A

Mellanox

TECHNOLOGIES

Connect. Accelerate. Outperform.

RDMA Aware Networks Programming
User Manual

Rev 1.7

www.mellanox.com

kZ

Rev 1.7

NOTE:

THIS HARDWARE, SOFTWARE OR TEST SUITE PRODUCT (“PRODUCT(S)”) AND ITS RELATED
DOCUMENTATION ARE PROVIDED BY MELLANOX TECHNOLOGIES “AS-IS” WITH ALL FAULTS OF ANY
KIND AND SOLELY FOR THE PURPOSE OF AIDING THE CUSTOMER IN TESTING APPLICATIONS THAT USE
THE PRODUCTS IN DESIGNATED SOLUTIONS. THE CUSTOMER'S MANUFACTURING TEST ENVIRONMENT
HAS NOT MET THE STANDARDS SET BY MELLANOX TECHNOLOGIES TO FULLY QUALIFY THE PRODUCT(S)
AND/OR THE SYSTEM USING IT. THEREFORE, MELLANOX TECHNOLOGIES CANNOT AND DOES NOT
GUARANTEE OR WARRANT THAT THE PRODUCTS WILL OPERATE WITH THE HIGHEST QUALITY. ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT ARE DISCLAIMED.
IN NO EVENT SHALL MELLANOX BE LIABLE TO CUSTOMER OR ANY THIRD PARTIES FOR ANY DIRECT,
INDIRECT, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES OF ANY KIND (INCLUDING, BUT NOT
LIMITED TO, PAYMENT FOR PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY FROM THE USE OF THE PRODUCT(S) AND RELATED DOCUMENTATION EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Mellanox:

TECHNOLOGIES

Mellanox Technologies

350 Oakmead Parkway Suite 100
Sunnyvale, CA 94085

U.S.A.

www.mellanox.com

Tel: (408) 970-3400

Fax: (408) 970-3403

© Copyright 2015. Mellanox Technologies. All Rights Reserved.

Mellanox®, Mellanox logo, BridgeX®, ConnectX®, Connect-IB®, CoolBox®, CORE-Direct®, GPUDirect®, InfiniBridge®,
InfiniHost®, InfiniScale®, Kotura®, Kotura logo, MetroX®, MLNX-OS®, PhyX®, ScalableHPC®, SwitchX®, TestX®,
UFM®), Virtual Protocol Interconnect®, Voltaire® and Voltaire logo are registered trademarks of Mellanox Technologies,
Ltd.

CyPU™, ExtendX™, FabricIT™, FPGADirect™, HPC-X™, Mellanox Care™, Mellanox CloudX™, Mellanox Open
Ethernet™, Mellanox PeerDirect™, Mellanox Virtual Modular Switch™, MetroDX™, NVMeDirect™, StPU™,
Switch-IB™, Unbreakable-Link™ are trademarks of Mellanox Technologies, Ltd.

All other trademarks are property of their respective owners.

Mellanox Technologies Document Number: j

Table of Contents

Revision Historycuviiiiiiiiiiiiiiiineeteeeneesesssessosnsssnsssnnsonans 9
GlOSSarY ottt it ittt teeetesesssessosssssnsssossosnsssnsssnsssnns 10
Chapter 1 RDMA Architecture Overview.c.ccvitiiiereeereensennnscnns 14
1.1 InfiniBand 14

1.2 Virtual Protocol Interconnect® (VPI).............. iv.... 14

1.3 RDMA over Converged Ethernet (RoCE). 14

1.4 Comparison of RDMA Technologies i, 14

1.5 Key Componentsouuiuimt ettt ettt e 17

1.6 Support for Existing Applicationsand ULPs 17

1.7 References 18

Chapter 2 RDMA-Aware Programming Overviewcoeiiiivienennnnn. 19
2.1 Available Communication Operationsc.ieieunen ... 19

2.1.1 Send/Send With Immediate. 19

2.1.2 RECRIVE . vttt e 19

2.1.3 RDMARead 19

2.1.4 RDMA Write / RDMA Write With Immediate 20

2.1.5 Atomic Fetch and Add / Atomic Compare and Swap...................... 20

2.2 Transport Modesot 20

2.2.1 Reliable Connection (RC). i 20

2.2.2 Unreliable Connection (UC)ttt 20

2.2.3 Unreliable Datagram (UD) ottt 20

2.3 Ky ComnCePtS. v vt i et e 21

2.3.1 Send Request (SR)ttt 21

2.3.2 Receive Request (RR). 21

2.3.3 Completion QUEUEottt 21

2.3.4 Memory Registrationttt 21

2.3.5 Memory Windowo 22

2.3.6 Address Vectorottt 22

2.3.7 Global Routing Header (GRH) 22

2.3.8 Protection Domain 22

2.3.9 Asynchronous Events i 23

2.3.10 Scatter Gather 23

2301 Polling. . . oo 23

2.4 Typical Application. i 23

Chapter3 VPIVerbs APliiiiiiiiiiiiiiiiiiiiitntnnrsnrnnsnnsnnnns 25
3.1 Imitialization.ot 25

3.1.1 ibv fork init 25

3.2 Device OPerations o.vuu ittt et e 26

3.2.1 ibv_get device LiSt.t 26

3.2.2 ibv_free device list i 27

3.2.3 ibv_get device NAmMEottt e 27

Mellanox Technologies

Rev 1.7

3

J

k4

Rev 1.7

3.3

34

3.5

3.6

324 ibv get device guid. 27
3.2.5 bV Open deviCeot 28
3.2.6 1BV _CloSe deVICe. . ..ottt e 28
3.2.7 ibv node type Str.t 29
3.2.8 bV _port state Strt 29
Verb Context Operationsvu ettt ettt e e e e neee e 30
33,1 bV _query deviCet 30
332 DV _qUETY POTt . ottt ettt e 32
333 dbv query gid 34
334 bV _query pReY. . ..o 35
335 dbv alloc pd ... 35
33.6 ibv dealloc pd 35
337 DV CI@ALE €O « v v vttt ettt e et e e e e 36
3.3.8 1DV I@SIZE Q. v vt ottt ettt e e e 37
3.3.9 bV _deStrOy CQ -« vttt 37
3.3.10 ibv_create comp channel.......... 38
3.3.11 ibv_destroy comp channel............ 38
Protection Domain Operationsc.uiiiirenennennnnennns 39
340 DV T INL . oottt e 39
342 bV dereg Mr ...t 40
343 DV CIeAte P « o v vt ottt e et 40
344 1BV deStrOoy gP -« ot ot 41
345 1DV CIeAte SIQ . ..ottt ettt e e e e e e e 42
34.6 ibv_modify SIq........ ... 43
3.4.7 1BV _deStrOy STQ. . oottt et e 44
3.4.8 ibv_open Xrc domain.iii e 44
3.4.9 1DV _CIeAte XIC ST .+ . vt vttt ettt e e e et e ettt e e 45
3.4.10 ibv_close Xrc domaincc.iiniirt e 45
3.4.11 1DV _Create XIC TCV D « v v vt v et et e e ettt e ettt e e e en 46
3.4.12 ibv_modify XIC ICV gP -« ottt et e e 46
3.4.13 1DV _T@Z XIC TCV (P + vt e ettt e et et ettt et ettt et e 47
3.4.14 1DV _UNTEE XIC TCV (D + v v vt e ettt e ettt et e e ettt e 48
3415 ibv_create ah 48
3.4.16 ibv_destroy ah 49
Queue Pair Bringup (ibv._ modify gp). ... 51
351 ibv_ modify qp ..o 51
352 RESETtOINITttt 52
353 INITto RTR ... e e e 53
3.54 RTRtO RTS. .. 54
Active Queue Pair Operations.ttt 56
3.6.1 DDV qUETY QP - o v ottt et e e e 56
3.6.2 1DV UETY STQ .« o v ottt ettt e e e e e e 56
3.6.3 1DV _QUETY XIC TCV (D + v v vt ottt te e et e et e e ettt et e 57
3.6.4 1DV _POSt TECV . oottt ettt e e 57
3.6.5 bV post Send 58
3.6.6 1DV _POSt SIQ T8OV . o\ ottt ettt e ettt e e e e 60

Mellanox Technologies

Chapter 4

3.6.7 ibv_req NOtify Q... .. oo it 61
3.6.8 1DV _GEt CQ EVENL ..ottt et 61
3.6.9 1bV_ack CQ @VENLSttt 62
3.6.10 bV _poll Cq ... oot 63
3.6.11 ibv_init ah from We 64
3.6.12 ibv_create ah from We 65
3.6.13 ibv_attach mcast.o 65
3.6.14 ibv_detach mCastottt 66
3.7 Event Handling Operationsttt 67
3.7.1 1ibV_get aSYNC EVENt.\ttt 67
3.7.2 b ack async event 68
3.7.3 1bv_event type Str 68
3.8 Experimental APIs. 69
3.8.1 1bv_exp query deviCettt 69
3.82 1DV XD CIeAte gD - vt vv ettt et e e e e 70
3.83 1bv exp post send 71
RDMA CM API .. ittt iititetnesessessnscnscnsonss 75
4.1 Event Channel Operations.uuninintneteennneananns 75
4.1.1 rdma create event channel 75
4.1.2 rdma destroy event channel 75
4.2 Connection Manager (CM) ID Operationsc.couvuuenenennn.. 77
42.1 rdma create id 77
4.2.2 rdma destroy Id 77
423 rdma migrate id......... .. 78
424 rdma Set OPHIONottt ittt e 78
4.2.5 1dMa Create CP v vv ettt e e e e 79
4.2.6 rdma destroy Pt 80
427 rdma resolve addr 81
42.8 rdma bind addr 82
4.2.9 rdma resolve route. 82
4210 rdma LiStent 83
42,11 1dma CONMMECE . . .o\ttt et ettt e e e e e e e e e 83
4.2.12 rdma et TeqUESTottt 85
4.2.13 tdma_aCCePLtottt 86
42,14 1dMa TCJECT . . o oottt et 86
4.2.15 rdma notify. 87
4.2.16 rdma_diSCONNECEttt 87
4.2.17 rdma_get SIC POTt. . .ottt e e e 88
4.2.18 rdma_get dst port. 88
4.2.19 rdma_get local addr.......... 88
4220 rdma get peer addr 89
4221 rdma get deviCes vttt 89
4.2.22 rdma_free deviCest 90
4.2.23 rdma getaddrinfo 90
4.2.24 rdma_freeaddrinfo. 91
4.2.25 1dMa _CIEALE QP . -« - v v ot ettt e e e e e e 91

Mellanox Technologies

Rev 1.7

5

J

Rev 1.7

4.2.26 tdma_destroy . -« -« vt 92
4.2.27 rdma_join_multicastt 92
4.2.28 rdma leave multicast.ttt 93

4.3 Event Handling Operationsttt 94
43.1 rdma et CM eVENtottt 94

432 rdma ack cm_event........... ... 97

433 rdma eVent SIrttt 97
Chapter 5 RDMA Verbs APILo iiiiiiiiii ittt iiiiieirtenennnnns 98
5.1 Protection Domain Operationsc.uouiuninninenneneen.n. 98
5.1 rdma reg MSES . . . oottt e e 98

5.1.2 rdma reg read. 98

SI3 rdma reg WIIte . . oottt 99

5.1.4 rdma dereg mr.ot 100

5.5 rdma Create SIqovvvit et 100

S5.1.6 rdma destroy SIqvvvvt it 101

5.2 Active Queue Pair Operations.ttt 102
5.2.1 rdma POSt TECVV . . oottt ettt e 102

5.2.2 rdma post SendV. 102

523 rdma post readv. 103

524 rdma post WIItEV . ..ottt 104

5.2.5 rdma POSt TCV. . vttt e 105

5.2.6 rdma post send. 105

5.2.7 rdma post read. 106

5.2.8 rdma post WITte . ..o\ttt ettt 107

5.2.9 rdma post ud send.......... .. 108
5.2.10 rdma_get send COMPvtiit i 108
5.2.11 rdma et TECV_COMP . . v\ vt ettt e ettt et e et 109
Chapter 6 Eventsciiiiiiiiiiinneereeroeesesnssssssosnsssnssnns 110
6.1 IBVEVENts.o 110
6.1.1 IBV EVENT CQ ERR i 110

6.1.2 IBV EVENT QP FATAL.ot 110

6.1.3 IBV. EVENT QP REQ ERR i 110

6.1.4 IBV _EVENT QP ACCESS ERR......., 110

6.1.5 IBV EVENT COMM EST.ottt 111

6.1.6 IBV_EVENT SQ DRAINEDo, 111

6.1.7 IBV_EVENT PATH MIG.oi ittt 111

6.1.8 IBV_EVENT PATH MIG ERR.......... 111

6.1.9 IBV_EVENT DEVICE FATAL...... ... i, 111
6.1.10 IBV_EVENT PORT ACTIVE oo 112
6.1.11 IBV_EVENT PORT ERR...... ... 112
6.1.12 IBV_EVENT LID CHANGE i 112
6.1.13 IBV_EVENT PKEY CHANGE i, 112
6.1.14 IBV_EVENT SM CHANGE 113
6.1.15IBV_EVENT SRQ ERR...... e 113
6.1.16 IBV_EVENT SRQ LIMIT REACHED.................ooiiiiinn... 113

k6

Mellanox Technologies

e)

6.1.17 IBV_EVENT QP LAST WQE REACHEDccovvuiuneen... 113
6.1.18 IBV_EVENT _CLIENT REREGISTERccooiuiueinioo .. 113
6.1.19 IBV_EVENT GID CHANGE.\ttt 114
6.2 IBV WCEVENtS. ... e 114
6.2.1 IBV_WC SUCCESSottt 114
6.2.2 IBV.WC LOC LEN ERRoiouiiaiiiien. 114
6.2.3 IBV_WC LOC QP OP ERRooouueaiiieaiaaian... 114
6.2.4 IBV_WC LOC EEC OP ERR........oooruneeme i, 114
6.2.5 IBV_WC LOC PROT BRRcouuiaiaiiaiaanen.. 114
6.2.6 IBV_WC WR_FLUSH ERR..........ccoouieuiiinainaiini. .. 114
6.2.7 IBV.WC MW BIND ERR.........oiuniuamiaie e, 114
6.2.8 IBV_WC BAD RESP ERRcoouuiunaiaaeaaaieenn., 114
6.2.9 IBV_WC LOC_ACCESS ERR.........coouuuiieiiaaiiii... 115
6.2.10 IBV. WC REM INV REQ ERR i 115
6.2.11 IBV.WC REM_ACCESS ERRcouiuiiiiniaiiaaineein.. 115
6.2.12 IBV.WC REM OP ERRouiuiieaiinii.. 115
6.2.13 IBV_WC RETRY EXC ERR...... 115
6.2.14 IBV.WC _RNR RETRY EXC ERRcoouiiiniannaineenn.. 115
6.2.15 IBV_WC_LOC_RDD_VIOL ERRuuiiiiiiiinaiiini... 115
6.2.16 IBV.WC REM INV RD REQ ERRcoouuneannnneannnn... 115
6.2.17 IBV.WC REM_ABORT ERR.........ooouniimnianianananeenn.. 115
6.2.18 IBV._WC INV_EECN ERRouiiieuiiinii .. 115
6.2.19 IBV_WC_INV_EEC_STATE ERR..........ouiuuiinnaianineein.. 116
6.2.20 IBV.WC FATAL ERR........oouimnamia i 116
6.2.21 IBV.WC RESP TIMEOUT ERRououniinaannaannannn.. 116
6.2.22 IBV.WC _GENERAL ERR.........oouiiuei i, 116
6.3 RDMA CMEVeNtS . ..ottt ittt e e ettt e 116
6.3.1 RDMA CM EVENT ADDR RESOLVED............coouuiuieiin.. 116
6.3.2 RDMA_CM EVENT ADDR ERROR...........coooiiiiiieinnoin.. 116
6.3.3 RDMA CM EVENT ROUTE RESOLVED........... 116
6.3.4 RDMA CM EVENT ROUTE ERROR..........coovuiurianneiin.. 116
6.3.5 RDMA_CM EVENT CONNECT REQUEST.oveuueennnennn.. 116
6.3.6 RDMA CM _EVENT CONNECT RESPONSE........................ 117
6.3.7 RDMA CM EVENT CONNECT ERROR...........coovuiuineiin.. 117
6.3.8 RDMA CM EVENT UNREACHABLEooouiuininnannn.. 117
6.3.9 RDMA CM EVENT REJECTED 117
6.3.10 RDMA CM EVENT ESTABLISHED.ouiireiiiaieenn.. 117
6.3.11 RDMA CM_EVENT DISCONNECTED.o i, 117
6.3.12 RDMA CM _EVENT DEVICE REMOVAL........... 117
6.3.13 RDMA CM EVENT MULTICAST JOINooueineannenin.. 117
6.3.14 RDMA_CM_EVENT MULTICAST ERRORoovueurneoin.. 117
6.3.15 RDMA CM_EVENT ADDR CHANGE......... 118
6.3.16 RDMA CM EVENT TIMEWAIT EXITooveieaneaneenn.. 118
Chapter 7 Programming Examples Using IBV Verbso, 119
7.1 Synopsis for RDMA_ RC Example Using IBV Verbs. 119
TLL MAIN .« 119

k Mellanox Technologies 7 j

(Rev 1.7

7.1.2 print config.o 120

71,3 FESOUICES IMIL . o\ v vttt et ettt e et e e e ettt e et 120

714 TESOUICES CTEALE . . o\ v vttt ettt e ettt e e et ettt et 120

715 SOCK CONMECT. . ..ottt e e 120

716 COMMECE P .« v vv ettt e e e e e e e e e e e e et e e 120

7.1.7 modify gp to nit. 120

718 POSE TECRIVE. . o . vttt et e e e e e e e e e 120

7.1.9 sock sync data........... . 120

7.1.10 modify qp 10 Ttr .ot 121

7111 modify gp 10 ItS ..ot 121

T 102 POSt SENA. . .ottt 121

7.1.13 poll_completion.i it e 121

7.1.14 resources_deStrOYvu ittt e 121

7.2 Code for Send, Receive, RDMA Read, RDMA Write 121

7.3 Synopsis for Multicast Example Using RDMA CM and IBV Verbs........ 148

T3 1 M o 148

732 RUN. . 148

7.4 Code for Multicast Using RDMA CM and IBV Verbs 149

Chapter 8 Programming Examples Using RDMA Verbs 160
8.1 Automatic Path Migration (APM). 160

8.2 Multicast Code Example Using RDMACM. 174

8.3 Shared Received Queue (SRQ) 186

Appendix A Experimental APIs i 199
A.1 Dynamically Connected Transport 199

Appendix B Verbs API for Extended Atomics Support 203
B.1 Supported Hardware 203

B.2 Verbs Interface Changes, 203

Appendix C User-Mode Memory Registration (UMR) 206
C.l Interfaces.oouinii e 207

Appendix D Cross-Channel Communications Support 211
D.1 UsageModel........... . i 211

D.2 Resource Initialization.ttt 212

D.3 PostingRequest List i 214

kS

Mellanox Technologies

Rev 1.7

Revision History

Rev.

Date

Changes

Rev 1.7

May 2015

Added Chapter B, “Verbs API for Extended Atomics Support” (page 203)
Added Chapter C, “User-Mode Memory Registration (UMR)” (page 206)
Added Chapter D, “Cross-Channel Communications Support” (page 211)

Rev 1.6

April 2015

Added Chapter A, “Experimental APIs” (page 199)

Rev 1.5

Jan 2014

Updated Table 3, "Transport Mode Capabilities"

Rev 1.4

Feb. 2013

Merged Chapter 2 (Introduction to the Programming User Guide) into Chap-
ter 1

Reformatted sections of Chapter 8:“Programming Examples Using RDMA
Verbs”

Rev 1.3

Sep. 2012

Added new verbs and structures from verbs.h

Added new verbs and structures from rdma_cma.h

Added new verbs and structures from rdma_verbs.h

Added RDMA CM_EVENTS

Added IBV_EVENTS

Added IBV_WC Status Codes

Added additional programming examples using RDMA Verbs: APM, Multi-
cast and SRQ

Added discussion regarding the differences between RDMA over IB trans-
port versus RoCE

Rev 1.2

Jan. 2010

Updated Programming Example Appendix A
Added RDMAOE support

Rev 1.1

Oct. 2009

Integrated Low-Latency-Ethernet API, RDMA_ CM, VPI and Multicast code
example

Rev 1.0

Mar. 2009

Reorganized programming example

Mellanox Technologies 9

J

-

k10

Rev 1.7 |

Glossary

Term

Access Layer

AH (Address Handle)
CA (Channel Adapter)

CI (Channel Interface)

CM (Communication Man-
ager)

Compare & Swap

CQ (Completion Queue)
CQE (Completion Queue
Entry)

DMA (Direct Memory
Access)

Fetch & Add
GUID (Globally Unique

IDentifier)
GID (Global IDentifier)

GRH (Global Routing
Header)

Network Adapter
Host

IB

Join operation

lkey

Mellanox Technologies

Description

Low level operating system infrastructure (plumbing) used for accessing the inter-
connect fabric (VPI™, InfiniBand®, Ethernet, FCoE). It includes all basic transport
services needed to support upper level network protocols,

middleware, and management agents.

An object which describes the path to the remote side used in UD QP

A device which terminates an InfiniBand link, and executes transport level func-
tions

Presentation of the channel to the Verbs Consumer as implemented through the
combination of the network adapter, associated firmware, and device driver soft-
ware

An entity responsible to establish, maintain, and release communication for RC and
UC QP service types

The Service ID Resolution Protocol enables users of UD service to locate QPs sup-
porting their desired service.

There is a CM in every IB port of the end nodes.

Instructs the remote QP to read a 64-bit value, compare it with the compare data
provided, and if equal, replace it with the swap data, provided in the QP.

A queue (FIFO) which contains CQEs

An entry in the CQ that describes the information about the completed WR (status
size etc.)

Allowing Hardware to move data blocks directly to and from the memory, bypass-
ing the CPU

Instructs the remote QP to read a 64-bit value and replace it with the sum of the 64-
bit value and the added data value, provided in the QP.

A 64 bit number that uniquely identifies a device or component in a subnet

A 128-bit identifier used to identify a Port on a network adapter, a port on a Router,
or a Multicast Group.

A GID is a valid 128-bit IPv6 address (per RFC 2373) with additional properties /
restrictions defined within IBA to facilitate efficient discovery,

communication, and routing.

A packet header used to deliver packets across a subnet boundary and also used to
deliver Multicast messages
This Packet header is based on IPv6 protocol.

A hardware device that allows for communication between computers in a network.

A computer platform executing an Operating System which may control one or
more network adapters

InfiniBand

An IB port must explicitly join a multicast group by sending a request to the SA to
receive multicast packets.

A number that is received upon registration of MR is used locally by the WR to
identify the memory region and its associated permissions.

Term

LID (Local IDentifier)

LLE (Low Latency
Ethernet)

NA (Network Adapter)

MGID (Multicast Group
ID)

MR (Memory Region)

MTU (Maximum
Transfer Unit)

MW (Memory Window)

Outstanding Work Request
pkey (Partition key)

PD (Protection Domain)

QP (Queue Pair)

RC (Reliable Connection)

RDMA (Remote Direct
Memory Access)

RDMA_CM (Remote
Direct Memory Access
Communication
Manager)

Requestor

Responder

rkey

Rev 1.7

Description

A 16 bit address assigned to end nodes by the subnet manager.
Each LID is unique within its subnet.

RDMA service over CEE (Converged Enhanced Ethernet) allowing IB transport
over Ethernet.

A device which terminates a link, and executes transport level functions.

IB multicast groups, identified by MGIDs, are managed by the SM. The SM associ-
ates a MLID with each MGID and explicitly programs the IB switches in the fabric
to ensure that the packets are received by all the ports that joined the multicast
group.

A contiguous set of memory buffers which have already been registered with
access permissions. These buffers need to be registered in order for the network
adapter to make use of them. During registration an L_Key and R_Key are created
and associated with the created memory region

The maximum size of a packet payload (not including headers) that can be sent /
received from a port

An allocated resource that enables remote access after being bound to a specified
area within an existing Memory Registration. Each Memory Window has an associ-
ated Window Handle, set of access privileges, and current R_Key.

WR which was posted to a work queue and its completion was not polled

The pkey identifies a partition that the port belongs to. A pkey is roughly analogous
to a VLAN ID in ethernet networking. It is used to point to an entry within the
port’s partition key (pkey) table. Each port is assigned at least one pkey by the sub-
net manager (SM).

Object whose components can interact with only each other.
AHs interact with QPs, and MRs interact with WQs.

The pair (send queue and receive queue) of independent WQs packed together in
one object for the purpose of transferring data between nodes of a network.

Posts are used to initiate the sending or receiving of data.

There are three types of QP: UD Unreliable Datagram, Unreliable Connection, and
Reliable Connection.

A QP Transport service type based on a connection oriented protocol.
A QP (Queue pair) is associated with another single QP. The messages are sent in a
reliable way (in terms of the correctness and order of the information.)

Accessing memory in a remote side without involvement of the remote CPU

API used to setup reliable, connected and unreliable datagram data transfers. It pro-
vides an RDMA transport neutral interface for establishing connections. The API is
based on sockets, but adapted for queue pair (QP) based semantics: communication
must be over a specific RDMA device, and data transfers are message based.

The side of the connection that will initiate a data transfer (by posting a send
request)

The side of the connection that will respond to commands from the requestor which
may include a request to write to the responder memory or read from the responder
memory and finally a command requesting the responder to receive a message.

A number that is received upon registration of MR is used to enforce permissions
on incoming RDMA operations

Mellanox Technologies 11

J

k12

Rev 1.7

Term

RNR (Receiver Not
Ready)

RQ (Receive Queue)
RR (Receive Request)

RTR (Ready To Receive)
RTS (Ready To Send)

SA (Subnet
Administrator)

SGE (Scatter /Gather
Elements)

S/G Array

SM (Subnet Manager)

SQ (Send Queue)
SR (Send Request)

SRQ (Shared Receive
Queue)

TCA (Target Channel
Adapter)

UC (Unreliable
Connection)

UD (Unreliable
Datagram)

Verbs

VPI (Virtual Protocol
Interface)

WQ (Work Queue)

WQE (Work Queue
Element)

Mellanox Technologies

Description

The flow in an RC QP where there is a connection between the sides but a RR is not
present in the Receive side

A Work Queue which holds RRs posted by the user

A WR which was posted to an RQ which describes where incoming data using a
send opcode is going to be written. Also note that a RDMA Write with immediate
will consume a RR.

A QP state in which an RR can be posted and be processed
A QP state in which an SR can be posted and be processed

The interface for querying and manipulating subnet management data

An entry to a pointer to a full or a part of a local registered memory block.
The element hold the start address of the block, size, and lkey (with its associated
permissions).

An array of S/G elements which exists in a WR that according to the used opcode
either collects data from multiple buffers and sends them as a single stream or takes
a single stream and breaks it down to numerous buffers

An entity that configures and manages the subnet

Discovers the network topology

Assign LIDs

Determines the routing schemes and sets the routing tables

One master SM and possible several slaves (Standby mode)

Administers switch routing tables thereby establishing paths through the fabric

A Work Queue which holds SRs posted by the user

A WR which was posted to an SQ which describes how much data is going to be
transferred, its direction, and the way (the opcode will specify the transfer)

A queue which holds WQEs for incoming messages from any RC/UC/UD QP
which is associated with it.
More than one QPs can be associated with one SRQ.

A Channel Adapter that is not required to support verbs, usually used in I/O devices

A QP transport service type based on a connection oriented protocol,
where a QP (Queue pair) is associated with another single QP. The QPs do not exe-
cute a reliable Protocol and messages can be lost.

A QP transport service type in which messages can be one packet length and every
UD QP can send/receive messages from another UD QP in the subnet

Messages can be lost and the order is not guaranteed. UD QP is the only type which
supports multicast messages. The message size of a UD packet is limited to the
Path MTU

An abstract description of the functionality of a network adapter.
Using the verbs, any application can create / manage objects that are needed in
order to use RDMA for data transfer.

Allows the user to change the layer 2 protocol of the port.

One of Send Queue or Receive Queue.

A WQE, pronounced “wookie”, is an element in a work queue.

Rev 1.7 \

Term Description

WR (Work Request) A request which was posted by a user to a work queue.

Mellanox Technologies 13 j

(Rev 1.7 | RDMA Architecture Overview \
1 RDMA Architecture Overview

1.1 InfiniBand

InfiniBand (IB) is a high-speed, low latency, low CPU overhead, highly efficient and scalable
server and storage interconnect technology. One of the key capabilities of InfiniBand is its sup-
port for native Remote Direct Memory Access (RDMA). InfiniBand enables data transfer
between servers and between server and storage without the involvement of the host CPU in the
data path. InfiniBand uses I/O channels for data communication (up to 16 million per host),
where each channel provides the semantics of a virtualized NIC or HCA (security, isolations etc).
InfiniBand provides various technology or solution speeds ranging from 10Gb/s (SDR) up to
56Gb/s (FDR) per port, using copper and optical fiber connections. InfiniBand efficiency and
scalability have made it the optimal performance and cost/performance interconnect solution for
the world's leading high-performance computing, cloud, Web 2.0, storage, database and financial
data centers and applications. InfiniBand is a standard technology, defined and specified by the
IBTA organization.

1.2 Virtual Protocol Interconnect® (VPI)

The Mellanox Virtual Protocol Interconnect (VPI) architecture provides a high performance, low
latency and reliable means for communication among network adapters and switches supporting
both InfiniBand and Ethernet semantics. A VPI adapter or switch can be set to deliver either
InfiniBand or Ethernet semantics per port. A dual-port VPI adapter, for example, can be config-
ured to one of the following options:

e An adapter (HCA) with two InfiniBand ports
e A NIC with two Ethernet ports
* An adapter with one InfiniBand port and one Ethernet port at the same time

Similarly, a VPI switch can have InfiniBand-only ports, Ethernet-only ports, or a mix of both
InfiniBand and Ethernet ports working at the same time.

Mellanox-based VPI adapters and switches support both the InfiniBand RDMA and the Ethernet
RoCE solutions.

1.3 RDMA over Converged Ethernet (RoCE)

RoCE is a standard for RDMA over Ethernet that is also defined and specified by the IBTA orga-
nization. RoCE provides true RDMA semantics for Ethernet as it does not require the complex
and low performance TCP transport (needed for iWARP, for example).

RoCE is the most efficient low latency Ethernet solution today. It requires a very low CPU over-
head and takes advantage of Priority Flow Control in Data Center Bridging Ethernet for lossless
connectivity. RoCE has been fully supported by the Open Fabrics Software since the release of
OFED 1.5.1.

1.4 Comparison of RDMA Technologies

Currently, there are three technologies that support RDMA: InfiniBand, Ethernet RoCE and
Ethernet iWARP. All three technologies share a common user API which is defined in this docu-
ment, but have different physical and link layers.

k 14 Mellanox Technologies j

Rev 1.7

When it comes to the Ethernet solutions, RoCE has clear performance advantages over iWARP
— both for latency, throughput and CPU overhead. RoCE is supported by many leading solu-
tions, and is incorporated within Windows Server software (as well as InfiniBand).

RDMA technologies are based on networking concepts found in a traditional network but there
are differences them and their counterparts in IP networks. The key difference is that RDMA pro-
vides a messaging service which applications can use to directly access the virtual memory on
remote computers. The messaging service can be used for Inter Process Communication (IPC),
communication with remote servers and to communicate with storage devices using Upper Layer
Protocols (ULPs) such as iSCSI Extensions for RDMA (ISER) and SCSI RDMA Protocol (SRP),
Storage Message Block (SMB), Samba, Lustre, ZFS and many more.

RDMA provides low latency through stack bypass and copy avoidance, reduces CPU utilization,
reduces memory bandwidth bottlenecks and provides high bandwidth utilization. The key bene-
fits that RDMA delivers accrue from the way that the RDMA messaging service is presented to
the application and the underlying technologies used to transport and deliver those messages.
RDMA provides Channel based 10. This channel allows an application using an RDMA device
to directly read and write remote virtual memory.

In traditional sockets networks, applications request network resources from the operating sys-
tem through an API which conducts the transaction on their behalf. However RDMA use the OS
to establish a channel and then allows applications to directly exchange messages without further
OS intervention. A message can be an RDMA Read, an RDMA Write operation or a Send/
Receive operation. IB and RoCE also support Multicast transmission.

The IB Link layer offers features such as a credit based flow control mechanism for congestion
control. It also allows the use of Virtual Lanes (VLs) which allow simplification of the higher
layer level protocols and advanced Quality of Service. It guarantees strong ordering within the
VL along a given path. The IB Transport layer provides reliability and delivery guarantees.

The Network Layer used by IB has features which make it simple to transport messages directly
between applications' virtual memory even if the applications are physically located on different
servers. Thus the combination of IB Transport layer with the Software Transport Interface is bet-
ter thought of as a RDMA message transport service. The entire stack, including the Software
Transport Interface comprises the IB messaging service.

Mellanox Technologies 15

J

bob
高亮

bob
高亮

[Rev 1.7 RDMA Architecture Overview \

The most important point is that every application has direct access to the virtual memory of
devices in the fabric. This means that applications do not need to make requests to an operating
system to transfer messages. Contrast this with the traditional network environment where the
shared network resources are owned by the operating system and cannot be accessed by a user
application. Thus, an application must rely on the involvement of the operating system to move
data from the application's virtual buffer space, through the network stack and out onto the wire.
Similarly, at the other end, an application must rely on the operating system to retrieve the data
on the wire on its behalf and place it in its virtual buffer space.

App App

buf buf

virtual

" physical

TCP/IP/Ethernet is a byte-stream oriented transport for passing bytes of information between
sockets applications. TCP/IP is lossy by design but implements a reliability scheme using the
Transmission Control Protocol (TCP). TCP/IP requires Operating System (OS) intervention for
every operation which includes buffer copying on both ends of the wire. In a byte stream-ori-

k 16 Mellanox Technologies j

1.5

1.6

Rev 1.7

ented network, the idea of a message boundary is lost. When an application wants to send a
packet, the OS places the bytes into an anonymous buffer in main memory belonging to the oper-
ating system and when the byte transfer is complete, the OS copies the data in its buffer into the
receive buffer of the application. This process is repeated each time a packet arrives until the
entire byte stream is received. TCP is responsible for retransmitting any lost packets due to con-
gestion.

In IB, a complete message is delivered directly to an application. Once an application has
requested transport of an RDMA Read or Write, the IB hardware segments the outbound mes-
sage as needed into packets whose size is determined by the fabric path maximum transfer unit.
These packets are transmitted through the IB network and delivered directly into the receiving
application's virtual buffer where they are re-assembled into a complete message. The receiving
application is notified once the entire message has been received. Thus neither the sending nor
the receiving application is involved until the entire message is delivered into the receiving appli-
cation's buffer.

Key Components

These are being presented only in the context of the advantages of deploying IB and RoCE. We
do not discuss cables and connectors.

Host Channel Adapter

HCAs provide the point at which an IB end node (for example, a server) connects to an IB net-
work. These are the equivalent of the Ethernet (NIC) card but they do much more. HCAs provide
address translation mechanism under the control of the operating system which allows an appli-
cation to access the HCA directly. The same address translation mechanism is the means by
which an HCA accesses memory on behalf of a user level application. The application refers to
virtual addresses while the HCA has the ability to translate these addresses into physical
addresses in order to affect the actual message transfer.

Range Extenders

InfiniBand range extension is accomplished by encapsulating the InfiniBand traffic onto the
WAN link and extending sufficient buffer credits to ensure full bandwidth across the WAN.

Subnet Manager

The InfiniBand subnet manager assigns Local Identifiers (LIDs) to each port connected to the
InfiniBand fabric and develops a routing table based on the assigned LIDs. The IB Subnet Man-
ager is a concept of Software Defined Networking (SDN) which eliminates the interconnect
complexity and enables the creation of very large scale compute and storage infrastructures.

Switches

IB switches are conceptually similar to standard networking switches but are designed to meet IB
performance requirements. They implement flow control of the IB Link Layer to prevent packet
dropping, and to support congestion avoidance and adaptive routing capabilities, and advanced
Quality of Service. Many switches include a Subnet Manager. At least one Subnet Manager is
required to configure an IB fabric.

Support for Existing Applications and ULPs

IP applications are enabled to run over an InfiniBand fabric using IP over IB (IPoIB) or Ethernet
over IB (EoIB) or RDS ULPs. Storage applications are supported via iSER, SRP, RDS, NFS,

Mellanox Technologies 17

[Rev 1.7 RDMA Architecture Overview \

ZFS, SMB and others. MPI and Network Direct are all supported ULPs as well, but are outside
the scope of this document.

1.7 References

* IBTA Intro to IB for End Users
http://members.infinibandta.org/kwspub/Intro_to IB_for End Users.pdf

* Mellanox InfiniBandFAQ FQ 100.pdf
http://www.mellanox.com/pdf/whitepapers/InfiniBandFAQ_FQ_100.pdf

* Mellanox WP 2007 IB_Software and Protocols.pdf
http://www.mellanox.com/pdf/whitepapers/WP_2007 IB_Software_and Protocols.pdf

¢ Mellanox driver software stacks and firmware are available for download from Mella-
nox Technologies’ Web pages: http://www.mellanox.com

k 18 Mellanox Technologies j

http://www.mellanox.com

Rev 1.7

2 RDMA-Aware Programming Overview

The VPI architecture permits direct user mode access to the hardware. Mellanox provides a
dynamically loaded library, creating access to the hardware via the verbs API. This document
contains verbs and their related inputs, outputs, descriptions, and functionality as exposed
through the operating system programming interface.

Note: This programming manual and its verbs are valid only for user space. See header files
for the kernel space verbs.

Programming with verbs allows for customizing and optimizing the RDMA-Aware network.
This customizing and optimizing should be done only by programmers with advanced knowl-
edge and experience in the VPI systems.

In order to perform RDMA operations, establishment of a connection to the remote host, as well
as appropriate permissions need to be set up first. The mechanism for accomplishing this is the
Queue Pair (QP). For those familiar with a standard IP stack, a QP is roughly equivalent to a
socket. The QP needs to be initialized on both sides of the connection. Communication Manager
(CM) can be used to exchange information about the QP prior to actual QP setup.

Once a QP is established, the verbs API can be used to perform RDMA reads, RDMA writes, and
atomic operations. Serialized send/receive operations, which are similar to socket reads/writes,
can be performed as well.

2.1 Available Communication Operations

2.1.1 Send/Send With Immediate

The send operation allows you to send data to a remote QP’s receive queue. The receiver must
have previously posted a receive buffer to receive the data. The sender does not have any control
over where the data will reside in the remote host.

Optionally, an immediate 4 byte value may be transmitted with the data buffer. This immediate
value is presented to the receiver as part of the receive notification, and is not contained in the
data buffer.

2.1.2 Receive

This is the corresponding operation to a send operation. The receiving host is notified that a data
buffer has been received, possibly with an inline immediate value. The receiving application is
responsible for receive buffer maintenance and posting.

21.3 RDMA Read

A section of memory is read from the remote host. The caller specifies the remote virtual address
as well as a local memory address to be copied to. Prior to performing RDMA operations, the
remote host must provide appropriate permissions to access its memory. Once these permissions
are set, RDMA read operations are conducted with no notification whatsoever to the remote host.
For both RDMA read and write, the remote side isn't aware that this operation being done (other
than the preparation of the permissions and resources).

Mellanox Technologies 19

(Rev 1.7 RDMA-Aware Programming Overview \

2.1.4 RDMA Write / RDMA Write With Immediate

Similar to RDMA read, but the data is written to the remote host. RDMA write operations are
performed with no notification to the remote host. RDMA write with immediate operations, how-
ever, do notify the remote host of the immediate value.

2.1.5 Atomic Fetch and Add / Atomic Compare and Swap
These are atomic extensions to the RDMA operations.

The atomic fetch and add operation atomically increments the value at a specified virtual address
by a specified amount. The value prior to being incremented is returned to the caller.

The atomic compare and swap will atomically compare the value at a specified virtual address
with a specified value and if they are equal, a specified value will be stored at the address.

2.2 Transport Modes

There are several different transport modes you may select from when establishing a QP. Opera-
tions available in each mode are shown below in the table below. RD is not supported by this

APL

Operation UD ucC RC RD
Send (with immediate) X X X X
Receive X X X X
RDMA Write (with immediate) X X X
RDMA Read X X
Atomic: Fetch and Add/ Cmp and Swap X X
Max message size MTU 1GB 1GB 1GB

2.2.1 Reliable Connection (RC)

Queue Pair is associated with only one other QP.

Messages transmitted by the send queue of one QP are reliably delivered to receive queue of the
other QP.

Packets are delivered in order.

A RC connection is very similar to a TCP connection.

2.2.2 Unreliable Connection (UC)

A Queue Pair is associated with only one other QP.
The connection is not reliable so packets may be lost.

Messages with errors are not retried by the transport, and error handling must be provided by a
higher level protocol.

2.2.3 Unreliable Datagram (UD)

A Queue Pair may transmit and receive single-packet messages to/from any other UD QP.

k 20 Mellanox Technologies j

Rev 1.7

Ordering and delivery are not guaranteed, and delivered packets may be dropped by the receiver.
Multicast messages are supported (one to many).

A UD connection is very similar to a UDP connection.
2.3 Key Concepts

2.3.1 Send Request (SR)

An SR defines how much data will be sent, from where, how and, with RDMA, to where.
struct ibv_send_wr is used to implement SRs.

2.3.2 Receive Request (RR)

An RR defines buffers where data is to be received for non-RDMA operations. If no buffers are
defined and a transmitter attempts a send operation or a RDMA Write with immediate, a receive
not ready (RNR) error will be sent. struct ibv_recv_wr is used to implement RRs.

2.3.3 Completion Queue

A Completion Queue is an object which contains the completed work requests which were
posted to the Work Queues (WQ). Every completion says that a specific WR was completed
(both successfully completed WRs and unsuccessfully completed WRs).

A Completion Queue is a mechanism to notify the application about information of ended Work
Requests (status, opcode, size, source).

CQs have n Completion Queue Entries (CQE). The number of CQEs is specified when the CQ is
created.

When a CQE is polled it is removed from the CQ.

CQ is a FIFO of CQEs.

CQ can service send queues, receive queues, or both.

Work queues from multiple QPs can be associated with a single CQ.

struct ibv_cq is used to implement a CQ.

2.3.4 Memory Registration

Memory Registration is a mechanism that allows an application to describe a set of virtually con-
tiguous memory locations or a set of physically contiguous memory locations to the network
adapter as a virtually contiguous buffer using Virtual Addresses.

The registration process pins the memory pages (to prevent the pages from being swapped out
and to keep physical <-> virtual mapping).

