand
2nd operand

"N"
"A"

11010101
11000001

You should now realize that the comparing is done for all practical purp')ses
from (left to right/right to left).

As a result of comparing the bytes from left to right, it is not necessary to
examine the entire field. The compare operation assumes that the fields
are equal to begin with. In examining the bytes from left to right, the
system can end the compare operation as soon as it finds an ..:;;u ___ _
condition.

List the mnemonics and the instruction formats of the four "compare
logical" instructions.

Mnemonic Instruction Format

36 LOf!,ical Operations

Mnemonic
CLR
CL
Cll
CLC

Format
RR
RX
SI
SS

List the mnemonics and formats of the three" compare algebraic"
instructions.

Mnemonic Instruction Format

Mnemonic Format

CR RR
C
CH

RX
RX

What is the main difference between the CR and C LR instructions?

The CR instruction will treat the contents of a particular register as a signed integer (sign and
31 bits). The C LR instruction treats the contents of the same register as an unsigned 32-bit
integer. As a result, the condition code setting may vary, depending on the instruction used.

a. 01 - Reg 2 has a
negative number.

b. 10 - Reg 2 has a
higher value.

compare logical

Given the contents of the following two registers, indicate the resulting
condition code for the instruction shown.

REG 2 REG 3

I e o 0 o 0 0 0 1 I 1
0 o 0 o 0 0 0 1

CR CONDITION CODE

a. 19 2 3

CLR

b. I 15 2 3

Assume that a card record punched in standard hollerith card code has
been read in main storage. The record contained alphabetic characters.
To compare two fields in this record, which would you do?

(compare logical/compare algebraic).

Given two fields of zoned decimal data, what would you do? (Circle one
of the following.)
a. Compare Algebraic
b. Compare Logical
c. Neither of the above

LOf!,icalOperations 37

c; See the following for explanation.

z o z

+
1 1 1 1

D I~-~

L {"00 0: SIGN}

1101-SIGN

STANDARD
EBCDIC SIGNS

Normally, the "compare logical" instruction is used to compare alphameric information.
However, a zoned decimal field presents a special problem. Assume we wish to compare a
+ 11 with a -11. The +11 should be high but look below.

Z D S D

~o.I .. oo: ooo~ + ••• N ZONED DEC'MAL

[.; •• : 000. 1 •• 0. ~ -"'N ZONED DECIMAL

As you can see above, the minus sign bits (due to the II-hole card punch) would cause the
negative number to be high. The plus sign bits (1100) are, of course, due to a 12-hole card
punch.

You have now been shown a problem without a solution. One solution, of course, would be to
change (via instructions) the data to the binary format and use the "compare algebraic" in
struction. Another solution is to place the data (via the "pack" instruction) in the packed
format. Then you can compare decimal. We will be covering this instruction later on in this
textbook.

38 Logical Operations

Right now, we will continue with more "logical" instructions. The next
group of instructions you will study can truly be called "logical" instruc
tions. They allow the programmer to mix data fields together on a basis
of AND, OR, as well as Exclusive OR logic.

AND, OR OPERATIONS

The "and" instruction is used to mix two operands on a logical AND basis.
The definition of an AND condition is this: If both bits are 1, the resulting
bit is 1. Otherwise, it is zero.

The following will illustrate the result of ANDing two bytes together.

BIT POSITIONS

101234567

1st Operand

2nd Operand

Result

1 0 1 0 1 0 1 0

1 0 0 1 1 100

1 0 0 0 100 0

Notice that only in bit positions 0 and 4 were both bits set to 1. As a
result, only bits 0 and 4 of the result are 1. As in most System/360
operations, the result will replace the 1st Operand.

------------------_._--_._----_. __ .•.. _ ..

Given the following two bytes, show the result after they are ANDed
together.

1st Operand

2nd Operand

Result

o 1 110 110

1 1 0 0 1 100

o 1 0 0 0 1 0 0; Notiee again that the operands are ANDed together on a bit-by-bit basis. There
is no connection (carry) from one bit position to another.

--------_._-_._-------------------- -------.. ---

Show the result of the following AND operation.

1st Operand

2nd Operand

Result

1 1 0 0 0 011

1 0 0 0 0 001

--------------------------_._. __ . __ _._... -

LOf!,icalOperations 39

1 0 0 0 0 001

0; See below.
1st Operand
2nd Operand
Result

40 Logical Operations

In a typical user's program, the programmer will occasionally use data as
a programmable switch. That is, in a flowchart, a branch decision will
occasionally be based on whether a switch is on or off.

For example:

,------ SWITCH A IS INITIALLY OFF

Notice that switch A is used to determine whether to read a card or punch
a card. Also, notice that the flowchart assumes that there is a method of
turning the switch on and off.

One use of the "and" instruction is to turn off projgram switches.

I010000-~

Assume that bit position 7 of the byte shown above represents a program
switch. In order to turn off this program switch, bit position 7 of the
second operand must be _ (1/0).

01000011
11111 1 1 0
01000010

Since a byte contains 8 bits it can hold __ program switches. A word
can contain program switches.

8
32

It is desired to turn off one program switch in a byte without affectin~
the other switches. Show the 2nd operand necessary to turn off only the
switch in bit position 6.

1st Operand

2nd Operand

Result

1 0 110 110

10110100

1111110 1; Notice that It is desired at the beginning of the program to be sure that all of the
only bit position 6 was program switches are off. Show the necessary 2nd operand.
changed. This 2nd oper-
and would work with. any
1st operand and still
turn off only position 6.

o 0 000 000

1 1 111 110

1st Operand

2nd Operand

o 1 100 0 1 0 8 program switches

Now that you can turn off program switches, how about turning them on?

The "and" instructions can be used to turn off program switches. The
"or" instructions can be used to turn on program switches. The defjnition
of an OR condition is this: If either bit is 1, the resulting bit is 1. Other
wise, it is zero.

The following will illustrate the result of ORing two bytes together.

1st Operand

2nd Operan'd

Result

1 0 1 0 1 0 1 0

1 0 0 1 1 100

1 0 1 1 1 110

Notice that only in bit positions 1 and 7 neither bit was set to 1. Con
sequently, only bits 1 and 7 of the result are set to O. The remaining
bits contain a 1.

Given the following operands, show the result if they are ORed together.

1st Operand

2nd Operand

Result

o 1 110 110

1 100 1 100

Show the result of the following OR operation.

1st Operand

2nd Operand

Result

1 1 000 0 1 1

1 0 0 0 000 1

Logical Operations 41

1 100 0 0 1 1

1; See below.

1st Operand
2nd Operand
Result

o 0 100 000

1 1 1 1 0 110

1 1 1 1 1 111

42 Logical Operations

10 1 0 0 0 0 1 "OJ

Assume that bit position 7 of the byte shown above is a program switch. In
order to turn on this program switch, bit position 7 of the 2nd operand
must be _ (0/1).

01000010
o 0 0 000 0 1
01000011

It is desired to turn on one program switch in a byte without affecting the
others. Show the necessary 2nd operand to turn on only the switch in bit
position 2.

1st Operand

2nd Operand

11010 110

Show the result of ORing the previous answer with the 1st operand.

1st Operand

2nd Operand

Result

1 1 0 1 0 110

00100000

It is desired at the beginning of a program to be sure that all of the
program switches are initially on. Show the necessary 2nd operand.

1st Operand

2nd Operand

0"1100010 8 program switches

AND INSTRUCTION - OR INSTRUCTION

Read the description of the "and" and "or" instructions in the Logical
Operations section of your Principles of Operation manual.

The mnemonic of the "and" instruction uses the letter --

The mnemonic of the "or" instruction uses the letter --

N
o

Mnemonic
NR
NC
01
N
OR

two

all zeroes
01

Format
RR
SS
SI
RX
RR

Both the "and" and "or" instructions can use four formats. Use the
following mnemonics and indicate the instruction format and whether it
is an "and" or "or" instruction.

Mnemonic Format Instruction

NR ----
NC ----
01 ----
N ----
OR ----

Instruction
"and"
"and"
"or"
"and"
"or"

After executing an "and" or. Hor" instruction, the condition code can be
set to one of ___ possible settings.

A condition code of 00 would indicate a result of
zeroes/all ones),

(all

If the result is not zero, the condition code will be set to __ (00/01).

The two possible settings of the condition code after an "and" or "or"
instruction are:

-- ~------

00
01

The "branch on condition" instruction can be used after an "and" or 'or"
instruction to: (C ircle one of the following.)

a. Check if all program switches are set to O.
b. Check if one specific switch is on or off.

Logical Operations 43

a; The condition code
reflects the status of
the entire result. It
can either be zero or
non-zero.

REG 2

Given the following, show the contents of the registers after the instruction
is executed.

r 14
2 1.:::J IN HEX

\ t
F A 7 8 A 2 E I IA 8 8 3 C 6 7

4 I

C ~_--------_----=-__ ~!I ~ ________ _

REG 7

1~_A ____ 8 ____ 0 _________ 8 ____ 2 ____ 2 ____ 4~! ~---8----8----3----C 6 7

Given the following, show the contents of the instruction and the storage
byte after the instruction is executed.

4A o 800

.~_J D

~4 ____ ~ ____ 4_A ____ ~ __ 0 __ ~ ______ 8_0_0 ___ ~ __ ~

44 Logical OPerations

Location After
2048 DE
2049 Al
2050 7F
2051 FB
2052 9E
2053 01
2054 72
2055 Fl

Given the following, show the storage contents after the instruction is
executed.
oc IN HEX

I 06 03 0 800 0 804 J -- ---2048

Location Before After
2048 DE
2049 AO
2050 7F
2051 8B
2052 9E
2053 01
2054 72
2055 Fl

Given the following "or" instruction, show the contents of register 0 and
the condition code after the instruction is executed.

56 o o o 800

REG 0

~I_O ____ O ____ O ____ B ____ B ________ O ___ F~I BEFORE

IN HEX

LOCA TION CONTENTS

2048 80
2049 7E
2050 01
2051 FO

AFTER

Condition Code =

Logical Operations 45

Reg 0
807FB1FF

Condition Code
01

1 0 1 1 1 0 1 0

o 100 0 0 1 0

46 LOf!.ical Operations

EXCLUSIVE OR INSTRUCTION

So far you have had a good look at the "and" and "or" instructions. You
have seen how they can be used to turn on and turn off progTam switches.
Another instruction that can be used to alternately turn on and turn off a
program switch is the "exclusive or" instruction. The definition of an
Exclusive OR condition is this:

If one and only one of the bits is 1, the result is 1. Otherwise, it is
zero.

The following will illustrate the result of Exclusive ORing two bytes.

1st Operand

2nd Operand

Result

1 0 101 0 1 0

100 1 1 100

o 0 110 110

Notice that in bit poSitions 2, 3, 5 and 6 one and only one of the bits was
a 1. So only these positions of the result have a 1. In bit position 0, both
bits were 1 and the result was O. In bit position 1, both bits were 0 and
the result was O.

Given the following operands, show the result of Exclusive ORing them.

1st Operand

2nd Operand

Result

o 1 110 110

1 100 1 100

Show the result of the following Exclusive OR operation.

1st Operand

2nd Operand

Result

1 1 000 0 1 1

1 0 000 001

It is desired to change only one program switch in a byte without affecting
the others. Show the 2nd operand necessary to change only the s\vitch in
bit position 3.

1st Operand

2nd Operand

1 1 0 100 1 1

0001000 0 It is desired to change all of the program switches in a byte. Show the
necessary 2nd operand and the expected result.

1st Operand

2nd Operand

Result

10110111

2nd Operand
Result

1 1 111 111
o 1 001 000

1; See below.

1st Operand
2nd Operand
Result

Assume that bit position 7 of a byte is a program switch. In order to
change the setting of this program switch, bit position 7 of the 2nd
operand must be _ (0/1).

01000 0 1 1
000 000 0 1
01000010

"exclusive or"

Read the description of the "exclusive or" instructions in the Logical
Operations section of your Principles of Operation manual.

The letter X is used for the mnemonic of an " ------
instruction.

Like the "and" and "or" instructions, the "exclusive or" instruction uses
_ (1/2/3/4) formats.

------------------------------------- --------- ------ -

4

Mnemonic Format
XR RR
X RX
XI SI
XC SS

List the mnemonics and formats of the four "exclusive or" instructions.

Mnemonic Format

Just like the "and" and "or" instructions, the "exclusive or" instruction
will cause the condition code to be set to __ (00/01/10/11) for an all
zero result.

LogicalOjJerations 47

00

01

"test under mask"

81
main storage

byte

all

one

12

For a non-zero result, the "exclusive or" instruction will set bits 34-35
of the PSW to --

TEST UNDER MASK INSTRUCTION

So far, you can turn off, turn on, or change a program switch by use of the
"and, or, exclusive or" instructions, respectively. However, you still
can't test them. The "branch on condition" instruction is not sufficient.
This instruction will only let you find out if all switches are either on or
off. To be able to test a specific switch (or some but not all switches)
will require another instruction. This instruction is known as "test
under mask." The "test under mask" instruction will let you examine
specific bits (program switches) and set the condition code accordingly.
Then the "branch on condition" instruction can be used effectively.

Read the description of the "test under mask" instruction in the Logical
Operations section of your Principles of Operation nlanual.

TM is the mnemonic for"

The TM instruction uses the format. The instruction can be used
to test program switches. These switches must be in
(main storage/general registers).

The "test under mask" instruction will test one
word).

(byte/halfword/

A byte can contain 8 program switches. The TM instruction can test
(only one/all) of them at one time.

The TM instruction can, if desired, test as few as
switch(es) at a time.

program

The bits (program switches) to be tested with the TM instruction are
determined by the instruction's __ field.

The 12 field corresponds bit-by-bit with the main storage byte to be tested.
If all bits in the main storage byte are to be tested, the 12 field must contain

(in hex).

FF To test only bit position 0, the I2 field of the TM instruction must contain
__ (in hex).

48 Logical Operations

80

00; An 12 field of FF
would test all bits. A
condition code of 00
would then indicate that
all bits of the byte are
zero.

FF

01

10

00

The function of the TM instruction is to set the condition code. A
condition code of 00 would indicate that all of the selected bits are zero.
Assume that the 12 field of a TM instruction is FF. A condition code of
00 would indicate that the storage byte contains __ (in hex).

If a TM instruction results in a condition code of 11, it would indicate that
all of the selected bits are one. If the 12 field of the instruction used
contained FF, it would mean that the storage byte contains ___ (in hex).

A condition code of 01 is also possible after executing a TM instruction.
This condition code (01) would indicate that some but not all of the selected
bits contain a one. Given the following, what would the resulting condition
code be?

TM

91 FF o 800 LOCATION 2048 0
~-------~------~~

2048

Condition Code = __ _

After executing a TM instruction, it is not possible to have a condition
code of --

91 AO o 800 LOCATION 2048 [OF]

The above "test under mask" instruction would result in a condition code
of --

91 13 o 800 LOCATION 2048 [-FF J
j

The above TM instruction would result in a condition code of --

Logical Operations 49

11

01

00

00

50 Logical OJ)erations

91 FA o 800 LOCATION 2048 G
The above "test under mask" instruction would result in a condition code
of

91 40 o 800 LOCATION 2048 G
The above TM instruction would result in a condition code of --

[91 10 o 800 LOCATION 2048 G
The above TM instruction would result in a condition code of --

At this point, you can turn program switches on and off. You can also test
them. The instructions that you have been using can be used for purposes
other than program switches.

The "and, or exclusive or" instructions can also be used to examine
records for specific requirements. Consider the case of a program
where it is desired to find all employees whose qualifications fit a par
ticular job description. The following byte will show the minimum
requirements for the job.

11100 1 ~

8TH GRAO~~ t
HIGH SCHOOL~
COLLEGE

ENGINEER ______J ~
t L NO MILITARY OBLIGATION

L ACTIVE RESERVE

vETERAN

ACCOUNTANT

According to the preceding requirements, the employee must have a
degree. However, he does not need to be an or

an

college
engineer
accountant

veteran

ones

11

l~Hex;

Assume that a card column in each employee's record is punched to show
his qualifications. The following byte shows the qualifications of one
such employee.

'11101000 EMPLOYEE A

Examine the preceding employee's qualifications and refer back to the
requirements for the job. Employee A is not qualified because he is not
a

The question now is: How can the "and, or, exclusive or" instructions be
used to determine whether an employee meets the requirements?

