01a_tb_e7 R&S/R&S SMIQ Series 02B, 03B, 03HD, 04B, 06ATE, 06B Operating Vol 2 R&S

User Manual: R&S/R&S SMIQ Series 02B, 03B, 03HD, 04B, 06ATE, 06B Operating Vol 2

Open the PDF directly: View PDF PDF.
Page Count: 405 [warning: Documents this large are best viewed by clicking the View PDF Link!]

1125.5610.12-11 II
Test and Measurement
Division
Operating Manual
VECTOR SIGNAL GENERATOR
SMIQ02B
1125.5555.02
SMIQ03B
1125.5555.03
SMIQ03HD
1125.5555.33
SMIQ04B
1125.5555.04
SMIQ06B
1125.5555.06
SMIQ06ATE
1125.5555.26
Volume 2
This Operating Manual consists of 2 volumes
Printed in the Federal
Republic of Germany
SMIQ Tabbed Divider Overview
1125.5610.12 E-7R.1
Tabbed Divider Overview
Volume 1
How to Use this Manual
Contents
Data Sheet
Supplement to Data Sheet
Safety Instructions
Certificate of quality
EC Certificate of Conformity
List of R & S Representatives
Tabbed Divider
1 Chapter 1: Preparation for Use
2 Chapter 2: Manual Operation
10 Index
Volume 2
How to Use this Manual
Contents
Safety Instructions
Tabbed Divider
3 Chapter 3: Remote Control
4 Chapter 4: Maintenance
5 Chapter 5: Performance Test
6 Annex A: Interfaces
7 Annex B: List of Error Messages
8 Annex C: List of Commands
9 Annex D: Programming Example
10 Index
Introduction on how to use the manual SMIQ
1125.5610.12 E-7R.2
Introduction on how to use the manual
This operating manual contains essential information on commissioning, manual control, remote control,
maintenance and checking the rated specifications of SMIQ as well as all specifications of the unit and
available options.
The following models and options are described in this manual:
SMIQ02B – Vector Signal Generator 300 kHz to 2.2 GHz
SMIQ03B – Vector Signal Generator 300 kHz to 3.3 GHz
SMIQ04B – Vector Signal Generator 300 kHz to 4.4 GHz
SMIQ06B – Vector Signal Generator 300 kHz to 6.4 GHz
Option SM-B1 – Reference Oscillator OCXO
Option SM-B5 – FM/PM Modulator
Option SMIQB11 – Data Generator
Option SMIQB12 – Memory Extension to Data Generator
Option SMIQB14 – Fading Simulator FSIM1
Option SMIQB15 – Second Fading Simulator FSIM2
Option SMIQB17 – Noise Generator and Distortion Simulator
Option SMIQB19 – Rear Panel Connections for RF and LF
Option SMIQB20 – Modulation Coder
Option SMIQB21 – Bit Error Rate Test
Option SMIQB42 – Digital Standard IS-95 CDMA
Option SMIQB43 – Digital Standard W-CDMA
Option SMIQB45 – Digital Standard 3 GPP W-CDMA
Option SMIQB47 – LOW ACP Filter
Option SMIQB48 – Enhanced Functions für 3GPP W-CDMA
Option SMIQB49 – Dynamic Fading
Option SMIQB60 – Arbitrary Waveform Generator
The chapters with associated contents are as follows:
Data sheets list guaranteed specifications for the functions and characteristics of the unit
and its options.
Chapter 1 provides information on putting the unit into operation (AC supply connection,
switch-on/off), functional test, preset settings, fitting the options and mounting
the unit into a 19" rack.
Chapter 2 explains the manual control of SMIQ. It contains front and rear panel views,
describes the control elements as well as connectors, provides a short
introduction with sample settings for first-time users. It also explains how to
change parameters and the use of the list editor and gives an overview of the
menus for the functions covered by the unit and its options. It also presents
the functions and menus of the unit and its options (frequency and level
setting, analog and digital modulation, ARB, external modulation source
AMIQ, fading simulation, noise generation and distortion simulation, BERT,
sweep, LIST mode, memory sequence and general functions not relating to
signal generation).
SMIQ Introduction on how to use the manual
1125.5610.12 E-7R.3
Chapter 3 provides information on remote control of SMIQ. It informs about basics like
IEC/IEEE bus, RS-232C interface, interface and device-dependent messages,
command processing, status reporting system etc. It also includes an
overview of each command system and describes all commands available in
the unit and its options.
Chapter 4 informs about preventive maintenance and functional tests.
Chapter 5 contains information on how to check the rated specifications (required test
equipment, test setup, test procedure) and on the performance test report.
Annex A provides information on interfaces.
Annex B contains a list of SCPI- and SMIQ-specific error messages displayed by the
unit.
Annex C provides an alphabetical list of commands.
Annex D gives programming examples for remote control.
Index provides the index with entries in alphabetical order.
SMIQ Contents
1125.5610.12 3 E-9
Contents
1 Preparation for Use............................................................................................. 1.2
1.1 Putting into Operation........................................................................................................... 1.2
1.1.1 Supply Voltage ......................................................................................................... 1.2
1.1.2 Switching On/Off the Instrument .............................................................................. 1.2
1.1.3 Initial Status.............................................................................................................. 1.3
1.1.4 Setting Contrast and Brightness of the Display........................................................ 1.3
1.1.5 RAM with Battery Back-Up....................................................................................... 1.3
1.1.6 Preset Setting........................................................................................................... 1.4
1.2 Functional Test...................................................................................................................... 1.4
1.3 Fitting the Options................................................................................................................. 1.5
1.3.1 Opening the Casing.................................................................................................. 1.5
1.3.2 Overview of the Slots ............................................................................................... 1.6
1.3.3 Option SM-B1 - Reference Oscillator OCXO ........................................................... 1.6
1.3.4 Option SM-B5 - FM/PM Modulator........................................................................... 1.8
1.3.5 Option SMIQB11 - Data Generator .......................................................................... 1.9
1.3.6 Option SMIQB12 - Memory Extension to Data Generator ....................................... 1.9
1.3.7 Option SMIQB14 - Fading Simulator FSIM1 .......................................................... 1.10
1.3.8 Option SMIQB15 - Second Fading Simulator (FSIM2) .......................................... 1.12
1.3.9 Option SMIQB17 - Noise Generator and Distortion Simulator............................... 1.14
1.3.10 Option SMIQB20 - Modulation Coder..................................................................... 1.15
1.3.11 Option SMIQB21 - Bit Error Rate Test................................................................... 1.16
1.3.12 Other Software Options.......................................................................................... 1.17
1.3.13 Option SMIQB19 - Rear Panel Connections for RF and LF................................... 1.18
1.4 Mounting into a 19" Rack ................................................................................................... 1.18
Contents SMIQ
1125.5610.12 4 E-9
2 Operation ............................................................................................................. 2.1
2.1 Front and Rear Panel ............................................................................................................ 2.1
2.1.1 Display...................................................................................................................... 2.1
2.1.2 Controls and Inputs/Outputs of the Front Panel....................................................... 2.3
2.1.3 Elements of the Rear Panel ................................................................................... 2.13
2.2 Basic Operating Steps ........................................................................................................2.22
2.2.1 Design of the Display ............................................................................................. 2.22
2.2.2 Calling the Menus................................................................................................... 2.23
2.2.3 Selection and Change of Parameters .................................................................... 2.24
2.2.4 Triggering Action .................................................................................................... 2.25
2.2.5 Quick Selection of Menu (QUICK SELECT) .......................................................... 2.25
2.2.6 Use of [FREQ] and [LEVEL] Keys.......................................................................... 2.26
2.2.7 Use of [RF ON/OFF] and [MOD ON/OFF] Keys .................................................... 2.26
2.2.8 [ENTER] Key – Special Toggle Function ............................................................... 2.26
2.2.9 Changing Unit of Level........................................................................................... 2.26
2.2.10 Correction of Input.................................................................................................. 2.27
2.2.11 Sample Setting for First Users ............................................................................... 2.27
2.2.12 List Editor ...............................................................................................................2.32
2.2.12.1 Select and Generate - SELECT LIST ..................................................... 2.33
2.2.1.2 Deletion of Lists - DELETE LIST ............................................................ 2.34
2.2.11.3 Edition of Lists......................................................................................... 2.35
2.2.11.4 Pattern Setting to Operate the List Editor ............................................... 2.39
2.2.12 Save/Recall - Storing/Calling of Instrument Settings ........................................... 2.43
2.3 Menu Summary.................................................................................................................... 2.44
2.4 RF Frequency....................................................................................................................... 2.45
2.4.1 Frequency Offset.................................................................................................... 2.46
2.5 RF Level................................................................................................................................ 2.47
2.5.1 Level Offset ............................................................................................................ 2.49
2.5.2 Interrupt-free Level Setting..................................................................................... 2.50
2.5.3 Switching On/Off Internal Level Control ................................................................. 2.50
2.5.4 User Correction (UCOR) ........................................................................................ 2.52
2.5.5 EMF........................................................................................................................2.53
2.5.6 [RF ON / OFF]-Key................................................................................................. 2.54
2.5.7 Reset Overload Protection ..................................................................................... 2.54
2.6 Modulation - General........................................................................................................... 2.55
2.6.1 Modulation Sources................................................................................................ 2.55
2.6.2 LF Generator.......................................................................................................... 2.57
2.6.3 Simultaneous Modulation....................................................................................... 2.57
2.6.4 [MOD ON/OFF] Key ............................................................................................... 2.58
2.7 Analog Modulations ............................................................................................................ 2.59
2.7.1 Amplitude Modulation............................................................................................. 2.59
2.7.2 Broadband AM (BB-AM)......................................................................................... 2.60
2.7.3 Frequency Modulation............................................................................................ 2.61
2.7.3.1 FM Deviation Limits ................................................................................ 2.62
SMIQ Contents
1125.5610.12 5 E-9
2.7.3.2 Preemphasis........................................................................................... 2.62
2.7.4 Phase Modulation................................................................................................... 2.63
2.7.4.1 PM Deviation Limits ................................................................................ 2.64
2.7.5 Pulse Modulation.................................................................................................... 2.65
2.8 Vector Modulation ............................................................................................................... 2.66
2.8.1 I/Q Impairment ....................................................................................................... 2.69
2.9 Fading Simulation ............................................................................................................... 2.70
2.9.1 Output Power with Fading...................................................................................... 2.71
2.9.2 Two-Channel Fading.............................................................................................. 2.71
2.9.3 Correlation between Paths..................................................................................... 2.72
2.9.4 Menu FADING SIM ................................................................................................ 2.72
2.9.4.1 Menu STANDARD FADING ................................................................... 2.73
2.9.4.2 Menu FINE DELAY................................................................................. 2.78
2.9.4.3 Menu MOVING DELAY........................................................................... 2.81
2.9.4.4 Menu BIRTH-DEATH.............................................................................. 2.83
2.9.5 Test procedure ....................................................................................................... 2.85
2.10 Digital Modulation ............................................................................................................... 2.86
2.10.1 Digital Modulation Methods and Coding................................................................. 2.87
2.10.1.1 PSK and QAM Modulation...................................................................... 2.87
2.10.1.2 Modulation π/4DQPSK............................................................................ 2.88
2.10.1.3 FSK Modulation ...................................................................................... 2.89
2.10.1.4 Coding..................................................................................................... 2.89
2.10.1.5 Setting Conflicts...................................................................................... 2.91
2.10.2 Internal Modulation Data and Control Signals from Lists ....................................... 2.92
2.10.3 Internal PRBS Data and Pattern ............................................................................ 2.94
2.10.4 Digital Data and Clock output Signals.................................................................... 2.95
2.10.4.1 Serial Interfaces DATA, BIT CLOCK and SYMBOL CLOCK.................. 2.95
2.10.4.2 Parallel Interfaces DATA and SYMBOL CLOCK .................................... 2.95
2.10.5 External Modulation Data and Control Signals....................................................... 2.95
2.10.5.1 External Serial Modulation Data ............................................................. 2.96
2.10.5.2 External Parallel Modulation Data........................................................... 2.97
2.10.5.3 Asynchronous Interface for External Modulation Data ........................... 2.98
2.10.5.4 External Control Signals ......................................................................... 2.98
2.10.6 Envelope Control.................................................................................................... 2.99
2.10.7 Clock Signals........................................................................................................ 2.100
2.10.8 RF Level For Digital Modulation........................................................................... 2.100
2.10.9 Digital Modulation Menu....................................................................................... 2.101
2.11 Digital Standard PHS......................................................................................................... 2.115
2.11.1 Sync and Trigger Signals ..................................................................................... 2.116
2.11.2 PN Generators as Internal Data Source .............................................................. 2.117
2.11.3 Lists as Internal Data Source ............................................................................... 2.118
2.11.4 External Modulation Data..................................................................................... 2.118
2.11.5 Menu DIGITAL STANDARD - PHS...................................................................... 2.119
2.12 Digital Standard IS-95 CDMA............................................................................................ 2.130
2.12.1 Sync and Trigger Signals ..................................................................................... 2.133
2.12.2 PRBS Data Source in Forward Link..................................................................... 2.134
2.12.3 PN Generators as Internal Data Source for Reverse Link ................................... 2.135
Contents SMIQ
1125.5610.12 6 E-9
2.12.4 Menu IS-95 CDMA Standard - Forward Link Signal............................................. 2.136
2.12.5 Menu IS-95 CDMA Standard - Reverse Link Signal without Channel Coding .... 2.146
2.12.6 Menu IS-95 CDMA Standard - Reverse Link Signal with Channel Coding ......... 2.148
2.13 Digital Standard W-CDMA (NTT DoCoMo/ARIB 0.0) ...................................................... 2.150
2.13.1 Sync and Trigger Signals ..................................................................................... 2.152
2.13.2 PN Generators as Internal Data Source .............................................................. 2.153
2.13.3 Lists as an Internal Data Source .......................................................................... 2.154
2.13.4 Menu W-CDMA Standard - Downlink and Uplink Signals without IQ Multiplex ... 2.154
2.13.5 Menu W-CDMA Standard - Uplink Signals with IQ Multiplex............................... 2.165
2.14 Digital Standard 3GPP W-CDMA (FDD) ........................................................................... 2.169
2.14.1 Description of Mobile Radio Transmission Method 3GPP W-CDMA................... 2.169
2.14.1.1 System Components ............................................................................ 2.171
2.14.2 Generation of 3GPP W-CDMA Signals................................................................ 2.177
2.14.2.1 Menu WCDMA/3GPP ........................................................................... 2.179
2.14.2.2 WCDMA/3GPP Menu - Para. Predef. Submenu .................................. 2.189
2.14.2.3 WCDMA/3GPP Menu - Display of CCDF ............................................. 2.191
2.14.2.4 WCDMA/3GPP Menu – Displaying Constellation Diagrams ................ 2.192
2.14.2.5 WCDMA/3GPP Menu - BS Configuration Submenu ............................ 2.193
2.14.2.6 WCDMA/3GPP Menu - MS Configuration Submenu............................ 2.199
2.14.2.7 WCDMA/3GPP – Multi Channel Edit Menu.......................................... 2.208
2.14.2.8 WCDMA/3GPP – Display of Channel Graph Menu.............................. 2.210
2.14.2.9 WCDMA/3GPP Menu – Display of Code Domain and Code Domain
Conflicts ................................................................................................ 2.211
2.14.2.10Effect of CLIPPING LEVEL Parameter on Signal................................. 2.213
2.14.2.11Synchronization and Trigger Signals .................................................... 2.215
2.14.2.12Preset/Default Values ........................................................................... 2.216
2.14.3 Background Information for the Generation of 3GPP W-CDMA Signals............. 2.219
2.14.3.1 3GPP W-CDMA Signals in Time Domain............................................. 2.219
2.14.3.2 3GPP W-CDMA Signals in the Frequency Range................................ 2.225
2.14.3.3 Effect of Data Source on the 3GPP W-CDMA Signal........................... 2.225
2.14.3.3.1 Two DPCHs with Uncorrelated Data................................... 2.226
2.14.3.3.2 Two DPCHs with Same Data .............................................. 2.226
2.14.3.3.3 16 DPCHs with Uncorrelated Data...................................... 2.227
2.14.3.3.4 16 DPCHs with same Data.................................................. 2.228
2.14.3.3.5 Use of Timing Offset ........................................................... 2.229
2.14.3.4 Effects on Crest Factor......................................................................... 2.230
2.14.3.5 Orthogonality of Channels .................................................................... 2.230
2.14.3.5.1 Ideal Scenario...................................................................... 2.230
2.14.3.5.2 Real Scenario...................................................................... 2.230
2.14.3.5.3 Effect of SCH....................................................................... 2.231
2.14.3.5.4 Effect of S-CCPCH and the Other Downlink Channels....... 2.231
2.14.3.5.5 Effect of PRACH and PCPCH............................................. 2.231
2.14.3.5.6 Effect of Scrambling Code .................................................. 2.232
2.14.3.5.7 Effect of Symbol Rates and Channelization Code Numbers2.232
2.14.3.6 Simulation of Special Scenarios ........................................................... 2.234
2.14.3.6.1 Standard Base Station......................................................... 2.234
2.14.3.6.2 Base Station with More Than 128 DPCHs .......................... 2.234
2.14.3.6.3 Base Stations with Spreading Codes Used Several Times. 2.235
2.14.3.6.4 Several Base Stations ......................................................... 2.235
SMIQ Contents
1125.5610.12 7 E-9
2.15 Enhanced Functions For Digital Standard 3GPP W-CDMA (FDD) ....................................... 2.236
2.15.1 Test Setup............................................................................................................ 2.236
2.15.2 Branching to Menus SMIQB48 of Digital Standard 3GPP WCDMA .................... 2.237
2.15.3 Enhanced Channels BS1/MS1............................................................................. 2.238
2.15.3.1 Downlink ............................................................................................... 2.240
2.15.3.1.1 P-CCPCH/BCH with System Frame Number...................... 2.241
2.15.3.1.2 Channel Coding................................................................... 2.243
2.15.3.1.3 Bit Error Insertion ................................................................ 2.244
2.15.3.1.4 External Power Control........................................................ 2.245
2.15.1.1.5 Further Setting of Enhanced Channels Menu ..................... 2.248
2.15.1.2 Uplink.................................................................................................... 2.253
2.15.1.3 Display of External Power Control Mode of Four Enhanced Channels 2.256
2.15.4 OCNS Channels................................................................................................... 2.257
2.15.4.1 OCNS Menu.......................................................................................... 2.257
2.15.1.2 Test of Maximum Input Level with SMIQ.............................................. 2.259
2.15.1.3 Favourable Sequence Length for OCNS Measurement....................... 2.260
2.15.5 Additional MS Based On MS4.............................................................................. 2.260
2.16 Digital Standard NADC......................................................................................................2.262
2.16.1 Sync and Trigger Signals ..................................................................................... 2.263
2.16.2 PN Generators as Internal Data Source .............................................................. 2.264
2.16.3 Lists as Internal Data Source ............................................................................... 2.265
2.16.4 External Modulation Data..................................................................................... 2.265
2.16.5 Menu DIGITAL STANDARD - NADC................................................................... 2.266
2.17 Digital Standard PDC ........................................................................................................ 2.279
2.17.1 Sync and Trigger Signals ..................................................................................... 2.280
2.17.2 PN Generators as Internal Data Source .............................................................. 2.281
2.17.3 Lists as Internal Data Source ............................................................................... 2.282
2.17.4 External Modulation Data..................................................................................... 2.282
2.17.5 Menu DIGITAL STANDARD - PDC...................................................................... 2.283
2.18 Digital Standard GSM/EDGE............................................................................................. 2.301
2.18.1 Sync and Trigger Signals ..................................................................................... 2.302
2.18.2 PN Generators as Internal Data Source .............................................................. 2.303
2.18.3 Lists as Internal Data Source ............................................................................... 2.304
2.18.4 External Modulation Data..................................................................................... 2.304
2.18.5 Menu DIGITAL STANDARD - GSM/EDGE.......................................................... 2.305
2.19 Digital Standard DECT ...................................................................................................... 2.318
2.19.1 Sync and Trigger Signals ..................................................................................... 2.319
2.19.2 PN Generators as Internal Data Source .............................................................. 2.320
2.19.3 Lists as Internal Data Source ............................................................................... 2.321
2.19.4 External Modulation Data..................................................................................... 2.321
2.19.5 Menu DIGITAL STANDARD - DECT ................................................................... 2.322
2.20 Digital Standard GPS ........................................................................................................ 2.334
2.20.1 Description of Global Positioning System (GPS) ................................................. 2.334
2.20.2 GPS Menu............................................................................................................ 2.335
2.20.3 Instructions for Generating GPS Signals ............................................................. 2.339
Contents SMIQ
1125.5610.12 8 E-9
2.21 Arbitrary Waveform Generator ARB ................................................................................ 2.341
2.21.1 Function................................................................................................................ 2.341
2.19.1.1 Use of WinIQSIM.................................................................................. 2.344
2.21.2 ARB MOD Menu................................................................................................... 2.345
2.21.2.1 ARB MOD - TRIGGER Menu ............................................................... 2.347
2.21.2.2 ARB MOD - SELECT WAVEFORM Menu ........................................... 2.349
2.21.2.3 ARB MOD - DELETE WAVEFORM Menu ........................................... 2.352
2.21.2.4 ARB MOD - SET SMIQ ACCORDING TO WAVEFORM Menu .......... 2.352
2.21.2.5 ARB MOD - CLOCK... Menu................................................................ 2.354
2.21.2.6 ARB MOD - IQ OUTPUT... Menu ......................................................... 2.355
2.22 External Modulation Source AMIQ................................................................................... 2.356
2.23 Bit Error Rate Test............................................................................................................. 2.368
2.23.1 Bit Error Rate Measurement with PN Sequences (BER) ..................................... 2.369
2.23.1.1 Operating Menu .................................................................................... 2.369
2.23.1.2 Signal Path and Waveform................................................................... 2.373
2.23.1.3 Test Method.......................................................................................... 2.374
PRBS Polynomials................................................................................ 2.375
Measurement Result, Accuracy, Measurement Time........................... 2.376
Possible Problems with BER Measurement and Related Solutions ..... 2.377
2.23.2 Block Error Rate Measurement (BLER)............................................................... 2.378
2.23.2.1 Operating Menu .................................................................................... 2.378
2.23.2.2 CRC Polynomial.................................................................................... 2.380
2.23.2.3 Measurement Result, Accuracy, Measurement Time........................... 2.380
2.23.2.4 Possible BLER Measurement Problems and Solutions........................ 2.382
2.24 Noise Generator and Distortion Simulator...................................................................... 2.383
2.24.1 Setting NOISE/DIST Menu................................................................................... 2.384
2.24.2 Loading New Distortion Characteristics ............................................................... 2.387
2.24.3 Level Correction of the Distortion Simulator......................................................... 2.388
2.24.4 Calculation of the Distortion Characteristic from Polynomial Equations .............. 2.390
2.25 LF Output ........................................................................................................................... 2.391
2.26 Sweep ................................................................................................................................. 2.392
2.26.1 Setting the Sweep Range (START, STOP, CENTER and SPAN)....................... 2.392
2.26.2 Selecting the Sweep Run (SPACING LIN, LOG) ................................................. 2.393
2.26.3 Operating Modes (MODE) ................................................................................... 2.393
2.26.4 Trigger Input......................................................................................................... 2.394
2.26.5 Sweep Outputs..................................................................................................... 2.394
2.26.6 RF Sweep............................................................................................................. 2.396
2.26.7 LEVEL Sweep ...................................................................................................... 2.398
2.26.8 LF Sweep ............................................................................................................. 2.399
2.27 LIST Mode .......................................................................................................................... 2.401
2.27.1 Operating Modes (MODE) ................................................................................... 2.401
2.27.2 Inputs/Outputs...................................................................................................... 2.402
2.28 Memory Sequence............................................................................................................. 2.406
SMIQ Contents
1125.5610.12 9 E-9
2.29 Utilities................................................................................................................................ 2.410
2.29.1 IEC-Bus Address (SYSTEM-GPIB)..................................................................... 2.410
2.29.2 Parameter of the RS232 Interface (SYSTEM-RS232)......................................... 2.411
2.29.3 Parameter of the SER DATA Input (SYSTEM-SERDATA).................................. 2.412
2.29.4 Suppressing Indications and Deleting Memories (SYSTEM-SECURITY) ........... 2.413
2.29.5 Indication of the IEC-Bus Language (LANGUAGE)............................................. 2.414
2.29.6 Reference Frequency Internal/External (REF OSC) ............................................ 2.414
2.29.7 Phase of the Output Signal (PHASE)................................................................... 2.415
2.29.8 Password Input With Functions Protected (PROTECT) ...................................... 2.416
2.29.9 Calibration (CALIB) .............................................................................................. 2.417
2.29.10 Indications of Module Variants (DIAG-CONFIG).................................................. 2.424
2.29.11 Voltage Indication of Test Points (DIAG-TPOINT)............................................... 2.425
2.29.12 Measurement of CARRIER/NOISE RATIO (DIAG-C/N MEAS)........................... 2.426
2.29.13 Indications of Service Data (DIAG-PARAM) ........................................................ 2.427
2.29.14 Test (TEST).......................................................................................................... 2.427
2.29.15 Assigning Modulations to the [MOD ON/OFF] Key (MOD-KEY).......................... 2.428
2.29.16 Setting Auxiliary Inputs/Outputs (AUX-I/O) .......................................................... 2.429
2.29.17 Switching On/Off Beeper (BEEPER).................................................................... 2.430
2.29.18 Installation of Software Option ............................................................................. 2.431
2.30 The Help System................................................................................................................ 2.432
2.31 Status.................................................................................................................................. 2.432
2.32 Error Messages.................................................................................................................. 2.433
Contents SMIQ
1125.5610.12 10 E-9
3 Remote Control.................................................................................................... 3.1
3.1 Brief Instructions................................................................................................................... 3.1
3.1.1 IEC-Bus....................................................................................................................... 3.1
3.1.2 RS-232 Interface......................................................................................................... 3.2
3.2 Switchover to Remote Control............................................................................................. 3.2
3.2.1 Remote Control via IEC Bus....................................................................................... 3.3
3.2.1.1 Setting the Device Address....................................................................... 3.3
3.2.1.2 Indications during Remote Control ........................................................... 3.3
3.2.1.3 Return to Manual Operation...................................................................... 3.3
3.2.2 Remote Control via RS-232-Interface......................................................................... 3.4
3.2.2.1 Setting the Transmission Parameters ...................................................... 3.4
3.2.2.2 Indications during Remote Control ........................................................... 3.4
3.2.2.3 Return to Manual Operating...................................................................... 3.4
3.3 Messages ............................................................................................................................... 3.4
3.3.1 Interface Message ...................................................................................................... 3.4
3.3.2 Device Messages (Commands and Device Responses) ........................................... 3.5
3.4 Structure and Syntax of the Device Messages................................................................... 3.5
3.4.1 SCPI Introduction........................................................................................................ 3.5
3.4.2 Structure of a Command ............................................................................................ 3.6
3.4.3 Structure of a Command Line..................................................................................... 3.8
3.4.4 Responses to Queries ................................................................................................ 3.8
3.4.5 Parameter ................................................................................................................... 3.9
3.4.6 Overview of Syntax Elements................................................................................... 3.11
3.5 Description of Commands.................................................................................................. 3.12
3.5.1 Notation..................................................................................................................... 3.12
3.5.2 Common Commands................................................................................................ 3.14
3.5.3 ABORt System.......................................................................................................... 3.17
3.5.4 ARB System.............................................................................................................. 3.18
3.5.4.1 ARB Waveform Format .......................................................................... 3.23
3.5.4.2 Creating a Waveform „Manually............................................................ 3.25
3.5.4.3 Converting a Waveform with the Application Software AMIQ-K2........... 3.29
3.5.4.4 AMIQ Compatible Commands for Transmission and Administration of
Waveforms ............................................................................................. 3.29
3.5.5 BERT System ........................................................................................................... 3.30
3.5.6 BLER System............................................................................................................ 3.34
3.5.7 CALibration System .................................................................................................. 3.37
3.5.8 DIAGnostic System................................................................................................... 3.40
3.5.9 DISPLAY System...................................................................................................... 3.43
3.5.10 FORMat System ....................................................................................................... 3.44
3.5.11 MEMory System........................................................................................................ 3.45
3.5.12 OUTPut System........................................................................................................ 3.46
3.5.13 OUTPut2 System...................................................................................................... 3.48
3.5.14 SOURce System....................................................................................................... 3.49
3.5.14.1 SOURce:AM Subsystem......................................................................... 3.50
3.5.14.2 SOURce:CORRection Subsystem.......................................................... 3.51
3.5.14.3 SOURce:DECT Subsystem .................................................................... 3.53
SMIQ Contents
1125.5610.12 11 E-9
3.5.14.4 SOURce:DIST Subsystem...................................................................... 3.61
3.5.14.5 SOURce:DM Subsystem ........................................................................ 3.65
Vector Modulation................................................................................... 3.65
Digital Modulation ................................................................................... 3.67
3.5.14.6 SOURce:FM Subsystem......................................................................... 3.78
3.5.14.7 SOURce:FREQuency Subsystem .......................................................... 3.80
3.5.14.8 SOURce:FSIM-Subsystem ..................................................................... 3.82
3.5.14.9 SOURce:GPS Subsystem ...................................................................... 3.93
3.5.14.10SOURce:GSM Subsystem (Digital Standard GSM/EDGE) .................... 3.96
3.5.14.11SOURce:IS95 Subsystem (Digital Standard IS-95 CDMA) .................. 3.102
3.5.14.12SOURce:LIST Subsystem .................................................................... 3.110
3.5.14.13SOURce:MARKer Subsystem .............................................................. 3.112
3.5.14.14SOURce:MODulation Subsystem......................................................... 3.114
3.5.14.15SOURce:NADC Subsystem.................................................................. 3.115
3.5.14.16SOURce:NOISe Subsystem ................................................................. 3.123
3.5.14.17SOURce:PDC Subsystem .................................................................... 3.124
3.5.14.18SOURce:PHASe Subsystem ................................................................ 3.133
3.5.14.19SOURce:PHS Subsystem..................................................................... 3.134
3.5.14.20SOURce:PM Subsystem....................................................................... 3.142
3.5.14.21SOURce:POWer Subsystem................................................................ 3.144
3.5.14.22SOURce:PULM Subsystem.................................................................. 3.147
3.5.14.23SOURce:ROSCillator Subsystem......................................................... 3.148
3.5.14.24SOURce:SWEep Subsystem................................................................ 3.149
3.5.14.25SOURce:WCDMa Subsystem (NTT DoCoMo/ARIB 0.0)..................... 3.152
3.5.14.26SOURce:W3GPp-Subsystem............................................................... 3.159
3.5.14.27SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems ............. 3.180
3.5.15 SOURce2 System................................................................................................... 3.194
3.5.15.1 SOURce2:FREQuency Subsystem ...................................................... 3.194
3.5.15.2 SOURce2:MARKer Subsystem ............................................................ 3.196
3.5.15.3 SOURce2:SWEep Subsystem.............................................................. 3.197
3.5.16 STATus System...................................................................................................... 3.199
3.5.17 SYSTem System .................................................................................................... 3.201
3.5.18 TEST System.......................................................................................................... 3.207
3.5.19 TRIGger System ..................................................................................................... 3.210
3.5.20 UNIT System .......................................................................................................... 3.215
3.6 Instrument Model and Command Processing................................................................ 3.215
3.6.1 Input Unit................................................................................................................. 3.215
3.6.2 Command Recognition ........................................................................................... 3.216
3.6.3 Data Set and Instrument Hardware ........................................................................ 3.216
3.6.4 Status Reporting System ........................................................................................ 3.216
3.6.5 Output Unit.............................................................................................................. 3.217
3.6.6 Command Sequence and Command Synchronization........................................... 3.217
3.7 Status Reporting System.................................................................................................. 3.218
3.7.1 Structure of an SCPI Status Register ..................................................................... 3.218
3.7.2 Overview of the Status Registers ........................................................................... 3.220
3.7.3 Description of the Status Registers ........................................................................ 3.221
3.7.3.1 Status Byte (STB) and Service Request Enable Register (SRE) ......... 3.221
3.7.3.2 IST Flag and Parallel Poll Enable Register (PPE) ................................ 3.222
3.7.3.3 Event Status Register (ESR) and Event Status Enable Register (ESE)3.222
3.7.3.4 STATus:OPERation Register ............................................................... 3.223
3.7.3.5 STATus:QUEStionable Register........................................................... 3.224
Contents SMIQ
1125.5610.12 12 E-9
3.7.4 Application of the Status Reporting Systems.......................................................... 3.225
3.7.4.1 Service Request, Making Use of the Hierarchy Structure .................... 3.225
3.7.4.2 Serial Poll.............................................................................................. 3.225
3.7.4.3 Parallel Poll........................................................................................... 3.226
3.7.4.4 Query by Means of Commands ............................................................ 3.226
3.7.4.5 Error Queue Query ............................................................................... 3.226
3.7.5 Resetting Values of the Status Reporting Systems ................................................ 3.227
3.8 Fast Restore Mode ............................................................................................................ 3.228
3.8.1 Commands ............................................................................................................. 3.228
3.8.2 Call-Up and Termination of Operating Mode.......................................................... 3.229
3.8.3 Effects on Device Settings...................................................................................... 3.229
3.8.4 Alternative Use with Other IEC/IEEE-Bus Commands........................................... 3.230
3.8.5 Synchronization Signal............................................................................................ 3.230
4 Maintenance and Troubleshooting .................................................................... 4.2
4.1 Maintenance........................................................................................................................... 4.2
4.1.1 Cleaning the Outside................................................................................................ 4.2
4.1.2 Storage..................................................................................................................... 4.2
4.2 Functional Test...................................................................................................................... 4.2
SMIQ Contents
1125.5610.12 13 E-9
5 Checking the Rated Characteristics.................................................................. 5.2
5.1 Test Equipment and Test Assemblies................................................................................. 5.2
5.1.1 Measuring Equipment and Accessories................................................................... 5.2
5.1.2 Test Assemblies....................................................................................................... 5.3
5.1.2.1 Standard Test Assembly for Analog Modulations..................................... 5.3
5.1.2.2 Test Assembly for Analog Modulations with Audio Analyzer.................... 5.5
5.1.2.3 Test Assembly for Broadband FM ............................................................ 5.5
5.1.2.4 Test Assembly for Pulse Modulation ........................................................ 5.6
5.1.2.5 Test Assembly for Vector Modulation....................................................... 5.6
5.1.2.6 Test Assembly for SSB Phase Noise ....................................................... 5.7
5.1.2.7 Test Assembly for Output Impedance (VSWR)........................................ 5.7
5.1.2.8 Test Assembly with Spectrum Analyzer for Fading Simulation................. 5.8
5.1.2.9 Test Assembly with Sampling Oscilloscope for Fading Simulation .......... 5.8
5.1.2.10 Test Assembly for Amplitude Settling ....................................................... 5.8
5.2 Preparation, Recommended Test Frequencies and Levels .............................................. 5.9
5.3 Test Procedures .................................................................................................................. 5.10
5.3.1 Display and Keyboard ............................................................................................ 5.10
5.3.2 Frequency .............................................................................................................. 5.10
5.3.2.1 Frequency Setting................................................................................... 5.10
5.3.1.2 Settling Time........................................................................................... 5.12
5.3.1.3 Setting Time LIST MODE ....................................................................... 5.14
5.3.3 Reference Frequency............................................................................................. 5.15
5.3.1.1 Output of Internal Reference .................................................................. 5.15
5.3.1.2 Input for External Reference................................................................... 5.15
5.3.4 Level....................................................................................................................... 5.15
5.3.4.1 Level Uncertainty .................................................................................... 5.15
5.31.1.2 Output Impedance .................................................................................. 5.17
5.3.1.3 Settling Time........................................................................................... 5.18
5.31.1.4 Non-Interrupting Level Setting (ATTENUATOR MODE FIXED)............. 5.20
5.3.1.5 Overvoltage Protection (if provided) ....................................................... 5.21
5.3.5 Spectral Purity........................................................................................................ 5.21
5.3.5.1 Harmonics............................................................................................... 5.21
5.3.1.2 Subharmonics......................................................................................... 5.22
5.3.1.3 Nonharmonics......................................................................................... 5.22
5.3.1.4 Broadband Noise .................................................................................... 5.25
5.3.1.5 SSB Phase Noise ................................................................................... 5.26
5.3.1.6 Residual FM............................................................................................ 5.27
5.3.1.7 Residual AM............................................................................................ 5.27
5.3.6 Sweep .................................................................................................................... 5.27
5.3.7 Internal Modulation Generator................................................................................ 5.28
5.3.8 Vector Modulation .................................................................................................. 5.29
5.3.8.1 Input Impedance (VSWR)....................................................................... 5.29
5.3.1.2 Maximum Level....................................................................................... 5.29
5.3.1.3 Error Vector............................................................................................. 5.30
5.3.1.4 Modulation Frequency Response ........................................................... 5.30
5.3.1.5 Residual Carrier and Leakage ................................................................ 5.31
5.3.1.6 I/Q Imbalance ......................................................................................... 5.32
5.3.1.7 Level Control POW RAMP...................................................................... 5.33
5.3.9 Amplitude Modulation............................................................................................. 5.35
5.3.9.1 Modulation Depth Setting........................................................................ 5.35
Contents SMIQ
1125.5610.12 14 E-9
5.3.9.2 AM Distortion .......................................................................................... 5.35
5.3.9.3 AM Frequency Response ....................................................................... 5.35
5.3.9.4 Residual PhiM with AM........................................................................... 5.36
5.3.9.5 Level Monitoring at Input EXT1............................................................... 5.36
5.3.10 Broadband Amplitude Modulation .......................................................................... 5.37
5.3.11 Pulse Modulation.................................................................................................... 5.37
5.3.11.1 ON/OFF Ratio......................................................................................... 5.37
5.3.11.2 Dynamic Characteristics ......................................................................... 5.38
5.3.12 Frequency Modulation (Option SM-B5).................................................................. 5.38
5.3.12.1 FM Deviation Setting............................................................................... 5.38
5.3.12.2 FM Distortion........................................................................................... 5.39
5.3.12.3 FM Frequency Response........................................................................ 5.40
5.3.12.4 FM Preemphasis (optional)..................................................................... 5.41
5.3.12.5 Residual AM with FM.............................................................................. 5.41
5.3.12.6 Carrier Frequency Error with FM ............................................................ 5.41
5.3.12.7 Level Monitoring at Input EXT2............................................................... 5.42
5.3.13 Phase Modulation (Option SM-B5)......................................................................... 5.42
5.3.13.1 Deviation Setting..................................................................................... 5.42
5.3.13.2 PhiM Distortion........................................................................................ 5.42
5.3.13.3 PhiM Frequency Response..................................................................... 5.43
5.3.14 Digital Modulation (Option SMIQB20) .................................................................... 5.43
5.3.14.1 Level Error and Residual Carrier with Digital Modulation ....................... 5.43
5.3.14.2 Analog Outputs with Digital Modulation .................................................. 5.44
5.3.14.3 Modulation Depth with ASK .................................................................... 5.44
5.3.14.4 Deviation Error with FSK......................................................................... 5.44
5.3.14.5 Deviation Error with GFSK...................................................................... 5.45
5.3.14.6 Phase Error with GMSK.......................................................................... 5.45
5.3.14.7 Error Vector with PSK............................................................................. 5.45
5.3.14.8 Error Vector with QAM............................................................................ 5.45
5.3.15 Data Generator and Memory Extension (Option SMIQB11/SMIQB12) ................. 5.46
5.3.15.1 Battery Test............................................................................................. 5.46
5.3.15.2 Function Test .......................................................................................... 5.46
5.3.15.3 Interface SERDATA................................................................................ 5.48
5.3.15.4 Memory Test (including SMIQB12)......................................................... 5.49
5.3.16 Digital Standards (Options) .................................................................................... 5.51
5.3.16.1 Adjacent-Channel Power Measurement with Higher Resolution............ 5.51
5.1.16.1.1 Broadband Systems .............................................................. 5.51
5.1.16.1.2 Narrowband Systems ............................................................ 5.52
5.3.16.2 GSM/EDGE............................................................................................. 5.52
5.3.16.3 DECT ...................................................................................................... 5.53
5.3.16.4 NADC...................................................................................................... 5.55
5.3.16.5 TETRA .................................................................................................... 5.55
5.3.16.6 PDC ........................................................................................................ 5.56
5.3.16.7 PHS......................................................................................................... 5.57
5.3.17 IS-95 CDMA (Option SMIQB42)............................................................................. 5.58
5.3.18 W-CDMA - NTT DoCoMo/ARIB 0.0 (Option SMIQB43) ........................................ 5.59
5.3.19 3GPP W-CDMA for SMIQ with firmware version up to 5.20
(Options SMIQB20 and SMIQB45) ........................................................................ 5.60
5.1.19.1 3GPP W-CDMA with 1 Code Channel.................................................... 5.60
5.1.19.2 3GPP W-CDMA with 8 Code Channels.................................................. 5.62
5.3.20 3GPP W-CDMA for SMIQ with Firmware Versions 5.30 or Higher
(Options SMIQB20 and SMIQB45) ........................................................................ 5.64
5.3.20.1 3GPP W-CDMA with 1 Code Channel.................................................... 5.64
SMIQ Contents
1125.5610.12 15 E-9
5.3.20.2 3GPP W-CDMA with 8 Code Channels.................................................. 5.67
5.3.20.3 3GPP W-CDMA Test Model 1, 64 DPCH............................................... 5.68
5.3.21 3GPP W-CDMA Enhanced Channels (SMIQB48)................................................. 5.69
5.3.21.1 External Power Control........................................................................... 5.69
5.3.22 Bit Error Rate Test (Option SMIQB21)................................................................... 5.70
5.3.23 Fading Simulation (Option SMIQB14/SMIQB15) ................................................... 5.72
5.3.23.1 Frequency Response.............................................................................. 5.72
53.23.2 Additional Modulation Frequency Response .......................................... 5.73
5.3.23.3 Carrier Leakage for Fading..................................................................... 5.73
5.3.23.4 Path Attenuation ..................................................................................... 5.73
5.3.23.5 Path Delay (optional)............................................................................... 5.76
5.3.23.6 Doppler Shift (optional) ........................................................................... 5.77
5.3.24 Noise Generation and Distortion Simulation (Option SMIQB17)............................ 5.78
5.3.24.1 RF Bandwidth ......................................................................................... 5.78
5.3.24.2 Additional Modulation Frequency Response .......................................... 5.80
5.3.24.3 Residual Carrier...................................................................................... 5.80
5.3.24.4 Frequency Response through to I-FADED, Q-FADED Outputs ............. 5.81
5.3.24.5 Signal/Noise Ratio (Carrier/Noise Ratio) ................................................ 5.82
5.3.24.6 Signal/Noise Ratio (Carrier/Noise Ratio) Worldspace ............................ 5.84
5.3.24.7 Error Vector............................................................................................. 5.84
5.3.24.8 Noise Frequency Response.................................................................... 5.85
5.3.25 Arbitrary Waveform Generator (ARB, Option SMIQB60)....................................... 5.86
5.3.25.1 Frequency Response.............................................................................. 5.86
5.3.25.2 DC Voltage Offset................................................................................... 5.87
5.3.25.3 Spurious-Free Dynamic Range (SFDR) ................................................. 5.87
5.3.25.4 Level Difference of Channels.................................................................. 5.89
5.3.26 Additional Measurements for SMIQ03S................................................................. 5.90
5.4 Performance Test Report.................................................................................................... 5.92
A Annex A................................................................................................................A.2
A.1 IEC/IEEE Bus Interface..........................................................................................................A.2
A.1.1 Characteristics of the Interface ................................................................................A.2
A.1.2 Bus Lines..................................................................................................................A.2
A.1.3 Interface Functions...................................................................................................A.3
A.1.4 Interface Messages..................................................................................................A.4
A.2 RS-232-C Interface.................................................................................................................A.5
A.2.1 Interface characteristics ...........................................................................................A.5
A.2.2 Signal lines...............................................................................................................A.5
A.2.2.1 Transmission parameters .........................................................................A.6
A.2.3 Interface functions....................................................................................................A.6
A.2.3.1 Handshake................................................................................................A.7
A.3 Asynchronous Interface SERDATA .....................................................................................A.8
B Annex B................................................................................................................B.2
B.1 List of Error Messages..........................................................................................................B.2
B.1.1 SCPI-Specific Error Messages.................................................................................B.2
B.1.2 SMIQ-Specific Error Messages................................................................................B.6
Contents SMIQ
1125.5610.12 16 E-9
C Annex C................................................................................................................C.1
C.1 List of Commands (with SCPI Conformity Information)....................................................C.1
D Annex D................................................................................................................D.1
D.1 Programming Examples .......................................................................................................D.1
1. Including IEC-Bus Library for QuickBasic ................................................................D.1
2. Initialization and Default Status ................................................................................D.1
2.1. Initiate Controller ......................................................................................................D.1
2.2. Initiate Instrument.....................................................................................................D.1
3. Transmission of Instrument Setting Commands......................................................D.2
4. Switchover to Manual Control ..................................................................................D.2
5. Reading out Instrument Settings..............................................................................D.2
6. List Management......................................................................................................D.3
7. Command synchronization.......................................................................................D.3
8. Service Request.......................................................................................................D.4
10 Index
SMIQ Contents
1125.5610.12 17 E-9
Tables
Table 2-1 Input sockets for the different types of modulation........................................................... 2.55
Table 2-2 Status messages in the case of a deviation from the rated value at the external modulation
inputs EXT1 and EXT2..................................................................................................... 2.56
Table 2-3 Parameter setting ranges ................................................................................................. 2.69
Table 2-4 Phase shifts for π/4DQPSK without coding...................................................................... 2.87
Table 2-5 Phase shifts for π/4DQPSK with coding NADC, PDC, PHS, TETRA or APCO25 ........... 2.87
Table 2-6 Phase shifts for π/4DQPSK with coding TFTS................................................................. 2.87
Table 2-7 Frequency deviations for FSK methods ........................................................................... 2.88
Table 2-8 Possible combination of modulation method and coding ................................................. 2.88
Table 2-9 Coding algorithms............................................................................................................. 2.89
Table 2-10 Examples of settings conflicts 2.90
Table 2-11 PRBS generators of modulation coder............................................................................. 2.93
Table 2-12 Logic function of signals BURST GATE and LEVEL ATT................................................ 2.98
Table 2-13 PRBS generators for PHS 2.116
Table 2-14 CDMA: channel numbers and their frequencies........................................................... 2.131
Table 2-15 Preferred CDMA-frequency channels according to J-STD-008 ..................................... 2.131
Table 2-16 PN generators for IS-95 reverse link .............................................................................. 2.134
Table 2-17 PN generators for W-CDMA 2.152
Table 2-18 Parameters of W-CDMA system 2.169
Table 2-19 Generator polynomials of uplink long scrambling code generators................................ 2.171
Table 2-20 Generator polynomials of uplink short scrambling code generators .............................. 2.172
Table 2-21 Mapping of the quaternary output sequence into the binary IQ level ............................. 2.172
Table 2-22 Hierarchical structure of 3GPP W-CDMA frames .......................................................... 2.174
Table 2-23 Structure of the DPDCH channel table depending on the overall symbol rate............... 2.206
Table 2-24 Change of crest factor in the case of clipping ................................................................ 2.213
Table 2-25 Default values for base station parameters.................................................................... 2.216
Table 2-26 Default values for mobile station parameters................................................................. 2.217
Table 2-27 References to measurement channels .......................................................................... 2.241
Table 2-28 OCNS channels 2.256
Table 2-29 PRBS generators for NADC 2.261
Table 2-30 PRBS generators for PDC 2.278
Table 2-31 PRBS generators for GSM 2.300
Table 2-32 PRBS generators for DECT 2.317
Table 2-33 LIST mode; Example of a list 2.393
Table 2-35 MEMORY SEQUENCE; Example of a list...................................................................... 2.398
Table 3-1 Common Commands ....................................................................................................... 3.14
Table 3-2 List of possible responses to *OPT? ................................................................................ 3.15
Table 3-3 Synchronization with *OPC, *OPC? and *WAI............................................................... 3.213
Table 3-4 Meaning of the bits used in the status byte .................................................................... 3.217
Table 3-5 Meaning of the bits used in the event status register ..................................................... 3.218
Table 3-6 Meaning of the bits used in the STATus:OPERation register ........................................ 3.219
Table 3-7 Meaning of the bits used in the STATus:QUEStionable register.................................... 3.220
Table 3-8 Resetting instrument functions ....................................................................................... 3.223
Table 5-1 Measuring equipment and accessories.............................................................................. 5.1
Table 5-2 Range limits, main test frequencies with/without vector modulation .................................. 5.7
Table A-1 Interface function................................................................................................................A.2
Table A-2 Universal Commands .........................................................................................................A.3
Table A-3 Addressed Commands.......................................................................................................A.3
Table A-4 Interface functions (RS-232-C)...........................................................................................A.5
Contents SMIQ
1125.5610.12 18 E-9
Figures
Fig. 1-1 SMIQ, view from the top ..............................................................................................1.5
Fig. 1-2 Module FSIM............................................................................................................... 1.9
Fig. 1-3 Module NDSIM.......................................................................................................... 1.13
Fig. 1-4 Module MCOD .......................................................................................................... 1.14
Fig. 2-1 Front panel view.......................................................................................................... 2.2
Fig. 2-2 Rear panel view ........................................................................................................ 2.12
Fig. 2-3 Design of the display................................................................................................. 2.22
Fig. 2-4 MODULATION-AM menu ......................................................................................... 2.23
Fig. 2-5 Display after AM setting............................................................................................ 2.29
Fig. 2-6 Display after pattern setting ...................................................................................... 2.31
Fig. 2-7 OPERATION page of the MEM SEQ menu.............................................................. 2.32
Fig. 2-8 SELECT-LIST-selection window............................................................................... 2.33
Fig. 2-9 DELETE-LIST selection window............................................................................... 2.34
Fig. 2-10 Edit function EDIT/VIEW .......................................................................................... 2.35
Fig. 2-11 Block function FILL: Input window ............................................................................ 2.36
Fig. 2-12 Edit function INSERT: Input window......................................................................... 2.38
Fig. 2-13 Edit function DELETE: Input window ........................................................................ 2.39
Fig. 2-14 Starting point of the pattern setting........................................................................... 2.40
Fig. 2-15, a to c Pattern setting - Edition of a list ................................................................................ 2.42
Fig. 2-16 Menu FREQUENCY (preset setting) ........................................................................ 2.45
Fig. 2-17 Example of a circuit with frequency offset ................................................................ 2.46
Fig. 2-18 Menu LEVEL (preset setting) POWER RESOLUTION is set to 0.01 dB.................. 2.47
Fig. 2-19 Example of a circuit with level offset......................................................................... 2.49
Fig. 2-20 Menu LEVEL - ALC (preset setting) ......................................................................... 2.51
Fig. 2-21 Menu LEVEL - UCOR - OPERATION side............................................................... 2.52
Fig. 2-22 Menu UCOR - LEVEL-EDIT side.............................................................................. 2.53
Fig. 2-23 Menu LEVEL-EMF.................................................................................................... 2.53
Fig. 2-24 Example: Status message "EXT1-LOW" in case of voltage at EXT1 too low .......... 2.56
Fig. 2-25 Example: Settings of the LF generator in the AM menu........................................... 2.57
Fig. 2-26 Menu ANALOG MOD-AM (preset setting)................................................................ 2.59
Fig. 2-27 Menu ANALOG MOD - BB-AM (preset setting)........................................................ 2.60
Fig. 2-28 Menu ANALOG MOD-FM (preset setting), fitted with option SM-B5,
FM/PM-modulator..................................................................................................... 2.61
Fig. 2-29 Dependency of the FM maximal deviation on the RF frequency set ........................ 2.62
Fig. 2-30 Menu ANALOG MOD - PM (preset setting), fitted with option SM-B5, FM/PM-
modulator.................................................................................................................. 2.63
Fig. 2-31 Dependency of the PM maximal deviation on the RF frequency set........................ 2.64
Fig. 2-32 Menu MODULATION-PULSE (preset setting), fitted with option SM-B3, pulse
modulator, and option SM-B4, pulse generator ........................................................ 2.65
Fig. 2-33 Example: vector modulation ..................................................................................... 2.66
Fig. 2-34 VECTOR MOD menu (preset settings), equipped with option SMIQB47 and
IQMOD var. 8 or higher ............................................................................................ 2.67
Fig. 2-35 Effect of I/Q impairment............................................................................................ 2.69
Fig. 2-36 Fading simulator in the SMIQ ................................................................................... 2.70
Fig. 2-37 Two-channel fading .................................................................................................. 2.71
Fig. 2-38 Menu FADING SIM with submenus.......................................................................... 2.72
Fig. 2-39 Menu STANDARD FADING (two Fading Simulators installed) ................................ 2.73
Fig. 2-40 Doppler Frequency shift with moving receiver.......................................................... 2.76
Fig. 2-41 Menu FINE DELAY................................................................................................... 2.78
Fig. 2-42 Two paths with menu MOVING DELAY ................................................................... 2.80
Fig. 2-43 Menu MOVING DELAY............................................................................................. 2.80
Fig. 2-44 Example of hop sequence with BIRTH-DEATH fading............................................. 2.82
Fig. 2-45 Menu BIRTH-DEATH................................................................................................ 2.82
SMIQ Contents
1125.5610.12 19 E-9
Fig. 2-46 Pulse on Oscilloscope .............................................................................................. 2.84
Fig. 2-47 Modulation coder in SMIQ ........................................................................................ 2.85
Fig. 2-48 Digital input signals of modulation coder .................................................................. 2.85
Fig. 2-49 Functional blocks Coding and Mapping.................................................................... 2.86
Fig. 2-50 Constellation diagrams of BPSK, QPSK, 8PSK and 16QAM ................................... 2.86
Fig. 2-51 DATA LIST for modulation data................................................................................ 2.91
Fig. 2-52 CONTROL LIST for control signals .......................................................................... 2.92
Fig. 2-53 9-bit PRBS generator................................................................................................ 2.93
Fig. 2-54 External serial data and bit clock Data change should take place only on the
negative clock edge. ................................................................................................. 2.95
Fig. 2-55 External serial data and symbol clock, 3 bit/symbol SYMBOL CLOCK = High
marks the LSB. A status change of DATA and SYMBOL CLOCK should be
performed synchronously.......................................................................................... 2.95
Fig. 2-56 External serial data, internal clock signals................................................................ 2.95
Fig. 2-57 External parallel data and symbol clock Data change should take place only on
the negative clock edge. ........................................................................................... 2.96
Fig. 2-58 External parallel data and symbol clock SYMBOL CLOCK = High marks the LSB. A
status change of DATA and SYMBOL CLOCK should be performed synchronously......2.96
Fig. 2-59 Envelope control in SMIQ with modulation coder ..................................................... 2.98
Fig. 2-60 Signal waveforms during envelope control ............................................................... 2.99
Fig. 2-61 DIGITAL MOD menu, SMIQ equipped with option Modulation Coder SMIQB20 and
option Data Generator SMIQB11............................................................................ 2.100
Fig. 2-62 DIGITAL MOD-SOURCE menu, SMIQ equipped with option Modulation Coder
SMIQB20 and option Data Generator SMIQB11 .................................................... 2.100
Fig. 2-63 DIGITAL MOD - MODULATION... menu, SMIQ equipped with option Modulation
Coder SMIQB20 and option Data Generator SMIQB11 ......................................... 2.103
Fig. 2-64 DIGITAL MOD -FILTER... menu, SMIQ equipped with option Modulation Coder
SMIQB20 and option Data Generator SMIQB11 .................................................... 2.105
Fig. 2-65 DIGITAL MOD - TRIGGER menu, SMIQ equipped with option Modulation Coder
SMIQB20 and option Data Generator SMIQB11 .................................................... 2.108
Fig. 2-66 DIGITAL MOD - CLOCK, SMIQ equipped with option Modulation Coder
SMIQB20 and option Data Generator SMIQB11 .................................................... 2.109
Fig. 2-67 DIGITAL MOD - POWER RAMP CONTROL menu, SMIQ equipped with option
Modulation Coder SMIQB20 and option Data Generator SMIQB11....................... 2.111
Fig. 2-68 DIGITAL MOD - EXT INPUTS menu, SMIQ equipped with option Modulation
Coder SMIQB20 and option Data Generator SMIQB11 ......................................... 2.112
Fig. 2-69 Menu DIGITAL STD - PHS, SMIQ equipped with Modulation Coder SMIQB20
and Data Generator SMIQB11 ............................................................................... 2.118
Fig. 2-70 Menu DIGITAL STD - PHS - MODULATION..., SMIQ equipped with Modulation
Coder SMIQB20 and Data Generator SMIQB11.................................................... 2.118
Fig. 2-71 Menu DIGITAL STD - PHS_TRIGGER..., SMIQ equipped with Modulation Coder
SMIQB20 and Data Generator SMIQB11............................................................... 2.120
Fig. 2-72 Menu DIGITAL STD - PHS - CLOCK..., SMIQ equipped with Modulation Coder
SMIQB20 and Data Generator SMIQB11............................................................... 2.122
Fig. 2-73 Menu DIGITAL STD - PHS - POWER RAMP CONTROL... , SMIQ equipped with
Modulation Coder SMIQB20 and Data Generator SMIQB11 ................................. 2.123
Fig. 2-74 Menu DIGITAL STD - PHS - SAVE/RCL FRAME, SMIQ equipped with
Modulation Coder SMIQB20 and Data Generator SMIQB11 ................................. 2.124
Fig. 2-75 Menu DIGITAL STD - PHS - SELECT SLOT, SMIQ equipped with Modulation
Coder SMIQB20 and Data Generator SMIQB11.................................................... 2.125
Fig. 2-76 Forward link signal generation................................................................................ 2.129
Fig. 2-77 Reverse link signal generation without channel coding .......................................... 2.130
Fig. 2-78 Traffic channel 9600 in "Reverse Link Coded" mode ............................................. 2.130
Fig. 2-79 Frame structure of traffic channel 9600 in "Reverse Link Coded" mode................ 2.131
Fig. 2-80 CDMA sync signals................................................................................................. 2.132
Contents SMIQ
1125.5610.12 20 E-9
Fig. 2-81 Menu DIGITAL STD - IS-95 - MODE - FWD_LINK_18, equipped with options
modulation coder SMIQB20, data generator SMIQB11 and SMIQB42.................. 2.135
Fig. 2-82 Menu DIGITAL STD - IS-95 - MODULATION..., equipped with options
modulation coder SMIQB20, data generator SMIQB11 and SMIQB42.................. 2.137
Fig. 2-83 Menu DIGITAL STD - IS-95 - TRIGGER..., equipped with options modulation
coder SMIQB20, data generator SMIQB11 and SMIQB42..................................... 2.139
Fig. 2-84 Menu DIGITAL STD - IS-95 - CLOCK..., equipped with options modulation coder
SMIQB20, data generator SMIQB11 and SMIQB42............................................... 2.141
Fig. 2-85 Menu DIGITAL STD - IS-95 - SAVE/RCL MAPPING..., equipped with options
modulation coder SMIQB20, data generator SMIQB11 and SMIQB42.................. 2.143
Fig. 2-86 Menu DIGITAL STD - IS-95 - MODE - REV_LINK ................................................. 2.145
Fig. 2-87 Menu DIGITAL STD - IS-95 - MODE - REV_LINK_CODED .................................. 2.147
Fig. 2-88 Downlink DPCH signal generation for a code channel........................................... 2.149
Fig. 2-89 Uplink signal generation with IQ multiplex and several code channels .................. 2.150
Fig. 2-90 Menu DIGITAL STD - WCDMA - MODE - 8CHAN, LINK DIRECTION/MULTIPLEX -
DOWN, equipped with options modulation coder SMIQB20, data generator
SMIQB11 and SMIQB43......................................................................................... 2.153
Fig. 2-91 Menu DIGITAL STD - WCDMA - MODULATION..., equipped with options
modulation coder SMIQB20, data generator SMIQB11 and SMIQB43.................. 2.156
Fig. 2-92 Menu DIGITAL STD - WCDMA - TRIGGER..., equipped with options
modulation coder SMIQB20, data generator SMIQB11 and SMIQB43.................. 2.158
Fig. 2-93 Menu DIGITAL STD - WCDMA - MULTICODE..., equipped with options
modulation coder SMIQB20, data generator SMIQB11 and SMIQB43.................. 2.160
Fig. 2-94 Menu DIGITAL STD - WCDMA - SPREAD CODE; equipped with options
modulation coder SMIQB20, data generator SMIQB11 and SMIQB43.................. 2.161
Fig. 2-95 Menu DIGITAL STD - WCDMA - DATA; equipped with options modulation coder
SMIQB20, data generator SMIQB11 and SMIQB43............................................... 2.162
Fig. 2-96 Menu DIGITAL STD - WCDMA - MODE - 8CHAN, -LINK DIRECTION/MULTIPLEX -
UP_IQ_MULT, equipped with options modulation coder SMIQB20, data generator
SMIQB11 and SMIQB43......................................................................................... 2.164
Fig. 2-98 Structure of the downlink scrambling code generator ............................................ 2.171
Fig. 2-99 Structure of the uplink short scrambling code generator ........................................ 2.172
Fig. 2-100 Constellation diagram of a channel with 0 dB power.............................................. 2.173
Fig. 2-101 Constellation diagram of a channel with –6 dB power............................................ 2.175
Fig. 2-102 Constellation diagram of a 3GPP W-CDMA signal with two DPCH channels........ 2.176
Fig. 2-103 Overview of DIGITAL STD – 3GPP WCDMA/3GPP menu structure..................... 2.177
Fig. 2-104 DIGITAL STD - WCDMA/3GPP - Downlink menu.................................................. 2.178
Fig. 2-105 DIGITAL STD - WCDMA/3GPP - FILTER... menu................................................. 2.180
Fig. 2-106 DIGITAL STD - WCDMA/3GPP - Downlink - COPY BS(MS) menu....................... 2.182
Fig. 2-107 DIGITAL STD – WCDMA/3GPP – TRIGGER... menu ........................................... 2.183
Fig. 2-108 DIGITAL STD – WCDMA/3GPP – SELECT BS(MS) menu ................................... 2.185
Fig. 2-109 DIGITAL STD - WCDMA/3GPP - PARA. PREDEF. menu (only downlink)............ 2.186
Fig. 2-110 DIGITAL STD – WCDMA/3GPP – CCDF menu with a trace ................................. 2.187
Fig. 2-111 Reading off the crest factor from LEVEL displays .................................................. 2.187
Fig. 2-112 DIGITAL STD – WCDMA/3GPP – CCDF menu with three traces ......................... 2.187
Fig. 2-113 DIGITAL STD - WCDMA/3GPP – CONSTELLATION menu ................................. 2.188
Fig. 2-114 DIGITAL STD - WCDMA/3GPP - BS CONFIGURATION menu ............................ 2.189
Fig. 2-115 Dynamic change of channel power (continuous).................................................... 2.191
Fig. 2-116 DIGITAL STD – WCDMA/3GPP – BS CONFIGURATION / channel table menu .. 2.192
Fig. 2-117 DIGITAL STD – WCDMA/3GPP – MS CONFIGURATION menu.......................... 2.194
Fig. 2-118 DIGITAL STD – WCDMA/3GPP – MS CONFIGURATION: PRACH only Mode
menu....................................................................................................................... 2.197
Fig. 2-119 DIGITAL STD – WCDMA/3GPP – MS CONFIGURATION: PCPCH only Mode
menu....................................................................................................................... 2.198
SMIQ Contents
1125.5610.12 21 E-9
Fig. 2-120 DIGITAL STD – WCDMA/3GPP – MS CONFIGURATION: DPCCH + DPDCH
Mode menu............................................................................................................. 2.200
Fig. 2-121 Dynamic change of channel power (continuous).................................................... 2.201
Fig. 2-122 DIGITAL STD – WCDMA/3GPP – BS CONFIGURATION / MULTI CHANNEL
EDIT menu.............................................................................................................. 2.203
Fig. 2-123 DIGITAL STD – WCDMA/3GPP – BS CONFIGURATION /CHANNEL
GRAPH menu......................................................................................................... 2.205
Fig. 2-124 Code tree of channelization codes.......................................................................... 2.206
Fig. 2-125 WCDMA/3GPP – BS CONFIGURATION / CODE DOMAIN menu (without conflict)2.206
Fig. 2-126 WCDMA/3GPP – BS CONFIGURATION / CODE DOMAIN menu (with conflict).. 2.207
Fig. 2-127 WCDMA/3GPP – BS CONFIGURATION / CODE DOMAIN CONFLICT menu..... 2.207
Fig. 2-128 WCDMA/3GPP – BS CONFIGURATION / CODE DOMAIN menu (after conflict
resolution) ............................................................................................................... 2.208
Fig. 2-129 Constellation at clipping level 100% (not clipped)................................................... 2.209
Fig. 2-130 Constellation at clipping level 50% ......................................................................... 2.209
Fig. 2-131 Signal consisting of P-CCPCH, P-SCH and S-SCH in time domain....................... 2.214
Fig. 2-132 Signal consisting of P-CCPCH, P-SCH and S-SCH in time domain (zoomed) ...... 2.214
Fig. 2-133 Constellation diagram of a signal consisting of P-CCPCH, P-SCH and S-SCH..... 2.215
Fig. 2-134 Envelope of P-CCPCH............................................................................................ 2.215
Fig. 2-135 Envelope of P-SCH or S-SCH ................................................................................ 2.216
Fig. 2-136 Envelope of AICH (Subchannel)............................................................................. 2.216
Fig. 2-137 Envelope of AICH (four subchannels) .................................................................... 2.216
Fig. 2-138 Envelope of DL-DPCCH ......................................................................................... 2.216
Fig. 2-139 Envelope of DPCH 60 ksps without TFCI............................................................... 2.216
Fig. 2-140 Constellation of a DPDCH/DPCCH channel........................................................... 2.217
Fig. 2-141 Constellation of an uplink signal consisting of a DPDCH and a DPCCH................ 2.217
Fig. 2-142 Constellation of a PRACH....................................................................................... 2.218
Fig. 2-143 Envelope of a PRACH ............................................................................................ 2.218
Fig. 2-144 Envelope of a PCPCH ............................................................................................ 2.218
Fig. 2-145 Magnitude spectrum of a 3GPP W-CDMA signal................................................... 2.219
Fig. 2-146 Magnitude spectrum (section) of a 3GPP W-CDMA signal with several channels 2.219
Fig. 2-147 Constellation of a signal with two DPCHs (uncorrelated data) ............................... 2.220
Fig. 2-148 Signal with two DPCHs (same data) in time domain .............................................. 2.220
Fig. 2-149 Constellation of a signal with two DPCHs (uncorrelated data) ............................... 2.221
Fig. 2-150 Constellation with 16 uncorrelated channels (16 time slots)................................... 2.221
Fig. 2-151 Constellation with 16 uncorrelated channels (1 time slot) ...................................... 2.222
Fig. 2-152 Constellation diagram of 16 DPCHs with same data.............................................. 2.222
Fig. 2-153 Constellation diagram of 16 DPCHs with timing offset ........................................... 2.223
Fig. 2-154 CDPA of a signal with compensated SCH.............................................................. 2.225
Fig. 2-155 Effect of SCH on CDP analysis (without compensation) ........................................ 2.225
Fig. 2-156 Effect of different scrambling codes on the power distribution ............................... 2.226
Fig. 2-157 Cancellation possible in case of several channels with identical spreading
sequences .............................................................................................................. 2.226
Fig. 2-158 Incorrect detection at various symbol rates ............................................................ 2.227
Fig. 2-159 Non-restorable DPCH channel ............................................................................... 2.227
Fig. 2-160 Complete setup for testing a W-CDMA receiver with SMIQ................................... 2.230
Fig. 2-161 Menu DIGITAL STD – WCDMA/3GPP – Section Assistant/Enhanced Functions
(downlink)................................................................................................................ 2.231
Fig. 2-162 Menu DIGITAL STD – WCDMA/3GPP – Section Assistant/Enhanced Functions
(uplink) .................................................................................................................... 2.231
Fig. 2-163 Menu DIGITAL STD-WCDMA/3GPP-ENHANCED CHANNEL (downlink) ............ 2.233
Fig. 2-164 Setup for testing Closed Loop Power Control......................................................... 2.236
Fig. 2-165 Change of channel power of 4 enhanced channels................................................ 2.237
Fig. 2-166 DIGTAL STD - WCDMA/3GPP - ENHANCED CHANNELS STATE (uplink) menu......2.243
Fig. 2-167 Display of external power control mode.................................................................. 2.245
Contents SMIQ
1125.5610.12 22 E-9
Fig. 2-168 DIGITAL STD - WCDMA/3GPP - OCNS CHANNELS menu ................................. 2.246
Fig. 2-169 DIGITAL STD - WCDMA/3GPP ADDITIONAL MS STATE menu.......................... 2.249
Fig. 2-170 Menu DIGITAL STD - NADC, SMIQ equipped with Modulation Coder SMIQB20
and Data Generator SMIQB11 ............................................................................... 2.255
Fig. 2-171 Menu DIGITAL STD - NADC - MODULATION..., SMIQ equipped with
Modulation Coder SMIQB20 and Data Generator SMIQB11 ................................. 2.255
Fig. 2-172 Menu DIGITAL STD - NADC_TRIGGER..., SMIQ equipped with Modulation
Coder SMIQB20 and Data Generator SMIQB11.................................................... 2.257
Fig. 2-173 Menu DIGITAL STD - NADC - CLOCK..., SMIQ equipped with Modulation
Coder SMIQB20 and Data Generator SMIQB11.................................................... 2.258
Fig. 2-174 Menu DIGITAL STD - NADC - POWER RAMP CONTROL... , SMIQ equipped
with Modulation Coder SMIQB20 and Data Generator SMIQB11 .......................... 2.259
Fig. 2-175 Menu DIGITAL STD - NADC - SAVE/RCL FRAME, SMIQ equipped with
Modulation Coder SMIQB20 and Data Generator SMIQB11 ................................. 2.261
Fig. 2-176 Menu DIGITAL STD - NADC - SELECT SLOT, LINK DIRECTION = DOWNLINK,
SMIQ equipped with Modulation Coder SMIQB20 and Data Generator SMIQB11 2.262
Fig. 2-177 Menu DIGITAL STD - NADC - SELECT SLOT, LINK DIRECTION = UPLINK,
SMIQ equipped with Modulation Coder SMIQB20 and Data Generator SMIQB11 2.265
Fig. 2-178 Menu DIGITAL STD - NADC - SELECT SLOT, SMIQ equipped with Modulation
Coder SMIQB20 and Data Generator SMIQB11.................................................... 2.266
Fig. 2-179 Menu DIGITAL STD - PDC, SMIQ equipped with Modulation Coder SMIQB20
and Data Generator SMIQB11 ............................................................................... 2.272
Fig. 2-180 Menu DIGITAL STD - PDC - MODULATION..., SMIQ equipped with Modulation
Coder SMIQB20 and Data Generator SMIQB11.................................................... 2.272
Fig. 2-181 Menu DIGITAL STD - PDC_TRIGGER..., SMIQ equipped with Modulation Coder
SMIQB20 and Data Generator SMIQB11............................................................... 2.274
Fig. 2-182 Menu DIGITAL STD - PDC - CLOCK..., SMIQ equipped with Modulation Coder
SMIQB20 and Data Generator SMIQB11............................................................... 2.275
Fig. 2-183 Menu DIGITAL STD - PDC - POWER RAMP CONTROL... , SMIQ equipped
with Modulation Coder SMIQB20 and Data Generator SMIQB11 .......................... 2.276
Fig. 2-184 Menu DIGITAL STD - PDC - SAVE/RCL FRAME, SMIQ equipped with
Modulation Coder SMIQB20 and Data Generator SMIQB11 ................................. 2.278
Fig. 2-185 Menu DIGITAL STD - PDC - SELECT SLOT, LINK DIRECTION DOWNLINK,
SMIQ equipped with Modulation Coder SMIQB20 and Data Generator SMIQB11 2.279
Fig. 2-186 Menu DIGITAL STD - PDC - SELECT SLOT, LINK DIRECTION = DOWNLINK,
SMIQ equipped with Modulation Coder SMIQB20 and Data Generator SMIQB11 2.283
Fig. 2-187 Menu DIGITAL STD - PDC - SELECT SLOT, LINK DIRECTION = DOWNLINK,
SMIQ equipped with Modulation Coder SMIQB20 and Data Generator SMIQB11 2.285
Fig. 2-188 Menu DIGITAL STD - PDC - SELECT SLOT, LINK DIRECTION = UPLINK, SMIQ
equipped with Modulation Coder SMIQB20 and Data Generator SMIQB11 .......... 2.287
Fig. 2-189 Menu DIGITAL STD - GSM/EDGE, SMIQ equipped with Modulation Coder
SMIQB20 and Data Generator SMIQB11............................................................... 2.294
Fig. 2-190 Menu DIGITAL STD - GSM/EDGE - MODULATION..., SMIQ equipped with
Modulation Coder SMIQB20 and Data Generator SMIQB11 ................................. 2.294
Fig. 2-191 Menu DIGITAL STD - GSM/EDGE_TRIGGER..., SMIQ equipped with
Modulation Coder SMIQB20 and Data Generator SMIQB11 ................................. 2.296
Fig. 2-192 Menu DIGITAL STD - GSM/EDGE - CLOCK..., SMIQ equipped with Modulation
Coder SMIQB20 and Data Generator SMIQB11.................................................... 2.297
Fig. 2-193 Menu DIGITAL STD - GSM/EDGE - POWER RAMP CONTROL... , SMIQ
equipped with Modulation Coder SMIQB20 and Data Generator SMIQB11 .......... 2.298
Fig. 2-194 Menu DIGITAL STD - GSM/EDGE - SAVE/RCL FRAME, SMIQ equipped with
Modulation Coder SMIQB20 and Data Generator SMIQB11 ................................. 2.299
Fig. 2-195 Menu DIGITAL STD - GSM/EDGE - SELECT SLOT - NORM, SMIQ equipped
with Modulation Coder SMIQB20 and Data Generator SMIQB11 .......................... 2.300
Fig. 2-196 Menu DIGITAL STD - GSM/EDGE - SELECT SLOT - DUMMY, SMIQ
equipped with Modulation Coder SMIQB20 and Data Generator SMIQB11 .......... 2.302
SMIQ Contents
1125.5610.12 23 E-9
Fig. 2-197 Menu DIGITAL STD - GSM/EDGE - SELECT SLOT – ALL_DATA, SMIQ
equipped with Modulation Coder SMIQB20 and Data Generator SMIQB11 .......... 2.304
Fig. 2-198 Menu DIGITAL STD - GSM/EDGE - SELECT SLOT – EDGE, SMIQ equipped
with Modulation Coder SMIQB20 and Data Generator SMIQB11 .......................... 2.305
Fig. 2-199 Menu DIGITAL STD - DECT, SMIQ equipped with Modulation Coder SMIQB20
and Data Generator SMIQB11 ............................................................................... 2.311
Fig. 2-200 Menu DIGITAL STD - DECT - MODULATION... .................................................... 2.311
Fig. 2-201 Menu DIGITAL STD - DECT_TRIGGER..., SMIQ equipped with Modulation
Coder SMIQB20 and Data Generator SMIQB11.................................................... 2.313
Fig. 2-202 Menu DIGITAL STD - DECT - CLOCK..., SMIQ equipped with Modulation Coder
SMIQB20 and Data Generator SMIQB11............................................................... 2.315
Fig. 2-203 Menu DIGITAL STD - DECT - POWER RAMP CONTROL... , SMIQ equipped
with Modulation Coder SMIQB20 and Data Generator SMIQB11 .......................... 2.316
Fig. 2-204 Menu DIGITAL STD - DECT - SAVE/RCL FRAME, SMIQ equipped with
Modulation Coder SMIQB20 and Data Generator SMIQB11 ................................. 2.317
Fig. 2-205 Menu DIGITAL STD - DECT - SELECT SLOT, SMIQ equipped with Modulation
Coder SMIQB20 and Data Generator SMIQB11.................................................... 2.319
Fig. 2-206 Signal flow of ARB generator.................................................................................. 2.323
Fig. 2-207 Block diagram SMIQB60 ........................................................................................ 2.324
Fig. 2-208 Signal flow SMIQB60.............................................................................................. 2.325
Fig. 2-209 Trigger signals SMIQB60........................................................................................ 2.326
Fig. 2-210 ARB MOD menu..................................................................................................... 2.327
Fig. 2-211 ARB MOD - TRIGGER... menu .............................................................................. 2.329
Fig. 2-212 ARB MOD - SELECT WAVEFORM... menu .......................................................... 2.331
Fig. 2-213 ARB MOD - WAVEFORM INFO menu................................................................... 2.331
Fig. 2-214 ARB MOD - DELETE WAVEFORM... menu .......................................................... 2.334
Fig. 2-215 ARB MOD - SET SMIQ ACCORDING TO WAVEFORM menu............................ 2.334
Fig. 2-216 ARB MOD - CLOCK... menu .................................................................................. 2.336
Fig. 2-217 ARB MOD - IQ OUTPUT... menu ........................................................................... 2.337
Fig. 2-218 Vector modulation with an external AMIQ .............................................................. 2.338
Fig. 2-219 Menu AMIQ CTRL (presetting depends on AMIQ)................................................. 2.340
Fig. 2-220 Menu AMIQ CTRL -SETUP.................................................................................... 2.340
Fig. 2-221 Menu AMIQ CTRL -SAVE/RECALL SETTINGS... ................................................. 2.342
Fig. 2-222 Menu AMIQ - SELECT WAVEFORM/EXECUTE BATCH...................................... 2.343
Fig. 2-223 Menu AMIQ CTRL -LEVEL..................................................................................... 2.345
Fig. 2-224 Menu AMIQ CTRL - MARKER................................................................................ 2.347
Fig. 2-225 Menu AMIQ CTRL – BIT ERROR RATE TEST...................................................... 2.348
Fig. 2-226 BER Measurement ................................................................................................. 2.350
Fig. 2-227 Operating menu for BER measurement ................................................................. 2.351
Fig. 2-228 PRBS polynomials .................................................................................................. 2.357
Fig. 2-229 Block diagram of noise generator and distortion simulator..................................... 2.360
Fig. 2-230 Noise generator and distortion simulator in SMIQ .................................................. 2.360
Fig. 2-231 Menu NOISE/DIST (presetting) .............................................................................. 2.361
Fig. 2-232 Menu NOISE/DIST - POLYNOMIAL....................................................................... 2.362
Fig. 2-233 AM/AM conversion.................................................................................................. 2.364
Fig. 2-234 AM/PM conversion.................................................................................................. 2.364
Fig. 2-235 Menu LF OUTPUT (preset setting)......................................................................... 2.368
Fig. 2-236 Signal example sweep: MODE = AUTO, BLANK TIME = NORMAL..................... 2.372
Fig. 2-237 Signal example sweep: MODE = SINGLE, BLANK TIME = LONG........................ 2.372
Fig. 2-238 Menu SWEEP - FREQ............................................................................................ 2.373
Fig. 2-239 Menu SWEEP - LEVEL .......................................................................................... 2.375
Fig. 2-240 Menu SWEEP - LF GEN......................................................................................... 2.376
Fig. 2-241 Signal example LIST mode: MODE = EXT-STEP.................................................. 2.380
Fig. 2-242 Menu LIST - OPERATION page............................................................................. 2.380
Fig. 2-243 Menu List - EDIT page............................................................................................ 2.382
Contents SMIQ
1125.5610.12 24 E-9
Fig. 2-244 Menu MEM SEQ -OPERATION-page (preset setting) ........................................... 2.385
Fig. 2-245 Menu MEM SEQ - EDIT page ................................................................................ 2.386
Fig. 2-246 Menu UTILITIES -SYSTEM -GPIB ......................................................................... 2.387
Fig. 2-247 Menu UTILITIES - SYSTEM - RS232..................................................................... 2.388
Fig. 2-248 Menu UTILITIES - SYSTEM - SERDATA............................................................... 2.389
Fig. 2-249 Menu UTILITIES - SYSTEM-SECURITY................................................................ 2.390
Fig. 2-250 Menu UTILITIES - REF OSC (preset setting)......................................................... 2.391
Fig. 2-251 Menu UTILITIES - PHASE (preset setting)............................................................. 2.392
Fig. 2-252 Menu UTILITIES - PROTECT (preset setting) ....................................................... 2.393
Fig. 2-253 Menu UTILITIES - CALIB - ALL.............................................................................. 2.394
Fig. 2-254 Menu UTILITIES - CALIB - VCO SUM ................................................................... 2.395
Fig. 2-255 Menu UTILITIES - CALIB - VECTOR MOD menu.................................................. 2.396
Fig. 2-256 Menu UTILITIES - CALIB - LEV PRESET.............................................................. 2.397
Fig. 2-257 Menu UTILITIES - CALIB - ALC TABLE................................................................. 2.398
Fig. 2-258 Menu UTILITIES - CALIB - LEV ATT...................................................................... 2.399
Fig. 2-259 Menu UTILITIES - CALIB – LFGEN ....................................................................... 2.400
Fig. 2-260 Menu UTILITIES - DIAG - CONFIG........................................................................ 2.401
Fig. 2-261 Menu UTILITIES - DIAG - TPOINT ........................................................................ 2.402
Fig. 2-262 Menu UTILITIES - DIAG - C/N MEAS .................................................................... 2.403
Fig. 2-263 Menu UTILITIES - DIAG - PARAM......................................................................... 2.404
Fig. 2-264 Menu UTILITIES - MOD KEY (preset setting) ........................................................ 2.405
Fig. 2-265 Menu UTILITIES - AUX I/O..................................................................................... 2.406
Fig. 2-266 Menu UTILITIES - BEEPER ................................................................................... 2.407
Fig. 2-267 Menu UTILITIES - INSTALL, fitted with options ..................................................... 2.408
Fig. 2-268 Menu STATUS page............................................................................................... 2.409
Fig. 2-269 ERROR page.......................................................................................................... 2.410
Fig. 3-1 Tree structure of the SCPI command systems using the SOURce system by way
of example .................................................................................................................. 3.6
Fig. 3-2 Instrument model in the case of remote control by means of the IEC bus............. 3.205
Fig. 3-3 The status -register model...................................................................................... 3.208
Fig. 3-4 Overview of the status register ............................................................................... 3.210
Fig. 4-1 UTILITIES-TEST menu .............................................................................................. 4.2
Fig. A-1 Contact Assigment of the IEC-bus socket..................................................................A.1
Fig. A-2 Pin assigment of RS-232-C connector .......................................................................A.4
Fig. A-3 Wiring of data, control and signalling lines for hardware handshake .........................A.6
SMIQ Brief Instructions
1125.5555.03 E-73.1
3 Remote Control
The instrument is equipped with an IEC-bus interface according to standard IEC 625.1/IEEE 488.2 and
a RS-232 interface. The connectors are located at the rear of the instrument and permit to connect a
controller for remote control. The instrument supports the SCPI version 1994.0 (Standard Commands
for Programmable Instruments). The SCPI standard is based on standard IEEE 488.2 and aims at the
standardization of device-specific commands, error handling and the status registers.
