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The Goal of this Tutorial

Provide answers to the following questions
• What is this thing called Reinforcement Learning?
• Why should I care about it?
• How does it work?
• What sort of problems can it solve?
• How is it being used?
• How is it being used in Autonomic Computing?
• Is it any use for my problems?
• Where can I find out more?

Find out what problems you are working on

and see if RL can be applied to them
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Overall Outline

Four parts
1. Basic reinforcement learning
2. Advanced reinforcement learning
3. Reinforcement learning in Autonomic Computing
4. Final Thoughts and Other Resources
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Some Symbols

Open Problem

Glossing Over Details

No Well-Understood Solution

“Impossible” Problem
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Part I:
Basic Reinforcement Learning
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Outline for Part I

1. Basic intuitions about RL
2. Mathematics of RL
3. Learning value functions
4. Learning policies directly
5. Trade-offs
6. Example applications
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What is RL?

“a way of programming agents by reward and 
punishment without needing to specify how the 

task is to be achieved”

[Kaelbling, Littman, & Moore, 96] 



ICAC 2005 Reinforcement Learning: A User's Guide 7

Basic RL Model

1. Observe state, st
2. Decide on an action, at
3. Perform action
4. Observe new state, st+1
5. Observe reward, rt+1
6. Learn from experience
7. Repeat

Goal: Find a control policy that will maximize the observed 
rewards over the lifetime of the agent

AS R

World
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An Example: Gridworld

Canonical RL domain
• States are grid cells
• 4 actions: N, S, E, W
• Reward for entering top right cell
• -0.01 for every other move

Minimizing sum of rewards ⇒ Shortest path
• In this instance

+1
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The Promise of Learning
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The Promise of RL

Specify what to do, but not how to do it
• Through the reward function
• Learning “fills in the details”

Better final solutions
• Based of actual experiences, not programmer 

assumptions

Less (human) time needed for a good solution
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Mathematics of RL

Before we talk about RL, we need to cover some 
background material

• Some simple decision theory
• Markov Decision Processes
• Value functions
• Dynamic programming
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Making Single Decisions

Single decision to be made
• Multiple discrete actions
• Each action has a reward associated                      

with it
Goal is to maximize reward

• Not hard: just pick the action with the largest reward
State 0 has a value of 2

• Sum of rewards from taking the best action from the 
state

0

1

2

A

B
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Markov Decision Processes

We can generalize the previous example to 
multiple sequential decisions

• Each decision affects subsequent decisions

This is formally modeled by a Markov Decision 
Process (MDP)
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Markov Decision Processes

Formally, an MDP is
• A set of states, S = {s1, s2, ... , sn}
• A set of actions, A = {a1, a2, ... , am}
• A reward function, R: S×A×S→ℜ
• A transition function, 

• Sometimes T: S×A→S

We want to learn a policy, π: S →A
• Maximize sum of rewards we see over our lifetime

( )aai,s|jsPP tt1t
a
ij ==== +

[Puterman, 95]
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Policies

There are 3 policies for this MDP
1. 0 →1 →3 →5
2. 0 →1 →4 →5
3. 0 →2 →4 →5

Which is the best one?
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Comparing Policies

Order policies by how much reward they see
1. 0 →1 →3 →5 = 1 + 1 + 1 = 3
2. 0 →1 →4 →5 = 1 + 1 + 10 = 12
3. 0 →2 →4 →5 = 2 – 1000 + 10 = -988
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Value Functions

We can associate a value with each state
• For a fixed policy
• How good is it to run policy π from that state s
• This is the state value function, V
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Value Functions

We can define value without specifying the policy
• Specify the value of taking action a from state s and 

then performing optimally
• This is the state-action value function, Q
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Value Functions

So, we have two value functions
• Vπ(s) = R(s, π(s), s’) + Vπ(s’)
• Q(s, a) = R(s, a, s’) + maxa’ Q(s’, a’)

