
z/OS

TSO/E
REXX User’s Guide

SA22-7791-01

���

z/OS

TSO/E
REXX User’s Guide

SA22-7791-01

���

Note
Before using this information and the product it supports, be sure to read the general information under “Appendix D.
Notices” on page 205.

Second Edition, October 2001

This edition applies to Version 1 Release 2 of z/OS (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

This is a maintenance revision of SA22-7791-00.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . ix

Tables . xi

About This Book . xiii
Who Should Use This Book . xiii
How This Book Is Organized . xiii

Terminology . xiii
Purpose of Each Chapter . xiv
Examples . xiv
Exercises . xiv

Where to Find More Information xiv
Accessing Licensed Books on the Web xiv
Using LookAt to Look Up Message Explanations xv

Summary of Changes . xvii

Part 1. Learning the REXX Language. 1

Chapter 1. Introduction . 3
What is REXX? . 3
Features of REXX . 3

Ease of use . 3
Free format . 4
Convenient built-in functions 4
Debugging capabilities . 4
Interpreted language . 4
Extensive parsing capabilities 4

Components of REXX. 4
The SAA Solution . 4
Benefits of Using a Compiler . 5

Improved Performance . 5
Reduced System Load . 5
Protection for Source Code and Programs 6
Improved Productivity and Quality 6
Portability of Compiled Programs. 6
SAA Compliance Checking . 6

Chapter 2. Writing and Running a REXX Exec 7
Before You Begin . 7
What is a REXX Exec? . 8
Syntax of REXX Instructions . 9

The Character Type of REXX Instructions 9
The Format of REXX Instructions 10
Types of REXX Instructions 12

Execs Using Double-Byte Character Set Names 14
Running an Exec . 16

Running an Exec Explicitly 16
Running an Exec Implicitly 17

Interpreting Error Messages . 19
Preventing Translation to Uppercase 20

From Within an Exec. 20
As Input to an Exec . 20

© Copyright IBM Corp. 1988, 2001 iii

Passing Information to an Exec 21
Using Terminal Interaction . 21
Specifying Values when Invoking an Exec 22
Preventing Translation of Input to Uppercase 23
Passing Arguments . 24

Chapter 3. Using Variables and Expressions 25
Using Variables. 25

Variable Names . 26
Variable Values . 27
Exercises - Identifying Valid Variable Names 27

Using Expressions . 28
Arithmetic Operators . 28
Comparison Operators . 30
Logical (Boolean) Operators 32
Concatenation Operators . 34
Priority of Operators . 35

Tracing Expressions with the TRACE Instruction 37
Tracing Operations . 37
Tracing Results. 38

Chapter 4. Controlling the Flow Within an Exec 41
Using Conditional Instructions 42

IF/THEN/ELSE Instructions 42
Nested IF/THEN/ELSE Instructions 43
SELECT/WHEN/OTHERWISE/END Instruction 44

Using Looping Instructions . 47
Repetitive Loops . 47
Conditional Loops . 52
Combining Types of Loops 55
Nested DO Loops . 55

Using Interrupt Instructions . 56
EXIT Instruction . 57
CALL/RETURN Instructions 57
SIGNAL Instruction . 58

Chapter 5. Using Functions 61
What is a Function? . 61

Example of a Function . 62
Built-In Functions . 63

Arithmetic Functions . 63
Comparison Functions . 63
Conversion Functions . 64
Formatting Functions. 64
String Manipulating Functions 64
Miscellaneous Functions . 65
Testing Input with Built-In Functions 66

Chapter 6. Writing Subroutines and Functions 69
What are Subroutines and Functions? 69
When to Write Subroutines vs. Functions 70
Writing a Subroutine . 70

Passing Information to a Subroutine 72
Receiving Information from a Subroutine 75

Writing a Function. 77
Passing Information to a Function 79

iv z/OS V1R2.0 TSO/E REXX User’s Guide

Receiving Information from a Function 83
Summary of Subroutines and Functions. 83

Chapter 7. Manipulating Data 85
Using Compound Variables and Stems 85

What is a Compound Variable? 85
Using Stems . 86

Parsing Data. 87
Instructions that Parse . 88
Ways of Parsing . 89
Parsing Multiple Strings as Arguments 92

Part 2. Using REXX . 95

Chapter 8. Entering Commands from an Exec 97
Types of Commands . 97
Issuing TSO/E Commands from an Exec 98

Using Quotations Marks in Commands 98
Using Variables in Commands 99
Causing Interactive Commands to Prompt the User 100
Invoking Another Exec as a Command. 100

Issuing Other Types of Commands from an Exec 101
What is a Host Command Environment? 101
Changing the Host Command Environment 106

Chapter 9. Diagnosing Problems Within an Exec 111
Debugging Execs . 111

Tracing Commands with the TRACE Instruction 111
Using REXX Special Variables RC and SIGL 112
Tracing with the Interactive Debug Facility 113

Chapter 10. Using TSO/E External Functions 119
TSO/E External Functions . 119

Using the GETMSG Function 120
Using the LISTDSI Function 120
Using the MSG Function . 122
Using the MVSVAR Function 123
Using the OUTTRAP Function 123
Using the PROMPT Function 124
Using the SETLANG Function 125
Using the STORAGE Function. 126
Using the SYSCPUS Function 126
Using the SYSDSN Function 126
Using the SYSVAR Function 127

Additional Examples . 130
Function Packages . 133

Search Order for Functions 134

Chapter 11. Storing Information in the Data Stack 135
What is a Data Stack? . 135
Manipulating the Data Stack 136

Adding Elements to the Data Stack 136
Removing Elements from the Stack 137
Determining the Number of Elements on the Stack 137

Processing of the Data Stack 139
Using the Data Stack . 140

Contents v

Passing Information Between a Routine and the Main Exec 140
Passing Information to Interactive Commands 142
Issuing Subcommands of TSO/E Commands 142

Creating a Buffer on the Data Stack. 142
Creating a Buffer with the MAKEBUF Command 143
Dropping a Buffer with the DROPBUF Command 144
Finding the Number of Buffers with the QBUF Command 144
Finding the Number of Elements In a Buffer 145

Protecting Elements in the Data Stack 147
Creating a New Data Stack with the NEWSTACK Command 148
Deleting a Private Stack with the DELSTACK Command 149
Finding the Number of Stacks 149

Chapter 12. Processing Data and Input/Output Processing 153
Types of Processing . 153
Dynamic Modification of a Single REXX Expression 153

Using the INTERPRET Instruction 153
Using EXECIO to Process Information to and from Data Sets 154

When to Use the EXECIO Command 154
Using the EXECIO Command 154
Return Codes from EXECIO 159
When to Use the EXECIO Command 159

Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces . . . 171
Services Available to REXX Execs 171
Running Execs in a TSO/E Address Space 173

Running an Exec in the Foreground. 173
Running an Exec in the Background 176

Running Execs in a Non-TSO/E Address Space 177
Using an Exec Processing Routine to Invoke an Exec from a Program 177
Using IRXJCL to Run an Exec in MVS Batch 178
Using the Data Stack in TSO/E Background and MVS Batch 180

Summary of TSO/E Background and MVS Batch 180
CAPABILITIES . 180
REQUIREMENTS . 181

Defining Language Processor Environments 181
What is a Language Processor Environment? 181
Customizing a Language Processor Environment 182

Part 3. Appendixes . 183

Appendix A. Allocating Data Sets 185
What is Allocation? . 185
Where to Begin . 186
Preliminary Checklist . 186
Checklist #1: Creating and Editing a Data Set Using ISPF/PDF 187
Checklist #2: Creating a Data Set with the ALLOCATE Command. 190
Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC 191
Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC 192

Appendix B. Specifying Alternate Libraries with the ALTLIB Command 195
Specifying Alternative Exec Libraries with the ALTLIB Command 195

Using the ALTLIB Command 195
Stacking ALTLIB Requests 196
Using ALTLIB with ISPF . 196

Examples of the ALTLIB Command 196

vi z/OS V1R2.0 TSO/E REXX User’s Guide

Appendix C. Comparisons Between CLIST and REXX 197
Accessing System Information 198
Controlling Program Flow . 199
Debugging . 200
Execution . 200
Interactive Communication . 201
Passing Information. 201
Performing File I/O . 202
Syntax . 202
Using Functions . 203
Using Variables . 203

Appendix D. Notices . 205
Programming Interface Information 207
Trademarks. 207

Bibliography . 209
TSO/E Publications . 209
Related Publications . 209

Index . 211

Contents vii

viii z/OS V1R2.0 TSO/E REXX User’s Guide

Figures

1. EXECIO Example 1 . 164
2. EXECIO Example 2 . 164
3. EXECIO Example 3 . 165
4. EXECIO Example 4 . 165
5. EXECIO Example 5 . 166
6. EXECIO Example 5 (continued) . 167
7. EXECIO Example 6 . 168
8. EXECIO Example 6 (continued) . 169
9. EXECIO Example 6 (continued) . 170

© Copyright IBM Corp. 1988, 2001 ix

x z/OS V1R2.0 TSO/E REXX User’s Guide

Tables

1. Language Codes for SETLANG Function That Replace the Function Call 125

© Copyright IBM Corp. 1988, 2001 xi

xii z/OS V1R2.0 TSO/E REXX User’s Guide

About This Book

This book describes how to use the TSO/E Procedures Language MVS/REXX
processor (called the language processor) and the REstructured eXtended eXecutor
(REXX) language. Together, the language processor and the REXX language are
known as TSO/E REXX. TSO/E REXX is the implementation of the Systems
Application Architecture (SAA) Procedures Language on the MVS system.

Who Should Use This Book
This book is intended for anyone who wants to learn how to write REXX programs.
More specifically, the audience is programmers who may range from the
inexperienced to those with extensive programming experience, particularly in
writing CLISTs for TSO/E. Because of the broad range of experience in readers,
this book is divided into two parts.

v Part 1. Learning the REXX Language is for inexperienced programmers who are
somewhat familiar with TSO/E commands and have used the Interactive System
Productivity Facility/Program Development Facility (ISPF/PDF) in TSO/E.
Programmers unfamiliar with TSO/E should first read the z/OS TSO/E Primer.
Experienced programmers new to REXX can also read this section to learn the
basics of the REXX language.

v Part 2. Using REXX is for programmers already familiar with the REXX language
and experienced with the workings of TSO/E. It describes more complex aspects
of the REXX language and how they work in TSO/E as well as in other MVS
address spaces.

If you are a new programmer, you might want to concentrate on the first part. If you
are an experienced TSO/E programmer, you might want to read the first part and
concentrate on the second part.

How This Book Is Organized
In addition to the two parts described in the preceding paragraphs, there are three
appendixes at the end of the book.

v “Appendix A. Allocating Data Sets” on page 185 contains checklists for the tasks
of creating and editing a data set and for allocating a data set to a system file.

v “Appendix B. Specifying Alternate Libraries with the ALTLIB Command” on
page 195 describes using the ALTLIB command.

v “Appendix C. Comparisons Between CLIST and REXX” on page 197 contains
tables that compare the CLIST language with the REXX language.

Terminology
Throughout this book a REXX program is called an exec to differentiate it from
other programs you might write, such as CLISTs. The command to run an exec in
TSO/E is the EXEC command. To avoid confusion between the two, this book uses
lowercase and uppercase to distinguish between the two uses of the term "exec".
References to the REXX program appear as exec and references to the TSO/E
command appear as EXEC.

© Copyright IBM Corp. 1988, 2001 xiii

Purpose of Each Chapter
At the beginning of each chapter is a statement about the purpose of the chapter.
Following that are headings and page numbers where you can find specific
information.

Examples
Throughout the book, you will find examples that you can try as you read. If the
example is a REXX keyword instruction, the REXX keyword is in uppercase.
Information that you can provide is in lowercase. The following REXX keyword
instruction contains the REXX keyword SAY, which is fixed, and a phrase, which
can vary.
SAY 'This is an example of an instruction.'

Similarly, if the example is a TSO/E command, the command name and keyword
operands, which are fixed, are in uppercase. Information that can vary, such as a
data set name, is in lowercase. The following ALLOCATE command and its
operands are in uppercase and the data set and file name are in lowercase.
"ALLOCATE DATASET(rexx.exec) FILE(sysexec) SHR REUSE"

This use of uppercase and lowercase is intended to make a distinction between
words that are fixed and words that can vary. It does not mean that you must type
REXX instructions and TSO/E commands with certain words in uppercase and
others in lowercase.

Exercises
Periodically, you will find sections with exercises you can do to test your
understanding of the information. Answers to the exercises are included when
appropriate.

Where to Find More Information
Please see z/OS Information Roadmap for an overview of the documentation
associated with z/OS, including the documentation available for z/OS TSO/E.

Accessing Licensed Books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

xiv z/OS V1R2.0 TSO/E REXX User’s Guide

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

Using LookAt to Look Up Message Explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS Collection, SK3T-4269 .

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following example:
lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release if needed.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

About This Book xv

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

xvi z/OS V1R2.0 TSO/E REXX User’s Guide

Summary of Changes

This book is available in softcopy formats only. The most current version is available
in HTML and PDF formats on the Web site at URL:
http://www.ibm.com/servers/eserver/zseries/zos/

Summary of Changes
for SA22-7791-01
z/OS Version 1 Release 2

This book contains information previously presented in z/OS TSO/E REXX User’s
Guide, SA22-7791-00, which supports z/OS Version 1 Release 1.

New Information

v Reference information has been added to the z/OS UNIX callable services. See
“What is REXX?” on page 3.

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

You may notice changes in the style and structure of some content in this book—for
example, headings that use uppercase for the first letter of initial words only, and
procedures that have a different look and format. The changes are ongoing
improvements to the consistency and retrievability of information in our books.

© Copyright IBM Corp. 1988, 2001 xvii

xviii z/OS V1R2.0 TSO/E REXX User’s Guide

Part 1. Learning the REXX Language

The REXX language is a versatile general-purpose programming language that can
be used by new and experienced programmers. This part of the book is for
programmers who want to learn the REXX language. The chapters in this part
cover the following topics.

v “Chapter 1. Introduction” on page 3 — The REXX language has many features
that make it a powerful programming tool.

v “Chapter 2. Writing and Running a REXX Exec” on page 7 — Execs are easy to
write and have few syntax rules.

v “Chapter 3. Using Variables and Expressions” on page 25 — Variables,
expressions, and operators are essential when writing execs that do arithmetic
and comparisons.

v “Chapter 4. Controlling the Flow Within an Exec” on page 41 — You can use
instructions to branch, loop, or interrupt the flow of an exec.

v “Chapter 5. Using Functions” on page 61 — A function is a sequence of
instructions that can perform a specific task and must return a value.

v “Chapter 6. Writing Subroutines and Functions” on page 69 — You can write
internal and external routines that are called by an exec.

v “Chapter 7. Manipulating Data” on page 85 — Compound variables and parsing
are two ways to manipulate data.

Note: Although you can write a REXX exec to run in a non-TSO/E address space
in MVS, the chapters and examples in this part assume the exec will run in a
TSO/E address space. If you want to write execs that run outside of a
TSO/E address space, keep in mind the following exceptions to information
in Part 1:

v An exec that runs outside of TSO/E cannot include TSO/E commands,
unless you use the TSO/E environment service (see note).

v In TSO/E, several REXX instructions either display information on the
terminal or retrieve information that the user enters at the terminal. In a
non-TSO/E address space, these instructions get information from the
input stream and write information to the output stream.
– SAY — this instruction sends information to the output DD whose

default is SYSTSPRT.
– PULL — this instruction gets information from the input DD whose

default is SYSTSIN.
– TRACE — this instruction sends information to the output DD whose

default is SYSTSPRT.
– PARSE EXTERNAL — this instruction gets information from the input

DD whose default is SYSTSIN.

v The USERID built-in function, instead of returning a user identifier, might
return a stepname or jobname.

Note: You can use the TSO/E environment service, IKJTSOEV, to create a TSO/E
environment in a non-TSO/E address space. If you run a REXX exec in the
TSO/E environment you created, the exec can contain TSO/E commands,
external functions, and services that an exec running in a TSO/E address
space can use. That is, the TSO host command environment (ADDRESS
TSO) is available to the exec. For more information about the TSO/E
environment service and the different considerations for running REXX execs
within the environment, see z/OS TSO/E Programming Services.

© Copyright IBM Corp. 1988, 2001 1

2 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 1. Introduction

What is REXX? . 3
Features of REXX . 3

Ease of use . 3
Free format . 4
Convenient built-in functions 4
Debugging capabilities . 4
Interpreted language . 4
Extensive parsing capabilities 4

Components of REXX. 4
The SAA Solution . 4
Benefits of Using a Compiler . 5

Improved Performance . 5
Reduced System Load . 5
Protection for Source Code and Programs 6
Improved Productivity and Quality 6
Portability of Compiled Programs. 6
SAA Compliance Checking . 6

This chapter describes the REXX programming language and some of its features.

What is REXX?
REXX is a programming language that is extremely versatile. Aspects such as
common programming structure, readability, and free format make it a good
language for beginners and general users. Yet because the REXX language can be
intermixed with commands to different host environments, provides powerful
functions and has extensive mathematical capabilities, it is also suitable for more
experienced computer professionals.

The TSO/E implementation of the REXX language allows REXX execs to run in any
MVS address space. You can write a REXX exec that includes TSO/E services and
run it in a TSO/E address space, or you can write an application in REXX to run
outside of a TSO/E address space. For more information, see “Chapter 13. Using
REXX in TSO/E and Other MVS Address Spaces” on page 171.

There is also a set of z/OS UNIX extensions to the TSO/E Restructured Extended
Executor (REXX) language which enable REXX programs to access z/OS UNIX
callable services. The z/OS UNIX extensions, called syscall commands, have
names that correspond to the names of the callable services that they invoke—for
example, access, chmod, and chown. For more information about the z/OS UNIX
extensions, see z/OS Using REXX and z/OS UNIX System Services.

Features of REXX
In addition to its versatility, REXX has many other features, some of which are:

Ease of use
The REXX language is easy to read and write because many instructions are
meaningful English words. Unlike some lower-level programming languages that
use abbreviations, REXX instructions are common words, such as SAY, PULL, IF...
THEN... ELSE..., DO... END, and EXIT.

© Copyright IBM Corp. 1988, 2001 3

|
|
|
|
|
|

Free format
There are few rules about REXX format. You need not start an instruction in a
particular column, you can skip spaces in a line or skip entire lines, you can have
an instruction span many lines or have multiple instructions on one line, variables
do not need to be predefined, and you can type instructions in upper, lower, or
mixed case. The few rules about REXX format are covered in “Syntax of REXX
Instructions” on page 9.

Convenient built-in functions
REXX supplies built-in functions that perform various processing, searching, and
comparison operations for both text and numbers. Other built-in functions provide
formatting capabilities and arithmetic calculations.

Debugging capabilities
When a REXX exec running in TSO/E encounters an error, messages describing
the error are displayed on the screen. In addition, you can use the REXX TRACE
instruction and the interactive debug facility to locate errors in execs.

Interpreted language
TSO/E implements the REXX language as an interpreted language. When a REXX
exec runs, the language processor directly processes each language statement.
Languages that are not interpreted must be compiled into machine language and
possibly link-edited before they are run. You can use the IBM licensed product, IBM
Compiler and Library for REXX/370, to provide this function.

Extensive parsing capabilities
REXX includes extensive parsing capabilities for character manipulation. This
parsing capability allows you to set up a pattern to separate characters, numbers,
and mixed input.

Components of REXX
The various components of REXX are what make it a powerful tool for
programmers. REXX is made up of:

v Instructions — There are five types of instructions. All but commands are
processed by the language processor.
– Keyword
– Assignment
– Label
– Null
– Command (both TSO/E REXX commands and host commands)

v Built-in functions — These functions are built into the language processor and
provide convenient processing options.

v TSO/E external functions — These functions are provided by TSO/E and interact
with the system to do specific tasks for REXX.

v Data stack functions — A data stack can store data for I/O and other types of
processing.

The SAA Solution
The SAA solution is based on a set of software interfaces, conventions, and
protocols that provide a framework for designing and developing applications.

Features of REXX

4 z/OS V1R2.0 TSO/E REXX User’s Guide

The SAA Procedures Language has been defined as a subset of the REXX
language. Its purpose is to define a common subset of the language that can be
used in several environments. TSO/E REXX is the implementation of the SAA
Procedures Language on the MVS system.

The SAA solution:

v Defines a common programming interface you can use to develop applications
that can be integrated with each other and transported to run in multiple SAA
environments.

v Defines common communications support that you can use to connect
applications, systems, networks, and devices.

v Defines a common user access that you can use to achieve consistency in
panel layout and user interaction techniques.

v Offers some applications and application development tools written by IBM.

Several combinations of IBM hardware and software have been selected as SAA
environments. These are environments in which IBM will manage the availability of
support for applicable SAA elements, and the conformance of those elements to
SAA specifications. The SAA environments are the following:

v MVS
– TSO/E
– CICS
– IMS

v VM CMS

v Operating System/400 (OS/400)

v Operating System/2 (OS/2)

Benefits of Using a Compiler

The IBM Compiler for REXX/370 (Program Number 5695-013) and the IBM Library
for REXX/370 (Program Number 5695-014) provide significant benefits for
programmers during program development and for users when a program is run.
The benefits are:
v Improved performance
v Reduced system load
v Protection for source code and programs
v Improved productivity and quality
v Portability of compiled programs
v Checking for compliance to SAA

Improved Performance
The performance improvements that you can expect when you run compiled REXX
programs depend on the type of program. A program that performs large numbers
of arithmetic operations of default precision shows the greatest improvement. A
program that mainly enters commands to the host shows minimal improvement
because REXX cannot decrease the time taken by the host to process the
commands.

Reduced System Load
Compiled REXX programs run faster than interpreted programs. Because a
program has to be compiled only once, system load is reduced and response time
is improved when the program is run frequently.

The SAA Solution

Chapter 1. Introduction 5

For example, a REXX program that performs many arithmetic operations might take
12 seconds to run interpreted. If the program is run 60 times, it uses about 12
minutes of processor time. The same program when compiled might run six times
faster, using only about 2 minutes of processor time.

Protection for Source Code and Programs
Your REXX programs and algorithms are assets that you want to protect.

The Compiler produces object code, which helps you protect these assets by
discouraging people from making unauthorized changes to your programs. You can
distribute your REXX programs in object code only.

Load modules can be further protected by using a security server, such as RACF.

Improved Productivity and Quality
The Compiler can produce source listings, cross-reference listings, and messages,
which help you more easily develop and maintain your REXX programs.

The Compiler identifies syntax errors in a program before you start testing it. You
can then focus on correcting errors in logic during testing with the REXX interpreter.

Portability of Compiled Programs
A REXX program compiled under MVS/ESA can run under CMS. Similarly, a REXX
program compiled under CMS can run under MVS/ESA.

SAA Compliance Checking
The Systems Application Architecture (SAA) definitions of software interfaces,
conventions, and protocols provide a framework for designing and developing
applications that are consistent within and across several operating systems.

The SAA Procedures Language is a subset of the REXX language supported by the
interpreter under TSO/E, and can be used in this operating environment.

To help you write programs for use in all SAA environments, the Compiler can
optionally check for SAA compliance. With this option in effect, a warning message
is issued for each non-SAA item found in a program.

For more information, see IBM Compiler and Library for REXX/370; Introducing the
Next Step in REXX Programming.

Benefits of Using a Compiler

6 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 2. Writing and Running a REXX Exec

Before You Begin . 7
What is a REXX Exec? . 8
Syntax of REXX Instructions . 9

The Character Type of REXX Instructions 9
Using Quotation Marks in an Instruction 9

The Format of REXX Instructions 10
Beginning an instruction 10
Continuing an instruction 10
Continuing a literal string without adding a space 11
Ending an instruction. 11

Types of REXX Instructions 12
Keyword . 13
Assignment . 13
Label . 14
Null . 14
Command. 14

Execs Using Double-Byte Character Set Names 14
Running an Exec . 16

Running an Exec Explicitly 16
Running an Exec Implicitly 17

Allocating a PDS to a System File 17
Exercises - Running the Example Execs 18

Interpreting Error Messages . 19
Preventing Translation to Uppercase 20

From Within an Exec. 20
As Input to an Exec . 20

Exercises - Running and Modifying the Example Execs 21
Passing Information to an Exec 21

Using Terminal Interaction . 21
Specifying Values when Invoking an Exec 22

Specifying Too Few Values 22
Specifying Too Many Values 22

Preventing Translation of Input to Uppercase 23
Exercises - Using the ARG Instruction 23

Passing Arguments . 24
Passing Arguments Using the CALL Instruction or REXX Function Call 24
Passing Arguments Using the EXEC Command 24

This chapter introduces execs and their syntax, describes the steps involved in
writing and running an exec, and explains concepts you need to understand to
avoid common problems.

Before You Begin
Before you can write a REXX program, called an exec, you need to create a data
set to contain the exec. The data set can be either sequential or partitioned, but if
you plan to create more than one exec, it is easier to create a REXX library as a
partitioned data set (PDS) with execs as members.

To create a PDS, allocate a data set with your prefix (usually your user ID) as the
first qualifier, any name as the second qualifier, and preferably "exec" as the third
qualifier. You can allocate the PDS with the Utilities option in ISPF/PDF or with the

© Copyright IBM Corp. 1988, 2001 7

TSO/E ALLOCATE command. For specific information about allocating a data set
for an exec, see “Appendix A. Allocating Data Sets” on page 185.

What is a REXX Exec?
A REXX exec consists of REXX language instructions that are interpreted directly
by the REXX interpreter or compiled directly by a REXX language compiler and
executed by a Compiler Runtime Processor. An exec can also contain commands
that are executed by the host environment.

An advantage of the REXX language is its similarity to ordinary English. This
similarity makes it easy to read and write a REXX exec. For example, an exec to
display a sentence on the screen uses the REXX instruction SAY followed by the
sentence to be displayed.

Example of a Simple Exec
/**************************** REXX *********************************/
SAY 'This is a REXX exec.'

Note that this simple exec starts with a comment line to identify the program as a
REXX exec. A comment begins with /* and ends with */. To prevent
incompatibilities with CLISTs, IBM recommends that all REXX execs start with
a comment that includes the characters “REXX” within the first line (line 1) of
the exec. Failure to do so can lead to unexpected or unintended results in
your REXX exec. More about comments and why you might need a REXX exec
identifier appears later 14.

When you run the exec, you see on your screen the sentence:

This is a REXX exec.

Even in a longer exec, the instructions flow like ordinary English and are easy to
understand.

Example of a Longer Exec
/**************************** REXX *********************************/
/* This exec adds two numbers and displays their sum. */
/***/

SAY 'Please enter a number.'
PULL number1
SAY 'Now enter a number to add to the first number.'
PULL number2
sum = number1 + number2
SAY 'The sum of the two numbers is' sum'.'

When you run the example, the exec interacts with you at the terminal. First you
see on your screen:

Please enter a number.

Before You Begin

8 z/OS V1R2.0 TSO/E REXX User’s Guide

When you type a number, for example 42, and press the Enter key, the variable
number1 is assigned the value 42. You then see another sentence on the screen.

Now enter a number to add to the first number.

When you enter another number, for example 21, the variable number2 is assigned
the value 21. Then the values in number1 and number2 are added and the total is
assigned to sum. You see a final sentence on the screen displaying the sum.

The sum of the two numbers is 63.

Before you actually try these examples, please read the next two sections:

v “Syntax of REXX Instructions”

v “Running an Exec” on page 16

Syntax of REXX Instructions

Some programming languages have rigid rules about how and where characters
are entered on each line. For example, CLIST statements must be entered in
uppercase, and assembler statements must begin in a particular column. REXX, on
the other hand, has simple syntax rules. There is no restriction on how characters
are entered and generally one line is an instruction regardless of where it begins or
where it ends.

The Character Type of REXX Instructions

You can enter a REXX instruction in lowercase, uppercase, or mixed case.
However, alphabetic characters are changed to uppercase, unless you enclose
them in single or double quotation marks.

Using Quotation Marks in an Instruction
A series of characters enclosed in matching quotation marks is called a literal string.
The following examples both contain literal strings.
SAY 'This is a REXX literal string.' /* Using single quotes */

SAY "This is a REXX literal string." /* Using double quotes */

You cannot enclose a literal string with one each of the two types of quotation
marks. The following is not a correct example of an enclosed literal string.
SAY 'This is a REXX literal string." /* Using mismatched quotes */

When you omit the quotation marks from a SAY instruction as follows:
SAY This is a REXX string.

you see the statement in uppercase on your screen.

THIS IS A REXX STRING.

Note: If any word in the statement is the name of a variable that has already been
assigned a value, REXX substitutes the value. For information about
variables, see “Using Variables” on page 25.

What is a REXX Exec?

Chapter 2. Writing and Running a REXX Exec 9

If a string contains an apostrophe, you can enclose the literal string in double
quotation marks.
SAY "This isn't a CLIST instruction."

You can also use two single quotation marks in place of the apostrophe, because a
pair of single quotation marks is processed as one.
SAY 'This isn't a CLIST instruction.'

Either way, the outcome is the same.

This isn't a CLIST instruction.

The Format of REXX Instructions
The REXX language uses a free format. This means you can insert extra spaces
between words and blank lines freely throughout the exec without causing an error.
A line usually contains one instruction except when it ends with a comma (,) or
contains a semicolon (;). A comma is the continuation character and indicates that
the instruction continues to the next line. The comma, when used in this manner,
also adds a space when the lines are concatenated. A semicolon indicates the end
of the instruction and is used to separate multiple instructions on one line.

Beginning an instruction
An instruction can begin in any column on any line. The following are all valid
instructions.
SAY 'This is a literal string.'

SAY 'This is a literal string.'
SAY 'This is a literal string.'

This example appears on the screen as follows:

This is a literal string.
This is a literal string.
This is a literal string.

Continuing an instruction

A comma indicates that the instruction continues to the next line. Note that a space
is added between “extended” and “REXX” when it appears on the screen.
SAY 'This is an extended',

'REXX literal string.'

This example appears on the screen as one line.

This is an extended REXX literal string.

Also note that the following two instructions are identical and yield the same result
when displayed on the screen:
SAY 'This is',

'a string.'

is functionally identical to:
SAY 'This is' 'a string.'

These examples appear on the screen as:

Syntax of REXX Instructions

10 z/OS V1R2.0 TSO/E REXX User’s Guide

This is a string.

In the first example, the comma at the end of line 1 adds a space when the two
lines are concatenated for display. In the second example, the space between the
two separate strings is preserved when the line is displayed.

Continuing a literal string without adding a space
If you need to continue an instruction to a second or more lines but do not want
REXX to add spaces when the line appears on the screen, use the concatenation
operand (two single OR bars, ||).
SAY 'This is an extended literal string that is bro'||,

'ken in an awkward place.'

This example appears on the screen as one line without adding a space within the
word “broken”.

This is an extended literal string that is broken in an awkward place.

Also note that the following two instructions are identical and yield the same result
when displayed on the screen:
SAY 'This is' ||,

'a string.'

is functionally identical to:
SAY 'This is' || 'a string.'

These examples appear on the screen as:

This isa string.

In the first example, the concatenation operator at the end of line 1 causes the
deletion of any spaces when the two lines are concatenated for display. In the
second example, the concatenation operator also concatenates the two strings
without space when the line is displayed.

Ending an instruction
The end of the line or a semicolon indicates the end of an instruction. If you put
more than one instruction on a line, you must separate each instruction with a
semicolon. If you put one instruction on a line, it is best to let the end of the line
delineate the end of the instruction.
SAY 'Hi!'; say 'Hi again!'; say 'Hi for the last time!'

This example appears on the screen as three lines.

Hi!
Hi again!
Hi for the last time!

The following example demonstrates the free format of REXX.

Syntax of REXX Instructions

Chapter 2. Writing and Running a REXX Exec 11

Example of Free Format
/************************* REXX ************************************/
SAY 'This is a REXX literal string.'
SAY 'This is a REXX literal string.'

SAY 'This is a REXX literal string.'
SAY,
'This',
'is',
'a',
'REXX',
'literal',
'string.'

SAY'This is a REXX literal string.';SAY'This is a REXX literal string.'
SAY ' This is a REXX literal string.'

When the example runs, you see six lines of identical output on your screen
followed by one indented line.

This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.
This is a REXX literal string.

This is a REXX literal string.

Thus you can begin an instruction anywhere on a line, you can insert blank lines,
and you can insert extra spaces between words in an instruction because the
language processor ignores blank lines and spaces that are greater than one. This
flexibility of format allows you to insert blank lines and spaces to make an exec
easier to read.

Only when words are parsed do blanks and spaces take on significance. More
about parsing is covered in “Parsing Data” on page 87.

Types of REXX Instructions
There are five types of REXX instructions: keyword, assignment, label, null, and
command. The following example is an ISPF/PDF Edit panel that shows an exec
with various types of instructions. A description of each type of instruction appears
after the example. In most of the descriptions, you will see an edit line number
(without the prefixed zeroes) to help you locate the instruction in the example.

Syntax of REXX Instructions

12 z/OS V1R2.0 TSO/E REXX User’s Guide

EDIT ---- USERID.REXX.EXEC(TIMEGAME)------------------- COLUMNS 009 080
COMMAND ===> SCROLL ===> HALF
****** ************************ TOP OF DATA ************************************
000001 /************************** REXX ****************************/
000002 /* This is an interactive REXX exec that asks a user for the*/
000003 /* time and then displays the time from the TIME command. */
000004 /**/
000005 Game1:
000006
000007 SAY 'What time is it?'
000008 PULL usertime /* Put the user's response
000009 into a variable called
000010 "usertime" */
000011 IF usertime = '' THEN /* User didn't enter a time */
000012 SAY "O.K. Game's over."
000013 ELSE
000014 DO
000015 SAY "The computer says:"
000016 /* TSO system */ TIME /* command */
000017 END
000018
000019 EXIT
****** *********************** BOTTOM OF DATA **********************************

Keyword

A keyword instruction tells the language processor to do something. It begins with a
REXX keyword that identifies what the language processor is to do. For example,
SAY (line 7) displays a string on the screen and PULL (line 8) takes one or more
words of input and puts them into the variable usertime.

IF, THEN (line 11) and ELSE (line 13) are three keywords that work together in one
instruction. Each keyword forms a clause, which is a subset of an instruction. If the
expression that follows the IF keyword is true, the instruction that follows the THEN
keyword is processed. Otherwise, the instruction that follows the ELSE keyword is
processed. If more than one instruction follows a THEN or an ELSE, the
instructions are preceded by a DO (line 14) and followed by an END (line 17). More
information about the IF/THEN/ELSE instruction appears in “Using Conditional
Instructions” on page 42.

The EXIT keyword (line 19) tells the language processor to end the exec. Using
EXIT in the preceding example is a convention, not a necessity, because
processing ends automatically when there are no more instructions in the exec.
More about EXIT appears in “EXIT Instruction” on page 57.

Assignment

An assignment gives a value to a variable or changes the current value of a
variable. A simple assignment instruction is:
number = 4

In addition to giving a variable a straightforward value, an assignment instruction
can also give a variable the result of an expression. An expression is something
that needs to be calculated, such as an arithmetic expression. The expression can
contain numbers, variables, or both.
number = 4 + 4

number = number + 4

Syntax of REXX Instructions

Chapter 2. Writing and Running a REXX Exec 13

In the first of the two examples, the value of number is 8. If the second example
directly followed the first in an exec, the value of number would become 12. More
about expressions is covered in “Using Expressions” on page 28.

Label
A label, such as Game1: (line 5), is a symbolic name followed by a colon. A label can
contain either single- or double-byte characters or a combination of single- and
double-byte characters. (Double-byte characters are valid only if you have included
OPTIONS ETMODE as the first instruction in your exec.) A label identifies a portion
of the exec and is commonly used in subroutines and functions, and with the
SIGNAL instruction. More about the use of labels appears in “Chapter 6. Writing
Subroutines and Functions” on page 69 and “SIGNAL Instruction” on page 58.

Null
A null is a comment or a blank line, which is ignored by the language processor but
make an exec easier to read.

v Comments (lines 1 through 4, 8 through 11, 16)

A comment begins with /* and ends with */. Comments can be on one or more
lines or on part of a line. You can put information in a comment that might not be
obvious to a person reading the REXX instructions. Comments at the beginning
can describe the overall purpose of the exec and perhaps list special
considerations. A comment next to an individual instruction can clarify its
purpose.

Note: To prevent incompatibilities with CLISTs, IBM recommends that all
REXX execs start with a comment that includes the characters
“REXX” within the first line (line 1) of the exec. Failure to do so can
lead to unexpected or unintended results in your REXX exec. This
type of comment is called the REXX exec identifier and immediately
identifies the program to readers as a REXX exec and also distinguishes it
from a CLIST. It is necessary to distinguish execs from CLISTs when they
are both stored in the system file, SYSPROC. For more information about
where and how execs are stored, see “Running an Exec Implicitly” on
page 17.

v Blank lines (lines 6, 18)

Blank lines help separate groups of instructions and aid readability. The more
readable an exec, the easier it is to understand and maintain.

Command
An instruction that is not a keyword instruction, assignment, label, or null is
processed as a command and is sent to a previously defined environment for
processing. For example, the word "TIME" in the previous exec (line 16), even
though surrounded by comments, is processed as a TSO/E command.
/* TSO system */ TIME /* command */

More information about issuing commands appears in “Chapter 8. Entering
Commands from an Exec” on page 97.

Execs Using Double-Byte Character Set Names
You can use double-byte character set (DBCS) names in your REXX execs for
literal strings, labels, variable names, and comments. Such character strings can be
single-byte, double-byte, or a combination of both single- and double-byte names.
To use DBCS names, you must code OPTIONS ETMODE as the first instruction in
the exec. ETMODE specifies that those strings that contain DBCS characters are to

Syntax of REXX Instructions

14 z/OS V1R2.0 TSO/E REXX User’s Guide

be checked as being valid DBCS strings. DBCS characters must be enclosed within
shift-out (X'0E') and shift-in (X'0F') delimiters. In the following example, the shift-out
(SO) and shift-in (SI) delimiters are represented by the less than symbol (<) and
the greater than symbol (>) respectively.1 For example, <.S.Y.M.D> and
<.D.B.C.S.R.T.N> represent DBCS symbols in the following examples.

Example 1

The following is an example of an exec using a DBCS variable name and a DBCS
subroutine label.
/* REXX */
OPTIONS 'ETMODE' /* ETMODE to enable DBCS variable names */
j = 1
<.S.Y.M.D> = 10 /* Variable with DBCS characters between

shift-out (<) and shift-in (>) */
CALL <.D.B.C.S.R.T.N> /* Invoke subroutine with DBCS name */...

<.D.B.C.S.R.T.N>: /* Subroutine with DBCS name */
DO i = 1 TO 10

IF x.i = <.S.Y.D.M> THEN /* Does x.i match the DBCS variable's
value? */

SAY 'Value of the DBCS variable is : ' <.S.Y.D.M>
END
EXIT 0

Example 2

The following example shows some other uses of DBCS variable names with the
EXECIO stem option, as DBCS parameters passed to a program invoked through
LINKMVS, and with built-in function, LENGTH.
/* REXX */
OPTIONS 'ETMODE' /* ETMODE to enable DBCS variable names */

"ALLOC FI(INDD) DA('DEPTA29.DATA') SHR REU"

/***/
/* Use EXECIO to read lines into DBCS stem variables */
/***/

"EXECIO * DISKR indd (FINIS STEM <.d.b.c.s__.s.t.e.m>."

IF rc = 0 THEN /* if good return code from execio */

/***/
/* Say each DBCS stem variable set by EXECIO */
/***/

DO i = 1 TO <.d.b.c.s__.s.t.e.m>.0

SAY "Line " i "==> " <.d.b.c.s__.s.t.e.m>.i

END

line1_<.v.a.l.u.e> = <.d.b.c.s__.s.t.e.m>.1 /* line 1 value */

line_len = length(line1_<.v.a.l.u.e>) /* Length of line */

/***/
/* Invoke LINKMVS command "proca29" to process a line. */

1. The SO and SI characters are non-printable.

Execs Using Double-Byte Character Set Names

Chapter 2. Writing and Running a REXX Exec 15

/* Two variable names are used to pass 2 parameters, one of */
/* which is a DBCS variable name. The LINKMVS host command */
/* environment routine will look up the value of the two */
/* variables and pass their values to the address LINKMVS */
/* command, "proca29". */
/***/

ADDRESS LINKMVS "proca29 line_len line1_<.v.a.l.u.e>"

"FREE FI(INDD)"

EXIT 0

Running an Exec
After you have placed REXX instructions in a data set, you can run the exec
explicitly by using the EXEC command followed by the data set name and the
"exec" keyword operand, or implicitly by entering the member name. You can run
an exec implicitly only if the PDS that contains it was allocated to a system file.
More information about system files appears in the “Running an Exec Implicitly” on
page 17.

Running an Exec Explicitly
The EXEC command runs non-compiled programs in TSO/E. To run an exec
explicitly, enter the EXEC command followed by the data set name that contains the
exec and the keyword operand "exec" to distinguish it from a CLIST.

You can specify a data set name according to the TSO/E data set naming
conventions in several different ways. For example the data set name
USERID.REXX.EXEC(TIMEGAME) can be specified as:

v A fully-qualified data set, which appears within quotation marks.
EXEC 'userid.rexx.exec(timegame)' exec

v A non fully-qualified data set, which has no quotation marks can eliminate your
profile prefix (usually your user ID) as well as the third qualifier, exec.
EXEC rexx.exec(timegame) exec /* eliminates prefix */
EXEC rexx(timegame) exec /* eliminates prefix and exec */

For information about other ways to specify a data set name, see the EXEC
command in z/OS TSO/E Command Reference.

You can type the EXEC command in the following places:

v At the READY prompt
READY
EXEC rexx.exec(timegame) exec

v From the COMMAND option of ISPF/PDF

----------------------------- TSO COMMAND PROCESSOR -------------------------
ENTER TSO COMMAND OR CLIST BELOW:

===> exec rexx.exec(timegame) exec

ENTER SESSION MANAGER MODE ===> NO (YES or NO)

Execs Using Double-Byte Character Set Names

16 z/OS V1R2.0 TSO/E REXX User’s Guide

v On the COMMAND line of any ISPF/PDF panel as long as the EXEC command
is preceded by the word "tso".

------------------------------ EDIT - ENTRY PANEL ---------------------------
COMMAND ===> tso exec rexx.exec(timegame) exec

ISPF LIBRARY:
PROJECT ===> PREFIX
GROUP ===> REXX ===> ===> ===>
TYPE ===> EXEC
MEMBER ===> TIMEGAME (Blank for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

PROFILE NAME ===> (Blank defaults to data set type)

INITIAL MACRO ===> LOCK ===> YES (YES, NO or NEVER)

FORMAT NAME ===> MIXED MODE ===> NO (YES or NO)

Running an Exec Implicitly
Running an exec implicitly means running an exec by simply entering the member
name of the data set that contains the exec. Before you can run an exec implicitly,
you must allocate the PDS that contains it to a system file (SYSPROC or
SYSEXEC).

SYSPROC is a system file whose data sets can contain both CLISTs and execs.
(Execs are distinguished from CLISTs by the REXX exec identifier, a comment at
the beginning of the exec the first line of which includes the word "REXX".)
SYSEXEC is a system file whose data sets can contain only execs. (Your
installation might have changed the name to something other than SYSEXEC, but
for the purposes of this book, we will call it SYSEXEC.) When both system files are
available, SYSEXEC is searched before SYSPROC.

Allocating a PDS to a System File
To allocate the PDS that contains your execs to a system file, you need to do the
following:

v Decide if you want to use the separate file for execs (SYSEXEC) or combine
CLISTs and execs in the same file (SYSPROC). For information that will help you
decide, see “Things to Consider When Allocating to a System File (SYSPROC or
SYSEXEC)” on page 174.

v Use one of the following two checklists for a step-by-step guide to writing an
exec that allocates a PDS to a system file.

– “Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC” on
page 191

– “Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC” on
page 192

After your PDS is allocated to the system file, you can then run an exec by
simply typing the name of the data set member that contains the exec. You can
type the member name in any of the following locations:
– At the READY prompt

READY
timegame

– From the COMMAND option of ISPF/PDF

Running an Exec

Chapter 2. Writing and Running a REXX Exec 17

----------------------------- TSO COMMAND PROCESSOR -------------------------
ENTER TSO COMMAND OR CLIST BELOW:

===> timegame

ENTER SESSION MANAGER MODE ===> NO (YES or NO)

– On the COMMAND line of any ISPF/PDF panel as long as the member name
is preceded by "tso".

------------------------------ EDIT - ENTRY PANEL ---------------------------
COMMAND ===> tso timegame

ISPF LIBRARY:
PROJECT ===> PREFIX
GROUP ===> REXX ===> ===> ===>
TYPE ===> EXEC
MEMBER ===> TIMEGAME (Blank for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

PROFILE NAME ===> (Blank defaults to data set type)

INITIAL MACRO ===> LOCK ===> YES (YES, NO or NEVER)

FORMAT NAME ===> MIXED MODE ===> NO (YES or NO)

To reduce the search time for an exec that is executed implicitly and to differentiate
it from a TSO/E command, precede the member name with a %:
READY
%timegame

When a member name is preceded by %, TSO/E searches a limited number of
system files for the name, thus reducing the search time. Without the %, TSO/E
searches several files before it searches SYSEXEC and SYSPROC to ensure that
the name you entered is not a TSO/E command.

Exercises - Running the Example Execs
Create a PDS exec library using Checklist #1 or Checklist #2 in “Appendix A.
Allocating Data Sets” on page 185. Then try the example execs from the beginning
of this chapter. Run them explicitly with the EXEC command and see if the results
you get are the same as the ones in this book. If they are not, why aren’t they the
same?

Now write an exec to allocate your PDS to SYSPROC or SYSEXEC using Checklist
#3 on page 191 or Checklist #4 on page 192. Then run the example execs
implicitly. Which way is easier?

Running an Exec

18 z/OS V1R2.0 TSO/E REXX User’s Guide

Interpreting Error Messages

When you run an exec that contains an error, an error message often displays the
line on which the error occurred and gives an explanation of the error. Error
messages can result from syntax errors and from computational errors. For
example, the following exec has a syntax error.

Example of an Exec with a Syntax Error
/************************** REXX ***********************************/
/* This is an interactive REXX exec that asks the user for a */
/* name and then greets the user with the name supplied. It */
/* contains a deliberate error. */
/***/

SAY "Hello! What's your name?"
PULL who /* Get the person's name.
IF who = '' THEN

SAY 'Hello stranger'
ELSE

SAY 'Hello' who

When the exec runs, you see the following on your screen:

Hello! What's your name?
7 +++ PULL who /* Get the person's name.IF who =

'' THEN SAY 'Hello stranger'ELSE SAY 'Hello' who
IRX0006I Error running REXX.EXEC(HELLO), line 7: Unmatched "/*" or quote

The exec runs until it detects the error, a missing */ at the end of the comment. As
a result, the SAY instruction displays the question, but doesn’t wait for your
response because the next line of the exec contains the syntax error. The exec
ends and the language processor displays error messages.

The first error message begins with the line number of the statement where the
error was detected, followed by three pluses (+++) and the contents of the
statement.

7 +++ PULL who /* Get the person's name.IF who =
'' THEN SAY 'Hello stranger'ELSE SAY 'Hello' who

The second error message begins with the message number followed by a
message containing the exec name, line where the error was found, and an
explanation of the error.
IRX0006I Error running REXX.EXEC(HELLO), line 7: Unmatched "/*" or quote

For more information about the error, you can go to the message explanations in
z/OS TSO/E Messages, where information is arranged by message number.

To fix the syntax error in this exec, add */ to the end of the comment on line 7.
PULL who /* Get the person's name.*/

Interpreting Error Messages

Chapter 2. Writing and Running a REXX Exec 19

Preventing Translation to Uppercase
As a rule, all alphabetic characters processed by the language processor are
translated to uppercase before they are processed. These alphabetic characters
can be from within an exec, such as words in a REXX instruction, or they can be
external to an exec and processed as input. You can prevent this translation to
uppercase in two ways depending on whether the characters are read as parts of
instructions from within an exec or are read as input to an exec.