During the registration, the OS checks the permissions of the registered block.
The registration process writes the virtual to physical address table to the network adapter.

When registering memory, permissions are set for the region. Permissions are local write, remote
read, remote write, atomic, and bind.

Every MR has a remote and a local key (r_key, | key). Local keys are used by the local HCA to
access local memory, such as during a receive operation. Remote keys are given to the remote
HCA to allow a remote process access to system memory during RDMA operations.

Mellanox Technologies 21

[Rev 1.7 RDMA-Aware Programming Overview \

The same memory buffer can be registered several times (even with different access permissions)
and every registration results in a different set of keys.

struct ibv_mr is used to implement memory registration.

2.3.5 Memory Window

An MW allows the application to have more flexible control over remote access to its memory.
Memory Windows are intended for situations where the application:

* wants to grant and revoke remote access rights to a registered Region in a dynamic fash-
ion with less of a performance penalty than using deregistration/registration or reregis-
tration.

* wants to grant different remote access rights to different remote agents and/or grant
those rights over different ranges within a registered Region.

The operation of associating an MW with an MR is called Binding.

Different MWs can overlap the same MR (event with different access permissions).

2.3.6 Address Vector

An Address Vector is an object that describes the route from the local node to the remote node.
In every UC/RC QP there is an address vector in the QP context.
In UD QP the address vector should be defined in every post SR.

struct ibv_ah is used to implement address vectors.

2.3.7 Global Routing Header (GRH)

The GRH is used for routing between subnets. When using RoCE, the GRH is used for routing
inside the subnet and therefore is a mandatory. The use of the GRH is mandatory in order for an
application to support both IB and RoCE.

When global routing is used on UD QPs, there will be a GRH contained in the first 40 bytes of
the receive buffer. This area is used to store global routing information, so an appropriate address
vector can be generated to respond to the received packet. If GRH is used with UD, the RR
should always have extra 40 bytes available for this GRH.

struct ibv_grh is used to implement GRHs.

2.3.8 Protection Domain

Object whose components can interact with only each other. These components can be AH, QP,
MR, and SRQ.

A protection domain is used to associate Queue Pairs with Memory Regions and Memory Win-
dows, as a means for enabling and controlling network adapter access to Host System memory.

PDs are also used to associate Unreliable Datagram queue pairs with Address Handles, as a
means of controlling access to UD destinations.

struct ibv_pd is used to implement protection domains.

k 22 Mellanox Technologies j

2.3.9

2.3.10

2.3.11

24

Rev 1.7

Asynchronous Events

The network adapter may send async events to inform the SW about events that occurred in the
system.

There are two types of async events:

Affiliated events: events that occurred to personal objects (CQ, QP, SRQ). Those events will be
sent to a specific process.

Unaffiliated events: events that occurred to global objects (network adapter, port error). Those
events will be sent to all processes.

Scatter Gather

Data is being gathered/scattered using scatter gather elements, which include:

Address: address of the local data buffer that the data will be gathered from or scattered to.
Size: the size of the data that will be read from / written to this address.

L _key: the local key of the MR that was registered to this buffer.

struct ibv_sge implements scatter gather elements.

Polling

Polling the CQ for completion is getting the details about a WR (Send or Receive) that was
posted.

If we have completion with bad status in a WR, the rest of the completions will be all be bad (and
the Work Queue will be moved to error state).

Every WR that does not have a completion (that was polled) is still outstanding.

Only after a WR has a completion, the send / receive buffer may be used / reused / freed.
The completion status should always be checked.

When a CQE is polled it is removed from the CQ.

Polling is accomplished with the ibv_poll cq operation.

Typical Application

This documents provides two program examples:

* The first code, RDMA RC_example, uses the VPI verbs API, demonstrating how to
perform RC: Send, Receive, RDMA Read and RDMA Write operations.

» The second code, multicast example, uses RDMA_ CM verbs API, demonstrating Mul-
ticast UD.

The structure of a typical application is as follows. The functions in the programming example
that implement each step are indicated in bold.

1. Get the device list;

First you must retrieve the list of available IB devices on the local host. Every device in this list contains
both a name and a GUID. For example the device names can be: mthca0, mix4 1.

Implemented in programming example by 7.1.4 resources_create
2. Open the requested device;

Iterate over the device list, choose a device according to its GUID or name and open it.

Mellanox Technologies 23

J

k24

Rev 1.7 RDMA-Aware Programming Overview \

Implemented in programming example by 7.1.4 resources_create.
3. Query the device capabilities;

The device capabilities allow the user to understand the supported features (APM, SRQ) and capabilities
of the opened device.

Implemented in programming example by 7.1.4 resources_create.
4. Allocate a Protection Domain to contain your resources;

A Protection Domain (PD) allows the user to restrict which components can interact with only each
other. These components can be AH, QP, MR, MW, and SRQ.

Implemented in programming example by 7.1.4 resources_create.
5. Register a memory region;

VPI only works with registered memory. Any memory buffer which is valid in the process’s virtual space
can be registered. During the registration process the user sets memory permissions and receives local
and remote keys (lkey/rkey) which will later be used to refer to this memory buffer.

Implemented in programming example by 7.1.4 resources_create.
6. Create a Completion Queue (CQ);

A CQ contains completed work requests (WR). Each WR will generate a completion queue entry (CQE)
that is placed on the CQ. The CQE will specify if the WR was completed successfully or not.

Implemented in programming example by 7.1.4 resources_create.

7. Create a Queue Pair (QP);
Creating a QP will also create an associated send queue and receive queue.
Implemented in programming example by 7.1.4 resources_create.

8. Bring up a QP;

A created QP still cannot be used until it is transitioned through several states, eventually getting to
Ready To Send (RTS). This provides needed information used by the QP to be able send / receive data.

Implemented in programming example by 7.1.6 connect_qp, 7.1.7 modify_qp_to_init, 7.1.8 post_re-
ceive, 7.1.10 modify_qp_to_rtr, and 7.1.11 modify_qp_to_rts.

9. Post work requests and poll for completion;

Use the created QP for communication operations.

Implemented in programming example by 7.1.12 post_send and 7.1.13 poll_completion.
10. Cleanup;

Destroy objects in the reverse order you created them:

Delete QP

Delete CQ

Deregister MR

Deallocate PD

Close device

Implemented in programming example by 7.1.14 resources_destroy.

Mellanox Technologies j

-
3

31

311

Rev 1.7

VPI Verbs API

This chapter describes the details of the VPI verbs API.
Initialization

ibv_fork_init

Template:

int ibv_fork_init(void)

Input Parameters:

None

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:
ibv_fork_init initializes libibverbs' data structures to handle the fork() function safely and avoid
data corruption, whether fork() is called explicitly or implicitly such as in system() calls.

It is not necessary to call ibv_fork init if all parent process threads are always blocked until all
child processes end or change address space via an exec() operation.

This function works on Linux kernels supporting the MADV_DONTFORK flag for madvise()
(2.6.17 and higher).

Setting the environment variable RDMAV_FORK SAFE or IBV_FORK SAFE to any value has
the same effect as calling ibv_fork init().

Setting the environment variable RDMAV_HUGEPAGES SAFE to any value tells the library to
check the underlying page size used by the kernel for memory regions. This is required if an
application uses huge pages either directly or indirectly via a library such as libhugetlbfs.

Calling ibv_fork init() will reduce performance due to an extra system call for every memory
registration, and the additional memory allocated to track memory regions. The precise perfor-
mance impact depends on the workload and usually will not be significant.

Setting RDMAV_HUGEPAGES_SAFE adds further overhead to all memory registrations.

Mellanox Technologies 25

J

[Rev 1.7 | VPI Verbs API \

3.2 Device Operations

The following commands are used for general device operations, allowing the user to query
information about devices that are on the system as well as opening and closing a specific device.

3.21 ibv_get_device_list

Template:
struct ibv_device **ibv_get device list(int *num_devices)

Input Parameters:

none

Output Parameters:

num_ devices (optional) If non-null, the number of devices returned in
the array will be stored here

Return Value:

NULL terminated array of VPI devices or NULL on failure.

Description:

ibv_get device_list returns a list of VPI devices available on the system. Each entry on the list is
a pointer to a struct ibv_device.

struct ibv_device is defined as:

struct ibv device

{

struct ibv _device ops ops;
enum ibv node type node_ type;
enum ibv_transport type transport type;
char name [IBV_SYSFS NAME MAX] ;
char dev_name [IBV_SYSFS NAME MAX] ;
char dev_path[IBV SYSFS PATH MAX] ;
char ibdev_path[IBV_SYSFS PATH MAX] ;
}i
ops pointers to alloc and free functions
node_ type IBV_NODE_ UNKNOWN

IBV_NODE CA
IBV_NODE_SWITCH
IBV_NODE_ ROUTER
IBV_NODE RNIC
transport_type IBV_TRANSPORT UNKNOWN
IBV_TRANSPORT IB
IBV_TRANSPORT IWARP

name kernel device name eg “mthca0”

dev_name uverbs device name eg “uverbs0”

dev_path path to infiniband verbs class device in sysfs
ibdev_path path to infiniband class device in sysfs

k 26 Mellanox Technologies j

Rev 1.7

The list of ibv_device structs shall remain valid until the list is freed. After calling ibv_get de-
vice_list, the user should open any desired devices and promptly free the list via the ibv_free de-
vice_list command.

3.2.2 ibv_free_device_list

Template:

void ibv_free_device_list(struct ibv_device **list)

Input Parameters:

list list of devices provided from ibv_get device list command

Output Parameters:

none

Return Value:

none

Description:

ibv_free device list frees the list of ibv_device structs provided by ibv_get device list. Any
desired devices should be opened prior to calling this command. Once the list is freed, all ibv_de-
vice structs that were on the list are invalid and can no longer be used.

3.2.3 ibv_get_device_name

Template:

const char *ibv_get device name(struct ibv_device *device)

Input Parameters:

device struct ibv device for desired device

Output Parameters:

none

Return Value:

Pointer to device name char string or NULL on failure.

Description:

ibv_get _device_name returns a pointer to the device name contained within the ibv_device
struct.

3.24 ibv_get_device_guid

Template:

uint64 tibv_get device guid(struct ibv_device *device)

Input Parameters:

device struct ibv device for desired device

Mellanox Technologies 27

(Rev 1.7 VPI Verbs API \

Output Parameters:

none

Return Value:
64 bit GUID

Description:

ibv_get_device_guid returns the devices 64 bit Global Unique Identifier (GUID) in network
byte order.

3.2.5 ibv_open_device

Template:

struct ibv_context *ibv_open_device(struct ibv_device *device)

Input Parameters:

device struct ibv device for desired device

Output Parameters:

none

Return Value:

A verbs context that can be used for future operations on the device or NULL on
failure.

Description:

ibv_open_device provides the user with a verbs context which is the object that will be used for
all other verb operations.

3.2.6 ibv_close_device

Template:

int ibv_close_device(struct ibv_context *context)

Input Parameters:

context struct ibv_context from ibv_open device

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_close_device closes the verb context previously opened with ibv_open_device. This opera-
tion does not free any other objects associated with the context. To avoid memory leaks, all other
objects must be independently freed prior to calling this command.

k 28 Mellanox Technologies j

-

3.2.7

3.2.8

Rev 1.7

ibv_node_type_str
Template:
const char *ibv_node_type_str (enum ibv_node_type node_type)
Input Parameters:
node_ type ibv_node type enum value which may be an HCA, Switch,

Router, RNIC or Unknown

Output Parameters:

none

Return Value:

A constant string which describes the enum value node type

Description:

ibv_node_type_str returns a string describing the node type enum value, node_type. This value
can be an InfiniBand HCA, Switch, Router, an RDMA enabled NIC or unknown

enum ibv_node_type {
IBV_NODE_UNKNOWN = -1,
IBV_NODE_CA =1,
IBV_NODE_SWITCH,
IBV_NODE_ROUTER,
IBV_NODE_RNIC

}s

ibv_port_state_str

Template:

const char *ibv_port_state_str (enum ibv_port_state port_state)

Input Parameters:

port state The enumerated value of the port state

Output Parameters:

None

Return Value:

A constant string which describes the enum value port state

Description:
ibv_port_state_ str returns a string describing the port state enum value, port_state.

enum ibv port state {
IBV_PORT NOP =
IBV_PORT DOWN =
IBV_PORT INIT =
IBV_PORT ARMED =
IBV_PORT ACTIVE =
IBV_PORT ACTIVE DEFER =

}i

Uk W NP o

Mellanox Technologies 29

J

[Rev 1.7 | VPI Verbs API \

3.3 Verb Context Operations

The following commands are used once a device has been opened. These commands allow you to
get more specific information about a device or one of its ports, create completion queues (CQ),
completion channels (CC), and protection domains (PD) which can be used for further opera-
tions.

3.3.1 ibv_query_device

Template:

intibv_query_device(struct ibv_context *context, struct ibv_device attr *device attr)

Input Parameters:

context struct ibv_context from ibv_open device

Output Parameters:

device attr struct ibv _device attr containing device attributes

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_query_device retrieves the various attributes associated with a device. The user should mal-
loc a struct ibv_device attr, pass it to the command, and it will be filled in upon successful
return. The user is responsible to free this struct.

struct ibv_device_attr is defined as follows:

struct ibv_device_attr

{

char fw_ver([64];
uinte4 t node guid;

uinte4 t sys_image guid;
uinte64 t max mr size;
uinte4 t page size cap;
uint32_t vendor id;

uint32 t vendor part id;
uint32 t hw_ver;

int max_dgp;

int max _gp_wr;

int device cap flags;
int max_sge;

int max_sge rd;

int max_cg;

int max_cge;

int max mr;

int max_pd;

int max gp_rd_atom;
int max_ee rd atom;
int max_res rd atom;
int max_gp init rd atom;
int max_ee_init_rd_ atom;
enum ibv_atomic_cap atomic_cap;

k 30 Mellanox Technologies j

Rev 1.7 \

int max_ee;
int max_rdd;
int max_ mw;
int max _raw_ipvé gp;
int max_raw_ethy gp;
int max mcast_grp;
int max _mcast_gp_attach;
int max_total mcast gp attach;
int max_ah;
int max_fmr;
int max map_ per fmr;
int max_ srq;
int max_srq_wr;
int max_srqg_sge;
uintleée t max_pkeys;
uint8_t local ca ack _delay;
uint8_t phys_port cnt;
fw_ver Firmware version
node guid Node global unique identifier (GUID)
sys_image guid System image GUID
max mr size Largest contiguous block that can be registered
page size cap Supported page sizes
vendor id Vendor ID, per IEEE
vendor part id Vendor supplied part ID
hw ver Hardware version
max_gp Maximum number of Queue Pairs (QP)
max gp_ wr Maximum outstanding work requests (WR) on any queue
device cap flags IBV _DEVICE RESIZE MAX WR

IBV_DEVICE BAD PKEY CNTR
IBV_DEVICE BAD QKEY CNTR

IBV DEVICE RAW MULTI
IBV_DEVICE_AUTO PATH MIG
IBV_DEVICE_ CHANGE PHY PORT
IBV_DEVICE UD AV PORT ENFORCE
IBV_DEVICE_CURR_QP_STATE MOD
IBV_DEVICE SHUTDOWN PORT

IBV DEVICE INIT TYPE
IBV_DEVICE_PORT ACTIVE EVENT
IBV _DEVICE SYS IMAGE GUID
IBV DEVICE RC_RNR NAK GEN
IBV_DEVICE_SRQ RESIZE
IBV_DEVICE N _NOTIFY CQ

IBV DEVICE XRC

max_sge Maximum scatter/gather entries (SGE) per WR for non-RD QPs
max_sge_ rd Maximum SGEs per WR for RD QPs

max_cq Maximum supported completion queues (CQ)

max_cge Maximum completion queue entries (CQE) per CQ

max mr Maximum supported memory regions (MR)

Mellanox Technologies 31 j

3.3.2

k32

Rev 1.7

max_pd
max gp _rd atom

max ee rd atom
to End (EE) context

max res rd atom
operations

max_gp init rd atom
initiated per QP
max_ee init atom
initiated per EE

atomic_cap

max_ee
max_ rdd

max_mw
max_raw_ipvé_gp
max raw_ethy gp
max _mcast_grp

max mcast gp_ attach

VPI Verbs API \

Maximum supported protection domains (PD)

Maximum outstanding RDMA read and atomic operations per QP

Maximum outstanding RDMA read and atomic operations per End
(RD connections)

Maximum resources used for incoming RDMA read and atomic

Maximium RDMA read and atomic operations that may be

Maximum RDMA read and atomic operations that may be

IBV_ATOMIC _NONE - no atomic guarantees
IBV_ATOMIC HCA - atomic guarantees within this device

IBV_ATOMIC GLOB - global atomic guarantees

Maximum supported EE contexts

Maximum supported RD domains

Maximum supported memory windows (MW)

Maximum supported raw IPvé datagram QPs

Maximum supported ethertype datagram QPs

Maximum supported multicast groups

Maximum QPs per multicast group that can be attached

max total mcast gp attach

max_ah
max fmr

max map_ per fmr
required

max_srq
max_srq_wr

max srqg_sge

max pkeys
local ca ack delay

phys port cnt

ibv_query_port

Template:

Maximum total QPs that can be attached to multicast groups
(AH)

fast memory regions

Maximum supported address handles

Maximum supported (FMR)

Maximum number of remaps per FMR before an unmap operation is

Maximum supported shared receive queues (SRCQ)

Maximum work requests (WR) per SRQ

Maximum SGEs per SRQ
Maximum number of partitions
Local CA ack delay

Number of physical ports

int ibv_query_port(struct ibv_context *context, uint§ t port num, struct ibv_ port attr

*port_attr)

Input Parameters:
context

port_num

Output Parameters:

port_attr

struct ibv _context from ibv open device

physical port number (1 is first port)

struct ibv_port_attr containing port attributes

Mellanox Technologies

Rev 1.7

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_query_port retrieves the various attributes associated with a port. The user should allocate a
struct ibv_port_attr, pass it to the command, and it will be filled in upon successful return. The
user is responsible to free this struct.

struct ibv_port_attr is defined as follows:

struct ibv_port_attr

{

enum ibv _port state state;
enum ibv_mtu max_mtu;
enum ibv_mtu active mtu;
int gid tbl len;
uint32 t port cap_ flags;
uint32 t max _msg_Sz;
uint32_t bad pkey cntr;
uint32 t gkey viol cntr;
uintleée t pkey tbl len;
uintlée t 1lid;
uintleée t sm_1id;
uint8_t lmc;
uint8_t max vl num;
uint8 t sm_sl;
uint8 t subnet timeout;
uint8 t init type reply;
uint8 t active width;
uint8_t active speed;
uint8 t phys state;

}i

state IBV_PORT NOP

IBV_PORT DOWN
IBV_PORT INIT
IBV_PORT ARMED
IBV_PORT ACTIVE
IBV_PORT ACTIVE DEFER
max_mtu Maximum Transmission Unit (MTU) supported by port. Can be:
IBV_MTU 256
IBV_MTU 512
IBV_MTU 1024
IBV_MTU 2048
IBV_MTU 4096

active mtu Actual MTU in use
gid tbl len Length of source global ID (GID) table
port cap flags Supported capabilities of this port. There are currently no

enumerations/defines declared in verbs.h
max msg_ sz Maximum message size

bad pkey cntr Bad P_Key counter

Mellanox Technologies 33

[Rev 1.7 VPI Verbs API \

gkey viol cntr Q Key violation counter

pkey_tbl_len Length of partition table

lid First local identifier (LID) assigned to this port
sm_1id LID of subnet manager (SM)

lmc LID Mask control (used when multiple LIDs are assigned to
port)

max vl num Maximum virtual lanes (VL)

sm_sl SM service level (SL)

subnet timeout Subnet propagation delay

init type reply Type of initialization performed by SM

active width Currently active link width

active speed Currently active link speed

phys_state Physical port state

3.3.3 ibv_query_gid

Template:

int ibv_query_gid(struct ibv_context *context, uint8 t port num, int index, union ibv_gid *gid)

Input Parameters:

context struct ibv_context from ibv_open device
port num physical port number (1 is first port)
index which entry in the GID table to return (0 is first)

Output Parameters:

gid union ibv _gid containing gid information

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_query_gid retrieves an entry in the port’s global identifier (GID) table. Each port is assigned
at least one GID by the subnet manager (SM). The GID is a valid IPv6 address composed of the
globally unique identifier (GUID) and a prefix assigned by the SM. GID[0] is unique and con-
tains the port's GUID.

The user should allocate a union ibv_gid, pass it to the command, and it will be filled in upon
successful return. The user is responsible to free this union.
union ibv_gid is defined as follows:

union ibv_gid

{

uint8 t rawl[1l6];
struct
{
uinte4 t subnet prefix;
uinté4_t interface_id;
} global;

k 34 Mellanox Technologies j

3.34

3.3.5

3.3.6

Rev 17
}i

ibv_query_pkey

Template:

int ibv_query_pkey(struct ibv_context *context, uint8_t port num, int index, uint16_t *pkey)

Input Parameters:

context struct ibv_context from ibv_open device
port num physical port number (1 is first port)
index which entry in the pkey table to return (0 is first)

Output Parameters:

pkey desired pkey

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_query_pkey retrieves an entry in the port’s partition key (pkey) table. Each port is assigned
at least one pkey by the subnet manager (SM). The pkey identifies a partition that the port
belongs to. A pkey is roughly analogous to a VLAN ID in Ethernet networking.

The user passes in a pointer to a uintl6 that will be filled in with the requested pkey. The user is
responsible to free this uint16.

ibv_alloc_pd

Template:

struct ibv_pd *ibv_alloc_pd(struct ibv_context *context)

Input Parameters:

context struct ibv_context from ibv_open device

Output Parameters:

none

Return Value:

Pointer to created protection domain or NULL on failure.

Description:

ibv_alloc_pd creates a protection domain (PD). PDs limit which memory regions can be
accessed by which queue pairs (QP) providing a degree of protection from unauthorized access.
The user must create at least one PD to use VPI verbs.

ibv_dealloc_pd

Template:

Mellanox Technologies 35

[Rev 1.7 VPI Verbs API \

int ibv_dealloc_pd(struct ibv_pd *pd)

Input Parameters:

pd struct ibv _pd from ibv alloc_pd

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_dealloc_pd frees a protection domain (PD). This command will fail if any other objects are
currently associated with the indicated PD.

3.3.7 ibv_create_cq

Template:

struct ibv_cq *ibv_create_cq(struct ibv_context *context, int cqe, void *cq_context, struct ibv_-
comp_channel *channel, int comp_vector)

Input Parameters:

context struct ibv_context from ibv_open device

cge Minimum number of entries CQ will support

cg_context (Optional) User defined wvalue returned with completion
events

channel (Optional) Completion channel

comp_vector (Optional) Completion vector

Output Parameters:

none

Return Value:

pointer to created CQ or NULL on failure.

Description:

ibv_create cq creates a completion queue (CQ). A completion queue holds completion queue
entries (CQE). Each Queue Pair (QP) has an associated send and receive CQ. A single CQ can be
shared for sending and receiving as well as be shared across multiple QPs.

The parameter cqe defines the minimum size of the queue. The actual size of the queue may be
larger than the specified value.

The parameter cq_context is a user defined value. If specified during CQ creation, this value will
be returned as a parameter in ibv_get_cq_event when using a completion channel (CC).

The parameter channel is used to specify a CC. A CQ is merely a queue that does not have a built
in notification mechanism. When using a polling paradigm for CQ processing, a CC is unneces-
sary. The user simply polls the CQ at regular intervals. If, however, you wish to use a pend para-

k 36 Mellanox Technologies j

3.3.8

3.3.9

Rev 1.7

digm, a CC is required. The CC is the mechanism that allows the user to be notified that a new
CQE is on the CQ.

The parameter comp_vector is used to specify the completion vector used to signal completion
events. It must be >=0 and < context->num_comp_vectors.

ibv_resize_cq

Template:

int ibv_resize cq(struct ibv_cq *cq, int cqe)

Input Parameters:
cq CQ to resize

cge Minimum number of entries CQ will support

Output Parameters:

none

Return Value:

0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:
ibv_resize_cq resizes a completion queue (CQ).

The parameter cqe must be at least the number of outstanding entries on the queue. The actual
size of the queue may be larger than the specified value. The CQ may (or may not) contain com-
pletions when it is being resized thus, it can be resized during work with the CQ.

ibv_destroy_cq

Template:
int ibv_destroy_cq(struct ibv_cq *cq)

Input Parameters:

cq CQ to destroy

Output Parameters:

none

Return Value:

0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_destroy_cq frees a completion queue (CQ). This command will fail if there is any queue pair
(QP) that still has the specified CQ associated with it.

Mellanox Technologies 37

(Rev 1.7 VPI Verbs API \

3.3.10 ibv_create_comp_channel

Template:

struct ibv_comp_channel *ibv_create_comp_channel(struct ibv_context *context)

Input Parameters:

context struct ibv context from ibv open device

Output Parameters:

none

Return Value:

pointer to created CC or NULL on failure.

Description:

ibv_create_comp_channel creates a completion channel. A completion channel is a mechanism
for the user to receive notifications when new completion queue event (CQE) has been placed on
a completion queue (CQ).

3.3.11 ibv_destroy_comp_channel

Template:

int ibv_destroy_comp_channel(struct ibv_comp_channel *channel)

Input Parameters:

channel struct ibv _comp channel from ibv create comp channel

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_destroy_comp_channel frees a completion channel. This command will fail if there are any
completion queues (CQ) still associated with this completion channel.

k 38 Mellanox Technologies j

3.4

3.41

Rev 1.7

Protection Domain Operations

Once you have established a protection domain (PD), you may create objects within that domain.
This section describes operations available on a PD. These include registering memory regions
(MR), creating queue pairs (QP) or shared receive queues (SRQ) and address handles (AH).

ibv_reg_mr

Template:

struct ibv_mr *ibv_reg mr(struct ibv_pd *pd, void *addr, size t length, enum ibv_access_flags
access)

Input Parameters:

pd protection domain, struct ibv _pd from ibv alloc pd
addr memory base address

length length of memory region in bytes

access access flags

Output Parameters:

none

Return Value:

pointer to created memory region (MR) or NULL on failure.

Description:

ibv_reg mr registers a memory region (MR), associates it with a protection domain (PD), and
assigns it local and remote keys (lkey, rkey). All VPI commands that use memory require the
memory to be registered via this command. The same physical memory may be mapped to differ-
ent MRs even allowing different permissions or PDs to be assigned to the same memory, depend-
ing on user requirements.

Access flags may be bitwise or one of the following enumerations:

IBV_ACCESS_LOCAL WRITE Allow local host write access
IBV_ACCESS REMOTE WRITE Allow remote hosts write access
IBV_ACCESS REMOTE READ Allow remote hosts read access
IBV_ACCESS REMOTE ATOMIC Allow remote hosts atomic access
IBV_ACCESS MW _BIND Allow memory windows on this MR

Local read access is implied and automatic.

Any VPI operation that violates the access permissions of the given memory operation will fail.
Note that the queue pair (QP) attributes must also have the correct permissions or the operation
will fail.

IfIBV_ACCESS REMOTE_ WRITE or IBV_ACCESS REMOTE_ ATOMIC is set, then IBV_-
ACCESS _LOCAL_ WRITE must be set as well.

struct ibv_mr is defined as follows:

struct ibv mr

{

struct ibv_context *context;
struct ibv_pd *pd;

Mellanox Technologies 39

[Rev 1.7 VPI Verbs API \

3.4.2

3.4.3

k40

void *addr;
size t length;
uint32 t handle;
uint32_t lkey;
uint32 t rkey;

i
ibv_dereg_mr

Template:

int ibv_dereg_mr(struct ibv_mr *mr)

Input Parameters:

mr struct ibv_mr from ibv_reg mr

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_dereg_mr frees a memory region (MR). The operation will fail if any memory windows
(MW) are still bound to the MR.

ibv_create_qgp

Template:
struct ibv_qp *ibv_create_qp(struct ibv_pd *pd, struct ibv_qp_init_attr *qp_init_attr)

Input Parameters:
pd struct ibv_pd from ibv_alloc pd

gp init attr initial attributes of queue pair

Output Parameters:

gp_init attr actual values are filled in

Return Value:

pointer to created queue pair (QP) or NULL on failure.

Description:

ibv_create_qp creates a QP. When a QP is created, it is put into the RESET state.

struct qp_init_attr is defined as follows:

struct ibv _gp init attr

{

void *gp_ context;
struct ibv_cqg *send cqg;
struct ibv_cqg *recv_cq;

Mellanox Technologies j

3.4.4

Rev 1.7

struct ibv_srg *srq;
struct ibv _gp cap cap;
enum ibv_gp type ap_type;
int sq_sig all;
struct ibv_xrc domain *xrc_ domain;
i
gp_context (optional) user defined value associated with QP.

send cg
ibv_create gp.

recv_cq

send CQ. This must be created by the user prior to calling

receive CQ. This must be created by the user prior to calling

ibv_create gp. It may be the same as send cqg.

srq (optional) shared receive queue. Only used for SRQ QP’s.
cap defined below.
gp_type must be one of the following:
IBV_QPT RC = 2,
IBV_QPT UC,
IBV_QPT UD,
IBV_QPT XRC,
IBV_QPT RAW PACKET = 8,
IBV_QPT RAW ETH = 8
sq_sig_all If this wvalue is set to 1, all send requests (WR) will
generate completion queue events (CQE). If this value is set to 0, only WRs that

are flagged will generate CQE’s (see ibv post send) .

xrc_domain

(Optional) Only used for XRC operations.

struct ibv gp cap is defined as follows:

struct ibv_gp cap

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

Vi

max_ send wr
queue.

max _recv_wr
the receive queue.

max_ send sge
the send queue.

max_recv_sge

max inline data

ibv_destroy_qp

Template:

max send wr;
max_recv_wr;
max_send sge;
max_recv_sdge;
max_inline_ data;

Maximum number of outstanding send requests in the send

Maximum number of outstanding receive requests (buffers) in

Maximum number of scatter/gather elements (SGE) in a WR on

Maximum number of SGEs in a WR on the receive queue.

Maximum size in bytes of inline data on the send queue.

int ibv_destroy_qp(struct ibv_qgp *qp)

Mellanox Technologies 41

[Rev 1.7 VPI Verbs API \

Input Parameters:

ap struct ibv_gp from ibv create gp

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_destroy_qp frees a queue pair (QP).

3.4.5 ibv_create_srq

Template:
struct ibv_srq *ibv_create_srq(struct ibv_pd *pd, struct ibv_srq_init_attr *srq_init_attr)

Input Parameters:

pd The protection domain associated with the shared receive
queue (SRQ)

srg_init_attr A list of initial attributes required to create the SRQ

Output Parameters:

ibv_srqg_ attr Actual values of the struct are set

Return Value:
A pointer to the created SRQ or NULL on failure

Description:

ibv_create srq creates a shared receive queue (SRQ). srq_attr->max_wr and srq_attr->max_sge
are read to determine the requested size of the SRQ, and set to the actual values allocated on
return. If ibv_create srq succeeds, then max_wr and max_sge will be at least as large as the
requested values.

struct ibv_srq is defined as follows:

struct ibv_srqg {

struct ibv_context *context;struct ibv_context from ibv open device
void *srqg_context;

struct ibv_pd *pd; Protection domain

uint32 t handle;

pthread mutex t mutex;

pthread cond t cond;

uint32_t events_ completed;

}
struct ibv_srq_init_attr is defined as follows:

struct ibv_srqg init attr

{

void *srqg context;

k 42 Mellanox Technologies j

Rev 1.7

struct ibv_srqg attr attr;
bi
srq_context struct ibv_context from ibv_open device
attr An ibv_srq attr struct defined as follows:

struct ibv_srq_attr is defined as follows:

struct ibv_srqg_attr

{

uint32_t max_wr;

uint32 t max_sge;

uint32 t srqg limit;
max_wr Requested maximum number of outstanding WRs in the SRQ
max_sge Requested number of scatter elements per WR
srqg limit; The limit value of the SRQ (irrelevant for ibv create srq)

3.4.6 ibv_modify_srq

Template:
int ibv_modify_srq (struct ibv_srq *srq, struct ibv_srq_attr *srq_attr, int srq_attr mask)

Input Parameters:

srq The SRQ to modify

srq_attr Specifies the SRQ to modify (input)/the current values of
the selected SRQ attributes are returned (output)

srq attr mask A bit-mask used to specify which SRQ attributes are being
modified

Output Parameters:

srq attr The struct ibv_srg attr is returned with the updated values

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_modify_srq modifies the attributes of the SRQ srq using the attribute values in srq_attr
based on the mask srq attr mask. srq_attr is an ibv_srq_attr struct as defined above under the
verb ibv_create srq. The argument srq_attr mask specifies the SRQ attributes to be modified. It
is either O or the bitwise OR of one or more of the flags:

IBV_SRQ MAX WR Resize the SRQ

IBV_SRQ LIMIT Set the SRQ limit

Mellanox Technologies 43

[Rev 1.7 VPI Verbs API \

If any of the attributes to be modified is invalid, none of the attributes will be modified. Also, not
all devices support resizing SRQs. To check if a device supports resizing, check if the IBV_DE-
VICE SRQ_RESIZE bit is set in the device capabilities flags.

Modifying the SRQ limit arms the SRQ to produce an IBV_EVENT SRQ LIMIT REACHED
'low watermark' async event once the number of WRs in the SRQ drops below the SRQ limit.

3.4.7 ibv_destroy_srq

Template:

int ibv_destroy_srq(struct ibv_srq *srq)

Input Parameters:
srq The SRQ to destroy

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_destroy_srq destroys the specified SRQ. It will fail if any queue pair is still associated with
this SRQ.

3.4.8 ibv_open_xrc_domain

Template:

struct ibv_xrc_domain *ibv_open_xrc_domain(struct ibv_context *context, int fd, int oflag)

Input Parameters:

context struct ibv context from ibv open device
fd The file descriptor to be associated with the XRC domain
oflag The desired file creation attributes

Output Parameters:

A file descriptor associated with the opened XRC domain

Return Value:

A reference to an opened XRC domain or NULL

Description:

ibv_open_xrc_domain opens an eXtended Reliable Connection (XRC) domain for the RDMA
device context. The desired file creation attributes oflag can either be 0 or the bitwise OR of
O CREAT and O_EXCL. If a domain belonging to the device named by the context is already
associated with the inode, then the O CREAT flag has no effect. If both O CREAT and O_XCL
are set, open will fail if a domain associated with the inode already exists. Otherwise a new XRC
domain will be created and associated with the inode specified by fd.

k 44 Mellanox Technologies j

Rev 1.7

Please note that the check for the existence of the domain and creation of the domain if it does
not exist is atomic with respect to other processes executing open with fd naming the same inode.

If fd equals -1, then no inode is associated with the domain, and the only valid value for oflag is
O_CREAT.

Since each ibv_open_xrc_domain call increments the xrc_domain object's reference count, each
such call must have a corresponding ibv_close xrc_domain call to decrement the xrc_domain
object's reference count.

3.4.9 ibv_create_xrc_srq

Template:

struct ibv_srq *ibv_create_xrc_srq(struct ibv_pd *pd,
struct ibv_xrc_domain *xrc_domain,
struct ibv_cq *xrc_cq,
struct ibv_srq_init_attr *srq_init_attr)

Input Parameters:

pd The protection domain associated with the shared receive
queue

xrc_domain The XRC domain

Xrc_cq The CQ which will hold the XRC completion

srqg init attr A list of initial attributes required to create the SRQ

(described above)

Output Parameters:

ibv_srqg_attr Actual values of the struct are set

Return Value:

A pointer to the created SRQ or NULL on failure

Description:

ibv_create_xrc_srq creates an XRC shared receive queue (SRQ) associated with the protection
domain pd, the XRC domain domain_xrc and the CQ which will hold the completion xrc_cq

struct ibv_xrc_domain is defined as follows:

struct ibv_xrc domain {
struct ibv_ context *context;struct ibv_context from ibv open device
uinte4 t handle;

3.4.10 ibv_close_xrc_domain

Template:

int ibv_close_xrc_domain(struct ibv_xrc_domain *d)

Input Parameters:

d A pointer to the XRC domain the user wishes to close

Mellanox Technologies 45

[Rev 1.7 VPI Verbs API \

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_close xrc_domain closes the XRC domain, d. If this happens to be the last reference, then
the XRC domain will be destroyed. This function decrements a reference count and may fail if
any QP or SRQ are still associated with the XRC domain being closed.

3.4.11 ibv_create_xrc_rcv_qp

Template:

int ibv_create_xrc_rcv_qp(struct ibv_qgp_init_attr *init_attr, uint32_t *xrc_rcv_gpn)

Input Parameters:
init_attr The structure to be populated with QP information

Xrc_rcv_gpn The QP number associated with the receive QP to be created

Output Parameters:

init attr Populated with the XRC domain information the QP will be
associated with

Xrc_rcv_gpn The QP number associated with the receive QP being created

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_create_xrc_rcv_qp creates an XRC queue pair (QP) to serve as a receive side only QP and
returns the QP number through xrc_rcv_qpn. This number must be passed to the remote (sender)
node. The remote node will use xrc _rcv_gpn in ibv_post_send when it sends messages to an
XRC SRQ on this host in the same xrc domain as the XRC receive QP.

The QP with number xrc_rcv_gpn is created in kernel space and persists until the last process
registered for the QP called ibv_unreg xrc rcv_qp, at which point the QP is destroyed. The pro-
cess which creates this QP is automatically registered for it and should also call ibv_unreg_x-
rc_rcv_gp at some point to unregister.

Any process which wishes to receive on an XRC SRQ via this QP must call ibv_reg_xrc_rcv_gp
for this QP to ensure that the QP will not be destroyed while they are still using it.

Please note that because the QP xrc_rcv_qpn is a receive only QP, the send queue in the init_attr
struct is ignored.

3.4.12 ibv_modify_xrc_rcv_qp

Template:

k 46 Mellanox Technologies j

Rev 1.7

int ibv_modify_xrc_rev_qp(struct ibv_xrc_domain *xrc_domain, uint32 t xrc_qp_num, struct
ibv_qp_attr *attr, int attr_mask)

Input Parameters:

xrc_domain The XRC domain associated with this QP

Xrc_gp num The queue pair number to identify this QP

attr The attributes to use to modify the XRC receive QP
attr mask The mask to use for modifying the QP attributes

Output Parameters:

None

Return Value:

0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_modify_xrc_rcv_qp modifies the attributes of an XRC receive QP with the number
xrc_qp_num which is associated with the attributes in the struct attr according to the mask
attr_mask. It then moves the QP through the following transitions: Reset->Init-~RTR

At least the following masks must be set (the user may add optional attributes as needed)

Next State Next State Required attributes

Init IBV_QP _STATE, IBV_QP PKEY INDEX,IBV QP PORT,
IBV_QP_ACCESS FLAGS

RTR IBV_QP_STATE, IBV_QP_AV, IBV_QP_PATH MTU,
IBV_QP DEST QPN, IBV_QP RQ PSN, IBV_QP _MAX-
_DEST RD_ATOMIC, IBV_QP_MIN_RNR TIMER

Please note that if any attribute to modify is invalid or if the mask as invalid values, then none of
the attributes will be modified, including the QP state.

3.4.13 ibv_reg_xrc_rcv_qp

Template:

intibv_reg xrc_rcv_qp(struct ibv_xrc_domain *xrc_domain, uint32 t xrc_qp_num)

Input Parameters:
xrc_domain The XRC domain associated with the receive QP

Xrc_gp num The number associated with the created QP to which the user
process is to be registered

Output Parameters:

None

Return Value:

0 on success, -1 on error. If the call fails, errno will be set to indicate

Mellanox Technologies 47

(Rev 1.7 VPI Verbs API \

the reason for the failure.

Description:

ibv_reg_xrc_rcv_qp registers a user process with the XRC receive QP whose number is
xrc_qp_num associated with the XRC domain xrc_domain.

This function may fail if the number xrc_qp_num is not the number of a valid XRC receive QP
(for example if the QP is not allocated or it is the number of a non-XRC QP), or the XRC receive
QP was created with an XRC domain other than xrc_domain.

3.4.14 ibv_unreg_xrc_rcv_qp

Template:

int ibv_unreg_xrc_rcv_qp(struct ibv_xrc_domain *xrc_domain, uint32_t xrc_qp_num)

Input Parameters:

xrc_domain The XRC domain associated with the XRC receive QP from which
the user wishes to unregister

Xrc_gp_num The QP number from which the wuser process 1is to be
unregistered

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_unreg xrc_rcv_qp unregisters a user process from the XRC receive QP number xrc_qp_-
num which is associated with the XRC domain xrc_domain. When the number of user processes
registered with this XRC receive QP drops to zero, the QP is destroyed.

3.4.15 ibv_create_ah

Template:

struct ibv_ah *ibv_create_ah(struct ibv_pd *pd, struct ibv_ah_attr *attr)

Input Parameters:
pd struct ibv_pd from ibv_alloc_pd

attr attributes of address

Output Parameters:

none

Return Value:

pointer to created address handle (AH) or NULL on failure.

Description:

k 48 Mellanox Technologies j

Rev 1.7

ibv_create_ah creates an AH. An AH contains all of the necessary data to reach a remote desti-
nation. In connected transport modes (RC, UC) the AH is associated with a queue pair (QP). In
the datagram transport modes (UD), the AH is associated with a work request (WR).

struct ibv_ah_attr is defined as follows:

struct ibv_ah attr

{

struct ibv global route

uintleée t
uint8_t
uint8 t
uint8 t
uint8 t
uint8 t

}i

grh

dlid

sl

src_path bits
static_rate
is_global

port num

grh;

dlid;

sl;

src_path bits;
static_rate;

is _global;
port num;

defined below

destination 1lid

service level

source path bits

static rate

this is a global address, use grh.

physical port number to use to reach this destination

struct ibv_global route is defined as follows:

struct ibv _global route

{

union ibv gid

uint32 t
uint8 t
uint8 t
uint8 t

}i

dgid

flow label

sgid index
hop limit

traffic_class

3.4.16 ibv_destroy_ah

Template:

dgid;
flow_label;
sgid index;
hop_ limit;
traffic class;

destination GID (see ibv query gid for definition)
flow label

index of source GID (see ibv_query gid)
hop limit

traffic class

int ibv_destroy_ah(struct ibv_ah *ah)

Input Parameters:
ah

Output Parameters:

none

struct ibv_ah from ibv create ah

Mellanox Technologies 49

(Rev 1.7 VPI Verbs API \

Return Value:

0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_destroy_ah frees an address handle (AH). Once an AH is destroyed, it can't be used any-
more in UD QPs

k 50 Mellanox Technologies

3.5

3.5.1

Rev 1.7

Queue Pair Bringup (ibv_modify_qp)

Queue pairs (QP) must be transitioned through an incremental sequence of states prior to being
able to be used for communication.