This section assumes basic knowledge of IEC-bus programming and operation of the controller. A
description of the interface commands is to be obtained from the relevant manuals.
The requirements of the SCPI standard placed on command syntax, error handling and configuration of
the status registers are explained in detail in the respective sections. Tables provide a fast overview of
the commands implemented in the instrument and the bit assignment in the status registers. The tables
are supplemented by a comprehensive description of every command and the status registers. Detailed
program examples of the main functions are to be found in annex D. The program examples for
IEC-bus programming are all written in QuickBASIC.
Note: In contrast to manual control, which is intended for maximum possible operating convenience,
the priority of remote control is the predictability of the device status. This means that when
incompatible settings (e.g. activation of PM and FM at the same time) are attempted, the
command is ignored and the device status remains unchanged, i.e. is not adapted to other
settings. Therefore, IEC/IEEE-bus control programs should always define an initial device status
(e.g. with command *RST) and then implement the required settings.
3.1 Brief Instructions
The short and simple operating sequence given below permits fast putting into operation of the
instrument and setting of its basic functions.
3.1.1 IEC-Bus
It is assumed that the IEC-bus address, which is factory-set to 28 has not yet been changed.
1. Connect instrument and controller using IEC-bus cable.
2. Write and start the following program on the controller:
CALL IBFIND("DEV1", generator%) Open port to the instrument
CALL IBPAD(generator%, 28) Inform controller about instrument address
CALL IBWRT(generator%, "*RST;*CLS") Reset instrument
CALL IBWRT(generator%, "FREQ 50MHz") Set frequency to 50 MHz
CALL IBWRT(generator%, "POW -7.3dBm") Set output level -7.3m dBm
"OUTP:STAT ON" Switch on RF output
CALL IBWRT(generator%, "AM:SOUR INT") Set AM modulation source LFGEN
CALL IBWRT(generator%, "AM:INT:FREQ 15kHz") Set modulation frequency to 15 kHz
CALL IBWRT(generator%, "AM 30PCT") Set AM modulation depth 30%
CALL IBWRT(generator%, "AM:STAT ON") Switch on AM
An amplitude-modulated signal is now applied at the output of the instrument.
3. To return to manual control, press the LOCAL key at the front panel.
Switchover to Remote Control SMIQ
1125.5555.03 E-73.2
3.1.2 RS-232 Interface
It is assumed that the configuration of the RS-232 interface at the unit has not yet been changed.
1. Connect unit and controller using the 0-modem cable.
2. Enter the following command at the controller to configure the controller interface:
mode com1: 9600, n, 8, 1
3. Create the following ASCII file:
*RST;*CLS
FREQ 50MHz
POW -7.3dBm
OUTP:STAT ON
AM:SOUR INT
AM:INT:FREQ 15kHz
AM 30PCT
AM:STAT ON
Switch instrument to remote control (Return key)
Reset instrument
Set frequency 50 MHz
Set output level -7.3 dBm
Switch on RF output
Set AM modulation source LFGEN
Set modulation frequency 15 kHz
Set AM modulation depth 30%
Switch on AM
(Return key)
4. Transfer ASCII file to unit via RS-232 interface. Enter the following command at the controller:
copy <filename> com1:
An amplitude-modulated signal is now applied at the output of the instrument.
5. To return to manual control, press the [LOCAL] key at the front panel.
3.2 Switchover to Remote Control
On power-on, the instrument is always in the manual operating state ("LOCAL" state) and can be
operated via the front panel.
The instrument is switched to remote control ("REMOTE" state)
IEC-bus as soon as it receives an addressed command from a controller.
RS-232 as soon as it receives either a carriage return <CR> (=0Dh) or a line feed <LF> (0Ah) from
a controller.
During remote control, operation via the front panel is disabled. The instrument remains in the remote
state until it is reset to the manual state via the front panel or via IEC bus (see Sections 3.2.1.3 and
3.2.2.3). Switching from manual operation to remote control and vice versa does not affect the
remaining instrument settings.
SMIQ Switchover to Remote Control
1125.5555.03 E-73.3
3.2.1 Remote Control via IEC Bus
3.2.1.1 Setting the Device Address
The IEC-bus address of the instrument is factory-set to 28. It can be changed manually in the
UTILITIES-SYSTEM-GPIB-ADDRESS menu or via IEC bus. Addresses 0 to 30 are permissible.
Manually:
ØCall UTILITIES-SYSTEM-GPIB-ADDRESS menu
ØEnter desired address
ØTerminate input using the [1x/ENTER] key
Via IEC bus:
CALL IBFIND("DEV1", generator%) Open port to the instrument
CALL IBPAD(generator%, 28) Inform controller about old
address
CALL IBWRT(generator%, "SYST:COMM:GPIB:ADDR 20") Set instrument to new address
CALL IBPAD(generator%, 20) Inform controller about new
address
3.2.1.2 Indications during Remote Control
The state of the remote control is evident by the words "IEC REMOTE" or "LOCAL" on the STATUS
page. The STATUS page is always displayed in the REMOTE state.
LOCKED indicates that the key [LOCAL] is disabled, i.e. switchover to manual operation is only possible
via IEC/IEEE bus. With UNLOCKED indicated, switchover to manual control is possible via the key
[LOCAL] (see also section 3.2.1.3).
3.2.1.3 Return to Manual Operation
Return to manual operation is possible via the front panel or the IEC bus.
Manually: ØPress the [LOCAL] key.
Notes:
Before switchover, command processing must be completed as otherwise
switchover to remote control is effected immediately.
The [LOCAL] key can be disabled by the universal command LLO (see
annex A) in order to prevent unintentional switchover. In this case,
switchover to manual mode is only possible via the IEC bus.
The [LOCAL] key can be enabled again by deactivating the REN control line
of the IEC bus (see annex A).
Via IEC bus: ...
CALL IBLOC(generator%) Set instrument to manual operation.
...
Messages SMIQ
1125.5555.03 E-73.4
3.2.2 Remote Control via RS-232-Interface
3.2.2.1 Setting the Transmission Parameters
To enable an error-free and correct data transmission, the parameters of the unit and the controller
should have the same setting. To prevent any problems during binary data transmission, the RS-232
interface is set for 8 data bits, no parity and 1 stop bit. This data format corresponds to the current IEEE
P1174 standard. Parameters baud rate and handshake can be manually changed in menu
UTILITIES-SYSTEM-RS-232.
Ø
ØØ
ØCall UTILITIES-SYSTEM-RS232 menu
ØSelect desired baudrate and handshake
ØTerminate input using the [1x/ENTER] key
3.2.2.2 Indications during Remote Control
The state of the remote control is evident by the words "RS-232 REMOTE" or "LOCAL" on the STATUS
page. The STATUS page is always displayed in the REMOTE state.
3.2.2.3 Return to Manual Operating
Return to manual operation is possible via the front panel.
ØPress the [LOCAL] key.
Note: Before switchover, command processing must be completed as otherwise
switchover to remote control is effected immediately.
3.3 Messages
The messages transferred via the data lines of the IEC bus (see annex A) can be divided into two
groups:
-interface messages and
-device messages.
3.3.1 Interface Message
Interface messages are transferred on the data lines of the IEC bus, the ATN control line being active.
They are used for communication between controller and instrument and can only be sent by a
controller which has the IEC-bus control. Interface commands can be subdivided into
-universal commands and
-addressed commands.
Universal commands act on all devices connected to the IEC bus without previous addressing,
addressed commands only act on devices previously addressed as listeners. The interface messages
relevant to the instrument are listed in annex A.
Some control characters are defined for the control of the RS-232-interface (see annex A)
SMIQ Structure and Syntax of the Device Messages
1125.5555.03 E-73.5
3.3.2 Device Messages (Commands and Device Responses)
Device messages are transferred on the data lines of the IEC bus, the "ATN" control line not being
active. ASCII code is used. The device messages are largely identical for the two interfaces (IEC bus
and RS232) .
A distinction is made according to the direction in which they are sent on the IEC bus:
Commands are messages the controller sends to the instrument. They operate the device
functions and request information.
The commands are subdivided according to two criteria:
1. According to the effect they have on the instrument:
Setting commands cause instrument settings such as reset of the
instrument or setting the output level to 1 volt.
Queries cause data to be provided for output on the IEC-bus,
e.g. for identification of the device or polling the active
input.
2. According to their definition in standard IEEE 488.2:
Common Commands are exactly defined as to their function and notation in
standard IEEE 488.2. They refer to functions such as
management of the standardized status registers,
reset and selftest.
Device-specific commands refer to functions depending on the features of the
instrument such as frequency setting. A majority of
these commands has also been standardized by the
SCPI committee (cf. Section 3.4.1).
Device responses are messages the instrument sends to the controller after a query. They can
contain measurement results, instrument settings and information on the
instrument status (cf. Section 3.4.4).
Structure and syntax of the device messages are described in Section 3.4. The commands are listed
and explained in detail in Section 3.5.
3.4 Structure and Syntax of the Device Messages
3.4.1 SCPI Introduction
SCPI (Standard Commands for Programmable Instruments) describes a standard command set for
programming instruments, irrespective of the type of instrument or manufacturer. The goal of the SCPI
consortium is to standardize the device-specific commands to a large extent. For this purpose, a model
was developed which defines the same functions inside a device or for different devices. Command
systems were generated which are assigned to these functions. Thus it is possible to address the same
functions with identical commands. The command systems are of a hierarchical structure. Fig. 3-1
illustrates this tree structure using a section of command system SOURce, which operates the signal
sources of the devices. The other examples concerning syntax and structure of the commands are
derived from this command system.
SCPI is based on standard IEEE 488.2, i.e. it uses the same syntactic basic elements as well as the
common commands defined in this standard. Part of the syntax of the device responses is defined with
greater restrictions than in standard IEEE 488.2 (see Section 3.4.4, Responses to Queries).
Structure and Syntax of the Device Messages SMIQ
1125.5555.03 E-73.6
3.4.2 Structure of a Command
The commands consist of a so-called header and, in most cases, one or more parameters. Header and
parameter are separated by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). The
headers may consist of several key words. Queries are formed by directly appending a question mark to
the header.
Note: The commands used in the following examples are not in every case implemented in the
instrument.
Common Commands Common commands consist of a header preceded by an asterisk "*"
and one or several parameters, if any.
Examples: *RST RESET, resets the device
*ESE 253 EVENT STATUS ENABLE, sets the bits of the
event status enable registers
*ESR? EVENT STATUS QUERY, queries the
contents of the event status register.
Device-specific commands
Hierarchy:Device-specific commands are of hierarchical structure (see Fig. 3-1).
The different levels are represented by combined headers. Headers of
the highest level (root level) have only one key word. This key word
denotes a complete command system.
Example: SOURce This key word denotes the command
system SOURce.
For commands of lower levels, the complete path has to be specified,
starting on the left with the highest level, the individual key words being
separated by a colon ":".
Example: :SOURce:FM:EXTernal:COUPling AC
This command lies in the fourth level of the SOURce system. It sets the
coupling of the external signal source to AC.
SOURce
POWer AM FM
MODE INTernal EXTernal STATePOLarity
POLarity COUPling
Fig. 3-1 Tree structure of the SCPI command systems using the SOURce system by way of
example
SMIQ Structure and Syntax of the Device Messages
1125.5555.03 E-73.7
Some key words occur in several levels within one command system. Their
effect depends on the structure of the command, that is to say, at which
position in the header of a command they are inserted.
Example: SOURce:FM:POLarity NORMal
This command contains key word POLarity in the third
command level. It defines the polarity between modulator and
modulation signal.
SOURce:FM:EXTernal:POLarity NORMal
This command contains key word POLarity in the fourth
command level. It defines the polarity between modulation
voltage and the resulting direction of the modulation only for the
external signal source indicated.
Optional key words: Some command systems permit certain key words to be optionally inserted
into the header or omitted. These key words are marked by square
brackets in the description. The full command length must be recognized
by the instrument for reasons of compatibility with the SCPI standard.
Some commands are considerably shortened by these optional key words.
Example: [SOURce]:POWer[:LEVel][:IMMediate]:OFFSet 1
This command immediately sets the offset of the signal to 1
volt. The following command has the same effect:
POWer:OFFSet 1
Note: An optional key word must not be omitted if its effect is specified
in detail by a numeric suffix.
Long and short form: The key words feature a long form and a short form. Either the short form
or the long form can be entered, other abbreviations are not permissible.
Example: STATus:QUEStionable:ENABle 1= STAT:QUES:ENAB 1
Note: The short form is marked by upper-case letters, the long form
corresponds to the complete word. Upper-case and lower-case
notation only serve the above purpose, the instrument itself
does not make any difference between upper-case and
lower-case letters.
Parameter: The parameter must be separated from the header by a "white space". If
several parameters are specified in a command, they are separated by a
comma ",". A few queries permit the parameters MINimum, MAXimum and
DEFault to be entered. For a description of the types of parameter, refer to
Section 3.4.5.
Example: SOURce:POWer:ATTenuation? MAXimum Response: 60
This query requests the maximal value for the attenuation.
Numeric suffix: If a device features several functions or features of the same kind, e.g.
inputs, the desired function can be selected by a suffix added to the com-
mand. Entries without suffix are interpreted like entries with the suffix 1.
Example: SOURce:FM:EXTernal2:COUPling AC
This command sets the coupling of the second external signal
source.
Structure and Syntax of the Device Messages SMIQ
1125.5555.03 E-73.8
3.4.3 Structure of a Command Line
A command line may consist of one or several commands. It is terminated by a <New Line>, a <New
Line> with EOI or an EOI together with the last data byte. Quick BASIC automatically produces an EOI
together with the last data byte.
Several commands in a command line are separated by a semicolon ";". If the next command belongs
to a different command system, the semicolon is followed by a colon.
Example:
CALL IBWRT(generator%, "SOURce:POWer:CENTer MINimum;:OUTPut:ATTenuation 10")
This command line contains two commands. The first command is part of the SOURce
system and is used to specify the center frequency of the output signal. The second
command is part of the OUTPut system and sets the attenuation of the output signal.
If the successive commands belong to the same system, having one or several levels in common, the
command line can be abbreviated. To this end, the second command after the semicolon starts with the
level that lies below the common levels (see also Fig. 3-1). The colon following the semicolon must be
omitted in this case.
Example:
CALL IBWRT(generator%, "SOURce:FM:MODE LOCKed;:SOURce:FM:INTernal:FREQuency 1kHz")
This command line is represented in its full length and contains two commands separated
from each other by the semicolon. Both commands are part of the SOURce command
system, subsystem FM, i.e. they have two common levels.
When abbreviating the command line, the second command begins with the level below
SOURce:FM. The colon after the semicolon is omitted.
The abbreviated form of the command line reads as follows:
CALL IBWRT(generator%, "SOURce:FM:MODE LOCKed;INTernal:FREQuency 1kHz")
However, a new command line always begins with the complete path.
Example: CALL IBWRT(generator%, "SOURce:FM:MODE LOCKed")
CALL IBWRT(generator%, "SOURce:FM:INTernal:FREQuency 1kHz")
3.4.4 Responses to Queries
A query is defined for each setting command unless explicitly specified otherwise. It is formed by adding
a question mark to the associated setting command. According to SCPI, the responses to queries are
partly subject to stricter rules than in standard IEEE 488.2.
1. The requested parameter is transmitted without header.
Example: SOURce:EXTernal:COUPling? Response: AC
2. Maximum values, minimum values and all further quantities, which are requested via a special text
parameter are returned as numerical values.
Example: FREQuency? MAX Response: 10E3
3. Numerical values are output without a unit. Physical quantities are referred to the basic units or to the
units set using the Unit command.
Example: FREQuency? Response: 1E6 for 1 MHz
4. Truth values <Boolean values> are returned as 0 (for OFF) and 1 (for ON).
Example: OUTPut:STATe? Response: 1
5. Text (character data) is returned in a short form (see also Section 3.4.5).
Example: SOURce:FM:SOURce? Response: INT
SMIQ Structure and Syntax of the Device Messages
1125.5555.03 E-73.9
3.4.5 Parameter
Most commands require a parameter to be specified. The parameters must be separated from the
header by a "white space". Permissible parameters are numerical values, Boolean parameters, text,
character strings and block data. The type of parameter required for the respective command and the
permissible range of values are specified in the command description (see Section 3.5).
Numerical values Numerical values can be entered in any form, i.e. with sign, decimal point and
exponent. Values exceeding the resolution of the instrument are rounded up or
down. The allowed range is –9.9E37 to +9.9E37. The exponent is introduced
by an "E" or "e". Entry of the exponent alone is not permissible. In the case of
physical quantities, the unit can be entered. Permissible unit prefixes are G
(giga), MA (mega), MOHM and MHZ are also permissible), K (kilo), M (milli), U
(micro) and N (nano). It the unit is missing, the basic unit is used.
Example: SOURce:FREQuency 1.5 kHz = SOURce:FREQuency 1.5E3
Special numerical The texts MINimum, MAXimum, DEFault, UP and DOWN are interpreted as
values special numerical values.
In the case of a query, the numerical value is provided.
Example: Setting command: SOURce:VOLTage MAXimum
Query: SOURce:VOLTage? Response: 15
MIN/MAX MINimum and MAXimum denote the minimum and maximum value.
DEF DEFault denotes a preset value which has been stored in the EPROM. This
value conforms to the default setting, as it is called by the *RST command.
UP/DOWN UP, DOWN increases or reduces the numerical value by one step. The step
width can be specified via an allocated step command (see annex C, List of
Commands) for each parameter which can be set via UP, DOWN.
INF/NINF INFinity, Negative INFinity (NINF) represent the numerical values -9.9E37 or
9.9E37, respectively. INF and NINF are only sent as device responses.
NAN Not a Number (NAN) represents the value 9.91E37. NAN is only sent as device
response. This value is not defined. Possible causes are the division of zero by
zero, the subtraction of infinite from infinite and the representation of missing
values.
Boolean Parameters Boolean parameters represent two states. The ON state (logically true) is
represented by ON or a numerical value unequal to 0. The OFF state (logically
untrue) is represented by OFF or the numerical value 0. 0 or 1 is provided in a
query.
Example: Setting command: SOURce:FM:STATe ON
Query: SOURce:FM:STATe? Response: 1
Text Text parameters observe the syntactic rules for key words, i.e. they can be
entered using a short or long form. Like any parameter, they have to be
separated from the header by a white space. In the case of a query, the short
form of the text is provided.
Example: Setting command: OUTPut:FILTer:TYPE EXTernal
Query: OUTPut:FILTer:TYPE? Response: EXT
Strings Strings must always be entered in quotation marks (' or ").
Example: SYSTem:LANGuage "SCPI" or
SYSTem:LANGuage 'SCPI'
Structure and Syntax of the Device Messages SMIQ
1125.5555.03 E-73.10
Block data Block data are a transmission format which is suitable for the transmission of
large amounts of data. A command using a block data parameter has the
following structure:
Example: HEADer:HEADer #45168xxxxxxxx
ASCII character # introduces the data block. The next number indicates how
many of the following digits describe the length of the data block. In the example
the 4 following digits indicate the length to be 5168 bytes. The data bytes follow.
During the transmission of these data bytes all End or other control signs are
ignored until all bytes are transmitted. Data elements comprising more than one
byte are transmitted with the byte being the first which was specified by SCPI
command "FORMat:BORDer". Here, the command :SYSTem:COMMunicate:
GPIB:LTERminator EOI should be used to set the delimiter mode to 'circuit
message EOI only' so that an accidental LF within the data sequence is not first
identified as a delimiter and thus momentarily interrupts the data transmission.
The command ...LTER STANdard resets the delimiter mode.
The format of the binary files within the block depends on the IEC-bus
command
The commands
:SOURce:LIST:FREQuency
:SOURce:LIST:POWer
:SOURce:CORRection:CSET:DATA:FREQuency
:SOURce:CORRection:CSET:DATA:POWer
:SOURce:DATA:AM
:SOURce:DATA:AMBase
:SOURce:DATA:PM
:SOURce:DATA:PMBase
:SYSTem:MSEQuence:DWELl
:SYSTem:MSEQuence:RCL
use the IEEE-754 format for double precision floating point numbers. Each
number is represented by 8 bytes.
Example:
a# = 125.345678E6
b# = 127.876543E6
CALL IBWRT(generator%, "SOURCE:CORRECTION:CSET:DATA:FREQ
#216" + MKD$(a#) + MKD$(b#))
'#' in the command string introduces the binary block,
'2' indicates that 2 digits specifying the length will follow next,
'16' is the length of the binary block (in bytes), here: 2 double precision
floating pooint number with 8 bytes each.
The actual binary data follow now. As the function IBWRT requires a text
string, MKD$ is used for the type conversion.
The following ASCII format has the same effect:
CALL IBWRT(generator%, "SOURCE:CORRECTION:CSET:DATA:FREQ
125.345678E6, 127.876543E6")
SMIQ Structure and Syntax of the Device Messages
1125.5555.03 E-73.11
3.4.6 Overview of Syntax Elements
The following survey offers an overview of the syntax elements.
:
;
,
?
*
"
#
The colon separates the key words of a command.
In a command line the separating semicolon marks the uppermost
command level.
The semicolon separates two commands of a command line.
It does not alter the path.
The comma separates several parameters of a command.
The question mark forms a query.
The asterisk marks a common command.
Double or single quotation marks introduce a string and terminate it.
The double dagger # introduces block data.
A "white space" (ASCII-Code 0 to 9, 11 to 32 decimal, e.g. blank) separates
header and parameter.
'
Description of Commands SMIQ
1125.5555.03 E-73.12
3.5 Description of Commands
3.5.1 Notation
In the following sections, all commands implemented in the instrument are first listed in tables and then
described in detail, separated according to the command system. The notation corresponds to the one
of the SCPI standards to a large extent. The SCPI conformity information can be taken from the list of
commands in annex C.
Table of Commands
Command: In the command column, the table provides an overview of the commands
and their hierarchical arrangement (see indentations).
Parameter: In the parameter column the requested parameters are indicated together
with their specified range.
Unit: The unit column indicates the basic unit of the physical parameters.
Remark: In the remark column an indication is made on
- whether the command does not have a query form,
- whether the command has only one query form ,
- whether this command is implemented only with a certain option of the
instrument.
Indentations The different levels of the SCPI command hierarchy are represented in the
table by means of indentations to the right. The lower the level is, the
farther the indentation to the right is. Please observe that the complete
notation of the command always includes the higher levels as well.
Example: :SOURce:FM:MODE is represented in the table as follows:
:SOURce first level
:FM second level
:MODE third level
In the individual description, the complete notation of the command is
given. An example for each command is written out at the end of the
individual description.
Upper/lower case Upper/lower case letters serve to mark the long or short form of the key
notation words of a command in the description (see Section 3.4.2). The instrument
itself does not distinguish between upper and lower case letters.
SMIQ Description of Commands
1125.5555.03 E-73.13
Special characters | A selection of key words with an identical effect exists for several
commands. These key words are indicated in the same line, they are
separated by a vertical stroke. Only one of these key words has to be
indicated in the header of the command. The effect of the command is
independent of which of the key words is indicated.
Example: :SOURce
:FREQuency
:CW|:FIXed
The two following commands of identical meaning can be
formed. They set the frequency of the constantly frequent signal
to 1 kHz:
SOURce:FREQuency:CW 1E3 = SOURce:FREQuency:FIXed 1E3
A vertical stroke in indicating the parameters marks alternative possibilities
in the sense of "or". The effect of the command is different, depending on
which parameter is entered.
Example:Selection of the parameters for the command
SOURce:COUPling AC | DC
If parameter AC is selected, only the AC content is fed through, in
the case of DC, the DC as well as the AC content.
[ ] Key words in square brackets can be omitted when composing the header
(cf. Section 3.4.2, Optional Keywords). The full command length must be
accepted by the instrument for reasons of compatibility with the SCPI
standards.
Parameters in square brackets can optionally be incorporated in the
command or omitted as well.
{ } Parameters in braces can optionally be incorporated in the command either
not at all, once or several times.
Description of Commands SMIQ
1125.5555.03 E-73.14
3.5.2 Common Commands
The common commands are taken from the IEEE 488.2 (IEC 625-2) standard. Same commands have
the same effect on different devices. The headers of these commands consist of an asterisk "*" followed
by three letters. Many common commands refer to the status reporting system which is described in
detail in Section 3.7.
Table 3-1 Common Commands
Command Parameter Unit Remark
*CLS No query
*ESE 0 to 255
*ESR? Only query
&GTL
*IDN? Only query
*IST? Only query
*OPC
*OPC? Only query
*OPT? Only query
*PRE 0 to 255
*PSC 0 | 1
*RCL 0 to 50 No query
*RST No query
*SAV 1 to 50 No query
*SRE 0 to 255
*STB? Only query
*TRG No query
*TST? Only query
*WAI No query
*CLS CLEAR STATUS sets the status byte (STB), the standard event register (ESR) and the
EVENt-part of the QUEStionable and the OPERation register to zero. The command does not
alter the mask and transition parts of the registers. It clears the output buffer
*ESE 0 to 255
EVENT STATUS ENABLE sets the event status enable register to the value indicated. Query
*ESE? returns the contents of the event status enable register in decimal form.
*ESR?
STANDARD EVENT STATUS QUERY returns the contents of the event status register in decimal
form (0 to 255) and subsequently sets the register to zero.
SMIQ Description of Commands
1125.5555.03 E-73.15
&GTLGO TO LOCAL: The IEC bus (IEEE488) includes line message REN (remote enable). If the
device is controlled via a serial interface (RS-232), a remote/local switchover is not possible with
this line. This new command in line with IEEE1174 has been therefore introduced so that the
device can be switched to local mode via remote control (in the same way as with the front-panel
LOCAL key). The device automatically goes to the remote status as soon as the first remote
command has been received. The command is also of importance when the device is to be
controlled alternately via the IEC/IEEE bus and the serial interface. The device should go to local
before it can recognize a command from the other interface.
*IDN?IDENTIFICATION QUERY queries the instrument identification.
The device response is for example: "Rohde&Schwarz, SMIQ03B,00000001, 1.03"
03B = variant identification
00000001= serial number
1.03 = firmware version number
*IST? INDIVIDUAL STATUS QUERY returns the contents of the IST flag in decimal form (0 | 1). The
IST flag is the status bit which is sent during a parallel poll (cf. Section 3.6.3.2).
*OPC OPERATION COMPLETE sets bit 0 in the event status register when all preceding commands
have been executed. This bit can be used to initiate a service request (cf. Section 3.6).
*OPC?
OPERATION COMPLETE QUERY returns 1, if all preceding commands have been executed. It
is necessary to consider a sufficiently long time-out for the IEEE/IEC-bus.
*OPT?
OPTION IDENTIFICATION QUERY queries the options included in the instrument and returns a
list of the options installed. The options are separated from each other by means of commas.
Table 3-2 List of possible responses to *OPT?
Response Option
SM-B1 Reference oscillator OCXO
SM-B5 FM/PM modulator
SMIQB10 Modulation coder
SMIQB11 Data generator
SMIQB12 Memory extension for SMIQB11
SMIQB12 Second memory extension
SMIQB14 Fading simulator
SMIQB15 Second fading simulator
SMIQB16 Broadband FM
SMIQB17 Noise generator/distortion simulator
SMIQB20 Modulation coder
SMIQB21 Bit error rate test
SMIQB43 Digital Standard W-CDMA
SMIQB45 Digital Standard 3GPP W-CDMA
SMIQB47 LOW ACP Filter
SMIQB48 Enhanced Channels for 3GPP W-CDMA
SMIQB49 Dynamic Fading
Example for a device response:
SM-B1,SM-B5,SMIQB10,SMIQB11,SMIQB12,SMIQB12,SMIQB14,SMIQB15,0
Description of Commands SMIQ
1125.5555.03 E-73.16
*PRE 0 to 255
PARALLEL POLL REGISTER ENABLE sets the parallel poll enable register to the value
indicated. Query *PRE? returns the contents of the parallel poll enable register in decimal form.
*PSC 0 | 1
POWER ON STATUS CLEAR determines whether the contents of the ENABle registers is
maintained or reset in switching on.
*PSC = 0 causes the contents of the status registers to be maintained. Thus a service request
can be triggered in switching on in the case of a corresponding configuration of
status registers ESE and SRE.
*PSC 0 resets the registers.
Query *PSC? reads out the contents of the power-on-status-clear flag. The response can be 0 or 1.
*RCL 0 to 50
RECALL calls the instrument state which was stored under the number supplied using command
*SAV. 50 instrument states can be stored.
*RST RESET sets the instrument to a defined default status. The command essentially corresponds to
pressing the [PRESET] key. The state of the RF-output is an exception: The RF-output is
deactivated after *RST, however, it is activated after the [PRESET] key has been pressed. The
default setting is indicated in the description of the commands.
*SAV 1 to 50
SAVE stores the current instrument state under the number indicated (cf. *RCL as well).
*SRE 0 to 255
SERVICE REQUEST ENABLE sets the service request enable register to the value indicated. Bit
6 (MSS mask bit) remains 0. This command determines under which conditions a service request
is triggered. Query *SRE? reads the contents of the service request enable register in decimal
form. Bit 6 is always 0.
*STB?
READ STATUS BYTE QUERY reads out the contents of the status byte in decimal form.
*TRG
TRIGGER triggers all actions waiting for a trigger event. Special trigger events can be started by
command system "TRIGger" (see section "TRIGger System").
*TST?SELF TEST QUERY triggers all selftests of the instrument indicated in Chapter 4, Section
"Functional Test" and outputs an error code in decimal form.
*WAI WAIT-to-CONTINUE only permits the servicing of the subsequent commands after all preceding
commands have been executed and all signals have settled (cf. Section 3.6 and "*OPC" as well).
SMIQ ABORt System
1125.5555.03 E-93.17
3.5.3 ABORt System
The ABORt system contains the commands to abort actions triggered. After an action has been
aborted, it can be triggered again at once. All commands trigger an event, thus they have no *RST
value.
Further commands for the trigger system of the SMIQ can be found in the TRIGger system.
Command Parameter Default
Unit Remark
:ABORt
[:SWEep]
:LIST
:MSEQuence
No query
No query
No query
:ABORt[:SWEep]
The command aborts a sweep.
Example: :ABOR:SWE
:ABORt:LIST
The command aborts a list execution.
Example: :ABOR:LIST
:ABORt:MSEQuence
The command aborts a Memory Sequence.
Example: :ABOR:MSEQ
ARB System SMIQ
1125.5555.03 E-93.18
3.5.4 ARB System
Refer to chapter "ARB Waveform Format" following the information on the IEC/IEEE bus commands
where explanation of waveform formats and tags is provided.
Command Parameter Default
unit Remarks
:ARB
:STATe
:SEQuence
:WAVeform
:SELect
:DELete
:DATA
:CATalog?
:LENGth?
:TAG? ‘<tagname>‘
:FREE?
:POINts?
:TRIGger
:SOURce
:DELay
:INHibit
:OUTPut<i>
:POLarity
:DELay
:MODE
CATalog?
:ONTime
:OFFTime
:ASET
:STATe
:DM
:IQFilter
:IQSWap
:BERT
:TYPE
:TRIGger
:MODE
:CLOCk
:SOURce
:DELay
:IQ
:LEVel
:MODE
:SKEW
ON | OFF
AUTO | RETRigger | AAUTo | ARETrigger
‘name‘
‘name‘
‘name‘,<blockdata>
Þ name[,name]...
Þ n
Þ <string>
Þ n
Þ n
INTernal | EXTernal
0 to 65 535
0 to 67.1E6
with <i> = [1] | 2
POSitive | NEGative
0 to 524 255
USER | ‘mode_string‘
Þ name[,name]...
0 to 524 255
0 to 524 255
ON | OFF
ON | OFF
ON | OFF
ON | OFF
ON | OFF
1 kHz to 40.0 MHz
INTernal | EXTernal
0.0 to 0.99
-3 to 6
MANuell | AUTO
-1000...1000
(clocks)
(clocks)
(clocks)
(clocks)
(clocks)
Hz
(clocks)
dB
ps
No query
Not readable
Query only
Query only
Query only
Query only
Query only
Query only
:ARB:STATe ON | OFF
This command switches on (ON) or off (OFF) the arbitrary waveform generator.
Example: :ARB:STAT ON *RST value is OFF
SMIQ ARB System
1125.5555.03 E-93.19
:ARB:SEQuence AUTO | RETRigger | AAUTo | ARETrigger
This command configures the sequence control of the ARB mode.
AUTO The waveform is repeated in cycles.
RETRigger Cyclic repetition; new start upon trigger.
AAUTo Armed Auto; starts after a trigger event, further triggers are ignored.
ARETrigger Armed Retrigger; starts after a trigger event, each new trigger initiates a new start.
Example: :ARB:SEQ RETR *RST value is AUTO
:ARB:WAVeform:SELect ‘<name>‘
This command is used to select a waveform to be the active waveform.
Example: :ARB:WAV:SEL ‘name‘
:ARB:WAVeform:DELete ‘<name>‘
This command is used to select a waveform to be deleted. This command triggers an event and,
therefore, has no *RST value.
Example: :ARB:WAV:DEL ‘name‘
:ARB:WAVeform:DATA ‘<name>‘, <binary block data>
This command is used to load waveform data into the SMIQ and store them under a name. Refer
to chapter "ARB Waveform Format" for more detailed information on this command.
Example: :ARB:WAV:DATA ‘name‘
:ARB:WAVeform:CATalog?
This command calls the list of all waveforms.
Example: :ARB:WAV:CAT?
:ARB:WAVeform:CATalog:LENGth?
This command requests for the number of waveforms in the list.
Example: :ARB:WAV:CAT:LENG?
:ARB:WAVeform:TAG? ‘<tagname>‘
This command requests for the content of a tag. Refer to the following chapter "ARB Waveform
Format" for more detailed information on tags.
Example: :ARB:WAV:TAG ‘tagname‘
ARB System SMIQ
1125.5555.03 E-93.20
:ARB:WAVeform:FREE?
This command requests for free memory space for further waveforms.
Example: :ARB:WAV:FREE?
:ARB:WAVeform:POINts?
This command returns the number of samples contained in a waveform.
Example: :ARB:WAV:POIN?
:ARB:TRIGger:SOURce INTernal | EXTernal
This command allows for configuration of the trigger source.
INT Triggering via IEC/IEEE bus or using the Execute comment of manual control.
EXT Triggering via the external trigger input.
Example: :ARB:TRIG:SOUR EXT *RST value INT
:ARB:TRIGger:DELay 0 to 65 535
This command is used to enter the trigger delay (as number of samples).
Example: :ARB:TRIG:DEL 234 *RST value is 0
:ARB:TRIGger:INHibit 0 to 67.1E6
This command sets the time of trigger inhibition (as number of samples).
Example: :ARB:TRIG:INH 345 *RST value is 0
:ARB:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative
This command is used to define the signal polarity at the trigger output. l
POSitive positive voltage with active state
NEGative voltage 0 or low, positive with active state
Example: :ARB:TRIG:OUTP2:POL POS *RST value is NEG
:ARB:TRIGger:OUTPut[1]|2:DELay 0 to 524 255
This command defines the signal delay at the trigger output indicated as number of samples.
Example: :ARB:TRIG:OUTP2:DEL 765 *RST value is 0
:ARB:TRIGger:OUTPut[1]|2:MODE USER | ‘mode_string‘
This command allows for selection of a mode for generation of the trigger output signals. The
counters for ON TIME and OFF TIME are set.
Example: :ARB:TRIG:OUTP2:MODE USER *RST value is USER
:ARB:TRIGger:OUTPut[1]|2:MODE:CATalog?
This command initiates the output of a list of all available modes.
Example: :ARB:TRIG:OUTP2:MODE:CAT?
SMIQ ARB System
1125.5555.03 E-93.21
:ARB:TRIGger:OUTPut[1]|2:ONTime 0 to 524 255
This command sets the length of the active state of output trigger signals (indicated as number of
samples). Setting is only possible, if :ARB:TRIG:OUTP:MODE is set to USER.
Example: :ARB:TRIG:OUTP2:ONT 765 *RST value is 0
:ARB:TRIGger:OUTPut[1]|2:OFFTime 0 to 524 255
This command sets the length of the non-active state of output trigger signals (indicated as
number of samples). Setting is only possible, if :ARB:TRIG:OUTP:MODE is set to USER.
Example: :ARB:TRIG:OUTP2:OFFT 765 *RST value is 0
:ARB:ASET:STATe ON | OFF
This command is used to switch on (ON) or off (OFF) the automatic setting of the SMIQ
parameters by the waveform to be loaded.
Example: :ARB:ASET:STAT ON *RST value is OFF
:ARB:ASET:DM:IQFilter ON | OFF
This command is used to set the parameter IQ FILTER in the VECTOR MOD menu (ON) or it
remains unaffected (OFF). Commands :DM:IQ:FILT:STAT and :DM:IQ:FILT:FREQ.
Example: :ARB:ASET:DM:IQF ON *RST value is OFF
:ARB:ASET:DM:IQSWap ON | OFF
This command is used to set the parameter IQ SWAP in the VECTOR MOD menu (ON) or it
remains unaffected (OFF). Command :DM:IQSW:STAT.
Example: :ARB:ASET:DM:IQSW ON *RST value is OFF
:ARB:ASET:BERT:TYPE ON | OFF
This command is used to set the type of PRBS in the BERT menu (ON) or it remains unaffected
(OFF). Command :BERT:SET:TYPE.
Example :ARB:ASET:BERT:TYPE ON *RST value is OFF
:ARB:ASET:TRIGger:MODE ON | OFF
This command is used to set the parameters TRIGGER OUT1 MODE and TRIGGER OUT2
MODE in the ARB MOD TRIGGER...menu. Command :ARB:TRIG:OUTP:MODE.
Example: :ARB:ASET:TRIG:MODE ON *RST value is OFF
:ARB:CLOCk 1kHz to 40.0 MHz
This command specifies the entry value for the sample clock.
Example: :ARB:CLOC 4.096MHz *RST value is 0
ARB System SMIQ
1125.5555.03 E-93.22
:ARB:CLOCk:SOURce INTernal | EXTernal
This command is used to select the source for the sample clock.
INTernal The internal clock generator is used.
EXTernal The clock is applied externally at the socket.
Example: :ARB:CLOC:SOUR EXT *RST value is INT
:ARB:CLOCk:DELay 0.0 to 0.99
This command is used to set the delay of the modulation signal against the clock signal.
Example: :ARB:CLOC:DEL 0.55 *RST value is 0
:ARB:IQ:LEVel –3 dB to +6 dB
This command sets the IQ level referred to maximum input level.
Example: :ARB:IQ:LEV 1 *RST value is 0
:ARB:IQ:LEVel:MODE MANuell | AUTO
This command is used to select the operating mode for setting the IQ level.
MANual Level setting with subsequent entry.
AUTO Automatic level setting to 0.5 V.
Example: :ARB:IQ:LEV:MODE MAN *RST value is AUTO
:ARB:IQ:SKEW -1000...1000 ps
The command determines the delay between I and Q channel.
Example: :ARB:IQ:SKEW –250ps *RST value is 0
SMIQ ARB System
1125.5555.03 E-93.23
3.5.4.1 ARB Waveform Format
Waveform format The waveform format is used for transmission via the IEC/IEEE bus and the
serial interface, it is packed in a binary block command.
Tags A tag-oriented format is used. Tags are self-contained information units. They
have the general format
{Name: Data} or {Name-length: Data}
The colon separates the name and data sections. For the sake of clarity the
colon is always followed by a blank.
Name identifies the day. It is always specified in upper-case characters.
Data are tag-specific but in most cases plain text in ASCII format.
Length indicates the number of bytes of the WAVEFORM tag and consists of:
number of digits of the Start-value (1 to 7)
+ length of ",#" (2 bytes)
+ number of I/Q pairs * 4 (2 bytes for each I and Q-value).
Several tags in one
waveform Tags may be interleaved. Normally the order of the tags within a waveform is
irrelevant, but there may be exceptions. All tags can but need not be contained in
a waveform. Exceptions are described with the individual tags.
Unknown tags are not evaluated by the SMIQ but are stored unchanged and
without an error message and can be read again.
The following tags are defined:
{TYPE: magic, xxxxxxxx} (indispensable)
The TYPE tag identifies this waveform as a valid SMIQ waveform. The tag must be the first tag in the
waveform. xxxxxxxx is an ASCII-coded checksum over the data range of the WAVEFORM tag in this
waveform. It is calculated by the following alogorithm where 'start' is a pointer to the first byte after
the double dagger '#' sign in the WAVEFORM tag and 'length' denotes the number of bytes between
'start' and the final brace (excluding the latter; 'length' must be a multiple of 4):
UINT32 checksum(void *start, UINT32 length)
{
UINT32 i, result = 0xA50F74FF;
for(i=0; i < length/4; i++)
result = result ^ ((UINT32 *)start)[i];
return(result);
}
The checksum is used for recognizing transmission errors. If the TYPE tag contains 0 or a non-
numerical value for the checksum, it is ignored by the SMIQ.
'magic' identifies the type of the waveform and has the following value:
WV The waveform is a complete, selfcontained waveform. When already available on the
target medium, the previous version is overwritten.
Note: Because of the flexible, tag-based form of the waveforms, a version number is not required.
ARB System SMIQ
1125.5555.03 E-93.24
{CLOCK: frequency} (indispensable)
This tag specifies the clock frequency with which the waveform should be output. A query of
ARB:CLOCk? after loading the waveform returns the values set by means of the {CLOCK:...} tag.
{COMMENT: string} (Important for TYPE = WV_ADD)
The tag contains a plain-text ASCII string of any length. The string is not evaluated in the SMIQ, it
serves for the output of keywords on the PC and for describing the waveform. The string may contain
all printable ASCII characters except the closing brace.
{COPYRIGHT: string} (optional)
This tag contains the name under which WinIQSIM (or other programs for waveform generation) are
registered. The string may contain all printable ASCII characters except the closing brace.
{DATE: yyyy-mm-dd;hh:mm:ss} (optional)
This tag contains date and time at which the waveform was generated. The year should be specified
with four digits. The SMIQ does not evaluate this tag.
{WAVEFORM-length: 0,#xxxxxxxxxxxx…} (indispensable)
This tag contains the actual waveform data.
The quantity length indicates the number of bytes of the WAVEFORM tag and consists of:
+ length of ",#" (2 bytes)
+ number of I/Q pairs * 4 (2 bytes for each I and Q-value).
Example:
{WAVEFORM-403: 0,# ......... }
IQIQIQIQIQ
403 Bytes
xxxxxxx… are binary(!) data, that alternately contain I and Q samples, the first sample being a I
sample. Each sample consists of two bytes, the least-significant one (LSByte) is the first.
The two bytes of a sample cover the value range 0x300 to 0xFD00 (0x768 to 64768). This value is
transferred to the D/A converter unchanged.
SMIQ ARB System
1125.5555.03 E-93.25
Different output levels are applied to the output connectors of the SMIQ:
Binary value of the sample
identical with the value of
the waveform D/A converter
Asymmetric
outputs
amplitude Vp at 50 between
inner and outer conductor of I
and Q output
I
Vp
Valid as Q output also!
OUTP:I|Q FIX 0x300 (768)
0x8000 (32768)
0xFD00 (64768)
0 V
0.25 V
0.5 V
OUTP:I|Q VAR 0x300 (768) 0 V
OUTP:I|Q INV
Same level as the
waveform for VAR,
phase shifted by 180°
0x8000 (32768)
0xFD00 (64768) 0.5 V
1 V
3.5.4.2 Creating a Waveform „Manually
We will use to example of a sine function in the I channel and a cosine function in the Q channel, each
with 20 points, to explain how a waveform file SICO.WV is generated.
The sine and cosine values are calculated by a short program written in the programming language C
(see the following example for creating a C-program). They are stored in the file SICO.TXT as follows:
Contents of SICO.TXT:
Sine (I) Cosine (Q)
0.000000 1.000000
0.309017 0.951057
0.587785 0.809017
0.809017 0.587785
0.951057 0.309017
1.000000 -0.000000
0.951056 -0.309017
0.809017 -0.587785
0.587785 -0.809017
0.309017 -0.951056
-0.000000 -1.000000
-0.309017 -0.951057
-0.587785 -0.809017
-0.809017 -0.587785
-0.951056 -0.309017
-1.000000 0.000000
-0.951056 0.309017
-0.809017 0.587785
-0.587785 0.809017
-0.309017 0.951057
The decimal values in SICO.TXT should be normalized such
that they are in the between –1.0 and +1.0.
The waveform file SICO.WV will be based on the contents of
this file.
ARB System SMIQ
1125.5555.03 E-93.26
To be read by the SMIQ these waveform data must be coded binary and packed into an appropriate
WAVEFORM information unit.
The SMIQ recognizes a great variety of information units called tags. A tag consists of a name and a
data set and is enclosed in curved brackets. The tag is a kind of label carrying the information what the
SMIQ should do with the data set (see also section „ARB Waveform Format“ and step 3 of the following
instructions).
The following steps outline how to create the waveform file SICO.WV:
Step 1 The values from the file SICO.TXT must be converted into binary format
consisting of integer numbers without a sign a with 16-bit width. The numeric
range between –1.0 and +1.0 corresponds to the modulation range of the
waveform D/A converter of 64000.
+1.0 64768 ü
0.0 32768 ý 64000
-1.0 768 þ
A further C-program is suitable for creating the binary data set from the ASCII
values stored in SICO.TXT file (see following example for creating a C-program).
This program stores the binary data set to a file called SICO.WV.
The contents of the file SICO.WV reads as follows:
IQIQIQIQIQIQIQI ... IQ
Explanation: There is no readable representation for binary values in this document. This is
why we use the sequence IQIQIQ to characterize the binary code in the present
example.
Step 2 The file SICO.WV contains now the binary data set corresponding to the 20 I/Q
pairs. Before this binary data set can be further processed in step 3, the TYPE tag
{TYPE: WV, xxxxxxx} must be placed in front.
The TYPE tag must be the first entry in a WAVEFORM. The TYPE tag
identifies the waveform as a valid SMIQ waveform.
WV denotes that the waveform is closed upon itself.
xxxxxxx is the checksum of the waveform. To simplify our example 0
is used, i.e., the SMIQ does not evaluate a checksum.
To enter the TYPE tag in the SICO.WV file an ASCII editor which is able to handle
binary data as well, e.g. the Microsoft Windows editor NOTEPAD or multi edit
from AMERICAN CYBERNETICS, must be used.
Now the contents of the SICO.WV file read:
{TYPE: WV, 0}
IQIQIQIQIQIQIQIQIQI ... IQ
SMIQ ARB System
1125.5555.03 E-93.27
Step 3 The binary data must now be packed into a WAVEFORM tag with the following
structure:
{WAVEFORM-Length:ÀÙStart,#IQIQIQIQIQIQIQIQIQI ... IQ}
The WAVEFORM tag consists of the following characters and data:
{Opens each tag.
WAVEFORM Name of the tag for waveform.
-Separates the name from the length indication.
Length Length of the data set
Length indicates the number of bytes of the data set and
consists of:
number of digits of the Start-value (1 to 7, in our example 1)
+ length of ",#" (2 bytes)
+ number of I/Q pairs * 4 (2 bytes for each I- and Q-value).
In our example containing a sine and a cosine with 20 pairs for
each wave and with the start address 0 in the SMIQ’s output
memory, the resulting length is 83.
:ÀÙ Separates the name and length from the remainder of the data
set. The blank ÀÙ can be omitted.
Start Address in the output memory of the SMIQ used to store the
following samples. In our example and most applications, this
will be '0'.
,# Indicates the beginning of the binary data.
IQIQIQ Binary data set.
The binary data contain the I and Q values in alternate order,
the first value is an I value. Each value consists of 2 Bytes,
starting with the least significant bit.
}Terminates each tag.
The editor mentioned above which can handle binary data is now used to place
the string "{WAVEFORM-83:ÀÙ0,#" in front and '}' at the end of the data set.
The contents of the waveform file SICO.WV for 20 I/Q pairs and start address 0 in
the SMIQ’s RAM is now ready for operation and reads.
{WAVEFORM-83: 0,# ... }
IQIQIQIQIQ
83 bytes
{TYPE: WV, 0} 20 I/Q pairs = 80 bytes
The tags TYPE and WAVEFORM are mandatory for each waveform. All other
tags described in section „ARB Waveform Format“ are optional and can be
inserted after the TYPE tag in arbitrary order, e.g.
{TYPE: WV,0}
{COMMENT: I/Q=sine/cosine, 20 points, clock 10 MHz}
{CLOCK: 10e6}
{FILTER: 2,5MHz}
{WAVEFORM-83:ÀÙ0,#IQIQIQIQIQIQ ... IQ}
ARB System SMIQ
1125.5555.03 E-93.28
C-program for creating the file SICO.TXT containing 20 sine and cosine pairs:
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
void main (void)
{
#define SAMPLES 20
int i;
float grad,rad;
FILE *logging_fp;
logging_fp = fopen("SICO.TXT", "w");
for (i = 0; i < SAMPLES; i++)
{grad = (360.0 / (float)(SAMPLES)) * (float)i;
rad = grad * (3.141592654/180.0);
fprintf (logging_fp,"%f %f\n",sin(rad),cos(rad));
}
fclose(logging_fp);
}
Contents of the file
SICO.TXT:
Sinus (I) Cosinus (Q)
0.000000 1.000000
0.309017 0.951057
0.587785 0.809017
0.809017 0.587785
0.951057 0.309017
1.000000 -0.000000
0.951056 -0.309017
0.809017 -0.587785
0.587785 -0.809017
0.309017 -0.951056
-0.000000 -1.000000
-0.309017 -0.951057
-0.587785 -0.809017
-0.809017 -0.587785
-0.951056 -0.309017
-1.000000 0.000000
-0.951056 0.309017
-0.809017 0.587785
-0.587785 0.809017
-0.309017 0.951057
Extract from a C-program generating a binary data set from the I/Q pairs in the file SICO.TXT and
storing the result to file SICO.WV:
:
FILE *fp_sour_i,*fp_sour_q,*fp_dest;
unsigned int i_uint, q_uint;
:
fp_sour = fopen("SICO.TXT", "rt" );
fp_dest = fopen("SICO.WV", "wb" );
:
while (1)
{//Read I/Q pair from ASCII file
if (fscanf (fp_sour,"%f %f",&i_float, &q_float) == EOF)
break;
//Convert I/Q pair to unsigned integer
i_uint = (unsigned int)(32768.0 + (i_float*32000.0)+0.5);
i_uint &= 0xFFFC; //Mask marker bits
q_uint = (unsigned int)(32768.0 + (q_float*32000.0)+0.5);
q_uint &= 0xFFFC; //Mask marker bits
//Write converted I/Q pair to waveform file
fwrite (&i_uint,1,2,fp_dest);
fwrite (&q_uint,1,2,fp_dest);
}:
SMIQ ARB System
1125.5555.03 E-93.29
3.5.4.3 Converting a Waveform with the Application Software AMIQ-K2
The application software AMIQ-K2 from R&S is distributed free of charge and allows to convert a large
variety of I/Q data sets to SMIQ waveform. Moreover, AMIQ-K2 can be used to remote-control some
important SMIQ functions, to load and to store waveforms.
This application software is available in the internet (http://www.rsd.de) under the path:
Products
Test and Measurement
Signal Generation
IQ modulation generator AMIQ
or
IQ simulation software WinIQSIM
or from each R&S representative.
The control sequence
Select Source File(s)
Type Mathcad (mixed)
Source File SICO.TXT
Transmit
Destination
WV formatted SICO.WV
allows to quickly generate a waveform that is ready to operate from the file SICO.TXT containing the I/Q
pairs in alternate order.
3.5.4.4 AMIQ Compatible Commands for Transmission and Administration of
Waveforms
See AMIQ Operating Manual for a detailed description of the commands.
AMIQ command Parameter SMIQ command and Parameter
:MMEMory
:DATA
:DATA?
:DELete
:CATalog?
:LENGth?
:LOAD
:MEMory
:DATA?
:NAME?
‘listname‘,<blockdata>
‘listname‘, 'tagname‘Þ tag
‘listname‘
Þ name[,name]...
Þ n
RAM,‘listname‘
RAM,‘tagname‘ Þ tag
Þ listname
:ARB
:WAVeform:
DATA ‘listname‘,<blockdata>
:DATA? ‘listname‘,'tagname' Þ tag
:DELete ‘listname‘
:CATalog? Þ name[,name]...
LENGth? Þ n
:SELect ‘listname‘
:TAG? ‘tagname‘Þ tag
:SELect?
BERT System SMIQ
1125.5555.03 E-93.30
3.5.5 BERT System
Command Parameter Default Unit Remark
:BERT
:STATe
:SEQuence
:SETup
:MCOunt
:MERRor
:TYPE
:DATA
[:POLarity]
:CLOCk
[:POLarity]
:RESTart
:DENable
:MASK
:IGNore
:UNIT
:STARt
:STOP
:RESULT?
ON | OFF
AUTO | SINGle
1 to 4294967294
1 to 4294967294
PRBS9 | PRBS11 | PRBS15 | PRBS16 | PRBS20 |
PRBS21 | PRBS23
NORMal | INVerted
RISing | FALLing
INTernal | EXTernal
OFF | LOW | HIGH
OFF | LOW | HIGH
OFF | ONE | ZERO
SCIentific | ENGineering | PCT | PPM
(without)
(without)
Alias
Query only
:BERT:STATe ON | OFF
This command switches the bit error rate test on or off. The command :BERT:STARt sets the
status internally to ON, while the command :BERT:STOP sets it to OFF.
Example: :BERT:STAT ON *RST value is OFF
:BERT:SEQuence AUTO | SINGle
This command switches between continuous (AUTO) and single measurement (SINGle). A single
measurement is terminated once the set number of data bits or error bits is reached. The
continuous measurement is a sequence of automatically started single measurements.
By means of the command :BERT:STARt, the status is internally set to AUTO.
Example: :BERT:SEQ SING *RST value is AUTO
SMIQ BERT System
1125.5555.03 E-93.31
:BERT:SETup:MCOunt 1 to 4294967294
This command sets the total number of data bits to be measured (data excluded by
:BERT:SETup:DENable do not count). When the internal data counter reaches or – in
integrated BER test – exceeds this number, the single BER measurement is terminated. If this is
followed by the query:BERT:RES?, the SMIQ signals with the fourth result that a BER
measurement has been completed. This fourth result then has the value 1.
Valid value range: 1 to 4294967295 (232-1)
Example: :BERT:SET:MCO 1e6 *RST value is 10.000.000
:BERT:SETup:MERRor 1 to 4294967294.
This command sets the number of error bits to be measured. When the internal bit error counter
reaches or – in integrating BER test – exceeds this number, the SMIQ responds to a
:BERT:RES? query by signalling with the fourth result = 1 that a single BER measurement has
been terminated.
Valid value range: 1 to 4294967295 (232-1)
Example: :BERT:SET:MERR 100 *RST value is 100
:BERT:SETup:TYPE PRBS9 | PRBS11 | PRBS15 | PRBS16 | PRBS20 | PRBS21 | PRBS23
With this command, various sequence lengths can be set for the pseudo-random bit sequence.
The data generated by the PRBS generator are used as a reference.
Example: :BERT:SET:TYPE PRBS15 *RST value is PRBS9
:BERT:SETup:DATA[:POLarity] NORMal | INVerted
This command defines the polarity of the external data signal.
NORMal: High level stands for a logic 1, low level for a logic 0.
INVerted: Low level stands for a logic 1, high level for a logic 0.
Example: :BERT:SET:DATA INV *RST value is NORM
:BERT:SETup:CLOCk[:POLarity] RISing | FALLing
This command defines which edge of the externally fed clock signal is active.
Example: :BERT:SET:CLOC FALL *RST value is RIS
:BERT:SETup:RESTart INTernal | EXTernal
INTernal The reset signal for the BER test is generated internally by the program. This setting is
suited for random sequences fitting cyclically into the SMIQ memory and therefore
allowing an uninterrupted repetition of the random sequence.
EXTernal If the random sequence cannot be continued without interruption at memory wrap-
around, the BER test has to be stopped in time and then restarted at the beginning of
the data sequence. The measurement is stopped and started via a 0-1-0 edge at the
restart input. Partial BER results (data and error bits) are added up until the predefined
total number of data or error bits is reached or exceeded. These partial results are not
affected by a restart.
Example: :BERT:SET:RES EXT *RST value is INT
BERT System SMIQ
1125.5555.03 E-93.32
:BERT:SETup:DENable OFF | LOW | HIGH
The SMIQ has an input (data enable) allowing the temporary suspension of the BER test for
processing data bursts or data interrupted by other data. This command configures this input.
OFF Any signal applied to the input is ignored; all data are used for the BER measurement.
HIGH If a high level signal is applied to the input, its data bits are counted and the bit errors
detected and counted. If a low level signal is applied, the measurement is interrupted.
LOW If a low level signal is applied to the input, its data bits are counted and the bit error
detected and counted. If a high level signal is applied, the measurement is interrupted.
Example: :BERT:SET:DEN HIGH *RST value is OFF
:BERT:SETup:MASK OFF | LOW | HIGH
This command is equivalent (alias) to the command :BERT:SETup:DENable described above.
Example: :BERT:SET:MASK HIGH *RST value is OFF
:BERT:SETup:IGNore OFF | ONE | ZERO
This command determines what to do with faulty data (frame errors) that were set to 0 or 1.
OFF Pattern Ignore is not active.
ONE Bit sequences consisting of 30 or more subsequent "1" data are not used (i.e. ignored)
for the BER test.
ZERO Bit sequences consisting of 30 or more subsequent "0" data are not used (i.e. ignored)
for the BER measurement.
Example: :BERT:SET:IGN ONE *RST value is OFF
:BERT:UNIT SCIentific | ENGineering | PCT | PPM
This command sets the unit for displaying the error rate. It is only for display on SMIQ; it has no
effect on results queried by :BERT:RES?.
Example: :BERT:SET PCT *RST value is ENG
:BERT:STARt
This command starts a bit error rate test. The command :BERT:STAT is set to ON and
BERT:SEQ to AUTO.
Example: :BERT:STAR
:BERT:STOP
The command stops an ongoing bit error rate test. If no measurement is in progress, this
command has no effect. :BERT:STAT is set to OFF.
Example: :BERT:STOP
SMIQ BERT System
1125.5555.03 E-93.33
:BERT:RESult?
This query refers to the result of the most recent BER measurement. The response consists of
seven results separated by commas. In the first measurement following the start, intermediate
results for the number of data bits, error bits and error rate are also queried. In the following
measurements (only for :BERT:SEQ AUTO), only the final results of each single measurement
are queried.
Example: :BERT:RES?
Response: "10000,5,5E-4,1,1,1,1"
Result: 1 ,2,3 ,4,5,6,7
Result 1 Number of data bits in current query.
Result 2 Number of error bits in current query.
Result 3 Error rate. If no termination criterion has been reached since the beginning of the BER test, the current
quotient of "Number of error bits" and "Number of data bits" is entered. As soon as at least one final result has
been reached in continuous measurement, the most recent final result is entered. This means that the
displayed error rate changes less rapidly.
Result 4 1 A BER measurement has been terminated, i.e. the number of data bits or error bits predefined by
commands :BERT:SET MCOunt <n> or :BERT:SET MERRor <n> is reached, or the measurement was
stopped by the command :BERT:STOP.
0 The BER measurement has not been terminated.
Result 5 1 Following the start of a BER measurement (by the command :BERT: STARt), an edge was detected on
the clock line.
0 The clock line is not active.
Result 6 1 Following the start of a BER measurement (by the command :BERT: STARt), a data change edge was
detected on the data line. This data change only refers to clocked data. If there is no clock, no data
change is detected.
0 The data line is not active.
Result 7 1 The BER measurement is synchronized, i.e. both clock and data line are active and the "Number of error
bits" to "Number of data bits" ratio is better than 0.1, so the measurement result can be assumed to be
realistic.
0 The BER measurement is not synchronized.
BLER System SMIQ
1125.5555.03 E-93.34
3.5.6 BLER System
Command Parameter Default Unit Remark
:BLER
:STATe
:SEQuence
:SETup
:MCOunt
:MERRor
:TYPE?
:DATA
[:POLarity]
:CLOCk
[:POLarity]
:DENable
:UNIT
:STARt
:STOP
:RESULT?
ON | OFF
AUTO | SINGle
1 to 4294967294
1 to 4294967294
CRC16
NORMal | INVerted
RISing | FALLing
LOW | HIGH
SCIentific | ENGineering | PCT | PPM
(without)
(without)
Query only
Query only
:BLER:STATe ON | OFF
This command switches the block error rate measurement on or off. The :BLER:STARt
command sets the status internally to ON, while the :BLER:STOP command sets it to OFF.
Example: :BLER:STAT ON *RST value is OFF
:BLER:SEQuence AUTO | SINGle
This command switches between continuous (AUTO) and single measurement (SINGle). A single
measurement is terminated once the set number of data blocks or the number of errors is
reached. The continuous measurement is a sequence of automatically started single
measurements.
Command :BLER:STARt sets the status internally to AUTO.
Example: :BLER:SEQ SING *RST value is AUTO
:BLER:SETup:MCOunt 1 to 4294967294
This command sets the total number of data blocks to be measured. The single BLER
measurement is terminated when the internal data counter has reached this number. If this is
followed by the query :BLER:RES?, the SMIQ signals with the fourth result that a BLER
measurement has been completed. This fourth result has the value 1.
Valid value range : 1 to 4294967295 (232-1)
Example: :BLER:SET:MCO 1e6 *RST value is 10 000 000
:BLER:SETup:MERRor 1 to 4294967294
SMIQ BLER System
1125.5555.03 E-93.35
This command sets the number of errors to be measured. When the internal block error counter
reaches this number, the SMIQ responds to a :BLER:RES? query by signalling with the fourth
result = 1 that a single BLER measurement has been terminated.
Valid value range: 1 to 4294967295 (232-1)
Example: :BLER:SET:MERR 100 *RST value is 100
:BLER:SETup:TYPE?
With this command the type of measurement can be queried. At present, only CRC16 is possible.
Example: :BLER:SET:TYPE? *RST value is CRC16
:BLER:SETup:DATA[:POLarity] NORMal | INVerted
This command defines the polarity of the external data signal.
NORMal: High level corresponds to logic 1, low level to logic 0.
INVerted: Low level corresponds to logic 1, high level to logic 0.
Example: :BLER:SET:DATA INV *RST value is NORM
:BLER:SETup:CLOCk[:POLarity] RISing | FALLing
This command defines which edge of the external clock signal is active.
Example: :BLER:SET:CLOC FALL *RST value is RIS
:BLER:SETup:DENable LOW | HIGH
The SMIQ is equipped with an input (Data Enable) that allows the data stream to be masked. This
command configures this input.
HIGH The bits applied at high level of the Data Enable signal are interpreted as information
bits. At low level they are interpreted as checksum bits.
LOW The bits applied at low level of the Data Enable signal are interpreted as information
bits. At high level they are interpreted as checksum bits.
Example: :BLER:SET:DEN HIGH *RST value is LOW
:BLER:UNIT SCIentific | ENGineering | PCT | PPM
This command sets the unit for error rate display. It is only valid for display on SMIQ and has no
effect on the results queried by :BLER:RES?.
Example: :BLER:SET PCT *RST value is ENG
:BLER:STARt
This command starts a block error rate measurement. The :BLER:STAT command is set to ON,
command BLER:SEQ to AUTO.
Example: :BLER:STAR
:BLER:STOP
The command stops an ongoing block error rate measurements. If no measurement is in
progress, this command has no effect. The command:BLER:STAT is set to OFF.
Example: :BLER:STOP
BLER System SMIQ
1125.5555.03 E-93.36
:BLER:RESult?
This command queries the result of the most recent BLER measurement.
The response consists of seven values separated by commas. In the first measurement after the
start, intermediate results are also queried for the number of data blocks, errors and error rate. In
the subsequent measurements (only :BLER:SEQ AUTO), only the final results of the single
measurements are queried.
Example: :BLER:RES?
Response: "10000,5,5E-4,1,1,1,1"
Value 1 ,2, 3 ,4,5,6,7
Value 1 Number of data blocks in current query.
Value 2 Number of errors incurrent query.
Value 3 Error rate: If no termination criterion has been reached since the beginning of the BLER measurement, the
current quotient of "Number of errors" and "Number of data blocks" is entered. As soon as at least one final
result has been reached in a continuous measurement, the most recent final result is entered. This means that
the displayed error rate changes less quickly.
Value 4 1 A BLER measurement has been terminated, i.e. the number of data blocks or errors predefined by
the:BLER:SET MCOunt <n> or :BLER:SET MERRor <n> command is reached, or the BLER
measurement was stopped by command :BLER:STOP.
0 The BLER measurement has not been terminated.
Value 5 1 After the start of a BLER measurement (command :BLER: STARt), an edge was detected on the clock
line.
0 The clock line is not active.
Value 6 1 After the start of a BLER measurement (command :BLER:STARt), a data change edge was detected on
the data line. This data change only affects the clocked data. If there is no clock, no data change is
detected.
0 The data line is not active.
Value 7 1 The BLER measurement is synchronized, i.e. the clock and data line are active and the "Number of errors"
to "Number of data blocks" ratio is better than 0.1, so that the measurement result can be assumed to be
realistic.
0 The BLER measurement is not synchronized.
SMIQ CALibration System
1125.5555.03 E-93.37
3.5.7 CALibration System
The CALibration system contains the commands to calibrate the SMIQ. On triggering the calibration by
means of :MEASure , response "0" displays a faultless calibration, response "1" means that an error
has occurred during calibration. As to the meaning of the data in the case of query :DATA?, cf. Chapter
2, Section "Calibration".
Command Parameter Default
Unit Remark
:CALibration
:ALL
:FSIM
[MEAsure]?
:LATTenuation
[:MEASure]?
:LEVel
:DATA?
:STATe
:LPReset
[:MEASure]?
:DATA?
:NDSim
[:MEASure]?
:ROSCillator
[:DATA]
:VSUMmation
[:MEASure]?
:OFFS?
:DAC?
:KOS?
:VMODulation
[:MEASure]?
:LFGenerator
[:MEASure]?
ON | OFF
0 to 4095
Query only
Query only
Query only
Query only
Query only
Query only
Query only
Query only
Query only
Query only
Query only
Query only
:CALibration[:ALL]?
This command triggers all internal calibrations which do not require any external measuring
equipment. The command triggers an event and thus has no *RST value.
Example: :CAL:ALL?
:CALibration:FSIM[:MEASure]?
The command triggers a calibration measurement of the DC offset of the fading simulator. The
command triggers an event and thus has no *RST value.
Example: :CAL:FSIM?
:CALibration:LATTenuation[:MEASure]?
The command triggers a calibration measurement of the level attenuation of function envelope
control. The command triggers an event and thus has no *RST value.
Example: :CAL:LPR:MEAS? Response: 0
CALibration System SMIQ
1125.5555.03 E-93.38
:CALibration:LEVel
This node provides the commands for the management of the level correction table. The
corresponding data are permanently stored in the instrument and cannot be changed. The
instrument includes different level correction tables. The tables to be used are selected
depending on the set frequency and modulation type. The :STATe ON command activates the
level correction table corresponding to the instrument setup.
:CALibration:LEVel:DATA?
The command queries the level correction data. It returns all level correction data in the format
fixed in the :FORMat system.
Example: :CAL:LEV:DATA?
:CALibration:LEVel:STATe ON | OFF
The command switches on or off internal level correction. *RST value is ON
Example: :CAL:LEV:STAT OFF
:CALibration:LPReset
The commands to measure the values for the level presetting table are under this node (Level
PReset).
:CALibration:LPReset[:MEASure]?
The command triggers a calibration measurement. The command triggers an event and thus has
no *RST value.
Example: :CAL:LPR:MEAS? Response: 0
:CALibration:LPReset:DATA?
The command queries the correction data. It returns all correction data in the format fixed in the
:FORMat system.
Example: :CAL:LPR:DATA?
:CALibration:NDSim[:MEASure]?
This command triggers an offset calibration of module NDSIM.
Example: :CAL:NDS? Answer: 0 if OK, 1 if faulty
:CALibration:ROSCillator
The commands to calibrate the reference oscillator are under this node.
:CALibration:ROSCillator[:DATA] 0 to 4095
The command enters the correction data. For an exact definition of the calibration value, cf.
Section 2.
Example: :CAL:ROSC:DATA 2048
SMIQ CALibration System
1125.5555.03 E-93.39
:CALibration:VSUMmation
The commands to determine the support values for the frequency setting are under this node.
:CALibration:VSUMmation [:MEASure]?
The command triggers a calibration measurement. The command triggers an event and thus has
no *RST value.
Example: :CAL:VSUM:MEAS? Answer: 0
:CALibration:VSUMmation:OFFS?
:CALibration:VSUMmation:DAC?
:CALibration:VSUMmation:KOS?
The commands query the calibration data (see service manual). they return all correction data in
the format fixed in the :FORMat system.
Example: :CAL:VSUM:OFFS?
:CALibration:VMODulation[:MEASure]?
This command triggers a calibration measurement for the vector modulation. Since it triggers an
event it has no default setting value.
Example: :CAL:VMOD:MEAS? Answer: 0
:CALibration:LFGenerator[:MEASure]?
This command triggers a calibration measurement for the LF generator. Since it triggers an event
it has no default setting value.
Example: :CAL:LFG:MEAS? Answer: 0
DIAGnostic System SMIQ
1125.5555.03 E-93.40
3.5.8 DIAGnostic System
The DIAGnostic system contains the commands for diagnostic test and service of the instrument. SCPI
does not define DIAGnostic commands, the commands listed here are SMIQ-specific. All DIAGnostic
commands are queries which are not influenced by *RST. Hence no default setting values are stated.
Command Parameter Default
Unit Remark
:DIAGnostic
:CLISt
:CHECksum
:CALCulate
:DATA?
:CNMeasure
:MODE
:DLISt
:CHECksum
:CALCulate
:DATA?
:INFO
:CCOunt
:ATTenuator1|2|3|4|5|6?
:POWer?
:MODules?
:OTIMe?
:SDATe?
[:MEASure]
:POINt?
CN | CARRier | NOISe
Query only
Query only
Query only
Query only
Query only
Query only
Query only
Query only
:DIAGnostic:CLISt:CHECksum:CALculate
This command calculates the checksum of the currently selected control list (see Digital
Modulation CLISt).
Example: :DIAG:CLIS:CHEC:CALC
:DIAGnostic:CLISt:CHECksum:DATA?