From Within an Exec
To prevent translation of alphabetic characters to uppercase from within an exec,
simply enclose the characters in single or double quotation marks. Numbers and
special characters, whether or not in quotation marks, are not changed by the
language processor. For example, when you follow a SAY instruction with a phrase
containing a mixture of alphabetic characters, numbers, and special characters, only
the alphabetic characters are changed.
SAY The bill for lunch comes to $123.51!

results in:

THE BILL FOR LUNCH COMES TO $123.51!

Quotation marks ensure that information from within an exec is processed exactly
as typed. This is important in the following situations:

v For output when it must be lowercase or a mixture of uppercase and lowercase.

v To ensure that commands are processed correctly. For example, if a variable
name in an exec is the same as a command name, the exec ends in error when
the command is issued. It is good programming practice to avoid using variable
names that are the same as commands, but just to be safe, enclose all
commands in quotation marks.

As Input to an Exec
When reading input from a terminal or when passing input from another exec, the
language processor also changes alphabetic characters to uppercase before they
are processed. To prevent translation to uppercase, use the PARSE instruction.

For example, the following exec reads input from the terminal screen and
re-displays the input as output.

Example of Reading and Re-displaying Input
/************************** REXX ***********************************/
/* This is an interactive REXX exec that asks a user for the name */
/* of an animal and then re-displays the name. */
/***/

SAY "Please type in the name of an animal."
PULL animal /* Get the animal name.*/
SAY animal

If you responded to the example with the word tyrannosaurus, you would see on
your screen:

Preventing Translation to Uppercase

20 z/OS V1R2.0 TSO/E REXX User’s Guide

TYRANNOSAURUS

To cause the language processor to read input exactly as it is presented, use the
PARSE PULL instruction.
PARSE PULL animal

Then if you responded to the example with TyRannOsauRus, you would see on
the screen:

TyRannOsauRus

Exercises - Running and Modifying the Example Execs
Write and run the preceding Example of Reading and Re-displaying Input. Try
various input and observe the output. Now change the PULL instruction to a PARSE
PULL instruction and observe the difference.

Passing Information to an Exec
When an exec runs, you can pass information to it in several ways, two of which
are:

v Through terminal interaction

v By specifying input when invoking the exec.

Using Terminal Interaction
The PULL instruction is one way for an exec to receive input as shown by a
previous example repeated here.

Example of an Exec that Uses PULL
/**************************** REXX *********************************/
/* This exec adds two numbers and displays their sum. */
/***/
SAY 'Please enter a number.'
PULL number1
SAY 'Now enter a number to add to the first number.'
PULL number2
sum = number1 + number2
SAY 'The sum of the two numbers is' sum'.'

The PULL instruction can extract more than one value at a time from the terminal
by separating a line of input, as shown in the following variation of the previous
example.

Variation of an Example that Uses PULL
/**************************** REXX *********************************/
/* This exec adds two numbers and displays their sum. */
/***/
SAY 'Please enter two numbers.'
PULL number1 number2
sum = number1 + number2
SAY 'The sum of the two numbers is' sum'.'

Preventing Translation to Uppercase

Chapter 2. Writing and Running a REXX Exec 21

Note: For the PULL instruction to extract information from the terminal, the data
stack must be empty. More information about the data stack appears in
“Chapter 11. Storing Information in the Data Stack” on page 135.

Specifying Values when Invoking an Exec
Another way for an exec to receive input is through values specified when you
invoke the exec. For example to pass two numbers to an exec named "add", using
the EXEC command, type:

EXEC rexx.exec(add) '42 21' exec

To pass input when running an exec implicitly, simply type values (words or
numbers) after the member name.
add 42 21

These values are called an argument. For information about arguments, see
“Passing Arguments” on page 24.

The exec "add" uses the ARG instruction to assign the input to variables as shown
in the following example.

Example of an Exec that Uses the ARG Instruction
/**************************** REXX *********************************/
/* This exec receives two numbers as input, adds them, and */
/* displays their sum. */
/***/
ARG number1 number2
sum = number1 + number2
SAY 'The sum of the two numbers is' sum'.'

ARG assigns the first number, 42, to number1 and the second number, 21, to
number2.

If the number of values is fewer or more than the number of variable names after
the PULL or the ARG instruction, errors can occur as described in the following
sections.

Specifying Too Few Values
When you specify fewer values than the number of variables following the PULL or
ARG instruction, the extra variables are set to null. For example, you pass only one
number to "add".

EXEC rexx.exec(add) '42' exec

The first variable following the ARG instruction, number1, is assigned the value 42.
The second variable, number2, is set to null. In this situation, the exec ends with an
error when it tries to add the two variables. In other situations, the exec might not
end in error.

Specifying Too Many Values
When you specify more values than the number of variables following the PULL or
ARG instruction, the last variable gets the remaining values. For example, you pass
three numbers to "add".

Passing Information to an Exec

22 z/OS V1R2.0 TSO/E REXX User’s Guide

EXEC rexx.exec(add) '42 21 10' exec

The first variable following the ARG instruction, number1, is assigned the value 42.
The second variable gets both '21 10'. In this situation, the exec ends with an error
when it tries to add the two variables. In other situations, the exec might not end in
error.

To prevent the last variable from getting the remaining values, use a period (.) at
the end of the PULL or ARG instruction.
ARG number1 number2 .

The period acts as a "dummy variable" to collect unwanted extra information. If
there is no extra information, the period is ignored. You can also use a period as a
place holder within the PULL or ARG instruction as follows:
ARG . number1 number2

In this case, the first value, 42, is discarded and number1 and number2 get the next
two values, 21 and 10.

Preventing Translation of Input to Uppercase
Like the PULL instruction, the ARG instruction changes alphabetic characters to
uppercase. To prevent translation to uppercase, precede ARG with PARSE as
demonstrated in the following example.

Example of an Exec that Uses PARSE ARG
/**************************** REXX *********************************/
/* This exec receives the last name, first name, and score of */
/* a student and displays a sentence reporting the name and */
/* score. */
/***/
PARSE ARG lastname firstname score
SAY firstname lastname 'received a score of' score'.'

Exercises - Using the ARG Instruction
The left column shows the input values sent to an exec. The right column is the
ARG statement within the exec that receives the input. What value does each
variable assume?

Input Variables Receiving Input

1. 115 -23 66 5.8 ARG first second third

2. .2 0 569 2E6 ARG first second third fourth

3. 13 13 13 13 ARG first second third fourth fifth

4. Weber Joe 91 ARG lastname firstname score

5. Baker Amanda Marie 95 PARSE ARG lastname firstname score

6. Callahan Eunice 88 62 PARSE ARG lastname firstname score

ANSWERS

1. first = 115, second = -23, third = 66 5.8

2. first = .2, second = 0, third = 569, fourth = 2E6

Passing Information to an Exec

Chapter 2. Writing and Running a REXX Exec 23

3. first = 13, second = 13, third = 13, fourth = 13, fifth = null

4. lastname = WEBER, firstname = JOE, score = 91

5. lastname = Baker, firstname = Amanda, score = Marie 95

6. lastname = Callahan, firstname = Eunice, score = 88

Passing Arguments
Values passed to an exec are usually called arguments. Arguments can consist of
one word or a string of words. Words within an argument are separated by blanks.
The number of arguments passed depends on how the exec is invoked.

Passing Arguments Using the CALL Instruction or REXX
Function Call
When you invoke a REXX exec using either the CALL instruction or a REXX
function call, you can pass up to 20 arguments to an exec. Each argument must be
separated by a comma.

Passing Arguments Using the EXEC Command
When you invoke a REXX exec either implicitly or explicitly using the EXEC
command, you can pass either one or no arguments to the exec. Thus the ARG
instruction in the preceding examples received only one argument. One argument
can consist of many words. The argument, if present, will appear as a single string.

If you plan to use commas within the argument string when invoking a REXX exec
using the EXEC command, special consideration must be given. For example, if
you specify:
GETARG 1,2

or
ex 'sam.rexx.exec(getarg)' '1,2'

the exec receives a single argument string consisting of ″1,2″. The exec could then
use a PARSE ARG instruction to break the argument string into the
comma-separated values like the following:
PARSE ARG A ',' B
SAY 'A is ' A /* Will say 'A is 1' */
SAY 'B is ' B /* Will say 'B is 2' */

However, because commas are treated as separator characters in TSO/E, you
cannot pass an argument string that contains a leading comma using the implicit
form of the EXEC command. That is, if you invoke the exec using:
GETARG ,2

the exec is invoked with an argument string consisting of ″2″. The leading comma
separator is removed before the exec receives control. If you need to pass an
argument string separated by commas and the leading argument is null (that is,
contains a leading comma), you must use the explicit form of the EXEC command.
For example:
ex 'sam.rexx.exec(getarg)' ',2'

In this case, the exec is invoked with an argument string consisting of ″,2″.

For more information about functions and subroutines, see “Chapter 6. Writing
Subroutines and Functions” on page 69. For more information about arguments, see
“Parsing Multiple Strings as Arguments” on page 92.

Passing Information to an Exec

24 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 3. Using Variables and Expressions

Using Variables. 25
Variable Names . 26
Variable Values . 27
Exercises - Identifying Valid Variable Names 27

Using Expressions . 28
Arithmetic Operators . 28

Division . 29
Order of Evaluation . 29
Using Arithmetic Expressions. 30
Exercises - Calculating Arithmetic Expressions 30

Comparison Operators . 30
The Strictly Equal and Equal Operators 31
Using Comparison Expressions 31
Exercises - Using Comparison Expressions 32

Logical (Boolean) Operators 32
Using Logical Expressions. 33
Exercises - Using Logical Expressions 34

Concatenation Operators . 34
Using Concatenation Operators 34

Priority of Operators . 35
Exercises - Priority of Operators 36

Tracing Expressions with the TRACE Instruction 37
Tracing Operations . 37
Tracing Results. 38

Exercises - Using the TRACE Instruction 38

This chapter describes variables, expressions, and operators, and explains how to
use them in REXX execs.

One of the most powerful aspects of computer programming is the ability to process
variable data to achieve a result. The variable data could be as simple as two
numbers, the process could be subtraction, and the result could be the answer.
answer = number1 - number2

Or the variable data could be input to a series of complex mathematical
computations that result in a 3-dimensional animated figure.

Regardless of the complexity of a process, the premise is the same. When data is
unknown or if it varies, you substitute a symbol for the data, much like the "x" and
"y" in an algebraic equation.
x = y + 29

The symbol, when its value can vary, is called a variable. A group of symbols or
numbers that must be calculated to be resolved is called an expression.

Using Variables
A variable is a character or group of characters that represents a value. A variable
can contain either single- or double-byte characters, or a combination of single- and
double-byte characters. (Double-byte characters are valid only if you include
OPTIONS ETMODE as the first instruction of your exec.) The following variable big
represents the value one million or 1,000,000.

© Copyright IBM Corp. 1988, 2001 25

big = 1000000

Variables can refer to different values at different times. If you assign a different
value to big, it gets the value of the new assignment, until it is changed again.
big = 999999999

Variables can also represent a value that is unknown when the exec is written. In
the following example, the user’s name is unknown, so it is represented by the
variable who.
SAY "Hello! What's your name?"

PARSE PULL who /* Put the person's name in the variable "who" */

Variable Names
A variable name, the part that represents the value, is always on the left of the
assignment statement and the value itself is on the right. In the following example,
the word "variable1" is the variable name:
variable1 = 5
SAY variable1

As a result of the above assignment statement, variable1 is assigned the value "5",
and you see on the terminal screen:

5

Variable names can consist of:

A...Z uppercase alphabetic

a...z lowercase alphabetic

0...9 numbers

@ # $ ¢ ? ! . _ special characters

X'41' ... X'FE' double-byte character set (DBCS) characters.
(ETMODE must be on for these characters to be
valid in a variable name.)

Restrictions on the variable name are:

v The first character cannot be 0 through 9 or a period (.)

v The variable name cannot exceed 250 bytes. For names containing DBCS
characters, count each DBCS character as two bytes, and count the shift-out
(SO) and shift-in (SI) as one byte each.

v DBCS characters within a DBCS name must be delimited by SO (X'0E') and SI
(X'0F'). Also note that:
– SO and SI cannot be contiguous.
– Nesting of SO / SI is not permitted.
– A DBCS name cannot contain a DBCS blank (X'4040').

v The variable name should not be RC, SIGL, or RESULT, which are REXX special
variables. More about special variables appears later in this book.

Examples of acceptable variable names are:
ANSWER ?98B X Word3 number the_ultimate_value

Using Variables

26 z/OS V1R2.0 TSO/E REXX User’s Guide

Also, if ETMODE is set on, the following are valid DBCS variable names, where <
represents shift-out, and > represents shift-in, ‘.X’, ‘.Y’, and ‘.Z’ represent DBCS
characters, and lowercase letters and numbers represent themselves.
<.X.Y.Z> number_<.X.Y.Z> <.X.Y>1234<.Z>

Variable Values
The value of the variable, which is the value the variable name represents, might be
categorized as follows:

v A constant, which is a number that is expressed as:
An integer (12)
A decimal (12.5)
A floating point number (1.25E2)
A signed number (-12)
A string constant (' 12')

v A string, which is one or more words that may or may not be enclosed in
quotation marks, such as:
This value is a string.
'This value is a literal string.'

v The value from another variable, such as:
variable1 = variable2

In the above example, variable1 changes to the value of variable2, but
variable2 remains the same.

v An expression, which is something that needs to be calculated, such as:
variable2 = 12 + 12 - .6 /* variable2 becomes 23.4 */

Before a variable is assigned a value, the variable displays the value of its own
name translated to uppercase. In the following example, if the variable new was not
assigned a previous value, the word "NEW" is displayed.
SAY new /* displays NEW */

Exercises - Identifying Valid Variable Names
Which of the following are valid REXX variable names?

1. 8eight

2. $25.00

3. MixedCase

4. nine_to_five

5. result

ANSWERS

1. Invalid, because the first character is a number

2. Valid

3. Valid

4. Valid

5. Valid, but it is a reserved variable name and we recommend that you use it only
to receive results from a subroutine

Using Variables

Chapter 3. Using Variables and Expressions 27

Using Expressions
An expression is something that needs to be calculated and consists of numbers,
variables, or strings, and one or more operators. The operators determine the kind
of calculation to be done on the numbers, variables, and strings. There are four
types of operators: arithmetic, comparison, logical, and concatenation.

Arithmetic Operators
Arithmetic operators work on valid numeric constants or on variables that represent
valid numeric constants.

Types of Numeric Constants

12 A whole number has no decimal point or commas. Results of
arithmetic operations with whole numbers can contain a maximum
of nine digits unless you override the default with the NUMERIC
DIGITS instruction. For information about the NUMERIC DIGITS
instruction, see z/OS TSO/E REXX Reference. Examples of whole
numbers are: 123456789 0 91221 999

12.5 A decimal number includes a decimal point. Results of arithmetic
operations with decimal numbers are limited to a total maximum of
nine digits (NUMERIC DIGITS default) before and after the
decimal. Examples of decimal numbers are: 123456.789
0.888888888

1.25E2 A floating point number in exponential notation, is sometimes
called scientific notation. The number after the "E" represents the
number of places the decimal point moves. Thus 1.25E2 (also
written as 1.25E+2) moves the decimal point to the right two places
and results in 125. When an "E" is followed by a minus (-), the
decimal point moves to the left. For example, 1.25E-2 is .0125.

Floating point numbers are used to represent very large or very
small numbers. For more information about floating point numbers,
see z/OS TSO/E REXX Reference.

-12 A signed number with a minus (-) next to the number represents a
negative value. A plus next to a number indicates that the number
should be processed as it is written. When a number has no sign, it
is processed as a positive value.

The arithmetic operators you can use are as follows:

Operator Meaning

+ Add

- Subtract

* Multiply

/ Divide

% Divide and return a whole number without a remainder

// Divide and return the remainder only

** Raise a number to a whole number power

-number Negate the number

+number Add the number to 0

Using Expressions

28 z/OS V1R2.0 TSO/E REXX User’s Guide

Using numeric constants and arithmetic operators, you can write arithmetic
expressions as follows:
7 + 2 /* result is 9 */
7 - 2 /* result is 5 */
7 * 2 /* result is 14 */
7 ** 2 /* result is 49 */
7 ** 2.5 /* result is an error */

Division
Notice that three operators represent division. Each operator displays the result of a
division expression in a different way.

/ Divide and express the answer possibly as a decimal number. For example:
7 / 2 /* result is 3.5 */
6 / 2 /* result is 3 */

% Divide and express the answer as a whole number. The remainder is
ignored. For example:
7 % 2 /* result is 3 */

// Divide and express the answer as the remainder only. For example:
7 // 2 /* result is 1 */

Order of Evaluation
When you have more than one operator in an arithmetic expression, the order of
numbers and operators can be critical. For example, in the following expression,
which operation does the language processor perform first?
7 + 2 * (9 / 3) - 1

Proceeding from left to right, it is evaluated as follows:

v Expressions within parentheses are evaluated first.

v Expressions with operators of higher priority are evaluated before expressions
with operators of lower priority.

Arithmetic operator priority is as follows, with the highest first:

Arithmetic Operator Priority

- + Prefix operators

** Power (exponential)

* / % // Multiplication and division

+ - Addition and subtraction

Thus the preceding example would be evaluated in the following order:

1. Expression in parentheses
7 + 2 * (9 / 3) - 1

___/
3

2. Multiplication
7 + 2 * 3 - 1

___/
6

3. Addition and subtraction from left to right
7 + 6 - 1 = 12

Using Expressions

Chapter 3. Using Variables and Expressions 29

Using Arithmetic Expressions
You can use arithmetic expressions in an exec many different ways. The following
example uses several arithmetic operators to round and remove extra decimal
places from a dollar and cents value.

Example Using Arithmetic Expressions
/****************************** REXX *******************************/
/* This exec computes the total price of an item including sales */
/* tax rounded to two decimal places. The cost and percent of the */
/* tax (expressed as a decimal number) are passed to the exec when */
/* it is run. */
/***/

PARSE ARG cost percent_tax

total = cost + (cost * percent_tax) /* Add tax to cost. */
price = ((total * 100 + .5) % 1) / 100 /* Round and remove */

/* extra decimal places.*/
SAY 'Your total cost is $'price'.'

Exercises - Calculating Arithmetic Expressions
1. What will the following program display on the screen?

Exercise
/***************************** REXX ****************************/

pa = 1
ma = 1
kids = 3
SAY "There are" pa + ma + kids "people in this family."

2. What is the value of:
a. 6 - 4 + 1
b. 6 - (4 + 1)
c. 6 * 4 + 2
d. 6 * (4 + 2)
e. 24 % 5 / 2

ANSWERS

1. There are 5 people in this family.

2. The values are as follows:
a. 3
b. 1
c. 26
d. 36
e. 2

Comparison Operators

Expressions that use comparison operators do not return a number value as do
arithmetic expressions. Comparison expressions return either a true or false
response in terms of 1 or 0 as follows:

1 True

0 False

Using Expressions

30 z/OS V1R2.0 TSO/E REXX User’s Guide

Comparison operators can compare numbers or strings and ask questions, such as:
Are the terms equal? (A = B)
Is the first term greater than the second? (A > B)
Is the first term less than the second? (A < B)

For example, if A = 4 and B = 3, then the results of the previous comparison
questions are:

(A = B) Does 4 = 3? 0 (False)
(A > B) Is 4 > 3? 1 (True)
(A < B) Is 4 < 3? 0 (False)

The more commonly used comparison operators are as follows:

Operator Meaning

== Strictly Equal

= Equal

\ == Not strictly equal

\ = Not equal

> Greater than

< Less than

> < Greater than or less than (same as not equal)

> = Greater than or equal to

\ < Not less than

< = Less than or equal to

\ > Not greater than

Note: The not character, "¬", is synonymous with the backslash ("\"). The two
characters may be used interchangeably according to availability and
personal preference. This book uses the backslash ("\") character.

The Strictly Equal and Equal Operators
When two expressions are strictly equal, everything including the blanks and case
(when the expressions are characters) is exactly the same.

When two expressions are equal, they are resolved to be the same. The following
expressions are all true.
'WORD' = word /* returns 1 */
'word ' \== word /* returns 1 */
'word' == 'word' /* returns 1 */
4e2 \== 400 /* returns 1 */
4e2 \= 100 /* returns 1 */

Using Comparison Expressions
Often a comparison expression is used in IF/THEN/ELSE instructions. The following
example uses an IF/THEN/ELSE instruction to compare two values. For more
information about this instruction, see “IF/THEN/ELSE Instructions” on page 42.

Using Expressions

Chapter 3. Using Variables and Expressions 31

Example Using A Comparison Expression
/****************************** REXX *******************************/
/* This exec compares what you paid for lunch for two */
/* days in a row and then comments on the comparison. */
/***/
SAY 'What did you spend for lunch yesterday?'
SAY 'Please do not include the dollar sign.'

PARSE PULL last

SAY 'What did you spend for lunch today?'
SAY 'Please do not include the dollar sign.'

PARSE PULL lunch

IF lunch > last THEN /* lunch cost increased */
SAY "Today's lunch cost more than yesterday's."

ELSE /* lunch cost remained the same or decreased */
SAY "Today's lunch cost the same or less than yesterday's."

Exercises - Using Comparison Expressions
1. In the preceding example of using a comparison expression, what appears on

the screen when you respond to the prompts with the following lunch costs?

Yesterday’s Lunch Today’s Lunch

4.42 3.75

3.50 3.50

3.75 4.42

2. What is the result (0 or 1) of the following expressions?
a. ″Apples″ = ″Oranges″
b. ″ Apples″ = ″Apples″
c. ″ Apples″ == ″Apples″
d. 100 = 1E2
e. 100 \= 1E2
f. 100 \== 1E2

ANSWERS

1. The following sentences appear.
a. Today’s lunch cost the same or less than yesterday’s.
b. Today’s lunch cost the same or less than yesterday’s.
c. Today’s lunch cost more than yesterday’s.

2. The expressions result in the following. Remember 0 is false and 1 is true.
a. 0
b. 1
c. 0 (The first ″ Apples″ has a space.)
d. 1
e. 0
f. 1

Logical (Boolean) Operators
Logical expressions, like comparison expressions, return a true (1) or false (0) value
when processed. Logical operators combine two comparisons and return the true
(1) or false (0) value depending on the results of the comparisons.

Using Expressions

32 z/OS V1R2.0 TSO/E REXX User’s Guide

The logical operators are:

Operator Meaning

& AND

Returns 1 if both comparisons are true. For example:
(4 > 2) & (a = a) /* true, so result is 1 */

(2 > 4) & (a = a) /* false, so result is 0 */

| Inclusive OR

Returns 1 if at least one comparison is true. For example:
(4 > 2) | (5 = 3) /* at least one is true, so result is 1 */

(2 > 4) | (5 = 3) /* neither one is true, so result is 0 */

&& Exclusive OR

Returns 1 if only one comparison (but not both) is true. For
example:
(4 > 2) && (5 = 3) /* only one is true, so result is 1 */

(4 > 2) && (5 = 5) /* both are true, so result is 0 */

(2 > 4) && (5 = 3) /* neither one is true, so result is 0 */

Prefix \ Logical NOT

Returns the opposite response. For example:
\ 0 /* opposite of 0, so result is 1 */

\ (4 > 2) /* opposite of true, so result is 0 */

Using Logical Expressions
Logical expressions are used in complex conditional instructions and can act as
checkpoints to screen unwanted conditions. When you have a series of logical
expressions, for clarification, use one or more sets of parentheses to enclose each
expression.
IF ((A < B) | (J < D)) & ((M = Q) | (M = D)) THEN ...

The following example uses logical operators to make a decision.

Example Using Logical Expressions
/***************************** REXX ********************************/
/* This exec receives arguments for a complex logical expression */
/* that determines whether a person should go skiing. The first */
/* argument is a season and the other two can be 'yes' or 'no'. */
/***/

PARSE ARG season snowing broken_leg

IF ((season = 'winter') | (snowing ='yes')) & (broken_leg ='no')
THEN SAY 'Go skiing.'

ELSE
SAY 'Stay home.'

When arguments passed to this example are "spring yes no", the IF clause
translates as follows:

Using Expressions

Chapter 3. Using Variables and Expressions 33

IF ((season = 'winter') | (snowing ='yes')) & (broken_leg ='no') THEN
______________/ ____________/ _____________/

false true true
___________________/ /

true /
_____________________________/

true

As a result, when you run the exec, you see the message:

Go skiing.

Exercises - Using Logical Expressions
A student applying to colleges has decided to pick ones according to the following
specifications:
IF (inexpensive | scholarship) & (reputable | nearby) THEN

SAY "I'll consider it."
ELSE

SAY "Forget it!"

A college is inexpensive, did not offer a scholarship, is reputable, but is over 1000
miles away. Should the student apply?

ANSWER

Yes. The conditional instruction works out as follows:
IF (inexpensive | scholarship) & (reputable | nearby) THEN ...

___________/ ___________/ _________/ ______/
true false true false

___________/ _________/
true true

_________________________/
true

Concatenation Operators
Concatenation operators combine two terms into one. The terms can be strings,
variables, expressions, or constants. Concatenation can be significant in formatting
output.

The operators that indicate how to join two terms are as follows:

Operator Meaning

blank Concatenate terms and place one blank in between. Terms that are
separated by more than one blank default to one blank when read.
For example:
SAY true blue /* result is TRUE BLUE */

|| Concatenate terms and place no blanks in between. For example:
(8 / 2)||(3 * 3) /* result is 49 */

abuttal Concatenate terms and place no blanks in between. For example:
per_cent'%' /* if per_cent = 50, result is 50% */

Using Concatenation Operators
One way to format output is to use variables and concatenation operators as in the
following example. A more sophisticated way to format information is with parsing
and templates. Information about parsing appears in “Parsing Data” on page 87.

Using Expressions

34 z/OS V1R2.0 TSO/E REXX User’s Guide

Example using Concatenation Operators
/****************************** REXX *******************************/
/* This exec formats data into columns for output. */
/***/

sport = 'base'
equipment = 'ball'
column = ' '
cost = 5

SAY sport||equipment column '$' cost

The result of this example is:

baseball $ 5

Priority of Operators

When more than one type of operator appears in an expression, what operation
does the language processor do first?
IF (A > 7**B) & (B < 3) | (A||B = C) THEN ...

Like the priority of operators within the arithmetic operators, there is an overall
priority that includes all operators. The priority of operators is as follows with the
highest first.

Overall Operator Priority

\ or ¬ - + Prefix operators

** Power (exponential)

* / % // Multiply and divide

+ - Add and subtract

blank || abuttal Concatenation operators

== = >< etc. Comparison operators

& Logical AND

| && Inclusive OR and exclusive OR

Thus the previous example presented again below:
IF (A > 7**B) & (B < 3) | (A||B = C) THEN ...

given the following values:
A = 8
B = 2
C = 10

would be evaluated as follows:
1. Convert variables to values

IF (8 > 7**2) & (2 < 3) | (8||2 = 10) THEN ...
2. Compute operations of higher priority within parentheses

Using Expressions

Chapter 3. Using Variables and Expressions 35

v Exponential operation
IF (8 > 7**2) & (2 < 3) | (8||2 = 10) THEN ...

____/
49

v Concatenation operation
IF (8 > 49) & (2 < 3) | (8||2 = 10) THEN ...

____/
82

3. Compute all operations within parentheses from left to right
IF (8 > 49) & (2 < 3) | (82 = 10) THEN ...

____/ ___/ _____/
0 1 0

4. Logical AND
0 & 1 | 0
_______/

0
5. Inclusive OR

0 | 0
_____________/

0

Exercises - Priority of Operators
1. What are the answers to the following examples?

a. 22 + (12 * 1)
b. -6 / -2 > (45 % 7 / 2) - 1
c. 10 * 2 - (5 + 1) // 5 * 2 + 15 - 1

2. In the example of the student and the college from “Exercises - Using Logical
Expressions” on page 34, if the parentheses were removed from the student’s
formula, what would be the outcome for the college?
IF inexpensive | scholarship & reputable | nearby THEN

SAY "I'll consider it."
ELSE

SAY "Forget it!"

Remember the college is inexpensive, did not offer a scholarship, is reputable,
but is 1000 miles away.

ANSWERS

1. The results are as follows:

a. 34 (22 + 12 = 34)

b. 1 (true) (3 > 3 - 1)

c. 32 (20 - 2 + 15 - 1)

2. I’ll consider it.

The & operator has priority, as follows, but the outcome is the same as the
previous version with the parentheses.
IF inexpensive | scholarship & reputable | nearby THEN

_________/ _________/ _______/ ____/
true false true false

\ ___________/ /
\ false /
_________________/ /

true /
____________________/

true

Using Expressions

36 z/OS V1R2.0 TSO/E REXX User’s Guide

Tracing Expressions with the TRACE Instruction

You can use the TRACE instruction to display how the language processor
evaluates each operation of an expression as it reads it, or to display the final result
of an expression. These two types of tracing are useful for debugging execs.

Tracing Operations

To trace operations within an expression, use the TRACE I (TRACE Intermediates)
form of the TRACE instruction. All expressions that follow the instruction are then
broken down by operation and analyzed as:
>V> - Variable value - The data traced is the contents

of a variable.
>L> - Literal value - The data traced is a literal

(string, uninitialized variable, or constant).
>O> - Operation result - The data traced is the result

of an operation on two terms.

The following example uses the TRACE I instruction.

EDIT ---- USERID.REXX.EXEC(SAMPLE) ---------------------- COLUMNS 009 080
COMMAND ===> SCROLL ===> HALF
******* ************************** TOP OF DATA ****************************
000001 /************************* REXX *****************************/
000002 /* This exec uses the TRACE instruction to show how an */
000003 /* expression is evaluated, operation by operation. */
000004 /*** */
000005 x = 9
000006 y = 2
000007 TRACE I
000008
000009 IF x + 1 > 5 * y THEN
000010 SAY 'x is big enough.'
000011 ELSE NOP /* No operation on the ELSE path */
******* ********************** BOTTOM OF DATA *****************************

When you run the example, you see on your screen:

9 *-* IF x + 1 > 5 * y
>V> "9"
>L> "1"
>O> "10"
>L> "5"
>V> "2"
>O> "10"
>O> "0"

First you see the line number (9 *-*) followed by the expression. Then the
expression is broken down by operation as follows:
>V> "9" (value of variable x)
>L> "1" (value of literal 1)
>O> "10" (result of operation x + 1)
>L> "5" (value of literal 5)
>V> "2" (value of variable y)
>O> "10" (result of operation 5 * y)
>O> "0" (result of final operation 10 > 10 is false)

Tracing Expressions with the TRACE Instruction

Chapter 3. Using Variables and Expressions 37

Tracing Results

To trace only the final result of an expression, use the TRACE R (TRACE Results)
form of the TRACE instruction. All expressions that follow the instruction are
analyzed and the results are displayed as:

>>> Final result of an expression

If you changed the TRACE instruction operand in the previous example from an I to
an R, you would see the following results.

9 *-* IF x + 1 > 5 * y
>>> "0"

In addition to tracing operations and results, the TRACE instruction offers other
types of tracing. For information about the other types of tracing with the TRACE
instruction, see z/OS TSO/E REXX Reference.

Exercises - Using the TRACE Instruction
Write an exec with a complex expression, such as:
IF (A > B) | (C < 2 * D) THEN ...

Define A, B, C, and D in the exec and use the TRACE I instruction.

ANSWER

Possible Solution
/****************************** REXX *******************************/
/* This exec uses the TRACE instruction to show how an expression */
/* is evaluated, operation by operation. */
/***/
A = 1
B = 2
C = 3
D = 4

TRACE I

IF (A > B) | (C < 2 * D) THEN
SAY 'At least one expression was true.'

ELSE
SAY 'Neither expression was true.'

When this exec is run, you see the following:

Tracing Expressions with the TRACE Instruction

38 z/OS V1R2.0 TSO/E REXX User’s Guide

12 *-* IF (A > B) | (C < 2 * D)
>V> "1"
>V> "2"
>O> "0"
>V> "3"
>L> "2"
>V> "4"
>O> "8"
>O> "1"
>O> "1"
- THEN

13 *-* SAY 'At least one expression was true.'
>L> "At least one expression was true."

At least one expression was true.

Tracing Expressions with the TRACE Instruction

Chapter 3. Using Variables and Expressions 39

Tracing Expressions with the TRACE Instruction

40 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 4. Controlling the Flow Within an Exec

Using Conditional Instructions 42
IF/THEN/ELSE Instructions 42
Nested IF/THEN/ELSE Instructions 43

Exercise - Using the IF/THEN/ELSE Instruction 44
SELECT/WHEN/OTHERWISE/END Instruction 44

Exercises - Using the SELECT/WHEN/OTHERWISE/END Instruction . . . 46
Using Looping Instructions . 47

Repetitive Loops . 47
Infinite Loops . 48
DO FOREVER Loops . 49
LEAVE Instruction . 50
ITERATE Instruction . 50
Exercises - Using Loops 51

Conditional Loops . 52
DO WHILE Loops . 52
Exercise - Using a DO WHILE Loop 53
DO UNTIL Loops . 53
Exercise - Using a DO UNTIL Loop 54

Combining Types of Loops 55
Nested DO Loops . 55

Exercises - Combining Loops 56
Using Interrupt Instructions . 56

EXIT Instruction . 57
CALL/RETURN Instructions 57
SIGNAL Instruction . 58

This chapter introduces instructions that alter the sequential execution of an exec
and demonstrates how those instructions are used.

Generally when an exec runs, one instruction after another executes, starting with
the first and ending with the last. The language processor, unless told otherwise,
executes instructions sequentially.

You can alter the order of execution within an exec by using specific REXX
instructions that cause the language processor to skip some instructions, repeat
others, or jump to another part of the exec. These specific REXX instructions can
be classified as follows:

v Conditional instructions, which set up at least one condition in the form of an
expression. If the condition is true, the language processor selects the path
following that condition. Otherwise the language processor selects another path.
The REXX conditional instructions are:

IF expression/THEN/ELSE
SELECT/WHEN expression/OTHERWISE/END.

v Looping instructions, which tell the language processor to repeat a set of
instructions. A loop can repeat a specified number of times or it can use a
condition to control repeating. REXX looping instructions are:

DO expression/END
DO FOREVER/END
DO WHILE expression=true/END
DO UNTIL expression=true/END

© Copyright IBM Corp. 1988, 2001 41

v Interrupt instructions, which tell the language processor to leave the exec entirely
or leave one part of the exec and go to another part, either permanently or
temporarily. The REXX interrupt instructions are:

EXIT
SIGNAL label
CALL label/RETURN

Using Conditional Instructions
There are two types of conditional instructions. IF/THEN/ELSE can direct the
execution of an exec to one of two choices. SELECT/WHEN/OTHERWISE/END can
direct the execution to one of many choices.

IF/THEN/ELSE Instructions

The examples of IF/THEN/ELSE instructions in previous chapters demonstrated the
two-choice selection. In a flow chart, this appears as follows:

As a REXX instruction, the flowchart example looks like:
IF expression THEN instruction

ELSE instruction

You can also arrange the clauses in one of the following ways to enhance
readability:
IF expression THEN

instruction
ELSE

instruction

or
IF expression

THEN
instruction

ELSE
instruction

When you put the entire instruction on one line, you must separate the THEN
clause from the ELSE clause with a semicolon.
IF expression THEN instruction; ELSE instruction

Generally, at least one instruction should follow the THEN and ELSE clauses. When
either clause has no instructions, it is good programming practice to include NOP
(no operation) next to the clause.

IF

expression
False True

ELSE THEN

instruction instruction

Controlling the Flow Within an Exec

42 z/OS V1R2.0 TSO/E REXX User’s Guide

IF expression THEN
instruction

ELSE NOP

If you have more than one instruction for a condition, begin the set of instructions
with a DO and end them with an END.
IF weather = rainy THEN

SAY 'Find a good book.'
ELSE

DO
SAY 'Would you like to play tennis or golf?'
PULL answer

END

Without the enclosing DO and END, the language processor assumes only one
instruction for the ELSE clause.

Nested IF/THEN/ELSE Instructions
Sometimes it is necessary to have one or more IF/THEN/ELSE instructions within
other IF/THEN/ELSE instructions. Having one type of instruction within another is
called nesting. With nested IF instructions, it is important to match each IF with an
ELSE and each DO with an END.
IF weather = fine THEN

DO
SAY 'What a lovely day!'
IF tenniscourt = free THEN

SAY 'Shall we play tennis?'
ELSE NOP

END
ELSE

SAY 'Shall we take our raincoats?'

Not matching nested IFs to ELSEs and DOs to ENDs can have some surprising
results. If you eliminate the DOs and ENDs and the ELSE NOP, as in the following
example, what is the outcome?

Example of Missing Instructions
/******************************** REXX *****************************/
/* This exec demonstrates what can happen when you do not include */
/* DOs, ENDs, and ELSEs in nested IF/THEN/ELSE instructions. */
/***/
weather = 'fine'
tenniscourt = 'occupied'

IF weather = 'fine' THEN
SAY 'What a lovely day!'
IF tenniscourt = 'free' THEN

SAY 'Shall we play tennis?'
ELSE

SAY 'Shall we take our raincoats?'

By looking at the exec you might assume the ELSE belongs to the first IF. However,
the language processor associates an ELSE with the nearest unpaired IF. The
outcome is as follows:

What a lovely day!
Shall we take our raincoats?

Using Conditional Instructions

Chapter 4. Controlling the Flow Within an Exec 43

Exercise - Using the IF/THEN/ELSE Instruction
Write the REXX instructions for the following flowchart:

ANSWER

Possible Solution
IF A = 0 THEN

IF C = 2 THEN
B = 1

ELSE NOP
ELSE

IF B = 2 THEN
IF C = 3 THEN

A = 1
ELSE

A = 3
ELSE NOP

SELECT/WHEN/OTHERWISE/END Instruction

To select one of any number of choices, use the
SELECT/WHEN/OTHERWISE/END instruction. In a flowchart it appears as follows:

False

False

False

True

True

True

IF

A=0

A=3

B=2

C=3

A=1

C=2
False True

B=1

IFIF

IF

Using Conditional Instructions

44 z/OS V1R2.0 TSO/E REXX User’s Guide

As a REXX instruction, the flowchart example looks like:
SELECT

WHEN expression THEN instruction
WHEN expression THEN instruction
WHEN expression THEN instruction

...

OTHERWISE
instruction(s)

END

The language processor scans the WHEN clauses starting at the beginning until it
finds a true expression. After it finds a true expression, it ignores all other
possibilities, even though they might also be true. If no WHEN expressions are true,
it processes the instructions following the OTHERWISE clause.

As with the IF/THEN/ELSE instruction, when you have more than one instruction for
a possible path, begin the set of instructions with a DO and end them with an END.
However, if more than one instruction follows the OTHERWISE keyword, DO and
END are not necessary.

SELECT

WHEN

False

WHEN

False

WHEN

False

OTHERWISE

END

True

True

True

THEN

THEN

THEN

instruction

instruction

instruction

instruction(s)

Using Conditional Instructions

Chapter 4. Controlling the Flow Within an Exec 45

Example Using SELECT/WHEN/OTHERWISE/END
/******************************** REXX *****************************/
/* This exec receives input with a person's age and sex. In */
/* reply it displays a person's status as follows: */
/* BABIES - under 5 */
/* GIRLS - female 5 to 12 */
/* BOYS - male 5 to 12 */
/* TEENAGERS - 13 through 19 */
/* WOMEN - female 20 and up */
/* MEN - male 20 and up */
/***/
PARSE ARG age sex .

SELECT
WHEN age < 5 THEN /* person younger than 5 */

status = 'BABY'
WHEN age < 13 THEN /* person between 5 and 12 */

DO
IF sex = 'M' THEN /* boy between 5 and 12 */

status = 'BOY'
ELSE /* girl between 5 and 12 */

status = 'GIRL'
END

WHEN age < 20 THEN /* person between 13 and 19 */
status = 'TEENAGER'

OTHERWISE
IF sex = 'M' THEN /* man 20 or older */

status = 'MAN'
ELSE /* woman 20 or older */

status = 'WOMAN'
END

SAY 'This person should be counted as a' status '.'

Each SELECT must end with an END. Indenting each WHEN makes an exec
easier to read.

Exercises - Using the SELECT/WHEN/OTHERWISE/END
Instruction
"Thirty days hath September, April, June, and November; all the rest have
thirty-one, save February alone ..."

Write an exec that provides the number of days in a month. First have the exec ask
the user for a month specified as a number from 1 to 12 (with January being 1,
February 2, and so forth). Then have the exec reply with the number of days. For
month "2", the reply can be "28 or 29".

ANSWER

Using Conditional Instructions

46 z/OS V1R2.0 TSO/E REXX User’s Guide

Possible Solution
/******************************** REXX *****************************/
/* This exec requests the user to enter a month as a whole number */
/* from 1 to 12 and responds with the number of days in that */
/* month. */
/***/

SAY 'To find out the number of days in a month,'
SAY 'Enter the month as a number from 1 to 12.'
PULL month

SELECT
WHEN month = 9 THEN

days = 30
WHEN month = 4 THEN

days = 30
WHEN month = 6 THEN

days = 30
WHEN month = 11 THEN

days = 30
WHEN month = 2 THEN

days = '28 or 29'
OTHERWISE

days = 31
END

SAY 'There are' days 'days in Month' month '.'

Using Looping Instructions
There are two types of looping instructions, repetitive loops and conditional
loops. Repetitive loops allow you to repeat instructions a certain number of times,
and conditional loops use a condition to control repeating. All loops, regardless of
the type, begin with the DO keyword and end with the END keyword.

Repetitive Loops
The simplest loop tells the language processor to repeat a group of instructions a
specific number of times using a constant following the keyword DO.
DO 5

SAY 'Hello!'
END

When you run this example, you see five lines of Hello!.

Hello!
Hello!
Hello!
Hello!
Hello!

You can also use a variable in place of a constant as in the following example,
which gives you the same results.
number = 5
DO number

SAY 'Hello!'
END

Using Conditional Instructions

Chapter 4. Controlling the Flow Within an Exec 47

A variable that controls the number of times a loop repeats is called a control
variable. Unless you specify otherwise, the control variable increases by 1 each
time the loop repeats.
DO number = 1 TO 5

SAY 'Loop' number
SAY 'Hello!'

END
SAY 'Dropped out of the loop when number reached' number

This example results in five lines of Hello! preceded by the number of the loop.
The number increases at the bottom of the loop and is tested at the top.

Loop 1
Hello!
Loop 2
Hello!
Loop 3
Hello!
Loop 4
Hello!
Loop 5
Hello!
Dropped out of the loop when number reached 6

You can change the increment of the control variable with the keyword BY as
follows:
DO number = 1 TO 10 BY 2

SAY 'Loop' number
SAY 'Hello!'

END
SAY 'Dropped out of the loop when number reached' number

This example has results similar to the previous example except the loops are
numbered in increments of two.

Loop 1
Hello!
Loop 3
Hello!
Loop 5
Hello!
Loop 7
Hello!
Loop 9
Hello!
Dropped out of the loop when number reached 11

Infinite Loops
What happens when the control variable of a loop cannot attain the last number?
For example, in the following exec segment, count does not increase beyond 1.
DO count = 1 to 10

SAY 'Number' count
count = count - 1

END

The result is called an infinite loop because count alternates between 1 and 0 and
an endless number of lines saying Number 1 appear on the screen.

Using Looping Instructions

48 z/OS V1R2.0 TSO/E REXX User’s Guide

IMPORTANT - Stopping An Infinite Loop

When you suspect an exec is in an infinite loop, you can end the exec by
pressing the attention interrupt key, sometimes labeled PA1. You will then see
message IRX0920I. In response to this message, type HI for halt interpretation
and press the Enter key. If that doesn’t stop the loop, you can press the
attention interrupt key again, type HE for halt execution, and press the Enter
key.

HI will not halt an infinitely looping or long running external function, subroutine, or
host command written in a language other than REXX and that was called by your
exec. The HI condition is not checked by the REXX interpreter until control returns
from the function, subroutine, or host command.

Example of EXEC1, an exec that calls an external function
/********************* REXX **/
/* Invoke a user-written external function, 'myfunct'. */
/* not written in REXX. For example, it might have been coded */
/* in PL/I or assembler. */
/***/
x = myfunct(1)
exit

If myfunct enters an infinite loop, pressing the attention interrupt key and entering
HI will not stop myfunct. However, pressing the attention interrupt key and then
entering HE will stop the function and the exec (EXEC1) that called it. HE does not
automatically stop any exec that called EXEC1, unless you are running under ISPF.
For more information about the HE condition, see z/OS TSO/E REXX Reference.

Note: HE does not alter the halt condition, which is raised by HI. If you entered HI
before you entered HE (for example, you may have first issued HI and it
failed to end your exec), the halt condition will remain set for the exec and all
calling execs. HE will stop your exec, and then the halt condition, raised
when you entered HI, will be recognized by any exec that called your exec.

DO FOREVER Loops

Sometimes you might want to purposely write an infinite loop; for instance, in an
exec that reads records from a data set until it reaches end of file, or in an exec
that interacts with a user until the user enters a particular symbol to end the loop.
You can use the EXIT instruction to end an infinite loop when a condition is met, as
in the following example. More about the EXIT instruction appears in “EXIT
Instruction” on page 57.

Using Looping Instructions

Chapter 4. Controlling the Flow Within an Exec 49

Example Using a DO FOREVER Loop
/****************************** REXX *******************************/
/* This exec prints data sets named by a user until the user enters*/
/* a null line. */
/***/

DO FOREVER
SAY 'Enter the name of the next data set or a blank to end.'
PULL dataset_name
IF dataset_name = '' THEN

EXIT
ELSE

DO
"PRINTDS DA("dataset_name")"
SAY dataset_name 'printed.'

END
END

This example sends data sets to the printer and then issues a message that the
data set was printed. When the user enters a blank, the loop ends and so does the
exec. To end the loop without ending the exec, use the LEAVE instruction, as
described in the following topic.

LEAVE Instruction
The LEAVE instruction causes an immediate exit from a repetitive loop. Control
goes to the instruction following the END keyword of the loop. An example of using
the LEAVE instruction follows:

Example Using the LEAVE Instruction
/******************************** REXX *****************************/
/* This exec uses the LEAVE instruction to exit from a DO FOREVER */
/* loop that sends data sets to the printer. */
/***/

DO FOREVER
SAY 'Enter the name of the next data set.'
SAY 'When there are no more data sets, enter QUIT.'
PULL dataset_name
IF dataset_name = 'QUIT' THEN

LEAVE
ELSE

DO
"PRINTDS DA("dataset_name")"
SAY dataset_name 'printed.'

END
END
SAY 'Good-bye.'

ITERATE Instruction
Another instruction, ITERATE, stops execution from within the loop and passes
control to the DO instruction at the top of the loop. Depending on the type of DO
instruction, a control variable is increased and tested and/or a condition is tested to
determine whether to repeat the loop. Like LEAVE, ITERATE is used within the
loop.
DO count = 1 TO 10

IF count = 8
THEN

Using Looping Instructions

50 z/OS V1R2.0 TSO/E REXX User’s Guide

ITERATE
ELSE

SAY 'Number' count
END

This example results in a list of numbers from 1 to 10 with the exception of number
8.

Number 1
Number 2
Number 3
Number 4
Number 5
Number 6
Number 7
Number 9
Number 10

Exercises - Using Loops
1. What are the results of the following loops?

a. DO digit = 1 TO 3
SAY digit

END
SAY 'Digit is now' digit

b. DO count = 10 BY -2 TO 6
SAY count

END
SAY 'Count is now' count

c. DO index = 10 TO 8
SAY 'Hup! Hup! Hup!'

END
SAY 'Index is now' index

2. Sometimes an infinite loop can occur when input to end the loop doesn’t match
what is expected. For instance, in the previous example using the “LEAVE
Instruction” on page 50, what happens when the user enters Quit and the PULL
instruction is changed to a PARSE PULL instruction?
PARSE PULL dataset_name

ANSWERS

1. The results of the repetitive loops are as follows:

a.

1
2
3
Digit is now 4

b.

10
8
6
Count is now 4

c.