Both have the same form
• Next reward plus the best I can do from the next state

These extend to probabilistic actions
•

•

s’ is the
next state

( ) ( ) ( )( ) ( )( )s'Vs' ,s s,RPsV
s'

s
s's,

πππ +π= ∑

( ) ( ) ( )( )a' ,s'Q maxs' a, s,RPas,Q a'
s'

a
s's, += ∑
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Getting the Policy

If we have the value function, then finding the best 
policy is easy

• π(s) = arg maxa (R(s, a, s’) + Vπ(s’))
• π(s) = arg maxa Q(s, a)

This generalizes to non-deterministic worlds
• Use expectations
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Getting the Policy

We’re looking for the optimal policy, π∗(s)
• No policy generates more reward than π∗

Optimal policy defines optimal value functions
•
•

The easiest way to learn the optimal policy is to 
learn the optimal value function first

( ) ( ) ( )a' ,s'Qargmaxs' a, s,Ras,Q *
a'+=*

( ) ( ) ( )s'Vs' (s) s,RsV *+π= ,*
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Problems with Our Functions

Consider this MDP
• Number of steps is now unlimited because of loops
• Value of states 1 and 2 is infinite for some policies

Q(1, A) = 1 + Q(1, A)
Q(1, A) = 1 + 1 + Q(1, A)
Q(1, A) = 1 + 1 + 1 + Q(1, A)
Q(1, A) = ...

This is bad
• All policies with a non-

zero reward cycle have                                        
infinite value
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Better Value Functions

We can introduce a term into the value function to 
get around the problem of infinite value

• Called the discount factor, γ
• Three interpretations

• Probability of living to see the next time step
• Measure of the uncertainty inherent in the world
• Makes the mathematics work out nicely

• 0 ≤ γ ≤ 1
Vπ(s) = R(s, π(s), s’) + γVπ(s’)

Q(s, a) = R(s, a, s’) + γmaxa’ Q(s’, a’)

We’ll use these
from now on
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Better Value Functions

Optimal Policy:
π(0) = B
π(1) = A
π(2) = A
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Dynamic Programming

Given the complete MDP model, we can compute 
the optimal value function directly

[Bertsekas, 87, 95a, 95b]
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Reinforcement Learning

What happens if we don’t have the whole MDP?
• We know the states and actions
• We don’t have the system model (transition function) 

or reward function
We’re only allowed to sample from the MDP

• Can observe experiences (s, a, r, s’)
• Need to perform actions to generate new experiences

This is Reinforcement Learning (RL)
• Sometimes called Approximate Dynamic 

Programming (ADP)
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Learning Value Functions

We still want to learn a value function
• We’re forced to approximate it iteratively
• Based on direct experience of the world

Four main algorithms
• Certainty equivalence
• Temporal Difference (TD) learning
• Q-learning
• SARSA
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Certainty Equivalence

Collect experience by moving through the world
• s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, a3, r4, s4, a4, r5, s5, ...

Use these to estimate the underlying MDP
• Transition function, T: S×A → S
• Reward function, R: S×A×S → ℜ

Compute the optimal value function for this MDP
• And then compute the optimal policy from it
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Temporal Difference (TD)

TD-learning estimates the value function directly
• Don’t try to learn the underlying MDP

Keep an estimate of Vπ(s) in a table
• Update these estimates as we gather more 

experience
• Estimates depend on exploration policy, π
• TD is an on-policy method

[Sutton, 88]
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TD-Learning Algorithm
1. Initialize Vπ(s) to 0, ∀s
2. Observe state, s
3. Perform action, π(s)
4. Observe new state, s’, and reward, r
5. Vπ(s) ← (1-α)Vπ(s) + α(r + γVπ(s’))
6. Go to 2

0 ≤ α ≤ 1 is the learning rate
• How much attention do we pay to new experiences
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TD-Learning

Vπ(s) is guaranteed to converge to V*(s)
• After an infinite number of experiences
• If we decay the learning rate

• will work

In practice, we often don’t need value convergence
• Policy convergence generally happens sooner

∞=α∑
∞

=0t
t ∞<α∑

∞

=0t

2
t

tc
c

t +
=α
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Actor-Critic Methods

TD only evaluates a particular policy
• Does not learn a better policy

We can change the policy as we learn V
• Policy is the actor
• Value-function estimate is the critic