QP States:
RESET Newly created, queues empty.
INIT Basic information set. Ready for posting to receive queue.
RTR Ready to Receive. Remote address info set for connected QPs,

QP may now receive packets.

RTS Ready to Send. Timeout and retry parameters set, QP may now
send packets.

These transitions are accomplished through the use of the ibv_modify_qp command.

ibv_modify_qp

Template:

int ibv_modify_qp(struct ibv_qp *qp, struct ibv_qp attr *attr, enum ibv_qp attr mask
attr_mask)

Input Parameters:

ap struct ibv_gp from ibv create gp
attr QP attributes
attr mask bit mask that defines which attributes within attr have been

set for this call

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_modify_qp this verb changes QP attributes and one of those attributes may be the QP state.
Its name is a bit of a misnomer, since you cannot use this command to modify gp attributes at
will. There is a very strict set of attributes that may be modified during each transition, and tran-
sitions must occur in the proper order. The following subsections describe each transition in more
detail.

struct ibv_qp_attr is defined as follows:

struct ibv _gp attr

{

enum ibv_gp state gp_state;

enum ibv_gp state cur_gp_state;
enum ibv_mtu path mtu;

enum ibv_mig state path mig state;
uint32 t gkey;

Mellanox Technologies 51

Rev 1.7

}i

The following values select one of the above attributes and should be OR’d into the

uint32 t

uint32 t

uint32 t

int

struct ibv_gp cap
struct ibv_ah attr
struct ibv_ah attr
uintleée t

uintleée t

uint8_t

uint8_t

uint8 t

uint8 t

uint8 t

uint8 t

uint8_t

uint8_t

uint8 t

uint8 t

uint8 t

field:

IBV_QP STATE
IBV_QP CUR_STATE

IBV_QP EN_SQD ASYNC NOTIFY

IBV_QP ACCESS FLAGS
IBV_QP PKEY INDEX
IBV_QP PORT

IBV_QP QKEY

IBV_QP AV

IBV_QP PATH MTU

IBV_QP TIMEOUT

IBV_QP RETRY CNT

IBV_QP RNR_RETRY
IBV_QP RQ PSN
IBV_QP MAX QP RD ATOMIC
IBV_QP ALT PATH
IBV_QP MIN RNR_TIMER
IBV_QP SQ PSN

IBV_QP MAX DEST RD ATOMIC
IBV_QP PATH MIG STATE
IBV_QP CAP

IBV_QP DEST QPN

3.5.2 RESET to INIT
When a queue pair (QP) is newly created, it is in the RESET state. The first state transition that

k52

needs to happen is to bring the QP in the INIT state.

Required Attributes:

*%%x A1l QPg **x

gp_state / IBV_QP STATEIBV_QPS INIT

Mellanox Technologies

rq_psn;

sq_psn;
dest gp num;
gp_access_flags;
cap;

ah attr;
alt ah attr;

pkey index;

alt pkey index;

en sqgd_async _notify;
sq_draining;
max_rd_atomic;
max_dest rd atomic;
min rnr timer;

port num;

timeout;

retry cnt;
rnr_retry;

alt port num;

alt timeout;

VPI Verbs API \

attr_mask

3.5.3

Rev 1.7

pkey index / IBV_QP PKEY INDEXpkey index, normally 0
port num / IBV_QP PORTphysical port number (1...n)
gp_access_flags /

IBV_QP ACCESS FLAGSaccess flags (see ibv _reg mr)

*** Unconnected QPs only ***

gkey / IBV_QP QKEY gkey (see ibv post_ send)

Optional Attributes:

none

Effect of transition:

Once the QP is transitioned into the INIT state, the user may begin to post receive buffers to the
receive queue via the ibv_post_recv command. At least one receive buffer should be posted
before the QP can be transitioned to the RTR state.

INIT to RTR

Once a queue pair (QP) has receive buffers posted to it, it is now possible to transition the QP
into the ready to receive (RTR) state.

Required Attributes:

*%%x A1l QPg **x
gp_state / IBV_QP STATEIBV QPS RTR
path mtu / IBV_QP PATH MTUIB MTU 256
IB MTU 512 (recommended value)
IB_MTU 1024
IB MTU 2048
IB_MTU 4096

*** Connected QPs only ***

ah attr / IBV_QP AV an address handle (AH) needs to be created and filled in as
appropriate. Minimally, ah attr.dlid needs to be filled in.

dest _gp num / IBV_QP DEST QPNQP number of remote QP.

rqg psn / IBV_QP RQ PSNstarting receive packet sequence number (should match
remote QP’s sg psn)

max dest rd atomic /
IBV_MAX DEST RD ATOMICmaximum number of resources for incoming RDMA requests
min rnr timer /

IBV_QP MIN RNR TIMERminimum RNR NAK timer (recommended value: 12)

Optional Attributes:
*%x% Al]l QPs ***

gp_access_flags /
IBV_QP ACCESS FLAGSaccess flags (see ibv reg mr)

Mellanox Technologies 53

[Rev 1.7 VPI Verbs API \

pkey index / IBV_QP PKEY INDEXpkey index, normally 0

*** Connected QPs only ***

alt ah attr / IBV_QP ALT PATHAH with alternate path info filled in

*** Unconnected QPs only ***

gkey / IBV_QP QKEY gkey (see ibv post_ send)

Effect of transition:

Once the QP is transitioned into the RTR state, the QP begins receive processing.

3.54 RTRtoRTS

Once a queue pair (QP) has reached ready to receive (RTR) state, it may then be transitioned to
the ready to send (RTS) state.

Required Attributes:

*x% A]1] QPs ***
gp_state / IBV_QP STATEIBV_QPS RTS

*** Connected QPs only ***

timeout / IBV_QP TIMEOUTlocal ack timeout (recommended value: 14)
retry cnt / IBV_QP RETRY CNTretry count (recommended value: 7)
rnr_retry / IBV_QP_RNR_RETRYRNR retry count (recommended value: 7)

sg_psn / IBV_SQ PSN send queue starting packet sequence number (should match
remote QP’s rg psn)

max _rd_atomic

/ IBV_QP_MAX QP_RD_ATOMICnumber of outstanding RDMA reads and atomic
operations allowed.

Optional Attributes:

* %k %k All QPS * Kk k
gp_access_flags /
IBV_QP ACCESS_FLAGSaccess flags (see ibv _reg mr)

*** Connected QPs only ***
alt _ah attr / IBV_QP ALT PATHAH with alternate path info filled in
min rnr timer /

IBV_QP MIN RNR_TIMERminimum RNR NAK timer

*** Unconnected QPs only ***
gkey / IBV_QP QKEY gkey (see ibv_post send)

Effect of transition:

k 54 Mellanox Technologies j

Rev 1.7 \

Once the QP is transitioned into the RTS state, the QP begins send processing and is fully opera-
tional. The user may now post send requests with the ibv_post_send command.

Mellanox Technologies 55 j

(Rev 1.7 | VPI Verbs API \

3.6 Active Queue Pair Operations

A QP can be queried staring at the point it was created and once a queue pair is completely oper-
ational, you may query it, be notified of events and conduct send and receive operations on it.
This section describes the operations available to perform these actions.

3.6.1 ibv_query_qp

Template:
int ibv_query_qp(struct ibv_gp *qp, struct ibv_qp_attr *attr, enum ibv_qp_attr mask attr_mask,
struct ibv_qp_init_attr *init_attr)

Input Parameters:
ap struct ibv_gp from ibv create gp

attr mask bitmask of items to query (see ibv modify gp)

Output Parameters:

attr struct ibv _gp attr to be filled in with requested attributes
init_attr struct ibv_gp_init_attr to be filled in with initial
attributes

Return Value:

0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_query_qp retrieves the various attributes of a queue pair (QP) as previously set through
ibv_create qp and ibv_modify qp.

The user should allocate a struct ibv_qp_attr and a struct ibv_qp_init_attr and pass them to the
command. These structs will be filled in upon successful return. The user is responsible to free
these structs.

struct ibv_qp_init_attr is described in ibv_create_qp and struct ibv_qp_attr is described in ibv_-
modify_qp.

3.6.2 ibv_query_srq

Template:
int ibv_query_srq(struct ibv_srq *srq, struct ibv_srq_attr *srq_attr)

Input Parameters:
srqg The SRQ to query
srq attr The attributes of the specified SRQ

Output Parameters:

srq_attr The struct ibv _srqg attr is returned with the attributes of
the specified SRQ

Return Value:

0 on success, -1 on error. If the call fails, errno will be set to indicate

k 56 Mellanox Technologies j

3.6.3

3.6.4

Rev 1.7

the reason for the failure.

Description:

ibv_query_srq returns the attributes list and current values of the specified SRQ. It returns the
attributes through the pointer srq_attr which is an ibv_srq_attr struct described above under
ibv_create srq. If the value of srq_limit in srq_attr is 0, then the SRQ limit reached ('low water-
mark') event is not or is no longer armed. No asynchronous events will be generated until the
event is re-armed.

ibv_query_xrc_rcv_qp

Template:

intibv_query_xrc_rcv_qp(struct ibv_xrc_domain *xrc_domain, uint32 t xrc qp num,
struct ibv_qp_attr *attr, int attr_mask,
struct ibv_qp_init_attr *init_attr)

Input Parameters:

xrc_domain The XRC domain associated with this QP

Xrc_gp num The queue pair number to identify this QP

attr The ibv _gp attr struct in which to return the attributes
attr mask A mask specifying the minimum list of attributes to retrieve
init_attr The ibv_gp init attr struct to return the initial attributes

Output Parameters:

attr A pointer to the struct containing the QP attributes of
interest
init attr A pointer to the struct containing initial attributes

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_query xrc_recv_qp retrieves the attributes specified in attr mask for the XRC receive QP
with the number xrc_qp_num and domain xrc_domain. It returns them through the pointers attr
and init_attr.

The attr_mask specifies a minimal list to retrieve. Some RDMA devices may return extra attri-
butes not requested. Attributes are valid if they have been set using the ibv_modify xrc rcv_qp.
The exact list of valid attributes depends on the QP state. Multiple ibv_query xrc rcv_qp calls
may yield different returned values for these attributes: qp_state, path_mig_state, sq_draining,
ah_attr (if automatic path migration (APM) is enabled).

ibv_post_recv

Template:

int ibv_post_recv(struct ibv_qp *qp, struct ibv_recv_wr *wr, struct ibv_recv_wr **bad_wr)

Input Parameters:

Mellanox Technologies 57

[Rev 1.7 VPI Verbs API \

ap struct ibv_gp from ibv create gp

wr first work request (WR) containing receive buffers

Output Parameters:

bad wr pointer to first rejected WR

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_post_recv posts a linked list of WRs to a queue pair’s (QP) receive queue. At least one
receive buffer should be posted to the receive queue to transition the QP to RTR. Receive buffers
are consumed as the remote peer executes Send, Send with Immediate and RDMA Write with
Immediate operations. Receive buffers are NOT used for other RDMA operations. Processing of
the WR list is stopped on the first error and a pointer to the offending WR is returned in bad_wr.

struct ibv_recv_wr is defined as follows:

struct ibv recv wr

{

uinte4 t wr_ id;
struct ibv_recv_wr *next;
struct ibv_sge *sg list;
int num_sge;
wr_id user assigned work request ID
next pointer to next WR, NULL if last one.
sg_list scatter array for this WR
num_sge number of entries in sg_ list

struct ibv_sge is defined as follows:

struct ibv_ sge

{

uinte4 t addr;
uint32 t length;
uint32 t lkey;
}i
addr address of buffer
length length of buffer
lkey local key (lkey) of buffer from ibv reg mr

3.6.5 ibv_post_send

Template:

int ibv_post_send(struct ibv_gp *qp, struct ibv_send_wr *wr, struct ibv_send wr **bad_wr)

Input Parameters:
ap struct ibv_gp from ibv create gp

wr first work request (WR)

k 58 Mellanox Technologies j

Rev 1.7

Output Parameters:

bad _wr pointer to first rejected WR

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:
ibv_post_send posts a linked list of WRs to a queue pair’s (QP) send queue. This operation is

used to initiate all communication, including RDMA operations. Processing of the WR list is
stopped on the first error and a pointer to the offending WR is returned in bad_wr.

The user should not alter or destroy AHs associated with WRs until the request has been fully
executed and a completion queue entry (CQE) has been retrieved from the corresponding com-
pletion queue (CQ) to avoid unexpected behaviour.

The buffers used by a WR can only be safely reused after the WR has been fully executed and a
WCE has been retrieved from the corresponding CQ. However, if the IBV_SEND_ INLINE flag
was set, the buffer can be reused immediately after the call returns.

struct ibv_send wr is defined as follows:

struct ibv_send wr

{

uinté4_t wr_id;
struct ibv_send wr *next;
struct ibv_sge *sg list;
int num_sge;
enum ibv_wr opcode opcode;
enum ibv_send flags send flags;
uint32 t imm_data;/* network byte order */
union
{
struct
{
uinte4 t remote addr;
uint32 t rkey;
} rdma;
struct
{
uinté64 t remote addr;
uinte4 t compare add;
uinte4 t swap;
uint32_t rkey;
} atomic;
struct
{
struct ibv_ah *ah;
uint32 t remote gpn;
uint32 t remote gkey;
} ud;
}owr;
uint32 t Xrc_remote srg num;
}i
wr_id user assigned work request ID
next pointer to next WR, NULL if last one.

Mellanox Technologies 59

J

[Rev 1.7

3.6.6

kBO

sg_list
num_sge

opcode

send flags

details below.

imm data
remote addr

rkey
operations

compare_ add
swap

ah
remote_gpn

remote gkey

Xrc_remote_srg num

VPI Verbs API \

scatter/gather array for this WR

number of entries in sg list

IBV_WR_RDMA WRITE

IBV_WR_RDMA WRITE WITH IMM

IBV_WR_SEND

IBV_WR_SEND WITH IMM

IBV_WR_RDMA READ

IBV_WR_ATOMIC CMP AND SWP

IBV_WR_ATOMIC FETCH AND ADD

(optional) - this is a bitwise OR of the flags. See the

immediate data to send in network byte order
remote virtual address for RDMA/atomic operations

remote key (from ibv reg mr on remote) for RDMA/atomic

compare value for compare and swap operation
swap value

address handle (AH) for datagram operations
remote QP number for datagram operations
Qkey for datagram operations

receive (SRQ) number for the destination

shared queue

extended reliable connection (XRC). Only used for XRC operations.

send flags:

IBV_SEND FENCE
IBV_SEND SIGNALED

set fence indicator

send completion event for this WR. Only meaningful for QPs

that had the sqg sig all set to O
IBV_SEND SEND SOLICITED

IBV_SEND INLINE

set solicited event indicator

send data in sge list as inline data.

struct ibv_sge is defined in ibv_post_recv.

ibv_post_srq_recv

Template:

int ibv_post_srq_recv(struct ibv_srq *srq, struct ibv_recv_wr *recv_wr, struct ibv_recv_wr
**bad_recv_wr)

Input Parameters:
srq The SRQ to post the work request to

recv_wr A list of work requests to post on the receive queue

Output Parameters:

bad recv_wr pointer to first rejected WR

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Mellanox Technologies

3.6.7

3.6.8

Rev 1.7

Description:

ibv_post_srq_recv posts a list of work requests to the specified SRQ. It stops processing the
WRs from this list at the first failure (which can be detected immediately while requests are
being posted), and returns this failing WR through the bad_recv_wr parameter.

The buffers used by a WR can only be safely reused after WR the request is fully executed and a
work completion has been retrieved from the corresponding completion queue (CQ).

If a WR is being posted to a UD QP, the Global Routing Header (GRH) of the incoming message
will be placed in the first 40 bytes of the buffer(s) in the scatter list. If no GRH is present in the
incoming message, then the first 40 bytes will be undefined. This means that in all cases for UD
QPs, the actual data of the incoming message will start at an offset of 40 bytes into the buffer(s)
in the scatter list.

ibv_req_notify_cq

Template:
int ibv_req_notify_cq(struct ibv_cq *cq, int solicited only)

Input Parameters:
cq struct ibv_cqg from ibv create cg

solicited only only notify if WR is flagged as solicited

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_req_notify_cq arms the notification mechanism for the indicated completion queue (CQ).
When a completion queue entry (CQE) is placed on the CQ, a completion event will be sent to
the completion channel (CC) associated with the CQ. If there is already a CQE in that CQ, an
event won't be generated for this event. If the solicited only flag is set, then only CQEs for WRs
that had the solicited flag set will trigger the notification.

The user should use the ibv_get_cq_event operation to receive the notification.

The notification mechanism will only be armed for one notification. Once a notification is sent,
the mechanism must be re-armed with a new call to ibv_req_notify_cq.

ibv_get_cq_event

Template:

int ibv_get cq_event(struct ibv_comp channel *channel, struct ibv_cq **cq, void **cq_con-
text)

Input Parameters:

channel struct ibv _comp channel from ibv create comp channel

Mellanox Technologies 61

[Rev 1.7 VPI Verbs API \

3.6.9

k62

Output Parameters:
cq pointer to completion queue (CQ) associated with event

cgqg_context user supplied context set in ibv create cqg

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_get cq_event waits for a notification to be sent on the indicated completion channel (CC).
Note that this is a blocking operation. The user should allocate pointers to a struct ibv_cq and a
void to be passed into the function. They will be filled in with the appropriate values upon return.
It is the user’s responsibility to free these pointers.

Each notification sent MUST be acknowledged with the ibv_ack_cq_events operation. Since the
ibv_destroy_cq operation waits for all events to be acknowledged, it will hang if any events are
not properly acknowledged.

Once a notification for a completion queue (CQ) is sent on a CC, that CQ is now “disarmed” and
will not send any more notifications to the CC until it is rearmed again with a new call to the
ibv_req_notify cq operation.

This operation only informs the user that a CQ has completion queue entries (CQE) to be pro-
cessed, it does not actually process the CQEs. The user should use the ibv_poll_cq operation to
process the CQEs.

ibv_ack_cq_events

Template:

void ibv_ack _cq_events(struct ibv_cq *cq, unsigned int nevents)

Input Parameters:
cg struct ibv_cqg from ibv_create cqg

nevents number of events to acknowledge (1...n)

Output Parameters:

None

Return Value:

None

Description:

ibv_ack cq_events acknowledges events received from ibv_get cq_event. Although each noti-
fication received from ibv_get cq_event counts as only one event, the user may acknowledge
multiple events through a single call to ibv_ack_cq_events. The number of events to acknowl-
edge is passed in nevents and should be at least 1. Since this operation takes a mutex, it is some-
what expensive and acknowledging multiple events in one call may provide better performance.

See ibv_get_cq_event for additional details.

Mellanox Technologies j

(/' Rev 1.7

3.6.10 ibv_poll_cq

Template:

int ibv_poll_cq(struct ibv_cq *cq, int num_entries, struct ibv_wc *wc)

Input Parameters:
cg struct ibv _cqg from ibv create cg

num_entries maximum number of completion queue entries (CQE) to return

Output Parameters:

wC CQE array

Return Value:

Number of CQEs in array wc or -1 on error

Description:

ibv_poll_cq retrieves CQEs from a completion queue (CQ). The user should allocate an array of
struct ibv_wc and pass it to the call in we. The number of entries available in wc should be
passed in num_entries. It is the user’s responsibility to free this memory.

The number of CQEs actually retrieved is given as the return value.

CQs must be polled regularly to prevent an overrun. In the event of an overrun, the CQ will be
shut down and an async event IBV_EVENT CQ_ERR will be sent.

struct ibv_wec is defined as follows:

struct ibv_wc

{

uinte4 t wr_ id;
enum ibv_wc_status status;
enum ibv_wc_opcode opcode;
uint32_t vendor err;
uint32 t byte len;
uint32 t imm_data;/* network byte order */
uint32 t gp_num;
uint32 t src_gp;
enum ibv _wc_flags wc_flags;
uintlé t pkey index;
uintlée t slid;
uint8 t sl;
uint8 t dlid path bits;
}i
wr_ id user specified work request id as given in ibv post send or

ibv post recv

status IBV_WC_SUCCESS
IBV_WC LOC LEN ERR
IBV_WC_LOC_QP OP_ERR
IBV_WC_LOC_EEC_OP ERR
IBV_WC_LOC PROT ERR
IBV_WC_WR FLUSH ERR
IBV_WC_MW BIND ERR
IBV_WC_BAD RESP ERR

k Mellanox Technologies 63

[Rev 1.7 VPI Verbs API \

IBV_WC LOC_ACCESS_ERR
IBV_WC REM INV_REQ ERR
IBV_WC REM ACCESS_ERR
IBV_WC _REM OP_ERR
IBV_WC RETRY EXC_ERR
IBV_WC RNR_RETRY EXC ERR
IBV_WC LOC_RDD VIOL ERR
IBV_WC REM INV _RD REQ ERR
IBV_WC _REM ABORT ERR
IBV_WC_INV_EECN ERR
IBV_WC INV_EEC STATE ERR
IBV_WC FATAL ERR
IBV_WC RESP_TIMEOUT ERR
IBV_WC_ GENERAL ERR

opcode IBV_WC SEND,
IBV_WC RDMA WRITE,
IBV_WC RDMA READ,
IBV_WC_COMP_SWAP,

IBV_WC _FETCH ADD,

IBV_WC BIND MW,

IBV_WC RECV= 1 << 7,
IBV_WC RECV_RDMA WITH IMM

vendor_err vendor specific error

byte len number of bytes transferred

imm data immediate data

gp_num local queue pair (QP) number

src_gp remote QP number

wc_flags see below

pkey index index of pkey (valid only for GSI QPs)
slid source local identifier (LID)

sl service level (SL)

dlid_path_bits destination LID path bits

flags:

IBV_WC_ GRH global route header (GRH) is present in UD packet
IBV _WC WITH IMM immediate data value is valid

3.6.11 ibv_init_ah_from_wc

Template:

int ibv_init_ah_from_wec(struct ibv_context *context, uint§_t port num,
struct ibv_wc *wc, struct ibv_grh *grh,
struct ibv_ah_attr *ah_attr)

Input Parameters:

context struct ibv_context from ibv open device. This should be the
device the completion gqueue entry (CQE) was received on.

k 64 Mellanox Technologies j

Rev 1.7

port num physical port number (1..n) that CQE was received on
we received CQE from ibv poll cq
grh global route header (GRH) from packet (see description)

Output Parameters:
ah attr address handle (AH) attributes

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_init_ah_from_wec initializes an AH with the necessary attributes to generate a response to a
received datagram. The user should allocate a struct ibv_ah_attr and pass this in. If appropriate,
the GRH from the received packet should be passed in as well. On UD connections the first 40
bytes of the received packet may contain a GRH. Whether or not this header is present is indi-
cated by the IBV. WC GRH flag of the CQE. If the GRH is not present on a packet on a UD con-
nection, the first 40 bytes of a packet are undefined.

When the function ibv_init_ah_from_wc completes, the ah_attr will be filled in and the ah_attr
may then be used in the ibv_create_ah function. The user is responsible for freeing ah_attr.

Alternatively, ibv_create_ah_from_wc may be used instead of this operation.

3.6.12 ibv_create_ah_from_wc

Template:

struct ibv_ah *ibv_create_ah_from_wec(struct ibv_pd *pd, struct ibv_wc *wc, struct ibv_grh
*orh, uint8_t port_num)

Input Parameters:

pd protection domain (PD) from ibv_alloc pd

wc completion queue entry (CQE) from ibv poll cq

grh global route header (GRH) from packet

port num physical port number (1..n) that CQE was received on

Output Parameters:

none

Return Value:

Created address handle (AH) on success or -1 on error

Description:

ibv_create_ah_from_wc combines the operations ibv_init_ah_from_wc and ibv_create_ah.
See the description of those operations for details.

3.6.13 ibv_attach_mcast

Template:
int ibv_attach_mcast(struct ibv_qp *qp, const union ibv_gid *gid, uint16 _t lid)

Mellanox Technologies 65

[Rev 1.7 VPI Verbs API \

Input Parameters:

ap QP to attach to the multicast group
gid The multicast group GID
lid The multicast group LID in host byte order

Output Parameters:

none

Return Value:

0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_attach_mcast attaches the specified QP, qp, to the multicast group whose multicast group
GID is gid, and multicast LID is lid.

Only QPs of Transport Service Type IBV_QPT_UD may be attached to multicast groups.

In order to receive multicast messages, a join request for the multicast group must be sent to the
subnet administrator (SA), so that the fabric’s multicast routing is configured to deliver messages
to the local port.

If a QP is attached to the same multicast group multiple times, the QP will still receive a single
copy of a multicast message.

3.6.14 ibv_detach_mcast

Template:
int ibv_detach_mcast(struct ibv_qp *qgp, const union ibv_gid *gid, uint16_t lid)

Input Parameters:

ap QP to attach to the multicast group
gid The multicast group GID
lid The multicast group LID in host byte order

Output Parameters:

none

Return Value:

0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_detach_mcast detaches the specified QP, qp, from the multicast group whose multicast
group GID is gid, and multicast LID is lid.

k 66 Mellanox Technologies j

e)

3.7 Event Handling Operations

3.71 ibv_get_async_event

Template:

int ibv_get_async_event(struct ibv_context *context, struct ibv_async_event *event)

Input Parameters:
context struct ibv_context from ibv_open device

event A pointer to use to return the async event

Output Parameters:

event A pointer to the async event being sought

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

ibv_get_async_event gets the next asynchronous event of the RDMA device context 'context'
and returns it through the pointer 'event' which is an ibv_async_event struct. All async events
returned by ibv_get async_event must eventually be acknowledged with ibv_ack_asyn-
c_event.

ibv_get async_event() is a blocking function. If multiple threads call this function simultane-
ously, then when an async event occurs, only one thread will receive it, and it is not possible to
predict which thread will receive it.

struct ibv_async_event is defined as follows:

struct ibv_async_event {

union {
struct ibv_cqg *cg; The CQ that got the event
struct ibv _gp *gp; The QP that got the event
struct ibv_srqg *srqg; The SRQ that got the event
intport num; The port number that got the event

} element;

enum ibv_event type event type; Type of event

Vi
One member of the element union will be valid, depending on the event type member of the
structure. event_type will be one of the following events:

QP events:

IBV_EVENT QP FATAL Error occurred on a QP and it transitioned to error state
IBV_EVENT QP REQ ERR Invalid Request Local Work Queue Error

IBV_EVENT QP ACCESS ERR Local access violation error

IBV_EVENT _COMM_EST Communication was established on a QP

IBV_EVENT SQ DRAINED Send Queue was drained of outstanding messages in progress
IBV_EVENT PATH MIG A connection has migrated to the alternate path
IBV_EVENT PATH MIG_ERR A connection failed to migrate to the alternate path

IBV_EVENT QP LAST WQE REACHED Last WQE Reached on a QP associated with an SRQ

k Mellanox Technologies 67 j

(/' Rev 1.7

3.7.2

3.7.3

k68

CQ events:

IBV_EVENT CQ _ERR CQ is in error (CQ overrun)
SRQ events:

IBV_EVENT SRQ ERR Error occurred on an SRQ

IBV_EVENT SRQ LIMIT REACHED SRQ limit was reached

Port events:

IBV_EVENT PORT_ACTIVE Link became active on a port
IBV_EVENT PORT ERR Link became unavailable on a port
IBV_EVENT LID CHANGE LID was changed on a port
IBV_EVENT PKEY CHANGE P Key table was changed on a port
IBV_EVENT SM_CHANGE SM was changed on a port
IBV_EVENT_CLIENT REREGISTER SM senta CLIENT REREGISTER request to a port
IBV_EVENT GID CHANGE GID table was changed on a port
CA events:
IBV_EVENT DEVICE FATAL CA is in FATAL state
ib_ack_async_event

Template:

void ibv_ack_async_event(struct ibv_async_event *event)

Input Parameters:

event A pointer to the event to be acknowledged

Output Parameters:

None

Return Value:

None

Description:
All async events that ibv_get async_event() returns must be acknowledged using ibv_ack asyn-
c_event(). To avoid races, destroying an object (CQ, SRQ or QP) will wait for all affiliated
events for the object to be acknowledged; this avoids an application retrieving an affiliated event
after the corresponding object has already been destroyed.

ibv_event_type_str

Template:

const char *ibv_event_type_ str(enum ibv_event type event type)

Input Parameters:

event type ibv_event type enum value

Output Parameters:

None

Return Value:

Mellanox Technologies

VPI Verbs API \

Rev 1.7

A constant string which describes the enum value event type

Description:
ibv_event type_str returns a string describing the event type enum value, event type. event -
type may be any one of the 19 different enum values describing different IB events.

ibv_event type {
IBV_EVENT CQ ERR,
IBV_EVENT QP FATAL,
IBV_EVENT QP REQ ERR,
IBV_EVENT QP ACCESS ERR,
IBV_EVENT COMM EST,
IBV_EVENT SQ DRAINED,
IBV_EVENT PATH MIG,
IBV_EVENT PATH MIG ERR,
IBV_EVENT DEVICE FATAL,
IBV_EVENT PORT ACTIVE,
IBV_EVENT PORT ERR,
IBV_EVENT LID CHANGE,
IBV_EVENT PKEY CHANGE,
IBV_EVENT SM CHANGE,
IBV_EVENT SRQ ERR,
IBV_EVENT SRQ LIMIT REACHED,
IBV_EVENT QP LAST WQE REACHED,
IBV_EVENT CLIENT REREGISTER,
IBV_EVENT GID CHANGE,

}i
3.8 Experimental APIs

3.8.1 ibv_exp_query_device

Template:

int ibv_exp_query_device(struct ibv_context *context, struct ibv_exp device attr *attr)

Input Parameters:

context

Output Parameters:
attr

Return Value:

returns 0 on success, or the value of errno on failure (which indicates the
failure reason) .

Description:
ibv_exp_query_device returns the attributes of the device with context context. The argument
attr is a pointer to an ibv_exp_device_attr struct, as defined in <infiniband/verbs_exp.h>.

struct ibv_exp device attr {

char fw ver[64];
uinte4 t node guid;
uinte4 t sys_image guid;
uinte4 t max mr size;
uinte4 t page size cap;

Mellanox Technologies 69

(,7 Rev 1.7

uint32
uint32
uint32

int
int
int
int
int
int
int
int
int
int
int
int
int
int

t vendor id;

t vendor part id;
t hw ver;

max gp;

max_gp_wr;

reserved; /* place holder to align with ibv_device_ attr */

max_sge;
max_sge rd;

max_cqg;

max_cqge;

max_mr;

max_pd;

max _gp rd atom;
max_ee rd atom;

max res rd atom;
max_gp_init_rd_atom;
max_ee init rd atom;

enum ibv _exp atomic cap exp atomic_ cap;

int
int
int
int
int
int
int
int
int
int
int
int
int
int

uintlée

uint8 t
uint8_t

uint32

struct

uinte4
uinte4
uinte4

int
int
int

uint32

struct

uint32
uint32
uint32
uint32

max_ee;

max_rdd;

max_mw;

max_raw_1ipvé gp;

max_raw_ethy gp;

max_mcast_grp;

max _mcast gp_attach;

max_total mcast gp attach;

max_ah;

max_fmr;

max _map_per fmr;

max_srqg;

max_ srg_wr;

max_srqg_sge;

t max_pkeys;
local ca ack delay;

phys_port cnt;
t comp_mask;
ibv_exp device calc cap calc_cap;
t timestamp mask;
t hca core clock;
t exp_device cap flags; /* use ibv_exp device cap flags */

max_dc_req rd atom;
max_dc_res rd atom;
inline_recv_sz;

t max_rss_tbl sz;
ibv_exp ext atomics params ext atom;

t max_mkey klm list size;

t max_send_wge_inline_klms;
t max_umr_recursion_depth;
t max_umr_stride_dimension;

3.8.2 ibv_exp_create_qp

Template:

ibv_exp_create qp(struct ibv_context *context, struct ibv_exp qp_init_attr *qp_init_attr)

k 70 Mella

nox Technologies

VPI Verbs API \

3.8.3

Rev 1.7

Input Parameters:

Output Parameters:

Return Value:

Returns a pointer to the created QP, or NULL if the request fails. Check the QP
number (gp_num) in the returned QP.

Description:
ibv_exp_create qp creates a queue pair (QP) associated with the protection domain pd. The
argument init_attr is an ibv_exp_qp_init_attr struct, as defined in <infiniband/verbs_exp.h>.

struct ibv_exp gp_init attr {

void *gp_ context;
struct ibv_cqg *send_cqg;
struct ibv_cqg *recv_cdg;
struct ibv_srg *srq;

struct ibv _gp cap cap;
enum ibv_gp type dap_type;

int sq_sig all;

uint32 t comp_mask; /* use ibv _exp gp init attr comp mask */
struct ibv_pd *pd;

struct ibv_xrcd *xred;

uint32 t exp_create flags; /* use ibv_exp gp_ create flags */
uint32 t max_inl recv;

struct ibv_exp gpg dgpg;

uint32 t max_atomic arg;

uint32 t max_inl send klms;

ibv_exp_post_send

Template:

static inline int ibv_exp_post_send(struct ibv_qp *qp, struct ibv_exp send wr *wr, struct ibv_-
exp_send wr **bad_wr)

Input Parameters:

Output Parameters:

Return Value:

returns 0 on success, or the value of errno on failure (which indicates the
failure reason) .

Description:
ibv_exp_post_send posts the linked list of work requests (WRs) starting with wr to the send
queue of the queue pair gp. It stops processing WRs from this list at the first failure (that can be

Mellanox Technologies 71

[Rev 1.7 VPI Verbs API \

detected immediately while requests are being posted), and returns this failing WR through
bad_wr.

struct ibv_exp send wr {
uinte4 t wr_id;
struct ibv_exp send wr *next;
struct ibv_sge *sg list;
int num_sge;
enum ibv_exp wr opcode exp opcode; /* use ibv_exp wr opcode */
int reserved; /* place holder to align with ibv_send wr */
union {
uint32_t imm data; /* in network byte order */
uint32_t invalidate_rkey;
} ex;
union {
struct {
uint64 t remote addr;
uint32 t rkey;
} rdma;
struct {
uint64_t remote addr;
uint64 t compare add;
uint64 t swap;
uint32 t rkey;
} atomic;
struct {
struct ibv_ah *ah;
uint32 t remote gpn;
uint32 t remote gkey;
} ud;
}owr;
union {
union {
struct {
uint32 t remote srgn;
} xre;
} ap_type;

uint32 t Xrc_remote_ srg num;
}i
union {

struct {
uinte4 t remote addr;
uint32_t rkey;

} rdma;

struct {
uinte4 t remote addr;
uinte4 t compare_ add;
uinte4 t swap;
uint32_t rkey;

} atomic;

struct {
struct ibv_cqg *cg;
int32 t cg count;

} cge wait;

struct {
struct ibv_gp *qgp;
int32_t wge_count;

} wge enable;

k 72 Mellanox Technologies j

}

Rev 1.7

task;

union {

}

struct {
enum ibv_exp calc_op calc_op;
enum ibv_exp calc data type data_ type;
enum ibv_exp calc data size data_size;

} calc;

op;

struct {

}

struct ibv_ah *ah;

uinte4 t dct_access_key;
uint32_t dct_number;

dc;

struct {

}

struct ibv_mw *mw ;

uint32_t rkey;

struct ibv_exp mw_bind info bind info;
bind mw;

uinté4 _t exp send flags; /* use ibv_exp send flags */
uint32_ t comp mask; /* reserved for future growth (must be 0) */
union {

struct {
struct {
enum mem_ layout type mkey type;
union
struct ibv_exp mem region *mem reg list; /* array, size corresponds to wr-
>num_sge */
struct {
struct ibv_exp mem repeat block *mem repeat block list; /* array, size cor-
responds to wr->num_sge */
size t *repeat count; /* array size corresponds to ndim */
uint32 t ndim;
} rb;
} mem list;
struct non_inline_data *memory objects; /* used when IBV_EXP_SEND_INLINE is not
set */
int access;
struct ibv_mr *modified mr;
void *region base addr;
} memory key;
} umrx ;
struct {
uint32 t log arg_sz;
uint64 t remote addr;
uint32 t rkey;
union
struct {
/* For the next four fields:
* If operand_size <= 8 then inline data is immediate
* from the corresponding field; for small opernands,
* 1ls bits are used.
* Else the fields are pointers in the process's address space
* where arguments are stored
*/
union {
struct ibv_exp cmp swap cmp_ swap;
struct ibv _exp fetch add fetch add;
} op;
} inline data; /* IBV_EXP SEND EXT ATOMIC INLINE is set */

Mellanox Technologies 73

[Rev 1.7 VPI Verbs API \

/* in the future add support for non-inline argument provisioning */
} wr_data;
} masked_atomics;
} ext _op;
Vi
For atomic operations, to support atomic responses in big-endian format (the only way to use
atomics on Connect-IB® on little-endian machines) is:

1. Use experimental verbs.

2. Check to see if the atomics capabilities flag TBV_EXP ATOMIC HCA REPLY BE in the exp -
atomic_cap field of the struct ibv exp device attr returned by ibv exp query de-
vice ().

3. Set the flag 1BV _EXP QP CREATE ATOMIC BE REPLY when opening the QP. This is what
enables the use of atomic ops on Connect-1B.

4. Use the experimental post send verb.

k 74 Mellanox Technologies j

-
4

4.1

411

41.2

Rev 1.7

RDMA_CM API

Event Channel Operations

rdma_create_event_channel

Template:

struct rdma_event channel * rdma_create_event_channel (void)

Input Parameters:

void no arguments

Output Parameters:

none

Return Value:
A pointer to the created event channel, or NULL if the request fails. On

failure, errno will be set to indicate the failure reason.

Description:

Opens an event channel used to report communication events. Asynchronous events are reported
to users through event channels.

Notes:

Event channels are used to direct all events on an rdma_cm_id. For many clients, a single event
channel may be sufficient, however, when managing a large number of connections or cm_ids,
users may find it useful to direct events for different cm_ids to different channels for processing.

All created event channels must be destroyed by calling rdma_destroy event channel. Users
should call rdma get cm_event to retrieve events on an event channel.

Each event channel is mapped to a file descriptor. The associated file descriptor can be used and
manipulated like any other fd to change its behavior. Users may make the fd non-blocking, poll
or select the fd, etc.

See Also:

rdma_cm, rdma_get cm_event, rdma_destroy_event_channel

rdma_destroy_event_channel

Template:

void rdma_destroy_event_channel (struct rdma_event channel *channel)

Input Parameters:

channel The communication channel to destroy.

Output Parameters:

none

Mellanox Technologies 75

[Rev 1.7 RDMA_CM API \

Return Value:

none

Description:

Close an event communication channel. Release all resources associated with an event channel
and closes the associated file descriptor.

Notes:

All rdma_cm_id's associated with the event channel must be destroyed, and all returned events
must be acked before calling this function.

See Also:
rdma create event channel, rdma get cm event, rdma ack cm_event

k 76 Mellanox Technologies j

(/> Rev 1.7

4.2 Connection Manager (CM) ID Operations

421 rdma_create_id

Template:

int rdma_create_id(struct rdma_event channel *channel, struct rdma cm_id **id, void *con-
text, enum rdma_port_space ps)

Input Parameters:

channel The communication channel that events associated with the
allocated rdma cm id will be reported on.

id A reference where the allocated communication identifier
will be returned.

context User specified context associated with the rdma cm id.

ps RDMA port space.

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

Creates an identifier that is used to track communication information.

Notes:

rdma_cm_ids are conceptually equivalent to a socket for RDMA communication. The difference
is that RDMA communication requires explicitly binding to a specified RDMA device before
communication can occur, and most operations are asynchronous in nature. Communication
events on an rdma_cm_id are reported through the associated event channel. Users must release
the rdma_cm_id by calling rdma_destroy id.

PORT SPACES Details of the services provided by the different port
spaces are outlined below.

RDMA PS TCP Provides reliable, connection-oriented QP communication.
Unlike TCP, the RDMA port space provides message, not stream, based
communication.

RDMA PS UDP Provides unreliable, connection less QP communication.

Supports both datagram and multicast communication.

See Also:

rdma_cm, rdma create event channel, rdma_destroy id, rdma_get devices, rdma bind addr,
rdma_resolve addr, rdma_connect, rdma_listen, rdma_set option

4.2.2 rdma_destroy_id

Template:

int rdma_destroy_id (struct rdma_cm_id *id)

k Mellanox Technologies 77

[Rev 1.7 RDMA_CM API \

Input Parameters:

id The communication identifier to destroy.

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

Destroys the specified rdma_cm_id and cancels any outstanding asynchronous operation.

Notes:

Users must free any associated QP with the rdma cm_id before calling this routine and ack an
related events.

See Also:

rdma create id, rdma_destroy qp, rdma_ack cm event

4.2.3 rdma_migrate_id

Template:

int rdma_migrate_id(struct rdma_cm_id *id, struct rdma_event_channel *channel)

Input Parameters:
id An existing RDMA communication identifier to migrate

channel The new event channel for rdma cm id events

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_migrate_id migrates a communication identifier to a different event channel and moves
any pending events associated with the rdma _cm_id to the new channel.

No polling for events on the rdma_cm _id's current channel nor running of any routines on the
rdma_cm_id should be done while migrating between channels. rdma_migrate id will block
while there are any unacknowledged events on the current event channel.

If the channel parameter is NULL, then the specified rdma_cm_id will be placed into synchro-
nous operation mode. All calls on the id will block until the operation completes.

4.2.4 rdma_set_option

Template:

k 78 Mellanox Technologies j

4.2.5

Rev 1.7

int rdma_set_option(struct rdma_cm _id *id, int level, int optname, void *optval, size t optlen)

Input Parameters:

id RDMA communication identifier

level Protocol level of the option to set

optname Name of the option to set

optval Reference to the option data

optlen The size of the option data (optval) buffer

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_set_option sets communication options for an rdma_cm_id. Option levels and details may
be found in the enums in the relevant header files.

rdma_create_ep

Template:

int rdma_create_ep(struct rdma_cm_id **id, struct rdma_addrinfo *res, struct ibv_pd *pd,
struct ibv_qp_init_attr *qp_init_attr)

Input Parameters:

id A reference where the allocated communication identifier
will be returned

res Address information associated with the rdma cm id returned
from rdma getaddrinfo

pd OPtional protection domain if a QP is associated with the
rdma_cm_id

gp init attr Optional initial QP attributes

Output Parameters:

id The communication identifier is returned through this reference

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure

Description:
rdma_create_ep creates an identifier and optional QP used to track communication information.