(blank)
Index is now 10

2. The user would be unable to leave the loop because "Quit" is not equal to
"QUIT". In this case, omitting the PARSE keyword is preferred because

Using Looping Instructions

Chapter 4. Controlling the Flow Within an Exec 51

regardless of whether the user enters "quit", "QUIT", or "Quit", the language
processor translates the input to uppercase before comparing it to "QUIT".

Conditional Loops
There are two types of conditional loops, DO WHILE and DO UNTIL. Both types of
loops are controlled by one or more expressions. However, DO WHILE loops test
the expression before the loop executes the first time and repeat only when the
expression is true. DO UNTIL loops test the expression after the loop executes at
least once and repeat only when the expression is false.

DO WHILE Loops
DO WHILE loops in a flowchart appear as follows:

As REXX instructions, the flowchart example looks like:
DO WHILE expression /* expression must be true */

instruction(s)
END

Use a DO WHILE loop when you want to execute the loop while a condition is true.
DO WHILE tests the condition at the top of the loop. If the condition is initially false,
the loop is never executed.

You can use a DO WHILE loop instead of the DO FOREVER loop in the example
using the “LEAVE Instruction” on page 50. However, you need to initialize the loop
with a first case so the condition can be tested before you get into the loop. Notice
the first case initialization in the beginning three lines of the following example.

Example Using DO WHILE
/******************************** REXX *****************************/
/* This exec uses a DO WHILE loop to send data sets to the system */
/* printer. */
/***/

SAY 'Enter the name of a data set to print.'
SAY 'If there are no data sets, enter QUIT.'
PULL dataset_name
DO WHILE dataset_name \= 'QUIT'

"PRINTDS DA("dataset_name")"
SAY dataset_name 'printed.'
SAY 'Enter the name of the next data set.'
SAY 'When there are no more data sets, enter QUIT.'
PULL dataset_name

END
SAY 'Good-bye.'

DO WHILE

END

expression
True

False

instruction(s)

Using Looping Instructions

52 z/OS V1R2.0 TSO/E REXX User’s Guide

Exercise - Using a DO WHILE Loop
Write an exec with a DO WHILE loop that asks passengers on a commuter airline if
they want a window seat and keeps track of their responses. The flight has 8
passengers and 4 window seats. Discontinue the loop when all the window seats
are taken. After the loop ends, display the number of window seats taken and the
number of passengers questioned.

ANSWER

Possible Solution
/******************************** REXX *****************************/
/* This exec uses a DO WHILE loop to keep track of window seats in */
/* an 8-seat commuter airline. */
/***/

window_seats = 0 /* Initialize window seats to 0 */
passenger = 0 /* Initialize passengers to 0 */

DO WHILE (passenger < 8) & (window_seats \= 4)

/**/
/* Continue while you have not questioned all 8 passengers and */
/* while all the window seats are not taken. */
/**/

SAY 'Do you want a window seat? Please answer Y or N.'
PULL answer
passenger = passenger + 1

/* Increase the number of passengers by 1 */
IF answer = 'Y' THEN

window_seats = window_seats + 1
/* Increase the number of window seats by 1 */

ELSE NOP
END

SAY window_seats 'window seats were assigned.'
SAY passenger 'passengers were questioned.'

DO UNTIL Loops
DO UNTIL loops in a flowchart appear as follows:

As REXX instructions, the flowchart example looks like:

DO UNTIL

instruction(s)

expression
False

True

END

Using Looping Instructions

Chapter 4. Controlling the Flow Within an Exec 53

DO UNTIL expression /* expression must be false */
instruction(s)

END

Use DO UNTIL loops when a condition is not true and you want to execute the loop
until the condition is true. The DO UNTIL loop tests the condition at the end of the
loop and repeats only when the condition is false. Otherwise the loop executes
once and ends. For example:

Example Using DO UNTIL
/******************************** REXX *****************************/
/* This exec uses a DO UNTIL loop to ask for a password. If the */
/* password is incorrect three times, the loop ends. */
/***/

password = 'abracadabra'
time = 0
DO UNTIL (answer = password) | (time = 3)

SAY 'What is the password?'
PULL answer
time = time + 1

END

Exercise - Using a DO UNTIL Loop
Change the exec in the previous exercise, “Exercise - Using a DO WHILE Loop” on
page 53, from a DO WHILE to a DO UNTIL loop and achieve the same results.
Remember that DO WHILE loops check for true expressions and DO UNTIL loops
check for false expressions, which means their logical operators are often reversed.

ANSWER

Possible Solution
/******************************** REXX *****************************/
/* This exec uses a DO UNTIL loop to keep track of window seats in */
/* an 8-seat commuter airline. */
/***/

window_seats = 0 /* Initialize window seats to 0 */
passenger = 0 /* Initialize passengers to 0 */

DO UNTIL (passenger >= 8) | (window_seats = 4)

/**/
/* Continue until you have questioned all 8 passengers or until */
/* all the window seats are taken. */
/**/

SAY 'Do you want a window seat? Please answer Y or N.'
PULL answer
passenger = passenger + 1

/* Increase the number of passengers by 1 */
IF answer = 'Y' THEN

window_seats = window_seats + 1
/* Increase the number of window seats by 1 */

ELSE NOP
END
SAY window_seats 'window seats were assigned.'
SAY passenger 'passengers were questioned.'

Using Looping Instructions

54 z/OS V1R2.0 TSO/E REXX User’s Guide

Combining Types of Loops
You can combine repetitive and conditional loops to create a compound loop. The
following loop is set to repeat 10 times while a certain condition is met, at which
point it stops.
quantity = 20
DO number = 1 TO 10 WHILE quantity < 50

quantity = quantity + number
SAY 'Quantity = 'quantity ' (Loop 'number')'

END

The result of this example is as follows:

Quantity = 21 (Loop 1)
Quantity = 23 (Loop 2)
Quantity = 26 (Loop 3)
Quantity = 30 (Loop 4)
Quantity = 35 (Loop 5)
Quantity = 41 (Loop 6)
Quantity = 48 (Loop 7)
Quantity = 56 (Loop 8)

You can substitute a DO UNTIL loop, change the comparison operator from < to >,
and get the same results.
quantity = 20
DO number = 1 TO 10 UNTIL quantity > 50

quantity = quantity + number
SAY 'Quantity = 'quantity ' (Loop 'number')'

END

Nested DO Loops
Like nested IF/THEN/ELSE instructions, DO loops can also be within other DO
loops. A simple example follows:
DO outer = 1 TO 2

DO inner = 1 TO 2
SAY 'HIP'

END
SAY 'HURRAH'

END

The output from this example is:

HIP
HIP
HURRAH
HIP
HIP
HURRAH

If you need to leave a loop when a certain condition arises, use the LEAVE
instruction followed by the control variable of the loop. If the LEAVE instruction is for
the inner loop, you leave the inner loop and go to the outer loop. If the LEAVE
instruction is for the outer loop, you leave both loops.

To leave the inner loop in the preceding example, add an IF/THEN/ELSE instruction
that includes a LEAVE instruction after the IF instruction.
DO outer = 1 TO 2

DO inner = 1 TO 2
IF inner > 1 THEN

LEAVE inner

Using Looping Instructions

Chapter 4. Controlling the Flow Within an Exec 55

ELSE
SAY 'HIP'

END
SAY 'HURRAH'

END

The result is as follows:

HIP
HURRAH
HIP
HURRAH

Exercises - Combining Loops
1. What happens when the following exec runs?

DO outer = 1 TO 3
SAY /* Write a blank line */
DO inner = 1 TO 3

SAY 'Outer' outer 'Inner' inner
END

END

2. Now what happens when the LEAVE instruction is added?
DO outer = 1 TO 3

SAY /* Write a blank line */
DO inner = 1 TO 3

IF inner = 2 THEN
LEAVE inner

ELSE
SAY 'Outer' outer 'Inner' inner

END
END

ANSWERS

1. When this example runs, you see on your screen the following:

Outer 1 Inner 1
Outer 1 Inner 2
Outer 1 Inner 3

Outer 2 Inner 1
Outer 2 Inner 2
Outer 2 Inner 3

Outer 3 Inner 1
Outer 3 Inner 2
Outer 3 Inner 3

2. The result is one line of output for each of the inner loops.

Outer 1 Inner 1

Outer 2 Inner 1

Outer 3 Inner 1

Using Interrupt Instructions
Instructions that interrupt the flow of an exec can cause the exec to:

v Terminate (EXIT)

v Skip to another part of the exec marked by a label (SIGNAL)

Using Looping Instructions

56 z/OS V1R2.0 TSO/E REXX User’s Guide

v Go temporarily to a subroutine either within the exec or outside the exec
(CALL/RETURN).

EXIT Instruction
The EXIT instruction causes an exec to unconditionally end and return to where the
exec was invoked. If the exec was initiated from the PROC section of an ISPF
selection panel, EXIT returns to the ISPF panel. If the exec was called by a
program, such as another exec, EXIT returns to the program. More about calling
external routines appears later in this chapter and in “Chapter 6. Writing
Subroutines and Functions” on page 69.

In addition to ending an exec, EXIT can also return a value to the invoker of the
exec. If the exec was invoked as a subroutine from another REXX exec, the value
is received in the REXX special variable RESULT. If the exec was invoked as a
function, the value is received in the original expression at the point where the
function was invoked. Otherwise, the value is received in the REXX special variable
RC. The value can represent a return code and can be in the form of a constant or
an expression that is computed.

Example Using the EXIT Instruction
/******************************** REXX *****************************/
/* This exec uses the EXIT instruction to end the exec and return */
/* a value that indicates whether or not a job applicant gets the */
/* job. A value of 0 means the applicant does not qualify for */
/* the job, but a value of 1 means the applicant gets the job. */
/* The value is placed in the REXX special variable RESULT. */
/***/
SAY 'How many months of experience do you have? Please enter'
SAY 'the months as a number.'
PULL month

SAY 'Can you supply 3 references? Please answer Y or N.'
PULL reference

SAY 'Are you available to start work tomorrow? Please answer Y or N.'
PULL tomorrow

IF (month > 24) & (reference = 'Y') & (tomorrow = 'Y') THEN
job = 1 /* person gets the job */

ELSE
job = 0 /* person does not get the job */

EXIT job

CALL/RETURN Instructions

The CALL instruction interrupts the flow of an exec by passing control to an internal
or external subroutine. An internal subroutine is part of the calling exec. An external
subroutine is another exec. The RETURN instruction returns control from a
subroutine back to the calling exec and optionally returns a value.

When calling an internal subroutine, CALL passes control to a label specified after
the CALL keyword. When the subroutine ends with the RETURN instruction, the
instructions following CALL are executed.

Using Interrupt Instructions

Chapter 4. Controlling the Flow Within an Exec 57

When calling an external subroutine, CALL passes control to the exec name that is
specified after the CALL keyword. When the external subroutine completes, you can
use the RETURN instruction to return to where you left off in the calling exec.

For more information about calling subroutines, see “Chapter 6. Writing Subroutines
and Functions” on page 69.

SIGNAL Instruction
The SIGNAL instruction, like CALL, interrupts the normal flow of an exec and
causes control to pass to a specified label. The label to which control passes can
appear before or after the SIGNAL instruction. Unlike CALL, SIGNAL does not
return to a specific instruction to resume execution. When you use SIGNAL from
within a loop, the loop automatically ends; and when you use SIGNAL from an
internal routine, the internal routine will not return to its caller.

In the following example, if the expression is true, then the language processor
goes to the label Emergency: and skips all instructions in between.

instruction(s)
CALL sub1

instruction(s)
EXIT

sub1:
instruction(s)
RETURN

REXX.EXEC(MAIN)

instruction(s)
CALL sub2

instruction(s)
.
.
.

REXX.EXEC(SUB2)

instruction(s)
RETURN

Using Interrupt Instructions

58 z/OS V1R2.0 TSO/E REXX User’s Guide

SIGNAL is useful for testing execs or to provide an emergency course of action. It
should not be used as a convenient way to move from one place in an exec to
another. SIGNAL does not provide a way to return as does the CALL instruction
described in “CALL/RETURN Instructions” on page 57.

For more information about the SIGNAL instruction, see page 113, and z/OS TSO/E
REXX Reference.

IF expression THEN

SIGNAL Emergency

ELSE

instruction(s)

Emergency:

instruction(s)

Using Interrupt Instructions

Chapter 4. Controlling the Flow Within an Exec 59

60 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 5. Using Functions

What is a Function? . 61
Example of a Function . 62

Built-In Functions . 63
Arithmetic Functions . 63
Comparison Functions . 63
Conversion Functions . 64
Formatting Functions. 64
String Manipulating Functions 64
Miscellaneous Functions . 65
Testing Input with Built-In Functions 66

Exercise - Writing an Exec with Built-In Functions 66

This chapter defines what a function is and describes how to use the built-in
functions.

What is a Function?
Afunction is a sequence of instructions that can receive data, process that data, and
return a value. In REXX, there are several kinds of functions:

v Built-in functions — These functions are built into the language processor. More
about built-in functions appears later in this chapter.

v User-written functions — These functions are written by an individual user or
supplied by an installation and can be internal or external. An internal function is
part of the current exec that starts at a label. An external function is a
self-contained program or exec outside of the calling exec. More information
about user-written functions appears in “Writing a Function” on page 77.

v Function packages — These are groups of functions and subroutines written by
an individual user or supplied by an installation. They are link-edited into load
modules and categorized as user, local, and system. TSO/E external functions
are provided in a system function package. More information about TSO/E
external functions appears in “TSO/E External Functions” on page 119.

Regardless of the kind of function, all functions return a value to the exec that
issued the function call. To call a function, type the function name directly followed
by one or more arguments within parentheses. There can be no space between
the function name and the left parenthesis.
function(arguments)

A function call can contain up to 20 arguments separated by commas. Each
argument can be one or more of the following.

v Blank
function()

v Constant
function(55)

v Symbol
function(symbol_name)

v Literal string
function('With a literal string')

v Option recognized by the function

© Copyright IBM Corp. 1988, 2001 61

function(option)

v Another function
function(function(arguments))

v Combination of argument types
function('With a literal string', 55, option)

When the function returns a value, and all functions must return values, the value
replaces the function call. In the following example, the value returned is added to 7
and the sum is displayed.
SAY 7 + function(arguments)

A function call generally appears in an expression. Therefore a function call, like an
expression, does not usually appear in an instruction by itself.

Example of a Function
Calculations represented by functions often require many instructions. For instance,
the simple calculation for finding the highest number in a group of three numbers,
might be written as follows:

Finding a Maximum Number
/***************************** REXX ********************************/
/* This exec receives three numbers from a user and analyzes which */
/* number is the greatest. */
/***/

PARSE ARG number1, number2, number3 .

IF number1 > number2 THEN
IF number1 > number3 THEN

greatest = number1
ELSE

greatest = number3
ELSE

IF number2 > number3 THEN
greatest = number2

ELSE
greatest = number3

RETURN greatest

Rather than writing multiple instructions every time you want to find the maximum of
a group of three numbers, you can use a built-in function that does the calculation
for you and returns the maximum number. The function is called MAX and is used
as follows:
MAX(number1,number2,number3,...)

To find the maximum of 45, -2, number, 199, and put the maximum into the symbol
biggest, write the following instruction:
biggest = MAX(45,-2,number,199)

What is a Function?

62 z/OS V1R2.0 TSO/E REXX User’s Guide

Built-In Functions

Over 50 functions are built into the language processor. The built-in functions fall
into the following categories:

v Arithmetic functions

These functions evaluate numbers from the argument and return a particular
value.

v Comparison functions

These functions compare numbers and/or strings and return a value.

v Conversion functions

These functions convert one type of data representation to another type of data
representation.

v Formatting functions

These functions manipulate the characters and spacing in strings supplied in the
argument.

v String manipulating functions

These functions analyze a string supplied in the argument (or a variable
representing a string) and return a particular value.

v Miscellaneous functions

These functions do not clearly fit into any of the other categories.

The following tables briefly describe the functions in each category. For a complete
description of these functions, see z/OS TSO/E REXX Reference.

Arithmetic Functions

Function Description

ABS Returns the absolute value of the input number.

DIGITS Returns the current setting of NUMERIC DIGITS.

FORM Returns the current setting of NUMERIC FORM.

FUZZ Returns the current setting of NUMERIC FUZZ.

MAX Returns the largest number from the list specified, formatted according
to the current NUMERIC settings.

MIN Returns the smallest number from the list specified, formatted according
to the current NUMERIC settings.

RANDOM Returns a quasi-random, non-negative whole number in the range
specified.

SIGN Returns a number that indicates the sign of the input number.

TRUNC Returns the integer part of the input number, and optionally a specified
number of decimal places.

Comparison Functions

Function Description

COMPARE Returns 0 if the two input strings are identical. Otherwise, returns the
position of the first character that does not match.

DATATYPE Returns a string indicating the input string is a particular data type, such
as a number or character.

Built-In Functions

Chapter 5. Using Functions 63

Function Description

SYMBOL Returns this state of the symbol (variable, literal, or bad).

Conversion Functions

Function Description

B2X Returns a string, in character format, that represents the input binary
string converted to hexadecimal. (Binary to hexadecimal)

C2D Returns the decimal value of the binary representation of the input
string. (Character to Decimal)

C2X Returns a string, in character format, that represents the input string
converted to hexadecimal. (Character to Hexadecimal)

D2C Returns a string, in character format, that represents the input decimal
number converted to binary. (Decimal to Character)

D2X Returns a string, in character format, that represents the input decimal
number converted to hexadecimal. (Decimal to Hexadecimal)

X2B Returns a string, in character format, that represents the input
hexadecimal string converted to binary. (Hexadecimal to binary)

X2C Returns a string, in character format, that represents the input
hexadecimal string converted to character. (Hexadecimal to Character)

X2D Returns the decimal representation of the input hexadecimal string.
(Hexadecimal to Decimal)

Formatting Functions

Function Description

CENTER/
CENTRE

Returns a string of a specified length with the input string centered in it,
with pad characters added as necessary to make up the length.

COPIES Returns the specified number of concatenated copies of the input string.

FORMAT Returns the input number, rounded and formatted.

JUSTIFY * Returns a specified string formatted by adding pad characters between
words to justify to both margins.

LEFT Returns a string of the specified length, truncated or padded on the right
as needed.

RIGHT Returns a string of the specified length, truncated or padded on the left
as needed.

SPACE Returns the words in the input string with a specified number of pad
characters between each word.

* Indicates a non-SAA built-in function provided only by TSO/E.

String Manipulating Functions

Function Description

ABBREV Returns a string indicating if one string is equal to the specified number
of leading characters of another string.

DELSTR Returns a string after deleting a specified number of characters, starting
at a specified point in the input string.

Built-In Functions

64 z/OS V1R2.0 TSO/E REXX User’s Guide

Function Description

DELWORD Returns a string after deleting a specified number of words, starting at a
specified word in the input string.

FIND * Returns the word number of the first word of a specified phrase found
within the input string.

INDEX * Returns the character position of the first character of a specified string
found in the input string.

INSERT Returns a character string after inserting one input string into another
string after a specified character position.

LASTPOS Returns the starting character position of the last occurrence of one
string in another.

LENGTH Returns the length of the input string.

OVERLAY Returns a string that is the target string overlaid by a second input
string.

POS Returns the character position of one string in another.

REVERSE Returns a character string, the characters of which are in reverse order
(swapped end for end).

STRIP Returns a character string after removing leading or trailing characters
or both from the input string.

SUBSTR Returns a portion of the input string beginning at a specified character
position.

SUBWORD Returns a portion of the input string starting at a specified word number.

TRANSLATE Returns a character string with each character of the input string
translated to another character or unchanged.

VERIFY Returns a number indicating whether an input string is composed only of
characters from another input string or returns the character position of
the first unmatched character.

WORD Returns a word from an input string as indicated by a specified number.

WORDINDEX Returns the character position in an input string of the first character in
the specified word.

WORDLENGTH Returns the length of a specified word in the input string.

WORDPOS Returns the word number of the first word of a specified phrase in the
input string.

WORDS Returns the number of words in the input string.

* Indicates a non-SAA built-in function provided only by TSO/E.

Miscellaneous Functions

Function Description

ADDRESS Returns the name of the environment to which commands are currently
being sent.

ARG Returns an argument string or information about the argument strings to
a program or internal routine.

BITAND Returns a string composed of the two input strings logically ANDed
together, bit by bit.

BITOR Returns a string composed of the two input strings logically ORed
together, bit by bit.

Built-In Functions

Chapter 5. Using Functions 65

Function Description

BITXOR Returns a string composed of the two input strings eXclusive ORed
together, bit by bit.

CONDITION Returns the condition information, such as name and status, associated
with the current trapped condition.

DATE Returns the date in the default format (dd mon yyyy) or in one of various
optional formats.

ERRORTEXT Returns the error message associated with the specified error number.

EXTERNALS * Returns the number of elements in the terminal input buffer. In TSO/E,
this function always returns a 0.

LINESIZE * Returns the current terminal line width minus 1.

QUEUED Returns the number of lines remaining in the external data queue at the
time when the function is invoked.

SOURCELINE Returns either the line number of the last line in the source file or the
source line specified by a number.

TIME Returns the local time in the default 24-hour clock format (hh:mm:ss) or
in one of various optional formats.

TRACE Returns the trace actions currently in effect.

USERID * Returns the TSO/E user ID, if the REXX exec is running in the TSO/E
address space.

VALUE Returns the value of a specified symbol and optionally assigns it a new
value.

XRANGE Returns a string of all 1-byte codes (in ascending order) between and
including specified starting and ending values.

* Indicates a non-SAA built-in function provided only by TSO/E.

Testing Input with Built-In Functions
Some of the built-in functions provide a convenient way to test input. When an
interactive exec requests input, the user might respond with input that is not valid.
For instance, in the example “Using Comparison Expressions” on page 31, the exec
requests a dollar amount with the following instructions.
SAY 'What did you spend for lunch yesterday?'
SAY 'Please do not include the dollar sign.'
PARSE PULL last

If the user responds with a number only, the exec will process that information
correctly. If the user responds with a number preceded by a dollar sign or with a
word, such as nothing, the exec will return an error. To avoid getting an error, you
can check the input with the DATATYPE function as follows:
DO WHILE DATATYPE(last) \= 'NUM'

SAY 'Please enter the lunch amount again.'
SAY 'The amount you entered was not a number without a dollar sign.'
PARSE PULL last

END

Other useful built-in functions to test input are WORDS, VERIFY, LENGTH, and
SIGN.

Exercise - Writing an Exec with Built-In Functions
Write an exec that checks a data set member name for a length of 8 characters. If
a member name is longer than 8 characters, the exec truncates it to 8 and sends

Built-In Functions

66 z/OS V1R2.0 TSO/E REXX User’s Guide

the user a message indicating the shortened name. Use the LENGTH and the
SUBSTR built-in functions as described in z/OS TSO/E REXX Reference.

ANSWER

Possible Solution
/**************************** REXX *********************************/
/* This exec tests the length of a name for a data set member. If */
/* the name is longer than 8 characters, the exec truncates the */
/* extra characters and sends the user a message indicating the */
/* shortened member name. */
/***/
SAY 'Please enter a member name.'
PULL membername

IF LENGTH(membername) > 8 THEN /* Name is longer than 8 characters*/
DO

membername = SUBSTR(membername,1,8) /* Shorten the name to */
/* the first 8 characters*/

SAY 'The member name you entered was too long.'
SAY membername 'will be used.'

END
ELSE NOP

Built-In Functions

Chapter 5. Using Functions 67

Built-In Functions

68 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 6. Writing Subroutines and Functions

What are Subroutines and Functions? 69
When to Write Subroutines vs. Functions 70
Writing a Subroutine . 70

Passing Information to a Subroutine 72
Passing Information by Using Variables 72
Passing Information by Using Arguments 74

Receiving Information from a Subroutine 75
Example - Writing an Internal and an External Subroutine 76

Writing a Function. 77
Passing Information to a Function 79

Passing Information by Using Variables 79
Passing Information by Using Arguments 81

Receiving Information from a Function 83
Exercise - Writing a Function. 83

Summary of Subroutines and Functions. 83

This chapter shows how to write subroutines and functions and compares their
differences and similarities.

What are Subroutines and Functions?
Subroutines and functions are routines made up of a sequence of instructions that
can receive data, process that data, and return a value. The routines can be:

Internal The routine is within the current exec, marked by a label and used
only by that exec.

External A program or exec in a member of a partitioned data set that can
be called by one or more execs. In order for an exec to call the
routine, the exec and the routine must be allocated to a system file,
for example SYSEXEC or SYSPROC, or be in the same PDS. For
more information about allocating to a system file, see “Appendix A.
Allocating Data Sets” on page 185.

In many aspects, subroutines and functions are the same; yet they are different in a
few major aspects, such as the way they are called and the way they return values.

v Calling a subroutine

To call a subroutine, use the CALL instruction followed by the subroutine name
(label or exec member name) and optionally followed by up to 20 arguments
separated by commas. The subroutine call is an entire instruction.
CALL subroutine_name argument1, argument2,...

Issuing a CALL to internal label names for REXX subroutines and functions that
are greater than eight characters, may have unintended results. Label names will
be truncated to eight characters.

v Calling a function

To call a function, use the function name (label or exec member name)
immediately followed by parentheses that can contain arguments. There can be
no space between the function name and the parentheses. The function call is
part of an instruction, for example, an assignment instruction.
x = function(argument1, argument2,...)

v Returning a value from a subroutine

© Copyright IBM Corp. 1988, 2001 69

A subroutine does not have to return a value, but when it does, it sends back the
value with the RETURN instruction.
RETURN value

The calling exec receives the value in the REXX special variable named
RESULT.
SAY 'The answer is' RESULT

v Returning a value from a function

A function must return a value. When the function is a REXX exec, the value is
returned with either the RETURN or EXIT instruction.
RETURN value

The calling exec receives the value at the function call. The value replaces the
function call, so that in the following example, x = value.
x = function(argument1, argument2,...)

When to Write Subroutines vs. Functions
The actual instructions that make up a subroutine or a function can be identical. It is
the way you want to use them in an exec that turns them into either a subroutine or
a function. For example, the built-in function SUBSTR can be called as either a
function or a subroutine. As a function, you invoke it as follows to shorten a word to
its first eight characters:
x = SUBSTR('verylongword',1,8) /* x is set to 'verylong' */

As a subroutine, you would get the same results with the following instructions:
CALL SUBSTR 'verylongword', 1, 8 /* x is set to 'verylong' */
x = RESULT

When deciding whether to write a subroutine or a function, ask yourself the
following questions:

v Is a returned value optional? If so, write a subroutine.

v Do I need a value returned as an expression within an instruction? If so, write a
function.

The rest of this chapter describes how to write subroutines, how to write functions,
and finally summarizes the differences and similarities between the two.

Writing a Subroutine
A subroutine is a series of instructions that an exec invokes to perform a specific
task. The instruction that invokes the subroutine is the CALL instruction. The CALL
instruction may be used several times in an exec to invoke the same subroutine.

When the subroutine ends, it can return control to the instruction that directly
follows the subroutine call. The instruction that returns control is the RETURN
instruction.

What are Subroutines and Functions?

70 z/OS V1R2.0 TSO/E REXX User’s Guide

Subroutines may be internal and designated by a label, or external and designated
by the data set member name that contains the subroutine. The preceding example
illustrates an internal subroutine named "sub1".

IMPORTANT NOTE
Because internal subroutines generally appear after the main part of the exec,
when you have an internal subroutine, it is important to end the main part of
the exec with the EXIT instruction.

The following illustrates an external subroutine named "sub2".
To determine whether to make a subroutine internal or external, you might consider

factors, such as:

v Size of the subroutine. Very large subroutines often are external, whereas small
subroutines fit easily within the calling exec.

v How you want to pass information. It is quicker to pass information through
variables in an internal subroutine. This method is described in “Passing
Information by Using Variables” on page 72.

v Whether the subroutine might be of value to more than one exec or user. If so,
an external subroutine is preferable.

instruction(s)
CALL sub1

instruction(s)
EXIT

sub1:
instruction(s)
RETURN

REXX.EXEC(MAIN)

instruction(s)
CALL sub2

instruction(s)
.
.
.

REXX.EXEC(SUB2)

instruction(s)
RETURN

Writing a Subroutine;

Chapter 6. Writing Subroutines and Functions 71

Passing Information to a Subroutine
An internal subroutine can share variables with its caller. Therefore you can use
commonly shared variables to pass information between caller and internal
subroutine. You can also use arguments to pass information to and from an internal
subroutine. External subroutines, however, cannot share the same variables, and
information must pass between them through arguments or some other external
way, such as the data stack.

Passing Information by Using Variables
When an exec and its internal subroutine share the same variables, the value of a
variable is what was last assigned, regardless of whether the assignment was in the
main part of the exec or in the subroutine. In the following example, the value of
answer is assigned in the subroutine and displayed in the main part of the exec.
The variables number1, number2, and answer are shared.

Example of Passing Information in a Variable
/******************************* REXX ******************************/
/* This exec receives a calculated value from an internal */
/* subroutine and displays that value. */
/***/

number1 = 5
number2 = 10
CALL subroutine
SAY answer /* Displays 15 */
EXIT

subroutine:
answer = number1 + number2
RETURN

Using the same variables in an exec and its internal subroutine can sometimes
create problems. In the following example, the main part of the exec and the
subroutine use the same control variable, "i", for their DO loops. As a result, the DO
loop repeats only once in the main exec because the subroutine returns to the main
exec with i = 6.

Writing a Subroutine;

72 z/OS V1R2.0 TSO/E REXX User’s Guide

Example of a Problem Caused by Passing Information in a Variable
/******************************* REXX ******************************/
/* NOTE: This exec contains an error. */
/* It uses a DO loop to call an internal subroutine and the */
/* subroutine also uses a DO loop with same control variable as */
/* the main exec. The DO loop in the main exec repeats only once. */
/***/

number1 = 5
number2 = 10
DO i = 1 TO 5

CALL subroutine
SAY answer /* Displays 105 */

END
EXIT

subroutine:
DO i = 1 TO 5

answer = number1 + number2
number1 = number2
number2 = answer

END
RETURN

To avoid this kind of problem in an internal subroutine, you can use:

v The PROCEDURE instruction as described in the next topic.

v Different variable names in a subroutine and pass arguments on the CALL
instruction as described in “Passing Information by Using Arguments” on page 74.

Protecting Variables with the PROCEDURE Instruction: When you use the
PROCEDURE instruction immediately after the subroutine label, all variables used
in the subroutine become local to the subroutine and are shielded from the main
part of the exec. You can also use the PROCEDURE EXPOSE instruction to protect
all but a few specified variables.

The following two examples show the differing results when a subroutine uses the
PROCEDURE instruction and when it doesn’t.

Example Using the PROCEDURE Instruction
/******************************* REXX ******************************/
/* This exec uses a PROCEDURE instruction to protect the variables */
/* within its subroutine. */
/***/
number1 = 10
CALL subroutine
SAY number1 number2 /* displays 10 NUMBER2 */
EXIT

subroutine: PROCEDURE
number1 = 7
number2 = 5
RETURN

Writing a Subroutine;

Chapter 6. Writing Subroutines and Functions 73

Example Without the PROCEDURE Instruction
/******************************* REXX ******************************/
/* This exec does not use a PROCEDURE instruction to protect the */
/* variables within its subroutine. */
/***/
number1 = 10
CALL subroutine
SAY number1 number2 /* displays 7 5 */
EXIT

subroutine:
number1 = 7
number2 = 5
RETURN

Exposing Variables with PROCEDURE EXPOSE: To protect all but specific
variables, use the EXPOSE option with the PROCEDURE instruction, followed by
the variables that are to remain exposed to the subroutine.

Example Using PROCEDURE EXPOSE
/****************************** REXX *******************************/
/* This exec uses a PROCEDURE instruction with the EXPOSE option to*/
/* expose one variable, number1, in its subroutine. The other */
/* variable, number2, is set to null and displays its name in */
/* uppercase. */
/***/
number1 = 10
CALL subroutine
SAY number1 number2 /* displays 7 NUMBER2 */
EXIT

subroutine: PROCEDURE EXPOSE number1
number1 = 7
number2 = 5
RETURN

For more information about the PROCEDURE instruction, see z/OS TSO/E REXX
Reference.

Passing Information by Using Arguments
A way to pass information to either internal or external subroutines is through
arguments. You can pass up to 20 arguments separated by commas on the CALL
instruction as follows:
CALL subroutine_name argument1, argument2, argument3,......

Using the ARG Instruction: The subroutine can receive the arguments with the
ARG instruction. Arguments are also separated by commas in the ARG instruction.
ARG arg1, arg2, arg3,

The names of the arguments on the CALL and the ARG instructions do not have to
be the same because information is not passed by argument name but by position.
The first argument sent becomes the first argument received and so forth. You can
also set up a template in the CALL instruction, which is then used in the
corresponding ARG instruction. For information about parsing with templates, see
“Parsing Data” on page 87.

Writing a Subroutine;

74 z/OS V1R2.0 TSO/E REXX User’s Guide

The following exec sends information to an internal subroutine that computes the
perimeter of a rectangle. The subroutine returns a value in the variable perim that is
specified after the RETURN instruction. The main exec receives the value in the
special variable "RESULT".

Notice the positional relationships between long and length, and wide and width.
Also notice how information is received from variable perim in the special variable
RESULT.

Using the ARG Built-in Function: Another way for a subroutine to receive
arguments is with the ARG built-in function. This function returns the value of a
particular argument specified by a number that represents the argument position.

For instance, in the previous example, instead of the ARG instruction,
ARG length, width

you can use the ARG function as follows:
length = ARG(1) /* puts the first argument into length */
width = ARG(2) /* puts the second argument into width */

More information about the ARG function appears in z/OS TSO/E REXX Reference.

Receiving Information from a Subroutine
Although a subroutine can receive up to 20 arguments, it can specify only one
expression on the RETURN instruction. That expression can be:

v A number
RETURN 55

v One or more variables whose values are substituted or when no values were
assigned, return their names
RETURN value1 value2 value3

v A literal string
RETURN 'Work complete.'

v An arithmetic, comparison, or logical expression whose value is substituted.
RETURN 5 * number

Example of Passing Arguments on the CALL Instruction

/* This exec receives as arguments the length and width of a */

/******************************** REXX ********************************/

/**/

/* rectangle and passes that information to an internal subroutine. */

/* The subroutine then calculates the perimeter of the rectangle. */

PARSE ARG long wide

CALL perimeter long, wide

SAY 'The perimeter is' RESULT 'inches.'

EXIT

perimeter:

ARG length, width

perim = 2 * length + 2 * width

RETURN perim

Writing a Subroutine;

Chapter 6. Writing Subroutines and Functions 75

Example - Writing an Internal and an External Subroutine
Write an exec that plays a simulated coin toss game of heads or tails between the
computer and a user and displays the accumulated scores. Start off with the
message, "This is a game of chance. Type 'heads', 'tails', or 'quit' and press the
Enter key."

This means that there are four possible inputs:
v HEADS
v TAILS
v QUIT
v None of these three (not valid response).

Write an internal subroutine without arguments to check for valid input. Send valid
input to an external subroutine that compares the valid input with a random
outcome. Use the RANDOM built-in function as, RANDOM(0,1), and equate HEADS
= 0, TAILS = 1. Return the result to the main program where results are tallied and
displayed.

Good luck!

ANSWER

Possible Solution (Main Exec)
/**************************** REXX *********************************/
/* This exec plays a simulated coin toss game between the computer */
/* and a user. The user enters heads, tails, or quit. The user */
/* is first checked for validity in an internal subroutine. */
/* An external subroutine uses the RANDOM build-in function to */
/* obtain a simulation of a throw of dice and compares the user */
/* input to the random outcome. The main exec receives */
/* notification of who won the round. Scores are maintained */
/* and displayed after each round. */
/***/
SAY 'This is a game of chance. Type "heads", "tails", or "quit"
SAY ' and press ENTER.'
PULL response
computer = 0; user = 0 /* initialize scores to zero */
CALL check /* call internal subroutine, check */
DO FOREVER

CALL throw response /* call external subroutine, throw */

IF RESULT = 'machine' THEN /* the computer won */
computer = computer + 1 /* increase the computer score */

ELSE /* the user won */
user = user + 1 /* increase the user score */

SAY 'Computer score = ' computer ' Your score = ' user
SAY 'Heads, tails, or quit?'
PULL response
CALL check /* call internal subroutine, check */

END
EXIT

Writing a Subroutine;

76 z/OS V1R2.0 TSO/E REXX User’s Guide

Possible Solution (Internal Subroutine named CHECK)
check:
/***/
/* This internal subroutine checks for valid input of "HEADS", */
/* "TAILS", or "QUIT". If the user entered anything else, the */
/* subroutine tells the user that it is an invalid response and */
/* asks the user to try again. The subroutine keeps repeating */
/* until the user enters valid input. Information is returned to */
/* the main exec through commonly used variables. */
/***/
DO UNTIL outcome = 'correct'

SELECT
WHEN response = 'HEADS' THEN

outcome = 'correct'
WHEN response = 'TAILS' THEN

outcome = 'correct'
WHEN response = 'QUIT' THEN

EXIT
OTHERWISE

outcome = 'incorrect'
SAY "That's not a valid response. Try again!"
SAY "Heads, tails, or quit?"
PULL response

END
END
RETURN

Possible Solution (External Subroutine named THROW)
/****************************** REXX *******************************/
/* This external subroutine receives the valid input from the user,*/
/* analyzes it, gets a random "throw" from the computer and */
/* compares the two values. If they are the same, the user wins. */
/* If they are different, the computer wins. The outcome is then */
/* returned to the calling exec. */
/***/
ARG input
IF input = 'HEADS' THEN

userthrow = 0 /* heads = 0 */
ELSE

userthrow = 1 /* tails = 1 */

compthrow = RANDOM(0,1) /* choose a random number between */
/* 0 and 1 */

IF compthrow = userthrow THEN
outcome = 'human' /* user chose correctly */

ELSE
outcome = 'machine' /* user didn't choose correctly */

RETURN outcome

Writing a Function
A function is a series of instructions that an exec invokes to perform a specific task
and return a value. As was described in “Chapter 5. Using Functions” on page 61, a
function may be built-in or user-written. An exec invokes a user-written function the
same way it invokes a built-in function — by the function name immediately

Writing a Subroutine;

Chapter 6. Writing Subroutines and Functions 77

followed by parentheses with no blanks in between. The parentheses can contain
up to 20 arguments or no arguments at all.
function(argument1, argument2,...)

or
function()

A function requires a returned value because the function call generally appears in
an expression.
x = function(arguments1, argument2,...)

When the function ends, it may use the RETURN instruction to send back a value
to replace the function call.

Functions may be internal and designated by a label, or external and designated
by the data set member name that contains the function. The previous example
illustrates an internal function named "func1".

IMPORTANT NOTE

Because internal functions generally appear after the main part of the exec,
when you have an internal function, it is important to end the main part of the
exec with the EXIT instruction.

The following illustrates an external function named "func2".

instruction(s)

x=func1(arg1,arg2)

instruction(s)

EXIT

Func1:

instruction(s)

RETURN value

Writing a Function

78 z/OS V1R2.0 TSO/E REXX User’s Guide

To determine whether to make a function internal or external, you might consider
factors, such as:

v Size of the function. Very large functions often are external, whereas small
functions fit easily within the calling exec.

v How you want to pass information. It is quicker to pass information through
variables in an internal function. This method is described in the next topic under
“Passing Information by Using Variables”.

v Whether the function might be of value to more than one exec or user. If so, an
external function is preferable.

v Performance. The language processor searches for an internal function before it
searches for an external function. For the complete search order of functions,
see “Search Order for Functions” on page 134.

Passing Information to a Function
When an exec and its internal function share the same variables, you can use
commonly shared variables to pass information between caller and internal function.
The function does not need to pass arguments within the parentheses that follow
the function call. However, all functions, both internal and external, must return a
value.

Passing Information by Using Variables
When an exec and its internal function share the same variables, the value of a
variable is what was last assigned, regardless of whether the assignment was in the
main part of the exec or in the function. In the following example, the value of
answer is assigned in the function and displayed in the main part of the exec. The
variables number1, number2, and answer are shared. In addition, the value of answer
replaces the function call because answer follows the RETURN instruction.

REXX.EXEC(MAIN)

instruction(s)

x=func2(arg1)

instruction(s)

.

.

.

exit

REXX.EXEC(FUNC2)

ARG var1

instruction(s)

RETURN value

Writing a Function

Chapter 6. Writing Subroutines and Functions 79

Example of Passing Information in a Variable
/****************************** REXX *******************************/
/* This exec receives a calculated value from an internal */
/* function and displays that value. */
/***/

number1 = 5
number2 = 10
SAY add() /* Displays 15 */
SAY answer /* Also displays 15 */
EXIT

add:
answer = number1 + number2
RETURN answer

Using the same variables in an exec and its internal function can sometimes create
problems. In the following example, the main part of the exec and the function use
the same control variable, "i", for their DO loops. As a result, the DO loop repeats
only once in the main exec because the function returns to the main exec with i =
6.

Example of a Problem Caused by Passing Information in a Variable
/****************************** REXX *******************************/
/* This exec uses an instruction in a DO loop to call an internal */
/* function. A problem occurs because the function also uses a DO */
/* loop with the same control variable as the main exec. The DO */
/* loop in the main exec repeats only once. */
/***/

number1 = 5
number2 = 10
DO i = 1 TO 5

SAY add() /* Displays 105 */
END
EXIT

add:
DO i = 1 TO 5

answer = number1 + number2
number1 = number2
number2 = answer

END
RETURN answer

To avoid this kind of problem in an internal function, you can use:

v The PROCEDURE instruction as described in the next topic.

v Different variable names in a function.

Protecting Variables with the PROCEDURE Instruction: When you use the
PROCEDURE instruction immediately following the function label, all variables used
in the function become local to the function and are shielded from the main part of
the exec. You can also use the PROCEDURE EXPOSE instruction to protect all but
a few specified variables.

Writing a Function

80 z/OS V1R2.0 TSO/E REXX User’s Guide

The following two examples show the differing results when a function uses the
PROCEDURE instruction and when it doesn’t.

Example Using the PROCEDURE Instruction
/****************************** REXX *******************************/
/* This exec uses a PROCEDURE instruction to protect the variables */
/* within its function. */
/***/
number1 = 10
SAY pass() number2 /* Displays 7 NUMBER2 */
EXIT

pass: PROCEDURE
number1 = 7
number2 = 5
RETURN number1

Example Without the PROCEDURE Instruction
/******************************** REXX *****************************/
/* This exec does not use a PROCEDURE instruction to protect the */
/* variables within its function. */
/***/
number1 = 10
SAY pass() number2 /* displays 7 5 */
EXIT

pass:
number1 = 7
number2 = 5
RETURN number1

Exposing Variables with PROCEDURE EXPOSE: To protect all but specific
variables, use the EXPOSE option with the PROCEDURE instruction, followed by
the variables that are to remain exposed to the function.

Example Using PROCEDURE EXPOSE
/****************************** REXX *******************************/
/* This exec uses a PROCEDURE instruction with the EXPOSE option to*/
/* expose one variable, number1, in its function. */
/***/
number1 = 10
SAY pass() number1 /* displays 5 7 */
EXIT

pass: PROCEDURE EXPOSE number1
number1 = 7
number2 = 5
RETURN number2

For more information about the PROCEDURE instruction, see z/OS TSO/E REXX
Reference.

Passing Information by Using Arguments
A way to pass information to either internal or external functions is through
arguments. You can pass up to 20 arguments separated by commas in a function
call.

Writing a Function

Chapter 6. Writing Subroutines and Functions 81

function(argument1,argument2,argument3,..........)

Using the ARG Instruction: The function can receive the arguments with the
ARG instruction. Arguments are also separated by commas in the ARG instruction.
ARG arg1,arg2,arg3

The names of the arguments on the function call and the ARG instruction do not
have to be the same because information is not passed by argument name but by
position. The first argument sent becomes the first argument received and so forth.
You can also set up a template in the function call, which is then used in the
corresponding ARG instruction. For information about parsing templates, see
“Parsing Data” on page 87.

The following exec sends information to an internal function that computes the
perimeter of a rectangle. The function returns a value in the variable perim that is
specified after the RETURN instruction. The main exec uses the value in perim to
replace the function call.

Notice the positional relationships between long and length, and wide and width.
Also notice that information is received from variable perim to replace the function
call.

Using the ARG Built-in Function: Another way for a function to receive
arguments is with the ARG built-in function. This built-in function returns the value
of a particular argument specified by a number that represents the argument
position.

For instance, in the previous example, instead of the ARG instruction,
ARG length, width

you can use the ARG function as follows:
length = ARG(1) /* puts the first argument into length */
width = ARG(2) /* puts the second argument into width */

More information about the ARG function appears in z/OS TSO/E REXX Reference.

Example of an Internal Function

/* This exec receives as arguments the length and width of a */

/******************************** REXX *********************************** /

/* rectangle and passes that information to an internal function */

/* named perimeter. The function then calculates the perimeter of */

/*** /

/* the rectangle. */

PARSE ARG long wide

SAY 'The perimeter is' perimeter(long,wide) 'inches.'

EXIT

perimeter:

ARG length, width

perim = 2 * length + 2 * width

RETURN perim

Writing a Function

82 z/OS V1R2.0 TSO/E REXX User’s Guide

Receiving Information from a Function
Although a function can receive up to 20 arguments in a function call, it can specify
only one expression on the RETURN instruction. That expression can be a:

v Number
RETURN 55

v One or more variables whose values are substituted or when no values were
assigned, return their names
RETURN value1 value2 value3

v Literal string
RETURN 'Work complete.'

v Arithmetic, comparison, or logical expression whose value is substituted.
RETURN 5 * number

Exercise - Writing a Function
Write a function named "AVG" that receives a list of numbers separated by blanks,
and computes their average as a decimal number. The function is called as follows:
AVG(number1 number2 number3 ...)

Use the WORDS and WORD built-in functions. For more information about these
built-in functions, see z/OS TSO/E REXX Reference.

ANSWER

Possible Solution
/****************************** REXX *******************************/
/* This function receives a list of numbers, adds them, computes */
/* their average and returns the average to the calling exec. */
/***/

ARG numlist /* receive the numbers in a single variable */

sum = 0 /* initialize sum to zero */

DO n = 1 TO WORDS(numlist) /* Repeat for as many times as there */
/* are numbers */

number = WORD(numlist,n) /* Word #n goes to number */
sum = sum + number /* Sum increases by number */

END

average = sum / WORDS(numlist) /* Compute the average */

RETURN average

Summary of Subroutines and Functions

SUBROUTINES FUNCTIONS

Invoked by using the CALL instruction followed by the
subroutine name and optionally up to 20 arguments.

Invoked by specifying the function’s name immediately
followed by parentheses that optionally contain up to 20
arguments.

Writing a Function

Chapter 6. Writing Subroutines and Functions 83

SUBROUTINES FUNCTIONS

Can be internal or external
Internal
– Can pass information by using common variables
– Can protect variables with the PROCEDURE

instruction
– Can pass information by using arguments
External
– Must pass information by using arguments
– Can use the ARG instruction or the ARG built-in

function to receive arguments

Can be internal or external
Internal
– Can pass information by using common variables
– Can protect variables with the PROCEDURE

instruction
– Can pass information by using arguments
External
– Must pass information by using arguments
– Can use the ARG instruction or the ARG built-in

function to receive arguments

Uses the RETURN instruction to return to the caller. Uses the RETURN instruction to return to the caller.

Might return a value to the caller. Must return a value to the caller.

Returns a value by placing it into the REXX special
variable RESULT.

Returns a value by replacing the function call with the
value.

Summary of Subroutines and Functions

84 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 7. Manipulating Data

Using Compound Variables and Stems 85
What is a Compound Variable? 85
Using Stems . 86

Exercises - Using Compound Variables and Stems 87
Parsing Data. 87

Instructions that Parse . 88
PULL Instruction . 88
ARG Instruction . 88
PARSE VAR Instruction. 89
PARSE VALUE ... WITH Instruction 89

Ways of Parsing . 89
Blank . 89
String . 90
Variable . 90
Number . 90

Parsing Multiple Strings as Arguments 92
Exercise - Practice with Parsing 93

This chapter describes how to use compound variables and stems, and shows
various ways of parsing using templates.