To determine whether an employee meets the minimum requirements, the
"test under mask" instruction could be used. This is shown as follows:

91 E4 0 800 J
t t

-........ ,.,./"

t
TM MINIMUM LOCATION OF

REQUIREMENTS EMPLOYEE'S
QUALI F ICATI ONS

With the TM instruction~ the condition code is set according to the status
of the selected bits. To meet the minimum requirements, the selected
bits in the employee's qualifications must be all (ones/zeroes).

If the selected bits are all ones, the TM instruction would cause the
condition code to be set to (00/11).

The TM instruction could then be followed by a "branch on condition. "
Write the mask field necessary for a successful branch when the employee
meets the minimum requirements. If necessary, review the Be instruc
tion mask field on page 3 of this book or in the Principles of Operations
manual.
TM

I 91

BC

I 47

0001~Binary

E4 0 800

0 000

t -------------~--------------
MASK
FIELD

BRANCH TO LOCATION

~ Tests for a condition code of 11

IN HEX

Logical OPerations 51

Now suppose that a branch is not desired when the employee meets the
minimum requirements. Write the necessary mask field in the BCR
instruction.

TM

91 E4 o 800

seR

17 ., I ,

E~Hex; 1110 -----Binary

Since a condition code of 10 is not possible after a "test under mask" instruction, the following
could also be used for the mask field:

c ~ Hex; 1100 --t-Binary

Employee C
Employee D

Suppose that we now change the conditions. We have been looking for an
employee who meets the minimum requirements.. We did not care if he
exceeded those requirements.

Given the following requirements, circle those employees who at least
meet the minimum requirements.

Requirements --+-1 ' 1 1 0 0 1 0 0 I

Employee AlII 0 1 0 0 0

Employee B 1 1 0 0 0 1 1 0

Employee CIllO 1 1 0 0

Employee D 1 1 1 1 0 1 0 0

Employee Ell 1 0 0 0 0 0

Referring to the preceding problem, did any of the employees meet the
minimum without exceeding the minimum requirements?

-------------- --_.

52 Logical Operations

No The "exclusive or" instruction can be used to find those employees who
meet but do not exceed the minimum requirements. This is shown as
follows:

XI

I ~ ____ 9_7 __ ~ ____ E __ 4 __ .,_I~_0 __________ 8_0_0 ____ ~
'----------,,-------~~

97

t
MINIMUM

REQUI REMENTS

E4 o

I
LOCATION OF
EMPLOYEE'S

QUALIFICATIONS

800 o
---------------IL...-.--.-____ j

Given the above "exclusive or" instruction and the qualifications of
Employee C, the condition code will be set to __ (00/01).

01~ Indicates a non-zero result. This is shown as follows:

Minimum requirements ~ E4 ---+- 1 1 1 0 0 1 0 0
Employee C Qualifications ~ EC ~ 11 1 0 11 0 0
Non-zero Result .. 0 0 0 0 1 0 0 0

00 ~ Indicates a zero
result.

If employee C had met without exceeding the minimum requirements, the
condition code would have been set to __ (00/01).

You have been studying the "and, or, exclusive or and test under mask"
instructions. You have seen that their usage is not limited to program
switches. Let's continue our study of logical instructions.

INSERT CHARACTER - STORE CHARACTER INSTRUCTIONS

The two instructions that you will study next are the "insert character"
and "store character" instructions. Read the description of these in
structions in the Logical Operations section of your Principles of
Operation manual.

Logical Operations 53

"insert character"
"store character"

RX
do not change

byte

IC is the mnemonic for the " 11 instruction. ----

STC is the mnemonic for the " _______ _ " instruction.

Both the IC and STC instructions use the instruction format. These
instructions (change/do not change) the condition code.

The IC and STC instructions use a storage-to-register concept. These
two instructions transfer one (byte/halfword/word) of data.

The "insert character" instruction will place the storage operand in bits
through __ of the specified register.

24, 31; The low-order The remaining bits (0-23) of the specified register: (Circle one)
byte.

a. Are zeroed out.
b. Remain unchanged.

~--- -----_._._-------------_. -

b

47ABOFA6

No

54 LOf!.icalOperations

Given the following IC instruction, show the resulting contents of the
specified register.

Ie

I 43 I 1 I 0 0 I 800 I G
) ---- ~ .-r t ~

14 7 A B o --F 1 71 BEFORE IN HEX

t
-~ AFTER

Was the condition code changed by the preceding instruction?

The "store character" instruction will place in the storage operand the
contents of bits __ through __ from the specified register.

24, 31

17

addressing

STC

program

"load address"

Given the folloVving STC instruction, show the resulting contents of the
storage location.

BEFORE

42 o o 800 o
) -.--------~

1
47ABOF17j u

AFTER

If the address of the storage operand is not available on the particular
installation, an exception will be recognized.

Any instruction that changes the contents of main storage is subject to
the storage protection feature. As a result, the (IC/STC)
instruction can cause a protection exception.

A protection or addressing exception will cause a interrupt.

LOAD ADDRESS INSTRUCTION

Read the description of the "load address" instruction in the Logical
Operations section of your Principles of Operation manual.

LA is the mnemonic for the " " instruction. --- -----

The LA instruction has an Op code of 41 (in hex). From bits 0-1 of this
Op code you can tell that it uses the __ format.

RX Bits 0-1 of 02 Code Format
00
01
10
11

RR
RX
RS, SI
SS

The "load address" instruction will place in the specified register:
(Circle one of the following.)

a. A word from main storage.
b. The generated storage address.

Logical OPerations 55

b

8, 31

b

o 0 000 800

The generated 24-bit storage address will be placed in bits __ through
of the specified register.

As a result of an IA instruction, bits 0-7 of the specified register: (Circle
one of the following.)

a. Remain unchanged.
b. Are zeroed out.

Given the following "load address" instruction, show the resulting contents
of the specified register.

[=41 0 0 aoo

l-

I A B 4 7 a F ;3 BEFORE

t
] AFTER

Given the following "load address" instruction, show the resulting contents
of the register.

41 0 aoo ,
I 0 o 0 o 0 a O-~ IN HEX

t ,--- .~

o 0 0 0 1 0 0 0; In the preceding problem, the contents of register 1 was used as a base address in
generating an effective storage address:

Base Address
+ Displacement

Effecti ve Address

o 0 0 800
800

o 0 100 0
Hex Addition

The effective address was then placed in register 1.

56 Logical Operations

o 0 0 0 2 000

o 0 003 000

Given the following "load address" instruction, show the resulting contents
of the register.

41 2 I 000

" ~ BEFORE I B 7 4 6 A F 1
7 I I o 0 o 0 1 000

AFTER t

Given the following "load address" instruction, show the resulting contents
of the register.

41 3 2 I I 000

BEFORE J ~~
1 F F F F F F F F I 1000020001 1 o 0 0 0 1 0 O~
AFTER t

I
The preceding instructions showed how successive base addresses could
be loaded into general registers. Let's take another look at these instruc
tions in a symbolic program.

LA 1, 2048 (0, 0)
LA 1, 2048 (0, 1)
LA 2, 0 (1, 1)
LA 3, 0 (2, 1)

Examine the preceding program. Then indicate below (decimally) the base
address that will be in each register at the completion of the program.

Register 1
Register 2
Register 3

Logical Operations 57

Reg 1 4096
Reg 2 8192
Reg 3 12288

a; The bytes to be
translated can be in
any character code.
These bytes can be
translated to ~!!Y other
desired code.

IBM cards

58 Logical OPerations

TRANSLATE INSTRUCTION

The last two "logical" instructions for you to study are the "translate"
instruction and the "translate and test" instruction. If you do not have
systems experience and are unfamiliar with the terms translate or table
look up, these instructions will be among the most difficult of those you
have encountered. Therefore, let's examine the concept of translating
before reading the description of these instructions.

First of all, there is data to be translated. This data may be in any code
form we wish. The only code you have studied in the System/360 is
EBCDIC. There are, of course, other codes in use with computers. For
instance, there is an 8-bit paper tape code and the 8-bit ASCII code. The
"translate" instruction will allow us to translate data from one code to
another, byte by byte.

The "translate" instruction will allow us to translate bytes of data: (Circle
one of the following.)
a. From one character code to any other character code.
b. Only from EBCDIC to some other character code.
c. Only to EBCDIC from some other character code.
d. Only from EBCDIC to ASCII.

Let's look at this concept of translating from a programmer's viewpoint
and see how he would handle a simplified translating problem.

CARD INPUT ~ COMPUTER ---t PHINTED OUTPUT

The basic job that is to be accomplished is the printing of a report. Input
to the system is in the form of

Assume that the cards were punched on a card punch that did not have
special character keys. The machine could only punch numeric and alpha
betic characters.

The operator who punched the cards used alphabetic symbols to represent
the special characters. For example, the charaeter P was used to repre
sent a + sign.

M79C
D120P
EAFAN3

do not

printed
translate

function
special

Special Characters

+

=#=
$
~
&

Alphabetic Symbol

p

M
N
D
C
A

The chart shows how each of the special characters was represented by
an alphabetic character.

Given the following listings on a source document, indicate the characters
that the operator actually punched in the cards.

SOUTC e Document

-79~

$120+
E&F&=#=3

IBM Card

The input cards that are used in our simplified application
(do/ do not) contain special character punching.

The output of this simplified application is to be in form. [t
is desired to have the listings on the printed report contain the special
characters rather than the alphabetic symbols. Therefore, the computer
must convert or t the input data before sending it to the
printer.

Now, let's see how the programmer can use the "translate" instruction to
solve the problem just discussed.

First, two tables must be established. They are the function table and
the argument table.

The f table consists of the desired characters. In our appli
(special/ cation, the function table will consist of the

alphabetic) characters.

The a table consists of all the data that may have to be
converted. In our application, the argument table will consist of the
______ symbols.

Logical Operations 59

argument
alphabetic

argument

function
special
alphabetic

60 Logical Operations

In the next step, the programmer writes down all the possible data to be
converted. Then he vranges it in binary bit sequence and forms the
a table.

Argument Table
A 1100 0001

US (Unused Symbol) 1100 0010

C 1100 0011

D 1100 0100
US 1100 0101
US 1100 0110
US 1100 0111
US 1100 1000
US 1100 1001

US 1100 1010

US 1100 1011

US 1100 1100

M 1100 1101

N 1100 1110
US 1100 1111

p 1101 0000

Now the programmer can make up the f table. The table will
indicate where the s characters should be stored so that they
can be easily located and used in place of the a symbols
(argument table).

Argument Table Function Table (Table Address
Argument Function storage is 6807)

Bytes Bytes Locations
A 1100 0001 & 7000

US 1100 0010 7001
C 1100 0011 ¢ 7002
D 1100 0100 $ 7003

US 1100 0101 7004
US 1100 0110 7005
US 1100 0111 7006
US 1100 1000 70017
US 1100 1001 7008
US 1100 1010 7009
US 1100 1011 7010
US 1100 1100 7011

M 1100 1101 7012
N 1100 1110 # 7013

US 1100 1111 7014
p 1101 0000 + 7015

The function table is actually located in s

The argument table is made up on paper by the programmer. Its only use
is to create the f table in

storage
function
storage

translated
argument
D

Go to the Principles of Operation manual and read the description of the
"translate" instruction in the Logical Operations section. Do not read
the description of the "translate and test" instruction at this time.

The byte or bytes in the first operand are the characters that are to be
converted or t They are called a bytes. In
the Simplified application that you just studied, a first operand argument
byte could be a __ (D/$).

The second operand is the f table. In the Simplified
application, the addres s of the second operand would be

--------------------------------------_._.- .~.------.--.-- -~

function
6807

1
D

$
0300

The "translate" instruction does the following:

1. Takes the binary bit value of an argument byte and adds it to the
second operand's address.

2. The resulting address is used to locate a function byte.
3. The function byte replaces the argument byte (1st operand).

TRANSLATE
OP CODE

DC 00

ARGUMENT

1
'100 BYTE -

CHARACTER D

IN DECIMAL

~

I 0 I 0300 I 0 I 6807]
~.------ "'-"'" ./"

~ ~
I 0100 I

FUNCTION EPOll 10011 011l TABLE 1010
ADDRESS

L--------4 ADD 1100 0100

r:7~.11011 I 01±~
RESULTING ADDRESS OF
FUNCTION BYTE

(LOCATION IN DECIMAL= 7003)

The above instruction will translate byte(s). The character to be
translated is a The instruction goes to location 7003 in the function
table (refer to the preceding Simplified function table) and finds a
character. It takes this $ character and puts it in location where
it replaces the D.

Now, let's go back and review the entire concept of translating and use a
more typical application.

LogicaL OJ)erations 61

function

b; The desired
character code.

To translate, a table of the desired code must be available. For instance,
assume that we wished to translate from EBCDIC to the 8-bit ASCn code.
For simplicity we will only deal with the characters A-H. As a result
our table will be only 8 bytes long.

101 0 000 1

101 0 o 0 1 0

1 0 1 0 001 1

1 010 o 1 o 0
FUNCTION BYTES

1 0 1 0 010 1

101 0 o 1 1 0

1 0 1 0 o 1 1 1

1 0 1 0 100 0

- A

B

- C

- D

- E

- F

- G

- H

TABLE(OF 8 B~T
ASCII A TO H)

The above table is located in main storage in 8 successive byte locations.
As you can see, the bytes in the table are called _ bytes.

The function bytes represent: (Circle one of the following.)

a. The bytes to be translated.
b. The desired character code.

Besides the table of function bytes, which represent the desired code,
there must also be data bytes which need translation. The following is
a five-character record which needs translating:

1 100 o 1 1 0

1 'j o 0 000 1

ARGUMENT BYTES 1 1 o 0 o 1 o 0

1 1 o 0 o 1 o 1

1 100 o 1 o 0

The bytes to be translated are called

- F

- A

- D

- E

- D

DATA TO BE
TRANSLATED

bytes.

---------------- - . -------------------_.

argument The above record of five EBCDIC characters is to be translated by using

function

62 I.AJf!,icalOjJerations

a table of f bytes.

.------------_.

The "translate" instruction consists of replacing the characters to be
translated with the characters of the desired code. In other words, the

bytes are replaced with the correct bytes.

argument
function

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

o 1 1 0

000 1

o 1 o 0

o 1 o 1

o 1 o 0

The "translate" instruction will replace ~ of the argument bytes with che
desired characters from the function table.

Given the following function table and argument bytes, show the resulting
contents of the argument field.