If gqp_init_attr is not NULL, then a QP will be allocated and associated with the rdma _cm id, id.
If a protection domain (PD) is provided, then the QP will be created on that PD. Otherwise the
QP will be allocated on a default PD.

Mellanox Technologies 79

RDMA_CM API

[Rev 1.7

The rdma_cm_id will be set to use synchronous operations (connect, listen and get _request). To
use asynchronous operations, rdma_cm_id must be migrated to a user allocated event channel
using rdma_migrate id.

rdm_cm_id must be released after use, using rdma_destroy_ep.

struct rdma_addrinfo is defined as follows:

struct rdma_ addrinfo {

4.2.6

kSO

int
int
int
int
socklen t
socklen t

struct sockaddr
struct sockaddr

char
char
size t
void
size t
void

struct rdma_addrinfo

Vi

ai_flags
RAI PASSIVE,

ai family

ai flags;

ai family;
ai_gp_type;

al port space;

ai src_len;

ai dst len;

*ali src_addr;

*ai dst_addr;

*ai src_canonname;
*ai dst canonname;
ai route len;

*al route;

ai connect len;
*ai connect;
*al_next;

Hint flags which control the operation. Supported flags are:

RAI NUMERICHOST and RAI NOROUTE

Address family for the source and destination address

(AF_INET, AF_INET6, AF IB)

ai_gp_type

al port space
ai_src_len

ai dst len

*ai src_addr

*ai dst_addr

*ail src_canonname
*ai dst canonname

ai_route_len
ai_route.

*al route

The type of RDMA QP used
RDMA port space used (RDMA PS UDP or RDMA PS TCP)

Length of the source address referenced by ai src_addr
Length of the destination address referenced by ai dst addr
Address of local RDMA device, if provided
Address of destination RDMA device, if provided
The canonical for the source

The canonical for the destination

Size of the information buffer

routing referenced by

Routing information for RDMA transports that require routing

data as part of connection establishment

ai connect len

*al connect
process

*ai next

rdma_destroy_ep

Template:

Size of connection information referenced by ai connect

Data exchanged as part of the connection establishment

Pointer to the next rdma addrinfo structure in the list

int rdma_destroy_ep (struct rdma_cm_id *id)

Input Parameters:

Mellanox Technologies

4.2.7

Rev 1.7

id The communication identifier to destroy

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure

Description:

rdma_destroy_ep destroys the specified rdma cm id and all associated resources, including
QPs associated with the id.

rdma_resolve_addr

Template:

int rdma_resolve_addr (struct rdma_cm_id *id, struct sockaddr *src_addr, struct sockaddr
*dst_addr, int timeout_ms)

Input Parameters:

id RDMA identifier.

src_addr Source address information. This parameter may be NULL.
dst_addr Destination address information.

timeout ms Time to wait for resolution to complete.

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_resolve_addr resolves destination and optional source addresses from IP addresses to an
RDMA address. If successful, the specified rdma _cm_id will be bound to a local device.

Notes:

This call is used to map a given destination IP address to a usable RDMA address. The IP to
RDMA address mapping is done using the local routing tables, or via ARP. If a source address is
given, the rdma_cm_id is bound to that address, the same as if rdma_bind addr were called. If no
source address is given, and the rdma cm id has not yet been bound to a device, then the
rdma_cm_id will be bound to a source address based on the local routing tables. After this call,
the rdma_cm_id will be bound to an RDMA device. This call is typically made from the
active side of a connection before calling rdma resolve route and rdma_connect.

InfiniBand Specific

This call maps the destination and, if given, source IP addresses to GIDs. In order to perform the
mapping, [PoIB must be running on both the local and remote nodes.

Mellanox Technologies 81

[Rev 1.7 RDMA_CM API \

See Also:

rdma_create_id, rdma_resolve route, rdma_connect, rdma_create gp, rdma_get cm_event,
rdma bind addr, rdma_get src_port, rdma get dst port, rdma get local addr,
rdma get peer addr

4.2.8 rdma_bind_addr

Template:

int rdma_bind_addr (struct rdma_cm_id *id, struct sockaddr *addr)

Input Parameters:
id RDMA identifier.

addr Local address information. Wildcard values are permitted.

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_bind_addr associates a source address with an rdma cm_id. The address may be wild
carded. If binding to a specific local address, the rdma cm_id will also be bound to a local
RDMA device.

Notes:

Typically, this routine is called before calling rdma_listen to bind to a specific port number, but it
may also be called on the active side of a connection before calling rdma_resolve addr to bind to
a specific address. If used to bind to port 0, the rdma cm will select an available port, which can
be retrieved with rdma_get src_port.

See Also:

rdma_create id, rdma_listen, rdma resolve addr, rdma create qp, rdma get local addr,
rdma_get src_port

4.2.9 rdma_resolve_route

Template:

int rdma_resolve_route (struct rdma_cm_id *id, int timeout_ms)

Input Parameters:
id RDMA identifier.

addr Local address information. Wildcard values are permitted.

Output Parameters:

None

k 82 Mellanox Technologies j

Rev 1.7 ‘\\

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_resolve_route resolves an RDMA route to the destination address in order to establish a
connection. The destination must already have been resolved by calling rdma_resolve addr.
Thus this function is called on the client side after rdma resolve addr but before calling rdma_-
connect. For InfiniBand connections, the call obtains a path record which is used by the connec-
tion.

4.2.10 rdma_listen

Template:

int rdma_listen(struct rdma_cm_id *id, int backlog)

Input Parameters:
id RDMA communication identifier

backlog The backlog of incoming connection requests

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_listen initiates a listen for incoming connection requests or datagram service lookup. The
listen is restricted to the locally bound source address.

Please note that the rdma_cm_id must already have been bound to a local address by calling
rdma_bind_addr before calling rdma_listen. If the rdma_cm_id is bound to a specific IP address,
the listen will be restricted to that address and the associated RDMA device. If the rdma cm id
is bound to an RDMA port number only, the listen will occur across all RDMA devices.

4.2.11 rdma_connect

Template:

int rdma_connect(struct rdma cm id *id, struct rdma conn param *conn param
_ _cm_ _ _p _p

Input Parameters:
id RDMA communication identifier

conn_param Optional connection parameters

Output Parameters:

none

Return Value:

Mellanox Technologies 83 j

[Rev 1.7 RDMA_CM API \

0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_connect initiates an active connection request. For a connected rdma cm_id, id, the call
initiates a connection request to a remote destination. or an unconnected rdma_cm _id, it initiates
a lookup of the remote QP providing the datagram service. The user must already have resolved a
route to the destination address by having called rdma_resolve route or rdma_create ep before
calling this method.

For InfiniBand specific connections, the QPs are configured with minimum RNR NAK timer and
local ACK values. The minimum RNR NAK timer value is set to 0, for a delay of 655 ms. The
local ACK timeout is calculated based on the packet lifetime and local HCA ACK delay. The
packet lifetime is determined by the InfiniBand Subnet Administrator and is part of the resolved
route (path record) information. The HCA ACK delay is a property of the locally used HCA.
Retry count and RNR retry count values are 3-bit values.

Connections established over iWarp RDMA devices currently require that the active side of the
connection send the first message.

struct rdma_conn_param is defined as follows:

struct rdma conn param {
const void *private data;
uint8 t private data len;
uint8_t responder_ resources;
uint8_t initiator_depth;
uint8 t flow control;

uint8 t retry count; ignored when accepting

uint8_ t rnr retry count;

uint8 t srq; ignored if QP created on the rdma cm id
uint32 t gp num; ignored if QP created on the rdma cm id

Vi
Here is a more detailed description of the rdma_conn_param structure members:

private data References a user-controlled data buffer. The contents of
the buffer are copied and transparently passed to the remote side as part of the
communication request. May be NULL if private data is not required.

private data_len Specifies the size of the user-controlled data buffer. Note
that the actual amount of data transferred to the remote side is transport
dependent and may be larger than that requested.

responder resources The maximum number of outstanding RDMA read and atomic
operations that the local side will accept from the remote side. Applies only to
RDMA PS TCP. This value must be less than or equal to the local RDMA device
attribute max gp rd atom and remote RDMA device attribute max gp_init rd atom.
The remote endpoint can adjust this value when accepting the connection.

initiator_depth The maximum number of outstanding RDMA read and atomic
operations that the local side will have to the remote side. Applies only to
RDMA PS TCP. This value must be less than or equal to the local RDMA device
attribute max gp init rd atom and remote RDMA device attribute max gp rd atom.
The remote endpoint can adjust this value when accepting the connection.

k 84 Mellanox Technologies j

Rev 1.7

flow control Specifies if hardware flow control is available. This wvalue
is exchanged with the remote peer and is not used to configure the QP. Applies
only to RDMA PS TCP.

retry count The maximum number of times that a data transfer operation
should be retried on the connection when an error occurs. This setting controls
the number of times to retry send, RDMA, and atomic operations when timeouts
occur. Applies only to RDMA PS TCP.

rnr_retry count The maximum number of times that a send operation from the
remote peer should be retried on a connection after receiving a receiver not
ready (RNR) error. RNR errors are generated when a send request arrives before a
buffer has been posted to receive the incoming data. Applies only to RDMA PS TCP.

srq Specifies if the QP associated with the connection is using a
shared receive queue. This field is ignored by the library if a QP has been
created on the rdma cm id. Applies only to RDMA PS TCP.

gp_num Specifies the QP number associated with the connection. This
field is ignored by the library if a QP has been created on the rdma cm id.
Applies only to RDMA PS TCP.

4.2.12 rdma_get_request

Template:

int rdma_get_request (struct rdma_cm_id *listen, struct rdma_cm_id **id)

Input Parameters:
listen Listening rdma cm id

id rdma_cm_id associated with the new connection

Output Parameters:

id A pointer to rdma cm id associated with the request

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_get request retrieves the next pending connection request event. The call may only be
used on listening rdma_cm_ids operating synchronously. If the call is successful, a new rdma_c-
m_id (id) representing the connection request will be returned to the user. The new rdma _cm_id
will reference event information associated with the request until the user calls rdma_reject,
rdma_accept, or rdma_destroy_id on the newly created identifier. For a description of the event
data, see rdma_get cm_event.

If QP attributes are associated with the listening endpoint, the returned rdma_cm_id will also ref-
erence an allocated QP.

Mellanox Technologies 85

[Rev 1.7 RDMA_CM API \

4.2.13 rdma_accept

Template:

int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)

Input Parameters:
id RDMA communication identifier

conn_param Optional connection parameters (described under
rdma_connect)

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_accept is called from the listening side to accept a connection or datagram service lookup
request.

Unlike the socket accept routine, rdma_accept is not called on a listening rdma_cm_id. Instead,
after calling rdma_listen, the user waits for an RDMA CM_EVENT CONNECT REQUEST
event to occur. Connection request events give the user a newly created rdma_cm_id, similar to a
new socket, but the rdma_cm_id is bound to a specific RDMA device. rdma_accept is called on
the new rdma_cm_id.

4.2.14 rdma_reject

Template:

int rdma_reject(struct rdma_cm_id *id, const void *private data, uint8 t private data len)

Input Parameters:

id RDMA communication identifier
private data Optional private data to send with the reject message
private data_ len Size (in bytes) of the private data being sent

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_reject is called from the listening side to reject a connection or datagram service lookup
request.

k 86 Mellanox Technologies j

Rev 1.7

After receiving a connection request event, a user may call rdma_reject to reject the request. The
optional private data will be passed to the remote side if the underlying RDMA transport sup-
ports private data in the reject message.

4.2.15 rdma_notify

Template:

int rdma_notify(struct rdma_cm_id *id, enum ibv_event type event)

Input Parameters:
id RDMA communication identifier

event Asynchronous event

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_notify is used to notify the librdmacm of asynchronous events which have occurred on a
QP associated with the rdma_cm_id, id.

Asynchronous events that occur on a QP are reported through the user’s device event handler.
This routine is used to notify the librdmacm of communication events. In most cases, use of this
routine is not necessary, however if connection establishment is done out of band (such as done
through InfiniBand), it is possible to receive data on a QP that is not yet considered connected.
This routine forces the connection into an established state in this case in order to handle the rare
situation where the connection never forms on its own. Calling this routine ensures the delivery
of the RDMA CM_EVENT ESTABLISHED event to the application. Events that should be
reported to the CM are: IB_EVENT _COMM_EST.

4.2.16 rdma_disconnect

Template:

int rdma_disconnect(struct rdma_cm_id *id)

Input Parameters:

id RDMA communication identifier

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

Mellanox Technologies 87

(Rev 1.7 RDMA_CM API \

rdma_disconnect disconnects a connection and transitions any associated QP to the error state.
This action will result in any posted work requests being flushed to the completion queue.
rdma_disconnect may be called by both the client and server side of the connection. After suc-
cessfully disconnecting, an RDMA CM_EVENT DISCONNECTED event will be generated on
both sides of the connection.

4.2.17 rdma_get_src_port

Template:

uintl6_t rdma_get_src_port(struct rdma_cm_id *id)

Input Parameters:

id RDMA communication identifier

Output Parameters:

None

Return Value:

Returns the 16-bit port number associated with the local endpoint of 0 if the
rdma_cm_id, id, is not bound to a port

Description:

rdma_get src_port retrieves the local port number for an rdma cm_id (id) which has been
bound to a local address. If the id is not bound to a port, the routine will return 0.

4.2.18 rdma_get_dst_port

Template:
uintl6 trdma_get dst_port(struct rdma_cm_id *id)

Input Parameters:

id RDMA communication identifier

Output Parameters:

None

Return Value:

Returns the 16-bit port number associated with the peer endpoint of 0 if the
rdma_cm_id, id, is not connected

Description:

rdma_get_dst_port retrieves the port associated with the peer endpoint. If the rdma_cm_id, id,
1s not connected, then the routine will return 0.

4.2.19 rdma_get_local_addr

Template:

struct sockaddr *rdma_get_local_addr(struct rdma_cm_id *id)

k 88 Mellanox Technologies j

Rev 1.7

Input Parameters:

id RDMA communication identifier

Output Parameters:

None

Return Value:

Returns a pointer to the local sockaddr address of the rdma_cm id, id. If the id
is not bound to an address, then the contents of the sockaddr structure will be
set to all zeros

Description:

rdma_get _local_addr retrieves the local IP address for the rdma_cm_id which has been bound
to a local device.

4.2.20 rdma_get_peer_addr

Template:

struct sockaddr * rdma_get_peer_addr (struct rdma_cm_id *id)

Input Parameters:

id RDMA communication identifier

Output Parameters:

None

Return Value:

A pointer to the sockaddr address of the connected peer. If the rdma cm id is not
connected, then the contents of the sockaddr structure will be set to all zeros

Description:

rdma_get peer_addr retrieves the remote IP address of a bound rdma_cm_id.

4.2.21 rdma_get_devices

Template:

struct ibv_context ** rdma_get_devices (int *num_devices)

Input Parameters:

num_devices If non-NULL, set to the number of devices returned

Output Parameters:

num_ devices Number of RDMA devices currently available

Return Value:

Array of available RDMA devices on success or NULL if the request fails

Description:

Mellanox Technologies 89

[Rev 1.7 RDMA_CM API \

rdma_get devices retrieves an array of RDMA devices currently available. Devices remain
opened while librdmacm is loaded and the array must be released by calling rdma_free devices.

4.2.22 rdma_free_devices

Template:

void rdma_free_devices (struct ibv_context **list)

Input Parameters:

list List of devices returned from rdma get devices

Output Parameters:

None

Return Value:

None

Description:

rdma_free_ devices frees the device array returned by the rdma_get devices routine.

4.2.23 rdma_getaddrinfo

Template:

int rdma_getaddrinfo(char *node, char *service, struct rdma_addrinfo *hints, struct rdma_ad-
drinfo **res)

Input Parameters:

node Optional: name, dotted-decimal IPv4 or IPvé hex address to
resolve

service The service name or port number of the address

hints Reference to an rmda addrinfo structure containing hints

about the type of service the caller supports resA pointer to a linked list of
rdma_addrinfo structures containing response information

Output Parameters:

res An rdma_ addrinfo structure which returns information needed
to establish communication

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_getaddrinfo provides transport independent address translation. It resolves the destination
node and service address and returns information required to establish device communication. It
is the functional equivalent of getaddrinfo.

Please note that either node or service must be provided. If hints are provided, the operation will
be controlled by hints.ai_flags. If RAI PASSIVE is specified, the call will resolve address infor-
mation for use on the passive side of a connection.

k 90 Mellanox Technologies j

Rev 1.7

The rdma_addrinfo structure is described under the rdma_create ep routine.

4.2.24 rdma_freeaddrinfo

Template:

void rdma_freeaddrinfo(struct rdma addrinfo *res)

Input Parameters:

res The rdma_addrinfo structure to free

Output Parameters:

None

Return Value:

None

Description:

rdma_freeaddrinfo releases the rdma_addrinfo (res) structure returned by the rdma_getaddrinfo
routine. Note that if ai_next is not NULL, rdma_freeaddrinfo will free the entire list of addrinfo
structures.

4.2.25 rdma_create_qp

Template:

int rdma_create_qp (struct rdma_cm_id *id, struct ibv_pd *pd, struct ibv_qp_init_attr
*qp_init_attr)

Input Parameters:

id RDMA identifier.
pd protection domain for the QP.
gp_init_attr initial QP attributes.

Output Parameters:

gp_init attr The actual capabilities and properties of the created QP are
returned through this structure

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_create qp allocates a QP associated with the specified rdma cm_id and transitions it for
sending and receiving. The actual capabilities and properties of the created QP will be returned to
the user through the qp_init_attr parameter.

Notes:

The rdma_cm_id must be bound to a local RDMA device before calling this function, and the
protection domain must be for that same device. QPs allocated to an rdma_cm_id are automati-

Mellanox Technologies 91

[Rev 1.7 RDMA_CM API \

cally transitioned by the librdmacm through their states. After being allocated, the QP will be
ready to handle posting of receives. If the QP is unconnected, it will be ready to post sends.

See Also:

rdma_bind addr, rdma_resolve addr, rdma_destroy qp, ibv_create qp, ibv._modify qp

4.2.26 rdma_destroy_qp

Template:

void rdma_destroy qp (struct rdma_cm_id *id)

Input Parameters:
id RDMA identifier.

Output Parameters:

none

Return Value:

none

Description:

rdma_destroy_qp destroys a QP allocated on the rdma_cm_id.

Notes:

Users must destroy any QP associated with an rdma_cm_id before destroying the ID.

See Also:

rdma_create qp, rdma_destroy_id, ibv_destroy qp

4.2.27 rdma_join_multicast

Template:

int rdma_join_multicast (struct rdma cm_id *id, struct sockaddr *addr, void *context)

Input Parameters:

id Communication identifier associated with the request.
addr Multicast address identifying the group to join.
context User-defined context associated with the join request.

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_join_multicast joins a multicast group and attaches an associated QP to the group.

k 92 Mellanox Technologies j

Rev 1.7

Notes:

Before joining a multicast group, the rdma_cm_id must be bound to an RDMA device by calling
rdma bind addr or rdma resolve addr. Use of rdma resolve addr requires the local routing
tables to resolve the multicast address to an RDMA device, unless a specific source address is
provided. The user must call rdma leave multicast to leave the multicast group and release any
multicast resources. After the join operation completes, any associated QP is automatically
attached to the multicast group, and the join context is returned to the user through the private -
data field in the rdma_cm_event.

See Also:

rdma_leave multicast, rdma bind addr, rdma resolve addr, rdma create qp, rdma get c-
m_event

4.2.28 rdma_leave_multicast

Template:

int rdma_leave_multicast (struct rdma_cm _id *id, struct sockaddr *addr)

Input Parameters:
id Communication identifier associated with the request.

addr Multicast address identifying the group to leave.

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_leave multicast leaves a multicast group and detaches an associated QP from the group.

Notes:

Calling this function before a group has been fully joined results in canceling the join operation.
Users should be aware that messages received from the multicast group may stilled be queued for
completion processing immediately after leaving a multicast group. Destroying an rdma_cm_id
will automatically leave all multicast groups.

See Also:

rdma_join_multicast, rdma_destroy qp

Mellanox Technologies 93

[Rev 1.7 | RDMA_CM API \

4.3 Event Handling Operations

431 rdma_get_cm_event

Template:

int rdma_get_cm_event (struct rdma_event channel *channel, struct rdma_cm_event **event)

Input Parameters:
channel Event channel to check for events.

event Allocated information about the next communication event.

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

Retrieves a communication event. If no events are pending, by default, the call will block until an
event is received.

Notes:

The default synchronous behavior of this routine can be changed by modifying the file descriptor
associated with the given channel. All events that are reported must be acknowledged by
calling rdma_ack cm_event. Destruction of an rdma_cm_id will block until related events have
been acknowledged.

Event Data

Communication event details are returned in the rdma_cm_event structure. This structure is allo-
cated by the rdma_cm and released by the rdma ack cm_event routine. Details of the rdma c-
m_event structure are given below.

id The rdma_cm identifier associated with the event.

If the event type is RDMA_CM_EVENT CONNECT REQUEST, then this references a new id
for that communication.

listen_id For RDMA CM EVENT CONNECT REQUEST event types, this
references the corresponding listening request identifier.

event Specifies the type of communication event which occurred.
See EVENT TYPES below.

status Returns any asynchronous error information associated with
an event. The status is zero unless the corresponding operation failed.

param Provides additional details based on the type of event.
Users should select the conn or ud subfields based on the rdma port space of the
rdma_cm id associated with the event. See UD EVENT DATA and CONN EVENT DATA
below.

UD Event Data

Event parameters related to unreliable datagram (UD) services:

k 94 Mellanox Technologies j

Rev 1.7

RDMA PS UDP and RDMA_PS IPOIB. The UD event data is valid for RDMA_C-
M_EVENT ESTABLISHED and RDMA CM EVENT MULTICAST JOIN events, unless
stated otherwise.

private data References any user-specified data associated with
RDMA CM_EVENT CONNECT REQUEST or RDMA CM EVENT ESTABLISHED events. The data
referenced by this field matches that specified by the remote side when calling
rdma_connect or rdma accept. This field is NULL if the event does not include
private data. The buffer referenced by this pointer is deallocated when calling
rdma_ack cm event.

private data len The size of the private data buffer. Users should note that
the size of the private data buffer may be larger than the amount of private data
sent by the remote side. Any additional space in the buffer will be zeroed out.

ah attr Address information needed to send data to the remote end-
point (s). Users should use this structure when allocating their address
handle.

gp_num QP number of the remote endpoint or multicast group.

gkey QKey needed to send data to the remote endpoint(s).

Conn Event Data

Event parameters related to connected QP services: RDMA_PS TCP. The connection related
event datais valid for RDMA CM_EVENT CONNECT REQUEST and RDMA C-
M_EVENT_ESTABLISHED events, unless stated otherwise.

private data References any wuser-specified data associated with the
event. The data referenced by this field matches that specified by the remote
side when calling rdma_connect or rdma_accept. This field is MULL if the event
does not include private data. The Dbuffer referenced by this pointer 1is
deallocated when calling rdma_ack cm event.

private_data_len The size of the private data buffer. Users should note that
the size of the private data buffer may be larger than the amount of private data
sent by the remote side. Any additional space in the buffer will be zeroed out.

responder resources The number of responder resources requested of the
recipient. This field matches the initiator depth specified by the remote node
when calling rdma connect and rdma_accept.

initiator_depth The maximum number of outstanding RDMA read/atomic
operations that the recipient may have outstanding. This field matches the
responder resources specified by the remote node when calling rdma connect and
rdma_accept.

flow control Indicates if hardware level flow control is provided by the
sender.
retry count For RDMA CM_EVENT_CONNECT_REQUEST events only, indicates the

number of times that the recipient should retry send operations.

rnr retry count The number of times that the recipient should retry receiver
not ready (RNR) NACK errors.

srq Specifies if the sender is using a shared-receive queue.
gp_num Indicates the remote QP number for the connection.
Event Types

The following types of communication events may be reported.

RDMA CM_EVENT ADDR RESOLVED
Address resolution (rdma_resolve addr) completed successfully.

Mellanox Technologies 95

[Rev 1.7 RDMA_CM API \

RDMA CM_EVENT ADDR ERROR
Address resolution (rdma_resolve addr) failed.

RDMA _CM_EVENT ROUTE RESOLVED
Route resolution (rdma_resolve route) completed successfully.

RDMA CM_EVENT ROUTE ERROR
Route resolution (rdma_resolve route) failed.

RDMA_CM_EVENT_CONNECT REQUEST
Generated on the passive side to notify the user of a new connection request.

RDMA _CM_EVENT _CONNECT_RESPONSE
Generated on the active side to notify the user of a successful response to a connection request. It
is only generated on rdma_cm_id's that do not have a QP associated with them.

RDMA CM_EVENT CONNECT ERROR
Indicates that an error has occurred trying to establish or a connection. May be generated on the
active or passive side of a connection.

RDMA CM_EVENT UNREACHABLE
Generated on the active side to notify the user that the remote server is not reachable or unable to
respond to a connection request.

RDMA_CM_EVENT REJECTED
Indicates that a connection request or response was rejected by the remote end point.

RDMA_CM_EVENT ESTABLISHED
Indicates that a connection has been established with the remote end point.

RDMA_CM_EVENT DISCONNECTED
The connection has been disconnected.

RDMA_CM_EVENT DEVICE REMOVAL
The local RDMA device associated with the rdma cm_id has been removed. Upon receiving this
event, the user must destroy the related rdma cm_id.

RDMA_CM_EVENT MULTICAST JOIN
The multicast join operation (rdma_join multicast) completed successfully.

RDMA CM_EVENT MULTICAST ERROR

An error either occurred joining a multicast group, or, if the group had already been joined, on an
existing group. The specified multicast group is no longer accessible and should be rejoined, if
desired.

RDMA _CM_EVENT _ADDR _CHANGE

The network device associated with this ID through address resolution changed its HW address,
eg following of bonding failover. This event can serve as a hint for applications who want the
links used for their RDMA sessions to align with the network stack.

RDMA CM_EVENT TIMEWAIT EXIT

The QP associated with a connection has exited its timewait state and is now ready to be re-used.
After a QP has been disconnected, it is maintained in a timewait state to allow any in flight pack-
ets to exit the network. After the timewait state has completed, the rdma_cm will report this
event.

See Also:

rdma ack cm_event, rdma create event channel, rdma resolve addr, rdma_resolve route,
rdma_connect, rdma_listen, rdma_join_multicast, rdma_destroy_id, rdma_event_str

k 96 Mellanox Technologies j

-

4.3.2

43.3

Rev 1.7

rdma_ack_cm_event

Template:

int rdma_ack_cm_event (struct rdma_cm_event *event)

Input Parameters:

event Event to be released.

Output Parameters:

none

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_ack _cm_event frees a communication event. All events which are allocated by
rdma_get cm_event must be released, there should be a one-to-one correspondence between suc-
cessful gets and acks. This call frees the event structure and any memory that it references.

See Also:

rdma_get cm_event, rdma_destroy_id

rdma_event_str

Template:

char *rdma_event_str (enum rdma_cm_event type event)

Input Parameters:

event Asynchronous event.

Output Parameters:

none

Return Value:

A pointer to a static character string corresponding to the event

Description:

rdma_event_str returns a string representation of an asynchronous event.

See Also:

rdma get cm event

Mellanox Technologies 97

[Rev 1.7 | RDMA Verbs API \
5 RDMA Verbs API

5.1 Protection Domain Operations

5.1.1 rdma_reg_msgs

Template:

struct ibv_mr *rdma_reg_msgs(struct rdma_cm_id *id, void *addr, size t length)

Input Parameters:

id A reference to the communication identifier where the
message buffer(s) will be used

addr The address of the memory buffer(s) to register

length The total length of the memory to register

Output Parameters:

ibv_mr A reference to an ibv mr struct of the registered memory
region

Return Value:

A reference to the registered memory region on success or NULL on failure

Description:
rdma_reg_msgs registers an array of memory buffers for sending or receiving messages or for
RDMA operations. The registered memory buffers may then be posted to an rdma cm_id using
rdma_post_send or rdma_post_recv. They may also be specified as the target of an RDMA read
operation or the source of an RDMA write request.
The memory buffers are registered with the protection domain associated with the rdma_cm_id.
The start of the data buffer array is specified through the addr parameter and the total size of the
array is given by the length.
All data buffers must be registered before being posted as a work request. They must be deregis-
tered by calling rdma_dereg_mr.

5.1.2 rdma_reg_read

Template:

struct ibv_mr * rdma_reg_read(struct rdma cm_id *id, void *addr, size t length)

Input Parameters:

id A reference to the communication identifier where the
message buffer(s) will be used

addr The address of the memory buffer(s) to register

length The total length of the memory to register

Output Parameters:

ibv_mr A reference to an ibv mr struct of the registered memory
region

k 98 Mellanox Technologies j

Rev 1.7

Return Value:

A reference to the registered memory region on success or NULL on failure. If an
error occurs, errno will be set to indicate the failure reason.

Description:

rdma_reg read Registers a memory buffer that will be accessed by a remote RDMA read oper-
ation. Memory buffers registered using rdma_reg read may be targeted in an RDMA read
request, allowing the buffer to be specified on the remote side of an RDMA connection as the
remote_addr of rdma_post_read, or similar call.

rdma reg_read is used to register a data buffer that will be the target of an RDMA read operation
on a queue pair associated with an rdma_cm_id. The memory buffer is registered with the protec-
tion domain associated with the identifier. The start of the data buffer is specified through the
addr parameter, and the total size of the buffer is given by length.

All data buffers must be registered before being posted as work requests. Users must deregister
all registered memory by calling the rdma_dereg mr.

See Also

rdma _cm(7), rdma create id(3), rdma create ep(3), rdma reg msgs(3), rdma reg write(3),
ibv_reg mr(3), ibv_dereg mr(3), rdma post read(3)

5.1.3 rdma_reg_write

Template:

struct ibv_mr *rdma_reg_write(struct rdma_cm_id *id, void *addr, size t length)

Input Parameters:

id A reference to the communication identifier where the
message buffer(s) will be used

addr The address of the memory buffer(s) to register

length The total length of the memory to register

Output Parameters:

ibv_mr A reference to an ibv mr struct of the registered memory
region

Return Value:

A reference to the registered memory region on success or NULL on failure. If an
error occurs, errno will be set to indicate the failure reason.

Description:

rdma_reg_write registers a memory buffer which will be accessed by a remote RDMA write
operation. Memory buffers registered using this routine may be targeted in an RDMA write
request, allowing the buffer to be specified on the remote side of an RDMA connection as the
remote_addr of an rdma_post_write or similar call.

The memory buffer is registered with the protection domain associated with the rdma_cm_id.
The start of the data buffer is specified through the addr parameter, and the total size of the buffer
is given by the length.

Mellanox Technologies 99

[Rev 1.7 RDMA Verbs API \

All data buffers must be registered before being posted as work requests. Users must deregister
all registered memory by calling the rdma_dereg mr.

See Also

rdma_cm(7), rdma create id(3), rdma_create ep(3), rdma reg msgs(3), rdma_ reg read(3),
ibv_reg_mr(3), ibv_dereg mr(3), rdma_post write(3)

5.1.4 rdma_dereg_mr

Template:

int rdma_dereg_mr(struct ibv_mr *mr)

Input Parameters:

mr A reference to a registered memory buffer

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_dereg_mr deregisters a memory buffer which has been registered for RDMA or message
operations. This routine must be called for all registered memory associated with a given
rdma_cm_id before destroying the rdma_cm_id.

5.1.5 rdma_create_srq

Template:

int rdma_create_srq(struct rdma_cm_id *id, struct ibv_pd *pd, struct ibv_srq_init_attr *attr)

Input Parameters:

id The RDMA communication identifier

pd Optional protection domain for the shared request queue
(SRQ)

attr Initial SRQ attributes

Output Parameters:

attr The actual capabilities and properties of the created SRQ
are returned through this structure

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_create_srq allocates a shared request queue associated with the rdma cm_id, id. The id
must be bound to a local RMDA device before calling this routine. If the protection domain, pd,

k 100 Mellanox Technologies j

Rev 1.7 ‘\\

is provided, it must be for that same device. After being allocated, the SRQ will be ready to han-
dle posting of receives. If a pd is NULL, then the rdma_cm_id will be created using a default pro-
tection domain. One default protection domain is allocated per RDMA device. The initial SRQ
attributes are specified by the attr parameter.

If a completion queue, CQ, is not specified for the XRC SRQ, then a CQ will be allocated by the
rdma_cm for the SRQ, along with corresponding completion channels. Completion channels and
CQ data created by the rdma_cm are exposed to the user through the rdma_cm_id structure. The
actual capabilities and properties of the created SRQ will be returned to the user through the attr
parameter.

Anrdma cm_id may only be associated with a single SRQ.

5.1.6 rdma_destroy_srq

Template:

void rdma_destroy_srq(struct rdma cm_id *id)

Input Parameters:

id The RDMA communication identifier whose associated SRQ we
wish to destroy.

Output Parameters:

None

Return Value:

none

Description:

rdma_destroy_srq destroys an SRQ allocated on the rdma_cm _id, id. Any SRQ associated with
anrdma_cm_id must be destroyed before destroying the rdma_cm _id, id.

Mellanox Technologies 101 j

[Rev 1.7 | RDMA Verbs API \

5.2 Active Queue Pair Operations

5.21 rdma_post_recvv

Template:

int rdma_post_recvv(struct rdma_cm_id *id, void *context, struct ibv_sge *sgl, int nsge)

Input Parameters:

id A reference to the communication identifier where the
message buffer(s) will be posted

context A user-defined context associated with the request

sgl A scatter-gather list of memory buffers posted as a single
request

nsge The number of scatter-gather entries in the sgl array

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:
rdma_post_recvv posts a single work request to the receive queue of the queue pair associated

with the rdma_cm_id, id. The posted buffers will be queued to receive an incoming message sent
by the remote peer.

Please note that this routine supports multiple scatter-gather entries. The user is responsible for
ensuring that the receive is posted, and the total buffer space is large enough to contain all sent
data before the peer posts the corresponding send message. The message buffers must have been

registered before being posted, and the buffers must remain registered until the receive com-
pletes.

Messages may be posted to an rdma_cm_id only after a queue pair has been associated with it. A
queue pair is bound to an rdma_cm_id after calling rdma create ep or rdma_create qp, if the
rdma_cm_id is allocated using rdma_create id.

The user-defined context associated with the receive request will be returned to the user through
the work completion work request identifier (wr_id) field.

5.2.2 rdma_post_sendv

Template:

int rdma_post_sendv(struct rdma_cm_id *id, void *context, struct ibv_sge *sgl, int nsge, int
flags)

Input Parameters:

id A reference to the communication identifier where the
message buffer will be posted

context A user-defined context associated with the request

k 102 Mellanox Technologies j

Rev 1.7

sgl A scatter-gather list of memory buffers posted as a single
request

nsge The number of scatter-gather entries in the sgl array

flags Optional flags used to control the send operation

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_post_sendv posts a work request to the send queue of the queue pair associated with the
rdma_cm _id, id. The contents of the posted buffers will be sent to the remote peer of the connec-
tion.

The user is responsible for ensuring that the remote peer has queued a receive request before
issuing the send operations. Also, unless the send request is using inline data, the message buffers
must already have been registered before being posted. The buffers must remain registered until
the send completes.

This routine supports multiple scatter-gather entries.

Send operations may not be posted to an rdma_cm_id or the corresponding queue pair until a
connection has been established.

The user-defined context associated with the send request will be returned to the user through the
work completion work request identifier (wr_id) field.

5.2.3 rdma_post_readv

Template:

int rdma_post_readv(struct rdma_cm_id *id, void *context, struct ibv_sge *sgl, int nsge, int
flags, uint64 t remote addr, uint32_t rkey)

Input Parameters:

id A reference to the communication identifier where the
request will be posted

context A user-defined context associated with the request

sgl A scatter-gather list of the destination buffers of the read
nsge The number of scatter-gather entries in the sgl array

flags Optional flags used to control the read operation

remote addr The address of the remote registered memory to read from
rkey The registered memory key associated with the remote address

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Mellanox Technologies 103

[Rev 1.7 RDMA Verbs API \

Description:

rdma_post_readv posts a work request to the send queue of the queue pair associated with the
rdma cm_id, id. The contents of the remote memory region at remote_addr will be read into the
local data buffers given in the sgl array.

The user must ensure that both the remote and local data buffers have been registered before the
read is issued. The buffers must remain registered until the read completes.

Read operations may not be posted to an rdma _cm_id or the corresponding queue pair until a
connection has been established.

The user-defined context associated with the read request will be returned to the user through the
work completion work request identifier (wr_id) field.

5.2.4 rdma_post_writev

Template:

int rdma_post_writev(struct rdma_cm_id *id, void *context, struct ibv_sge *sgl, int nsge, int
flags, uint64 t remote addr, uint32 t rkey)

Input Parameters:

id A reference to the communication identifier where the
request will be posted

context A user-defined context associated with the request

sgl A scatter-gather list of the source buffers of the write
nsge The number of scatter-gather entries in the sgl array

flags Optional flags used to control the write operation

remote addr The address of the remote registered memory to write into
rkey The registered memory key associated with the remote address

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_post_writev posts a work request to the send queue of the queue pair associated with the
rdma_cm _id, id. The contents of the local data buffers in the sgl array will be written to the
remote memory region at remote_addr.

Unless inline data is specified, the local data buffers must have been registered before the write is
issued, and the buffers must remain registered until the write completes. The remote buffers must
always be registered.

Write operations may not be posted to an rdma_cm_id or the corresponding queue pair until a
connection has been established.

The user-defined context associated with the write request will be returned to the user through
the work completion work request identifier (wr_id) field.

k 104 Mellanox Technologies j

-

5.2.5

5.2.6

Rev 1.7

rdma_post_recv

Template:

int rdma_post_recv(struct rdma_cm_id *id, void *context, void *addr, size t length, struct
ibv_mr *mr)

Input Parameters:

id A reference to the communication identifier where the
message buffer will be posted

context A user-defined context associated with the request

addr The address of the memory buffer to post

length The length of the memory buffer

mr A registered memory region associated with the posted buffer

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_post_recv posts a work request to the receive queue of the queue pair associated with the
rdma_cm _id, id. The posted buffer will be queued to receive an incoming message sent by the
remote peer.

The user is responsible for ensuring that receive buffer is posted and is large enough to contain all
sent data before the peer posts the corresponding send message. The buffer must have already
been registered before being posted, with the mr parameter referencing the registration. The buf-
fer must remain registered until the receive completes.

Messages may be posted to an rdma_cm_id only after a queue pair has been associated with it. A
queue pair is bound to an rdma_cm_id after calling rdma create ep or rdma_create qp, if the
rdma_cm_id is allocated using rdma_create id.

The user-defined context associated with the receive request will be returned to the user through
the work completion request identifier (wr_id) field.

Please note that this is a simple receive call. There are no scatter-gather lists involved here.

rdma_post_send

Template:

int rdma_post_send(struct rdma_cm_id *id, void *context, void *addr, size t length, struct
ibv_mr *mr, int flags)

Input Parameters:

id A reference to the communication identifier where the
message buffer will be posted

context A user-defined context associated with the request
addr The address of the memory buffer to post
length The length of the memory buffer

Mellanox Technologies 105

[Rev 1.7 RDMA Verbs API \

mr Optional registered memory region associated with the posted
buffer
flags Optional flags used to control the send operation

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_post_send posts a work request to the send queue of the queue pair associated with the
rdma_cm_id, id. The contents of the posted buffer will be sent to the remote peer of the connec-
tion.

The user is responsible for ensuring that the remote peer has queued a receive request before
issuing the send operations. Also, unless the send request is using inline data, the message buffer
must already have been registered before being posted, with the mr parameter referencing the
registration. The buffer must remain registered until the send completes.

Send operations may not be posted to an rdma_cm_id or the corresponding queue pair until a
connection has been established.

The user-defined context associated with the send request will be returned to the user through the
work completion work request identifier (wr_id) field.

5.2.7 rdma_post_read

Template:

int rdma_post_read(struct rdma_cm_id *id, void *context, void *addr, size t length, struct
ibv_mr *mr, int flags, uint64_t remote_addr, uint32_t rkey)

Input Parameters:

id A reference to the communication identifier where the
request will be posted

context A user-defined context associated with the request

addr The address of the local destination of the read request
length The length of the read operation

mr Registered memory region associated with the local buffer
flags Optional flags used to control the read operation

remote addr The address of the remote registered memory to read from
rkey The registered memory key associated with the remote address

Output Parameters:

None

Return Value:

0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

k 106 Mellanox Technologies j

5.2.8

Rev 1.7

Description:

rdma_post_read posts a work request to the send queue of the queue pair associated with the
rdma_cm_id. The contents of the remote memory region will be read into the local data buffer.

For a list of supported flags, see ibv_post send. The user must ensure that both the remote and
local data buffers must have been registered before the read is issued, and the buffers must
remain registered until the read completes.

Read operations may not be posted to an rdma_cm_id or the corresponding queue pair until it has
been connected.

The user-defined context associated with the read request will be returned to the user through the
work completion wr_id, work request identifier, field.

rdma_post_write

Template:

int rdma_post_write(struct rdma_cm_id *id, void *context, void *addr, size t length, struct
ibv_mr *mr, int flags, uint64 t remote addr, uint32 t rkey)

Input Parameters:

id A reference to the communication identifier where the
request will be posted

context A user-defined context associated with the request

addr The local address of the source of the write request

length The length of the write operation

mr Optional registered memory region associated with the local
buffer

flags Optional flags used to control the write operation

remote addr The address of the remote registered memory to write into
rkey The registered memory key associated with the remote address

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_post_write posts a work request to the send queue of the queue pair associated with the
rdma_cm_id, id. The contents of the local data buffer will be written into the remote memory
region.

Unless inline data is specified, the local data buffer must have been registered before the write is
issued, and the buffer must remain registered until the write completes. The remote buffer must
always be registered.

Write operations may not be posted to an rdma_cm_id or the corresponding queue pair until a
connection has been established.

The user-defined context associated with the write request will be returned to the user through
the work completion work request identifier (wr_id) field.

Mellanox Technologies 107

J

[Rev 1.7 RDMA Verbs API \

5.29 rdma_post ud_send

Template:

int rdma_post_ud_send(struct rdma_cm_id *id, void *context, void *addr, size t length, struct
ibv_mr *mr, int flags, struct ibv_ah *ah, uint32_t remote_qgpn)

Input Parameters:

id A reference to the communication identifier where the
request will be posted

context A user-defined context associated with the request

addr The address of the memory buffer to post

length The length of the memory buffer

mr Optional registered memory region associated with the posted
buffer

flags Optional flags used to control the send operation

ah An address handle describing the address of the remote node
remote gpn The destination node's queue pair number

Output Parameters:

None

Return Value:
0 on success, -1 on error. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_post_ud_send posts a work request to the send queue of the queue pair associated with
the rdma_cm_id, id. The contents of the posted buffer will be sent to the specified destination
queue pair, remote _qpn.