Success is generally dependent on the starting 
policy being “good enough”

Value
Function
(critic)

World

Policy
(actor)

s r

a
V

[Barto, Sutton, & Anderson, 83]
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Q-Learning

Q-learning iteratively approximates the state-action 
value function, Q

• Again, we’re not going to estimate the MDP directly
• Learns the value function and policy simultaneously

Keep an estimate of Q(s, a) in a table
• Update these estimates as we gather more 

experience
• Estimates do not depend on exploration policy
• Q-learning is an off-policy method

[Watkins & Dayan, 92]
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Q-Learning Algorithm

1. Initialize Q(s, a) to small random values, ∀s, a
2. Observe state, s
3. Pick an action, a, and do it
4. Observe next state, s’, and reward, r
5. Q(s, a) ← (1 - α)Q(s, a) + α(r + γmaxa’Q(s’, a’))
6. Go to 2

0 ≤ α ≤ 1 is the learning rate
• We need to decay this, just like TD
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Picking Actions

We want to pick good actions most of the time, but 
also do some exploration

• Exploring means that we can learn better policies
• But, we want to balance known good actions with 

exploratory ones
• This is called the exploration/exploitation problem
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Picking Actions

ε-greedy
• Pick best (greedy) action with probability ε
• Otherwise, pick a random action

Boltzmann (Soft-Max)
• Pick an action based on its Q-value

• , where τ is the “temperature”

∑
⎟
⎠
⎞

⎜
⎝
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⎟
⎠
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⎜
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e  s) | P(a
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SARSA

SARSA iteratively approximates the state-action 
value function, Q

• Like Q-learning, SARSA learns the policy and the 
value function simultaneously

Keep an estimate of Q(s, a) in a table
• Update these estimates based on experiences
• Estimates depend on the exploration policy
• SARSA is an on-policy method
• Policy is derived from current value estimates
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SARSA Algorithm
1. Initialize Q(s, a) to small random values, ∀s, a
2. Observe state, s
3. Pick an action, a, and do it (just like Q-learning)
4. Observe next state, s’, and reward, r
5. Q(s, a) ← (1-α)Q(s, a) + α(r + γQ(s’, π(s’)))
6. Go to 2

0 ≤ α ≤ 1 is the learning rate
• We need to decay this, just like TD
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On-Policy vs. Off Policy

On-policy algorithms
• Final policy is influenced by the exploration policy
• Generally, the exploration policy needs to be “close”

to the final policy
• Can get stuck in local maxima

Off-policy algorithms
• Final policy is independent of exploration policy
• Can use arbitrary exploration policies
• Will not get stuck in local maxima

Given enoughexperience
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Convergence Guarantees

The convergence guarantees for RL are “in the 
limit”

• The word “infinite” crops up several times

Don’t let this put you off
• Value convergence is different than policy 

convergence
• We’re more interested in policy convergence
• If one action is really better than the others, policy 

convergence will happen relatively quickly
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Rewards

Rewards measure how well the policy is doing
• Often correspond to events in the world

• Current load on a machine
• Reaching the coffee machine
• Program crashing

• Everything else gets a 0 reward

Things work better if the rewards are incremental
• For example, distance to goal at each step
• These reward functions are often hard to design

These aredense rewards

These aresparse rewards



ICAC 2005 Reinforcement Learning: A User's Guide 42

The Markov Property

RL needs a set of states that are Markov
• Everything you need to know to make a decision is 

included in the state
• Not allowed to consult the past

Rule-of-thumb
• If you can calculate the reward                         

function from the state without                                 
any additional information,                                   
you’re OK

S G

K

Not holding key

Holding key
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But, What’s the Catch?