1 0 1 0 000 1

1 0 1 0 o 0 1 0

1 0 1 0 001 1

1 0 1 0 o 1 o 0

1 0 1 0 010 1

1 0 1 0 o 1 1 0

1 0 1 0 o 1 1 1

1 0 1 0 100 0
FUNCTION TABLE
OF ASCII BYiES

BEFORE AFTER

r-:-:-:-:-_:_~ : : 1_ _===-~

~~~-~-~~it =- -----
110001001 

ARGUMENT FIELD OF FIVE 
EBCDIC CHARACTERS 

You should now know what is meant by a function byte or an argument 
byte. You should also realize that the argument bytes are to be replaced 
by the desired function bytes. We can review the translating concept bv 
asking ourselves "How does the machine know which function bytes to 
select?'· The answer lies in the organization of the function table. This 
table must be arranged so that the desired characters match the binar~ 
sequence of the argument table. This is shown as fo11O'\\'s: 

EBCDIC 

00000001 

00000010 

00000011 

11110111 

11111000 

11111001 

t 
Table of all possible argument 
bytes is arranged on paper, in 
binary bit sequence. The table 
is used to develop the correct 
sequence for the function table. 

ASCII 

10100001 

10100010 

10100011 

01010111 

01011000 

01011001 

t 
Table of function bytes is arranged 
to match the respective argument 
bytes. 

LogicalOjJcratioJls 63 



b 

"trans late" 

ss 

a 

a 

64 Logical Operations 

The table of FUNCTION bytes in storage is arranged so that: (Circle one 
of the following. ) 

a. The function bytes are in binary sequence. 
b. The binary sequence of the argument bytes determines the sequence 

of FUNCTION bytes. 

Go back to the Principles of Operation manual and reread the description 
of the "translate" instruction. 

TR is the mnemonic for the " _____ " instruction. 

The "translate" instruction has a hexadecimal Op code of OC. From bits 
0-1 of this Op code you can tell that the TR instruction uses the ___ _ 
format. 

The 1st operand of the TR instruction represents: (Circle one of the 
following. ) 

a. The bytes to be translated. 
b. The desired coded bytes. 

The 2nd operand of the TR instruction represents: (Circle one of the 
following. ) 

a. The function bytes. 
b. The argument bytes. 

The function table must be long enough to take care of all expected bit 
combinations of the argument bytes. 

The length code refers to: (Circle one of the following. ) 

a. The argument bytes. 
b. The function bytes. 
c. Both argument and function bytes. 



a To find the desired character in the function table, the argument byte is 
added to the beginning of the table. 

Given the following argument byte, what bit combination will replace it? 

IN HEX 

I DC 00 0 I 800 .1. 0 I FOO J 
t ~-..... ............. 

TR 

~ ~NDECIMAL 
001 o 1 1 o 0 2·840 

ARGUMENT 000 o 0 0 1 0 1 1 0 1 1 000 1 3841 

+ 
1 0 1 0 1 1 1 1 3842 

1 1 1 1 0 0 1 1 3843 

RESULT 
1 0 1 0 0 1 0 1 3844 

11000001 3845 

--------. 
~o10001 xxxx 

10101111; The 1st operand's binary bit value (decimal 2) was added to the 2nd operand's address 
(decimal 3840). The byte at location 3842 replaced the 1st operand. 

You should now understand why the function table must be arranged 
according to the binary sequence of the argument bytes. This is because 
the argument byte is added to the initial table address. The coded charac
ter at that location then replaces the argulnent byte. 

DC 17 o 800 o FOO 

Given the above "translate" instruction. How many argument bytes will 
be translated? (Remember that the instruction is shown in hex. ) 

24; 17 in hex equals 00010111 in Binary which equals 23 in Decimal,and a length code always is 
one less than the total number of bytes. 

Given the follOwing "translate" instruction, show with six hex digits the 
starting address of the data bytes. The data bytes are the argument bytes. 

c DC 17 o 800 o FOO --.. J 

Starting Address of Data Bytes = 

Logical Operations 65 



000800 

OOOFOO 

TR 

DC 17 o 800 o FOO 

Given the above "translate" instruction, show with six hex digits the 
starting address of the function table. 

DC 17 o 800 o FOO 

TR 

Given the above "translate" instruction, how many bytes are in the function 
table? This question can be tricky, so answer carefully. 

Unknown; The proper function byte is selected from the table by adding the argument byte to the 
starting address of the table. As a result, the table might contain a maximum of 256 
bytes. This would depend on the total number of characters in the codes involved. 

0001"31; As shown below. 

ARGUMENT BYTE - 001 10001 CHARACTER ADDRESS (IN HEX) = ____ _ 

TR 

I DC 17 o 800 o FOO 

Given the above "translate" instruction, show with six hex digits the 
address of the character that will replace the argulnent byte. 

The following byte is added to the starting address of the function table: 

{ 

OOOFOO Table Address 
Shown in 31 Argument Byte 

Hex 000F31 Address of function byte selected to 
replace the argument byte. 

66 I.og£cai () jxr([tioflS 

-.-------.----•.. - .. ~--.-------.. -.-----.---.--.---------

ARGUMENT BYTE - 1 100 tOO 1 

TR 

CHARACTER ADDRESS (IN HEX) '=--_____ _ 

~._D_C ____ ~ ____ 17 ____ ~ __ 0 __ ~ _____ 8_0_0 ______ ~ __ 0 __ ·.~I _______ F_0_0 ____ ~ 

Given the above "translate" instruction and one of the argument bytes, 
show with six hex digits the address of the function byte that will be 
selected. 



000FC9 

000FF7 

ARGUMENT BYTE - 11110111 CHARACTER ADDRESS (IN HEX) = ___ _ 

TR 

DC 17 o 800 o FOO 

Given the above, show the six hex digits of the address of the selected 
function byte. 

Given the following data, show the contents of the argument field after the 
"translate" instruction is executed. 

TR IN HEX 

L. DC 
07 o 800 I 0 

FOO 

~-------~~~-------~'---------~ ~ 

[ 
LOCATIONS 

2048 
2049 
2050 
2051 
2052 
2053 

Data Before 
F7 
F2 
61 
F2 
F5 
61 

2054 F3 
2055 F2 

t t 
IN IN 

DECIMAL HEX 

I 

Data After 

LOCATIONS 

l Function 
Table 

3840 OA 

3937 11 
3938 00 

4080 OA 
4081 01 
4082 02 
4083 03 
4084 04 
4085 05 
4086 06 
4087 07 
4088 OE 
4089 09 

t t 
IN IN 

DECIMAL HEX 

----, -- -

Logical Operations 67 



Location After 
2048 07 
2049 02 
2050 11 
2051 02 
2052 05 
2053 11 
2054 03 
2055 02 

remain unchanged 

No 

condition code 

68 Logical OPerations 

The "translate'! instruction can be summarized as follows: 

1. The translation will be done by replacing an argument byte with a 
function byte from a table. 

2. The length code (L field) gives the number of the argument bytes less 
one. A length code of 7 would indicate 8 argument bytes. 

3. The address of the 1st operand is the address of the argument bytes 
(those to be translated). 

4. The address of the 2nd operand is the address of the function table 
(those bytes which will be used to replace or translate the argument 
bytes). 

5. In order to obtain the proper function bytes, the table must be 
arranged according to the binary bit sequence of the argument bytes. 

6. The argument byte is added to the function ta.ble address. The 
resulting address is -used to select a byte from the function table and' 
replace the argument byte with it. 

7. The I1translate" instruction continues until all the argument bytes 
(determined by the length code) have been translated. 

TRANSLATE AND TEST INSTRUCTION 

Read the description of the I1translate and test" instruction in the Logical 
Operations section of your Principles of Operation manual. 

In the "translate l1 instruction, the argument bytes are replaced with function 
bytes. In the I1translate and testl1 instruction, the argument bytes 

(are replaced with function bytes/ 
remain unchanged). 

Is any translation actually done by the I1translate and testl1 instruction? 

The "translate and testl1 instruction tests the argument bytes by selecting 
the corresponding function bytes. The test results are recorded by 
c hanging the 

How does the machine know which function bytes are to be tested? 



It adds the argument byte to the starting address of the function table. The function byte at the 
resulting address is then tested. 

zero 

The operation contin
ues with the next argu
ment byte being added 
to the table address and 
another function byte 
being selected. 

00 (Binary) which 
is 0 in hex. 

The selected function byte is tested to see if it is 

What happens if the function byte is zero? 

If all of the function bytes selected by the argument bytes are zero, the 
operation is completed by setting the condition code to 

After a "translate and test" instruction, a condition code of 00 would 
indicate: (Circle one. ) 

a. That one of the selected function bytes was zero. 
b. That all of the selected function bytes were zero. 
c. That none of the selected function bytes were zero. 
d. That all of the argument bytes were zero. 

b; A condition code of 00 would indicate that all of the argument bytes had been used in selecting 
function bytes. It would also mean that all of the selected function bytes were zero. It does not 
mean that all of the function bytes in the table are zero. It means that the selected ones were !.ero. 

The "translate and test" instruction is used to examine a data field (the 
argument bytes) for characters with special meaning. The function table 
would again be arranged (as in the "translate" instruction) according to 
the binary sequence of the data code. 

For all characters that do not have a special meaning (non-sig
nificant characters), the function byte location would contain zero. 

For all characters that do have a special meaning (significant 
characters), the function byte location would contain some non-zero 
bit configuration. 

A resulting condition code of 00 would then indicate that the entire data 
field had been examined and that no significant characters were found. 
By significant characters, we mean those with spec ial meaning in a data 
field. 

LOf!,icalOperations 69 



non-zero 

is terminated 

If a character with special meaning (significant character) is found, the 
instruction is terminated. A significant character would be indicated by 
selecting a function byte that was (zero/non-zero). 

_. __ .. -.. _------

If a significant character is found before the entire data field is examined, 
the resulting condition code is 01 and the operation 
(continues/is terminated). 

After a TRT instruction, a condition code of 01 would mean: (Circle one 
of the following. ) 

a. No significant character was found. 
b. All the argument bytes were used and a significant character was 

found. 
c. A significant character was found. 
d. One or more significant characters were found. 

-----------... _._---_ .. _ .. _ .. _-------_._----------------_. __ ..... -_._--------

c; As soon as a sig
nificant character is 
found, the operation 
is terminated without 
testing any more bytes. 

c 

01 

70 Logical Operations 

A condition code of 01 then means th2..t a significant character was found 
and some argument bytes haven't been tested. If the last argument byte 
is significant, the condition code is set to 10. 

After a TRT instruction, a condition code of 10 would mean: (Circle one 
of the following. ) 

a. All argument bytes were used and none located a non-zero function 
byte. 

b. All of the argument bytes were not used. One of them was Significant. 
c. The last argument byte located a non-zero function byte. 
d. All the argument bytes were used. One or lllore were Significant. 

After a "translate and test" instruction, which of the follOwing condition 
codes would indicate that the entire field of argument bytes hasn't been 
examined? (Circle one of the following. ) 

00 
01 
10 

Which of the following condition codes would indicate that none of the 
argument bytes_ had special meaning? (C ircle one of the following. ) 

00 
01 
10 



00 Either a condition code of 01 or 10 will indicate that a significant charac
ter was found. Why then does the programmer need both settings? 

If the code were 01, the programmer would have to execute the TRT instruction again to see if 
the remaining argument bytes contained any characters with special meaning. 

-------------~--------------------- --------------

DECIMAL DATA FIELD IN STORAGE (COMPOSED OF ARGUMENT BYTES) 

A IB I 3 61x I 
The purpose of the TRT instruction is to find significant characters in a 
data field. In the example above, the instruction could be used to find 
the location of commas in a decimal field. It would not make sense to 
know that there is a significant character without knowing where it is 
located. As a result, the TRT does more than just set the condition code. 
The address- of the significant argument byte is placed in bits 8-31 of 
register 1. 

When a TRT instruction results in a condition code of 01 or 10, register 1 
will contain: (Circle one of the following. ) 

a. The address of a function byte. 
b. A function byte. 
c. The address of an argument byte. 
d. An argument. 

Logical OPerations 71 



c; When an argument 
byte which contains 
a significant charac
ter is found, its 
address is placed in 
register 1. If the 
condition code is 00, 
register 1 is 
unchanged. 

Besides placing the address of the significant argument byte in register 1, 
the TRT instruction will also place the non-zero function byte in bits 
24-31 of register 2. The rest of register 2 remaiLns unchanged. 

Given the following TR T instruction, show the resulting condition code and 
the contents of register 1 and 2. 
IN HEX 

LDD 

l' 
01 00 06 

REGISTER 1 

07 I 0 I 800 o I FOO I 
""'--------............----_/ ~---~ ...... ---..-----.,-

--------~I t 

I 09 00 

BEFORE 

FFFFFFFF 

21 I 35 

AFTEH 

16 BE 
BE 

REGISTER 2 OOOOOFOO TABLE 

CONDITION CODE 

OF 
FUNCTION BYTE S 

Register 1 FF000801-----------------.... FF000801 ---....-
Register 2 OOOOOFOF ----~ OOOOOFQ!. I ARG'OMENT BYTE ADDRESS 

Condition Code 01 I I 
UNCtiANGED UNCHANGED 

NON-ZERO 

In the preceding problem: FUNCT I ON BYTE 

The 1st argument byte pointed to a zero function byte (the second byte in the function table). 

The second argument byte pointed to a non-zero function byte (the first byte in the table). 

The non-zero function byte is placed in the low order 8 bits of register 2. 

The address of the argument byte is placed in the low order 24 bits of register 1. The rest of 
registers 1 and 2 remains unchanged. 

The length code indicates a total of 8 bytes. Since a significant character was detected prior 
to using all argument bytes, the condition code is 01. 

72 Logical Operations 



The "translate and test" instruction can be summarized as follows: 

1. The TRT instruction uses the SS format in which the length code 
gives the number of argument bytes less one. 

2. The 1st operand consists of the argument bytes (the field that is to 
be searched for characters that have special meaning). 

3. The 2nd operand consists of function bytes. These function byres 
are pre-arranged according to the binary sequence of the argument 
bytes. The locations in this table that match the special meaning 
argument bytes have non-zero bit configurations. 

4. An argument byte is added to the starting address of the function 
bytes. The function byte at the resulting address is tested for a 
non-zero bit configuration. If it is non-zero, the operation is 
terminated. The address of the argument byte is put into register 1 
and the corresponding non-zero function byte is placed in register 2. 
The condition code is set to 01 or 10, depending on whether or not 
the last argument byte has been translated. 

5. If all tested function bytes are zero, the operation is terminated by 
setting the condition code to 00. Registers 1 and 2 remain unchanged. 

LogicalOperations 73 



74 Decimal Operations 

System/360 Branching, Logical and DeciInal Operations 

Section I: 
Section II: 

• Section III: 
Section IV: 

SECTION III 

Branching Operations 
Logical Operations 
Decimal Operations 
Analyzing Decimal Feature Programs 

LEARNING OBJECTIVES 

At the end of this section, you should be able to do the followi'ng when given 
the mnemonic of any decimal feature instruction. 

1. State instruction length and format. 

2. State location and format of operands. 

3. Determine the result and where it will be located. 

4. State effect on condition code. 

5. State which program checks are possible. 



packed 

Decimal Operations 

This section of your self-study text covers the eight instructions which 
make up the decimal (sometimes called commercial) feature of System/360. 
This feature is optional on models 30, 40 and standard on models 50-70. 
The instructions are as follows: 

Mnemonic Title 

AP Add Decimal 
SP Subtract Decimal 
ZAP Zero and Add 
CP Compare Decimal 
MP Multiply Decimal 
DP Divide Decimal 
ED Edit 
EDMK Edit and Mark 

All of the above instructions use the SS format. As indicated by their 
mnemonics, both operands of the first six instructions must be in the 