The user is responsible for ensuring that the destination queue pair has queued a receive request
before issuing the send operations. Unless the send request is using inline data, the message buf-
fer must have been registered before being posted, with the mr parameter referencing the regis-
tration. The buffer must remain registered until the send completes.

The user-defined context associated with the send request will be returned to the user through the
work completion work request identifier (wr_id) field.

5.2.10 rdma_get_send_comp

Template:

int rdma_get_send_comp(struct rdma_cm_id *id, struct ibv_wc *wc)

Input Parameters:

id A reference to the communication identifier to check for
completions
wc A reference to a work completion structure to fill in

Output Parameters:

k 108 Mellanox Technologies j

Rev 1.7

wC A reference to a work completion structure. The structure
will contain information about the completed request when
routine returns

Return Value:
A non-negative value (0 or 1) equal to the number of completions found on
success, or -1 on failure. If the call fails, errno will be set to indicate

the reason for the failure.

Description:

rdma_get send_comp retrieves a completed work request for a send, RDMA read or RDMA
write operation. Information about the completed request is returned through the ibv_wc, wc
parameter, with the wr_id set to the context of the request. Please see ibv_poll cq for details on
the work completion structure, ibv_wec.

Please note that this call polls the send completion queue associated with the rdma cm_id, id. If
a completion is not found, the call blocks until a request completes. This means, therefore, that
the call should only be used on rdma_cm_ids which do not share CQs with other rdma_cm_ids,
and maintain separate CQs for sends and receive completions.

5.2.11 rdma_get_recv_comp

Template:

int rdma_get_recv_comp(struct rdma_cm_id *id, struct ibv_wc *wc)

Input Parameters:

id A reference to the communication identifier to check for
completions
wc A reference to a work completion structure to fill in

Output Parameters:

wC A reference to a work completion structure. The structure
will contain information about the completed request when routine returns

Return Value:
A non-negative value equal to the number of completions found on success, or

errno on failure

Description:

rdma_get recv_comp retrieves a completed work request a receive operation. Information
about the completed request is returned through the ibv_wc, wc parameter, with the wr_id set to
the context of the request. Please see ibv_poll cq for details on the work completion structure,
ibv_wec.

Please note that this call polls the receive completion queue associated with the rdma_cm _id, id.
If a completion is not found, the call blocks until a request completes. This means, therefore, that
the call should only be used on rdma _cm_ids which do not share CQs with other rdma cm_ids,
and maintain separate CQs for sends and receive completions.

Mellanox Technologies 109

(Rev 1.7 | Events \

6 Events

This chapter describes the details of the events that occur when using the VPI API

6.1 IBV Events

6.1.1 IBV_EVENT_CQ_ERR

This event is triggered when a Completion Queue (CQ) overrun occurs or (rare condition) due to
a protection error. When this happens, there are no guarantees that completions from the CQ can
be pulled. All of the QPs associated with this CQ either in the Read or Send Queue will also get
the IBV_EVENT_QP_FATAL event. When this event occurs, the best course of action is for the
user to destroy and recreate the resources.

6.1.2 IBV_EVENT_QP_FATAL

This event is generated when an error occurs on a Queue Pair (QP) which prevents the generation
of completions while accessing or processing the Work Queue on either the Send or Receive
Queues. The user must modify the QP state to Reset for recovery. It is the responsibility of the
software to ensure that all error processing is completed prior to calling the modify QP verb to
change the QP state to Reset.

If the problem that caused this event is in the CQ of that Work Queue, the appropriate CQ will
also receive the IBV_EVENT CQ_ERR event. In the event of a CQ error, it is best to destroy
and recreate the resources

6.1.3 IBV_EVENT_QP_REQ_ERR

This event is generated when the transport layer of the RDMA device detects a transport error
violation on the responder side. The error may be caused by the use of an unsupported or
reserved opcode, or the use of an out of sequence opcode.

These errors are rare but may occur when there are problems in the subnet or when an RDMA
device sends illegal packets.

When this happens, the QP is automatically transitioned to the IBV_QPS ERR state by the
RDMA device. The user must modify the states of any such QPs from the error state to the Reset
state for recovery

This event applies only to RC QPs.

6.1.4 IBV_EVENT_QP_ACCESS_ERR

This event is generated when the transport layer of the RDMA device detects a request error vio-
lation on the responder side. The error may be caused by

Misaligned atomic request

Too many RDMA Read or Atomic requests
R _Key violation

Length errors without immediate data

These errors usually occur because of bugs in the user code.

k 110 Mellanox Technologies j

6.1.5

6.1.6

6.1.7

6.1.8

6.1.9

Rev 1.7

When this happens, the QP is automatically transitioned to the IBV_QPS_ERR state by the
RDMA device.The user must modify the QP state to Reset for recovery.

This event is relevant only to RC QPs.

IBV_EVENT_COMM_EST

This event is generated when communication is established on a given QP. This event implies
that a QP whose state is IBV_QPS_RTR has received the first packet in its Receive Queue and
the packet was processed without error.

This event is relevant only to connection oriented QPs (RC and UC QPs). It may be generated for
UD QPs as well but that is driver implementation specific.

IBV_EVENT_SQ_DRAINED

This event is generated when all outstanding messages have been drained from the Send Queue
(SQ) of a QP whose state has now changed from IBV_QPS RTS to IBV_QPS_SQD. For RC
QPs, this means that all the messages received acknowledgements as appropriate.

Generally, this event will be generated when the internal QP state changes from SQD.draining to
SQD.drained. The event may also be generated if the transition to the state IBV_QPS_SQD is
aborted because of a transition, either by the RDMA device or by the user, into the
IBV_QPS_SQE, IBV_QPS_ERR or IBV_QPS_RESET QP states.

After this event, and after ensuring that the QP is in the IBV_QPS_SQD state, it is safe for the
user to start modifying the Send Queue attributes since there aren't are no longer any send mes-
sages in progress. Thus it is now safe to modify the operational characteristics of the QP and
transition it back to the fully operational RTS state.

IBV_EVENT_PATH_MIG

This event is generated when a connection successfully migrates to an alternate path. The event is
relevant only for connection oriented QPs, that is, it is relevant only for RC and UC QPs.

When this event is generated, it means that the alternate path attributes are now in use as the pri-
mary path attributes. If it is necessary to load attributes for another alternate path, the user may
do that after this event is generated.

IBV_EVENT_PATH_MIG_ERR

This event is generated when an error occurs which prevents a QP which has alternate path attri-
butes loaded from performing a path migration change. The attempt to effect the path migration
may have been attempted automatically by the RDMA device or explicitly by the user.

This error usually occurs if the alternate path attributes are not consistent on the two ends of the
connection. It could be, for example, that the DLID is not set correctly or if the source port is
invalid.CQ The event may also occur if a cable to the alternate port is unplugged.

IBV_EVENT_DEVICE_FATAL

This event is generated when a catastrophic error is encountered on the channel adapter. The port
and possibly the channel adapter becomes unusable.

Mellanox Technologies 111

J

(Rev 1.7

6.1.10

6.1.11

6.1.12

6.1.13

k112

When this event occurs, the behavior of the RDMA device is undetermined and it is highly rec-
ommended to close the process immediately. Trying to destroy the RDMA resources may fail
and thus the device may be left in an unstable state.

IBV_EVENT_PORT_ACTIVE

This event is generated when the link on a given port transitions to the active state. The link is
now available for send/receive packets.

This event means that the port_attr.state has moved from one of the following states
IBV_PORT DOWN
IBV_PORT INIT
IBV_PORT ARMED
to either
IBV_PORT ACTIVE
IBV_PORT_ ACTIVE DEFER
This might happen for example when the SM configures the port.

The event is generated by the device only if the IBV_DEVICE PORT ACTIVE EVENT attri-
bute is set in the dev_cap.device cap_flags.

IBV_EVENT_PORT_ERR

This event is generated when the link on a given port becomes inactive and is thus unavailable to
send/receive packets.

The port_attr.state must have been in either in either IBV_PORT ACTIVE or IBV_PORT_AC-
TIVE DEFER state and transitions to one of the following states:

IBV_PORT DOWN
IBV_PORT_INIT
IBV_PORT ARMED

This can happen when there are connectivity problems within the IB fabric, for example when a
cable is accidentally pulled.

This will not affect the QPs associated with this port, although if this is a reliable connection, the
retry count may be exceeded if the link takes a long time to come back up.

IBV_EVENT_LID_CHANGE

The event is generated when the LID on a given port changes. This is done by the SM. If this is
not the first time that the SM configures the port LID, it may indicate that there is a new SM on
the subnet or that the SM has reconfigured the subnet. If the user cached the structure returned
from ibv_query_ port(), then these values must be flushed when this event occurs.

IBV_EVENT_PKEY_CHANGE

This event is generated when the P_Key table changes on a given port. The PKEY table is con-
figured by the SM and this also means that the SM can change it. When that happens, an
IBV_EVENT PKEY CHANGE event is generated.

Mellanox Technologies

Events \

6.1.14

6.1.15

6.1.16

6.1.17

6.1.18

Rev 1.7

Since QPs use GID table indexes rather than absolute values (as the source GID), it is suggested
for clients to check that the GID indexes used by the client's QPs are not changed as a result of
this event.

If a user caches the values of the P_Key table, then these must be flushed when the
IBV_EVENT PKEY CHANGE event is received.

IBV_EVENT_SM_CHANGE

This event is generated when the SM being used at a given port changes. The user application
must re-register with the new SM. This means that all subscriptions previously registered from
the given port, such as one to join a multicast group, must be reregistered.

IBV_EVENT_SRQ_ERR

This event is generated when an error occurs on a Shared Receive Queue (SRQ) which prevents
the RDMA device from dequeuing WRs from the SRQ and reporting of receive completions.

When an SRQ experiences this error, all the QPs associated with this SRQ will be transitioned to
the IBV_QPS_ERR state and the IBV_EVENT_QP_FATAL asynchronous event will be gener-
ated for them. Any QPs which have transitioned to the error state must have their state modified
to Reset for recovery.

IBV_EVENT_SRQ_LIMIT_REACHED

This event is generated when the limit for the SRQ resources is reached. This means that the
number of SRQ Work Requests (WRs) is less than the SRQ limit. This event may be used by the
user as an indicator that more WRs need to be posted to the SRQ and rearm it.

IBV_EVENT_QP_LAST WQE_REACHED

This event is generated when a QP which is associated with an SRQ is transitioned into the
IBV_QPS_ERR state either automatically by the RDMA device or explicitly by the user. This
may have happened either because a completion with error was generated for the last WQE, or
the QP transitioned into the IBV_QPS ERR state and there are no more WQEs on the Receive
Queue of the QP.

This event actually means that no more WQEs will be consumed from the SRQ by this QP.

If an error occurs to a QP and this event is not generated, the user must destroy all of the QPs
associated with this SRQ as well as the SRQ itself in order to reclaim all of the WQEs associated
with the offending QP. At the minimum, the QP which is in the error state must have its state
changed to Reset for recovery.

IBV_EVENT_CLIENT_REREGISTER

This event is generated when the SM sends a request to a given port for client reregistration for
all subscriptions previously requested for the port. This could happen if the SM suffers a failure
and as a result, loses its own records of the subscriptions. It may also happen if a new SM
becomes operational on the subnet.

The event will be generated by the device only if the bit that indicates a client reregister is sup-
ported is set in port_attr.port cap flags.

Mellanox Technologies 113

J

(Rev 1.7 Events \

6.1.19 IBV_EVENT_GID_CHANGE

This event is generated when a GID changes on a given port. The GID table is configured by the
SM and this also means that the SM can change it. When that happens, an
IBV_EVENT _GID CHANGE event is generated. If a user caches the values of the GID table,
then these must be flushed when the IBV_EVENT GID CHANGE event is received.

6.2 IBV WC Events

6.2.1 IBV_WC_SUCCESS
The Work Request completed successfully.

6.2.2 IBV_WC_LOC_LEN_ERR

This event is generated when the receive buffer is smaller than the incoming send. It is generated
on the receiver side of the connection.

6.2.3 IBV_WC_LOC_QP_OP_ERR

This event is generated when a QP error occurs. For example, it may be generated if a user
neglects to specify responder resources and initiator depth values in struct rdma_conn param
before calling rdma_connect() on the client side and rdma_accept() on the server side.

6.2.4 IBV_WC_LOC_EEC_OP_ERR

This event is generated when there is an error related to the local EEC's receive logic while exe-
cuting the request packet. The responder is unable to complete the request. This error is not
caused by the sender.

6.2.5 IBV_WC_LOC_PROT ERR

This event is generated when a user attempts to access an address outside of the registered mem-
ory region. For example, this may happen if the Lkey does not match the address in the WR.

6.2.6 IBV_WC_WR_FLUSH_ERR

This event is generated when an invalid remote error is thrown when the responder detects an
invalid request. It may be that the operation is not supported by the request queue or there is
insufficient buffer space to receive the request.

6.2.7 IBV_WC_MW_BIND ERR

This event is generated when a memory management operation error occurs. The error may be
due to the fact that the memory window and the QP belong to different protection domains. It
may also be that the memory window is not allowed to be bound to the specified MR or the
access permissions may be wrong.

6.2.8 IBV_WC_BAD_RESP_ERR

This event is generated when an unexpected transport layer opcode is returned by the responder.

k 114 Mellanox Technologies j

6.2.9

6.2.10

6.2.11

6.2.12

6.2.13

6.2.14

6.2.15

6.2.16

6.2.17

6.2.18

Rev 1.7

IBV_WC_LOC_ACCESS_ERR

This event is generated when a local protection error occurs on a local data buffer during the pro-
cess of an RDMA Write with Immediate Data operation sent from the remote node.

IBV_WC_REM_INV_REQ_ERR

This event is generated when the receive buffer is smaller than the incoming send. It is generated
on the sender side of the connection. It may also be generated if the QP attributes are not set cor-
rectly, particularly those governing MR access.

IBV._WC_REM_ACCESS_ERR

This event is generated when a protection error occurs on a remote data buffer to be read by an
RDMA Read, written by an RDMA Write or accessed by an atomic operation. The error is
reported only on RDMA operations or atomic operations.

IBV_WC_REM_OP_ERR

This event is generated when an operation cannot be completed successfully by the responder.
The failure to complete the operation may be due to QP related errors which prevent the
responder from completing the request or a malformed WQE on the Receive Queue.

IBV_WC_RETRY_EXC_ERR

This event is generated when a sender is unable to receive feedback from the receiver. This
means that either the receiver just never ACKs sender messages in a specified time period, or it
has been disconnected or it is in a bad state which prevents it from responding.

IBV_WC_RNR_RETRY_EXC_ERR

This event is generated when the RNR NAK retry count is exceeded. This may be caused by lack
of receive buffers on the responder side.

IBV_WC_LOC_RDD_VIOL_ERR

This event is generated when the RDD associated with the QP does not match the RDD associ-
ated with the EEC.

IBV_WC_REM_INV_RD_REQ_ERR

This event is generated when the responder detects an invalid incoming RD message. The mes-
sage may be invalid because it has in invalid Q Key or there may be a Reliable Datagram
Domain (RDD) violation.

IBV_WC_REM_ABORT_ERR

This event is generated when an error occurs on the responder side which causes it to abort the
operation.

IBV_WC_INV_EECN_ERR
This event is generated when an invalid End to End Context Number (EECN) is detected.

Mellanox Technologies 115

J

(Rev 1.7

6.2.19

6.2.20

6.2.21

6.2.22

6.3

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

k116

IBV_WC_INV_EEC_STATE_ERR

This event is generated when an illegal operation is detected in a request for the specified EEC
state.

IBV_WC_FATAL_ERR

This event is generated when a fatal transport error occurs. The user may have to restart the
RDMA device driver or reboot the server to recover from the error.

IBV_WC_RESP_TIMEOUT ERR

This event is generated when the responder is unable to respond to a request within the timeout
period. It generally indicates that the receiver is not ready to process requests.

IBV_WC_GENERAL_ERR

This event is generated when there is a transport error which cannot be described by the other
specific events discussed here.

RDMA_CM Events

RDMA_CM_EVENT_ADDR_RESOLVED

This event is generated on the client (active) side in response to rdma_resolve addr(). It is gener-
ated when the system is able to resolve the server address supplied by the client.

RDMA_CM_EVENT_ADDR_ERROR

This event is generated on the client (active) side. It is generated in response to rdma re-
solve addr() in the case where an error occurs. This may happen, for example, if the device can-
not be found such as when a user supplies an incorrect device. Specifically, if the remote device
has both ethernet and IB interfaces, and the client side supplies the ethernet device name instead
of the IB device name of the server side, an RDMA CM_EVENT ADDR_ERROR will be gen-
erated.

RDMA_CM_EVENT_ROUTE_RESOLVED

This event is generated on the client (active) side in response to rdma_resolve route(). It is gen-
erated when the system is able to resolve the server address supplied by the client.

RDMA_CM_EVENT_ROUTE_ERROR

This event is generated when rdma_resolve route() fails.

RDMA_CM_EVENT_CONNECT_REQUEST

This is generated on the passive side of the connection to notify the user of a new connection
request. It indicates that a connection request has been received.

Mellanox Technologies

Events \

6.3.6

6.3.7

6.3.8

6.3.9

6.3.10

6.3.11

6.3.12

6.3.13

6.3.14

Rev 1.7

RDMA_CM_EVENT_CONNECT_RESPONSE

This event may be generated on the active side of the connection to notify the user that the con-
nection request has been successful. The event is only generated on rdma_cm_ids which do not
have a QP associated with them.

RDMA_CM_EVENT_CONNECT_ERROR

This event may be generated on the active or passive side of the connection. It is generated when
an error occurs while attempting to establish a connection.

RDMA_CM_EVENT_UNREACHABLE

This event is generated on the active side of a connection. It indicates that the (remote) server is
unreachable or unable to respond to a connection request.

RDMA_CM_EVENT_REJECTED

This event may be generated on the client (active) side and indicates that a connection request or
response has been rejected by the remote device. This may happen for example if an attempt is
made to connect with the remote end point on the wrong port.

RDMA_CM_EVENT_ESTABLISHED

This event is generated on both sides of a connection. It indicates that a connection has been
established with the remote end point.

RDMA_CM_EVENT_DISCONNECTED

This event is generated on both sides of the connection in response to rdma_disconnect(). The
event will be generated to indicate that the connection between the local and remote devices has
been disconnected. Any associated QP will transition to the error state. All posted work requests
are flushed. The user must change any such QP's state to Reset for recovery.

RDMA_CM_EVENT_DEVICE_REMOVAL

This event is generated when the RDMA CM indicates that the device associated with the
rdma_cm_id has been removed. Upon receipt of this event, the user must destroy the related
rdma_cm_id.

RDMA_CM_EVENT_MULTICAST_JOIN

This event is generated in response to rdma_join_multicast(). It indicates that the multicast join
operation has completed successfully.

RDMA_CM_EVENT_MULTICAST_ERROR

This event is generated when an error occurs while attempting to join a multicast group or on an
existing multicast group if the group had already been joined. When this happens, the multicast
group will no longer be accessible and must be rejoined if necessary.

Mellanox Technologies 117

J

(Rev 1.7

6.3.15

6.3.16

k’I’IS

RDMA_CM_EVENT_ADDR_CHANGE

This event is generated when the network device associated with this ID through address resolu-
tion changes its hardware address. For example, this may happen following bonding fail over.
This event may serve to aid applications which want the links used for their RDMA sessions to
align with the network stack.

RDMA_CM_EVENT_TIMEWAIT_EXIT

This event is generated when the QP associated with the connection has exited its timewait state
and is now ready to be re-used. After a QP has been disconnected, it is maintained in a timewait
state to allow any in flight packets to exit the network. After the timewait state has completed, the
rdma_cm will report this event.

Mellanox Technologies

Events \

71

711

Rev 1.7

Programming Examples Using IBV Verbs

This chapter provides code examples using the IBV Verbs

Synopsis for RDMA_RC Example Using IBV Verbs

The following is a synopsis of the functions in the programming example, in the order that they
are called.

Main

Parse command line. The user may set the TCP port, device name, and device port for the test. If
set, these values will override default values in config. The last parameter is the server name. If
the server name is set, this designates a server to connect to and therefore puts the program into
client mode. Otherwise the program is in server mode.

Call print_config.

Call resources_init.

Call resources_create.

Call connect_qp.

If in server mode, do a call post_send with IBV_WR_SEND operation.

Call poll_completion. Note that the server side expects a completion from the SEND request and
the client side expects a RECEIVE completion.

If in client mode, show the message we received via the RECEIVE operation, otherwise, if we
are in server mode, load the buffer with a new message.

Sync client<->server.

At this point the server goes directly to the next sync. All RDMA operations are done strictly by
the client.

*#*Client only ***

Call post_send with IBV. WR_ RDMA_ READ to perform a RDMA read of server’s buffer.
Call poll_completion.

Show server’s message.

Setup send buffer with new message.

Call post_send with IBV. WR_ RDMA_WRITE to perform a RDMA write of server’s buffer.
Call poll_completion.

End client only operations ***

Sync client<->server.

If server mode, show buffer, proving RDMA write worked.

Call resources_destroy.

Free device name string.

Done.

Mellanox Technologies 119

(Rev 1.7

71.2
713

714

71.5

7.1.6

71.7

71.8

71.9

k 120

print_config

Print out configuration information.

resources_init

Clears resources struct.

resources_create

Call sock connect to connect a TCP socket to the peer.
Get the list of devices, locate the one we want, and open it.
Free the device list.

Get the port information.

Create a PD.

Create a CQ.

Allocate a buffer, initialize it, register it.

Create a QP.

sock_connect
If client, resolve DNS address of server and initiate a connection to it.

If server, listen for incoming connection on indicated port.

connect_qp
Call modify_qp_to_init.

Call post_receive.

Call sock sync data to exchange information between server and client.

Call modify_gp_to_rtr.
Call modify _gp_to_rts.

Call sock _sync_data to synchronize client<->server

modify_qp_to_init
Transition QP to INIT state.

post_receive

Prepare a scatter/gather entry for the receive buffer.
Prepare an RR.
Post the RR.

sock_sync_data

Programming Examples Using IBV Verbs \

Using the TCP socket created with sock connect, synchronize the given set of data between cli-
ent and the server. Since this function is blocking, it is also called with dummy data to synchro-

nize the timing of the client and server.

Mellanox Technologies

7.1.10

71.11

7.1.12

7113

7114

7.2

Rev 1.7

modify_qp_to_rtr
Transition QP to RTR state.

modify_qp_to_rts
Transition QP to RTS state.

post_send

Prepare a scatter/gather entry for data to be sent (or received in RDMA read case).
Create an SR. Note that IBV_SEND SIGNALED is redundant.

If this is an RDMA operation, set the address and key.

Post the SR.

poll_completion
Poll CQ until an entry is found or MAX POLL CQ_TIMEOUT milliseconds are reached.

resources_destroy

Release/free/deallocate all items in resource struct.

Code for Send, Receive, RDMA Read, RDMA Write

/*
* BUILD COMMAND:
* gcc -Wall -I/usr/local/ofed/include -O2 -o RDMA_RC_example -L/usr/local/ofed/lib64 -L/usr/local/ofed/lib -

libverbs RDMA RC example.c

*
*/
/**
*

* RDMA Aware Networks Programming Example
*

* This code demonstrates how to perform the following operations using the * VPI Verbs API:
k

Send

Receive

RDMA Read

RDMA Write

* ¥ X ¥ ¥

***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdint.h>
#include <inttypes.h>
#include <endian.h>
#include <byteswap.h>
#include <getopt.h>

Mellanox Technologies 121

J

[Rev 1.7 Programming Examples Using IBV Verbs \

#include <sys/time.h>
#include <arpa/inet.h>
#include <infiniband/verbs.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

/* poll CQ timeout in millisec (2 seconds) */
#define MAX POLL CQ TIMEOUT 2000
#define MSG "SEND operation "

#define RDMAMSGR "RDMA read operation "
#define RDMAMSGW "RDMA write operation”
#define MSG_SIZE (strlen(MSG) + 1)

#if BYTE ORDER==_LITTLE ENDIAN

static inline uint64_t htonll(uint64 t x) { return bswap 64(x); }

static inline uint64_t ntohll(uint64 t x) { return bswap 64(x); }

#elif BYTE ORDER == BIG ENDIAN

static inline uint64 _t htonll(uint64 t x) { return x; }

static inline uint64 _t ntohll(uint64 t x) { return x; }

#else

#error BYTE ORDER is neither LITTLE ENDIAN nor BIG ENDIAN
#endif

/* structure of test parameters */
struct config_t

Command 1 -
const char *dev_name; /* 1B device name */
char *server_name; /* server host name */
u int32 t tcp_port; /* server TCP port */
int ib_port; /* local IB port to work with */
int gid idx; /* gid index to use */
55

/* structure to exchange data which is needed to connect the QPs */
struct cm_con_data t

T;ble 1-

uint64 t addr; /* Buffer address */
uint32 t rkey; /* Remote key */
uint32 t gp_num; /* QP number */
uintl6 t lid; /* LID of the IB port */
uint8 t gid[16]; /* gid */

} _ attribute ((packed));

k 122 Mellanox Technologies j

Rev 1.7
/* structure of system resources */
struct resources
{
Table 2 -
struct ibv_device attr /* Device attributes */
device attr;
struct ibv_port_attr port_attr; /* 1B port attributes */
struct cm_con_data t remote_props; /* values to connect to remote side */
struct ibv_context *ib_ctx; /* device handle */
struct ibv_pd *pd; /* PD handle */
struct ibv_cq *cq; /* CQ handle */
struct ibv_qp *qp; /* QP handle */
struct ibv_mr *mr; /* MR handle for buf */
char *buf; /* memory buffer pointer, used for RDMA and send
ops */
int sock; /* TCP socket file descriptor */
55
struct config_t config =
{
Table 3 -
NULL, /* dev_name */
NULL, /* server name */
19875, /* tcp_port */
1, /*ib_port */
-1 /* gid_idx */
¥
/**
Socket operations
For simplicity, the example program uses TCP sockets to exchange control
information. If a TCP/IP stack/connection is not available, connection manager
(CM) may be used to pass this information. Use of CM is beyond the scope of
this example
**/
/**
* Function: sock connect
*
Mellanox Technologies 123

J

[Rev 1.7 Programming Examples Using IBV Verbs \

* Input

* servername URL of server to connect to (NULL for server mode)
* port port of service

*

* Output

* none

*

* Returns

* socket (fd) on success, negative error code on failure

*

* Description

* Connect a socket. If servername is specified a client connection will be
* initiated to the indicated server and port. Otherwise listen on the

* indicated port for an incoming connection.
%

st ot ok stk ol ok kool ok ol kool ol kot ol sk bkl ol kbl ol ok kol ol sk kol ol ok ol ok ok ook ook o/

static int sock connect(const char *servername, int port)

Ta{lble 4-

struct addrinfo *resolved addr = NULL,;
struct addrinfo *iterator;

char service[6];

int sockfd = -1;

int listenfd = 0;

int tmp;

struct addrinfo hints =

{
.ai_flags = AI PASSIVE,
.ai_family = AF INET,
.ai_socktype = SOCK_STREAM

15

if (sprintf(service, "%d", port) < 0)
goto sock connect_exit;

/* Resolve DNS address, use sockfd as temp storage */

sockfd = getaddrinfo(servername, service, &hints, &resolved addr);
if (sockfd < 0)

{

fprintf(stderr, "%s for %s:%d\n", gai_strerror(sockfd), servername, port);
goto sock connect_exit;

}

/* Search through results and find the one we want */

for (iterator = resolved_addr; iterator ; iterator = iterator->ai_next)

k 124 Mellanox Technologies j

Rev 1.7 \

{

sockfd = socket(iterator->ai_family, iterator->ai_socktype, iterator->ai_protocol);

if (sockfd >= 0)

{
if (servername)
/* Client mode. Initiate connection to remote */
if((tmp=connect(sockfd, iterator->ai_addr, iterator->ai_addrlen)))
{
fprintf(stdout, "failed connect \n");
close(sockfd);
sockfd = -1;
}
else
{
/* Server mode. Set up listening socket an accept a connection */
listenfd = sockfd;
sockfd = -1;
if(bind(listenfd, iterator->ai_addr, iterator->ai_addrlen))
goto sock connect_exit;
listen(listenfd, 1);
sockfd = accept(listenfd, NULL, 0);
§
§

}

sock connect_exit:

if(listenfd)
close(listenfd);

if(resolved_addr)
freeaddrinfo(resolved _addr);

if (sockfd < 0)
{

if(servername)

fprintf(stderr, "Couldn't connect to %s:%d\n", servername, port);
else

{

perror("server accept");
fprintf(stderr, "accept() failed\n");

}
}

return sockfd;

}

[/ st s e st st s ke sk st s ke ke st sk ke sk stesk sk ke stesi sk ke st st s ke stesieoseste sttt skttt st stttk sttt skoloskokokoskolokokokokokokoloskolskolokokokoiokoskokoiokoek

* Function: sock sync_data
*

Mellanox Technologies 125 j

[Rev 1.7 Programming Examples Using IBV Verbs \

* Input
Table 5 -
* sock socket to transfer data on
* xfer size size of data to transfer
* local data pointer to data to be sent to remote
*
* Output
* remote data pointer to buffer to receive remote data
*
* Returns

* 0 on success, negative error code on failure

*

* Description

* Sync data across a socket. The indicated local data will be sent to the
remote. It will then wait for the remote to send its data back. It is
assumed that the two sides are in sync and call this function in the proper
order. Chaos will ensue if they are not. :)

Also note this is a blocking function and will wait for the full data to be
received from the remote.

¥ X ¥ ¥ X ¥ *

**/

int sock _sync_data(int sock, int xfer size, char *local data, char *remote data)

{
int rc;
int read bytes = 0;
int total read bytes =0;

rc = write(sock, local data, xfer size);
if(rc < xfer_size)

fprintf(stderr, "Failed writing data during sock sync_data\n");
else

rc =0;

while(!rc && total read bytes < xfer size)

{

read bytes = read(sock, remote_data, xfer size);
if(read_bytes > 0)

total read bytes +=read_bytes;
else

rc =read_bytes;

return rc;

/**

End of socket operations
**/

k 126 Mellanox Technologies

Rev 1.7

/* poll_completion */
[s sk sk sk sl R R R R R SR R s R sl R sl s Rl st R s R R s R R sk R sk ks sl R R s ko ok

* Function: poll completion
*

* Input

* res pointer to resources structure
*

* Output

* none
*

* Returns

* (0 on success, 1 on failure
*

* Description
* Poll the completion queue for a single event. This function will continue to
* poll the queue until MAX POLL CQ TIMEOUT milliseconds have passed.

*

st ot ok stk ol sk okl kol ok ok stk ol skt ol ol kb kol ol kbl ol okt ko ol sk btk ol ok kol ok ook ook o/

static int poll _completion(struct resources *res)

T;ble 6-

struct ibv_wc WwC;

unsigned long start time msec;
unsigned long cur_time msec;
struct timeval cur_time;

int poll_result;

int rc =0;

/* poll the completion for a while before giving up of doing it .. */
gettimeofday(&cur_time, NULL);
start_time_msec = (cur_time.tv_sec * 1000) + (cur_time.tv_usec / 1000);

do
{
poll_result =ibv_poll cq(res->cq, 1, &wc);
gettimeofday(&cur_time, NULL);
cur_time msec = (cur_time.tv_sec * 1000) + (cur_time.tv_usec / 1000);
} while ((poll_result == 0) && ((cur_time_msec - start_time_msec) < MAX POLL CQ _TIMEOUT));

if(poll_result < 0)
{
/* poll CQ failed */
fprintf(stderr, "poll CQ failed\n");
rc=1;
}
else if (poll_result == 0)
{

Mellanox Technologies 127

J

[Rev 1.7 Programming Examples Using IBV Verbs \

/* the CQ is empty */
fprintf(stderr, "completion wasn't found in the CQ after timeout\n");
rc=1;
H
else
{
/* CQE found */
fprintf(stdout, "completion was found in CQ with status 0x%x\n", wc.status);

/* check the completion status (here we don't care about the completion opcode */
if (we.status !=IBV_WC_SUCCESS)
{
fprintf(stderr, "got bad completion with status: 0x%x, vendor syndrome: 0x%x\n", wc.status,
wce.vendor_err);
rc=1,

}

return rc;

}

[t st stk ok ek btk ok ok ok ol ok ok ol ok stk ol ok okl ol okt kol ol kot sl ol kb otk ol kbt ok ok

* Function: post_send

*

* Input

* res pointer to resources structure
* opcode IBV_WR SEND, IBV.WR RDMA READ or IBV.WR RDMA WRITE
%

* Output

* none

*

* Returns

* (0 on success, error code on failure
*

* Description

* This function will create and post a send work request
st ot ok stk ol ok kool ok okt ol kol ol kbt ol ok kol ol ok kol ol sk btk ol ok okl ok ook ook o/

static int post_send(struct resources *res, int opcode)

T;ble 7 -

struct ibv_send wr St;

struct ibv_sge sge;

struct ibv_send _wr *bad_wr =NULL;
int Ic;

/* prepare the scatter/gather entry */
memset(&sge, 0, sizeof(sge));

sge.addr = (uintptr_t)res->buf;

k 128 Mellanox Technologies j

Rev 1.7 \

sge.length = MSG_SIZE;
sge.lkey = res->mr->lkey;

/* prepare the send work request */
memset(&sr, 0, sizeof(sr));

sr.next = NULL;

stwr_id =0;

sr.sg_list = &sge;

sr.num_sge = 1;

sr.opcode = opcode;

sr.send flags =IBV_SEND SIGNALED;

if(opcode !=IBV_WR_SEND)

{
sr.wr.rdma.remote_addr = res->remote_props.addr;
sr.wr.rdma.rkey = res->remote_props.rkey;

}

/* there is a Receive Request in the responder side, so we won't get any into RNR flow */
rc = ibv_post_send(res->qp, &sr, &bad_wr);
if (rc)
fprintf(stderr, "failed to post SR\n");
else
{
switch(opcode)
{
case IBV_WR SEND:
fprintf(stdout, "Send Request was posted\n");
break;

case IBV. WR_ RDMA READ:
fprintf(stdout, "RDMA Read Request was posted\n");
break;

case IBV. WR_ RDMA WRITE:
fprintf(stdout, "RDMA Write Request was posted\n");

break;
default:
fprintf(stdout, "Unknown Request was posted\n");
break;
}
H
return rc;
H

[/ st s e st st s ke sk st s ke ke st s ke shestesk sk ke stesi sk ke st st s ke stesieose ke skesieskeske skttt sttt sk stttk stolokoskokokolokokokokokoskoloskokskolokokokoiokoskokoiokoek

* Function: post_receive
*

* Input

* res pointer to resources structure
*

Mellanox Technologies 129 j

k130

Rev 1.7

* Output

*
*

none

* Returns

*
*

0 on success, error code on failure

* Description

*

Programming Examples Using IBV Verbs \

et st s e she st s ke she st sk ke st st sk s e skesk s e st st s e stestese st stesie sk ke steste sk st st st steskeskeskosteste skt st sttt stekosiokestekokoskokokokoskoskoksiokoskoksiokeskokook /

static int post_receive(struct resources *res)

Ta{rble 8-

struct ibv_recv_wr IT;

struct ibv_sge sge;
struct ibv_recv_wr *bad_wr;
int rc;

}

/* prepare the scatter/gather entry */
memset(&sge, 0, sizeof(sge));
sge.addr = (uintptr_t)res->buf;
sge.length = MSG_SIZE;

sge.lkey = res->mr->lkey;

/* prepare the receive work request */
memset(&rr, 0, sizeof(rr));

rr.next = NULL;
rrwr_id = 0;
rr.sg_list = &sge;
rrnum_sge = 1;

/* post the Receive Request to the RQ */
rc = ibv_post_recv(res->qp, &rr, &bad_wr);

if (rc)
fprintf(stderr, "failed to post RR\n");
else

fprintf(stdout, "Receive Request was posted\n");

return rc;

[t skt ok sk btk ok ok stk ol ok kb ol ok stk ol ok ol okl ol kb ool ol kot ol ol kb otk ol kb okl ok ok

* Function: resources_init

*

* Input

*
*

res pointer to resources structure

* Output

*
*

res 1is initialized

Mellanox Technologies

* Returns

* none
*

* Description

* res is initialized to default values
**/

static void resources_init(struct resources *res)

memset(res, 0, sizeof *res);
res->sock = -1;

/3% 3k 3 e st st s ke st st s ke ke st sk ke st stesk sk e st st s e st st s st st sk stestesie sk ke kst sk ke kst sk st st steskesteste stk sttt skttt kol skt skokoskokokosiok skolokokok

* Function: resources_create

*
* Input

* res pointer to resources structure to be filled in
*

* Output

* res filled in with resources

*

* Returns

* 0 on success, 1 on failure

*

* Description
*
* This function creates and allocates all necessary system resources. These

* are stored in res.
stk ot ok stk ol ok ok ok ol ok stk ol sk bt ol ok kool ok kol ol skt ol ol sk kol ol ok sk kol ol ok ok ek /

static int resources_create(struct resources *res)
{
struct ibv_device **dev_list = NULL;
struct ibv_qp_init_attr qp_init_attr;
struct ibv_device *ib_dev = NULL;
Table 9 -

size t size;

int i

int mr_flags = 0;
int cq_size = 0;
int num_devices;
int rc =0;

/* if client side */
if (config.server name)

{

res->sock = sock connect(config.server name, config.tcp port);
if (res->sock < 0)

{

Mellanox Technologies

Rev 1.7

131

J

[Rev 1.7 Programming Examples Using IBV Verbs \

fprintf(stderr, "failed to establish TCP connection to server %s, port %d\n",
config.server name, config.tcp_port);
rc=-1;
goto resources_create exit;
}
}

else

{

fprintf(stdout, "waiting on port %d for TCP connection\n", config.tcp_port);

res->sock = sock connect(NULL, config.tcp port);
if (res->sock < 0)
{
fprintf(stderr, "failed to establish TCP connection with client on port %d\n",
config.tcp_port);
rc=-1;
goto resources_create_exit;
}
}

fprintf(stdout, "TCP connection was established\n");
fprintf(stdout, "searching for IB devices in host\n");
/* get device names in the system */

dev_list =1ibv_get device list(&num_devices);
if (!dev_list)

{
fprintf(stderr, "failed to get IB devices list\n");
rc=1;
goto resources_create_exit;

}

/* if there isn't any IB device in host */
if (Inum_devices)

{
fprintf(stderr, "found %d device(s)\n", num_devices);
rc=1;
goto resources_create_exit;

}

fprintf(stdout, "found %d device(s)\n", num_devices);

/* search for the specific device we want to work with */
for (i=0; 1 <num_devices; i ++)
{
if(config.dev_name)
{
config.dev_name = strdup(ibv_get device name(dev_list[i]));
fprintf(stdout, "device not specified, using first one found: %s\n", config.dev_name);

}

if (!stremp(ibv_get _device name(dev_list[i]), config.dev_name))

f
1

ib_dev =dev_list[i];

k 132 Mellanox Technologies j

break;

}
}

/* if the device wasn't found in host */

if (lib_dev)

{
fprintf(stderr, "IB device %s wasn't found\n", config.dev_name);
rc=1;
goto resources_create exit;

}

/* get device handle */

res->ib_ctx =ibv_open_device(ib_dev);

if (Ires->ib_ctx)

{
fprintf(stderr, "failed to open device %s\n", config.dev_name);
rc=1;
goto resources_create_exit;

}

/* We are now done with device list, free it */

ibv_free device list(dev_list);
dev_list=NULL;
ib_dev=NULL;

/* query port properties */

if (ibv_query_port(res->ib_ctx, config.ib_port, &res->port_attr))

{
fprintf(stderr, "ibv_query port on port %u failed\n", config.ib_port);
rc=1;
goto resources_create_exit;

}

/* allocate Protection Domain */

res->pd = ibv_alloc_pd(res->ib_ctx);

if (Ires->pd)

{
fprintf(stderr, "ibv_alloc_pd failed\n");
rc=1;
goto resources_create_exit;

}

/* each side will send only one WR, so Completion Queue with 1 entry is enough */
cq_size = 1;
res->cq = ibv_create_cq(res->ib_ctx, c¢q_size, NULL, NULL, 0);
if (Ires->cq)
{
fprintf(stderr, "failed to create CQ with %u entries\n", cq_size);
rc=1;
goto resources_create_exit;

}

Mellanox Technologies

Rev 1.7

133

J

Rev 1.7

Programming Examples Using IBV Verbs \

/* allocate the memory buffer that will hold the data */

size = MSG_SIZE;
res->buf = (char *) malloc(size);

if (res->buf’)
{

fprintf(stderr, "failed to malloc %Zu bytes to memory buffer\n", size);
rc=1;
goto resources_create exit;

}
memset(res->buf, 0, size);

/* only in the server side put the message in the memory buffer */
if (!config.server _name)

{
strepy(res->buf, MSQG);

fprintf(stdout, "going to send the message: '%s"\n", res->buf);
}
else

memset(res->buf, 0, size);

/* register the memory buffer */

mr_flags = IBV_ACCESS_LOCAL WRITE | IBV_ACCESS REMOTE_READ | IBV_ACCESS_RE-

MOTE _WRITE ;

k134

res->mr = ibv_reg_mr(res->pd, res->buf, size, mr_flags);
if (Ires->mr)

{
fprintf(stderr, "ibv_reg mr failed with mr flags=0x%x\n", mr flags);
rc=1;
goto resources_create_exit;

}

fprintf(stdout, "MR was registered with addr=%p, lkey=0x%x, rkey=0x%x, flags=0x%x\n",
res->buf, res->mr->lkey, res->mr->rkey, mr_flags);

/* create the Queue Pair */
memset(&qp_init_attr, 0, sizeof(qp_init_attr));

gp_init_attr.qp_type =IBV_QPT RC;
gp_init_attr.sq_sig all=1;
gp_init_attr.send cq = res->cq;
gp_init_attrrecv_cq = res->cq;
gp_init_attr.cap.max_send wr = I;
gp_init_attr.cap.max_recv_wr = 1;
gp_init_attr.cap.max_send sge = 1;
gp_init_attr.cap.max_recv_sge = 1;

res->qp = ibv_create_qp(res->pd, &qp_init_attr);
if (Ires->qp)

Mellanox Technologies j

Rev 1.7 \

{
fprintf(stderr, "failed to create QP\n");
rc=1;
goto resources_create exit;