RL will solve all of your problems, but
• We need lots of experience to train from
• Taking random actions can be dangerous
• It can take a long time to learn
• Not all problems fit into the MDP framework
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Learning Policies Directly

An alternative approach to RL is to reward whole 
policies, rather than individual actions

• Run whole policy, then receive a single reward
• Reward measures success of the whole policy

If there are a small number of policies, we can 
exhaustively try them all

• However, this is not possible in most interesting 
problems
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Policy Gradient Methods

Assume that our policy, p, has a set of n real-
valued parameters, q = {q1, q2, q3, ... , qn }

• Running the policy with a particular q results in a 
reward, rq

• Estimate the reward gradient,         , for each qi

•

iθ
R

∂
∂

i
ii θ

Rθθ
∂
∂

+← α

This is another
learning rate
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Policy Gradient Methods

This results in hill-climbing in policy space
• So, it’s subject to all the problems of hill-climbing
• But, we can also use tricks from search, like random 

restarts and momentum terms

This is a good approach if you have a 
parameterized policy

• Typically faster than value-based methods
• “Safe” exploration, if you have a good policy
• Learns locally-best parameters for that policy
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An Example: Learning to Walk

RoboCup legged league
• Walking quickly is a big advantage

Robots have a parameterized gait controller
• 11 parameters
• Controls step length, height, etc.

Robots walk across soccer pitch and are timed
• Reward is a function of the time taken

[Kohl & Stone, 04]
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An Example: Learning to Walk

Basic idea
1. Pick an initial θ = {θ1, θ2, ... , θ11}
2. Generate N testing parameter settings by perturbing θ

θj = {θ1 + δ1, θ2 + δ2, ... , θ11 + δ11},    δi ∈ {-ε, 0, ε}
3. Test each setting, and observe rewards

θj→ rj

4. For each θi ∈ θ
Calculate θ1

+, θ1
0, θ1

- and set

5. Set θ ← θ’, and go to 2

Average reward
when qn

i = qi - di
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An Example: Learning to Walk

Video: Nate Kohl & Peter Stone, UT Austin

Initial Final
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Value Function or Policy Gradient?

When should I use policy gradient?
• When there’s a parameterized policy
• When there’s a high-dimensional state space
• When we expect the gradient to be smooth

When should I use a value-based method?
• When there is no parameterized policy
• When we have no idea how to solve the problem
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Summary for Part I

Background
• MDPs, and how to solve them
• Solving MDPs with dynamic programming 
• How RL is different from DP

Algorithms
• Certainty equivalence
• TD
• Q-learning
• SARSA
• Policy gradient
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Part II:
Advanced Reinforcement Learning
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Outline for Part II

1. Continuous state spaces
2. Continuous actions
3. All the stuff we’re not going to talk about
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Continuous State Spaces

Many problems have a continuous, multi-
dimensional state space

• Position in the world, for example
• But, standard RL algorithms only deal with discrete 

state spaces

How can we modify the standard algorithms to 
deal with continuous state spaces?

• Discretization
• Value-function approximation
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State Space Discretization

The simplest way to deal with continuous state 
spaces is to chop them up into discrete ones

• Uniformly discretize each dimension
• Every real point maps to a discrete state

If we know something about the                 
problem, we can often make                                   
a more informed discretization

• This is likely to work better

0
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0
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(0.45, 0.66) = 35



ICAC 2005 Reinforcement Learning: A User's Guide 56

State Space Discretization

Problems
• The Curse of Dimensionality

• Exponentially many states
• dn states for n dimensions, with d partitions per dimension

• Introduces hidden state
• Removes Markov property

Works in practice for some (small) problems
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Better Discretization

We can be more clever about how we discretize
the world

• Pay attention to the system dynamics
• Only use a fine discretization where it matters
• There are a number of ways to do this, based on 

samples
• But, then might still introduce hidden state
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Value-Function Approximation

Another way to deal with continuous state is to 
replace the tabular value function representation 
with a general-purpose function approximator

a1 a2 a3 a4

s1

s2

s3

s4

Q(s, a)
s1
s2
a

Q(s3, a3)
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Value-Function Approximation

VFA is good
• Deals naturally with continuous, multi-dimensional 

states
• Generalizes between states

• Don’t have to see every state
• Should result in faster learning

• Plenty of function approximators to choose from
• Pick your favorite, artificial neural networks are popular