(pac ked/ zoned) decimal format. 

The "edit" and "edit and mark" instructions are used to change packed 
data to the zoned format and insert the punctuation necessary for a prjnted 
report. 

-----------------------------------_._---------_._---

Besides the eight decimal instructions, one other instruction will also 
be covered in this section. It is "move with offset." This instruction 
is part of the System/360's standard instruction set. However, you will 
find it easier to understand if it is covered here. 

Before studying the decimal instructions, read the following introductory 
material in the Decimal Arithmetic section of your Principles of Operation 
manual. 

Decimal Arithmetic 
Data Format 
Number Representation 
Condition Code 
Instruction Format 
Instructions (do not read the description of the individual 
instructions) 

A numeric field punched in the standard card code will be brought into 
main storage in the (zoned/packed) format. 

J)ecimal OPerations 75 



zoned Assume that columns 21-25 of an IBM card contain the following punches: 
Col. 21 4 hole punch 
Col. 22 6 hole punch 
Col. 23 3 hole punch 
Col. 24 9 hole punch 
Col. 25 12, 1 hole punches 

Show in hex how the above data field would appear after being read into 
main storage, starting at location 2048. 

BYTE 
2048 

C1 

A zoned decimal data field can be changed to the packed format by means 
of 

a "pack" instruction; You previously used this instruction when you studied the binary operations. 
At that time, you used it to change zoned data to packed data, which was then converted to binary 
with another instruction. 

Show how the following data field would look if it were packed into 3 bytes. 

F4 F6 I F3 I F9 I-~ ZONED 

CI I.J PACKED 

Show how the following data field would look if it were packed into 5 bytes. 

I F41 F~~-I F9 I C1 IZONED 

Lj _____ ......I-...I.~1 PACKED 

76 Decimal OPerations 



00 I 00 I 46 39 1 C 

Notice that the resulting field is extended with high-order zeroes. 

true 

1010, 1111 

At this point you may want to review the "pack" as well as the "unpack" 
instructions. If so, you will find their descriptions in the Decimal 
Arithmetic section of your Principles of Operation manual. 

System/360 carries its negative binary numbers in complement form. 
On the other hand; its decimal numbers (whether positive or negative) 
are always carried in (true/complement) form. 

In the packed decimal format, the sign is represented by bits 4-7 of the 
low-order bytes. Valid sign bit combinations are in the range of __ _ 
to 

The standard minus sign bit combinations are 1101 if operating in 
EBCDIC Mode or 1011 if in ASCII Mode. This is determined by bit 12 of 
the PSW. 

The standard plus sign bit combinations are 1100 for EBCDIC mode and 
1010 for ASCII mode. 

PSW bit 12 is 0 - EBCDIC 
PSW bit 12 is 1 - ASCII 

For the remainder of this section, we will assume that the system is 
always in EBCDIC mode. That is, PSW bit 12 is zero. 

The standard EBCDIC plus and minus sign bit combinations are such that 
a 12-hole card punch or an II-hole card punch over the units position of 
a data field will represent a plus or minus sign respectively. A numeric 
data field that is punched into a card without theiappropriate zone punch 
over the low-order digit will have a sign bit.combination of 1111. That 
is normal for numbers in the EBCDIC code. This sign bit combination 
is considered plus. To summarize, these are the sign codes you can 
expect with the EBCDIC code: 

Plus 

Minus 

{

1100 (12-hole punch over a digit) 
1111 (no zone punch) 

1101 (II-hole punch over a digit) 

Although the remaining combinations between 1010 and 1111 are valid 
sign codes, the preceding three combinations are the ones you will 
more likely encounter. 

Decimal Operations 77 



~CODE L1 L2 

8 
5 

The instructions of the decimal feature use the SS format. In this format 
both operands are in main storage. With the exception of the two "edit" 
instructions, each operand will have its own four-bit length code. That is, 
the packed decimal operands can be from 1-16 bytes long. 

Label the fields of the following SS format. 

B1 01 B2 02 

Given the following SS format. 

lop CODE 800 

The 1st operand starts at byte location 2048 and is 
The 2nd operand starts at byte location 3840 and is 

ADD DECIMAL INSTRUCTION 

FOO 

bytes long. 
bytes long. 

Let's begin our study of the decimal instructions. The first instruction to 
learn is "add decimal." Read its description in the Decimal Arithmetic 
section of your Principles of Operation manual. 

---.------------

"add decimal"; The 
ending letter of P tells 
us that both operands 
must b~ in the packed 
decimal format. 

1st 

subtracted from 

78 Decimal OPerations 

AP is the menmonic for the " " instruction. 

In the "add decimal" instruction, the sum of the 1st and 2nd operands 
replaces the ___ operand. 

Since all packed decimal numbers are in true forIn, the signs of the field 
must be analyzed prior to any addition. If the signs are different (one plus 
and one minus), the 2nd operand is (added to/ sub
tracted from) the first operand. 

Subtraction on a computer is done by means of addition. 



complernent 

~_4 __ ~2_8 __ ~_8_C~ 

was not 

10 

[;L,_.6_"""-4_4_ .... _5_D ....... 

CONDo CODE~ 

Given the following AP instruction, show the resulting contents of the 1st 
operand. 
AP 

FA 3 3 I 0 800 I 0 I FOO J 
------

............. ./'" "- -...,... ........-

r-- ,---
BEFORE 07 

1 
42 

1 
56 7C 

1 
1 04 1 3 t 

1 
72 tC 

AFTER 
1 1 I 

Notice that the sign bits weren't added. 

The 2nd operand 
problem. 

(was/was not) changed by the preceding 

In the preceding problem, two positive numbers were added together. The 
resulting positive sum would set the condition code to __ . 

Given the following AP instruction, show the resulting 1st operand field 
and the condition code. 

FA 0 

1 

800 

--- ............. r----
BEFORE 147 I 44 I 96 

AFTER I I I 

In the preceding problem, two 
were added together and the sum was 

70 

1 

0 804 ] 
..,....." .......... ---~------...,... 

( 
1 01 I 47 80 

CONDo CODE 

(positive/negative) numbers 
(positive/negative) 

Decimal OPerations 79 



negative 
negative 

CONDo CODE -19_ 

CONDo CODE 01 

a 

80 Decimal OPerations 

If the signs of the two operands are different, the 2nd operand is effectively 
subtracted from the 1st operand. Given the following AP instruction, show 
the resulting 1st operand and condition code. 

FA I ~=r2 I 0 BOO I 0 I B03 

-............ ............. ------ ............ ------------............. 

r-- ( 
BEFORE 47 01 9C 31 I 99 9D 

AFTER CONDo CODE 

Given the following AP instruction, show the resulting 1st operand and 
condition code. 

FA I 2 
1 

2 
1 

0 
1 

BOO 
1 

0 
1 

B03 

-- ............. ----- -............ 
........,... ~ 

r-- r 
BEFORE I 32 

1 

76 I.~ [
49

1 
52

1 
7D 

AFTER I 1 1 1 
CONDo CODE 

As you previously learned, subtraction in a computer is usually done by 
means of complement addition. 

Complement addition consists of adding the two operands after: (Circle 
one of the following. ) 

a. Complenlenting one of the operands. 
b. Complementing both of the operands. 

Given the following "add decimal" instruction with operands that have dif
ferent signs, subtract the operands by complementing the 2nd operand and 
then adding. 

FA 

COMPLEMENT OF 
2ND OPERAND 

FINAL RESUL_T 
1 1 

BOO o B03 



Complem.ent of 2nd operand = 68001 

Final Result ; I '5 02 oc 

There was a carry 
out of the high-order 
digit during comple
ment addition. 

It must re-comple
ment the answer and 
change the sign of the 
result field (1st 
operand) . 

EEJ!J--' 
50 47 3: : 

•• .J 

The result of complement addition could be in either true form or in 
complement form. How would the system know that the preceding answer 
was in true form? 

If there were no carry out of the high -order digit, the system would know 
that the answer was in complement form. What must the system do before 
the instruction is completed? 

Given the following "add decimal" instruction with operands that have 
different signs, subtract the 2nd operand from the 1st operand by means 
of complement addition. 

L FA 

COMPLEMENT OF 
2ND OPERAND 

COMPLEMENT ANSWER 

FINAL RESULT 

r--~-------- ............ ----.( ................. ------........-
132 I 76 I ;] 149 

1
52 

1
70 

I -----------I I I :~J -..-11( -----'I 

I I I 1~~-j 

I I I 

Decimal Operations 81 



a. True add 
b. Complement add 
c. True add 
d. Complement add 

COND. CODE 00 

11 

decimal overflow 

Since decimal data is always carried in true form, the signs must be 
analyzed. Given the following signs ~ indicate whether the fields are true 
or complement added. The instruction is "add decimal." (Circle the 
correct answer for each set of signs. ) 

a. 
b. 
c. 
d. 

1st Operand 

+ 
+ 

2nd Operand 

+ 

+ 

True add/Complement add 
True add/Complement add 
True add/Complement add 
True add/Complement add 

Given the following AP instruction, show the resulting contents of the 1st 
operand and the condition code. 

FA I 2 0 800 
I 

0 803 

-....... .......,.. ."., ....... - """""' ----r---- r--
BEFORE 00 

1

67 
1

90 I 167 
1

9C I 
AFTER 

1 
[J COND" CODE 

In the previous problem, there are two equal values with different signs. 
In actual operation, the second operand would have its high order pro
pagated with zeros so that it matches the first operand. These high order 
zeros would be complemented along with the rest of the second operand. 

Since one quantity would be subtracted from the other, the result would be 
zero as indicated by the condition code setting. A zero result is always 
plus. That is the reason for changing the sign of the 1st operand from 
minus to plus. 

The original length of the 1st operand will never be exceeded regardless 
of the result. Carries beyond the 1st operand's high order are lost. 
When there is a high -order carry, the condition code is set to 

A carry out of the high order during an AP instruction is called a 

A decimal overflow ( can/cannot) cause a program interrupt. 

can When will a decimal overflow not cause a program interrupt? 

.82 Decimal Operations 



When the appropriate 
mask bit in the PSW 
is set to zero. 

No; The problem pro
grammer can change 
the program mask 
(PSW bits 36-39) 
whenever he wishes. 

The nUID.ber of sig
nificant digits in the 
2nd operand exceed
ing the length of the 
1st operand. 

d 

d 

Is the "set program mask" instruction a privileged one? 

What else can cause a decimal overflow besides a high-order carry? 

Which of the following can cause a decimal overflow on an AP instruction? 
(Circle ~ of the following. ) 

1st Operand 2nd OQerand 

a. 47 9C 52 OC 
b. 98 1C 22 7D 
c. 47 2C 00 37 6C 
d. None of the above 

Which of the following can cause a decimal overflow on an AP instruction? 
(C ircle one of the following. ) 

a. 
b. 
c. 

1st Operand 

22 
50 
04 

7C 
OD 
7C 

d. All of the above 

2nd OQerand 

00 
50 
01 

90 
OD 
00 

7C 

1C 

Besides a decimal overflow, there are other programming exceptions that 
can occur on an "add decimal" instruction. They are: 

1. Operation - If the decimal feature is not installed on a system, any 
of the eight decimal instructions are considered illegal. 

2. Protection - Since the results of the instruction replace the contents 
of main storage, this instruction is subject to a storage protection 
violation. The protection exception occurs if the storage key does 
not match the protection key in the PSW. 

3. Addressing - Any instruction which addresses main storage for an 
operand is subject to an addressing exception. This exception occurs 
when the address is not available on a particular system (such as an 
address 16000 on an 8K system). 

4. Data - All packed decimal operands are checked for valid digits and 
sign. All of the digit pOSitions must be coded from 0000-1001. The 
sign position must be coded from 1010-1111. 

Decimal OPerations 83 



A data exception 
would be rec ognized 
and a program inter
rupt would occur. 

No; The two keys do 
not need to match if 
the protection key is 
zero. 

An operation exception 
would be recognized 
and a program inter
rupt would occur. 

SP 

a. Complement add 
b. True add 
c. True add 
d. Complement add 

84 Decimal Operations 

What would happen if the "add decimal" instruction were used to add two 
zoned decimal fields? 

Would a protection exception be recognized on an "add decimal" instruction 
if the storage key were 4 and the PSW's protection. key were zero? __ 

The decimal feature is optional on models 30 and 40 of System/360. What 
would happen if an "add decimal" instruction was fetched on a model 30 
which doesn't have the decimal feature installed? 

SUBTRACT DECIMAL INSTRUCTION 

The next instruction to be covered is the "subtract decimal" instruction. 
Read the description of the SP instruction in the Decimal Arithmetic section 
of your Principles of Operation manual. 

The mnemonic for the "subtract decimal" instruction is ---

The operation of "subtract decimal" instruction is similar in all respects 
to the "add decimal" instruction. The only difference is that the AP instruc
tion adds and the SP instruction subtracts. 

Given the following signs, indicate whether the fields will be true or com
plement added on an AP instruction. (Circle the answers. ) 

a. 
b. 
c. 
d. 

1st Operand 

+ 
+ 

2nd Operand 

+ 

+ 

True add/Cornplement add 
True add/Cornplement add 
True add/Cornplement add 
True add/Complement add 

Given the following signs, indicate whether the operands will be true or 
complement added on an SP instruction. (Circle the answers.) 

a. 
b. 
c. 
d. 

1st Operand 

+ 
+ 

2nd Operand 

+ 

+ 

True add/Conlplement add 
True add/Conlplement add 
True add/Conlplement add 
True add/Conlplement add 



a. Complement 
b. True 
c. True 
d. Complement 

Notice that a zero 
difference results 
in a pI us sign. 

Notice that since 
only part of the field 
was zeroed out, the 
sign renlained minus. 

One use of the "subtract decimal" instruction is to zero out a packed 
decimal field. Show the resulting contents of the 1st operand for the 
following SP instruction. 

FB • I 2 2 I 4 I 100 I 4 100 

'- '" ~ ,---
BEFORE I 42 I 10 I 70 

AFTER L. I I 

I SP 

The SP instruction can also be used to zero out the low order of a field. 
Show the result of the following instruction. 

FB I 3 2 
I c 100 I c 101 

'--- -- ,/" 

y---
BEFORE I 41 

1
67 I 42 70 

AFTER I I I 

I What would happen on the following instruction? 

1~ __ F_B ____ .I ___ 3 __ .1 __ 2 __ ~1 __ 3 __ .I _______ 8_0_0 _______ I~_3 __ ~ ______ 8_0_0 _______ lsp 
~-----"../' 

Y our response: 

A data exception would be recognized and a program interrupt would occur. This occurs 
because the 2nd operand's low-order byte contains 21. Bits 4-7 of this byte would be 
recognized as an invalid sign code. 

1ST OPERAND 

2ND OPERAND 

Decimal Operations 85 



1st 
2nd 

No; It is ignored. 

ZERO AND ADD INSTRUCTION 

The next decimal instruction is "zero and add." Its mnemonic is ZAP. 
Read the description of this instruction in the Decimal Arithmetic section 
of your Principles of Operation manual. 

The ZAP instruction will replace the __ (1st/2nd) operand with the 
__ (1st/2nd) operand. 

Is the 1st operand (data) used on a ZAP instruction? 

Does the 2nd operand need to be in the packed deeimal format or can any 
type of data be moved by the ZAP instruction? 

The 2nd operand must be valid packed decimal data or a data exception will be recognized and cause 
a program interrupt. 

No 

They are zeroed out. 

decimal overflow 

86 Decimal Operations 

Do both operands on a ZAP have to be of equal length? 

What happens to the extra bytes of the 1st operand when the 1st operand is 
longer than the 2nd operand? 

If the 1st operand is too short to contain all of the significant digits from 
the 2nd operand, a \viU be recognized. 

Given the following ZAP instruction, show the resulting contents of the 1st 
operand and the condition code. 

F8 I 
2--] 2 I 0 I 

800 o 900 

........... ---r 
BEFORE r;ree I "/0 

AFTER I I I CONO. CODE 



COND. CODE ...!..Q... 

Given the following ZAP instruction~ show the resulting contents of the 
1st operand and the condition code. 

F8 I 4 FOO 0 800 

"" 
,...,,-

---- "" 
,...,,-

r~ 

BEFORE 54 32 1C I I 501 07GJ 
AFTER 

I 
CONDo CODE 

50 I. 07 160 I CONDo CODE ~ 

CONDo CODE 10 

All significant digits 
from the 2nd operand 
were able to fit in 
the 1st operand. 

Given the following ZAP instruction, show the resulting contents of the 
1st operand and the condition code. 

F8 I 4 I 7 I 100 I 7 110 I 
---- .........,.. 