}

fprintf(stdout, "QP was created, QP number=0x%x\n", res->qp->qp_num);
resources_create exit:

if(rc)
{

/* Error encountered, cleanup */

if(res->qp)

{
ibv_destroy_qp(res->qp);

res->qp = NULL;
}

if(res->mr)

{

ibv_dereg_mr(res->mr);
res->mr = NULL;
H

if(res->buf)
{

free(res->buf);
res->buf = NULL;

}

if(res->cq)
{

ibv_destroy_cq(res->cq);
res->cq = NULL;
H

if(res->pd)

{
ibv_dealloc_pd(res->pd);
res->pd = NULL;

}

if(res->ib_ctx)

{

ibv_close_device(res->ib_ctx);
res->ib_ctx = NULL;
}

if(dev_list)

{
ibv_free device list(dev_list);
dev_list =NULL;

H

Mellanox Technologies 135 j

Rev 1.7 Programming Examples Using IBV Verbs \

if (res->sock >= 0)

{

if (close(res->sock))
fprintf(stderr, "failed to close socket\n");
res->sock = -1;

}

return rc;

}

sk Rk ok ok ok ok ok ok sk kol ok okl ol ok okl Rk ok ok ok ok ok kol ol okt Rk ok ol ikl ol ok ok sk R ok ok ok

* Function: modify qgp to_init
*

* Input

* gp QP to transition
*

* Output

* none
*

* Returns

* 0 on success, ibv_modify_qp failure code on failure
*

* Description
* Transition a QP from the RESET to INIT state

st ot ok otk ol ok kool ok ok bkl ol kol ol kb kol ol ok bl ol okt ol ol sk btk ol ok ool ok okl ook o/

static int modify qp_to_init(struct ibv_qgp *qp)
{
Table 10 -

struct ibv_qgp_attr attr;
int flags;

int rc;

memset(&attr, 0, sizeof(attr));

attr.qp_state = IBV_QPS_INIT;

attr.port num = config.ib_port;

attr.pkey_index = 0;

attr.qp_access_flags =IBV_ACCESS LOCAL_WRITE | IBV_ACCESS REMOTE READ | IBV_AC-

CESS REMOTE WRITE;

k136

flags = IBV_QP_STATE | IBV_QP_PKEY_INDEX |IBV_QP PORT | IBV_QP ACCESS_FLAGS;
rc = ibv_modify qp(qp, &attr, flags);
if (rc)

fprintf(stderr, "failed to modify QP state to INIT\n");

return rc;

Mellanox Technologies j

/3 sk 3 e st st s ke st st s ke ke st sk ke st stesk sk e skesi s e st st s st stesie s st skeste sk st ke st s ke kst skt st stesk st ste stk ke skt stttk stokoskokoskokokoskokosiok skolokokok

* Function: modify qp to rtr
*

* Input
Table 11 -
* qp QP to transition
* remote_qpn remote QP number
* dlid destination LID
* dgid destination GID (mandatory for RoCEE)
*
* Output
* none
%
* Returns
* 0 on success, ibv_modify_qp failure code on failure
%

* Description
* Transition a QP from the INIT to RTR state, using the specified QP number

st ot ok stk ol sk kool ol kbl ol skttt ol kb kol ol kol ol okt ol ol sk btk ol ok okl ok ook ook o/

static int modify qp_to_rtr(struct ibv_gp *qp, uint32_t remote_qpn, uintl6_t dlid, uint8 t *dgid)

Tgble 12 -

struct ibv_qp_attr attr;
int flags;
int rc;

memset(&attr, 0, sizeof(attr));

attr.qp_state =IBV_QPS_RTR;
attr.path mtu =IBV_MTU_256;
attr.dest qp_num = remote _qpn;
attr.rq_psn = 0;
attrmax_dest rd atomic = 1;
attrmin_rnr_timer = 0x12;
attr.ah_attr.is_global = 0;
attr.ah_attr.dlid = dlid;
attr.ah_attr.sl = 0;
attr.ah_attr.src_path _bits = 0;
attr.ah_attr.port num = config.ib_port;
if (config.gid idx >=0)
{
attr.ah_attr.is_global = 1;
attr.ah_attr.port num = 1;
memcpy(&attr.ah_attr.grh.dgid, dgid, 16);
attr.ah_attr.grh.flow_label = 0;

Mellanox Technologies

Rev 1.7

137

J

k138

Rev 1.7

attr.ah_attr.grh.hop limit = 1;
attr.ah_attr.grh.sgid index = config.gid idx;
attr.ah_attr.grh.traffic_class =0;
}
flags =1BV_QP STATE | IBV_QP AV |IBV_QP PATH MTU |IBV_QP DEST QPN |
IBV_QP RQ PSN|IBV_QP MAX DEST RD ATOMIC |IBV_QP MIN RNR TIMER;
rc = ibv_modify qp(qp, &attr, flags);
if (rc)
fprintf(stderr, "failed to modify QP state to RTR\n");
return rc;
H

[t skt ok sk btk ok ok ok ol ok kb ol ok stk ol ok ol okl ol ok kol ol kot ol ol kb otk ol kool o ok ok

* Function: modify _qp to rts
*

* Input

* gp QP to transition
*

* Output

* none
*

* Returns

* 0 on success, ibv_modify_qp failure code on failure
*

* Description
* Transition a QP from the RTR to RTS state

st ot ok otk ol ok okl ok ok kool ol kool ol kb kol ol ok stk ol okt ol ol sk btk ol ok ool ok ook ook o/

static int modify qp_to_rts(struct ibv_qp *qp)
{
Table 13 -

struct ibv_qp_attr attr;
int flags;

int rc;

memset(&attr, 0, sizeof(attr));

attr.gqp_state =IBV_QPS _RTS;
attr.timeout =0x12;
attr.retry cnt = 6;

attr.rnr_retry =0;

attr.sq_psn =0;

attrmax_rd atomic = 1;

flags = IBV_QP_STATE | IBV_QP_TIMEOUT | IBV_QP_RETRY CNT |
IBV_QP_RNR_RETRY | IBV_QP_SQ PSN |IBV_QP_MAX QP RD ATOMIC;

Mellanox Technologies

Programming Examples Using IBV Verbs \

rc = ibv_modify qp(qp, &attr, flags);
if (rc)
fprintf(stderr, "failed to modify QP state to RTS\n");

return rc;

}

sk Rk ok ok ok ok ok ok sk kol ok kb ol ok okl Rk ok ok ko ok ok skl ol okt Rk ok ok kol ok ok sk Rk ok ok

* Function: connect qp

*

* Input

* res pointer to resources structure
*

* Output

* none

%

* Returns

* 0 on success, error code on failure
%

* Description

* Connect the QP. Transition the server side to RTR, sender side to RTS
st ot ok stk ol ok okl ok okl ol kot ol kb kol ol ok ol ol okt ko ol sk btk ol ok okl ok kol ook o/

static int connect_gp(struct resources *res)
{
structcm_con_data t local con_data;
struct cm_con_data t remote _con_data;
structcm_con_data t tmp con_data;
int rc=0;
char temp_char;
union ibv_gid my_gid;

if (config.gid_idx >=0)
{
rc = ibv_query_gid(res->ib_ctx, config.ib_port, config.gid idx, &my_gid);
if (rc)
{
fprintf(stderr, "could not get gid for port %d, index %d\n", config.ib_port, config.gid idx);
return rc;
§
} else
memset(&my_gid, 0, sizeof my_gid);

/* exchange using TCP sockets info required to connect QPs */
local _con_data.addr = htonll((uintptr_t)res->buf);

local _con_data.rkey = htonl(res->mr->rkey);

local _con_data.qp_num = htonl(res->qp->qp_num);

local con_data.lid = htons(res->port_attr.lid);
memcpy(local_con_data.gid, &my_gid, 16);

fprintf(stdout, "\nLocal LID = 0x%x\n", res->port_attr.lid);

Mellanox Technologies

Rev 1.7

139

J

[Rev 1.7 Programming Examples Using IBV Verbs \

if (sock _sync_data(res->sock, sizeof(struct cm_con_data t), (char *) &local con_data, (char *) &tmp con_data)
<0)
{
fprintf(stderr, "failed to exchange connection data between sides\n");
rc=1;
goto connect qp_exit;

}

remote _con_data.addr = ntohll(tmp con_data.addr);
remote _con_data.rkey = ntohl(tmp con_data.rkey);
remote_con_data.qp_num = ntohl(tmp_con_data.qp_num);
remote _con_data.lid = ntohs(tmp_con_data.lid);
memcpy(remote _con_data.gid, tmp con_data.gid, 16);

/* save the remote side attributes, we will need it for the post SR */
res->remote_props = remote_con_data;

fprintf(stdout, "Remote address = 0x%"PRIx64"\n", remote con_data.addr);
fprintf(stdout, "Remote rkey = 0x%x\n", remote _con_data.rkey);

fprintf(stdout, "Remote QP number = 0x%x\n", remote _con_data.qp_num);
fprintf(stdout, "Remote LID = 0x%x\n", remote con_data.lid);
if (config.gid_idx >=0)
{
uint8_t *p = remote _con_data.gid;
fprintf(stdout, "Remote GID =
%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%602x:%02x:%02x:%02x:%02x:%02x\n",
p[O1, p[11, p[21, p[31, p[41, P[5, pI6, pI71, I8, p[OL, p[10], p[11], p[12], p[13], p[14], p[151);
}

/* modify the QP to init */

rc = modify_qp_to_init(res->qp);

if (rc)

{
fprintf(stderr, "change QP state to INIT failed\n");
goto connect_qp_exit;

}

/* let the client post RR to be prepared for incoming messages */
if (config.server name)
{
rc = post_receive(res);
if (rc)
{
fprintf(stderr, "failed to post RR\n");
goto connect_qp_exit;
}
}

/* modify the QP to RTR */

rc = modify_qgp_to_rtr(res->qp, remote_con_data.qp_num, remote_con_data.lid, remote con_data.gid);
if (rc)

{

k 140 Mellanox Technologies j

fprintf(stderr, "failed to modify QP state to RTR\n");
goto connect qp_exit;

}

rc = modify _qp _to rts(res->qp);
if (rc)

{

fprintf(stderr, "failed to modify QP state to RTR\n");
goto connect qp_exit;

}

fprintf(stdout, "QP state was change to RTS\n");

/* sync to make sure that both sides are in states that they can connect to prevent packet loose */
if (sock_sync_data(res->sock, 1, "Q", &temp_char)) /* just send a dummy char back and forth */

{

fprintf(stderr, "sync error after QPs are were moved to RTS\n");

rc=1;

}

connect_qp_exit:

return rc;

}

[t stk ek ok sk btk ok ok ok ol ok okl ol ok stk ol ok kol ol okt ool ol kot ol ol kb otk ol kb okt ok ok

* Function: resources_destroy
%

* Input

* res pointer to resources structure
*

* Output

* none

*

* Returns

* 0 on success, 1 on failure
*

* Description

* Cleanup and deallocate all resources used

st ot ok otk ol ok kool ok ok kool ol okttt ol ok bkl ol ok bl ol ok kol ol kbl ol ok okl ok ook ook o/

static int resources_destroy(struct resources *res)

{

int rc =0;

if (res->qp)
if (ibv_destroy_qp(res->qp))
{

fprintf(stderr, "failed to destroy QP\n");

rc=1;

}

if (res->mr)

Mellanox Technologies

Rev 1.7

141

J

k 142

Rev 1.7

if (ibv_dereg_mr(res->mr))
{
fprintf(stderr, "failed to deregister MR\n")
rc=1;
H
if (res->buf)
free(res->buf);
if (res->cq)
if (ibv_destroy_cq(res->cq))
{
fprintf(stderr, "failed to destroy CQ\n");
rc=1;
}
if (res->pd)
if (ibv_dealloc_pd(res->pd))
{
fprintf(stderr, "failed to deallocate PD\n");
rc=1;
H
if (res->ib_ctx)
if (ibv_close_device(res->ib_ctx))
{
fprintf(stderr, "failed to close device context\n");
rc=1;
H
if (res->sock >= 0)
if (close(res->sock))
{
fprintf(stderr, "failed to close socket\n");
rc=1;
H
return rc;
H

Programming Examples Using IBV Verbs \

[t skt ok sk btk ok ok ok ol ok kb ol ok stk ol ok kol ol okt kol ol kot ol ol okt ok kbl o ok ok

* Function: print_config
*

* Input

* none

*

* Output

* none

*

* Returns

* none

*

* Description

* Print out config information

Mellanox Technologies

et st s e she st s ke ke st s ke st st sk e stesk s e st st s e st st stestesie sk st stesteske st ke st st st stk st steskeoskoste st stk stekosiokstekokoskokokokoskokokoiok skoksiokeskokokok /

static void print_config(void)

{
fprintf(stdout, " \n");
Table 14 -
fprintf(stdout, " Device name :\"%s\"\n", config.dev_name);
fprintf(stdout, " IB port : %u\n", config.ib_port);
if (config.server name)
Table 15 -
fprintf(stdout, " IP : %s\n", config.server name);
Table 16 -
fprintf(stdout, " TCP port : %u\n", config.tcp_port);
if (config.gid idx >= 0)
Table 17 -
fprintf(stdout, " GID index : %u\n", config.gid_idx);
fprintf(stdout, " \n\n");
H

/**

* Function: usage
*

* Input

* argv0 command line arguments
*

* Output

* none

*

* Returns

* none

*

* Description

* print a description of command line syntax
**/

static void usage(const char *argv0)
{
fprintf(stdout, "Usage:\n");
fprintf(stdout, " %s start a server and wait for connection\n", argv0);
fprintf(stdout, " %s <host> connect to server at <host>\n", argv0);
fprintf(stdout, "\n");
fprintf(stdout, "Options:\n");
fprintf(stdout, " -p, --port <port> listen on/connect to port <port> (default 18515)\n");
fprintf(stdout, " -d, --ib-dev <dev> use IB device <dev> (default first device found)\n");
fprintf(stdout, " -i, --ib-port <port> use port <port> of IB device (default 1)\n");
fprintf(stdout, " -g, --gid idx <git index> gid index to be used in GRH (default not used)\n");
H

/**

* Function: main

Mellanox Technologies

Rev 1.7

143

J

[Rev 1.7 Programming Examples Using IBV Verbs \

*

* Input

* argc number of items in argv
* argv command line parameters
*

* Output

* none

*

* Returns

* (0 on success, 1 on failure

*

* Description

* Main program code
**/

int main(int arge, char *argv[])

{
Table 18 -
struct resources res;
int rc=1;
char temp_char;

/* parse the command line parameters */
while (1)
{

int c;
static struct option long_options[] =

Table {19 -
{name = "port", has arg=1, val="p'},
{name = "ib-dev", has arg=1, val='d"},
{name = "ib-port", has arg=1, val=""},
{name = "gid-idx", has arg=1, val='g'},
{name = NULL, has_arg=0, val="0'}
¥

c = getopt_long(argc, argv, "p:d:i:g:", long options, NULL);
if (c==-1)
break;

switch (c)
{
case 'p"
config.tcp port = strtoul(optarg, NULL, 0);
break;

k 144 Mellanox Technologies j

case 'd"
config.dev_name = strdup(optarg);
break;

case 'i":

config.ib_port = strtoul(optarg, NULL, 0);
if (config.ib_port < 0)

{

usage(argv[0]);

return 1;

}
break;

case 'g":

config.gid idx = strtoul(optarg, NULL, 0);
if (config.gid_idx <0)

{

usage(argv[0]);

return 1;

}
break;

default:
usage(argv[0]);
return 1;
H
}

/* parse the last parameter (if exists) as the server name */

if (optind == argc - 1)
config.server_name = argv[optind];
else if (optind < argc)
{
usage(argv[0]);
return 1;

}

/* print the used parameters for info*/
print_config();

/* init all of the resources, so cleanup will be easy */
resources_init(&res);

/* create resources before using them */
if (resources_create(&res))

{

fprintf(stderr, "failed to create resources\n");
goto main_exit;

}

/* connect the QPs */
if (connect_qp(&res))

{

fprintf(stderr, "failed to connect QPs\n");

Mellanox Technologies

Rev 1.7

145

J

[Rev 1.7 Programming Examples Using IBV Verbs \

goto main_exit;

}

/* let the server post the sr */
if (!config.server name)
if (post_send(&res, IBV._WR SEND))
{
fprintf(stderr, "failed to post sr\n");
goto main_exit;

}

/* in both sides we expect to get a completion */
if (poll_completion(&res))
{
fprintf(stderr, "poll completion failed\n");
goto main_exit;

}

/* after polling the completion we have the message in the client buffer too */
if (config.server name)
fprintf(stdout, "Message is: '%s"\n", res.buf);
else
{
/* setup server buffer with read message */
strepy(res.buf, RDMAMSGR);

}

/* Sync so we are sure server side has data ready before client tries to read it */
if (sock_sync_data(res.sock, 1, "R", &temp char)) /* just send a dummy char back and forth */
{

fprintf(stderr, "sync error before RDMA ops\n");

rc=1;

goto main_exit;

/* Now the client performs an RDMA read and then write on server.
Note that the server has no idea these events have occured */

if (config.server name)

{

/* First we read contens of server's buffer */

if (post_send(&res, IBV.WR_RDMA READ))

{
fprintf(stderr, "failed to post SR 2\n");

rc=1;
goto main_exit;

}

if (poll_completion(&res))

{
fprintf(stderr, "poll completion failed 2\n");

rc=1;

k 146 Mellanox Technologies j

goto main_exit;

}

fprintf(stdout, "Contents of server's buffer: '%s"n", res.buf);

/* Now we replace what's in the server's buffer */
strepy(res.buf, RDMAMSGW);

fprintf(stdout, "Now replacing it with: '%s"\n", res.buf);

if (post_send(&res, IBV.WR_RDMA WRITE))

{
fprintf(stderr, "failed to post SR 3\n");

rc=1;
goto main_exit;

}

if (poll_completion(&res))

{
fprintf(stderr, "poll completion failed 3\n");

rc=1;
goto main_exit;
H
H

/* Sync so server will know that client is done mucking with its memory */

if (sock _sync_data(res.sock, 1, "W", &temp char)) /* just send a dummy char back and forth */

{
fprintf(stderr, "sync error after RDMA ops\n");

rc=1;
goto main_exit;

}

if(!config.server_name)
fprintf(stdout, "Contents of server buffer: '%s"\n", res.buf);

rc =0;

main_exit:
if (resources_destroy(&res))

{

fprintf(stderr, "failed to destroy resources\n");
rc=1,

}

if(config.dev_name)
free((char *) config.dev_name);

fprintf(stdout, "\ntest result is %d\n", rc);

return rc;

Mellanox Technologies

Rev 1.7

147

J

(Rev 1.7 | Programming Examples Using IBV Verbs \

7.3 Synopsis for Multicast Example Using RDMA_CM and IBV Verbs

This code example for Multicast, uses RDMA-CM and VPI (and hence can be run both over IB
and over LLE).
Notes:

1. In order to run the multicast example on either IB or LLE, no change is needed to the test's
code. However if RDMA_ CM is used, it is required that the network interface will be config-
ured and up (whether it is used over RoCE or over IB).

2. For the IB case, a join operation is involved, yet it is performed by the rdma_cm kernel code.
3. For the LLE case, no join is required. All MGIDs are resolved into MACs at the host.

4. To inform the multicast example which port to use, you need to specify "-b <IP address>" to
bind to the desired device port.

7.3.1 Main

1. Get command line parameters.
* m— MC address, destination port
* M —unmapped MC address, requires also bind address (parameter “b’")
* s—sender flag.
* b - bind address.
* ¢ — connections amount.
* C—message count.
* S —message size.
e p—port space (UDP default; [PoIB)
2. Create event channel to receive asynchronous events.
3. Allocate Node and creates an identifier that is used to track communication information
4. Start the “run” main function.
5. On ending — release and free resources.

API definition files: rdma/rdma_cma.h and infiniband/verbs.h

7.3.2 Run

1. Get source (if provided for binding) and destination addresses — convert the input addresses to
socket presentation.

2. Joining:

A. For all connections:
if source address is specifically provided, then bind the rdma_cm object to the corresponding net-
work interface. (Associates a source address with an rdma_cm identifier).
if unmapped MC address with bind address provided, check the remote address and then bind.

B. Poll on all the connection events and wait that all rdma_cm objects joined the MC group.
3. Send & receive:
A. If sender: send the messages to all connection nodes (function “post_sends”).

B. If receiver: poll the completion queue (function “poll_cqgs”™) till messages arrival.

k 148 Mellanox Technologies j

Rev 1.7 \

On ending — release network resources (per all connections: leaves the multicast group and
detaches its associated QP from the group)

Code for Multicast Using RDMA_CM and IBV Verbs

Multicast Code Example

/*

* BUILD COMMAND:

* gcc -g -Wall -D_GNU_SOURCE -g -02 -0 examples/mckey examples/mckey.c -libverbs -Irdmacm
%

* $1d$
*/

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <netdb.h>
#include <byteswap.h>
#include <unistd.h>
#include <getopt.h>

#include <rdma/rdma cma.h>

struct cmatest node

{
int id;
struct rdma_cm_id*cma id;
int connected;
struct ibv_pd*pd;
struct ibv_cq*cq;
struct ibv_mr*mr;
struct ibv_ah*ah;
uint32 t remote_qpn;
uint32 t remote_gkey;
void *mem,;

b

struct cmatest
{
struct rdma_event channel *channel;
struct cmatest node *nodes;
int conn_index;
int connects_left;

struct sockaddr in6dst in;
struct sockaddr *dst addr;
struct sockaddr _in6src_in;
struct sockaddr *src_addr;

Mellanox Technologies 149 j

[Rev 1.7 Programming Examples Using IBV Verbs \

¥

static struct cmatest test;

static int connections = 1;

static int message size = 100;

static int message count = 10;

static int is_sender;

static int unmapped_addr;

static char *dst addr;

static char *src_addr;

static enum rdma_port_space port_space = RDMA PS UDP;

static int create _message(struct cmatest node *node)
{

if (Imessage_size)

message_count = 0;

if (lmessage count)
return 0;

node->mem = malloc(message_size + sizeof(struct ibv_grh));
if (Inode->mem)
{
printf("failed message allocation\n");
return -1;
§
node->mr = ibv_reg_mr(node->pd, node->mem, message_size + sizeof(struct ibv_grh),
IBV_ACCESS LOCAL WRITE);
if (!node->mr)
{
printf("failed to reg MR\n");
goto err;
§
return 0;
err:
free(node->mem);
return -1;

}

static int verify_test params(struct cmatest node *node)

{

struct ibv_port_attr port_attr;
int ret;

ret = ibv_query_port(node->cma_id->verbs, node->cma_id->port_num, &port_attr);
if (ret)
return ret;

if (message count && message size > (1 << (port_attr.active_mtu + 7)))

{

printf("mckey: message size %d is larger than active mtu %d\n", message size, 1 << (port_attr.active_mtu
+7);

return -EINVAL;

H

k 150 Mellanox Technologies j

}

return 0;

static int init_node(struct cmatest_node *node)

{

out:

}

struct ibv_qp_init attr init qp_attr;
int cqe, ret;

node->pd = ibv_alloc_pd(node->cma_id->verbs);
if ('node->pd)

{

ret = -ENOMEM,;

printf("mckey: unable to allocate PD\n");

goto out;

}

cge = message_count ? message count * 2 : 2;

node->cq = ibv_create_cq(node->cma_id->verbs, cqe, node, 0, 0);
if (Inode->cq)

{

ret = -ENOMEM,;

printf("mckey: unable to create CQ\n");

goto out;

}

memset(&init_qgp_attr, 0, sizeof init_qp_attr);
init_qp_attr.cap.max_send wr = message count ? message count : 1;
init_qp_attr.cap.max_recv_wr = message count ? message count : 1;
init_qp_attr.cap.max_send_sge = 1;

init_qp_attr.cap.max_recv_sge = 1;

init_qp_attr.qp_context = node;

init_qp_attr.sq_sig_all =0;

init_qp_attr.qp_type =IBV_QPT UD;

init_qp_attr.send cq = node->cq;

init_qp_attr.recv_cq = node->cq;

ret = rdma_create _gp(node->cma_id, node->pd, &init_qp_attr);

if (ret)

{

printf("mckey: unable to create QP: %d\n", ret);

goto out;

}

ret = create_message(node);

if (ret)

{

printf("mckey: failed to create messages: %d\n", ret);
goto out;

}

return ret;

static int post_recvs(struct cmatest node *node)

Mellanox Technologies

Rev 1.7

151

J

[Rev 1.7 Programming Examples Using IBV Verbs \

struct ibv_recv_wr recv_wr, *recv_failure;
struct ibv_sge sge;
int i, ret =0;

if (Imessage count)
return 0;

recv_wr.next = NULL;
recv_wr.sg_list = &sge;
recv_wr.num_sge = 1;
recv_wr.wr_id = (uintptr_t) node;

sge.length = message_size + sizeof(struct ibv_grh);
sge.lkey = node->mr->lkey;
sge.addr = (uintptr_t) node->mem;

for (i=0; i <message count && !ret; i++)

{

ret = ibv_post_recv(node->cma_id->qp, &recv_wr, &recv_failure);
if (ret)

{

printf("failed to post receives: %d\n", ret);

break;

H
H

return ret;

}

static int post_sends(struct cmatest node *node, int signal flag)
{

struct ibv_send wr send_wr, *bad_send wr;

struct ibv_sge sge;

int i, ret = 0;

if (Inode->connected || !message count)
return 0;

send wr.next = NULL;

send wr.sg_list = &sge;

send wr.num_sge = 1;

send_wr.opcode =IBV_WR_SEND WITH IMM;

send wr.send flags = signal flag;

send wr.wr_id = (unsigned long)node;

send wr.imm_data = htonl(node->cma_id->qp->qp_num);

send wr.wr.ud.ah = node->ah;
send_wr.wr.ud.remote_qpn = node->remote_qpn;
send wr.wr.ud.remote_gkey = node->remote_gkey;

sge.length = message_size;

sge.lkey = node->mr->lkey;
sge.addr = (uintptr_t) node->mem;

k 152 Mellanox Technologies j

Rev 1.7 \

for (i=0; i <message count && !ret; i++)

{

ret = ibv_post_send(node->cma_id->qp, &send wr, &bad send wr);
if (ret)

printf("failed to post sends: %d\n", ret);

H

return ret;

}

static void connect_error(void)

{
H

test.connects_left--;

static int addr_handler(struct cmatest_node *node)

{

int ret;

ret = verify_test_params(node);
if (ret)
goto err;

ret = init_node(node);
if (ret)
goto err;

if (!is_sender)

{

ret = post_recvs(node);
if (ret)

goto err;

}

ret =rdma_join_multicast(node->cma _id, test.dst_addr, node);
if (ret)
{
printf("mckey: failure joining: %d\n", ret);
goto err;
§
return 0;
err:
connect_error();
return ret;

H
static int join_handler(struct cmatest node *node, struct rdma_ud_param *param)
{

char buf[40];

inet_ntop(AF_INET6, param->ah_attr.grh.dgid.raw, buf, 40);
printf("mckey: joined dgid: %s\n", buf);

node->remote_qpn = param->qp_num;
node->remote_gkey = param->gkey;

Mellanox Technologies 153 j

[Rev 1.7 Programming Examples Using IBV Verbs \

node->ah = ibv_create ah(node->pd, ¶m->ah_attr);
if (Inode->ah)

{

printf("mckey: failure creating address handle\n");

goto err;

}

node->connected = 1;
test.connects_left--;
return 0;

err:
connect_error();
return -1;

}

static int cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)

{

int ret = 0;

switch (event->event)

{

case RDMA CM_EVENT ADDR RESOLVED:
ret = addr_handler(cma_id->context);

break;

case RDMA CM_EVENT MULTICAST JOIN:
ret = join_handler(cma_id->context, &event->param.ud);
break;

case RDMA CM_EVENT ADDR ERROR:

case RDMA CM_EVENT ROUTE ERROR:

case RDMA CM_EVENT MULTICAST ERROR:
printf("mckey: event: %s, error: %d\n", rdma event str(event->event), event->status);
connect_error();

ret = event->status;

break;

case RDMA CM_EVENT DEVICE REMOVAL:
/* Cleanup will occur after test completes. */

break;

default:

break;

H

return ret;

}

static void destroy node(struct cmatest node *node)

{
if (Inode->cma_id)
return;

if (node->ah)
ibv_destroy ah(node->ah);

if (node->cma_id->qp)
rdma_destroy_gp(node->cma_id);

k 154 Mellanox Technologies j

Rev 1.7 \

if (node->cq)
ibv_destroy cq(node->cq);

if (node->mem)

{
ibv_dereg_mr(node->mr);
free(node->mem);

}

if (node->pd)
ibv_dealloc_pd(node->pd);

/* Destroy the RDMA ID after all device resources */
rdma_destroy_id(node->cma_id);

}

static int alloc_nodes(void)

{

int ret, i;

test.nodes = malloc(sizeof *test.nodes * connections);

if (Itest.nodes)

{

printf("mckey: unable to allocate memory for test nodes\n");
return -ENOMEM;

§

memset(test.nodes, 0, sizeof *test.nodes * connections);

for (i = 0; 1 < connections; i++)
{
test.nodes[i].id = 1;
ret = rdma_create id(test.channel, &test.nodes[i].cma_id, &test.nodes[i], port_space);
if (ret)
goto err;
H
return 0;
err:
while (--1>=0)
rdma_destroy_id(test.nodes[i].cma_id);
free(test.nodes);
return ret;

}

static void destroy nodes(void)

{

int i;

for (i = 0; 1 < connections; i++)
destroy_node(&test.nodes|[i]);
free(test.nodes);

}

static int poll_cqs(void)

{

Mellanox Technologies 155 j

k156

Rev 1.7

}

struct ibv_wc wc[8];
int done, i, ret;

for (i = 0; 1 < connections; i++)
{

if (!test.nodes[i].connected)
continue;

for (done = 0; done < message count; done += ret)
{

ret = ibv_poll cq(test.nodes[i].cq, 8, wc);

if (ret < 0)

{

printf("mckey: failed polling CQ: %d\n", ret);
return ret;

}

}

}

return 0;

static int connect_events(void)

{

}

struct rdma_cm_event *event;
int ret = 0;

while (test.connects_left && !ret)

{
ret =rdma_get cm_event(test.channel, &event);
if (Iret)
{
ret = cma_handler(event->id, event);
rdma_ack cm_event(event);
}
}
return ret;

static int get addr(char *dst, struct sockaddr *addr)

{

struct addrinfo *res;
int ret;

ret = getaddrinfo(dst, NULL, NULL, &res);
if (ret)
{

printf("getaddrinfo failed - invalid hostname or IP address\n");

return ret;

}

memcpy(addr, res->ai_addr, res->ai_addrlen);
freeaddrinfo(res);
return ret;

Mellanox Technologies

Programming Examples Using IBV Verbs \

Rev 1.7 \

static int run(void)

{

int i, ret;

printf("mckey: starting %s\n", is_sender ? "client" : "server");
if (src_addr)

{

ret = get_addr(src_addr, (struct sockaddr *) &test.src_in);

if (ret)

return ret;

}

ret = get_addr(dst_addr, (struct sockaddr *) &test.dst_in);
if (ret)
return ret;

printf("mckey: joining\n");
for (i = 0; 1 < connections; i++)

{
if (src_addr)
{
ret =rdma_bind_addr(test.nodes[i].cma _id, test.src_addr);
if (ret)
{
printf("mckey: addr bind failure: %d\n", ret);
connect_error();
return ret;
H
H
if (unmapped_addr)
ret = addr_handler(&test.nodes([i]);
else
ret = rdma_resolve_addr(test.nodes[i].cma _id, test.src_addr, test.dst_addr, 2000);
if (ret)
{
printf("mckey: resolve addr failure: %d\n", ret);
connect_error();
return ret;
H
H
ret = connect_events();
if (ret)
goto out;
/*

* Pause to give SM chance to configure switches. We don't want to
* handle reliability issue in this simple test program.

*/

sleep(3);

if (message count)

Mellanox Technologies 157 j

[Rev 1.7 Programming Examples Using IBV Verbs \

{
if (is_sender)
{
printf("initiating data transfers\n");
for (i = 0; 1 < connections; i++)
{
ret = post_sends(&test.nodes[i], 0);
if (ret)
goto out;
H
H
else
{
printf(""receiving data transfers\n");
ret = poll_cqs();
if (ret)
goto out;
H
printf("data transfers complete\n");
H
out:
for (i = 0; 1 < connections; i++)
{
ret = rdma_leave multicast(test.nodes[i].cma_id, test.dst_addr);
if (ret)
printf("mckey: failure leaving: %d\n", ret);
H
return ret;
H

int main(int arge, char **argv)

{

int op, ret;

while ((op = getopt(arge, argv, "m:M:sb:c:C:S:p:")) I=-1)
{
switch (op)
{
case 'm":
dst_addr = optarg;
break;
case 'M":
unmapped_addr = 1;
dst_addr = optarg;

break;
case's":
is_sender = 1;
break;
case 'b":
src_addr = optarg;
test.src_addr = (struct sockaddr *) &test.src_in;
break;
case 'c':

k 158 Mellanox Technologies j

RDMA_PS_IPOIB);

}

case 'C":

case 'S":

case 'p":

default:

connections = atoi(optarg);
break;

message count = atoi(optarg);
break;

message_size = atoi(optarg);
break;

port_space = strtol(optarg, NULL, 0);
break;

printf("usage: %s\n", argv[0]);

printf("\t-m multicast address\n");

printf("\t[-M unmapped multicast address]\n"
"\t replaces -m and requires -b\n");

printf("\t[-s(ender)]\n");

printf("\t[-b bind_address]\n");

printf("\t[-c connections]\n");

printf("\t[-C message count]\n");

printf("\t[-S message size]\n");

printf("\t[-p port_space - %#x for UDP (default), %#x for [POIB]\n", RDMA PS UDP,

exit(1);

test.dst_addr = (struct sockaddr *) &test.dst_in;
test.connects_left = connections;

test.channel = rdma_create_event channel();

if (Itest.channel)

{
exit(1);
H
if (alloc_nodes())
exit(1);
ret = run();

printf("failed to create event channel\n");

printf(""test complete\n");

destroy_nodes();

rdma_destroy_event channel(test.channel);

printf(""return status %d\n", ret);
return ret;

Mellanox Technologies

Rev 1.7

159

J

[Rev 1.7 | Programming Examples Using RDMA Verbs \

8 Programming Examples Using RDMA Verbs

This chapter provides code examples using the RDMA Verbs

8.1 Automatic Path Migration (APM)

/%

* Compile Command:

* gcc apm.c -0 apm -libverbs -lrdmacm

%

* Description:

* This example demonstrates Automatic Path Migration (APM). The basic flow is
* as follows:

* 1. Create connection between client and server

* 2. Set the alternate path details on each side of the connection

* 3. Perform send operations back and forth between client and server

* 4. Cause the path to be migrated (manually or automatically)

* 5. Complete sends using the alternate path

*

* There are two ways to cause the path to be migrated.

* 1. Use the ibv_modify qgp verb to set path mig_state = IBV_MIG MIGRATED
* 2. Assuming there are two ports on at least one side of the connection, and

* each port has a path to the other host, pull out the cable of the original

* port and watch it migrate to the other port.

%

* Running the Example:

* This example requires a specific IB network configuration to properly

* demonstrate APM. Two hosts are required, one for the client and one for the
* server. At least one of these two hosts must have a IB card with two ports.

* Both of these ports should be connected to the same subnet and each have a

* route to the other host through an IB switch.

* The executable can operate as either the client or server application. Start

* the server side first on one host then start the client on the other host. With default parameters, the
* client and server will exchange 100 sends over 100 seconds. During that time,
* manually unplug the cable connected to the original port of the two port

* host, and watch the path get migrated to the other port. It may take up to

* a minute for the path to migrated. To see the path get migrated by software,

* use the -m option on the client side.

*

* Server:

* Japm -s

*

* Client (-a is IP of remote interface):

* Japm -a 192.168.1.12

E3

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <getopt.h>

#include <rdma/rdma_verbs.h>

k 160 Mellanox Technologies j

Rev 1.7 \

#define VERB_ERR(verb, ret) \
fprintf(stderr, "%s returned %d errno %d\n", verb, ret, errno)

/* Default parameter values */

#define DEFAULT PORT "51216"

#define DEFAULT MSG COUNT 100
#define DEFAULT MSG_LENGTH 1000000
#define DEFAULT MSEC DELAY 500

/* Resources used in the example */
struct context
{
/* User parameters */
int server;
char *server_name;
char *server_port;
int msg_count;
int msg_length;
int msec_delay;
uint8_talt_srcport;
uintl6_talt dlid;
uintl6_t my_alt_dlid;
int migrate_after;

/* Resources */

struct rdma_cm_id *id,

struct rdma_cm_id *listen_id;
struct ibv_mr *send_mr;
struct ibv_mr *recv_mr;

char *send_buf;

char *recv_buf;

pthread t async_event_thread;

1

/%

* Function: async_event_thread

%

* Input:

* arg The context object

%

* Output:

* none

%

* Returns:

* NULL

%

* Description:

* Reads any Asynchronous events that occur during the sending of data
* and prints out the details of the event. Specifically migration
* related events.

*/

static void *async_event thread(void *arg)

{

Mellanox Technologies 161 j

[Rev 1.7 Programming Examples Using RDMA Verbs \

struct ibv_async_event event;
int ret;

struct context *ctx = (struct context *) arg;

while (1) {
ret =ibv_get async event(ctx->id->verbs, &event);
if (ret) {
VERB ERR("ibv_get async_event", ret);
break;
H

switch (event.event_type) {

case IBV_EVENT PATH MIG:
printf("QP path migrated\n");
break;

case IBV_EVENT PATH MIG ERR:
printf("QP path migration error\n");

break;
default:
printf("Async Event %d\n", event.event type);
break;
H
ibv_ack async_event(&event);
}
return NULL;
H
/*
* Function: get alt dlid from_private data
%
* Input:
* event The RDMA event containing private data
%
* Output:
* dlid The DLID that was sent in the private data
%
* Returns:
* 0 on success, non-zero on failure
%

* Description:
* Takes the private data sent from the remote side and returns the
* destination LID that was contained in the private data
*/
int get_alt_dlid_from_ private data(struct rdma_cm_event *event, uint16_t *dlid)
{
if (event->param.conn.private_data len <4) {
printf("unexpected private data len: %d",
event->param.conn.private_data len);
return -1;

}

k 162 Mellanox Technologies j

dlid = ntohs(((uint16_t *) event->param.conn.private data));
return 0;

}

/*

* Function: get alt port details

*

* Input:

* ctx The context object

*

* Output:

* none

*

* Returns:

* 0 on success, non-zero on failure

%

* Description:

* First, query the device to determine if path migration is supported.
Next, queries all the ports on the device to determine if there is
different port than the current one to use as an alternate port. If so,
copy the port number and dlid to the context so they can be used when
the alternate path is loaded.

Note:
This function assumes that if another port is found in the active state,
that the port is connected to the same subnet as the initial port and
that there is a route to the other hosts alternate port.

