
ROOT manual for GATE users

Olga KOCHEBINA

kochebina@gmail.com

Version 1.1

October 1, 2018

2

Contents

1 Obtain your ROOT file 4

2 Painless ROOT file opening 4

3 Checking statistics of a TTree 6

4 Smart plotting of your histograms (without TBrowser and python scripts) 7
4.1 Colors, markers, lines . 9

4.1.1 Color . 9
4.1.2 Size . 10
4.1.3 Style . 10

4.2 How to apply a simple selection . 13
4.3 How to rebin a histogram . 13
4.4 Superposition of two distributions . 14
4.5 Superposition of two distributions from different ROOT files 16
4.6 Simple fitting . 16

5 Scan option for a printout 17

6 Simplest script to draw with ROOT 18

7 Example of a script to make nice plots 18

8 Adding a new variable to a TTree* 20

Abstract

This manual is for GATE users who want to become familiar with ROOT output
files. This documents contains simple actions with ROOT files. Though, despite their
apparent simplicity, they are very useful and sometimes not easy to figure out. In
some sense it is the manual of ”Getting started” with ROOT. Some of the used files
and scripts you can find on my github, link is here. Please, do not hesitate to contact
the author at kochebina@gmail.com if you have any questions and comments. And of
course, I strongly invite you to visit and use the ROOT web site, https://root.cern.ch/.
This manual is a brief introduction. Hopefully, it will help you in your first steps and
save you some time.

Have fun!

The author would like to thank Benoit VIAUD who taught me almost everything
that you will find in this manual.

3

https://github.com/kochebina/ROOT_manual_for_Gate_users/tree/master/Materials
https://root.cern.ch/

1 Obtain your ROOT file

The standard way to get ROOT output is to add in your GATE macro:
/gate/output/root/enable

/gate/output/root/setFileName YourOutputFile

This command creates a file YourOutputFile.root, which contains usually several ROOT
TTree objects, like Hits, Singles, Coincidences. TTree is a ROOT object consisting of a
list of independent branches (TBranch). Each of them corresponds to saved variables from
obtained in GATE simulation. It can be energies, hit positions, process IDs etc. for each
generated event.

One can choose the standard TTree with commands:
/gate/output/root/setRootHitFlag 1

/gate/output/root/setRootSinglesFlag 1

In this case the .root file will contain default trees of Singles and Hits.

It is possible to add a TTree, for example, with an energy selection. To do so one should
add in digitizer something like:
/gate/digitizer/name peak171

/gate/digitizer/insert singleChain

/gate/digitizer/peak171/setInputName Singles

/gate/digitizer/peak171/insert thresholder

/gate/digitizer/peak171/thresholder/setThreshold 153.9 keV

/gate/digitizer/peak171/insert upholder

/gate/digitizer/peak171/upholder/setUphold 188.1 keV

This will add to the .root file a TTree with a name peak171 which will contain Singles events
with energies [153.9,188.1] keV. The more details could be found on GATE wiki page.

2 Painless ROOT file opening

The simplest way to open your ROOT file is to type in terminal:
> root -l YourOutputFile.root

Option -l removes the ROOT start image.
There are two ways to check the content of your file:

1. use a TBrowser, which is not very powerful and gives an access to visualize the structure
of your ROOT file but is very limited for selection application or histogram superposi-
tion

2. Recommend way is to use command in terminal:

root[0] .ls

4

This command will display the list of all ROOT objects contained in your file or that you
created in the current ROOT session (see Figure 1). The first column corresponds to
the type of objects (TFile, TTree, root histogram TH1D, etc). The second is the name
followed by the third column which is a short description of the element. Sometimes
the TTrees are repeated twice, this should not bother you.

Figure 1: Output of .ls command

5

In order to get the content of a TTree, i.e. list of saved histograms or ”branches”, for
example for Hits TTree, one can do:

root[1] Hits->Show()

This method is used to get one entry of a tree, i.e. if one does Hits->Show(10), the
output will be given for the 10th entry. Thus, if the argument is empty, as in the example
above the output will is for the 0 entry (Figure 2).

Figure 2: Output of Show() command

3 Checking statistics of a TTree

To check how many events there are in a TTree without plotting histograms, one can open
ROOT file in a terminal window and do:

root[1] Hits->GetEntries()

The output will be like:
(Long64_t) 235868

6

which means that in the example Hits tree there are 235868 saved events.