VFA is bad
• It doesn’t work
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Value-Function Approximation

OK, it sometimes works
• Several successful examples (see later)
• But also many failures, often in simple examples

Why does it often not work?
• Convergence guarantees go away
• Small errors in approximation tend to “snowball”

• Recall, we’re often taking the maximum of several values

• Euclidean distance metric is not always appropriate
• Leads to incorrect value generalization

[Boyan & Moore, 95]

Warning: Author SpeculationWarning: Author Speculation
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Continuous Actions

Some problems naturally have continuous actions
• Controlling a steering wheel, for example

In the standard algorithms, we maximize over a 
discrete set of actions

π(s) = arg maxa (R(s, a, s’) + Vπ(s’))
π(s) = arg maxa Q(s, a)

In the continuous case, this becomes a general 
optimization
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Continuous Actions

If we have one continuous action, we can do a 1d 
optimization

• For a given state, treat value as a function of the 
(continuous) action, f(a)

• Use standard techniques to find the maximum
• This is much more expensive than maximizing over a 

discrete set, and might not find the true maximum
• We do this maximization a lot while learning
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Continuous Actions

Things only get worse if we have multi-dimensional 
actions

• Multi-dimensional sample-based optimization is hard

Usual solution is to discretize action space
• Might still suffer from the Curse of Dimensionality
• Again, knowledge of the problem domain can really 

help here

Biggestunderstatement
of the tutorial
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All the Other Stuff

We don’t have time to talk about the other 
advanced techniques, but here are some 
buzzwords

• Continuous time/varying length values
• Hierarchical state spaces
• Partial observability
• Acceleration techniques

All of these are covered in the Sutton and Barto
book
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Summary for Part II

Extensions to the basic algorithms
• Continuous state spaces
• Continuous action spaces
• A set of buzzwords
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Part III:
RL in Autonomic Compting
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Outline for Part III

Some example applications
• Elevator scheduling
• Cell phone channel allocation
• Network packet routing

Audience participation time
• What to you want to use RL for?
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Elevator Scheduling

Uses RL to learn controllers for a bank of elevators
• 4 elevators
• 10 floors
• Each elevator controlled independently

Simulation of one hour of “down-peak” traffic
• Most traffic heading to lobby
• 0% to 10% of traffic is inter-floor
• Realistic simulation

[Crites & Barto, 95, 98]
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States

Continuous state space
• Includes elapsed times
• Could discretize it to 1022 states

State space is carefully crafted
• Builds in knowledge of the problem
• Designed to work well with VFA scheme
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States

46 dimensions
• Hall button pushed? 9 binary
• Hall button elapsed time 9 real
• Car location/direction 16 binary
• Other car locations 10 binary
• Highest floor with waiting passenger 1 binary
• A floor of longest waiting passenger 1 binary
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Actions

Discrete action space
• If stopped: “move up”, “move down”
• If moving: “stop at next floor”, “continue past next floor”

Additional constraints enforced
• Based on a knowledge of the problem
• Only two actions in final system: “stop”, “continue”

Actions selected with a Boltzmann distribution
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Rewards

Different minimization objectives
• Wait time
• System time (wait + travel)
• %age of passengers waiting more than 60 seconds
• Sum of squared wait times

Different amounts of knowledge
• Omniscient: Reward calculated from simulator state
• Online: Only use information available to real car

• Must estimate everything else
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Values

Simulation is a discrete event, continuous-time 
system

• Actions take different lengths of time to execute

• Standard             formulation won’t work

• Use                     instead

• Parameter β controls decay rate (like γ)
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Value-Function Approximation

Used an an artificial neural network
• 47 input units
• 20 hidden units
• 2 output units

Trained with backpropagation
• Learning rate is 0.01 or 0.001
• This makes the network conservative

980 free parameters (weights)
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Results

Trained for 60,000 simulated hours
• 4 days of computer time in 1995

Performed well
• Better than commonly-used algorithm (SECTOR)

0.0941.832014.8RL (shared)

0.0741.731314.7RL (indep)