* ¥ X K ¥ X ¥ ¥ ¥

*/
int get_alt_port_details(struct context *ctx)
{ . .
int ret, 1;
struct ibv_qp_attr qp_attr;
struct ibv_qp_init_attr qp_init_attr;
struct ibv_device_attr dev_attr;

/* This example assumes the alternate port we want to use is on the same
* HCA. Ports from other HCAs can be used as alternate paths as well. Get
* a list of devices using ibv_get device list or rdma_get devices.*/
ret =ibv_query_device(ctx->id->verbs, &dev_attr);
if (ret) {
VERB_ERR("ibv_query_device", ret);
return ret;

}

/* Verify the APM is supported by the HCA */

if (!(dev_attr.device_cap flags | IBV_DEVICE _AUTO_PATH MIQG)) {
printf("device does not support auto path migration!\n");
return -1;

}

/* Query the QP to determine which port we are bound to */
ret =ibv_query_qp(ctx->id->qp, &qp_attr, 0, &qp_init_attr);
if (ret) {

VERB_ERR("ibv_query qp", ret);

Mellanox Technologies

Rev 1.7

163

J

k164

Rev 1.7

return ret;
}
for (i=1;1<=dev_attr.phys port cnt; i++) {
/* Query all ports until we find one in the active state that is
* not the port we are currently connected to. */
struct ibv_port_attr port_attr;
ret = ibv_query_port(ctx->id->verbs, i, &port_attr);
if (ret) {
VERB_ERR("ibv_query device", ret);
return ret;
}
if (port_attr.state == IBV_PORT_ACTIVE) {
ctx->my_alt_dlid = port_attr.lid,;
ctx->alt_srcport = i;
if (qp_attr.port_num != 1)
break;
}
}
return 0;
H
/*

* Function: load _alt path
%

* Input:

* ctx The context object
%

* Output:

* none
%

* Returns:

* 0 on success, non-zero on failure
%

* Description:

* Uses ibv_modify qp to load the alternate path information and set the

* path migration state to rearm.
*/
int load_alt path(struct context *ctx)
{
int ret;
struct ibv_qp_attr qp_attr;
struct ibv_qp_init_attr qp_init_attr;

/* query to get the current attributes of the qp */
ret =ibv_query_qp(ctx->id->qp, &qp_attr, 0, &qp_init_attr);
if (ret) {

VERB_ERR("ibv_query qp", ret);

return ret;

}

Mellanox Technologies

Programming Examples Using RDMA Verbs \

/* initialize the alternate path attributes with the current path
* attributes */

memcpy(&qp_attr.alt ah_attr, &qp_attr.ah_attr, sizeof (struct ibv_ah_attr));

/* set the alt path attributes to some basic values */
gp_attr.alt pkey index =qp_attr.pkey index;
gp_attr.alt timeout = qp_attr.timeout;
gp_attr.path_mig state =IBV_MIG REARM;

/* if an alternate path was supplied, set the source port and the dlid */

if (ctx->alt_srcport)

gp_attr.alt port num = ctx->alt srcport;
else

qp_attr.alt port num = qp_attr.port num;

if (ctx->alt_dlid)
gp_attr.alt ah_attr.dlid = ctx->alt_dlid;

printf("loading alt path - local port: %d, dlid: %d\n",
gp_attr.alt port num, qp_attr.alt ah_attr.dlid);

ret = ibv_modify qp(ctx->id->qp, &qp_attr,
IBV_QP_ALT PATH |IBV_QP PATH MIG STATE);
if (ret) {
VERB_ERR("ibv_modify qgp", ret);
return ret;
}
H

/%

* Function: reg_mem

%

* Input:

* ctx The context object

%

* Output:

* none

%

* Returns:

* 0 on success, non-zero on failure

%

* Description:

* Registers memory regions to use for our data transfer

*/

int reg_mem(struct context *ctx)

{
ctx->send_buf = (char *) malloc(ctx->msg_length);
memset(ctx->send_buf, 0x12, ctx->msg_length);

ctx->recv_buf = (char *) malloc(ctx->msg_length);
memset(ctx->recv_buf, 0x00, ctx->msg_length);

ctx->send_mr = rdma_reg_msgs(ctx->id, ctx->send_buf, ctx->msg_length);

if (!ctx->send_mr) {

Mellanox Technologies

Rev 1.7

165

J

[Rev 1.7 Programming Examples Using RDMA Verbs \

VERB ERR("rdma reg msgs", -1);
return -1;

}

ctx->recv_mr = rdma_reg_msgs(ctx->id, ctx->recv_buf, ctx->msg_length);
if (letx->recv_mr) {

VERB ERR("rdma reg msgs", -1);

return -1;

}

return 0;

}

/*
* Function: getaddrinfo_and_create ep
%
* Input:
* ctx The context object
%
* Output:
* none
%
* Returns:
* 0 on success, non-zero on failure
%
* Description:
* QGets the address information and creates our endpoint
*/
int getaddrinfo_and_create _ep(struct context *ctx)
{
int ret;
struct rdma_addrinfo *rai, hints;
struct ibv_qp_init_attr qp_init_attr;

memset(&hints, 0, sizeof (hints));
hints.ai_port space = RDMA PS TCP;
if (ctx->server == 1)
hints.ai_flags = RAI_PASSIVE; /* this makes it a server */

printf("rdma_getaddrinfo\n");
ret = rdma_getaddrinfo(ctx->server_name, ctx->server_port, &hints, &rai);
if (ret) {

VERB_ERR("rdma_getaddrinfo", ret);

return ret;

}

memset(&qp_init_attr, 0, sizeof (qp_init_attr));
gp_init_attr.cap.max_send wr = 1;
gp_init_attr.cap.max_recv_wr = 1;
gp_init_attr.cap.max_send sge = 1;

gp_init_attr.cap.max_recv_sge = 1;

printf("rdma_create_ep\n");

k 166 Mellanox Technologies j

Rev 1.7 \

ret =rdma_create ep(&ctx->id, rai, NULL, &qp_init _attr);
if (ret) {

VERB ERR("rdma create ep", ret);

return ret;

}

rdma_freeaddrinfo(rai);

return 0;

}

/*

* Function: get connect request

*

* Input:

* ctx The context object

%

* Output:

* none

%

* Returns:

* 0 on success, non-zero on failure

%

* Description:

* Wait for a connect request from the client
*/

int get_connect_request(struct context *ctx)

{

int ret;

printf("rdma_listen\n");

ret = rdma_listen(ctx->id, 4);

if (ret) {
VERB_ERR("rdma_listen", ret);
return ret;

}
ctx->listen_id = ctx->id;

printf("rdma_get request\n");
ret =rdma_get request(ctx->listen_id, &ctx->id);
if (ret) {

VERB_ERR("rdma_get request", ret);

return ret;

}

if (ctx->id->event->event |= RDMA CM_EVENT CONNECT REQUEST) {
printf("unexpected event: %s",
rdma_event_str(ctx->id->event->event));
return ret;

}

/* If the alternate path info was not set on the command line, get
* it from the private data */

Mellanox Technologies 167 j

k168

Rev 1.7

if (ctx->alt dlid == 0 && ctx->alt_srcport == 0) {
ret = get_alt dlid from private data(ctx->id->event, &ctx->alt dlid);

if (ret) {
return ret;

}
}

return 0;

/*

* Function: establish_connection
*

* Input:

* ctx The context object

%

* Output:

* none
%

* Returns:

* 0 on success, non-zero on failure

*

* Description:

* Create the connection. For the client, call rdma_connect. For the
* server, the connect request was already received, so just do
* rdma_accept to complete the connection.

*/

int establish_connection(struct context *ctx)

{
int ret;
uintl6_t private_data;

struct rdma_conn_param conn_param;

/* post a receive to catch the first send */
ret =rdma post_recv(ctx->id, NULL, ctx->recv_buf, ctx->msg_length,

ctx->recv_mr);
if (ret) {

VERB_ERR("rdma post_recv", ret);

return ret;

}

/* send the dlid for the alternate port in the private data */
private_data = htons(ctx->my_alt dlid);

memset(&conn_param, 0, sizeof (conn_param));
conn_param.private_data_len = sizeof (int);
conn_param.private data = &private_ data;
conn_param.responder resources = 2;

conn_param.initiator depth = 2;
conn_param.retry_count = 5;
conn_param.rnr_retry_count = 5;

if (ctx->server) {
printf("rdma_accept\n");

Mellanox Technologies

Programming Examples Using RDMA Verbs \

ret = rdma_accept(ctx->id, &conn_param);
if (ret) {
VERB_ERR("rdma_accept", ret);
return ret;
H
}

else {
printf("rdma_connect\n");
ret = rdma_connect(ctx->id, &conn_param);
if (ret) {
VERB_ERR("rdma_connect", ret);
return ret;

}

if (ctx->id->event->event |= RDMA CM_ EVENT ESTABLISHED) {
printf("unexpected event: %s",
rdma_event_str(ctx->id->event->event));
return -1;

}

/* If the alternate path info was not set on the command line, get
* it from the private data */
if (ctx->alt_dlid == 0 && ctx->alt_srcport == 0) {

ret = get_alt dlid from private data(ctx->id->event,

&ctx->alt_dlid);
if (ret)
return ret;
H
}

return 0;

}

/%
* Function: send_msg

%

* Input:

* ctx The context object

%

* Output:

* none

%

* Returns:

* 0 on success, non-zero on failure
%

* Description:

* Performs an Send and gets the completion
%

*/
int send_msg(struct context *ctx)

{
int ret;
struct ibv_wc wc;

Mellanox Technologies

Rev 1.7

169

J

k170

Rev 1.7

ret =rdma_post send(ctx->id, NULL, ctx->send_buf, ctx->msg_length,
ctx->send mr, IBV_SEND SIGNALED);
if (ret) {
VERB ERR("rdma send recv", ret);
return ret;
}
ret =rdma_get send comp(ctx->id, &wc);
if (ret <0) {
VERB ERR("rdma get send comp", ret);
return ret;
}
return 0;
H
/*

* Function: recv_msg

%

* Input:

* ctx The context object
%

* Output:

* none

%

* Returns:

* 0 on success, non-zero on failure
%

* Description:

* Waits for a receive completion and posts a new receive buffer

*/
int recv_msg(struct context *ctx)
{

int ret;

struct ibv_wc wc;

ret =rdma_get recv_comp(ctx->id, &wc);

if (ret <0) {
VERB_ERR("rdma_get recv_comp", ret);
return ret;

}

ret =rdma_post_recv(ctx->id, NULL, ctx->recv_buf, ctx->msg_length,

ctx->recv_mr);
if (ret) {
VERB_ERR("rdma post_recv", ret);
return ret;

}

return 0;

}

/ *
* Function: main

Mellanox Technologies

Programming Examples Using RDMA Verbs \

*

* Input:

* ctx The context object

*

* Output:

* none

*

* Returns:

* 0 on success, non-zero on failure
*

* Description:
*

*/

int main(int argc, char** argv)

{
int ret, op, i, send_cnt, recv_cnt;
struct context ctx;
struct ibv_qp_attr qp_attr;

memset(&ctx, 0, sizeof (ctx));
memset(&qp_attr, 0, sizeof (qp_attr));

ctx.server = 0;

ctx.server_port = DEFAULT PORT;
ctx.msg_count = DEFAULT MSG_COUNT;
ctx.msg_length = DEFAULT MSG LENGTH;
ctx.msec_delay = DEFAULT MSEC DELAY;
ctx.alt dlid = 0;

ctx.alt_srcport = 0;

ctx.migrate_after =-1;

while ((op = getopt(argc, argv, "sa:p:c:l:d:rim:")) |=

switch (op) {

case's':
ctx.server = 1;
break;

case 'a":
ctx.server name = optarg;
break;

case 'p"
ctx.server port = optarg;
break;

case 'c":
ctx.msg_count = atoi(optarg);
break;

case '":
ctx.msg_length = atoi(optarg);
break;

case 'd":
ctx.alt_dlid = atoi(optarg);
break;

case 'r":
ctx.alt_srcport = atoi(optarg);
break;

Mellanox Technologies

Rev 1.7

171

J

[Rev 1.7 Programming Examples Using RDMA Verbs \

case 'm'":
ctx.migrate after = atoi(optarg);
break;

case 'w"
ctx.msec_delay = atoi(optarg);
break;

default:
printf("usage: %s [-s or -a required]\n", argv[0]);
printf("\t[-s[erver mode]\n");
printf("\t[-a ip_address]\n");
printf("\t[-p port_number]\n");
printf("\t[-c msg_count]\n");
printf("\t[-1 msg_length]\n");
printf("\t[-d alt dlid] (requires -r)\n");
printf("\t[-r alt_srcport] (requires -d)\n");
printf("\t[-m num_iterations_then migrate] (client only)\n");
printf("\t[-w msec_wait_between_sends]\n");
exit(1);

H

}

[_
[_
[_
[_

printf("mode: %s\n", (ctx.server) ? "server" : "client");

printf("address: %s\n", (!ctx.server_name) ? "NULL" : ctx.server name);
printf("port: %s\n", ctx.server_port);

printf("count: %d\n", ctx.msg_count);

printf("length: %d\n", ctx.msg_length);

printf("alt_dlid: %d\n", ctx.alt dlid);

printf("alt_port: %d\n", ctx.alt srcport);

printf("mig_after: %d\n", ctx.migrate after);

printf("msec_wait: %d\n", ctx.msec_delay);

printf("\n");

if (!ctx.server && !ctx.server_name) {
printf("server address must be specified for client mode\n");
exit(1);

}

/* both of these must be set or neither should be set */

if (!((ctx.alt_dlid > 0 && ctx.alt_srcport > 0) ||
(ctx.alt_dlid == 0 && ctx.alt_srcport == 0))) {
printf(""-d and -r must be used together\n");
exit(1);

}

if (ctx.migrate_after > ctx.msg_count) {
printf("num_iterations_then migrate must be less than msg_count\n");
exit(1);

}

ret = getaddrinfo_and_create ep(&ctx);
if (ret)
goto out;

if (ctx.server) {

k 172 Mellanox Technologies j

Rev 1.7 \

ret = get_connect request(&ctx);
if (ret)
goto out;

}

/* only query for alternate port if information was not specified on the
* command line */
if (ctx.alt_dlid == 0 && ctx.alt_srcport == 0) {
ret = get_alt_port_details(&ctx);
if (ret)
goto out;

}

/* create a thread to handle async events */
pthread create(&ctx.async event thread, NULL, async event thread, &ctx);

ret = reg_mem(&ctx);
if (ret)
goto out;

ret = establish_connection(&ctx);

/* load the alternate path after the connection was created. This can be
* done at connection time, but the connection must be created and
* established using all ib verbs */
ret =load_alt path(&ctx);
if (ret)
goto out;

send_cnt =recv_cnt = 0;
for (i=0; 1 < ctx.msg_count; i++) {
if (ctx.server) {

if (recv_msg(&ctx))
break;

printf("recv: %d\n", ++recv_cnt);

}

if (ctx.msec_delay > 0)
usleep(ctx.msec_delay * 1000);

if (send_msg(&ctx))
break;

printf("send: %d\n", ++send_cnt);
if (!etx.server) {
if (recv_msg(&ctx))
break;

printf("recv: %d\n", ++recv_cnt);

}

Mellanox Technologies 173 j

[Rev 1.7 Programming Examples Using RDMA Verbs \

/* migrate the path manually if desired after the specified number of
* sends */
if (Ictx.server && 1 == ctx.migrate_after) {
gp_attr.path mig state = IBV_MIG_ MIGRATED;
ret = ibv_modify qp(ctx.id->qp, &qp_attr, IBV_QP PATH MIG STATE);
if (ret) {
VERB_ERR("ibv_modify qp", ret);
goto out;
H
}
}

rdma_disconnect(ctx.id);

out:
if (ctx.send_mr)
rdma_dereg mr(ctx.send_mr);

if (ctx.recv_mr)
rdma_dereg_mr(ctx.recv_mr);

if (ctx.id)
rdma_destroy_ep(ctx.id);

if (ctx.listen_id)
rdma_destroy_ep(ctx.listen_id);

if (ctx.send_buf)
free(ctx.send_buf);

if (ctx.recv_buf)
free(ctx.recv_buf);

return ret;

8.2 Multicast Code Example Using RDMA CM

/*

* Compile Command:

* gce me.c -0 me -libverbs -lrdmacm

%

* Description:

* Both the sender and receiver create a UD Queue Pair and join the specified
* multicast group (ctx.mcast_addr). If the join is successful, the sender must
* create an Address Handle (ctx.ah). The sender then posts the specified

* number of sends (ctx.msg_count) to the multicast group. The receiver waits
* to receive each one of the sends and then both sides leave the multicast

* group and cleanup resources.

%

* Running the Example:

* The executable can operate as either the sender or receiver application. It

* can be demonstrated on a simple fabric of two nodes with the sender

* application running on one node and the receiver application running on the

k 174 Mellanox Technologies j

Rev 1.7

* other. Each node must be configured to support [PoIB and the IB interface
* (ex. ib0) must be assigned an I[P Address. Finally, the fabric must be
* initialized using OpenSM.

*

* Receiver (-m is the multicast address, often the IP of the receiver):

* /mc -m 192.168.1.12

*

* Sender (-m is the multicast address, often the IP of the receiver):

* /mc -s -m 192.168.1.12

*

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <getopt.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <rdma/rdma_verbs.h>

#define VERB_ERR(verb, ret) \
fprintf(stderr, "%s returned %d errno %d\n", verb, ret, errno)

/* Default parameter values */

#define DEFAULT PORT "51216"
#define DEFAULT MSG COUNT 4
#define DEFAULT MSG _LENGTH 64

/* Resources used in the example */
struct context
{

/* User parameters */

int sender;

char *bind_addr;

char *mcast_addr;

char *server_port;

int msg_count;

int msg_length;

/* Resources */

struct sockaddr mcast_sockaddr;
struct rdma_cm_id *id,

struct rdma_event_channel *channel;
struct ibv_pd *pd;

struct ibv_cq *cq;

struct ibv_mr *mr;

char *buf;

struct ibv_ah *ah;

uint32_t remote_qpn;

uint32_t remote_gkey;
pthread tcm_thread;

/¥

Mellanox Technologies 175

J

[Rev 1.7 Programming Examples Using RDMA Verbs \

* Function: cm_thread
*
* Input:
* arg The context object
*
* Output:
* none
*
* Returns:
* NULL
*
* Description:
* Reads any CM events that occur during the sending of data
* and prints out the details of the event
*/
static void *cm_thread(void *arg)
{
struct rdma_cm_event *event;
int ret;

struct context *ctx = (struct context *) arg;

while (1) {
ret =rdma_get cm_event(ctx->channel, &event);
if (ret) {
VERB _ERR("rdma get cm_event", ret);
break;
H

printf("event %s, status %d\n",
rdma_event_str(event->event), event->status);

rdma_ack cm_event(event);

}

return NULL;
§

/%
* Function: get cm_event

%

* Input:

* channel The event channel

* type The event type that is expected

%

* Output:

* out_ev The event will be passed back to the caller, if desired

* Set this to NULL and the event will be acked automatically

* Otherwise the caller must ack the event using rdma_ack cm_event
%

* Returns:

* 0 on success, non-zero on failure

%

* Description:

k 176 Mellanox Technologies j

Waits for the next CM event and check that is matches the expected
* type.
*/
int get cm_event(struct rdma_event channel *channel,
enum rdma_cm_event_type type,
struct rdma_cm_event **out_ev)

int ret = 0;
struct rdma_cm_event *event = NULL;

ret =rdma_get cm_event(channel, &event);
if (ret) {
VERB _ERR("rdma resolve addr", ret);
return -1;

}

/* Verify the event is the expected type */
if (event->event != type) {
printf("event: %s, status: %d\n",
rdma_event_str(event->event), event->status);
ret=-1;

}

/* Pass the event back to the user if requested */
if (lout_ev)

rdma_ack cm_event(event);
else

*out_ev = event;

return ret;

}

/%
* Function: resolve addr
%
* Input:
* ctx The context structure
%
* Output:
* none
%
* Returns:
* 0 on success, non-zero on failure
%
* Description:
* Resolves the multicast address and also binds to the source address
* if one was provided in the context
*/
int resolve_addr(struct context *ctx)
{
int ret;
struct rdma_addrinfo *bind_rai = NULL;
struct rdma_addrinfo *mcast rai = NULL,;
struct rdma_addrinfo hints;

Mellanox Technologies

Rev 1.7

177

J

k178

Rev 1.7

memset(&hints, 0, sizeof (hints));
hints.ai_port space = RDMA_PS UDP;

if (ctx->bind_addr) {
hints.ai_flags = RAI PASSIVE;

ret = rdma_getaddrinfo(ctx->bind addr, NULL, &hints, &bind rai);
if (ret) {
VERB_ERR("rdma_getaddrinfo (bind)", ret);
return ret;
H
}

hints.ai_flags = 0;

ret = rdma_getaddrinfo(ctx->mcast addr, NULL, &hints, &mcast rai);
if (ret) {

VERB_ERR("rdma_getaddrinfo (mcast)", ret);

return ret;

}

if (ctx->bind_addr) {
/* bind to a specific adapter if requested to do so */
ret = rdma_bind_addr(ctx->id, bind rai->ai_src_addr);
if (ret) {
VERB_ERR("rdma bind addr", ret);
return ret;

}

/* A PD is created when we bind. Copy it to the context so it can
* be used later on */
ctx->pd = ctx->id->pd;

}

ret =rdma resolve addr(ctx->id, (bind rai) ? bind rai->ai_src_addr : NULL,
mcast_rai->ai_dst_addr, 2000);
if (ret) {
VERB_ERR("rdma resolve addr", ret);
return ret;

}

Programming Examples Using RDMA Verbs \

ret = get_cm_event(ctx->channel, RDMA CM_EVENT ADDR _RESOLVED, NULL);

if (ret) {
return ret;

}

memcpy(&ctx->mcast_sockaddr,
mcast_rai->ai_dst_addr,
sizeof (struct sockaddr));

return 0;

Mellanox Technologies

Rev 1.7 \

/*
* Function: create_resources
*
* Input:
* ctx The context structure
*
* Output:
* none
*
* Returns:
* (0 on success, non-zero on failure
*
* Description:
* Creates the PD, CQ, QP and MR
*/
int create_resources(struct context *ctx)
{
int ret, buf size;
struct ibv_qp_init_attr attr;

memset(&attr, 0, sizeof (attr));

/* If we are bound to an address, then a PD was already allocated
* to the CM ID */
if (letx->pd) {
ctx->pd = ibv_alloc_pd(ctx->id->verbs);
if (letx->pd) {
VERB_ERR("ibv_alloc_pd", -1);
return ret;
H
i

ctx->cq = ibv_create_cq(ctx->id->verbs, 2, 0, 0, 0);
if (letx->cq) {

VERB_ERR("ibv_create cq", -1);

return ret;

}

attr.qp_type =1BV_QPT _UD;

attr.send _cq = ctx->cq;

attr.recv_cq = ctx->cq;
attr.cap.max_send_wr = ctx->msg_count;
attr.cap.max_recv_wr = ctx->msg_count;
attr.cap.max_send_sge = 1;
attr.cap.max_recv_sge = 1;

ret =rdma_create qp(ctx->id, ctx->pd, &attr);
if (ret) {

VERB _ERR("rdma create qp", ret);

return ret;

}

/* The receiver must allow enough space in the receive buffer for
* the GRH */

Mellanox Technologies 179 j

k180

Rev 1.7

buf size = ctx->msg_length + (ctx->sender ? 0 : sizeof (struct ibv_grh));

ctx->buf = calloc(1, buf size);
memset(ctx->buf, 0x00, buf size);

/* Register our memory region */
ctx->mr = rdma_reg_msgs(ctx->id, ctx->buf, buf size);
if (letx->mr) {

VERB ERR("rdma reg msgs", -1);

return -1;

}

return 0;

}

/ *
* Function: destroy_resources
%

* Input:

* ctx The context structure
%

* Output:

* none
%

* Returns:

* 0 on success, non-zero on failure
%

* Description:

* Destroys AH, QP, CQ, MR, PD and ID
*/

void destroy_resources(struct context *ctx)

{
if (ctx->ah)
ibv_destroy_ah(ctx->ah);

if (ctx->id->qp)
rdma_destroy_qp(ctx->id);

if (ctx->cq)
ibv_destroy_cq(ctx->cq);

if (ctx->mr)
rdma_dereg_mr(ctx->mr);

if (ctx->buf)
free(ctx->buf);

if (ctx->pd && ctx->id->pd == NULL)
ibv_dealloc_pd(ctx->pd);

rdma_destroy_id(ctx->id);

/¥

Mellanox Technologies

Programming Examples Using RDMA Verbs \

Rev 1.7 \

* Function: post_send
*
* Input:
* ctx The context structure
*
* Output:
* none
*
* Returns:
* (0 on success, non-zero on failure
*
* Description:
* Posts a UD send to the multicast address
*/
int post_send(struct context *ctx)
{
int ret;
struct ibv_send_wr wr, *bad_wr;
struct ibv_sge sge;

memset(ctx->buf, 0x12, ctx->msg_length); /* set the data to non-zero */

sge.length = ctx->msg_length;
sge.lkey = ctx->mr->lkey;
sge.addr = (uint64_t) ctx->buf;

/* Multicast requires that the message is sent with immediate data
* and that the QP number is the contents of the immediate data */

wr.next = NULL;

wr.sg_list = &sge;

wr.num_sge = 1;

wr.opcode =IBV_WR_SEND WITH IMM;

wr.send flags =IBV_SEND_ SIGNALED;

wr.wr_id = 0;

wr.imm_data = htonl(ctx->id->qp->qp_num);

wr.wr.ud.ah = ctx->ah;

wr.wr.ud.remote_qpn = ctx->remote_qpn;

wr.wr.ud.remote_gkey = ctx->remote_gkey;

ret =1ibv_post_send(ctx->id->qp, &wr, &bad_wr);
if (ret) {

VERB_ERR("ibv_post_send", ret);

return -1;

}

return 0;

}

/ *
* Function: get_completion
%

* Input:
* ctx The context structure
%

Mellanox Technologies 181 j

k182

Rev 1.7

* Output:

* none
*

* Returns:

* (0 on success, non-zero on failure
*

* Description:

* Waits for a completion and verifies that the operation was successful

*/
int get_completion(struct context *ctx)

{
int ret;
struct ibv_wc wc;

do {
ret = ibv_poll cq(ctx->cq, 1, &wc);
if (ret <0) {
VERB_ERR("ibv_poll cq", ret);
return -1;
}
}
while (ret == 0);

if (we.status !=IBV_WC_SUCCESS) {
printf("work completion status %s\n",
ibv_wec_status_str(wc.status));
return -1;

}

return 0;

}

/*

* Function: main

*

* Input:

*
*
*

argc The number of arguments
argv Command line arguments

* Output:

*
*

none

* Returns:

*
*

0 on success, non-zero on failure

* Description:

*

* ¥ X % ¥ *

Main program to demonstrate multicast functionality.

Both the sender and receiver create a UD Queue Pair and join the
specified multicast group (ctx.mcast_addr). If the join is successful,

the sender must create an Address Handle (ctx.ah). The sender then posts
the specified number of sends (ctx.msg_count) to the multicast group.
The receiver waits to receive each one of the sends and then both sides
leave the multicast group and cleanup resources.

Mellanox Technologies

Programming Examples Using RDMA Verbs \

int main(int argc, char** argv)

{

int ret, op, i;

struct context ctx;

struct ibv_port_attr port_attr;
struct rdma_cm_event *event;
char buf[40];

memset(&ctx, 0, sizeof (ctx));

ctx.sender = 0;

ctx.msg_count = DEFAULT MSG_COUNT;
ctx.msg_length = DEFAULT MSG LENGTH;
ctx.server_port = DEFAULT PORT;

// Read options from command line
while ((op = getopt(arge, argv, "shb:m:p:c:1:")) !=-1) {
switch (op) {
case's':
ctx.sender = 1;
break;
case 'b":
ctx.bind_addr = optarg;
break;
case 'm"
ctx.mcast_addr = optarg;
break;
case 'p"
ctx.server port = optarg;
break;
case 'c":
ctx.msg_count = atoi(optarg);
break;
case '":
ctx.msg_length = atoi(optarg);
break;
default:
printf("usage: %s -m mc_address\n", argv[0]);
printf("\t[-s[ender mode]\n");
printf("\t[-b bind_address]\n");
printf("\t[-p port_number]|\n");
printf("\t[-c msg_count]\n");
printf("\t[-1 msg_length]\n");
exit(1);
H
}

if(ctx.mcast_addr == NULL) {
printf("multicast address must be specified with -m\n");
exit(1);

}

ctx.channel = rdma_create_event channel();
if (!ctx.channel) {

Mellanox Technologies

Rev 1.7

183

J

k184

Rev 1.7

VERB ERR("rdma create event channel", -1);
exit(1);
}

ret =rdma_create id(ctx.channel, &ctx.id, NULL, RDMA PS UDP);
if (ret) {

VERB _ERR("rdma create id", -1);

exit(1);
}

ret = resolve addr(&ctx);
if (ret)
goto out;

/* Verify that the buffer length is not larger than the MTU */
ret = ibv_query_port(ctx.id->verbs, ctx.id->port_num, &port_attr);
if (ret) {

VERB_ERR("ibv_query_port", ret);

goto out;

}

if (ctx.msg_length > (1 << port_attr.active_mtu + 7)) {
printf("buffer length %d is larger then active mtu %d\n",
ctx.msg_length, 1 << (port_attr.active_mtu + 7));
goto out;

}

ret = create_resources(&ctx);
if (ret)
goto out;

if (!ctx.sender) {
for (i=0; 1 < ctx.msg_count; i++) {
ret =rdma_post recv(ctx.id, NULL, ctx.buf,
ctx.msg_length + sizeof (struct ibv_grh),
ctx.mr);
if (ret) {
VERB_ERR("rdma_post _recv", ret);
goto out;

H
H
}

/* Join the multicast group */
ret =rdma_join multicast(ctx.id, &ctx.mcast_sockaddr, NULL);
if (ret) {

VERB_ERR("rdma join_multicast", ret);

goto out;

}

/* Verify that we successfully joined the multicast group */

Programming Examples Using RDMA Verbs \

ret = get_cm_event(ctx.channel, RDMA CM_EVENT MULTICAST JOIN, &event);

if (ret)
goto out;

Mellanox Technologies

inet ntop(AF_INET®6, event->param.ud.ah_attr.grh.dgid.raw, buf, 40);
printf("joined dgid: %s, mlid 0x%x, sl %d\n", buf,
event->param.ud.ah_attr.dlid, event->param.ud.ah_attr.sl);

ctx.remote_qpn = event->param.ud.qp_num;
ctx.remote_gkey = event->param.ud.qgkey;

if (ctx.sender) {
/* Create an address handle for the sender */
ctx.ah = ibv_create ah(ctx.pd, &event->param.ud.ah_attr);
if (Ictx.ah) {
VERB_ERR("ibv_create ah", -1);
goto out;
H
}

rdma_ack cm_event(event);

/* Create a thread to handle any CM events while messages are exchanged */

pthread create(&ctx.cm_thread, NULL, cm_thread, &ctx);

if (!ctx.sender)
printf("waiting for messages...\n");

for (i=0; 1 < ctx.msg_count; i++) {
if (ctx.sender) {
ret = post_send(&ctx);
if (ret)
goto out;

}

ret = get completion(&ctx);
if (ret)
goto out;

if (ctx.sender)

printf("sent message %d\n", i + 1);
else

printf("received message %d\n", i + 1);

}

out:

}

ret =rdma_leave multicast(ctx.id, &ctx.mcast_sockaddr);
if (ret)
VERB_ERR("rdma leave multicast", ret);

destroy_resources(&ctx);

return ret;

Mellanox Technologies

Rev 1.7

185

J

[Rev 1.7 | Programming Examples Using RDMA Verbs \

8.3 Shared Received Queue (SRQ)

/*

* Compile Command:

* gcc srq.c -o srq -libverbs -lrdmacm

3k

* Description:

* Both the client and server use an SRQ. A number of Queue Pairs (QPs) are
* created (ctx.qp_count) and each QP uses the SRQ. The connection between the
* client and server is established using the IP address details passed on the

* command line. After the connection is established, the client starts

* blasting sends to the server and stops when the maximum work requests

* (ctx.max_wr) have been sent. When the server has received all the sends, it
* performs a send to the client to tell it to continue. The process repeats

* until the number of requested number of sends (ctx.msg_count) have been
* performed.

3k

* Running the Example:

* The executable can operate as ecither the client or server application. It

* can be demonstrated on a simple fabric of two nodes with the server

* application running on one node and the client application running on the

* other. Each node must be configured to support IPoIB and the IB interface
* (ex. ib0) must be assigned an IP Address. Finally, the fabric must be

* initialized using OpenSM.

3k

* Server (-a is IP of local interface):

* [srq -s -a 192.168.1.12

3k

* Client (-a is IP of remote interface):

* /srq-a 192.168.1.12

*

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <getopt.h>

#include <rdma/rdma_verbs.h>

#define VERB_ERR(verb, ret) \
fprintf(stderr, "%s returned %d errno %d\n", verb, ret, errno)

/* Default parameters values */

#define DEFAULT PORT "51216"

#define DEFAULT MSG_COUNT 100
#define DEFAULT MSG_LENGTH 100000
#define DEFAULT _QP_COUNT 4

#define DEFAULT MAX_WR 64

/* Resources used in the example */
struct context

{

/* User parameters */

k 186 Mellanox Technologies j

int server;

char *server name;
char *server_port;
int msg_count;

int msg_length;

int qp_count;

int max_wr;

/* Resources */

struct rdma_cm_id *srq_id;
struct rdma_cm_id *listen_id;
struct rdma_cm_id **conn_id;
struct ibv_mr *send mr;
struct ibv_mr *recv_mr;

struct ibv_srq *srq;

struct ibv_cq *srq_cq;

struct ibv_comp_channel *srq_cq_channel;
char *send bulf;

char *recv_buf;

}s

/%

* Function: init_resources

%

* Input:

* ctx The context object

* rai The RDMA address info for the connection
%

* Output:

* none

%

* Returns:

* 0 on success, non-zero on failure

%

* Description:

* This function initializes resources that are common to both the client

* and server functionality.
* It creates our SRQ, registers memory regions, posts receive buffers
* and creates a single completion queue that will be used for the receive
* queue on each queue pair.
*/
int init_resources(struct context *ctx, struct rdma_addrinfo *rai)
{
int ret, i;

struct rdma_cm_id *id;

/* Create an ID used for creating/accessing our SRQ */
ret =rdma_create id(NULL, &ctx->srq_id, NULL, RDMA_ PS TCP);
if (ret) {

VERB _ERR("rdma create id", ret);

return ret;

}

/* We need to bind the ID to a particular RDMA device

Mellanox Technologies

Rev 1.7

187

J

k188

Rev 1.7

Programming Examples Using RDMA Verbs \

* This is done by resolving the address or binding to the address */
if (ctx->server == 0) {
ret =rdma_resolve addr(ctx->srq id, NULL, rai->ai_dst addr, 1000);
if (ret) {
VERB _ERR("rdma resolve addr", ret);
return ret;
}
}

else {
ret =rdma_bind addr(ctx->srq_id, rai->ai_src_addr);
if (ret) {
VERB_ERR("rdma_bind addr", ret);
return ret;
}
}

/* Create the memory regions being used in this example */
ctx->recv_mr = rdma_reg_msgs(ctx->srq_id, ctx->recv_buf, ctx->msg_length);
if (letx->recv_mr) {

VERB_ERR("rdma reg msgs", -1);

return -1;

}

ctx->send_mr =rdma_reg_msgs(ctx->srq_id, ctx->send_buf, ctx->msg_length);
if (!ctx->send_mr) {

VERB_ERR("rdma reg msgs", -1);

return -1;

}

/* Create our shared receive queue */
struct ibv_srq_init_attr srq_attr;
memset(&srq_attr, 0, sizeof (srq_attr));
srq_attr.attrmax wr = ctx->max_Wwr;
srq_attr.attr.max_sge = 1;

ret =rdma create srq(ctx->srq_id, NULL, &srq_attr);
if (ret) {

VERB_ERR("rdma create srq", ret);

return -1;

}

/* Save the SRQ in our context so we can assign it to other QPs later */
ctx->srq = ctx->srq_id->srq;

/* Post our receive buffers on the SRQ */
for (i=0; i < ctx->max_wr; i++) {
ret =rdma_post_recv(ctx->srq_id, NULL, ctx->recv_buf, ctx->msg_length,
ctx->recv_mr);
if (ret) {
VERB_ERR("rdma post_recv", ret);
return ret;
H
}

Mellanox Technologies j

/* Create a completion channel to use with the SRQ CQ */
ctx->srq_cq_channel = ibv_create comp_channel(ctx->srq_id->verbs);
if (lctx->srq_cq_channel) {

VERB ERR("ibv_create comp channel", -1);

return -1;

}

/* Create a CQ to use for all connections (QPs) that use the SRQ */
ctx->srq_cq =ibv_create cq(ctx->srq_id->verbs, ctx->max_wr, NULL,
ctx->srq_cq_channel, 0);
if (letx->srq_cq) {
VERB _ERR("ibv_create cq", -1);
return -1;

}

/* Make sure that we get notified on the first completion */
ret = ibv_req notify cq(ctx->srq_cq, 0);
if (ret) {

VERB_ERR("ibv_req notify cq", ret);

return ret;

}

return 0;

}

/%
* Function: destroy_resources

%

* Input:

* ctx The context object

%

* Output:

* none

%

* Returns:

* 0 on success, non-zero on failure

%

* Description:

* This function cleans up resources used by the application
*/

void destroy_resources(struct context *ctx)

{

int i;

if (ctx->conn_id) {
for (i=0; 1 < ctx->qp_count; i++) {
if (ctx->conn_id[i]) {

if (ctx->conn_id[i]->qp &&
ctx->conn_id[i]->gp->state == IBV_QPS_RTS) {
rdma_disconnect(ctx->conn_id[i]);

}

rdma_destroy_qp(ctx->conn_id[i]);

rdma_destroy_id(ctx->conn_id[i]);

Mellanox Technologies

Rev 1.7

189

J

[Rev 1.7 Programming Examples Using RDMA Verbs \

}

free(ctx->conn_id);

}

if (ctx->recv_mr)
rdma_dereg mr(ctx->recv_mr);

if (ctx->send _mr)
rdma_dereg mr(ctx->send mr);

if (ctx->recv_buf)
free(ctx->recv_buf);

if (ctx->send_buf)
free(ctx->send_buf);

if (ctx->srq_cq)
ibv_destroy cq(ctx->srq_cq);

if (ctx->srq_cq_channel)
ibv_destroy _comp_channel(ctx->srq_cq_channel);

if (ctx->srq_id) {
rdma_destroy_srq(ctx->srq_id);
rdma_destroy_id(ctx->srq_id);
}
H

/*
* Function: await_completion
%
* Input:
* ctx The context object
%
* Output:
* none
%
* Returns:
* 0 on success, non-zero on failure
%
* Description:
* Waits for a completion on the SRQ CQ
%
*/
int await_completion(struct context *ctx)
{
int ret;
struct ibv_cq *ev_cq;
void *ev_ctx;

/* Wait for a CQ event to arrive on the channel */

ret =ibv_get cq_event(ctx->srq_cq_channel, &ev_cq, &ev_ctx);
if (ret) {

k 190 Mellanox Technologies j

Rev 1.7 \

VERB_ERR("ibv_get cq event", ret);
return ret;

}
ibv_ack cq events(ev_cq, 1);

/* Reload the event notification */
ret =ibv_req notify cq(ctx->srq cq, 0);
if (ret) {
VERB ERR("ibv_req notify cq", ret);
return ret;

}

return 0;

}

/%
* Function: run_server

%

* Input:

* ctx The context object

* rai The RDMA address info for the connection

%
* Output:

* none

%

* Returns:

* 0 on success, non-zero on failure
%

* Description:
* Executes the server side of the example
*/
int run_server(struct context *ctx, struct rdma_addrinfo *rai)
{ . .
nt ret, 1;
uint64 _t send count = 0;
uint64 _t recv_count = 0;
struct ibv_wc wc;
struct ibv_qp_init_attr qp_attr;

ret = init_resources(ctx, rai);

if (ret) {
printf("init_resources returned %d\n", ret);
return ret;

}

/* Use the srq_id as the listen_id since it is already setup */
ctx->listen_id = ctx->srq_id;

ret = rdma_listen(ctx->listen_id, 4);

if (ret) {
VERB_ERR("rdma_listen", ret);
return ret;

}

Mellanox Technologies 191 j

[Rev 1.7 Programming Examples Using RDMA Verbs \

printf("waiting for connection from client...\n");
for (i=0; i < ctx->qp_count; i++) {
ret =rdma_get request(ctx->listen_id, &ctx->conn_id[i]);
if (ret) {
VERB_ERR("rdma_get request", ret);
return ret;

}

/* Create the queue pair */
memset(&qp_attr, 0, sizeof (qp_attr));

gp_attr.qp_context = ctx;

gp_attr.qp_type =1BV_QPT RC;
gp_attr.cap.max_send wr = ctx->max_wr;
gp_attr.cap.max recv_wr = ctx->max_Wwr;
gp_attr.cap.max_send sge = 1;
gp_attr.cap.max_recv_sge = 1;
gp_attr.cap.max_inline_data = 0;
gp_attr.recv_cq = ctx->srq_cq;

gp_attr.srq = ctx->srq;

gp_attr.sq_sig_all =0;

ret =rdma create qp(ctx->conn_id[i], NULL, &qp_attr);
if (ret) {

VERB _ERR("rdma create qp", ret);

return ret;

}

/* Set the new connection to use our SRQ */
ctx->conn_id[i]->srq = ctx->srq;

ret = rdma_accept(ctx->conn_id[i], NULL);
if (ret) {
VERB_ERR("rdma_accept", ret);
return ret;
H
}

while (recv_count < ctx->msg_count) {
1=0;
while (i < ctx->max_wr && recv_count < ctx->msg_count) {
int ne;

ret = await_completion(ctx);

if (ret) {
printf("await _completion %d\n", ret);
return ret;

}

do {
ne = ibv_poll _cq(ctx->srq_cq, 1, &wc);
if (ne <0) {
VERB_ERR("ibv_poll cq", ne);

k 192 Mellanox Technologies j

Rev 1.7 \

return ne;

}

else if (ne == 0)
break;

if (we.status |=IBV_WC_SUCCESS) {
printf("work completion status %s\n",
ibv_wec_status_str(wc.status));
return -1;

}

recv_count++;
printf("recv count: %d, qp_num: %d\n", recv_count, wec.qp_num);

ret = rdma_post_recv(ctx->srq_id, (void *) wc.wr_id,
ctx->recv_buf, ctx->msg_length,
ctx->recv_mr);
if (ret) {
VERB_ERR("rdma post recv", ret);
return ret;

}

it+;
H
while (ne);

}

ret =rdma post_send(ctx->conn_id[0], NULL, ctx->send bulf,
ctx->msg_length, ctx->send_mr, IBV_SEND_ SIGNALED);
if (ret) {
VERB_ERR("rdma post_send", ret);
return ret;

}

ret =rdma_get send comp(ctx->conn_id[0], &wc);

if (ret <=0) {
VERB_ERR("rdma get send comp", ret);
return -1;

}

send count++;
printf("send count: %d\n", send count);

}

return 0;

}

/*

* Function: run_client

%

* Input:

* ctx The context object

* rai The RDMA address info for the connection
%

Mellanox Technologies 193 j

[Rev 1.7 Programming Examples Using RDMA Verbs \

* Output:
* none
*
* Returns:
* (0 on success, non-zero on failure
*
* Description:
* Executes the client side of the example
*/
int run_client(struct context *ctx, struct rdma_addrinfo *rai)
{
int ret, 1, ne;
uint64 t send count = 0;
uint64 trecv_count = 0;
struct ibv_wc wc;
struct ibv_qp_init_attr attr;

ret = init_resources(ctx, rai);

if (ret) {
printf("init_resources returned %d\n", ret);
return ret;

}

for (i=0; 1 < ctx->qp_count; i++) {
memset(&attr, 0, sizeof (attr));

attr.qp_context = ctx;
attr.cap.max_send wr = ctx->max_wr;
attr.cap.max_recv_wr = ctx->max_Wwr;
attr.cap.max_send sge = 1;
attr.cap.max_recv_sge = 1;
attr.cap.max_inline data = 0;
attr.recv_cq = ctx->srq_cq;

attr.srq = ctx->srq;

attr.sq_sig_all = 0;

ret =rdma_create_ep(&ctx->conn_id[i], rai, NULL, &attr);
if (ret) {

VERB _ERR("rdma create ep", ret);

return ret;

}

ret = rdma_connect(ctx->conn_id[i], NULL);
if (ret) {
VERB_ERR("rdma_connect", ret);
return ret;
}
}

while (send_count < ctx->msg_count) {
for (i=0; 1 < ctx->max_wr && send_count < ctx->msg_count; i++) {
/* perform our send to the server */
ret =rdma_post_send(ctx->conn_id[i % ctx->qp_count], NULL,
ctx->send _buf, ctx->msg_length, ctx->send_mr,

k 194 Mellanox Technologies j

}

IBV_SEND SIGNALED);
if (ret) {
VERB_ERR("rdma post send", ret);
return ret;

}

ret=rdma_get send comp(ctx->conn_id[i % ctx->qp_count], &wc);
if (ret <=0) {

VERB ERR("rdma get send comp", ret);

return ret;

}

send count++;
printf("send count: %d, qp_num: %d\n", send_count, wc.qp_num);

}

/* wait for a recv indicating that all buffers were processed */
ret = await_completion(ctx);
if (ret) {

VERB_ERR("await_completion", ret);

return ret;

}

do {

ne = ibv_poll cq(ctx->srq_cq, 1, &wc);

if (ne <0) {
VERB_ERR("ibv_poll cq", ne);
return ne;

H

else if (ne == 0)
break;

if (we.status !=IBV_WC_SUCCESS) {
printf("work completion status %s\n",
ibv_wec_status_str(wc.status));
return -1;

}

recv_count++;
printf("recv count: %d\n", recv_count);

ret = rdma_post_recv(ctx->srq_id, (void *) we.wr_id,
ctx->recv_buf, ctx->msg_length, ctx->recv_mr);
if (ret) {
VERB_ERR("rdma_post_recv", ret);
return ret;

H
}

while (ne);

}

return ret;

Mellanox Technologies

Rev 1.7

195

J

k196

Rev 1.7

/*
k
*
*
*
*
*
k
*
£
*
*
*
*
*

* ¥ X % ¥ *

Function: main

Input:
argc The number of arguments
argv Command line arguments

Output:
none

Returns:
0 on success, non-zero on failure

Description:
Main program to demonstrate SRQ functionality.