4 Smart plotting of your histograms (without TBrowser

and python scripts)

To plot a histogram one should use option TTree -> Draw("name_of_the_branch"). For
example, if you want to plot 1D, 2D or 3D histograms of energy and positions you could do

root[1] Hits->Draw("edep") for 1D (Figure 3, top)

root[2] Hits->Draw("posX:posY") for 2D, where the first argument, posX is ordinate
axis and posY is abscissa axis (Figure 3, middle)

root[3] Hits->Draw("posX:posY:posZ") for 3D (Figure 3, bottom)

7

htemp
Entries 235868
Mean 0.1181
Std Dev 0.07894

edep
0 0.05 0.1 0.15 0.2 0.25

0

10000

20000

30000

40000

50000

htemp
Entries 235868
Mean 0.1181
Std Dev 0.07894

edep

posY
100− 50− 0 50 100

po
sX

200−

150−

100−

50−

0

50

100

150

200

posX:posY

posZ

200− 150− 100− 50− 0 50 100 150 200

posY

100−
50−

0

50

100

po
sX

200−

150−

100−

50−

0

50

100

150

200

posX:posY:posZ

Figure 3: Output of Draw commands

8

4.1 Colors, markers, lines

4.1.1 Color

It is possible to change the colors, line and marker styles and size. To change the color one
can use TTree ->SetMarkerColor(n_of_color) or TTree ->SetLineColor(n_of_color).
The n_of_color can be chosen from table in Figure 4, for more information check
https://root.cern.ch/doc/v606/classTColor.html

Figure 4: Basic ROOT colors used as a Draw() option. For more information check:
https://root.cern.ch/doc/v606/classTColor.html

The example of usage is in the following command and in Figure 5:
root[4] Hits->SetLineColor(2)

root[5] Hits->Draw("edep")

or to change marker color one can do:

root[4] Hits->SetMarkerColor(2)

root[5] Hits->Draw("edep")

htemp
Entries 235868
Mean 0.1181
Std Dev 0.07894

edep
0 0.05 0.1 0.15 0.2 0.25

0

10000

20000

30000

40000

50000

htemp
Entries 235868
Mean 0.1181
Std Dev 0.07894

edep

Figure 5: Drawing of the 1D histogram with a color option

9

https://root.cern.ch/doc/v606/classTColor.html
https://root.cern.ch/doc/v606/classTColor.html

4.1.2 Size

It is also possible to change size of lines with TTree ->SetLineWidth(size) (Figure 6):

root[4] Hits->SetLineWidth(3)

root[5] Hits->Draw("edep")

htemp
Entries 235868
Mean 0.1181
Std Dev 0.07894

edep
0 0.05 0.1 0.15 0.2 0.25

0

10000

20000

30000

40000

50000

htemp
Entries 235868
Mean 0.1181
Std Dev 0.07894

edep

Figure 6: Drawing of the 1D histogram with a LineWidth option

4.1.3 Style

It is also possible to change style of lines and markers with TTree ->SetLineStyle(n_of_style)

and TTree ->SetLineStyle(n_of_style). The n_of_style can be chosen from table in
Figure 7 and in Figure 8, for more information check
https://root.cern.ch/doc/v606/classTAttLine.html and
https://root.cern.ch/root/html534/TAttMarker.html

Figure 7: Basic ROOT line styles options. For more information check:
https://root.cern.ch/doc/v606/classTAttLine.html

An example how to use these options is in the following and the results are illustrated in
Figure 9 and in Figure 10:

10

https://root.cern.ch/doc/v606/classTAttLine.html
https://root.cern.ch/root/html534/TAttMarker.html
https://root.cern.ch/doc/v606/classTAttLine.html

Figure 8: Basic ROOT marker styles options. For more information check:
https://root.cern.ch/root/html534/TAttMarker.html

root[4] Hits->SetLineStyle(4)

root[5] Hits->Draw("edep")

and

root[4] Hits->SetMarkerStyle(4)

root[5] Hits->Draw("time:trackLength")

htemp
Entries 235868
Mean 0.1181
Std Dev 0.07894

edep
0 0.05 0.1 0.15 0.2 0.25

0

10000

20000

30000

40000

50000

htemp
Entries 235868
Mean 0.1181
Std Dev 0.07894

edep

Figure 9: Drawing of the 1D histogram with a LineStyle option

11

https://root.cern.ch/root/html534/TAttMarker.html

Figure 10: Drawing of the 2D histogram with a MarkerStyle option

12

4.2 How to apply a simple selection

It is also possible to apply a selection and after plot your variable. To do so one should use sec-
ond option of the Draw() function: TTree ->Draw("name_of_the_branch","selection").
The several examples of cuts are presented here and plot the effect of them on edep variable:

root[4] Hits->Draw("edep","trackID==1")

root[5] Hits->Draw("edep","posX>0.5")

root[6] Hits->Draw("edep","localPosX>=0.5")

root[7] Hits->Draw("edep","processName==\"phot\"") (variable is a string)