This command displays the checksum calculated before in hexadecimal representation (see
above) .
Example: :DIAG:CLIS:CHEC:DATA? Response: 1234567
:DIAGnostic:CNMeasure:MODE CN | CARRier | NOISe
This command switches on or off the usefull or noise signal for C/N (carrier/noise ratio)
measurements. The following modes can be selected:
CN carrier and noise signal
CARRier carrier signal only
NOISe noise signal only
Example: :DIAG:CNM:MODE CN *RST value is CN
SMIQ DIAGnostic System
1125.5555.03 E-93.41
:DIAGnostic:DLISt:CHECksum:CALculate
This command calculates the checksum of the currently selected control list (see Digital
Modulation DLISt).
Example: :DIAG:DLIS:CHEC:CALC
:DIAGnostic:DLISt:CHECksum:DATA?
This command displays the checksum calculated before in hexadecimal representation (see
above).
Example: :DIAG:DLIS:CHEC:DATA? Response:1234567
:DIAGnostic:INFO
The commands which can be used to query all information which does not require hardware
measurement are under this node.
:DIAGnostic:INFO:CCOunt
The commands which can be used to query all counters in the instrument are under this node
(Cycle COunt).
:DIAGnostic:INFO:CCOunt:ATTenuator 1 | 2 | 3 | 4 | 5 | 6?
The command queries the number of switching processes of the different attenuator stages. The
stages are designated with Z1 to Z6 within the instrument. In this command they are differentiated
by a numeric suffix whose name corresponds to the number:
Suffix Name Function
1 Z1 40-dB stage
2 Z2 20-dB stage
3 Z3 5-dB stage
4 Z4 20-dB stage
5 Z5 10-dB stage
6 Z6 40-dB stage
Example: :DIAG:INFO:CCO:ATT1? Response: 1487
:DIAGnostic:INFO:CCOunt:POWer?
The command queries the number of switch-on processes.
Example: :DIAG:INFO:CCO:POW? Response: 258
:DIAGnostic:INFO:MODules?
The command queries the modules existing in the instrument with their model and
state-of-modification numbers. The response supplied is a list in which the different entries are
separated by commas. The length of the list is variable and depends on the equipment of the
instrument. Each entry consists of three parts which are separated by means of blanks:
1. Name of module; 2. Variant of module in the form VarXX (XX = 2 digits)
3. Revision of module in the form RevXX (XX = 2 digits)
Example :DIAG:INFO:MOD? Response: FRO Var01 Rev00, DSYN Var03 Rev12, to...
DIAGnostic System SMIQ
1125.5555.03 E-93.42
:DIAGnostic:INFO:OTIMe?
The command reads out the internal operating-hours counter. The response supplies the number
of hours the instrument has been in operation up to now.
Example: :DIAG:INFO:OTIM? Response: 19
:DIAGnostic:INFO:SDATe?
The command queries the date of software creation. The response is returned in the form month,
day, year.
Example: :DIAG:INFO:SDAT? Response: Dec 15 1998
:DIAGnostic:[:MEASure]
The commands which trigger a measurement in the instrument and return the measured value
are under this node.
:DIAGnostic[:MEASure]:POINt?
The command triggers a measurement at a measuring point and returns the voltage measured.
The measuring point is specified by a numeric suffix (cf. service manual, stock no.
1125.5610.24).
Example: :DIAG:MEAS:POIN2? Response: 3.52
SMIQ DISPLAY System
1125.5555.03 E-93.43
3.5.9 DISPLAY System
This system contains the commands to configure the screen. If system security is activated using
command SYSTem:SECurity ON, the display cannot be switched on and off arbitrarily (cf. below)
Command Parameter Default
Unit Remark
:DISPlay
:ANNotation
[:ALL]
:AMPLitude
:FREQuency
ON | OFF
ON | OFF
ON | OFF
:DISPlay:ANNotation
The commands determining whether frequency and amplitude are indicated under this node.
Caution: With SYSTem:SECurity ON, the indications cannot be switched from OFF to ON. In
this case *RST does not influence the ANNotation settings either. With
SYSTem:SECurity OFF, the *RST value is ON for all ANNotation parameters.
:DISPlay:ANNotation[:ALL] ON | OFF
The command switches the frequency and amplitude indication on or off.
Command :DISPlay:ANNotation:ALL ON can only be executed if SYSTem:SECurity is
set to OFF.
Example: :DISP:ANN:ALL ON With SECurity OFF - *RST value is ON
:DISPlay:ANNotation:AMPLitude ON | OFF
The command switches on or off the amplitude indication.
Command :DISPlay:ANNotation:AMPLitude ON can only be executed if
SYSTem:SECurity is set to OFF.
Example: :DISP:ANN:AMPL ON With SYSTem:SECurity OFF - *RST value is ON
:DISPlay:ANNotation:FREQuency ON | OFF
The command switches on or off the frequency indication.
Command :DISPlay:ANNotation:FREQuency ON can only be executed if SYSTem:
SECurity is set to OFF.
Example: :DISP:ANN:FREQ ON With SYSTem:SECurity OFF - *RST value is ON
FORMat System SMIQ
1125.5555.03 E-93.44
3.5.10 FORMat System
This system contains the commands determining the format of the data the SMIQ returns to the
controller. All queries returning a list of numeric data or block data are concerned. With each of these
commands, this connection is pointed to in the description.
Command Parameter Default
Unit Remark
:FORMat
[:DATA]
:BORDer
ASCii | PACKed
NORMal | SWAPped
:FORMat[:DATA] ASCii | PACKed
The command specifies the data format, that the SMIQ uses for returning the data. When data
are transmitted from the controller to the SMIQ, the SMIQ recognizes the data format
automatically. In this case, the value specified here has no significance.
Note: Settings using the FORMat:DATA command are only effective for commands with
which this is stated in the command description.
ASCii Numeric data are transmitted in plain text, separated by commas.
PACKed Numerical data are transmitted as binary block data. The format of the binary data
itself is command-specific. Its description can be found in Section 3.4.5.
Example: :FORM:DATA ASC *RST value is ASCii
:FORMat:BORDer NORMal | SWAPped
This command defines the order of bytes inside a binary block. This concerns only blocks which
use the IEEE754 format internally (see section 3.4.5, paragraph "Block Data").
NORMal: The SMIQ expects (for setting commands) and sends (for queries) first the most
significant byte of each IEEE-754 floating point number, last the least significant
byte. For hosts based on a 80x86 processor this corresponds to the configuration of
bytes in the main memory. Thus, no further conversion is required.
SWAPped: The SMIQ expects (for setting commands) and sends (for queries) first the least
significant byte of each IEEE754 floating point number, last the most significant byte.
Example: :FORMat:BORDer:NORMal *RST value is NORMal
SMIQ MEMory System
1125.5555.03 E-93.45
3.5.11 MEMory System
This system contains the commands for the memory management of the SMIQ.
Command Parameter Default
Unit Remark
:MEMory
:NSTates? Query only
:MEMory:NSTates?
The command returns the number of *SAV/*RCL memories available. The SMIQ has 50
*SAV/*RCL memories in total.
Example: :MEM:NST? Response: 50
OUTPut System SMIQ
1125.5555.03 E-93.46
3.5.12 OUTPut System
This system contains the commands specifying the characteristics of the RF output socket and the
BLANk socket. The characteristics of the LF socket are specified in the OUTPut2 system.
Command Parameter Default
Unit Remark
:OUTPut
:AMODe
:AFIXed
:RANGe
:UPPer?
:LOWer?
:BLANk
:POLarity
:IMPedance?
:PROTection
:CLEar
:TRIPped?
[:STATe]
:PON
AUTO | FIXed | ELECtronic
NORMal | INVerted
ON | OFF
OFF | UNCHanged
Query only
Query only
Query only
Query only
:OUTPut:AMODe AUTO | FIXed | ELECtronic
The command switches over the operating mode of the attenuator at the RF output (Attenuator
MODe).
AUTO The attenuator is switched whenever possible.
FIXed The attenuator is switched when certain fixed levels are exceeded/fallen below.
ELECtronic The level is additionally (without modifying the attenuator) changed via the IQ
modulator.
Example: :OUTP:AMOD AUTO *RST value is AUTO
:OUTPut:AFIXed:RANGe:UPPer?
This command queries the maximum level which can be set without modifying the attenuator
(Attenuator FIXed).
Example: :OUTP:AFIX:RANG:UPP? Response: -27
:OUTPut:AFIXed:RANGe:LOWer?
This command queries the minimum level which can be set without modifying the attenuator
(Attenuator FIXed).
Example: :OUTP:AFIX:RANG:UPP? Response: -50
SMIQ OUTPut System
1125.5555.03 E-93.47
:OUTPut:BLANk:POLarity NORMal | INVerted
The command sets the polarity of the BLANk signal.
NORMal The active BLANk state is indicated by the more positive or higher output voltage.
INVers The active BLANk state is indicated by the more negative or lower output voltage.
Example: :OUTP:BLAN:POL NORM RST value is NORM
:OUTPut:IMPedance?
The command queries the impedance of the RF output. This permits converting the output level
between units V and W. The impedances cannot be changed. With the SMIQ, this is the fixed
value of 50 Ohm for the RF output.
Example: :OUTP:IMP? Response: 50
:OUTPut:PROTection
The commands to configure the protective circuit are under this node. The RF output is protected
by a protective circuit which deactivates the output if an overvoltage is supplied from outside. This
does not change the value of OUTPut:STATe.
:OUTPut:PROTection:CLEar
The command resets the protective circuit after it has been triggered. The state of the output is
determined by OUTPut:STATe again. The command triggers an event and hence has no default
setting value.
Example: :OUTP:PROT:CLE
:OUTPut:PROTection:TRIPped?
The command queries the state of the protective circuit. The responses mean:
"0" The protective circuit has not responded
"1" The protective circuit has responded
Example: :OUTP:PROT:TRIP? Response: "1"
:OUTPut[:STATe] ON | OFF
The command switches on or off the RF output. The RF output can also be switched off by the
response of the protective circuit. But this has no influence on this parameter.
Note: In contrast to the PRESET key, command *RST sets this value to OFF, the output is
deactivated.
Example: :OUTP:STAT ON *RST value is OFF
:OUTPut[:STATe]:PON OFF | UNCHanged
This command selects the state the RF output is to assume after power-on of the unit. It only
exists for the RF output. *RST does not influence the set value.
OFF Output is switched off.
UNCHanged Same state as before switch- off
Example: :OUTP:PON OFF
OUTPut2 System SMIQ
1125.5555.03 E-93.48
3.5.13 OUTPut2 System
This system contains the commands specifying the characteristics of the LF output socket.
Command Parameter Default
Unit Remark
:OUTPut2
[:STATe]
:VOLTage
ON | OFF
0 V to 4 V V
:OUTPut2[:STATe] ON | OFF
The command switches the LF output on or off. *RST value is OFF
Example: :OUTP2:STAT ON
:OUTPut2:VOLTage 0V to 4V
The command sets the voltage of the LF output.
Example: :OUTP2:VOLT 3.0V *RST value is 1 V
SMIQ SOURce System
1125.5555.03 E-93.49
3.5.14 SOURce System
This system contains the commands to configure the RF signal source. Keyword SOURce is optional,
i.e., it can be omitted. The LF signal source is configured in the SOURce2 system.
The following subsystems are realized in the instrument:
Subsystem Settings
[:SOURce]
:AM
:CORRection
:DECT
:DIST
:DM
:FM
:FREQuency
:FSIM
:GSM/EDGE
:IS95
:LIST
:MARKer
:MODulation
:NADC
:NOISe
:PDC
:PHASe
:PHS
:PM
:POWer
:PULM
:ROSCillator
:SWEep
:WCDMa
:W3GPp
Amplitude modulation
Correction of the output level
Digital standard DECT
Distortion simulation
I/Q and digital standard modulations
Frequency modulation
Frequencies including sweep
Fading simulator
Digital standard GSM/EDGE
Digital standard IS-95 CDMA
LIST mode
Marker generation with sweeps
Switching on/off of all modulations
Digital standard NADC
Noise generation
Digital standard PDC
Phase between output signal and reference oscillator signal
Digital standard PHS
Phase modulation
Output level, level control and level correction
Pulse modulation
Reference oscillator
Sweeps
Digital standard W-CDMA
Digital standard 3GPP W-CDMA
SOURce:AM Subsystem SMIQ
1125.5555.03 E-93.50
3.5.14.1 SOURce:AM Subsystem
This subsystem contains the commands to control the amplitude modulation. Part if the LF-generator
settings is effected under SOURce2.
Command Parameter Default Unit Remark
[:SOURce]
:AM
:BBANd
[:STATe]
[:DEPTh]
:EXTernal
:COUPling
:INTernal1|2
:FREQuency
:SOURce
:STATe
ON | OFF
0 to 100 PCT
AC | DC
0.1 Hz to 1 MHz
EXT | INT | EXT, INT
ON | OFF
PCT
Hz
[:SOURce]:AM:BBANd[:STATe] ON | OFF
The command switches on or off the BB-AM (through the I-input of the IQ-modulator).
Example: :SOUR:AM:BBAN:STAT ON *RST value is OFF
[:SOURce]:AM[:DEPTh] 0 to 100PCT
The command sets the modulation depth in percent.
Example: :SOUR:AM:DEPT 15PCT *RST value is 30PCT
[:SOURce]:AM:EXTernal:COUPling AC | DC
The command selects the type of coupling for the external AM input.
AC The d.c. voltage content is separated from the modulation signal.
DC The modulation signal is not altered.
Example: :SOUR:AM:EXT:COUP AC *RST value is AC
[:SOURce]:AM:INTernal
The settings for the internal AM inputs (LF generator) are effected under this node. Here the same
hardware is set for AM, PM, FM and SOURce2. This means that, for example, the following
commands are coupled with each other and have the same effect:
:SOUR:FM:INT:FREQ; :SOUR:PM:INT:FREQ; :SOUR2:FREQ:CW
[:SOURce]:AM:INTernal1|2:FREQuency 0.1 Hz to 1MHz
The command sets the modulation frequency.
Example: :SOUR:AM:INT:FREQ 15kHz *RST value is 1 kHz
[:SOURce]:AM:SOURce EXT | INT|EXT, INT
The command selects the modulation source. INT is the internal LF generator. The external and
the internal modulation source can be indicated at the same time (see example).
Example: :SOUR:AM:SOUR INT,EXT *RST value is INT
[:SOURce]:AM:STATe ON | OFF
The command switches amplitude modulation on or off.
Example: :SOUR:AM:STAT ON *RST value is OFF
SMIQ SOURce:CORRection Subsystem
1125.5555.03 3.51 E-9
3.5.14.2 SOURce:CORRection Subsystem
The CORRection subsystem permits a correction of the output level. The correction is effected by
adding user-defined table values to the output level as a function of the RF frequency. In the SMIQ, this
subsystem serves to select, transmit and switch on USER-CORRECTION tables (see Chapter 2,
Section "User Correction (UCOR)" as well).
Command Parameter Default Unit Remark
[:SOURce]
:CORRection
[:STATe]
:CSET
:CATalog?
[:SELect]
:DATA
:FREQuency
:POWer
:DELete
ON | OFF
Þ name {,name}...
"Name of table"
300 kHz to RFmax {,300 kHz to RFmax }
-40 dBto 6dB {,-40 dBto 6dB}
"Name of table"
Hz
dB
Query only
RFmax depending on model
no query
[:SOURce]:CORRection[:STATe] ON | OFF
The command switches the table selected using SOURce:CORRection:CSET on or off.
Example: :SOUR:CORR:STAT ON *RST value is OFF
[:SOURce]:CORRection:CSET
The commands to select and edit the UCOR tables are under this node.
[:SOURce]:CORRection:CSET:CATalog?
The command requests a list of UCOR tables. The individual lists are separated by means of
commas. This command is a query and has no *RST value.
Example: :SOUR:CORR:CAT? Answer: "UCOR1", "UCOR2", "UCOR3"
[:SOURce]:CORRection:CSET[:SELect] "Name of table"
The command selects a UCOR table. This command alone does not yet effect a correction. First
the table selected must be activated (cf. :SOURce:CORRection:STATe). If there is no table of
this name, a new table is created. The name may contain up to 7 letters. This command triggers
an event and hence has no *RST value.
Example: :SOUR:CORR:CSET:SEL "UCOR1"
[:SOURce]:CORRection:CSET:DATA
The commands to edit the UCOR tables are under this node.
[:SOURce]:CORRection:CSET:DATA:FREQuency 300 kHz to RFmax {,300 kHz to RFmax }
(RFmax depending on model)
The command transmits the frequency data for the table selected using
:SOURce:CORRection:CSET. *RST does not influence data lists.
Example: :SOUR:CORR:CSET:DATA:FREQ 100MHz,102MHz,103MHz,to
SOURce:CORRection Subsystem SMIQ
1125.5555.03 E-93.52
[:SOURce]:CORRection:CSET:DATA:POWer -40dB to 6dB {,-40dB to 6dB}
The command transmits the level data for the table selected using
:SOURce:CORRection:CSET. *RST does not influence data lists.
Example: :SOUR:CORR:CSET:DATA:POWer 1dB, 0.8dB, 0.75dB,to
[:SOURce]:CORRection:CSET:DELete "Name of table"
The command deletes the table indicated from the instrument memory. This command triggers an
event and hence has no *RST value.
Example: :SOUR:CORR:CSET:DEL "UCOR2"
SMIQ SOURce:DECT Subsystem
1125.5555.03 3.53 E-9
3.5.14.3 SOURce:DECT Subsystem
Note #B0 to #BF are characters which are entered in binary form manually. SCPI (and IEEE
488.2) also accept the entry of non-decimal characters in octal and hexadecimal such as
#H|h <0 to 9, A|a to F|f>,
#Q|q <0 to 7> and
#B|b <0|1>.
The characters are always output in Hex format after a query.
Command Parameter Default
Unit Remark
[:SOURce]
:DECT
:STATe
:STANdard
:FORMat
:FSK
:DEViation
:SRATe
:FILTer
:TYPE
:SELect
:PARameter
:SEQuence
:TRIGger
:SOURce
:INHibit
:DELay
:OUTPut[2]
:DELay
:PERiod
:CLOCk
:SOURce
:DELay
:PRAMp
:PRESet
:TIME
:DELay
:SHAPe
:ROFFset
:FOFFset
:SLOT
:ATTenuation
:SIMulation
:TADJustment
:JITTer
ON | OFF
GFSK | P4DQpsk
100Hz to 1.2MHz
2k to 1.2M / 1k to 0.6M Hz (GFSK/P4DQ)
GAUSs | SCOSine| COSine | USER
‘name‘
0.2 to 0.7
AUTO | RETRigger | AAUTo | ARETrigger
EXTernal | INTernal
0 to 67.1E6
0 to 65535
SLOT | FRAMe
0 to 11519
1 to 67.1E6
INTernal | EXTernal
0 to 1.0
0.25 to 16
-1.0 to +1.0
LINear | COSine
-9 to +9
-9 to +9
0 to 70 dB
-4 to +4 (symbol)
0 to 4 (symbol)
HZ
Hz
DB
range 0.1 to 1 × symbol rate
no query
SOURce:DECT Subsystem SMIQ
1125.5555.03 E-93.54
Command Parameter Default
Unit Remark
[:SOURce]
:DECT
:FLISt
:PREDefined
:CATalog?
:LOAD
:CATalog?
:LOAD
:STORe
:DELete
:DLISt
:CATalog?
:PREamble
:TYPE
:SLOT<i>
:TYPE
:LEVel
:PRESet
:STSHift
:RAMP
:CW
:DATA
:PREamble
:DATA
:PROLonged
:DATA
:SYNC
[:SOURce]
:AFIeld
:DLISt
:BFIeld
:DLISt
:ZFIeld
Þ name {,name}...
‘name’
Þ name {,name}...
‘name’
‘name’
‘name’
Þ name {,name}...
NORMal | PROLonged
FULL | DOUBle | ADATa
OFF | ATT | FULL
-9 to +9
ON | OFF
#B0 to #B1111111111111 (12 Bit)
#B0 to #B11111111111111111 (16 Bit)
#B0 to #B11111111111111111... (32 Bit)
#B0 to #B11111111111111111 (16 Bit)
PN9 | PN11| PN15 | PN 16 | PN20 | PN21 |
PN23 | DLISt | SDATa
‘name’
PN9 | PN11| PN15 | PN 16 | PN20 | PN21 |
PN23 | DLISt | SDATa
‘name’
ON | OFF’
(Bit)
query only
no query
query only
no query
no query
no query
query only
i=0,[1],..23 (Slot Selector)
no query
[:SOURce]:DECT:STATe ON | OFF
The command switches the modulation on according to DECT standard. All other standards that
might be switched on or digital modulation are automatically switched OFF.
Example: :SOUR:DECT:STAT ON *RST value is OFF
[:SOURce]:DECT:STANdard
The command sets all modulation parameters to the values of the DECT standard. It does not set
the parameters selected with the :DECT:SLOT... commands described in the following. This
command triggers an event and hence has no *RST value and no query.
Example: :SOUR:DECT:STAN
SMIQ SOURce:DECT Subsystem
1125.5555.03 3.55 E-9
[:SOURce]:DECT:FORMat GFSK | P4DQpsk
The command selects the type of modulation.
Example: :SOUR:DECT:FORM P4DQ *RST value is GFSK
[:SOURce]:DECT:FSK:DEViation 1kHz to 1.2 MHz
The command sets the modulation depth (only for DECT:FORMat GFSK). The range of values
depends on the symbol rate (DECT:SRATe × 0.1 to 1).
Example: :SOUR:DECT:FSK:DEV 300.6kHz *RST value is 288kHz
[:SOURce]:DECT:SRATe 1 kHz to 1.2 MHz
The command sets the symbol rate. Permissible values for GFSK are 2 kHz to 1.2 MHz and 1 kHz
to 0.6 MHz for P4QPsk.
Example: :SOUR:DECT:SRAT 192.1 kHz *RST value is 1152/576kHz (GFSK/P4DQ)
[:SOURce]:DECT:FILTer
The commands for selecting a filter are under this node.
[:SOURce]:DECT:FILTer:TYPE GAUSs | SCOSine | COSine USER
The command selects the type of filter; SCOS and COS can be set for P4DQpsk. For
DECT:FORMat GFSK, the GAUSs type is set automatically. A filter list should be selected with
:DECT:FILT:SEL 'name' for the filter type USER.
Example: :SOUR:DECT:FILT:TYPE COS *RST value is GAUS/SCOS (GFSK/P4DQ)
[:SOURce]:DECT:FILTer:SELect 'name'
The command selects a named filter list. The list is used only if a user-defined filter is selected
with :DECT:FILT:TYPE USER. To generate lists, cf. command [:SOURce]:DM:FLISt:SEL, to fill up
lists, cf. command [:SOURce]:DM:FLISt:DATA.
Example: :SOUR:DECT:FILT:SEL 'test' *RST value is NONE
[:SOURce]:DECT:FILTer:PARameter 0.2 to 0.7
The command sets the filter parameter.
Example: :SOUR:DECT:FILT:PAR 0.2 *RST value is 0. 5
[:SOURce]:DECT:SEQuence AUTO | RETRigger | AAUTo | ARETrigger
The command selects the trigger mode for the sequence.
AAUTo ARMED AUTO
ARETrigger ARMED RETRIG
Example: :SOUR:DECT:SEQ AAUT *RST value is AUTO
[:SOURce]:DECT:TRIGger:SOURce EXTernal | INTernal
The command selects the trigger source. With INT selected, triggering is via IEC/IEEE bus or the
Execute command in manual control.
Example: :SOUR:DECT:TRIG:SOUR EXT *RST value is INT
SOURce:DECT Subsystem SMIQ
1125.5555.03 E-93.56
[:SOURce]:DECT:TRIGger:INHibit 0 to 67.1E6
The command sets the retrigger inhibit duration (in number of symbols).
Example: :SOUR:DECT:TRIG:INH 1000 *RST value is 0
[:SOURce]:DECT:TRIGger:DELay 0 to 65535
The command sets the trigger delay (in number of symbols).
Example: :SOUR:DECT:TRIG:DEL 200 *RST value is 0
[:SOURce]:DECT:TRIGger:OUTPut[1|2]:DELay 0 to 11519
The command determines the delay of the signal at trigger output 1 or 2 in comparison with the
start of the frames/slots in number of symbols.
Example: :SOUR:DECT:TRIG:OUTP2:DEL 16 *RST value is 0
[:SOURce]:DECT:TRIGger:OUTPut[2]:PERiod 1 to 67.1E6
The command sets the repeat rate (in number of frames) of the signal at trigger output 2.
Example: :SOUR:DECT:TRIG:OUTP2:PER 8 *RST value is 1
[:SOURce]:DECT:CLOCk
The commands for setting the data clock are under this node.
[:SOURce]:DECT:CLOCk:SOURce INTernal | EXTernal
The command selects the source for the DM data clock.
INTernal The internal clock generator is used and output via the clock outputs of the serial and
parallel interface.
EXTernal The clock is externally fed in via the serial interface and output via the parallel
interface.
Example: :SOUR:DECT:CLOC:SOUR INT *RST value is INT
[:SOURce]:DECT:CLOCk:DELay 0 to 1.0
The command sets the delay of the symbol clock (as a fraction of the length of a symbol).
Example: :SOUR:DECT:CLOC:DEL 0.75 *RST value is 0
[:SOURce]:DECT:PRAMp
The commands for the level control of the burst are under this node.
[:SOURce]:DECT:PRAMp:PRESet
This command sets the standard-stipulated values for the following commands of level control. It
is an event and hence has no query and no *RST value.
Example: :SOUR:DECT:PRAM:PRES
[:SOURce]:DECT:PRAMp:TIME 0.25 to 16.0
The command sets the cutoff steepness (in symbol clocks).
Example: :SOUR:DECT:PRAM:TIME 2.5 *RST value is 2
SMIQ SOURce:DECT Subsystem
1125.5555.03 3.57 E-9
[:SOURce]:DECT:PRAMp:DELay -1.0 to +1.0
The command defines the shift of the envelope characteristic to the modulated signal. A positive
value causes a delay of the envelope.
Example: :SOUR:DECT:PRAM:DEL 0.2 *RST value is 0
[:SOURce]:DECT:PRAMp:SHAPe LINear | COSine
The command selects the linear or cosine shape of the ramp-up and ramp-down (power burst).
Example: :SOUR:DECT:PRAM:SHAP LIN *RST value is COS
[:SOURce]:DECT:PRAMp:ROFFset -9 to +9
The command determines the timing of the (‘R’ising) edge of a power burst to the beginning of the
slot.
Example: :SOUR:DECT:PRAM:ROFF -3 *RST value is 0
[:SOURce]:DECT:PRAMp:FOFFset -9 to +9
The command determines the timing of the ('F'alling) edge of a power burst to the data block.
Example: :SOUR:DECT:PRAM:FOFF 4 *RST value is 0
[:SOURce]:DECT:SLOT:ATTenuation 0 to 70 dB
The command determines the amount by which the power of the slots marked by
:DECT:SLOT:LEVEL ATT is reduced in comparison with the normal output power (attribute to
:LEVEL FULL).
Example: :SOUR:DECT:SLOT:ATT 20 dB *RST value is 0
[:SOURce]:DECT:SIMulation:TADJustment -4 to +4 (in symbols)
This command simulates the timing adjust by extending every 35th frame by the set number of
symbols (positive) or by reducing it (negative). 0 is off.
Example: :SOUR:DECT:SIM:TADJ 3 *RST value is 0
[:SOURce]:DECT:SIMulation:JITTer 0 to 4 (in symbols)
This command simulates the jitter by advancing even frames by the set number of symbols and
by delaying uneven frames. 0 is off.
Example: :SOUR:DECT:SIM:JITT 2 *RST value is 0
[:SOURce]:DECT:FLISt
The commands for storing and reading complete frames including their bursts (slots) are under
this node. Predefined and user-generated frames have to be distinguished.
[:SOURce]:DECT:FLISt:PREDefined:CATalog?
The command returns a list of all predefined frames.
Example: :SOUR:DECT:FLIS:PRED:CAT?
[:SOURce]:DECT:FLISt:PREDefined:LOAD ‘name’
The command selects one of the predefined (fixed) frames (c.f. Chapter 2). This command
triggers an event and hence has no *RST value.
Example: :SOUR:DECT:FLIS:PRED:LOAD ’test’
SOURce:DECT Subsystem SMIQ
1125.5555.03 E-93.58
[:SOURce]:DECT:FLISt:CATalog?
The command returns a list of all user-defined frames.
Example: :SOUR:DECT:FLIS:CAT?
[:SOURce]:DECT:FLISt:LOAD ‘name’
The command loads a user-defined frame. This command triggers an event and hence has no
*RST value.
Example: :SOUR:DECT:FLIS:LOAD ’test’
[:SOURce]:DECT:FLISt:STORe ‘name’
The command stores the current frame under a name. This command triggers an event and
hence has no *RST value and no query.
Example: :SOUR:DECT:FLIS:STOR ’test’
[:SOURce]:DECT:FLISt:DELete ‘name’
The command deletes the indicated frame. This command triggers an event and hence has no
*RST value and no query.
Example: :SOUR:DECT:FLIS:DEL ’test1’
[:SOURce]:DECT:DLISt:CATalog?
The command returns an enumeration of all data lists.
These data lists are selected by means of :DECT:SLOT:AFI:DLIS ’name’ and.
...:BFI:DLIS ’name’ and used if :DECT:SLOT:AFI DLISt and...: :BFI DLIS are set.
Example: :SOUR:DECT:DLIS:CAT?
[:SOURce]:DECT:PREamble:TYPE NORMal | PROLonged
The command selects the 16-bit (NORMal) or 32-bit (PROLonged) preamble.
Example: :SOUR:DECT:PRE PROL PRO *RST value is NORM
[:SOURce]:DECT:SLOT<i>
The commands for setting the slot characteristics are under this node. Since a frame contains 24
slots, suffix ‘i’ is used to select the slot to be changed. i = [1] | 2 to | 22 | 23. Slot 0 to 11 can be
used for downlink and slot 12 to 23 for uplink. For double slot even numbers can be entered only
since it occupies two full slots.
[:SOURce]:DECT:SLOT<i>:TYPE FULL | DOUBle | ADATa
The command selects the type of burst (slot) defined in the standard.
ADATa is All Data; the data source set with SLOT<i>:BFIeld is used.
Example: :SOUR:DECT:SLOT2:TYPE ADAT *RST value is FULL
[:SOURce]:DECT:SLOT<i>:LEVel OFF | ATT | FULL
The command determines the power stage of the slot.
OFF The slot is inactive
ATT The power is reduced by the amount defined by :DECT:SLOT:ATT
FULL Full power (predefined by level setting).
Example: :SOUR:DECT:SLOT2:LEV ATT *RST value is FULL
SMIQ SOURce:DECT Subsystem
1125.5555.03 3.59 E-9
[:SOURce]:DECT:SLOT<i>:PRESet
The command sets all the following parameters of the slot to the values defined by the standard
as a function of the type set above. This command triggers an event and hence has no *RST
value and no query.
Example: :SOUR:DECT:SLOT2:PRES
[:SOURce]:DECT:SLOT<i>:STSHift -9 to +9 (in bit)
This command allows a timing shift of the indicated slot by the set number of bits to simulate a
wrong timing (positive = delay; negative = advance).
Example: :SOUR:DECT:SLOT2:STSH -3 *RST value is 0
[:SOURce]:DECT:SLOT<i>:RAMP:CW ON | OFF
The command activates or deactivates the generation of unmodulated (CW) signal during the
ramp time.
Example: :SOUR:DECT:SLOT2:PRAM:CW ON *RST value is OFF
[:SOURce]:DECT:SLOT<i>:RAMP:DATA #B0 to #B111 to (12bit)
The command sets the data used during the ramp time.
Example: :SOUR:DECT:SLOT2:PRAM:DATA #B111100001111
*RST value is 101010101010 / 010101010101 (downl./uplink)
[:SOURce]:DECT:SLOT<i>:PREamble:DATA #B0 to #B111 to (16bit)
The command sets the data used for the 16-bit long preamble.
Example: :SOUR:DECT:SLOT2:PRE:DATA #B1111000011110000
*RST value is 1010101010101010 / 0101010101010101 (downlink/uplink)
[:SOURce]:DECT:SLOT<i>:PREamble:PROLonged:DATA #B0 to #B111 to (32bit)
The command sets the data used for the 32-bit long preamble.
Example: :SOUR:DECT:SLOT2:PRE:PROL:DATA #B1111
*RST value 10101010101010101010101010101010 (downlink)
*RST value 01010101010101010101010101010101 (uplink)
[:SOURce]:DECT:SLOT<i>:SYNC #B0 to #B111 to (16bit)
The command sets the data used for synchronization.
Example: :SOUR:DECT:SLOT2:SYNC #B0000111100001111
RST value is 1110100110001010 / 0001011001110101 (downl./uplink)
[:SOURce]:DECT:SLOT<i>[:SOURce]:AFIeld PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 |
DLISt | SDATa
The command defines the data source for the A field. It is either a PRBS generator (of different
sequence length), a data list or the serial interface.
Example: :SOUR:DECT:SLOT3:AFI PN15 *RST value is PN9
[:SOURce]:DECT:SLOT<i>[:SOURce]:AFIeld:DLISt ‘name’
The command selects a data list. This list is used only if lists have been set as data source using the
command :DECT:SLOT:AFI DLIS. This command triggers an event and hence has no *RST value.
Example: :DECT:SLOT:AFI:DLIS ’test’
SOURce:DECT Subsystem SMIQ
1125.5555.03 E-93.60
[:SOURce]:DECT:SLOT<i>[:SOURce]:BFIeld PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 |
DLISt | SDATa
The command determines the data source for the B field. The data source set by means of this
command is also used for SLOT:TYPE ADATa. It is either a PRBS generator (of different
sequence length), a data list or the serial interface.
Example: :SOUR:DECT:SLOT3:BFI PN15 *RST value is PN9
[:SOURce]:DECT:SLOT<i>[:SOURce]:BFIeld:DLISt ‘name’
The command selects a data list. This list is used only if lists have been set as data source using
the command :DECT:SLOT:BFI DLIS. This command triggers an event and hence has no *RST
value.
Example: :DECT:SLOT:BFI:DLIS ’test’
[:SOURce]:DECT:SLOT<i>[:SOURce]:ZFIeld ON | OFF
The command activates/deactivates the repetition of the content of the X field.
Example: :SOUR:DECT:SLOT2:ZFI ON *RST value is ON
SMIQ SOURce:DIST Subsystem
1125.5555.03 3.61 E-9
3.5.14.4 SOURce:DIST Subsystem
Subsystem DISTortion comprises all commands for setting the distortion simulator.
The NDSim subsystem under CALibrate is available for the offset calibration.
Command Parameter Default
Unit Remark
[:SOURce]
:DISTortion Not-SCPI
[:STATe] ON | OFF
:MODE POLYnomial | DATA
:DATA
:CATalog? Þ name {,name}... Query only
:SELect 'name of characteristic'
:DELete 'name of characteristic'
:ALL
:AM -100 dB to 0 dB {, -100 dB to 0 dB } | block data dB
:FREE? Query only
:POINts? Query only
:AMBase -100 dB to 0 dB {, -100 dB to 0 dB } | block data -
:POINts? Query only
:PM -180 degrees to +180 degrees {, -180 degrees to
+180 degrees} | block data
dB
:FREE? Query only
:POINts? Query only
:PMBase -100 dB to 0 dB {, -100 dB to 0 dB } | block data -
:POINts? Query only
:LEVel
:CORRection -20.0 to 6.00 dB
:POLYnomial Not-SCPI
:AMAM
:K<i> -10 dB to +10 dB dB
:AMPM
:K<i> -60 deg to +60 deg
:IFUNction ON | OFF
:LEVel
:CORRection -20 dB to +6 dB dB
:RECalculate
[:SOURce]:DISTortion[:STATe] ON | OFF
This command switches the distortion function on or off.
Example: :SOUR:DIST ON *RST value is OFF
[:SOURce]:DISTortion:MODE POLYnomial | DATA
Distortion data are calculated either by a list (:DIST:DATA... commands) or from the coefficients
of a polynomial (:DIST:POLY... commands).
Example: :SOUR:DIST POLY *RST value is DATA
[:SOURce]:DISTortion:DATA
The commands for the characteristics are under this node.
SOURce:DIST Subsystem SMIQ
1125.5555.03 E-93.62
[:SOURce]:DISTortion:DATA:CATalog?
This command outputs a list with the names of all characteristics stored in the unit separated by
commas. The command is a query and hence has no *RST value.
Example: :SOUR:DIST:DATA:CAT? Answer e.g.: TWTA, USER, ....
[:SOURce]:DISTortion:DATA:SELect '<name of characteristic>'
This command selects the characteristic (data list) all other SOURCE:DIST:DATA:... commands
refer to. If a new characteristic is to be generated, the name (max. 8 characters) can be entered
here. A new characteristic is then created under this name. Up to 10 characteristics can be
created. *RST does not influence data lists.
Example: :SOUR:DIST:DATA:SEL "TWTA"
[:SOURce]:DISTortion:DATA:DELete '<name of characteristic>'
This command deletes the indicated characteristic. *RST does not influence data lists.
Example: :SOUR:DIST:DATA:DEL "TEST1"
[:SOURce]:DISTortion:DATA:DELete:ALL
This command deletes all characteristics. *RST does not influence data lists.
Example: :SOUR:DIST:DATA:DEL:ALL
[:SOURce]:DISTortion:DATA:AM -100 dB to 0 dB {, -100 dB to 0 dB } | block data
This command fills the output values (y-axis) for the AM/AM conversion of the selected
characteristic with data. The data can be transmitted as a list of any length separated by commas
or as a binary block. If they are transmitted as block data, 8 (4) bytes are interpreted as floating-
point value with double accuracy; settable with command FORMAT:DATA. *RST does not influence
data lists.
Example: :SOUR:DIST:DATA:AM -12.6,-7.8,-5.2,-4.4,-3.6,-3,-2.4,...
[:SOURce]:DISTortion:DATA:AM:FREE?
This command outputs two values. One indicates the remaining storage capacity for new AM/AM
characteristics and the other provides information about the space which is already occupied. All
indications refer to the number of elements. The command is a query and hence has no *RST
value.
Example: :SOUR:DIST:DATA:AM:FREE? Answer e.g.: 30,0
[:SOURce]:DISTortion:DATA:AM:POINts?
The command provides the length of the output-value list (y-axis) of AM/AM conversion in
elements. The command is a query and hence has no *RST value.
Example: :SOUR:DIST:DATA:AM:POINts? Answer e.g.: 0
[:SOURce]:DISTortion:DATA:AMBase -100 dB to 0 dB {, -100 dB to 0 dB } | block data
This command fills the input values (x-axis) for the AM/AM conversion of the selected charac-
teristic with data. The data can be transmitted as a list of any length separated by commas or as a
binary block. If they are transmitted as block data, 8 (4) bytes are interpreted as floating-point
value with double accuracy; settable with FORM:DATA. *RST does not influence data lists.
Example: :SOUR:DIST:DATA:AMB -23.5,-18.5,-15.5,-14.5,-13.5,...
SMIQ SOURce:DIST Subsystem
1125.5555.03 3.63 E-9
[:SOURce]:DISTortion:DATA:AMBase:POINts?
This command provides the length of the input-value list (x-axis) of AM/AM conversion in
elements. The command is a query and hence has no *RST value.
Example: :SOUR:DIST:DATA:AMB:POINts? Answer e.g.: 0
[:SOURce]:DISTortion:DATA:PM -180 degrees to +180 degrees {, -180 degrees to +180 degrees } |
block data
This command fills the output values (y-axis) for the AM/PM conversion of the selected
characteristic with data. The data can be transmitted as a list of any length separated by commas
or as a binary block. If they are transmitted as block data, 8 (4) bytes are interpreted as floating-
point value with double accuracy; settable with command FORMAT:DATA. *RST does not influence
data lists.
Example: :SOUR:DIST:DATA:PM 0,-1.2,-3.8,-9.5,-15.9,-23,-30.4,-43.4
[:SOURce]:DISTortion:DATA:PM:FREE?
This command outputs two values. One indicates the remaining storage capacity for new AM/PM
characteristics and the other provides information about the space which is already occupied. All
indications refer to the number of elements. The command is a query and hence has no *RST
value.
Example: :SOUR:DIST:DATA:PM:FREE? Answer e.g.: 30, 0
[:SOURce]:DISTortion:DATA:PM:POINts?
The command provides the length of the output-value list (y-axis) of AM/PM conversion in
elements. The command is a query and hence has no *RST value.
Example: :SOUR:DIST:DATA:PM:POINts?" Answer e.g.: 0
[:SOURce]:DISTortion:DATA:PMBase -100 dB to 0 dB {, -100 dB to 0 dB } | block data
This command fills the input values (x-axis) for the AM/PM conversion of the selected
characteristic with data. The data can be transmitted as a list of any length separated by commas
or as a binary block. If they are transmitted as block data, 8 bytes are interpreted as floating-point
value; settable with command FORMAT:DATA. *RST does not influence data lists.
Example: :SOUR:DIST:DATA:PMB -23.5,-18.5,-15.5,-12.5,-9.5,-6.5,...
[:SOURce]:DISTortion:DATA:PMBase:POINts?
The command provides the length of the input-value list (x-axis) of AM/PM conversion in
elements. The command is a query and hence has no *RST value.
Example: :SOUR:DIST:DATA:PMB:POINts?" Answer e.g.: 0
[:SOURce]:DISTortion:DATA:LEVel:CORRection -20 to +6.00 dB
This command serves for setting the level correction for a particular characteristic.
Example: :SOUR:DIST:DATA:LEV:CORR -3.12 dB *RST value is 0 dB
[:SOURce]:DISTortion:POLYnomial:AMAM:K<i> -10 dB to +10 dB
The command sets the coefficients k2 to k5 for the AM-AM distortion.
Example: :SOUR:DIST:POLY:AMAM:K3 3.4 dB *RST value is 0 dB
SOURce:DIST Subsystem SMIQ
1125.5555.03 E-93.64
[:SOURce]:DISTortion:POLYnomial:AMPM:K<i> -60 deg to +60 deg
The command sets the coefficients k2 to k5 for the AM-PM distortion.
Example: :SOUR:DIST:POLY:AMPM:K4 12.8 deg *RST value is 0 deg
[:SOURce]:DISTortion:POLYnomial:IFUNction ON | OFF
The command switches on and off the inversion of the distortion characteristic to compensate an
amplifier connected after the SMIQ.
Example: :SOUR:DIST:POLY:IFUN ON *RST value is OFF
[:SOURce]:DISTortion:POLYnomial:LEVel:CORRection -20 dB to +6 dB
The command sets the level correction for the distortion characteristic from the polynomial
coefficients.
Example: :SOUR:DIST:DATA:LEV:CORR -3.12 DB *RST value is 0 dB
[:SOURce]:DISTortion:RECalculate
The distortion data transmitted to the unit via IEC/IEEE bus are loaded in the module and become
active. This command triggers an action and therefore has no *RST value.
Example: :SOUR:DIST:REC
SMIQ SOURce:DM Subsystem
1125.5555.03 3.65 E-9
3.5.14.5 SOURce:DM Subsystem
In this subsystem, the types of digital standard modulation as well as vector modulation (I/Q modulation)
are checked.
Vector Modulation
Command Parameter Default
Unit Remark
[:SOURce]
:DM
:IQ
:STATe
:CREStfactor
:PRAMp
:IMPairment
[:STATe]
:FILTer
:STATe
:FREQuency
:TRANsition
:LEAKage
[:MAGNitude]
:QUADrature
:ANGLe
:IQRatio
[:MAGNitude]
:IQSWap
[:STATe]
ON | OFF
0 to 30
OFF | AEXTernal
ON | OFF
ON | OFF
850 kHz | 2.5 MHz | 5 MHz, 7.5MHz
NORMal | FAST
0 to 50.0 PCT
-10.0 to 10.0 DEG
-12.0 to 12.0 PCT
ON | OFF
dB
Hz
PCT
DEG
PCT
Only with option
SMIQB47
[:SOURce]:DM:IQ:STATe ON | OFF
This command switches vector modulation (I/Q modulation) on or off.
Example: :SOUR:DM:IQ:STAT ON *RST value: OFF
[:SOURce]:DM:IQ:CREStfactor 0 to 30 dB
This command sets the crest factor with vector modulation.
Example: :SOUR:DM:IQ:CRES 10 *RST value: 0
[:SOURce]:DM:IQ:PRAMp OFF | AEXTernal
This command switches the level control via the input socket (analog external).
Example: :SOUR:DM:IQ:PRAM AEXT *RST value: OFF
[:SOURce]:DM:IQ:IMPairment[:STATe] ON | OFF
This command activates (ON) or deactivates (OFF) the three tuning or correction values
LEAKage, QUADrature and IQRatio for I/Q modulation.
Example: :SOUR:DM:IQ:IMP OFF *RST value: OFF
SOURce:DM Subsystem SMIQ
1125.5555.03 E-93.66
[:SOURce]:DM:IQ:FILTer
The commands for the IQ filter settings are under this node.
[:SOURce]:DM:IQ:FILTer:STATe ON | OFF
This command switches the IQ filter ON or OFF. It is only available with option SMIQB47 - LOW
ACP Filter.
Example: :SOUR:DM:IQ:FILT:STAT ON *RST value: OFF
[:SOURce]:DM:IQ:FILTer:FREQuency 850 kHz, 2.5 MHz, 5 MHz, 7.5 MHz
This command selects an IQ filter with the limit frequencies 850 kHz, 2.5 MHz, or 5 MHz or
7.5 MHz. It is only available with option SMIQB47 - LOW ACP Filter.
Example: :SOUR:DM:IQ:FILT:FREQ 2.5MHZ *RST value is 2.5 MHz
[:SOURce]:DM:IQ:TRANsition NORMal | FAST
The command switches over the setting time for the IQ filter. FAST should only be used if a fast
switchover between CW and I/Q modulation is required.
Example: :SOUR:DM:IQ:TRAN FAST *RST value is NORM
[:SOURce]:DM:LEAKage[:MAGNitude] 0 to 50.0 PCT
This command adjusts the residual carrier amplitude for I/Q modulation.
Example: :SOUR:DM:LEAK 3PCT *RST value: 0
[:SOURce]:DM:QUADrature:ANGLe -10.0 to 10.0 degree
This command changes the quadrature offset for I/Q modulation.
Example: :SOUR:DM:QUAD:ANGL -5DEG *RST value: 0
[:SOURce]:DM:IQRatio[:MAGNitude] -12.0 to 12.0 PCT
This command adjusts the ratio of I and Q modulation (gain imbalance).
Example: :SOUR:DM:IQR 4PCT *RST value: 0
[:SOURce]:DM:IQSWap[:STATe] ON | OFF
This command interchanges the I and Q channels in position ON.
Example: :SOUR:DM:IQSW OFF *RST value: OFF
SMIQ SOURce:DM Subsystem
1125.5555.03 3.67 E-9
Digital Modulation
Command Parameter Default
unit Remark
[:SOURce]
:DM
:STATe
:SEQuence
:SOURce
:PATTern
:PRBS
[:LENGth]
:DLISt
:DATA
:DATA?
:APPend
:CATalog?
:SELect
:DELete
:COPY
:FREE?
:POINts
:CLISt
:CONTrol
[:STATe]
:DATA
:CATalog?
:SELect
:DELete
:COPY
:FREE?
:POINts?
:MLISt
:DATA
:CATalog?
:SELect
:DELete
:FREE?
:POINts?
:FLISt
:DATA
:CATalog?
:SELect
:DELete
:FREE?
:POINts?
:STANdard
ON | OFF
AUTO | RETRigger | AAUTo | ARETrigger | SINGle
PRBS | PATTern | DLISt | SERial | PARallel | SDATa
ZERO | ONE | ALTernate
9 | 15 | 16 | 20 | 21 | 23
0 | 1 {,0 | 1 } or block data
[<start>[,<length>]]
0 < 1 {,0 | 1} or block data
‘name’
‘name’
‘name’
<n>
ON | OFF
<struc> {, <struc>}...
‘name’
‘name’
‘name’
A,B,C,D,E,F, I1, Q1, I2, Q2...
‘name’
‘name’
A,B,C,D, I1, Q1, I2, Q2...
‘name’
‘name’
APCFm | APCQpsk | ASK | BLUetooth | CDPD | CT2 |
DECT | GSM | GSMEdge | IRIDium | FIS95 | RIS95 |
NADC | PDC | PHS | TETRa | TFTS | PWT | QWCDma |
ICOBpsk | ICOGmsk | ICOQpsk | WORLdspace | AT55
query
no query
query only
no query
no query
query only
query only
no query
no query
query only
query only
query only
no query
query only
query only
query only
no query
query only
query only
QWCDma only
with option B47
WORLdspace
with option B17
SOURce:DM Subsystem SMIQ
1125.5555.03 E-93.68
Command Parameter Default
unit Remark
[:SOURce]
:DM
:FORMat
:MDELay?
:ASK
:DEPTh
:FSK
:DEViation
:SRATe
:FILTer
:TYPE
:PARameter
:MODE
:CODing
:CLOCk
:SOURce
:MODE
:DELay
:POLarity
:LDIStortion
[:STATe]
:PRAMp
[:STATe]
:SOURce
:TIME
:DELay
:SHAPe
:ATTenuation
:TRIGger
:SOURce
:INHibit
:DELay
:SLOPe
:THReshold
[:ALL]
:INPut
:IMPedance
GMSK | GFSK | BPSK | QPSK | QIS95 | QICO |
QWCDma | QINMarsat | OQPSk | OIS95 | P4QPsk |
P4DQpsk | PSK8 | PSKE8 | QAM16 to 256 | ASK |
FSK2 | FSK4 | AFSK4 | USER
0 to 100
100 Hz to 2.5 MHz
1 kHz to 7 MHz
SCOSine | COSine | GAUSs | LGAUss | BESS1 |
BESS2 | IS95 | EIS95 | APCO | TETRa | WCDMa |
RECTangle | SPHase | USER
0.1 to 1.0
LACP | LEVM
OFF| GSM| NADC| PDC| PHS| TETRa| PWT| TFTS|
DIFF| DGRay| DPHS| APCO25| INMarsat| VDL
INTernal | EXTernal | COUPled
BIT | SYMBol
0 to 1.0
NORMal | INVerted
ON | OFF
ON | OFF
CLISt | AEXTernal | DEXTernal
0.25 to 32
-1.0 to 5.0
LINear | COSine
0 to 70 dB
EXTernal | INTernal
0 to 67.1E6
0 to 65535
POSitive | NEGative
-2,5 to +2,5 V
G1K | G50 | ECL
PCT
Hz
Hz
dB
V
QWCDma only with
option SMIQB47
Query only
SMIQ SOURce:DM Subsystem
1125.5555.03 3.69 E-9
[:SOURce]:DM:STATe ON | OFF
The command switches the digital (user-defined, not stipulated by a standard) modulation on or off.
Example: :SOUR:DM:STAT ON *RST value is OFF
[:SOURce]:DM:SEQuence AUTO | RETRigger | AAUTo | ARETrigger | SINGle
This command selects the trigger mode:
AUTO The sequence is repeated cyclically.
RETRigger The sequence is repeated cyclically. After the start, the sequence is restarted with
each new trigger even before it is completed.
AAUTo ARMED AUTO. The sequence waits for a trigger signal. After the start, the trigger
mode is AUTO and the sequence cannot be triggered anymore.
ARETrigger ARMED RETRIGGER. The sequence waits for a trigger signal. After the start, the
sequence is restarted with each new trigger even before it is completed.
SINGle After a trigger event, the sequence is only run once.
Example :SOUR:DM:SEQ:AAUT *RST value is AUTO
[:SOURce]:DM:SOURce PRBS | PATTern | DLISt | SERial | PARallel | SDATa
The command selects the data source.
PRBS internally generated pseudo random bit sequences.
PATT internally generated (fixed) data pattern.
DLISt internal data generator (only with DGEN).
SERial external serial interface.
PARallel external parallel interface.
SDATa asynchronous serial data input SER DATA.
Example: :SOUR:DM:SOUR SER *RST value is PRBS
[:SOURce]:DM:PATTern ZERO | ONE | ALTernate
The command selects the data pattern. The data range is alternately assigned with 0 and 1 by
means of ALTernate.
Example: :SOUR:DM:PATT ALT *RST value is ZERO
[:SOURce]:DM:PRBS[:LENGth] 9 | 15 | 16 | 20 | 21 | 23.
The command determines the length of the pseudo random sequence according to the following
equation: Length = (2^LENGth) - 1
Example: :SOUR:DM:PRBS 21 *RST value is 15
[:SOURce]:DM:DLISt
The commands for the data are under this node. Data lists are not affected by *RST.
[:SOURce]:DM:DLISt:DATA 0 | 1 {,0 | 1 }...
This command transmits the bit data to the selected data list which is thus overwritten. The data can
also be transmitted as block data in binary or PACKed format (see section: Parameter, Block Data).
Each byte will then be interpreted as made up of 8 data bits. Here, the command
:SYST:COMM:GPIB:LTER EOI should be used to set the delimiter mode to 'circuit message EOI
only' so that an accidental LF within the data sequence is not first identified as a delimiter and thus
momentarily interrupts the data transmission. The command ...LTER STAN resets the delimiter
mode. The data are not modified by *RST.
Example:
:SOUR:DM:DLIS:DATA 0,1,1,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,1,0,1,1,0,1
:SOUR:DM:DLIS:DATA #13aX-
SOURce:DM Subsystem SMIQ
1125.5555.03 E-93.70
[:SOURce]:DM:DLISt:DATA? [<start> [,<length>]]
The command reads out the data list. If the query is enhanced by the two parameters start and
length, the list will be read out in smaller parts. Start and length are given in bits.
Without parameters the whole length will always be output from address 1.
The data format is selected by means of the :FORMat ASCii | PACKed command. The order
of the bytes is stipulated in the IEC/IEEE-bus standard (MSbyte first).
Example: :SOUR:DM:DLIS:DATA? 2048,1024
[:SOURce]:DM:DLISt:DATA:APPend 0 | 1 {,0 | 1 }...
The command allows the data lists, which can be very long (up to 20 Mbits = 2.5 Mbyte), to be
transmitted in smaller parts. They are added to the end of already existing data.
First, the data list values have to be overwritten using the above DM:DLIS:DATA command.
Further data can then be added using the DM:DLIS:DATA:APP commands. The data format is
the same for the two commands.
Example: :SOUR:DM:DLIS:DATA:APP 0,1,1,0,0,0,0,0,1,0,1,1,0,1,0,0
:SOUR:DM:DLIS:DATA:APP #12aX
[:SOURce]:DM:DLISt:CATalog?
The command returns a list of data list names separated by commas.
Example: :SOUR:DM:DLIS:CAT?
[:SOURce]:DM:DLISt:SELect ‘<name>‘
The command selects the indicated data list. This list will only take effect as data source with
mode :DM:SOURce DLISt selected. The list can only be filled with values if it has been selected
beforehand. If the indicated list does not exist, it will be generated. <name> has to be put in
brackets (< >) and may have up to 8 characters.
Example: :SOUR:DM:DLIS:SEL ’test’
[:SOURce]:DM:DLISt:DELete ‘<name>‘
This command deletes the data list indicated by <name>. The name has to be put in brackets (<>)
and may have up to 8 alphanumeric characters. This command triggers an event and hence has
no *RST value and no query.
Example: :SOUR:DM:DLIS:DEL ’test1’
[:SOURce]:DM:DLISt:COPY ‘<name>‘
The command copies the selected list to the data list indicated by <name>. This command
triggers an event and hence has no *RST value and no query.
Example: :SOUR:DM:DLIS:COPY ’test1’
[:SOURce]:DM:DLISt:FREE?
This command returns the available free space for digital data (in bits) and the length of the
selected list. The 2 values are separated by a comma.
Example: :SOUR:DM:DLIS:FREE?
:SOURce]:DM:DLISt:POINts <n>
The command indicates the number of elements (in bits) of the currently selected data list. Since
only multiples of 8 bits can be transmitted when using block data, the exact number of used bits
can be set here. Overflow bits in the list are ignored.
Example: :SOUR:DM:DLIS:POIN 234
SMIQ SOURce:DM Subsystem
1125.5555.03 3.71 E-9
[:SOURce]:DM:CLISt
The commands for processing the control list are under this node. The control list contains the
switching signals for the burst, the level, the modulation etc. The list index is with reference to the
symbols in the data list and the list only contains the status changes. Control lists are not affected by
*RST.
[:SOURce]:DM:CLISt:CONTrol[:STATe] ON | OFF
The command switches control on or off using the control list.
Example: :SOUR:DM:CLIS:CONT ON *RST value is OFF
[:SOURce]:DM:CLISt:DATA <struc>{,<struc>}...
The command transmits the bit data to the selected control list which is then overwritten.
struc>=: <symbol-index>, <bin>, <bin>, <bin>, <bin>, <bin>, <bin>
<symbol-index> =: numeric value: 1 to 2^26 ( 67108864)
<bin> =: numeric value: 0 | 1
The data can also be transmitted as a binary block with <struc> being a 4 byte value in which the
26 LSBs represent the symbol index and the remaining 6 bits the binary values (see also section
parameter, block data). Each byte is interpreted as made up of 8 data bits. Here, the command
:SYSTem:COMMunicate:GPIB:LTERminator EOI should be used to set the delimiter mode to
'circuit message EOI only' so that an accidental LF within the data sequence is not first identified
as a delimiter and thus momentarily interrupts the data transmission.
The command ...LTER STANdard resets the delimiter mode.
For the query, switchover between the two formats given above is possible by means of the
:FORMat ASCii | PACKed command. The order of bytes is stipulated in the IEC/IEEE-bus
standard (MSByte first).
It should be noted that in the binary form the symbol index starts with 0. In the binary format this
means that each symbol index is less by 1 than actually indicated on the screen and input/output
via IEC/IEEE-bus in the ASCII format.
Example:
:SOUR:DM:CLIS:DATA 12345678,0,1,1,0,0,0,23456789,1,0,0,1,0,0
:SOUR:DM:CLIS:DATA #18aX-’y$?s
The first two positions of the list are filled with the examples (with different values).
[:SOURce]:DM:CLISt:CATalog?
The command returns a list of data list names separated by commas.
Example: :SOUR:DM:CLIS:CAT?
[:SOURce]:DM:CLISt:SELect ‘<name>‘
The command selects the indicated control list. This list only becomes effective as control list if
the:DM:PRAMp:SOURce CLISt mode has been selected. The list can only be filled with values
if it has been selected beforehand. If the indicated list does not exist, it will be generated. <name>
has to be put in brackets (< >) and may have up to 8 characters.
Example: :SOUR:DM:CLIS:SEL ’TEST2’
[:SOURce]:DM:CLISt:DELete ‘<name>‘
The command deletes the control list indicated by <name>. This command triggers an event and
hence has no *RST value and no query
Example: :SOUR:DM:CLIS:DEL ’TEST2’
SOURce:DM Subsystem SMIQ
1125.5555.03 E-93.72
[:SOURce]:DM:CLISt:COPY ‘<name>‘
The command copies the selected list to the data list indicated by <name>. This command
triggers an event and hence has no *RST value and no query.
Example: :SOUR:DM:CLIS:COPY ’TEST2’
[:SOURce]:DM:CLISt:FREE?
This command returns the available free space for the control data (lines consisting of 4 bytes) in
elements.
Example: :SOUR:DM:CLIS:FREE?
[:SOURce]:DM:CLISt:POINts?
The command returns the number of elements (lines consisting of 4 bytes) of the currently
selected list.
Example: :SOUR:DM:CLIS:POIN?
[:SOURce]:DM:MLISt:DATA A,B.C,D,E,F,I1,Q1,I2,Q2...
The command transmits the mapping data to the selected list which is therefore overwritten. The
command can be used only if a list has been selected beforehand (compare with
DM:MLISt:SELect ).
A: 1 for PSK modulation
2 for QAM modulation
3 for FSK modulation
4 for PSK modulation with coding
5 for QAM modulation with coding
6 for FSK modulation with coding
B: 1 to 8, with B = log2 m (mapping states)
C: 0 if no delay is to be used in the Q-path
1 if the Q-path is to be delayed by Tsymbol/2 (e.g. for offset QPSK)
D: 0, reserved
E: 0, reserved
F: 0, reserved
I,Q: Floating point values for I and Q; m values for I and Q must be defined for PSK and QAM
modulation. For FSK all Q-values must be set to 0. The values have to be entered in
ascending order starting with the least significant data symbol.
Example (for QPSK with m = 4, user mapping without coding):
:SOUR:DM:MLIS:DATA 1,2,0,0,0,0,0.7,0.7,0.7,-0.7,-0.7,0.7,-0.7,-0.7
The example results in the following IQ mapping
I
Q
0010
11 01
QPSK
(MSB, LSB)
If data A is of value 4 to 6, a coding is activated. A variable number of values are added which are
automatically set by application program UserMod1. The generation and transmission of a user
mapping with or without coding can be performed by means of this program.
1 Can be downloaded from Internet site http://www.rohde-schwarz.com.
SMIQ SOURce:DM Subsystem
1125.5555.03 3.73 E-9
[:SOURce]:DM:MLISt:CATalog?
The command returns a list of mapping list names separated by commas.
Example: :SOUR:DM:MLIS:CAT?
[:SOURce]:DM:MLISt:SELect ‘<name>‘
The command selects the indicated user-defined mapping list. This list only becomes effective as
modulation if the:DM:FORMat USER mode has been selected. The list can only be filled with
values if it has been selected beforehand. If the indicated list does not exist, it will be generated.
<name> has to be put in brackets (< >) and may have up to 8 characters.
Example: :SOUR:DM:MLIS:SEL ’test’
[:SOURce]:DM:MLISt:DELete ‘<name>
The command deletes the mapping list indicated by <name>. This command triggers an event
and hence has no *RST value and no query
Example: :SOUR:DM:MLIS:DEL ’TEST2’
[:SOURce]:DM:MLISt:FREE?
This command returns the available free space for the mapping data (lines consisting of 4 bytes)
in elements.
Example: :SOUR:DM:MLIS:FREE?
[:SOURce]:DM:MLISt:POINts?
The command returns the number of elements (numbers) of the currently selected list.
Example: :SOUR:DM:MLIS:POIN?
[:SOURce]:DM:FLISt:DATA A,B,C,D,I1,Q1,I2,Q2..
The command transfers filter data to the selected list which is overwritten. The command can only
be used if a list has been selected before (see :DM:FLISt:SEL).
A: Pulse length: 8, 16
B: Oversampling: 2 to 32, number of coefficients x = pulse length * oversampling <= 256.
C: 6 dB bandwidth
D: 70 dB bandwidth
I,Q: Coefficients for i and q with PSK/QAM or for f with FSK. The coefficients are not used for q
with FSK.
A user filter can be loaded and transferred by means of application program UserMod.
[:SOURce]:DM:FLISt:CATalog?
The command returns a catalog of all available filter lists separated by comma.
Example: :SOUR:DM:FLIS:CAT?
[:SOURce]:DM:FLISt:SELect ‘<name>‘
The command selects the given user-defined filter list. This list is effective as a filter only if
:DM:FILTer:TYPE USER mode is selected. Before the list can be filled up with values, it must
be selected. If the indicated list does not exist, it will be generated. <name> should be put into
brackets and have a maximum length of 7 characters.
Example: :SOUR:DM:FLIS:SEL ’test’
SOURce:DM Subsystem SMIQ
1125.5555.03 E-93.74
[:SOURce]:DM:FLISt:DELete ‘<name>
The command deletes the filter list specified by <name>. This command triggers an event and
hence has neither *RST value nor query.
Example: :SOUR:DM:FLIS:DEL ’TEST2’
[:SOURce]:DM:FLISt:FREE?
The command returns the free space available for filter data as a numeral.
Example: :SOUR:DM:FLIS:FREE?
[:SOURce]:DM:FLISt:POINts?
The command returns the number of values of the currently selected list.
Example: :SOUR:DM:FLIS:POIN?
[:SOURce]:DM:STANdard APCFm | APCQpsk | ASK | BLUetooth | CDPD | CT2 | DECT | GSM |
GSMEdge | IRIDium | FIS95 | RIS95 | NADC | PDC | PHS | TETRa | TFTS |
PWT | ICOBpsk | ICOGmsk | ICOQpsk | WORLdspace | QWCDma | AT55
The command adjusts the modulation parameters MODULATION, SYMBOL RATE, FILTER and
CODING to the selected standard. The default setting is USER. This setting is always activated
automatically if one of the modulation parameters is changed and does not correspond to the
selected standard. QWCDma is only available with option SMIQB47. WORLDspace only with
option SMIQB17.
APCFm APCO4FM
APCQpsk APCOQPSK
Example: :SOUR:DM:STAN PHS *RST value USER
[:SOURce]:DM:FORMat BPSK | GFSK | GMSK | QPSK | QIS95 | QINMarsat | QICO | QWCDma |
OQPSk | OIS95 | P4QPsk | P4DQpsk | PSK8 | PSKE8 | ASK | FSK2 | FSK4 |
AFSK4 | QAM16 | QAM32 | QAM64 | QAM256 | USER
The command selects the modulation. QWCDma is only available with option SMIQB47.
P4DQpsk π/4DQSPK
PSK2 is an alias for BPSK
PSK4 is alias for QPSK (according to SCPI).
QIS95 QPSK IS95
OIS95 OQPSK IS95
QWCDma WCDMA QPSK
AFSK4 4FSK APCO
USER The list selected with DM:MLIS:SEL... and defined via DM:MLIS:DATA... is
used.
Example: :SOUR:DM:FORM GMSK *RST value is P4DQpsk
[:SOURce]:DM:MDELay?
Value for time delay of digital modulation between data input/output and RF output of the SMIQ.
Example: :SOUR:DM:MDEL?
[:SOURce]:DM:ASK:DEPTh 0 to 100 PCT
The commands sets the input value for the ASK modulation depth.
Example: :SOUR:DM:ASK:DEPT 10 *RST value is 100 PCT
SMIQ SOURce:DM Subsystem
1125.5555.03 3.75 E-9
[:SOURce]:DM:FSK:DEViation 100 kHz to 2.5 MHz
The command sets the deviation for FSK (only for DM:FORmat FSK2, FSK4 and GFSK).
Example: :SOUR:DM:FSK:DEV 9 kHz *RST value is 4.5 kHz
[:SOURce]:DM:SRATe 1kHz to 7 MHz
The command sets the symbol rate.
Example: :SOUR:DM:SRAT 200 kHz *RST value is 24.3 kHz
[:SOURce]:DM:FILTer
The filter selection commands are under this node.
[:SOURce]:DM:FILTer:TYPE SCOSine | COSine | GAUSs | LGAuss | BESS1 | BESS2 | IS95 | EIS95 |
APCO | TETRa | WCDMa | RECTangle | SPHase | USER
The command selects the type of filter.
BESS1 BESSEL B*T 1.25
BESS2 BESSEL B*T 2.50
EIS95 IS-95+EQUALIZER
APCO filter according to standard APCO modulation C4FM
USER The filter list selected with DM:FLIS:SEL... and defined via DM:FLIS:DATA...
is used.
Example: :SOUR:DM:FILT:TYPE GAUS *RST value is SCOS
[:SOURce]:DM:FILTer:PARameter 0.1 to 1.0
The command sets the filter parameter (Roff Off or BxT rate).
Example: :SOUR:DM:FILT:PAR 1 *RST value is 0.35
[:SOURce]:DM:FILTer:MODE LACP | LEVM
The command selects the filter mode.
Example: :SOUR:DM:FILT:MODE LEVM *RST value is LACP
[:SOURce]:DM:CODing OFF | GSM | NADC | PDC | PHS | TETRa | TFTS | PWT | INMarsat | DIFF |
DPHS | DGRay | APCO25 | VDL
The command selects the modulation coding (standard) .
DPHS PHASE DIFF
DGRay DIFF + DGRAY
Example: :SOUR:DM:COD NADC *RST value is OFF
[:SOURce]:DM:CLOCk
The commands for setting the data clock are under this node.
[:SOURce]:DM:CLOCk:SOURce INTernal | EXTernal | COUPled
The command selects the source for the clock of the digital modulation.
INTernal The internal clock generator is used.
EXTernal The clock is fed externally.
COUPled The clock comes from the same source as the data. Selection is determined by
:DM:SOURce.
Example: :SOUR:DM:CLOC:SOUR INT *RST value is COUPled
SOURce:DM Subsystem SMIQ
1125.5555.03 E-93.76
[:SOURce]:DM:CLOCk:MODE BIT | SYMBol
The command selects the clock mode for :DM:CLOCk:SOURce EXTernal
BIT Only the input D_CLOCK is used.
SYMBol Only the input S_CLOCK is used.
The bit and symbol clock only differ for modulations with more than two states, i.e. modulations for
which more than one bit is required to code each state.
Example: :SOUR:DM:CLOC:MODE BIT *RST value is SYMBol
[:SOURce]:DM:CLOCk:DELay 0 to 1.0
The command sets the delay of the symbol clock.
Example: :SOUR:DM:CLOC:DEL 0.2 *RST value is 0
[:SOURce]:DM:CLOCk:POLarity NORMal | INVerted
The command selects the active slope for the clock.
NORMal SLOPE POS.
INVert SLOPE NEG
Example: :SOUR:DM:CLOC:POL INV *RST value is NORMal
[:SOURce]:DM:LDIStortion[:STATe] ON | OFF
The command sets the reduced level for the low-distortion mode.
Example: :SOUR:DM:LDIS ON *RST value is OFF
[:SOURce]:DM:PRAMp
The commands for the level control of the burst are under this node.
[:SOURce]:DM:PRAMp[:STATe] ON | OFF
The command switches the level control on or off.
Example: :SOUR:DM:PRAM ON *RST value is OFF
[:SOURce]:DM:PRAMp:SOURce CLISt | AEXTernal | DEXTernal
The command selects the level control.
CLISt The control list defined under :DM:CLISt controls the level (INT).
AEXT Analog signal at the burst control input controls the level.
DEXT Digital signals BURSt-GATE and LEV-ATT control the level.
Example: :SOUR:DM:PRAM:SOUR DEXT *RST value is CLISt
[:SOURce]:DM:PRAMp:TIME 0.25 to 32
The command sets the steep cutoff (as multiple of symbol length).
Example: :SOUR:DM:PRAM:TIME 2.5 *RST value is 3.0
[:SOURce]:DM:PRAMp:DELay -1.0 to +5.0
The command defines the shift of the envelope characteristic to the modulated signal. A positive
value causes a delay of the envelope.
Example: :SOUR:DM:PRAM:DEL 0.2 *RST value is 0
SMIQ SOURce:DM Subsystem
1125.5555.03 3.77 E-9
[:SOURce]:DM:PRAMp:SHAPe LINear | COSine
The command selects the linear or cosine-square shape of the ramp-up and ramp-down (power
burst).
Example: :SOUR:DM:PRAM:SHAP COS *RST value is COS
[:SOURce]:DM:PRAMp:ATTenuation 0 to 70 dB
The command sets the level reduction value.
Example: :SOUR:DM:PRAM:ATT 12 dB *RST value is 0 dB
[:SOURce]:DM:TRIGger:SOURce EXTernal | INTernal
The command selects the trigger source.
EXT Triggering via external trigger input.
INT Triggering via IEC/IEEE bus or the Execute command of manual control.
Example: :SOUR:DM:TRIG: EXT *RST value is INTernal
[:SOURce]:DM:TRIGger:INHibit 0 to 67.1E6
The command sets the retrigger inhibit duration in number of symbols.
Example: :SOUR:DM:TRIG:INH 12000 *RST value is 0
[:SOURce]:DM:TRIGger:DELay 0 to 65535
The command sets the trigger delay in number of symbols.
Example: :SOUR:DM:TRIG:DEL 10 *RST value is 0
[:SOURce]:DM:TRIGger:SLOPe POSitive | NEGative
The command selects the active slope of the external trigger signal.
Example: :SOUR:DM:TRIG:SLOP NEG *RST value is POSitive.
[:SOURce]:DM:THReshold[:ALL] -2.5 to +2.5V
The command sets the voltage threshold of the digital data and clock inputs.
Example: :SOUR:DM:THR 1 V *RST value is 1.0 V
[:SOURce]:DM:INPut:IMPedance G1K | G50 | ECL
The command sets the impedance of all the data and clock inputs:
G1K 1 kOhm to ground
G50 50 Ohm to ground
ECL ECL-compatible input (only with option SMIQB10, not with option SMIQB20)
Example: :SOUR:DM:INP:IMP G50 *RST value is G1K
SOURce:FM Subsystem SMIQ
1125.5555.03 E-93.78
3.5.14.6 SOURce:FM Subsystem
This subsystem contains the commands to check the frequency modulation and to set the parameters
of the modulation signal. The SMIQ can be equipped with two independent frequency modulators
(option SM-B5). They are differentiated by a suffix after FM.
SOURce:FM1
SOURce:FM2
Command Parameter Default Unit Remark
[:SOURce]
:FM1|2
[:DEViation]
:EXTernal1|2
:COUPling
:INTernal
:FREQuency
:PREemphasis
:SOURce
:STATe
0 to 1MHz
AC | DC
0.1 Hz to 1 MHz
0 | 50us | 75us
INT | EXT1 | EXT2
ON | OFF
Hz
Hz
Option SM-B5
[:SOURce]:FM1|2[:DEViation] 0 to 1 MHz
The command specifies the frequency variation caused by the FM. Although the LF generator is
used as modulation sources, the frequency variation is independent of the voltage at the LF
output. The maximally possible DEViation depends on SOURce:FREQuency (cf. data sheet).
Example: :SOUR:FM1:DEV 5kHz *RST value is 10 kHz
[:SOURce]:FM1|2:EXTernal1|2
The commands to set the external FM input are under this node. The settings under EXTernal for
modulations AM, FM and PM are independent of each other. The settings are always related to
the socket which is determined by the numeric suffix after EXTernal. The suffix after FM is
ignored then. With the following commands, e.g., the settings are both related to EXT2 input:
:SOUR:FM1:EXT2:COUP AC
:SOUR:FM2:EXT2:COUP AC
A command without suffix is interpreted like a command with suffix 1.
[:SOURce]:FM1|2:EXTernal1|2:COUPling AC | DC
The command selects the type of coupling for the external FM input.
AC The d.c. voltage content is separated from the modulation signal.
DC The modulation signal is not altered. *RST value is AC
Example: :SOUR:FM:EXT:COUP AC
[:SOURce]:FM1|2:INTernal
The settings for the internal FM generators are effected under this node. For FM1, this is always
the internal LF generator. Here the same hardware is set for FM1, PM1, AM:INT as well as
SOURce2. For FM2, only the external sources can be used (not the internal LF generator).
This means that, e.g., the following commands are coupled with each other and have the same effect:
SOUR:AM:INT:FREQ
SOUR:FM:INT:FREQ
SOUR:PM:INT:FREQ
SOUR2:FREQ:CW
SMIQ SOURce:FM Subsystem
1125.5555.03 3.79 E-9
[:SOURce]:FM1|2:INTernal:FREQuency 0.1 Hz to 1 MHz
The command sets the modulation frequency.
Example: :SOUR:FM:INT:FREQ 10kHz *RST value is 1 kHz
[:SOURce]:FM1|2:PREemphasis 0 | 50us | 75us
The command selects the preemphasis.
0 No preemphasis
50 us 50 µs, European standard 50 µs
75 us 75 µs, American standard 75 µs *RST value is 0
Example: :SOUR:FM:PRE 50us
[:SOURce]:FM1|2:SOURce INTernal | EXTernal1 | EXTernal2
The command selects the modulation source. A command without suffix is interpreted like a
command with suffix 1. The LF generator is INT for FM1. The external and the internal modulation
source can be indicated at the same time (see example)
*RST value for FM1: INT
Example: :SOUR:FM:SOUR INT1, EXT2 for FM2:EXT2
[:SOURce]:FM1|2:STATe ON | OFF
The command switches the frequency modulation on or off. *RST value is OFF.
Example: SOUR:FM:STAT OFF
SOURce:FREQuency Subsystem SMIQ
1125.5555.03 E-93.80
3.5.14.7 SOURce:FREQuency Subsystem
This subsystem contains the commands for the frequency settings of the RF source including the sweeps.
Command Parameter Default
Unit Remark
[:SOURce]
:FREQuency
:CENTer
[:CW|:FIXed]
:RCL
:MANual
:MODE
:OFFSet
:SPAN
:STARt
:STOP
:STEP
[:INCRement]
300 kHz to RFmax
300 kHz to RFmax
INCLude | EXCLude
300 kHz to RFmax
CW | FIXed | SWEep | LIST
-50 to +50 GHz
0 to RFmax
300 kHz to RFmax
300 kHz to RFmax
0 to 1 GHz
Hz
Hz
Hz
Hz
Hz
Hz
Hz
Hz
RFmax depends on model
RFmax depends on model
RFmax depends on model
RFmax depends on model
RFmax depends on model
RFmax depends on model
[:SOURce]:FREQuency:CENTer 300 kHz to RFmax (RFmax depending on model)
The command sets the sweep range by means of the center frequency. This command is coupled
to commands :SOURce:FREQuency:STARt and :SOURce:FREQuency:STOP.