Using Compound Variables and Stems
Sometimes it is useful to store groups of related data in such a way that the data
can be easily retrieved. For example, a list of employee names can be stored in an
array and retrieved by number. An array is an arrangement of elements in one or
more dimensions, identified by a single name. You could have an array called
employee that contains names as follows:
EMPLOYEE

(1) Adams, Joe
(2) Crandall, Amy
(3) Devon, David
(4) Garrison, Donna
(5) Leone, Mary
(6) Sebastian, Isaac

In some computer languages, you access an element in the array by the number of
the element, such as, employee(1), which retrieves Adams, Joe. In REXX, you use
compound variables.

What is a Compound Variable?
Compound variables are a way to create a one-dimensional array or a list of
variables in REXX. Subscripts do not necessarily have to be numeric. A compound
variable contains at least one period with characters on both sides of it. The
following are examples of compound variables.
FRED.5
Array.Row.Col
employee.name.phone

The first variable in a compound variable always remains a symbol with no
substitution. The remaining variables in a compound variable take on values
previously assigned. If no value was previously assigned, the variable takes on the
uppercase value of the variable name.

© Copyright IBM Corp. 1988, 2001 85

first = 'Fred'
last = 'Higgins'
employee = first.last

/* EMPLOYEE is assigned FIRST.Higgins */
SAY employee.first.middle.last

/* Displays EMPLOYEE.Fred.MIDDLE.Higgins */

You can use a DO loop to initialize a group of compound variables and set up an
array.
DO i = 1 TO 6

SAY 'Enter an employee name.'
PARSE PULL employee.i

END

If you entered the same names used in the previous example of an array, you
would have a group of compound variables as follows:
employee.1 = 'Adams, Joe'
employee.2 = 'Crandall, Amy'
employee.3 = 'Devon, David'
employee.4 = 'Garrison, Donna'
employee.5 = 'Leone, Mary'
employee.6 = 'Sebastian, Isaac'

When the names are in the group of compound variables, you can easily access a
name by its number, or by a variable that represents its number.
name = 3
SAY employee.name /* Displays 'Devon, David' */

For more information about compound variables, see z/OS TSO/E REXX
Reference.

Using Stems
When working with compound variables, it is often useful to initialize an entire
collection of variables to the same value. You can do this easily with a stem. A
stem is the first variable name and first period of the compound variable. Thus
every compound variable begins with a stem. The following are stems:
FRED.
Array.
employee.

You can alter all the compound variables in an array through the stem. For
example, to change all employee names to Nobody, issue the following assignment
instruction:
employee. = 'Nobody'

As a result, all compound variables beginning with employee., whether or not they
were previously assigned, return the value Nobody. Compound variables that are
assigned after the stem assignment are not affected.
SAY employee.5 /* Displays 'Nobody' */
SAY employee.10 /* Displays 'Nobody' */
SAY employee.oldest /* Displays 'Nobody' */

employee.new = 'Clark, Evans'
SAY employee.new /* Displays 'Clark, Evans' */

You can use stems with the EXECIO command when reading to and writing from a
data set. For information about the EXECIO command, see “Using EXECIO to
Process Information to and from Data Sets” on page 154. You can also use stems

Using Compound Variables and Stems

86 z/OS V1R2.0 TSO/E REXX User’s Guide

with the OUTTRAP external function when trapping command output. For
information about OUTTRAP, see “Using the OUTTRAP Function” on page 123.

Exercises - Using Compound Variables and Stems
1. After these assignment instructions, what is displayed in the following SAY

instructions?
a = 3 /* assigns '3' to variable 'A' */
b = 4 /* '4' to 'B' */
c = 'last' /* 'last' to 'C' */
a.b = 2 /* '2' to 'A.4' */
a.c = 5 /* '5' to 'A.last' */
x.a.b = 'cv3d' /* 'cv3d' to 'X.3.4' */

a. SAY a

b. SAY B

c. SAY c

d. SAY a.a

e. SAY A.B

f. SAY b.c

g. SAY c.a

h. SAY a.first

i. SAY x.a.4

2. After these assignment instructions, what is displayed?
hole.1 = 'full'
hole. = 'empty'
hole.s = 'full'

a. SAY hole.1

b. SAY hole.s

c. SAY hole.mouse

ANSWERS

1.
a. 3
b. 4
c. last
d. A.3
e. 2
f. B.last
g. C.3
h. A.FIRST
i. cv3d

2.
a. empty
b. full
c. empty

Parsing Data
Parsing in REXX is separating data into one or more variable names. An exec can
parse an argument to break it up into smaller parts or parse a string to assign each
word to a variable name. Parsing is also useful to format data into columns.

Using Compound Variables and Stems

Chapter 7. Manipulating Data 87

Instructions that Parse

There are several REXX instructions and variations of instructions that parse data.

PULL Instruction
In earlier chapters PULL was described as an instruction that reads input from the
terminal and assigns it to one or more variables. If however, the data stack contains
information, the PULL instruction takes information from the data stack; and when
the data stack is empty, PULL takes information from the terminal. For information
about the data stack, see “Chapter 11. Storing Information in the Data Stack” on
page 135. PULL changes character information to uppercase and assigns it to one
or more variable names. When PULL is followed by more than one variable, it
parses the information into the available variables.
SAY 'What is the quote for the day?' /* user enters "Knowledge */

/* is power." */
PULL word1 word2 word3

/* word1 contains 'KNOWLEDGE' */
/* word2 contains 'IS' */
/* word3 contains 'POWER.' */

The PARSE PULL instruction assigns information, without altering it, to variable
names.
SAY 'What is the quote for the day?' /* user enters "Knowledge */

/* is power." */
PARSE PULL word1 word2 word3

/* word1 contains 'Knowledge' */
/* word2 contains 'is' */
/* word3 contains 'power.' */

PARSE UPPER PULL causes the same result as PULL in that it changes character
information to uppercase before assigning it to one or more variables.

ARG Instruction
The ARG instruction takes information passed as arguments to an exec, function, or
subroutine, and puts it into one or more variable names. Before character
information is put into a variable name, ARG changes it to uppercase. When ARG is
followed by more than one variable name, it parses the information into the
available variable names. For example, if an exec named
USERID.REXX.EXEC(QUOTE) can receive arguments, you can invoke the exec
with the EXEC command and the three arguments as follows:
EXEC rexx.exec(quote) 'Knowledge is power.' exec

The exec receives the arguments with the ARG instruction as follows:
ARG word1 word2 word3

/* word1 contains 'KNOWLEDGE' */
/* word2 contains 'IS' */
/* word3 contains 'POWER.' */

The PARSE ARG instruction assigns information, without altering it, to variable
names.
PARSE ARG word1 word2 word3

/* word1 contains 'Knowledge' */
/* word2 contains 'is' */
/* word3 contains 'power.' */

PARSE UPPER ARG causes the same result as ARG in that it changes character
information to uppercase before assigning it to one or more variables.

Parsing Data

88 z/OS V1R2.0 TSO/E REXX User’s Guide

PARSE VAR Instruction
The PARSE VAR instruction parses a specified variable into one or more variable
names that follow it. If the variable contains character information, it is not changed
to uppercase.
quote = 'Knowledge is power.'
PARSE VAR quote word1 word2 word3

/* word1 contains 'Knowledge' */
/* word2 contains 'is' */
/* word3 contains 'power.' */

The PARSE UPPER VAR instruction changes character information to uppercase
before putting it into the variables.
quote = 'Knowledge is power.'
PARSE UPPER VAR quote word1 word2 word3

/* word1 contains 'KNOWLEDGE' */
/* word2 contains 'IS' */
/* word3 contains 'POWER.' */

For more information about parsing instructions, see z/OS TSO/E REXX Reference.

PARSE VALUE ... WITH Instruction
The PARSE VALUE ... WITH instruction parses a specified expression, such as a
literal string, into one or more variable names that follow the WITH subkeyword. If
the literal string contains character information, it is not changed to uppercase.
PARSE VALUE 'Knowledge is power.' WITH word1 word2 word3

/* word1 contains 'Knowledge' */
/* word2 contains 'is' */
/* word3 contains 'power.' */

The PARSE UPPER VALUE instruction changes character information to uppercase
before assigning it to the variable names.
PARSE UPPER VALUE 'Knowledge is power.' WITH word1 word2 word3

/* word1 contains 'KNOWLEDGE' */
/* word2 contains 'IS' */
/* word3 contains 'POWER.' */

Ways of Parsing
Parsing separates data by comparing the data to a template (or pattern of variable
names). Separators in a template can be a blank, string, variable, or number that
represents column position.

Blank
The simplest template is a group of variable names separated by blanks. Each
variable name gets one word of data in sequence except for the last, which gets the
remainder of the data. The last variable name might then contain several words and
possibly leading and trailing blanks.
PARSE VALUE 'Value with Blanks.' WITH pattern type

/* pattern contains 'Value' */
/* type contains ' with Blanks.' */

When there are more variables than data, the extra variables are set to null.
PARSE VALUE 'Value with Extra Variables.' WITH data1 data2 data3 data4 data5

/* data1 contains 'Value' */
/* data2 contains 'with' */
/* data3 contains 'Extra' */
/* data4 contains 'Variables.' */
/* data5 contains '' */

Parsing Data

Chapter 7. Manipulating Data 89

A period in a template acts as a place holder. The data that corresponds to the
period is not assigned to a variable name. You can use a period as a "dummy
variable" within a group of variables or at the end of a template to collect unwanted
information.
PARSE VALUE 'Value with Periods in it.' WITH pattern . type .

/* pattern contains 'Value' */
/* type contains 'Periods' */

/* the periods replace the words "with" and "in it." */

String
You can use a string in a template to separate data as long as the data includes the
string as well. The string becomes the point of separation and is not included as
data.
phrase = 'To be, or not to be?' /* phrase containing comma */
PARSE VAR phrase part1 ',' part2 /* template containing comma */

/* as string separator */
/* part1 contains 'To be' */
/* part2 contains ' or not to be?' */

In this example, notice that the comma is not included with ’To be’ because the
comma is the string separator.

Variable
When you do not know in advance what string to specify as separator in a
template, you can use a variable enclosed in parentheses. The variable value must
be included in the data.
separator = ','
phrase = 'To be, or not to be?'
PARSE VAR phrase part1 (separator) part2

/* part1 contains 'To be' */
/* part2 contains ' or not to be?' */

Again, in this example, notice that the comma is not included with ’To be’ because
the comma is the string separator.

Number
You can use numbers in a template to indicate the column at which to separate
data. An unsigned integer indicates an absolute column position and a signed
integer indicates a relative column position.

v Absolute column position

An unsigned integer or an integer prefixed with an equal sign (=) in a template
separates the data according to absolute column position. The first segment
starts at column 1 and goes up to, but does not include, the information in the
column number specified. The subsequent segments start at the column
numbers specified.
quote = 'Ignorance is bliss.'

....+....1....+....2

PARSE VAR quote part1 5 part2
/* part1 contains 'Igno' */
/* part2 contains 'rance is bliss.' */

This example could have also been coded as follows. Note the explicit use of the
column 1 indicator prior to part1 that was implied in the previous example and
the use of the =5 part2 to indicate the absolute position, column 5.
quote = 'Ignorance is bliss.'

....+....1....+....2

Parsing Data

90 z/OS V1R2.0 TSO/E REXX User’s Guide

PARSE VAR quote 1 part1 =5 part2
/* part1 contains 'Igno' */
/* part2 contains 'rance is bliss.' */

When a template has more than one number, and a number at the end of the
template is lower than an earlier number, parse loops back to the beginning of
the data.
quote = 'Ignorance is bliss.'

....+....1....+....2

PARSE VAR quote part1 5 part2 10 part3 1 part4
/* part1 contains 'Igno' */
/* part2 contains 'rance' */
/* part3 contains ' is bliss.' */
/* part4 contains 'Ignorance is bliss.' */

When each variable in a template has column numbers both before and after it,
the two numbers indicate the beginning and the end of the data for the variable.
quote = 'Ignorance is bliss.'

....+....1....+....2

PARSE VAR quote 1 part1 10 11 part2 13 14 part3 19 1 part4 20
/* part1 contains 'Ignorance' */
/* part2 contains 'is' */
/* part3 contains 'bliss' */
/* part4 contains 'Ignorance is bliss.' */

v Relative column position

A signed integer in a template separates the data according to relative column
position, that is, a starting position relative to the starting position of the
preceding part. A signed integer can be either positive (+) or negative (-) causing
the part to be parsed to shift either to the right (with a +) or to the left (with a -).
part1 starts at column 1, the preceding 1 is not coded but implied. In the
following example, therefore, the +5 part2 causes part2 to start in column 1+5=6,
the +5 part3 causes part3 to start in column 6+5=11, and so on.
quote = 'Ignorance is bliss.'

....+....1....+....2

PARSE VAR quote part1 +5 part2 +5 part3 +5 part4
/* part1 contains 'Ignor' */
/* part2 contains 'ance ' */
/* part3 contains 'is bl' */
/* part4 contains 'iss.' */

The use of the minus sign is similar to the use of the plus sign in that it is used
to identify a relative position in the data string. The minus sign is used to “back
up” (move to the left) in the data string. In the following example, therefore, the
part1 causes part1 to start in column 1 (implied), the +10 part2 causes part2 to
start in column 1+10=11, the +3 part3 causes part3 to start in column 11+3=14,
and the -3 part4 causes part4 to start in column 14-3=11.
quote = 'Ignorance is bliss.'

....+....1....+....2

PARSE VAR quote part1 +10 part2 +3 part3 -3 part4
/* part1 contains 'Ignorance ' */
/* part2 contains 'is ' */
/* part3 contains 'bliss.' */
/* part4 contains 'is bliss.' */

v Variables

Parsing Data

Chapter 7. Manipulating Data 91

You can define and use variables to provide further flexibility of a PARSE VAR
instruction. Define the variable prior to the parse instruction, such as the movex
variable in the following example. With the PARSE instruction, enclose the
variable in parenthesis, in place of a number. This variable must be an unsigned
integer. Therefore, use a sign outside the parenthesis to indicate how REXX is to
interpret the unsigned integer. REXX substitutes the numeric value for the
variable as follows:
quote = 'Ignorance is bliss.'

....+....1....+....2

movex = 3 /* variable position */
PARSE VAR quote part5 +10 part6 +3 part7 -(movex) part8

/* part5 contains 'Ignorance ' */
/* part6 contains 'is ' */
/* part7 contains 'bliss.' */
/* part8 contains 'is bliss.' */

Note: The variable movex in the previous example must be an unsigned integer.
Always code a sign prior to the parenthesis to indicate how the integer is
to be interpreted. If you do not, the variable will be interpreted as a string
separator. Valid signs are:
– A plus sign (+) indicates column movement to the right
– A minus sign (-) indicates column movement to the left
– An equal sign (=) indicates an absolute column position.

For more information about parsing, see z/OS TSO/E REXX Reference.

Parsing Multiple Strings as Arguments
When passing arguments to a function or a subroutine, you can specify multiple
strings to be parsed. Arguments are parsed with the ARG, PARSE ARG, and
PARSE UPPER ARG instructions.

To pass multiple strings, separate each string with a comma. This comma is not a
string separator as illustrated in the example on page 90, although you can also
use a string separator within an argument template.

The following example passes three arguments separated by commas to an internal
subroutine. The first argument consists of two words "String One" that are parsed
into three variable names. The third variable name is set to null because there is no
third word. The second and third arguments are parsed entirely into variable names
string2 and string3.
CALL sub2 'String One', 'String Two', 'String Three'...

EXIT

sub2:
PARSE ARG word1 word2 word3, string2, string3

/* word1 contains 'String' */
/* word2 contains 'One' */
/* word3 contains '' */
/* string2 contains 'String Two' */
/* string3 contains 'String Three' */

For more information about passing multiple arguments, see z/OS TSO/E REXX
Reference.

Parsing Data

92 z/OS V1R2.0 TSO/E REXX User’s Guide

Exercise - Practice with Parsing
What are the results of the following parsing examples?
1. quote = 'Experience is the best teacher.'

PARSE VAR quote word1 word2 word3
a) word1 =
b) word2 =
c) word3 =

2. quote = 'Experience is the best teacher.'
PARSE VAR quote word1 word2 word3 word4 word5 word6

a) word1 =
b) word2 =
c) word3 =
d) word4 =
e) word5 =
f) word6 =

3. PARSE VALUE 'Experience is the best teacher.' WITH word1 word2 . . word3
a) word1 =
b) word2 =
c) word3 =

4. PARSE VALUE 'Experience is the best teacher.' WITH v1 5 v2
....+....1....+....2....+....3.

a) v1 =
b) v2 =

5. quote = 'Experience is the best teacher.'
....+....1....+....2....+....3.

PARSE VAR quote v1 v2 15 v3 3 v4
a) v1 =
b) v2 =
c) v3 =
d) v4 =

6. quote = 'Experience is the best teacher.'
....+....1....+....2....+....3.

PARSE UPPER VAR quote 15 v1 +16 =12 v2 +2 1 v3 +10
a) v1 =
b) v2 =
c) v3 =

7. quote = 'Experience is the best teacher.'
....+....1....+....2....+....3.

PARSE VAR quote 1 v1 +11 v2 +6 v3 -4 v4
a) v1 =
b) v2 =
c) v3 =
d) v4 =

8. first = 7
quote = 'Experience is the best teacher.'

....+....1....+....2....+....3.

PARSE VAR quote 1 v1 =(first) v2 +6 v3
a) v1 =
b) v2 =
c) v3 =

9. quote1 = 'Knowledge is power.'
quote2 = 'Ignorance is bliss.'
quote3 = 'Experience is the best teacher.'
CALL sub1 quote1, quote2, quote3
EXIT

Parsing Data

Chapter 7. Manipulating Data 93

sub1:
PARSE ARG word1 . . , word2 . . , word3 .

a) word1 =
b) word2 =
c) word3 =

ANSWERS

1.
a) word1 = Experience
b) word2 = is
c) word3 = the best teacher.

2.
a) word1 = Experience
b) word2 = is
c) word3 = the
d) word4 = best
e) word5 = teacher.
f) word6 = ''

3.
a) word1 = Experience
b) word2 = is
c) word3 = teacher.

4.
a) v1 = Expe
b) v2 = rience is the best teacher.

5.
a) v1 = Experience
b) v2 = is
c) v3 = the best teacher.
d) v4 = perience is the best teacher.

6.
a) v1 = THE BEST TEACHER
b) v2 = IS
c) v3 = EXPERIENCE

7.
a) v1 = ’Experience ’
b) v2 = ’is the’
c) v3 = ’ best teacher.’
d) v4 = ’ the best teacher.’

8.
a) v1 = ’Experi’
b) v2 = ’ence i’
c) v3 = ’s the best teacher.’

9.
a) word1 = Knowledge
b) word2 = Ignorance
c) word3 = Experience

Parsing Data

94 z/OS V1R2.0 TSO/E REXX User’s Guide

Part 2. Using REXX

In addition to being a versatile general-purpose programming language, REXX can
interact with TSO/E, MVS, APPC/MVS, and ISPF, which expands its capabilities.
This part of the book is for programmers already familiar with the REXX language
and experienced in TSO/E. The chapters in this part cover the following topics.

v “Chapter 8. Entering Commands from an Exec” on page 97 — A REXX exec can
issue different types of host commands within the same exec.

v “Chapter 9. Diagnosing Problems Within an Exec” on page 111 — Several
debugging options are available in an exec.

v “Chapter 10. Using TSO/E External Functions” on page 119 — TSO/E external
functions are provided to interact with the system to do specific tasks.

v “Chapter 11. Storing Information in the Data Stack” on page 135 — The data
stack is useful in I/O and other types of special processing.

v “Chapter 12. Processing Data and Input/Output Processing” on page 153 — You
can process information to and from data sets by using the EXECIO command.

v “Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces” on
page 171 — You can run execs in other MVS address spaces besides TSO/E
foreground and background.

Note: Although you can write a REXX exec to run in a non-TSO/E address space
in MVS, the chapters and examples in this part, unless otherwise stated,
assume the exec will run in a TSO/E address space. If you want to write
execs that run outside of a TSO/E address space, keep in mind the following
exceptions to information in this part of the book.

v An exec that runs outside of a TSO/E address space cannot include TSO/E
commands, ISPF commands, or ISPF/PDF edit commands. An exec that runs
outside of a TSO/E address space can include TSO/E commands if you use the
TSO/E environment service (see note).

v An exec that runs outside of TSO/E cannot include most of the TSO/E external
functions. For information about the functions you can use in TSO/E and
non-TSO/E address spaces, see “Services Available to REXX Execs” on
page 171.

v In TSO/E, several REXX instructions either display information on the terminal or
retrieve information that the user enters at the terminal. In a non-TSO/E address
space, these instructions get information from the input stream and write
information to the output stream.
– SAY — this instruction sends information to the output DD whose default is

SYSTSPRT.
– PULL — this instruction gets information from the input DD whose default is

SYSTSIN.
– TRACE — this instruction sends information to the output DD whose default is

SYSTSPRT.
– PARSE EXTERNAL — this instruction gets information from the input DD

whose default is SYSTSIN.

v An exec that runs outside of TSO/E cannot interact with CLISTs.

Note: You can use the TSO/E environment service, IKJTSOEV, to create a TSO/E
environment in a non-TSO/E address space. If you run a REXX exec in the
TSO/E environment you created, the exec can contain TSO/E commands,
external functions, and services that an exec running in a TSO/E address
space can use. That is, the TSO host command environment (ADDRESS

© Copyright IBM Corp. 1988, 2001 95

TSO) is available to the exec with some limitations. For more information
about the TSO/E environment service, limitations on the environment it
creates, and the different considerations for running REXX execs within the
environment, see z/OS TSO/E Programming Services.

96 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 8. Entering Commands from an Exec

Types of Commands . 97
Issuing TSO/E Commands from an Exec 98

Using Quotations Marks in Commands 98
Passing Data Set Names as Arguments. 98

Using Variables in Commands 99
Causing Interactive Commands to Prompt the User 100
Invoking Another Exec as a Command. 100

Invoking Another Exec with the EXEC Command 101
Invoking Another Exec Implicitly 101

Issuing Other Types of Commands from an Exec 101
What is a Host Command Environment? 101

APPC/MVS Host Command Environments 104
Examples Using APPC/MVS Services 106

Changing the Host Command Environment 106
Determining the Active Host Command Environment 107
Checking if a Host Command Environment is Available 107
Examples Using the ADDRESS Instruction 107

This chapter describes how to issue TSO/E commands and other types of
commands from a REXX exec.

Types of Commands
A REXX exec can issue many types of commands. The two main categories of
commands are:

v TSO/E REXX commands - Commands provided with the TSO/E implementation
of the language. These commands do REXX-related tasks in an exec, such as:

– Control I/O processing of information to and from data sets (EXECIO)

– Perform data stack services (MAKEBUF, DROPBUF, QBUF, QELEM,
NEWSTACK, DELSTACK, QSTACK)

– Change characteristics that control the execution of an exec (EXECUTIL and
the immediate commands)

– Check for the existence of a host command environment (SUBCOM).

More information about these TSO/E REXX commands appears throughout the
book where the related task is discussed

v Host commands - The commands recognized by the host environment in which
an exec runs. A REXX exec can issue various types of host commands as
discussed in the remainder of this chapter.

When an exec issues a command, the REXX special variable RC is set to the
return code. An exec can use the return code to determine a course of action within
the exec. Every time a command is issued, RC is set. Thus RC contains the return
code from the most recently issued command.

© Copyright IBM Corp. 1988, 2001 97

Issuing TSO/E Commands from an Exec
Like a CLIST, a REXX exec can contain TSO/E commands to be executed when
the exec runs. An exec can consist of nothing but TSO/E commands, such as an
exec that sets up a user’s terminal environment by allocating the appropriate
libraries of data sets, or the exec can contain commands intermixed with REXX
language instructions.

Using Quotations Marks in Commands
Generally, to differentiate commands from other types of instructions, enclose the
command within single or double quotation marks. When issuing TSO/E commands
in an exec, it is recommended that you enclose them in double quotation marks. If
the command is not enclosed within quotation marks, it will be processed as an
expression and might end in error. For example, a word immediately followed by a
left parenthesis is processed by the language processor as a function call. Several
TSO/E commands, one of which is ALLOCATE, require keywords followed by
parentheses.
"ALLOC DA(NEW.DATA) LIKE(OLD.DATA) NEW"

If the ALLOCATE command in the example above was not enclosed in quotation
marks, the parentheses would indicate to the language processor that DA and LIKE
were function calls, and the command would end in an error.

Many TSO/E commands use single quotation marks within the command. For
example, the EXEC command encloses an argument within single quotation marks,
and other commands, such as ALLOCATE, require single quotation marks around
fully-qualified data set names.
EXEC myrexx.exec(add) '25 78 33' exec

ALLOC DA('USERID.MYREXX.EXEC') F(SYSEXEC) SHR REUSE

As REXX instructions, these commands can be entirely enclosed in double
quotation marks and still retain the single quotation marks for the specific
information within the command. For this reason, it is recommended that, as a
matter of course, you enclose TSO/E commands with double quotation marks.
"EXEC myrexx.exec(add) '25 78 33' exec"

"ALLOC DA('USERID.MYREXX.EXEC') F(SYSEXEC) SHR REUSE"

Remember that data set names beginning with your prefix (usually your user ID)
can be specified without the prefix and without quotation marks.
"ALLOC DA(MYREXX.EXEC) F(SYSEXEC) SHR REUSE"

More about data sets names and when to enclose them in quotation marks is
covered in the next topic.

Passing Data Set Names as Arguments
How you pass a data set name as an argument depends on the way you specify
the data set name and whether you invoke the exec explicitly or implicitly.

Ways to specify the data set name are controlled by the TSO/E naming
conventions, which define fully-qualified and non fully-qualified data sets. A
fully-qualified data set name specifies all three qualifiers including the prefix and
must appear within a set of quotation marks.
'userid.myrexx.exec'

Issuing TSO/E Commands from an Exec

98 z/OS V1R2.0 TSO/E REXX User’s Guide

A non fully-qualified data set name can eliminate the prefix and is not enclosed
within quotation marks.
myrexx.exec

If you use the EXEC command to explicitly invoke an exec, the EXEC command
processor requires a set of single quotation marks around the argument. When
passing a non fully-qualified data set name as an argument, you need not add
additional quotation marks. The following EXEC command is issued at the READY
prompt and passes the data set name REXX.INPUT as an argument to the exec
contained in MYREXX.EXEC(TEST2). Both data sets are specified as non
fully-qualified data set names.
READY
EXEC myrexx.exec(test2) 'rexx.input' exec

When passing a fully-qualified data set name as an argument with the EXEC
command, you must include more than one set of quotation marks; one to indicate
it is a fully-qualified data set and one to indicate it is the argument to be passed.
Because TSO/E commands process two sets of single quotation marks as one and
do not recognize double quotation marks as does the language processor, you must
use three sets of single quotation marks. The following EXEC command passes
USERID.REXX.INPUT as an argument expressed as a fully-qualified data set
name.
READY
EXEC myrexx.exec(test2) 'userid.rexx.input'' exec

When passing a non fully-qualified data set name as an argument while implicitly
invoking the exec, you need no quotation marks.
READY
test2 rexx.input

To pass a fully-qualified data set name as an argument while implicitly invoking an
exec, enclose the data set name in a single set of quotation marks.
READY
test2 'userid.rexx.input'

Using Variables in Commands
When a variable is used in a TSO/E command, the variable cannot be within
quotation marks if its value is to be substituted. Only variables outside quotation
marks are processed by the language processor. For example, the variable name is
assigned the data set name MYREXX.EXEC. When name is used in a LISTDS
command, it must remain outside the quotation marks placed around the command.
name = myrexx.exec
"LISTDS" name "STATUS"

When a variable represents a fully-qualified data set name, the name must be
enclosed in two sets of quotation marks to ensure that one set of quotation marks
remains as part of the value.
name = "'project.rel1.new'"
"LISTDS" name "STATUS"

Another way to ensure that quotation marks appear around a fully-qualified data set
name when it appears as a variable is to include them as follows:
name = project.rel1.new
"LISTDS '"name"' STATUS"

Issuing TSO/E Commands from an Exec

Chapter 8. Entering Commands from an Exec 99

Causing Interactive Commands to Prompt the User
If your TSO/E profile allows prompting, when you issue an interactive command
without operands, you are prompted for operands. For example, when you issue the
LISTDS command from READY, you are prompted for a data set name.
READY
listds
ENTER DATA SET NAME -

To have TSO/E commands prompt you when the commands are issued from within
an exec, you can do one of two things:

v Run the exec explicitly with the EXEC command and use the PROMPT operand.
EXEC mynew.exec(create) exec prompt

v Use the PROMPT function within the exec. Because PROMPT is a function, it is
used as an expression within an instruction, such as an assignment instruction or
a SAY instruction. To turn prompting on, write:
saveprompt = PROMPT('ON') /* saveprompt is set to the previous

setting of PROMPT */

To turn prompting off, write:
x = PROMPT('OFF') /* x is set to the previous setting of PROMPT */

To find out the prompting status, write:
SAY PROMPT() /* displays either "ON" or "OFF" */

To reset prompting to a specific setting saved in variable saveprompt, write:
x = prompt(saveprompt)

Prompting by commands also depends on whether there are elements in the data
stack. If the data stack contains an element, the user at the terminal is not
prompted because the data stack element is used in response to the prompt. For
more information about the data stack, see “Chapter 11. Storing Information in the
Data Stack” on page 135.

Invoking Another Exec as a Command
Previously, this book discussed how to invoke another exec as an external routine
(“Chapter 6. Writing Subroutines and Functions” on page 69). You can also invoke
an exec from another exec explicitly with the EXEC command or implicitly by
member name. Like an external routine, an exec invoked explicitly or implicitly can
return a value to the caller with the RETURN or EXIT instruction. Unlike an external
routine, which passes a value to the special variable RESULT, the invoked exec
passes a value to the REXX special variable RC.

Important Note
Neither of these options can override a NOPROMPT operand in your TSO/E
profile. Your TSO/E profile controls prompting for all commands issued in your
TSO/E session whether the commands are issued in line mode, in ISPF, in an
exec, or in a CLIST. To display your profile, issue the PROFILE command. To
change a profile from NOPROMPT to PROMPT, issue:
PROFILE PROMPT

Issuing TSO/E Commands from an Exec

100 z/OS V1R2.0 TSO/E REXX User’s Guide

Invoking Another Exec with the EXEC Command
To explicitly invoke another exec from within an exec, issue the EXEC command as
you would any other TSO/E command. The called exec should end with a RETURN
or EXIT instruction, ensuring that control returns to the caller. The REXX special
variable RC is set to the return code from the EXEC command. You can optionally
return a value to the caller on the RETURN or EXIT instruction. When control
passes back to the caller, the REXX special variable RC is set to the value of the
expression returned on the RETURN or EXIT instruction.

For example, to invoke an exec named MYREXX.EXEC(CALC) and pass it an
argument of four numbers, you could include the following instructions:
"EXEC myrexx.exec(calc) '24 55 12 38' exec"
SAY 'The result is' RC

'Calc' might contain the following instructions:
ARG number1 number2 number3 number4
answer = number1 * (number2 + number3) - number4
RETURN answer

You might want to invoke an exec with the EXEC command rather than as an
external routine when the exec is not within the same PDS as the calling exec, or
when the PDSs of the two execs are not allocated to either SYSEXEC or
SYSPROC.

Invoking Another Exec Implicitly
To implicitly invoke another exec from within an exec, type the member name either
with or without %. Because it is treated as a command, enclose the member name
and the argument, if any, within quotation marks. As with any other implicitly
invoked exec, the PDSs containing the calling exec and the called exec must be
allocated to either SYSEXEC or SYSPROC. Remember that a % before the
member name reduces the search time because fewer files are searched.

For example, to implicitly invoke an exec named MYREXX.EXEC(CALC) and send
it an argument of four numbers, you could include the following instructions.
"%calc 24 55 12 38"
SAY 'The result is' RC

'Calc' might contain the following instructions:
ARG number1 number2 number3 number4
answer = number1 * (number2 + number3) - number4
RETURN answer

Issuing Other Types of Commands from an Exec
A REXX exec in TSO/E can issue TSO/E commands, APPC/MVS calls, MVS
module invocations, ISPF commands, and ISPF/PDF EDIT commands. If you have
TSO/E CONSOLE command authority and an extended MCS console session is
active, you can also issue MVS system and subsystem commands in a REXX exec.
Each type of invocation is associated with a different host command environment.

What is a Host Command Environment?
An environment for executing commands is called a host command environment.
Before an exec runs, an active host command environment is defined to handle
commands issued by the exec. When the language processor encounters a
command, it passes the command to the host command environment for
processing.

Issuing TSO/E Commands from an Exec

Chapter 8. Entering Commands from an Exec 101

When a REXX exec runs on a host system, there is at least one default
environment available for executing commands.

The default host command environments available in TSO/E REXX are as follows:

TSO - the environment in which TSO/E commands and TSO/E REXX
commands execute in the TSO/E address space.

MVS - the environment in which TSO/E REXX commands execute in a
non-TSO/E address space.

LINK - an environment that links to modules on the same task level.

LINKMVS - an environment that links to modules on the same task level. This
environment allows you to pass multiple parameters to an invoked module, and
allows the invoked module to update the parameters. The parameters you pass
to the module include a length identifier.

LINKPGM - an environment that links to modules on the same task level. This
environment allows you to pass multiple parameters to an invoked module, and
allows the invoked module to update the parameters. The parameters you pass
to the module do not include a length identifier.

ATTACH - an environment that attaches modules on a different task level.

ATTCHMVS - an environment that attaches modules on a different task level.
This environment allows you to pass multiple parameters to an invoked module,
and allows the invoked module to update the parameters. The parameters you
pass to the module include a length identifier.

ATTCHPGM - an environment that attaches modules on a different task level.
This environment allows you to pass multiple parameters to an invoked module,
and allows the invoked module to update the parameters. The parameters you
pass to the module do not include a length identifier.

ISPEXEC - the environment in which ISPF commands execute.

ISREDIT - the environment in which ISPF/PDF EDIT commands execute.

CONSOLE - the environment in which MVS system and subsystem commands
execute. To use the CONSOLE environment, you must have TSO/E CONSOLE
command authority and an extended MCS console session must be active. You
use the TSO/E CONSOLE command to activate an extended MCS console
session. See z/OS TSO/E System Programming Command Reference, for more
information about using the CONSOLE command.

CPICOMM - the environment that allows you to invoke the SAA common
programming interface (CPI) Communications calls.

LU62 - the environment that allows you to invoke the APPC/MVS calls that are
based on the SNA LU 6.2 architecture. These calls are referred to as
APPC/MVS calls throughout the book.

APPCMVS - the environment that allows you to access MVS/APPC callable
services related to server facilities and for the testing of transaction programs.

In a non-TSO/E environment, TSO/E REXX provides the following host command
environments:

v MVS (the initial host command environment)

v LINK

v LINKMVS

v LINKPGM

v ATTACH

v ATTCHMVS

v ATTCHPGM

Issuing Other Types of Commands from an Exec

102 z/OS V1R2.0 TSO/E REXX User’s Guide

v CPICOMM

v LU62

v APPCMVS

From TSO/E READY mode, TSO/E REXX provides the following host command
environments:

v TSO (the initial host command environment)

v MVS

v LINK

v LINKMVS

v LINKPGM

v ATTACH

v ATTCHMVS

v ATTCHPGM

v CONSOLE

v CPICOMM

v LU62

v APPCMVS

In ISPF, TSO/E REXX provides the following host command environments:

v TSO (the initial host command environment)

v MVS

v LINK

v LINKMVS

v LINKPGM

v ATTACH

v ATTCHMVS

v ATTCHPGM

v ISPEXEC

v ISREDIT

v CONSOLE

v CPICOMM

v LU62

v APPCMVS

Note: These lists of host command environments represent the defaults. Your
installation may have added or deleted environments.

The default host command environment for execs running in TSO/E and ISPF is
TSO. Thus all commands are sent to TSO/E for processing, unless the exec
changes the host command environment.

When an exec runs in an MVS environment, TSO/E command processors and
services are not available to it. For more information, see “Services Available to
REXX Execs” on page 171. In an MVS host command environment, you can issue
many of the TSO/E REXX commands, such as EXECIO, MAKEBUF, and
NEWSTACK.

Issuing Other Types of Commands from an Exec

Chapter 8. Entering Commands from an Exec 103

APPC/MVS Host Command Environments
The CPICOMM environment enables you to invoke the SAA CPI Communications
calls and the LU62 and APPCMVS environments enable you to invoke APPC/MVS
calls. You can write transaction programs in the REXX language, using the LU62,
CPICOMM, or APPCMVS host command environments, to issue APPC calls to a
partner transaction program. The CPICOMM host command environment allows
transaction programs written in the REXX language to be ported across SAA
environments. The LU62 host command environment allows you to use specific
features of MVS in conversations with transaction programs on other systems.
APPCMVS allows you to access APPC/MVS callable services related to server
facilities and for the testing of transaction programs. Each of these host command
environments enable REXX programs to communicate with other programs on the
same MVS system, different MVS systems, or different operating systems in an
SNA network.

The following APPC/MVS calls are supported under the APPCMVS host command
environment:

v ATBCUC1 (Cleanup_TP(Unauthorized))

v ATBGTE2 (Get_Event)

v ATBPOR2 (Post_on_Receipt)

v ATBQAQ2 (Query_Allocate_Query)

v ATBRAL2 (Receive_Allocate)

v ATBRFA2 (Register_for_Allocate)

v ATBRJC2 (Reject_Conversation)

v ATBSAQ2 (Set_Allocate_Queue_Attributes)

v ATBSCA2 (Set_Conversation_Accounting_Information)

v ATBSTE2 (Set_Event_Notification)

v ATBTEA1 (Accept_Test)

v ATBTER1 (Register_Test)

v ATBTEU1 (Unregister_Test)

v ATBURA2 (Unregister_for_Allocates)

v ATBVERS (MVS_Version_Check)

The following SAA CPI Communications calls are supported under the CPICOMM
host command environment:

v CMACCP (Accept_Conversation)

v CMALLC (Allocate)

v CMCFM (Confirm)

v CMCFMD (Confirmed)

v CMDEAL (Deallocate)

v CMECS (Extract_Conversation_State)

v CMECT (Extract_Conversation_Type)

v CMEMN (Extract_Mode_Name)

v CMEPLN (Extract_Partner_LU_Name)

v CMESL (Extract_Sync_Level)

v CMFLUS (Flush)

v CMINIT (Initialize_Conversation)

v CMPTR (Prepare_To_Receive)

v CMRCV (Receive)

Issuing Other Types of Commands from an Exec

104 z/OS V1R2.0 TSO/E REXX User’s Guide

v CMRTS (Request_To_Send)

v CMSCT (Set_Conversation_Type)

v CMSDT (Set_Deallocate_Type)

v CMSED (Set_Error_Direction)

v CMSEND (Send_Data)

v CMSERR (Send_Error)

v CMSF (Set_Fill)

v CMSLD (Set_Log_Data)

v CMSMN (Set_Mode_Name)

v CMSPLN (Set_Partner_LU_Name)

v CMSPTR (Set_Prepare_To_Receive_Type)

v CMSRC (Set_Return_Control)

v CMSRT (Set_Receive_Type)

v CMSSL (Set_Sync_Level)

v CMSST (Set_Send_Type)

v CMSTPN (Set_TP_Name)

v CMTRTS (Test_Request_To_Send_Received)

The SAA CPI Communications calls are described in SAA Common Programming
Interface Communications Reference.

The following APPC/MVS calls are supported under the LU62 host command
environment:

v ATBALC2 (Allocate)

v ATBALLC (Allocate)

v ATBCFM (Confirm)

v ATBCFMD (Confirmed)

v ATBDEAL (Deallocate)

v ATBFLUS (Flush)

v ATBGETA (Get_Attributes)

v ATBGETC (Get_Conversation)

v ATBGETP (Get_TP_Properties)

v ATBGETT (Get_Type)

v ATBGTA2 (Get_Attribute)

v ATBPTR (Prepare_To_Receive)

v ATBRCVI (Receive_Immediate)

v ATBRCVW (Receive_And_Wait)

v ATBRTS (Request_To_Send)

v ATBSEND (Send_Data)

v ATBSERR (Send_Error)

Note: The numeric suffix within the service name indicates the MVS release in
which the service was introduced and thereby also available in all
subsequent releases, as follows:

none MVS SP4.2 service. For example, ATBGETA

1 MVS SP4.2.2 service. For example, ATBTEA1

Issuing Other Types of Commands from an Exec

Chapter 8. Entering Commands from an Exec 105

2 MVS SP4.3 service. For example, ATBALC2

Therefore, your z/OS base control program (BCP) must be at least at the
indicated level to take advantage of these services.

The parameters for these services and the requirements for using them in
APPC/MVS transaction programs are described in z/OS MVS Programming: Writing
Transaction Programs for APPC/MVS.

Examples Using APPC/MVS Services
The following example illustrates the syntax for invoking an SAA CPI
Communications call under the CPICOMM host command environment:

CPICOMM Example
/* REXX */
ADDRESS CPICOMM ’CMALLC conversation_id return_code’
if return_code = CM_OK then say 'OK!'

else say 'Why not?'

The following example illustrates the syntax for invoking an APPC/MVS call under
the LU62 host command environment:

LU62 Example
/* REXX */
ADDRESS LU62 ’ATBDEAL conversation_id deallocate_type’,

’notify_type return_code’

Whenever you issue an SAA CPI Communications call or APPC/MVS call from a
REXX program, the entire call must be enclosed in single or double quotes.

SAA CPI Communications calls and APPC/MVS calls can use pseudonyms rather
than integer values. In the CPICOMM example, instead of comparing the variable
return_code to an integer value of 0, the example compares return_code to the
pseudonym value CM_OK. The integer value for CM_OK is 0. TSO/E provides two
pseudonym files, one for the LU62 host command environment and one for the
CPICOMM host command environment. These files define the pseudonyms and
their integer values. The LU62 pseudonym file is REXAPPC1, and the CPICOMM
pseudonym file is REXAPPC2. Both files are found in SYS1.SAMPLIB. You can
include this information from the pseudonym files in your REXX execs.

For more information about host command environments and pseudonym files, refer
to z/OS TSO/E REXX Reference.

Changing the Host Command Environment
You can change the host command environment either from the default or from
whatever environment was previously established. To change the host command
environment, use the ADDRESS instruction followed by the name of an
environment.

The ADDRESS instruction has two forms: one affects all commands issued after the
instruction, and one affects only a single command.

v All commands

Issuing Other Types of Commands from an Exec

106 z/OS V1R2.0 TSO/E REXX User’s Guide

When an ADDRESS instruction includes only the name of the host command
environment, all commands issued afterward within that exec are processed as
that environment’s commands.
ADDRESS ispexec /* Change the host command environment to ISPF */
"edit DATASET("dsname")"

The ADDRESS instruction affects only the host command environment of the
exec that uses the instruction. When an exec calls an external routine, the host
command environment reverts back to the default environment, regardless of the
host command environment of the exec that called it. Upon return to the original
exec, the host command environment that was previously established by an
ADDRESS instruction is resumed.

v Single command

When an ADDRESS instruction includes both the name of the host command
environment and a command, only that command is affected. After the command
is issued, the former host command environment becomes active again.
/* Issue one command from the ISPF host command environment */
ADDRESS ispexec "edit DATASET("dsname")"
/* Return to the default TSO host command environment */
"ALLOC DA("dsname") F(SYSEXEC) SHR REUSE"

Note: Keywords, such as DATASET, within an ISPF command must be in
uppercase when used in a REXX instruction.

Determining the Active Host Command Environment

To find out what host command environment is currently active, use the ADDRESS
built-in function.
x = ADDRESS()

In this example, x is set to the active host command environment, for example,
TSO.

Checking if a Host Command Environment is Available
To check if a host command environment is available before trying to issue
commands to that environment, issue the TSO/E REXX SUBCOM command
followed by the name of the host command environment, such as ISPEXEC.
SUBCOM ISPEXEC

If the environment is present, the REXX special variable RC returns a 0. If the
environment is not present, RC returns a 1. For example, when editing a data set,
before trying to use ISPF/PDF edit, you can find out if ISPEXEC is available as
follows:
ARG dsname
SUBCOM ISPEXEC
IF RC=0 THEN

ADDRESS ISPEXEC "SELECT PGM(ISREDIT)" /* select ISPF/PDF edit */
ELSE

"EDIT" dsname /* use TSO/E line mode edit */

Examples Using the ADDRESS Instruction

Issuing Other Types of Commands from an Exec

Chapter 8. Entering Commands from an Exec 107

ADDRESS Example 2
/****************************** REXX *******************************/
/* This exec must be run in ISPF. It blanks out previous data set */
/* name information from the fields of an ISPF panel named newtool.*/
/* It then displays the panel to the user. */
/***/
ADDRESS ispexec
CALL blankem /* Call an internal subroutine */

IF RC = 0 THEN
"display PANEL(newtool)"

ELSE
"setmsg MSG(nt001)" /* Send an error message. */

EXIT

blankem:
'vget (ZUSER)'
ntgroup = '
nttype = '
ntmem = '

RETURN RC

ADDRESS Example 1
/****************************** REXX *******************************/
/* This exec must be run in ISPF. It asks users if they know the */
/* PF keys, and when the answer is a variation of "no", it displays*/
/* the panel with the PF key definitions. */
/***/
SAY 'Do you know your PF keys?'

PULL answer .
IF answer = 'NO' | answer = 'N' THEN

ADDRESS ispexec "display PANEL(ispopt3c)"
ELSE

SAY 'O.K. Never mind.'

Issuing Other Types of Commands from an Exec

108 z/OS V1R2.0 TSO/E REXX User’s Guide

ADDRESS Example 3
/****************************** REXX *******************************/
/* This exec must be run in ISPF. It displays panel named newtool */
/* and gets the name of a data set from input fields named ntproj, */
/* ntgroup, nttype, and ntmem. If no member name is specified (the*/
/* data set is sequential) the data set name does not include it. */
/* If a member name is specified, the member is added to data set */
/* name. The fully-qualified data set name is then inserted into a*/
/* TRANSMIT command that includes single quotation marks and the */
/* destination, which was received from an input field named ntdest*/
/***/
ADDRESS ispexec
"DISPLAY PANEL(newtool)"

ADDRESS tso /* re-establish the TSO host command environment */
IF ntmem = '' THEN /* member name is blank */

DO
dsname = ntproj'.'ntgroup'.'nttype
"TRANSMIT" ntdest "DA('"dsname"')"

END
ELSE

DO
dsname = ntproj'.'ntgroup'.'nttype'('ntmem')'
"TRANSMIT" ntdest "DA('"dsname"')"

END

ADDRESS Example 4

To link to or attach a logoff routine named MYLOGOFF and pass it the level of
TSO/E installed, you can issue the following instructions from an exec.
ADDRESS LINK 'MYLOGOFF' SYSVAR(SYSTSOE)

or
ADDRESS ATTACH 'MYLOGOFF' SYSVAR(SYSTSOE)

Issuing Other Types of Commands from an Exec

Chapter 8. Entering Commands from an Exec 109

Issuing Other Types of Commands from an Exec

110 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 9. Diagnosing Problems Within an Exec

Debugging Execs . 111
Tracing Commands with the TRACE Instruction 111

TRACE C . 111
TRACE E . 112

Using REXX Special Variables RC and SIGL 112
RC . 112
SIGL . 113

Tracing with the Interactive Debug Facility 113
Starting Interactive Tracing 114
Options Within Interactive Trace 116
Ending Interactive Trace 116

This chapter describes how to trace command output and other debugging
techniques.