Or even more complicated selections like:

root[8] Hits->Draw("edep","trackID==1 && posX>0.5")

root[9] Hits->Draw("edep","trackID==1 || posX>0.5")

4.3 How to rebin a histogram

The default binning of a histogram in ROOT is 100 bins per axis (at least for 1D and 2D
histograms). It is possible to change it and the simplest way is the following:
One has to define a histogram with needed parameters:

root[1] TH1F* h = new TH1F("h","h",50,0,0.3)

Here we have a histogram with 50 bins in a range from 0 to 0.3.
Next step is to plot your histogram using the defined histogram ”h” (Figure 11):

root[2] Hits->Draw("edep>>h","","")

h
Entries 235868
Mean 0.1181
Std Dev 0.07894

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10000

20000

30000

40000

50000

60000 h
Entries 235868
Mean 0.1181
Std Dev 0.07894

h

Figure 11: Drawing of rebinned 1D histogram

13

4.4 Superposition of two distributions

To superimpose two or more histograms one should write word ”same” in the third option of
the Draw() function: TTree ->Draw("name_of_the_branch","selection","same"). For
example, to obtain a histogram like in Figure 12 one can do:

root[4] Hits->Draw("edep","")

root[5] Hits->SetLineColor(2)

root[6] Hits->Draw("edep","processName==\"phot\"","same")

htemp
Entries 235868
Mean 0.1181
Std Dev 0.07894

edep
0 0.05 0.1 0.15 0.2 0.25

0

10000

20000

30000

40000

50000

htemp
Entries 235868
Mean 0.1181
Std Dev 0.07894

edep

Figure 12: Drawing of two superposed the 1D histogram: one without any selection (black)
and with a cut (red)

There is also a possibility to use "esame" option for the fast comparison of two histograms.
Actually, this option plot error bars ("e" stands for that) but I would not recommend to
rely on it and calculate and plot your own error bars. However, for a fast and easy
superposition of two histograms without changing of line color it works perfectly (Figure 13):

root[4] Singles->Draw("energy")

root[5] Singles->Draw("energy","time<0.3","esame")

14

htemp
Entries 159958
Mean 0.1741
Std Dev 0.06201

energy
0 0.05 0.1 0.15 0.2 0.25 0.3

0

2000

4000

6000

8000

10000
htemp

Entries 159958
Mean 0.1741
Std Dev 0.06201

energy

Figure 13: Drawing of two superposed the 1D histogram with ”esame” option

15

4.5 Superposition of two distributions from different ROOT files

Sometimes it is useful to plot a superposition of two histograms from different ROOT files.
In this case on start by opening the ROOT file 1:

> root -l YourOutputFile.root

or by an equivalent command directly in ROOT:

root[0] TFile *_file0 = TFile::Open("YourOutputFile.root");

and draw a histogram:

root[2] Singles->Draw("energy")

The next step is to open the second file by:

root[3] TFile *_file1 = TFile::Open("YourOutputFile1.root");

and draw the new histogram with ”same” or ”esame” option:

root[4] Singles->Draw("energy","","esame")

4.6 Simple fitting

It is possible to do a simple fit of your distribution. For this after drawing your histogram
you need to go to the canvas window and select Tools --> Fit Panel . You will have new
window with a Fit Panel as presented in Figure 14. There you can choose your fitting func-
tion, fitting method, fitting range etc. In the following example, the fit is done by Gaussian
function in the range [0.13;0.21] MeV. The parameters of the fit are printed in the terminal
window where you started ROOT and look like following:
FCN=1259.74 FROM MIGRAD STATUS=CONVERGED 75 CALLS 76 TOTAL

EDM=1.82902e-12 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO. NAME VALUE ERROR SIZE DERIVATIVE

1 Constant 9.05059e+03 4.05523e+01 5.29487e-01 -2.23836e-09

2 Mean 1.70049e-01 4.42797e-05 7.60710e-07 -4.18082e-02

3 Sigma 1.28126e-02 3.88904e-05 1.30065e-05 -8.44577e-04

More about the fitting options can be found on ROOT web page.

16

Figure 14: Fit panel and an example of fitted histogram

5 Scan option for a printout

Sometimes it is useful to printout the content of a branch, for example, in case when you
want to study some anomalies. For this purpose one can use Scan() function. It is similar
to Draw(), i.e. you also can apply cuts and plot several variables. For example, if one does:
root[4] Hits->Scan("edep:posX","time<0.1&&posY>0")

the output will be something like this:

* Row * edep * posX *

* 4 * 0.0198734 * 25.182537 *

* 5 * 0 * 25.227350 *

* 11 * 0 * -180.9978 *

* 14 * 0.2450000 * 104.99372 *

* 15 * 0.1710000 * -91.10610 *

* 18 * 0.2199750 * 58.401462 *

* 21 * 0.2450000 * -181.6459 *

* ...