In this command, value OFFSet is considered as with input value FREQUENCY in the header
field. Thus the specified range indicated is only valid for OFFSet = 0. The specified range with
other OFFSet values can be calculated according to the following formula (cf. Chapter 2, Section
"Frequency Offset" as well):
300 kHz + OFFSet to 2.2 GHz +OFFSet *RST value is (STARt +STOP)/2
Example: :SOUR:FREQ:CENT 100kHz
[:SOURce]:FREQuency[:CW|:FIXed] 300 kHz to RFmax (RFmax depending on model)
The command sets the frequency for CW operation. This value is coupled to the current sweep
frequency. In addition to a numeric value, UP and DOWN can be indicated. The frequency is
increased or reduced by the value set under :SOURce:FREQuency:STEP. (As to specified
range, cf. FREQuency:CENTer).
Example: :SOUR:FREQ:CW 100kHz *RST value is 100 MHz
[:SOURce]:FREQuency[:CW|:FIXed]:RCL INCLude | EXCLude
The command determines the effect of the recall function on the frequency. *RST value has no
effect to this setting.
INCLude The saved frequency is loaded when instrument settings are loaded with the
[RECALL] key or with a memory sequence.
EXCLude The RF frequency is not loaded when instrument settings are loaded, the current
settings are maintained.
Example: :SOUR:FREQ:RCL INCL
[:SOURce]:FREQuency:MANual 300 kHz to RFmax (RFmax depending on model)
The command sets the frequency if SOUR:SWE:MODE MAN and SOUR:FREQ:MODE SWE are set.
Only frequency values between the settings with :SOUR:FREQ:STAR and :SOUR:FREQ:STOP
are permitted. (As to specified range, cf. FREQ:CENT) *RST value is 100 MHz
Example: :SOUR:FREQ:MAN 500MHz
SMIQ SOURce:FREQuency Subsystem
1125.5555.03 3.81 E-9
[:SOURce]:FREQuency:MODE CW | FIXed | SWEep | LIST
The command specifies the operating mode and hence also specifies which commands check the
FREQuency subsystem. The following allocations are valid
CW | FIXed CW and FIXed are synonyms. The output frequency is specified by means of
:SOUR:FREQ:CW | FIX.
SWEep The instrument operates in the SWEep operating mode. The frequency is specified
by means of commands SOUR:FREQ:STAR; STOP; CENT; SPAN; MAN.
LIST The instrument processes a list of frequency and level settings. The settings are
effected in the SOURce:LIST subsystem. Setting SOUR :FREQ:MODE
LIST automatically sets command SOUR:POW:MODE to LIST as well.
Example: :SOUR:FREQ:MODE SWE *RST value is CW
[:SOURce]:FREQuency:OFFSet -50 to + 50 GHz
The command sets the frequency offset of an instrument which might be series-connected, e.g. a
mixer. (cf. Chapter 2, Section "Frequency Offset"). If a frequency offset is entered, the frequency
entered using SOURce:FREQuency: to does no longer correspond to the RF output frequency.
The following connection is true:
SOURce:FREQuency:to = RF output frequency + SOURce:FREQuency:OFFSet.
Entering an offset does not alter the RF output frequency but the query value of
SOURce:FREQuency:..
Example: :SOUR:FREQ:OFFS 100MHz *RST value is 0
[:SOURce]:FREQuency:SPAN 0 to RFmax (RFmax depending on model)
This command indicates the frequency range for the sweep. This parameter is coupled to the start
and stop frequency. Negative values for SPAN are permitted, then STARt > STOP is true. There
is the following connection:
STARt = CENTer – SPAN/2
STOP = CENTer + SPAN/2 *RST value is (STOP - STARt)
Example: :SOUR:FREQ:SPAN 1GHz
[:SOURce]:FREQuency:STARt 300 kHz to RFmax (RFmax depending on model)
This command indicates the starting value of the frequency for the sweep operation. Parameters
STARt, STOP, SPAN and CENTer are coupled to each other. STARt may be larger than STOP.
(As to specified range, cf. FREQuency:CENTer). *RST value is 100MHz
Example: :SOUR:FREQ:STAR 1MHz
[:SOURce]:FREQuency:STOP 300 kHz to RFmax (RFmax depending on model)
This command indicates the final value of the frequency for the sweep operation (see STARt as
well). (As to specified range, cf. FREQuency:CENTer). *RST value is 500MHz
Example: :SOUR:FREQ:STOP 100MHz
[:SOURce]:FREQuency:STEP
The command to enter the step width for the frequency setting if frequency values UP or DOWN
are used is under this node. This command is coupled to the KNOB STEP command in manual
control. Only linear step widths can be set.
[:SOURce]:FREQuency:STEP[:INCRement] 0 to 1 GHz
The command sets the step width for the frequency setting.
Example: :SOUR:FREQ:STEP:INCR 1MHz *RST value is 1MHz
SOURce:FSIM-Subsystem SMIQ
1125.5555.03 E-93.82
3.5.14.8 SOURce:FSIM-Subsystem
The FSIM system comprises the commands for the fading simulator (options SMIQB14, SMIQB15, SMIQB49).
Command Parameter Default-
Unit Remark
[:SOURce]
:FSIMulator Option SMIQB14
[:STANdard]
[:STATe] ON | OFF
:CONFigure S6Path | S12Path | D6Path S12P/D6P only w. SMIQB15
:SEQuence RUN | STOP
:RESet
:IGNore
:RFCHanges ON | OFF
:STANdard CDMA8 | CDMA30 | CDMA100 | NADC8 | NADC50 |
NADC100 | GTU3 | G6TU3 | GTU50 | G6TU50 |
GHT100 |G6HT100 | GRA250 | GET50 | GET100 |
PTU1 | P6TU1 | PTU50 | P6TU50 | PHT100 | P6HT100 |
PRA130 | PET50 | PET100 | TTU | THT | TET
:SPEed
:UNIT MPS | KMPH | MPH
:ILOSs
:MODE NORMal | LACP
:COUPle
:SPEed ON | OFF
:CORRelation
:COEFficient ON | OFF
:LOGNormal
:LCONstant ON | OFF
:CSTD ON | OFF
:CFACtor
:EXTern? query only
:DEFault
:PATH<i> <i> = [1] | 2 to 6 (12) 7 to 12 only with SMIQB15
:STATe ON | OFF
:PROFile PDOPpler | RAYLeigh | RICE | CPHase
:DCOMponent
:STATe ON | OFF
:PRATio -30.0 to +30.0 dB dB
:FRATio -1.0 to +1.0
:CPHase 0 to 360 DEG
:SPEed 0.005 to 27 777 MPS depending on FSIM:SPE:UNIT:
MPS | KMPH | MPH
:FDOPpler 0.1 to 1600.0 Hz Hz
:LOSS 0 to 50.0 dB dB
:DELay 0 to 1638.0E-6 s
:CORRelation
:PATH 0 | 7 to 12
:COEFficent
:PHASe 0 to 359 DEG
:LOGNormal
:STATe ON | OFF
:LCONstant 1 to 99 999
:CSTD 0 to 12.0 dB
SMIQ SOURce:FSIM-Subsystem
1125.5555.03 3.83 E-9
With option SMIQB49 only
Command Parameter Default
unit Remarks
[:SOURce]
:FSIMulator Option SMIQB14
:FDELay FineDelay
[:STATe] ON | OFF
:STANdard G3C1 | G3C2 | G3C3 G3C4 |
G3UEC1 | G3UEC2 | G3UEC3 | G3UEC4 |
G3UEC5 | G3UEC6
:SPEed
:UNIT MPS | KMPH | MPH
:DEFault (without)
:PATH<i> <i> = [1] | 2 to 4 3 and 4 only with SMIQB15
:STATe ON | OFF
:PROFile PDOPpler | RAYLeigh
:FRATio -1.0 to +1.0
:SPEed 0.005 to 27 777 MPS depending on FSIM:SPE:UNIT:
MPS | KMPH | MPH
:FDOPpler 0.1 to 1600.0 Hz Hz
:LOSS 0 to 50.0 dB dB
:DELay 25 ns to 1637 us s
:MDELay MovingDelay
[:STATe] ON | OFF
:DEFault (without)
:REFerence
:LOSS 0 to 50.0 dB dB
:DELay 0 to 1638.0E-6 s
:MOVing
:LOSS 0 to 50.0 dB dB
:DELay s
:MEAN 0.25 us to 1637.8 us s
:VARiation 300 ns to 100 us s
:VPERiod 10 s to 500 s s
:BIRThdeath
[:STATe] ON | OFF
:SPEed
:UNIT MPS | KMPH | MPH
:ILOSs
:MODE NORMal | LACP
:DEFault (without)
:PATH<i> <i> = [1] | 2
:PROFile PDOPpler
:FRATio -1.0 to +1.0
:SPEed 0.005 to 27 777 MPS depending on FSIM:SPE:UNIT:
MPS | KMPH | MPH
:FDOPpler 0.1 to 1600.0 Hz Hz
:LOSS 0 to 50.0 dB dB
:DELay 5 us to 1000 us s
:HOPPing
:DWELl 100 ms to 5.0s s only PATH1
SOURce:FSIM-Subsystem SMIQ
1125.5555.03 E-93.84
[:SOURce]:FSIMulator[]
The standard settings for the fading simulator that are available without Option SMIQB49 are
under this node.
[:SOURce]:FSIMulator:ALL[:STATe] ON | OFF
This command switches the fading simulator on or off. The switch-on states of subgroups
Standard, FDELay, MDELay and BIRThdeath remain unchanged. If, however, one of the
subgroups is switched on (...:STATE ON), ON is automatically set.
Example: :SOUR:FSIM OFF *RST value is OFF
[:SOURce]:FSIMulator][:STATe] ON | OFF
Switches the standard fading on or off. *RST value: OFF
Example: :SOUR:FSIM ON
[:SOURce]:FSIMulator:CONFigure S6Path | S12Path | D6Path
Defines the number of active paths and channels. S12Path and D6Path are only possible with
option SMIQB15.
S6Path Single channel, 6 active paths
S12Path Single channel, 12 active paths
D6Path Dual channel, 6 active paths
Example: :SOUR:FSIM:CONF S6P *RST value: S6P/S12P (without/with option SMIQB15)
[:SOURce]:FSIMulator:SEQuence RUN | STOP
This command starts (RUN) or stops (STOP) the Pseudo Noise Generator for generating the
fading process.
Example: :SOUR:FSIM:SEQ RUN *RST value: STOP
[:SOURce]:FSIMulator:SEQuence:RESet
This command resets the pseudo random sequence for the fading to its original value.
FSIMulator:SEQuence is set to STOP (and has to be restarted with RUN). Since this command
triggers an event it has no *RST value.
Example: :SOUR:FSIM:SEQ:RES
[:SOURce]:FSIMulator:IGNore:RFCHanges
This command sets the status for recalculating the fading signals. When ON is selected, RF
changes <5% do no longer cause a recalculation.
Example: :SOUR:FSIM:IGN:RFCH ON *RST value is OFF
SMIQ SOURce:FSIM-Subsystem
1125.5555.03 3.85 E-9
[:SOURce]:FSIMulator[:STANdard CDMA8 | CDMA30 | .....
Selects the fading standard. All subsequent FSIM commands are set to a predefined value. The
parameters with a '6' as second character select the 6-path mode (this mode must be set if option
SMIQB15, Second Fading Generator is not available).
CDMA8. CDMA30, CDMA100
NADC8, NADC50, NADC100
GTU3, G6TU2, GTU50, G6TU50 GSM Typical Urban
GHT100, G6HT100 GSM Hilly Terrain
GRA250 GSM Rural Area
GET50, GET100 GSM Equal Test
PTU1, P6TU1, PTU50, P6TU50 DCS1800/PCS1900 Typical Urban
PHT100, P6HT100 DCS1800/PCS1900 Hilly Terrain
PRA130 DCS1800/PCS1900 Rural Area
PET50, PET100 DCS1800/PCS1900 Equal Test
TTU Tetra Typical Urban
THT Tetra Hilly Terrain,
TET Tetra Equal Test
Example: :SOUR:FSIM:STAN NADC50 *RST value: CDMA8
SOURce:FSIM-Subsystem SMIQ
1125.5555.03 E-93.86
[:SOURce]:FSIMulator:SPEed:UNIT MPS | KMPH | MPH
This command selects the speed unit.
MPS m/s, meter per second
KMPH km/h, kilometer per hour
MPH miles per hour
Example: :SOUR:FSIM:SPE:UNIT MPH *RST value: MPS
[:SOURce]:FSIMulator:ILOSs:MODE NORMal | LACP
This command sets the insertion loss of the fading simulator.
NORMal The insertion loss is fixed to 18 dB, which is ideal for BER measurements.
LACP The insertion loss is between 12 and 14 dB to obtain a better S/N ratio, for instance
during adjacent-channel measurements.
Example: :SOUR:FSIM:ILOS:MODE LACP *RST value is NORM
[:SOURce]:FSIMulator:COUPle
The commands for coupling the settings for all paths are under this node. If the following coupling
commands are set to ON, the modification of a value for a path (path<i>) will be accepted by all other
paths. When switching for the first time from OFF to ON, all paths will be set to the value of path 1.
[:SOURce]:FSIMulator:COUPle:SPEed ON | OFF
This command couples the setting of :FSIM:PATH<i>:SPE for all paths.
Example: :SOUR:FSIM:COUP:SPE ON *RST value is OFF
[:SOURce]:FSIMulator:COUPle:CORRelation:COEFficient ON | OFF
This command couples the setting of :FSIM:PATH<i>:CORR:COEF for all paths.
Example: :SOUR:FSIM:COUP:CORR:COEF ON *RST value is OFF
[:SOURce]:FSIMulator:COUPle:LOGNormal:LCONstant ON | OFF
This command couples the setting of :FSIM:PATH<i>:LOGN:LCON for all paths.
Example: :SOUR:FSIM:COUP:LOGN:LCON ON *RST value is OFF
[:SOURce]:FSIMulator:COUPle:LOGNormal:CSTD ON | OFF
This command couples the setting of :FSIM:PATH<i>:LOGN:CSTD for all paths.
Example: :SOUR:FSIM:COUP:LOGN:CSTD ON *RST value is OFF
[:SOURce]:FSIMulator:CFACtor:EXTern?
With this command the crest factor to be set on the second SMIQ can be read out (for 2-channel
fading).
Example: :SOUR:FSIM:CFAC:EXT?
[:SOURce]:FSIMulator:DEFault
This command selects the default setting of the path parameters. Path 1 is switched on; all other
paths are switched off. This command triggers an event and hence has no *RST value and no query.
Example: :SOUR:FSIM:DEF
SMIQ SOURce:FSIM-Subsystem
1125.5555.03 3.87 E-9
[:SOURce]:FSIMulator[:PATH<i>
The following commands can be separately set for each path. The path is selected with the suffix
<i>; <i> being assigned a value from 1 to 6 (one fading simulator) or 1 to 12 (two fading
simulators).
[:SOURce]:FSIMulator:PATH<i>:STATE ON | OFF
This command switches the selected path on or off.
Example: :SOUR:FSIM:PATH3:STAT ON *RST value is OFF
[:SOURce]:FSIMulator:PATH<i>:PROFile PDOPpler | RAYLeigh | RICE | CPHase
This command assigns a fading profile (scattering image) to the selected path.
PDOPpler pure Doppler profile.
RAYLeigh standard Rayleigh profile
RICE standard Rice profile
CPHase constant phase
Example: :SOUR:FSIM:PATH3:PROF RICE *RST value is RAYL
[:SOURce]:FSIMulator:PATH<i>:DCOMponent:STATe ON | OFF
This command switches the discrete components on or off. *RST value is OFF
Example: :SOUR:FSIM:PATH3:CCOM:STAT ON
[:SOURce]:FSIMulator:PATH<i>:PRATio -30 to +30 dB
This command sets the power ratio (for RICE profile only). The resolution is 0.1 dB.
Example: :SOUR:FSIM:PATH3:PRAT -20 *RST value is 0
[:SOURce]:FSIMulator:PATH<i>:FRATio -1.0 to +1.0
The command sets the frequency ratio (for RICE profile only). The resolution is 0.1.
Example: :SOUR:FSIM:PATH3:FRAT 0.5 *RST value is 1
[:SOURce]:FSIMulator:PATH<i>:CPHase 0 to 360 DEG
The command sets the phase for CPHAS fading.
Example: :SOUR:FSIM:PATH6:CPH 20.0 *RST value is 0
[:SOURce]:FSIMulator:PATH<i>:SPEed 0.005 to 27 777 ( in MPS (m/s))
This command sets the vehicle speed. The unit is defined separately with the command
FSIM:SPEed:UNIT.
Example: :SOUR:FSIM:PATH3:SPE 10.0 *RST value is 20 MPS
[:SOURce]:FSIMulator:PATH<i>:FDOPpler 0.1 to 1600 Hz
This command specifies the Doppler frequency (coupled to the vehicle speed). The resolution is
0.1 Hz.
Example: :SOUR:FSIM:PATH3:FDOP 100 *RST value is 6.7
[:SOURce]:FSIMulator:PATH<i>:LOSS 0 to 50.0 dB
This command sets the path loss. The resolution is 0.1 dB. *RST value is 0
Example: :SOUR:FSIM:PATH3:LOSS 20
SOURce:FSIM-Subsystem SMIQ
1125.5555.03 E-93.88
[:SOURce]:FSIMulator:PATH<i>:DELay 0 to 1638.0E-6
This command sets the signal delay in the path. The resolution is 50 ns. *RST value is 0
Example: :SOUR:FSIM:PATH3:DEL 123E-6
[:SOURce]:FSIMulator:PATH<i>:CORRelation
This node provides the commands for setting the correlation to another path (only with option
SMIQB15).
[:SOURce]:FSIMulator:PATH<i>:CORRelation:PATH 0 | 7 to 12
This command defines the correlating path 7 to 12 for path <n>. If no correlation exists, 0 is
selected.
Example: :SOUR:FSIM:PATH3:CORR:PATH 12 *RST value is 0
[:SOURce]:FSIMulator:PATH<i>:CORRelation:COEFficent 0 to 1.0
This command sets the correlation coefficient. The resolution is 0.05. *RST value is 1
Example: :SOUR:FSIM:PATH3:CORR:COEF 0.3
[:SOURce]:FSIMulator:PATH<i>:CORRelation:PHASe 0 to 359 degree
This command sets the correlation phase. The resolution is 1 degree. *RST value is 0
Example: :SOUR:FSIM:PATH3:CORR:PHAS 180
[:SOURce]:FSIMulator:PATH<i>:LOGNormal
This node provides the commands for setting the lognormal fading.
[:SOURce]:FSIMulator:PATH<i>:LOGNormal:STATe ON | OFF
This command switches lognormal fading on or off. *RST value is OFF
Example: :SOUR:FSIM:PATH3:LOGN:STAT OFF
[:SOURce]:FSIMulator:PATH<i>:LOGNormal:LCONstant 1 to 99 999
This command enters the local constant in meters. The unit is not a component of this command.
The resolution is 0.1 m. *RST value is 200
Example: :SOUR:FSIM:PATH3:LOGN:LCON 50
[:SOURce]:FSIMulator:PATH<i>:LOGNormal:CSTD 0 to 12.0 dB
This command sets the standard deviation of lognormal fading. The resolution is 1 dB.
Example: :SOUR:FSIM:PATH3:LOGN:CSTD 2.0 *RST value is 0
[:SOURce]:FSIMulator:FDELay[:STATe] ON | OFF
This command switches the fine delay fading simulation on or off.
Example: :SOUR:FSIM:FDEL ON *RST value is OFF
[:SOURce]:FSIMulator:FDELay:STANdard G3C1 | G3C2 | G3C3| G3C4|
G3UEC1| G3UEC2| G3UEC3| G3UEC4| G3UEC5| G3UEC6
This command selects the fading standard for the fine delay simulation.
G3C1 3GPP_BS_4.1.0._Case1
G3C2 3GPP_BS_4.1.0._Case2 (with SMIQ15 only)
G3C3 3GPP_BS_4.1.0._Case3 (with SMIQ15 only)
SMIQ SOURce:FSIM-Subsystem
1125.5555.03 3.89 E-9
G3C4 3GPP_BS_4.1.0._Case4 (with SMIQ15 only)
G3UEC1 3GPP_UE_4.1.0._Case1
G3UEC2 3GPP_UE_4.1.0._Case2 (with SMIQ15 only)
G3UEC3 3GPP_UE_4.1.0._Case3 (with SMIQ15 only)
G3UEC4 3GPP_UE_4.1.0._Case4
G3UEC5 3GPP_UE_4.1.0._Case5
G3UEC6 3GPP_UE_4.1.0._Case6( only with SMIQ15)
Example: :SOUR:FSIM:FDEL:STAN G3C1 *RST value is G3C1 (G3C2 with SMIQB15)
:SOUR:FSIM:FDEL:STAN G3UEC1
[:SOURce]:FSIMulator:FDELay:SPEed:UNIT MPS | KMPH | MPH
This command sets the unit for the speed of fine delay simulation.
MPS m/s, meter per second
KMPH Km/h, kilometer per hour
MPH Miles per hour
Example: :SOUR:FSIM:FDEL:SPE:UNIT MPH *RST value is MPS
[:SOURce]:FSIMulator:FDELay:DEFault
This command sets the default setting of the path parameters for the fine delay simulation (as for
*RST). This command triggers an event and hence has no *RST value and no query.
Example: :SOUR:FSIM:FDEL:DEF
[:SOURce]:FSIMulator:FDELay:PATH<i>
The following commands can be set individually for each path. The path is selected with suffix <i>
which has valid values of 1 to 4 (3 and 4 only with option SMIQB15).
[:SOURce]:FSIMulator:FDELay:PATH<i>:STATE ON | OFF
This command activates or deactivates the selected path for the fine delay simulation.
Example: :SOUR:FSIM:FDEL:PATH3:STAT ON *RST value is path 1, 2 ON; 3, 4 OFF
[:SOURce]:FSIMulator:FDELay:PATH<i>:PROFile PDOPpler | RAYLeigh
This command assigns the selected path a fading profile for the fine delay simulation.
PDOPpler Pure Doppler Profile
RAYLeigh Standard Rayleigh
Example: :SOUR:FSIM:FDEL:PATH3:PROF PDOP *RST value is RAYL
[:SOURce]:FSIMulator:FDELay:PATH<i>:FRATio -1.0 to +1.0
This command sets the frequency ratio (Freq. Ratio) for the fine delay simulation. The resolution
is 0.1.
Example: :SOUR:FSIM:FDEL:PATH3:FRAT 0.5 *RST value is 1
SOURce:FSIM-Subsystem SMIQ
1125.5555.03 E-93.90
[:SOURce]:FSIMulator:FDELay:PATH<i>:SPEed 0.005 to 27 777 (in MPS (m/s))
This command sets the speed of the moving receiver for the fine delay simulation. The unit is
specified with the FSIM:SPEed:UNIT command and is not part of this command.
Example: :SOUR:FSIM:FDEL:PATH3:SPE 10.0 *RST value is 20 MPS
[:SOURce]:FSIMulator:FDELay:PATH<i>:FDOPpler 0.1 to 1600 Hz
This command defines the Doppler frequency (coupled with the vehicle speed) for the fine delay
simulation. The resolution is 0.1 dB.
Example: :SOUR:FSIM:FDEL:PATH3:FDOP 100 *RST value is 6.7
[:SOURce]:FSIMulator:FDELay:PATH<i>:LOSS 0 to 50.0 dB
This command enters the signal loss in the path for the fine delay simulation. The resolution is 0.1
dB.
Example: :SOUR:FSIM:FDEL:PATH3:LOSS 20 *RST value is 0 (PATH1)
3 (PATH2)
6 (PATH3)
9 (PATH4)
[:SOURce]:FSIMulator:FDELay:PATH<i>:DELay 25ns to 1637us
This command enters the signal delay in the path for the fine delay simulation.
Example: :SOUR:FSIM:FDEL:PATH3:DEL 123E-6 *RST value is 25 ns
[:SOURce]:FSIMulator:MDELay[:STATe] ON | OFF
This command switches the moving delay simulation on or off.
Example: :SOUR:FSIM:MDEL ON *RST value is OFF
[:SOURce]:FSIMulator:MDELay:DEFault
This command sets the default setting of the path parameters for the moving delay simulation (as
for *RST). This command triggers an event and hence has no *RST value and no query.
Example: :SOUR:FSIM:MDEL:DEF
[:SOURce]:FSIMulator:MDELay:REFerence:LOSS 0 to 50.0 dB
This command enters the signal loss in the path for the moving delay simulation. The resolution is
0.1 dB.
Example: :SOUR:FSIM:MDEL:REF:LOSS 20 *RST value is 0
[:SOURce]:FSIMulator:MDELay:REFerence:DELay 0 to 1638.0E-6S
This command enters the signal delay in the path for the moving delay simulation.
Example: :SOUR:FSIM:MDEL:REF:DEL 123E-6 *RST value is 0
SMIQ SOURce:FSIM-Subsystem
1125.5555.03 3.91 E-9
[:SOURce]:FSIMulator:MDELay:MOVing:LOSS 0 to 50.0 dB
This command enters the signal loss in the path for the moving delay simulation. The resolution is
0.1 dB.
Example: :SOUR:FSIM:MDEL:MOV:LOSS 20 *RST value is 0
[:SOURce]:FSIMulator:MDELay:MOVing:DELay:MEAN 0.25us to 1637.8us
This command enters the mean value of the moving path delay for the moving delay simulation.
Example: :SOUR:FSIM:MDEL:MOV:DEL:MEAN 123E-6 *RST value is 5 us
[:SOURce]:FSIMulator:MDELay:MOVing:DELay:VARiation 300ns to 100us
This command enters the range for delay variation for the moving path (moving delay simulation).
Example: :SOUR:FSIM:MDEL:MOV:DEL:VAR 123E-6 *RST value is 5 us
[:SOURce]:FSIMulator:MDELay:MOVing:VPERiod 10 to 500s
This command enters the speed of delay variation in the path for the moving delay simulation.
Example: :SOUR:FSIM:MDEL:MOV:VPER 12 *RST value is 157 s
[:SOURce]:FSIMulator:BIRThdeath[:STATe] ON | OFF
This command switches the Birth-Death simulation on or off.
Example: :SOUR:FSIM:BIRT ON *RST value is OFF
[:SOURce]:FSIMulator:BIRThdeath:SPEed:UNIT MPS | KMPH | MPH
This command sets the unit for the speed of Birth-Death simulation.
MPS m/s, meter per second
KMPH Km/h, kilometer per hour
MPH Miles per hour
Example: :SOUR:FSIM:BIRT:SPE:UNIT MPH *RST value is MPS
[:SOURce]:FSIMulator:BIRThdeath:ILOSs:MODE NORMal | LACP
This command sets the insertion loss of the fading simulator for the Birth-Death simulation.
NORMal The insertion loss is fixed to 18 dB, which is optimal for BER measurements.
LACP The insertion loss is between 12 and 14 dB to obtain a better S/N ratio, for instance
during adjacent-channel measurements.
Example: :SOUR:FSIM:BIRT:ILOS:MODE LACP *RST value is NORM
[:SOURce]:FSIMulator:BIRThdeath:DEFault
This command sets the default setting of the path parameters for the Birth-Death simulation (as
after *RST). This command triggers an event and hence has no *RST value and no query.
Example: :SOUR:FSIM:BIRT:DEF
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>
The following commands can be set individually for each path. The path is selected with suffix <i>
which has valid values of 1 to 2.
SOURce:FSIM-Subsystem SMIQ
1125.5555.03 E-93.92
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:PROFile PDOPpler
This command assigns the selected path a fading profile for the Birth-Death simulation.
PDOPpler Pure Doppler profile
Example: :SOUR:FSIM:BIRT:PATH2:PROF PDOP *RST value is PDOP
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:FRATio -1.0 to +1.0
This command sets the frequency ratio for the Birth-Death simulation. The resolution is 0.1.
Example: :SOUR:FSIM:BIRT:PATH2:FRAT 0.5 *RST value is 1
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:SPEed 0.005 to 27 777 (in MPS (m/s))
This command sets the speed of the moving receiver for the Birth-Death simulation. The unit is
specified with the FSIM:SPEed:UNIT command and is not part of this command. The value can
only be set for path 1 and is taken for PATH2.
Example: :SOUR:FSIM:BIRT:PATH:SPE 10.0 *RST value is 27.778 MPS
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:FDOPpler 0.1 to 1600 Hz
This command defines the Doppler frequency (coupled with the vehicle speed). The resolution is
0.1 dB. The value can only be set for path 1 and is taken for PATH2.
Example: :SOUR:FSIM:BIRT:PATH:FDOP 100 *RST value is 9.3
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:LOSS 0 to 50.0 dB
This command enters the signal loss in the path for the Birth-Death simulation. The resolution is
0.1 dB.
Example: :SOUR:FSIM:BIRT:PATH2:LOSS 20 *RST value is 0
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:DELay 5us to 1000us
This command enters the signal delay in the path for the Birth-Death simulation. The value can
only be set for path 1 and is taken for PATH2.
Example: :SOUR:FSIM:BIRT:PATH:DEL 123E-6 *RST value is 5us
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:HOPPing:DWELl 100ms to 5s
This command sets the dwell time up to the next Birth-Death action.
Example: :SOUR:FSIM:BIRT:PATH:HOPP:DWEL 12.3MS *RST value is 191 ms
SMIQ SOURce:GPS Subsystem
1125.5555.03 3.93 E-9
3.5.14.9 SOURce:GPS Subsystem
This subsystem contains the commands for simulating a GPS satellite.
Command Parameter Default
unit Remark
[:SOURce]
:GPS
:STATe ON | OFF
:PRESet
:STANdard (without)
:RF (without)
:SEQuence AUTO | RETRigger | AAUTo | ARETrigger | SINGle
:TRIGger
:SOURce INTernal | EXTernal
:DELay 0 to 20 359 (chips)
:INHibit 0 to 67 108 863 (chips)
:OUTPut[1]|2 CODE | NBIT | NWORd | SFRame | FRAMe
:POLarity POSitive | NEGative
:DELay 0 to 6 137 999 (chips)
:CURRent
:FREQuency? Hz Query only
:SRATe? (symb/s) Query only
:DSHift -10kHz to 10kHz Hz
:SRATe 500 000.0 to 1 500 000.0 (symb/s)
:CODE 1 to 37
:DATA PATTern | DLISt
:PATTern #B0 to #B1111111111111111, 1 to 16 1 to 16 bit
:DLISt ‘name‘
:DLISt
:CATalog? Þ name, name... Query only
[:SOURce]:GPS:STATe ON | OFF
The command switches the signal generation of a simulated GPS satellite on or off.
Example: :SOUR:GPS:STAT ON. *RST value is OFF
[:SOURce]:GPS:PRESet:STANdard
The command sets all the modulation parameters to the values of the GPS standard as with *RST
(i.e., it does not set the parameters selected with the:GPS:PRES:RF command described below,
the GPS triggers or the GPS-sequence parameter. This command triggers an event and hence
has no *RST value and no query.
Example: :SOUR:GPS:PRES:STAN
SOURce:GPS Subsystem SMIQ
1125.5555.03 E-93.94
[:SOURce]:GPS:PRESet:RF
The command sets the RF-parameter frequency to 1.57542 GHz and level to –125 dBm (the
values of the GPS standard). This command triggers an event and hence has no *RST value and
no query.
Example: :SOUR:GPS:PRES:RF
[:SOURce]:GPS:SEQuence AUTO | RETRigger | AAUTo | ARETrigger
The command selects the trigger mode for the sequence.
AAUTo is ARMED AUTO
ARETrigger is ARMED RETRIG
Example: :SOUR:GPS:SEQ AAUT *RST value is AUTO
[:SOURce]:GPS:TRIGger:SOURce EXTernal | INTernal
The command selects the trigger source. With INT selected, triggering in remote control is via the
Trigger command, or via the Execute command in manual control.
Example: :SOUR:GPS:TRIG:SOUR EXT *RST value is INT
[:SOURce]:GPS:TRIGger:DELay 0 to 20359
The command specifies the delay for an external trigger signal in number of chips prior to initiating
a start.
Example: :SOUR:GPS:TRIG:DEL 200 *RST value is 0
[:SOURce]:GPS:TRIGger:INHibit 0 to 67.1E6
The command sets the retrigger suppression time (in number of chips).
Example: :SOUR:GPS:TRIG:INH 1000 *RST value is 0
[:SOURce]:GPS:TRIGger:OUTPut[1]|2 CODE | NBIT | NWORd | SFRame | FRAMe
The command selects the signal for trigger output 1 or 2.
CODE At the beginning of the C/A code sequence
SFRame Sub Frame
Example: :SOUR:GPS:TRIG:OUTP2 NBIT *RST value OUTP1: NWOR, OUTP2: SFR
[:SOURce]:GPS:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative
The command sets the polarity of the signal at trigger output 1 or 2.
Example: :SOUR:GPS:TRIG:OUTP2:POL NEG *RST value is POS
[:SOURce]:GPS:TRIGger:OUTPut[1]|2:DELay 0 to 6137999
The command determines the delay of the signal at trigger output 1 or 2 in number of chips.
Example: :SOUR:GPS:TRIG:OUTP2:DEL 16 *RST value is 0
[:SOURce]:GPS:CURRent:FREQuency?
The command queries the physically output carrier frequency.
Example: :SOUR:GPS:CURR:FREQ?
SMIQ SOURce:GPS Subsystem
1125.5555.03 3.95 E-9
[:SOURce]:GPS:CURRent:SRATe?
The command queries the resulting symbol rate.
Example: :SOUR:GPS:CURR:SRAT?
[:SOURce]:GPS:DSHift –10 kHz to 10 kHz
The command sets the Doppler shift.
Example: :SOUR:GPS:DSH -2.1 kHz *RST value is 0
[:SOURce]:GPS:SRATe 500000 to 1500000
The command sets the symbol rate (in symb/s) (without Doppler shift).
Example: :SOUR:GPS:SRAT 1020000 *RST value is 1023000
[:SOURce]:GPS:CODE 1 to 37
The command sets the C/A code for spreading the navigation data.
Example: :SOUR:GPS:CODE 19 *RST value is 1
[:SOURce]:GPS:DATA PATTern | DLISt
The command determines the data source for the navigation data.
Example: :SOUR:GPS:DATA DLIS *RST value is PATT
[:SOURce]:GPS:DATA:PATTern #B0 to #B111 to 1, 1 to 24
This command sets the bit pattern used for :SOUR:GPS:DATA PATT. The first parameter sets
the bit pattern (optionally in hex, oct or bin notation); the second indicates the number of bits to be
used.
Example: :SOUR:GPS:DATA:PATT #H3F,8 *RST value is #B0,1
[:SOURce]:GPS:DATA:DLISt ‘name’
The command selects a data list. This list is only used if DLIS is set as the data source with the
:GPS:DATA command. This command triggers an event and hence has no *RST value.
Example: :SOUR:GPS:DATA:DLIS ’test’
[:SOURce]:GPS:DLISt:CATalog?
The command returns a list of all the user-defined data lists for GPS.
Example: :SOUR:GPS:DLIS:CAT?
SOURce:GSM Subsystem (Digital Standard GSM/EDGE) SMIQ
1125.5555.03 E-93.96
3.5.14.10 SOURce:GSM Subsystem (Digital Standard GSM/EDGE)
Note: #B0 to #B1 are characters which are entered in binary form manually. SCPI (and IEEE 488.2)
also accept the entry of non-numeric characters in octal and hex such as
#H|h <0 to 9, A|a to F|f>,
#Q|q <0 to 7> and
#B|b <0|1>.
The characters are always output in binary format after a query.
Command Parameter Default
unit Remark
[:SOURce]
:GSM
:STATe
:STANdard
:FORMat
:FSK
:DEViation
:SRATe
:FILTer
:TYPE
:PARameter
:SEQuence
:TRIGger
:SOURce
:INHibit
:DELay
:OUTPut[1|2]
:DELay
:POLarity
:PERiod
:CLOCk
:SOURce
:DELay
:PRAMp
:PRESet
:TIME
:SHAPe
:DELay
:ROFFset
:FOFFset
:SLOT
:ATTenuation
:FLISt
:PREDefined
:CATalog?
:LOAD
:CATalog?
:LOAD
:STORe
:DELete
ON | OFF
(without)
GMSK | GFSK
1kHz to 300 kHz
1kHz to 300 kHz
GAUSs
0.2 to 0.7
AUTO | RETRigger | AAUTo | ARETrigger
EXTernal | INTernal
0 to 67.1E6
0 to 65535
SLOT | FRAMe
0 to 1249
POSitive | NEGative
1 to 67.1E6
INTernal | EXTernal
0 to 1.0
(without)
0.25 to 16
LINear | COSine
-1.0 to +1.0
-9 to +9
-9 to +9
0 to 70 dB
Þ name {,name}...
‘name’
Þ name {,name}...
‘name’
‘name’
‘name’
Hz
Hz
DB
No query
Output 1 only
Output 2 only
No query
query only
Query only
No query
No query
SMIQ SOURce:GSM Subsystem (Digital Standard GSM/EDGE)
1125.5555.03 3.97 E-9
Command Parameter Default
unit Remark
[:SOURce]
:GSM
:DLISt
:CATalog?
:SLOT<i>
:TYPE
:LEVel
:PRESet
:HOPPing
:TRIGger
[:SOURce]
:DATA
:DLISt
:SF
:TSC
:SELect
:USER
Þ name {,name}...
NORMal | DUMMy | ADATa | EDGE
OFF | ATT | FULL
(without)
ON | OFF
PN9 | PN11| PN15 | PN 16 | PN20 | PN21 |
PN23 | DLISt | SDATa
‘name’
0 | 1
T0 to T7 | USER
#B0 to #B1111 to (26 bits)
Query only
i=0,[1],2 to 7 (Slot Selector)
[:SOURce]:GSM:STATe ON | OFF
The command switches the modulation on according to GSM standard. All other standards that
might be switched on or digital modulation are automatically switched OFF.
Example: :SOUR:GSM:STAT ON *RST value is OFF
[:SOURce]:GSM:STANdard
The command sets all modulation parameters to the values of the GSM standard. I.e., all values
that have been selected by the :GSM:SLOT... commands described in the following are not
valid. This command triggers an event and hence has no *RST value and no query.
Example: :SOUR:GSM:STAN
[:SOURce]:GSM:FORMat GMSK | GFSK
This command selects the modulation type.
Example: :SOUR:GSM:FORM GFSK *RST value is GMSK
[:SOURce]:GSM:FSK:DEViation 1kHz to 300 kHz
This command sets the deviation for GSM:FORMat GFSK. The range of values depends on the
symbol rate (GSM:SRATe).
Example: :SOUR:GSM:FSK:DEV 37.6kHz *RST value is 67.708 kHz
[:SOURce]:GSM:SRATe 1kHz to 300 kHz
The command sets the symbol rate.
Example: :SOUR:GSM:SRAT 270.9 kHz *RST value is 270.833 kHz
[:SOUrce]:GSM:FILTer:TYPE GAUSs
The command selects the filter type.
Example: :SOUR:GSM:FILT:TYPE USER *RST value is GAUS
SOURce:GSM Subsystem (Digital Standard GSM/EDGE) SMIQ
1125.5555.03 E-93.98
[:SOURce]:GSM:FILTer:PARameter 0.2 to 0.7
The command sets the filter parameter.
Example: :SOUR:GSM:FILT:PAR 0.4 *RST value is 0.3
[:SOURce]:GSM:SEQuence AUTO | RETRigger | AAUTo | ARETrigger
The command selects the trigger mode for the sequence.
AAUTo is ARMED AUTO
ARETrigger is ARMED RETRIG
Example: :SOUR:GSM:SEQ AAUT *RST value is AUTO
[:SOURce]:GSM:TRIGger:SOURce EXTernal | INTernal
The command selects the trigger source. With INT selected, triggering is via IEC/IEEE bus or the
Execute command in manual control.
Example: :SOUR:GSM:TRIG:SOUR EXT *RST value is INT
[:SOURce]:GSM:TRIGger:INHibit 0 to 67.1E6
The command sets the retrigger inhibit duration (in number of symbols).
Example: :SOUR:GSM:TRIG:INH 1000 *RST value is 0
[:SOURce]:GSM:TRIGger:DELay 0 to 65535
The command sets the trigger delay (in number of symbols).
Example: :SOUR:GSM:TRIG:DEL 200 *RST value is 0
[:SOURce]:GSM:TRIGger:OUTPut SLOT | FRAMe
The command selects the signal for trigger output 1 (output 2 is always FRAMe).
Example: :SOUR:GSM:TRIG:OUTP SLOT *RST value is FRAM
[:SOURce]:GSM:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative
The command sets the polarity of the signal at trigger output 1 or 2.
Example: :SOUR:GSM:TRIG:OUTP2:POL NEG *RST value is POS
[:SOURce]:GSM:TRIGgerOUTPut[1|2]:DELay 0 to 1249
The command determines the delay of the signal at trigger output 2 in comparison with the start of
the frames/slots in number of symbols.
Example: :SOUR:GSM:TRIG:OUTP2:DEL 16 *RST value is 0
[:SOURce]:GSM:TRIGger:OUTPut[2]:PERiod 1 to 67.1E6
The command sets the repeat rate (in number of frames) of the signal at trigger output 2.
Example: :SOUR:GSM:TRIG:OUTP2:PER 8 *RST value is 1
[:SOURce]:GSM:CLOCk
The commands for setting the data clock are under this node.
[:SOURce]:GSM:CLOCk:SOURce INTernal | EXTernal
The command selects the source for the DM data clock.
SMIQ SOURce:GSM Subsystem (Digital Standard GSM/EDGE)
1125.5555.03 3.99 E-9
INTernal The internal clock generator is used and output via the clock outputs of the serial and
parallel interface.
EXTernal The clock is externally fed in via the serial interface and output via the parallel
interface.
Example: :SOUR:GSM:CLOC:SOUR INT *RST value is INT
[:SOURce]:GSM:CLOCk:DELay 0 to 1.0
The command sets the delay of the symbol clock (as a fraction of the length of a symbol).
Example: :SOUR:GSM:CLOC:DEL 0.75 *RST value is 0
[:SOURce]:GSM:PRAMp
The commands for the level control of the burst are under this node.
[:SOURce]:GSM:PRAMp:PRESet
This command sets the standard-stipulated values for the following commands of level control. It
is an event and hence has no query and no *RST value.
Example: :SOUR:GSM:PRAM:PRES
[:SOURce]:GSM:PRAMp:TIME 0.25 to 16.0
The command sets the cutoff steepness (in symbol clocks).
Example: :SOUR:GSM:PRAM:TIME 2.5 *RST value is 5
[:SOURce]:GSM:PRAMp:DELay -1.0 to + 1.0
The command defines the shift of the envelope characteristic to the modulated signal. A positive
value causes a delay of the envelope.
Example: :SOUR:GSM:PRAM:DEL 0.2 *RST value is 0
[:SOURce]:GSM:PRAMp:SHAPe LINear | COSine
The command selects the linear or cosine shape of the ramp-up and ramp-down (power burst).
Example: :SOUR:GSM:PRAM:SHAP COS *RST value is COS
[:SOURce]:GSM:PRAMp:ROFFset -9 to +9
The command determines the timing of the (‘R’ising) edge of a power burst to the beginning of the
block.
Example: :SOUR:GSM:PRAM:ROFF -3 *RST value is 0
[:SOURce]:GSM:PRAMp:FOFFset -9 to +9
The command determines the timing of the ('F'alling) edge of a power burst to the data block.
Example: :SOUR:GSM:PRAM:FOFF 4 *RST value is -1
[:SOURce]:GSM:SLOT:ATTenuation 0 to -70 dB
The command determines the amount by which the power of the slots marked by
:GSM:SLOT:LEVel ATT is reduced in comparison with the normal output power (attribute to
:LEVel FULL).
Example: :SOUR:GSM:SLOT:ATT 20 dB *RST value is 0
SOURce:GSM Subsystem (Digital Standard GSM/EDGE) SMIQ
1125.5555.03 E-93.100
[:SOURce]:GSM:FLISt
The commands for storing and reading complete frames including their bursts (slots) are under
this node. Predefined and user-generated frames have to be distinguished.
[:SOURce]:GSM:FLISt:PREDefined:CATalog?
The command returns a list of all predefined frames.
Example: :SOUR:GSM:FLIS:PRED:CAT?
[:SOURce]:GSM:FLISt:PREDefined:LOAD ‘name’
The command selects one of the predefined (fixed) frames (c.f. Chapter 2). This command
triggers an event and hence has no *RST value.
Example: :SOUR:GSM:FLIS:PRED:LOAD ’NB0’
[:SOURce]:GSM:FLISt:CATalog?
The command returns a list of all user-defined frames.
Example: :SOUR:GSM:FLIS:CAT?
[:SOURce]:GSM:FLISt:LOAD ‘name’
The command loads a user-defined frame. This command triggers an event and hence has no
*RST value.
Example: :SOUR:GSM:FLIS:LOAD ’test’
[:SOURce]:GSM:FLISt:STORe ‘name’
The command stores the current frame under a name. This command triggers an event and
hence has no *RST value.
Example: :SOUR:GSM:FLIS:STOR ’test’
[:SOURce]:GSM:FLISt:DELete ‘name’
The command deletes the indicated frame. This command triggers an event and hence has no
*RST value and no query.
Example: :SOUR:GSM:FLIS:DEL ’test1’
[:SOURce]:GSM:DLISt:CATalog?
The command returns an enumeration of all data lists.
These data lists are selected by means of :GSM:SLOT:DATA ‘name’ and used
if:GSM:SLOT:DATA DLISt is set.
Example: :SOUR:GSM:DLIS:CAT?
[:SOURce]:GSM:SLOT<i>
The commands for setting the slot characteristics are under this node. Since a frame contains 8
slots, suffix ‘i’ is used to select the slot to be changed. i = 0 | [1] | 2 | 3 | 3 | 5 | 6 | 7
[:SOURce]:GSM:SLOT<i>:TYPE NORM | DUMMy | ADATa | EDGE
The command selects the type of burst (slot) defined in the standard.
ADATa is All Data
Example: :SOUR:GSM:SLOT2:TYPE DUMM *RST value is NORM
SMIQ SOURce:GSM Subsystem (Digital Standard GSM/EDGE)
1125.5555.03 3.101 E-9
[:SOURce]:GSM:SLOT<i>:LEVel OFF | ATT | FULL
The command determines the power stage of the slot.
OFF The slot is inactive
ATT The power is reduced by the amount defined by :GSM:SLOT:ATT
FULL Full power (predefined by level setting)
Example: :SOUR:GSM:SLOT2:LEV ATT Slot 0: *RST value is FULL
Slot 1 to 7: *RST value is OFF
[:SOURce]:GSM:SLOT<i>:PRESet
The command sets all the parameters of the slot to the values defined by the standard as a
function of the type set above. This command triggers an event and hence has no *RST value and
no query.
Example: :SOUR:GSM:SLOT2:PRES
[:SOURce]:GSM:SLOT<i>:HOPPing:TRIGger ON | OFF
This command provides a trigger signal at the PARDATA connector (ON). This signal can be
used to perform frequency hopping in the LIST MODE.
Example: :SOUR:GSM:SLOT2:HOPP:TRIG ON *RST value is OFF
[:SOURce]:GSM:SLOT<i>[:SOURce]:DATA PN9 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt |
SDATa
The command determines the data source for the data words (for :SLOT:TYPE NORM and ADATa).
Example: :SOUR:GSM:SLOT2:DATA PN15 *RST value is PN9
[:SOURce]:GSM:SLOT<i>[:SOURce]:DATA:DLISt ‘name’
The command selects a data list. This list will not be used unless it is set as a data source by
means of the :GSM:SLOT:DATA DLIS command. This command triggers an event and hence
has no *RST value.
Example: :GSM:SLOT:DATA:DLIS ’test’
[:SOURce]:GSM:SLOT<i>:SF 0 | 1
This command sets the stealing flag (GSM:SLOT:TYPE NORM only)
Example: :SOUR:GSM:SLOT2:SFR:STAT ON *RST value is OFF
[:SOURce]:GSM:SLOT<i>:TSC:SELect T0 to T7 | USER
This commands selects the training sequence code. T0 to T7 are the values stipulated by GSM 5.02.
With USER selected as parameter, the given value described with the following ...:TSC:USER
command will be used.
Example: :SOUR:GSM:SLOT2:TSC:SEL T3 *RST value is T0
[:SOURce]:GSM:SLOT<i>:TSC:USER #B0 to #B1111... (26/78 bits)
The TSC value is determined by the user by means of this command. TSC will be used if the
parameter (!) USER is set by means of the above-mentioned :GSM:SLOT:TSC:SEL command.
The value contains 78 bits only with :GSM:SLOT:TYPE EDGE.
Example: :SOUR:GSM:SLOT3:TSC:USER #B01101100110011100011111100
*RST value is 111111111
SOURce:IS95 Subsystem (Digital Standard IS-95 CDMA) SMIQ
1125.5555.03 E-93.102
3.5.14.11 SOURce:IS95 Subsystem (Digital Standard IS-95 CDMA)
Command Parameter Default
unit Remark
[:SOURce]
:IS95
:STATe
:MODE
:PRESet
:CRATe
:FILTer
:FTYPe
:RTYPe
:FSELect
:RSELect
:PARameter
:MODE
:LDIStortion
[:STATe]
:SEQuence
:TRIGger
:SOURce
:INHibit
:DELay
:OUTPut[1]| 2
:DELay
:POLarity
:CLOCk
:MODE
:SOURce
:DELay
:POWer?
:ADJust
:MAPPing
:PREDefined
:CATalog?
:LOAD
:CATalog?
:LOAD
:STORe
:DELete
:CHANnel<0..63>
:WALShcode
:POWer
:DATA
:STATe
:RATE
:RANDomizer
:[:STATe]
:DATA
ON | OFF
FLINk18 | FLINk64 | RLINk
1 kHz to 7 MHz
SCOSine | COSine | IS95 | EIS95 | USER
SCOSine | COSine | IS95 | EIS95 | USER
‘name‘
‘name‘
0.1 to 0.7
LACP | LEVM
ON | OFF
AUTO | RETRigger | AAUTo | ARETrigger
EXTernal | INTernal
0 to 67108863
0 to 65535
TFRame | SSRollover | SFRame | ESECond
-32768 to 32768
POSitive | NEGative
CHIP | CHIP4 | CHIP8 | CHIP16
INTernal | EXTernal
0 to 1.00
-
Þ name {,name}
‘name’
Þ name {,name}
‘name’
‘name’
‘name’
0 to 63
-30 dB to 0 dB
ZERO | ONE | ALTernate | PRBS
ON | OFF
FULL | HALF
ON | OFF
ZERO | ONE | ALTernate | PRBS | DATA
Hz
dB
query only
query only
query only
No query
No query
No query
SMIQ SOURce:IS95 Subsystem (Digital Standard IS-95 CDMA)
1125.5555.03 3.103 E-9
Command Parameter Default unit Remark
[:SOURce]
:IS95
:DLISt
:CATalog?
:RLCoded
:CTYPe
:DATA
:DLISt
:FQINdicator
:CENCoder
:BINTerleaver
:EBIT
‘name’
Þ name {,name}...
TRAF14400 | TRAF7200 | TRAF3600 | TRAF1800 |
ACC4800 | TRAF9600 | TRAF4800 | TRAF2400 |
TRAF1200
PN9 | PN11| PN15 | PN16 | PN20 | PN21 | PN23 |
DLISt
‘name’
ON | OFF
ON | OFF
ON | OFF
0 | 1
query only
[:SOURce]:IS95:STATe ON | OFF
The command switches the modulation on according to the IS95 standard which is a CDMA
method. All other standards or digital modulation that might be switched on are automatically
switched off (OFF).
Example: :SOUR:IS95:STAT ON *RST value is OFF
[:SOURce]:IS95:MODE FLINk18 | FLINk64 | RLINk | RLCoded
The command selects the operating mode.
FLINk18 Forward Link with 18 code channels
FLINk64 Forward Link with 64 code channels
RLINk Reverse Link (from mobile station to base station)
RLCoded Reverse Link Coded
Example: :SOUR:IS95:MODE RLIN
[:SOURce]:IS95:PRESet
The command sets all the following settings into a defined default state (as with to *RST). It can
thus be guaranteed that a signal is generated at all and that it is in line with standard. This
command triggers an event and hence has no *RST value and no query.
Example: :SOUR:IS95:PRES
[:SOURce]:IS95:CRATe 1 kHz to 7 MHz
The command sets the chip rate.
Example: :SOUR:IS95:CRAT 1.21 MHz *RST value is 1.2288 MHz
[:SOURce]:IS95:FILTer
The commands for selecting a filter are under this node.
SOURce:IS95 Subsystem (Digital Standard IS-95 CDMA) SMIQ
1125.5555.03 E-93.104
[:SOURce]:IS95:FILTer:FTYPe SCOSine | COSine | IS95 | EIS95 | USER
The command selects the type of filter for the Forward Link Mode (IS95:FLINk18 or
IS95:FLINk64). A filter list should be selected with :DECT:FILT:SEL 'name' for the filter type
USER.
SCOSine Square root cosine (root Nyquist) filter
COSine Cosine (Nyquist)-filter
IS95 Filter according to Interim Standard 95
EIS95 IS-95+EQUALIZER
Example: :SOUR:IS95:FILT:FTYP COS *RST value is IS95
[:SOURce]:IS95:FILTer:RTYPe SCOSine | COSine | IS95 | EIS95 | USER
The command selects the type of filter for the Reverse Link Mode. A filter list should be selected
with :IS95:FILT:SEL 'name' for the filter type USER.
SCOSine Square root cosine (root Nyquist) filter
COSine Cosine (Nyquist)-filter
IS95 Filter according to Interim Standard 95
EIS95 IS-95+EQUALIZER
Example: :SOUR:IS95:FILT:RTYP COS *RST value is IS95
[:SOURce]:IS95:FILTer:FSELect 'name'
The command selects a named filter list. The list is used only if a user-defined filter is selected
with :IS95:FILT:FTYPe USER. To generate lists, cf. command [:SOURce]:DM:FLISt:SEL, to fill up
lists, cf. command [:SOURce]:DM:FLISt:DATA.
Example: :SOUR:IS95:FILT:FSEL 'test' *RST value is NONE
[:SOURce]:IS95:FILTer:RSELect 'name'
The command selects a named filter list. The list is used only if a user-defined filter is selected
with :IS95:FILT:RTYPe USER. To generate lists, cf. command [:SOURce]:DM:FLISt:SEL, to fill up
lists, cf. command [:SOURce]:DM:FLISt:DATA.
Example: :SOUR:IS95:FILT:RSEL 'test' *RST value is NONE
[:SOURce]:IS95:FILTer:PARameter 0.1 to 0.7
The command sets the roll-off factor for the COS filters.
Example: :SOUR:IS95:FILT:PAR 0.5 *RST value is 0.5
[:SOURce]:IS95:FILTer:MODE LACP | LEVM
This command selects one of the "L"ow filter modes.
Example: :SOUR:IS95:FILT:MODE LEVM *RST value is LACP
[:SOURce]:IS95:LDIStortion[:STATe] ON | OFF
The command sets the reduced level for the low-distortion mode.
ON Low-distortion mode
OFF Normal level
Example: :SOUR:IS95:LDIS ON *RST value is OFF
SMIQ SOURce:IS95 Subsystem (Digital Standard IS-95 CDMA)
1125.5555.03 3.105 E-9
[:SOURce]:IS95:SEQuence AUTO | RETRigger | AAUTo | ARETrigger
The command selects the trigger mode for the sequence..
AUTO Continuously repeated
RETRigger Continuously repeated; new start after a trigger
AAUTo ARMED AUTO; waits for trigger, then switches over to AUTO and can no longer
be triggered;
ARETrigger ARMED RETRIG; a trigger event is required to start, each new trigger causes a
restart
Example: :SOUR:IS95:SEQ AAUT *RST value is AUTO
[:SOURce]:IS95:TRIGger:SOURce EXTernal | INTernal
The command selects the trigger source. With INT selected, triggering is via remote control using
the trigger command or via EXECUTE TRIGGER in case of manual control.
EXT The trigger signal is fed in via input TRIGIN
INT A start is only possible manually or via the remote control command TRIG:DM:IMM
Example: :SOUR:IS95:TRIG:SOUR EXT *RST value is INT
[:SOURce]:IS95:TRIGger:INHibit 0 to 67108863
The command sets the retrigger inhibit duration (in number of chips).
Example: :SOUR:IS95:TRIG:INH 1000 *RST value is 0
[:SOURce]:IS95:TRIGger:DELay 0 to 65535
The command defines the trigger delay (in number of chips).
Example: :SOUR:IS95:TRIG:DEL 200 *RST value is 0
[:SOUrce]:IS95:TRIGger:OUTPut[1]|2 TFRame | SSRollover | SFRame | ESECond | GATE
The command defines the output signal at trigger output 1 or 2. The following times can be
selected:
TFRame Traffic Frame/ 20 ms
SSRollover Short Sequence Rollover 80/3 ms
SFRame Super Frame 80 ms
ESECond Even Second 2 s
GATE GATE (PCG)
The indicated times apply to a chip rate of 1.2288 Mcps
Example: :SOUR:IS95:TRIG:OUTP1 SFR output1: *RST value is ESECond
output2: *RST value is SSRollover
[:SOURce]:IS95:TRIGger:OUTPut[1]|2:DELay -32768 to 32768
The command defines the delay of trigger signals in chips.
Example: :SOUR:IS95:TRIG:OUTP2:DEL -50 *RST value is 0
[:SOURce]:IS95:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative
The commands defines the polarity of the signals at the trigger outputs.
Example: :SOUR:IS95:TRIG:OUTP2:POL NEG *RST value is POS
SOURce:IS95 Subsystem (Digital Standard IS-95 CDMA) SMIQ
1125.5555.03 E-93.106
[:SOURce]:IS95:CLOCk
The commands for setting the chip clock are under this node.
[:SOURce]:IS95:CLOCk:MODE CHIP | CHIP4 | CHIP8 | CHIP16
The command sets the divider for the clock. With CHIP selected, the external clock is in the
symbol mode, otherwise in the bit mode.
Example: :SOUR:IS95:CLOC:MODE CHIP8 *RST value is CHIP
[:SOURce]:IS95:CLOCk:SOURce INTernal | EXTernal
The command selects the clock source.
INTernal The internal clock generator is used and output via clock outputs SYMBOL CLOCK
and BIT CLOCK.
EXTernal The clock is fed externally via connector SYMBOL CLOCK.
Example: :SOUR:IS95:CLOC:SOUR EXT *RST value is INT
[:SOURce]:IS95:CLOCk:DELay 0 to 1.00
The command sets the delay of the chip clock with a high resolution.
Example: :SOUR:IS95:CLOC:DEL 0.75 *RST value is 0
[:SOURce]:IS95:POWer?
The command queries the total power for the CDMA signal.
Example: :SOUR:IS95:POW?
[:SOURce]:IS95:POWer:ADJust
The command modifies the power of each active code channel. This means that the total power is
set equal to the power in the level display. The command triggers an action and hence has no
*RST value assigned.
Example: :SOUR:IS95:POW:ADJ
[:SOURce]:IS95:MAPPing
The command for storing and reading the complete channel assignments and settings are under
this node. These mappings are not affected by *RST.
[:SOURce]:IS95:MAPPing:PREDefined:CATalog?
The command returns a list of all predefined mappings.
Example: :SOUR:IS95:MAPP:PRED:CAT?
[:SOURce]:IS95:MAPPing:PREDefined:LOAD ‘name’
The command selects one of the predefined channel configurations (c.f. Chapter 2). This
command triggers an event and hence has no *RST value.
Example: :SOUR:IS95:MAPP:SEL ’PILOT’
[:SOURce]:IS95:MAPPing:CATalog?
The command returns an enumerated list of all user-defined mappings.
Example: :SOUR:IS95:MAPP:CAT? Answer: 'test1','test2'
SMIQ SOURce:IS95 Subsystem (Digital Standard IS-95 CDMA)
1125.5555.03 3.107 E-9
[:SOURce]:IS95:MAPPing:LOAD ‘name’
The command loads a user-defined channel assignment and setting (mapping). The name may
have a maximum of 7 characters. This command triggers an action and hence has no *RST value.
Example: :SOUR:IS95:MAPP:LOAD ’test’
[:SOURce]:IS95:MAPPing:STORe ‘name’
The command stores the current mapping under a name. The name may have a maximum of 7
characters. This command triggers an action and hence has no *RST value and no query.
Example: :SOUR:IS95:MAPP:STOR ’test’
[:SOURce]:IS95:MAPPing:DELete ‘name’
The command deletes the indicated mapping. This command triggers an action and hence has no
*RST value and no query.
Example: :SOUR:IS95:MAPP:DEL ’test1’
[:SOURce]:IS95:CHANnel<0 to 63>
The commands for specifying the channel configuration for the 18-channel Forward Link (channel
0 to 17) and 64-channel Forward Link (channel 0 to 63) are under this node. Channel 0 for which
only the power can be set is the pilot channel.
[:SOURce]:IS95:CHANnel<1 to 17>:WALShcode 0 to 63
This command assigns a Walsh code to a channel. This applies to FLINk18 only; for FLINk64, the
Walsh code corresponding to its channel number is assigned to every channel. The command is
not available in this case.
Example: :SOUR:IS95:CHAN2:WALS 23
[:SOURce]:IS95:CHANnel<0 to 3>:POWer -30 dB to 0 dB
This command determines the power of a channel. For Flink18 the power for channels 0, 1 and 2
can be set separately. The power setting for channel 3 is also valid for the subsequent channels.
For Flink64 the power setting for channel 1 is valid for all subsequent channels (except for the
pilot channel)
Example: :SOUR:IS95:CHAN2:POW -22 DB
[:SOURce]:IS95:CHANnel<1 to 63>:DATA ZERO | ONE | ALTernate | PRBS
This command determines the data source of the channel.
ZERO 0000..., sequence of zeros
ONE 1111..., sequence of ones
ALT 1010..., alternating sequence, starting with 1
PRBS Pseudo Random Bit sequence
Example: :SOUR:IS95:CHAN2:DATA PRBS
[:SOURce]:IS95:CHANnel<0 to 63>:STATe ON | OFF
The command switches the channel on or off.
Flink18: channels 0 to 8 are switched on and channels 9 to 17 are switched off.
Flink64: all channels are switched on.
Example: :SOUR:IS95:CHAN17:STAT ON *RST value: see text
SOURce:IS95 Subsystem (Digital Standard IS-95 CDMA) SMIQ
1125.5555.03 E-93.108
[:SOURce]:IS95:RATE FULL | HALF
The command sets the data rate for operating mode Reverse Link (IS95:MODE RLINK).
Example: :SOUR:IS95:RATE HALF *RST value is FULL
[:SOURce]:IS95:RANDomizer[:STATe] ON | OFF
The command switches the burst randomizer for operating mode Reverse Link (IS95:MODE RLINK)
on or off. The bursts are distributed at pseudo random within a 20-ms frame.
Example: :SOUR:IS95:RAND ON *RST value is OFF
[:SOURce]:IS95:DATA ZERO | ONE | ALTernate | PRBS | DLISt
This command determines the data source for operating mode Reverse Link (IS95:MODE RLINK).
ZERO 0000..., sequence of zeros
ONE 1111..., sequence of ones
ALT 1010..., alternating sequence, starting with 1
PRBS Pseudo Random Bit Sequence
DLISt The data list selected with IS95:DLIS ‘name’ is used.
Example: :SOUR:IS95:DATA ZERO *RST value is PRBS
[:SOURce]:IS95:DLISt ‘name’
The command selects a data list. This list is used if DLISt is selected as the data source
(IS95:DATA DLIS).
Example: :SOUR:IS95:DLIS ’test’
[:SOURce]:IS95:DLISt:CATalog?
The command queries the available data lists. (Only query, no *RST value)
Example: :SOUR:IS95:DLIS:CAT?
[:SOURce]:IS95:RLCoded:CTYPe TRAF14400 | TRAF7200 | TRAF3600 | TRAF1800 | ACC4800 |
TRAF9600 | TRAF4800 | TRAF2400 | TRAF1200
The command defines the data rate and the channel type. It is only available with ‘IS95:MODE
RLCoded’ selected.
Example: :SOUR:IS95:RLC:CTYP TRAF1800 *RST value is TRAF14400
[:SOURce]:IS95:RLCoded:DATA PN9 | PN11| PN15 | PN 16 | PN20 | PN21 | PN23 | DLISt
The command selects the data source. PN.. represent the PRBS generators, DLIS the data list
selected with the following command. The command is only available with ‘IS95:MODE
RLCoded’ selected.
Example: :SOUR:IS95:RLC:DATA DLIS *RST value is PN9
[:SOURce]:IS95:RLCoded:DLISt ‘name’
The command selects a data list. This list is used if DLISt is selected as the data source. The
command is only available with ‘IS95:MODE RLCoded’ selected.
Example: :SOUR:IS95:RLC:DLIS ’test’
SMIQ SOURce:IS95 Subsystem (Digital Standard IS-95 CDMA)
1125.5555.03 3.109 E-9
[:SOURce]:IS95:RLCoded:FQINdicator ON | OFF
The command switches the frame quality indicator (a CRC of the data) on or off. If the frame
quality indicator is switched off, only zeros are transmitted. The command is only available with
‘IS95:MODE RLCoded’ selected.
Example: :SOUR:IS95:RLC:FQIN OFF *RST value is ON
[:SOURce]:IS95:RLCoded:CENCoder ON | OFF
The command switches the convolutional encoder on or off. If the convolutional encoder is off, the
required data rate is attained by repeating the symbols. The command is only available with
‘IS95:MODE RLCoded’ selected.
Example: :SOUR:IS95:RLC:CENC OFF *RST value is ON
[:SOURce]:IS95:RLCoded:BINTerleaver ON | OFF
The command selects the block interleaver function. It is only available with ‘IS95:MODE
RLCoded’ selected.
Example: :SOUR:IS95:RLC:BINT OFF *RST value is ON
[:SOURce]:IS95:RLCoded:EBIT 0 | 1
The command sets the value of the erasure bit. It is only available with ‘IS95:MODE RLCoded’
selected.
Example: :SOUR:IS95:RLC:EBIT 0 *RST value is 1
SOURce:LIST Subsystem SMIQ
1125.5555.03 E-93.110
3.5.14.12 SOURce:LIST Subsystem
This subsystem contains the commands for the LIST operating mode of the RF generator. The LIST
mode is activated by command SOURce:FREQuency:MODE LIST. Processing the lists is controlled by
the TRIGger:LIST subsystem. Each list consists of a FREQuency, POWer and DWELl content. The
list contents must all be of the same length except for contents of length 1. This is interpreted as if the
content had the same length as the other contents and all values were equal to the first value. After a list
has been created and changed, command :LIST:LEARn has to be entered to have the settings
transferred to the hardware.
Note: SCPI designates the individual lists as segments.
Command Parameter Default unit Remark
[:SOURce]
:LIST
:CATalog?
:DELete
:ALL
:DWELl
:FREE?
:FREQuency
:POINts?
:LEARn
:MODE
:POWer
:POINts?
:SELect
Þ name {,name}...
'Name of list'
1 ms to 1 s
300 kHz to RFmax {, 300 kHz to RFmax } | block data
AUTO | STEP
-144 to 16 dBm {, -144 to 16 dBm} | block data
'Name of list'
s
Hz
dBm
Query only
Query only
RFmax: depends on
model
Query only
No query
Query only
[:SOURce]:LIST:CATalog?
The command requests a list of the lists available separated by commas. The command is a
query and hence has no *RST value.
Example: :SOUR:LIST:CAT? Answer: 'MYLIST', 'LIST1', 'LIST2'
[:SOURce]:LIST:DELete 'Name of list'
The command deletes the list indicated. *RST has no influence on data lists.
Example: :SOUR:LIST:DEL 'LIST2'
[:SOURce]:LIST:DELete:ALL
The command deletes all lists. As a possibly selected list is deleted as well, the LIST mode must
be switched off (SOURce:FREQuency:MODE CW or SWEep). *RST has no influence on data lists.
Example: :SOUR:LIST:DEL:ALL
[:SOURce]:LIST:DWELl 1 ms to 1 s
The command sets the time the instrument 'dwells' at this item.
Example: :SOUR:LIST:DWEL 0.15
[:SOURce]:LIST:FREE?
The command queries two values. The first one indicates the space still vacant for lists, the second
one the space already occupied (in items). The command is a query and thus has no *RST value.
Example: :SOUR:LIST:FREE? Answer: 2400, 200
SMIQ SOURce:LIST Subsystem
1125.5555.03 3.111 E-9
[:SOURce]:LIST:FREQuency 300 kHz to RFmax {, 300 kHz to RFmax} | block data
(RFmax depending on model)
The command fills the FREQuency part of the list selected with data. The data can either be
indicated as a list of numbers (separated by commas) of arbitrary length or as binary block data.
In the case of block data transmission, always 8 (4) bytes are interpreted as a floating-point
number of double accuracy (cf. command FORMat :DATA). *RST does not influence data lists.
Example: :SOUR:LIST:FREQ 1.4GHz, 1.3GHz, 1.2GHz,...
[:SOURce]:LIST:FREQuency:POINts?
The command queries the length (in items) of the FREQuency part of the list presently selected.
The command is a query and thus has no *RST value.
Example: :SOUR:LIST:FREQ:POIN? Answer: 327
[:SOURce]:LIST:LEARn
The command learns the list selected. I.e., it determines the hardware setting for the entire list.
The data thus determined are stored together with the list. The command triggers an event and
thus has no *RST value.
Example: :SOUR:LIST:LEAR
Caution: This command has to be given after every creating and changing of a list.
[:SOURce]:LIST:MODE AUTO | STEP
The command indicates the mode in which the list is to be processed (by analogy with
SOURce:SWEep:MODE).
AUTO Each trigger event triggers a complete list run.
STEP Each trigger event triggers only one step in processing the list.
Example: :SOUR:LIST:MODE STEP *RST value is AUTO
[:SOURce]:LIST:POWer -144 to 16 dBm {, -144 to 16 dBm} | block data
The command fills the LEVel part of the RF list selected with data. The data can either be
indicated as a list of numbers (separated by commas) of arbitrary length or as binary block data.
As to the format of the data, cf. command :SOURce:LIST:FREQ. *RST does not influence data
lists.
Example: :SOUR:LIST:POW 0dBm, -2dBm, -2dBm, -3dBm,...
[:SOURce]:LIST:POWer:POINts?
The command queries the length (in items) of the LEVel part of the list presently selected. The
command is a query and thus has no *RST value
Example: :SOUR:LIST:POW:POIN? Answer: 32
[:SOURce]:LIST:SELect 'Name of list
The command selects the list indicated. If there is no list of this name, a new list is created. The
name may contain up to 8 letters. The command triggers an event and thus has no *RST value
Example: :SOUR:LIST:SEL 'LIST1'
SOURce:MARKer Subsystem SMIQ
1125.5555.03 E-93.112
3.5.14.13 SOURce:MARKer Subsystem
This subsystem contains the commands to check the marker generation with sweeps. The SMIQ has
three markers each for frequency and level sweeps which are differentiated by a numeric suffix after
MARKer. The settings for frequency sweep and level sweep marker are independent of each other.
Command Parameter Default Unit Remark
[:SOURce]
:MARKer1|2|3|4
[:FSWeep]
:AMPLitude
:AOFF
:FREQuency
[:STATe]
:PSWeep
:AOFF
:POWer
[:STATe]
:POLarity
ON | OFF
300 kHz to RFmax
ON | OFF
-144 to+16 dBm
ON | OFF
NORMal | INVerted
Hz
dBm
No query
RFmax depending on model
No query
[:SOURce]:MARKer1|2|3|4[:FSWeep]
The commands for the markers with frequency sweep are under this node. Keyword :FSWeep
can be omitted, then the command conforms to SCPI regulations.
[:SOURce]:MARKer1|2|3|4[:FSWeep]:AMPLitude ON | OFF
The command specifies whether the marker influences the signal level.
ON The output level is reduced by a constant value when the marker frequency is
executed.
OFF The output level remains unchanged. *RST value is OFF
Example: :SOUR:MARK1:FSW:AMP ON
[:SOURce]:MARKer1|2|3|4[:FSWeep]:AOFF
Command (All markers off) switches off all frequency markers. This command triggers an event,
thus it has no *RST value and no query form.
Example: :SOUR:MARK:FSW:AOFF
[:SOURce]:MARKer1|2|3[:FSWeep]:FREQuency 300 kHz to RFmax (RFmax depending on model)
The command sets the marker selected by the numeric suffix with MARKer to the frequency
indicated.
In this command, the OFFSet value of the subsystem (menu) FREQuency is considered as with
input value MARKER in the SWEEP-FREQ menu. Thus the specified range indicated is only valid
for SOURce:FREQuency:OFFSet = 0. The specified range with other OFFSet values can be
calculated according to the following formula (cf. Chapter 2, Section "Frequency Offset", as well):
300 kHz - OFFSet to RFmax - OFFSet *RST value for MARK1: 100 MHz
MARK2: 200 MHz
MARK3: 300 MHz
MARK4: 400 MHz
Example: :SOUR:MARK1:FSW:FREQ 30MHz
SMIQ SOURce:MARKer Subsystem
1125.5555.03 3.113 E-9
[:SOURce]:MARKer1|2|3|4[:FSWeep][:STATe] ON | OFF
The command switches the marker selected by the numeric suffix with MARKer on or off.
Example: :SOUR:MARK1:FSW:STAT ON *RST value is OFF
[:SOURce]:MARKer1|2|34:PSWeep
The commands for the markers with level sweep are under this node (Power sweep). The three
markers are differentiated by a numeric suffix after MARKer.
[:SOURce]:MARKer1|2|34:PSWeep:AOFF
The command switches all level markers off. This command is an event and thus has no *RST
value and no query form.
Example: :SOUR:MARK:PSW:AOFF
[:SOURce]:MARKer1|2|34:PSWeep:POWer -144 dBm to +16 dBm
The command sets the marker selected by the numeric suffix with MARKer to the level indicated.
In this command, the OFFSet value of subsystem (menu) POWER (LEVEL) is considered in
correspondence with input value MARKER in the SWEEP LEVEL menu. Thus the specified range
indicated is only valid for SOURce:POWer:OFFSet = 0. The specified range with other OFFSet
values can be calculated according to the following formula (cf. Chapter 2, Section "Level Offset"
as well):
-144 dBm OFFSet to 16 dBm OFFSet *RST value for MARK1: 1 dBm
MARK2: 2 dBm
MARK3: 3 dBm
MARK4: 4 dBm
Example: :SOUR:MARK1:PSW:POW -2dBm
[:SOURce]:MARKer1|2|3:PSWeep[:STATe] ON | OFF
The command switches the marker selected by the numeric suffix with MARKer on or off.
Example: :SOUR:MARK1:PSW:STAT ON *RST value is OFF
[:SOURce]:MARKer1|2|3:POLarity NORMal | INVerted
The command specifies the polarity of the marker signal.
NORMal When running through the marker condition, TTL level is applied at the marker
output, otherwise 0 V.
INVerted When running through the marker condition, 0 V is applied at the marker output,
otherwise TTL level. *RST value is NORM
Example: :SOUR:MARK:POL INV
SOURce:MODulation Subsystem SMIQ
1125.5555.03 E-93.114
3.5.14.14 SOURce:MODulation Subsystem
Command Parameter Default
unit Remark
[:SOURce]
:MODulation
[:ALL]
:STATe ON | OFF
[:SOURce]:MODulation[:ALL]:STATe ON | OFF
This command deactivates all types of modulation with OFF. All analog, vector, digital, digital standard
and ARB modulations are thus set to OFF if they were switched on before. This command can be used
before switching on a new type of modulation in order to avoid the error message "settings conflict"
since only one type of modulation can be operated at the same time. The modulation used last is
activated again with ON (same function as MOD ON/OFF key).
This command triggers an event and hence has no *RST value and no query.
Example: :SOUR:MOD:STAT OFF
SMIQ SOURce:NADC Subsystem
1125.5555.03 3.115 E-9
3.5.14.15 SOURce:NADC Subsystem
Note #H0 to #HF are characters which are entered in alphanumeric Hex form manually. SCPI
(and IEEE 488.2) also accept the entry of non-decimal characters in octal and binary such
as
#H|h <0 to 9, A|a to F|f>,
#Q|q <0 to 7> and
#B|b <0|1>.