,...,,- ---------------
t r---

BEFORE 17 88 9C I 00 I 00 I 23 
1 

71 OC 

AFTER CONDo CODE 

In the previous problem, the 2nd operand was longer than the 1st operand. 
Why wasn't a decimal overflow indicated in the condition code? 

Given the following ZAP instruction, show the resulting contents of the 
1st operand and the condition code. 

__ F_8 __ .&..1_2 __ .&..1_3_...,j ..... _B_ ..... ___ 1_0_0 ___ ~_~ I 200 .J 
--.. ~-------- ---------------r-- ,---

BEFORE 77 77 70 Ir---: 8 --'----1 76---'--1 5-----'--4 1 3----'C I 

AFTER CONDo CODE 

Decimal Operations 87 



Will a program interrupt occur after the preceding instruction is executed? 

Yes; This is assuming that the decimal overflow mask bit in the PSW's Program Mask is set to 1. 
If the mask bit is set to 0, the program interrupt does not occur. However, since the condition 
code indicates a decimal overflow, the next instruction could be a "branch on condition. " 

Besides the data and decimal overflow exceptions, the ZAP instruction is 
subject to other exceptions. They are: 
and 

COMPARE DECIMAL INSTRUCTION 

------------"--------------"-----------------------

Operation (if the 
decimal feature is 
not installed) 
Addressing 
Protection 

data 

condition code 

equal 

2nd 

The next instruction you will study is the "compare decimal" instruction. 
This instruction makes an algebraic comparison of two packed decimal 
fields. It does not compare alphameric information. The "compare 
logical" instruction which you previously studied Is used for that purpose. 
Read the description of the "compare decimal" instruction in the Decimal 
Arithmetic section of your Principles of Operation manual. 

If the fields addressed by a C P instruction are not in the packed decimal 
format, a ____ exception will be recognized. 

The result of the comparison is recorded in the 

A condition code of 00 would indicate that the operands were 

A condition code of 01 would indicate that the ___ (1st/2nd) operand 
was high. 

A condition code of 10 would indicate that the ___ (1st/2nd) operand 
was high. 

--------------"-----------------

1st 

88 Decimal () perations 

The "compare decimal" instruction 
the operands. 

(does/does not) change 



does not 

00; Both operands 
were equal. 

10; Since the 1st 
operand is positive, 
it is high. 

01; Even though the 
1st operand is 
longer ~ its algebraic 
value is less than 
that of the 2nd 
operand. 

Show the resulting condition code for the following "compare decimal" 
instruction. 

~ • __ F __ 9 ________ 2 ___ � __ 2 __ ~ __ 0 __________ 8_0_0 ______ ~1 __ 0 _________ 8_0_4 ________ ICP 
~-t_______------~~-------~~~-------~-~~~----~ 

79 I '8 I 2C 79 I ' 8 2C 

CONDo CODE 

Show the resulting condition code for the following C P instruction. 

F9 o 100 107 J 

CONDo CODE 

Show the resulting condition code for the following "compare decimal" 
instruction. 

CONDo CODE 

Show the resulting condition code for the following "compare decimal" 
instruction. 

F9 I 4 C 000 I C I 006 ICP 

-----------~.....,-----------",-.~ ,--- ~ 

98 I 22 157 I, 8 I 90 I I 991 99 I 99 90 

CONDo CODE 

Decimal OPerations 89 



01; The numeric value of the 1st operand is greater; however, both operands are negative. Alge
braically, a small negative number is greater than a large negative number as shown below. 

LOW ------------------------- HIGH 

MINUS PLUS 

54 3 2 0 2 3 4 5 
L--~I~ __ ~I ____ ~I~ __ ~ __ ~I ____ ~ ____ .I _____ ~I ____ ~I __ ~I 

10; The 1st operand 
is less negative 
and therefore 
algebraically greater. 

multiplicand; It is 
the 1st operand. 

a. Multiplicand 
b. Multiplier 

90 Decimal Operations 

Show the resulting condition code for the following "compare decimal" 
instruction. 

F9 I 2 I 2 I 0 I FOO 0 FOB 

~-- ............. 

~ ( 
----.........-

I 01 I 23 I ;] 198 I 76 50 

CONDo CODE 

MULTIPLY DECIMAL INSTRUCTION 

CP 

You are ready to study the "multiply decimal" instruction. Its mnemonic 
is MP and like the other decimal instructions, it operates with packed 
decimal data. Before reading the description of this instruction, let's take 
a few simple examples. 

In the MP instruction, the 1st operand is the multiplicand. The 2nd oper
and is the multiplier. As with most instructions, the product will replace 
the (multiplicand/multiplier). 

Given the following MP instruction, identify the multiplier and multiplicand. 

FC I 3 I 2 I 0 I FOO I 0 FOB 

-- --.......- ,.../ --- ............. ,....,.... 

r- ( 
00 I 00 I 11 2C E.I 01 loc I 

A. B. 

For the preceding MP instruction, show the resulting contents of the multi
plicand. 



II I --- The Product ~ + 112 
~,_' ...... _'_2 ___ 0_C __ . .....--- ~ X + 10 

Like signs give a 
positive product. 

+ 1120 

Show the resulting product for the following MP instruction. 

FC o 4 '00 41 20~ 
~------- ---t~ ---

BEFORE 09 I 90 I ~ 
AFTER 

1 I 

~ __ F_C __ ~ ___ 3 __ ~_2 __ ~I ___ 0 __ 1~ _____ 8_0_0 ______ ~_0 __ ~ ______ 8_0_4 ______ ~IMP 
~------(~--_./' 

BEFORE 0, I 07 1 32 10 r-0--'~1--2-3~~4-0~ 

AFTER 1 1 

Can the resulting product for the above MP instruction fit into the multi
plicand field? 

No; The rule of thumb is that the number of digits in the product is equal to the sum of the numb('r 
of significant digits in both operands. 

To prevent the product from overflowing the multiplicand field on a 
"multiply decimal, " the System/360 has the following restriction on the 
multiplicand. 

The number of high-order zeroes in the multiplicand must be at 
least equal to the number of digits in the multiplier. This includes 
high-order zeroes in the multiplier. For example: 

If the multiplier is 1 01 I. 23 140 
• there must be 5 high-

order zeroes in the hlUltiplicand such as: 

I 00 1 00 I 01 I 07 I 32 1,0 

Read the description of the "multiply decimal" instruction in the Decimal 
Arithmetic section of your Principles of Operation manual. 

Decimal Operations 91 



data; Because the 
number of high-order 
zeroes in the multi
plicand is less than 
the size of the multi
plier. 

The multiplier must 
be s ho rte r than the 
multiplicand and 
cannot have a length 
code greater than 7 
(15 digits and a sign). 

92 Decimal Operations 

Fe 1-0 2 1 ° 800 ._0_ ..... ___ 8_0_4-___ ..11 

~.-------(~-_./ 

B.07 [ 32 I, 0 I --1-o....;..,--...1-2-3---,1r--4-0----. 

The above MP instruction will result in a 
program interrupt. 

exception and cause a 

What must be done to prevent a specification exception on an MP instruc-
tion? ----,----------------

One problem that is often encountered after a multiply operation is the 
placement of the decimal point. For instance, 0001120C multiplied by 
00010C equals 0011200C, However, suppose these numbers represented 
dollars and cents, such as: 

$ 11. 20 
$ .10 

nooo 
1120 

$1. 1200 

As you can see, the decimal point was shifted by the multiplication. 

What is usually necessary is shifting the product to the right in order to 
reestablish the proper place for the decimal point. There are no "shift" 
instructions for the storage-to-storage operations. However, the "move" 
instructions (which were covered under Logical Operations) can be used to 
effectively shift storage data. 



In our previous example, the product had to be shifted two places to the 
right in order to maintain the decimal point. For instance: 

00011. 20C 
x 0.10C 
001. 1200C 

The above product really should be like this: 00001. 12C. This can be 
accomplished by use of the "move numerics" (MVN) instruction followed 
by a "zero and add" (ZAP). See the example below. 

PROGRAM TO MULTIPLY AND TO CORRECT THE DECIMAL POINT 

MP 

FC 3 o 800 o 

MVN 

D2 00 o 802 o 803 

ZAP 

F8 2 o 800 o 800 

STORAGE .. CONTENTS BEFORE EXECUTION OF THE ABOVE INSTRUCTIONS 

I 00 01 12 OC 

2048 

I 01 I OC 

2052 

STORAGE CONTENTS 

AFTER MP [.00 I 11 20 OC 

2048 

AFTER MVN I 00 I 11 2C OC 

2048 

AFTER ZAP I 00 I 00 11 2C 

2048 

Any time a packed decimal field is to be shifted an even number of places 
to the right, the MVN instruction can be used to place the sign next to the 
new low-order digit. As shown previously, the packed decimal field can 
then be shifted to the right by use of the ZAP instruction. 

Decimal Operations 93 



To right shift a packed decimal field an odd number of places, the "move 
with offset" instruction can be used. You haven't studied this instruction 
yet. The following is an example of how the "move with offset" (MVO) 
instruction works. 

3 3 o 800 -EI. ___ 8_0_4 ___ ...I 

1ST OPERAND BEFORE 86 76 54 3C 2ND OPERAND 45 67 89 01 

~____________~ I 
f 

I 
1ST 9PERAND)AFTER 56 78 90 lC 

~RESUL T 

Note that the 2nd operand replaced the 1st operand. However the 
sign of the 1st operand (rightmost four bits) was left undisturbed. 
Now let's see how the MVO instruction can be used to effectively 
right shift a packed decilnal data field an odd number of digit places. 

MVO L1 L2 
1~---F-'--~I--;~--~1--0--~------8-0-0------~-0--~------8-0-0----~ 

BEFORE 2048 00 54 to 
~ 

7C 

~ 
~ 

AFTER 2048 00 00 05 4C 

Notice that this instruction does not disturb the sign of the 1st operand. By 
offsetting each group of four bits in their bytes, an effective shift of an odd 
number of places is accomplished as the 2nd oper:md is moved into the 1st 
operand. 

MOVE WITH OFFSET INSTRUCTION 

---------------------------------------------------------

94 Decimal Operations 

Read the description of the MVO instruction in the Decimal Arithmetic 
section of your Principles of Operation manual. 

Given the following MVO instruction, show the resulting contents of the 1st 
operand. 

L.Ft 3 I 2 0 800 I oj 800 <=J 

BEFORE 2048 I 00 I 54 I 10 I 7C 

AFTER 2048 I I I I 



~,_)5~ __ 4_1 ____ 0C __ ~ 
Is the data moved by the MVO instruction checked to see if it is valid 
packed decimal data? 

No; You have seen it being used to right shift packed decimal data an odd number of places. How
ever, any type of data can be moved by this instruction. 

Is the MVO instruction part of the System/360 decimal feature? 

No; The MVO instruction is part of the standard instruction set. 

Go to the Appendix in the Principles of Operation manual. Find the List of Instructions by Set and 
Feature. You will see the instructions that make up the standard instruction set and also the ones 
that make up the decimal feature. 

So far you have seen how to right shift packed decimal data an even number 
of decimal places by using an MVN instruction followed by a ZAP. You 
used an MVO instruction to right shift an odd number of decimal places. 
How about left shifting packed decimal data? 

Left shifting of decimal data is a little more complex. For instance, 
suppose the follOwing data field is to be shifted two places to the left. 

t=.147 1,2 I 7C I 
After being shifted it should look like this: 

I 47 I 12 I 70 I .~ 

Decimal Operations 95 



--- --

96 Decimal Operations 

The preceding shift can be done by the following three instructions: 

I 02 02 0 800 0 801 I MVC 

[ F1 00 0 803 0 FOO I MVO 

94 FO 0 802 I NI 

LOCATION 2048 I 00 I 47 12 7C 

LOCATION 3840 B 
-- -- -- --

After executing the MVC (Move Characters) instructions, locations 2048-
2051 would look like this: 

2048 - 2051 7C 

In the preceding MVC instruction, locations 2049-2051 were moved a byte 
at a time into locations 2048-2050. The fields were processed in a left to 
right direction. 

The 2nd instruction (MVO) would take the constant of zero from location 
3840 and move it into the high order of location 2051. Since the length 
codes are zero, only location 2051 is changed. The result would look like 
this: 

2048 - 2051 

The third instruction (NI) is an "and immediate" instruction. The immedi
ate operand (FO) is ANDed with location 2050 as shown below: 

Immediate Operand 
Location 2050 
Result 

1111 0000 
0111 1100 
0111 0000 

Locations 2048-2051 now look like the desired result: 

2048 - 2051 I 47 I,: I 70 I OC I 
The preceding series of instructions is only one way of left shifting an 
even number of places. 



02 02 0 800 I 0 802 I MVC 

F1 10 0 803 I 0 FOO I MVO 

94 FO 0 802 .JNI 

LOCATIONS 2048 - 20521 00 I 00 I 47 I 12 I 7~ 
LOCATIONS 3840 B 
Given the above sequence of instructions, how many places was the data 
field shifted? 

4; As shown below: 

E:Go 12 I 7C] BEFORE 

~_2.....,j ..... 7_0_",--_0_0.1 OC] AFTER 

47 

Decimal Operations 97 



98 Decimal Operations 

Now let's shift an odd number of places: 

BEFORE 00 00 47 I 12 
1

7CJ 
AFTER 04 71 27 1 00 1 oc ] 

To achieve the above result requires an effective shift of three places. 
This can be accomplished as follows: 

~~ ___ F __ 1 __ ~1 __ 3 __ ~1 __ 4 __ .I ___ 0 __ ~I _______ 8_0_0 ______ .I __ ~.·_)_~~ ______ 8_0_0 _______ 1 MVO 

_[ F_1----...I...o-.[,---'--I~~1_u-:l"""'__·-u~8_03 -=---1 __ 0 ~C_F_OO --.-..1 MVO 

LOCATIONS 2048 - 20S2 [:0 1 00 

LOCATION 3840 

After executing the 1st MVO instruction, locations 2048-2052 would look 
like this: 

After executing the 2nd MVO instruction, locations 2048-2052 would look 
like this: 

~41 71 I~:rocJ 
The preceding is the desired result. 



Show the resulting contents of locations 2048-2052 for the following se
quence of instructions. 

Ft 4 4 
1 

0 800 0 800 IMVO 

Ft 0 0 
1 

0 804 0 FOO IMVO 

LOCATIONS 2048 - 20S21 00 I Ot 47 23 9C 

LOCATION 3840 G 
LOCA,TIONS 2048 - 20S21. I I .J 

~,_'_4~ __ 7_2~ __ 3_9 __ .. _0_C __ 

1st 
2nd 

You have seen some ways of shifting packed decimal data. By proper use 
of the "move" instructions, you should be able to come up with other 
methods. For now, let's continue on to the "divide decimal" instruction. 

DIVIDE DECIMAL INSTRUCTION 

You are now ready to study the "divide decimal" instruction. The following 
is a "divide decimal" instruction: 

FD L1 L2 
1 

81 
1 

Dt 
1 

82 
1 

02 ] 
t ---- ----- --- ----- --------""'" 

HEX LOCATION LOCATION 
OP OF OF 

CODE DIVIDEND DIVISOR 

As you can see above, the dividend is the (1st/2nd) operand and 
the divisor is the ___ operand. 

As in the other instructions you have studied, the generated effective 
storage addresses refer to the (high/low) order byte of the data 
fields. 

Decimal Operations 99 



high 

packed 

16 

31 

+2560 
+16 

The mnemonic for the "divide decimal" instruction is DP. This indicates 
that the divide instruction operates on (packed/zoned) decimal 
data. 

FD F 6 o 800 810 

The above DP instruction has a dividend that is ___ bytes in length. 

Sixteen bytes of packed decimal data can contain digits and a sign. 

FD I 3TToI---=---r-:]---- 804 

I 00 I 02 I 56 loci 01 B 
2048 

Given the above DP instruction, a value of ____ will be divided by a 
value of ---

The DP instruction will have as a result both a quotient and a remainder. 
These two results will be in the packed decimal format and will replace 
the dividend. The quotient will replace the high order and the remainder 
will replace the low order of the dividend. The following example will 
illustrate this. 

I FD 3 0 800 I o~ 804 DP 

--- "'-"" 
.,.-/' 

~ 

BEFORE 00 I 02 I 56 I OC 01 B 
AFTER 16 

I 
oc 

I 
00 

I 
oc 01 EJ 

~ ~ ~ 
QUOTIENT REMAINDER UNCHANGED 

NOTE: The remainder is always the same size as the divisor! 

._--------------_._-_._----

100 Decimal () perations 



~_.C ____ O_O _____ O_C~ 

di vis or or 2nd 
operand 

remainder 

dividend or 1st 
operand 

divisor 

decimal divide 

Given the following "divide decimal" instruction, show the resulting con
tents of the dividend field. 

FD 3 I 0 I 800 I 0 804 I DP 

"- ........... .......... 

/ 
BEFORE I 00 I 01 I 44 OC 01 2C 

t 
LOCATION 
2048 

~ 
AFTER 01 2C 

The remainder is placed in the low order of the dividend field and always 
contains the same number of bytes as the 

The quotient is placed in the dividend field just to the left of the 

Read the description of the "divide decimal" instruction in the Decimal 
Arithmetic section of your Principles of Operation manual. 

The address of the quotient of a DP instruction will be the same as the 
original 

The size of the quotient will be equal to the dividend size minus the 
size. 

If the quotient cannot be fitted into its area, a 
exception will be recognized. 

When a decimal divide exception is recognized, the dividend field will 
(remain unchanged/contain part of the quotient). ------------------------

Decimal Operations 101 



remain unchanged A Decimal Divide exception can be determined by aligning the leftmost 
digit of the divisor (2nd operand) with the next to leftmost digit of the 
dividend (1st operand). The divisor should be greater than that part of 
the dividend with which it is aligned. 

For example: 

The following operands would result in a decimal divide exception 
because the divisor is not greater than the aligned section of the dividend. 