0.1146.633815.1Best Fixed

1.1247.767421.4SECTOR

% > 60 sSystem TimeSquared WaitAverage WaitDown only
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Results

2.4045.459318.8RL (shared)

2.4945.758518.6RL (indep)

3.1052.366720.1Best Fixed

13.559.5164330.3SECTOR

% > 60 sSystem TimeSquared WaitAverage WaitUp 4

1.5342.747616.9RL (shared)

1.4042.746816.9RL (indep)

0.5048.947617.9Best Fixed

9.2454.8125227.3SECTOR

% > 60 sSystem TimeSquared WaitAverage WaitUp 2
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Thoughts

Elevator system is simulated
• We could run it for real, but it would take a long time
• Assumes a sufficiently realistic simulation

State space was the result of “considerable 
experimentation”

• Machine learning (and RL) is all about the right 
representation
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Thoughts

A lot of domain knowledge was incorporated into 
the RL system

• Improves learning performance
• Makes the problem tractable
• It pays to have a domain expert

Continuous definition of value is “close enough”
• Not really the same as standard value
• But it behaves similarly
• Actual values are less important that their ordering
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Thoughts

When doing VFA with artificial neural networks, 
low (backprop) learning rates seem to work best

• Network is conservative about updates
• Seems to avoid over-estimation of values

RL system outperformed fixed algorithms 
consistently

• So, why aren’t the elevator companies using it?
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Cell Phone Channel Allocation

Learns channel allocations for cell phones
• Channels are limited
• Allocations affect adjacent cells
• Want to minimize dropped and blocked calls

[Singh & Bertsekas, 97]

2 Channels

1

1

1

2

bad good
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States

State consists of two elements
• Occupied and unoccupied channels for each cell

• Exponential in number of cells

• Last event (arrival, departure, handoff)

This is too large to use directly
• 7049 states for example in paper
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States

State space actually used has two components
• Availability: Number of free channels in cell
• Packing: Number of times each channel is used 

within interference radius
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Actions

Call arrival
• Evaluate possible next channels
• Assign one with highest value

Call termination
• Free channel
• Consider reassigning each ongoing call to just-

released channel
• Perform reassignment (if any) with highest value
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Rewards and Values

Reward is number of on-going calls

Again, this is a continuous-time system

• Value is                   , where is the number of on-going 
calls at time t

t c(t)e
0

t- d∫
∞

β
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Value-Function Approximation

The value function is represented by an artificial 
neural network

• Linear units
• Evaluates state and returns value
• Trained using the TD algorithm
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Results

Compared to best fixed and adaptive algorithms 
from the literature

• FA: Fixed set of channels pre-computed and 
allocated to each cell.

• BDCL: Best adaptive algorithm from the literature

Tested at different call levels
• 150, 200, 350, variable calls/hour
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Results

From: Singh & Bertsekas, 97
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Thoughts

There is a discrete-state representation
• But, it’s too big to deal with

Lots of domain knowledge in the state vector
• Again, it’s all about the representation

State representation is relative for each cell
• Does not grow as number of cells increases
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Thoughts

Each agent makes its own decisions
• Using the same learned policy
• Might be able to do better with explicit cooperation

Again, VFA took some tweaking to get right
• Different inputs for the neural network
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Thoughts

Learning is (relatively) fast
• Best behavior after about 250 simulated minutes
• Learned behaviour is stable

Results are good
• Especially compared to currently deployed algorithm
• So, why don’t the cell companies use an RL solution?
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Network Packet Routing

Uses Q-learning to route packets in a network
• Policy determines which adjacent node to send a 

packet to
• Learns a static routing policy

Each node has a queue
• One packet is dispatched                                        

on each time step

[Boyan & Littman, 94]



ICAC 2005 Reinforcement Learning: A User's Guide 92

States and Actions

State is the destination of the current packet

Action is which adjacent node to route the packet 
through
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Rewards and Values

Reward is the Q-value estimate of the state that 
the packet is routed to

Value function Q(d, y) is estimate of time needed 
to reach destination, d, for the current packet

• This is like setting γ = 1
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Values