The characters are always output in Hex format after a query.
Command Parameter Default
unit Remark
[:SOURce]
:NADC
:STATe
:STANdard
:SRATe
:FILTer
:TYPE
:SELect
:PARameter
:MODE
:LDIStortion
[:STATe]
:SEQuence
:TRIGger
:SOURce
:INHibit
:DELay
:OUTPut[2]
:DELay
:PERiod
:CLOCk
:SOURce
:MODE
:DELay
:PRAMp
:PRESet
:TIME
:DELay
:SHAPe
:ROFFset
:FOFFset
:SLOT
:ATTenuation
:LINK
:RCONfiguration
ON | OFF
-
1kHz to 200 kHz
SCOSine | COSine | USER
‘name‘
0.1 to 0.7
LACP | LEVM
ON | OFF
AUTO | RETRigger | AAUTo | ARETrigger
EXTernal | INTernal
0 to 67.1E6
0 to 65535
SLOT | FRAMe
0 to 971
1 to 67.1E6
INTernal | EXTernal
BIT | SYMBol
0 to 1.0
0.25 to 16
-1,0 to +1,0
LINear | COSine
-9 to +9
-9 to +9
0 to 70 dB
UP | DOWN
AHALf | FULL1 | FULL2 | FULL3 | FULL12 |
FULL13 | FULL23 | AFULl
Hz
dB
No query
no query
SOURce:NADC Subsystem SMIQ
1125.5555.03 E-93.116
Command Parameter Default
unit Remark
[:SOURce]
:NADC
:FLISt
:PREDefined
:CATalog?
:LOAD
:CATalog?
:LOAD
:STORe
:DELete
:DLISt
:CAtalog?
:SLOT<i>
:TYPE
:LEVel
:PRESet
[:SOURce]
:SACChannel
:DLISt
:DATA
:DLISt
:SYNC
:CDVCc
:RSVD
Þ name {,name}...
‘name’
Þ name {,name}...
‘name’
‘name’
‘name’
Þ name {,name}...
TCH | SHORt | ADATa
OFF | ATT | FULL
-
PN9 | PN11| PN15 | PN 16 | PN20 | PN21 |
PN23 | DLISt | SDATa
'name'
PN9 | PN11| PN15 | PN 16 | PN20 | PN21 |
PN23 | DLISt | SDATa
'name'
#H0 to #HFFFFFFF (28 bit)
#H1 to #HFFF ( 8 bit)
#H800 to #HFFF ( 12/11 bit)
query only
query only
no query
no query
query only
i=[1],2 to 8 (Slot Selector)
no query
[:SOURce]:NADC:STATe ON | OFF
The command switches the modulation on according to NADC standard. All other standards that
might be switched on or digital modulation are automatically switched OFF.
Example: :SOUR:NADC:STAT ON *RST value is OFF
[:SOURce]:NADC:STANdard
The commands sets all modulation parameters to the values of the NADC standard. I.e., all
values that have been selected by the :NADC:SLOT... commands described in the following
are not valid. This command triggers an event and hence has no *RST value and no query.
Example: :SOUR:NADC:STAN
[:SOURce]:NADC:SRATe 1kHz to 200 kHz
The command sets the symbol rate.
Example: :SOUR:NADC:SRAT 192.1 kHz *RST value is 192 kHz
[:SOURce]:NADC:FILTer
The commands for selecting a filter are under this node.
SMIQ SOURce:NADC Subsystem
1125.5555.03 3.117 E-9
[:SOURce]:NADC:FILTer:TYPE SCOSine | COSine | USER
The command selects the type of filter. A filter list should be selected with :NADC:FILT:SEL
'name' for the filter type USER.
Example: :SOUR:NADC:FILT:TYPE COS *RST value is SCOS
[:SOURce]:NADC:FILTer:SELect 'name'
The command selects a named filter list. The list is used only if a user-defined filter is selected
with :NADC:FILT:TYPE USER. To generate lists, cf. command [:SOURce]:DM:FLISt:SEL, to fill up
lists, cf. command [:SOURce]:DM:FLISt:DATA.
Example: :SOUR:NADC:FILT:SEL 'test' *RST value is NONE
[:SOURce]:NADC:FILTer:PARameter 0.1 to 0.7
The command sets the filter parameter entry (Roll Off factor).
Example: :SOUR:NADC:FILT:PAR 0.5 *RST value is 0.35
[:SOURce]:NADC:FILTer:MODE LACP | LEVM
This command selects one of the "L"ow filter modes.
Example: :SOUR:NADC:FILT:MODE LEVM *RST value is LACP
[:SOURce]:NADC:LDIStortion[:STATe] ON | OFF
The command sets the reduced level for the low-distortion mode.
Example: :SOUR:NADC:LDIS ON *RST value is OFF
[:SOURce]:NADC:SEQuence AUTO | RETRigger | AAUTo | ARETrigger
The command selects the trigger mode for the sequence.
AAUTo is ARMED AUTO
ARETrigger is ARMED RETRIG
Example: :SOUR:NADC:SEQ AAUT *RST value is AUTO
[:SOURce]:NADC:TRIGger:SOURce EXTernal | INTernal
The command selects the trigger source. With INT selected, triggering is via IEC/IEEE bus or the
Execute command in manual control.
Example: :SOUR:NADC:TRIG:SOUR EXT *RST value is INT
[:SOURce]:NADC:TRIGger:INHibit 0 to 67.1E6
The command sets the retrigger inhibit duration (in number of symbols).
Example: :SOUR:NADC:TRIG:INH 1000 *RST value is 0
[:SOURce]:NADC:TRIGger:DELay 0 to 65535
The command sets the trigger delay (in number of symbols).
Example: :SOUR:NADC:TRIG:DEL 200 *RST value is 0
SOURce:NADC Subsystem SMIQ
1125.5555.03 E-93.118
[:SOURce]:NADC:TRIGgerOUTPut[2]:DELay 0 to 971
The command determines the delay of the signal at trigger output 2 in comparison with the start of
the frames/slots in number of symbols.
Example: :SOUR:NADC:TRIG:OUTP2:DEL 16 *RST value is 0
[:SOURce]:NADC:TRIGger:OUTPut[2]:PERiod 1 to 67.1E6
The command sets the repeat rate (in number of frames) of the signal at trigger output 2.
Example: :SOUR:NADC:TRIG:OUTP2:PER 8 *RST value is 1
[:SOURce]:NADC:CLOCk
The commands for setting the data clock are under this node.
[:SOURce]:NADC:CLOCk:SOURce INTernal | EXTernal
The command selects the source for the DM data clock.
INTernal The internal clock generator is used and output via the clock outputs of the serial and
parallel interface.
EXTernal The clock is externally fed in via the serial interface and output via the parallel
interface.
Example: :SOUR:NADC:CLOC:SOUR INT *RST value is INT
[:SOURce]:NADC:CLOCk:MODE BIT | SYMBol
The command sets the clock mode for :NADC:CLOCk:SOURce EXTernal.
BIT The external clock has to be a bit clock.
SYMBol The external clock has to be a symbol clock.
The bit and symbol clock only differ for this modulation, because it has more than two states, i.e.
more than one bit is required to code each state.
Example: :SOUR:NADC:CLOC:MODE BIT *RST value is SYMB
[:SOURce]:NADC:CLOCk:DELay 0 to 1.0
The command sets the delay of the symbol clock (as a fraction of the length of a symbol).
Example: :SOUR:NADC:CLOC:DEL 0.75 *RST value is 0
[:SOURce]:NADC:PRAMp
The commands for the level control of the burst are under this node.
[:SOURce]:NADC:PRAMp:PRESet
This command sets the standard-stipulated values for the following commands of level control. It
is an event and hence has no query and no *RST value.
Example: :SOUR:NADC:PRAM:PRES
[:SOURce]:NADC:PRAMp:TIME 0.25 to 16.0
The command sets the cutoff steepness (in symbol clocks).
Example: :SOUR:NADC:PRAM:TIME 2.5 *RST value is 3
[:SOURce]:NADC:PRAMp:DELay -1.0 to + 1.0
The command defines the shift of the envelope characteristic to the modulated signal. A positive
value causes a delay of the envelope.
SMIQ SOURce:NADC Subsystem
1125.5555.03 3.119 E-9
Example: :SOUR:NADC:PRAM:DEL 0.2 *RST value is 0
[:SOURce]:NADC:PRAMp:SHAPe LINear | COSine
The command selects the linear or cosine shape of the ramp-up and ramp-down (power burst).
Example: :SOUR:NADC:PRAM:SHAP COS *RST value is COS
[:SOURce]:NADC:PRAMp:ROFFset -9 to +9
The command determines the timing of the (‘R’ising) edge of a power burst to the beginning of the
block.
Example: :SOUR:NADC:PRAM:ROFF -3 *RST value is 0
[:SOURce]:NADC:PRAMp:FOFFset -9 to +9
The command determines the timing of the ('F'alling) edge of a power burst to the data block
Example: :SOUR:NADC:PRAM:FOFF 4 *RST value is 0
[:SOURce]:NADC:SLOT:ATTenuation 0 to -70 dB
The command determines the amount by which the power of the slots marked by
:NADC:SLOT:LEVEL ATT is reduced in comparison with the normal output power (attribute to
:LEVEL FULL).
Example: :SOUR:NADC:SLOT:ATT 20 dB *RST value is 0
[:SOURce]:NADC:LINK UP | DOWN
The command determines the burst type which differs depending on the transmit direction. The
structure of the frames is different and thus has an effect on the selection of possible
:NADC:SLOT commands. This command is stored as a part of the :NADC:FLISt configurations
described below.
UP From mobile part to fixed part
DOWN From fixed part to mobile part
Example: :SOUR:NADC:LINK DOWN *RST value is DOWN
[:SOURce]:NADC:RCONfiguration AHALf | FULL1 | FULL2 | FULL3 | FULL12 | FULL13 | FULL23 |
AFUL
This configuration setup determines how the FULL- and HALF-rate channels (slots) are distributed
among the frames. This command is stored as a part of the :NADC:FLISt configurations
described below.
AHALf All Half
FULL1 FULL (1 & 4)
FULL2 FULL (2 & 5)
FULL3 FULL (3 & 6)
FULL12 FULL (1 & 4), (2 & 5)
FULL13 FULL (1 & 3), (3 & 6)
FULL23 FULL (2 & 5), (3 & 6)
AFUL All Full
Example: :SOUR:NADC:RCON FULL3 *RST value is AFUL
[:SOURce]:NADC:FLISt
The commands for storing and reading complete frames including their bursts (slots) are under
this node. Predefined and user-generated frames have to be distinguished.
SOURce:NADC Subsystem SMIQ
1125.5555.03 E-93.120
[:SOURce]:NADC:FLISt:PREDefined:CATalog?
The command returns a list of all predefined frames.
Example: :SOUR:NADC:FLIS:PRED:CAT?
[:SOURce]:NADC:FLISt:PREDefined:LOAD ‘name’
The command selects one of the predefined (fixed) frames (c.f. Chapter 2). This command
triggers an event and hence has no *RST value and no query.
Example: :SOUR:NADC:FLIS:PRED:LOAD ’test’
[:SOURce]:NADC:FLISt:CATalog? Þname, {name}...
The command returns a list of all user-defined frames.
Example: :SOUR:NADC:FLIS:CAT?
[:SOURce]:NADC:FLISt:LOAD ‘name’
The command loads a user-defined frame. This command triggers an event and hence has no
*RST value and no query.
Example: :SOUR:NADC:FLIS:LOAD ’dn_tch’
[:SOURce]:NADC:FLISt:STORe ‘name’
The command stores the current frame under a name. This command triggers an event and
hence has no *RST value and no query.
Example: :SOUR:NADC:FLIS:STOR ’test’
[:SOURce]:NADC:FLISt:DELete ‘name’
The command deletes the indicated frame. This command triggers an event and hence has no
*RST value and no query.
Example: :SOUR:NADC:FLIS:DEL ’test1’
[:SOURce]:NADC:DLISt:CATalog?
The command returns an enumeration of all data lists.
These data lists are selected by means of :NADC:SLOT:SACC:DLIS ‘name’ and...:DATA:DLIS
‘name’ and used if :NADC:SLOT:SACC DLISt and...:DATA DLISt are set.
Example: :SOUR:NADC:DLIS:CAT?
[:SOURce]:NADC:SLOT<i>
The commands for setting the slot characteristics are under this node. Since a frame contains 6
slots, suffix ‘i’ is used to select the slot to be changed. i = [1] | 2 | 3 | 3 | 5 | 6
SMIQ SOURce:NADC Subsystem
1125.5555.03 3.121 E-9
[:SOURce]:NADC:SLOT<i>:TYPE TCH | SHORt | ADATa
The command selects the type of burst (slot) defined in the standard.
TCH Normal communication channel with the fields defined by the standard.
ADATa All data (without predefined SYNC, SACCh, CDVCc and RSVD fields)
SHORt Only used for uplink to set up TCH.
Example: :SOUR:NADC:SLOT2:TYPE TCH *RST value is TCH
[:SOURce]:NADC:SLOT<i>:LEVel OFF | ATT | FULL
The command determines the power stage of the slot.
OFF The slot is inactive.
For UPLINK, the source is always at full power. Therefore, in the case of a
DOWNLINK TCH burst, only a series of 1's is sent instead of the data.
ATT The power is reduced by the amount defined by :NADC:SLOT:ATT
For a DOWNLINK TCH burst this setting is not valid.
FULL Full power (predefined by level setting)
Example: :SOUR:NADC:SLOT2:LEV ATT *RST value is FULL
[:SOURce]:NADC:SLOT<i>:PRESet
The command sets all the parameters of the slot to the values defined by the standard as a
function of the type set above and the direction (LINK). This command triggers an event and
hence has no *RST value and no query.
Example: :SOUR:NADC:SLOT2:PRES
[:SOURce]:NADC:SLOT<i>[:SOURce]
The commands for determining the source for the data contents are under this node. The source
is either a PRBS generator (with different sequence length), the data input SER DATA or a data
list.
Selection of data source for the data fields of the burst:
PN9 to 23 PRBS generator has been selected
DLISt Data of a programmable data list
SDATa Data from data input SER DATA
[:SOURce]:NADC:SLOT<i>[:SOURce]:SACChannel PN9 | PN11 | PN15 | PN16 | PN20 | PN21 |
PN23 | DLISt | SDATa
The command determines the data source for the data words.
Example: :NADC:SLOT3:SACC PN15 *RST value is PN9
[:SOURce]:NADC:SLOT<i>[:SOURce]:SACChannel:DLISt ‘name’
The command selects a data list. This list will not be used unless it is set as a data source by
means of the :NADC:SLOT:SACC DLIS command. This command triggers an event and hence
has no *RST value.
Example: :NADC:SLOT:SACC:DLIS ’test’
[:SOURce]:NADC:SLOT<i>[:SOURce]:DATA PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 |
DLISt | SDATa
The command determines the data source for the data words.
Example: :SOUR:NADC:SLOT2:DATA DLIS *RST value is PN9
SOURce:NADC Subsystem SMIQ
1125.5555.03 E-93.122
[:SOURce]:NADC:SLOT<i>[:SOURce]:DATA:DLISt ‘name’
The command selects a data list. This list will not be used unless it is set as a data source by
means of the :NADC:SLOT:DATA DLIS command. This command triggers an event and hence
has no *RST value.
Example: :NADC:SLOT:DATA:DLIS ’test’
[:SOURce]:NADC:SLOT<i>:SYNC #H0 to #HFFFFFFF (28 bit)
The command changes the sync word predefined by the standard.
Example: :SOUR:NADC:SLOT2:SYNC #HC7E3C0C *RST value depends on SLOT:TYPE
[:SOURce]:NADC:SLOT<i>:CDVCc #H1 to #HFFF (8 bit)
This command sets the Coded Digital Verification Color Code.
Example: :SOUR:NADC:SLOT2:CDVCc #H3F *RST value is 1
[:SOURce]:NADC:SLOT<i>:RSVD #H800 to #HFFF (12/11 bit)
The command sets the reserved word (only for TCH and LINK DOWN). The MSBit is normally
set.
Example: :SOUR:NADC:SLOT2:RSVD #H80F *RST value is #H800
SMIQ SOURce:NOISe Subsystem
1125.5555.03 3.123 E-9
3.5.14.16 SOURce:NOISe Subsystem
Subsystem NOISe comprises all commands for setting the noise generator.
The NDSim subsystem under CALibrate is available for the offset calibration. In the DIAGnostic
subsystem the noise or carrier signal can be switched off for C/N measurements (refer to chapter
Performance Test in the Operating Manual).
Command Parameter Default
Unit Remark
[:SOURce]
:NOISe Not-SCPI
[:STATe] ON | OFF
:SNRatio -5.0 to 30.0 dB
:BANDwidth|BWIDth 10k to 10M Hz
[:SOURce]:NOISe[:STATe] ON | OFF
This command switches White Gaussian Noise on or off.
Example: :SOUR:NOIS ON *RST value is OFF
[:SOURce]:NOISe:SNRatio -5.0 to 30.0 dB
This command sets the S/N ratio.
Setting range is -5 dB to +30 dB, resolution is 0.1 dB.
Example: :SOUR:NOIS:SNR 10 DB *RST value is 0 dB
[:SOURce]:NOISe:BANDwidth|BWIDth 10000 to 10000000 Hz
This command sets the noise bandwidth. Setting range is 10 kHz to 10 MHz.
Example: :SOUR:NOIS:BAND 1.23 MHZ *RST value is 10 kHz
SOURce:PDC Subsystem SMIQ
1125.5555.03 E-93.124
3.5.14.17 SOURce:PDC Subsystem
Note: #H0 to #HF are characters which are entered in alphanumeric Hex form manually. SCPI (and
IEEE 488.2) also accept the entry of non-numeric characters in octal and binary such as
#H|h <0 to 9, A|a to F|f>,
#Q|q <0 to 7> and
#B|b <0|1>.
The characters are always output in Hex format after a query.
Command Parameter Default
unit Remark
[:SOURce]
:PDC
:STATe
:STANdard
:SRATe
:FILTer
:TYPE
:SELect
:PARameter
:MODE
:LDIStortion
[:STATe]
:SEQuence
:TRIGger
:SOURce
:INHibit
:DELay
:OUTPut[2]
:DELay
:PERiod
:CLOCk
:SOURce
:MODE
:DELay
:PRAMp
:PRES
:TIME
:DELay
:SHAPe
:ROFFset
:FOFFset
:SLOT
:ATTenuation
:LINK
:RCONfiguration
ON | OFF
1kHz to 200 kHz
SCOSine | COSine | USER
‘name‘
0.1 to 0.7
LACP | LEVM
ON | OFF
AUTO | RETRigger | AAUTo | ARETrigger
EXTernal | INTernal
0 to 67.1E6
0 to 65535
0 to 839
1 to 67.1E6
INTernal | EXTernal
BIT | SYMBol
0 to 1.0
0.25 to 16
-1.o to 1.0
LINear | COSine
-9 to +9
-9 to +9
0 to 70 dB
UP | DOWN
AHALf | FULL0 | FULL1 | FULL2 | FULL10 |
FULL20 | FULL21 | AFUL
Hz
dB
no query
SMIQ SOURce:PDC Subsystem
1125.5555.03 3.125 E-9
Command Parameter Default
unit Remark
[:SOURce]
:PDC
:FLISt
:PREDefined
:CATalog?
:LOAD
:CATalog?
:LOAD
:STORe
:DELete
:DLISt
:CATalog?
:SLOT<i>
:TYPE
:LEVel
:PRESet
:SCRamble
:STATe
:STARt
:SFRame
:STATe
:RCHPosition
[:SOURce]
:DATA
:DLISt
:SACChannel
:DLISt
:RCHannel
:DLISt
:SI
:DLISt
:PREamble
:SYNC
:SYNC2
:CCODe
:POSTamble
:SF
Þ name {,name}...
‘name’
‘name’
‘name’
‘name’
‘name‘
TCH | SYNC | VOX | ADATa
OFF | ATT | FULL
ON | OFF
#H1 to #H1FF (9 bits)
ON | OFF
1 to 17
PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt
| SDATa
'name'
PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt
| SDATa
'name'
PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt
| SDATa
'name'
PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt
| SDATa
'name'
#H0 to #HFF... (2/6/48/102 bits)
#H0 to #HFF... (20/32 bits)
#H0 to #HFF... (20/32 bits)
#H0 to #HFF (8 bits)
#H0 to #H3FF... (78 bits)
0 | 1
query only
query only
no query
no query
query only
No query
[:SOURce]:PDC:STATe ON | OFF
The command switches the modulation on or off according to PDC standard. All other standards
that might be switched on or digital modulation are automatically switched OFF.
Example: :SOUR:PDC:STAT ON *RST value is OFF
SOURce:PDC Subsystem SMIQ
1125.5555.03 E-93.126
[:SOURce]:PDC:STANdard
The commands sets all modulation parameters to the values of the PDC standard. I.e., all values
that have been selected by the :PDC:SLOT... commands described in the following are not
valid. This command triggers an event and hence has no *RST value and no query.
Example: :SOUR:PDC:STAN
[:SOURce]:PDC:SRATe 1kHz to 200 kHz
The command sets the symbol rate.
Example: :SOUR:PDC:SRAT 21.1 kHz *RST value is 21.0 kHz
[:SOURce]:PDC:FILTer
The commands for selecting a filter are under this node.
[:SOURce]:PDC:FILTer:TYPE SCOSine | COSine | USER
The command selects the type of filter. A filter list should be selected with :PDC:FILT:SEL 'name'
for the filter type USER.
Example: :SOUR:PDC:FILT:TYPE COS *RST value is SCOS
[:SOURce]:PDC:FILTer:SELect 'name'
The command selects a named filter list. The list is used only if a user-defined filter is selected
with :PDC:FILT:TYPE USER. To generate lists, cf. command [:SOURce]:DM:FLISt:SEL, to fill up
lists, cf. command [:SOURce]:DM:FLISt:DATA.
Example: :SOUR:PDC:FILT:SEL 'test' *RST value is NONE
[:SOURce]:PDC:FILTer:PARameter 0.1 to 0.7
The command sets the filter parameter entry (Roll Off factor).
Example: :SOUR:PDC:FILT:PAR 0.51 *RST value is 0.5
[:SOURce]:PDC:FILTer:MODE LACP | LEVM
This command selects one of the "L"ow filter modes.
Example: :SOUR:PDC:FILT:MODE LEVM *RST value is LACP
[:SOURce]:PDC:LDIStortion[:STATe] ON | OFF
The command sets the reduced level for the low-distortion mode.
Example: :SOUR:PDC:LDIS ON *RST value is OFF
[:SOURce]:PDC:SEQuence AUTO | RETRigger | AAUTo | ARETrigger
The command selects the trigger mode for the sequence.
AAUTo is ARMED AUTO
ARETrigger is ARMED RETRIG
Example: :SOUR:PDC:SEQ AAUT *RST value is AUTO
[:SOURce]:PDC:TRIGger:SOURce EXTernal | INTernal
The command selects the trigger source. With INT selected, triggering is via IEC/IEEE bus or the
Execute command in manual control.
Example: :SOUR:PDC:TRIG:SOUR EXT *RST value is INT
SMIQ SOURce:PDC Subsystem
1125.5555.03 3.127 E-9
[:SOURce]:PDC:TRIGger:INHibit 0 to 67.1E6
The command sets the retrigger inhibit duration (in number of symbols).
Example: :SOUR:PDC:TRIG:INH 1000 *RST value is 0
[:SOURce]:PDC:TRIGger:DELay 0 to 65535
The command sets the trigger delay (in number of symbols).
Example: :SOUR:PDC:TRIG:DEL 200 *RST value is 0
[:SOURce]:PDC:TRIGgerOUTPut[2]:DELay 0 to 839
The command determines the delay of the signal at trigger output 2 in comparison with the start of
the frames/slots in number of symbols.
Example: :SOUR:PDC:TRIG:OUTP2:DEL 16 *RST value is 0
[:SOURce]:PDC:TRIGger:OUTPut[2]:PERiod 1 to 67.1E6
The command sets the repeat rate (in number of frames) of the signal at trigger output 2.
Example: :SOUR:PDC:TRIG:OUTP2:PER 8 *RST value is 1
[:SOURce]:PDC:CLOCk
The commands for setting the data clock are under this node.
[:SOURce]:PDC:CLOCk:SOURce INTernal | EXTernal
The command selects the source for the DM data clock.
INTernal The internal clock generator is used and output via the clock outputs of the serial and
parallel interface.
EXTernal The clock is externally fed in via the serial interface and output via the parallel
interface.
Example: :SOUR:PDC:CLOC:SOUR INT *RST value is INT
[:SOURce]:PDC:CLOCk:MODE BIT | SYMBol
The command sets the clock mode for :PDC:CLOCk:SOURce EXTernal.
BIT The external clock has to be a bit clock.
SYMBol The external clock has to be a symbol clock.
The bit and symbol clock only differ for modulations with more than two states, i.e. modulations for
which more than one bit is required to code each state.
Example: :SOUR:PDC:CLOC:MODE BIT *RST value is SYMB
[:SOURce]:PDC:CLOCk:DELay 0 to 1.0
The command sets the delay of the symbol clock (as a fraction of the length of a symbol).
Example: :SOUR:PDC:CLOC:DEL 0.75 *RST value is 0
SOURce:PDC Subsystem SMIQ
1125.5555.03 E-93.128
[:SOURce]:PDC:PRAMp
The commands for the level control of the burst are under this node.
[:SOURce]:PDC:PRAMp:PRESet
This command sets the standard-stipulated values for the following commands of level control. It
is an event and hence has no query and no *RST value.
Example: :SOUR:PDC:PRAM:PRES
[:SOURce]:PDC:PRAMp:TIME 0.25 to 16.0
The command sets the cutoff steepness (in symbol clocks).
Example: :SOUR:PDC:PRAM:TIME 2.5 *RST value is 2
[:SOURce]:PDC:PRAMp:DELay -1.0 to + 1.0
The command defines the shift of the envelope characteristic to the modulated signal. A positive
value causes a delay of the envelope.
Example: :SOUR:PDC:PRAM:DEL 0.2 *RST value is 0
[:SOURce]:PDC:PRAMp:SHAPe LINear | COSine
The command selects the linear or cosine shape of the ramp-up and ramp-down (power burst).
Example: :SOUR:PDC:PRAM:SHAP COS *RST value is COS
[:SOURce]:PDC:PRAMp:ROFFset -9 to +9
The command determines the timing of the (‘R’ising) edge of a power burst to the beginning of the
block.
Example: :SOUR:PDC:PRAM:ROFF -3 *RST value is 0
[:SOURce]:PDC:PRAMp:FOFFset -9 to +9
The command determines the timing of the ('F'alling) edge of a power burst to the data block
Example: :SOUR:PDC:PRAM:FOFF 4 *RST value is 0
[:SOURce]:PDC:SLOT:ATTenuation 0 to 70 dB
The command determines the amount by which the power of the slots marked by
:PDC:SLOT:LEVel ATT is reduced in comparison with the normal output power (Attribut to
:LEVel FULL).
Example: :SOUR:PDC:SLOT:ATT 20 dB *RST value is 0
[:SOURce]:PDC:LINK UP | DOWN
The command determines the burst type which differs depending on the transmit direction. The
structure of the frames is different and thus has an effect on the selection of possible :PDC:SLOT
commands. This command is stored as a part of the :PDC:FLISt configurations (see below).
UP From mobile part to fixed part
DOWN From fixed part to mobile part
Example: :SOUR:PDC:LINK DOWN *RST value is DOWN
SMIQ SOURce:PDC Subsystem
1125.5555.03 3.129 E-9
[:SOURce]:PDC:RCONfiguration AHALf | FULL1 | FULL2 | FULL3 | FULL12 | FULL13 | FULL23 | AFUL
This configuration setup determines how the FULL- and HALF-rate channels (slots) are distributed
among the frames. This command is stored as a part of the :PDC:FLISt configurations (see below).
AHALf All Half
FULL0 FULL (0 & 3)
FULL1 FULL (1 & 4)
FULL2 FULL (2 & 5)
FULL10 FULL (1 & 4), (0 & 3)
FULL20 FULL (2 & 5), (0 & 3)
FULL21 FULL (2 & 5), (1 & 4)
AFUL All Full
Example: :SOUR:PDC:RCON FULL0 *RST value is AFUL
[:SOURce]:PDC:FLISt
The commands for storing and reading complete frames including their bursts (slots) are under
this node. Predefined and user-generated frames have to be distinguished.
[:SOURce]:PDC:FLISt:PREDefined:CATalog?
The command returns a list of all predefined frames.
Example: :SOUR:PDC:FLIS:PRED:CAT?
[:SOURce]:PDC:FLISt:PREDefined:LOAD ‘name’
The command selects one of the predefined (fixed) frames (c.f. Chapter 2) . This command
triggers an event and hence has no *RST value.
Example: :SOUR:PDC:FLIS:PRED:LOAD ’dn_tch’
[:SOURce]:PDC:FLISt:CATalog?
The command returns a list of all user-defined frames.
Example: :SOUR:PDC:FLIS:CAT?
[:SOURce]:PDC:FLISt:LOAD ‘name’
The command loads a user-defined frame. This command triggers an event and hence has no
*RST value.
Example: :SOUR:PDC:FLIS:LOAD ’test’
[:SOURce]:PDC:FLISt:STORe ‘name’
The command stores the current frame under a name. This command triggers an event and
hence has no *RST value and no query.
Example: :SOUR:PDC:FLIS:STOR ’test’
[:SOURce]:PDC:FLISt:DELete ‘name’
The command deletes the indicated frame. This command triggers an event and hence has no
*RST value and no query.
Example: :SOUR:PDC:FLIS:DEL ’test1’
SOURce:PDC Subsystem SMIQ
1125.5555.03 E-93.130
[:SOURce]:PDC:DLISt:CATalog?
The command returns an enumeration of all data lists.
These data lists are selected by means of :PDC:SLOT:SACC:DLIS, ..:RCH:DLIS,
...SI:DLIS, or ...:DATA:DLIS ‘name’ and used if :PDC:SLOT:SACC, ...RCH, SI, or
...:DATA DLISt are set.
Example: :SOUR:PDC:DLIS:CAT?
[:SOURce]:PDC:SLOT<i>
The commands for setting the slot characteristics are under this node. Since a frame contains 8
slots, suffix ‘i’ is used to select the slot to be changed. i = 0 | [1] | 2 | 3 | 3 | 5 | 6 | 7
[:SOURce]:PDC:SLOT<i>:TYPE TCH | SYNC | VOX | ADATa
The command selects the type of burst (slot) defined in the standard.
ADATa is All Data
Example: :SOUR:PDC:SLOT2:TYPE TCH *RST value is TCH
[:SOURce]:PDC:SLOT<i>:LEVel OFF | ATT | FULL
The command determines the power stage of the slot.
OFF The slot is inactive
For UPLINK, the source is always at full power. Therefore, in the case of an
DOWNLINK TCH burst, only a series of 1's is sent instead of the data.
ATT The power is reduced by the amount defined by :PDC:SLOT:ATT
For an DOWNLINK TCH burst this setting is not valid.
FULL Full power (predefined by level setting)
Example: :SOUR:PDC:SLOT2:LEV ATT *RST value is FULL
[:SOURce]:PDC:SLOT<i>:PRESet
The command sets all the parameters of the slot to the values defined by the standard as a
function of the type set above. This command triggers an event and hence has no *RST value and
no query.
Example: :SOUR:PDC:SLOT2:PRES
[:SOURce]:PDC:SLOT<i>:SCRamble
The commands for setting the scramble method are under this node.
[:SOURce]:PDC:SLOT<i>:SCRamble:STATe ON | OFF
The command switches scrambling for data fields DATA, SI and SACCH on or off.
Example: :SOUR:PDC:SLOT2:SCR:STAT ON *RST value is OFF
[:SOURce]:PDC:SLOT<i>:SCRamble:STARt #H1 to #H1FF (9 bits)
The command sets the start value for the scramble sequence.
Example: :SOUR:PDC:SLOT2:SCR:STAR #H12 *RST value is 1
SMIQ SOURce:PDC Subsystem
1125.5555.03 3.131 E-9
[:SOURce]:PDC:SLOT<i>:SFRame:STATe ON | OFF
This command switches the superframe on or off. When switched on, RCD data will be inserted
instead of SACCH data in some slots and SYNC2 will be used instead of SYNC in the first slot of
the superframe.
Example: :SOUR:PDC:SLOT2:SFR:STAT ON *RST value is OFF
[:SOURce]:PDC:SLOT<i>:SFRame:RCHPosition 1 to 17
The command determines the position of the second RCH.
Example: :SOUR:PDC:SLOT2:SFR:RCHP 10 *RST value is 1
[:SOURce]:PDC:SLOT<i>[:SOURce]
The commands for determining the source for the data contents are under this node. The source
is either a PRBS generator (with different sequence length), the data input SER DATA or a data
list.
Selection of data source for the data fields of the burst:
PN9 to 23 PRBS generator has been selected
DLISt Data from a programmable data list
SDATa Data from data input SER DATA
[:SOURce]:PDC:SLOT<i>[:SOURce]:DATA PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt |
SDATa
The command determines the data source for the data words.
Example: :SOUR:PDC:SLOT3:DATA PN15 *RST value is PN9
[:SOURce]:PDC:SLOT<i>[:SOURce]:DATA:DLISt ‘name’
The command selects a data list. This list will not be used unless it is set as a data source by
means of the :PDC:SLOT:DATA DLIS command. This command triggers an event and hence
has no *RST value.
Example: :SOUR:PDC:SLOT:DATA:DLIS ’test’
[:SOURce]:PDC:SLOT<i>[:SOURce]:SACChannel PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 |
DLISt | SDATa
The command determines the data source for the slow associated control channel (for :SLOT:TYPE
TCH... and VOX).
Example: :SOUR:PDC:SLOT3:SACC PN15 *RST value is PN9
[:SOURce]:PDC:SLOT<i>[:SOURce]:SACChannel:DLISt ‘name’
The command selects a data list. This list will not be used unless it is set as a data source by
means of the:SOUR::PDC:SOUR:SLOT:SACC DLIS command. This command triggers an event
and hence has no *RST value.
Example: :SOUR:PDC:SLOT:SACC:DLIS ’test’
[:SOURce]:PDC:SLOT<i>[:SOURce]:RCHannel PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 |
DLISt | SDATa
The command determines the data source for the housekeeping channel (for
:SLOT:FRAMe:STATe ON).
Example: :SOUR:PDC:SLOT2:RCH DLIS *RST value is PN9
SOURce:PDC Subsystem SMIQ
1125.5555.03 E-93.132
[:SOURce]:PDC:SLOT<i>[:SOURce]:RCHannel:DLISt ‘name’
The command selects a data list. This list will not be used unless it is set as a data source by
means of the :SOUR:PDC:SLOT:RCH DLIS command. This command triggers an event and
hence has no *RST value.
Example: :PDC:SLOT:RCH:DLIS ’test’
[:SOURce]:PDC:SLOT<i>[:SOURce]:SI PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt |
SDATa
The command determines the data source for the sync information field (for :SLOT:TYPE SYNC).
Example: :SOUR:PDC:SLOT2:SI DLIS *RST value is PN9
[:SOURce]:PDC:SLOT<i>[:SOURce]:SI:DLISt ‘name’
The command selects a data list. This list will not be used unless it is set as a data source by
means of the :SOUR:PDC:SLOT:SI DLIS command. This command triggers an event and
hence has no *RST value.
Example: :SOUR:PDC:SLOT:SI:DLIS ’test’
[:SOURce]:PDC:SLOT<i>:PREamble #H0 to #H... (2/6/48/102 bits)
The command sets the value of the ‘P’ bits. The length and the *RST value depend on the slot
type and the link direction:
:SLOT:TYPE
TCH
SYNC
VOX
TCH
SYNC
:LINK
UP
UP
UP
DOWN
DOWN
Length (bits)
2
48
6
2
102
*RST value.
2
9999 9999 9999
26
2
26 6666 6666 6666 6666 6666 6666
Example: :SOUR:PDC:SLOT2:PRE #H1 For *RST value see above
[:SOURce]:PDC:SLOT<i>:SYNC #H0 to #HFFFFF/FFFFFFFF (20/32 bits)
The command sets the value of the sync word. The length 32bit is only available for SLOT:TYPE
SYNC.
Example: :SOUR:PDC:SLOT2:SYNC #H1A *RST value depends on SLOT
[:SOURce]:PDC:SLOT<i>:SYNC2 #H0 to #HFF... (20/32 bits)
The command sets the value for the sync word in the superframe (only available for
:PDC:SFRA:STAT ON).
Example: :SOUR:PDC:SLOT2:SYNC2 #H1AB *RST value is 0
[:SOURce]:PDC:SLOT<i>:CCODe #H0 to #HFF (8 bits)
The command sets the value for the color code.
Example: :SOUR:PDC:SLOT2:CCOD #H1F *RST value is 0
[:SOURce]:PDC:SLOT<i>:POSTamble #H0 to 3FF... (78 bits)
The command sets the value for postamble (only valid for SLOT:TYP SYNC and LINK DOWN).
Example: :SOUR:PDC:SLOT2:POST #HF2 *RST value is 2666 6666 6666 6666 6666
[:SOURce]:PDC:SLOT<i>:SF 0 | 1
The command sets the state of the steal flag.
Example: :SOUR:PDC:SLOT2:SF 1 *RST value is 0
SMIQ SOURce:PHASe Subsystem
1125.5555.03 3.133 E-9
3.5.14.18 SOURce:PHASe Subsystem
Command Parameter Default
Unit Remark
[:SOURce]
:PHASe
[:ADJust]
:REFerence
-360 deg to +360 deg rad
No query
[:SOURce]:PHASe[:ADJust] -360 deg to +360 deg
The command indicates the phase between output signal and reference oscillator signal. This
setting is only accepted using SOURce:PHASe:REFerence (cf. below). An indication in RADian
is possible.
Example: :SOUR:PHAS:ADJ 2DEG
:SOUR:PHAS:ADJ 0.1RAD *RST value is 0.0 DEG
[:SOURce]:PHASe:REFerence
The command accepts the phase set using SOURce:PHASe:ADJust as a new reference phase.
The command has no *RST value.
Example: :SOUR:PHAS:REF
SOURce:PHS Subsystem SMIQ
1125.5555.03 E-93.134
3.5.14.19 SOURce:PHS Subsystem
Note #H0 to #HF are characters which are entered in alphanumeric Hex form manually. SCPI (and
IEEE 488.2) also accept the entry of non-decimal characters in octal and binary such as
#H|h <0 to 9, A|a to F|f>,
#Q|q <0 to 7> and
#B|b <0|1>.
The characters are always output in Hex format after a query.
Command Parameter Default
unit Remark
[:SOURce]
:PHS
:STATe
:STANdard
:SRATe
:FILTer
:TYPE
:SELect
:PARameter
:MODE
:LDIStortion
[:STATe]
:SEQuence
:TRIGger
:SOURce
:INHibit
:DELay
:OUTPut[2]
:DELay
:PERiod
:CLOCk
:SOURce
:MODE
:DELay
:PRAMp
:PRESet
:TIME
:DELay
:SHAPe
:ROFFset
:FOFFset
:SLOT
:ATTenuation
:FLISt
:PREDefined
:CATalog?
:LOAD
:CATalog?
:LOAD
:STORe
:DELete
ON | OFF
1kHz to 200 kHz
SCOSine | COSine | USER
‘name‘
0.1 to 0.7
LACP | LEVM
ON | OFF
AUTO | RETRigger | AAUTo | ARETrigger
EXTernal | INTernal
0 to 67.1E6
0 to 65535
0 to 959
1 to 67.1E6
INTernal | EXTernal
BIT | SYMBol | SBIT
0 to 1.0
0.25 to 16
1.0 to +1.0
LINear | COSine
-9 to +9
-9 to +9
0 to 70 dB
Þ name {,name}...
‘name’
Þ name {,name}...
‘name’
‘name’
‘name’
Hz
DB
No query
query only
query only
no query
no query
SMIQ SOURce:PHS Subsystem
1125.5555.03 3.135 E-9
Command Parameter Default
unit Remark
[:SOURce]
:PHS
:DLISt
:CATalog?
:SLOT<i>
:TYPE
:LEVel
:PRESet
:SCRamble
:STATe
:CODE
:ENCRyption
:STATe
:KEY
:UWORd
:CSID
:PSID
:IDLe
[:SOURce]
:SACChannel
:DLISt
:TCHannel
:DLISt
Þ name {,name}..
TCHFull | TCHHalf | SYNC | VOX | ADATa
OFF | ATT | FULL
-
ON | OFF
#H0 to #H3FF (10 bit)
ON | OFF
#H0 to #HFFFF (16 bits)
#H0 to #HFFFFFFFF (16 o r 32 bits)
#H0 to #H3FFFFFFFFFF (42 bits)
#H0 to #HFFFFFFFF (28 bits)
#H0 to #H3FFFFFFFF (34 bits)
PN9 | PN11 | PN15 | PN 16 | PN20 | PN21 |
PN23 | DLISt | SDATa
'name'
PN9 | PN11 | PN15 | PN 16 | PN20 | PN21 |
PN23 | DLISt | SDATa
'name'
query only
No query
[:SOURce]:PHS:STATe ON | OFF
The command switches the modulation on according to PHS standard. All other standards that
might be switched on or digital modulation are automatically switched OFF.
Example: :SOUR:PHS:STAT ON *RST value is OFF
[:SOURce]:PHS:STANdard
The commands sets all modulation parameters to the values of the PHS standard. I.e., all values
that have been selected by the :PHS:SLOT... commands described in the following are not
valid. This command triggers an event and hence has no *RST value and no query.
Example: :SOUR:PHS:STAN
[:SOURce]:PHS:SRATe 1kHz to 200 kHz
The command sets the symbol rate.
Example: :SOUR:PHS:SRAT 192.1 kHz *RST value is 192 kHz
[:SOURce]:PHS:FILTer
The commands for selecting a filter are under this node.
[:SOURce]:PHS:FILTer:TYPE SCOSine | COSine | USER
The command selects the type of filter. A filter list should be selected with :PHS:FILT:SEL 'name'
for the filter type USER.
Example: :SOUR:PHS:FILT:TYPE COS *RST value is SCOS
SOURce:PHS Subsystem SMIQ
1125.5555.03 E-93.136
[:SOURce]:PHS:FILTer:SELect 'name'
The command selects a named filter list. The list is used only if a user-defined filter is selected
with :PHS:FILT:TYPE USER. To generate lists, cf. command [:SOURce]:DM:FLISt:SEL, to fill up
lists, cf. command [:SOURce]:DM:FLISt:DATA.
Example: :SOUR:PHS:FILT:SEL 'test' *RST value is NONE
[:SOURce]:PHS:FILTer:PARameter 0.1 to 0.7
The command sets the filter parameter entry (Roll Off factor).
Example: :SOUR:PHS:FILT:PAR 0.5 *RST value is 0. 5
[:SOURce]:PHS:FILTer:MODE LACP | LEVM
This command selects one of the "L"ow filter modes.
Example: :SOUR:PHS:FILT:MODE LEVM *RST value is LACP
[:SOURce]:PHS:LDIStortion[:STATe] ON | OFF
The command sets the reduced level for the low-distortion mode.
Example: :SOUR:PHS:LDIS ON *RST value is OFF
[:SOURce]:PHS:SEQuence AUTO | RETRigger | AAUTo | ARETrigger
The command selects the trigger mode for the sequence.
AAUTo is ARMED AUTO
ARETrigger is ARMED RETRIG
Example: :SOUR:PHS:SEQ AAUT *RST value is AUTO
[:SOURce]:PHS:TRIGger:SOURce EXTernal | INTernal
The command selects the trigger source. With INT selected, triggering is via IEC/IEEE bus or the
Execute command in manual control.
Example: :SOUR:PHS:TRIG:SOUR EXT *RST value is INT
[:SOURce]:PHS:TRIGger:INHibit 0 to 67.1E6
The command sets the retrigger inhibit duration (in number of symbols).
Example: :SOUR:PHS:TRIG:INH 1000 *RST value is 0
[:SOURce]:PHS:TRIGger:DELay 0 to 65535
The command sets the trigger delay (in number of symbols).
Example: :SOUR:PHS:TRIG:DEL 200 *RST value is 0
[:SOURce]:PHS:TRIGgerOUTPut[1]:DELay 0 to 959
The command determines the delay of the signal at trigger output 2 in comparison with the start of
the frames/slots in number of symbols.
Example: :SOUR:PHS:TRIG:OUTP2:DEL 16 *RST value is 0
SMIQ SOURce:PHS Subsystem
1125.5555.03 3.137 E-9
[:SOURce]:PHS:TRIGger:OUTPut[2]:PERiod 1 to 67.1E6
The command sets the repeat rate (in number of frames) of the signal at trigger output 2.
Example: :SOUR:PHS:TRIG:OUTP:PER 8 *RST value is 1
[:SOURce]:PHS:CLOCk
The commands for setting the data clock are under this node.
[:SOURce]:PHS:CLOCk:SOURce INTernal | EXTernal
The command selects the source for the DM data clock.
INTernal The internal clock generator is used and output via the clock outputs of the serial and
parallel interface.
EXTernal The clock is externally fed in via the serial interface and output via the parallel
interface.
Example: :SOUR:PHS:CLOC:SOUR INT *RST value is INT
[:SOURce]:PHS:CLOCk:MODE BIT | SYMBol
The command sets the clock mode for :PHS:CLOCk:SOURce EXTernal.
BIT The external clock has to be a bit clock.
SYMBol The external clock has to be a symbol clock.
The bit and symbol clock only differ for modulations with more than two states, i.e. modulations for
which more than one bit is required to code each state.
Example: :SOUR:PHS:CLOC:MODE BIT *RST value is SYMB
[:SOURce]:PHS:CLOCk:DELay 0 to 1.0
The command sets the delay of the symbol clock (as a fraction of the length of a symbol).
Example: :SOUR:PHS:CLOC:DEL 0.75 *RST value is 0
[:SOURce]:PHS:PRAMp
The commands for the level control of the burst are under this node.
[:SOURce]:PHS:PRAMp:PRESet
This command sets the standard-stipulated values for the following commands of level control. It
is an event and hence has no query and no *RST value.
Example: :SOUR:PHS:PRAM:PRES
[:SOURce]:PHS:PRAMp:TIME 0.25 to 16.0
The command sets the cutoff steepness (in symbol clocks).
Example: :SOUR:PHS:PRAM:TIME 2.5 *RST value is 0
[:SOURce]:PHS:PRAMp:DELay -1.0 to + 1.0
The command defines the shift of the envelope characteristic to the modulated signal. A positive
value causes a delay of the envelope.
Example: :SOUR:PHS:PRAM:DEL 0.2 *RST value is 0
SOURce:PHS Subsystem SMIQ
1125.5555.03 E-93.138
[:SOURce]:PHS:PRAMp:SHAPe LINear | COSine
The command selects the linear or cosine shape of the ramp-up and ramp-down (power burst).
Example: :SOUR:PHS:PRAM:SHAP COS *RST value is LIN
[:SOURce]:PHS:PRAMp:ROFFset -9 to +9
The command determines the timing of the (‘R’ising) edge of a power burst to the beginning of the slot.
Example: :SOUR:PHS:PRAM:ROFF -3 *RST value is 0
[:SOURce]:PHS:PRAMp:FOFFset -9 to +9
The command determines the timing of the ('F'alling) edge of a power burst to the data block
Example: :SOUR:PHS:PRAM:FOFF 4 *RST value is 0
[:SOURce]:PHS:SLOT:ATTenuation 0 to 70 dB
The command determines the amount by which the power of the slots marked by
:PHS:SLOT:LEVel ATT is reduced in comparison with the normal output power (Attribut to
:LEVel FULL).
Example: :SOUR:PHS:SLOT:ATT 20 dB *RST value is 0
[:SOURce]:PHS:FLISt
The commands for storing and reading complete frames including their bursts (slots) are under
this node. Predefined and user-generated frames have to be distinguished.
[:SOURce]:PHS:FLISt:PREDefined:CATalog?
The command returns a list of all predefined frames.
Example: :SOUR:PHS:FLIS:PRED:CAT?
[:SOURce]:PHS:FLISt:PREDefined:LOAD ‘name’
The command selects one of the predefined (fixed) frames (c.f. Chapter 2). This command
triggers an event and hence has no *RST value.
Example: :SOUR:PHS:FLIS:PRED:LOAD ’test’ *RST value is 0
[:SOURce]:PHS:FLISt:CATalog?
The command returns a list of all user-defined frames.
Example: :SOUR:PHS:FLIS:CAT?
[:SOURce]:PHS:FLISt:LOAD ‘name’
The command loads a user-defined frame. This command triggers an event and hence has no
*RST value.
Example: :SOUR:PHS:FLIS:LOAD ’test’
[:SOURce]:PHS:FLISt:STORe ‘name’
The command stores the current frame under a name. This command triggers an event and
hence has no *RST value and no query.
Example: :SOUR:PHS:FLIS:STOR ’test’
SMIQ SOURce:PHS Subsystem
1125.5555.03 3.139 E-9
[:SOURce]:PHS:FLISt:DELete ‘name’
The command deletes the indicated frame. This command triggers an event and hence has no
*RST value and no query.
Example: :SOUR:PHS:FLIS:DEL ’test1’
[:SOURce]:PHS:DLISt:CATalog?
The command returns an enumeration of all data lists.
These data lists are selected by means of :PHS:SLOT:SACC:DLIS ‘name’ and...:TCH:DLIS
‘name’ and used if :PHS:SLOT:SACC DLISt and...:TCH DLISt are set.
Example: :SOUR:PHS:DLIS:CAT?
[:SOURce]:PHS:SLOT<i>
The commands for setting the slot characteristics are under this node. Since a frame contains 8
slots, suffix ‘i’ is used to select the slot to be changed. i = [1] | 2 | 3 | 3 | 5 | 6 | 7 | 8
[:SOURce]:PHS:SLOT<i>:TYPE TCHFull | TCHHalf | SYNC | VOX | ADATa
The command selects the type of burst (slot) defined in the standard.
ADATa All Data
Example: :SOUR:PHS:SLOT2:TYPE TCHH Slot1: *RST value is SYNC
Slot2 to 8: *RST value is TCHF
[:SOURce]:PHS:SLOT<i>:LEVel OFF | ATT | FULL
The command determines the power stage of the slot.
OFF The slot is inactive
For UPLINK, the source is always at full power. Therefore, in the case of an
DOWNLINK TCH burst, only a series of 1's is sent instead of the data.
ATT The power is reduced by the amount defined by :PHS:SLOT:ATT
For an DOWNLINK TCH burst this setting is not valid.
FULL Full power (predefined by level setting)
Example: :SOUR:PHS:SLOT2:LEV ATT slot1: *RST value is FULL
slot2 to slot8: *RST value is OFF
[:SOURce]:PHS:SLOT<i>:PRESet
The command sets all the parameters of the slot to the values defined by the standard as a
function of the type set above. This command triggers an event and hence has no *RST value and
no query.
Example: :SOUR:PHS:SLOT2:PRES
[:SOURce]:PHS:SLOT<i>:SCRamble
The commands for setting the scramble method are under this node.
[:SOURce]:PHS:SLOT<i>:SCRamble:STATe ON | OFF
The command switches scrambling on or off.
Example: :SOUR:PHS:SLOT2:SCR:STAT ON *RST value is OFF
SOURce:PHS Subsystem SMIQ
1125.5555.03 E-93.140
[:SOURce]:PHS:SLOT<i>:SCRamble:CODE #H0 to #H3FF
The command sets the 10-bit scramble value.
Example: :SOUR:PHS:SLOT2:SCR:CODE #H123 *RST value is 0
[:SOURce]:PHS:SLOT<i>:ENCRyption
The commands to determine encryption are under this node.
[:SOURce]:PHS:SLOT<i>:ENCRyption:STATe ON | OFF
This command defines whether or not the data are to be encrypted according to the predefined
method.
Example: :SOUR:PHS:SLOT2:ENCR:STAT ON *RST value is OFF
[:SOURce]:PHS:SLOT<i>:ENCRyption:KEY #H0 to #HFFFF
The command enters the 16-bit code for encryption or decryption .
Example: :SOUR:PHS:SLOT2:KEY #H1234 *RST value is 0
[:SOURce]:PHS:SLOT<i>:UWORd #H0 to #HFFFFFFFF
The command enters the 16/32-bit synchronization value (unique word). The number of bits
depends on the type of slot. *RST value depends on SLOT:TYPE
Example: :SOUR:PHS:SLOT2:UWOR #HA1B2C3D4
[:SOURce]:PHS:SLOT<i>:CSID #H0 to #H3FFFFFFFFFF
The command enters the 42-bit cell station ID code .
Example: :SOUR:PHS:SLOT2:CSID #H12345FEDCBA
[:SOURce]:PHS:SLOT<i>:PSID #H0 to #HFFFFFFF
The command enters the 28-bit personal station ID code.
Example: :SOUR:PHS:SLOT2:PSID #H1234567
[:SOURce]:PHS:SLOT<i>:IDLe #H0 to #HFFFFFFF
The command enters the 24-bit Idle bit.
Example: :SOUR:PHS:SLOT2:PSID #H1234567
[:SOURce]:PHS:SLOT<i>[:SOURce]
The commands for determining the source for the data contents are under this node. The source
is either a PRBS generator (with different sequence length) or a data list.
Selection of data source for the data fields of the burst:
PN9 to 23 PRBS generator has been selected
DLISt Data of a programmable data list
SDATa Data from data input SER DATA
[:SOURce]:PHS:SLOT<i>[:SOURce]:SACChannel PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 |
DLISt | SDATa
The command determines the data source for the slow associated control channel (for
:SLOT:TYPE TCH... and VOX).
Example: :SOUR:PHS:SLOT3:SACC PN15 *RST value is PN9
SMIQ SOURce:PHS Subsystem
1125.5555.03 3.141 E-9
[:SOURce]:PHS:SLOT<i>[:SOURce]:SACChannel:DLISt ‘name’
The command selects a data list. This list will not be used unless it is set as a data source by
means of the :PHS:SLOT:SACC DLIS command. This command triggers an event and hence
has no *RST value.
Example: :PHS:SLOT:SACC:DLIS ’test’
[:SOURce]:PHS:SLOT<i>[:SOURce]:TCHannel PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 |
DLISt | SDATa
The command determines the data source for the traffic channel (for :SLOT:TYPE TCH... and
VOX).
Example: :SOUR:PHS:SLOT2:TCH PN9 *RST value is PN9
[:SOURce]:PHS:SLOT<i>[:SOURce]:TCHannel:DLISt ‘name’
The command selects a data list. This list will not be used unless it is set as a data source by
means of the :PHS:SLOT:TCH DLIS command. This command triggers an event and hence has
no *RST value.
Example: :PHS:SLOT:TCH:DLIS ’test’
SOURce:PM Subsystem SMIQ
1125.5555.03 E-93.142
3.5.14.20 SOURce:PM Subsystem
This subsystem contains the commands to check the phase modulation and to set the parameters of
the modulation signal. The SMIQ can be equipped with two independent phase modulators (option
SM-B5). They are differentiated by a suffix after PM.
SOURce:PM1
SOURce:PM2
Command Parameter Default
Unit Remark
[:SOURce]
:PM1|2
[:DEViation]
:EXTernal1|2
:COUPling
:INTernal
:FREQuency
:SOURce
:STATe
-360 deg to +360 deg
AC | DC
0.1Hz to 1 MHz
INT | EXT1 | EXT2
ON | OFF
rad
Hz
Option SM-B5
[:SOURce]:PM1|2[:DEViation] -360 to +360 deg
The command sets the modulation depth in Radian. DEGree are accepted.
*RST value is 1 rad
Example: SOUR:PM:DEV 20DEGR
[:SOURce]:PM1|2:EXTernal1|2
The commands to check the external input of the PM modulators are under this node. The settings
under EXTernal for modulations AM, FM and PM are independent of each other. The settings are
always related to the socket determined by the suffix after EXTernal. The suffix after PM is ignored
then. With the following commands, e.g., the settings are both related to socket EXT2:
:SOUR:PM1:EXT2:COUP AC
:SOUR:PM2:EXT2:COUP AC
A command without suffix is interpreted like a command with suffix 1.
[:SOURce]:PM1|2:EXTernal1|2:COUPling AC | DC
The command selects the type of coupling for the external PM input.
AC The d.c. voltage content is separated from the modulation signal.
DC The modulation signal is not changed. *RST value is AC
Example: :SOUR:PM:COUP DC
[:SOURce]:PM1|2:INTernal
The settings for the internal PM generators are effected under this node. For PM1, this is always
LF generator 1, for PM2, always LF generator 2. Here the same hardware is set for FM1, PM1,
AM::INT1 as well as SOURce0, for FM2, PM2 and AM:INT2 and SOURce2 as well. This means
that, e.g., the following commands are coupled with each other and have the same effect:
SOUR:AM:INT2:FREQ
SOUR:FM2:INT:FREQ
SOUR:PM2:INT:FREQ
SOUR2:FREQ:CW
SMIQ SOURce:PM Subsystem
1125.5555.03 3.143 E-9
[:SOURce]:PM1|2:INTernal:FREQuency 0.1 Hz to 1 MHz
The command sets the modulation frequency. *RST value is 1 kHz
Example: :SOUR:PM:INT:FREQ 10kHz
[:SOURce]:PM1|2:SOURce INTernal | EXTernal1 | EXTernal2
The command selects the modulation source. A command without suffix is interpreted like a
command with suffix 1. For PM1 the LF generator is INTernal. For PM2, only the external sources
can be used (not the internal LF generator).
The external and the internal modulation source can be indicated at the same time (see example)
*RST value for PM1: INT
Example: :SOUR:PM:SOUR INT; PM2:SOUR EXT2 for PM2:EXT2
[:SOURce]:PM1|2:STATe ON | OFF
The command switches the phase modulation selected by the numeric suffix with PM on or off.
Example: :SOUR:PM1:STAT OFF *RST value is OFF
SOURce:POWer Subsystem SMIQ
1125.5555.03 E-93.144
3.5.14.21 SOURce:POWer Subsystem
This subsystem contains the commands to set the output level, the level control and the level correction
of the RF signal. Other units can be used instead of dBm:
by indication directly after the numeric value (Example :POW 0.5V),
by altering the DEFault unit in the UNIT system (see Command :UNIT:POWER)
Command Parameter Default
Unit Remark
[:SOURce]
:POWer
:ALC
[:STATe]
:SEARch
:TABLe
[:MEASure]?
[:LEVel]
[:IMMediate]
[:AMPLitude]
:OFFSet
:RCL
:LIMit
[:AMPLitude]
:MANual
:MODE
:PEP?
:STARt
:STOP
:STEP
[:INCRement]
ON | OFF | AUTO
ON | OFF | ONCE
-144 to +16 dBm
-100 to +100 dB
INCLude | EXCLude
-144 to +16 dBm
-144 to +16 dBm
FIXed | SWEep | LIST
-144 to +16 dBm
-144 to +16 dBm
0.1 to 10 dB
dBm
dB
dBm
dBm
dBm
dBm
dB
query only
[:SOURce]:POWer:ALC
The commands checking the automatic level control are under this node.
[:SOURce]:POWer:ALC:TABLe[:MEASure]?
The command starts a calibration measurement. It fills the level table for the POW:ALC:SEARCH
OFF mode.
Example: :SOUR:POW:ALC:TABL:MEAS? Answer: 0
[:SOURce]:POWer:ALC[:STATe] ON | OFF | AUTO
The command switches level control on or off.
ON Level control is permanently switched on.
OFF Level control is handled depending on POW:ALC:SEAR described below.
AUTO Depending on the operating mode, level control is automatically switched on or off.
Example: :SOUR:POW :ALC:STAT ON *RST value is ON
SMIQ SOURce:POWer Subsystem
1125.5555.03 3.145 E-9
[:SOURce]:POWer:ALC:SEARch ON | OFF | ONCE
This command is only valid with level control switched off.
ON Level control is switched on briefly after a level or frequency change (SAMPLE & HOLD).
OFF Level control is never switched on (TABLE mode).
ONCE Level control is briefly switched on for calibration.
Example: :SOUR:POW :ALC:SEAR ONCE *RST value: ON
[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] -144 to +16 dBm
The command sets the RF output level in operating mode CW. UP and DOWN can be indicated
in addition to numeric values. Then the level is increased or reduced by the value indicated under
:SOURce:POWer:STEP.
In this command, the OFFSet value is considered as with input value AMPLITUDE in the
LEVEL-LEVEL menu. Thus the specified range indicated is only valid for :POWer:OFFSet = 0.
The specified range with other OFFSet values can be calculated according to the following
formula (cf. Chapter 2, Section "Level Offset" as well):
-144dBm+ OFFSet to +16dBm +OFFSet
The keywords of this command are optional to a large extent, thus the long as well as the short
form of the command is shown in the example. *RST value is -30 dBm
Example: :SOUR:POW:LEV:IMM:AMPL 15 or
:POW 15
[:SOURce]:POWer[:LEVel][:IMMediate]:OFFSet -100 to +100 dB
The command enters the constant level offset of a series-connected attenuator/amplifier (cf.
Chapter 2, Section "Level Offset"). If a level offset is entered, the level entered using
:POWer:AMPLitude does no longer conform to the RF output level. The following connection is
true:
:POWer = RF output level + POWer:OFFSet.
Entering a level offset does not change the RF output level but only the query value of
:POWer:AMPLitude.
Only dB is permissible as a unit here, linear units (V, W etc.) are not permitted.
Caution: The level offset is also valid in the case of level sweeps!
Example: :SOUR:POW:LEV:IMM:OFFS 0 or *RST value is 0
:POW:OFFS 0
[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude]:RCL INCLude | EXCLude
The command determines the effect of the recall function on the RF level.*RST value has no
effect to this setting.
INCLude The saved RF level is loaded when instrument settings are loaded with the [RECALL]
key or with a memory sequence.
EXCLude The RF level is not loaded when instrument settings are loaded, the current settings
are maintained.
Example: :SOUR:POW:RCL INCL
[:SOURce]:POWer:LIMit[:AMPLitude] -144 to + 16 dBm
The command limits the maximum Rf output level in operating mode CW and SWEEP. It does not
influence the display LEVEL and the answer to query POW?.
Example: :SOUR:POW:LIM:AMPL 15 *RST value is +16 dBm
SOURce:POWer Subsystem SMIQ
1125.5555.03 E-93.146
[:SOURce]:POWer:MANual -144 to +16 dBm
The command sets the level if SOURce:POWer:MODE is set to SWEep and
SOURce:SWEep:MODE to MANual. Only level values between START and STOP are permissible.
(As to specified range, cf. :POWer). *RST value is -30 dBm
Example: :SOUR:POW:MAN 1dBm
[:SOURce]:POWer:MODE FIXed | SWEep | LIST
The command specifies the operating mode and thus also by means of which commands the
level setting is checked.
FIXed The output level is specified by means of commands under
:SOURce:POWer:LEVel.
SWEep The instrument operates in the SWEep mode. The level is specified by means of
:SOURce:POWer;STARt; STOP; CENTer; SPAN and MANual.
LIST The instrument processes a list of frequency and level settings. The settings are
effected in the SOURce:LIST subsystem.
Setting :SOURce:POWer:MODE LIST automatically sets command
:SOURce :FREQuency :MODE to LIST as well.
Example: :SOUR:POW:MODE FIX *RST value is FIXed
[:SOURce]:POWer:PEP?
This command returns the peak envelope power in dBm (Digital Modulation and Digital
Standards).
Example: :POW:PEP?
[:SOURce]:POWer:STARt -144 to +16 dBm
The command sets the starting value for a level sweep. STARt may be larger than STOP, then
the sweep runs from the high to the low level (As to specified range, cf. :POWer:AMPLitude).
Example: :SOUR:POW:STAR -20 *RST value is -30dBm
[:SOURce]:POWer:STOP -144 to +16 dBm
The command sets the final value for a level sweep. STOP may be smaller than STARt. (As to
specified range, cf. :POWer:AMPLitude). *RST value is -10dBm
Example: :SOUR:POW:STOP 3
[:SOURce]:POWer:STEP[:INCRement] 0.1 to 10 dB
The command sets the step width with the level setting if UP and DOWN are used as level values.
The command is coupled with KNOB STEP in the manual control, i.e., it also specifies the step
width of the shaft encoder.
Only dB is permissible as a unit here, the linear units (V, W etc.) are not permitted.
Example: :SOUR:POW:STEP:INCR 2 *RST value is 1dB
SMIQ SOURce:PULM Subsystem
1125.5555.03 3.147 E-9
3.5.14.22 SOURce:PULM Subsystem
This subsystem contains the commands to check the external pulse modulation
Command Parameter Default
Unit Remark
[:SOURce]
:PULM
:POLarity
:STATe
NORMal | INVerted
ON | OFF
[:SOURce]:PULM:POLarity NORMal | INVerted
The command specifies the polarity between modulating and modulated signal.
NORMal The RF signal is suppressed during the interpulse period.
INVerted The RF signal is suppressed during the pulse.
Example: :SOUR:PULM:POL INV *RST value is NORMal
[:SOURce]:PULM:STATe ON | OFF
The command switches on or off the pulse modulation. *RST value is OFF
Example: :SOUR:PULM:STAT ON
SOURce:ROSCillator Subsystem SMIQ
1125.5555.03 E-93.148
3.5.14.23 SOURce:ROSCillator Subsystem
This subsystem contains the commands to set the external and internal reference oscillator.
Command Parameter Default
Unit Remark
[:SOURce]
:ROSCillator
:EXTernal
:FREQuency
[:INTernal]
:ADJust
[:STATe]
:VALue
:SOURce
1 to 16 MHz
ON | OFF
0 to 4095
INTernal | EXTernal
Hz
[:SOURce]:ROSCillator:EXTernal
The commands to set the external reference oscillator are under this node.
[:SOURce]:ROSCillator:EXTernal:FREQuency 1 to 16 MHz
The command informs the instrument about at which frequency the external reference oscillator
oscillates.
Example: :SOUR:ROSC:FREQ 5MHz *RST value is 10 MHz
[:SOURce]:ROSCillator[:INTernal]
The commands to set the internal reference oscillator are under this node.
[:SOURce]:ROSCillator[:INTernal]:ADJust
The commands for frequency correction (fine adjustment of the frequency) are under this node.
[:SOURce]:ROSCillator[:INTernal]:ADJust[:STATe] ON | OFF
The command switches the fine adjustment of the frequency on or off.
Example: :SOUR:ROSC:INT:ADJ:STAT ON *RST value is OFF
[:SOURce]:ROSCillator[:INTernal]:ADJust:VALue 0 to 4095
The command indicates the frequency correction value (tuning value). For a detailed definition, cf.
Chapter 2, Section "Reference Frequency Internal/External".
Example: :SOUR:ROSC:INT:ADJ:VAL 2048 *RST value is 2048
[:SOURce]:ROSCillator:SOURce INTernal | EXTernal
The command selects the reference source.
INTernal The internal oscillator is used.
EXTernal The reference signal is fed externally. *RST value is INT
Example: :SOUR:ROSC:SOUR EXT
SMIQ SOURce:SWEep Subsystem
1125.5555.03 3.149 E-9
3.5.14.24 SOURce:SWEep Subsystem
This subsystem contains the commands to check the RF sweep, i.e., sweeps of the RF generators.
Sweeps are triggered on principle. The frequency sweep is activated by command
SOURce:FREQuency:MODE SWEep, the level sweep by command SOURce:POWer:MODE SWEep.
Command Parameter Default
Unit Remark
[:SOURce]
:SWEep
:BTIMe
[:FREQuency]
:DWELl
:MODE
:POINts
:SPACing
:STEP
[:LINear]
:LOGarithmic
:POWer
:DWELl
:MODE
:POINts
:STEP
[:LOGarithmic]
NORMal | LONG
10 ms to 5 s
AUTO | MANual | STEP
Number
LINear | LOGarithmic
0 to 1 GHz
0.01 to 50 PCT
10 ms to 5 s
AUTO | MANual | STEP
Number
0 to 10 dB
s
Hz
PCT
s
dB
[:SOURce]:SWEep:BTIMe NORMal | LONG
The command sets the blank time (Blank TIMe) of the sweep. The setting is valid for all sweeps,
i.e., also for LF sweeps.
NORMal Blank time as short as possible.
LONG Blank time long enough to permit an XY recorder to return to 0.
Example: :SOUR:SWE:BTIM LONG *RST value is NORM
[:SOURce]:SWEep[:FREQuency]
The commands to set the frequency sweeps are under this node. Keyword [:FREQuency] can
be omitted (cf. examples). The commands are SCPI compatible then unless stated otherwise.
[:SOURce]:SWEep[:FREQuency]:DWELl 10 ms to 5 s
The command sets the dwell time per frequency step.
Example: :SOUR:SWE:DWEL 12ms *RST value is 15 ms
[:SOURce]:SWEep[:FREQuency]:MODE AUTO | MANual | STEP
The command specifies the run of the sweep.
AUTO Each trigger triggers exactly one entire sweep cycle.
MANual Each frequency step of the sweep is triggered by means of manual control or a
SOURce:FREQuency:MANual command, the trigger system is not active. The
frequency increases or decreases (depending on the direction of the shaft encoder)
by the value indicated under [:SOURce]:FREQuency:STEP:INCRement.
STEP Each trigger triggers only one sweep step (single-step mode). The frequency
increases by the value indicated under [:SOURce]:SWEep:STEP:LOGarithmic.
Example: :SOUR:SWE:MODE AUTO *RST value is AUTO
SOURce:SWEep Subsystem SMIQ
1125.5555.03 E-93.150
[:SOURce]:SWEep[:FREQuency]:POINts Number
The command determines the number of steps in a sweep.
Instead of this command, commands SOURce:SWEep:FREQuency:STEP:LINear and
SOURce:SWEep:FREQuency:STEP:LOGarithmic should be used, as SOURce:SWEep
:FREQuency:POINts has been adapted to the instrument characteristics in comparison to the
SCPI command.
The value of POINts depends on SPAN and STEP according to the following formulas..
The following is true for linear sweeps : POINts = SPAN / STEP:LIN + 1
The following is true for logarithmic sweeps and STARt < STOP:
POINts = ((log STOP - log STARt) / log (1+ STEP:LOG))
Two independent POINts values are used for SPACing LOG and SPACing LIN. I.e., before
POINts is changed, SPACing must be set correctly. A change of POINts results in an adaptation
of STEP, but not of STARt, STOP and SPAN.
Example: :SOUR:SWE:POIN 100
[:SOURce]:SWEep[:FREQuency]:SPACing LINear | LOGarithmic
The command selects whether the steps have linear or logarithmic spacings.
Example: :SOUR:SWE:SPAC LIN *RST value is LIN
[:SOURce]:SWEep[:FREQuency]:STEP
The commands to set the step width for linear and logarithmic sweeps. The settings for STEP:LIN
and STEP:LOG are independent.
[:SOURce]:SWEep[:FREQuency]:STEP[:LINear] 0 to 1 GHz
The command sets the step width with the linear sweep. If STEP[:LINear] is changed, the value
of POINts valid for SPACing:LINear also changes according to the formula stated under POINts.
A change of SPAN does not result in a change of STEP[:LINear]. Keyword [:LINear] can be
omitted, then the command conforms to SCPI regulations (see example).
Example: :SOUR:SWE:STEP 1MHz *RST value is 1 MHz
[:SOURce]:SWEep[:FREQuency]:STEP:LOGarithmic 0.01 to 50 PCT
The command indicates the step width factor for logarithmic sweeps. The next frequency value of
a sweep is calculated according to
new frequency = prior frequency + STEP:LOG x prior frequency (if STARt < STOP)
STEP:LOG indicates the fraction of the prior frequency by which this is increased for the next
sweep step. Usually STEP:LOG is indicated in percent, with the suffix PCT having to be used
explicitly. If STEP:LOG is changed, the value of POINts valid for SPAC:LOG also changes
according to the formula stated under POINts. A change of STARt or STOP does not result in a
change of STEP:LOG.
Example: :SOUR:SWE:STEP:LOG 10PCT *RST value is 1 PCT
[:SOURce]:SWEep:POWer:DWELl 10 ms to 5 s
The command sets the dwell time per level step.
Example: :SOUR:SWE:POW:DWEL 12ms *RST value is 15 ms
SMIQ SOURce:SWEep Subsystem
1125.5555.03 3.151 E-9
[:SOURce]:SWEep:POWer:MODE AUTO | MANual | STEP
The command specifies the run of the sweep.
AUTO Each trigger triggers exactly one entire sweep cycle.
MANual Each level step of the sweep is triggered by means of manual control or a
SOURce:POWer:MANual command, the trigger system is not active. The level
increases or decreases (depending on the direction of the shaft encoder) by the
value stated under :SOURce:POWer:STEP:INCRement.
STEP Each trigger triggers only one sweep step (single-step mode). The level increases by
the value indicated under :SOURce:POWer:STEP:INCRement.
Example: :SOUR:SWE:POW:MODE AUTO *RST value is AUTO
[:SOURce]:SWEep:POWer:POINts Number
The command determines the number of steps in a sweep. Instead of this command, command
SOURce:SWEep:POWer:STEP:LOGarithmic should be used, as POINts has been adapted to
the instrument characteristics in comparison to the SCPI command.
The value of :POINts depends on .SPAN and :STEP according to the following formulas:
POINts = ((log STOP - log STARt) / log STEP:LOG) + 1
A change of POINts results in an adaptation of STEP but not of STARt and STOP.
Example: :SOUR:SWE:POW:POIN 100
[:SOURce]:SWEep:POWer:STEP
The commands to set the step width for a sweep are under this node.
[:SOURce]:SWEep:POWer:STEP[:LOGarithmic] 0 to 10 dB
The command indicates the step width factor for logarithmic sweeps. The next level value of a
sweep is calculated according to
new level = prior level + STEP:LOG × prior level
STEP:LOG indicates the fraction of the prior level by which this is increased for the next sweep
step. Usually STEP:LOG is indicated in dB, with suffix dB having to be used explicitly. If
STEP:LOG is changed, the value of POINts also changes according to the formula indicated
under POINts. A change of STARt or STOP does not result in a change of STEP:LOG. Keyword
:LOG can be omitted, then the command conforms to SCPI regulation (see example).
Example: :SOUR:SWE:STEP:LOG 10dB *RST value is 1dB
SOURce:WCDMa Subsystem (NTT DoCoMo/ARIB 0.0) SMIQ
1125.5555.03 E-93.152
3.5.14.25 SOURce:WCDMa Subsystem (NTT DoCoMo/ARIB 0.0)
Note: #H0 to #HF are numerals which are entered in alphanumerical hex syntax in manual
operation. SCPI (and IEEE 488.2) allow the octal and binary entry for non-decimal numbers
in the following form
#H|h <0 to 9, A|a to F|f>,
#Q|q <0 to 7> and
#B|b <0|1>.
However, the hex format is always used for the output generated by a query.
Command Parameter Default
Unit Remark
[:SOURce]
:WCDMa
:STATe
:MODE
:PRESet
:CRATe
:LINK
:FORMat
:CRATe
:VARiation
:FILTer
:TYPe
:SELect
:PARameter
:MODE
:LDIStortion
[:STATe]
:SEQuence
:TRIGger
:SOURce
:INHibit
:DELay
:OUTPut[1]| 2
:DELay
:POLarity
:CLOCk
:SOURce
:POWer?
:ADJust
:MULTicode
:STATe
:MASTer
:CHANnels
:SLENgth
ON | OFF
CHAN4 | CHAN8 | CHAN15
(without)
R4M | R8M
DOWN | UP | UPMulti
QPSK | OQPSK
100cps to 7.5Mcps
SCOSine | COSine | WCDMa | USER
‘name‘
0.1 to 0.7
LACP | LEVM
ON | OFF
AUTO | RETRigger | AAUTo | ARETrigger
EXTernal | INTernal
0 to 67108863
0 to 65535
SLOT | RFRame | CSPeriod
0 to 40959 (81919)
POSitive | NEGative
INTernal | EXTernal
(without)
ON | OFF
0 to 3
#H0 to #HFF
1 to 256
dBm query only
SMIQ SOURce:WCDMa Subsystem (NTT DoCoMo/ARIB 0.0)
1125.5555.03 3.153 E-9
Command Parameter Default
Unit Remark
[:SOURce]
:WCDMa
:CHANnel<0..14>
[:I] | :Q
:TYPE
:SRATe
:SCODe
:LCODe
:OFFSet
:SCODe
:LMS
[:I] | :Q
:POWer
:DATA
:DLISt
:OFFSet
:TPC
:DLISt
:STATe
Þ name {,name}...