Debugging Execs
When you encounter an error in an exec, there are several ways to locate the error.

v The TRACE instruction displays how the language processor evaluates each
operation. For information about using the TRACE instruction to evaluate
expressions, see “Tracing Expressions with the TRACE Instruction” on page 37.
For information about using the TRACE instruction to evaluate host commands,
see the next section, “Tracing Commands with the TRACE Instruction”.

v Special variables, RC and SIGL, are set by the system to indicate:

– The return code from a command - (RC)

– The line number from which there was a transfer of control because of a
function call, a SIGNAL instruction, or a CALL instruction - (SIGL)

v The TSO/E command EXECUTIL TS (Trace Start) and EXECUTIL TE (Trace
End) control the interactive debug facility as do various options of the TRACE
instruction. For more information about interactive debug, see “Tracing with the
Interactive Debug Facility” on page 113.

Tracing Commands with the TRACE Instruction
The TRACE instruction has many options for various types of tracing, two of which
are "commands" or "c" and "error" or "e".

TRACE C
When you specify "trace c" in an exec, any command that follows is traced before it
is executed, then it is executed, and the return code from the command is
displayed.

When an exec without "trace c" issues an incorrect TSO/E command, the exec
ends with a TSO/E error message. For example, a LISTDS command specifies an
incorrect data set name.
"LISTDS ?"

This example results in the following error message.

© Copyright IBM Corp. 1988, 2001 111

MISSING DATA SET NAME
INVALID KEYWORD, ?

If an exec includes "trace c" and again incorrectly issues the LISTDS command, the
exec displays the line number and the command, executes it, and displays the error
message and the return code from the command, as follows:

3 *-* "LISTDS ?"
>>> "LISTDS ?"

MISSING DATA SET NAME
INVALID KEYWORD, ?

+++ RC(12) +++

TRACE E
When you specify "trace e" in an exec, any host command that results in a nonzero
return code is traced after it executes and the return code from the command is
displayed.

If an exec includes "trace e" and again issues the previous incorrect LISTDS
command, the exec displays error messages, the line number and the command,
and the return code from the command, as follows:

MISSING DATA SET NAME
INVALID KEYWORD, ?

3 *-* "LISTDS ?"
+++ RC(12) +++

For more information about the TRACE instruction, see z/OS TSO/E REXX
Reference.

Using REXX Special Variables RC and SIGL
As mentioned earlier, the REXX language has three special variables — RC, SIGL,
and RESULT. These variables are set by the system during particular situations and
can be used in an expression at any time. If the system did not set a value, a
special variable displays its name, as do other variables in REXX. You can use two
of these special variables, RC and SIGL, to help diagnose problems within execs.

RC
RC stands for return code and is set every time a command is issued. When a
command ends without error, RC is usually set to 0. When a command ends in
error, RC is set to whatever return code is assigned to that error.

For example, the previous incorrect LISTDS command is issued followed by the RC
special variable in a SAY instruction.
"LISTDS ?"
SAY 'The return code from the command is' RC

This results in the following:

MISSING DATA SET NAME
INVALID KEYWORD, ?
The return code from the command is 12

Debugging Execs

112 z/OS V1R2.0 TSO/E REXX User’s Guide

The RC variable can be especially useful in an IF instruction to determine which
path an exec should take.
'ALLOC DA('dsname') F(SYSPROC) SHR REUSE'
IF RC \= 0 THEN

CALL error1
ELSE NOP

Note: The value of RC is set by every command and might not remain the same
for the duration of an exec. When using RC, make sure it contains the return
code of the command you want to test.

SIGL
The SIGL special variable is used in connection with a transfer of control within an
exec because of a function, or a SIGNAL or CALL instruction. When the language
processor transfers control to another routine or another part of the exec, it sets the
SIGL special variable to the line number from which the transfer occurred.
000001 /* REXX */...

000005 CALL routine...

000008
000009 routine:
000010 SAY 'We came here from line' SIGL /* SIGL is set to 3 */
000011 RETURN

If the called routine itself calls another routine, SIGL is reset to the line number from
which the most recent transfer occurred.

SIGL and the SIGNAL ON ERROR instruction can help determine what command
caused an error and what the error was. When SIGNAL ON ERROR is included in
an exec, any host command that returns a nonzero return code causes a transfer of
control to a routine named "error". The error routine runs regardless of other actions
that would normally take place, such as the display of error messages.
000001 /* REXX */
000002 SIGNAL ON ERROR
000003 "ALLOC DA(new.data) LIKE(old.data)"...

000008 "LISTDS ?"...

000011 EXIT
000012
000013 ERROR:
000014 SAY 'The return code from the command on line' SIGL 'is' RC
000015 /* Displays:
000016 The return code from the command on line 5 is 12 */

For more information about the SIGNAL instruction, see z/OS TSO/E REXX
Reference.

Tracing with the Interactive Debug Facility
The interactive debug facility permits a user to interactively control the execution of
an exec. A user can view the tracing of various types of instructions separated by
pauses as the exec runs. During a pause, a user can continue to the next traced
instruction, insert instructions, re-execute the previous instruction, and change or
terminate interactive tracing.

Debugging Execs

Chapter 9. Diagnosing Problems Within an Exec 113

Starting Interactive Tracing
You can start interactive tracing with either the ? option of the TRACE instruction or
with the TSO/E EXECUTIL TS command. When interactive tracing is initiated with
the TRACE instruction, interactive tracing is not carried over into external routines
that are called but is resumed when the routines return to the traced exec. When
interactive trace is initiated by the EXECUTIL TS command, interactive trace
continues in all external routines called unless a routine specifically ends tracing.

? Option of the TRACE Instruction: One way to start interactive tracing is to
include in an exec the TRACE instruction followed by a question mark and a trace
option. For example, TRACE ?I (TRACE ?Intermediates). The question mark must
precede the option with no blanks in between. Interactive tracing then begins for the
exec but not for external routines the exec calls.

The following example includes a TRACE ?R (TRACE ?Results) instruction to
interactively trace the result of each instruction.

Example of Interactive Trace
/********************************** REXX ***************************/
/* This exec receives as arguments the destination and the name */
/* of a data set. It then interactively traces the transmitting */
/* that data set to the destination and the returning of a message */
/* that indicates whether the transmit was successful. */
/***/

TRACE ?R
ARG dest dsname .
"TRANSMIT" dest "DA("dsname")"
IF RC = 0 THEN

SAY 'Transmit successful.'
ELSE

SAY 'Return code from transmit was' RC

If the arguments passed to this exec were "node1.mel" and a sequential data set
named "new.exec", the interactively traced results would be as follows with each
segment separated by a pause.

8 *-* ARG dest dsname .
>>> "NODE1.MEL"
>>> "NEW.EXEC"
>.> ""

+++ Interactive trace. TRACE OFF to end debug, ENTER to continue. +++

9 *-* "TRANSMIT" dest "DA("dsname")"
>>> "TRANSMIT NODE1.MEL DA(NEW.EXEC)"

0 message and 20 data records sent as 24 records to NODE1.MEL
Transmission occurred on 05/20/1989 at 14:40:11.

10 *-* IF RC = 0
>>> "1"

- THEN
11 *-* SAY 'Transmit successful.'

>>> "Transmit successful."
Transmit successful.

Debugging Execs

114 z/OS V1R2.0 TSO/E REXX User’s Guide

EXECUTIL TS Command: Another way to start interactive tracing is to issue the
EXECUTIL TS (trace start) command or cause an attention interrupt and type TS.
The type of interactive tracing begun is equivalent to that of the TRACE ?R
instruction, except that tracing continues through all routines invoked unless it is
specifically ended. For information about ending interactive trace, see “Ending
Interactive Trace” on page 116.

The EXECUTIL TS command can be issued from several environments; it affects
only the current exec and the execs it invokes. Like other TSO/E commands,
EXECUTIL TS can be issued from within an exec, from READY mode, and from an
ISPF panel.

v From Within an Exec

You can issue the EXECUTIL TS command from within an exec.
...

"EXECUTIL TS"...

EXIT

The exec is then interactively traced from the point in the exec at which the
command was issued. Any other execs that the exec invokes are also
interactively traced.

You can also issue EXECUTIL TS from within a CLIST to initiate tracing in execs
that the CLIST invokes.

v From READY Mode

You can issue the command from READY mode.
READY
executil ts

The next exec invoked from READY mode is then interactively traced. If that
exec invokes another exec, the invoked exec is also interactively traced.

v From an ISPF Panel

You can also issue EXECUTIL TS from the ISPF COMMAND option or from the
command line of an ISPF panel.

----------------------------- TSO COMMAND PROCESSOR -------------------------
ENTER TSO COMMAND OR CLIST BELOW:

===> executil ts

---------------------------- ALLOCATE NEW DATA SET ---------------------------
COMMAND ===> tso executil ts

The next exec invoked from ISPF is then interactively traced. If that exec calls
another exec, the called exec is also interactively traced. If you are in split screen
mode in ISPF, an exec run from the opposite screen is not interactively traced
because each side of a split screen is a different environment.

To begin interactive trace after pressing the attention interrupt key, sometimes
labeled PA1, enter TS (trace start) after the message that the attention facility
displays.

Debugging Execs

Chapter 9. Diagnosing Problems Within an Exec 115

ENTER HI TO END, A NULL LINE TO CONTINUE, OR AN IMMEDIATE COMMAND+
ts

The type of tracing is the same as that initiated by issuing the EXECUTIL TS
command.

Options Within Interactive Trace
When you are operating in the interactive debug facility, you have several options
during the pauses that occur between each traced instruction. You can:

v Continue tracing by entering a null line

v Type one or more additional instructions to be processed before the next
instruction is traced

v Enter an equal sign (=) to re-execute the last instruction traced

v End interactive tracing as described in the next topic.

Continuing Interactive Tracing: To continue tracing through an exec, simply
press the Enter key to enter a null line during the pause between each traced
instruction. The next traced instruction then appears on the screen. Repeatedly
pressing the Enter key, therefore, takes you from pause point to pause point until
the exec ends.

Typing Additional Instructions to be Processed: During the pause between
traced instructions, you can enter one or more instructions that are processed
immediately. The instruction can be any type of REXX instruction including a
command or invocation to another exec or CLIST. You can also enter a TRACE
instruction, which alters the type of tracing. After you enter the instruction, you might
need to press the Enter key again to resume tracing.
TRACE L /* Makes the language processor pause at labels only */

The instruction can also change the course of an exec, such as by assigning a
different value to a variable to force the execution of a particular branch in an IF
THEN ELSE instruction. In the following example, RC is set by a previous
command.
IF RC = 0 THEN

DO
instruction1
instruction2

END
ELSE

instructionA

If during normal execution, the command ends with other than a 0 return code, the
ELSE path will be taken. To force taking the IF THEN path during interactive trace,
you can change the value of RC as follows during a pause.
RC = 0

Re-executing the Last Instruction Traced: You can re-execute the last
instruction traced by entering an equal sign (=) with no blanks. The language
processor then re-executes the previously traced instruction with values possibly
modified by instructions, if any were entered during the pause.

Ending Interactive Trace

You can end interactive tracing in one of the following ways:

v Use the TRACE OFF instruction.

Debugging Execs

116 z/OS V1R2.0 TSO/E REXX User’s Guide

v Let the exec run until it ends.

v Use the TRACE ? instruction.

v Issue the EXECUTIL TE command.

TRACE OFF: The TRACE OFF instruction ends tracing as stated in the message
displayed at the beginning of interactive trace.
+++ Interactive trace. TRACE OFF to end debug, ENTER to continue. +++

You can enter the TRACE OFF instruction only during a pause while interactively
tracing an exec.

End the Exec: Interactive tracing automatically ends when the exec that initiated
tracing ends. You can cause the exec to end prematurely by entering the EXIT
instruction during a pause. The EXIT instruction causes the exec and interactive
tracing both to end.

TRACE ?: The question mark prefix before a TRACE option can end interactive
tracing as well as begin it. The question mark reverses the previous setting for
interactive tracing.

While interactively tracing an exec, you can also enter the TRACE ? instruction with
any operand to discontinue the interactive debug facility but continue the type of
tracing specified by the operand.

EXECUTIL TE: The EXECUTIL TE (Trace End) command ends interactive tracing
when issued from within an exec or when entered during a pause while interactively
tracing an exec.

For more information about the EXECUTIL command, see z/OS TSO/E REXX
Reference.

Debugging Execs

Chapter 9. Diagnosing Problems Within an Exec 117

Debugging Execs

118 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 10. Using TSO/E External Functions

TSO/E External Functions . 119
Using the GETMSG Function 120
Using the LISTDSI Function 120
Using the MSG Function . 122
Using the MVSVAR Function 123
Using the OUTTRAP Function 123
Using the PROMPT Function 124
Using the SETLANG Function 125
Using the STORAGE Function. 126
Using the SYSCPUS Function 126
Using the SYSDSN Function 126
Using the SYSVAR Function 127

User Information . 128
Terminal Information . 128
Language Information . 128
Exec Information . 128
System Information . 128
Console Session Information 129

Additional Examples . 130
Function Packages . 133

Search Order for Functions 134

This chapter shows how to use TSO/E external functions and describes function
packages.

TSO/E External Functions

In addition to the built-in functions, TSO/E provides external functions that you can
use to do specific tasks. Some of these functions perform the same services as
control variables in the CLIST language.

The TSO/E external functions are:

v GETMSG - returns in variables a system message issued during an extended
MCS console session. It also returns in variables associated information about
the message. The function call is replaced by a function code that indicates
whether the call was successful.

v LISTDSI - returns in variables the data set attributes of a specified data set. The
function call is replaced by a function code that indicates whether the call was
successful.

v MSG - controls the display of TSO/E messages. The function returns the
previous setting of MSG.

v MVSVAR - uses specific argument values to return information about MVS,
TSO/E, and the current session.

v OUTTRAP - traps lines of TSO/E command output into a specified series of
variables. The function call returns the variable name specified.

v PROMPT - sets the prompt option on or off for TSO/E interactive commands.
The function returns the previous setting of prompt.

v SETLANG - retrieves and optionally changes the language in which REXX
messages are displayed. The function returns the previous language setting.

v STORAGE - retrieves and optionally changes the value in a storage address.

© Copyright IBM Corp. 1988, 2001 119

v SYSCPUS - returns in a stem variable information about all CPUs that are
on-line.

v SYSDSN - returns OK if the specified data set exists; otherwise, it returns an
appropriate error message.

v SYSVAR - uses specific argument values to return information about the user,
terminal, language, exec, system, and console session.

Following are brief explanations about how to use the TSO/E external functions. For
complete information, see z/OS TSO/E REXX Reference.

Using the GETMSG Function
The GETMSG function retrieves a system message issued during an extended
MCS console session. The retrieved message can be either a response to a
command or any other system message, depending on the message type you
specify.

The message text and associated information are stored in variables, which can be
displayed or used within the REXX exec. The function call is replaced by a function
code that indicates whether the call was successful. See z/OS TSO/E REXX
Reference for more information about the syntax, function codes, and variables for
GETMSG. You must have CONSOLE command authority to use the GETMSG
function. Before you issue GETMSG, you must:

v Use the TSO/E CONSPROF command to specify the types of messages that are
not to be displayed at the terminal. The CONSPROF command can be used
before you activate a console session and during a console session if values
need to be changed.

v Use the TSO/E CONSOLE command to activate an extended MCS console
session.

The GETMSG function can be used only in REXX execs that run in the TSO/E
address space.

Using the LISTDSI Function
You can use the LISTDSI (list data set information) function to retrieve detailed
information about a data set’s attributes. The attribute information is stored in
variables, which can be displayed or used within instructions. The function call is
replaced by a function code that indicates whether the call was successful.

The LISTDSI function can be used only in REXX execs that run in the TSO/E
address space.

To retrieve the attribute information, include the data set name within parentheses
after LISTDSI. When you specify a fully-qualified data set name, be sure to enclose
it in two sets of quotation marks as follows; one set to define it as a literal string to
REXX and the other to indicate a fully-qualified data set to TSO/E.
x = LISTDSI("'proj5.rexx.exec'") /* x is set to a function code */

or
x = LISTDSI('proj5.rexx.exec'') /* x is set to a function code */

When you specify a data set name that begins with your prefix (usually your user
ID), you can use one set of quotation marks to define it as a literal string or no
quotation marks. TSO/E adds your prefix to the data set name whether or not it is
enclosed within a set of quotation marks.

TSO/E External Functions

120 z/OS V1R2.0 TSO/E REXX User’s Guide

x = LISTDSI('my.data') /* x is set to a function code */

x = LISTDSI(my.data) /* x is set to a function code */

When you specify a variable that was previously set to a data set name, do not
enclose the variable in quotation marks. Quotation marks would prevent the data
set name from being substituted for the variable name.
variable = 'my.data'
x = LISTDSI(variable)

You cannot use LISTDSI with the filename parameter if the filename is allocated to
a data set

v which exists more than once with the same name on different volumes, and

v which is already in use

because in this case the system may not retrieve information for the data set you
wanted. After LISTDSI executes, the function call is replaced by one of the following
function codes:

Function Code Meaning

0 Normal completion

4 Some data set information is unavailable. All data set information other
than directory information can be considered valid.

16 Severe error occurred. None of the variables containing information
about the data set can be considered valid.

The following variables are set to the attributes of the data set specified.

Variable Contents

SYSDSNAME Data set name

SYSVOLUME Volume serial ID

SYSUNIT Device unit on which volume resides

SYSDSORG Data set organization: PS, PSU, DA, DAU, IS, ISU, PO,
POU, VS

SYSRECFM Record format; three-character combination of the following:
U, F, V, T, B, S, A, M

SYSLRECL Logical record length

SYSBLKSIZE Block size

SYSKEYLEN Key length

SYSALLOC Allocation, in space units

SYSUSED Allocation used, in space units

SYSUSEDPAGES Used space of a partitioned data set extended (PDSE) in 4K
pages.

SYSPRIMARY Primary allocation in space units

SYSSECONDS Secondary allocation in space units

SYSUNITS Space units: CYLINDER, TRACK, BLOCK

SYSEXTENTS Number of extents allocated

SYSCREATE Creation date:
Year/day format, for example: 1985/102

TSO/E External Functions

Chapter 10. Using TSO/E External Functions 121

Variable Contents

SYSREFDATE Last referenced date:
Year/day format, for example: 1985/107
(Specifying DIRECTORY causes the date to be updated.)

SYSEXDATE Expiration date:
Year/day format, for example: 1985/365

SYSPASSWORD Password indication: NONE, READ, WRITE

SYSRACFA RACF indication: NONE, GENERIC, DISCRETE

SYSUPDATED Change indicator: YES, NO

SYSTRKSCYL Tracks per cylinder for the unit identified in the SYSUNIT
variable

SYSBLKSTRK Blocks per track for the unit identified in the SYSUNIT
variable

SYSADIRBLK Directory blocks allocated - returned only for partitioned data
sets when DIRECTORY is specified

SYSUDIRBLK Directory blocks used - returned only for partitioned data
sets when DIRECTORY is specified

SYSMEMBERS Number of members - returned only for partitioned data sets
when DIRECTORY is specified

SYSREASON LISTDSI reason code

SYSMSGLVL1 First-level message if an error occurred

SYSMSGLVL2 Second-level message if an error occurred

SYSDSSMS Information about the type of a data set provided by
DFSMS/MVS.

SYSDATACLASS SMS data class name

SYSSTORCLASS SMS storage class name

SYSMGMTCLASS SMS management class name

Using the MSG Function
The MSG function can control the display of TSO/E messages. When the MSG
function is not used, both error and non-error messages are displayed as an exec
runs. These messages can interfere with output, especially when the exec’s output
is a user interface, such as a panel.

The MSG function can be used only in REXX execs that run in the TSO/E address
space.

To prevent the display of TSO/E messages as an exec runs, use the MSG function
followed by the word "OFF" enclosed within parentheses.
status = MSG('OFF') /* status is set to the previous setting of */

/* MSG and sets the current setting to OFF */

To resume the display of TSO/E messages, substitute the word "ON" for "OFF".

To find out if messages will be displayed, issue the MSG function followed by empty
parentheses.
status = MSG() /* status is set to ON or OFF */

TSO/E External Functions

122 z/OS V1R2.0 TSO/E REXX User’s Guide

Using the MVSVAR Function

The MVSVAR function retrieves information about MVS, TSO/E, and the current
session, such as the symbolic name of the MVS system, or the security label of the
TSO/E session. The information retrieved depends on the argument specified.

To retrieve the information, use the MVSVAR function immediately followed by an
argument value enclosed in parentheses. For example, to find out the APPC/MVS
logical unit (LU) name, use the MVSVAR function with the argument SYSAPPCLU.
appclu = MVSVAR('SYSAPPCLU')

The MVSVAR function is available in any MVS address space. Compare this to
the SYSVAR function which also retrieves system information but can only be used
in REXX execs that run in the TSO/E address space.

Many of the MVSVAR arguments retrieve the same information as do CLIST control
variables.

The following table lists the items of information that are available for retrieval by
MVSVAR.

Argument Value Description

SYSAPPCLU the APPC/MVS logical unit (LU) name

SYSDFP the level of MVS/Data Facility Product (MVS/DFP)

SYSMVS the level of the base control program (BCP) component of
z/OS

SYSNAME the name of the system your REXX exec is running on, as
specified in the SYSNAME statement in SYS1.PARMLIB
member IEASYSxx

SYSSECLAB the security label (SECLABEL) name of the TSO/E session

SYSSMFID identification of the system on which System Management
Facilities (SMF) is active

SYSSMS indicator whether DFSMS/MVS is available to your REXX
exec

SYSCLONE MVS system symbol representing its system name

SYSPLEX the MVS sysplex name as found in the COUPLExx or
LOADxx member of SYS1.PARMLIB

SYMDEF symbolic variables of your MVS system

Using the OUTTRAP Function

The OUTTRAP function puts lines of command output into a series of numbered
variables, each with the same prefix. These variables save the command output
and allow an exec to process the output. Specify the variable name in parentheses
following the function call.
SAY 'The OUTTRAP variable name is' OUTTRAP('var')
/* Displays the variable name in which command output is trapped. */

In this example, the variable var becomes the prefix for the numbered series of
variables. Var1, var2, var3, and so on, receive a line of output each. If you do not
set a limit to the number of output lines, the numbering of variables continues as

TSO/E External Functions

Chapter 10. Using TSO/E External Functions 123

long as there is output. Output from the most recent command is placed after the
previous command’s output. The total number of lines trapped is stored in var0.
x = OUTTRAP('var')
"LISTC"
SAY 'The number of lines trapped is' var0

To limit the number of lines of output saved, you can specify a limit, for example 5,
after the variable name.
x = OUTTRAP('var',5)

This results in up to 5 lines of command output stored in var1, var2, var3, var4,
var5; and var0 contains the number 5. Subsequent lines of command output are not
saved.

The following example traps output from two commands and then displays the
member names from a partitioned data set named MYNEW.EXEC. The stem
variable includes a period, which causes the lines of output to be stored in a series
of compound variables. For more information about compound variables, see “Using
Compound Variables and Stems” on page 85.
x = OUTTRAP('var.')
"LISTC"
SAY 'The number of lines trapped is' var.0 /* could display 205 */
lines = var.0 + 1
"LISTDS mynew.exec MEMBERS"
SAY 'The number of lines trapped is' var.0 /* could display 210 */
DO i = lines TO var.0

SAY var.i /* displays 5 members */
END

To turn trapping off, reissue the OUTTRAP function with the word "OFF".
x = OUTTRAP('OFF') /* turns trapping OFF */

The OUTTRAP function can be used only in REXX execs that run in the TSO/E
address space.

The OUTTRAP function does not trap all lines of command output from all TSO/E
commands. For more information, see z/OS TSO/E REXX Reference.

Using the PROMPT Function

When your profile allows for prompting, the PROMPT function can set the
prompting option on or off for interactive TSO/E commands, or it can return the type
of prompting previously set. When prompting is on, execs can issue TSO/E
commands that prompt the user for missing operands.

The PROMPT function can be used only in REXX execs that run in the TSO/E
address space.

To set the prompting option on, use the PROMPT function followed by the word
"ON" enclosed within parentheses.
x = PROMPT('ON') /* x is set to the previous setting of prompt */

/* and sets the current setting to ON */

To set prompting off, substitute the word "OFF" for "ON".

To find out if prompting is available for TSO/E interactive commands, use the
PROMPT function followed by empty parentheses.

TSO/E External Functions

124 z/OS V1R2.0 TSO/E REXX User’s Guide

x = PROMPT() /* x is set to ON or OFF */

The PROMPT function overrides the NOPROMPT operand of the EXEC command,
but it cannot override a NOPROMPT operand in your TSO/E profile. To display your
profile, issue the PROFILE command. To change a profile from NOPROMPT to
PROMPT, issue:
PROFILE PROMPT

Using the SETLANG Function

You can use the SETLANG function to determine the language in which REXX
messages are currently being displayed and to optionally change the language. If
you do not specify an argument, SETLANG returns a 3-character code that
indicates the language in which REXX messages are currently being displayed.
Table 1 shows the language codes that replace the function call and the
corresponding language for each code.

You can optionally specify one of the language codes on the function call to change
the language in which REXX messages are displayed. In this case, SETLANG sets
the language to the code specified and returns the language code of the previous
language setting. The language codes you can specify on SETLANG depend on the
language features that are installed on your system.

Table 1. Language Codes for SETLANG Function That Replace the Function Call

Language
Code

Language

CHS Simplified Chinese

CHT Traditional Chinese

DAN Danish

DEU German

ENP US English-all uppercase

ENU US English-mixed case (uppercase and lowercase)

ESP Spanish

FRA French

JPN Japanese

KOR Korean

PTB Brazilian Portuguese

To find out the language in which REXX messages are currently being displayed,
issue the SETLANG function followed by empty parentheses:
curlang=SETLANG() /* curlang is set to the 3-character */

/* code of the current language setting. */

To set the language to Japanese for subsequent REXX message displays, issue the
SETLANG function followed by the 3-character code, JPN, enclosed within
parentheses:
oldlang=SETLANG(JPN) /* oldlang is set to the previous */

/* language setting. */
/* The current setting is set to JPN. */

TSO/E External Functions

Chapter 10. Using TSO/E External Functions 125

The SETLANG function can be used in REXX execs that run in any MVS address
space.

Using the STORAGE Function

You can use the STORAGE function to retrieve data from a particular address in
storage. You can also use the STORAGE function to place data into a particular
address in storage.

The STORAGE function can be used in REXX execs that run in any MVS address
space.

Using the SYSCPUS Function

The SYSCPUS function places, in a stem variable, information about those CPUs
that are on-line.

The SYSCPUS function runs in any MVS address space.

Example:

Consider a system with two on-line CPUs. Their serial numbers are FF0000149221
and FF1000149221. Assuming you issue the following sequence of statements
/* REXX */
x = SYSCPUS('cpus.')
SAY '0, if function performed okay: ' x
SAY 'Number of on-line CPUs is ' cpus.0
DO i = 1 TO CPUS.0

SAY 'CPU' i ' has CPU info ' cpus.i
END

you get the following output:
0, if function performed okay: 0
Number of on-line CPUs is 2
CPU 1 has CPU info FF0000149221
CPU 2 has CPU info FF1000149221

/* ↑ ↑ */
/* | 4 digits = model number */
/* 6 digits = CPU ID */

Using the SYSDSN Function
The SYSDSN function determines if a specified data set is available for your use. If
the data set is available for your use, it returns "OK".
available = SYSDSN('myrexx.exec')
/* available could be set to "OK" */

When a data set is not correct as specified or when a data set is not available, the
SYSDSN function returns one of the following messages:

v MEMBER SPECIFIED, BUT DATASET IS NOT PARTITIONED

v MEMBER NOT FOUND

v DATASET NOT FOUND

v ERROR PROCESSING REQUESTED DATASET

v PROTECTED DATASET

v VOLUME NOT ON SYSTEM

v UNAVAILABLE DATASET

TSO/E External Functions

126 z/OS V1R2.0 TSO/E REXX User’s Guide

v INVALID DATASET NAME, data-set-name:

v MISSING DATASET NAME

After a data set is available for use, you may find it useful to get more detailed
information. For example, if you later need to invoke a service that requires a
specific data set organization, then use the LISTDSI function. For a description of
the LISTDSI function, see “Using the LISTDSI Function” on page 120.

When you specify a fully-qualified data set, be sure to use two sets of quotation
marks as follows; one set to define a literal string to REXX and the other set to
indicate a fully-qualified data set to TSO/E.
x = SYSDSN("'proj5.rexx.exec'")

or
x = SYSDSN('proj5.rexx.exec'')

When you specify a data set that is not fully-qualified and begins with your prefix
(usually your user ID), you can use one set of quotation marks or none at all.
TSO/E adds your prefix to the data set name whether or not it is enclosed within a
set of quotation marks.
x = SYSDSN('myrexx.exec')

or
x = SYSDSN(myrexx.exec)

When you specify a variable that was previously set to a data set name, do not
enclose the variable in quotation marks. Quotation marks would prevent the data
set name from being substituted for the variable name.
variable = 'myrexx.exec'
x = SYSDSN(variable)

The following example uses the SYSDSN function together with the LISTDSI
function to test whether a data set exists and whether it is a partitioned data set:
DO FOREVER

SAY 'Enter a Data Set Name'
PARSE UPPER PULL dsname
IF SYSDSN(dsname) ¬= 'OK' THEN ITERATE
FC = LISTDSI(dsname)
IF SYSDSORG ¬= 'PO' THEN ITERATE
SAY 'Okay: ' dsname 'is ' SYSDSORG
LEAVE

END

The SYSDSN function can be used only in REXX execs that run in the TSO/E
address space.

Using the SYSVAR Function

The SYSVAR function retrieves information about MVS, TSO/E, and the current
session, such as levels of software available, your logon procedure, and your user
ID. The information retrieved depends on the argument specified.

To retrieve the information, use the SYSVAR function immediately followed by an
argument value enclosed in parentheses. For example, to find out the name of the
logon procedure of your current session, use the SYSVAR function with the
argument SYSPROC.

TSO/E External Functions

Chapter 10. Using TSO/E External Functions 127

proc = SYSVAR(sysproc)

The SYSVAR function can be used only in REXX execs that run in the TSO/E
address space.

Many of the SYSVAR arguments retrieve the same information as do CLIST control
variables. The following tables divide the argument values into categories pertaining
to user, terminal, language, exec, system, and console session information.

User Information

Argument Value Description

SYSPREF Prefix as defined in user profile

SYSPROC SYSPROC returns the current procedure name (either the
LOGON procedure name, the Started Task procedure name,
or ’INIT’ for a batch job). For more information, see z/OS
TSO/E REXX Reference.

SYSUID User ID of current session

Terminal Information

Argument Value Description

SYSLTERM Number of lines available on screen

SYSWTERM Width of screen

Language Information

Argument Value Description

SYSPLANG Primary language for translated messages

SYSSLANG Secondary language for translated messages

SYSDTERM Whether DBCS is supported for this terminal

SYSKTERM Whether Katakana is supported for this terminal

Exec Information

Argument Value Description

SYSENV Whether exec is running in foreground or background

SYSICMD Name by which exec was implicitly invoked

SYSISPF Whether ISPF is available for exec

SYSNEST Whether exec was invoked from another exec or CLIST.
Invocation could be implicit or explicit.

SYSPCMD Name of most recently executed command

SYSSCMD Name of most recently executed subcommand

System Information

Argument Value Description

SYSCPU Number of CPU seconds used during session in the form:
seconds.hundredths of seconds

TSO/E External Functions

128 z/OS V1R2.0 TSO/E REXX User’s Guide

Argument Value Description

SYSHSM Level of Data Facility Hierarchical Storage Manager
(DFHSM) installed

SYSJES Name and level of JES installed

SYSLRACF Level of RACF installed

SYSRACF Whether RACF is available

SYSNODE Network node name of the installation’s JES

SYSSRV Number of system resource manager (SRM) service units
used during session

SYSTERMID Terminal ID of the terminal where the REXX exec was
started

SYSTSOE Level of TSO/E installed in the form:
version release modification_number

Console Session Information

Argument Value Description

SOLDISP Whether solicited messages (command responses) should
be displayed at terminal

UNSDISP Whether unsolicited messages should be displayed at
terminal

SOLNUM The number of solicited messages (command responses) to
be held in message table

UNSNUM The number of unsolicited messages to be held in message
table

MFTIME Whether time stamp should be displayed with messages

MFOSNM Whether originating system name should be displayed with
messages

MFJOB Whether originating job name or job ID should be displayed
with messages

MFSNMJBX Whether system name and job name should be excluded
from display of retrieved messages

TSO/E External Functions

Chapter 10. Using TSO/E External Functions 129

Additional Examples

Example 1 - Using the LISTDSI and SYSDSN Functions
/***************************** REXX ********************************/
/* This exec reallocates a data set with more space. It receives */
/* as arguments the names of a base data set and a new data set. */
/* It uses the SYSDSN function to ensure the base data set exists, */
/* uses the LISTDSI function to set variables with attributes of */
/* the base data set, doubles the primary space variable and then */
/* uses the variables as input to the ALLOCATE command to */
/* reallocate a new data set. */
/***/

PARSE ARG baseds newds /* Receive the data set names */
/* with quotes, if any. */

IF SYSDSN(baseds) = 'OK' THEN
DO /* If the base data set exists, */

x = LISTDSI(baseds) /* use the LISTDSI function. */
IF x = 0 THEN /* If the function code is 0, */

CALL alc /* call an internal subroutine.*/
ELSE

DO /* Else, display the system */
SAY sysmsglvl1 /* messages and codes for LISTDS*/
SAY sysmsglvl2
SAY 'Function code from LISTDSI is' x
SAY 'Sysreason code from LISTDSI is' sysreason

END
END

ELSE
SAY 'Data set' baseds 'not found.'

EXIT

alc:
newprimary = 2 * sysprimary /* Compute new primary space. */
"ALLOC DA("newds") NEW SPACE("newprimary sysseconds") LIKE("baseds")"

/* Allocate the new data set. */
IF RC = 0 THEN /* If return code from allocate is 0 */

SAY 'Data set' newds 'was allocated.'
ELSE

SAY 'Data set' newds 'was not allocated. Return code was' RC

Additional Examples

130 z/OS V1R2.0 TSO/E REXX User’s Guide

Example 2 Part 1 - Using the OUTTRAP Function
/**************************** REXX *********************************/
/* This exec adds a data set to the front of the data sets in the */
/* SYSPROC concatenation. It first asks for the name of the data */
/* set to add, then it finds all data sets currently allocated to */
/* SYSPROC, adds the new data set to the beginning and re-allocates*/
/* the concatenation to SYSPROC. */
/***/
SAY 'Enter the fully-qualified data set name you want added'
SAY 'to the beginning of the SYSPROC concatenation. Do NOT'
SAY 'place quotation marks around the data set name.'

PULL addname .

x = OUTTRAP('name.')/*Begin trapping lines of output from commands*/
/* Output goes to variables beginning with 'name.'*/

"LISTA ST" /* List the status of your currently allocations */
found = 'NO' /* Set the found flag to no */
i = 1 /* Set the index variable to 1 */

/***/
/* Loop through the lines of trapped command output to find lines */
/* 9 characters long or longer. Check those lines for the word */
/* SYSPROC until it is found or until all lines have been checked. */
/* If SYSPROC is found, the index is decreased one and the name of */
/* the first data set concatenated to SYSPROC is stored in variable*/
/* "concat". */
/***/
DO WHILE (found = 'NO') & (i <= name.0)

IF LENGTH(name.i) >= 9 THEN
IF SUBSTR(name.i,3,7) = 'SYSPROC' THEN

DO
found = 'YES'
i = i - 1
concat = "'"name.i"'"

END
ELSE

i = i + 1
ELSE

i = i + 1
END

Additional Examples

Chapter 10. Using TSO/E External Functions 131

Example 2 Part 2 - Using the OUTTRAP Function
/***/
/* When SYSPROC is found, loop through data sets until another file*/
/* name is encountered or until all lines are processed. Append */
/* data set names to the one in variable "concat". */
/***/
IF found = 'YES' THEN

DO WHILE (i + 3) <= name.0
i = i + 3

IF SUBSTR(name.i,1,3) = ' ' THEN
DO

i = i - 1
concat = concat",'"name.i"'"

END
ELSE

i = name.0

END
ELSE NOP

/* Allocate the new concatenation to SYSPROC */
"ALLOC F(sysproc) DA('"addname"',"concat") SHR REUSE"

Additional Examples

132 z/OS V1R2.0 TSO/E REXX User’s Guide

Example 3 - Using the OUTTRAP Function
/******************************* REXX ******************************/
/* This exec lists datasets allocated to a ddname that is passed */
/* as an argument when the exec is invoked. It uses the OUTTRAP */
/* function to trap output from the LISTA STATUS command. It then */
/* loops through the output looking for a match to the input ddname*/
/* When match is found, the exec will SAY the name of all datasets */
/* allocated to that ddname. */
/* */
/* The LISTA STATUS command produces output of the form */
/* */
/* DATASET-NAME-ALLOCATED-TO-DDNAME */
/* DDNAME DISP */
/* */
/* In this output when the area for DDNAME is blank, then the data */
/* set is allocated to the previous DDNAME that was not blank. This*/
/* condition is one of the tests in the program below. */
/* */
/***/

ARG ddname .

x = OUTTRAP('ddlist.') /* start output trapping into DDLIST*/
"LISTA STATUS" /* issue the LISTA command */
x = OUTTRAP('OFF') /* turn off output trapping */

done = 'NO' /* initialize loop control variable */

DO i = 1 TO ddlist.0 WHILE done = 'NO'

IF (words(ddlist.i) = 2) & ddname = word(ddlist.i,1) THEN
DO /* if there is a DDNAME & it matches*/
firstdataset = i - 1 /* back up to first dataset name */
SAY ddlist.firstdataset /* Give the first dataset allocated */
DO j = i+1 TO ddlist.0 BY 2 WHILE done = 'NO'

next = j + 1
IF (next <= ddlist.0) & (words(ddlist.next)\=1) THEN

done = 'YES' /* if we reach the end of the command
output, or the next DDNAME, we are
done */

ELSE
SAY ddlist.j /* Give the next dataset allocated */

END
END

END
If done = 'NO' then /* If the DDNAME is not allocated */

say "The DDNAME" ddname "is not allocated."
/* Then say so */

EXIT 0

Function Packages
A function package is a group of external routines (functions and subroutines) that
are accessed more quickly than external routines written in interpreted REXX.
Routines in a function package must be written in a programming language that
produces object code, which can be link-edited into a load module. The routine
must also support the system interface for function packages. Some programming
languages that meet these qualifications are assembler, COBOL, and PL/I.

There are three types of function packages.

Additional Examples

Chapter 10. Using TSO/E External Functions 133

v User packages — User-written external functions that are available to an
individual. These functions are searched before other types of function packages
and are often written to replace the other types of function packages.

v Local packages — Application or system support functions that are generally
available to a specific group of users. Local packages are searched after user
packages.

v System packages — Functions written for system-wide use, such as the TSO/E
external functions. System packages are searched after user and local packages.

Function packages written by a user or an installation must be pre-loaded at logon
time. The default name for the user packages is IRXFUSER, and the default name
for the local package is IRXFLOC. Other function packages can be named in a
parameter block set up by a system programmer.

For more information about function packages, see z/OS TSO/E REXX Reference.

Search Order for Functions
When the language processor encounters a function call, if defaults have not been
changed, it goes through the following search order:

v Internal functions — Labels in the exec that issued the function call are searched
first (unless the label is in quotation marks in the function call).

v Built-in functions — The built-in functions are next in the search order.

v Function packages — User, local, and system function packages, in that order,
are searched.

v Load libraries — Functions stored in a load library are next in the search order.

v External function — An external function and its caller must either be members in
the same PDS or members of PDSs allocated to a system library, such as
SYSEXEC or SYSPROC.

Function Packages

134 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 11. Storing Information in the Data Stack

What is a Data Stack? . 135
Manipulating the Data Stack 136

Adding Elements to the Data Stack 136
Removing Elements from the Stack 137
Determining the Number of Elements on the Stack 137

Exercise - Using the Data Stack 138
Processing of the Data Stack 139
Using the Data Stack . 140

Passing Information Between a Routine and the Main Exec 140
Passing Information to Interactive Commands 142
Issuing Subcommands of TSO/E Commands 142

Creating a Buffer on the Data Stack. 142
Creating a Buffer with the MAKEBUF Command 143

Removing Elements from a Stack with a Buffer 143
Dropping a Buffer with the DROPBUF Command 144
Finding the Number of Buffers with the QBUF Command 144
Finding the Number of Elements In a Buffer 145

Exercises - Creating a Buffer on the Data Stack 145
Protecting Elements in the Data Stack 147

Creating a New Data Stack with the NEWSTACK Command 148
Deleting a Private Stack with the DELSTACK Command 149
Finding the Number of Stacks 149

Additional Examples . 150

This chapter describes how to use the REXX data stack to store information. Also,
this chapter describes how to add a buffer to a data stack and how to create a
private data stack in TSO/E.

What is a Data Stack?

REXX in TSO/E uses an expandable data structure called a data stack to store
information. The data stack combines characteristics of a conventional stack and
queue.

Stacks and queues are similar types of data structures used to temporarily hold
data items (elements) until needed. When elements are needed, they are removed
from the top of the data structure. The basic difference between a stack and a
queue is where elements are added (as shown in the following figure). Elements
are added to the top of a stack and to the bottom of a queue.

Using a stack, the last element added to the stack (elem6) is the first removed.
Because elements are placed on the top of a stack and removed from the top, the
newest elements on a stack are the ones processed first. The technique is called
LIFO (last in first out).

Using a queue, the first element added to the queue (elem1) is the first removed.
Because elements are placed on the bottom of a queue and removed from the top,
the oldest elements on a queue are the ones processed first. The technique is
called FIFO (first in first out).

© Copyright IBM Corp. 1988, 2001 135

As shown in the following figure, the data stack that REXX uses combines the
techniques used in adding elements to stacks and queues. Elements can be placed
on the top or the bottom of a data stack. Removal of elements from the data stack,
however, occurs from the top of the stack only.

Manipulating the Data Stack
There are several REXX instructions that manipulate the data stack. Two
instructions add elements to the data stack and another removes elements from the
data stack.

Adding Elements to the Data Stack

You can store information on the data stack with two instructions, PUSH and
QUEUE.

PUSH - puts one item of data on the top of the data stack. There is virtually no
limit to the length of the data item.
elem1 = 'String 1 for the data stack'
PUSH elem1
QUEUE - puts one item of data on the bottom of the data stack. Again, there is
virtually no limit to the length of the data item.
elemA = 'String A for the data stack'
QUEUE elemA

If the two preceding sets of instructions were in an exec, the data stack would
appear as follows:

What is a Data Stack?

136 z/OS V1R2.0 TSO/E REXX User’s Guide

Note: Some people find it less confusing when adding elements in a particular
order to the data stack, to consistently use the same instruction, either
PUSH or QUEUE, but not both.

Removing Elements from the Stack

To remove information from the data stack, use the PULL and PARSE PULL
instructions, the same instructions used previously in this book to extract
information from the terminal. (When the data stack is empty, PULL removes
information from the terminal.)

PULL and PARSE PULL - remove one element from the top of the data stack.
PULL stackitem

Using the examples from “Adding Elements to the Data Stack” on page 136, the
variable stackitem then contains the value of elem1 with the characters
translated to uppercase.
SAY stackitem /* displays STRING 1 FOR THE DATA STACK */

When you add PARSE to the preceding instruction, the value is not translated to
uppercase.
PARSE PULL stackitem
SAY stackitem /* displays String 1 for the data stack */

After either of the preceding examples, the data stack appears as follows:

Determining the Number of Elements on the Stack

The QUEUED built-in function returns the total number of elements on a data stack.
For example, to find out how many elements are on the data stack, you can use the
QUEUED function with no arguments.
SAY QUEUED() /* displays a decimal number */

To remove all elements from a data stack and display them, you can use the
QUEUED function as follows:

Manipulating the Data Stack

Chapter 11. Storing Information in the Data Stack 137

number = QUEUED()
DO number

PULL element
SAY element

END

Exercise - Using the Data Stack
Write an exec that puts the letters T, S, O, E on the data stack in such a way that
they spell “TSOE” when removed. Use the QUEUED built-in function and the PULL
and SAY instructions to help remove the letters and display them. To put the letters
on the stack, you can use the REXX instructions PUSH, QUEUE, or a combination
of the two.

ANSWER

Possible Solution 1
/******************************** REXX *****************************/
/* This exec uses the PUSH instruction to put the letters T,S,O,E,*/
/* on the data stack in reverse order. */
/***/

PUSH 'E' /**************************/
PUSH 'O' /* Data in stack is: */
PUSH 'S' /* (fourth push) T */
PUSH 'T' /* (third push) S */

/* (second push) O */
number = QUEUED() /* (first push) E */
DO number /**************************/

PULL stackitem
SAY stackitem

END

Possible Solution 2
/******************************** REXX *****************************/
/* This exec uses the QUEUE instruction to put the letters T,S,O,E,*/
/* on the data stack in that order. */
/***/

QUEUE 'T' /***************************/
QUEUE 'S' /* Data in stack is: */
QUEUE 'O' /* (first queue) T */
QUEUE 'E' /* (second queue) S */

/* (third queue) O */
DO QUEUED() /* (fourth queue) E */

PULL stackitem /***************************/
SAY stackitem

END

Manipulating the Data Stack

138 z/OS V1R2.0 TSO/E REXX User’s Guide

Possible Solution 3
/******************************** REXX *****************************/
/* This exec uses the PUSH and QUEUE instructions to put T,S,O,E */
/* on the data stack. */
/***/

PUSH 'S' /***************************/
QUEUE 'O' /* Data in stack is: */
PUSH 'T' /* (second push) T */
QUEUE 'E' /* (first push) S */

/* (first queue) O */
DO QUEUED() /* (second queue) E */

PULL stackitem /***************************/
SAY stackitem

END

Processing of the Data Stack
You can think of a data stack as a temporary holding place for information. Every
TSO/E REXX user has a separate data stack available for each REXX environment
that is initialized. REXX environments are initialized at the READY prompt, when
you enter ISPF, and again when you split the screen in ISPF.

When an exec issues a PULL instruction, and when it issues an interactive TSO/E
command, the data stack is searched first for information and if that is empty,
information is retrieved from the terminal.

Some types of input that can be stored on the data stack are:

v Data for the PULL and PARSE PULL instructions

When an exec issues a PULL instruction, the language processor first goes to
the data stack and pulls off the top element. If the data stack is empty, the
language processor goes to the terminal for input. When the data stack is empty,
the PULL instruction can be used with the SAY instruction to interact with a user
at the terminal.

Manipulating the Data Stack

Chapter 11. Storing Information in the Data Stack 139

Note: To prevent the language processor from searching the data stack, you can
issue the PARSE EXTERNAL instruction instead of PULL. PARSE
EXTERNAL gets input directly from the terminal and bypasses the data
stack.

v Responses to commands

A TSO/E interactive command (such as LISTDS, TRANSMIT, and ALLOCATE)
can prompt a terminal user for information. Similarly, user responses can be put
on the data stack by an exec for the command’s use.

v Commands to be issued after the exec ends

When an exec ends, all elements remaining on the data stack are processed
before the READY mode message is displayed. These remaining elements are
treated as TSO/E commands to be issued. If the element is not a TSO/E
command (or an implicit exec or CLIST to be run), you see the message:

COMMAND command_name NOT FOUND

v Information the EXECIO command reads from and writes to data sets when
performing I/O.

For information about the EXECIO command and how it uses the data stack, see
“Using EXECIO to Process Information to and from Data Sets” on page 154.

Using the Data Stack
The data stack has some unique characteristics, such as:

v It can contain a virtually unlimited number of data items of virtually unlimited size.

v It can contain commands to be issued after the exec ends.

v It can pass information between REXX execs and other types of programs in a
TSO/E or non-TSO/E address space.

Because of the data stack’s unique characteristics, you can use the data stack
specifically to:

v Store a large number of data items for a single exec’s use.

v Pass a large number of arguments or an unknown number of arguments
between a routine (subroutine or function) and the main exec.

v Pass responses to an interactive command that can run after the exec ends.

v Store data items from an input data set, which were read by the EXECIO
command. For information about the EXECIO command, see “Using EXECIO to
Process Information to and from Data Sets” on page 154.

v Share information between an exec and any program running in MVS. For more
information about running REXX execs in MVS, see “Chapter 13. Using REXX in
TSO/E and Other MVS Address Spaces” on page 171.

v Execute subcommands of a TSO/E command issued from a REXX exec.