1st operand (dividend) 
2nd operand (divisor) 

00 16 OC 
o 16 C 

The following operands would NOT result in a deci.mal divide exception 
because the divisor is greater than the aligned section of the dividend. 

1st operand (dividend) 
2nd operand (divisor) 

00 15 9C 
o 16 C 

FD [2--1 o 1 800 0 803 

The above instruction 
divide exception. 

(would/would not) result in a decimal 

Would; This is because the high-order divisor digit (5) is not greater than the two high-order digits 
of the dividend (06). 

102 Decimal OPerations 

How can you be sure that the quotient can't be fitted into its area unless 
the preceding rule is met? Let's work out the problem. 

11 
566 ) 06666 

;)66 
1006 

566 -----
4:40 

QUOTIENT~ --.... '----+- REMAINDER 

The original dividend was three bytes in length. The remainder of + 440 
will take up two byte s. The quotient of + 11 cannot be fitted into the 
remaining byte. 

Of course, no division takes place when the decimal divide exception is 
recognized. The System/360 will check to be sure that the divisor is 
greater than the aligned section of the dividend. If not, division does 
not take place and a program interrupt occurs. 

---_.-_._. 



~9 199 I 99 OC 

Given the following DP instruction, 
dividend. 

show the resulting contents of the 

FD 4 I 0 800 I 0 805 

~-------~ --------~ ~-...,...-

BEFORE 09 1 99 OC 99 9C 

AFTER 99 9C 

In the preceding problem, the divisor was not greater than the aligned section of the dividend. 
A decim.al divide exception was recognized, the dividend was left unchanged, and a program 
interrupt was taken. 

7 

The divisor is not 
shorter than the 
dividend. 

Another programming rule that applies to the "divide decimal" instruction 
is this: 

The divisor must be shorter than the dividend and cannot exceed 
eight bytes. That is, L2 < L1 and L2 < 8. 

FD 9 8 o 800 o 810 

The above DP instruction will result in a specification error because the 
divisor's length code is greater than __ . 

FD 3 3 o 800 804 

The above DP instruction will result in a specification error because 

Let's summarize the "divide decimal's" data fields. 

10 The Dividend 
a. The 1st operand is the dividend. 
b. The dividend has a maximum size of 31 digits and a sign. 
Co The dividend will be replaced by the quotient and remainder. 
d. The dividend must have at least one high-order zero digJt. 

2. The Divisor 
a. The 2nd operand is the divisor 
b. The divisor has a maximum size of 15 digits and a sign. 
c. In all cases, the divisor must be shorter than the dividend. 

(Frame continued on next page.) 

Decimal Operations 103 



104 Decimal Operations 

3. The Remainder 
a. The remainder replaces the low order of the dividend field. 
b. The remainder has the same length as the divisor. 
c. The sign of the remainder is the same as the sign of the 

original dividend. 

4. The Quotient 
a. The quotient replaces the high order of the dividend field. 
b. The size of the quotient is equal to the dividend size minus 

divisor size (L1 - L2). 
c. Since the quotient is placed in the high order of the divide 

field, its address will be the same as the dividend's. 
d. The sign of the quotient follows the rules of algebra. 

(1) Like signs = + 
(2) Unlike signs = -

5. Decimal Divide Exception 
a. This exception indicates that the quotient would be too large to 

be fitted into its allotted field. 
b. This exception is recognized whenever the divisor is not 

greater than the aligned section of the dividend. It is for this 
reason that the dividend must have at least one high-order zero 
digit. 

c. The decimal divide exception is recognized prior to any division. 
The dividend field is left unchanged and a program interrupt is 
taken. 

6. Specification Exception 
This exception is recognized on a "divide decimal" instruction whenever: 
a. The divisor is longer than eight bytes. 
b. The dividend is not longer than the divisor. 

EDIT INSTRUCTION 

The two remaining instructions that make up the decim.al feature are the 
"edit" ins truction and the "edit and mark" instruction. The purpose of 
these edit operations is to produce easy-to-read docUlnents by inserting 
the proper punctuation into a data record. The data to be edited is called 
the source field and must be in the packed decimal fonnat. Consider the 
following source field: 

I 00 1'2 I 49 I 07 1 ,0 I 7C ] 

SOURCE FIELD 

In its present format, the preceding field cannot be printed. The data 
must be in EBCDIC before being printed. 

One of the functions of the edit operation is to change a source field from 
the format to the decimal format. 



packed 
zoned 

source 

If changing from the packed to the zoned format were all that was nece
ssary to produce a legible report, the "edit" instruction wouldn't be 
necessary. The "unpack" instruction, which you previously studied, 
would be sufficient. For instance, if the previous packed decimal 
operand were changed to the zoned format, it would look like this: 

PACKED I 00 I 12 49 07 10 7C 
I 

ZONEDI FO I FO I F 1 I F2 I F.4 I F9 FO F7 I F1 I FO I C7 ] 

If the above zoned decimal field were printed, it would look like this: 

o 0 1 2 4 9 0 7 lOG 

By examining the printed document, you could tell by looking at the low
order character (G) that it was a positive number with a low-order digit 
of 7. However, the printed document is still not too legible. Perhaps the 
number represents money. It would be better if it could look like this: 

$1, 249, 071. 07 

As well as other editing, this would require inserting the commas and 
decimal points in the right places. This is another function of the edit 
operations. 

The edit operation will change a packed decimal field which is called the 
field, into the zoned format and insert the necessary punctu

ation characters. 

The edit operation consists of moving the source field into a pattern field. 
The pattern field will be made up of EBCDIC characters that will control 
the editing. The final edited result will replace the PATTERN field. 

SOURCE FIELD 
IN PACKED 
DECIMAL 

During an edit operation, the 
the field. 

EDITING 

PATTERN FIELD 
IN EBCDIC 

t 
FINAL RESULT 

IN EBCDIC 

'-----.~ 
field is edited under control of 

Decimal OPerations 105 



source 
pattern 

EBCDIC 

pattern 

storage 

The source field contains packed decimal data whiJe the pattern field 
contains characters. 

The edited result will replace the field. 

The pattern to be used is normally kept in storage as a constant. It will 
be moved into a storage work area prior to the edit operation. The "move 
characters" instruction can be used for this purpose" 

Although the pattern field is replaced (destroyed) by the edited result, the 
original pattern is retained as a constant in another location of 

The "edit" instructions use the SS format as shown below: 

lOp CODE L I 
t 

EDIT - DE 
EDIT AND 
MARK - DF t 

LENGTH OF 
PATTERN FIELD 

B1 

-- I D1 I B2 D2 

--........- ----- --. ----
LOCATION OF LOCATION OF 

PATTERN FIELD SOURCE FIELD 

I 
-----

As you can see above, the source field is the ___ (1st/2nd) operand. 

2nd Like most instructions, the results of the edit operation replace the 1st 
operand which is the field. 

pattern The length code refers to the pattern field which can be a maximum of 
__ bytes in length. 

256 The characters in the pattern field determine the editing that will take 
place. The high-order (leftmost) character in the pattern field is known 
as the fill character. For many edit operations, the fill character would 
be an EBCDIC blank (01000000). 

leftmost 
pattern 

The fill character is used in the edit operation to replace certain charac
ters in the pattern field. You will see this more clearly later. 

The fill character is the ______ byte in the field. 

Any of the 256 possible EBC DIC combinations can be used as the fill char
acter. However, in many edit operations the fill character will consist 
of an EBCDIC 

blank; For explanatory purposes, a blank will be represented by a small b in a field such as 
JOHNbSMITH. Of course, blanks won't be printed out. 

106 Decimal Operations 



Besides the fill character, there are three more characters in the pattern 
field that have special meaning. They are: 

1. The Digit Select Character. 
2. The Significance Start Character. 
3. The Field Separator Character. 

These three characters can appear anywhere in the pattern field. 

The digit select character has the following bit structure: 00100000. 
There is no character symbol for this combination. It is normally repre
sented by a small "d" just as blanks are represented by a small "b. " 

When a digit select character is encountered in a pattern field, it is 
usually replaced by a digit from the source field. If the source digit is 
a high-order zero, the fill character is used instead to replace the digit 
select character. By using a blank as the fill character, high-order 
zeroes can be blanked out. 

If an asterisk is used as the fill character, asterisk protection for pay
checks can be achieved. 

What characters can replace a digit select character in the pattern field? 
1. 
2. 

1. A digit from the source field. 
2. A fill character. 

What symbol is used to denote a digit select character? 

d; Actually, the binary bit of a digit select character is 00100000 or a hex 20. There is no charac
ter for this combination on any of the System/360 printers. The "d" is used to represent this 
combination in your textbooks. 

Decimal Operations 107 



pattern 
field 

blank 
digit select 

packed 

fill 

blank 

digit select 

Let's look at an example of the use of the fill character and the digit select 
character. 

SOURCE PIELD I 0 0 I, 0 12 6 I ? 

/I\\~ 
IN PACKED DECIMAL 

FORMAT 

PATTERN FIELD 
BEFORE EDIT I 

-T~ BROUGHT OOT 

d d I d I d I d d ~~O~HI~T~~~GE 
. . . . - WORK AREA 

PATTERN FIELD 8-.-"b I I ~ ZONED FORMAT 
AFTER EDIT b 0 2 6 READY TO BE 

PRINTED 

--~--------------~--~-

Prior to the "edit" instruction, the pattern was brought out of the constant 
storage area and put in the p _f __ _ 

The leftmost position of the pattern field contains the fill character which 
in this example is a The remaining positions of the pattern field 
contain characters. 

The source field contains high-order zeroes which IYlUSt be edited out. 
This field is in the (pac ked/ zoned) format. 

The "edit" instruction looks at the second position of the pattern field and 
finds a digit select character. It then looks at the first chari1cter in the 
source field and finds a nonsignificant (zero) digit. 

The digit select character is replaced by the _f __ _ character (blank). 

Next, the "edit" instruction looks at the third position of the pattern field. 
The previous operation is repeated. The third positi.on of the pattern field 
ends up with a (blank/digit). 

The "edit" instruction looks at the pattern field's fourth position, finds 
another character which tells it to look at the source -----
field. A significant digit is found and moved into the pattern field. 

The pattern field now contains blank-blank-blank-l. The fact that a sig
nificant digit was found is remembered so that the rest of the source field 
(including zeroes) can be put into the pattern field. 

108 Decimal Operations 



The S trigger 

o 

the fill character 

the digit from the 
source field 

Since a digit select character is replaced by a source digit or the fill 
character, the system needs some way of knowing which of the two to 
choose. This is determined by a remembering device called the S 
trigger in the system's circuitry. 

The S trigger can be set to one of two states: 0 state or 1 state. 

When set to 1, the S trigger indicates that the digits from the source field 
are significant. As a result, the digit select characters in the pattern 
field are replaced with the digits from the source field. 

At the beginning of the edit operation, the S trigger is set to O. As long 
as the S trigger is 0, the digit select characters in the pattern field are 
replaced with the fill character. 

What determines whether a digit select character is replaced with a source 
digit or with the fill character? 

At the beginning of the edit operation, the S trigger is set to _ (1/0). 

When the S trigger is set to 0, a digit select character in the pattern field 
is replaced with 

When the S trigger is set to 1, a digit select character in the pattern field 
is replaced with 

Both the source field and the pattern field are processed left to right. a 
character or digit at a time. Each time the digit from the source field 
replaces a digit select character, the 4-bit digit has the proper EBCDIC 
or ASCII zone bits inserted. PSW bit 12 determined whether the EBCDIC 
or ASCII zone bits are inserted. For the purposes of this text, we will 
assume that the system is in EBCDIC mode. 

The S trigger is set to 0 at the beginning of the edit operation. It is set 
to 1 by one of two methods: 

1. A significant (non-zero) digit from the source field. 

2. A significance start character in the pattern field. 

The significance start character has a bit pattern of 00100001 (hex 21). 
This bit pattern has no character symbol. The symbol for the left 
parenthebis is used to represent a significance start character such as "(". 

Decimal Operations 109 



Blank = "b" 

Which symbol, "d," "b," ")," or "(," is used to represent each of the 
following? 

Blank = ---
Significance Start Character = __ _ 
Digi t Select Character = __ _ 

Signi.ficance Start Character = "(" 
Digit Select Character = "d" 

What two characters can set the S trigger to 1 ? 
1. 
2. 

1. A non-zero digit from the source field. 
2. A Significance start character in the pattern field. 

11 0 Decimal Operations 

A significance start character is replaced (as was the digit select charac
ter) by either a digit from the source field or by the fill character. 
For example: 

SOURCE FIELD 
(TWO DIGITS/ BYTE) 

'pATTERN FIELD 
l.ONE CHARACTERI BYTE) 

~ESULT 
l. ONE CHARACTER! BYTE) 

BEGINNING OF CYCLE r 
5 TRIGGER ~'-o~-o7O"o--,-;r-,---,=-,--,--:;or-'--·121--:' ;r--,--, ::r-? ____ 

t LSET BY SIGNIFICANCE 
END OF CYCLE -------'- START CHARAC'TE R 

The edit operation begins by examining the fill character. If it is not a digit 
select or a significance start character, it is left in place in the pattern 
field. Then the next pattern character is examined. In the previous ex
ample, this was a significance start character. The high-order source 
digit is then examined. Because the source digit is zero and the S trigger 
is 0 (at this time), the Significance start character is replaced with the 
fill character. However, the significance start character does set the S 
trigger to 1 so that all subsequent source digits are Significant. The re
maining pattern characters in our example are digit select characters 
which are replaced with source digits. 



b b b 1 2 4 

Given the 1st few characters of a source and pattern field below, show the 
resulting contents of the pattern field after editing. 

00 12 49 07 10 
1

7C I SOURCE FIELD 

b d d d d I d? 
PATTERN FIELD 

I ? RESULT 

In the previous problem, there was no significance start character. As a result, the two high-order 
zeroes from the source field did not go into the pattern field. The fill character was used instead. 
Once significance was started, the remaining pattern characters were replaced by source digits. 

Once significance is started, the S trigger will remain on until one of two 
things happens: 

1. The sign of the source field is examined and is plus. 
2. A field separator character (00100010) is recognized. 

The field separator character is used when two or more packed decimal 
source fields are to be edited into a pattern with one instruction field. 
We'll examine this later. For now, let's discuss the handling of the sign. 

Since the sign is in the right half of the source field's low-order byte, it 
can be examined at the same time as the low-order digit is examined. 
The sign itself is skipped over but, if plus, the S trigger is set to zero. 
The following will illustrate this. 

pOURCE FIELD 
~2 DI~ITS/ 
BYTE) 

b d d d d 

07 10 7C 

d d d d 

PATTERN FIELD (, CHARACTER/BYTE) 

RESULT 

d d d 

Decimal OPerations 111 



When a pattern character is examined and is not one of the three special 
control characters, it is left in place if the S trigger is 1. Otherwise, it 
is replaced by the fill character. 

The source field is not examined. The usual method of indicating a negative 
quantity in a printed report is with the letters "CR." If we take another 
look at the previous example and add the CR symbol, this would be the 
result: 

SOURCE I 00 12 49 1 07 1 10 7C 16 BYTES 14 BYTES lIE 

PATTERN 