PERCh | CCPCh | DPCH | DPDCh | DPCCh | ALLD
D16 | D32 | D64 | D128 | D256 | D512 | D1024
0 to 511
#H0 to #H3FFFF (#H1FFFFFFFFFF)
0 to 40959 (81919)
#H0 to #HFF
-30 to 0
PN9 | PN11 | PN15 | PN16 | DLISt
‘name’
0 to 10239
ZERO | ONE | ALTernate | DLISt
‘name’
ON | OFF
dB
Note: The calculation of the W-CDMA sequences is rather time-consuming and should be re-
started for any new setting. The WCDMA modulation is therefore switched off for each
command (autom. WCDM:STAT OFF performed). The user can then perform several
settings without any delay and has to switch on again the WCDMA modulation (with
WCDM:STAT ON). The calculations are performed and the previous settings are effective
after the command is given.
[:SOURce]:WCDMa:STATe ON | OFF
The command switches on the modulation in line with the W-CDMA procedure (ARIB standard).
Option SMIQB43 is required for this purpose. All other standards that are switched on or the
digital modulation are automatically switched to off state.
Caution: The command with ON should be used after any :WCDM command or after a series of
WCDM commands in order to activate the previous settings.
Example: :SOUR:WCDM:STAT ON *RST value is OFF
[:SOURce]:WCDMa:MODE CHAN4 | CHAN8 | CHAN15
The command selects the number of code channels. The limitations for setting the power of
different channels thus become effective.
Example: :SOUR:WCDM:MODE CHAN4 *RST value is CHAN8
[:SOURce]:WCDMa:PRESet
The command sets all the following settings to a defined initial state (as after *RST). This ensures
that a signal is actually generated and that it is in line with the standard. This command triggers an
event and hence has no *RST value and no query.
Example: :SOUR:WCDM:PRES
SOURce:WCDMa Subsystem (NTT DoCoMo/ARIB 0.0) SMIQ
1125.5555.03 E-93.154
[:SOURce]:WCDMa:CRATe R4M | R8M
The command sets the chip rate (4.096M or 8.192Mcps). R8M is possible only with a certain
hardware configuration.
Example: :SOUR:WCDM:CRAT R4M *RST value is R4M
[:SOURce]:WCDMa:LINK DOWN | UP | UPMulti
The command selects the mode of the transmitted signal.
Example: :SOUR:WCDM:LINK UPM *RST value is DOWN
[:SOURce]:WCDMa:FORMat QPSK | OQPSK
The command selects the type of modulation (OQPSK: Offset QPSK).
Example: :SOUR:WCDM:FORM OQPSK *RST value is QPSK
[:SOURce]:WCDMa:CRATe:VARiation 100cps to 7.5Mcps
The command selects the modification of the chip-clock frequency set with :WCDM:CRAT R4M | R8M.
Example: :SOUR:WCDM:CRAT:VAR 1.2M *RST value is 4.096M
[:SOURce]:WCDMa:FILTer
The commands for selecting the baseband filter are under this node.
[:SOURce]:WCDMa:FILTer:TYPe SCOSine | COSine | WCDMa | USER
The command selects the type of filter. A filter list should be selected with :WCDM:FILT:SEL
'name' for the filter type USER.
SCOSine Square root cosine (root Nyquist) filter
COSine Cosine (Nyquist) filter
WCDMa Root Nyquist filter with fixed roll-off factor 0.22
USER User defined filter
Example: :SOUR:WCDM:FILT:TYP COS *RST value is WCDM
[:SOURce]:WCDMa:FILTer:SELect 'name'
The command selects a named filter list. The list is used only if a user-defined filter is selected
with :WCDM:FILT:TYPE USER. To generate lists, cf. command [:SOURce]:DM:FLISt:SEL, to fill
up lists, cf. command [:SOURce]:DM:FLISt:DATA.
Example: :SOUR:WCDM:FILT:SEL 'test' *RST value is NONE
[:SOURce]:WCDMa:FILTer:PARameter 0.1... 0.7
The command sets the roll-off factor for the COS filters.
Example: :SOUR:WCDM:FILT:PAR 0.5 *RST value is 0.22
[:SOURce]:WCDMa:FILTer:MODE LACP | LEVM
This command selects one of the "L"ow filter modes.
Example: :SOUR:WCDM:FILT:MODE LEVM *RST value is LACP
SMIQ SOURce:WCDMa Subsystem (NTT DoCoMo/ARIB 0.0)
1125.5555.03 3.155 E-9
[:SOURce]:WCDMa:LDIStortion[:STATe] ON | OFF
The command sets the reduced level for the low-distortion mode.
ON Low-distortion mode
OFF Normal level
Example: :SOUR:WCDM:LDIS ON *RST value is OFF
[:SOURce]:WCDMa:SEQuence AUTO | RETRigger | AAUTo | ARETrigger
The command selects the trigger mode for the W-CDMA sequence.
AUTO Continuously repeated
RETRigger Continuously repeated; new start after a trigger
AAUTo ARMED AUTO; waits for trigger, then switches over to AUTO and can no longer be
triggered
ARETrigger ARMED RETRIG; a trigger event is required to start, each new trigger causes a
restart
Example: :SOUR:WCDM:SEQ AAUT *RST value is RETR
[:SOURce]:WCDMa:TRIGger:SOURce EXTernal | INTernal
The command selects the trigger source. With INT selected, triggering is via remote control using
the trigger command or via EXECUTE TRIGGER in case of manual control.
EXT The trigger signal is fed in via input TRIGIN
INT A start is only possible manually or via the remote control command TRIG:DM:IMM
Example: :SOUR:WCDM:TRIG:SOUR EXT *RST value is INT
[:SOURce]:WCDMa:TRIGger:INHibit 0 to 67108863
The command sets the retrigger inhibit duration (in number of chips).
Example: :SOUR:WCDM:TRIG:INH 1000 *RST value is 0
[:SOURce]:WCDMa:TRIGger:DELay 0 to 40959
The command defines the trigger delay (in number of chips).
Example: :SOUR:WCDM:TRIG:DEL 200 *RST value is 0
[:SOURce]:WCDMa:TRIGger:OUTPut[1]|2 SLOT | RFRame | CSPeriod
The command defines the output signal at trigger output 1 or 2. The following times can be selected:
SLOT Time slot clock
RFRame Radio Frame (frame clock)
CSPeriod Chip Sequence Period
Example: :SOUR:WCDM:TRIG:OUTP1 RFR *RST value is: for OUTPut 1: RFR
for OUTPut 2: CSP
[:SOURce]:WCDMa:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative
The commands defines the polarity of the signals at the trigger outputs.
Example: :SOUR:WCDM:TRIG:OUTP2:POL NEG *RST value is POS
SOURce:WCDMa Subsystem (NTT DoCoMo/ARIB 0.0) SMIQ
1125.5555.03 E-93.156
[:SOURce]:WCDMa:TRIGger:OUTPut[1]|2:DELay 0 to 40959 (81919)
The command defines the delay of trigger signals in chips.
Example: :SOUR:WCDM:TRIG:OUTP2:DEL 50 *RST value is 0
[:SOURce]:WCDMa:CLOCk:SOURce INTernal | EXTernal
The command selects the clock source.
INTernal The internal clock generator is used.
EXTernal The clock is fed externally via connector SYMBOL CLOCK.
Example: :SOUR:WCDM:CLOC:SOUR EXT *RST value is INT
[:SOURce]:WCDMa:POWer?
The command queries the total power for the W-CDMA signal.
Example: :SOUR:WCDM:POW?
[:SOURce]:WCDMa:POWer:ADJust
The command modifies the power of each active code channel. This means that the total power is
set equal to the power in the level display. The command triggers an action and hence has no
*RST value assigned.
Example: :SOUR:WCDM:POW:ADJ
[:SOURce]:WCDMa:MULTicode
The commands for selecting multicode settings (not available with :WCDM:LINK UPMulti) are
under this node.
[:SOURce]:WCDMa:MULTicode:STATe ON | OFF
The command permits to switch on or off the multicode mode.
Example: :SOUR:WCDM:MULT:STAT OFF
[:SOURce]:WCDMa:MULTicode:MASTer 0 to 3
The command selects the master channel for the spread code.
Example: :SOUR:WCDM:MULT:MAST 3
[:SOURce]:WCDMa:MULTicode:CHANnels #H0 to #HFF
The command permits to select the channels for the multicode transmission. Each set bit in the
15-bit hex figure corresponds to a set channel. The figure 9, for example, switches on channel 0
(binary significance) and channel 3 (significance 8).
Example: :SOUR:WCDM:MULT:CHAN #H3A
[:SOURce]:WCDMa:SLENgth 1 to 256
The command determines the length of the calculated chip sequence in number of frames.
Example: :SOUR:WCDM:SLEN 8
SMIQ SOURce:WCDMa Subsystem (NTT DoCoMo/ARIB 0.0)
1125.5555.03 3.157 E-9
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q
The commands for determining the channel configuration are under this node. For the sense of
transmission DOWN (:WCDM:LINK DOWN) the settings cannot be separately set to I and Q
component; :I and :Q need not be specified.
Example: :WCDM:CHAN2:TYPE PERC
For UP, however, there is the multiplex setting (UPMulti) with which settings are distinguished
between I and Q. :I is optional, :I is used if no indication is made.
Example: :WCDM:CHAN2:I:TYPE PERC
has the same meaning as :WCDM:CHAN2:TYPE PERC
Example for Q-component setting: :WCDM:CHAN2:Q:TYPE PERC
There are some commands which do not make a distinction between I and Q:
:WCDM:CHAN<0...14>:LCOD
:WCDM:CHAN<0...14>:LCOD OFFS
:WCDM:CHAN<0...14>:SCOD:LMS
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:TYPE PERCh | CCPCh | DPCH | DPDCh | DPCCh |
ALLD
The command selects the channel type.
PERCh Perch Channel (only for :WCDM:LINK DOWN)
CCPCh Common Control Physical Channel (not for :WCDM:LINK UPM)
DPCH Dedicated Physical Channel (not for :WCDM:LINK UPM)
ALLD All Data (not for :WCDM:LINK UPM)
DPDCh Dedicated Physical Data Channel (only for :WCDM:LINK UPM)
DPCCh Dedicated Physical Control Channel (only for :WCDM:LINK UPM)
Example: :SOUR:WCDM:CHAN2:I:TYPE PERC *RST value is DPCH
*RST value is PERC for channel 0, mode 8, downlink
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:SRATe D16 | D32 | D64 | D128 | D256 | D512 | D1024
The command determines the symbol rate. The values depend on the channel type.
Example: :SOUR:WCDM:CHAN2:I:SRAT D64 *RST value is D32
*RST value is 16 for channel 0, mode 8, downlink
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:SCODe 0 to 511
The command is used to set the short code of the spread code. The upper limit depends on
:WCDM:CRAT, :WCDM:SRAT and :WCDM:CHAN:TYPE.
Example: :SOUR:WCDM:CHAN2:I:SCOD 123 *RST value is (<chan>+9)
*RST value is 0 for channel 0, mode 8, downlink
:SOURce]:WCDMa:CHANnel<0...14>:LCODe #H0 to #H3FFFF (#H1FFFFFFFFFF)
The command determines the long code of the spread code.
Example: :SOUR:WCDM:CHAN2:LCOD #H3FFF *RST value is #H1
[:SOURce]:WCDMa:CHANnel<0...14>:LCODe:OFFSet 0 to 40959 (81919)
The command is used to set the long code offset of the spread code.
Example: :SOUR:WCDM:CHAN2:LCOD:OFFS 345 *RST value is 0
SOURce:WCDMa Subsystem (NTT DoCoMo/ARIB 0.0) SMIQ
1125.5555.03 E-93.158
[:SOURce]:WCDMa:CHANnel<0...14>:SCODe:LMS #H0 to #HFF
The command determines the short code index used for the spreading of the long code mask
symbols (LMS).
Example: :SOUR:WCDM:CHAN2:SCOD:LMS #H3F *RST value is #H1
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:POWer -30dB to 0dB
The command determines the power of a channel in relation to the power indication on the level
display. Setting limitations are to be observed with respect to :WCDM:MODE CHANx.
Example: :SOUR:WCDM:CHAN2:I:POW -22 DB *RST value is -9
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:DATA PN9 | PN11 | PN15 | PN16 | DLISt
The command is used to determine the data source for the data field. PNx are PRBS data and
DLISt data from a list previously defined. It is selected with the following command.
Example: :SOUR:WCDM:CHAN2:I:DATA DLIS *RST value is PN15
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:DATA:DLISt ’name’
The command selects the data list used with :WCDM:CHAN:DATA DLIS. The command has no
*RST value.
Example: :SOUR:WCDM:CHAN2:I:DATA:DLIS ’test2’
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:DATA:OFFSet 0 to 10239
The command is used to set the data offset (unit symbol duration). It shifts the modulation data
with respect to the spread code.
Example: :SOUR:WCDM:CHAN2:I:DATA:OFFS 345 *RST value is (<chan> * 3)
*RST value is 0 for channel 0, mode 8, downlink
[:SOURce]:WCDMa:CHANnel<1...14>:TPC ZERO | ONE | ALTernate | DLISt
The command determines the data source for the TPC field in channel types DPCH and DPCCh.
ZERO 0000..., sequence of zeros
ONE 1111..., sequence of ones
ALT alternating sequence
DLISt Data from a list previously defined.
Example: :SOUR:WCDM:CHAN2:TPC DLIS *RST value is ALT
[:SOURce]:WCDMa:CHANnel<1...14>:TPC:DLISt ’name
The command selects the data list used with :WCDM:CHAN:TPC DLIS. The command has no
*RST value.
Example: :SOUR:WCDM:CHAN2:TPC DLIS ’test1’
[:SOURce]:WCDMa:CHANnel<0...14>:STATe ON | OFF
Switches the assigned code channel on or off.
Example: :SOUR:WCDM:CHAN12:STAT ON *RST value is ON
SMIQ SOURce:W3GPp-Subsystem
1125.5555.03 3.159 E-9
3.5.14.26 SOURce:W3GPp-Subsystem
Note: #H0 to #HF are numerals which are entered in alphanumerical hex syntax in manual
operation. #B0|1 are numerals in binary syntax. SCPI (and IEEE 488.2) allow entries of all
forms for non-decimal numbers
#H|h <0 to 9, A|a to F|f>,
#Q|q <0 to 7> and
#B|b <0|1>.
However, the format of manual operation is always used for the output generated by a query.
Command Parameter Default
Unit Remark
[:SOURce]
:W3GPp
:CALCulate
:PROGress? % Query only
:STATe ON | OFF
:PRESet (without)
:SETTing
:CATalog? Þ name {,name} Query only
:LOAD name‘
:TMODel ‘name‘
:STORe ‘name‘
:DELete ‘name‘
:TMODel
[:BST] 'name'
:CATalog? Þ name {,name} Query only
:MST 'name'
:CATalog? Þ name {,name} Query only
:GPP3
:VERSion? Þ V340 Query only
:CRATe? Þ R3M84 Query only
:LINK FORWard | REVerse (Alias DOWN | UP)
:SLENgth 1 to 13 (Frames)
:CLIPping
:LEVel 1 to 100 PCT
:FILTer
:TYPe SCOSine | COSine | WCDMa | USER
:SELect 'name'
:PARameter 0.1 to 0.99
:MODE LACP | LEVM
:CRATe
:VARiation 100Hz to 18 MHz Hz (c/s)
:PPARameter
:SCHannels ON | OFF
:SCCPch
:STATe ON | OFF
:SRATe D15K | D30K | D60K | D120K | D240K | D480K | D960K
:DPCH
:COUNt 0 to 512
:SRATe D7K5 | D15K | D30K | D60K | D120K | D240K | D480K |
D960K
:CRESt MINimum | AVERage | WORSt
:EXECute (without)
:ENHanced (only with SMIQB48, WCDMA Enhanced Channels)
:OCNS (only with SMIQB48, WCDMA Enhanced Channels) Only for LINK DOWN
:ADDitional (only with SMIQB48, WCDMA Enhanced Channels) Only for LINK UP
SOURce:W3GPp-Subsystem SMIQ
1125.5555.03 E-93.160
Command Parameter Default
Unit Remark
[:SOURce]
:W3GPp
:COPY
:SOURce 1 to 4
:DESTination 1 to 4
:COFFset 0 to 511 Only for LINK DOWN
:EXECute (without)
:SEQuence AUTO | RETRigger | AAUTo | ARETrigger
:TRIGger
:SOURce EXTernal | INTernal
:DELay 0 to 38399 (chips)
:INHibit 0 to 67108863 (chips)
:OUTPut[1]|2 SLOT | RFRame | CSPeriod | ECSPeriod
:POLarity POS | NEG
:DELay 0 to 38399 (chips)
:CLOCk
:SOURce EXTernal | INTernal
:MODE CHIP | CHIP4
:DELay 0 to 0.99 (chips)
:POWer? dB Query only
:ADJust (without)
:BSTation<i> with i = [1] | 2 | 3 | 4 Base station
:STATe ON | OFF
:SCODe #H0 to #H5FFF
:STATe ON | OFF
:TFCI 0 to 1023
:STATE ON | OFF
:SSCG? Þ 0 to 63 query only
:TPC
:READ CONTinuous | S0A | S1A | S01A | S10A
:MISuse ON | OFF
:POWer
:STEP -10 to +10 dB
:TRANsmit
:DIVersity OFF | ANT1 | ANT2
:PINDicator
:COUNt D18 | D36 | D72 | D144
:MCHannel Multichannel
:STARt 11 to 138
:STOP 11 to 138
:SRATe D7K5 | D15K | D30K | D60K | D120K | D240K | D480K |
D960K
(S/s)
:PLENgth BIT2 | BIT4 | BIT8 | BIT16
:CCODe 0 to (511)
:STEP 0 to (511)
:POWer -60 to 0 dB
:STEP -60 to +60 dB
:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE | PATTern
:PATTern #B0 to B111..1, 1 to 24
SMIQ SOURce:W3GPp-Subsystem
1125.5555.03 3.161 E-9
Command Parameter Default
Unit Remark
[:SOURce]
:W3GPp
:MCHannel Multichannel
:TIMing
:OFFSet 0 to 149
:STEP 0 to 149
:TPC ZERO | ONE | PATTern
:PATTern #B0 to B111..1, 1 to 24
:MCODe ON | OFF
:STATe ON | OFF
:BSTation<i> with i = [1] | 2 | 3 | 4 Base station
:MCHannel Multichannel
:EXECute (without)
:ENHanced (only with SMIQB48, WCDMA Enhanced Channels)
:OCNS (only with SMIQB48, WCDMA Enhanced Channels)
:CHANnel<n> with n = 0 | [1] | 2 to 138
:SRATe D7K5 | D15K | D30K | D60K | D120K | D240K | D480K |
D960K
(S/s)
:CCODe 0 to (511)
:POWer -60.0 to 0 dB
:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE | PATTern
:PATTern #B0 to B111..1, 1 to 24
:TOFFset 0 to 149
:PLENgth BIT2 | BIT4 | BIT8 | BIT16
:TPC ZERO | ONE | PATTern
:PATTern #B0 to B111..1, 1 to 24
:MCODe ON | OFF
:STATe ON | OFF
:DOMain ON | OFF
:ERRor? Þ 0 | 1 Query only
:MSTation<i> with i = [1] | 2 | 3 | 4 Mobile station
:STATe ON | OFF
:MODE PRACh | PCPCh | DPCDch
:SCODe #H0 to #HFFFFFF
:MODE LONG | SHORt | OFF
:TPC
:DATA ZERO | ONE | PATTern (| DLISt)
:PATTern #B0 to B111..1, 1 to 24
:READ CONTinuous | S0A | S1A | S01A | S10A
:PRACh
:PREPetition 1 to 10
:PPOWer -60 to 0 dB
:DPOWer -60 to 0 dB
:CPOWer -60 to 0 dB
:MLENgth 1 | 2 Message part
:SIGNature 0 to 15
:ASLot 0 to 14
:SRATe D15K | D30K | D60K | D120K
SOURce:W3GPp-Subsystem SMIQ
1125.5555.03 E-93.162
Command Parameter Default
Unit Remark
[:SOURce]
:W3GPp
:MSTation<i> with i = [1] | 2 | 3 | 4 Mobile station
:PRACh
:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE | PATTern
:PATTern #B0 to B111..1, 1 to 24
:TFCI 0 to 1023
:PCPCh
:PREPetition 1 to 10
:PPOWer -60 to 0 dB
:STEP 0 to +10 dB
:DPOWer -60 to 0 dB
:CPOWer -60 to 0 dB
:MLENgth 1 to 10
:PLENgth S0 | S8 Power Control Preamble
:SIGNature 0 to 15
:ASLOt 0 to 14
:FBI
:MODE OFF | D1B | D2B
:DATA ZERO | ONE | PATTern
:PATTern #B0 to B111..1, 1 to 24
:SRATe D15K | D30K | D60K | D120K | D240K | D480K |
D960K
:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE | PATTern
:PATTern #B0 to B111..1, 1 to 24
:TFCI 0 to 1023
:DPCCh
:POWer -60 to 0 dB
:TOFFset? Þ <n> Query only
:TFCI 0 to 1023
:STATe ON | OFF
:FBI
:MODE OFF | D1B | D2B
:DATA ZERO | ONE | PATTern
:PATTern #B0 to B111..1, 1 to 24
:TPC
:MISuse ON | OFF
:PSTep -10 to 10 dB
:ENHanced (only with SMIQB48, WCDMA Enhanced Channels)
:ADDitional (only with SMIQB48, WCDMA Enhanced Channels) Only for LINK UP
:DPDCh
:ORATe D15K | D30K | D60K | D120K | D240K | D480K |
D960K | X2 | X3 | X4 | X5 | X6
:POWer -60.0 to 0 dB
:DPDCh<j> with j = [1] | 2 | 3 | 4 | 5 | 6
:SRATe? Þ D15K | D30K | D60K | D120K | D240K | D480K |
D960K
Query only
:TYPE? Þ <i> Query only
:CCODe? Þ <i> Query only
:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE | PATTern
:PATTern #B0 to B111..1, 1 to 24
SMIQ SOURce:W3GPp-Subsystem
1125.5555.03 3.163 E-9
Note: The calculation of the W-CDMA sequences is rather time-consuming and should be re-
started for any new setting. The WCDMA modulation is therefore switched off for each
command (autom. :SOUR:W3GP:STAT OFF performed). The user can then perform
several settings without any delay and has to switch on again the WCDMA modulation
(with :SOUR:W3GP:STAT ON). The calculations are performed and the previous settings
are effective after the command is given.
[:SOURce]:W3GPp:CALCulate:PROGress?
The command queries the calculation status. The value is returned in percent.
Example: :SOUR:W3GP:CALC:PROG
[:SOURce]:W3GPp:STATe ON | OFF
The command switches on the modulation in line with the W-CDMA procedure (3GPP standard).
Option SMIQB45 is required for this purpose. All other standards that are switched on or the
digital modulation are automatically switched to off state.
Caution: The command with ON should be used after any :SOUR:W3GP command or after a
series of W3GP commands in order to activate the previous settings.
Example: :SOUR:W3GP:STAT ON (or :SOUR:W3GP:STAT ON) *RST value is OFF
[:SOURce]:W3GPp:PRESet
The command sets all the following settings to a defined initial state (as after *RST). This ensures
that a signal is actually generated and that it is in line with the standard. This command triggers an
event and hence has no *RST value and no query.
Example: :SOUR:W3GP:PRES
[:SOURce]:W3GPp:SETTing:CATalog? Þ‘name‘
The command returns a list of all user-defined sequence configurations.
Example: :SOUR:W3GP:SETT:CAT? Response: 'test1','test2'
[:SOURce]:W3GPp:SETTing:LOAD ‘name of sequence’
The command loads a user-defined sequence configuration. The name may have a maximum
number of 8 characters. This command triggers an action and hence has no *RST value.
Example: :SOUR:W3GP:SETT:LOAD ’test’
[:SOURce]:W3GPp:SETTing:STORe ‘name of sequence’
The command stores a current sequence configuration under a name. The name may contain a
maximum of 8 letters. This command triggers an action and so has no *RST value and no query.
Example: :SOUR:W3GP:SETT:STOR ’test’
SOURce:W3GPp-Subsystem SMIQ
1125.5555.03 E-93.164
[:SOURce]:W3GPp:SETTing:DELete ‘name of sequence’
The command deletes the specified sequence configuration. This command triggers an action
and so has no *RST value and no query.
Example: :SOUR:W3GP:SETT:DEL ’test1’
[:SOURce]:W3GPp:SETTing:TMODel
The commands for default setting (test models) are under this node.
[:SOURce]:W3GPp:SETTing:TMODel[:BST] 'name'
The command loads a default setting (test model) defined in 3GPP standard TS25.141 for the
base station, i.e. for link direction FORW. This command triggers an action and hence has no
*RST value.
TEST1_16 Spectrum emission mask ACLR; 16 Channels)
TEST1_32 Spectrum emission mask ACLR; 32 Channels)
TEST1_64 Spectrum emission mask ACLR; 64 Channels)
TEST2 Output power dynamics
TEST3_16 Peak code domain error; 16 Channels
TEST3_32 Peak code domain error; 32 Channels
TEST4
Example: :SOUR:W3GP:SETT:TMOD 'TEST1_32'
[:SOURce]:W3GPp:SETTing:TMODel[:BST]:CATalog?
The command returns a list of all the available test models for the base station, i.e. for link
direction FORW.
Example: :SOUR:W3GP:SETT:TMOD:CAT?
[:SOURce]:W3GPp:SETTing:TMODel:MST 'name'
The command loads a non-standardized default setting (test model) for the mobile station, i.e. for
link direction REV. This command triggers an action and hence has no *RST value.
‚C+D 60K
‚C+D960K
Example: :SOUR:W3GP:SETT:TMOD:MST'C+D 60K'
[:SOURce]:W3GPp:SETTing:TMODel[:MST]:CATalog?
The command returns a list of all the available test models for the mobile station, i.e. for link
direction REV.
Example: :SOUR:W3GP:SETT:TMOD:MST:CAT?
[:SOURce]:W3GPp:GPP3:VERSion?
The command queries the version.
Example: :SOUR:W3GP:GPP3:VERS? Response: (V3420)
[:SOURce]:W3GPp:CRATe?
The command queries the chip rate.
Example: :SOUR:W3GP:CRAT? Response: (R3M84)
SMIQ SOURce:W3GPp-Subsystem
1125.5555.03 3.165 E-9
[:SOURce]:W3GPp:LINK FORWard | REVerse
The command selects the mode of the transmitted signal (sense of transmission). The signal
either corresponds to that of a base station (FORWard, alias DOWN) or a mobile station
(REVerse, alias UP).
Example: :SOUR:W3GP:LINK REV *RST value is FORW
[:SOURce]:W3GPp:SLENgth 1 to 13
The command defines the length of the calculated chip sequence as a number of frames.
Example: :SOUR:W3GP:SLEN 8 *RST value is 1
[:SOURce]:W3GPp:CLIPping:LEVel 1 to 100PCT
The command limits the output level (referred to the unlimited level). Can only be set if the
Enhanced Channels are switched off.
Example: :SOUR:W3GP:CLIP:LEV 95
[:SOURce]:W3GPp:FILTer:TYPe SCOSine | COSine | WCDMa | USER
The command selects the filter type. A filter list should be selected with :W3GP:FILT:SEL 'name'
for the filter type USER.
SCOSine square root cosine (root Nyquist) filter
COSine cosine (Nyquist) filter
WCDMa root Nyquist filter with fixed roll-off factor 0.22
USER user-defined list
Example: :SOUR:W3GP:FILT:TYP COS *RST value is WCDM
[:SOURce]:W3GPp:FILTer:SELect 'name'
The command selects a named filter list. The list is used only if a user-defined filter is selected
with :W3GPp:FILT:TYPE USER. To generate lists, cf. command [:SOURce]:DM:FLISt:SEL, to fill
up lists, cf. command [:SOURce]:DM:FLISt:DATA.
Example: :SOUR:SOUR:W3GP:FILT:SEL 'test' *RST value is NONE
[:SOURce]:W3GPp:FILTer:PARameter 0.1 to 0.99
The command sets the roll-off factor for the COS and SCOS filters.
Example: :SOUR:W3GP:FILT:PAR 0.5 *RST value is 0.22
SOURce:W3GPp-Subsystem SMIQ
1125.5555.03 E-93.166
[:SOURce]:W3GPp:FILTer:MODE LACP | LEVM
This command selects one of the "L"ow filter modes (LACP: lowest adjacent channel power,
LEVM: lowest error vector).
Example: :SOUR:W3GP:FILT:MODE LEVM *RST value is LACP
[:SOURce]:W3GPp:CRATe:VARiation 100 Hz to 18 MHz (cps)
The command selects the variation for the chip rate frequency (as against that set with
:SOUR:W3GP:CRAT).
Example: :SOUR:W3GP:CRAT:VAR 1.2MHz *RST value is 3.84M
[:SOURce]:W3GPp:PPARameter
The commands for the parameterizable predefined settings are under this node. The channel
table is filled (preset) with the following parameters, if the :SOUR:W3GP:PPAR:EXEC action
command is executed.
[:SOURce]:W3GPp:PPARameter:SCHannels ON | OFF
The channels (P-CPICH, P-SCH, S-SCH, PCCPCH) required for the synchronization of the mobile
are switched on (ON) or remain unused (OFF).
Example: :SOUR:W3GP:PPAR:SCH OFF *RST value is ON
[:SOURce]:W3GPp:PPARameter:SCCPch:STATe ON | OFF
SCCPCH is used in the scenario (ON) or remains unused (OFF).
Example: :SOUR:W3GP:PPAR:SCCP:STAT OFF *RST value is ON
[:SOURce]:W3GPp:PPARameter:SCCPch:SRATe D15K | D30K | D60K | D120K | D240K |
D480K | D960K
The symbol rate of S-CCPCH is set. The permissible rates depend on the channel type.
Example: :SOUR:W3GP:PPAR:SCCP:SRATE D120K *RST value is D60K
[:SOURce]:W3GPp:PPARameter:DPCH:COUNt 0 to 512
The command sets the number of DPCH channels. The maximum number depends on the chip
rate and the symbol rate.
Example: :SOUR:W3GP:PPAR:DPCH:COUN 16 *RST value is 3
[:SOURce]:W3GPp:PPARameter:SRATe D7K5 | D15K | D30K | D60K | D120K | D240K | D480K |
D960K
The command sets the symbol rate of DPCH channels. The permissible rates depend on the type
of channel.
Example: :SOUR:W3GP:PPAR:SRAT D240K *RST value is D30K
[:SOURce]:W3GPp:PPARameter:CRESt MINimum | AVERage | WORSt
The command sets the crest factor. MIN sets the timing offset and channelization code so that
they are minimized. An average value is generated with AVG, the highest value of the crest factor
with MAX.
Example: :SOUR:W3GP:PPAR:CRES WORS *RST value is MIN
[:SOURce]:W3GPp:PPARameter:EXECute
This action command fills (presets) the channel table with the above parameters.
Example: :SOUR:W3GP:PPAR:EXEC
SMIQ SOURce:W3GPp-Subsystem
1125.5555.03 3.167 E-9
[:SOURce]:W3GPp:COPY
The commands for copying the setting of a mobile or base station to the data record of another are
under this node. The :SOUR:W3GP:COPY:EXEC command starts copying.
[:SOURce]:W3GPp:COPY:SOURce 1 to 4
The command selects the station whose data are to be copied.
Example: :SOUR:W3GP:COPY:SOUR 2
[:SOURce]:W3GPp:COPY:DESTination 1 to 4
The command selects the station to which data are to be copied.
Example: :SOUR:W3GP:COPY:DEST 3
[:SOURce]:W3GPp:COPY:COFFset 0 to 511
The command sets the offset value for the channelization code in the target station. This
command is only available under :SOUR:W3GP:LINK FORW/DOWN.
Example: :SOUR:W3GP:COPY:SOFF 100
[:SOURce]:W3GPp:COPY:EXECute
The command starts copying.
Example: :SOUR:W3GP:COPY:EXEC
[:SOURce]:W3GPp:SEQuence AUTO | RETRigger | AAUTo | ARETrigger
The command selects the trigger mode for the W-CDMA sequence.
AUTO Continuously repeated
RETRigger Continuously repeated; new start after a trigger
AAUTo ARMED AUTO; waits for trigger, then switches over to AUTO and can no longer be
triggered
ARETrigger ARMED RETRIG; a trigger event is required to start, each new trigger causes a restart
Example: :SOUR:W3GP:SEQ AAUT *RST value is RETR
[:SOURce]:W3GPp:TRIGger:SOURce EXTernal | INTernal
The command selects the trigger source. With INT selected, triggering is via remote control using
the trigger command or via EXECUTE TRIGGER in case of manual control.
EXT The trigger signal is fed in via input TRIGIN
INT A start is only possible manually or via the remote control command TRIG:DM:IMM
Example: :SOUR:W3GP:TRIG:SOUR EXT *RST value is INT
[:SOURce]:W3GPp:TRIGger:DELay 0 to 38399
The command defines the trigger delay (in number of chips).
Example: :SOUR:W3GP:TRIG:DEL 200 *RST value is 0
[:SOURce]:W3GPp:TRIGger:INHibit 0 to 67108863
The command sets the retrigger inhibit duration (in number of chips).
Example: :SOUR:W3GP:TRIG:INH 1000 *RST value is 0
SOURce:W3GPp-Subsystem SMIQ
1125.5555.03 E-93.168
[:SOURce]:W3GPp:TRIGger:OUTPut[1]|2 SLOT | RFRame | CSPeriod | ECSPeriod | SFNR
The command defines the output signal at trigger output 1 or 2. The following times can be selected:
SLOT Time slot clock
RFRame Radio Frame (frame clock)
CSPeriod Chip Sequence Period
ECSPeriod Enhanced Chip Sequence Period (only with option SMIQB48)
SFNR P-CCPCH/BCH SFN Restart
Example: :SOUR:W3GP:TRIG:OUTP RFR *RST value is: for OUTPut 1: RFR
for OUTPut 2: CSP
[:SOURce]:W3GPp:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative
The commands defines the polarity of the signals at the trigger outputs.
Example: :SOUR:W3GP:TRIG:OUTP2:POL NEG *RST value is POS
[:SOURce]:W3GPp:TRIGger:OUTPut[1]|2:DELay 0 to 38399
The command defines the delay of trigger signals in chips.
Example: :SOUR:W3GP:TRIG:OUTP2:DEL 50 *RST value is 0
[:SOURce]:W3GPp:CLOCk:SOURce INTernal | EXTernal
The command selects the clock source.
INTernal The internal clock generator is used.
EXTernal The clock is fed externally via connector SYMBOL CLOCK.
Example: :SOUR:W3GP:CLOC:SOUR EXT *RST value is INT
[:SOURce]:W3GPp:CLOCk:MODE CHIP | CHIP4
The command selects the clock rate for the external chip clock. With CHIP4, the clock has four
times the rate.
Example: :SOUR:W3GP:CLOC:MODE CHIP4 *RST value is CHIP
[:SOURce]:W3GPp:CLOCk:DELay 0 to 0.99
The command sets the delay of the clock signal in chips.
Example: :SOUR:W3GP:CLOC:DEL 0.5 *RST value is 0
[:SOURce]:W3GPp:POWer?
The command queries the total power for the W-CDMA signal.
Example: :SOUR:W3GP:POW?
[:SOURce]:W3GPp:POWer:ADJust
The command changes the power of the activated code channels. The total power then equals
the power shown by the Level display (total power). This command triggers an action and so has
no *RST value and no query form.
Example: :SOUR:W3GP:POW:ADJ
[:SOURce]:W3GPp:BSTation<i> where i = [1] | 2 | 3 | 4
This node comprises commands for one of the 4 base stations. They are only effective if the link
direction is set to FORW. (:SOUR:W3GP:LINK FORW).
SMIQ SOURce:W3GPp-Subsystem
1125.5555.03 3.169 E-9
[:SOURce]:W3GPp:BSTation<i>:STATe ON | OFF
The command activates the station with ON and deactivates it with OFF.
Example: :SOUR:W3GP:BST2:STAT ON *RST value is OFF
[:SOURce]:W3GPp:BSTation<i>:SCODe #H0 to #H5FFF
The command sets the scrambling coder of a station.
Example: :SOUR:W3GP:BST:SCOD #H1234 *RST value is #H0
[:SOURce]:W3GPp:BSTation<i>:SCODe:STATe #H0 to #H5FFF
The command sets the Scrambling Code of a station.
Example: :SOUR:W3GP:BST:SCOD #H1234 *RST value is #H0
[:SOURce]:W3GPp:BSTation<i>:TFCI 0 to 1023
The command sets the value of the transport format identifier.
Example: :SOUR:W3GP:BST2:TFCI 22 *RST value is 0
[:SOURce]:W3GPp:BSTation<i>:TFCI:STATe ON | OFF
The command activates the transport format identifier (ON) or deactivates it (OFF).
Example: :SOUR:W3GP:BST3:TFCI:STAT ON *RST value is OFF
[:SOURce]:W3GPp:BSTation<i>:SSCG?
The command queries the 2nd search code group (PERCH).
Example: :SOUR:W3GP:BST4:SSCG?
[:SOURce]:W3GPp:BSTation<i>:TPC:READ CONTinuous | S0A | S1A | S01A | S10A
The command sets the read-out mode for the TPC pattern.
CONTinuous TPC is used cyclically.
S0A TPC is used once, followed by 0 bits.
S1A TPC is used once, followed by 1 bits.
S01A TPC is used once, followed by alternating 01 bits.
S10A TPC is used once, followed by alternating 10 bits.
Example: :SOUR:W3GP:BST:TPC:READ S01A *RST value is CONT
[:SOURce]:W3GPp:BSTation<i>:TPC:MISuse ON | OFF
The command sets the misuse of the TPC pattern of each channel for the channel power control.
Example: :SOUR:W3GP:BST:TPC:MIS ON *RST value is OFF
[:SOURce]:W3GPp:BSTation<i>:TPC:POWer:STEP -10.0 to 10.0 dB
The command sets the channel-power step width when option :SOUR:W3GP:BST:MIS:TPC ON is
active.
Example: :SOUR:W3GP:BST:TPC:POW:STEP 3.1 *RST value is 0
SOURce:W3GPp-Subsystem SMIQ
1125.5555.03 E-93.170
[:SOURce]:W3GPp:BSTation<i>:TRANsmit:DIVersity OFF | ANT1 | ANT2
This command sets the calculation of the signal without transmit diversity (OFF) or for antenna 1,
or antenna 2 (SCH channels with TSTD mode, other channels with STTD mode).
Example: :SOUR:W3GP:BST:TRAN:DIV ANT2 *RST value is OFF
[:SOURce]:W3GPp:BSTation:PINDicator:COUNt D18 | D36 | D72 | D144
The command sets the number of PI in the page indicator channel (PICH).
Example: :SOUR:W3GP:BST:PIND:COUN D16 *RST value is 18
[:SOURce]:W3GPp:MCHannel
The commands for the common setting of several DPCH channels are under this node
(multichannel). All channels with the numbers between start and stop are simultaneously set to
the value of the following commands by means of the :SOUR:W3GP:BST<i>:MCH:EXEC action
command.
[:SOURce]:W3GPp:MCHannel:STARt 11 to 138
The command specifies the initial channel of the group with common setting.
Example: :SOUR:W3GP:MCH:STAR 12 *RST value is 11
[:SOURce]:W3GPp:MCHannel:STOP 11 to 138
The command specifies the end channel of the group with common setting.
Example: :SOUR:W3GP:MCH:STOP 129 *RST value is 11
[:SOURce]:W3GPp:MCHannel:SRATe D7K5 | D15K | D30K | D60K | D120K | D240K | D480K | D960K
This command defines the symbol rate. The values depend on the channel type.
Example: :SOUR:W3GP:MCH:SRAT D60K *RST value is D30K
[:SOURce]:W3GPp:MCHannel:PLENgth Bit2 | Bit4 | Bit8 | Bit16
The command sets the length of the pilot field in bits. The range of values depends on the symbol
rate.
Example: :SOUR:W3GP:MCH:PLEN BIT2 *RST value is BIT4
[:SOURce]:W3GPp:MCHannel:CCODe 0 to (511)
This command sets the channel code. The upper limit depends on the channel type and the
symbol rate.
Example: :SOUR:W3GP:MCH:CCOD 123 *RST value is 0
[:SOURce]:W3GPp:MCHannel:CCODe:STEP 0 to (511)
This command sets the step width of the channel code. The upper limit depends on the channel
type and the symbol rate.
Example: :SOUR:W3GP:MCH:CCOD:STEP 123 *RST value is 0
[:SOURce]:W3GPp:MCHannel:POWer –60 dB to 0 dB
The power of a channel compared to the powers of other channels is determined.
Example: :SOUR:W3GP:MCH:POW -22DB *RST value is 0 dB
SMIQ SOURce:W3GPp-Subsystem
1125.5555.03 3.171 E-9
[:SOURce]:W3GPp:MCHannel:POWer:STEP –60 dB to +60 dB
The step width for the power of a channel compared to the powers of other channels is
determined.
Example: :SOUR:W3GP:MCH:POW:STEP -22DB *RST value is 0 dB
[:SOURce]:W3GPp:MCHannel:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE | PATTern
This command defines the data source for the data field. PNx is PRBS data and PATT is a pattern
which is set with the following command. ZERO sets all bits to 0, ONE sets all bits to 1.
Example: :SOUR:W3GP:MCH:DATA PATT *RST value is PN15
[:SOURce]:W3GPp:MCHannel:DATA:PATTern #B0 to B111..1, 1 to 24
This command sets the pattern which is used under :SOUR:W3GP:BST3:MCH:DATA PATT. The
first parameter sets the bit pattern (optionally Hex, Oct or Bin syntax), the second one indicates
the number of bits to be used.
Example: :SOUR:W3GP:MCH:DATA:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:MCHannel:TIMing:OFFSet 0 to 149
This command sets the timing offset. It offsets the modulation data with respect to the scrambling
code.
Example: :SOUR:W3GP:MCH:TIM:OFFS 345 *RST value is 0
[:SOURce]:W3GPp:MCHannel:TIMing:OFFSet:STEP 0 to 149
This command sets the step width of the timing offset.
Example: :SOUR:W3GP:MCH:TIM:OFFS:STEP 345 *RST value is 0
[:SOURce]:W3GPp:MCHannel:TPC ZERO | ONE | PATTern
This command defines the data source for the TPC field in DPCH.
ZERO 0000..., sequence of zeroes
ONE 1111..., sequence of ones
PATTern bit pattern set with the following command
Example: :SOUR:W3GP:MCH:TPC PATT *RST value is ZERO
[:SOURce]:W3GPp:MCHannel:TPC:PATTern #B0 to B111..1, 1 to 24
This command sets the bit pattern which is used under :SOUR:W3GP:BST3:MCHan:TPC PATT.
The first parameter sets the bit pattern (optionally Hex, Oct or Bin syntax), the second one
indicates the number of bits to be used.
Example: :SOUR:W3GP:MCH:TPC:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:MCHannel:MCODe ON | OFF
The command activates the multicode for the channel (ON) or deactivates it (OFF).
Example: :SOUR:W3GP:MCH:MCOD ON *RST value is OFF
[:SOURce]:W3GPp:MCHannel:STATe ON | OFF
The command activates the code channels (ON) or deactivates them (OFF).
Example: :SOUR:W3GP:MCH:STAT OFF *RST value is ON
SOURce:W3GPp-Subsystem SMIQ
1125.5555.03 E-93.172
[:SOURce]:W3GPp:BSTation<i>:MCHannel:EXECute
All channels with the numbers between start and stop are simultaneously set to the value of the
above :SOUR:W3GP:MCH commands.
Example: :SOUR:W3GP:BST3:MCH:EXEC
[:SOURce]:W3GPp:BSTation<i>:ENHanced....
The commands for setting the enhanced functions for the 3GPP W-CDMA standard are under this
node. These commands are only available if option SMIQB48 is installed. For further information
see remote-control commands of this option.
[:SOURce]:W3GPp:BSTation<i>:OCNS....
The commands for simulating the orthogonal channel noise are under this node. These
commands are only available if option SMIQB48 is installed. For further information see manual
on remote-control commands of this option.
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n> with n = 0 | [1] | 2 to 138
The commands for determining the channel configuration are under this node. Suffix 1 is optional.
For channels 0 to 10 not all commands are available (settable).
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:SRATe D7K5 | D15K | D30K | D60K | D120K | D240K |
D480K | D960K
This command defines the symbol rate. The permissible rates depend on the type of channel.
Example: :SOUR:W3GP:BST:CHAN2:SRAT D60K
*RST value is mostly D15K (see manual control)
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:CCODe 0 to 511
This command sets the channelization code. The upper limit depends on the symbol rate and the
channel type and cannot be set for P-SCH and S-SCH.
Example: :SOUR:W3GP:BST1:CHAN3:CCOD 123 *RST value is mostly 0 (see manual control)
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:POWer –60 dB to 0 dB
The power of a channel compared to the powers of other channels is determined.
Example: :SOUR:W3GP:BST2:CHAN4:POW -22DB *RST value is 0
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern
This command defines the data source for the data field. PNx is PRBS data and PATT is a pattern
which is set with the following command. ZERO sets all bits to 0, ONE sets all bits to 1.
Example: :SOUR:W3GP:BST3:CHAN5:DATA PATT *RST value is PN15
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:DATA:PATTern #B0 to B111..1, 1 to 24
This command sets the pattern which is used under :SOUR:W3GP:BST:CHAN:DATA PATT. The
first parameter sets the bit pattern (optionally Hex, Oct or Bin syntax), the second one indicates
the number of bits to be used.
Example: :SOUR:W3GP:BST:CHAN2:DATA:PATT #H3F, 8 *RST value is #H0, 1
SMIQ SOURce:W3GPp-Subsystem
1125.5555.03 3.173 E-9
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:TOFFset 0 to 149
This command sets the timing offset. It offsets the modulation data with respect to the scrambling
code.
Example: :SOUR:W3GP:BST2:CHAN6:TOFF 345 *RST value is 0
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:TPC ZERO | ONE | PATTern
This command defines the data source for the TPC field in DPCH.
ZERO 0000..., sequence of zeroes
ONE 1111..., sequence of ones
PATTern bit pattern set with the following command
Example: :SOUR:W3GP:BST3:CHAN7:TPC PATT *RST value is ZERO
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:PLENgth BIT2 | BIT4 | BIT8 | BIT16
The command sets the length of the pilot field in bits. The range of values depends on the symbol rate.
Example: :SOUR:W3GP:BST:CHAN2:PLEN BIT4
* RST value is mostly bit4 (see manual control)
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:TPC:PATTern #B0 to B111..1, 1 to 24
This command sets the bit pattern which is used under :SOUR:W3GP:BST:CHAN:TPC PATT.
The first parameter sets the bit pattern (optionally Hex, Oct or Bin syntax), the second one
indicates the number of bits to be used.
Example: :SOUR:W3GP:BST4:CHAN2:TPC:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:MCODe ON | OFF
The command switches the multicode for the channel on or off.
Example: :SOUR:W3GP:BST:CHAN3:MCOD ON *RST value is OFF
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:STATe ON | OFF
The command switches the assigned code channel on or off.
Example: :SOUR:W3GP:BST2:CHAN4:STAT OFF *RST value is OFF
[:SOURce]:W3GPp: BSTation<i>:DOMain:ERRor?
The command queries whether there is a conflict in the hierarchically structured spreading codes
(response 1) or not (response 0). The cause can be pinpointed with manual control.
Example: :SOUR:W3GP:BST2:DOM:ERR?
[:SOURce]:W3GPp:MSTation<i>:STATe ON | OFF
The command activates the mobile station (ON) or deactivates it (OFF).
Example: :SOUR:W3GP:MST2:STAT ON *RST value is ON (for MST1), OFF (for 2 to 4)
[:SOURce]:W3GPp:MSTation<i>:MODE PRACh | PCPCh | DPCDch
The command sets the mode of the mobile station. Depending on this mode, another group of
commands is relevant for the generation of the output signal.
PRACh Physical Random Access Channel
PCPCh Physical Common Packet Channel
DPCDch DPCCh and DPDCh (Standard mode)
Example: :SOUR:W3GP:MST3:MODE PRAC *RST value is DPCD
SOURce:W3GPp-Subsystem SMIQ
1125.5555.03 E-93.174
[:SOURce]:W3GPp:MSTation<i>:SCODe #H0 to #HFFFFFF
The command sets the scrambling code generator.
Example: :SOUR:W3GP:MST3:SCOD #H1234 *RST value is #H0
[:SOURce]:W3GPp:MSTation<i>:SCODe:MODE LONG | SHORt | OFF
The command sets the mode of the scrambling code generator. SHORt can only be set under
:W3GP:MST:MODE DPCD.
Example: :SOUR:W3GP:MST3:SCOD:MODE SHOR *RST value is LONG
[:SOURce]:W3GPp:MSTation<i>:TPC:DATA ZERO | ONE | PATTern (| DLISt)
The command selects the data source for the TPC field.
ZERO 0 data are continuously generated.
ONE 1 data are continuously generated.
PATT bit pattern set with the following command is used.
DLISt only in mobile station 1 and with option SMIQB48 built in (see section 2.15).
Example: :SOUR:W3GP:MST3:TPC:DATA ZERO *RST value is ZERO
[:SOURce]:W3GPp:MSTation<i>:TPC:PATTern #B0 to B111..1, 1 to 24
This command sets the bit pattern. It is only used if :W3GP:MST:TPC:DATA PATT is set. The
first parameter sets the bit pattern (optionally Hex, Oct or Bin syntax), the second one indicates
the number of bits to be used.
Example: :SOUR:W3GP:MST3:TPC:PATT #H3F, 8 *RST value is 0, 1
[:SOURce]:W3GPp:MSTation<i>:TPC:READ CONTinuous | S0A | S1A | S01A | S10A
The command sets the read-out mode for the TPC pattern. 1 bit each is read out from the pattern.
CONTinuous TPC is used cyclically.
S0A TPC is used once, followed by 0 bits.
S1A TPC is used once, followed by 1 bits.
S01A TPC is used once, followed by alternating 01 bits.
S10A TPC is used once, followed by alternating 10 bits.
Example: :SOUR:W3GP:MST3:TPC:READ S01A *RST value is CONT
[:SOURce]:W3GPp:MSTation<i>:PRACh...
Commands for setting the physical random access channel are under this node. The commands
are only relevant under :W3GP:MST:MODE PRAC.
[:SOURce]:W3GPp:MSTation<i>:PRACh:PREPetition 1 to 10
The command sets the number of repetitions of the preamble.
Example: :SOUR:W3GP:MST3:PRAC:PREP 3 *RST value is 1
[:SOURce]:W3GPp:MSTation<i>:PRACh:PPOWer -60 to 0 dB
The command sets the power of the preamble.
Example: :SOUR:W3GP:MST3:PRAC:PPOW –3.0 *RST value is 0.0
[:SOURce]:W3GPp:MSTation<i>:PRACh:DPOWer -60 to 0 dB
The command sets the power of the data part.
Example: :SOUR:W3GP:MST3:PRAC:DPOW –12.1 *RST value is 0.0
SMIQ SOURce:W3GPp-Subsystem
1125.5555.03 3.175 E-9
[:SOURce]:W3GPp:MSTation<i>:PRACh:CPOWer -60 to 0 dB
The command sets the power of the control part.
Example: :SOUR:W3GP:MST3:PRAC:CPOW -20 *RST value is 0.0
[:SOURce]:W3GPp:MSTation<i>:PRACh:MLENgth 1 | 2
The command sets the length of the message parts.
Example: :SOUR:W3GP:MST3:PRAC:MLEN 2 *RST value is 1
[:SOURce]:W3GPp:MSTation<i>:PRACh:SIGNature 0 to 15
The command sets the signature.
Example: :SOUR:W3GP:MST3:PRAC:SIGN 3 *RST value is 0
[:SOURce]:W3GPp:MSTation<i>:PRACh:ASLot 0 to 14
The command offsets the start time of PRACH. The time expressed in timeslots is obtained by
doubling the number of ASLot.
Example: :SOUR:W3GP:MST3:PRAC:ASL 3 *RST value is 0
[:SOURce]:W3GPp:MSTation<i>:PRACh:SRATe D15K | D30K | D60K | D120K
The command sets the symbol rate.
Example: :SOUR:W3GP:MST3:PRAC:SRAT D120K *RST value is D30K
[:SOURce]:W3GPp:MSTation<i>:PRACh:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE | PATTern
The command sets the data source.
PNx pseudo random sequence of length x
ZERO all bits set to 0
ONE all bits set to 1
PATTern bit pattern selected with the following command
Example: :SOUR:W3GP:MST3:PRAC:DATA ZERO *RST value is PN15
[:SOURce]:W3GPp:MSTation<i>:PRACh:PATTern #B0 to B111..1, 1 to 24
This command selects the bit pattern. It is only used if :W3GP:MST:PRAC:DATA PATT is set.
The first parameter sets the bit pattern (optionally Hex, Oct or Bin syntax), the second one
indicates the number of bits to be used.
Example: :SOUR:W3GP:MST3:PRAC:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:MSTation<i>:PRACh:TFCI 0 to 1023
The command sets the value for the TFCI (transport format combination indicator) field.
Example: :SOUR:W3GP:MST3:PRAC:TFCI 63 *RST value is 0
[:SOURce]:W3GPp:MSTation<i>:PCPCh...
Commands for setting the physical common packet channel are under this node. The commands
are only relevant under :W3GP:MST:MODE PCPC.
[:SOURce]:W3GPp:MSTation<i>:PCPCh:PREPetition 0 to 10
The command sets the number of repetitions of the preamble.
Example: :SOUR:W3GP:MST3:PCPC 4 *RST value is 1
SOURce:W3GPp-Subsystem SMIQ
1125.5555.03 E-93.176
[:SOURce]:W3GPp:MSTation<i>:PCPCh:PPOWer -60 to 0 dB
The command sets the power of the preamble part.
Example: :SOUR:W3GP:MST3:PCPC:PPOW –3.0 *RST value is 0.0
[:SOURce]:W3GPp:MSTation<i>:PCPCh:PPOWer:STEP 0 to 10 dB
The command sets the step width for the power of the preamble part by which it is increased from
repetition to repetition.
Example: :SOUR:W3GP:MST3:PCPC:PPOW:STEP 3.0 *RST value is 0.0
[:SOURce]:W3GPp:MSTation<i>:PCPCh:DPOWer -60 to 0 dB
The command sets the power of the data part.
Example: :SOUR:W3GP:MST3:PCPC:DPOW -10 *RST value is 0.0
[:SOURce]:W3GPp:MSTation<i>:PCPCh:CPOWer -60 to 0 dB
The command sets the power of the control part.
Example: :SOUR:W3GP:MST3:PCPC:CPOW –12.3 *RST value is 0.0
[:SOURce]:W3GPp:MSTation<i>:PCPCh:MLENgth 0 to 10
The command sets the length of the message part in number of frames.
Example: :SOUR:W3GP:MST3:PCPC:MLEN 2 *RST value is 1
[:SOURce]:W3GPp:MSTation<i>:PCPCh:PLENgth S0 | S8
The command sets the length of the power control preamble.
Example: :SOUR:W3GP:MST3:PCPC:PLEN S0 *RST value is S8
[:SOURce]:W3GPp:MSTation<i>:PCPCh:SIGNature 0 to 15
The command sets the signature.
Example: :SOUR:W3GP:MST3:PCPC:SIGN 4 *RST value is 0
[:SOURce]:W3GPp:MSTation<i>:PCPCh:ASLot 0 to 14
The command offsets the start time of PCPCH. The time expressed in timeslots is obtained by
two times the number of ASLot.
Example: :SOUR:W3GP:MST3:PCPC:ASL 5 *RST value is 0
[:SOURce]:W3GPp:MSTation<i>:PCPCh:FBI:MODE OFF | D1B | D2B
The command sets the number of bits (1 or 2) for the feedback information. The field is not used
with OFF.
Example: :SOUR:W3GP:MST3:PCPC:FBI:MODE D1B *RST value is OFF
[:SOURce]:W3GPp:MSTation<i>:PCPCh:FBI:DATA ZERO | ONE | PATTern
The command selects the data source for the FBI field.
ZERO 0 data are continuously generated.
ONE 1 data are continuously generated.
PATT The bit pattern set with the following command is used.
Example: :SOUR:W3GP:MST3:PCPC:FBI:DATA ONE *RST value is ZERO
SMIQ SOURce:W3GPp-Subsystem
1125.5555.03 3.177 E-9
[:SOURce]:W3GPp:MSTation<i>:PCPCh:FBI:PATTern #B0 to B111..1, 1 to 24
This command sets the bit pattern. It is only used if :W3GP:MST:PCPC:FBI:DATA PATT is set.
The first parameter sets the bit pattern (optionally Hex, Oct or Bin syntax), the second one
indicates the number of bits to be used.
Example: :SOUR:W3GP:MST3:PCPC:FBI:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:MSTation<i>:PCPCh:SRATe D15K | D30K | D60K | D120K | D240K | D480K |
D960K
The command sets the symbol rate. The selection depends on the channel type.
Example: :SOUR:W3GP:MST3:PCPC:SRAT D15K *RST value is D30K
[:SOURce]:W3GPp:MSTation<i>:PCPCh:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE | PATTern
The command sets the data source.
PNx Pseudo random sequence of length x
ZERO All bits are set to 0
ONE all bits are set to 1
PATTern bit pattern selected with the following command
Example: :SOUR:W3GP:MST3:PCPC:DATA PN11 *RST value is PN15
[:SOURce]:W3GPp:MSTation<i>:PCPCh:PATTern #B0 to B111..1, 1 to 24
The command sets the bit pattern. It is only used if :W3GP:MST:PCPC:DATA PATT is set. The
first parameter sets the bit pattern (optionally Hex, Oct or Bin syntax), the second one indicates
the number of bits to be used.
Example: :SOUR:W3GP:MST3:PCPC:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:MSTation<i>:PCPCh:TFCI 0 to 1023
The command sets the value for the TFCI (transport format combination indicator) field.
Example: :SOUR:W3GP:MST3:PCPC:TFCI 63 *RST value is 0
[:SOURce]:W3GPp:MSTation<i>:DPCCh...
The commands for setting the standard operating mode with active control channel are under this
node. The commands are only relevant under :W3GP:MST:MODE DPCD.
[:SOURce]:W3GPp:MSTation<i>:DPCCh:POWer -60 to 0 dB
The command sets the power.
Example: :SOUR:W3GP:MST3:DPCC:POW –10.0 *RST value is 0.0
[:SOURce]:W3GPp:MSTation<i>:DPCCh:TOFFset?
The command queries the time offset in multiples of 256 chips.
Example: :SOUR:W3GP:MST3:DPCC:TOFF?
[:SOURce]:W3GPp:MSTation<i>:DPCCh:TFCI 0 to 1023
The command sets the value for the TFCI (transport format combination indicator) field.
Example: :SOUR:W3GP:MST3:DPCC:TFCI 63 *RST value is 0
SOURce:W3GPp-Subsystem SMIQ
1125.5555.03 E-93.178
[:SOURce]:W3GPp:MSTation<i>:DPCCh:TFCI:STATe ON | OFF
The command activates the TFCI field (ON) or deactivates it (OFF).
Example: :SOUR:W3GP:MST3:DPCC:TFCI:STAT ON *RST value is OFF
[:SOURce]:W3GPp:MSTation<i>:DPCCh:FBI:MODE OFF | D1B | D2B
The command sets the number of bits (1 or 2) for the feedback information. The field is not used
with OFF.
Example: :SOUR:W3GP:MST3:DPCC:FBI:MODE D1B *RST value is OFF
[:SOURce]:W3GPp:MSTation<i>:DPCCh:FBI:DATA ZERO | ONE | PATTern
The command selects the data source for the FBI field.
ZERO all bits are set to 0
ONE all bits are set to 1
PATTern bit pattern selected with the following command
Example: :SOUR:W3GP:MST3:DPCC:FBI:DATA PATT *RST value is ZERO
[:SOURce]:W3GPp:MSTation<i>:DPCCh:FBI:PATTern #B0 to B111..1, 1 to 24
The command sets the bit pattern for the FBI field. It is only used if
:W3GP:MST:DPCC:FBI:DATA PATT is set. The first parameter sets the bit pattern (optionally
Hex, Oct or Bin syntax), the second one indicates the number of bits to be used.
Example: :SOUR:W3GP:MST3:DPCC:FBI:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:MSTation<i>:DPCCh:TPC:MISuse ON | OFF
The command sets the TPC mode. With ON the TPC pattern is misused for controlling the
transmit power.
Example: :SOUR:W3GP:MST3:DPCC:TPC:MIS ON *RST value is OFF
[:SOURce]:W3GPp:MSTation<i>:DPCCh:TPC:PSTep -10 to 10 dB
The command sets the step width for controlling the transmit power. The command is only used
under W3GP:MST:DPCC:TPC:MISuse ON.
Example: :SOUR:W3GP:MST3:DPCC:TPC:PST 1.5 *RST value is 0.0
[:SOURce]:W3GPp:MSTation<i>:ENHanced...
The commands for setting the enhanced functions for the 3GPP W-CDMA standard are under this
node. These commands are only available if option SMIQB48 is installed. For further information
see manual on remote-control commands of this option.
[:SOURce]:W3GPp:MSTation<i>:ADDitional...
The commands for simulating up to 50 other mobile stations are under this node. These
commands are only available if option SMIQB48 is installed. For further information see remote-
control commands of this option.
[:SOURce]:W3GPp:MSTation<i>:DPDCh(<j>)...
The commands for setting the standard operating mode with up to 6 data channels are under this
node. <j> selects one of 6 data channels. The commands are only relevant under
:W3GP:MST:MODE DPCD.
SMIQ SOURce:W3GPp-Subsystem
1125.5555.03 3.179 E-9
[:SOURce]:W3GPp:MSTation<i>:DPDCh:ORATe D15K | D30K | D60K | D120K | D240K | D480K |
D960K | X2 | X3 | X4 | X5 | X6
The command sets the overall symbol rate. It determines the structure of the channel table, the
symbol rate of channels and the channelization codes.
Example: :SOUR:W3GP:MST3:DPDC:ORAT D240K *RST value is D30K
[:SOURce]:W3GPp:MSTation<i>:DPDCh:POWer 0 to 15
The command determines the power of each channel.
Example: :SOUR:W3GP:MST3:DPDC:POW –3.0 *RST value is 0.0
[:SOURce]:W3GPp:MSTation<i>:DPDCh<j>:SRATe?Þ D15K | D30K | D60K | D120K | D240K |
D480K | D960K
The command queries the symbol rate of the channels.
Example: :SOUR:W3GP:MST3:DPDC3:SRAT?
[:SOURce]:W3GPp:MSTation<i>:DPDCh<j>:TYPE?
The command queries the type of channels.
Example: :SOUR:W3GP:MST3:DPDC3:TYPE?
[:SOURce]:W3GPp:MSTation<i>:DPDCh<j>:CCODe?
The command queries the channelization code of the channels.
Example: :SOUR:W3GP:MST3:DPDC3:CCOD?
[:SOURce]:W3GPp:MSTation<i>:DPDCh<j>:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern
The command sets the data source.
PNx pseudo random sequence of length x
ZERO all bits are set to 0
ONE all bits are set to 1
PATTern bit pattern selected with the following command
Example: :SOUR:W3GP:MST3:DPDC3:DATA PN9 *RST value is PN15
[:SOURce]:W3GPp:MSTation<i>:DPDCh<j>:PATTern #B0 to B111..1, 1 to 24
This command sets the bit pattern. It is only used if :W3GP:MST:DPDC:DATA PATT is set. The
first parameter sets the bit pattern (optionally Hex, Oct or Bin syntax), the second one indicates
the number of bits to be used.
Example: :SOUR:W3GP:MST3:DPDC3:PATT #H3F, 8 *RST value is #H0, 1
SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems SMIQ
1125.5555.03 E-93.180
3.5.14.27 SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems
The commands for generating an extended 3 GPP W-CDMA signal are contained in these subsystems.
They are only available with option SMIQB48 installed.
Note: #H0 to #HF are numerals which are entered in alphanumerical hex syntax manually. #B0|1 are
numerals of binary syntax. SCPI (and IEEE 488.2) allow the entry of non-decimal numbers in all
forms
#H|h <0 to 9, A|a to F|f>, #Q|q <0 to 7> and #B|b <0|1>.
However, the format of manual operation is always used for the output generated by a query.
Command Parameter Default
Unit Remark
[:SOURce]:W3GPp
:BSTation Base station
:ENHanced
:STATe ON | OFF
:PCCPch
[:STATe] ON | OFF
:CCODing
:STATe ON | OFF
:TYPE M12K2 | M64K | M144K | M384K | AMR
:INTerleaver[1] ON | OFF
:INTerleaver2 ON | OFF
:EPOWer External power
:STATe ON | OFF
:STEP 0.0 to 6.0 dB
:RANGe
:UP 0.0 to 30.0 dB
:DOWN 0.0 to 30.0 dB
:SLENgth 1 to (800) (Frames)
:FREE? Þ <i> (Frames) Query only
:PCCPch
:SLENgth? Þ1 (Frames) Query only
:SRATe D7K5 | D15K | D30K | D60K | D120K | D240K |
D480K | D960K (S/s)
:TOFFset 0 to 149 Timing offset
:PLENgth BIT2 | BIT 4 | BIT8 | BIT 16
:DERRor Insert bit errors in data
:BIT
:STATe ON | OFF
:RATE 1E-1 to 1E-7
:DPCH? Þ <n> Query only
:DTCH? Þ <n> Query only
:DCCH? Þ <n> Query only
:BLOCk
:STATe ON | OFF
:RATE 1E-1 to 1E-7
:DTCH? Þ <n> Query only
:DCCH? Þ <n> Query only
:CHANnel<i> where i = 4 | 11 | 12 | 13 | 14 4 only with PCCP ON
:STATe ON | OFF
:CHNCode 0 to (511) Channelization code
:POWer
:STARt -60.0 to 0 dB
SMIQ SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems
1125.5555.03 3.181 E-9
Command Parameter Default
Unit Remark
[:SOURce]:W3GPp
:BSTation Base station
:ENHanced
:CONTrol OFF | UP | DOWN
:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern | DLISt
:PATTern #B0 to B111..1, 1 to 24
:DSELect 'name'
:CHANnel<i> where i = 4 | 11 | 12 | 13 | 14 4 only with PCCP ON
:DTCH PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern | DLISt
:PATTern #B0 to B111..1, 1 to 24
:DSELect 'name'
:DCCH PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern | DLISt
:PATTern #B0 to B111..1, 1 to 24
:DSELect 'name'
:PLENgth BIT2 | BIT4 | BIT8 | BIT16
:TPC ZERO | ONE | PATTern | DLISt
:PATTern #B0 to B111..1, 1 to 24
:DSELect 'name'
:MCODe ON | OFF
:OCNS
:COUNt 1 to (508)
:SRATe D7K5 | D15K | D30K | D60K | D120K | D240K |
D480K | D960K (S/s)
:CRESt MINimum | AVERage | WORSt
:POWer -60.0 to 0.0 dB
:PCCPch
:STATe ON | OFF
:POWer -60.0 to 0.0 dB
:EPOWer -60.0 to 30.0 dB
:EXECute (without)
:MSTation Mobile station
:ENHanced
:STATe ON | OFF
:CCODing Channel coding
:STATe ON | OFF
:TYPE M12K2 | M64K | M144K | M384K | AMR
:INTerleaver[1] ON | OFF
:INTerleaver2 ON | OFF
:EPOWer External power
:STATe ON | OFF
:STARt
:DPCCh -60.0...0.0 dB
:DPDCh -60.0...0.0 dB
:STEP 0.0 to 6.0 dB
:RANGE
:UP 0.0 to 30.0 dB
:DOWN 0.0 to 30.0 dB
:SLENgth 1 to (800) (Frames)
:FREE? Þ <i> (Frames) Query only
:ORATe D15K | D30K | D60K | D120K | D240K | D480K |
D960K | X2 | X3 | X4 | X5 | X6 (S/s)
SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems SMIQ
1125.5555.03 E-93.182
Command Parameter Default
Unit Remark
[:SOURce]:W3GPp
:MSTation Mobile station
ENHanced
:DPCCh
:STATe ON | OFF
:POWer
:DPCCh -60.0 to 0.0 dB
:DPDCh -60.0 to 0.0 dB
:DERRor Insert bit errors in data
:STATe ON | OFF
:RATE 1E-1 to 1E-7
:BIT
:DPDCh? Þ <n> Query only
:DTCH? Þ <n> Query only
:DCCH? Þ <n> Query only
:BLOCk
:STATe ON | OFF
:RATE 1E-1 to 1E-7
:DTCH? Þ <n> Query only
:DCCH? Þ <n> Query only
:CHANnel<i> where i = 0 | [1] | 2 | 3 | 4 | 5 | 6
:SRATe? Þ D15K | D30K | D60K | D120K | D240K | D480K |
D960K (S/s)
:CHNCode? Channelization code
Query only
:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern | DLISt
:PATTern #B0 to B111..1, 1 to24
:DSELect 'name'
:DTCH PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern | DLISt
:PATTern #B0 to B111..1, 1 to 24
:DSELect 'name'
:DCCH PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern | DLISt
:PATTern #B0 to B111..1, 1 to 24
:DSELect 'name'
:ADDitional
:STATe ON | OFF
:COUNt 1 to 50
:SCODe
:STEP #H1 to #H100
:POWer
:OFFSet -20.0 to 20.0 dB
Note: The calculation of the W-CDMA sequences is rather time-consuming and should be re-started
for any new setting. The W-CDMA modulation is therefore switched off for each command
(:SOUR:W3GP:STAT OFF performed automatically). The user can now perform several settings
without any delay and has to switch on again the W-CDMA modulation (with
:SOUR:W3GP:STAT ON). The calculations are performed and the previous settings are
effective after this command is given.
SMIQ SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems
1125.5555.03 3.183 E-9
[:SOURce]:W3GPp:BSTation:ENHanced...
The commands for generating an enhanced 3 GPP W-CDMA signal for the base stations are
under this node. They are only available with option SMIQB48 installed. They are only effective if
the link direction is set to FORW (SOUR:W3GP:LINK FORW) and are only valid for base station 1
(suffix 2, 3 or 4 after BSTation – as in the higher W-CDMA commands – is not permitted).
[:SOURce]:W3GPp:BSTation:ENHanced:STATe ON | OFF
The command activates (up to 4) enhanced channels (ON) or deactivates them (OFF).
Example: :SOUR:W3GP:BST:ENH:STAT ON *RST value is OFF
[:SOURce]:W3GPp:BSTation:ENHanced:CCODing...
The commands for the channel coding of all enhanced channels are under this node.
[:SOURce]:W3GPp:BSTation:ENHanced:CCODing:STATe ON | OFF
The command activates or deactivates the channel coding of all enhanced channels.
Example: :SOUR:W3GP:BST:ENH:CCOD:STAT ON *RST value is OFF
[:SOURce]:W3GPp:BSTation:ENHanced:PCCPch[:STATe]ON | OFF
The command activates (ON) or deactivates (OFF) the Enhanced P-CCPCH/BCH_Channel
including SFN. This enables channel 4 to be set. The only other channel that can be set, however,
is channel 11 (see :SOUR:W3GP:BST:ENH:CHAN<i>...).
Example: :SOUR:W3GP:BST:ENH:PCCP ON *RST value is OFF
[:SOURce]:W3GPp:BSTation:ENHanced:CCODing:TYPE M12K2 | M64K | M144K | M384K | AMR
The command sets one of four measurement channel coding types that are predefined by 3GPP
and differ in the data bit rate to be processed. Also the AMR-CODER schematic can be switched on.
Example: :SOUR:W3GP:BST:ENH:CCOD:TYPE M144K *RST value is M12K2
[:SOURce]:W3GPp:BSTation:ENHanced:CCODing:INTerleaver[1] ON | OFF
The command switches the channel coding interleaver stage 1 on or off. Suffix 1 can be given as
an option
Example: :SOUR:W3GP:BST:ENH:CCOD:INT OFF *RST value is ON
[:SOURce]:W3GPp:BSTation:ENHanced:CCODing:INTerleaver2 ON | OFF
The command switches the channel coding interleaver stage 2 on or off.
Example: :SOUR:W3GP:BST:ENH:CCOD:INT2 OFF *RST value is ON
[:SOURce]:W3GPp:BSTation:ENHanced:EPOWer:STATe ON | OFF
The command activates the external power control mechanism of the enhanced channels on or off.
Example: :SOUR:W3GP:BST:ENH:EPOW:STAT ON *RST value is OFF
[:SOURce]:W3GPp:BSTation:ENHanced:EPOWer:STEP 0 to 6.0 dB
The command sets the step width of the channel power for the external power control mechanism.
Example: :SOUR:W3GP:BST:ENH:EPOW:STEP 3.1 *RST value is 1.0
SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems SMIQ
1125.5555.03 E-93.184
[:SOURce]:W3GPp:BSTation:ENHanced:EPOWer:RANGe:UP 0 to 30.0 dB
The command sets the dynamic range for ranging up the channel power.
Example: :SOUR:W3GP:BST:ENH:EPOW:RANG:UP 6.0 *RST value is 10.0
[:SOURce]:W3GPp:BSTation:ENHanced:EPOWer:RANGe:DOWN 0 to 30.0 dB
The command sets the dynamic range for ranging down the channel power.
Example: :SOUR:W3GP:BST:ENH:EPOW:RANG:DOWN 3.0 *RST value is 10.0
[:SOURce]:W3GPp:BSTation:ENHanced:SLENgth 1 to (800)
The command sets the radio frame sequence length. The maximum size depends on the
available memory capacity.
Example: :SOUR:W3GP:BST:ENH:SLEN 23 *RST value is 1
[:SOURce]:W3GPp:BSTation:ENHanced:SLENgth:FREE?
The command queries the free memory available for the radio frame sequence.
Example: :SOUR:W3GP:BST:ENH:SLEN:FREE?
[:SOURce]:W3GPp:BSTation:ENHanced:PCCPch:SLENgth?
The command queries the frame sequence length of P-CCPCH/BCH.
Example: :SOUR:W3GP:BST:ENH:PCCP:SLEN?
[:SOURce]:W3GPp:BSTation:ENHanced:SRATe D7K5 | D15K | D30K | D60K | D120K | D240K |
D480K | D960K
The command sets the symbol rate of the enhanced channels.
Example: :SOUR:W3GP:BST:ENH:SRATE D120K *RST value is D15K
[:SOURce]:W3GPp:BSTation:ENHanced:TOFFset 0 to 149
The command sets the timing offset (in *256 chips) by which the corresponding channel is sent.
Example: :SOUR:W3GP:BST:ENH:TOFF 32 *RST value is 0
[:SOURce]:W3GPp:BSTation:ENHanced:PLENgth BIT2 | BIT4 | BIT8 | BIT16
The command sets the pilot field size for the corresponding channel.
Example: :SOUR:W3GP:BST:ENH:PLEN 8 *RST value is 4
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BIT:STATe ON | OFF
The command switches the insertion of bit errors into the data fields on or off.
Example: :SOUR:W3GP:BST:ENH:DERR:BIT:STAT ON *RST value is OFF
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BIT:RATE 1E-1 to 1E-7
The command sets the bit error rate desired by the user.
Example: :SOUR:W3GP:BST:ENH:DERR:BIT:RATE 1E-6 *RST value is 1E-3
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BIT:DPCH?
The command queries the resulting bit error rate of DPCH since the rate desired by the user
cannot be precisely calculated.
Example: :SOUR:W3GP:BST:ENH:DERR:BIT:DPCH?
SMIQ SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems
1125.5555.03 3.185 E-9
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BIT:DTCH?
The command queries the resulting bit error rate of the DTCHs since the rate desired by the user
cannot be precisely calculated.
Example: :SOUR:W3GP:BST:ENH:DERR:BIT:DTCH?
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BIT:DCCH?
The command queries the resulting bit error rate of the DCCHs since the rate desired by the user
cannot be precisely calculated.
Example: :SOUR:W3GP:BST:ENH:DERR:BIT:DCCH?
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BLOCk:STATe ON | OFF
The command switches the insertion of bit errors into the CRC fields of the channel-coding stage
on or off.
Example: :SOUR:W3GP:BST:ENH:DERR:BLOCk:STAT ON *RST value is OFF
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BLOCk:RATE 1E-1 to 1E-7
The command sets the bit error rate desired by the user into the CRC fields of the channel-coding
stage.
Example: :SOUR:W3GP:BST:ENH:DERR:BLOCk:RATE 1E-6 *RST value is 1E-3
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BLOCk:DTCH?
The command queries the resulting bit error rate of the DTCHs since the rate desired by the user
cannot be precisely calculated.