* 60 * 0.1710000 * -47.08741 *

Type <CR> to continue or q to quit ==>

There are only first 25 lines in the output, one can press either ”Enter” to continue or ”q”
to exit.

17

6 Simplest script to draw with ROOT

Sometimes it is useful to group the previous commands in a small script. Let’s call it
my_script.C, in order to run it one can do:
> root -l my_script.C

The my_script.C should contain something like this:
{

TFile *_file0 = TFile::Open("YourOutputFile.root");

Singles->Draw("energy");

Singles->Draw("energy","time<0.3","esame");

},
where you open file at the beginning and after you can copy your plotting commands. NB:
The plotting commands are done for the last opened file. If you want to plot
two histograms from different files, you have to open each time the needed file
before plotting.

7 Example of a script to make nice plots

I hear all the time a lot of complains that the ROOT plots are not beautiful. Thus, in this
section I propose you a template to start for your plots. To run the script one should do:
> root -l my_script.C

The name of the main function in my_script.C must be the same as the name of your
script file containing the following:
void my_script() {

//remove the stat from upper right corner

gStyle->SetOptStat(0);

//remove the title

gStyle->SetOptTitle(0);

//define fonts sizes

gStyle->SetTextSize(0.06);

gStyle->SetLabelSize(0.06,"x");

gStyle->SetLabelSize(0.06,"y");

gStyle->SetLabelSize(0.06,"z");

gStyle->SetTitleSize(0.06,"x");

gStyle->SetTitleSize(0.05,"y");

gStyle->SetTitleSize(0.06,"z");

//define number of divisions on any axis, here is done only for "Y"

gStyle->SetNdivisions(505,"y");

gStyle->SetLineWidth(3);

//define your ROOT file name

TString filename = "YourOutputFile.root";

18

// open the file

TFile *f = TFile::Open(filename);

// get the TTree

TTree *Tree = (TTree*)f->Get("Singles");

// define the variable(s) of interest, type of variable must be respected

Float_t energy;

// define the branch(s) of interest

TBranch *benergy;

// Set branch address

Tree->SetBranchAddress("energy", &energy, &benergy);

// Get number of events in the TTree

const int n=(const int)Tree->GetEntries();

// Define a histogram with 100 bins, on x from 0 to 0.3

TH1F* h = new TH1F("h","h",100,0,0.3);

// Loop over events

for(int i=0;i<n;i++)

{

//get event i

Tree->GetEntry(i);

benergy->GetEntry(i);

//print out the values

cout<<i<<" "<<energy<<endl;

//fill histogram

h->Fill(energy);

}

//Define canvas

TCanvas *can = new TCanvas("can","can",600,800);

//Define paramters of the canvas

can->SetFillColor(0);

can->SetBorderMode(0);

can->SetBorderSize(3);

can->SetBottomMargin(0.14);

can->SetLeftMargin(0.16);

can->SetFrameBorderMode(0);

can->SetFrameLineWidth(3);

can->SetFrameBorderMode(0);

19

//Define parameters of the histogram

h->SetLineWidth(2);

h->SetLineColor(2);

h->GetXaxis()->SetTitle("Energy, MeV");

h->GetYaxis()->SetTitleOffset(1.6);

h->GetYaxis()->SetTitle("Arbitrary units");

//Draw histogram

h->Draw();

//Save cancas as .pdf

can->SaveAs("energy.pdf");

}

This script could also be found here.
The output result is shown in Figure 15.

Energy, MeV
0 0.05 0.1 0.15 0.2 0.25 0.3

A
rb

itr
ar

y
un

its

0

2000

4000

6000

8000

Figure 15: The output of the example of script making beautiful plots.

8 Adding a new variable to a TTree*

In this section I will just add a link to the script that indicates how to add a new variable.
It is a script that adds a shift on energy which is different for each of four detection heads.

One can find it here: AddShiftedEnergy.C.

20

https://github.com/kochebina/ROOT_manual_for_Gate_users/tree/master/Materials
https://github.com/kochebina/ROOT_manual_for_Gate_users/blob/master/Materials/AddShiftedEnergy.C

	Obtain your ROOT file
	Painless ROOT file opening
	Checking statistics of a TTree
	Smart plotting of your histograms (without TBrowser and python scripts)
	Colors, markers, lines
	Color
	Size
	Style

	How to apply a simple selection
	How to rebin a histogram
	Superposition of two distributions
	Superposition of two distributions from different ROOT files
	Simple fitting

	Scan option for a printout
	Simplest script to draw with ROOT
	Example of a script to make nice plots
	Adding a new variable to a TTree*