b d I d 1 d 1 d d 
1 

d 1 d 1 d~1 d 1 d 1 C I R 
1 

RESULT 

b b 
1 b 1,1 2 

4 1 9 1 0 1 7[.1 0 l=:Ib 
1 

b ]-

Because the plus sign set the S trigger to 0, the remaining pattern charac
ters (CR) were replaced by the fill character. If the sign of the source 
field had been minus, the "CR" would have been left in the pattern field. 

Let's take the following source field and produce the edited result. 

Source G -1 '2 1 49 1 07 1 10 I~ 
Edited Result bbb1, 249, 071. 07bCRb 

The original pattern would look like this: 

Pattern bddd, ddd, ddd. ddbCRb 

Notice that the commas, decimal point, and "CR" were left in place. This 
occured because the S trigger was set to 1 and rem"ained there. 

Given the following, show the edited result. 

Source FI'417' lac I 
Patte rn b d d , d d d . d d b C R b 

Result 

b b b b 1 47. 1 3 b b b b 

Of course, the blanks in the previous answer won't print in the final printed report which would look 
like this: 

147 . 1 3 

112 Decimal Operations 



c, d, e 

b, d 

fill character 
source digit 

fill character 
s ourc e digit 

fill character 

fill character 
left in place 

Read the description of the "edit" instruction in the Logical Operations 
section of your Principles of Operation manual. 

----- ~- -

Which of the following can set the S trigger to O? (Circle one or more.) 
a. Digit Select Character 
b. Significance Start Character 
c. Field Separator Character 
d. Beginning of edit operation 
e. Plus sign in source field 

Which of the following can set the S trigger to 1? (Circle one or more.) 
a. Digit Select Character 
b. Significance Start Character 
c. Minus sign in source field 
d. 1st non- zero character in source field 
e. Field Separator Character 

A digit select character in the pattern is replaced by the 
if the S trigger is 0 or by a if the S 

trigger is 1. 

A Significance start character in the pattern is replaced by the 
if the S trigger is 0 or by a if the S 

trigger is 1. 

A field separator character always sets the S trigger to 0 and is replaced 
by the 

Characters in the pattern other than the control characters are either 
replaced by the if the S trigger is 0 or are 

Show the results of the following "edit" instruction. 

ED 

C>E 

1st Operand 
2nd Operand 
Result 

oc o 800 

bdd, dd{. ddbCR 
o 7 947 6 9 C 

o 900 ~ 

(characters) 
(digits and sign) 

Decimal Operations 113 



b b 7 , 947 . 6 9 b b b 

Show the result of the following "edit" instruction. 

1st Operand 
2nd Operand 
Result 

oc 800 o 

b d d dd . ddbCR 
0000069D 

900 

(characters) 
(digits and sign) 

---------------_ .. _---------------------_. __ ._----------

bbbbbbb.69bCR 

-----------------_. __ ._---------------------, 

Referring to the previous problem, show the result for the following 
pattern. 

Pattern 
Result 

bdd, ddd. ddbCR 

b b b b b b b b 6 9 b C R; Note that a significance start character should be in the pattern to 
protect the dec imal point in case the amount is less than a dollar. 

Show the result of the folloWing "edit" instruction. 

1st Operand 
2nd Operand 
Result 

oc o 800 

*dd dd(. ddbCR 
o 0 0 0 0 6 9 C 

900 

* * * * * * * . 6 9 * * *; Note that the use of an asterisk as the fill character will provide 
asterisk c heck protection. 

114 Decimal Operations 



The following "edit" instruction will edit multiple adjacent source fields. 
Show the result. 

ED 

I DE 

1st Operand 
2nd Operand 
Result 

13 

IN HEX 

o 800 o 900 

bdd(. ddbCR)ddd. ddbCR 
01776 COO 000 D 

b b 1 7 . 7 6 b b b b b b b b b b b b b; Note that the field separator character set the S trigger 
to zero. No significant digits were found in the 2nd source field. As a result, the pattern charac
ters were replaced by the fill character (blanks). 

"edit and mark" 

Up to this point you have seen that the "edit" instruction can be used to: 

1. Eliminate high-order zeroes 
2. Provide asterisk protection 
3. Handle sign control (CR) 
4. Provide punctuation 
5. Blank out an all-zero field 
6. Edit multiple adjacent fields via the field separator character 
7. Protect the decimal point by use of the significance start character. 

This character can also be used to retain high-order zeroes when 
desired. 

EDIT AND MARK INSTRUCTION 

The "edit" instruction makes no provision for using a floating currency 
symbol (such as $) as part of the editing process. For this edit feature, 
the" edit and mark" instruction must be used. Read the description of 
the "edit and mark" instruction in the Logical Operations section of your 
Principles of Operation manual. 

ED is the mnemonic for the "edit" instruction while EDMK is the mnemonic 
for the " __ _ _ ___ " instruction. 

Is there anything that the ED instruction can do that the EDMK instruction 
can't do? (yes/No) 

Decimal Operations 115 



No What, then, is the difference between the ED and ED:MK instructions? 

The EDMK instruction causes the address of the 1st significant digit of the result to be placed in 
general register 1. 

Yes; However, the 
address in register 1 
will only pertain to 
the last source field 
edited. 

No address is placed 
in register 1. 

No; The symbol must 
be inserted by subse
quent instructions. 

Can the EDMK instruction be used to edit multiple fields? 

What happens on an EDMK instruction when significance is started by a 
significance start character? 

Does the E DMK instruction insert the floating currency symbol? 

The address placed in register 1 is: (Circle one of the following.) 
a. The location where the currency symbol (such as $) should be inserted. 
b. The location + 1 where the currency symbol should be inserted. 

b; Register 1 has the address of the 1st significant digit. The currency symbol (such as $) should 
be placed just to the left of this digit. 

What instruction can be used to reduce the address in register 1 by one? 

116 Decimal Operations 



Branch on 
Count; with
out a branch. 

By using the RR format and an R2 field of zero, register 1 can be reduced 
For example: 

BCTR o 

~MNEMONIC 

After the BeTR instruction, the "move character" instruction (MVC) can use register 1 as a base 
register and move a dollar sign (currency symbol) into the desired location. A "move immediate" 
(MVI) instruction with the currency symbol as the immediate operand could also be used. 

You have now completed your study of the System/360 standard instruction 
set with the decimal feature. You have not yet studied I/O operations. 
These will be covered in your next self-study book. For now, let's take 
a look at some programming examples. 

Decimal Operations 117 



System/360 Branching/Logical and Decimal Operations 

Section I: Branching Operations 
Section II: Logical Operations 
Section III: Dec imal Operations 

• Section IV: Analyzing Decimal Feature Programs 

SECTION IV LEARNING OBJECTIVES 

At the end of this section, you should be able to use decimal feature 
instructions to do the following: 

Write programs, using stored data in the form of zoned or packed decimal, 
to solve the following equations. 

A+ B C 
A+ B - C D 
AxB C 
A+B C 
AxB D 

C 

118 A naiyzing /)ecimal Feature Programs 



~~ ____ ~_7 __ ~_6 __ ~ 

Analyzing Decimal Feature Programs 

Notice: This section of the decimal operations is very important. Your 
ability to learn the System/360 and ultimately, to service the system, 
will depend upon your understanding of the following :material. The 
material will require much effort and concentration. Don't expect it 
to be easy. Use the Principles of Operation manual :for reference 
and/or review whenever you are unsure of the details of a branching, 
logical, or decimal instruction. 

Remember, now is the time and here is the place to iearn. 

To make the following programs easier to read, we are using sym
bolic instructions. The symbolic instruction format similar to, but 
not necessarily identical to, the source language forrnat required by 
the System/360 Assembler Program. 

The RR format is shown this way: 

Mnemonic Rl, R2 

Write the machine language instruction generated by the following 
symbolic statement: (The hex Op code for AR is lA. ) 

AR 7, 6 ______.L -.L----i.-\. . ] 
--------_.- - ----~- ----.----~.-- --~ 

The RX format is shown this way: 

Mnemonic Rl, D2 (X2, B2) 

Note - Decimal notation is used instead of hexadecin1al in the 
symbolic format. 

Write (in hex) the machine language instruction that corresponds to the 
following: (45 is the hex Op code for BAL. ) 

BAL 15, 2048 (0, 0) 

---------.--.~---------------------------------~---

A nalyzing Decimal 'Feature Pro[!,rams 119 



a 

2 

800 J 
The R8 format is shown this way: 

Mnemonic Rl, R3, D2 (B2) 

Write the machine language instruction that corresponds to the following: 
(86 is the hex Op code) 

BXH 2, 4, 3840 (3) 

rI 
----------"--------"-----------

Faa -~ 

"---------------- ---------"" "-"-----"-"-""--"---"-""-"-

Fa 

The 81 format is shown this way: 

Mnemonic Dl (Bl), 12 

Write the machine language instruction for the following: (94 is the Op 
code) 

NI 2048 (0), 240 

iJ 

800 ~ 

L ____ ""_" ____ FO is the hexadecimal equivalent of a decimal 240. 

120 A nalyzing Decimal Feature Programs 



The SS format will be shown this way for an 8-bit length code: 

Mnemonic D1 (L, B1), D2 (B2) 

The SS format will be shown this way for instructions with two 4-bit length 
codes. 

Mnemonic D1 (L1, B1), D2 (L2, B2) 

Show the machine language instruction for the following: 
Note: 1. Op code is D2. 

2. Symbolic length code is = total # of bytes. 

MVC 2048 (256, 0), 3840 (0) 

~ __ ~ ____ F_F ____ ~_o __ ~I _____ 8_0_0 ______ ~_o~I~ ____ F_O_O ____ ~ 

Show the machine language instruction for the following: (Op code is FD) 

DP 2048 (15, 0), 3840 (8, 0) 

~ __ ~I ___ E __ ~_7 __ ~_o __ I ______ 80_0 _________ 0 ___ I ______ F_O_O ____ __ 

A nalyzing Decimal feature Prof!,rams 121 



o 17C 402C 419C 

RR 

does not 

PROGRAM #1 

BALR 
LA 
ZAP 
AP 

4, 0 
6, 2048 (0, 0) 
4 (2, 6), 2 (2, 6) 
4 (2, 6), 0 (2, 6) 

Storage contains 017C 402C 0000 

2048~ 
What would be the contents of locations 2048 through 2053 after Program #1 
is executed? 

If you had the correct answer, proceed to Program # 2. Otherwise, 
continue on with the ste.rrby-step analysis of Program #1. 

The 1st instruction is a "branch and link" instruction using the 
format. 

Because the R2 field of the BALR instruction is zero, a branch 
(does/does not) occur. 

What is placed in general register 4 as a result of the BALR instruction? 

----------------------------------------------------

The address of the next instruction's (LA) Op code. 

NOTE: General register 4 is not used in Program # 1. However, it does provide us with a means 
of branching back to the program if we had wanted to. 

6 

000800 

The second instruction is "load address." The generated effective address 
will be loaded into register 

Show (in hex) the contents of bits 8-31 of register E) after the LA instruction 
is executed. 

The 3rd instruction will cause byte locations through to 
be placed in locations through 

122 A nalyzin,f!, Decimal Feature Programs 



2050, 2051 
2052, 2053 

Note that in these symbol instructions, the length code is equal to the total nunlber of bytes. Of 
course, in actual machine language instructions, the length code is one less than the total number 
of bytes. 

017C 402C 402C 

2048, 2049 
2052, 2053 

017C 402C 419C 

016C 016C OOOC 
'~"'-v--' 

What will be the contents of locations 2048-2053 after the ZAP instruction 
is executed? 

The last instruction of Program # 1 will cause byte loeations 
through to be added to locations through 

What will be the contents of locations 2048-2053 after Program # 1 is 
executed? 

PROGRAM #2 

LA 1, 16 (0, 0) 
LA 2, 2048 (0, 0) 
BALR 3, 0 
ZAP 2 (4, 2), 0 (2, 2) 
MP 2 (4, 2), 0 (2, 2) 
DP 2 (4, 2), 0 (2, 2) 
BCT 1, 6 (0, 3) 

Locations 2048-2053 contain 016COOOOOOOO 

What will be the contents of locations 2048-2053 after Program #2 is 
executed for the first time? 

~ ~emainder 
C)uotient 

There will be a program interrupt during the 2nd execution of the program. 
What exception will cause this program interrupt? 

Data; The second time the "multiply" instruction is executed, the sign of the quotient will be 
recognized as an invalid packed decimal digit. To avoid this exception, the DP instruc
tion should be followed by a ZAP instruction as shown below. 

ZAP 2 (4, 2), 2 (2, 2) 

A nalyzing Decimal Feature Prof!,rams 123 



00000010; A value of 
16 was loaded into 
register 1. 

00000800 

For your convenience, this is a repeat of Program #2. 

LA 1, 16 (0, 0) 
LA 2, 2048 (0, 0) 
BALR 3, 0 
ZAP 2 (4, 2), 0 (2, 2) 
MP 2 (4, 2), 0 (2, 2) 
DP 2 (4, 2), 0 (2, 2) 
BCT 1, 6 (0, 3) 

Locations 2048-2053 contain 016COOOOOOOO 

If you were able to answer the preceding questions correctly, proceed to 
Program #3. Otherwise, continue with the following step-by-step analysis 
of Program # 2. 

Show (in hex) the contents of general register 1 after executing the 1st 
instruction of Program # 2. 

Show (in hex) the contents of register 2 after the 2nd instruction is executed. 

The 3rd instruction is a "branch and linle" 
a. What address is placed in Register 3? 
b. Does a branch occur? 

a. The address of the Op code (ZAP) of the following instruction. 
b. No; Because the R2 field is zero. 

016C0000016C 

016C0000256C 

016C 016C OOOC 
~---.....-

t RJmainder 
Quotient 

Show the contents of locations 2048-2053 after the ZAP instruction is 
executed. 

Show the contents of locations 2048-2053 after the "multiply decimal" 
instruction is executed for the first time. 

Show the contents of locations 2048-2053 after the "divide decimal" instruc
tion is executed for the first time. 

124 A nalyzinf!, Decimal Feature, Prof!,rams 



divisor 

OOOOOOOF; The 
register was reduced 
by one from 16 to 15. 

will 

the instruction ad
dress portion of the 
PSW (bits 40-63) 

After a "divide decimal" instruction, the remainder is placed in the low 
order of the dividend field. All remainders (even zero) are the same 
length as the original 

The final instruction of Program #2 is a "branch and count." Show (in hex) 
the contents of register 1 after this instruction is executed for the 1st 
time. 

Since the contents of register 1 were not reduced to zero, a branch 
(willi will not) occur. 

On the System/360, a branch is taken by replacing 
_______ ~ _______ with the "branch to" location. 

What will be placed in PSW bits 40-63 after the Bel' instruction is 
executed? 

The contents of register 3 plus a displacement value of 6; This effective address is the location of 
the "multiply decimal's" Op code. 

What will happen the 2nd time the "multiply decimal" instruction is 
executed? 

A data exception will be recognized and cause a program interrupt. This occurs because the multi
plicand (2050-2053) contains an invalid digit code. 

016COOOC 

Lrnvalid 

Continue on to Program # 3. 

A nalyzing Decimal Feature Pro[!,rams 125 



c; Gross pay -
Deductions = Net Pay 

E BxC 

PROGRAM #3 

The following 80 character EBCDIC card record is in locations 3840-3919 
of main storage: 

Columns 1- 6 Man Number Field A 
Columns 10-12 Hours Worked (XX. X) Field B 
Columns 15-17 Pay Rate (X. XX) Field C 
Columns 20-24 Deductions (XXX. XX) Field D 
Columns 30-34 Gross Pay (XXX. XX) Field E 
Columns 40-44 Net Pay (XXX. XX) Field F 

Given the above information, write :::t program that will calculate gross and 
net pay using the instructions of the decimal feature. Remember now, that 
the data you are working with is in EBCDIC (zoned decimal). The data in 
fields C, D, E, and F will eventually be sent to an output device and must 
end up in the proper data format. 

Which of the following equations will solve for net pay? The fields are 
lettered from A to F as shown above. 

a. F = B xC b. F=BxC-E e. F = E - D ----
D 

Write the equation that will solve for gross pay. 

Now that we know the formula to use in solving our problem, the next step 
is to flowchart our program. Draw the flowchart you intend to use. 
NOTE: The data you are using is in EBCDIC. 

126 A ualyziuF; Decimal Feature Prof!,rams 



HOUSEKEEPING 

CALCULATE GROSS PAY 

ADJUST FOR DECIMAL POINT 

CALCULATE NET PAY 

Your flowchart should be similar to this one. If it is different, resolve 
the differences before continuing. 

Analyzing Decimal Feature Programs 127 



NOTE: 

PACK 
PACK 
PACK 
MP 
MVO 
MVC 
SP 
UNPK 
UNPK 
UNPK 
UNPK 

Using your flowchart, write the necessary symbolic instructions to solve 
the program. Assume your program will start at location 2048 and that 
register 1 contains 2048 as a base address. Remember to adjust the 
decimal point after a multiplication. 

Card record in locations 3840-3919 