Example: :SOUR:W3GP:BST:ENH:DERR:BLOCk:DTCH?
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BLOCk:DCCH?
The command queries the resulting bit error rate of the DCCHs since the rate desired by the user
cannot be precisely calculated.
Example: :SOUR:W3GP:BST:ENH:DERR:BLOCk:DCCH?
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>
The commands that can separately be set for each channel are under this node. Channels 11 to 14
can be changed. Therefore, suffix i has 11, 12, 13 or 14 as valid values. With
:SOUR:W3GP:BST:ENH:PCCP ON set, channel 4 can also be set. The only other channel that
can be set, however, is channel 11.
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:STATe ON | OFF
The command switches the corresponding channel on or off.
Example: :SOUR:W3GP:BST:ENH:CHAN:STAT ON *RST value is OFF
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:CHNCode 0 to (511)
The command sets the channelization code for the corresponding channel.
Example: :SOUR:W3GP:BST:ENH:CHAN:CHNC 5 *RST value is 0
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:POWer:STARt -60.0 to 0 dB
The command sets the channel power for the external power control mechanism for the
corresponding channel.
Example: :SOUR:W3GP:BST:ENH:CHAN13:POW:STAR -20 *RST value is 0
SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems SMIQ
1125.5555.03 E-93.186
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:POWer:CONTrol OFF | UP | DOWN
The command sets the direction of the STEP for the external power control mechanism for the
corresponding channel.
Example: :SOUR:W3GP:BST:ENH:CHAN11:POW:CONT UP *RST value is OFF
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DATA PN9 | PN11 | PN15 | PN16 | ZERO |
ONE | PATTern | DLISt
The command selects the data source for the data fields of the corresponding channel.
PNx Pseudo random sequence of length x
ZERO All bits set to 0
ONE All bits set to 1
PATTern The bit pattern selected with :W3GP:BST:ENH:CHAN12:DATA:PATT
DLISt The data list selected with :W3GP:BST:ENH:CHAN12:DATA:DSEL
Example: :SOUR:W3GP:BST:ENH:CHAN12:DATA PN11 *RST value is PN15
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DATA:PATTern #B0 to #B111..1, 1 to 24
The command defines a bit pattern for the data of the corresponding channel. The first parameter
sets the bit pattern (optionally Hex, Oct or Bin syntax), the second one indicates the number of
bits to be used.
Example: :SOUR:W3GP:BST:ENH:CHAN12:DATA:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DATA:DSELect 'name'
The command defines a data list for the data of the corresponding channel.
Example: :SOUR:W3GP:BST:ENH:CHAN12:DATA:DSEL 'test' without *RST value
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DTCH PN9 | PN11 | PN15 | PN16 | ZERO |
ONE | PATTern | DLISt
The command selects the data source for the DTCH channel.
PNx pseudo random sequence of length x
ZERO all bits set to 0
ONE all bits set to 1
PATTern bit pattern selected with :W3GP:BST:ENH:CHAN12:DTCH:PATT
DLISt data list selected with :W3GP:BST:ENH:CHAN12:DTCH:DSEL
Example: :SOUR:W3GP:BST:ENH:CHAN12:DTCH PN11 *RST value is PN15
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DTCH:PATTern #B0 to #B111..1, 1 to 24
The command defines a bit pattern for the data of the DTCH channel. The first parameter sets the bit
pattern (optionally in hex, oct or bin notation), the second one indicates the number of bits to be used.
Example: :SOUR:W3GP:BST:ENH:CHAN12:DTCH:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DTCH:DSELect 'name'
The command selects a data list for the data of the DTCH channel.
Example: :SOUR:W3GP:BST:ENH:CHAN12:DTCH:DSEL 'test' without *RST value
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DCCH PN9 | PN11 | PN15 | PN16 | ZERO |
ONE | PATTern | DLISt
The command selects the data source for the DCCH channel.
PNx pseudo random sequence of length x
SMIQ SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems
1125.5555.03 3.187 E-9
ZERO all bits set to 0
ONE all bits set to 1
PATTern bit pattern selected with :W3GP:BST:ENH:CHAN12:DCCH:PATT
DLISt data list selected with :W3GP:BST:ENH:CHAN12:DCCH:DSEL
Example: :SOUR:W3GP:BST:ENH:CHAN12:DCCH PN11 *RST value is PN15
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DCCH:PATTern #B0 to #B111..1, 1 to 24
The command defines a bit pattern for the data of the DCCH channel. The first parameter sets the bit
pattern (optionally in hex, oct or bin notation), the second one indicates the number of bits to be used.
Example: :SOUR:W3GP:BST:ENH:CHAN12:DCCH:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DCCH:DSELect 'name'
The command selects a data list for the data of the DCCH channel.
Example: :SOUR:W3GP:BST:ENH:CHAN12:DCCH:DSEL 'test' without *RST value
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:TPC ZERO | ONE | PATTern | DLISt
The command selects the data source for the TPC field of the corresponding channel.
ZERO All bits set to 0
ONE All bits set to 1
PATTern The bit pattern selected with :W3GP:BST:ENH:CHAN12:TPC:PATT
DLISt The data list selected with :W3GP:BST:ENH:CHAN12:TPC:DSEL
The command selects the data source for the TPC field of the corresponding channel.
Example: :SOUR:W3GP:BST:ENH:CHAN12:TPC ZERO *RST value is PATT
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:TPC:PATTern #B0 to #B111..1, 1 to 24
The command defines a bit pattern for the TPC field of the corresponding channel. The first
parameter sets the bit pattern (optionally Hex, Oct or Bin syntax), the second one indicates the
number of bits to be used.
Example: :SOUR:W3GP:BST:ENH:CHAN12:TPC:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:TPC:DSELect 'name'
The command selects a data list for the TPC field of the corresponding channel.
Example: :SOUR:W3GP:BST:ENH:CHAN12:TPC:DSEL 'test' without *RST value
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:MCODe ON | OFF
The command switches the multicode for the corresponding channel on or off.
Example: :SOUR:W3GP:BST:ENH:CHAN12:MCOD ON *RST value is OFF
[:SOURce]:W3GPp:BSTation:OCNS...
The commands for generating the OCNS superimposed impairments for the enhanced 3 GPP W-
CDMA channels are under this node. The commands are only available with option SMIQB48
installed. They are only effective if the link direction is set to FORW (SOUR:W3GP:BST:ENH:LINK
FORW) and are only valid for base station 1 (suffix 2, 3 or 4 after BSTation – as in the higher
W-CDMA commands – is not permitted). All OCNS settings become effective only after execution
of :W3GP:BST:OCNS:EXEC.
[:SOURce]:W3GPp:BSTation:OCNS:STATe ON | OFF
The command activates the OCNS channels (ON) or deactivates them (OFF).
Example: :SOUR:W3GP:BST:OCNS:STAT ON *RST value is OFF
SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems SMIQ
1125.5555.03 E-93.188
[:SOURce]:W3GPp:BSTation:OCNS:COUNt 1 to (508)
The command sets the number of OCNS channels that are added in addition to the enhanced
channels. The maximum number depends on the OCNS symbol rate.
Example: :SOUR:W3GP:BST:OCNS:COUN 6 *RST value is 10
[:SOURce]:W3GPp:BSTation:OCNS:SRATe D7K5 | D15K | D30K | D60K | D120K | D240K | D480K | D960K
The command sets the symbol rate of all OCNS channels.
Example: :SOUR:W3GP:BST:OCNS:SRAT D120K *RST value is D30K
[:SOURce]:W3GPp:BSTation:OCNS:CRESt MINimum | AVERage | WORSt
The command selects the type of optimization for the crest factor.
MINimum Minimum crest factor
AVERage Average crest factor
WORSt Maximum crest factor
Example: :SOUR:W3GP:BST:OCNS:CRES WORS *RST value is MIN
[:SOURce]:W3GPp:BSTation:OCNS:POWer -60.0 to 0 dB
The command sets the power part of OCNS channels with reference to the total signal.
Example: :SOUR:W3GP:BST:OCNS:POW –6.0 *RST value is -5.2
[:SOURce]:W3GPp:BSTation:OCNS:PCCPch:STATe ON | OFF
The command switches the P-CCPCH (for the OCNS channels) on or off.
Example: :SOUR:W3GP:BST:OCNS:PCCP:STAT OFF *RST value is ON
[:SOURce]:W3GPp:BSTation:OCNS:PCCPch:POWer -60.0 to 0 dB
The command sets the power part of P-CCPCH with reference to the total signal.
Example: :SOUR:W3GP:BST:OCNS:PCCP:POW –9.0 *RST value is -10.0
[:SOURce]:W3GPp:BSTation:OCNS:EPOWer -60.0 to 0 dB
The command sets the power part of the enhanced channels with reference to the total signal.
Example: :SOUR:W3GP:BST:OCNS:EPOW -20 *RST value is 0
[:SOURce]:W3GPp:BSTation:OCNS:EXECute
The channel table for the OCNS superimposed impairments are filled with this command. All
OCNS settings become valid. Moreover, the calculation of W-CDMA sequences has to be started
with :SOUR:W3GP:STAT ON for the channel table to become effective.
Example: :SOUR:W3GP:BST:OCNS:EXEC
[:SOURce]:W3GPp:MSTation:ENHanced...
The commands for generating an enhanced 3 GPP W-CDMA signal for the mobile station are
under this node. They are only available with option SMIQB48 installed. They are only effective if
the link direction is set to REVerse (SOUR:W3GP:LINK REV) and are only valid for mobile station 1
(suffix 2, 3 or 4 after MSTation – as in the higher W-CDMA commands – is not permitted).
[:SOURce]:W3GPp:MSTation:ENHanced:STATe ON | OFF
The command activates (up to 4) enhanced channels (ON) or deactivates them (OFF).
Example: :SOUR:W3GP:MST:ENH:STAT ON *RST value is OFF
SMIQ SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems
1125.5555.03 3.189 E-9
[:SOURce]:W3GPp:MSTation:ENHanced:CCODing
The commands for the channel coding of all enhanced channels are under this node.
[:SOURce]:W3GPp:MSTation:ENHanced:CCODing:STATe ON | OFF
The command activates or deactivates the channel coding of all enhanced channels.
Example: :SOUR:W3GP:MST:ENH:CCOD:STAT ON *RST value is OFF
[:SOURce]:W3GPp:MSTation:ENHanced:CCODing:TYPE M12K2 | M64K | M144K | M384K | AMR
The command sets one of four measurement channel coding types that are predefined by 3GPP
and differ in the data bit rate to be processed. Also the AMR-CODER schematic can be switched
on.
Example: :SOUR:W3GP:MST:ENH:CCOD:TYPE M144K *RST value is M12K2
[:SOURce]:W3GPp:MSTation:ENHanced:CCODing:INTerleaver[1] ON | OFF
The command switches the channel coding interleaver stage 1 on or off. Suffix 1 can be given as
an option.
Example: :SOUR:W3GP:MST:ENH:CCOD:INT OFF *RST value is ON
[:SOURce]:W3GPp:MSTation:ENHanced:CCODing:INTerleaver2 ON | OFF
The command switches the channel coding interleaver stage 2 on or off.
Example: :SOUR:W3GP:MST:ENH:CCOD:INT2 OFF *RST value is ON
[:SOURce]:W3GPp:MSTation:ENHanced:EPOWer:STATe ON | OFF
The command activates the external power control mechanism of the enhanced channels on or off.
Example: :SOUR:W3GP:MST:ENH:EPOW:STAT ON *RST value is OFF
[:SOURce]:W3GPp:MSTation:ENHanced:EPOWer:STEP 0 to 6.0 dB
The command sets the step width of the channel power for the external power control
mechanism.
Example: :SOUR:W3GP:MST:ENH:EPOW:STEP 3.0 *RST value is 1.0
[:SOURce]:W3GPp:MSTation:ENHanced:EPOWer:RANGe:UP 0 to 30.0 dB
The command sets the dynamic range for ranging up the channel power.
Example: :SOUR:W3GP:MST:ENH:EPOW:RANG:UP 12.0 *RST value is 10
[:SOURce]:W3GPp:MSTation:ENHanced:EPOWer:RANGe:DOWN 0 to 30.0 dB
The command sets the dynamic range for ranging down the channel power.
Example: :SOUR:W3GP:MST:ENH:EPOW:RANG:DOWN 3.4 *RST value is 10
[:SOURce]:W3GPp:MSTation:ENHanced:SLENgth 1 to (800)
The command sets the radio frame sequence length. The maximum size depends on the
available memory capacity.
Example: :SOUR:W3GP:MST:ENH:SLEN 3 *RST value is 1
[:SOURce]:W3GPp:MSTation:ENHanced:SLENgth:FREE?
The command queries the free memory available for the radio frame sequence.
Example: :SOUR:W3GP:MST:ENH:SLEN:FREE?
SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems SMIQ
1125.5555.03 E-93.190
[:SOURce]:W3GPp:MSTation:ENHanced:ORATe D15K | D30K | D60K | D120K | D240K | D480K |
D960K | X2 | X3 | X4 | X5 | X6
The command sets the overall symbol rate of the enhanced channels.
Example: :SOUR:W3GP:MST:ENH:ORAT D120K *RST value is D30K
[:SOURce]:W3GPp:MSTation:ENHanced:DPCCh:STATe ON | OFF
This command switches the calculation mode for the DPCCH.
Example: :SOUR:W3GP:MST:ENH:DPCC:STAT OFF *RST value is ON
[:SOURce]:W3GPp:MSTation:ENHanced:POWer:DPCCh -60.0 to 0 dB
The command sets the channel start power of the DPCCH.
Example: :SOUR:W3GP:MST:ENH:POW:DPCC -30 *RST value is 0
[:SOURce]:W3GPp:MSTation:ENHanced:POWer:DPDCh -60.0 to 0 dB
The command sets the channel start power of DPDCH.
Example: :SOUR:W3GP:MST:ENH:POW:DPDC -30 *RST value is 0
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BIT:STATe ON | OFF
The command switches the insertion of bit errors into the data fields on or off.
Example: :SOUR:W3GP:MST:ENH:DERR:BIT:STAT ON *RST value is OFF
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BIT:RATE 1E-1 to 1E-7
The command sets the bit error rate desired by the user.
Example: :SOUR:W3GP:MST:ENH:DERR:BIT:RATE 1E-6 *RST value is 1E-3
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BIT:DPDCh?
The command queries the resulting bit error rate since the rate desired by the user cannot be
precisely calculated.
Example: :SOUR:W3GP:MST:ENH:DERR:BIT:DPDC?
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BIT:DTCH?
The command queries the resulting bit error rate of the DTCHs since the rate desired by the user
cannot be precisely calculated.
Example: :SOUR:W3GP:MST:ENH:DERR:BIT:DTCH?
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BIT:DCCH?
The command queries the resulting bit error rate of the DCCHs since the rate desired by the user
cannot be precisely calculated.
Example: :SOUR:W3GP:MST:ENH:DERR:BIT:DCCH?
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BLOCk:STATe ON | OFF
The command switches the insertion of bit errors into the CRC fields of the channel-coding stage
on or off.
Example: :SOUR:W3GP:MST:ENH:DERR:BLOCk:STAT ON *RST value is OFF
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BLOCk:RATE 1E-1 to 1E-7
The command sets the bit error rate desired by the user into the CRC fields of the channel-coding
stage.
Example: :SOUR:W3GP:MST:ENH:DERR:BLOCk:RATE 1E-6 *RST value is 1E-3
SMIQ SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems
1125.5555.03 3.191 E-9
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BLOCk:DTCH?
The command queries the resulting bit error rate of the DTCHs since the rate desired by the user
cannot be precisely calculated.
Example: :SOUR:W3GP:MST:ENH:DERR:BLOCk:DTCH?
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BLOCk:DCCH?
The command queries the resulting bit error rate of the DCCHs since the rate desired by the user
cannot be precisely calculated.
Example: :SOUR:W3GP:MST:ENH:DERR:BLOCk:DCCH?
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>
The commands that can separately be set for each channel are under this node. Channels 1 to 6
(0=DPCCH; 1 to 6=DPDCH) can be changed which is why suffix i has 0 to 6 as valid values.
Without suffix, channel 1 is set.
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:SRATe?
The command queries the resulting symbol rate.
Example: :SOUR:W3GP:MST:ENH:CHAN:SRAT?
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:CHNCode?
The command queries the channelization code for the corresponding enhanced channel.
Example: :SOUR:W3GP:MST:ENH:CHAN:CHNC?
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DATA PN9 | PN11 | PN15 | PN16 | ZERO |
ONE | PATTern | DLISt
The command selects the data source for the data fields of the corresponding channel.
PNx pseudo random sequence of length x
ZERO all bits set to 0
ONE all bits set to 1
PATTern the bit pattern selected with :W3GP:MST:ENH:CHAN2:DATA:PATT
DLISt the data list selected with :W3GP:MST:ENH:CHAN2:DATA:DSEL
Example: :SOUR:W3GP:MST:ENH:CHAN:DATA PATT *RST value is PN15
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DATA:PATTern #B0 to #B111..1, 1 to 24
The command defines a bit pattern for the data of the corresponding channel. The first parameter
sets the bit pattern (optionally Hex, Oct or Bin syntax), the second one indicates the number of
bits to be used.
Example: :SOUR:W3GP:MST:ENH:CHAN2:DATA:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DATA:DSELect 'name'
The command defines a data list for the data of the corresponding channel.
Example: :SOUR:W3GP:MST:ENH:CHAN:DATA:DSEL 'test' without *RST value
SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems SMIQ
1125.5555.03 E-93.192
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DTCH PN9 | PN11 | PN15 | PN16 | ZERO |
ONE | PATTern | DLISt
The command selects the data source for the DTCH channel.
PNx pseudo random sequence of length x
ZERO all bits set to 0
ONE all bits set to 1
PATTern bit pattern selected with :W3GP:MST:ENH:CHAN2:DTCH:PATT
DLISt data list selected with :W3GP:MST:ENH:CHAN2:DTCH:DSEL
Example: :SOUR:W3GP:MST:ENH:CHAN2:DTCH PN11 *RST value is PN15
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DTCH:PATTern #B0 to #B111..1, 1 to 24
The command defines a bit pattern for the data of the DTCH channel. The first parameter sets the
bit pattern (optionally in hex, oct or bin notation), the second one indicates the number of bits to be
used.
Example: :SOUR:W3GP:MST:ENH:CHAN2:DTCH:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DTCH:DSELect 'name'
The command selects a data list for the data of the DTCH channel.
Example: :SOUR:W3GP:MST:ENH:CHAN2:DTCH:DSEL 'test' without *RST value
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DCCH PN9 | PN11 | PN15 | PN16 | ZERO |
ONE | PATTern | DLISt
The command selects the data source for the DCCH channel.
PNx pseudo random sequence of length x
ZERO all bits set to 0
ONE all bits set to 1
PATTern bit pattern selected with :W3GP:MST:ENH:CHAN2:DCCH:PATT
DLISt data list selected with :W3GP:MST:ENH:CHAN2:DCCH:DSEL
Example: :SOUR:W3GP:MST:ENH:CHAN2:DCCH PN11 *RST value is PN15
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DCCH:PATTern #B0 to #B111..1, 1 to 24
The command defines a bit pattern for the data of the DCCH channel. The first parameter sets the
bit pattern (optionally in hex, oct or bin notation), the second one indicates the number of bits to be
used.
Example: :SOUR:W3GP:MST:ENH:CHAN2:DCCH:PATT #H3F, 8 *RST value is #H0, 1
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DCCH:DSELect 'name'
The command selects a data list for the data of the DCCH channel.
Example: :SOUR:W3GP:MST:ENH:CHAN2:DCCH:DSEL 'test' without *RST value
[:SOURce]:W3GPp:MSTation:ADDitional...
The commands with which up to 50 further secondary mobile stations – in addition to the 4
primary mobile stations – can be added are under this node. The settings for them are based on
the settings of primary mobile station 4. The commands are only available if option SMIQB48 is
installed. They are only effective if the LINK direction is set to REVerse (SOUR:W3GP:LINK REV).
[:SOURce]:W3GPp:MSTation:ADDitional:STATe ON | OFF
The command switches the additional mobile stations on or off.
Example: :SOUR:W3GP:MST:ADD:STAT ON *RST value is OFF
SMIQ SOURce:W3GPp:ENHanced/OCNS/ADDitional Subsystems
1125.5555.03 3.193 E-9
[:SOURce]:W3GPp:MSTation:ADDitional:COUNt 1 to 50
The command determines the number of additional mobile stations.
Example: :SOUR:W3GP:MST:ADD:COUN 6 *RST value is 4
[:SOURce]:W3GPp:MSTation:ADDitional:SCODe:STEP #H1 to #H1000
The command sets the initialization increment of the scrambling code – relative to mobile station 4.
Example: :SOUR:W3GP:MST:ADD:SCOD:STEP #H55 *RST value is #H1
[:SOURce]:W3GPp:MSTation:ADDitional:POWer:OFFset -20.0 to 20.0 dB
The command sets the power offset of the additional mobile stations relative to the powers of the
primary mobile stations.
Example: :SOUR:W3GP:MST:ADD:POW:OFFS –3.1 *RST value is 0
SOURce2:FREQuency Subsystem SMIQ
1125.5555.03 3.194 E-9
3.5.15 SOURce2 System
The SOURce2 system contains the commands to configure the LF signal source. It is designated as
INT if used as a modulation source (cf. command SOURce:AM:SOURce INT, e.g.).
The commands to set the output voltage of the LF generators are in the OUTPut2 system.
Subsystems Settings
:SOURce2
:FREQuency
:MARKer
:SWEep
Frequency with CW and sweep operation.
Marker for LF sweeps (only possible using SOURce2)
LF sweep (only possible using SOURce2)
3.5.15.1 SOURce2:FREQuency Subsystem
This subsystem contains the commands for the frequency settings in operating modes CW and SWEep
for the LF generator.
Command Parameter Default
Unit Remark
:SOURce2
:FREQuency
[:CW|:FIXed]
:MANual
:MODE
:STARt
:STOP
0.1 Hz to 1 MH
0.1 Hz to 1 MHz
CW|FIXed | SWEep
0.1 Hz to 1 MHz
0.1 Hz to 1 MHz
Hz
Hz
Hz
Hz
:SOURce2:FREQuency[:CW | :FIXed] 0.1 Hz to 1 MHz
The command sets the frequency for the CW mode. *RST value is 1 kHz
Example: :SOUR2:FREQ:CW 1kHz
:SOURce2:FREQuency:MANual 0.1 Hz to 1 MHz
The command sets the frequency if
:SOURce2:SWEep:MODe MANual and SOURce2:FREQuency:MODe SWEep are set. In this
case, only frequency values between the settings SOURce2:FREQuency:STARt and ...:STOP
are allowed.
Example: :SOUR2:FREQ:MAN 1kHz *RST value is 1kHz
SMIQ SOURce2:FREQuency Subsystem
1125.5555.03 E-93.195
:SOURce2:FREQuency:MODE CW|FIXed | SWEep
The command specifies the operating mode and hence by means of which commands the
FREQuency subsystem is checked. The following allocations are valid:
CW |FIXed CW and FIXed are synonyms. The output frequency is specified by means of
SOURce2:FREQuency:CW |FIXed.
SWEep The generator operates in the SWEep mode. The frequency is specified by means
of commands SOURce2:FREQuency:STARt; STOP; MANual.
Example: :SOUR2:FREQ:MODE CW *RST value is CW
:SOURce2:FREQuency:STARt 0.1 Hz to 1 MHz
This command indicates the starting value of the frequency for the sweep.
Example: :SOUR2:FREQ:STAR 100kHz *RST value is 1kHz
:SOURce2:FREQuency:STOP 0.1 Hz to 1 MHz
This command indicates the end value of the frequency for the sweep.
Example: :SOUR2:FREQ:STOP 200kHz *RST value is 100 kHz
SOURce2:MARKer Subsystem SMIQ
1125.5555.03 3.196 E-9
3.5.15.2 SOURce2:MARKer Subsystem
This subsystem contains the commands to check the marker generation in the case of LF sweeps. The
three markers existing are differentiated by a numeric suffix after marker.
Command Parameter Default
Unit Remark
:SOURce2
:MARKer1|2|3
[:FSWeep]
:AOFF
:FREQuency
[:STATe]
:POLarity
0.1 Hz to 1 MHz
ON | OFF
NORMal | INVerted
Hz
Option SM-B2/B6
No query
:SOURce2:MARKer1|2|3[:FSWeep]
The commands for the markers with the LF frequency sweep (Frequency SWeep) are under this
node. Keyword [:FSWeep] can also be omitted, then the command conforms to SCPI regulation
(see examples).
:SOURce2:MARKer1|2|3[:FSWeep]:AOFF
The command switches off all LF frequency markers. This command triggers an event, thus is
has no *RST value and no query form.
Example: :SOUR2:MARK:AOFF
:SOURce2:MARKer1|2|3[:FSWeep]:FREQuency 0.1 Hz to 1 MHz
The command sets the marker selected by the numeric suffix at MARKer to the frequency
indicated. *RST value for MARK1: 100kHz
MARK2: 10kHz
Example: :SOUR2:MARK1:FREQ 9000 MARK3: 1kHz
:SOURce2:MARKer1|2|3[:FSWeep][:STATe] ON | OFF
The command switches on or off the marker selected by the numeric suffix at MARKer.
Example: :SOUR2:MARK1:STAT ON *RST value is OFF
:SOURce2:MARKer1|2|3:POLarity NORMal | INVerted
The command specifies the polarity of the marker signal as follows:
NORMal When running through the marker condition, TTL level is applied at the marker
output, otherwise 0 V.
INVers When running through the marker condition, 0 V is applied at the marker output,
otherwise TTL level. *RST value is NORM
Example: :SOUR2:MARK1:POL INV
SMIQ SOURce2:SWEep Subsystem
1125.5555.03 E-93.197
3.5.15.3 SOURce2:SWEep Subsystem
This subsystem contains the commands to check the LF sweep of SOURce2. Sweeps are triggered on
principle.
Command Parameter Default
Unit Remark
:SOURce2
:SWEep
:BTIMe
[:FREQuency]
:DWELl
:MODE
:POINts
:SPACing
:STEP
[:LINear]
:LOGarithmic
NORMal | LONG
1 ms to 1 s
AUTO | MANual | STEP
Number
LINear | LOGarithmic
0 to 500 kHz
0.01 PCT to 50 PCT
s
Hz
PCT
Option SM-B2
:SOURce2:SWEep:BTIMe NORMal | LONG
The command sets the blank time (Blank TIMe) of the sweep. The setting is valid for all sweeps,
i.e., also for RF sweeps
NORMal Blank time as short as possible.
LONG Blank time long enough to permit an X/Y recorder to return to 0.
Example: :SOUR2:SWE:BTIM LONG *RST value is NORM
:SOURce2:SWEep[:FREQuency]
The commands to set the frequency sweeps are under this node. Keyword [:FREQuency] can be
omitted. Then the commands are SCPI-compatible unless stated otherwise (see examples).
:SOURce2:SWEep[:FREQuency]:DWELl 1 ms to 1 s
The command sets the time per frequency step (dwell).
Example: :SOUR2:SWE:DWEL 20ms *RST value is 15 ms
:SOURce2:SWEep[:FREQuency]:MODE AUTO | MANual | STEP
The command specifies the run of the sweep.
AUTO Each trigger triggers exactly one entire sweep cycle.
STEP Each trigger triggers only one sweep step (single-step mode). The frequency
increases by the value indicated under :SOURce2:SWEep
Example: :SOUR2:SWE:MODE AUTO *RST value is AUTO
SOURce2:SWEep Subsystem SMIQ
1125.5555.03 3.198 E-9
:SOURce2:SWEep[:FREQuency]:POINts Number
The command determines the number of steps in a sweep. Instead of this command, commands
:SOURce2:FREQuency:STEP:LINear and :SOURce2 :FREQuency:STEP:LOGarithmic
should be used, as :SOURce2:SWEep:FREQuency: POINts has been adapted to the
instrument characteristics in comparison to the SCPI command. The value of POINts depends on
SPAN and STEP according to the following formulas.
The following is true of linear sweeps : POINts = SPAN / STEP:LIN + 1
The following is true of logarithmic sweeps and STARt < STOP:
POINts = ((log STOP log STARt) / log STEP:LOG) + 1
Two independent POINts values are used for SPACing LOG and SPACing LIN. That is to say,
before POINts is changed, SPACing must be set correctly. A change of POINts causes an
adaption of STEP, but not of STARt, STOP and SPAN.
Example: :SOUR2:SWE:POIN 50
:SOURce2:SWEep[:FREQuency]:SPACing LINear | LOGarithmic
The command selects whether the steps have linear or logarithmic spacings.
Example: :SOUR2:SWE:SPAC LOG *RST value is LINear
:SOURce2:SWEep[:FREQuency]:STEP
The commands to set the step width with linear and logarithmic sweeps are under this node. The
settings of STEP:LIN and STEP:LOG are independent of each other.
:SOURce2:SWEep[:FREQuency]:STEP[:LINear] 0 to 500 kHz
The command sets the step width with the linear sweep. If STEP:LINear is changed, the value of
POINts valid for SPACing:LINear also changes according to the formula indicated under POINts.
A change of SPAN does not cause a change of STEP:LINear. Keyword [:LINear] can be omitted,
then the command conforms to SCPI regulation (see example)
Example: :SOUR2:SWE:STEP 10kHz *RST value is 1 kHz
:SOURce2:SWEep[:FREQuency]:STEP:LOGarithmic 0.01 to 50PCT
The command indicates the step width factor for logarithmic sweeps. The next frequency value of
a sweep is calculated according to (if STARt < STOP) :
new frequency = prior frequency + STEP:LOG x prior frequency
Thus STEP:LOG indicates the fraction of the prior frequency by which this is increased for the
next sweep step. Usually STEP:LOG is indicated in percent, with the suffix PCT having to be
used explicitly. If STEP:LOG is changed, the value of POINts valid for SPACing:LOGarithmic also
changes according to the formula stated unde
Example: :SOUR2:SWE:STEP:LOG 5PCT *RST value is 1 PCT
SMIQ STATus System
1125.5555.03 E-93.199
3.5.16 STATus System
This system contains the commands for the status reporting system (c.f. Section "Status Reporting
System"). *RST has no influence on the status registers.
Command Parameter Default
Unit Remark
:STATus
:OPERation
[:EVENt]?
:CONDition?
:PTRansition
:NTRansition
:ENABle
:PRESet
:QUEStionable
[:EVENt]?
:CONDition?
:PTRansition
:NTRansition
:ENABle
:QUEue
[:NEXT]?
0 to 32767
0 to 32767
0 to 32767
0 to 32767
0 to 32767
0 to 32767
Query only
Query only
No query
Query only
Query only
Query only
:STATus:OPERation
The commands for the STATus:OPERation register are under this node.
:STATus:OPERation[:EVENt]?
The command queries the content of the EVENt part of the STATus:OPERation register. In
reading out, the content of the EVENt part is deleted.
Example: :STAT:OPER:EVEN? Response: 17
:STATus:OPERation:CONDition?
The command queries the content of the CONDition part of the STATus:OPERation register. In
reading out, the content of the CONDition part is not deleted. The value returned directly reflects
the current hardware state.
Example: :STAT:OPER:COND? Response: 1
:STATus:OPERation:PTRansition 0 to 32767
The command (Positive TRansition) sets the edge detectors of all bits of the STATus:OPERation
register from 0 to1 for the transitions of the CONDition bits.
Example: :STAT:OPER:PTR 32767
:STATus:OPERation:NTRansition 0 to 32767
The command (Negative TRansition) sets the edge detectors of all bits of the STATus:OPERation
register from 1 to 0 for the transitions of the CONDition bit.
Example: :STAT:OPER:NTR 0
STATus System SMIQ
1125.5555.03 3.200 E-9
:STATus:OPERation:ENABle 0 to 32767
The command sets the bits of the ENABle register. This register selectively enables the individual
events of the appropriate status event register for the sum bit in the status byte.
Example: :STAT:OPER:ENAB 1
:STATus:PRESet
The command resets the edge detectors and ENABle parts of all registers to a defined value. All
PTRansition parts are set to FFFFh, i.e., all transitions from 0 to 1 are detected. All NTRansition
parts are set to 0, i.e., a transition from 1 to 0 in a CONDition bit is not detected. The ENABle
parts of STATus:OPERation and STATus:QUEStionable are set to 0, i.e., all events in these
registers are not passed on.
Example: :STAT:PRES
:STATus:QUEStionable
The commands for the STATus:QUEStionable register are under this node.
:STATus:QUEStionable[:EVENt]?
The command queries the content of the EVENt part of the STATus:QUEStionable register. In
reading out, the content of the EVENt part is deleted.
Example: :STAT:QUES:EVEN? Response: 1
:STATus:QUEStionable:CONDition?
The command queries the content of the CONDition part of the STATus:QUEStionable register.
In reading out, the content of the CONDition part is not deleted.
Example: :STAT:QUES:COND? Response: 2
:STATus:QUEStionable:PTRansition 0 to 32767
The command (Positive TRansition) sets the edge detectors of all bits of the
STATus:QUEStionable register from 0 to 1 for transitions of the CONDition bit.
Example: :STAT:QUES:PTR 32767
:STATus:QUEStionable:NTRansition 0 to 32767
The command (Negative TRansition) sets the edge detectors of all bits of the
STATus:QUEStionable register from 1 to 0 for transitions of the CONDition bit.
Example: :STAT:QUES:NTR 0
:STATus:QUEStionable:ENABle 0 to 32767
The command sets the bits of the ENABle part of the STATus:QUEStionable register. This part
selectively enables the individual events of the appropriate EVENt part for the sum bit in the
status byte
Example: :STAT:QUES:ENAB 1
:STATus:QUEue[:NEXT]?
The command queries the entry that has been in the error queue for the longest time and thus
deletes it. Positive error numbers denote errors specific of the instrument, negative error numbers
error messages specified by SCPI (see annex B). If the error queue is empty, 0, "No error", is
returned. The command is identical to SYSTem :ERRor?
Example: STATus:QUEue:NEXT? Response: -221, "Settings conflict"
SMIQ SYSTem System
1125.5555.03 E-93.201
3.5.17 SYSTem System
In this system, a number of commands for general functions which are not immediately related to signal
generation, are combined.
Command Parameter Default
Unit Remark
:SYSTem
:BEEPer
:STATe
:COMMunicate
:GPIB
:LTERminator
[:SELF]
:ADDRess
:SDATa
:BAUD
:SERial
:CONTrol
:RTS
:BAUD
:PACE
:ERRor?
:KLOCk
:MODE
:MSEQuence
:CATalog?
:DELete
:ALL
:DWELl
:FREE?
:MODE
[:RCL]
:POINts?
:SELect
:PRESet
:PROTect1|2|3
[:STATe]
:SECurity
[:STATe]
:SERRor?
:VERSion?
:SSAVe
:SREStore
!
ON | OFF
EOI | STANdard
0 to 30
1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 |
115200
ON | IBFull | RFR
1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 |
115200
XON | NONE
ON | OFF
FIXed | MSEQuence
"Name of sequence"
50 ms to 60 s {,50 ms to 60 s}
AUTO | STEP
1 to 50 {,1 to 50}
"Name of sequence"
ON | OFF , password
ON | OFF
1 to 1000
1 to 1000
<least significant byte> <most significant byte>
s
Query only
Query only
Query only
No query
Query only
Query only
SYSTem System SMIQ
1125.5555.03 3.202 E-9
:SYSTem:BEEPer:STATe ON | OFF
This node contains the commands to set the beeper fitted. *RST value is OFF
Example: :SYST:BEEP:STAT OFF
:SYSTem:COMMunicate:GPIB
The commands to check the IEC bus are under this node (GPIB = General Purpose Interface
Bus)
:SYSTem:COMMunicate:GPIB:LTERminator EOI | STANdard
The command activates the delimiter identification mode.
EOI only signs transmitted with the circuit message EOI are identified. The EOI mode
is particularly suitable for binary block transmission where an arbitrary sign not
representing a delimiter could accidentally have the value LF
STANdard LF (with or without EOI) is identified as a delimiter as well.
Example: :SYST:COMM:GPIB:LTER EOI *RST value is STAN
:SYSTem:COMMunicate:GPIB[:SELF]:ADDRess 1 to 30
The command sets the IEC bus instrument address. *RST value is 28
Example: :SYST:COMM:GPIB:ADDR 1
:SYSTem:COMMunicate:SDATa:BAUD 1200| 2400| 4800| 9600| 19200| 38400| 57600| 115200
The commands sets the baud rate for the asynchronous data (connector SERDATA) for digital
modulation and digital standards.. *RST has no influence on this parameter.
Example: :SYST:COMM:SDAR:BAUD 1200 *RST value is 9600
:SYSTem:COMMunicate:SERial
The command to set the serial interface are under this node. The data format is fixedly set to 8
data bits, no parity and 1 stop bit. These values cannot be changed. The device represents a DTE
(Data Terminal Equipment) in relation to the serial interface. Therefore the the controller must be
connected via a 0-modem.
:SYSTem:COMMunicate:SERial:BAUD 1200| 2400| 4800| 9600| 19200| 38400| 57600| 115200
The commands sets the baud rate for both the transmit and the receive direction. *RST has no
influence on this parameter.
Example: :SYST:COMM:SER:BAUD 1200 *RST value is 9600
:SYSTem:COMMunicate:SERial:CONTrol:RTS ON | IBFull | RFR
he commands sets the hardware handshake. *RST has no influence on this parameter.
ON Interface line RTS is always active.
IBFull | RFR Input Buffer Full | Ready For Receiving. Interface line RTS remains active as long
as the instrument is ready to receive data
Example: :SYST:COMM:SER:CONT:RTS ON *RST value is RFR
SMIQ SYSTem System
1125.5555.03 E-93.203
:SYSTem:COMMunicate:SERial:PACE XON | NONE
The command sets the software handshake. *RST has no influnence on this parameter.
XON Software handshake using the ASCII codes 11h (XON) and 13h (XOFF).
Note: This mode is not recommended for binary data and for baud rates above
9600 bauds.
NONE No software handshake.
Example: :SYST:COMM:SER:PACE NONE *RST value is NONE
:SYSTem:ERRor?
The command queries the entry that has been in the error queue for the longest time. Positive
error numbers denote errors specific of the instrument, negative error numbers denote error
messages specified by SCPI (see annex B). If the error queue is empty, 0, "No error", is returned.
The command is identical to STATus:QUEue:NEXT?
Example: :SYST:ERR? Response: -221, "Settings conflict"
:SYSTem:KLOCk ON | OFF
The command (Keyboard LOCk) disables the keyboard of the SMIQ including the [LOCAL] key or
enables it again (OFF).
Caution: If :SYSTem:SECurity is ON, the keyboard cannot be enabled, i.e., :SYSTem:KLOCk
OFF is not accepted. If the disabling of the command is released by switching over
to :SYSTem:SECurity OFF, data will be lost.
Example: :SYST:KLOC ON *RST value is OFF
:SYSTem:MODE FIXed | MSEQence
The command sets the operating mode of the instrument.
FIXed The overall instrument state can only be switched over using *RCL.
MSEQuence The instrument successively sets the instrument states indicated under
:SYSTem:MSEQuence:RCL. *RST value is FIXed
Example: :SYST:MODE FIX
:SYSTem:MSEQuence
This node follows the SOURce:LIST system. It can manage several memory sequences which
each consist of a list of instrument state numbers and a time list. If :SYSTem:MODE is switched
to MSEQuence, the instrument states stated in the list selected are set successively for the time
stated in the time list in each case.
:SYSTem:MSEQuence:CATalog?
The command queries the memory sequences available. It returns a list, the entries are
separated by means of commas.
Example: :SYST:MSEQ:CAT? Response: "SEQ1", "DEMO", "SEQA"
SYSTem System SMIQ
1125.5555.03 3.204 E-9
:SYSTem:MSEQuence:DELete "Name of sequence"
The command deletes the memory sequence indicated.
Example: :SYST:MSEQ:DEL "SEQ1"
:SYSTem:MSEQuence:DELete:ALL
The command deletes all memory sequences. The memory-sequence mode must be switched
off as a selected sequence cannot be deleted (SYSTem:MODE FIXed).
Example: :SYST:MSEQ:DEL:ALL
:SYSTem:MSEQuence:DWELl 50 ms to 60 s{,50 ms to 60 s}
For the memory sequence which has currently been selected, the command transmits a list
indicating the time for which an instrument setting is "held" in each case before the instrument
proceeds to the next setting. If DWELl indicates only one parameter, every item of the instrument
state list is set for the same, indicated time. Lists are not influenced by *RST.
Example: :SYST:MSEQ:DWEL 1s
:SYSTem:MSEQuence:FREE?
The command queries the space available for memory sequences. It returns two values. The first
value indicates the space still vacant, the second the space already occupied.
Example: :SYST:MSEQ:FREE? Response: 20, 236
:SYSTem:MSEQuence:MODE AUTO | STEP
The command indicates in which way the memory sequence is to be processed (by analogy with
:SOURce:SWEep:MODE) .
AUTO Each trigger event triggers a complete cycle of the memory sequence selected with
automatic restart at the beginning.
STEP Each trigger event only triggers one step in processing the memory sequence.
Example: :SYST:MSEQ:MODE AUTO *RST value is AUTO
:SYSTem:MSEQuence[:RCL] 1 to 50 {,1 to 50}
The command transmits the list of the instrument states to be assumed successively. The list
contains integers denoting the states stored by means of *SAV. These instrument states are set
successively using a simulated *RCL (thus the name of the list). The length of the list is not
limited. The values of the list are between 1 and 50 (number of memory locations to be called).
Lists are not influenced by *RST.
Example: :SYST:MSEQ:RCL 30, 31, 32 ,32 ,32 , 33
SMIQ SYSTem System
1125.5555.03 E-93.205
:SYSTem:MSEQuence[:RCL]:POINts?
The command queries the length of the RCL list selected. The RCL list is user-defined and of
variable length. The maximal length of the list can be queried by means of
:SYSTem:MSEQence:FREE? (addition of the two values)..
Example: :SYST:MSEQ:RCL:POIN? Response: 17
:SYSTem:MSEQuence:SELect "Name of sequence"
The command selects a memory sequence. The name of the sequence may be an arbitrary
character string of up to 7 letters. If there is no memory sequence of the name indicated, the
command creates it, i.e., this command can be used to generate new lists.
Example: :SYST:MSEQ:SEL "SEQA"
:SYSTem:PRESet
The command triggers an instrument reset. It has the same effect as the RESET key of the manual
control or as command *RST. This command triggers an event and hence has no *RST value.
Example: :SYST:PRES
:SYSTem:PROTect1|2|3
The commands to disable certain instrument functions are under this node. A list of the functions
concerned can be found in the manual control (Section Password Input With Protected
Functions). There are three protection levels which are differentiated by means of a suffix after
PROTect. *RST has no effects on the disabling/enabling of the instrument functions.
:SYSTem:PROTect1|2|3 [:STATe] ON | OFF, password
The command switches a protection level on or off. The passwords are 6-digit numbers. They are
fixedly stored in the firmware. The password for the first level is 123456.
ON disables the functions belonging to this protection level. A password need not be
indicated.
OFF deactivates the disabling again if the correct password is indicated. Otherwise an
error -224, "Illegal parameter value" is generated and STATe remains ON.
Example: :SYST:PROT1:STAT OFF, 123456
:SYSTem:SECurity
The commands setting the security characteristics of the instrument are under this node.
:SYSTem:SECurity[:STATe] ON | OFF
The command switches the security state on or off. The command is not influenced by *RST and
*RCL.
ON The following commands cannot be executed:
:DISPlay:ANNotation:ALL ON
:DISPlay:ANNotation:FREQ ON
:DISPlay:ANNotation:AMPLitude ON
:SYSTem:KLOCk OFF
OFF In the transition from ON to OFF all data existing in the instrument except for the
calibrating data are deleted, especially all status registers, all instrument states and
all lists.
Example: :SYST:SEC:STAT ON
SYSTem System SMIQ
1125.5555.03 3.206 E-9
:SYSTem:SERRor?
This command returns a list of all errors existing at the point of time of the query. This list
corresponds to the indication on the ERROR page with manual control (cf. Section Error
Messages).
Example: :SYST:SERR?
Response: -221, "Settings conflict", 153, "Input voltage out of range"
:SYSTem:VERSion?
The command returns the SCPI version number the instrument acts in accordance with. This
command is a query and thus has no *RST value.
Example: :SYST:VERS? Response: 1994.0
:SYSTem:SSAVe 1...1000
This command saves the current device setting at the memory location indicated.
:SYSTem:SREStore 1...1000
This command loads a device status that was stored using the :SYSTem:SSAVe command
(RESTORE). One of 1000 available memory locations is selected by entering a numeral.
! <least significant byte> <most significant byte>
This command has the same effect as the:SYSTem:SREStore command. The setting time
however is 300 µs less. It is optimized for highest speed and does not comply with the SCPI
syntax regulations. Exactly 3 bytes are transmitted including the '!' (which is the identifier of
this command). With the last byte, EOI has to be activated as delimiter.
The memory location is binary-coded in the 2 bytes indicated.
SMIQ TEST System
1125.5555.03 E-93.207
3.5.18 TEST System
This system contains the commands to execute the selftest routines (RAM?, ROM? FSIM?, MCOD?,
BERT? and BATTery?) as well as to directly manipulate the hardware modules (:TEST:DIRect). The
selftests return a "0" if the test has been executed successfully, otherwise a value unequal to "0". All
commands of this system do not have an *RST value.
Caution: The commands under node :TEST:DIRect directly act on the respective hardware
module circumventing any security mechanisms. They are provided for service purposes
and should not be used by the user. Improper use of the commands may damage the
module.
Command Parameter Default
Unit Remark
:TEST
:DIRect
:ATTC
:DGEN
:DSYN0MUX
:DSYN1MUX
:FMOD
:FSIM1M
:FSIM2M
:IQCON
:IQMOD
:MCOD
:REFSS
:NDSim
:ROSC
:SUM
:MCOD?
:MCOD
:DATA?
:BERT?
:FSIM?
:RAM?
:ROM?
:BATTery
[:RAM]?
:DGEN?
Subaddress, hex data string
Subaddress, hex data string
Subaddress, hex data string
Subaddress, hex data string
Subaddress, hex data string
Subaddress, hex data string
Subaddress, hex data string
Subaddress, hex data string
Subaddress, hex data string
Subaddress, hex data string
Subaddress, hex data string
Subaddress, hex data string
Subaddress, hex data string
Subaddress, hex data string
Query only
Query only
Query only
Query only
Query only
Query only
Query only
Query only
:TEST:DIRect
This node contains the commands directly acting on the respective hardware module
circumventing any security mechanisms. The commands under this node have no short form.
TEST System SMIQ
1125.5555.03 3.208 E-9
:TEST:DIRect:ATTC Subaddress, hex data string
The command directly acts on module ATTC. A subaddress (0 or 1) must be indicated as a
parameter. The data are indicated as a <string> (i.e., an ASCII character string enclosed in
quotation marks) representing hexadecimal numbers. Thus characters 0 to 9 A to F may occur in
the character string.
Example: :TEST:DIR:ATTC 0, "0010AF1F"
Query: :TEST:DIR:ATTC? 0
:TEST:DIRect:DGEN Subaddress, hex data string
The command acts on module DGEN (cf. :TEST:DIR:ATTC).
:TEST:DIRect:DSYN0MUX Subaddress, hex data string
The command acts on module DSYN. (cf. :TEST:DIR:ATTC)
:TEST:DIRect:DSYN1MUX Subaddress, hex data string
The command acts on module DSYN. (cf. :TEST:DIR:ATTC)
:TEST:DIRect:FMOD Subaddress, hex data string
The command acts on module FMOD. (cf. :TEST:DIR:ATTC)
:TEST:DIRect:FSIM1M Subaddress, hex data string
The command acts on module FSIM1M. (cf. :TEST:DIR:ATTC)
:TEST:DIRect:FSIM2M Subaddress, hex data string
The command acts on module FSIM2M. (cf. :TEST:DIR:ATTC)
:TEST:DIRect:IQCON Subaddress, hex data string
The command acts on module IQCON. (cf. :TEST:DIR:ATTC)
:TEST:DIRect:IQMOD Subaddress, hex data string
The command acts on module IQMOD. (cf. :TEST:DIR:ATTC)
:TEST:DIRect:MCOD Subaddress, hex data string
The command acts on module MCOD. (cf. :TEST:DIR:ATTC)
:TEST:DIRect:NDSim Subaddress, hex data string
The command acts on module NDSIM. (cf. :TEST:DIR:ATTC)
:TEST:DIRect:REFSS Subaddress, hex data string
The command acts on module REFSS. (cf. :TEST:DIR:ATTC)
:TEST:DIRect:ROSC Subaddress, hex data string
The command acts on module ROSC. (cf. :TEST:DIR:ATTC)
:TEST:DIRect:SUM Sub address, hex data string
The command acts on module SUM. (cf. :TEST:DIR:ATTC)
SMIQ TEST System
1125.5555.03 E-93.209
:TEST:MCOD?
The command triggers a test of the modulation coder.
:TEST:BERT?
The command triggers a test of BERT.
:TEST:FSIM?
The command triggers a test of the fading simulator.
:TEST:RAM?
The command triggers a test of the RAM.
:TEST:ROM?
The command triggers a test of the EPROM.
:TEST:BATTery[:RAM]?
The command triggers a test of the RAM battery voltage. The voltage should be at least 2.5 V.
:TEST:BATTery:DGEN?
The command triggers a test of the battery voltage of the data generator.
TRIGger System SMIQ
1125.5555.03 3.210 E-9
3.5.19 TRIGger System
The TRIGger system contains the commands to select the trigger source and to configure the external
trigger socket. The suffix is only important for the SWEEP subsystem:
TRIGger1 = RF generator
TRIGger2 = LFGEN
The trigger system of the SMIQ is a simplified implementation of the SCPI trigger system. Compared to
SCPI, the TRIGger system shows the following differences:
No INITiate command, the instrument behaves as if INITiate:CONTinuous ON was set.
There are several subsystems denoting the different parts of the instrument under TRIGger (SWEep,
BERT, LIST, DM, MSEQuence).
Further commands as to the trigger system of the SMIQ can be found in the ABORt system.
Command Parameter Default
Unit Remark
:TRIGger1|2
[:SWEep]
[:IMMediate]
:SOURce
:BERT
[:IMMediate]
:BLER
[:IMMediate]
:LIST
[:IMMediate]
:SOURce
:DM
[:IMMediate]
:SOURce
:MSEQuence
[:IMMediate]
:SOURce
:SLOPe
SINGle | EXTernal | AUTO
SINGle | EXTernal | AUTO | HOP
SINGle | EXTernal | AUTO
SINGle | EXTernal | AUTO
POSitive | NEGative
No query
No query
No query
No query
No query
No query
:TRIGger1|2[:SWEep]
All commands to trigger a sweep are under this node. The settings here act on level and
frequency sweeps for RF generator (TRIG1) and LF generator (TRIG2).
:TRIGger1|2[:SWEep][:IMMediate]
The command immediately starts a sweep. Which sweep is executed depends on the respective
MODE setting, e.g. :SOURce:FREQuency:MODE SWEep. The command corresponds to
manual-control command EXECUTE SINGLE SWEEP. This command triggers an event and thus
has no *RST value.
Example: :TRIG:SWE:IMM
SMIQ TRIGger System
1125.5555.03 E-93.211
:TRIGger1|2[:SWEep]:SOURce AUTO | SINGle | EXTernal
The command specifies the trigger source. The naming of the parameters directly corresponds to
the different settings with manual control. SCPI uses other designations for the parameters the
instrument accepts as well. These designations are to be preferred if compatibility is important.
The following table provides an overview.
SMIQ designation SCPI designation Command with manual control
AUTO IMMediate MODE AUTO
SINGle BUS MODE SINGLE or STEP
EXTernal EXTernal MODE EXT TRIG SINGLE or EXT TRIG STEP
AUTO The trigger is free-running, i.e., the trigger requirement is permanently met. As
soon as a sweep has been terminated, the next one is started.
SINGle Triggering is effected by means of IEC-bus commands
:TRIGger:SWEep:IMMediate or *TRG. If :SOURce:SWEep:MODE is set to
STEP, a step, in the case of the AUTO setting a complete sweep, is executed.
EXTernal Triggering is effected from outside via the EXT.TRIG. socket or by the GET
command via IEC/IEEE-bus (see annex A). The action triggered depends on the
setting of the sweep mode as in the case of SINGle.
Example: :TRIG:SWE:SOUR AUTO *RST value is SINGle
:TRIGger:BERT[:IMMediate]
The command immediately starts the BER measurement. It corresponds to command EXECUTE
SINGLE MODE of the manual control in the BERT/BER menu. This command is an event and
thus has no *RST value.
Example: :TRIG:BERT:IMM
The command immediately starts the BLER measurement. It corresponds to the manual control
command EXECUTE SINGLE MODE in the BERT/BLER menu. This command is an event and
therefore has no *RST value.
Example: :TRIG:BLER:IMM
:TRIGger:LIST
This node contains all commands to trigger a list in the LIST mode.
:TRIGger:LIST[:IMMediate]
The command immediately starts the processing of a list of the LIST mode. It corresponds to
command EXECUTE SINGLE MODE of the manual control in the LIST menu. This command is
an event and thus has no *RST value.
Example: :TRIG:LIST:IMM
TRIGger System SMIQ
1125.5555.03 3.212 E-9
:TRIGger1|2:LIST:SOURce AUTO | SINGle | EXTernal | HOP
The command specifies the trigger source. The naming of the parameters corresponds to the one
with sweep mode. SCPI uses other designations for the parameters the instrument accepts as
well. These designations are to be preferred if compatibility is important. The following table
provides an overview:
SMIQ designation SCPI designation Command with manual control
AUTO IMMediate MODE AUTO
SINGle BUS MODE SINGLE or STEP
EXTernal EXTernal MODE EXT TRIG SINGLE or EXT TRIG STEP
HOP ----- MODE HOP
AUTO The trigger is free-running, i.e., the trigger condition is permanently fulfilled. As
soon as the list selected has been finished in the LIST mode, it is started anew.
SINGle Triggering is executed by means of IEC-bus command :TRIGger:LIST :IMM. The
list is executed once.
EXTernal Triggering is carried out from outside via the EXT.TRIG. socket or by the GET
command via IEC/IEEE-bus (see annex A). The list is executed once
HOP Triggering is carried out from inside via control list (HOP bit is set; option SMIQB11
data generator). Only with LIST:MODE STEP.
Example: :TRIG:LIST:SOUR AUTO *RST value is SING
:TRIGger:DM
The commands for the autorun control of digital modulation are under this node. These
commands are only valid for TRIGger1.
:TRIGger:DM[:IMMediate]
In case of basic digital modulations, this command immediately starts the processing of the data
list of the DM data generator. The command acts on the type of modulation presently set using
:SOURce:DM:TYPE. It corresponds to the EXECUTE SINGLE command of the manual control in
the associated DIGITAL MOD menu. This command is an event and thus has no *RST value.
Example: :TRIG:DM:IMM
:TRIGger:DM:SOURce AUTO | SINGle | EXTernal
The command specifies the valid trigger events. See following table for effect on complex
modulation.
AUTO The trigger condition is always fulfilled. In case of basic digital modulations, the
list is processed repeatedly, the RF signal is continuously DM-modulated.
SINGle The trigger condition can be fulfilled by manual control or by using the commands
TRIG:DM:IMM oder *TRG. The list is processed only once. DM is subsequently
inactive.
EXTernal This setting has no effect on the basic digital modulations.
Example: :TRIG:DM:SOUR AUTO *RST value is AUTO
SMIQ TRIGger System
1125.5555.03 E-93.213
:TRIGger:MSEQuence
This node contains all commands to trigger a memory sequence. The commands are only valid
for TRIGger1.
:TRIGger:MSEQuence[:IMMediate]
The command immediately starts a memory sequence. It corresponds to the EXECUTE SINGLE
MODE command of the manual control in the MEMORY SEQUENCE menu. This command is an
event and thus has no *RST value.
Example: :TRIG:MSEQ:IMM
:TRIGger:MSEQuence:SOURce AUTO | SINGle | EXTernal
The command specifies the trigger source (cf. :TRIGger:SWEep:SOURce)
Example: :TRIG:MSEQ:SOUR AUTO *RST value is SING
:TRIGger:SLOPe POSitive | NEGative
The command indicates whether the external trigger input only responds to the positive, the
negative or to both edges of the trigger signal. The command acts on TRIGger:SWEep,
TRIGger:LIST and TRIGger:MSEQuence. The pulse generator has an own trigger input and
thus also an own SLOPe command. *RST value is POS
Example: :TRIG:SLOP NEG
UNIT System SMIQ
1125.5555.03 3.214 E-9
3.5.20 UNIT System
This system contains the commands specifying which units are valid if no unit is indicated in a
command. These settings are valid for the entire instrument.
Command Parameter Default
Unit Remark
:UNIT
:ANGLe
:POWer
DEGRee| DEGree | RADian
DBM | DBW | DBMW | DBUW | DBV | DBMV | DBUV | V
:UNIT:ANGLe DEGRee | DEGree | RADian
The command indicates the unit for angles. *RST value is RAD
Example: :UNIT:ANGL DEGR
:UNIT:POWer DBM | DBW | DBMW | DBUW | DBV | DBMV | DBUV | V
The command indicates the unit for power. *RST value is DBM
Example: :UNIT:POW V
SMIQ Instrument Model and Command Processing
1125.5555.03 3.215 E-9
3.6 Instrument Model and Command Processing
The instrument model shown in Fig. 3-2 has been made viewed from the standpoint of the servicing of
IEC-bus commands. The individual components work independently of each other and simultaneously.
They communicate by means of so-called "messages".
IEC bus
Input unit with
input buffer
Command
recognition
Data set
Instrument
hardware
IEC bus
Output unit with
output buffer
Status reporting
system
Fig. 3-2 Instrument model in the case of remote control by means of the IEC bus
3.6.1 Input Unit
The input unit receives commands character by character from the IEC bus and collects them in the
input buffer. The input buffer has a size of 1024 characters. The input unit sends a message to the
command recognition as soon as the input buffer is full or as soon as it receives a delimiter,
<PROGRAM MESSAGE TERMINATOR>, as defined in IEEE 488.2, or the interface message DCL.
If the input buffer is full, the IEC-bus traffic is stopped and the data received up to then are processed.
Subsequently the IEC-bus traffic is continued. If, however, the buffer is not yet full when receiving the
delimiter, the input unit can already receive the next command during command recognition and
execution. The receipt of a DCL clears the input buffer and immediately initiates a message to the
command recognition.
Instrument Model and Command Processing SMIQ
1125.5555.03 E-93.216
3.6.2 Command Recognition
The command recognition analyses the data received from the input unit. It proceeds in the order in
which it receives the data. Only a DCL is serviced with priority, a GET (Group Execute Trigger), e.g., is
only executed after the commands received before as well. Each recognized command is immediately
transferred to the data set but without being executed there at once.
Syntactical errors in the command are recognized here and supplied to the status reporting system. The
rest of a command line after a syntax error is analyzed further if possible and serviced.
If the command recognition recognizes a delimiter or a DCL, it requests the data set to set the
commands in the instrument hardware as well now. Subsequently it is immediately prepared to process
commands again. This means for the command servicing that further commands can already be
serviced while the hardware is still being set ("overlapping execution").
3.6.3 Data Set and Instrument Hardware
Here the expression "instrument hardware" denotes the part of the instrument fulfilling the actual
instrument function - signal generation, measurement etc. The controller is not included.
The data set is a detailed reproduction of the instrument hardware in the software.
IEC-bus setting commands lead to an alteration in the data set. The data set management enters the
new values (e.g. frequency) into the data set, however, only passes them on to the hardware when
requested by the command recognition. As this is always only effected at the end of a command line,
the order of the setting commands in the command line is not relevant.
The data are only checked for their compatibility among each other and with the instrument hardware
immediately before they are transmitted to the instrument hardware. If the detection is made that an
execution is not possible, an "execution error" is signaled to the status reporting system. All alterations
of the data set are canceled, the instrument hardware is not reset. Due to the delayed checking and
hardware setting, however, it is permissible to set impermissible instrument states within one command
line for a short period of time without this leading to an error message (example: simultaneous activation
of FM and PM). At the end of the command line, however, a permissible instrument state must have
been reached again.
Before passing on the data to the hardware, the settling bit in the STATus:OPERation register is set.
The hardware executes the settings and resets the bit again as soon as the new state has settled. This
fact can be used to synchronize command servicing.
IEC-bus queries induce the data set management to send the desired data to the output unit.
3.6.4 Status Reporting System
The status reporting system collects information on the instrument state and makes it available to the
output unit on request. The exact structure and function are described in the next section.
SMIQ Instrument Model and Command Processing
1125.5555.03 3.217 E-9
3.6.5 Output Unit
The output unit collects the information requested by the controller, which it receives from the data set
management. It processes it according to the SCPI rules and makes it available in the output buffer.
The output buffer has a size of 1024 characters. If the information requested is longer, it is made
available "in portions" without this being recognized by the controller.
If the instrument is addressed as a talker without the output buffer containing data or awaiting data from
the data set management, the output unit sends error message "Query UNTERMINATED" to the status
reporting system. No data are sent on the IEC bus, the controller waits until it has reached its time limit.
This behavior is specified by SCPI.
3.6.6 Command Sequence and Command Synchronization
What has been said above makes clear that all commands can potentially be carried out overlapping.
Equally, setting commands within one command line are not absolutely serviced in the order in which
they have been received.
In order to make sure that commands are actually carried out in a certain order, each command must
be sent in a separate command line, that is to say, with a separate IBWRT()-call.
In order to prevent an overlapping execution of commands, one of commands *OPC, *OPC? or *WAI
must be used. All three commands cause a certain action only to be carried out after the hardware has
been set and has settled. By a suitable programming, the controller can be forced to wait for the
respective action to occur (cf. Table 3-3).
Table 3-3 Synchronization with *OPC, *OPC? and *WAI
Com-
mand Action after the hardware has settled Programming the controller
*OPC Setting the operation-complete bit in the ESR - Setting bit 0 in the ESE
- Setting bit 5 in the SRE
- Waiting for service request (SRQ)
*OPC? Writing a "1" into the output buffer Addressing the instrument as a talker
*WAI The next command is executed only after
having processed all of the preceeding
commands.
Sending the next command
An example as to command synchronization can be found in annex D "Program Examples".
Status Reporting System SMIQ
1125.5555.03 E-93.218
3.7 Status Reporting System
The status reporting system (cf. Fig. 3-4) stores all information on the present operating state of the
instrument, e.g. that the instrument presently carries out an AUTORANGE and on errors which have
occurred. This information is stored in the status registers and in the error queue. The status registers
and the error queue can be queried via IEC bus.
The information is of a hierarchical structure. The register status byte (STB) defined in IEEE 488.2 and
its associated mask register service request enable (SRE) form the uppermost level. The STB receives
its information from the standard event status register (ESR) which is also defined in IEEE 488.2 with
the associated mask register standard event status enable (ESE) and registers STATus:OPERation and
STATus:QUEStionable which are defined by SCPI and contain detailed information on the instrument.
The IST flag ("Individual STatus") and the parallel poll enable register (PPE) allocated to it are also part
of the status reporting system. The IST flag, like the SRQ, combines the entire instrument status in a
single bit. The PPE fulfills an analog function for the IST flag as the SRE for the service request.
The output buffer contains the messages the instrument returns to the controller. It is not part of the
status reporting system but determines the value of the MAV bit in the STB and thus is represented in
Fig. 3-4.
3.7.1 Structure of an SCPI Status Register
Each SCPI register consists of 5 parts which each have a width of 16 bits and have different functions
(cf. Fig. 3-3). The individual bits are independent of each other, i.e. each hardware status is assigned a
bit number which is valid for all five parts. For example, bit 3 of the STATus:OPERation register is
assigned to the hardware status "wait for trigger" in all five parts. Bit 15 (the most significant bit) is set to
zero for all parts. Thus the contents of the register parts can be processed by the controller as positive
integer.
15 14 13 12 PTRansition part 3 2 1 0
15 14 13 12 EVENt part 3 2 1 0
15 14 13 12 ENABle part 3 2 1 0
& & & & & & & & & & & & & & & &
to higher-order register
Sum bit
& = logical AN
D
= logical OR
of all bits
+
+
15 14 13 12 NTRansition part 3 2 1 0
15 14 13 12 CONDition part 3 2 1 0
Fig. 3-3 The status -register model
SMIQ Status Reporting System
1125.5555.03 3.219 E-9
CONDition part The CONDition part is directly written into by the hardware or the sum bit of
the next lower register. Its contents reflects the current instrument status. This
register part can only be read, but not written into or cleared. Its contents is
not affected by reading.
PTRansition part The Positive-TRansition part acts as an edge detector. When a bit of the
CONDition part is changed from 0 to 1, the associated PTR bit decides
whether the EVENt bit is set to 1.
PTR bit =1: the EVENt bit is set.
PTR bit =0: the EVENt bit is not set.
This part can be written into and read at will. Its contents is not affected by
reading.
NTRansition part The Negative-TRansition part also acts as an edge detector. When a bit of the
CONDition part is changed from 1 to 0, the associated NTR bit decides
whether the EVENt bit is set to 1.
NTR bit =1: the EVENt bit is set.
NTR bit =0: the EVENt bit is not set.
This part can be written into and read at will. Its contents is not affected by
reading.
With these two edge register parts the user can define which state transition of
the condition part (none, 0 to 1, 1 to 0 or both) is stored in the EVENt part.
EVENt part The EVENt part indicates whether an event has occurred since the last
reading, it is the "memory" of the condition part. It only indicates events
passed on by the edge filters. It is permanently updated by the instrument.
This part can only be read by the user. During reading, its contents is set to
zero. In linguistic usage this part is often equated with the entire register.
ENABle part The ENABle part determines whether the associated EVENt bit contributes to
the sum bit (cf. below). Each bit of the EVENt part is ANDed with the
associated ENABle bit (symbol '&'). The results of all logical operations of this
part are passed on to the sum bit via an OR function (symbol '+').
ENAB bit =0: the associated EVENt bit does not contribute to the sum bit
ENAB bit =1: if the associated EVENT bit is "1", the sum bit is set to "1" as
well.
This part can be written into and read by the user at will. Its contents is not
affected by reading.
Sum bit As indicated above, the sum bit is obtained from the EVENt and ENABle part
for each register. The result is then entered into a bit of the CONDition part of
the higher-order register.
The instrument automatically generates the sum bit for each register. Thus an
event, e.g. a PLL that has not locked, can lead to a service request throughout
all levels of the hierarchy.
Note: The service request enable register SRE defined in IEEE 488.2 can be taken as ENABle
part of the STB if the STB is structured according to SCPI. By analogy, the ESE can be
taken as the ENABle part of the ESR.
Status Reporting System SMIQ
1125.5555.03 E-93.220
3.7.2 Overview of the Status Registers
SRE
STB
STATus:OPERation register
PPE
IST flag
(Response to parallel poll)
& = logical AND
= logical OR
of all bits
ESE ESR
Error Queue Output buffer
SRQ
RQS/MSS
ESB
MAV
Power on
User Request
Command Error
Execution Error
Device Dependent Error
Query Error
Request Control
Operation Complete
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
-&-
7
6
5
4
3
2
1
0
not used
vacant
vacant
vacant
vacant
Recording
MSEQuencing
LEARning
vacant
vacant
Waiting for Trigger
MEASuring
SWEeping
vacant
SETTling
CALibrating
not used
vacant
vacant
vacant
vacant
vacant
vacant
CALibration
MODulation
frei
FREQuency
vacant
vacant
vacant
vacant
VOLTage
Fig. 3-4 Overview of the status register
SMIQ Status Reporting System
1125.5555.03 3.221 E-9
3.7.3 Description of the Status Registers
3.7.3.1 Status Byte (STB) and Service Request Enable Register (SRE)
The STB is already defined in IEEE 488.2. It provides a rough overview of the instrument status by
collecting the pieces of information of the lower registers. It can thus be compared with the CONDition
part of an SCPI register and assumes the highest level within the SCPI hierarchy. A special feature is
that bit 6 acts as the sum bit of the remaining bits of the status byte.
The STATUS BYTE is read out using the command "*STB?" or a serial poll.
The STB implies the SRE. It corresponds to the ENABle part of the SCPI registers as to its function.
Each bit of the STB is assigned a bit in the SRE. Bit 6 of the SRE is ignored. If a bit is set in the SRE
and the associated bit in the STB changes from 0 to 1, a Service Request (SRQ) is generated on the
IEC bus, which triggers an interrupt in the controller if this is appropriately configured and can be further
processed there.
The SRE can be set using command "*SRE" and read using "*SRE?".
Table 3-4 Meaning of the bits used in the status byte
Bit no. Meaning
2Error Queue not empty
The bit is set when an entry is made in the error queue.
If this bit is enabled by the SRE, each entry of the error queue generates a Service Request. Thus an error can
be recognized and specified in greater detail by polling the error queue. The poll provides an informative error
message. This procedure is to be recommended since it considerably reduces the problems involved with
IEC-bus control.
3QUEStionable status sum bit
The bit is set if an EVENt bit is set in the QUEStionable status register and the associated ENABle bit is set to
1.
A set bit indicates a questionable instrument status, which can be specified in greater detail by polling the
QUEStionable status register.
4MAV-Bit (Message AVailable)
The bit is set if a message is available in the output buffer which can be read.
This bit can be used to enable data to be automatically read from the instrument to the controller (cf. annex D,
program examples).
5ESB bit
Sum bit of the event status register. It is set if one of the bits in the event status register is set and enabled in
the event status enable register.
Setting of this bit implies a serious error which can be specified in greater detail by polling the event status
register.
6MSS-Bit (Master Status Summary bit)
The bit is set if the instrument triggers a service request. This is the case if one of the other bits of this register is
set together with its mask bit in the service request enable register SRE.
7OPERation status register sum bit
The bit is set if an EVENt bit is set in the OPERation status register and the associated ENABle bit is set to 1.
A set bit indicates that the instrument is just performing an action. The type of action can be determined by
polling the OPERation status register.
Status Reporting System SMIQ
1125.5555.03 E-93.222
3.7.3.2 IST Flag and Parallel Poll Enable Register (PPE)
By analogy with the SRQ, the IST flag combines the entire status information in a single bit. It can be
queried by means of a parallel poll or using command "*IST?".
The parallel poll enable register (PPE) determines which bits of the STB contribute to the IST flag. The
bits of the STB are ANDed with the corresponding bits of the PPE, with bit 6 being used as well in
contrast to the SRE. The Ist flag results from the ORing of all results. The PPE can be set using
commands "*PRE" and read using command "*PRE?".
3.7.3.3 Event Status Register (ESR) and Event Status Enable Register (ESE)
The ESR is already defined in IEEE 488.2. It can be compared with the EVENt part of an SCPI register.
The event status register can be read out using command "*ESR?".
The ESE is the associated ENABle part. It can be set using command "*ESE" and read using command
"*ESE?".
Table 3-5 Meaning of the bits used in the event status register
Bit No.Meaning
0Operation Complete
This bit is set on receipt of the command *OPC exactly when all previous commands have been executed.
2Query Error
This bit is set if either the controller wants to read data from the instrument without having sent a query, or if it
does not fetch requested data and sends new instructions to the instrument instead. The cause is often a query
which is faulty and hence cannot be executed.
3Device-dependent Error
This bit is set if a device-dependent error occurs. An error message with a number between -300 and -399 or a
positive error number, which denotes the error in greater detail, is entered into the error queue (cf. annex B,
Error Messages).
4Execution Error
This bit is set if a received command is syntactically correct, however, cannot be performed for other reasons.
An error message with a number between -200 and -300, which denotes the error in greater detail, is entered
into the error queue (cf. annex B, Error Messages).
5Command Error
This bit is set if a command which is undefined or syntactically incorrect is received. An error message with a
number between -100 and -200, which denotes the error in greater detail, is entered into the error queue (cf.
annex B, Error Messages).
6User Request
This bit is set on pressing the LOCAL key, i.e., when the instrument is switched over to manual control.
7Power On (supply voltage on)
This bit is set on switching on the instrument.
SMIQ Status Reporting System
1125.5555.03 3.223 E-9
3.7.3.4 STATus:OPERation Register
In the CONDition part, this register contains information on which actions the instrument is being
executing or, in the EVENt part, information on which actions the instrument has executed since the last
reading. It can be read using commands "STATus:OPERation:CONDition?" or
"STATus:OPERation[:EVENt]?"..
Table 3-6 Meaning of the bits used in the STATus:OPERation register
Bit-No. Meaning
0CALibrating
This bit is set as long as the instrument is performing a calibration.
1SETTling
This bit is set as long as the new status is settling after a setting command. It is only set if the settling time is
longer than the command processing time.
3SWEeping
This bit is set while the instrument is performing a sweep.
4MEASuring
This bit is set while the instrument is performing a measurement.
5WAIT for TRIGGER
This bit is set as long as the instrument is waiting for a trigger event.
8LEARning
This bit is set while the instrument is "learning" a list.
9MSEQuencing
This bit is set while the instrument is performing a memory sequence.
10 RECording
This bit is set while the instrument is recording external data via the DATA input.
Status Reporting System SMIQ
1125.5555.03 E-93.224
3.7.3.5 STATus:QUEStionable Register
This register contains information on questionable instrument states. They can occur, e.g. if the
instrument is operated out of its specifications. It can be queried using commands
"STATus:QUEStionable:CONDition?" or "STATus:QUEStionable[:EVENt]?".
Table 3-7 Meaning of the bits used in the STATus:QUEStionable register
Bit-No. Meaning
0VOLTage
This bit is set if the voltage at an output connector is not correct,
if the voltage is above or below the specified limit values,
if the level limit has responded,
if the overvoltage protection has responded.
5FREQuency
The bit is set if a frequency at the RF output is not correct or if it is lower or higher than the specified values
7MODulation
The bit is set if a modulation is not correct or is operated outside the specifications.
8CALibration
The bit is set if a calibration is not performed properly.
SMIQ Status Reporting System
1125.5555.03 3.225 E-9
3.7.4 Application of the Status Reporting Systems
In order to be able to effectively use the status reporting system, the information contained there must
be transmitted to the controller and further processed there. There are several methods which are
represented in the following. Detailed program examples are to be found in annex D, Programming
Examples.
3.7.4.1 Service Request, Making Use of the Hierarchy Structure
Under certain circumstances, the instrument can send a service request (SRQ) to the controller. Usually
this service request initiates an interrupt at the controller, to which the control program can react with
corresponding actions. As evident from Fig. 3-4, an SRQ is always initiated if one or several of bits 2, 3,
4, 5 or 7 of the status byte are set and enabled in the SRE. Each of these bits combines the information
of a further register, the error queue or the output buffer. The corresponding setting of the ENABle parts
of the status registers can achieve that arbitrary bits in an arbitrary status register initiate an SRQ. In
order to make use of the possibilities of the service request, all bits should be set to "1" in enable
registers SRE and ESE.
Examples (cf. Fig. 3-4 and Program Examples, annex D as well):
Use of command "*OPC" to generate an SRQ
ØSet bit 0 in the ESE (Operation Complete)
ØSet bit 5 in the SRE (ESB)
After its settings have been completed, the instrument generates an SRQ.
Indication of the end of a sweep by means of an SRQ with the controller
ØSet bit 7 in the SRE (sum bit of the STATus:OPERation register)
ØSet bit 3 (sweeping )in the STATus:OPERation:ENABle.
ØSet bit 3 in the STATus:OPERation:NTRansition so as to make sure that the transition of
sweeping bit 3 from 1 to 0 (sweep end) is recorded in the EVENt part.
After a sweep has been completed, the instrument generates an SRQ.
The SRQ is the only possibility for the instrument to become active on its own. Each controller program
should set the instrument such that a service request is initiated in the case of malfunction. The program
should react appropriately to the service request. A detailed example for a service request routine is to
be found in annex D , Program Examples.
3.7.4.2 Serial Poll
In a serial poll, just as with command "*STB", the status byte of an instrument is queried. However, the
query is realized via interface messages and is thus clearly faster. The serial-poll method has already
been defined in IEEE 488.1 and used to be the only standard possibility for different instruments to poll
the status byte. The method also works with instruments which do not adhere to SCPI or IEEE 488.2.
The quick-BASIC command for executing a serial poll is "IBRSP()". Serial poll is mainly used to obtain
a fast overview of the state of several instruments connected to the IEC bus.
Status Reporting System SMIQ
1125.5555.03 E-93.226
3.7.4.3 Parallel Poll
In a parallel poll, up to eight instruments are simultaneously requested by the controller by means of a
single command to transmit 1 bit of information each on the data lines, i.e., to set the data line allocated
to each instrument to logically "0" or "1". By analogy to the SRE register which determines under which
conditions an SRQ is generated, there is a parallel poll enable register (PPE) which is ANDed with the
STB bit by bit as well considering bit 6. The results are ORed, the result is then sent (possibly inverted)
as a response in the parallel poll of the controller. The result can also be queried without parallel poll by
means of command "*IST".