Passing Information Between a Routine and the Main Exec
You can use the data stack to pass information from an exec to an external routine
without using arguments. The exec pushes or queues the information on the stack
and the routine pulls it off and uses it as in the following example.

Processing of the Data Stack

140 z/OS V1R2.0 TSO/E REXX User’s Guide

Example of Using the Data Stack to Pass Information
/***************************** REXX ********************************/
/* This exec helps an inexperienced user allocate a new PDS. It */
/* prompts the user for the data set name and approximate size, */
/* and queues that information on the data stack. Then it calls */
/* an external subroutine called newdata. */
/***/

message = 'A data set name for a partitioned data set has three',
'qualifiers separated by periods. The first qualifier is usually',
'a user ID. The second qualifier is any name. The third qualifier',
'is the type of data set, such as "exec". Generally the user ID',
'is assumed, so you might specify a data set name as MYREXX.EXEC.',
'A new data set name cannot be the same as an existing data set',
'name. Please type a name for the new data set or type QUIT to end.'

SAY 'What is the new data set name? If you are unsure about'
SAY 'naming data sets, type ?. To end, type QUIT.'

PULL name
DO WHILE (name = '?') | (name = 'QUIT')

IF name = '?' THEN
DO

SAY message
PULL name

END
ELSE

EXIT
END

SAY 'Approximately how many members will the data set have:'
SAY '6 12 18 24 30 36 42 48 54 60?'

PULL number
QUEUE name
QUEUE number
CALL newdata

IF RESULT > 0 THEN
SAY 'An error prevented' name 'from being allocated.'

ELSE
SAY 'Your data set' name 'has been allocated.'

Example of the External Subroutine NEWDATA
/***************************** REXX ********************************/
/* This external subroutine removes the data set name and the */
/* number of members from the stack and then issues the ALLOCATE */
/* command. */
/***/

PULL name
PULL number

"ALLOCATE DATASET("name") NEW SPACE(50,20) DIR("number%6") DSORG(PO)",
"RECFM(V,B) LRECL(255) BLKSIZE(5100)"

RETURN RC /* The return code from the TSO/E command sets the */
/* REXX special variable, RC, and is returned to the */
/* calling exec. A 0 return code means no errors. */

Using the Data Stack

Chapter 11. Storing Information in the Data Stack 141

Passing Information to Interactive Commands
When your TSO/E profile allows prompting, most TSO/E commands prompt you for
missing operands. For example, the TRANSMIT command prompts you for a node
and user ID when you do not include the destination with the command.

An exec can put responses to command prompts on the data stack. Because of the
information search order, the data stack supplies the necessary information instead
of a user at the terminal.

For example, the following exec puts the TRANSMIT command and its operands on
the data stack. When the exec completes, the TSO/E data stack service continues
to get input from the data stack. Thus the TRANSMIT command is issued after the
exec ends.

Issuing Subcommands of TSO/E Commands
To execute subcommands of a TSO/E command in a REXX exec, you must place
the subcommands onto the data stack before you issue the TSO/E command.

Example of Passing Information from the Stack to a Command
/****************************** REXX *******************************/
/* This exec prompts a user for a node and gets the user ID from a */
/* built in function. It then calls an external subroutine to */
/* check if the user's job is finished. */
/* The TRANSMIT command and its operands, including a message with */
/* the status of the job, are queued on the data stack to run after*/
/* the exec terminates. */
/***/

SAY 'What is your node?'
PULL node
id = USERID()
dest = node'.'id

CALL jobcheck userid /* Go to a subroutine that checks job status */

IF RESULT = 'done' THEN
note = 'Your job is finished.'

ELSE
note = 'Your job is not finished.'

QUEUE 'transmit'
QUEUE dest 'line' /* Specify that the message be in line mode */
QUEUE note
QUEUE '' /* Insert a null to indicate line mode is over */

Creating a Buffer on the Data Stack
When an exec calls a routine (subroutine or function) and both the exec and the
routine use the data stack, the stack becomes a way to share information. However,
execs and routines that do not purposely share information from the data stack,
might unintentionally do so and end in error. To help prevent this, TSO/E provides
the MAKEBUF command that creates a buffer, which you can think of as an
extension to the stack, and the DROPBUF command that deletes the buffer and all
elements within it.

Using the Data Stack

142 z/OS V1R2.0 TSO/E REXX User’s Guide

Although the buffer does not prevent the PULL instruction from accessing elements
placed on the stack before the buffer was created, it is a way for an exec to create
a temporary extension to the stack. The buffer allows an exec to:

1. Use the QUEUE instruction to insert elements in FIFO order on a stack that
already contains elements.

2. Have temporary storage that it can delete easily with the DROPBUF command.

An exec can create multiple buffers before dropping them. Every time MAKEBUF
creates a new buffer, the REXX special variable RC is set with the number of the
buffer created. Thus if an exec issues three MAKEBUF commands, RC is set to 3
after the third MAKEBUF command.

Note: To protect elements on the stack, an exec can create a new stack with the
NEWSTACK command. For information about the NEWSTACK command,
see “Protecting Elements in the Data Stack” on page 147.

Creating a Buffer with the MAKEBUF Command

To create a buffer on the data stack before adding more elements to the stack, use
the TSO/E REXX MAKEBUF command. All elements added to the data stack after
the MAKEBUF command are placed in the buffer. Below the buffer are elements
placed on the stack before the MAKEBUF command.

Instructions that could be used to create the illustrated buffer are as follows:
'MAKEBUF'
PUSH 'newX'
QUEUE 'newY'

Removing Elements from a Stack with a Buffer
The buffer created by MAKEBUF does not prevent an exec from accessing
elements below it. After an exec removes the elements added after the MAKEBUF
command, then it removes elements added before the MAKEBUF command was
issued.

Using the previous illustration, when the exec issues three PULL instructions, the
following elements are removed from the data stack.
newX
newY
old1

Creating a Buffer on the Data Stack

Chapter 11. Storing Information in the Data Stack 143

To prevent a routine from accessing elements below the buffer, you can use the
QUEUED built-in function as follows:
olditems = QUEUED()
'MAKEBUF'
PUSH ...
QUEUE ...
DO WHILE QUEUED() > olditems /* total items > old number of items */

PULL
...

END
'DROPBUF'

Dropping a Buffer with the DROPBUF Command

When an exec has no more need for a buffer on the data stack, it can use the
TSO/E REXX DROPBUF command to remove the buffer (and its contents). The
DROPBUF command removes the most recently created buffer.

To drop a specific buffer on the data stack and all buffers created after it, issue the
DROPBUF command with the number of the buffer. The first MAKEBUF creates
buffer 1, the second creates buffer 2, and so on. For example, if an exec issued
three MAKEBUF commands that created three buffers, when you issue DROPBUF
2, the second and third buffers and all elements within them are removed.

To remove all elements from the entire data stack including elements placed on the
data stack before buffers were added, issue DROPBUF 0. DROPBUF 0 creates an
empty data stack and should be used with caution.

Note: When an element is removed below a buffer, the buffer disappears. Thus
when elements are unintentionally removed below a buffer, the
corresponding DROPBUF command might remove the incorrect buffer and
its elements. To prevent an exec from removing elements below a buffer, use
the QUEUED built-in function or use the NEWSTACK command as
described in “Protecting Elements in the Data Stack” on page 147.

Finding the Number of Buffers with the QBUF Command

To find out how many buffers were created with the MAKEBUF command, use the
TSO/E REXX QBUF command. QBUF returns in the REXX special variable RC, the
number of buffers created.
'MAKEBUF'...

'MAKEBUF'...

'QBUF'
SAY 'The number of buffers is' RC /* RC = 2 */

Creating a Buffer on the Data Stack

144 z/OS V1R2.0 TSO/E REXX User’s Guide

QBUF returns the total number of buffers created, not just the ones created by a
single exec. Thus if an exec issued two MAKEBUF commands and called a routine
that issued two more, when the routine issues a QBUF command, RC returns the
total number of buffers created, which is four.

Finding the Number of Elements In a Buffer

To find out how many elements are in the most recently created buffer, use the
TSO/E REXX QELEM command. QELEM returns in the REXX special variable RC,
the number of elements in the most recently created buffer.
PUSH A
'MAKEBUF'
PUSH B
PUSH C
'QELEM'
SAY 'The number of elements is' RC /* RC = 2 */

QELEM does not return the number of elements on a data stack with no buffers
created by the MAKEBUF command. If QBUF returns 0, no matter how many
elements are on the stack, QELEM also returns 0.

For more information about these stack commands, see z/OS TSO/E REXX
Reference.

Exercises - Creating a Buffer on the Data Stack
1. What are the results of the following instructions?

a. What is item?
QUEUE A
QUEUE B
'MAKEBUF'
QUEUE C
PULL item

b. What is element?
PUSH 'a'
PUSH 'b'
'MAKEBUF'
PUSH 'c'
PUSH 'd'
'DROPBUF'
PARSE PULL element

c. What is stackitem?
QUEUE a
'MAKEBUF'
QUEUE b
'MAKEBUF'
QUEUE c
'DROPBUF'
PULL stackitem

d. What is RC?
PUSH A
'MAKEBUF'
PUSH B
CALL sub1
'QBUF'
SAY RC
EXIT

Creating a Buffer on the Data Stack

Chapter 11. Storing Information in the Data Stack 145

sub1:
'MAKEBUF'
RETURN

e. What is RC?
QUEUE A
'MAKEBUF'
PUSH B
PUSH C
'MAKEBUF'
PUSH D
'QELEM'
SAY RC

f. What is RC?
QUEUE A
QUEUE B
QUEUE C
'QELEM'
SAY RC

2. Given the data stack below and the instructions that created it, what are the
results of the subsequent instructions that follow?

'MAKEBUF'
QUEUE 'prompt'
'MAKEBUF'
QUEUE 'data'
QUEUE 'info'
QUEUE 'item'
'MAKEBUF'

a. What is returned to the function?
SAY QUEUED()

b. What is RC?
'QBUF'
SAY RC

c. What is RC?
'QELEM'
SAY RC

d. What are both RCs and the result of the QUEUED() function?

Creating a Buffer on the Data Stack

146 z/OS V1R2.0 TSO/E REXX User’s Guide

'DROPBUF 2'
'QBUF'
SAY RC
'QELEM'
SAY RC
SAY QUEUED()

ANSWERS

1.

a. C

b. b

c. B (b was changed to uppercase because it was queued without quotes and
pulled without PARSE.)

d. 2

e. 1

f. 0

2.

a. 4

b. 3

c. 0

d. 1, 1, 1

Protecting Elements in the Data Stack
In certain environments, particularly MVS, where multiple tasks run at the same
time, it is often important for an exec to isolate stack elements from other execs.

Similarly, an exec in TSO/E might want to protect stack elements from a routine
(subroutine or function) that it calls. For example, if an exec puts elements on the
data stack for its own use and then calls a subroutine that issues an interactive
TSO/E command, such as ALLOCATE, the command goes to the data stack first for
input to the command. Because the stack input is incorrect for the command
prompt, the exec ends in error.

Example of an Interactive Command Error
EXEC1

PUSH prompt1
PUSH prompt2
CALL sub1
7invellip.
EXIT

SUB1:

'MAKEBUF'
'ALLOCATE'...

Even though the subroutine in the preceding example starts with the MAKEBUF
command, the stack elements will be used because MAKEBUF does not protect
elements previously placed on the stack.

Creating a Buffer on the Data Stack

Chapter 11. Storing Information in the Data Stack 147

To protect elements on the data stack, you can create a new data stack with the
TSO/E REXX NEWSTACK command. Read the next section to see how the exec in
the previous example can safely issue an interactive TSO/E command.

To delete the new data stack and all elements in it, use the TSO/E REXX
DELSTACK command. Execs can create multiple stacks before deleting them.

Note: Before an exec returns to its caller, the called exec should issue a
DELSTACK command for each NEWSTACK command it issued, unless the
called exec intends for the caller to also use the new data stack.

Creating a New Data Stack with the NEWSTACK Command

The TSO/E REXX NEWSTACK command creates a private data stack that is
completely isolated from the original data stack. The elements on the original data
stack cannot be accessed by an exec or the routines that it calls until a DELSTACK
command is issued. When there are no more elements in the new data stack,
information is taken from the terminal.

Note: When you issue the NEWSTACK, it is your responsibility to issue a
corresponding DELSTACK command.

All elements added to the data stack after the NEWSTACK command are placed in
the new data stack. The original stack contains the elements placed on the stack
before the NEWSTACK command.

Instructions that could be used to create the illustrated new stack are as follows:
PUSH 'oldA'
PUSH 'old1'
'NEWSTACK'
QUEUE 'newY'
PUSH 'newX'

In the Example of an Interactive Command Error, the MAKEBUF command did not
protect the elements in the stack. If you substitute the NEWSTACK command for
the MAKEBUF command, the elements become inaccessible.

Protecting Elements in the Data Stack

148 z/OS V1R2.0 TSO/E REXX User’s Guide

Example of using NEWSTACK with an Interactive Command
EXEC1

PUSH prompt1
PUSH prompt2
CALL sub1...

EXIT

SUB1:

'NEWSTACK'
'ALLOCATE'...

Note: To have an interactive command prompt the user for input from the terminal,
run an exec explicitly with the EXEC command and specify prompt or include
the PROMPT(on) function within the exec. For more information, see
“Causing Interactive Commands to Prompt the User” on page 100.

Deleting a Private Stack with the DELSTACK Command

When an exec wants to delete the new stack and remove all elements placed on
the new stack, it can issue the TSO/E REXX DELSTACK command. The
DELSTACK command removes the most recently created data stack. If no stack
was previously created with the NEWSTACK command, DELSTACK removes all
the elements from the original stack.

Finding the Number of Stacks

To find out how many stacks exist, use the TSO/E REXX QSTACK command.
QSTACK returns in the REXX special variable RC, the total number of stacks
including the original data stack.
'NEWSTACK'...

'NEWSTACK'...

'QSTACK'
SAY 'The number of stacks is' RC /* RC contains 3 */

QSTACK returns the total number of stacks, not just the ones created for a single
exec. Thus if an exec issued two NEWSTACK commands and called a routine that
issued two more, when the routine issues a QSTACK command, RC returns the
total number of stacks, which is five.

For more information about these commands, see z/OS TSO/E REXX Reference.

Protecting Elements in the Data Stack

Chapter 11. Storing Information in the Data Stack 149

Additional Examples

Data Stack Example 1
/********************************* REXX ****************************/
/* This exec tests several of the stack functions to see how they */
/* work together. It uses the NEWSTACK and DELSTACK commands, puts */
/* an element on the stack that exceeds 255 characters, uses the */
/* LENGTH built-in function to see how long the element is, uses */
/* QUEUED built-in function to see how many items are on the stack,*/
/* and then issues more PULL instructions than are elements on the */
/* stack. */
/***/
element = 'Attention please! This is a test.'
PUSH element

'NEWSTACK' /* Create a new stack and protect elements previously */
/* placed on the stack */

longitem = 'SAA is a definition -- a set of software interfaces,',
'conventions, and protocols that provide a framework for designing',
'and developing applications with cross-system consistency.',
'The Systems Application Architecture defines a common programming',
'interface you can use to develop applications, and defines common',
'communications support that you can use to connect those',
'applications.'

SAY 'The length of the element is' LENGTH(longitem) 'characters.'
/* The length of the element is 379 characters. */

QUEUE longitem

PULL anyitem
SAY anyitem /* Displays the longitem quote in uppercase */

SAY 'There are' QUEUED() 'number of elements on the stack.'
/* The QUEUED function returns 0 */

PULL emptyitem /* Pull an element from an empty stack. Results in */
/* a blank screen and PULL waits for terminal */
/* input. To end the wait, press ENTER. */

'DELSTACK' /* Remove the new stack and return to original stack.*/

PULL anyitem
SAY anyitem /* Displays ATTENTION PLEASE! THIS IS A TEST. */

Protecting Elements in the Data Stack

150 z/OS V1R2.0 TSO/E REXX User’s Guide

Data Stack Example 2
/******************************** REXX *****************************/
/* This exec runs another exec implicitly and then sends a message */
/* when the called exec finishes. It receives as an argument the */
/* name of a PDS member to run. It activates the system procedure */
/* file SYSEXEC, allocates the data set to SYSEXEC, pushes some */
/* commands on the data stack and then implicitly executes the exec*/
/***/

ARG dsn

"EXECUTIL SEARCHDD(yes)" /* Establish the system library SYSEXEC*/

PUSH "SEND 'Sequence over' USER(*)" /* Put a message on the stack*/
PUSH "TIME" /* Push the time command */
PUSH "FREE F(SYSEXEC)" /* Push command to free SYSEXEC*/

PARSE VAR dsn name '(' member /* Separate the data set name from */
/* the member name. */

"ALLOC DA("name") F(SYSEXEC) SHR REUSE"

execname = STRIP(member,t,')') /* Remove the last parentheses from*/
/* the member name. */

PUSH '%'execname /* Put the member name on the stack*/

/***/
/* The output from this exec depends on the exec that it runs. */
/* Output can be as follows: */
/* */
/*TIME-01:23:56 PM.CPU-00:00:23 SERVICE-297798 SESSION-04:15:20 MAY*/
/*12,1989 */
/* Sequence over USERID */
/* READY */
/***/

Protecting Elements in the Data Stack

Chapter 11. Storing Information in the Data Stack 151

Protecting Elements in the Data Stack

152 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 12. Processing Data and Input/Output Processing

Types of Processing . 153
Dynamic Modification of a Single REXX Expression 153

Using the INTERPRET Instruction 153
Using EXECIO to Process Information to and from Data Sets 154

When to Use the EXECIO Command 154
Using the EXECIO Command 154

Reading Information from a Data Set 155
Writing Information to a Data Set 157

Return Codes from EXECIO 159
When to Use the EXECIO Command 159

Copying Information From One Data Set to Another 159
Copying Information to and from a List of Compound Variables. 161
Updating Information in a Data Set 162
Additional Examples . 163

This chapter describes dynamic modification of a single REXX expression and I/O
processing of data sets.

Types of Processing
The word "processing" is used here to mean the performance of operations and
calculations on data. Normal processing of instructions in REXX occurs every time
the language processor evaluates an expression. This chapter describes two
special types of REXX processing:

v Dynamic modification of a single REXX expression

The INTERPRET instruction evaluates an expression and then treats it as a
REXX instruction.

v Processing information to and from data sets

The TSO/E REXX EXECIO command in an exec reads information from a data
set to the data stack (or a list of variables) and writes information from the data
stack (or list of variables) back to a data set.

Dynamic Modification of a Single REXX Expression
Typically REXX expressions are evaluated and the result replaces the expression.
For example, the arithmetic expression "5 + 5" is evaluated as "10".
answer = 5 + 5 /* answer gets the value 10 */

If the arithmetic expression is in quotation marks, the expression is evaluated as a
string.
answer = '5 + 5' /* answer gets the value 5 + 5 */

To both evaluate and execute an expression, you can use the INTERPRET
instruction.

Using the INTERPRET Instruction

The INTERPRET instruction not only evaluates an expression, but also treats it as
an instruction after it is evaluated. Thus if a combination of the previous examples
were used with the INTERPRET instruction, answer becomes "10".

© Copyright IBM Corp. 1988, 2001 153

answer = 5 + 5
INTERPRET 'say' answer '"= 5 + 5"' /* displays 10 = 5 + 5 */

You can also group a number of instructions within a string, assign the string to a
variable, and use the INTERPRET instruction to execute the instructions assigned
to the variable.
action = 'DO 3; SAY "Hello!"; END'
INTERPRET action /* results in:

Hello!
Hello!
Hello! */

Because the INTERPRET instruction causes dynamic modification, use it very
carefully. For more information about the INTERPRET instruction, see z/OS TSO/E
REXX Reference.

Using EXECIO to Process Information to and from Data Sets
An exec uses the EXECIO command to perform the input and output (I/O) of
information to and from a data set. The information can be stored in the data stack
for serialized processing or in a list of variables for random processing.

When to Use the EXECIO Command
The various operands and combination of operands of the EXECIO command
permit you to do many types of I/O. For example, you can use the EXECIO
command to:
v Read information from a data set
v Write information to a data set
v Open a data set without reading or writing any records
v Empty a data set
v Copy information from one data set to another
v Copy information to and from a list of compound variables
v Add information to the end of a sequential data set
v Update information in a data set one line at a time

Using the EXECIO Command

EXECIO reads information from a data set with either the DISKR or DISKRU
operands. Using these operands, you can also open a data set without reading its
records. Refer to Reading Information from a Data Set for more information about
the DISKR and DISKRU operands. EXECIO writes information to a data set with
the DISKW operand. Using this operand, you can also open a data set without
writing records or empty an existing data set. Refer to “Writing Information to a Data
Set” on page 157 for more information on the DISKW operand.

Before an exec can use the EXECIO command to read from or write to a data set,
the data set must meet the following requirements. An I/O data set must be:

v Either sequential or a single member of a PDS.

v Previously allocated with the appropriate attributes for its specific purpose. Some
examples of the various uses of EXECIO and the type of data set allocation
appropriate for these uses are shown in and after “Copying Information From
One Data Set to Another” on page 159.

If you use EXECIO to read information from a data set and to the data stack, the
information can be stored in FIFO or LIFO order on the data stack. FIFO is the

Dynamic Modification of a Single REXX Expression

154 z/OS V1R2.0 TSO/E REXX User’s Guide

default. If you use EXECIO to read information from a data set and to a list of
variables, the first data set line is stored in variable1, the second data set line is
stored in variable2, and so on. Data read into a list of variables can be accessed
randomly. After the information is in the data stack or in a list of variables, the exec
can test it, copy it to another data set, or update it before returning it to the original
data set.

Reading Information from a Data Set

To read information from a data set to the data stack or to a list of variables, use
EXECIO with either the DISKR or DISKRU operand. A typical EXECIO command to
read all lines from the data set allocated to the ddname MYINDD, might appear as:
"EXECIO * DISKR myindd (FINIS"

The rest of this topic describes the types of information you can specify with
EXECIO DISKR and EXECIO DISKRU. For further information, see z/OS TSO/E
REXX Reference.

How to specify the number of lines to read: To open a data set without reading
any records, put a zero immediately following the EXECIO command and specify
the OPEN operand.
"EXECIO 0 DISKR mydd (OPEN"

To read a specific number of lines, put the number immediately following the
EXECIO command.
"EXECIO 25 ..."

To read the entire data set, put an asterisk immediately following the EXECIO
command.
"EXECIO * ..."

When all the information is on the data stack, either queue a null line to indicate the
end of the information, or if there are null lines throughout the data, assign the
built-in QUEUED() function to a variable to indicate the number of items on the
stack.

How to read the data set: Depending on the purpose you have for the input data
set, use either the DISKR or DISKRU operand.

v DISKR - Reading Only

To initiate I/O from a data set that you want to read only, use the DISKR operand
with the FINIS option. The FINIS option closes the data set after the information
is read. Closing the data set allows other execs to access the data set and the
ddname.
"EXECIO * DISKR ... (FINIS"

Note: Do not use the FINIS option if you want the next EXECIO statement in
your exec to continue reading at the line immediately following the last line
read.

v DISKRU - Reading and Updating

To initiate I/O to a data set that you want to both read and update, use the
DISKRU operand without the FINIS option. Because you can update only the last
line that was read, you usually read and update a data set one line at a time, or
go immediately to the single line that needs updating. The data set remains open
while you update the line and return the line with a corresponding EXECIO
DISKW command.

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 155

"EXECIO 1 DISKRU ..."

More about using DISKRU appears in “Updating Information in a Data Set” on
page 162.

How to access the data set: An I/O data set must first be allocated to a ddname.
The ddname need not exist previously. In fact, it might be better to allocate it to a
new ddname, such as MYINDD, in order not to interfere with previously established
allocations. You can allocate before the exec runs, or you can allocate from within
the exec with the ALLOCATE command as shown in the following example.
"ALLOC DA(io.data) F(myindd) SHR REUSE"
"EXECIO * DISKR myindd (FINIS"

Option of specifying a starting line number: If you want to start reading at other
than the beginning of the data set, specify the line number at which to begin. For
example, to read all lines to the data stack starting at line 100, add the following
line number operand.
"EXECIO * DISKR myindd 100 (FINIS"

To read just 5 lines to the data stack starting at line 100, write the following:
"EXECIO 5 DISKR myindd 100 (FINIS"

To open a data set at line 100 without reading lines to the data stack, write the
following:
"EXECIO 0 DISKR myindd 100 (OPEN"

Options for DISKR and DISKRU: Options you can use are:

v OPEN - To open a data set. When you specify OPEN with EXECIO 0, it opens
the data set and positions the file position pointer before the first record.
"EXECIO 0 DISKR myindd (OPEN"

Note: If the data set is already open, no operation is performed for OPEN.

v FINIS - To close the data set after reading it. Closing the data set allows other
execs to access it and its ddname. It also resets the current positional pointer to
the beginning of the data set.

v STEM - To read the information to either a list of compound variables that can be
indexed, or a list of variables appended with numbers. Specifying STEM with a
variable name ensures that a list of variables (not the data stack) receives the
information.
"EXECIO * DISKR myindd (STEM newvar."

In this example, the list of compound variables has the stem newvar. and lines of
information or records from the data set are placed in variables newvar.1,
newvar.2, newvar.3, and so forth. The number of items in the list of compound
variables is placed in the special variable newvar.0.

Thus if 10 lines of information are read into the newvar variables, newvar.0
contains the number 10, indicating that 10 records have been read. Furthermore,
newvar.1 contains record 1, newvar.2 contains record 2, and so forth up to
newvar.10 which contains record 10. All stem variables beyond newvar.10 (for
example, variables newvar.11 and newvar.12) are residual and contain the
value(s) held prior to entering the EXECIO command.

Using EXECIO to Process Information ...

156 z/OS V1R2.0 TSO/E REXX User’s Guide

To avoid confusion as to whether a residual stem variable value is meaningful,
you may want to clear the entire stem variable prior to entering the EXECIO
command. To clear all stem variables, you can either:

– Use the DROP instruction as follows, which sets all stem variables to their
uninitialized state.
DROP newvar.

– Set all stem variables to nulls as follows:
newvar. = '

See EXECIO Example 6 under the heading Figure 7 on page 168, which shows
the usage of the EXECIO command with stem variables.

v SKIP - To skip over a specified number of lines in a data set without placing them
on the data stack or into variables.
"EXECIO 24 DISKR myindd (SKIP"

v LIFO - To read the information in LIFO order onto the stack. In other words, use
the PUSH instruction to place the information on the stack.

v FIFO - To read the information in FIFO order onto the stack. In other words, use
the QUEUE instruction to place the information on the stack. If you do not specify
either LIFO or FIFO, FIFO is assumed.

Writing Information to a Data Set

To write information to a data set from the data stack or from a list of variables, use
EXECIO with the DISKW operand. A typical EXECIO command to write all lines to
the data set allocated to the ddname, MYOUTDD, might appear as:
"EXECIO * DISKW myoutdd (FINIS"

The rest of this topic describes the types of information you can specify with
EXECIO DISKW. For further information, see z/OS TSO/E REXX Reference.

How to specify the number of lines to write: To open a data set without writing
records to it, put a zero immediately following the EXECIO command and specify
the OPEN operand.
"EXECIO 0 DISKW myoutdd ... (OPEN"

Notes:

1. To empty a data set, issue this command to open the data set and position the
file position pointer before the first record. You then issue EXECIO 0 DISKW
myoutdd ... (FINIS to write an end-of-file mark and close the data set. This
deletes all records in data set MYOUTDD. You can also empty a data set by
issuing EXECIO with both the OPEN and FINIS operands.

2. When you empty a data set, the file to which the data set is allocated should
not have a disposition of MOD. If the file has a disposition of MOD, opening and
then closing the data set will not empty the data set.

To write a specific number of lines, put the number immediately following the
EXECIO command.
"EXECIO 25 DISKW ..."

To write the entire data stack or until a null line is found, put an asterisk
immediately following the EXECIO command.
"EXECIO * DISKW ..."

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 157

When you specify *, the EXECIO command will continue to pull items off the data
stack until it finds a null line. If the stack becomes empty before a null line is found,
EXECIO will prompt the terminal for input until the user enters a null line. Thus
when you do not want to have terminal I/O, queue a null line at the bottom of the
stack to indicate the end of the information.
QUEUE '

If there are null lines (lines of length 0) throughout the data and the data stack is
not shared, you can assign the built-in QUEUED() function to a variable to indicate
the number of items on the stack.
n = QUEUED()
"EXECIO" n "DISKW outdd (FINIS"

How to access the data set: An I/O data set must first be allocated to a ddname.
The ddname does not need to exist previously. In fact, it might be better to allocate
to a new ddname, such as MYOUTDD, in order not to interfere with previously
established allocations. You can allocate from within the exec with the ALLOCATE
command as shown in the following example, or you can allocate before the exec
runs.
"ALLOC DA(out.data) F(myoutdd) OLD REUSE"
"EXECIO * DISKW myoutdd ..."

Options for DISKW: Options you can use are:

v OPEN - To open a data set. When you specify OPEN with EXECIO 0, it opens
the data set and positions the file position pointer before the first record.
"EXECIO 0 DISKW myoutdd (OPEN"

Note: If the data set is already open, no operation is performed for OPEN.

v FINIS - To close the data set after writing to it. Closing the data set allows other
execs to access it and its ddname. When you specify FINIS, it forces the
completion of all I/O operations by physically writing the contents of any partially
filled I/O buffers to the data set.
"EXECIO * DISKW myoutdd (FINIS"

v STEM - To write the information from compound variables or a list of variables
beginning with the name specified after the STEM keyword. The variables,
instead of the data stack, holds the information to be written.
"EXECIO * DISKW myoutdd (STEM newvar."

In this example, the variables would have the stem newvar. and lines of
information from the compound variables would go to the data set. Each variable
is labeled newvar.1, newvar.2, newvar.3, and so forth.

The variable newvar.0 is not used when writing from compound variables. When
* is specified with a stem, the EXECIO command stops writing information to the
data set when it finds a null value or an uninitialized compound variable. In this
case, if the list contained 10 compound variables, the EXECIO command stops
at newvar.11.

The EXECIO command can also specify the number of lines to write from a list
of compound variables.
"EXECIO 5 DISKW myoutdd (STEM newvar."

In this example, the EXECIO command writes 5 items from the newvar variables
including uninitialized compound variables, if any.

Using EXECIO to Process Information ...

158 z/OS V1R2.0 TSO/E REXX User’s Guide

See EXECIO Example 6 under the heading Figure 7 on page 168, which shows the
usage of the EXECIO command with stem variables.

Return Codes from EXECIO
After an EXECIO command runs, it sets the REXX special variable "RC" to a return
code. Valid return codes from EXECIO are:

Return Code Meaning

0 Normal completion of requested operation.

1 Data was truncated during DISKW operation.

2 End-of-file reached before the specified number of lines were read
during a DISKR or DISKRU operation. (This return code does not occur
when * is specified for number of lines because the remainder of the file
is always read.)

4 An empty data set was found within a concatenation of data sets during
a DISKR or DISKRU operation. The file was not successfully opened
and no data was returned.

20 Severe error. EXECIO completed unsuccessfully and a message is
issued.

When to Use the EXECIO Command
The various operands and combination of operands of the EXECIO command
permit you to do many types of I/O. For example, you can use the EXECIO
command to:

v Copy information from one data set to another
– Copy an entire data set
– Copy parts of a data set
– Add information to the end of a sequential data set

v Copy information to and from a list of compound variables

v Update information in a data set

Copying Information From One Data Set to Another

Before you can copy one data set to another, the data sets must be either
sequential data sets or members of a PDS, and they must be pre-allocated.
Following are examples of ways to allocate and copy data sets using the EXECIO
command.

Copying an entire data set: To copy an entire existing sequential data set named
'USERID.MY.INPUT' into a new sequential data set named 'USERID.NEW.INPUT',
and to use the ddnames DATAIN and DATAOUT respectively, you could use the
following instructions. (Remember that when the first qualifier of a data set name is
your prefix (usually your user ID), you can omit the first qualifier.)

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 159

Copying an Entire Data Set
"ALLOC DA(my.input) F(datain) SHR REUSE"
"ALLOC DA(new.input) F(dataout) LIKE(my.input) NEW"
"NEWSTACK" /* Create a new data stack for input only */
"EXECIO * DISKR datain (FINIS"
QUEUE '' /* Add a null line to indicate the end of the information */
"EXECIO * DISKW dataout (FINIS"
"DELSTACK" /* Delete the new data stack */
"FREE F(datain dataout)"

If the null line was not queued at the end of the information on the stack, the
EXECIO command would go to the terminal to get more information and would not
end until the user entered a null line.

Another way to indicate the end of the information when copying an entire data set,
is with the QUEUED() built-in function. If the data set is likely to include null lines
throughout the data, using the QUEUED() function is preferable.
n = QUEUED() /* Assign the number of stack items to "n" */
"EXECIO" n "DISKW dataout (FINIS"

Also, when copying an undetermined number of lines to and from the data stack, it
is a good idea to use the NEWSTACK and DELSTACK commands to prevent
removing items previously placed on the stack. For more information about these
commands, see “Protecting Elements in the Data Stack” on page 147.

Copying a specified number of lines to a new data set: To copy 10 lines of
data from an existing sequential data set named 'DEPT5.STANDARD.HEADING' to
a new member in an existing PDS named 'USERID.OFFICE.MEMO(JAN15)', and
use the ddnames INDD and OUTDD respectively, you could use the following
instructions. (Remember that a data set name that does not begin with your prefix
must be enclosed in single quotes.)

Copying 10 Lines of Data to a New Data Set
"ALLOC DA('dept5.standard.heading') F(indd) SHR REUSE"
"ALLOC DA(office.memo(jan15)) F(outdd) SHR REUSE"
"EXECIO 10 DISKR indd (FINIS"
"EXECIO 10 DISKW outdd (FINIS"

To copy the same 10 lines of data to a list of compound variables with the stem
"data.", substitute the following EXECIO commands.
"EXECIO 10 DISKR indd (FINIS STEM DATA."
"EXECIO 10 DISKW outdd (FINIS STEM DATA."

Note: When copying information to more than one member of a PDS, only one
member of the PDS should be open at a time.

Adding 5 lines to the end of an existing sequential data set: To add 5 lines
from an existing data set member named 'USERID.WEEKLY.INPUT(MAR28)' to the
end of an existing sequential data set named 'USERID.YEARLY.OUTPUT', and use
the ddnames MYINDD and MYOUTDD respectively, you could write the following
instructions. Note the "MOD" attribute on the second allocation, which appends the
5 lines at the end of the data set rather than on top of existing data.

Using EXECIO to Process Information ...

160 z/OS V1R2.0 TSO/E REXX User’s Guide

Appending 5 Lines of Data to an Existing Data Set
"ALLOC DA(weekly.input(mar28)) F(myindd) SHR REUSE"
"ALLOC DA(yearly.output) F(myoutdd) MOD"
"EXECIO 5 DISKR myindd (FINIS"
"EXECIO 5 DISKW myoutdd (FINIS"

Note: Do not use the MOD attribute when allocating a member of a PDS to which
you want to append information. You can use MOD only when appending
information to a sequential data set. To append information to a member of a
PDS, rewrite the member with the additional records added.

Copying Information to and from a List of Compound Variables

When copying information from a data set, you can store the information in the data
stack, which is the default, or you can store the information in a list of compound
variables. Similarly, when copying information back to a data set, you can remove
information from the data stack, which is the default, or you can remove the
information from a list of compound variables.

Copying Information from a Data Set to a List of Compound Variables: To
copy an entire data set into compound variables with the stem newvar., and then
display the list, write the following instructions.

Copying an Entire Data Set into Compound Variables
"ALLOC DA(old.data) F(indd) SHR REUSE"
"EXECIO * DISKR indd (STEM newvar."
DO i = 1 to newvar.0

SAY newvar.i
END

When you want to copy a varying number of lines to compound variables, you can
use a variable within the EXECIO command as long as the variable is not within
quotation marks. For example, the variable lines can represent the number of lines
indicated when the exec is run.

Copying a Varying Number of Lines into Compound Variables
ARG lines
"ALLOC DA(old.data) F(indd) SHR REUSE"
"EXECIO" lines "DISKR indd (STEM newvar."

Copying Information from Compound Variables to a Data Set: To copy 10
compound variables with the stem newvar., regardless of how many items are in
the list, write the following instructions.

Note: An uninitialized compound variable will default to the value of its name. For
example, if newvar.9 and newvar.10 do not contain values, the data set will
receive the values NEWVAR.9 and NEWVAR.10.

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 161

Copying from Compound Variables
"ALLOC DA(new.data) F(outdd) LIKE(old.data) NEW"
"EXECIO 10 DISKW outdd (STEM NEWVAR."

Updating Information in a Data Set

You can update a single line of a data set with the EXECIO command, or you can
update multiple lines. Use the DISKRU form of the EXECIO command to read
information that you may subsequently update.

Note: The line written must be the same length as the line read. When a changed
line is longer than the original line, information that extends beyond the
original number of bytes is truncated and EXECIO sends a return code of 1.
If lines must be made longer, write the data to a new data set. When a
changed line is shorter than the original line, it is padded with blanks to
attain the original line length.

Updating a single line: When updating a single line in a data set, it is more
efficient to locate the line in advance and specify the update to it rather than read
all the lines in the data set to the stack, locate and change the line, and then write
all the lines back.

For example, you have a data set named 'DEPT5.EMPLOYEE.LIST' that contains a
list of employee names, user IDs, and phone extensions.
Adams, Joe JADAMS 5532
Crandall, Amy AMY 5421
Devon, David DAVIDD 5512
Garrison, Donna DONNAG 5514
Leone, Mary LEONE1 5530
Sebastian, Isaac ISAAC 5488

To change a phone extension to 5500 on a particular line, such as Amy Crandall’s,
specify the line number, in this case, 2, and write the following instructions. Notice
the "OLD" attribute on the allocation. The "OLD" attribute guarantees that no one
else can use the data set while you are updating it.

Updating a Specific Line in a Data Set
"ALLOC DA('dept5.employee.list') F(updatedd) OLD"
"EXECIO 1 DISKRU updatedd 2 (LIFO"
PULL line
PUSH 'Crandall, Amy AMY 5500'
"EXECIO 1 DISKW updatedd (FINIS"
"FREE F(updatedd)"

Updating multiple lines: To update multiple lines, you can issue more than one
EXECIO command to the same data set. For example, to update Mary Leone’s
user ID in addition to Amy Crandall’s phone extension, write the following
instructions.

Using EXECIO to Process Information ...

162 z/OS V1R2.0 TSO/E REXX User’s Guide

Updating Multiple Specific Lines in a Data Set
"ALLOC DA('dept5.employee.list') F(updatedd) OLD"
"EXECIO 1 DISKRU updatedd 2 (LIFO"
PULL line
PUSH 'Crandall, Amy AMY 5500'
"EXECIO 1 DISKW updatedd"
"EXECIO 1 DISKRU updatedd 5 (LIFO"
PULL line
PUSH 'Leone, Mary MARYL 5530'
"EXECIO 1 DISKW updatedd (FINIS"
"FREE F(updatedd)"

When you issue multiple EXECIO commands to the same data set before closing it
and do not specify a line number, the most current EXECIO command begins
reading where the previous one left off. Thus to scan a data set one line at a time
and allow a user at a terminal to update each line, you might write the following
exec.

Example of Scanning Each Line for Update
/***************************** REXX ********************************/
/* This exec scans a data set whose name and size are specified by */
/* a user. The user is given the option of changing each line as */
/* it appears. If there is no change to the line, the user presses*/
/* Enter key to indicate that there is no change. If there is a */
/* change to the line, the user types the entire line with the */
/* change and the new line is returned to the data set. */
/***/

PARSE ARG name numlines /* Get data set name and size from user */

"ALLOC DA("name") F(updatedd) OLD"
eof = 'NO' /* Initialize end-of-file flag */

DO i = 1 to numlines WHILE eof = 'NO'
"EXECIO 1 DISKRU updatedd" /* Queue the next line on the stack */
IF RC = 2 THEN /* Return code indicates end-of-file */

eof = 'YES'
ELSE

DO
PARSE PULL line
SAY 'Please make changes to the following line.'
SAY 'If you have no changes, press ENTER.'
SAY line
PARSE PULL newline
IF newline = '' THEN NOP
ELSE

DO
PUSH newline
"EXECIO 1 DISKW updatedd"

END
END

END

Additional Examples

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 163

EXECIO Example 1
/***************************** REXX ********************************/
/* This exec reads from the data set allocated to INDD to find the */
/* first occurrence of the string "Jones". Upper and lowercase */
/* distinctions are ignored. */
/***/
done = 'no'
lineno = 0

DO WHILE done = 'no'
"EXECIO 1 DISKR indd"

IF RC = 0 THEN /* Record was read */
DO

PULL record
lineno = lineno + 1 /* Count the record */
IF INDEX(record,'JONES') \= 0 THEN

DO
SAY 'Found in record' lineno
done = 'yes'
SAY 'Record = ' record

END
ELSE NOP

END
ELSE

done = 'yes'
END

EXIT 0

Figure 1. EXECIO Example 1

EXECIO Example 2
/***************************** REXX ********************************/
/* This exec copies records from data set 'my.input' to the end of */
/* data set 'my.output'. Neither data set has been allocated to a */
/* ddname. It assumes that the input data set has no null lines. */
/***/
"ALLOC DA('my.input') F(indd) SHR REUSE"
"ALLOC DA('my.output') F(outdd) MOD REUSE"

SAY 'Copying ...'

"EXECIO * DISKR indd (FINIS"
QUEUE '' /* Insert a null line at the end to indicate end of file */
"EXECIO * DISKW outdd (FINIS"

SAY 'Copy complete.'
"FREE F(indd outdd)"

EXIT 0

Figure 2. EXECIO Example 2

Using EXECIO to Process Information ...

164 z/OS V1R2.0 TSO/E REXX User’s Guide

EXECIO Example 3
/**************************** REXX *********************************/
/* This exec reads five records from the data set allocated to */
/* MYINDD starting with the third record. It strips trailing blanks*/
/* from the records, and then writes any record that is longer than*/
/* 20 characters. The file is not closed when the exec is finished.*/
/***/
"EXECIO 5 DISKR myindd 3"

DO i = 1 to 5
PARSE PULL line
stripline = STRIP(line,t)
len = LENGTH(stripline)

IF len > 20 THEN
SAY 'Line' stripline 'is long.'

ELSE NOP
END

/* The file is still open for processing */

EXIT 0

Figure 3. EXECIO Example 3

EXECIO Example 4
/**************************** REXX *********************************/
/* This exec reads first 100 records (or until EOF) of the data */
/* set allocated to INVNTORY. Records are placed on data stack */
/* in LIFO order. If fewer than 100 records are read, a message is */
/* issued. */
/***/
eofflag = 2 /* Return code to indicate end of file */

"EXECIO 100 DISKR invntory (LIFO"
return_code = RC

IF return_code = eofflag THEN
SAY 'Premature end of file.'

ELSE
SAY '100 Records read.'

EXIT return_code

Figure 4. EXECIO Example 4

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 165

EXECIO Example 5
/**************************** REXX *********************************/
/* This exec illustrates the use of "EXECIO 0 ..." to open, empty, */
/* or close a file. It reads records from file indd, allocated */
/* to 'sams.input.dataset', and writes selected records to file */
/* outdd, allocated to 'sams.output.dataset'. In this example, the */
/* data set 'smas.input.dataset' contains variable-length records */
/* (RECFM = VB). */
/***/
"FREE FI(outdd)"
"FREE FI(indd)"
"ALLOC FI(outdd) DA('sams.output.dataset') OLD REUSE"
"ALLOC FI(indd) DA('sams.input.dataset') SHR REUSE"
eofflag = 2 /* Return code to indicate end-of-file */
return_code = 0 /* Initialize return code */
in_ctr = 0 /* Initialize # of lines read */
out_ctr = 0 /* Initialize # of lines written */

/***/
/* Open the indd file, but do not read any records yet. All */
/* records will be read and processed within the loop body. */
/***/

"EXECIO 0 DISKR indd (OPEN" /* Open indd */

/***/
/* Now read all lines from indd, starting at line 1, and copy */
/* selected lines to outdd. */
/***/

DO WHILE (return_code ¬ = eofflag) /* Loop while not end-of-file */
'EXECIO 1 DISKR indd' /* Read 1 line to the data stack */
return_code = rc /* Save execio rc */
IF return_code = 0 THEN /* Get a line ok? */
DO /* Yes */

in_ctr = in_ctr + 1 /* Increment input line ctr */
PARSE PULL line.1 /* Pull line just read from stack*/
IF LENGTH(line.1) > 10 then /* If line linger than 10 chars */
DO

"EXECIO 1 DISKW outdd (STEM line." /* Write it to outdd */
out_ctr = out_ctr + 1 /* Increment output line ctr */

END
END

END "EXECIO 0 DISKR indd (FINIS" /* Close the input file, indd */

IF out_ctr > 0 THEN /* Were any lines written to outdd?*/
DO /* Yes. So outdd is now open */

Figure 5. EXECIO Example 5

Using EXECIO to Process Information ...

166 z/OS V1R2.0 TSO/E REXX User’s Guide

EXECIO Example 5 (continued)

/**/
/* Since the outdd file is already open at this point, the */
/* following "EXECIO 0 DISKW ..." command will close the file, */
/* but will not empty it of the lines that have already been */
/* written. The data set allocated to outdd will contain out_ctr*/
/* lines. */
/**/

"EXECIO 0 DISKW outdd (FINIS" /* Closes the open file, outdd */
SAY 'File outdd now contains ' out_ctr' lines.'

END
ELSE /* Else no new lines have been */

/* written to file outdd */
DO /* Erase any old records from the file*/

/**/
/* Since the outdd file is still closed at this point, the */
/* following "EXECIO 0 DISKW ..." command will open the file, */
/* write 0 records, and then close it. This will effectively */
/* empty the data set allocated to outdd. Any old records that */
/* were in this data set when this exec started will now be */
/* deleted. */
/**/

"EXECIO 0 DISKW outdd (OPEN FINIS" /*Empty the outdd file */
SAY 'File outdd is now empty.'
END

"FREE FI(indd)"
"FREE FI(outdd)"
EXIT

Figure 6. EXECIO Example 5 (continued)

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 167

EXECIO Example 6
/***************************** REXX ********************************/
/* This exec uses EXECIO to successively append the records from */
/* 'sample1.data' and then from 'sample2.data' to the end of the */
/* data set 'all.sample.data'. It illustrates the effect of */
/* residual data in STEM variables. Data set 'sample1.data' */
/* contains 20 records. Data set 'sample2.data' contains 10 */
/* records. */
/***/

"ALLOC FI(myindd1) DA('sample1.data') SHR REUSE" /* input file 1 */
"ALLOC FI(myindd2) DA('sample2.data') SHR REUSE" /* input file 2 */

"ALLOC FI(myoutdd) DA('all.sample.data') MOD REUSE" /* output append
file */

/***/
/* Read all records from 'sample1.data' and append them to the */
/* end of 'all.sample.data'. */
/***/

exec_RC = 0 /* Initialize exec return code */

"EXECIO * DISKR myindd1 (STEM newvar. FINIS" /* Read all records */

IF rc = 0 THEN /* If read was successful */
DO
/***/
/* At this point, newvar.0 should be 20, indicating 20 records */
/* have been read. Stem variables newvar.1, newvar.2, ... through*/
/* newvar.20 will contain the 20 records that were read. */
/***/

SAY "---"
SAY newvar.0 "records have been read from 'sample1.data': "
SAY
DO i = 1 TO newvar.0 /* Loop through all records */

SAY newvar.i /* Display the ith record */
END

"EXECIO" newvar.0 "DISKW myoutdd (STEM newvar." /* Write exactly
the number of records read */

Figure 7. EXECIO Example 6

Using EXECIO to Process Information ...