Values are represented in a table
• Since we have discrete states and actions

Tried VFA, but the results “proved inconclusive”
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Results

Compared results to a standard shortest-path 
routing algorithm

• Under several different load conditions

Q-routing was better in all cases
• Learned static routes that were more balanced across 

all of the nodes in the network
• Fewer “choke points” in the network
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High load conditions, number of routes passing 
through each node

Results

164 117131 125116 155

207 5445 4354 199

286 570344 330573 278

140 249196 185255 140

95 146143 149154 108

45 5876 6358 41

384 396392 393396 387

375 59102 8254 377

394 258292 246269 383

262 144248 201227 217

170 93148 141160 162

79 75105 121108 74
Shortest Path Q-routing
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Results

From: Boyan & Littman, 94
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Thoughts

This application has a potentially unbounded Q-
value, since it effectively sets γ = 1

• This is OK, since the Q-function is really a measure of 
cost

• All infinite-valued policies really are the same
• We’re only interested in the smallest Q-value
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Thoughts

VFA didn’t work, probably because there’s no 
notion of continuity between the states

• State number is nominal (has no order)
• If we renumbered the states, it wouldn’t affect the 

algorithm
• VFA comes with a built-in assumption about 

continuity between states (and their values)
• VFA generally fails at discontinuities in the value 

function (unless we’re careful)
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Thoughts

Are you compelled by the results?
• Is shortest-path a reasonable comparison?
• How much is the network tailored to show Q-routing is 

better?
• These are important questions to ask in any RL

application
• RL researchers are often not experts in the application area
• Straw men in ML papers are sometimes not the strongest 

that they could be
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Audience Participation Time

In the acceptance letter for this tutorial was the 
following challenge:

• “You might even consider getting people to describe 
any applications they’re working on currently that they 
think might benefit from RL, and you could pick a few 
of those and work through them on the fly – if you’re 
willing to something that risky.”

So, at the risk of falling flat on my face, does 
anyone have an application that RL might apply to?

stupid
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Summary for Part III

RL has been successfully applied to a number of 
problems relevant to Autonomic Computing

• Elevator control
• Cell phone channel allocation
• Network packet routing

Some of you have (hopefully) got some ideas 
about how RL can be applied to your own 
applications

• Or there’s just been 30 minutes of silence
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Part IV:
Final Thoughts
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Final Thoughts

RL seems well-suited to Autonomic Computing
• Techniques are starting to scale to deal with realistic 

problems
• RL papers are starting to appear in the AC literature

RL researchers are always looking for new, hard 
problems to work on

• Especially if they’re drawn from the “real world”
• Funding agencies are especially keen about this

This includes me
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Other RL Applications

We only talked about a few RL applications, but 
there are many other application areas

• Job shop scheduling
• Control of processes

• Robots
• Power systems
• Bicycles
• Sailboats
• Helicopters

And, there are several papers at ICAC 2005
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Standard References

The two standard references for RL are:
• “Reinforcement Learning: A Survey”, Leslie P. 

Kaelbling, Michael L. Littman, and Andrew W. 
Moore.  Journal of Artificial Intelligence Research, 
4:237-285, 1996.

• “Reinforcement Learning: An Introduction”, Richard 
S. Sutton and Andrew G. Barto.  MIT Press, 1998.
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Conferences
ICML

• International Conference on Machine Learning
NIPS

• Advances in Neural Information Processing Systems
AAAI

• National Conference on Artificial Intelligence
IJCAI

• International Joint Conference on Artificial Intelligence
IAAI

• Innovative Applications of Artificial Intelligence
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Journals

Journal of Machine Learning Research
• http://www.jmlr.org/

Journal of Artificial Intelligence Research
• http://www.jair.org/

Machine Learning Journal
• Springer

Artificial Intelligence Journal
• Elsevier
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Web Sites

Reinforcement Learning Repository
http://www-anw.cs.umass.edu/rlr/

Rich Sutton’s RL FAQ
http://www.cs.ualberta.ca/~sutton/RL-FAQ.html

Satinder Singh’s RL wiki
http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/

Google knows everything...
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Questions?

?