Both the client and server use an SRQ. ctx.qp_count number of QPs are
created and each one of them uses the SRQ. After the connection, the
client starts blasting sends to the server upto ctx.max_wr. When the
server has received all the sends, it performs a send to the client to

tell it that it can continue. Process repeats until ctx.msg_count

sends have been performed.

*/
int main(int argc, char** argv)

{

int ret, op;
struct context ctx;
struct rdma_addrinfo *rai, hints;

memset(&ctx, 0, sizeof (ctx));
memset(&hints, 0, sizeof (hints));

ctx.server = 0;

ctx.server_port = DEFAULT PORT;
ctx.msg_count = DEFAULT MSG_COUNT;
ctx.msg_length = DEFAULT MSG_LENGTH;
ctx.qp_count = DEFAULT QP _COUNT;
ctx.max_wr = DEFAULT MAX WR;

/* Read options from command line */
while ((op = getopt(argc, argv, "sa:p:c:l:q:w:")) I=-1) {
switch (op) {
case's"
ctx.server = 1;
break;
case 'a":
ctx.server name = optarg;
break;
case 'p"
ctx.server port = optarg;
break;
case 'c":
ctx.msg_count = atoi(optarg);
break;
case 'l"

Mellanox Technologies

Programming Examples Using RDMA Verbs \

Rev 1.7 \

ctx.msg_length = atoi(optarg);
break;

case 'q"
ctx.qp_count = atoi(optarg);
break;

case 'w"
ctx.max_wr = atoi(optarg);
break;

default:
printf("usage: %s -a server_address\n", argv[0]);
printf("\t[-s server mode]\n");
printf("\t[-p port_number]\n");
printf("\t[-c msg_count]\n");
printf("\t[-1 msg_length]\n");
printf("\t[-q gp_count]\n");
printf("\t[-w max_wr]\n");
exit(1);

H

}

if (ctx.server name == NULL) {
printf("server address required (use -a)!\n");
exit(1);

}

hints.ai_port space = RDMA PS TCP;
if (ctx.server == 1)
hints.ai_flags = RAI_PASSIVE; /* this makes it a server */

ret = rdma_getaddrinfo(ctx.server name, ctx.server_port, &hints, &rai);
if (ret) {

VERB_ERR("rdma_getaddrinfo", ret);

exit(1);
}

/* allocate memory for our QPs and send/recv buffers */

ctx.conn_id = (struct rdma_cm_id **) calloc(ctx.qp_count,
sizeof (struct rdma_cm_id *));

memset(ctx.conn_id, 0, sizeof (ctx.conn_id));

ctx.send_buf = (char *) malloc(ctx.msg_length);
memset(ctx.send_buf, 0, ctx.msg_length);
ctx.recv_buf = (char *) malloc(ctx.msg_length);
memset(ctx.recv_buf, 0, ctx.msg_length);

if (ctx.server)
ret = run_server(&ctx, rai);
else

ret = run_client(&ctx, rai);

destroy_resources(&ctx);
free(rai);

return ret;

Mellanox Technologies 197 j

(Rev 1.7 Programming Examples Using RDMA Verbs \

k 198 Mellanox Technologies j

-

Rev 1.7

Appendix A: Experimental APIs

AA1

A11

A1.2

*attr)

A13

Dynamically Connected Transport

The Dynamically Connected (DC) transport provides reliable transport services from a DC Initi-
ator (DCI) to a DC Target (DCT). A DCI can send data to multiple targets on the same or differ-
ent subnet, and a DCT can simultaneously service traffic from multiple DCIs. No explicit
connections are setup by the user, with the target DCT being identified by an address vector sim-
ilar to that used in UD transport, DCT number, and DC access key.

DC Usage Model

e Query device is used to detect if the DC transport is supported, and if so what are it's
characteristics

» User creates DCI's. The number of DCI's depends on the user's strategy for handling
concurrent data transmissions.

* User defines a DC Access Key, and initializes a DCT using this access key

» User can query the DCI with the routine ibv_exp_query qp(), and can query the DCT
with the ibv_exp_query_dct() routine.

» User can arm the DCT, so that an event is generated when a DC Access Key violation
occurs.

* Send work requests are posted to the DCI's. Data can be sent to a different DCT only
after all previous sends complete, so send CQE's can be used to detect such comple-
tions.

e The CQ associated with the DCT is used to detect data arrival.

* Destroy resources when done

Query Device
The function

int ibv_exp query device(struct ibv context *context, struct ibv_exp device attr

is used to query for device capabilities. The flag IBV_EXP DEVICE DC TRANSPORT in the
field exp_atomic_cap of the struct ibv_exp_device_attr defines if the DC transport is supported.

The fields,
int max_dc req rd atom;
int max_dc res rd atom;

in the same structure describe DC's atomic support characteristics.

Create DCT

/* create a DC target object */
struct ibv_dct *ibv_exp_create_dct(struct ibv_context *context,
struct ibv_exp dct init_attr *attr);

» context - Context to the InfiniBand device as returned from ibv_open_device.
» attr - Defines attributes of the DCT and include
e Struct ibv_pd *pd - The PD to verify access validity with respect to protection domains

Mellanox Technologies 199

[Rev 1.7 Programming Examples Using RDMA Verbs \

» struct ibv_cq *cq - CQ used to report receive completions
e Struct ibv_srq *srq - The SRQ that will provide the received buffers.

Note that the PD is not checked against the PD of the scatter entry. This check is done with the PD
of the DC target.

* dc_key - A 64 bit key associated with the DCT.
» port - The port number this DCT is bound to
» access flags - Semantics similar to RC QPs

* remote read

* remote write

* remote atomics

* min_rnr_timer - Minimum rnr nak time required from the requester between successive
requests of a message that was previously rejected due to insufficient receive buffers. IB
spec 9.7.5.2.8

» tclass- Used by packets sent by the DCT in case GRH is used

» flow_label - Used by packets sent by the DCT in case GRH is used
* mtu-MTU

* pkey index - pkey index used by the DC target

» gid index - Gid (e.g., all caps) index associated with the DCT. Used to verify incoming
packets if GRH is used. This field in mandatory

* hop_limit - Used by packets sent by the DCT in case GRH is used
* Create flags

A.1.4 Destroy DCT

/* destroy a DCT object */
int ibv_exp_destroy_dct(struct ibv_exp_dct *dct);

Destroy a DC target. This call may take some time till all DCRs are disconnected.

A.1.5 Query DCT

/* query DCT attributes */
int ibv_exp_query_dct(struct ibv_exp_dct *dct, struct ibv_exp_dct_attr *attr);

Attributes queried are:
¢ state

. cq

* access_flags

* min_rnr_flags

« pd

* ftclass

* flow label
* dc_key

e mtu

* port

k 200 Mellanox Technologies j

A.1.6

A7

Rev 1.7

* pkey index

* gid index

* hop_limit

* key violations
« pd

* srq

[] Cq
Arm DCT

A DC target can be armed to request notification when DC key violations occur. After return
from a call to ibv_exp _arm_dct, the DC target is moved into the “ARMED” state. If a packet tar-
geting this DCT with a wrong key is received, the DCT moves to the “FIRED” state and the
event IBV_EXP EVENT DCT KEY VIOLATION is generated. The user can read these
events by calling ibv_get async_event. Events must be acked with ibv_ack async event.

struct ibv_exp _arm_attr {
uint32 t comp_mask;
¥
int ibv_exp_arm_dct(struct ibv_exp_dct *dct,
struct ibv_exp_arm_attr *attr);

* dct - Pointer to a previously create DC target

 attr - Pointer to arm DCT attributes. This struct has a single comp mask field that must
be zero in this version

Create DCI

A DCI is created by calling ibv_exp_create_qp() with a new QP type, IBV_EXP QPT DC INI
The semantics is similar to regular QPs. A DCI is an initiator endpoint which connects to DC tar-
gets. Matching rules are identical to those of QKEY for UD. However, the key is 64 bits. A DCI
is not a responder, it's only an initiator.

The following are the valid state transitions for DCI with required and optional params

From To Required Optional

Reset Init IBV_QP PKEY INDEX,
IBV_QP_PORT,
IBV_QP DC KEY

Init Init IBV_QP _PKEY INDEX,
IBV_QP_PORT,
IBV_QP_ACCESS_FLAGS

Init RTR IBV_QP_AV, IBV_QP_PKEY_ INDEX,
IBV_QP_PATH MTU IBV_QP DC KEY

RTR RTS IBV_QP_TIMEOUT, IBV_QP_ALT PATH,
IBV_QP _RETRY_ CNT, IBV_QP_MIN RNR_TIMER,
IBV_QP_RNR RETRY, IBV_QP PATH MIG STATE
IBV_QP MAX QP RD ATOMIC

Mellanox Technologies 201

k 202

Rev 1.7

Programming Examples Using RDMA Verbs \

From

To

Required

Optional

RTS

RTS

IBV_QP_ALT PATH,
IBV_QP_PATH_MIG_STATE,
IBV_QP_MIN RNR_TIMER

Mellanox Technologies

-

| Rev 1.7

Appendix B: Verbs API for Extended Atomics Support

B.1

B.2

B.2.1

The extended atomics capabilities provide support for performing Fetch& Add and masked Com-
pare&Swap atomic operations on multiple fields. Figure 1 shows how the individual fields
within the user-supplied-data field are specified.

Figure 1: The Mask for a Multi-Field Fetc & Add Operation

Implicit 1 Implicit 1
ojojoj1y0j0j0]1 ojoj|o ojojo|1 ojo|o
L N B] [N B
012 3 45 6 7 60 61 62 63 64 65 66 67 N-3 N-2 N-1 N
l\ _K ,_/l N _,.“-\ _,.’l |~.\ ___/I
v v ~ ~ ~
Field 0 Field 1 Field 7 Field 8 Field (N/4)-1

In Figure 1, the total operand size is N bits, with the length of each data field being four bits. The
I's in the mask indicate the termination of a data field. With ConnectX® family of HCA's and
Connect-IB®, there is always an implicit 1 in the mask.

Supported Hardware

The extended atomic operations are supported by ConnectX®-2 and subsequent hardware. Con-
nectX-2/ConnectX®-3 devices employ read-modify-write operations on regions that are sized as
multiples of 64 bits with 64 bit alignment. Therefore, when operations are performed on user buf-
fers that are smaller than 64 bits, the unmodified sections of such regions will be written back
unmodified when the results are committed to user memory. Connect-IB® and subsequent
devices operate on memory regions that are multiples of 32 or 64 bits, with natural alignment.

Verbs Interface Changes

Usage model:
¢ Query device to see if
* Atomic Operations are supported
* Endieness of atomic response
» Extended atomics are supported, and the data sizes supported
 Initialize QP for use with atomic operations, taking device capabilities into account
* Use the atomic operations

* Destroy QP after finishing to use it

Query Device Capabilities

The device capabilities flags enumeration is updated to reflect the support for extended atomic
operations by adding the flag:

+ IBV_EXP DEVICE_EXT ATOMICS,

and the device attribute comp mask enumeration ibv_exp device attr comp mask is updated
with:

+ IBV_EXP DEVICE ATTR_EXT ATOMIC_ ARGS,

Mellanox Technologies 203

N

J

[Rev 1.7 Programming Examples Using RDMA Verbs \

The device attributes struct, ibv_exp_device attr, is modified by adding struct ibv_exp ext -
atomics_params ext_atom

struct ibv_exp_ext _atomics_params {
uint64 t atomic arg_sizes; /* bit-mask of supported sizes */
uint32 t max fa bit boundary;

uint32 t log max_atomic_inline;

}9

Atomic fetch&add operations on subsections of the operands are also supported, with max_-
fa_bit boundary being the log-base-2 of the largest such subfield, in bytes. Log max -
atomic_inline is the log of the largest amount of atomic data, in bytes, that can be put in the work
request and includes the space for all required fields. -For ConnectX and Connect-IB the largest
subsection supported is eight bytes.

The returned data is formatted in units that correspond to the host's natural word size. For exam-
ple, if extended atomics are used for a 16 byte field, and returned in big-endian format, each eight
byte portion is arranged in big-endian format, regardless of the size the fields used in an associa-
tion in a multi-field fetch-and-add operation.

B.2.2 Response Format

The returned data is formatted in units that correspond to the host's natural word size. For exam-
ple, if extended atomics are used for a 16 byte field, and returned in big-endian format, each eight
byte portion is arranged in big-endian format, regardless of the size the fields used in an associa-
tion in a multi-field fetch-and-add operation.

B.2.3 QP Initialization

QP initialization needs additional information with respect to the sizes of atomic operations that
will be supported inline. This is needed to ensure the QP is provisioned with sufficient send
resources to support the number of support WQE's.

The QP attribute enumeration comp-mask, ibv_exp qp init attr comp mask, is expanded by
adding

+ IBV_EXP QP _INIT _ATTR_ATOMICS_ ARG,

Send Work Request Changes

The send op codes are extended to include

+ IBV_EXP_WR_EXT MASKED ATOMIC CMP_AND SWP,
+ IBV_EXP_WR_EXT MASKED ATOMIC FETCH AND ADD

ibv_exp send flags

The send flags, ibv_exp_send flags, are expanded to include inline support for extended atomic
operations with the flag

+ IBV_EXP_SEND EXT ATOMIC_INLINE

The send work request is extended by appending

union {
struct {
/* Log base-2 of total operand size

k 204 Mellanox Technologies j

*/
uint32 t log arg sz;
uint64 t remote addr;
uint32 t rkey; /* remote memory key */
union {
struct {
/* For the next four fields:
* If operand_size < 8 bytes then inline data is in
* the corresponding field; for small operands,
* LSBs are used.
* Else the fields are pointers in the process's
* address space to
* where the arguments are stored
*/
union {
struct ibv_exp_cmp_swap cmp_swap;
struct ibv_exp_fetch add fetch add;
} op; } inline_data;
/* in the future add support for non-inline
* argument provisioning
*/
} wr_data;
} masked atomics;
} ext_op;

To the end of work request, ibv_exp send wr,
with

struct ibv_exp_cmp_swap {

uint64 t compare mask;

uint64 t compare val;

uint64 t swap val;

uint64 t swap mask;

¥

and

struct ibv_exp_fetch add {
uint64 t add wval;
uint64 t field boundary;

}9

Mellanox Technologies

Rev 1.7

205

J

[Rev 1.7 | Programming Examples Using RDMA Verbs \

Appendix C: User-Mode Memory Registration (UMR)

This section describes User-Mode Memory Registration (UMR) which supports the creation of
memory keys for non-contiguous memory regions. This includes the concatenation of arbitrary
contiguous regions of memory, as well as regions with regular structure.

Three examples of non-contiguous regions of memory that are used to form new contiguous
regions of memory are described below. Figure 2 shows an example where portions of three sep-
arate contiguous regions of memory are combined to create a single logically contiguous region
of memory. The base address of the new memory region is defined by the user when the new
memory key is defined.

Figure 2: Memory region described by Indirect Memory key (KLM)
One memory region

3 memory regions Referenced by one
Each referenced by a memory key
different memory key Non-contiguous in

virtual memory

Figure 3 shows a non-contiguous memory region with regular. This region is defined by a base
address, stride between adjacent elements, the extent of each element, and a repeat count.

k 206 Mellanox Technologies j

C.1

C.141

Rev 1.7

Figure 3: Non-contiguous memory region

A

v

Figure 4 shows an example where two non-contiguous memory regions are interleaved, using the
repeat structure UMR.

Figure 4: Interleaving data from two separate non-contiguous regions of memory

D—)

Interfaces

The usage model for the UMR includes:

* Ability to with ibv_exp query_ device if UMR is supported.

* If UMR is supported, checking struct ibv_exp device attr for it's characteristics

+ Using ibv_exp_create_mr() to create an uninitialized memory key for future UMR use

» Using ibv_exp post send() to define the new memory key. This can be posted to the
same send queue that will use the memory key in future operations.

» Using the UMR defined as one would use any other memory keys
» Using ibv_exp post_send() to invalidate the UMR memory key
* Releasing the memory key with the ibv_dereg_mr()

Device Capabilities

The query device capabilities is queried to see if the UMR capability is supported, and if so, what
are it's characteristics. The routine used is:

int ibv_exp_query_device(struct ibv_context *context, struct ibv_exp_device attr *attr)

Mellanox Technologies 207

J

[Rev 1.7 Programming Examples Using RDMA Verbs \

» structibv_exp umr_caps umr_caps field describes the UMR capabilities. This structure
is defined as:

struct ibv_exp umr caps {

uint32 t max klm list size;

uint32 t max send wge inline klms;

uint32_t max_umr_ recursion depth;

uint32 t max umr stride dimension;
};

The fields added to the struct struct ibv_exp_device_attr to support UMR include:

* exp _device cap flags - UMR support available if the flag IBV_EXP DEVICE AT-
TR _UMR is set.

* max_mkey klm list size - maximum number of memory keys that may be input to UMR

* max send wqe inline klms - the largest number of KLLM's that can be provided inline in
the work request. When the list is larger than this, a buffer allocated via the struct ibv_mr
*ibv_exp reg mr(struct ibv_exp reg mr in *in) function, and provided to the driver as
part of the memory key creation

* max_umr_recursion_depth - memory keys created by UMR operations may be input to
UMR memory key creation. This specifies the limit on how deep this recursion can be.

* max_umr_stride_dimension - The maximum number of independent dimensions that may
be used with the regular structure UMR operations. The current limit is one.

C.1.2 QP Creation
To configure QP UMR support the routine
ibv_qp * ibv_exp_create qp(struct ibv_context *context, struct ibv_exp qp_init attr *qp_init attr)
is to be used. When the attribute IBV_EXP QP _CREATE UMR is set in the exp create flags
field of struct ibv_exp gp init attr enables UMR support. The attribute IBV_ IBV_EX-

P_QP INIT ATTR MAX INL KLMS is set in the field comp mask struct ibv_ex-
p_qgp_init_attr, with the field max_inl send klms defining this number.

C.1.3 Memory Key Manipulation
To create an uninitialized memory key for future use the routine
struct ibv_mr *ibv_exp_create mr(struct ibv_exp create mr in *create mr in)
is used with
struct ibv_exp create_mr_in {
struct ibv_pd *pd;
struct ibv_exp _mr_init_attr attr;
15
and
struct ibv_exp_mr _init attr {
uint64 t max reg_descriptors; /* maximum number of entries */
uint32 tcreate flags; /* enum ibv_mr create flags */
uint64 t access_flags; /* region's access rights */
uint32 t comp mask;
15

To query the resources associated with the memory key, the routine

k 208 Mellanox Technologies j

C1.4

C.A1.5

Rev 1.7

int ibv_exp_query mkey(struct ibv_mr *mr, struct ibv_exp mkey attr *query mkey in)
is used with

struct ibv_exp mkey attr {
int n_mkey_entries; /* the maximum number of memory keys that can be supported */
uint32 t comp mask;

b

Non-inline memory objects

When the list of memory keys input into the UMR memory key createion is too large to fit into
the work request, a hardware accessible buffer needs to be provided in the posted send request.
This buffer will be populated by the driver with the relevant memory objects.

We will define the enum

enum memory_reg_type{
IBV_MEM_REG MKEY

}s

The memory registration function is defined as:

struct non_inline data *ibv_exp alloc_mkey list memory
(struct ibv_exp mkey list container attr *attr)

where

struct ibv_exp_mkey list container attr {
struct ibv_pd *pd;
uint32_t mkey list type; /* use ibv_exp mkey list _type */
uint32_t max_klm_list size;
uint32_t comp_mask; /*use ibv_exp_alloc_mkey list comp mask */
55
This memory is freed with

int ibv_exp_dealloc_mkey list memory(struct ibv_exp mkey list container *mem)

where
struct ibv_exp_mkey list container {
uint32 t max klm list size;
struct ibv_context *context;
}; (NOTE - Need to check with Eli Cohen here - just reading the code).

Memory Key Initialization

The memory key is manipulated with the ibv_exp post send() routine. The opcodes IBV_EX-
P WR UMR FILL and IBV_EXP WR UMR _INVALIDATE are used to define and invalidate,
respectively, the memory key.

The struct ibv_exp_send_wr contains the following fields to support the UMR capabilities:

union {
struct {
uint32_tumr_type; /* use ibv_exp _umr_wr_type */
struct ibv_exp_mkey list container *memory objects; /* used when IBV_EXP SEND INLINE is not set */

Mellanox Technologies 209

J

[Rev 1.7 Programming Examples Using RDMA Verbs \

uint64 texp access; /* use ibv_exp_access_flags */
struct ibv_mr *modified mr;
uint64 t base addr;
uint32_t num_mrs; /* array size of mem_repeat_block list or mem reg list */
union {
struct ibv_exp mem_region *mem_reg_list; /* array, size corresponds to num_mrs */
struct {
struct ibv_exp mem_repeat block *mem_repeat block list; /* array, size corresponds to num_mr */
size t *repeat count; /* array size corresponds to stride dim */
uint32 tstride dim;
} 1b;
} mem_list;
} umr;

where

enum ibv_exp umr_wr_type {
IBV_EXP UMR MR LIST,

IBV_EXP UMR REPEAT

I

and

struct ibv_exp _mkey list container {
uint32_t max_klm_list size;
struct ibv_context *context;

1

struct ibv_exp _mem_region {
uint64 t base addr;
struct ibv_mr *mr;

size_t length;

I

and

struct ibv_exp_mem_repeat block {
uint64_t base_addr; /* array, size corresponds to ndim */
struct ibv_mr *mr;
size_t *byte count; /* array, size corresponds to ndim */
size_t *stride; /* array, size corresponds to ndim */

1

k 210 Mellanox Technologies j

-

| Rev 1.7

Appendix D: Cross-Channel Communications Support

D.1

The Cross-Channel Communications adds support for work requests that are used for synchro-
nizing communication between separate QP's and support for data reductions. This functionality,
for example, is sufficient for implementing MPI collective communication with a single post of
work requests, with the need to check only of full communication completion, rather than on
completion of individual work requests.

Terms relevant to the Cross-Channel Synchronization are defined in the following table:

Term Description

Cross Channel supported QP QP that allows send_enable, recv_enable, wait, and reduction
tasks.

Managed send QP Work requests in the corresponding send queues must be
explicitly enabled before they can be executed.

Managed receive QP Work requests in the corresponding receive queues must be
explicitly enabled before they can be executed.

Master Queue Queue thatuses send_enable and/or recv_enable work requests
to enable tasks in managed QP. A QP can be both master and
managed QP.

Wait task (n) Task the completes when n completion tasks appear in the
specified completion queue

Send Enable task (n) Enables the next n send tasks in the specified send queue to be
executable.

Receive Enable task Enables the next n send tasks in the specified receive queue to
be executable.

Reduction operation Data reduction operation to be executed by the HCA on speci-
fied data.

Usage Model

» Creating completion queues, setting the ignore-overrun bit for the CQ's that only hard-
ware will monitor.

* Creating and configuring the relevant QP's, setting the flags indicating that Cross-Chan-
nel Synchronization work requests are supported, and the appropriate master and man-
aged flags (based on planned QP usage). For example, this may happen when an MPI
library creates a new communicator.

* Posting tasks list for the compound operations.

* Checking the appropriate queue for compound operation completion (need to request
completion notification from the appropriate work request). For example, a user may
setup a CQ that receives completion notification for the work-request whose completion
indicates the entire collective operation has completed locally.

e Destroying the QP's and CQ's created for Cross-Channel Synchronization operations,
once the application is done using them. For example, an MPI library may destroy these
resources after it frees all the communicator using these resources.

Mellanox Technologies 211

N

J

D.2

D.2.1

D.2.2

k212

Rev 1.7 Programming Examples Using RDMA Verbs \

Resource Initialization

Device Capabilities
The device query function,

int ibv_exp_query_device(struct ibv_context *context,
struct ibv_exp_device_attr *attr);

is used to query for device capabilities.
A value of
IBV_EXP DEVICE CROSS_CHANNEL

in exp_device cap_flags indicates support for Cross-Channel capabilities.

In addition, the struct calc_cap is used to define what reduction capabilities are supported

struct ibv_exp_device attr {

struct ibv_exp_device calc_cap calc_cap;
15

where,

struct ibv_exp_device calc_cap {

uint64 t data_types;

uint64 t data_sizes;

uint64 t int ops;

uint64 t uint_ops;

uint64 t fp ops;
55
Where the operation types are given by:
IBV_EXP_CALC_OP_ADD, /* addition */
IBV_EXP CALC OP_BAND, /* bit-wise and */
IBV_EXP CALC OP BXOR, /*bit wise xor */
IBV_EXP CALC OP_BOR, /* bit-wise or */

and data types supported are described by
IBV_EXP_CALC_DATA_SIZE 64 BIT

Completion Queue

Completion queue (CQ) that will be used with Cross Channel Synchronization opertations needs
to be marked as such as CQ at creation time. This CQ needs to be initialized with

struct ibv_cq *ibv_exp_create cq(struct ibv_context *context,
int cqe,
void *cq_context,
struct ibv_comp_channel *channel,
int comp_vector,
struct ibv_exp_cq_init_attr *attr)

where the new parameter is defined as:

Mellanox Technologies j

D.2.3

Rev 1.7

struct ibv_exp _cq_init_attr{
uint32 _t comp_ mask;
unit32 t flags;

H

The appropriate flag to set is:
IBV_EXP_CQ CREATE CROSS CHANNEL
The comp_mask needs to set the bit,
IBV_EXP_CQ INIT ATTR FLAGS

To avoid the CQ's entering the error state due to lack of CQ processing, the overrun ignore (OI)
bit of the Completion Queue Context table must be set.

To set these bit the function

/**

* ibv_exp_modify cq - Modifies the attributes for the specified CQ.

* @cq: The CQ to modify.

* @cq_attr: Specifies the CQ attributes to modify.

* @cq_attr_mask: A bit-mask used to specify which attributes of the CQ

* are being modified.

*/

static inline int ibv_exp_modify cq(struct ibv_cq *cq,
struct ibv_exp_cq_attr *cq_attr,
int ¢cq_attr mask)

The bit IBV_EXP CQ CAP FLAGS in cq_attr mask needs to be set, as does the bit IBV_EXP C-

Q ATTR CQ CAP_FLAGS in cq attr mask's comp mask. Finally, the bit IBV_EXP C-

Q IGNORE_ OVERRUN needs to be set in the field cq cap flags.

QP Creation
To configure the QP for Cross-Channel use following function is used

struct ibv_qp *ibv_exp_create_qp(struct ibv_context *context,
struct ibv_exp _qp_init_attr *qp_init_attr)

where

struct ibv_exp _qp_init attr {

void *qp_context;
struct ibv_cq *send_cq;
struct ibv_cq *recv_cq;
struct ibv_srq *srq;

struct ibv_qp_cap cap;

enum ibv_qp_type qp_type;
int sq sig all;

uint32 t comp mask; /* use ibv_exp qp_init_attr comp mask */
struct ibv_pd *pd;

struct ibv_xrcd *xred;

uint32 t exp create flags; /* use ibv_exp qp _create flags */

uint32 t max_inl recv;
struct ibv_exp_qpg qpg;

Mellanox Technologies 213

J

D.3

k 214

Rev 1.7 Programming Examples Using RDMA Verbs \

uint32 t max atomic arg;
uint32 t max_inl send klms;

I

The exp_create_flags that are available are

IBV_EXP QP _CREATE CROSS CHANNEL - This must be set for any QP to which cross-
channel-synchronization work requests will be posted.

IBV_EXP QP _CREATE MANAGED SEND - This is set for a managed send QP, e.g. one for
which send-enable operations are used to activate the posted send requests.

IBV_EXP QP _CREATE MANAGED RECYV - This is set for a managed receive QP, e.g. one
for which send-enable operations are used to activate the posted receive requests.

Posting Request List

A single operation is defined with by a set of work requests posted to multiple QP's, as described
in the figure bellow.

Figure 5: Work Requests Operation

NULL

NULL

NULL NULL

The lists are of tasks are NULL terminated.

The routine
int ibv_exp_post task(struct ibv_context *context, struct ibv_exp_task *task, struct ibv_exp task **bad _task)

is used to post the list of work requests, with

struct ibv_exp_task {
enum ibv_exp task type task type;
struct {
struct ibv_qp *qp;

Mellanox Technologies j

Rev 1.7

union {
struct ibv_exp send wr *send wr;
struct ibv_recv_wr *recv_wr;

15
} item;
struct ibv_exp task *next;
uint32 t comp_mask; /* reserved for future growth (must be 0) */
15

The task type is defined by:

IBV_EXP_TASK_SEND
IBV_EXP_TASK_RECV

To support the new work requests, the struct ibv_exp_send_wr is expanded with

union {

struct {
uint64 t remote addr;
uint32 t rkey;

} rdma;

struct {
uint64 t remote addr;
uint64 t compare add;
uint64 t swap;
uint32 t rkey;

} atomic;

struct {
struct ibv_cq *cq;
int32 t cq count;

} cqe_wait;

struct {
struct ibv_qgp *qp;
int32_t wqe_count;

} wqe_enable;

} task;

The calc operation is also defined in ibv_exp send wr by the union:

union {
struct {
enum ibv_exp calc_op calc_op;
enum ibv_exp calc data_type data_type;
enum ibv_exp calc data_size data_size;
} calc;
} op;

In addition, in the field exp_send flags in ibv_exp send wr the flag IBV_EXP SEND WITH -
CALC indicates the presence of a reduction operation, and IBV_EXP SEND WAIT EN LAST
is used to signal the last wait task posted for a given CQ in the current task list.

For ibv_exp_calc data_type the types

Mellanox Technologies 215

J

(Rev 1.7 Programming Examples Using RDMA Verbs \

IBV_EXP_CALC DATA TYPE INT,

IBV_EXP_CALC DATA TYPE UINT,

IBV_EXP CALC DATA TYPE FLOA
are supported.
The supported data size for ibv_exp data size is IBV_EXP CALC DATA SIZE 64 BIT.
New send opcodes are defined for the new work requests. These include:

IBV_EXP_WR_SEND ENABLE
IBV_EXP_WR_RECV_ENABLE
IBV_EXP_WR_CQE_WAIT

ConnectX-3/Connect-IB Data Endianess
The ConnectX-3 and Connect-IB HCA's expect to get the data in network order.

k 216 Mellanox Technologies j

	RDMA Aware Networks Programming User Manual
	Table of Contents
	Revision History
	Glossary
	1 RDMA Architecture Overview
	1.1 InfiniBand
	1.2 Virtual Protocol Interconnect® (VPI)
	1.3 RDMA over Converged Ethernet (RoCE)
	1.4 Comparison of RDMA Technologies
	1.5 Key Components
	1.6 Support for Existing Applications and ULPs
	1.7 References

	2 RDMA-Aware Programming Overview
	2.1 Available Communication Operations
	2.1.1 Send/Send With Immediate
	2.1.2 Receive
	2.1.3 RDMA Read
	2.1.4 RDMA Write / RDMA Write With Immediate
	2.1.5 Atomic Fetch and Add / Atomic Compare and Swap

	2.2 Transport Modes
	2.2.1 Reliable Connection (RC)
	2.2.2 Unreliable Connection (UC)
	2.2.3 Unreliable Datagram (UD)

	2.3 Key Concepts
	2.3.1 Send Request (SR)
	2.3.2 Receive Request (RR)
	2.3.3 Completion Queue
	2.3.4 Memory Registration
	2.3.5 Memory Window
	2.3.6 Address Vector
	2.3.7 Global Routing Header (GRH)
	2.3.8 Protection Domain
	2.3.9 Asynchronous Events
	2.3.10 Scatter Gather
	2.3.11 Polling

	2.4 Typical Application

	3 VPI Verbs API
	3.1 Initialization
	3.1.1 ibv_fork_init

	3.2 Device Operations
	3.2.1 ibv_get_device_list
	3.2.2 ibv_free_device_list
	3.2.3 ibv_get_device_name
	3.2.4 ibv_get_device_guid
	3.2.5 ibv_open_device
	3.2.6 ibv_close_device
	3.2.7 ibv_node_type_str
	3.2.8 ibv_port_state_str

	3.3 Verb Context Operations
	3.3.1 ibv_query_device
	3.3.2 ibv_query_port
	3.3.3 ibv_query_gid
	3.3.4 ibv_query_pkey
	3.3.5 ibv_alloc_pd
	3.3.6 ibv_dealloc_pd
	3.3.7 ibv_create_cq
	3.3.8 ibv_resize_cq
	3.3.9 ibv_destroy_cq
	3.3.10 ibv_create_comp_channel
	3.3.11 ibv_destroy_comp_channel

	3.4 Protection Domain Operations
	3.4.1 ibv_reg_mr
	3.4.2 ibv_dereg_mr
	3.4.3 ibv_create_qp
	3.4.4 ibv_destroy_qp
	3.4.5 ibv_create_srq
	3.4.6 ibv_modify_srq
	3.4.7 ibv_destroy_srq
	3.4.8 ibv_open_xrc_domain
	3.4.9 ibv_create_xrc_srq
	3.4.10 ibv_close_xrc_domain
	3.4.11 ibv_create_xrc_rcv_qp
	3.4.12 ibv_modify_xrc_rcv_qp
	3.4.13 ibv_reg_xrc_rcv_qp
	3.4.14 ibv_unreg_xrc_rcv_qp
	3.4.15 ibv_create_ah
	3.4.16 ibv_destroy_ah

	3.5 Queue Pair Bringup (ibv_modify_qp)
	3.5.1 ibv_modify_qp
	3.5.2 RESET to INIT
	3.5.3 INIT to RTR
	3.5.4 RTR to RTS

	3.6 Active Queue Pair Operations
	3.6.1 ibv_query_qp
	3.6.2 ibv_query_srq
	3.6.3 ibv_query_xrc_rcv_qp
	3.6.4 ibv_post_recv
	3.6.5 ibv_post_send
	3.6.6 ibv_post_srq_recv
	3.6.7 ibv_req_notify_cq
	3.6.8 ibv_get_cq_event
	3.6.9 ibv_ack_cq_events
	3.6.10 ibv_poll_cq
	3.6.11 ibv_init_ah_from_wc
	3.6.12 ibv_create_ah_from_wc
	3.6.13 ibv_attach_mcast
	3.6.14 ibv_detach_mcast

	3.7 Event Handling Operations
	3.7.1 ibv_get_async_event
	3.7.2 ib_ack_async_event
	3.7.3 ibv_event_type_str

	3.8 Experimental APIs
	3.8.1 ibv_exp_query_device
	3.8.2 ibv_exp_create_qp
	3.8.3 ibv_exp_post_send

	4 RDMA_CM API
	4.1 Event Channel Operations
	4.1.1 rdma_create_event_channel
	4.1.2 rdma_destroy_event_channel

	4.2 Connection Manager (CM) ID Operations
	4.2.1 rdma_create_id
	4.2.2 rdma_destroy_id
	4.2.3 rdma_migrate_id
	4.2.4 rdma_set_option
	4.2.5 rdma_create_ep
	4.2.6 rdma_destroy_ep
	4.2.7 rdma_resolve_addr
	4.2.8 rdma_bind_addr
	4.2.9 rdma_resolve_route
	4.2.10 rdma_listen
	4.2.11 rdma_connect
	4.2.12 rdma_get_request
	4.2.13 rdma_accept
	4.2.14 rdma_reject
	4.2.15 rdma_notify
	4.2.16 rdma_disconnect
	4.2.17 rdma_get_src_port
	4.2.18 rdma_get_dst_port
	4.2.19 rdma_get_local_addr
	4.2.20 rdma_get_peer_addr
	4.2.21 rdma_get_devices
	4.2.22 rdma_free_devices
	4.2.23 rdma_getaddrinfo
	4.2.24 rdma_freeaddrinfo
	4.2.25 rdma_create_qp
	4.2.26 rdma_destroy_qp
	4.2.27 rdma_join_multicast
	4.2.28 rdma_leave_multicast

	4.3 Event Handling Operations
	4.3.1 rdma_get_cm_event
	4.3.2 rdma_ack_cm_event
	4.3.3 rdma_event_str

	5 RDMA Verbs API
	5.1 Protection Domain Operations
	5.1.1 rdma_reg_msgs
	5.1.2 rdma_reg_read
	5.1.3 rdma_reg_write
	5.1.4 rdma_dereg_mr
	5.1.5 rdma_create_srq
	5.1.6 rdma_destroy_srq

	5.2 Active Queue Pair Operations
	5.2.1 rdma_post_recvv
	5.2.2 rdma_post_sendv
	5.2.3 rdma_post_readv
	5.2.4 rdma_post_writev
	5.2.5 rdma_post_recv
	5.2.6 rdma_post_send
	5.2.7 rdma_post_read
	5.2.8 rdma_post_write
	5.2.9 rdma_post_ud_send
	5.2.10 rdma_get_send_comp
	5.2.11 rdma_get_recv_comp

	6 Events
	6.1 IBV Events
	6.1.1 IBV_EVENT_CQ_ERR
	6.1.2 IBV_EVENT_QP_FATAL
	6.1.3 IBV_EVENT_QP_REQ_ERR
	6.1.4 IBV_EVENT_QP_ACCESS_ERR
	6.1.5 IBV_EVENT_COMM_EST
	6.1.6 IBV_EVENT_SQ_DRAINED
	6.1.7 IBV_EVENT_PATH_MIG
	6.1.8 IBV_EVENT_PATH_MIG_ERR
	6.1.9 IBV_EVENT_DEVICE_FATAL
	6.1.10 IBV_EVENT_PORT_ACTIVE
	6.1.11 IBV_EVENT_PORT_ERR
	6.1.12 IBV_EVENT_LID_CHANGE
	6.1.13 IBV_EVENT_PKEY_CHANGE
	6.1.14 IBV_EVENT_SM_CHANGE
	6.1.15 IBV_EVENT_SRQ_ERR
	6.1.16 IBV_EVENT_SRQ_LIMIT_REACHED
	6.1.17 IBV_EVENT_QP_LAST_WQE_REACHED
	6.1.18 IBV_EVENT_CLIENT_REREGISTER
	6.1.19 IBV_EVENT_GID_CHANGE

	6.2 IBV WC Events
	6.2.1 IBV_WC_SUCCESS
	6.2.2 IBV_WC_LOC_LEN_ERR
	6.2.3 IBV_WC_LOC_QP_OP_ERR
	6.2.4 IBV_WC_LOC_EEC_OP_ERR
	6.2.5 IBV_WC_LOC_PROT_ERR
	6.2.6 IBV_WC_WR_FLUSH_ERR
	6.2.7 IBV_WC_MW_BIND_ERR
	6.2.8 IBV_WC_BAD_RESP_ERR
	6.2.9 IBV_WC_LOC_ACCESS_ERR
	6.2.10 IBV_WC_REM_INV_REQ_ERR
	6.2.11 IBV_WC_REM_ACCESS_ERR
	6.2.12 IBV_WC_REM_OP_ERR
	6.2.13 IBV_WC_RETRY_EXC_ERR
	6.2.14 IBV_WC_RNR_RETRY_EXC_ERR
	6.2.15 IBV_WC_LOC_RDD_VIOL_ERR
	6.2.16 IBV_WC_REM_INV_RD_REQ_ERR
	6.2.17 IBV_WC_REM_ABORT_ERR
	6.2.18 IBV_WC_INV_EECN_ERR
	6.2.19 IBV_WC_INV_EEC_STATE_ERR
	6.2.20 IBV_WC_FATAL_ERR
	6.2.21 IBV_WC_RESP_TIMEOUT_ERR
	6.2.22 IBV_WC_GENERAL_ERR

	6.3 RDMA_CM Events
	6.3.1 RDMA_CM_EVENT_ADDR_RESOLVED
	6.3.2 RDMA_CM_EVENT_ADDR_ERROR
	6.3.3 RDMA_CM_EVENT_ROUTE_RESOLVED
	6.3.4 RDMA_CM_EVENT_ROUTE_ERROR
	6.3.5 RDMA_CM_EVENT_CONNECT_REQUEST
	6.3.6 RDMA_CM_EVENT_CONNECT_RESPONSE
	6.3.7 RDMA_CM_EVENT_CONNECT_ERROR
	6.3.8 RDMA_CM_EVENT_UNREACHABLE
	6.3.9 RDMA_CM_EVENT_REJECTED
	6.3.10 RDMA_CM_EVENT_ESTABLISHED
	6.3.11 RDMA_CM_EVENT_DISCONNECTED
	6.3.12 RDMA_CM_EVENT_DEVICE_REMOVAL
	6.3.13 RDMA_CM_EVENT_MULTICAST_JOIN
	6.3.14 RDMA_CM_EVENT_MULTICAST_ERROR
	6.3.15 RDMA_CM_EVENT_ADDR_CHANGE
	6.3.16 RDMA_CM_EVENT_TIMEWAIT_EXIT

	7 Programming Examples Using IBV Verbs
	7.1 Synopsis for RDMA_RC Example Using IBV Verbs
	7.1.1 Main
	7.1.2 print_config
	7.1.3 resources_init
	7.1.4 resources_create
	7.1.5 sock_connect
	7.1.6 connect_qp
	7.1.7 modify_qp_to_init
	7.1.8 post_receive
	7.1.9 sock_sync_data
	7.1.10 modify_qp_to_rtr
	7.1.11 modify_qp_to_rts
	7.1.12 post_send
	7.1.13 poll_completion
	7.1.14 resources_destroy

	7.2 Code for Send, Receive, RDMA Read, RDMA Write
	7.3 Synopsis for Multicast Example Using RDMA_CM and IBV Verbs
	7.3.1 Main
	7.3.2 Run

	7.4 Code for Multicast Using RDMA_CM and IBV Verbs

	8 Programming Examples Using RDMA Verbs
	8.1 Automatic Path Migration (APM)
	8.2 Multicast Code Example Using RDMA CM
	8.3 Shared Received Queue (SRQ)

	Appendix A: Experimental APIs
	A.1 Dynamically Connected Transport

	Appendix B: Verbs API for Extended Atomics Support
	B.1 Supported Hardware
	B.2 Verbs Interface Changes

	Appendix C: User-Mode Memory Registration (UMR)
	C.1 Interfaces

	Appendix D: Cross-Channel Communications Support
	D.1 Usage Model
	D.2 Resource Initialization
	D.3 Posting Request List