168 z/OS V1R2.0 TSO/E REXX User’s Guide

:

EXECIO Example 6 (continued)
IF rc = 0 THEN /* If write was successful */

DO
SAY
SAY newvar.0 "records were written to 'all.sample.data'"

END
ELSE

DO
exec_RC = RC /* Save exec return code */
SAY
SAY "Error during 1st EXECIO ... DISKW, return code is " RC
SAY

END
END

ELSE
DO

exec_RC = RC /* Save exec return code */
SAY
SAY "Error during 1st EXECIO ... DISKR, return code is " RC
SAY

END

IF exec_RC = 0 THEN /* If no errors so far... continue */
DO
/***/
/* At this time, the stem variables newvar.0 through newvar.20 */
/* will contain residual data from the previous EXECIO. We */
/* issue the "DROP newvar." instruction to clear these residual*/
/* values from the stem. */
/***/
DROP newvar. /* Set all stem variables to their

uninitialized state */
/***/
/* Read all records from 'sample2.data' and append them to the */
/* end of 'all.sample.data'. */
/***/
"EXECIO * DISKR myindd2 (STEM newvar. FINIS" /*Read all records*/
IF rc = 0 THEN /* If read was successful */
DO
/***/
/* At this point, newvar.0 should be 10, indicating 10 */
/* records have been read. Stem variables newvar.1, newvar.2,*/
/* ... through newvar.10 will contain the 10 records. If we */
/* had not cleared the stem newvar. with the previous DROP */
/* instruction, variables newvar.11 through newvar.20 would */
/* still contain records 11 through 20 from the first data */
/* set. However, we would know that these values were not */
/* read by the last EXECIO DISKR since the current newvar.0 */
/* variable indicates that only 10 records were read by */
/* that last EXECIO. */
/***/

Figure 8. EXECIO Example 6 (continued)

Using EXECIO to Process Information ...

Chapter 12. Processing Data and Input/Output Processing 169

EXECIO Example 6 (continued)
SAY
SAY
SAY "---"
SAY newvar.0 "records have been read from 'sample2.data': "
SAY
DO i = 1 TO newvar.0 /* Loop through all records */

SAY newvar.i /* Display the ith record */
END

"EXECIO" newvar.0 "DISKW myoutdd (STEM newvar." /* Write
exactly the number of records read */

IF rc = 0 THEN /* If write was successful */
DO

SAY
SAY newvar.0 "records were written to 'all.sample.data'"

END
ELSE

DO
exec_RC = RC /* Save exec return code */
SAY
SAY "Error during 2nd EXECIO ...DISKW, return code is " RC
SAY

END
END

ELSE
DO

exec_RC = RC /* Save exec return code */
SAY
SAY "Error during 2nd EXECIO ... DISKR, return code is " RC
SAY

END
END

"EXECIO 0 DISKW myoutdd (FINIS" /* Close output file */

"FREE FI(myindd1)"
"FREE FI(myindd2)"
"FREE FI(myoutdd)"
EXIT 0

Figure 9. EXECIO Example 6 (continued)

Using EXECIO to Process Information ...

170 z/OS V1R2.0 TSO/E REXX User’s Guide

Chapter 13. Using REXX in TSO/E and Other MVS Address
Spaces

Services Available to REXX Execs 171
Running Execs in a TSO/E Address Space 173

Running an Exec in the Foreground. 173
Things to Consider When Allocating to a System File (SYSPROC or

SYSEXEC) . 174
Allocating to SYSEXEC 174
Allocating to SYSPROC 174
Running an Exec from a CLIST 175

Running an Exec in the Background 176
Running Execs in a Non-TSO/E Address Space 177

Using an Exec Processing Routine to Invoke an Exec from a Program 177
Using IRXJCL to Run an Exec in MVS Batch 178
Using the Data Stack in TSO/E Background and MVS Batch 180

Summary of TSO/E Background and MVS Batch 180
CAPABILITIES . 180
REQUIREMENTS . 181

Defining Language Processor Environments 181
What is a Language Processor Environment? 181
Customizing a Language Processor Environment 182

This chapter describes how to use REXX in TSO/E and in non-TSO/E address
spaces in MVS. It also briefly describes the concept of a language processor
environment.

Services Available to REXX Execs
This book, until now, has described writing and running REXX execs in the TSO/E
address space. Besides TSO/E, execs can run in other address spaces within MVS.
Where an exec can run is determined by the types of services the exec requires.
There are services that are available to an exec that runs in any address space,
TSO/E or non-TSO/E; and there are more specific services available only in a
TSO/E address space. The following table lists all the services and where they are
available.

Service Non-TSO/E
Address Space

TSO/E Address
Space

REXX language instructions — These instructions are used throughout
this book. For a description of each one, see z/OS TSO/E REXX Reference.

X X

Built-in functions — A brief description of each built-in function appears in
“Built-In Functions” on page 63. A longer description appears in z/OS TSO/E
REXX Reference.

X X

TSO/E REXX commands — These commands consist of:

v Data stack commands — For more information, see “Chapter 11. Storing
Information in the Data Stack” on page 135.

DELSTACK X X

DROPBUF X X

MAKEBUF X X

NEWSTACK X X

© Copyright IBM Corp. 1988, 2001 171

Service Non-TSO/E
Address Space

TSO/E Address
Space

QBUF X X

QELEM X X

QSTACK X X

v Other commands —

EXECIO — controls I/O processing X X

EXECUTIL — changes how an exec runs X

Immediate commands:

HI (from attention mode only) X

HE (from attention mode only) X

HT (from attention mode only) X

RT (from attention mode only) X

TE X X

TS X X

SUBCOM — queries the existence of a host command environment X X

TSO/E commands — All TSO/E commands, both authorized and
unauthorized can be issued from an exec that runs in a TSO/E address
space. For a description of these commands, see z/OS TSO/E Command
Reference.

X

TSO/E External Functions:

v GETMSG — retrieves system messages issued during an extended MCS
console session

X

v LISTDSI — returns data set attributes X

v MSG — controls the display of messages for TSO/E commands X

v MVSVAR — returns information about MVS, TSO/E and the current
session

X X

v OUTTRAP — traps lines of TSO/E command output X

v PROMPT — controls prompting for TSO/E interactive commands X

Services Available to REXX Execs

172 z/OS V1R2.0 TSO/E REXX User’s Guide

Service Non-TSO/E
Address Space

TSO/E Address
Space

v SETLANG — controls the language in which REXX messages are
displayed

X X

v STORAGE — retrieves and optionally changes the value in a storage
address

X X

v SYSCPUS — returns information about CPUs that are online X X

v SYSDSN — returns information about the availability of a data set X

v SYSVAR — returns information about the user, the terminal, the exec,
and the system

X

Interaction with CLISTs — Execs and CLISTs can call each other and
pass information back and forth. For more information, see “Running an
Exec from a CLIST” on page 175.

X

ISPF and ISPF/PDF services — An exec that is invoked from ISPF can
use that dialog manager’s services.

X

Running Execs in a TSO/E Address Space
Earlier sections in this book described how to run an exec in TSO/E explicitly and
implicitly in the foreground. When you run an exec in the foreground, you do not
have use of your terminal until the exec completes. Another way to run an exec is
in the background, which allows you full use of your terminal while the exec runs.

Running an Exec in the Foreground
Interactive execs and ones written that involve user applications are generally run in
the foreground. You can invoke an exec in the foreground in the following ways:

v Explicitly with the EXEC command. For more information, see “Running an Exec
Explicitly” on page 16.

v Implicitly by member name if the PDS containing the exec was previously
allocated to SYSPROC or SYSEXEC. (Your installation might have a different
name for the system file that contains execs. For the purposes of this book, it is
called SYSEXEC.) For more information, see “Running an Exec Implicitly” on
page 17 and “Appendix A. Allocating Data Sets” on page 185.

v From another exec as an external function or subroutine, as long as both execs
are in the same PDS or the PDSs containing the execs are allocated to a system
file, for example SYSPROC or SYSEXEC. For more information about external
functions and subroutines, see “Chapter 6. Writing Subroutines and Functions” on
page 69.

v From a CLIST or other program. For more information, see “Running an Exec
from a CLIST” on page 175.

Services Available to REXX Execs

Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces 173

Things to Consider When Allocating to a System File (SYSPROC
or SYSEXEC)

Allocating a partitioned data set containing execs to a system file allows you to:

v Run execs implicitly - After a PDS is allocated to a system file, you can run the
exec by simply entering the member name, which requires fewer keystrokes and
is therefore faster to invoke.

v Invoke user-written external functions and subroutines written in REXX that are in
PDSs also allocated to SYSEXEC or SYSPROC.

v Control search order - You can concatenate the data sets within the file to control
search order. This is useful in testing a version of an exec placed earlier in the
search order than the original version.

v Compression - In certain situations a REXX exec will be compressed to optimize
usage of system storage. These situations can arise only when the exec is
stored in either SYSPROC or the application-level CLIST file using the ALTLIB
command. The compression removes comment text between the comment
delimiters /* and */, removes leading and trailing blanks, and replaces blank
lines with null lines. Blanks and comments within literal strings or DBCS strings
are not removed. If the system finds the characters ″SOURCELINE″ outside of a
comment, the exec is not compressed. Additionally, if you do not want an exec to
be compressed, you can allocate the exec to the CLIST user-level file, or any of
the levels used for execs.

v Improve performance - Depending on your installation’s setup, you can affect the
performance of execs you run by allocating the data sets that contain them to
either SYSEXEC or SYSPROC. More about this technique appears in the
following sections on allocating to a specific system file.

Allocating to SYSEXEC

SYSEXEC is a system file that can contain execs only. SYSEXEC precedes
SYSPROC in the search order. Therefore execs in PDSs allocated to SYSEXEC
are retrieved more rapidly than execs in PDSs allocated to SYSPROC.

Allocating to SYSPROC

SYSPROC is a system file that originally contained only CLISTs written for
applications or for an individual’s use. SYSPROC now can also contain execs as
long as the execs are distinguishable from CLISTs.

The SYSEXEC file is searched first, followed by SYSPROC. If your installation uses
a large number of CLISTs that are in data sets allocated to SYSPROC and you do
not have a large number of REXX execs, you may want to use SYSPROC only and
not use SYSEXEC. To use SYSPROC only, a system programmer can change the
search order on an installation-wide basis, or an individual can change the search
order using the EXECUTIL SEARCHDD(NO) command. You can issue the
EXECUTIL SEARCHDD(NO) command directly from the terminal, from an exec or
CLIST, and from the JCL input stream run in TSO/E background. The ALTLIB
command can also affect search order. For general information about ALTLIB, see
“Appendix B. Specifying Alternate Libraries with the ALTLIB Command” on
page 195. For more information about the EXECUTIL and ALTLIB commands, see
z/OS TSO/E Command Reference.

Running Execs in a TSO/E Address Space

174 z/OS V1R2.0 TSO/E REXX User’s Guide

Running an Exec from a CLIST

A CLIST can invoke an exec with the EXEC command explicitly or implicitly. If it
invokes an exec implicitly, the exec must be in a PDS allocated to SYSEXEC or
SYSPROC. The CLIST that invokes the exec does not have to be allocated to
SYSPROC. After the invoked exec and other programs it might call complete,
control returns to the CLIST instruction following the invocation.

Similarly, an exec can invoke a CLIST with the EXEC command explicitly or
implicitly. If it invokes a CLIST implicitly, the CLIST must be in a PDS allocated to
SYSPROC, yet the exec does not have to be in a PDS allocated to a system file.

Note: Execs and CLISTs cannot access each other’s variables and GLOBAL
variables cannot be declared in a CLIST that is invoked from an exec.

The following examples demonstrate how a CLIST invokes an exec and how a
number is returned to the invoking CLIST. The CLIST named TEST explicitly
executes an exec named EXEC1. EXEC1 calls EXEC2, which returns the result "A
OK". EXEC1 then returns to the CLIST with a numeric return code of 100 if
information was passed correctly and 50 if information was not passed correctly.

The results from this series of programs is as follows:

USERID.MY.CLIST(TEST)

EXEC MYREXX.EXEC(EXEC1) EXEC

WRITE THE RESULT FROM THE EXECS IS &LASTCC.

END

USERID.MYREXX.EXEC(EXEC1)

SAY 'We are now in Exec1.'

CALL Exec2

SAY 'The result from Exec2 is' RESULT

IF RESULT = 'A OK' THEN

DO

SAY 'The result is 100% correct.'

EXIT 100

END

ELSE

DO

SAY 'The result is less than perfect.'

EXIT 50

END

USERID.MYREXX.EXEC(EXEC2)

SAY 'Exec2 speaking.'

var = 'A OK'

RETURN var

Running Execs in a TSO/E Address Space

Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces 175

We are now in Exec1.
Exec2 speaking.
The result from Exec2 is A OK
The result is 100% correct.
THE RESULT FROM THE EXECS IS 100

Sending a Return Code Back to the Calling CLIST: As demonstrated in the
previous example, an exec can return a number to a CLIST with the EXIT
instruction followed by the number or a variable representing the number. The
CLIST receives the number in the variable &LASTCC.

When an exec invokes a CLIST, the CLIST can return a number to the exec by the
EXIT CODE() statement with the number to be returned enclosed in parentheses
after CODE. The exec receives the number in the REXX special variable RC.

Note: &LASTCC is set after each CLIST statement or command executes as
compared to RC, which is set after each command executes. To save the
values of each special variable, set a new variable with the value at the point
where you want the special variable value saved.

In the following two examples, exec USERID.MYREXX.EXEC(TRANSFER) passes
an argument to CLIST USERID.MY.CLIST(RECEIVE), and the CLIST returns a
number through the CODE parameter of the EXIT statement.

USERID.MYREXX.EXEC(TRANSFER)
/***************************** REXX *******************************/
/* This exec passes a percent sign to a CLIST and depending on */
/* the success of the transfer, the CLIST returns 100 (if it was */
/* successful) or 50 (if it was not successful). */
/**/

SAY 'We are about to execute CLIST RECEIVE and pass it % '

"EXEC my.clist(receive) '%' clist"

SAY 'We have returned from the CLIST.'
IF RC = 100 THEN

SAY 'The transfer was a success.'
ELSE

SAY 'The transfer was not a success.'

USERID.MY.CLIST(RECEIVE)
PROC 1 &VAR
IF &VAR = % THEN SET SUCCESS = 100
ELSE SET SUCCESS = 50
EXIT CODE(&SUCCESS)

Running an Exec in the Background

Execs run in the background are processed when higher priority programs are not
using the system. Background processing does not interfere with a person’s use of
the terminal. You can run time-consuming and low priority execs in the background,
or execs that do not require terminal interaction.

Running Execs in a TSO/E Address Space

176 z/OS V1R2.0 TSO/E REXX User’s Guide

Running an exec in the background is the same as running a CLIST in the
background. The program IKJEFT01 sets up a TSO/E environment from which you
can invoke execs and CLISTs and issue TSO/E commands. For example, to run an
exec named SETUP contained in a partitioned data set USERID.MYREXX.EXEC,
submit the following JCL.

Example of JCL to Run an Exec in the Background
//USERIDA JOB 'ACCOUNT,DEPT,BLDG','PROGRAMMER NAME',
// CLASS=J,MSGCLASS=C,MSGLEVEL=(1,1)
//*
//TMP EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//SYSEXEC DD DSN=USERID.MYREXX.EXEC,DISP=SHR
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *
%SETUP
/*
//

The EXEC statement defines the program as IKJEFT01. In a DD statement, you
can assign one or more PDSs to the SYSEXEC or SYSPROC system file. The
SYSTSPRT DD allows you to print output to a specified data set or a SYSOUT
class. In the input stream, after the SYSTSIN DD, you can issue TSO/E commands
and invoke execs and CLISTs.

The preceding example must be written in a fixed block, 80 byte record data set. To
start the background job, issue the SUBMIT command followed by the data set
name, for example, REXX.JCL.
SUBMIT rexx.jcl

For more information about running jobs in the background, see z/OS TSO/E User’s
Guide.

Running Execs in a Non-TSO/E Address Space

Because execs that run in a non-TSO/E address space cannot be invoked by the
TSO/E EXEC command, you must use other means to run them. Ways to run
execs outside of TSO/E are:

v From a high level program using the IRXEXEC or IRXJCL processing routines.

v From MVS batch with JCL that specifies IRXJCL in the EXEC statement.

TSO/E provides the TSO/E environment service, IKJTSOEV. Using IKJTSOEV, you
can create a TSO/E environment in a non-TSO/E address space. You can then run
REXX execs in the environment and the execs can contain TSO/E commands,
external functions, and services that an exec running in a TSO/E address space
can use. For information about the TSO/E environment service and how to run
REXX execs within the environment, see z/OS TSO/E Programming Services.

Using an Exec Processing Routine to Invoke an Exec from a Program

To invoke an exec from a high-level language program running in an MVS address
space, use one of the exec processing routines (IRXEXEC or IRXJCL). If you use
IRXEXEC, you must specify parameters that define the exec to be run and supply
other related information. For more information, see z/OS TSO/E REXX Reference.

Running Execs in a TSO/E Address Space

Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces 177

You can also use an exec processing routine to invoke an exec in a TSO/E address
space. Two reasons to use them in TSO/E are:

v To pass more than one argument to an exec. When invoking an exec implicitly or
explicitly, you can pass only one argument string. With IRXEXEC, you can pass
multiple arguments.

v To call an exec from a program other than a CLIST or exec.

Using IRXJCL to Run an Exec in MVS Batch

To run a REXX exec in MVS batch, you must specify program IRXJCL in the JCL
EXEC statement. SYSEXEC is the default load DD. Running an exec in MVS batch
is similar in many ways to running an exec in the TSO/E background, however,
there are significant differences. One major difference is that the exec running in
MVS batch cannot use TSO/E services, such as TSO/E commands and most of the
TSO/E external functions. Additional similarities and differences appear in
“Summary of TSO/E Background and MVS Batch” on page 180.

The following series of examples show how an MVS batch job named USERIDA
invokes a REXX exec in a PDS member named
USERID.MYREXX.EXEC(JCLTEST). The member name, JCLTEST, is specified as
the first word after the PARM parameter of the EXEC statement. Two arguments,
TEST and IRXJCL, follow the member name. Output from the exec goes to an
output data set named USERID.IRXJCL.OUTPUT, which is specified in the
SYSTSPRT DD statement. The SYSTSIN DD statement supplies the exec with
three lines of data in the input stream. This exec also uses EXECIO to write a 1-line
timestamp to the end of the sequential data set USERID.TRACE.OUTPUT, which is
allocated in the OUTDD statement.

USERID.JCL.EXEC
//USERIDA JOB 'ACCOUNT,DEPT,BLDG','PROGRAMMER NAME',
// CLASS=J,MSGCLASS=H,MSGLEVEL=(1,1)
//*
//MVSBACH EXEC PGM=IRXJCL,
// PARM='JCLTEST Test IRXJCL'
//* | | | |
//* Name of exec <-----> | |
//* Argument <--------->
//OUTDD DD DSN=USERID.TRACE.OUTPUT,DISP=MOD
//SYSTSPRT DD DSN=USERID.IRXJCL.OUTPUT,DISP=OLD
//SYSEXEC DD DSN=USERID.MYREXX.EXEC,DISP=SHR
//SYSTSIN DD *
First line of data
Second line of data
Third line of data
/*
//

Running Execs in a Non-TSO/E Address Space

178 z/OS V1R2.0 TSO/E REXX User’s Guide

USERID.MYREXX.EXEC(JCLTEST)
/****************************** REXX ******************************/
/* This exec receives input from its invocation in JCL.EXEC, pulls*/
/* data from the input stream and sends back a condition code of */
/* 137. */
/**/
TRACE error
SAY 'Running exec JCLTEST'
ADDRESS MVS
PARSE ARG input
SAY input
DATA = start

DO UNTIL DATA = '
PARSE PULL data /* pull data from the input stream */
SAY data

END

/**/
/* Now use EXECIO to write a timestamp to the sequential */
/* data set that was allocated to the OUTDD file by the JCL */
/* used to invoke this exec. */
/**/
OUTLINE.1 = 'Exec JCLTEST has ended at' TIME()
"EXECIO 1 DISKW OUTDD (STEM OUTLINE. FINIS" /* Write the line */

SAY 'Leaving exec JCLTEST'
EXIT 137 /* send a condition code of 137 */

USERID.TRACE.OUTPUT
Exec JCLTEST has ended at 15:03:06

USERID.IRXJCL.OUTPUT
Running exec JCLTEST
Test IRXJCL
First line of data
Second line of data
Third line of data

Leaving exec JCLTEST

Running Execs in a Non-TSO/E Address Space

Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces 179

Segment of Output from the JCL Listing
ALLOC. FOR USERIDA MVSBACH
224 ALLOCATED TO OUTDD
954 ALLOCATED TO SYSTSPRT
7E0 ALLOCATED TO SYSEXEC
JES2 ALLOCATED TO SYSTSIN
USERIDA MVSBACH - STEP WAS EXECUTED - COND CODE 0137

USERID.TRACE.OUTPUT KEPT
VOL SER NOS= TSO032.
USERID.IRXJCL.OUTPUT KEPT
VOL SER NOS= TSO032.
USERID.MYREXX.EXEC KEPT
VOL SER NOS= TSO001.
JES2.JOB28359.I0000101 SYSIN

STEP / MVSBACH / START 88167.0826
STEP / MVSBACH / STOP 88167.0826 CPU 0MIN 00.16SEC SRB ...
JOB / USERIDA / START 88167.0826
JOB / USERIDA / STOP 88167.0826 CPU 0MIN 00.16SEC SRB ...

Using the Data Stack in TSO/E Background and MVS Batch

When an exec runs in the TSO/E background or MVS batch, it has the same use of
the data stack as an exec that runs in the TSO/E foreground. The PULL instruction,
however, works differently when the data stack is empty. In the TSO/E foreground,
PULL goes to the terminal for input. In the TSO/E background and MVS batch,
PULL goes to the input stream as defined by ddname SYSTSIN. When SYSTSIN
has no data, the PULL instruction returns a null. If the input stream has no data and
the PULL instruction is in a loop, the exec can result in an infinite loop.

Summary of TSO/E Background and MVS Batch

CAPABILITIES

TSO/E BACKGROUND (IKJEFT01) MVS BATCH (IRXJCL)

Execs run without terminal interaction. Execs run without terminal interaction.

Execs can contain:
v REXX instructions
v Built-in functions
v TSO/E REXX commands
v TSO/E commands
v TSO/E external functions

Execs can contain:
v REXX instructions
v Built-in functions
v TSO/E REXX commands
v The TSO/E external functions, STORAGE and

SETLANG

Execs are invoked through the PARM parameter on the
EXEC statement and through explicit or implicit use of the
EXEC command in the input stream.

Execs are invoked through the PARM parameter on the
EXEC statement. The first word on the PARM parameter
is the member name of the PDS to be invoked. Following
words are arguments to be passed.

Information in the input stream is processed as TSO/E
commands and invocations of execs and CLISTs.

Information in the input stream is processed as input data
for the exec that is running.

Output sent to a specified output data set or to a
SYSOUT class.

Output sent to a specified output data set or to a
SYSOUT class.

Running Execs in a Non-TSO/E Address Space

180 z/OS V1R2.0 TSO/E REXX User’s Guide

TSO/E BACKGROUND (IKJEFT01) MVS BATCH (IRXJCL)

Messages are displayed in the output file. Messages may appear in two places; the JCL output
listing and in the output file. To suppress messages in the
output file, use the TRACE OFF instruction.

REQUIREMENTS

TSO/E BACKGROUND (IKJEFT01) MVS BATCH (IRXJCL)

The default DDs are SYSTSPRT and SYSTSIN. The default DDs are SYSTSPRT and SYSTSIN.

Initiated by executing program IKJEFT01. Initiated by executing program IRXJCL.

JCL should be written in a fixed block, 80-byte record
data set.

JCL should be written in a fixed block, 80-byte record
data set.

Exec that is invoked can be either a member of a PDS or
a sequential data set.

Exec that is invoked must be a member of a PDS.

Data set may be allocated to either SYSEXEC or
SYSPROC.

Data set must be allocated to the SYSEXEC DD.

Defining Language Processor Environments

Before an exec can be processed, a language processor environment must exist. A
language processor environment defines the way a REXX exec is processed and
how it accesses system services. Because MVS contains different types of address
spaces and each one accesses services a different way, REXX in TSO/E provides
three default parameters modules that define language processor environments.
They are:
v IRXTSPRM - for TSO/E
v IRXPARMS - for non-TSO/E
v IRXISPRM - for ISPF

The defaults are set by TSO/E but they can be modified by a system programmer.

What is a Language Processor Environment?
A language processor environment defines characteristics, such as:

v The search order used to locate commands and external routines

v The ddnames for reading and writing data and from which execs are loaded

v The valid host command environments and the routines that process commands
in each host command environment

v The function packages (user, local, and system) that are available in the
environment and the entries in each package

v Whether execs running in the environment can use the data stack

v The names of routines that handle system services, such as I/O operations,
loading of an exec, obtaining and freeing storage, and data stack requests

Note: A language processor environment is different from a host command
environment. The language processor environment is the environment in
which a REXX exec runs. The host command environment is the
environment to which the language processor passes commands for
execution. The valid host command environments are defined by the
language processor environment.

Summary of TSO/E Background and MVS Batch

Chapter 13. Using REXX in TSO/E and Other MVS Address Spaces 181

For more information about defining language processor environments, see z/OS
TSO/E REXX Reference.

Customizing a Language Processor Environment
An individual or an installation can customize a language processor environment in
two ways:

v Change the values in the three default parameters modules, IRXTSPRM,
IRXISPRM, and IRXPARMS.

v Call an initialization routine IRXINIT and specifying parameters to change default
parameters.

For more information about customizing a language processor environment, see
z/OS TSO/E REXX Reference.

Defining Language Processor Environments

182 z/OS V1R2.0 TSO/E REXX User’s Guide

Part 3. Appendixes

© Copyright IBM Corp. 1988, 2001 183

184 z/OS V1R2.0 TSO/E REXX User’s Guide

Appendix A. Allocating Data Sets

What is Allocation? . 185
Where to Begin . 186
Preliminary Checklist . 186
Checklist #1: Creating and Editing a Data Set Using ISPF/PDF 187
Checklist #2: Creating a Data Set with the ALLOCATE Command. 190
Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC 191
Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC 192

Execs can be stored in either sequential data sets or partitioned data sets (PDSs).
A sequential data set contains only one exec, while a PDS can contain one or more
execs. In a PDS, each exec is a member and has a unique member name. When a
PDS consists entirely of execs, it is called an exec library.

Exec libraries make execs easy to maintain and execute. Your installation can keep
commonly used execs in a system library and you can keep your own execs in a
private exec library. To learn important information about data sets at your
installation, use the “Preliminary Checklist” on page 186.

What is Allocation?

Before you can store execs in a data set, you must create the data set by
allocation. Allocation can mean different things depending on your purpose. In this
book allocation means two things:

v Creating a new data set in which to store REXX execs. You can create a new
data set with the ISPF/PDF UTILITIES option or with the TSO/E ALLOCATE
command.

Checklists for creating a data set appear in:

– “Checklist #1: Creating and Editing a Data Set Using ISPF/PDF” on page 187

– “Checklist #2: Creating a Data Set with the ALLOCATE Command” on
page 190

v Accessing an existing data set and associating it, and possibly other data sets,
to a system file. Allocating a data set to a system file (SYSEXEC or SYSPROC)
enables you to execute the execs implicitly by simply typing their member
names. When more than one PDS is specified in the allocation, they are
concatenated or logically connected in the order in which they are specified.

The association of the PDS to the system file remains for the duration of your
terminal session or until another ALLOCATE command alters the association.

You can allocate a data set to a system file in the foreground with the TSO/E
ALLOCATE command or in the background with a JCL DD statement. You
cannot use ISPF/PDF to allocate a data set to a system file.

Checklists for allocating a data set to SYSEXEC and SYSPROC appear in:

– “Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC” on
page 191

– “Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC” on
page 192

© Copyright IBM Corp. 1988, 2001 185

Where to Begin
Before creating a PDS in which to store your execs, use the “Preliminary Checklist”
to find out information that you can use to make your PDS compatible with other
PDSs at your installation. Then create a PDS with either “Checklist #1: Creating
and Editing a Data Set Using ISPF/PDF” on page 187 or “Checklist #2: Creating a
Data Set with the ALLOCATE Command” on page 190.

After the PDS is created, if you want to be able to invoke those execs implicitly
during that terminal session, you must allocate the PDS to a system file (SYSEXEC
or SYSPROC). The allocation is temporary and must be established for each
terminal session. One way to establish the allocation is to write a setup exec that
automatically executes when you log on. Information about how to write a setup
exec is in Checklist #3 on page 191 and Checklist #4 on page 192. If you do not
know which checklist to use, use Checklist #3.

The following checklists assume that the defaults shipped with TSO/E have not
been altered by your installation. Also if your installation changes system allocations
after you have used the checklists to set up your private allocation, you might need
to use the checklists again to keep your allocations up-to-date.

Preliminary Checklist
1. Issue the LISTALC STATUS command to see the names of all data sets

allocated to SYSEXEC and SYSPROC.

To see what data sets are already defined to SYSEXEC and SYSPROC at your
installation, issue the LISTALC command with the STATUS keyword.
READY
listalc status

You then see several screens of data set names that might look something like
the following. Scroll until you find SYSEXEC and SYSPROC.
--DDNAME---DISP--
ICQ.INFOCTR.LOAD.

STEPLIB KEEP
CATALOG.VTSO022

SYS00006 KEEP,KEEP
CATALOG.VTSO028

KEEP,KEEP
ISP.PHONE.EXEC

SYSEXEC KEEP
ICQ.INFOCTR.ICQCLIB

SYSPROC KEEP
SYS1.TSO.CLIST

KEEP
ISP.ISPF.CLISTS

KEEP

In this example, one data set ISP.PHONE.EXEC is allocated to SYSEXEC, and
three data sets ICQ.INFOCTR.ICQCLIB, SYS1.TSO.CLIST, and
ISP.ISPF.CLISTS are allocated to SYSPROC. (When a space appears below
the data set name, the data set is allocated to the previously-specified file
(DDNAME)).

2. Write down the names of the data sets at your installation that are
allocated to SYSEXEC.

First data set: __
Remaining data sets: __
__

Where to Begin

186 z/OS V1R2.0 TSO/E REXX User’s Guide

__
__

3. Write down the names of the data sets at your installation that are
allocated to SYSPROC.

First data set: __
Remaining data sets: __
__
__
__

4. Issue the LISTDS command for the first data set in each system file to
display the record format, logical record length, and block size.

To see the attributes of data sets used at your installation, issue the LISTDS
command for the first data set in each system file concatenation to display
something like the following:
READY
LISTDS 'sysexec.first.exec'

SYSEXEC.FIRST.EXEC
--RECFM-LRECL-BLKSIZE-DSORG

VB 255 5100 PO
--VOLUMES--

TSO026

READY
LISTDS 'sysproc.first.clist'

SYSPROC.FIRST.CLIST
--RECFM-LRECL-BLKSIZE-DSORG

FB 80 19040 PO
--VOLUMES--

TSOL07

5. Write down the attributes of the first data set in your SYSEXEC
concatenation.

RECFM = ______________________________
LRECL = ______________________________
BLKSIZE = ______________________________

6. Write down the attributes of the first data set in your SYSPROC
concatenation.

RECFM = ______________________________
LRECL = ______________________________
BLKSIZE = ______________________________

Please Note

Save this information for use with the following checklists.

Checklist #1: Creating and Editing a Data Set Using ISPF/PDF
1. Select the ISPF/PDF DATASET UTILITIES option (option 3.2).

From the ISPF/PDF Primary Option Menu, select the UTILITIES option (option
3) and press the Enter key.

Preliminary Checklist

Appendix A. Allocating Data Sets 187

------------------------ ISPF/PDF PRIMARY OPTION MENU -------------------------
OPTION ===> 3

USERID - YOURID
0 ISPF PARMS - Specify terminal and user parameters TIME - 12:47
1 BROWSE - Display source data or output listings TERMINAL - 3277
2 EDIT - Create or change source data PF KEYS - 12
3 UTILITIES - Perform utility functions
4 FOREGROUND - Invoke language processors in foreground
5 BATCH - Submit job for language processing
6 COMMAND - Enter TSO command or CLIST
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES- Perform library administrator utility functions
9 IBM PRODUCTS- Additional IBM program development products
C CHANGES - Display summary of changes for this release
T TUTORIAL - Display information about ISPF/PDF
X EXIT - Terminate ISPF using log and list defaults

Enter END command to terminate ISPF.

Then select the DATASET option (option 2) and press the Enter key.

-------------------------- UTILITY SELECTION MENU ----------------------------
OPTION ===> 2

1 LIBRARY - Compress or print data set. Print index listing.
Print, rename, delete, or browse members

2 DATASET - Allocate, rename, delete, catalog, uncatalog, or
display information of an entire data set

3 MOVE/COPY - Move, copy, or promote members or data sets
4 DSLIST - Print or display (to process) list of data set names

Print or display VTOC information
5 RESET - Reset statistics for members of ISPF library
6 HARDCOPY - Initiate hardcopy output
8 OUTLIST - Display, delete, or print held job output
9 COMMANDS - Create/change an application command table
10 CONVERT - Convert old format menus/messages to new format
11 FORMAT - Format definition for formatted data Edit/Browse
12 SUPERC - Compare data sets (Standard dialog)
13 SUPERCE - Compare data sets (Extended dialog)
14 SEARCH-FOR - Search data sets for strings of data
D DATA MGMT - Data Management Tools

2. Specify a new data set name on the Data Set Utility panel and type A on
the OPTION line.

On the next panel that appears, type the name of the data set you want to
allocate, for example USERID.REXX.EXEC, and enter A on the OPTION line.

------------------------------- DATA SET UTILITY -----------------------------
OPTION ===> a

A - Allocate new data set C - Catalog data set
R - Rename entire data set U - Uncatalog data set
D - Delete entire data set S - Data set information (short)
blank - Data set information

ISPF LIBRARY:
PROJECT ===> userid
GROUP ===> rexx
TYPE ===> exec

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> left 0If not cataloged, required for option "C")

DATA SET PASSWORD ===> (If password protected)

3. Specify the data set attributes on the Allocate New Data Set panel.

Checklist #1

188 z/OS V1R2.0 TSO/E REXX User’s Guide

After you name the data set, a panel appears on which you define the attributes
of the data set. Use the attributes recommended by your installation for REXX
libraries, and include the record format (RECFM), record length (LRECL), and
block size (BLKSIZE) from the appropriate system file from the Preliminary
Checklist #5 on page 187. If you are unsure about which system file is
appropriate, use the values from SYSEXEC.

If your installation has no attribute recommendations and you have no attributes
from the Preliminary Checklist, you can use the following attributes on the
ISPF/PDF Allocate New Data Set panel:

---------------------------- ALLOCATE NEW DATA SET ---------------------------
COMMAND ===>

DATA SET NAME: USERID.REXX.EXEC

VOLUME SERIAL ===> (Blank for authorized default volume)*
GENERIC UNIT ===> (Generic group name or unit address)*
SPACE UNITS ===> blks (BLKS, TRKS or CYLS)
PRIMARY QUAN ===> 50 (in above units)
SECONDARY QUAN ===> 20 (in above units)
DIRECTORY BLOCKS ===> 10 (Zero for sequential data set)
RECORD FORMAT ===> VB
RECORD LENGTH ===> 255
BLOCK SIZE ===> 6120
EXPIRATION DATE ===> (YY/MM/DD

YY.DDD in julian form
DDDD for retention period in days
or blank)

(* Only one of these fields may be specified)

4. Edit a member of the newly created PDS by selecting the EDIT option
(option 2) and specifying the PDS name with a member name.

After you have allocated a PDS, you can press the RETURN PF key (PF4) to
return to the Primary Option Menu and begin an edit session. Select the EDIT
option (option 2) from the ISPF/PDF Primary Option Menu.

------------------------ ISPF/PDF PRIMARY OPTION MENU ----------------------
OPTION ===> 2

USERID - YOURID
0 ISPF PARMS - Specify terminal and user parameters TIME - 12:47
1 BROWSE - Display source data or output listings TERMINAL - 3277
2 EDIT - Create or change source data PF KEYS - 12
3 UTILITIES - Perform utility functions
4 FOREGROUND - Invoke language processors in foreground
5 BATCH - Submit job for language processing
6 COMMAND - Enter TSO command or CLIST
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES- Perform library administrator utility functions
9 IBM PRODUCTS- Additional IBM program development products
C CHANGES - Display summary of changes for this release
T TUTORIAL - Display information about ISPF/PDF
X EXIT - Terminate ISPF using log and list defaults

Enter END command to terminate ISPF.

Then specify the data set name and member name on the Edit - Entry Panel. In
the example that follows, the member name is timegame.

Checklist #1

Appendix A. Allocating Data Sets 189

------------------------------ EDIT - ENTRY PANEL ---------------------------
COMMAND ===>

ISPF LIBRARY:
PROJECT ===> userid
GROUP ===> rexx ===> ===> ===>
TYPE ===> exec
MEMBER ===> timegame (Blank for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

PROFILE NAME ===> (Blank defaults to data set type)

INITIAL MACRO ===> LOCK ===> YES (YES, NO or NEVER)

FORMAT NAME ===> MIXED MODE ===> NO (YES or NO)

In the edit session, you can type REXX instructions, such as the ones that
follow.

EDIT ---- USERID.REXX.EXEC(TIMEGAME)---------------- COLUMNS 009 080
COMMAND ===> SCROLL ===> HALF
****** ************************ TOP OF DATA **************************
000001 /************************** REXX ****************************/
000002 /* This is an interactive REXX exec that compares the time */
000003 /* from a user's watch with computer time. */
000004 /**/
000005
000006 SAY 'What time is it?'
000007 PULL usertime /* Put the user's response
000008 into a variable called
000009 "usertime" */
000010 IF usertime = '' THEN
000011 SAY "O.K. Game's over."
000012 ELSE
000013 DO
000014 SAY "The computer says:"
000015 /* TSO system */ "time" /* command */
000016 END
000017
000018 EXIT
****** *********************** BOTTOM OF DATA **********************************

Checklist #2: Creating a Data Set with the ALLOCATE Command
1. Type an ALLOCATE command at the READY prompt to define the

attributes of the new data set.

You can use the ALLOCATE command to create a PDS instead of using
ISPF/PDF panels. If you noted attributes in the Preliminary Checklist #5 on
page 187, substitute the attributes from the appropriate system file in the
following example. If you are unsure about which system file is appropriate, use
the values from SYSEXEC.

Note: In the ALLOCATE command, specify a record format of VB as
RECFM(v,b) and a record format of FB as RECFM(f,b).

If your installation has no attribute recommendations and you have no attributes
from the Preliminary Checklist, you can use the attributes in the following
example.

Checklist #1

190 z/OS V1R2.0 TSO/E REXX User’s Guide

ALLOCATE DA(rexx.exec) NEW DIR(10) SPACE(50,20) DSORG(po)
RECFM(v,b) LRECL(255) BLKSIZE(6120)

For more information about the ALLOCATE command, see z/OS TSO/E REXX
User’s Guide and z/OS TSO/E Command Reference.

2. Edit a member of the newly created PDS by selecting the ISPF/PDF EDIT
option (option 2) and specifying the PDS name with a member name.

See the description for this step in the previous checklist #4 on page 189.

Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC
1. Write an exec named SETUP that allocates data sets to SYSEXEC.

Create a data set member named SETUP in your exec PDS. In SETUP issue
an ALLOCATE command that concatenates your PDS to the beginning of all the
data sets already allocated to SYSEXEC. Include the data sets allocated to
SYSEXEC from the list in the “Preliminary Checklist” on page 186. If there are
no other data sets allocated to SYSEXEC, specify your PDS only. Your SETUP
exec could look like the following example.

Note: The order in which you list data sets in an ALLOCATE command is the
order in which they are concatenated and searched. To give your execs
priority in the search order, list your data set of execs before other data
sets.

Generally all the data sets in the list should have the same record format
(either RECFM=VB or RECFM=FB) and logical record length, LRECL.
Also, the first data set in the list can determine the block size, BLKSIZE,
for the data sets that follow. If the block size of the first data set is
smaller than the block sizes of subsequent data sets, you might end in
error. To avoid error, use the Preliminary Checklist and the other
checklists provided, and follow directions carefully.

2. Execute SETUP by entering the following EXEC command:
READY
EXEC rexx.exec(setup) exec

If the allocation was successful, you should then see displayed on your screen:

Sample SETUP Exec
/****************************** REXX *******************************/
/* This exec is an example of how to allocate a private PDS named */
/* USERID.REXX.EXEC to the beginning of a concatenation to SYSEXEC */
/* that consists of one other data set named 'ISP.PHONE.EXEC'. To */
/* make sure that SYSEXEC is available, the exec issues EXECUTIL */
/* SEARCHDD(yes) command. After the ALLOCATE command executes, a */
/* message indicates whether the command was successful or not. */
/***/

"EXECUTIL SEARCHDD(yes)" /* to ensure that SYSEXEC is available*/

"ALLOC FILE(SYSEXEC) DATASET(rexx.exec,",
"'isp.phone.exec') SHR REUSE"

IF RC = 0 THEN
SAY 'Allocation to SYSEXEC completed.'

ELSE
SAY 'Allocation to SYSEXEC failed.'

Checklist #2

Appendix A. Allocating Data Sets 191

Allocation to SYSEXEC completed.

To have SETUP execute when you log on and automatically allocate your data
set to SYSEXEC, type the same EXEC command in the COMMAND field of
your LOGON panel.

------------------------------- TSO/E LOGON ----------------------------------
PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific HELP information by entering a '?' in
any entry field.

ENTER LOGON PARAMETERS BELOW: RACF LOGON PARAMETERS:

USERID ===> YOURID

PASSWORD ===> NEW PASSWORD ===>

PROCEDURE ===> MYPROC GROUP IDENT ===>

ACCT NMBR ===> 00123

SIZE ===> 5800

PERFORM ===>

COMMAND ===> EXEC rexx.exec(setup) exec

ENTER AN 'S' BEFORE EACH OPTION DESIRED BELOW:

-NOMAIL -NONOTICE -RECONNECT -OIDCARD

Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC
1. Write an exec named SETUP that allocates data sets to SYSPROC.

Create a data set member named SETUP in your exec PDS. In SETUP issue
an ALLOCATE command that concatenates your PDS to the beginning of all the
data sets already allocated to SYSPROC. Include the data sets allocated to
SYSPROC from the list in the “Preliminary Checklist” on page 186. If there are
no other data sets allocated to SYSPROC, specify your PDS only. Your SETUP
exec could look like the following example.

Checklist #3

192 z/OS V1R2.0 TSO/E REXX User’s Guide

Note: The order in which you list data sets in an ALLOCATE command is the
order in which they are concatenated and searched. To give your execs
priority in the search order, list your data set of execs before other data
sets.

Generally all the data sets in the list should have the same record
format, (either RECFM=VB or RECFM=FB) and logical record length,
LRECL. Also, the first data set in the list can determine the block size,
BLKSIZE, for the data sets that follow. If the block size of the first data
set is smaller than the block sizes of subsequent data sets, you might
end in error. To avoid error, use the Preliminary Checklist and the other
checklists provided, and follow directions carefully.

2. Execute SETUP by entering the following EXEC command:
READY
EXEC rexx.exec(setup) exec

If the allocation was successful, you should then see displayed on your screen:

Allocation to SYSPROC completed.

To have SETUP execute when you log on and automatically allocate your data
set to SYSPROC, type the same EXEC command in the COMMAND field of
your LOGON panel.

Sample SETUP Exec
/****************************** REXX *******************************/
/* This exec is an example of how to allocate a private PDS named */
/* USERID.REXX.EXEC to the beginning of a concatenation to SYSPROC */
/* that consists of 3 other data sets named 'ICQ.INFOCNTR.ICQCLIB' */
/* 'SYS1.TSO.CLIST', and 'ISP.ISPF.CLISTS'. After the ALLOCATE */
/* command executes, a message indicates whether the command was */
/* successful or not. */
/***/

"ALLOC FILE(SYSPROC) DATASET(rexx.exec,",
"'icq.infocntr.icqclib',",
"'sys1.tso.clist',",
"'isp.ispf.clists') SHR REUSE"

IF RC = 0 THEN
SAY 'Allocation to SYSPROC completed.'

ELSE
SAY 'Allocation to SYSPROC failed.'

Checklist #4

Appendix A. Allocating Data Sets 193

------------------------------- TSO/E LOGON ----------------------------------
PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific HELP information by entering a '?' in
any entry field.

ENTER LOGON PARAMETERS BELOW: RACF LOGON PARAMETERS:

USERID ===> YOURID

PASSWORD ===> NEW PASSWORD ===>

PROCEDURE ===> MYPROC GROUP IDENT ===>

ACCT NMBR ===> 00123

SIZE ===> 5800

PERFORM ===>

COMMAND ===> EXEC rexx.exec(setup) exec

ENTER AN 'S' BEFORE EACH OPTION DESIRED BELOW:

-NOMAIL -NONOTICE -RECONNECT -OIDCARD

Checklist #4

194 z/OS V1R2.0 TSO/E REXX User’s Guide

Appendix B. Specifying Alternate Libraries with the ALTLIB
Command

Specifying Alternative Exec Libraries with the ALTLIB Command 195
Using the ALTLIB Command 195
Stacking ALTLIB Requests 196
Using ALTLIB with ISPF . 196

Examples of the ALTLIB Command 196

The ALTLIB command gives you more flexibility in specifying exec libraries for
implicit execution. With ALTLIB, a user or ISPF application can easily activate and
deactivate exec libraries for implicit execution as the need arises. This flexibility can
result in less search time when fewer execs are activated for implicit execution at
the same time.

In addition to execs, the ALTLIB command lets you specify libraries of CLISTs for
implicit execution.

Specifying Alternative Exec Libraries with the ALTLIB Command
The ALTLIB command lets you specify alternative libraries to contain implicitly
executable execs. You can specify alternative libraries on the user, application, and
system levels.

v The user level includes exec libraries previously allocated to the file SYSUEXEC
or SYSUPROC. During implicit execution, these libraries are searched first.

v The application level includes exec libraries specified on the ALTLIB command by
data set or file name. During implicit execution, these libraries are searched after
user libraries.

v The system level includes exec libraries previously allocated to file SYSEXEC or
SYSPROC. During implicit execution, these libraries are searched after user or
application libraries.

Using the ALTLIB Command

The ALTLIB command offers several functions, which you specify using the
following operands:

ACTIVATE Allows implicit execution of execs in a library or libraries on the
specified level(s), in the order specified.

DEACTIVATE Excludes the specified level from the search order.

DISPLAY Displays the current order in which exec libraries are searched for
implicit execution.

RESET Resets searching to the system level only (execs allocated to
SYSEXEC or SYSPROC).

For complete information about the syntax of the ALTLIB command, see z/OS
TSO/E Command Reference.

Notes:

1. With ALTLIB, data sets concatenated to each of the levels can have differing
characteristics (logical record length and record format), but the data sets within
the same level must have the same characteristics.

© Copyright IBM Corp. 1988, 2001 195

2. At the application and system levels, ALTLIB uses the virtual lookaside facility
(VLF) to provide potential increases in library search speed.

Stacking ALTLIB Requests
On the application level, you can stack up to eight activate requests with the top, or
current, request active. Application-level libraries you define while running an ISPF
application are in effect only while that application has control. When the application
completes, the original application-level libraries are automatically reactivated.

Using ALTLIB with ISPF
Under ISPF, ALTLIB works the same as in line mode TSO/E. However, if you use
ALTLIB under line mode TSO/E and start ISPF, the alternative libraries you
specified under line mode TSO/E are unavailable until ISPF ends.

When you use ALTLIB under ISPF, you can pass the alternative library definitions
from application to application by using ISPEXEC SELECT with the PASSLIB
operand; for example:
ISPEXEC SELECT NEWAPPL(ABC) PASSLIB

The PASSLIB operand passes the ALTLIB definitions to the invoked application.
When the invoked application completes and the invoking application regains
control, the ALTLIB definitions that were passed take effect again, regardless of
whether the invoked application changed them. If you omit the PASSLIB operand,
ALTLIB definitions are not passed to the invoked application.

For more information about writing ISPF applications, see z/OS ISPF Services
Guide.