1821 (5, 1), 1801 (3, 1) 
1806 (3, 1), 1806 (3, 1) 
1811 (5, 1), 1811 (5, 1) 
1821 (5, 1), 1806 (3, 1) 
1821 (5, 1), 1821 (4, 1) 
1831 (5, 1), 1821 (1) 
1831 (5, 1), 1811 (5, 1) 
1806 (3, 1), 1806 (3, 1) 
1811 (5, 1), 1811 (5, 1) 
1821 (5, 1), 1821 (5, 1) 
1831 (5, 1), 1831 (5, 1) 

Your answer should agree to some extent with the above answer. If it does not, try to correct 
any differences before continuing on to Program #4. 

128 Analyzing Decimal Feature Programs 



PROGRAM #4 

A man borrows $1,000 from a bank. He agrees to payoff the debt in one 
year. As a result, a 6% service charge is added on to the principle. 

Draw a flowchart for a program that will do the following: 
a. Calculate the man's monthly payment. 

Principle 
Servic e Charge 
No. of Monthly Payments 
New Principles 
Monthly Payment 

$1,000.00 
.06 

12 
XXXX.XX 

XX. XX 

In Packed Decimal 

Analyzing Decimal Feature Programs 129 



~OVE PRINCIPLE 
~O NEW PRINCIPLE 

MULTIPLY NEW 
PRINCIPLE BY 

SERVICE CHARGE 

CALCULATE AMOUNT OF 
SERVICE CHARGE 

---- --D ADJUST NEW 
PRINCIPLE FOR 

DECIMAL POINT 

ADD PRINCIPLE 
TO NEW PRINCIPLE 

MOVE NEW PRINCIPLE 
TO MONTHLY PAYMENT 

DIVIDE MONTHLY 
PAYMENT BY NO. 

OF MONTHLY PAYMENTS 

ZERO AND ADD QUOTIENT 
INTO MONTHLY PAYMENT 

} NEW PRINC IPLE EQUALS 
SERVICE CHARGE + PRINCIPLE 

CALCULATE AMOUNT OF 
MONTHLY PAYMENT 

Your flowchart should be similar to the preceding answer. Now write the 
necessary instructions that will make up the program. Your program may 
start anywhere in main storage, so load register 6 with the base address 
using the "branch and link" instruction. Assume the following data will be 
located 2050 bytes from the beginning of the program. 

7 Bytes 
1 Byte 
2 Bytes 
7 Bytes 
7 Bytes 

+ 100000 
+6 
+12 
New Principle 
Monthly Payment 

In Packed Dec imal 

130 Analyzing Decz"ma! Feature Programs 



BALR 
MVC 
MP 
MVN 
ZAP 
AP 
MVC 
DP 
ZAP 

6, 0 
2058 (7, 6), 2048 (6) 
2058 (7, 6), 2055 (1, 6) 
2063 (1, 6), 2064 (6) 
2058 (7, 6), 2058 (6, 6) 
2058 (7, 6), 2048 (7, 6) 
2065 (7, 6), 2058 (6) 
2065 (7, 6), 2056 (2, 6) 
2065 (7, 6), 2065 (5, 6) 

Your solution should be similar to the preceding answer to corrent any differences before continu
ing to Program #5. 

PROGRAM #5 

The Indians sold the island of Manhattan to a foreign real estate firm 
332 years ago for $24. 00 and a pair of wooden shoes. They converted 
the shoes into toy boats and deposited the money in a savings account 
where it has been drawing interest all these years at 3% compounded 
annually. 

Draw a flowchart that will solve for the present value of the Indians I 
principle. You will be given only the following data which is displaced 
500 bytes from the beginning of your program. Use register 1 for the 
base register and register 2 as a counter (use the "load address" instruc
tion to initially set the counter). 

*5 bytes + 2400 } 
1 byte +3 
5 bytes New Principle 

In Packed Decimal 

*The New Principle will not exceed 10 digits. 

A nalyzing Decimal Feature Prof!,rams 131 



~--------------------~ 

LOAD BASE REGISTER 

LOAD 332 INTO COUNTER 

MOVE PRINCIPLE 
TO NEW PRINC IPLE 

MULTIPLY NEW 
PRINCIPLE BY RATE 

ADJUST DECIMAL 
POINT BY RIGHT 

SHIFTING NEW PRINCIPLE 

ADD PRINC IPLE TO 
NEW PRINCIPLE 

MOVE NEW PRINCIPLE 
TO PRINCIPLE 

REDUCE COUNTER BY 1 

NO 

132 

The preceding flowchart was more complicated than it need be. This was 
because you're given a constant of + 3 to use as the Rate. As a result, you 
had to figure out the interest and then add the previous principle to it. If 
you had been given a constant of + 103 to use, the flowchart could have been 
simpler. 

Analyzing Decimal Feature Progra'YIls 



Draw a flowchart to solve the previous problem. All information remains 
the same except this time you are given a two-byte constant of + 103 rather 
than one byte of + 3 . 

Analyzing Decimal F'eature PrOf!,rams 133 



NO 

LOAD BASE REGISTER 

INTO COUNTER 

MULTIPLY PRINCIPLE 
BY RATE 

ADJUST DECIMAL POINT 

REDUCE COUNTER BY 1 

END OF 
PROGRAM 

---------------.. ----.- ----.------------

Using the preceding flowchart, write the necessary symbolic instructions 
that will do the job. The following packed decimal data is displaced 500 
bytes from the beginning of the program. 

Data 
Beginning address of program + 500 ---'l~~ + 2400 
Beginning address of program + 505 ~ + 103 

134 A nalyzing Decimal F'eature ProJ!,rams 

(5 bytes) 
(2 bytes) 



BALR 
LA 
MP 
MVN 
ZAP 
BCT 

1, 0 Load Base Register 
2, 332 (0, 0) - Load Counter 
4.98 (5, 1), 503 (2, 1) 
501 (1, 1), 502 (1) 
4.98 (5, 1), 4.98 (4., 1) 
2, 4 (0, 1) 

Your program should look similar to the one above. Notice that there is no "halt" instruction to 
end the program. Since the System/360 will usually operate under control of a supervisor program, 
a "supervisor call" instruction could be used to indicate the end of the program. 

Do you need a review? If you think that you may require a review of 
certain areas of this book, do the following: 

Read the learning objectives at the beginning of each section. 

You should review only those areas where you think that you 
cannot do what the objectives indicate. 

Starting on the next page is a self-evaluation quiz. It will allow you to 
check your understanding of decimal operations. 

Analyzing Decimal Feature Prof!,rams 135 



136 

REVIEW QUESTIONS FOR BRANCHING, LOGICAL, AND DECIMAL 
OPERATIONS 

• Use only the Appendix section of the Principles of Operation manual to 
answer these questions. When you are done, check your answers with 
the answers on page 141, and allow yourself five points for each correct 
answer. If your score is less than 80, review the areas of this text that 
correspond with the questions answered incorrectly. 

1. Branching is accomplished by: 

a. Storing the PSW and fetching a new PSW. 
b. Replacing the entire PSW with the "branch to address. " 
c. Replacing bits 40 - 63 of the PSW with the "branch to address." 
d. Adding bits 4.0 - 63 of the PSW to the effective generated address. 
e. None of the above. 

2. Which of the following M1 (Mask) fields would be used by a "branch 
on condition" instruction to check only for a condition code of 11 ? 

a. 0011 
b. 1100 
c. 1000 
d. 0001 
e. 1111 

3. Which of the following 'fbranch" instructions will always retain the 
previous contents of the PSW's instruction address? 

a. Branch on Condition 
b. Branch on Count 
c. Branch and Link 
d. Branch on Index High 
e. Branch on Index Low or Equal 

4. The "branch on count" instruction will: 

a. Add a value of 1 - 16 to the first operand and unconditionally 
branch. 

b. Add a value of 1 to the first operand and branch if there is a 
high order carry. 

c. Subtract a value of 1 from the first operand and branch if the 
result is zero. 

d. Branch if the count in the first operand has been reduced to zero 
by a previous instruction. 

e. Subtract a value of 1 from the first operand and branch if the 
result is not zero. 

G. The "branch on index high" instruction will branch after: 

a. Reducing the first operand by 1 and comparing the result with a 
second operand. 

b. Adding the second operand to the first operand and comparing the 
sum with a third operand. 

c. Comparing the second operand to the first operand. 
d. Using an index register to generate the "branch to address. " 
e. Determining that the value in the index register is greater than 

that in the base register. 



6. Examine the following symbolic program. The starting address is 
decimal 2000. 

BALR 1, 0 
LA 1, o (0, 1) 
LA 2, 8 (0, 1) 
LPR 2, 2 
BCTR 1, 2 

How many times will the "load positive" instruction be executed? 

a. 2000 
b. 2002 
c. 2004 
d. 2006 
e. None of the above. 

7. Which of the following symbolic instructions would zero out regis
ter 2. 

a. SR 2, 2 
b. SLL 2, 0032 (0) 
c. XR 2, 2 
d. All of the above. 
e. None of the above. 

8. The "move zones" instruction 

a. Moves bits 0 - 3 of the second operand bytes into bits 0 - 3 of 
the first operand. 

b. Zeros out the zones of the first operand. 
c. Processes the bytes in a right to left direction. 
d. Can only move the bits from a maximum of sixteen bytes. 
e. None of the above. 

9. The "move with offset" instruction: 

a. Does not change the right-most four bits in eaeh byte of the 
first operand. 

b. Moves a field from the second operand into the first operand. 
displacing it four bits to the left. 

c. Processes the bytes in a left to right direction. 
d. All of the above. 
e. None of the above. 

137 



138 

10. What is the result of the following "and" instruction? 

NR INSTRUCTION r===:~ ___ 1_4 ____ ~_2 __ .1 __ ?~~ 
REG 2 --~ FFFFFFFF 

a. 0 0 0 0 0 0 0 0 
b. 0 0 0 0 0 0 0 1 
c. FFFFFFFE 
d. F F F F F F FF 
e. None of the above. 

11. \Vhat is the result of the following "exclusive or" instruction 
(81 format) ? 

XI INSTRUCTION 97 FF 800 

~-------~~-------~ L.. AA 

a. 00 
b. 55 
c. 66 
d. FF 
e. None of the above. 

12. The "compare logical" instruction can be used to compare: 

a. Alphanumeric information 
b. Zoned decimal operands 
c. Packed decimal operands 
d. All of the above. 
e. None of the above. 

13. Examine the following symbolic program. 

LA 5, 2048 (0, 0) 
LA 5,0(5,5) 
LA 6, 0 (5, 5) 
LA 7, 0 (6, 5) 

Indicate the base address (decimally) that will be in register 
6 at the end of the program. 

a. 2048 
b. 4096 
c. 6144 
d. 8192 
e. 10240 



14. The "translate" instruction can be used to tr~mslate bytes of data: 

a. From one character code to any other character code. 
b. Only from EBCDIC to some other character code. 
c. Only to EBCDIC from some other character code. 
d. Only from ASCII to EBCDIC. 
e. None of the above. 

15. Given the following "translate" instruction and an argument byte 
(in hex), choose the correct statement. 

TR INSTRUCTION 

DC 00 800 FOO ~ 
ARGUMENT BYTE ~F7 

a. The argument byte will be replaced by the function byte from 
hex location 0008 F7. 

b. The argument byte will be replaced by the function byte from 
hex location 000FF7. 

c. The argument byte will replace the function byte at hex lo
cation 0008F7. 

d. The argument byte will replace the funcHon byte at hex lo
cation 000FF7. 

e. None of the above. 

16. After a "translate and test" instruction, a condition code of 01 
would mean: 

a. No significant character was located. 
b. All the argument bytes were used and a significant character 

was located. 
c. One or more significant characters were located. 
d. One significant character was located and replaced with a 

function byte. 
e. One significant character was located and its address is in 

register 1. 

17. Which of the following can cause a decimal overflow on an AP 
instruction? 

1st operand 

a. 47 9C 
b. 47 2C 
c. 047C 
d. All of the above. 
e. None of the above. 

2nd operand 

520C 
00 37 6C 
01 00 OC 

139 



140 

18. Show the storage contents after executing the following "multiply 
decimal" instruction. 
M P I NSTRUCTI ON 

I FC I I 0 I 0 100 102 

HEX LOCATIONS 100 - 102~097D6C 

a. 58 2D 6C 
b. 00 58 2D 
c. 58 2C 6C 
d. 00 58 2C 
e. 09 7D 6C 

19. Which of the following pattern fields would be necessary in order 
to produce the following edit result? 

Source Fields 
Edited Fields 

0007 6 D in packed decimal digits 

**** . 76 b CR b 

a. * d d d. d d b c R b 
b. * d d d. d d b b b b 
c. b d d ) . d d * * * * 
d. * * * ) . d d b CR b 
e. * d d ) . d d b CR b 

20. The "edit and mark" instruction will: 

a. Edit the field and put the dollar sign next to the most signifi
cant digit. 

b. Edit the field and put the address of the most significant digit 
minus 1 in register 1. 

c. Edit the field and put the address of the most significant 
character in register 1. 

d. Not edit the field. 
e. Not edit the field but will set the condition code to 00 if no 

significant characters are located. 



ANSWERS TO REVIEW QUESTIONS 

1. c 
2. d 
3. c 
4. e 
5: b 
6. b 
7. d 
8. a 
9. b 

10. d 
11. b 
12. a 
13. d 
14. a 
15. b 
16. e 
17. c 
18. a 
19. e 
20. c 

You have now completed your study of the System/360's standard instruc
tion set and the decimal feature with the exception of input-output oper
ations. These I/O operations will be covered in your next self-study book. 

Before proceeding to the next book of this System/360 Introductory 
Programming Course, fill out and return the Course Evaluation 
Sheet (located in the back of this book). 

141 



Alphabetical Index 

Page 
Add Decimal Instruction .................................... 78 
Analyzing Decimal Feature Programs - Section IV ............. 119 
And Instruction - Or Instruction .............................. 42 
And, Or Operations ......................................... 39 
Branch and Link Instruction .................................. 4 
Branch On Condition Instruction - Review ...................... 2 
Branch On Count Instruction .................................. 7 

. ! 

Branch On Index High Instruction .............................. 8 
Branch On Index Low or Equal Instruction ..................... 13 
Branching Operations - Section I .............................. 1 
Compare Decimal Instruction ................................ 88 
Compare Logical Instruction ................................. 31 
Decimal Operations - Section III .............................. 75 
Divide Decimal Instruction ................................... 99 
Edit Instruction ............................................ 104 
Edit and Mark Instruction ................................... 115 
Exclusive Or Instruction ..................................... 46 
Execute Instruction ......................................... 14 
Insert Character - Store Character Instructions ................ 53 
Load Address Instruction .................................... 55 
Logical Operations - Section n ............................... 21 
Move Instructions - Programming Examples ................... 29 
Move Numerics Instruction .................................. 25 
Move With Offset Instruction ................................. 94 
Move Zones Instruction ...................................... 26 
Multiply Decimal Instruction ................................. 90 
Program Problenl # 1 ....................................... 122 
Progranl Problem # 2 ....................................... 123 
Program Problenl #3 ....................................... 126 
l)rogram Problenl #4 ....................................... 129 
Program Problem #5 ....................................... 131 
Heview Questions - Branching, Logical & Decimal Operations ... 136 
Subtract Decimal Instruction ................................. 84 
Test Under Mask Instruction ................................. 48 
Translate Instruction ........................................ 58 
Translate and Test Instruction ............................... 68 
Zero and Add Instruction .................................... 86 

142 



Book 4 System/360 Branching/Logical and Decimal Operations 
Student Course Evaluation 

You can make this course and all future courses more useful by answering the questions on 
both sides of this sheet and giving us your comments. 

Do you feel that you have an adequate understanding of the learning objectives that are listed 
at the beginning of the following sections? 

Section I: 
Section II: 
Section III: 
Section IV: 

Branching Operations 
Logical Operations 
Decimal Operations 
Analyzing Decimal 
Feature Programs 

YesD NoD 
YesD NoD 
YesD NoD 

YesD NoD 

List any technical errors you found in this book. 

Comments 

Please complete the information block on the opposite side. Thank you for your cooperation. 
For form R23-2958-1 



-~ .. 

Field Engineering Education - Student Course Evaluation IBM 
Student Name 

I 
Man Number I BIG Number Area Number 

Student: Please review this evaluation with the person administering the course; then remove it from 
the book and send to the FE Education Center via IBM mail. 

• Were you given a copy of this text to write in and keep? YesDNoD 

• How many hours per day were scheduled for this course? 

• Were you interrupted during this time? YesDNoD 

• How many hours werc needed to complete this course? 

• Did you require assistance during this course? . YesDNoD 
(If your answer is yes, explain in the comments section) 

• Indicate your understanding of the total course. ExcellentD Goode] FairD Poor D 

Reviewed by: 

Reviewed by: 

To be completed by course administrator 

To be completed by FE Education Planning 

IBM Corporation 

FE Education Planning 
Department 911 

South Road 

Poughkeepsie, N. Y. 12602 

Date 

Date 

! 
I., 
1111 
,> 
,;u 
,:r: 

111 
l;u 
1111 
I 

1 

:FOLD 


	0.001
	0.002
	0.01
	0.02
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	replyA
	replyB