Examples of the ALTLIB Command
In the following example, an application issues the ALTLIB command to allow
implicit execution of execs in the data set NEW.EXEC, to be searched ahead of
SYSPROC:
ALTLIB ACTIVATE APPLICATION(exec) DATASET(new.exec)

The application could also allow searching for any private execs that the user has
allocated to the file SYSUEXEC or SYSUPROC, with the following command:
ALTLIB ACTIVATE USER(exec)

To display the active libraries in their current search order, use the DISPLAY
operand as follows:
ALTLIB DISPLAY

For more information about the search order EXEC uses for execs and CLISTs, see
z/OS TSO/E Command Reference.

To deactivate searching for a certain level, use the DEACTIVATE operand; for
example, to deactivate searching for execs on the system level (those allocated to
SYSEXEC or SYSPROC), issue:
ALTLIB DEACTIVATE SYSTEM(exec)

And, to reset exec searching back to the system level, issue:
ALTLIB RESET

Specifying Alternative Exec Libraries ...

196 z/OS V1R2.0 TSO/E REXX User’s Guide

Appendix C. Comparisons Between CLIST and REXX

Accessing System Information 198
Controlling Program Flow . 199
Debugging . 200
Execution . 200
Interactive Communication . 201
Passing Information. 201
Performing File I/O . 202
Syntax . 202
Using Functions . 203
Using Variables . 203

Both the CLIST language and the REXX language can be used in TSO/E as
procedures languages. Some major features of REXX that are different from CLIST
are:

v Host command environments - TSO/E REXX has the ability to invoke commands
from several environments in MVS and ISPF, as well as from TSO/E. The
ADDRESS instruction sets the environment for commands. For more information,
see “Issuing Other Types of Commands from an Exec” on page 101.

v Parsing capabilities - For separating data into variable names and formatting text,
REXX provides extensive parsing through templates. For more information, see
“Parsing Data” on page 87.

v Use of a data stack - REXX offers the use of a data stack in which to store data.
For more information, see “Chapter 11. Storing Information in the Data Stack” on
page 135.

v Use of mixed and lowercase characters - Although variables and most input are
translated to uppercase, REXX provides ways to maintain mixed and lowercase
representation. For more information, see “Preventing Translation to Uppercase”
on page 20.

In some ways CLIST and REXX are similar. The following tables show similarities
and differences in the areas of:

v Accessing system services

v Controlling program flow

v Debugging

v Execution

v Interactive communication

v Passing information

v Performing file I/O

v Syntax

v Using functions

v Using variables

© Copyright IBM Corp. 1988, 2001 197

Accessing System Information

CLIST REXX

LISTDSI statement

LISTDSI &BASEDS

LISTDSI external function

x = LISTDSI(baseds)

&SYSOUTTRAP and &SYSOUTLINE

SET SYSOUTTRAP = 100

OUTTRAP external function

x = OUTTRAP(var,100)

CONTROL statement

CONTROL PROMPT

PROMPT external function

x = PROMPT(on)

&SYSDSN built-in function

IF &SYSDSN('SYS1.MYLIB') = OK THEN...

SYSDSN external function

IF SYSDSN('SYS1.MYLIB') = OK THEN...

Control Variables:

For User Information

&SYSPREF

WRITE &SYSPREF

&SYSPROC
&SYSUID

For Terminal Information

&SYSLTERM
&SYSWTERM

For CLIST Information

&SYSENV
&SYSICMD
&SYSISPF
&SYSNEST
&SYSPCMD
&SYSSCMD

For System Information

&SYSCPU
&SYSHSM
&SYSJES
&SYSLRACF
&SYSNODE
&SYSRACF
&SYSSRV
&SYSTERMID
&SYSTSOE

Arguments of the SYSVAR external function:

For User Information

SYSPREF

SAY SYSVAR(syspref)

SYSPROC
SYSUID

For Terminal Information

SYSLTERM
SYSWTERM

For Exec Information

SYSENV
SYSICMD
SYSISPF
SYSNEST
SYSPCMD
SYSSCMD

For System Information

SYSCPU
SYSHSM
SYSJES
SYSLRACF
SYSNODE
SYSRACF
SYSSRV
SYSTERMID
SYSTSOE

Accessing System Information

198 z/OS V1R2.0 TSO/E REXX User’s Guide

CLIST REXX

Control Variables:

For System Information

&SYSAPPCLU
&SYSDFP
&SYSMVS
&SYSNAME
&SYSSECLAB
&SYSSMFID
&SYSSMS
&SYSCLONE
&SYSPLEX
&SYSSYMDEF

Arguments of the MVSVAR external function:

For System Information

SYSAPPCLU
SYSDFP
SYSMVS
SYSNAME
SYSSECLAB
SYSSMFID
SYSSMS
SYSCLONE
SYSPLEX
SYMDEF

Controlling Program Flow

CLIST REXX

Branching Branching

IF/THEN/ELSE statements IF/THEN/ELSE instructions

SELECT/WHEN/OTHERWISE/END statements SELECT/WHEN/OTHERWISE/END instructions

Looping Looping

Iterative DO Iterative DO

DO/WHILE/END statements DO/WHILE/END instructions

DO/UNTIL/END statements DO/UNTIL/END instructions

Interrupting Interrupting

END, EXIT statements EXIT instruction

GOTO statement SIGNAL instruction

LEAVE instruction

CALL instruction

Calling another CLIST Calling another exec as an external subroutine

EXEC command
...

EXEC MYNEW.CLIST(CLIST1) 'VAR'...

END

PROC 1 VAR...

EXIT

CALL instruction
...

call exec1 var...

exit

arg var...

return

Calling a subprocedure Calling an internal subroutine

Accessing System Information

Appendix C. Comparisons Between CLIST and REXX 199

CLIST REXX

SYSCALL statement
...

SYSCALL SOMESUB VAR...

END
SOMESUB: PROC 1 VAR...

EXIT

CALL instruction
...

call sub1 var...

exit
sub1:
arg var...

return

Debugging

CLIST REXX

Debugging a CLIST Debugging an exec

CONTROL SYMLIST LIST CONLIST MSG TRACE instruction

trace i

Interactive debug facility (EXECUTIL TS and TRACE ?R)

Return codes for commands and statements Return codes for commands

&LASTCC, &MAXCC

SET ECODE = &LASTCC

RC

ecode = RC

Trapping TSO/E command output Trapping TSO/E command output

&SYSOUTTRAP, &SYSOUTLINE OUTTRAP external function

Error handling Error handling

ERROR and ATTN statements SIGNAL ON ERROR,
SIGNAL ON FAILURE,
SIGNAL ON HALT,
SIGNAL ON NOVALUE, and
SIGNAL ON SYNTAX instructions.
CALL ON ERROR, CALL ON FAILURE, and
CALL ON HALT
instructions.¹

:

1 For more information about REXX error handling instructions, see z/OS TSO/E REXX Reference.

Execution

CLIST REXX

Explicit Explicit

EXEC command

EXEC MYNEW.CLIST(CLIST1)

EXEC command

EXEC MYNEW.EXEC(FIRST) EXEC

Controlling Program Flow

200 z/OS V1R2.0 TSO/E REXX User’s Guide

CLIST REXX

Implicit Implicit

1. Allocate/concatenate to SYSPROC

2. Specify member name of PDS with or without %

1. Allocate/concatenate to SYSPROC or SYSEXEC

2. Specify member name of PDS with or without %

Interactive Communication

CLIST REXX

Reading from the terminal Reading from the terminal

READ, READDVAL statements

READ INPUTA, INPUTB, INPUTC

PULL, PARSE PULL, PARSE UPPER PULL, PARSE EXTERNAL
instructions

pull inputa, inputb, inputc

Writing to the terminal Writing to the terminal

WRITE statement

WRITE Your previous entry was not valid.

SAY instruction

say 'Your previous entry was not valid.'

Passing Information

CLIST REXX

Receiving parameters in a CLIST Receiving arguments in an exec

PROC statement

PROC 1 DSNAME MEMBER() DISP(SHR)

CLISTs can receive positional, keyword, and
keyword value parameters.

ARG, PARSE ARG, PARSE UPPER ARG instructions

arg dsname member disp

An exec receives positional parameters. Use the PARSE ARG
and PARSE UPPER ARG instructions to receive keywords, for
example:

my.data member(member1) disp(old)

parse upper arg dsname .
parse upper arg 'MEMBER('mem')'
parse upper arg 'DISP('disp')'

Recognizing comments within a parameter Recognizing comments within a parameter

A CLIST PROC statement recognizes a comment
within a parameter sent by the EXEC command
and ignores that comment.

An ARG instruction does not recognize a comment within a
parameter sent by the EXEC command. It is treated as part of the
argument.

Sending parameters to a CLIST Sending arguments to an exec

EXEC command

EXEC MY.CLIST(NEW) -
'MY.DATA MEMBER(MEMBER1) DISP(OLD)'

EXEC command from TSO/E READY

'EXEC MY.EXEC(NEW)',
"'my.data member(member1) disp(old)' EXEC"

Sending information to a subprocedure Sending information to a subroutine

Execution

Appendix C. Comparisons Between CLIST and REXX 201

CLIST REXX

SYSCALL statement

SYSCALL SOMESUB &VAR

CALL instruction

call somsub var

Sending information from a subprocedure Sending information from a subroutine

RETURN statement
...

SYSCALL SOMESUB &VAR
SET ANSWER = &LASTCC...

END

SOMESUB: PROC 1 V1...

RETURN CODE(33) /* code goes to &LASTCC */

RETURN instruction
...

call somesub var
answer = RESULT
exit

somesub:
arg v1...

value = 4 * v1 / 3
return value /* value goes to RESULT */

Performing File I/O

CLIST REXX

Reading from a file Reading from a file

OPENFILE, GETFILE, CLOSFILE statements

OPENFILE PAYCHEKS
SET COUNTER=1
DO WHILE &COUNTER \> 3
GETFILE PAYCHEKS
SET EMPLOYEE&COUNTER=&PAYCHEKS
SET COUNTER=&COUNTER+1;
END
CLOSFILE PAYCHEKS

EXECIO DISKR, EXECIO DISKRU commands

'EXECIO 3 DISKR indd (stem employee. FINIS'
/* Read 3 records from the data set in indd. */
/* The 3 records go to a list of compound */
/* variables with the stem of employee. They */
/* are employee.1, employee.2 and employee.3 */

Writing to a file Writing to a file

OPENFILE, PUTFILE, CLOSFILE statements

OPENFILE PRICES OUTPUT
SET PRICES = $2590.00
PUTFILE PRICES
CLOSFILE PRICES

EXECIO DISKW

push '$2590.00' /* put amount on data stack */
'EXECIO 1 DISKW outdd (finis'

/*Write from data stack to data set in outdd */

Syntax

CLIST REXX

Continuing a statement over more than one line Continuing an instruction over more
than one line

Passing Information

202 z/OS V1R2.0 TSO/E REXX User’s Guide

CLIST REXX

Use - or +

IF &STR(SYSDATE)=&STR(10/13/87) THEN +
WRITE On &SYSDATE the system was down.

Use ,

say 'This instruction',
'covers two lines.'

Separating statements within a line Separating instructions within a line

No more than one statement per line Use ;

do 5; Say 'Hello'; end

Character set of statements Character set of instructions

Must be in uppercase Can be upper, lower, or mixed case

Comments Comments

Enclose between /* */, closing delimiter optional at the end of a line. Enclose between /* */, closing delimiter
always required.

Using Functions

CLIST REXX

Calling a function Calling a function

&FUNCTION(expression)

SET A = &LENGTH(ABCDE) /* &A = 5 */

function(arguments)

a = length('abcde') /* a = 5 */

Using Variables

CLIST REXX

Assigning value to a variable Assigning value to a variable

SET statement

SET X = 5 /* &X gets the value 5 */
SET NUMBER = &X /* &NUMBER gets the value 5 */
SET Y = NUMBER /* &Y gets the value NUMBER */

assignment instruction

x = 5 /* X gets the value 5 */
NUMBER = x /* NUMBER gets the value 5 */
Y = 'number' /* Y gets the value number */

Syntax

Appendix C. Comparisons Between CLIST and REXX 203

Using Variables

204 z/OS V1R2.0 TSO/E REXX User’s Guide

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2001 205

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Notices

206 z/OS V1R2.0 TSO/E REXX User’s Guide

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of z/OS TSO/E REXX language processor.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v CICS
v DFSMS/MVS
v IBM
v IBMLink
v IMS
v MVS
v MVS/DFP
v MVS/ESA
v Operating System/2
v Operating System/400
v OS/2
v OS/400
v RACF
v Resource Link
v SAA
v Systems Application Architecture
v z/OS
v zSeries

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix D. Notices 207

208 z/OS V1R2.0 TSO/E REXX User’s Guide

Bibliography

This section lists the books in the TSO/E library and related publications.

TSO/E Publications
TSO/E Publications

v z/OS TSO/E Administration, SA22-7780

v z/OS TSO/E CLISTs, SA22-7781

v z/OS TSO/E Command Reference, SA22-7782

v z/OS TSO/E Customization, SA22-7783

v z/OS TSO/E General Information, SA22-7784

v z/OS TSO/E Guide to SRPI, SA22-7785

v z/OS TSO/E Messages, SA22-7786

v z/OS TSO/E Primer, SA22-7787

v z/OS TSO/E Programming Guide, SA22-7788

v z/OS TSO/E Programming Services, SA22-7789

v z/OS TSO/E REXX Reference, SA22-7790

v z/OS TSO/E REXX User’s Guide, SA22-7791

v z/OS TSO/E System Programming Command Reference, SA22-7793

v z/OS TSO/E System Diagnosis: Data Areas, GA22-7792

v z/OS TSO/E User’s Guide, SA22-7794

Related Publications
z/OS MVS Publications

v z/OS MVS Planning: APPC/MVS Management, SA22-7599

v z/OS MVS Programming: Writing Transaction Programs for APPC/MVS,
SA22-7621

v z/OS MVS Initialization and Tuning Reference, SA22-7592

v z/OS MVS Programming: Authorized Assembler Services Guide, SA22-7608

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN,
SA22-7609

v z/OS MVS System Messages, Vol 1 (ABA-AOM), SA22-7631

v z/OS MVS System Messages, Vol 2 (ARC-ASA), SA22-7632

v z/OS MVS System Messages, Vol 3 (ASB-BPX), SA22-7633

v z/OS MVS System Messages, Vol 4 (CBD-DMO), SA22-7634

v z/OS MVS System Messages, Vol 5 (EDG-GFS), SA22-7635

v z/OS MVS System Messages, Vol 6 (GOS-IEA), SA22-7636

v z/OS MVS System Messages, Vol 7 (IEB-IEE), SA22-7637

v z/OS MVS System Messages, Vol 8 (IEF-IGD), SA22-7638

v z/OS MVS System Messages, Vol 9 (IGF-IWM), SA22-7639

v z/OS MVS System Messages, Vol 10 (IXC-IZP), SA22-7640

v z/OS MVS System Codes, SA22-7626

v z/OS MVS Data Areas, Vol 1 (ABEP-DALT), GA22-7581

v z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC), GA22-7582

© Copyright IBM Corp. 1988, 2001 209

v z/OS MVS Data Areas, Vol 3 (IVT-RCWK), GA22-7583

v z/OS MVS Data Areas, Vol 4 (RD-SRRA), GA22-7584

v z/OS MVS Data Areas, Vol 5 (SSAG-XTLST), GA22-7585

ISPF Publications

v z/OS ISPF Services Guide, SC34-4819

v z/OS ISPF Dialog Developer’s Guide and Reference, SC34-4821

Bibliography

210 z/OS V1R2.0 TSO/E REXX User’s Guide

Index

Special Characters
/ 28
* 28
= 31
// 28
** 28
\ 33
% 18, 28
== 31
\= 31
\== 31
\ > 31
\ < 31
&& 33
& 33
> 31
> = 31
> < 31
>>> - final result 38
>L> - literal value 37
>O> - operation result 37
>V> - variable value 37
< 31
< = 31
| 33

A
ADDRESS built-in function 107
ADDRESS instruction 106
ALLOCATE command 190, 191, 192
allocation

description 185
to a system file 17, 174, 185
to SYSEXEC 191
to SYSPROC 192

allocation checklist
creating a data set with ALLOCATE 190
creating and editing a data set using ISPF/PDF 187
preliminary 186
writing an exec to allocate to SYSEXEC 191
writing an exec to allocate to SYSPROC 192

ALTLIB command 195
using under ISPF 196

APPC/MVS services
using, examples

APPC/MVS calls 106
CPI Communications calls 106

ARG built-in function 75, 82
ARG instruction 22, 74, 82, 88
argument 24

ARG instruction 74, 82
data set name 98
definition 24
in the EXEC command 98
passing to an exec 24
used to pass information to a function 82
used to pass information to a subroutine 74

arguments
passing 24

using CALL instruction 24
using EXEC command 24
using REXX function call 24

arithmetic operator
division, type of 29
priority 29
type of 28

array 156
assignment instruction 13
ATTACH host command environment 102
ATTCHMVS host command environment 102
ATTCHPGM host command environment 102

B
background (TSO)

JCL 177
running an exec 176

batch (MVS)
JCL 178
running an exec 178

blank line 14
Boolean 33
built-in function

ADDRESS 107
ARG 75
comparison 63
conversion 64
DATATYPE 66
description 61
formatting 64
QUEUED 137, 144
REXX language 63

arithmetic 63
comparison 63
conversion 64
formatting 64
string manipulating 64

SUBSTR 70

C
CALL/RETURN instruction 57, 71
character, uppercase

preventing with PARSE 20, 23
preventing with quotation mark 20

checklist
creating a data set with ALLOCATE 190
creating and editing a data set using ISPF/PDF 187
preliminary 186
writing an exec to allocate to SYSEXEC 191
writing an exec to allocate to SYSPROC 192

checklist #1 - creating and editing a data set using
ISPF/PDF 187

checklist #2 - creating a data set with ALLOCATE 190

© Copyright IBM Corp. 1988, 2001 211

checklist #3 - writing an exec to allocate to
SYSEXEC 191

checklist #4 - writing an exec to allocate to
SYSPROC 192

clause
as a subset of an instruction 13

CLIST
comparison to REXX 197
invoking an exec 175
returning information to an exec 176
running from an exec 175

comma
to continue an instruction 10

commands
ALLOCATE 190, 191, 192
ALTLIB 195
as an instruction 14
CONSOLE 102
DELSTACK 149
DROPBUF 144
enclosing in quotation marks 20, 98
EXEC 16, 17, 22, 149

prompt option 100
with data set name as argument 98

EXECIO 154
EXECUTIL HI 49
EXECUTIL SEARCHDD 174
EXECUTIL TE 117
EXECUTIL TS 114, 115
issuing from an exec 101
LISTALC STATUS 186
LISTDS 187
MAKEBUF 143
NEWSTACK 148
QBUF 144
QELEM 145
QSTACK 149
SUBCOM 107
TSO/E REXX 97

comment
beginning an exec 8, 14
distinguishing an exec from a CLIST 14
identifying as an exec 14
to clarify the purpose of an exec 14

comparison operator
equal 31
false (0) 31
strictly equal 31
true (1) 31
types of 31

compiler
benefits 5

Compiler Runtime Processor
portability 6

compound variable
changing all variables in an array 86
description 85
initializing 85
used in EXECIO command 156, 158, 161
used in LISTDSI 124
using stems 86

concatenation
of data sets 185

concatenation operator
type of

|| 34
abuttal 34
blank 34

CONSOLE host command environment 102
console session 102
continuation

of an instruction 10
control variable 119
copy

information to and from data sets 159
information to compound variables 161
information to the end of a data set 160

CPICOMM host command environment 102, 104

D
data set

adding information with EXECIO command 160
adding to SYSEXEC 191
adding to SYSPROC 192
allocating 7, 185
attributes 189
concatenation 191, 192
copying information with EXECIO command 159
creating 7, 185
creating in ISPF/PDF 187
creating with ALLOCATE 190
creating with the ALLOCATE command 190
editing 189
finding the allocation status of 186
fully-qualified vs. non fully-qualified 98
library 185
name as argument 98
naming convention 98
partitioned (PDS) 185
prefix 98
reading information from with EXECIO 155
sequential 185
to contain an exec 7
updating information with EXECIO command 162
writing information to with EXECIO 157

data stack
adding an element 136
characteristic 140
creating a buffer 142
creating a new stack 148
deleting a private stack 149
description 135
determining the number of elements on the

stack 137
dropping one or more buffers 144
finding the number of buffers 144
finding the number of elements in 145
finding the number of stacks 149
manipulating 136
passing information between an exec and a

routine 140
passing information to an interactive command 142

212 z/OS V1R2.0 TSO/E REXX User’s Guide

data stack (continued)
protecting an element 147
removing an element 137
removing an element from a stack with a buffer 143
search order for processing 139
type of input 139
using in MVS batch 180
using in TSO/E background 180

DATATYPE built-in function 66
DBCS 14
ddname

allocating to for I/O 156, 158
use in EXECIO command 156, 158

debug
for error 111
interactive debug facility 113, 114
with REXX special variable 112, 113

DELSTACK command 149
diagnosis

problem within an exec 111
DO/END instruction 47
DO FOREVER loop 49
DO UNTIL loop

flowchart 53
DO WHILE loop

flowchart 52
double-byte character set names

in execs 14
DROPBUF command 144

E
edit

an exec 189
environment

defining in REXX 181
host command 101
language processor 181

error
debugging 37, 111
tracing command 111
tracing expression 37

error message
getting more information 19
interpreting 19
syntax error 19

example
use of uppercase and lowercase xiv

exclusive OR 33
exec

allocating to a file 17
comment line 8
description xiii, 8
editing in ISPF 189
example 8
identifying as an exec 8
interactive 8
invoking a CLIST 175
invoking as a command 100
passing information to 21
prompting a user for input to a TSO/E

command 100

exec (continued)
prompting the user for input to a TSO/E

command 124, 149
receiving input 22
returning information to a CLIST 176
running

error message 19
explicitly 16, 173
from a CLIST 173, 175
from another exec 173
implicitly 17, 173, 185
implicitly with ALTLIB 195
in a TSO/E address space 173
in non-TSO/E address space 177
in the background 176
in the foreground 173
where to run 16, 17
with % 18
with IKJEFT01 176, 177
with IRXEXEC 177
with IRXJCL 178
with JCL 177

service available 171
using blank line 14
using double-byte character set names 14
writing 8

EXEC command 16, 17, 22, 149
prompt option 100
with data set name as argument 98

exec identifier 8, 14, 174
EXECIO command

adding information to a data set 160
copying information to a data set 159
copying information to and from compound

variables 161
description 154
example 163
reading information from a data set 155
return code 159
updating information to a data set 162
writing information to a data set 157

EXECUTIL HI command 49
EXECUTIL SEARCHDD 174
EXECUTIL TE command 117
EXECUTIL TS command 114, 115
EXIT instruction 57, 71, 78
explicit execution

EXEC command 16, 17
from ISPF/PDF command line 17
from ISPF/PDF command option 16
from READY 16

expression
arithmetic 28

order of evaluation 29
Boolean 32
comparison 30
concatenation 34
definition 28
logical 32
tracing 37

Index 213

external function
TSO/E

description 119
GETMSG 120
LISTDSI 120
MSG 122
OUTTRAP 123
PROMPT 124
SETLANG 125
STORAGE 126
SYSDSN 126
SYSVAR 127

external subroutine 71

F
FIFO (first in first out) 135
file 195
file I/O 154
foreground processing

explicit execution 173
implicit execution 173
of an exec 173

function
ADDRESS built-in 107
ARG built-in 75, 82
argument 61
built-in

arithmetic 63
comparison 63
conversion 64
formatting 64
string manipulating 64
testing input with 66

comparison to a subroutine 69, 83
description 69

built-in 61
function package 61, 133
TSO/E external 61, 119
user-written 61

exposing a specific variable 81
external 78
internal 78
passing information to 81

possible problem 80
using a variable 79

PROMPT 100
protecting a variable 80
QUEUED built-in 137, 144
receiving information from 83

using the ARG built-in function 82
returning a value 62
search order 134
TSO/E external

description 119
GETMSG 120
LISTDSI 120
MSG 122
MVSVAR 123
OUTTRAP 123
PROMPT 124
SETLANG 125

function (continued)
TSO/E external (continued)

STORAGE 126
SYSCPUS 126
SYSDSN 126
SYSVAR 127

using EXIT 78
using PROCEDURE 80
using PROCEDURE EXPOSE 81
using RETURN 78
when to make internal or external 79
writing 77

function package
description 133
local 134
system 134
user 134

G
GETMSG external function 119, 120
GOTO 58

H
HE (halt execution) 49
HI (halt interpretation) 49
host command environment 101

APPC/MVS 104
changing 106
checking if it is available 107
compared to language processor environment 181
default 101, 103
description 101
finding the active environment 107

I
IBM Compiler for REXX/370

benefits 5
IBM Library for REXX/370

benefits 5
identifier

of an exec 8, 14, 174
IF/THEN/ELSE instruction

flowchart 42
matching clauses 43
nested 43
using DO and END 43
using NOP 43

IKJEFT01 176, 177
implicit execution 17, 185

from ISPF/PDF command line 18
from ISPF/PDF command option 17
from READY 17
speeding up search time 18
using % 18

inclusive OR 33
infinite loop

from TSO/E background and MVS batch 180
stopping 48

214 z/OS V1R2.0 TSO/E REXX User’s Guide

input

passing argument 24
preventing translation to uppercase 23
receiving with ARG 22
receiving with PULL 21
sending with EXEC command 22
to an exec

preventing translation to uppercase 20, 23
using a period as a place holder 23

input/output (I/O)

allocating a ddname 156, 158
reading from a data set 155
reading to compound variables 156, 158
using the EXECIO command 154
writing from compound variables 158
writing to a data set 157

instruction 71

adding during interactive trace 116
ADDRESS 106
ARG 22, 74, 82, 88
blank 14
CALL/RETURN 57
comment 14
conditional 41
continuing to the next line 10
DO/END 47
DO FOREVER 49
DO UNTIL 53
DO WHILE 52
entering 9
EXIT 57, 71, 78, 117
formatting 10
IF/THEN/ELSE 42
INTERPRET 153
interrupt 41
ITERATE 50
LEAVE 50, 55
literal string 9
looping 41
PARSE 20, 23
PARSE ARG 88
PARSE EXTERNAL 140
PARSE PULL 88, 137
PARSE UPPER ARG 88
PARSE UPPER PULL 88
PARSE UPPER VALUE 89
PARSE UPPER VAR 89
PARSE VALUE...WITH 89
PARSE VAR 89
PROCEDURE 73, 80
PROCEDURE EXPOSE 74, 81
PULL 21, 88, 137
PUSH 136
QUEUE 136
re-executing during interactive trace 116
SAY 8
SELECT/WHEN/OTHERWISE/END 44
SIGNAL 58
SIGNAL ON ERROR 113
syntax 9

instruction 71 (continued)
TRACE

ending tracing 117
interactive tracing 114
tracing command 111
tracing expression 37

type of
assignment 13
command 14
keyword 13
label 14
null 14

using blank 10
using comma 10
using quotation mark 9, 98
using semicolon 11
writing 9

interactive debug facility
adding an instruction 116
continuing 116
description 113
ending 116
option 116
re-executing the last instruction traced 116
starting 114

interactive trace 116
internal function 78
internal subroutine 71
INTERPRET instruction 153
IRXEXEC 177
IRXJCL 178
ISPEXEC host command environment 102
ISREDIT host command environment 102
ITERATE instruction 50

J
JCL (job control language)

in MVS batch 178
in TSO background 177

K
keyword instruction 13

L
label instruction 14
language processor environment 181

compared to host command environment 181
customizing 182
definition 181
IRXISPRM 181
IRXPARMS 181
IRXTSPRM 181

LEAVE instruction 50, 55
library

alternative (ALTLIB) 195
application level 195
exec 185
system 185

Index 215

library (continued)
SYSEXEC 17, 174
SYSPROC 17, 174

system level 195
user-level 195

LIFO (last in first out) 135
LINK host command environment 102
LINKMVS host command environment 102
LINKPGM host command environment 102
LISTALC STATUS command 186
LISTDS command 187
LISTDSI external function 120
literal string 9
logical (Boolean) operator

false (0) 33
true (1) 33
type of 33

logical AND 33
logical NOT 33
loop

altering the flow 50
combining types 55
conditional 52
DO/END 47
DO FOREVER 49
DO UNTIL 53
DO WHILE 52
exiting prematurely 50
infinite 48, 49
ITERATE 50
LEAVE 50
nested DO loop 55
repetitive 47
stopping 48

lowercase character
changing to uppercase 20, 23
preventing the change to uppercase 20, 23

LU62 host command environment 102, 105

M
MAKEBUF command 143
message

error 19
getting more information 19

explanation 19
interpreting 19
tracing 37

MFJOB 129
MFOSNM 129
MFSNMJBX 129
MFTIME 129
move

information from one data set to another 159
MVS batch

comparison to TSO/E background 180
running an exec 178
using IRXJCL 178
using the data stack 180

MVS host command environment 102
MVSVAR external function 123

N
name for variable

restriction on naming 26
valid name 26

NEWSTACK command 148
non-TSO/E address space

running an exec 177
Notices 205
null instruction 14
numeric constant

decimal number 28
floating point number 28
signed number 28
whole number 28

O
operator

arithmetic 28
order of priority 29

Boolean 33
comparison 30
concatenation 34
logical 33
order of priority 35

OUTTRAP external function 123

P
parameter 24
parentheses 98
PARSE ARG instruction 88
PARSE EXTERNAL instruction 140
PARSE instruction

preventing translation to uppercase 20, 23
PARSE PULL instruction 88, 137
PARSE UPPER ARG instruction 88
PARSE UPPER PULL instruction 88
PARSE UPPER VALUE instruction 89
PARSE UPPER VAR instruction 89
PARSE VALUE...WITH instruction 89
PARSE VAR instruction 89
parsing

description 87
instruction

ARG 88
PARSE ARG 88
PARSE PULL 88
PARSE UPPER ARG 88
PARSE UPPER PULL 88
PARSE UPPER VALUE 89
PARSE UPPER VAR 89
PARSE VALUE...WITH 89
PARSE VAR 89
PULL 88

multiple strings 92
separator

blank 89
number 90
string 90
variable 90

216 z/OS V1R2.0 TSO/E REXX User’s Guide

parsing (continued)
template 89

partitioned data set
creating in ISPF/PDF 187
creating with ALLOCATE 190
description 185
for an exec 7

passing arguments 24
PDS 7
period

as place holder 23
portability of compiled REXX programs 6
prefix

in a data set name 7, 98
preliminary checklist 186
PROCEDURE instruction 73, 74, 80, 81
Procedures Language xiii
prompt

from TSO/E command 100, 124
overridden by an item in the data stack 147
overridden by item in the data stack 100
overridden by NOPROMPT in the PROFILE 100,

125
PROMPT external function 124
PROMPT function 100, 149
protection

of an element on a data stack 147
PULL instruction 21, 88, 137
PUSH instruction 136

Q
QBUF command 144
QELEM command 145
QSTACK command 149
queue

description 135
FIFO order 135

QUEUE instruction 136
QUEUED built-in function 137, 144
quotation mark 98

around a literal string 9
around command 20, 98
in an instruction 9
to prevent translation to uppercase 20

R
RC special variable

for debugging 112
used with a command 97
used with stack command 144, 145, 149

repetitive loop 47
RESULT special variable 75, 100

used with EXIT 57
REXX compiler

benefits 5
REXX environment

definition 181
REXX exec identifier 8, 14, 174
REXX instruction 71

adding during interactive trace 116

REXX instruction 71 (continued)
ADDRESS 106
ARG 22, 74, 82, 88
blank 14
CALL/RETURN 57
comment 14
conditional 41
continuing to the next line 10
DO/END 47
DO FOREVER 49
DO UNTIL 53
DO WHILE 52
entering 9
EXIT 57, 71, 78, 117
formatting 10
IF/THEN/ELSE 42
INTERPRET 153
interrupt 41
ITERATE 50
LEAVE 50, 55
literal string 9
looping 41
PARSE 20, 23
PARSE ARG 88
PARSE EXTERNAL 140
PARSE PULL 88, 137
PARSE UPPER ARG 88
PARSE UPPER PULL 88
PARSE UPPER VALUE 89
PARSE UPPER VAR 89
PARSE VALUE...WITH 89
PARSE VAR 89
PROCEDURE 73, 80
PROCEDURE EXPOSE 74, 81
PULL 21, 88, 137
PUSH 136
QUEUE 136
re-executing during interactive trace 116
SAY 8
SELECT/WHEN/OTHERWISE/END 44
SIGNAL 58
SIGNAL ON ERROR 113
syntax 9
TRACE

ending tracing 117
interactive tracing 114
tracing command 111
tracing expression 37

type of
assignment 13
command 14
keyword 13
label 14
null 14

using blank 10
using comma 10
using quotation mark 9, 98
using semicolon 11
writing 9

REXX language

comparison to CLIST 197

Index 217

REXX language (continued)
description 3
example

use of uppercase and lowercase xiv
exec

description xiii, 8
feature of 3
program (exec) xiii
REstructured eXtended eXecutor xiii
SAA (Systems Application Architecture) xiii, 4

REXX program
portability of 6

REXX special variable
RC

for debugging 112
used with a command 97
used with stack command 144, 145, 149

RESULT 75, 100
used with EXIT 57

SIGL
for debugging 112, 113

rules
syntax 9

S
SAA (Systems Application Architecture) xiii

general description 6
Procedures Language 4

SAA Procedures Language 6
SAY instruction 8
SELECT/WHEN/OTHERWISE/END instruction

flowchart 44
semicolon

to end an instruction 11
service

for REXX in MVS 171
SETLANG external function

valid language codes 125
SIGL special variable

for debugging 112, 113
SIGNAL instruction 58
SIGNAL ON ERROR instruction 113
SOLDISP 129
SOLNUM 129
special variable 100
stack 135
stem

used with OUTTRAP function 123
STORAGE external function 126
string 9
SUBCOM command 107
subcommand environment 101
SUBMIT command 177
subroutine

calling 57
comparison to a function 69, 83
description 69
exposing a specific variable 74
external 71
internal 71

subroutine (continued)
passing information

using an argument 74
passing information to

possible problem 72
using a variable 72

protecting variable 73
receiving information from

RESULT 75
using the ARG built-in function 75

returning a value 57
using CALL/RETURN 70
using PROCEDURE 73
using PROCEDURE EXPOSE 74
when to make internal or external 71
writing 70

SUBSTR built-in function 70
SYMDEF 123
syntax

rules of REXX 9
SYSAPPCLU 123
SYSCLONE 123
SYSCPU 128
SYSCPUS external function 126
SYSDFP 123
SYSDSN external function 126
SYSDTERM 128
SYSENV 128
SYSEXEC 17, 174

allocating to 191
SYSEXEC system file

reason to allocate to 174
SYSHSM 129
SYSICMD 128
SYSISPF 128
SYSJES 129
SYSKTERM 128
SYSLRACF 129
SYSLTERM 128
SYSMVS 123
SYSNAME 123
SYSNEST 128
SYSNODE 129
SYSPCMD 128
SYSPLANG 128
SYSPLEX 123
SYSPREF 128
SYSPROC 14, 17, 128, 174

allocating to 192
SYSPROC system file

reason to allocate to 174
SYSRACF 129
SYSSCMD 128
SYSSECLAB 123
SYSSLANG 128
SYSSMFID 123
SYSSMS 123
SYSSRV 129
system file

allocating to 17, 174, 185
reason to allocate to 174

218 z/OS V1R2.0 TSO/E REXX User’s Guide

system file (continued)
SYSEXEC 17, 174, 195
SYSPROC 14, 17, 174, 195
SYSUEXEC 195
SYSUPROC 195

Systems Application Architecture (SAA)
Procedures Language xiii

SYSTERMID 129
SYSTSOE 129
SYSUEXEC 195
SYSUID 128
SYSUPROC 195
SYSVAR external function 127
SYSWTERM 128

T
template 89
trace 116
TRACE instruction 111

ending tracing 117
interactive tracing 114
tracing operation 37
tracing result 38

TSO/E background
comparison to MVS batch 180
using the data stack 180

TSO/E commands
ALLOCATE 190, 191, 192
ALTLIB 195
EXEC 16, 17, 22, 149

prompt option 100
with data set name as argument 98

EXECUTIL HI 49
EXECUTIL SEARCHDD 174
EXECUTIL TE 117
EXECUTIL TS 114, 115
issuing from an exec 98
LISTALC STATUS 186
LISTDS 187
prompting 100, 124

overridden by item in the data stack 100
overridden by NOPROMPT in the PROFILE 100

SUBMIT 177
using parentheses 98
using quotation mark 98
using variable 99
with interactive prompt 100, 124, 149

TSO/E environment service
description 119
JCL example 177
running an exec 177

TSO/E external function
description 119
GETMSG 120
LISTDSI 120
MSG 122
MVSVAR 123
OUTTRAP 123
PROMPT 124
SETLANG 125
STORAGE 126

TSO/E external function (continued)
SYSCPUS 126
SYSDSN 126
SYSVAR 127

TSO/E REXX command
DELSTACK 149
description 97
DROPBUF 144
EXECIO 154
EXECUTIL HI 49
EXECUTIL SEARCHDD 174
EXECUTIL TE 117
EXECUTIL TS 114, 115
MAKEBUF 143
NEWSTACK 148
QBUF 144
QELEM 145
QSTACK 149
SUBCOM 107

TSO host command environment 102

U
UNSDISP 129
UNSNUM 129
uppercase character

changing from lowercase 20, 23
preventing the change to 20, 23

V
variable

compound 85
control 48
description 25
naming 26
RC 26
representing a value in quotation marks 99
restriction on naming 26
RESULT 26
shared variable in an internal function 79
shared variable in an internal subroutine 72
SIGL 26
stem 86
type of value 27
used to pass information to a function 79
used to pass information to a subroutine 72
valid name 26
value 27
within TSO/E command 99

variable of a stem
description 86, 123
used with EXECIO function 156, 158
used with OUTTRAP function 86, 123

VLF data repository
file compression 174

Index 219

220 z/OS V1R2.0 TSO/E REXX User’s Guide

Readers’ Comments — We’d Like to Hear from You

z/OS
TSO/E
REXX User’s Guide

Publication No. SA22-7791-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7791-01

SA22-7791-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7791-01

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How This Book Is Organized
	Terminology
	Purpose of Each Chapter
	Examples
	Exercises

	Where to Find More Information
	Accessing Licensed Books on the Web
	Using LookAt to Look Up Message Explanations

	Summary of Changes
	Part 1. Learning the REXX Language
	Chapter 1. Introduction
	What is REXX?
	Features of REXX
	Ease of use
	Free format
	Convenient built-in functions
	Debugging capabilities
	Interpreted language
	Extensive parsing capabilities

	Components of REXX
	The SAA Solution
	Benefits of Using a Compiler
	Improved Performance
	Reduced System Load
	Protection for Source Code and Programs
	Improved Productivity and Quality
	Portability of Compiled Programs
	SAA Compliance Checking

	Chapter 2. Writing and Running a REXX Exec
	Before You Begin
	What is a REXX Exec?
	Syntax of REXX Instructions
	The Character Type of REXX Instructions
	Using Quotation Marks in an Instruction

	The Format of REXX Instructions
	Beginning an instruction
	Continuing an instruction
	Continuing a literal string without adding a space
	Ending an instruction

	Types of REXX Instructions
	Keyword
	Assignment
	Label
	Null
	Command

	Execs Using Double-Byte Character Set Names
	Running an Exec
	Running an Exec Explicitly
	Running an Exec Implicitly
	Allocating a PDS to a System File
	Exercises - Running the Example Execs

	Interpreting Error Messages
	Preventing Translation to Uppercase
	From Within an Exec
	As Input to an Exec
	Exercises - Running and Modifying the Example Execs

	Passing Information to an Exec
	Using Terminal Interaction
	Specifying Values when Invoking an Exec
	Specifying Too Few Values
	Specifying Too Many Values

	Preventing Translation of Input to Uppercase
	Exercises - Using the ARG Instruction

	Passing Arguments
	Passing Arguments Using the CALL Instruction or REXXFunction Call
	Passing Arguments Using the EXEC Command

	Chapter 3. Using Variables and Expressions
	Using Variables
	Variable Names
	Variable Values
	Exercises - Identifying Valid Variable Names

	Using Expressions
	Arithmetic Operators
	Division
	Order of Evaluation
	Using Arithmetic Expressions
	Exercises - Calculating Arithmetic Expressions

	Comparison Operators
	The Strictly Equal and Equal Operators
	Using Comparison Expressions
	Exercises - Using Comparison Expressions

	Logical (Boolean) Operators
	Using Logical Expressions
	Exercises - Using Logical Expressions

	Concatenation Operators
	Using Concatenation Operators

	Priority of Operators
	Exercises - Priority of Operators

	Tracing Expressions with the TRACE Instruction
	Tracing Operations
	Tracing Results
	Exercises - Using the TRACE Instruction

	Chapter 4. Controlling the Flow Within an Exec
	Using Conditional Instructions
	IF/THEN/ELSE Instructions
	Nested IF/THEN/ELSE Instructions
	Exercise - Using the IF/THEN/ELSE Instruction

	SELECT/WHEN/OTHERWISE/END Instruction
	Exercises - Using the SELECT/WHEN/OTHERWISE/ENDInstruction

	Using Looping Instructions
	Repetitive Loops
	Infinite Loops
	DO FOREVER Loops
	LEAVE Instruction
	ITERATE Instruction
	Exercises - Using Loops

	Conditional Loops
	DO WHILE Loops
	Exercise - Using a DO WHILE Loop
	DO UNTIL Loops
	Exercise - Using a DO UNTIL Loop

	Combining Types of Loops
	Nested DO Loops
	Exercises - Combining Loops

	Using Interrupt Instructions
	EXIT Instruction
	CALL/RETURN Instructions
	SIGNAL Instruction

	Chapter 5. Using Functions
	What is a Function?
	Example of a Function

	Built-In Functions
	Arithmetic Functions
	Comparison Functions
	Conversion Functions
	Formatting Functions
	String Manipulating Functions
	Miscellaneous Functions
	Testing Input with Built-In Functions
	Exercise - Writing an Exec with Built-In Functions

	Chapter 6. Writing Subroutines and Functions
	What are Subroutines and Functions?
	When to Write Subroutines vs. Functions
	Writing a Subroutine
	Passing Information to a Subroutine
	Passing Information by Using Variables
	Passing Information by Using Arguments

	Receiving Information from a Subroutine
	Example - Writing an Internal and an External Subroutine

	Writing a Function
	Passing Information to a Function
	Passing Information by Using Variables
	Passing Information by Using Arguments

	Receiving Information from a Function
	Exercise - Writing a Function

	Summary of Subroutines and Functions

	Chapter 7. Manipulating Data
	Using Compound Variables and Stems
	What is a Compound Variable?
	Using Stems
	Exercises - Using Compound Variables and Stems

	Parsing Data
	Instructions that Parse
	PULL Instruction
	ARG Instruction
	PARSE VAR Instruction
	PARSE VALUE ... WITH Instruction

	Ways of Parsing
	Blank
	String
	Variable
	Number

	Parsing Multiple Strings as Arguments
	Exercise - Practice with Parsing

	Part 2. Using REXX
	Chapter 8. Entering Commands from an Exec
	Types of Commands
	Issuing TSO/E Commands from an Exec
	Using Quotations Marks in Commands
	Passing Data Set Names as Arguments

	Using Variables in Commands
	Causing Interactive Commands to Prompt the User
	Invoking Another Exec as a Command
	Invoking Another Exec with the EXEC Command
	Invoking Another Exec Implicitly

	Issuing Other Types of Commands from an Exec
	What is a Host Command Environment?
	APPC/MVS Host Command Environments
	Examples Using APPC/MVS Services

	Changing the Host Command Environment
	Determining the Active Host Command Environment
	Checking if a Host Command Environment is Available
	Examples Using the ADDRESS Instruction

	Chapter 9. Diagnosing Problems Within an Exec
	Debugging Execs
	Tracing Commands with the TRACE Instruction
	TRACE C
	TRACE E

	Using REXX Special Variables RC and SIGL
	RC
	SIGL

	Tracing with the Interactive Debug Facility
	Starting Interactive Tracing
	Options Within Interactive Trace
	Ending Interactive Trace

	Chapter 10. Using TSO/E External Functions
	TSO/E External Functions
	Using the GETMSG Function
	Using the LISTDSI Function
	Using the MSG Function
	Using the MVSVAR Function
	Using the OUTTRAP Function
	Using the PROMPT Function
	Using the SETLANG Function
	Using the STORAGE Function
	Using the SYSCPUS Function
	Using the SYSDSN Function
	Using the SYSVAR Function
	User Information
	Terminal Information
	Language Information
	Exec Information
	System Information
	Console Session Information

	Additional Examples
	Function Packages
	Search Order for Functions

	Chapter 11. Storing Information in the Data Stack
	What is a Data Stack?
	Manipulating the Data Stack
	Adding Elements to the Data Stack
	Removing Elements from the Stack
	Determining the Number of Elements on the Stack
	Exercise - Using the Data Stack

	Processing of the Data Stack
	Using the Data Stack
	Passing Information Between a Routine and the Main Exec
	Passing Information to Interactive Commands
	Issuing Subcommands of TSO/E Commands

	Creating a Buffer on the Data Stack
	Creating a Buffer with the MAKEBUF Command
	Removing Elements from a Stack with a Buffer

	Dropping a Buffer with the DROPBUF Command
	Finding the Number of Buffers with the QBUF Command
	Finding the Number of Elements In a Buffer
	Exercises - Creating a Buffer on the Data Stack

	Protecting Elements in the Data Stack
	Creating a New Data Stack with the NEWSTACK Command
	Deleting a Private Stack with the DELSTACK Command
	Finding the Number of Stacks
	Additional Examples

	Chapter 12. Processing Data and Input/Output Processing
	Types of Processing
	Dynamic Modification of a Single REXX Expression
	Using the INTERPRET Instruction

	Using EXECIO to Process Information to and from Data Sets
	When to Use the EXECIO Command
	Using the EXECIO Command
	Reading Information from a Data Set
	Writing Information to a Data Set

	Return Codes from EXECIO
	When to Use the EXECIO Command
	Copying Information From One Data Set to Another
	Copying Information to and from a List of Compound Variables
	Updating Information in a Data Set
	Additional Examples

	Chapter 13. Using REXX in TSO/E and Other MVS AddressSpaces
	Services Available to REXX Execs
	Running Execs in a TSO/E Address Space
	Running an Exec in the Foreground
	Things to Consider When Allocating to a System File (SYSPROCor SYSEXEC)
	Allocating to SYSEXEC
	Allocating to SYSPROC
	Running an Exec from a CLIST

	Running an Exec in the Background

	Running Execs in a Non-TSO/E Address Space
	Using an Exec Processing Routine to Invoke an Exec from a Program
	Using IRXJCL to Run an Exec in MVS Batch
	Using the Data Stack in TSO/E Background and MVS Batch

	Summary of TSO/E Background and MVS Batch
	CAPABILITIES
	REQUIREMENTS

	Defining Language Processor Environments
	What is a Language Processor Environment?
	Customizing a Language Processor Environment

	Part 3. Appendixes
	Appendix A. Allocating Data Sets
	What is Allocation?
	Where to Begin
	Preliminary Checklist
	Checklist #1: Creating and Editing a Data Set Using ISPF/PDF
	Checklist #2: Creating a Data Set with the ALLOCATE Command
	Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC
	Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC

	Appendix B. Specifying Alternate Libraries with the ALTLIBCommand
	Specifying Alternative Exec Libraries with the ALTLIB Command
	Using the ALTLIB Command
	Stacking ALTLIB Requests
	Using ALTLIB with ISPF

	Examples of the ALTLIB Command

	Appendix C. Comparisons Between CLIST and REXX
	Accessing System Information
	Controlling Program Flow
	Debugging
	Execution
	Interactive Communication
	Passing Information
	Performing File I/O
	Syntax
	Using Functions
	Using Variables

	Appendix D. Notices
	Programming Interface Information
	Trademarks

	Bibliography
	TSO/E Publications
	Related Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