The instrument first has to be set for the parallel poll using quick-BASIC command "IBPPC()". This
command allocates a data line to the instrument and determines whether the response is to be inverted.
The parallel poll itself is executed using "IBRPP()".
The parallel-poll method is mainly used in order to quickly find out after an SRQ which instrument has
sent the service request if there are many instruments connected to the IEC bus. To this effect, SRE
and PPE must be set to the same value. A detailed example as to the parallel poll is to be found in
annex D, Program Examples.
3.7.4.4 Query by Means of Commands
Each part of every status register can be read by means of queries. The individual commands
areindicated in the detailed description of the registers. What is returned is always a number which
represents the bit pattern of the register queried. Evaluating this number is effected by the controller
program.
Queries are usually used after an SRQ in order to obtain more detailed information on the cause of the
SRQ.
3.7.4.5 Error Queue Query
Each error state in the instrument leads to an entry in the error queue. The entries of the error queue
are detailed plain-text error messages which can be looked at in the ERROR menu via manual control
or queried via the IEC bus using command "SYSTem:ERRor?". Each call of "SYSTem:ERRor?"
provides one entry from the error queue. If no error messages are stored there any more, the instrument
responds with 0, "No error"
The error queue should be queried after every SRQ in the controller program as the entries describe the
cause of an error more precisely than the status registers. Especially in the test phase of a controller
program the error queue should be queried regularly since faulty commands from the controller to the
instrument are recorded there as well.
SMIQ Status Reporting System
1125.5555.03 3.227 E-9
3.7.5 Resetting Values of the Status Reporting Systems
Table 3-8 comprises the different commands and events causing the status reporting system to be
reset. None of the commands, except for *RST and SYSTem:PRESet influences the functional
instrument settings. In particular, DCL does not change the instrument settings.
Table 3-8 Resetting instrument functions
Event Switching on
supply voltage DCL,SDC
Power-On-Status-
Clear
(Device Clear,
Selected Device
Clear)
*RST or
SYSTem:PRESet STATus:PRESet *CLS
Effect 0 1
Clear STB,ESR yes 
yes
Clear SRE,ESE yes 
Clear PPE yes 
Clear EVENt parts of the
registers yes 
yes
Clear ENABle parts of all
OPERation-and
QUESTionable registers,
Fill ENABle parts of all
other registers with "1".
yes yes
Fill PTRansition parts with
“1"
Clear NTRansition parts
yes yes
Clear error queue yes yes 
yes
Clear output buffer yes yes yes 1) 1) 1)
Clear command
processing and input
buffer
yes yes yes 
1) Every command being the first in a command line, i.e. immediately following a <PROGRAM MESSAGE TERMINATOR>
clears the output buffer.
Fast Restore Mode SMIQ
1125.5555.03 E-93.228
3.8 Fast Restore Mode
Device settings can be saved and recalled very quickly via the IEC/IEEE bus using the commands
described below. 1000 memory locations are available.
In contrast to the SAVE/RECALL function, not the unit parameters but only the setting data of the
modules are stored in the Fast Restore mode. RESTORE by means of the ':SYSTem:SREStore' or
'!..' command has an immediate effect on the module. The database (which stores all entries and
delivers the display data) is bypassed. This allows a very high setup speed.
3.8.1 Commands
:SYSTem:SSAVe 1...1000
This command saves the current device setting at the memory location indicated.
:SYSTem:SREStore 1...1000
This command loads a device status that was stored using the :SYSTem:SSAVe command
(RESTORE). One of 1000 available memory locations is selected by entering a numeral.
! <least significant byte> <most significant byte>
This command has the same effect as the:SYSTem:SREStore command. The setting time
however is 300 µs less. It is optimized for highest speed and does not comply with the SCPI
syntax regulations. Exactly 3 bytes are transmitted including the '!' (which is the identifier of
this command). With the last byte, EOI has to be activated as delimiter.
The memory location is binary-coded in the 2 bytes indicated.
Example:
RESTORE at memory location 268 (-> 010C hex) corresponds to the following binary
command:
0010 0001 0000 1100 0000 0001
'!' hex 0C hex 01
Binary-coded bytes can usually not be written as printable ASCII characters.
When programmed in C, the above command has the following form:
char sendstring[3] = {'!', 0x0C, 0x01}
In BASIC, the command string to be output is as follows:
'!' + CHR$(12) + CHR$(1)
(The pros for CHR$ are decimal numbers, therefore 12 for 0C hex.)
Since binary-coded bytes may also have the value of the LF (line feed) character which is
interpreted as a delimiter, switch over to 'only EOI' as delimiter by selecting
':SYSTem:COMMunicate:GPIB:LTERminator EOI' prior to using this command.
SMIQ Fast Restore Mode
1125.5555.03 3.229 E-9
3.8.2 Call-Up and Termination of Operating Mode
After a RESTORE, the database does no longer reflect the device setting which means that
- the displayed values are no longer relevant,
- the desired result is not obtained by a query of setup values.
- normal setting commands may not be executed properly (see below 'Alternative ...)
It is therefore recommended either
to use the *RST command or
to store the device setting prior to using the first RESTORE command by means of the
:SYSTem:SSAVe n command and to restore it after the last RESTORE command using
:SYSTEM:SRESTore n. The database and the device setting will then match again.
No other commands are required to activate or deactivate this mode.
Note: - Since the module setting depends on the temperature of the unit, any temperature variation
of more than 5°C should be avoided between storage and call-up to ensure the accuracy of
the unit.
- If the mechanically switched attenuator is switched over due to a RESTORE command,
the setting time increases by 15 ms. This can be avoided by setting one of the two
functions for interruption-free level setting (:OUTPut:AMODe FIXed or ELECtronic)
prior to storing the setting.
3.8.3 Effects on Device Settings
The Fast Restore commands have an effect on almost all device settings (see table).
Device settings stored and called up by Fast
Restore: Device settings not stored or called up by Fast
Restore:
Frequency incl. reference oscillator
Level - incl. mech. switched attenuator,
- incl. user correction,
- incl. ALC modes
Analog modulation
Vector modulation
Switch-on/off of digital modulation
LF generator and LF output
Settings of baseband signal of digital
modulation and digital standard
Functions not regarding the RF output signal,
eg commands under :SYSTem:... (except
for SYSTem:PRESet) or :UNIT:...
Sweep
List mode
Memory sequence
Fast Restore Mode SMIQ
1125.5555.03 E-93.230
3.8.4 Alternative Use with Other IEC/IEEE-Bus Commands
The alternative use of the RESTORE commands (':SYSTem:SREStore' or '!..') and normal
IEC/IEEE-bus commands is
useful in case of digital modulation:
First, the baseband signal is configured by means of normal commands and digital modulation is
switched on. Then, digital modulation can be switched on/off by means of the RESTORE commands.
possible for all commands that do not regard the RF output signal (eg :SYSTem:...,
:UNIT:...),
normally not possible for all the functions listed in the left column of the above table.
In case of doubt, we recommend testing.
3.8.5 Synchronization Signal
In the Fast Restore mode a synchronization signal is available at the rear-panel BLANK connector to
synchronize other devices.
The BLANK signal is high during settling of the RF output signal and low in the settled state.
SMIQ Maintenance and Troubleshooting
1125.5555.03 E-74.1
4 Maintenance and Troubleshooting
The instrument does not need a periodic maintenance. What is necessary is essentially the cleaning of
the instrument. However, it is recommended to check the rated data from time to time.
4.1 Maintenance
4.1.1 Cleaning the Outside
The outside of the instrument is suitably cleaned using a soft, line-free dustcloth.
Caution! Do not use solvents such as thinners, acetone and similar things in any case, because
otherwise the front panel labeling or plastic parts will be damaged.
4.1.2 Storage
The storage temperature range of the instrument is -40 to +70 degrees Celsius. If the instrument is to
be stored for a longer period of time, it must be protected against dust.
4.2 Functional Test
The SMIQ carries out a selftest on switching on the instrument and permanently during operation. On
switching on, the RAM and ROM contents are checked and the batteries of the non-volatile RAMs are
tested. If an error is detected, this is indicated through a corresponding error message. The most
important instrument functions are automatically monitored during operation.
If a faulty function is detected in the selftest, ERROR is displayed in the status line. To identify the error,
the ERROR menu, in which the error messages are entered, can be called by pressing the [ERROR]
key (cf. Chapter 2, Section "Error Messages").
The tests can additionally be called via the menu.
Maintenance and Troubleshooting SMIQ
1125.5555.03 E-74.2
Access to the tests is offered by the UTILITIES - TEST menu.
Menu selection: UTILITIES - TEST
SYSTEM
REF OSC
PHASE
PROTECT
CALIB
DIAG
TEST
MOD KEY
AUX I/O
BEEPER
TEST EPROM
TEST RAM
RAM BATTERY
DGEN RAM BATTERY
GENERATE DM DATA LIST CHECKSUM
GENERATE DM CONTROL LIST CHECKSUM
TEST MCOD
TEST MCOD BERT
TEST FSIM
TEST NDSIM
FREQ 100. 000 000 0 LEVEL - 30.0 dBm
FREQUENCY
LEVEL
ANALOG MOD
VECTOR MOD
DIGITAL MOD
DIGITAL STD
LF OUTPUT
SWEEP
LIST
MEM SEQ
UTILITIES
Fig. 4-1 UTILITIES-TEST menu
TEST EPROM Tests the EPROM. The test result is displayed in a window.
IEC/IEEE-bus-command :TEST:BATT:ROM?
TEST RAM Tests the RAM. The test result is displayed in a window.
IEC/IEEE-bus-command :TEST:BATT:RAM?
RAM BATTERY Tests the RAM battery. The test result is displayed in a window.
IEC/IEEE-bus-command :TEST:BATT?
DGEN RAM BATTERY Tests the RAM battery of the data generator. The test result is
displayed in a window.
IEC/IEEE-bus-command :TEST:BATT:DGEN?
GENERATE DM DATA LIST
CHECKSUM Calculates the checksum of the active data list. The following
algorithm is applied: The entries in the list are interpreted as
binary numbers with a length of 32 bits. The most significant bit
is on the left side. All 32-bit numbers are added modulo 2
32
. The
result is displayed in hexadecimal representation.
IEC/IEEE-bus-command :DIAG:DLIS:CHEC
:DIAG:DLIS:DATA?
GENERATE DM CONTROL LIST
CHECKSUM Calculates checksum of active control list (algorithm see above).
IEC/IEEE-bus-command :DIAG:CLIS:CHEC
:DIAG:CLIS:DATA?
TEST MCOD
(only B20) Tests the modulation coder. The test result is displayed in a
window. For further information see Service Manual.
TEST MCOD BERT
(only B20) Tests BERT on MCOD. Before the test is started, a bit error rate
test adapter has to be connected to the BER connector at the
rear of the instrument (cf. chapter 5, section "Test Equipment
and Test Assemblies").
TEST FSIM Tests the fading simulator. The test result is displayed in a window.
IEC/IEEE-bus-command :TEST:FSIM?
TEST NDSIM Tests the noise generator and distortion simulator. The test result is
displayed in a window.
IEC/IEEE-bus-command :TEST:NDSim?
SMIQ Test Equipment and Test Assemblies
1125.5555.03 E-95.1
5 Checking the Rated Characteristics
5.1 Test Equipment and Test Assemblies
5.1.1 Measuring Equipment and Accessories
Table 5-1 Measuring equipment and accessories
Item Type of Instrument Required Characteristics Suitable Instrument R&S Order No.
1 Frequency counter
(included in item 2) 1 Hz to RFmax,
resolution 0.1 Hz
2 RF spectrum analyzer 100 Hz to 26 GHz,
synthesizer tuning,
dynamic range >80 dB
FSIQ26 1119.6001.26
3 Storage oscilloscope 100 Msamples/s,
averaging function
4 Controller Industry standard PC/XT/AT with
IEC-625 interface PSM17 1116.5004.70
5 Signal generator of high
spectral purity 0.1 MHz to RFmax,
SSB noise level <-126 dBc
at 1 GHz/20 kHz
SMIQ02B to 06B 1125.5555.02 to 06
6 Phase noise test assembly Mixer: 10 MHz to RFmax,
branching filter 2 MHz,
preamplifier with gain of approx.
30 dB, input noise < 2 nV (1 Hz),
DC decoupling after mixer for
oscilloscope
7 Oscilloscope (usually
included in item 3) Bandwidth > 100 MHz,
two channels with DC coupling
8 RF power meter 5 kHz to RFmax NRVS with
NRV-Z51 1020.1809.02
0857.9004.02
9 Precision attenuator Attenuation 0 to 120 dB,
resolution 5 dB RSG 1009.4505.02
10 Low-noise preamplifier 5 kHz to RFmax,
gain > 20 dB,
noise figure < 10 dB
11 VSWR bridge 40 kHz to 4 GHz
directivity > 40 dB ZRC 1039.9492.55/52
12 DC voltage source Setting range 0 to 10 V NGMD35 0117.7127.02
13 RF power amplifier 10 MHz to RFmax,
power > 1 W
14 Audio analyzer Generator up to 100 kHz,
level meter,
distortion meter
UPD
UPL06 1030.7500.05
1078.2008.06
15 Modulation analyzer 100 kHz to RFmax,
AM, FM, ϕM, distortion meter,
weighting filter ITU-R, ITU-T
FMB with
FMA-B1, FMA-B2, 856.5005.52
16 Mixer 10 MHz to RFmax, high level
17 Pulse generator Pulse repetition frequency up to
10 MHz, TTL level AFG 377.2100.02
18 Sinewave generator 10 Hz to 8 MHz,
1 V (Vpeak), two channels ADS,
AMIQ 1012.4002.02,
1110.2003.02,
Test Equipment and Test Assemblies SMIQ
1125.5555.03 E-95.2
Item Type of Instrument Required Characteristics Suitable Instrument R&S Order No.
19 AC/DC voltmeter 10 Hz to 8 MHz URE3 350.5315.03
20 Broadband FM
demodulator Delay line discriminator,
input frequency 50 MHz,
electrical line length 15 m,
demodulation bandwidth 10 MHz
21 RF attenuator DC to RFmax, 3 dB DNF 0272.4010.50
22 Lowpass filter Attenuation
up to 50 MHz < 1 dB
at 100 MHz > 20 dB
at 200 MHz > 40 dB
23 Demodulator for digital
modulations Error vector measurement Included in item 2,
better: FSIQ 3
option K11 (for GSM) 1119.5005.03
1057.3392.02
24 Arbitrary waveform
generator Two channels AMIQ 1110.2003.02
25 Program for simulation of
digital modulations Generation of data for ARB
generator WinIQSIM,
included in item 24
26 Directional coupler High directivity,
3.3 GHz to RFmax
Narda
MODEL 3292-1
27 Test connector for BERT Type: 9-contact female SUB-D
connector. Pin 6 has to be connected
to pin 8, pin 7 to pin 9.
28 Feed-through termination 50 , BNC system RAD 0289.8966.00
29 BNC adapter Adaption of D-Sub to BNC SMIQ-Z5 1104.8555.02
5.1.2 Test Assemblies
5.1.2.1 Standard Test Assembly for Analog Modulations
Test equipment - Modulation analyzer (Table 5-1, item 15)
- Oscilloscope (Table 5-1, item 7, only for a few measurements)
Test setup
ïð
EXT1/EXT2LF
RFRF
Oscilloscope
SMIQ Analyzer
SMIQ Test Equipment and Test Assemblies
1125.5555.03 E-95.3
5.1.2.2 Test Assembly for Analog Modulations with Audio Analyzer
Test equipment - Modulation analyzer (Table 5-1, item 15)
- Audio analyzer (Table 5-1, item 14)
Test setup
SMIQ
ïð
Analyzer
Audio
analyzer
EXT1/EXT2
RF
LF
LF
SMIQ
5.1.2.3 Test Assembly for Broadband FM
Test equipment - Second signal generator (Table 5-1, item 5)
- Mixer (Table 5-1, item 16)
- Sinewave generator (Table 5-1, item 18)
- AC voltmeter (Table 5-1, item 19)
- Broadband FM demodulator (Table 5-1, item 20)
- RF attenuator (Table 5-1, item 21)
- Lowpass filter (Table 5-1, item 22)
Test setup
ïð
F
M
de
m
odulator
AC
v
olt
m
eter
E
X
T
1/E
XT
2
RF
LF
Sine wave
generator
RF
Mixer
Attenuator pad
Lowpass filter
RF
Auxiliary transmitter
LO
IF IF IF
SMIQ
Test Equipment and Test Assemblies SMIQ
1125.5555.03 E-95.4
5.1.2.4 Test Assembly for Pulse Modulation
Test equipment - Second signal generator (Table 5-1, item 5)
- Oscilloscope (Table 5-1, item 7)
- Mixer (Table 5-1, item 16)
- Pulse generator (Table 5-1, item 17)
- RF attenuator (Table 5-1, item 21)
- Lowpass filter (Table 5-1, item 22)
Test setup
ïð
O
s
cill
o
s
c
o
pe
RF
PU
L
SE
Mixer
Attenuator pad
Lowpass filter
RF
Auxiliary
transmitter
L
O
I
F
I
F
I
F
Pu
l
se generator
SMIQ
5.1.2.5 Test Assembly for Vector Modulation
Test equipment - Demodulator for digital modulation (Table 5-1, item 23)
- Arbitrary waveform generator (Table 5-1, item 24)
- Program for simulation of digital modulations (Table 5-1, item 25)
- Controller to industry standard (Table 5-1, item 4)
Test setup
ïð
Demodu
l
a
t
or
RF
SMIQ
ARB generator
Controller
IEC/IEEE bus
SMIQ Test Equipment and Test Assemblies
1125.5555.03 E-95.5
5.1.2.6 Test Assembly for SSB Phase Noise
Test equipment - Second signal generator (Table 5-1 item 5),
- Phase noise test assembly consisting of
mixer with lowpass filter and preamplifier (Table 5-1 item 6)
- Oscilloscope (Table 5-1 item 7)
- Spectrum analyzer (Table 5-1 item 2)
Test setup
ïð
RF
Signal generator
Mixer
Preamplifier
10
-
M
Hz
reference
L
F
analyzer
L
O
Oscilloscope
SMIQ
5.1.2.7 Test Assembly for Output Impedance (VSWR)
Test equipment - VSWR bridge (Table 5-1, item 11),
for frequencies >3.3 GHz directional coupler (Table 5-2, item 26)
- Second signal generator (Table 5-1, item 5)
- Spectrum analyzer (Table 5-1, item 2)
Test setup
ïð
RF
Signal generator
Source
Test port
10-MHz reference-
Analyzer
VSWR bridge
SMIQ
Refl.
outp.
Note: The test port of the VSWR bridge has to be screwed directly to
the DUT. The INPUT connector of the directional coupler, too,
has to be screwed directly to the DUT. The line output of the
directional coupler has to be connected to the second signal
generator, and the reflection output (-13 dB) to the analyzer.
Test Equipment and Test Assemblies SMIQ
1125.5555.03 E-95.6
5.1.2.8 Test Assembly with Spectrum Analyzer for Fading Simulation
Test equipment - Arbitrary waveform generator (Table 5-1, item 24)
- Spectrum analyzer (Table 5-1, item 2)
Test setup
ïð
RF
SMIQ
I
Q
ARB generator
Spectrum analyzer
10-MHz reference
5.1.2.9 Test Assembly with Sampling Oscilloscope for Fading Simulation
Test equipment - Arbitrary waveform generator (Table 5-1, item 24)
- Sampling oscilloscope (Table 5-1, item 3)
Test setup
ïð
SMIQ I
ARB generator
I FSIM
I FADED/Q FADED
OUT
Oszilloscope
5.1.2.10 Test Assembly for Amplitude Settling
Test equipment - Spectrum analyzer with video output (Table 5-1, item 2)
- Storage oscilloscope (Table 5-1, item 3)
- Pulse generator (Table 5-1, item 17)
Test setup
ïðRF
Video
Analyzer
10 MHz reference
SMIQ
TRIGGER
Puls generator
Oscilloscope
SMIQ Preparation, Recommended Test Frequencies and Levels
1125.5555.03 E-95.7
5.2 Preparation, Recommended Test Frequencies and Levels
To ensure that rated specifications are maintained and to prevent setting errors, the following
preparations must be made prior to checking the rated characteristics:
At least 30 minutes warmup period.
All internal calibrations must be carried out (see Chapter 2)
A defined initial status must be set by pressing the PRESET key prior to making the settings for a
new measurement.
In the following sections, the procedures for checking the rated specifications are described.
The binding nominal values are specified in the data sheet.
lists the sampling frequencies for internal calibration (with and without vector modulation). For a full
functional test of the instrument, we recommend measurements at these frequencies unless particular test
frequencies are given.
The asterisk (*) marks range limits which constitute the main test frequencies.
Table 5-2 Range limits, main test frequencies with/without vector modulation
Test frequency Remarks
300 000.0 Hz *
500 000.0 Hz
1 000 000.0 Hz
2 000 000.0 Hz
3 000 000.0 Hz
5 000 000.0 Hz *
5 000 000.1 Hz *
7 000 000.0 Hz
10 000 000.0 Hz
15 000 000.0 Hz
20 000 000.0 Hz
25 000 000.0 Hz
50 000 000.0 Hz
Every 50 MHz up to 6400 000 000.0 Hz *
The following range limits and the 0.1 Hz higher frequencies are further main (*) frequencies:
General range limits, CW: 450 MHz, 1500 MHz, 3000 MHz, 3040 MHz
General range limits, VM: 525 MHz, 750 MHz,1200 MHz, 1800 MHz, 2500 MHz
General range limits, CW and VM: 3300 MHz, 4200 MHz, 5100 MHz, 6000 MHz, 6400 MHz
Oscillator switchover, CW: 1100 MHz, 2200 MHz
Oscillator switchover, VM: 800 MHz, 1500 MHz
Because of the different level algorithms used, the test levels are given separately for the different
models. With attenuator switching in steps of 5 dB, it is also possible to perform measurements at lower
levels (for example if mixers are used) by lowering the level exactly in 5.0 dB steps. For Signal Analyzer
FSIQ, the optimum mixer level is –15 dBm (i.e. –5 dBm at 10 dB attenuation); the level of the SMIQ
should have this value.
Model Pcwmax Pcwmin Pvmmax Pvmmin Pammax Pammin
02, 03, ..A,..E,
..W 10.0 dBm 5.1 dBm 7.0 dBm 2.1 dBm 7.9 dBm at 80%
10.7 dBm at 30% 2.1 dBm
02B, 03B 10.0 dBm 5.1 dBm 8.0** dBm 3.1 dBm 7.9 dBm at 80%
10.7 dBm at 30% 2.1 dBm
04B, 06B 7.0 dBm 2.1 dBm 5.0 dBm 0.1 dBm 4.9 dBm at 80%,
7.7 dBm at 30% -0.9 dBm
* * For SMIQ B models, OUTPUT MODE NORMAL/LOW_NOISE/LOW_DIST has been introduced in the LEVEL menu from software 5.65. Moreover, the level setting
algorithms were changed for digital modulation. For these units, the switchover level of the mechanical attenuator must be read under ATTEN FIXED RANGE in the LEVEL
menu or must be read out under remote control. 5.0 dB below the upper of the given levels switches the attenuator to ATTENUATOR MODE NORMAL. The recommended
levels for digital modulation are 4.8 dB and 5.2 dB under this level corresponding to the smallest and largest internal level ahead of the attenuator.
Test Procedures SMIQ
1125.5555.03 E-95.8
5.3 Test Procedures
5.3.1 Display and Keyboard
Checking the display ØSwitch instrument on.
ðThe basic menu is displayed after several seconds.
ØRotate contrast control (lefthand potentiometer below the display).
ðThe contrast is varied from dark to bright.
ØRotate brightness control (righthand potentiometer).
ðThe brightness of the backlighting is varied.
Checking the keyboard ØPress keys and check response at the display.
5.3.2 Frequency
5.3.2.1 Frequency Setting
Test equipment Frequency counter (Table 5-1, item 1)
Test method The frequency setting is checked using a frequency counter whose
reference frequency is synchronized with that of the SMIQ.
Measurement ØSMIQ setting:
- test frequency unmodulated,
- level 0 dBm
ðThe measured values must be exact within the framework of the
counter resolution.
Recommended test frequencies:
CW test frequency Module under test Counter resolution
839.1, 839.15, 839.5 MHz Digital synthesis 0.1 Hz
840 to 940 MHz in 10 MHz steps Step synthesis 0.1 Hz
800, 850, 1000, 1100, 1200, 1300, 1400, 1490 MHz Harmonics of summing circuit 10 Hz
450.1, 750 MHz Divider and harmonic filter of IQ converter 10 Hz
10, 449 MHz Output mixer of IQ modulator 10 Hz
1501, 2200, 2500, 3300 MHz Doubler with filters IQCON 10 Hz
3750 MHz, 4400 MHz, 5550 MHz, 6400 MHz Frequency extension 10 Hz
VM test frequencies, max. level
500, 800, 1801, 2200, 3300 MHz Doubler with filters IQCON 10 Hz
SMIQ Test Procedures
1125.5555.03 E-95.9
5.3.2.2 Settling Time
Test assembly See chapter Test Equipment and Test Assemblies.
Test method The spectrum analyzer is operated as an edge demodulator with a
0 Hz span. A controller transmits the start and the stop frequency via
the IEC bus. The analyzer is triggered by the positive edge on the EOI
line of the IEC bus. When the controller switches over from start to
stop frequency, the settling procedure is displayed on the screen of
the analyzer.
Preparation of measurement ØSynchronize the reference frequencies of the SMIQ and the
analyzer.
ØMake IEC bus and RF connections.
ØApply trigger connection to EOI line (pin 5) of IEC bus.
ØSettings on SMIQ:
- Stop frequency unmodulated
- Level 0 dBm
ØSettings on spectrum analyzer:
- Reference level -5 dBm
- Amplitude scale 1 dB/div
- Resolution bandwidth 10 kHz
- Video bandwidth 100 kHz
- Span 30 kHz
ØStarting from the stop frequency, lower the center frequency of the
analyzer until the visible filter edge runs through the center point of
the screen.
ØReduce the span to 0 Hz and calibrate the frequency scale at the
analyzer by means of 100 Hz steps on the SMIQ.
Measurement ØSettings on analyzer: TRIGGER EXTERN
- External triggering by positive edge at 1.5 V.
ØFirst send the start and then the stop frequency from the controller.
ðThe settling curve is displayed on the screen of the externally
triggered analyzer.
ØRepeat the measurement with the start and the stop frequency
interchanged.
Test Procedures SMIQ
1125.5555.03 E-95.10
Þ Measure the following steps in both directions:
Test Setting F1/MHz F2/MHz
Step synthesis CW 840 942
Digital synthesis CW 1 350.2 1 351.4
Mixer range CW 1 099 5
Doubler, oscillator change CW 2201 1099
CW/VM synthesis, 3rd filter CW 2999 3 001
1st/2nd filter VM max. level, ALC table 751 1801
2nd/3rd filter VM max. level, ALC table 1801 2601
Frequency extension CW 3000 3301
Frequ. extension, 1st/2nd filter CW 4199 4201
Frequ. extension, 2nd/3rd filter CW 5099 5101
Frequ. extension, 3rd/4th filter CW 5999 6001
QuickBasic program for the controller
CLS
iecadresse% = 28 IEC/IEEE-bus address of the SMIQ (28)
CALL IBFIND("DEV1", generator%) Open DEV1 and obtain access number
CALL IBPAD(generator%, iecadresse%) Set IEC-bus address of DEV1 to 28
iecterm% = &HA ' Set EOS to LINE FEED
CALL IBEOS(generator%, iecterm% + &H800)
CALL IBWRT(generator%, "POW 0dBm")
DO
INPUT "Start frequency in MHz";F1$
INPUT "Stop frequency in MHz";F2$
DO
CALL IBWRT(generator%, "FREQ" + F1$ + "MHz")
PRINT "Frequency:";F1$; "MHz"
DO ' Press any key
kbd$ = INKEY$
LOOP UNTIL LEN(kbd$)
SWAP F1$, F2$
LOOP UNTIL kbd$ = CHR$(27) ' Exit with ESCAPE
INPUT "Repeat (y/n)"; w$
LOOP UNTIL NOT UCASE$(w$) = "Y"
END
SMIQ Test Procedures
1125.5555.03 E-95.11
5.3.2.3 Setting Time LIST MODE
Test assembly See section Test Assemblies.
Test method The spectrum analyzer is operated as a fast level meter with a 0 Hz
span. The storage oscilloscope is connected to the video output of the
analyzer and triggered by the positive edge of the pulse generator. If it
can be ensured that the trigger delay of the spectrum analyzer is
sufficiently small, the oscilloscope at the video output can be removed,
and the analyzer read directly.
Note : This is only a function test with a level measurement and
cannot be used to measure resolution to 1E-7.
Preparation of measurement ØSynchronize reference frequencies of SMIQ and analyzer.
ØConnect pulse generator as trigger source to the TRIGGER
connector of SMIQ, analyzer and oscilloscope. External triggering
at 1.5 V, positive edge.
ØConnect storage oscilloscope to video output of analyzer.
ØSettings on SMIQ:
In the List mode, enter test frequencies with +10 dBm level and
generate list for frequencies F1 and F2.
ØLearn list and set operating mode EXT STEP.
ØSettings on storage oscilloscope:
Time base 100 us/div,
Sensitivity according to video output of analyzer.
ØSettings on pulse generator:
Operating mode CONT, level TTL, frequency 100 Hz
ØSettings on spectrum analyzer:
Reference level 10 dBm,
Amplitude scale 10 dB/div,
Resolution bandwidth 100 kHz,
Video bandwidth 300 kHz,
Span 0 Hz.
Measurement ØSelect a list, set center frequency to target frequency F2.
ðThe level settling process from the trigger time is displayed on
the screen of the externally triggered oscilloscope.
ØRepeat measurement with target frequency F1.
ðThe frequency changes to be tested are the same as those with
normal frequency setting.
Test Procedures SMIQ
1125.5555.03 E-95.12
5.3.3 Reference Frequency
5.3.3.1 Output of Internal Reference
Important: Allow the SMIQ to warm up for at least 2 hours before the measurement.
Test equipment RF power meter (Table 5-1, item 8), frequency counter (Table 5-1,
item 1)
Test setup Connect an RF power meter to the REF output (socket on rear panel).
Measurement ØMeasure the output level. It should be within ±3 dB of the data
sheet specifications.
Test setup ØConnect a calibrated frequency counter to the REF output (socket
on rear panel).
Measurement ØMeasure the frequency.
ð The frequency deviation must not exceed the sum of
deviations resulting from the frequency error in the rated
temperature range and from aging.
5.3.3.2 Input for External Reference
Test equipment Frequency counter (Table 5-1, item 1)
Signal generator (Table 5-1, item 5)
Test setup ØConnect the signal generator to the input for the external reference
and connect a calibrated frequency counter to the RF output.
Measurement ØMeasure the frequency with the setting
UTILITIES/REF OSC/SOURCE EXT.
ðThe pull-in range has to be tested only at 10 MHz input frequency
by measuring the output frequency (e.g. at 100 MHz). There must
be no relative frequency error and no error message. At the other
input frequencies (1 MHz to 16 MHz in steps of 1 MHz), a function
test at nominal frequency is sufficient. The level of the signal
generator should be -7 dBm, for the function tests it should be
raised to 16 dBm.
5.3.4 Level
5.3.4.1 Level Uncertainty
The level uncertainty is measured in two steps. First, the frequency response is measured at a fixed level and
- based on this - the linearity as relative measurement. Both deviations form the measurement result.
Test equipment - Power meter (Table 5-1, item 8)
- Spectrum analyzer (Table 5-1, item 2)
- Low-noise preamplifier (Table 5-1, item 10)
Test method for levels in measurement range of power meter
Test setup ØConnect power meter to RF output socket.
Measurement ØSetting on SMIQ:
- RF level to be measured (see below), unmodulated
ØMeasure the level at output frequencies of 300 kHz to RFmax.
ðThe level error is the deviation of the measured level from the set
value.
SMIQ Test Procedures
1125.5555.03 E-95.13
Recommended test levels Pcwmax, Pcwmin and from Pcwmin in -5 dB steps to the measurement
limit of the power meter
Recommeded test frequencies
for the level frequency
response measurement
300k, 1M, 3M, 5M, 9M, 15M, every 10M up to 1495M, 1500M, from
1500M every 20M up to 6400M (all in Hz)
Recommended test
frequencies and levels for the
level linearity measurement.
Measurement at the frequency where the level frequency response
showed the largest deviation, at 300 kHz, 950 MHz, 1850 MHz, (2150
MHz), 3250 MHz, 4350 MHz, 5150 MHz, 6050 MHz and 6350 MHz.
Test level: from Pcwmax in 5 dB steps up to the maximum attenuation
of the attenuator (Pcwmax - 135 dBm)
Test method for low levels
Test principle Levels below the measurement range of the power meter can be
determined by means of a relative measurement referred to the
measurements performed with the power meter, using a high-linearity
spectrum analyzer (digital IF).
After switching the analyzer attenuator a calibration of the connections
should be carried out. It is therefore recommended to switch the
attenuator after approx. 50 dB, since the linearity errors are very small
in the range up to -50 dBfs (referred to full scale). If the measurement is
started at Pcwma
x
-40 dBm, no error occurs due to the alternating internal
impedance of the DUT, since the 40 dB section at the attenuator output
remains switched on.
Test setup Connect the spectrum analyzer to the RF output of the SMIQ with
screened RF measurement cables.
Measurement ØSettings on SMIQ
Test frequency
Level Pcwmax -40dBm, unmodulated
ØSetting on the analyzer
Test frequency
SPAN 0 Hz
RES BW 10 Hz
SWEEP TIME 150 ms
AVERAGE over 8 sweeps
Read out marker at 150 ms due to settling
Select 1kHz DIG under COUPLING RBW
Reference level Pcwmax -40 dBm
Ø Read the level at the analyzer and define the correction factors as
a function of the frequency from the measurements performed
with the power meter.
Ø Now the measurements between Pcwmax –45 dBm and Pcwmax
-100 dBm can be carried out.
Ø In order to obtain enough spacing to the noise limit of the analyzer,
a low-noise preamplifier (Table 5-1, item 10) is looped between
the DUT and the analyzer (Caution: screened RF lines!). A
calibration of the connections at Pcwmax -100 dBm is thus required,
the reference level of the analyzer should be set such that the
measured level is close to the reference level. The number of
averages at -80 dBm is doubled to increase measurement
accuracy.
Ø Now the level steps up to Pcwmax -135 dBm can be measured.
Test Procedures SMIQ
1125.5555.03 E-95.14
5.3.4.2 Output Impedance
Test assembly See section "Test Assemblies".
Test method Since the VSWR of a source must be measured, a purely passive
measurement using the VSWR bridge is only possible with levels
where the VSWR is determined by the output impedance of the
mechanical attenuator only.
With higher levels, the effect of level control must be taken into
account. For this purpose, an auxiliary generator is used which
transmits a wave with a slightly offset carrier frequency (difference
frequency within the control bandwidth of the level control) into the
DUT, on which the outgoing wave of the DUT is superimposed. In the
case of an ideal source impedance, only the outgoing wave of the
DUT flows back into the bridge, in the case of a deviating source
impedance, the two components are superimposed on one another,
which, due to the frequency offset, results in a beat, from the
amplitude ratio of which the VSWR can be derived.
Recommended test
frequencies and levels Test frequencies: every 50 MHz as from 1 GHz.
Test levels: Pcwmin, Pcwmin – 5 dBm, Pcwmin – 10 dBm,
Pcwmin – 20 dBm, Pcwmin – 40 dBm, ALC ON and OFF for each level.
Measurement ØSettings on SMIQ:
- Test level
- Test frequency, unmodulated
ØSettings on spectrum analyzer:
- Test frequency, span 0 Hz, test level
- Resolution and video bandwidth 10 kHz
- Linear level scale
- Sweep time 30 ms
ØSettings on second signal generator:
- Detune the frequency by 100 Hz compared to the test frequency,
- first set minimum level, unmodulated.
ØVary the reference level to bring the line displayed on the screen of
the spectrum analyzer approximately into the center of the screen
and read and note down the level as reference level.
ØUnscrew the VSWR bridge from the SMIQ and increase the level at
the second signal generator until the reference level is measured
again at the analyzer.
ØScrew the bridge or directional coupler onto the SMIQ again.
ðA more or less wavy line representing the VSWR of the SMIQ is
now displayed on the spectrum analyzer.
The VSWR is to be calculated from the maximum and minimum
voltage VSWR = Vmax/Vmin
SMIQ Test Procedures
1125.5555.03 E-95.15
Passive measurement of
VSWR with output levels of
SMIQ below -30 dBm
ØSettings on SMIQ:
- Test level
- Frequency far from test frequency, unmodulated
ØSettings on second signal generator:
- Test frequency
- Level 10 dBm
ØUnscrew the VSWR bridge from the DUT and note down the level
measured at the analyzer as reference value.
ØScrew on the bridge or directional coupler again and determine the
new level at the analyzer.
ðThe voltage ratio of test level to reference level is the output
reflection coefficient r of the DUT.
The voltage standing wave ratio (VSWR) can be calculated
according to the formula
VSWR = (1+r)/(1-r)
5.3.4.3 Settling Time
Test assembly Connect the spectrum analyzer (Table 5-1, item 2) to the RF
connector of the SMIQ.
Test method The spectrum analyzer is operated as a fast level meter with a span of
0 Hz. A controller transfers the start and the stop level via the IEC bus.
The analyzer is triggered by the positive edge on the EOI line of the IEC
bus. When the controller switches over from start to stop level, the
settling procedure is displayed on the screen of the storage analyzer.
Preparation of measurement ØSynchronize the reference frequencies of the SMIQ and the
analyzer.
ØMake IEC-bus and RF connections.
ØApply trigger connection to EOI line (pin 5) of IEC bus.
ØSetting on SMIQ:
- Test frequency 1GHz
ØSettings on storage oscilloscope:
- Time base 5 ms/div
- Sensitivity according to video output of analyzer
ØSettings on spectrum analyzer:
- Reference level 10 dBm
- Amplitude scale 10 dB/div
- Resolution bandwidth 300 kHz
- Video bandwidth 300 kHz
- Span 0 Hz
- Sweep time 50 ms,
- Triggering externally by the positive edge at 1.5 V.
Measurement ØFirst send the start and then the stop level from controller.
ðThe level characteristic from the trigger point is displayed on the
screen of the externally triggered analyzer.
ØRepeat the measurement with the start and the stop level
interchanged.
ðMeasure the following steps in both directions:
Test Procedures SMIQ
1125.5555.03 E-95.16
Setting Start level Stop level Remarks
CW –140 dBm Pcwmax With mechanical attenuator,
in direction of stop level only
CW, FM 10 kHz Pcwmax –35 Pcwmax With mechanical attenuator
CW, FM 10 kHz Pcwmin Pcwmax Without mechanical attenuator
AM 30% Pammin –35 Pammin With mechanical attenuator
AM 30% Pammin Pcwmax Without mechanical attenuator
QuickBasic program for the controller
CLS
iecadresse% = 28 IEC/IEEE-bus address of the SMIQ (28)
CALL IBFIND("DEV1", generator%) Open DEV1 and obtain access number
CALL IBPAD(generator%, iecaddress%) Set IEC-bus address of DEV1 to 28
iecterm% = &HA ' Set EOS to LINE FEED
CALL IBEOS(generator%, iecterm% + &H800)
CALL IBWRT(generator%, "FREQ 1GHz")
DO
INPUT "Start level in dBm";P1$
INPUT "Stop level in dBm";P2$
DO
CALL IBWRT(generator%, "POW" + P1$ + "dBm")
PRINT "Level: ";P1$; "dBm"
DO ' Press any key
kbd$ = INKEY$
LOOP UNTIL LEN(kbd$)
SWAP P1$, P2$
LOOP UNTIL kbd$ = CHR$(27) ' Exit with ESCAPE
INPUT "Repeat (y/n)"; w$
LOOP UNTIL NOT UCASE$(w$) = "Y"
END
SMIQ Test Procedures
1125.5555.03 E-95.17
5.3.4.4 Non-Interrupting Level Setting (ATTENUATOR MODE FIXED)
Test equipment Spectrum analyzer (Table 5-1, item 2)
Test setup ØConnect the analyzer to the RF output of the SMIQ.
Measurement ØSettings on SMIQ:
- Recommended test frequencies: 5, 100, 1000, 1500, 2200, 3300,
3301, 4400, 5000, 6400 MHz, unmodulated
- Level Pcwmin
- Select FIXED in the menu LEVEL/LEVEL ATTENUATOR MODE.
Ø Settings on analyzer
same as for the measurement of level frequency response and
linearity
Note down the level read at the analyzer as reference value.
Ø Now reduce the level at the SMIQ in steps of 5 dB and measure the
deviations from the nominal reduction.
Ø Settings on SMIQ
Level Pcwmin
in the LEVEL/LEVEL ATTENUATOR MODE ELEC menu
Ø Now reduce the level in steps of 5 dB and measure the deviations
from the nominal reduction. Reduce the reference level of the
analyzer by 50 dB at Pcwmin –50 dBm and carry out a calibration of
the connections.
ðThe following deviations should not be exceeded:
Attenuation in dB ATT FIXED Tolerance in dB
50.15
10 0.3
15 0.8
20 2.5
Attenuation in dB ATT ELEC
35 1
70 1.5
80 2.3
Test Procedures SMIQ
1125.5555.03 E-95.18
5.3.4.5 Overvoltage Protection (if provided)
Test equipment - Adjustable DC voltage source (Table 5-1, item 12)
- Signal generator (Table 5-1, item 5)
- Power amplifier (Table 5-1, item 13)
Test setup ØConnect an adjustable DC voltage source to the RF output socket of
the SMIQ via a 50 resistor or a signal generator with a subsequent
power amplifier with a power output of more than 1 W.
Measurement ØSettings on SMIQ:
- Frequency 100 MHz, unmodulated
- Level -120 dBm
ØApply the DC voltage via the 50 resistor.
ðThe overvoltage protection must respond at a voltage > 4 V and
< 7 V for both polarities.
ØConnect the signal generator to the RF output socket of the SMIQ via
the power amplifier and apply frequencies of up to RFma
x
. Increase
the level at each frequency, starting with 0.1 W.
ðThe overvoltage protection should respond at an RF power of 1 W
at the latest.
5.3.5 Spectral Purity
5.3.5.1 Harmonics
Test equipment Spectrum analyzer (Table 5-1, item 2)
Test setup Connect the spectrum analyzer to the RF output of the SMIQ.
Synchronize reference frequencies of analyzer and DUT.
Recommended settings on the
spectrum analyzer
ØReference level = test level + 3 dB, 10 dB/div.
Span 0 Hz,
Resolution bandwidth 1 kHz,
Video bandwidth 30 Hz,
Sample detector
Note: These values are typical values that are dependent on the analyzer used.
The necessary spacing must be verified prior to the measurement.
Recommended frequencies 300 kHz, 1 MHz, 5 MHz and as from 50 MHz according to Table 5-2
Measurement ØSettings on SMIQ:
- Test frequencies, unmodulated
- Level Pcwmax according to data sheet
ØSettings on analyzer:
ATTENUATOR AUTO LOW DISTORTION
ØFirst measure the level of the fundamental as a reference. Then find
signals at twice and three times the carrier frequency.
ðThe harmonic spacing is the measured level referred to the
fundamental (dBc = referred to the carrier).
SMIQ Test Procedures
1125.5555.03 E-95.19
5.3.5.2 Subharmonics
Test equipment Same as for harmonics suppression
Test setup Same as for harmonics suppression
Recommended frequencies 1501 MHz to 3039 MHz in 10-steps
Measurement ØFirst the level of the fundamental is measured as reference, then a
signal is searched for at the 0.5*test frequency and 1.5*test
frequency.
ðThe subharmonic spacing is the measured level referred to the
reference level (dBc = referred to the carrier).
5.3.5.3 Nonharmonics
Test equipment Same as for harmonics
Test setup Same as for harmonics
Measurement ØSetting at the analyzer
ATTENUATOR AUTO LOW NOISE
Ø First the level is measured at the test frequency as reference, then
a signal is searched for at the analyzer frequency.
ðThe nonharmonic spacing is the measured level referred to the
reference level (dBc = referred to the carrier).
Note: Some of the nonharmonics suppression values to be
measured are out of the analyzer specifications. In case
of doubt, the measurement should be repeated with a
3 dB attenuator at the analyzer input. If the nonharmonic
spacing changes, the nonharmonic is from the analyzer.
Recommended settings and sampling frequencies:
Nonharmonics of step synthesis at test level Pcwmin, unmodulated
Setting on SMIQ
Frequency in MHz Analyzer frequency
in MHz Corresponds to
spacing df in kHz
831.0 831.6896 689.6
832.7 833.3993 699.3
1044.5 1045.0988 598.8
1043.0 1043.5917 591.7
1139.6 1140.1181 518.1
1141.0 1141.5235 523.5
1457.5 1458.4174 917.4
1349.6 1350.5345 934.5
1444.0 1444.8264 826.4
1446.0 1446.8403 840.3
1430.5 1431.2519 751.9
1434.1 1434.8634 763.4
Test Procedures SMIQ
1125.5555.03 E-95.20
Nonharmonics of summing circuit at test level Pcwmin, unmodulated
Setting on SMIQ
Frequency in MHz Analyzer frequency
in MHz Corresponds to
spacing df in Hz
1412.9 1413.2 300.0k
1305.4 1305.7 300.0k
1197.9 1198.2 300.0k
1090.4 1090.7 300.0k
838.25 838.3676 117.6k
380 380.4255 425.5k
1495.59 1511.18 15.59M
1354.0625 1368.3192 14.2567M
1354.0625 1382.5758 28.5133M
Nonharmonics IQMOD at test level Pcwmin, unmodulated
Setting on SMIQ
Frequency in MHz Analyzer frequency in MHz
451 300, 600, 1200, 2400, 3000
449.9 600, 1200, 2400
225 600, 1200, 2400
70.0 600, 1200, 2400
Nonharmonics of output mixer IQMOD at test level Pcwmax, unmodulated
Setting on SMIQ
Frequency in MHz Analyzer frequency in MHz
449 1053, 1951, 2849
449.9 1050.3, 600.4
225 1725
70.0 2190
Nonharmonics of IQ synthesis at test level Pvmmin, VM at max. level
Setting on SMIQ
Frequency in MHz Analyzer frequency in MHz
751 600
901 900
751 1051, 1351
1450 1750, 2050, 1150, 850
1800 2100
1801 1501, 3002
2150 1850, 2450
2500 2200
2501 2201
2900 2600, 2300
3200 2900, 3500
595 305
1 299
149 151
524 752, 452
401 698
SMIQ Test Procedures
1125.5555.03 E-95.21
Nonharmonics of output mixer IQMOD at test level Pvmmax, VM at max. level
Setting on SMIQ
Frequency in MHz Analyzer frequency in MHz
580 660
749.99 900.02
Nonharmonics of module E6GHZ at test level Pcwmin, unmodulated
Setting on SMIQ
Frequency in MHz Analyzer frequency in MHz
3301, 3350, 50 MHz steps up to 6400 MHz 1200, 2400, 3600
Same as above +-300, 600 MHz from carrier
Same as above +-900 MHz from carrier
3301, 3350, 50 MHz steps up to 5100 MHz 0.5*(f+900 MHz)
5101, 5150, 50 MHz steps up to 6400 MHz 0.5*(f-900 MHz)
Non-systematic nonharmonics
Measurement Ø Settings on SMIQ:
- Test frequencies: 93, 520, 749, 751, 1799, 2200, 2499, 2501,
3300, 3301, 4199, 4400, 5099, 5101, 5999, 6001, 6400 MHz
- Test levels Pcwmin unmodulated and Pvmmin
with vector modulation at max. level
ØRecommended settings on analyzer:
- Sample detector
- Frequency far from the carrier:
REF ATTEN AUTO LOW NOISE
Resolution bandwidth 30 kHz
Video bandwidth 1 kHz
Span 10 MHz
- Frequency at 50 kHz to 1 MHz from the carrier:
Resolution bandwidth 1 kHz
Video bandwidth 1 kHz
Average over at least 3 sweeps.
Test Procedures SMIQ
1125.5555.03 E-95.22
5.3.5.4 Broadband Noise
Test assembly Connect spectrum analyzer to RF socket of the SMIQ.
Test method Operate the spectrum analyzer in the CHANNEL POWER mode.
Set SPAN to 400 kHz, channel bandwidth to 350 kHz, detector to
SAMPLE, attenuator to LOW NOISE, and PLL bandwidth with
COUPLING/MAIN PLL BANDWIDTH to LOW. For reference level
measurement, set the center frequency of the analyzer to the test
frequency, set the reference level to the test level, and read the
channel power. Then measure the reference level by shifting the
center frequency of the analyzer by the desired offset (for example
5 MHz). The channel power now displayed must be converted to 1 Hz
bandwidth and referred to the carrier power. By performing a
measurement without input level, the analyzer’s inherent noise can be
determined and subtracted if necessary.
Measurement ØDetermine the channel power with the center frequency of the
analyzer set to the test frequency and note it down as Pref.
ØIncrease the center frequency by the offset (5 MHz).
ØInhibit the switching of the attenuator with REF RF ATTEN
MANUAL without entering a value so that the input mixer is not
overdriven.
Ø Lower the reference level of the analyzer by 20 dB, read the new
channel power Pnoise and note it down.
Ø Minimize the output level on the SMIQ by means of RF OFF, read
the channel power Pres and note it down.
Evaluation Ø If the power Pres is lower than Pnoise by more than 0.41 dB and less
than 10 dB, the inherent noise power of the analyzer can be
subtracted. To this effect, convert the two power values into mW
according to the formula PmW = 10
(PdB
m
/
10)
, then subtract Pres from
Pnoise. Reconvert the corrected power into dBm according to the
formula PdBm = 10*log10(PmW).
Ø If the power Pres is less than 0.41 dB below the power Pnoise, the
analyzer resolution is not sufficient for a precise measurement.
The true result is in such case certainly more than 10 dB below the
measured value. If Pres is more than 10 dB below Pnoise, Pnoise need
not be corrected since the noise component of the analyzer is
negligible.
Ø Convert the power Pnoise to 1 Hz bandwidth according to the
formula P1Hz = Pch - (10*log10(channel bandwidth)).
ðThe difference between the (possibly corrected) power Pnoise in
dBm and the power Pre
f
in dBm is the broadband noise floor in
dBc.
Recommended test frequencies See Table 5-2, at least * frequencies.
Recommended test levels Pcwmin with unmodulated carrier and Pvmmin with vector modulation at
full-scale level (0.5 V DC at I or Q input)
SMIQ Test Procedures
1125.5555.03 E-95.23
5.3.5.5 SSB Phase Noise
Test assembly See section "Test Assemblies"
Test method The two signal generators are set to the test frequency and
synchronized with a phase offset of 90° (phase quadrature). Mixing to
0 Hz suppresses the RF carrier, and due to the phase quadrature the
mixer supplies a voltage corresponding to the phase difference
between the input signals. This is measured by the LF spectrum
analyzer and can be converted into SSB phase noise.
Measurement ØSet the levels of the two signals generators in accordance with the
specifications of the mixer used (unmodulated or vector modulation
with max. level).
ØFor calibration, reduce the level of the DUT by 40 dB and detune
one signal generator by 20 kHz. Check the signal for harmonics; the
2nd and 3rd harmonic should be more than 30 dB below the
fundamental. Measure the reference value at 20 kHz at the analyzer
and note it down.
ØSet the detuned signal generator to the previous frequency and set
the signal generators for phase quadrature. To this end, raise the
level of the DUT to the previous level and call PHASE in the
UTILITIES menu. Observe the output voltage of the mixer on the
oscilloscope and vary the phase until the voltage becomes 0.
ØRead the noise voltage, normalized to a bandwidth of 1 Hz (noise
level) from the analyzer.
Evaluation ØDetermine the difference relative to the reference level and add to
the value found 6 dB for the second sideband measured
(correlated) and 40 dB for level switchover.
If the S/N ratio of the second signal generator is not at least 10 dB
better than that of the DUT, the noise component of the reference
signal generator must be determined and subtracted as well.
ðThe corrected S/N ratio is the wanted measured value.
Example:The measured reference level is assumed to be 12 dBm. A
noise level of -78 dBm (1 Hz) is determined at 20 kHz. The
difference is 90 dB, plus the correction for the second
sideband (6 dB) and level switchover (40 dB), yielding an
S/N ratio of -136 dB or a noise level of -136 dBc (dB referred
to the carrier power). If two identical signal generators have
been used, the result must be reduced by 3 dB for the
(uncorrelated) noise power of the reference signal generator.
The final result is then -139 dBc.
Test Procedures SMIQ
1125.5555.03 E-95.24
5.3.5.6 Residual FM
Note: The measurement of SSB phase noise usually makes a measurement of residual FM
superfluous as it is more sensitive.
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations
Measurement ØSettings on SMIQ:
- Frequency 1 GHz
- Level Pcwmax, unmodulated
ØSetting on analyzer:
- Demodulation FM, rms value
ØDetermine the residual FM with ITU-T(CCITT) filtering and with a
test bandwidth of 30 Hz to 23 kHz.
5.3.5.7 Residual AM
Test assembly Same as above.
Measurement Same as above, but with AM demodulation.
Test frequencies *-values of Table 5-2 as from 1 MHz.
5.3.6 Sweep
Test equipment DC voltmeter (Table 5-1, item 19)
Test setup ØConnect the voltmeter to the X-AXIS, MARKER or BLANK socket
of the SMIQ.
Measurement Ø Settings on SMIQ:
Set any sweep with 10 steps. Define a marker in the sweep range.
Ø Select LONG as SWEEP BLANK TIME.
Ø Select all steps in the STEP mode and measure the voltage at the
sockets X-AXIS and MARKER.
Ø The voltage at X-AXIS should rise proportionally to the sweep steps
from 0 to 10 V. Tolerance: ±5% ±30 mV.
Ø The voltage at MARKER should go "high" when the marker step is
selected, otherwise it should remain "low".
Ø Perform a SINGLE sweep to check the BLANK output. After the
end of the sweep, the voltage at the BLANK output should go
"high".
It is sufficient to perform the test in one sweep mode.
SMIQ Test Procedures
1125.5555.03 E-95.25
5.3.7 Internal Modulation Generator
Test equipment Audio analyzer (Table 5-1, item 14)
Test setup ØConnect the audio analyzer to the LF socket of the SMIQ.
For frequency measurements above 100 kHz, connect the
spectrum analyzer.
Measurement of frequency
settings and distortion
ØSettings on SMIQ:
- LF OUTPUT menu:
SOURCE LFGEN
VOLTAGE 1 V
Vary LFGEN FREQUENCY from 0.1 Hz to 1 MHz.
ØRead the actual frequency from the audio or spectrum analyzer
(Marker function SIGNAL COUNT).
ØRead the distortion from the audio analyzer.
Recommended test frequencies
for frequency settings 1 kHz, 33.3333 kHz, 1 MHz
Recommended test
frequencies for distortion 20 Hz, 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz
Measurement of the level ØSettings on SMIQ:
- LF OUTPUT menu:
Set LFGEN2 FREQUENCY to 1 kHz.
- Vary VOLTAGE from 1 mV to 4 V.
ØMeasure the output level with the audio analyzer.
Recommended settings 3 mV, 10 mV, 30 mV, 100 mV, 300 mV, 1 V, 2 V, 4 V
Frequency response
Test equipment AC voltmeter (Table 5-1, item 19)
Test setup ØConnect the AC voltmeter to the LF socket of the SMIQ.
Measurement ØSettings on SMIQ:
- LF OUTPUT menu:
SOURCE LFGEN
Vary LFGEN FREQUENCY from 10 Hz to 1 MHz.
Recommendation: logarithmic with 4 steps/decade.
ØMeasure the output level.
ðThe frequency response is the difference between the highest
and the lowest level.
Note: The required settling time is a pure computer time and need therefore not be measured.
Test Procedures SMIQ
1125.5555.03 E-95.26
5.3.8 Vector Modulation
5.3.8.1 Input Impedance (VSWR)
Test equipment Test assembly for output impedance
Test setup ØConnect the test port to the I or Q input instead of the RF output.
Measurement ØSettings on SMIQ:
- Level 0 dBm
- Carrier frequency 900 MHz
- Switch on vector modulation.
ØSettings on signal generator:
- Level 10 dBm
- Carrier frequency 5, 10 and 30 MHz
ØScrew the VSWR bridge off and measure the level as reference
level.
ØConnect the VSWR bridge to the I input and measure the level
again.
ðThe voltage ratio of test level to reference level is the output
reflection coefficient r of the DUT.
ØFrom this, the voltage standing wave ratio (VSWR) can be
calculated as follows:
VSWR = (1+r)/(1-r)
ØRepeat the measurement for the Q input.
5.3.8.2 Maximum Level
Test equipment - Power meter (Table 5-1, item 8)
- DC voltage source (Table 5-1, item 12)
Test setup ØConnect the power meter (Table 5-1, item 8) to the RF output
socket.
ØConnect the DC voltage source to the I or Q input.
Measurement ØSettings on SMIQ:
- Level 0 dBm
- Carrier frequency 900 MHz
ØMeasure the level without modulation as reference level.
ØSelect STATE ON in the menu VECTOR MOD. Set the DC voltage
source to 0.500 V. Measure the level again.
ðThe level difference should be within the permissible tolerance
specified in the data sheet.
SMIQ Test Procedures
1125.5555.03 E-95.27
5.3.8.3 Error Vector
Test assembly See section "Test Assemblies", vector modulation
Measurement Instead of a static measurement, an equivalent dynamic measurement
with a low symbol rate is carried out.
ØSettings on SMIQ:
- Level 0 dBm
- Select STATE ON in the menu VECTOR MOD.
ØGenerate a modulation signal on the ARB generator using the
controller and the simulation program:
- Modulation 16QAM
- No coding
- SQR COS filter with α = 0.5
- PRBS-9 data sequence
- Pulse width and oversampling 32
- Length 100 symbols
- Symbol clock 10 kHz
ØCheck if the channels on the ARB generator are equal and adjust if
necessary.
ØMake the corresponding settings on the demodulator. Synchronize
to a bit sequence, starting with the 9th symbol, 12 bits long, result
length 80 symbols.
ØVary the carrier frequency from 5 MHz to RFmax.
For recommended setting values see Table 5-2, at least
* frequencies.
ØMeasure the error vector magnitude (peak and rms) on the
demodulator.
5.3.8.4 Modulation Frequency Response
Test equipment - Spectrum analyzer (Table 5-1, item 2)
- Signal generator (Table 5-1, item 5)
Test setup ØConnect the RF output of the SMIQ to the spectrum analyzer,
connect the signal generator to the I input of the SMIQ.
Test method By applying a sinewave AC voltage to the I (or Q) input, an amplitude
modulation with a suppressed carrier is generated. The modulation
frequency response is determined by measuring the sidebands as a
function of the frequency of the applied AC voltage.
Test Procedures SMIQ
1125.5555.03 E-95.28
Measurement ØSettings on SMIQ:
- Test level 0 dBm, test frequency > 100 MHz
- Select STATE ON in the menu VECTOR MOD.
ØSetting on signal generator:
- Level 0.5 V (Vpeak) corresponding to 4 dBm
ØSettings on analyzer:
- Center frequency = test frequency, span 30 kHz, RBW 10 kHz,
- Reference level = test level +6 dB
- Scale 2 dB/div
ØVary the frequency from 1 MHz to 30 MHz on the signal generator
and observe the modulation sidebands on the analyzer using an
appropriate span (CENTER FREQ = test frequency +- modulation
frequency).
ðThe result level for a sideband frequency is the average value of the
left and the right sideband level.
ØFor evaluation, determine the difference between the modulation
sidebands.
ðThe modulation frequency response is the difference between the
highest and the lowest sideband.
ØSettings on SMIQ:
Test level 0 dBm,
Test frequencies 751 MHz, 950 MHz, 1799 MHz, 1801 MHz, 2499
MHz, 2501 MHz, 3299 MHz, 3301 MHz, 4199 MHz, 4201 MHz,
5099 MHz, 6001 MHz, 6400 MHz.
Test these frequencies for compliance with the 3 dB limit by
performing a measurement at 1 MHz, 15 MHz and 30 MHz on the
signal generator.
5.3.8.5 Residual Carrier and Leakage
Test equipment Spectrum analyzer (Table 5-1, item 2)
Test setup ØConnect the spectrum analyzer to the RF output of the SMIQ.
Measurement ØSettings on SMIQ:
Test level Pvmmax,
Test frequencies: 395, 600, 936, 1250, 1801, (2200), 3301, 5099,
5501, (4400), 6400 MHz, unmodulated
Select STATE OFF in the menu VECTOR MOD/STATE.
ØSettings on analyzer:
- Center frequency = test frequency, span 1 MHz
- Reference level = test level
- Scale 10 dB/div
ØFirst measure the unmodulated level as a reference.
ØThen switch on vector modulation with open inputs (STATE ON)
and measure the residual carrier.
ðThe residual carrier in dBc is the level of the residual signal found
referred to the output signal of the DUT without modulation
(dBc = referred to the carrier).
ØSet IMPAIRMENT STATE ON and LEAKAGE 10% on the SMIQ.
ðThe residual carrier should increase to 10% (-20 dBc).
SMIQ Test Procedures
1125.5555.03 E-95.29
5.3.8.6 I/Q Imbalance
Measurement of imbalance
Test equipment - Spectrum analyzer (Table 5-1, item 2)
- Adjustable DC voltage source (Table 5-1, item 12)
Test setup ØConnect the spectrum analyzer to the RF output of the SMIQ.
ØConnect the DC voltage source to the I or the Q input.
Measurement ØSettings on SMIQ:
- Test frequency 900 MHz
- Test level 0 dBm
- Select STATE ON in the menu VECTOR MOD.
ØSettings on analyzer:
- Center frequency = test frequency, span 1 MHz
- Reference level = test level +3 dB
- Scale 1 dB/div
ØFirst measure the undistorted level as a reference. To this end,
apply a DC voltage of 0.500 V to the I and then to the Q input and
note down the corresponding RF levels as reference levels.
In the menu VECTOR MOD/IMPAIRMENT STATE, select ON and
IMBALANCE 10%. Repeat the level measurements.
ð The I level should increase by the set imbalance, the Q level
decrease by the inverse ratio. With 10%, the I level should
increase to 1.1 times, the Q level decrease to 1/1.1 times the
original value, i.e. the Q level should be reduced to 0.909 times
the original value (corresponding to ±0.83 dB).
Measurement quadrature error
Test assembly See section "Test Assemblies", vector modulation
Measurement ØSettings on SMIQ:
- Level 0 dBm
- Test frequency 900 MHz
- In the menu VECTOR MOD, select STATE ON,
IMPAIRMENT STATE OFF, QUADRATURE ERROR 10°.
ØGenerate a modulation signal using the controller and the simulation
program:
- Modulation 16QAM
- No coding
- SQR filter with α = 0.5
- PRBS-9 data sequence
- Pulse width and oversampling 32
- Length 100 symbols
- Symbol clock 10 kHz
ØMake the corresponding settings on the demodulator. Synchronize
to a bit sequence, starting with the 9th symbol, 12 bits long, result
length 80 symbols. Caution: the mapping of DUT and
demodulator must be in agreement!
ØSelect the vector representation on the demodulator.
ðThe symbols should be located in a square grid.
ØSelect IMPAIRMENT STATE ON on the SMIQ.
ðThe symbols must no longer be arranged at right angles; the
Y axis should be inclined towards the left by 10°, with a setting of
-10° it should be inclined towards the right.
Test Procedures SMIQ
1125.5555.03 E-95.30
5.3.8.7 Level Control POW RAMP
Test equipment - Spectrum analyzer (Table 5-1, item 2)
- 2 adjustable DC voltage sources (Table 5-1, item 12)
- Function generator (Table 5-1, item 18 or 24)
- Digital storage oscilloscope (Table 5-1, item 3)
Test setup ØConnect the spectrum analyzer to the RF output of the SMIQ.
ØConnect the 1st DC voltage source to the I input with 0.50 V.
ØConnect the 2nd DC voltage source to the POW RAMP input.
Measurement ØSettings on SMIQ:
- Test frequency 900 MHz
- Level 0 dBm
- Select STATE ON in the menu VECTOR MOD.
ØSettings on analyzer:
- Center frequency = test frequency, span 1 MHz
- Reference level = test level
- Scale 10 dB/div
ØFirst measure the non-attenuated level with 1.00 V at the POW
RAMP input as a reference. Then reduce the voltage to 0.100 V and
measure the level again.
ðA value 20 dB lower is now expected. The attenuation error at
-20 dB is the deviation of this level from the expected value.
ØReduce the voltage to 0.00 V and determine the residual level.
ðThe on/off ratio is the residual level referred to the reference level
at 1 V.
Test setup ØTo measure the dynamic characteristics, connect a function
generator to the POW RAMP input.
ØConnect one channel of the storage oscilloscope to the video output
of the analyzer and the other one to the input signal from the
function generator.
Measurement ØSetting on function generator:
- Squarewave signal with offset, lower level 0.1 V,
upper level 1.0 V, frequency 100 kHz
ØSettings on analyzer:
- Center frequency = test frequency, span 0 Hz
- Reference level = test level
- Scale 10 dB/div
- Resolution and video bandwidth 10 MHz
ØTrigger on the input signal on the oscilloscope. Two offset
squarewave signals appear on the screen which can be evaluated
after a delay (<1.5 s) and rise/fall time.
ðRise time = time between 10% and 90% of RF amplitude
Fall time = time between 90% and 10% of RF amplitude
Delay = time between 50% of input amplitude and 50% of RF
amplitude
On the FSIQ the video signal is always logarithmic with 9 mV/dB and
independent of the video bandwidth. The 90% level is thus approx.
8 mV (0.9 dB) below the upper level, the 10% level approx. 50 mV
(5.4 dB) above the lower level (because of the start at -20 dB, 10%
of the rise is at -14.4 dB).
SMIQ Test Procedures
1125.5555.03 E-95.31
5.3.9 Amplitude Modulation
5.3.9.1 Modulation Depth Setting
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations
Measurement ØSettings on SMIQ:
- Level 0 dBm
- Select INT in the menu ANALOG MOD/AM/AM SOURCE INT,
Modulation depth 0.1% to 80%
Modulation frequency 1 kHz
ØVary the carrier frequency from 5 MHz to RFmax. For recommended
setting values see Table 5-2, at least * frequencies.
ØRead the modulation depth from the modulation analyzer.
Recommended settings ØResolution of the setting
Measurement at fmod = 1 kHz, RF 150 MHz, test level
Pammin+3 dBm of m = 10% to 96% in 10-steps.
ØRF frequency response at fmod = 1 kHz, m = 80%, test level Pammax,
test frequencies 1 MHz, 5 MHz, more in Table 5-2, *-frequencies.
5.3.9.2 AM Distortion
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations
Measurement ØSettings on SMIQ:
- Level Pammin
- Select INT in the menu ANALOG MOD/AM/AM SOURCE INT
- Modulation depth 30%
- Modulation frequency 1 kHz
ØVary the carrier frequency from 5 MHz to RFmax. For recommended
setting values see Table 5-2, at least * frequencies.
ØRead the distortion from the modulation analyzer.
ØRepeat the measurement with Pammax and AM 80%.
5.3.9.3 AM Frequency Response
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations with audio analyzer
Measurement ØSettings on SMIQ:
- Level Pammin +3 dBm
- Select EXT1 in the menu ANALOG MOD/AM/AM SOURCE EXT.
- Modulation depth 60%
ØVary the carrier frequency from 5 MHz to RFmax. Recommended test
frequencies: 5, 150, 1500, 1501, (2200), 2500, 3300, 3301, 4199,
4201, (4400), 5099, 5101, 5999, 6001, 6400 MHz..
ØSetting on audio analyzer:
- Generator level 1 V (Vpeak).
ØVary the generator frequency to determine the modulation
frequency response.
ðThe modulation frequency response is the difference between the
greatest and the smallest modulation depth.
ØRepeat the measurement with the internal modulation generator with
the setting INT in the menu ANALOG MOD/AM/AM SOURCE INT.
Test Procedures SMIQ
1125.5555.03 E-95.32
5.3.9.4 Residual PhiM with AM
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations
Measurement ØSettings on SMIQ:
- Level 0 dBm
- Select INT in the menu ANALOG MOD/AM/AM SOURCE INT.
- Modulation depth 30%
- Modulation frequency 1 kHz
ØVary the carrier frequency from 5 MHz to RFmax. For recommended
setting values see Table 5-2, at least * frequencies.
ØMeasure the resulting phase modulation on the modulation analyzer
with a 3 kHz lowpass filter and peak detection.
5.3.9.5 Level Monitoring at Input EXT1
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations with audio analyzer
Test setup ØConnect the generator output of the audio analyzer to the external
modulation input EXT1.
Measurement ØSettings on SMIQ:
- Select EXT1 in the menu ANALOG MOD/AM/AM SOURCE EXT.
ðThere must be no error message if the input level is correct.
ðAn error message must be displayed when the deviation attains
the value given in the data sheet.
SMIQ Test Procedures
1125.5555.03 E-95.33
5.3.10 Broadband Amplitude Modulation
Test equipment - Spectrum analyzer (Table 5-1, item 2)
- Signal generator (Table 5-1, item 5)
Test setup ØConnect the RF output of the SMIQ to the spectrum analyzer, con-
nect the signal generator to the I (broadband AM) input of the SMIQ.
Note ØIf the measurement of the modulation frequency response has been
successfully performed for vector modulation, only a functional test
is required here.
Measurement ØSettings on SMIQ:
- Test level 0 dBm, test frequency > 30.3 MHz
- Select STATE ON in the menu ANALOG MOD/BB-AM.
ØSetting on signal generator:
- Level 0.20 V (Vpeak) corresponding to -4 dBm for a modulation
depth of 80%
ØFunctional test:
Vary the frequency from 1 MHz to 30 MHz on the signal generator
and measure the sidebands referred to the carrier at SPAN 3 MHz.
They should be 8 +- 1.5 dB below the carrier level.
Repeat the measurement at a frequency of 30 MHz on the signal
generator and SPAN 70 MHz on the analyzer. The sidebands should
now be 8 +-4.5 dB below the carrier level.
ØComplete measurement:
Setting on analyzer and measurement as for vector modulation,
modulation frequency response, but the level is first to be measured
as reference at the test frequency.
ØSince the sidebands have an offset of m/2 from the carrier, an offset
of -6 dB corresponds to 100% AM.
ð The modulation depth is calculated with the formula
m = 2*10(sideband offset/20).
ðThe frequency response is the difference between the
greatest and the smallest modulation depth.
5.3.11 Pulse Modulation
5.3.11.1 ON/OFF Ratio
Test equipment - Spectrum analyzer (Table 5-1, item 2)
- Pulse generator (Table 5-1, item 17)
Test setup ØTo determine the ON/OFF ratio, connect the spectrum analyzer to
the RF output socket of the SMIQ and the pulse generator to the
PULSE socket on the rear of the SMIQ.
Measurement ØSetting on SMIQ:
- Select SOURCE EXT in the menu ANALOG MOD/PULSE.
ØDetermine the output level of the SMIQ at various carrier
frequencies with a "high" and a "low" signal applied.
ðThe difference between the output level with a "high" signal
applied and that with a "low" signal applied is the ON/OFF ratio.
Recommended test frequencies 400 MHz, 1 GHz, 2.2 GHz, 3.3 GHz, 4.4 GHz, 6.4 GHz
Recommended test level Pcwmax
Test Procedures SMIQ
1125.5555.03 E-95.34
5.3.11.2 Dynamic Characteristics
Test assembly See section "Test Assemblies", test assembly for pulse modulation
Measurement ØOn the dual-trace oscilloscope, simultaneously display the input
signal from the pulse generator and the (downconverted) output
signal with triggering on the input signal.
ØSetting on pulse generator:
- Squarewave pulse sequence with a frequency of approx. 100 kHz,
TTL level
ØSetting on SMIQ:
- Pulse modulation, level depending on mixer used
ØVary the carrier frequency from 5 MHz to RFmax. For recommended
setting values see Table 5-2, at least * frequencies.
ØFor carrier frequencies > 50 MHz, use mixer and set an IF of
approx. 50 MHz with the auxiliary generator.
ØEvaluate the pulse-modulated RF signal on the oscilloscope.
ðRise time = time between 10% and 90% of RF amplitude
Fall time = time between 90% and 10% of RF amplitude
Pulse delay = time between 50% of input pulse amplitude
and 50% of RF amplitude
5.3.12 Frequency Modulation (Option SM-B5)
5.3.12.1 FM Deviation Setting
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations
Measurement ØSettings on SMIQ:
- RF 500 MHz
- Level 0 dBm
- Select INT in the menu ANALOG MOD/FM/FM1 SOURCE.
- Modulation frequency 1 kHz
- Recommended test deviations 300 Hz,1, 3, 10, 30, 100, 250, 500 kHz
ØRead the FM deviation from the modulation analyzer.
ØRepeat test at a deviation of 50 kHz and carrier frequencies of 150,
300, 600, 1200, 2200, 3500, 4400, 5600, 6400 MHz.
5.3.12.2 FM Distortion
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations
Measurement ØSettings on SMIQ:
- Carrier frequencies 100, 1200 and 3301 MHz
– Half maximum deviation each
- Level 0 dBm
- Select INT in the menu ANALOG MOD/FM/FM1 SOURCE.
- Modulation frequency 1 kHz
ØRead the distortion from the modulation analyzer.
SMIQ Test Procedures
1125.5555.03 E-95.35
5.3.12.3 FM Frequency Response
FM frequency response up to 100 kHz
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations with audio analyzer
Measurement ØSettings on SMIQ:
- Test frequencies 100, 750.1, 1099, 1101, 1499 MHz
- Level 0 dBm
- Select EXT1 in the menu ANALOG MOD/FM/FM1 SOURCE,
deviation each: ¼ of the maximum deviation.
ØSetting on audio analyzer:
- Generator level 1 V (Vpeak)
ØVary the generator frequency of the audio analyzer from 10 Hz to
100 kHz to determine the modulation frequency response.
ðThe modulation frequency response is the difference between the
greatest and the smallest modulation depth.
ØRepeat the measurement, applying the signal to socket EXT2 and
with the setting ANALOG MOD/FM/FM2 SOURCE EXT2, only with
CF 100 MHz.
ØRepeat the measurement with the internal modulation generator
and with the setting ANALOG MOD/FM/FM1 SOURCE INT, only
with CF 100 MHz.
Broadband FM frequency response up to 2 MHz
Test assembly See section "Test Assemblies", broadband FM
Measurement ØSettings on SMIQ:
- Select EXT2 in the menu ANALOG MOD/FM/FM2 SOURCE
and select deviation according to the table below.
- Switch the voltmeter to DC measurement.
ØVary the frequency in 10 kHz steps on the SMIQ or the auxiliary
generator until the voltmeter indicates 0 V.
ØSwitch the voltmeter to AC measurement and vary the frequency on
the sinewave generator from 10 kHz to maximum frequency.
ØMeasure the modulation frequency response with the AC voltmeter.
ðThe modulation frequency response is the difference between the
greatest and the smallest modulation depth measured.
ØRepeat the measurement, applying the signal to socket EXT1 and
with the setting MODULATION/FM/FM1 SOURCE EXT1.
Recommended settings:
F (RF) 50 MHz 750.1 MHz 1099 MHz 1101 MHz 1500 MHz 2200 MHz 3300 MHz 4400 MHz 6400 MHz
Deviation 500 kHz 250 kHz 250 kHz 250 kHz 250 kHz 500 kHz 500 kHz 1000 kHz 1000 kHz
Mixer no yes yes yes yes yes yes yes yes
F (LO) - 800.1 MHz 1149 MHz 1151 MHz 1550 MHz 2250 MHz 3350 MHz 4450 MHz 6450 MHz
Test Procedures SMIQ
1125.5555.03 E-95.36
5.3.12.4 FM Preemphasis (optional)
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations
Measurement ØSettings on SMIQ:
- Carrier frequency 100 MHz
- Select INT in the menu ANALOG MOD/FM/FM1 SOURCE.
- Deviation 25 kHz
- LFGEN FREQ 15 kHz
ØWith a modulation frequency of 15 kHz, read the deviation from the
modulation analyzer and note it down as a reference value.
ØSwitch on preemphasis of 50 µs on the SMIQ and the modulation
analyzer.
ðThe difference between the deviation now measured and the
reference value is the deviation error with preemphasis. It should
be less than 10% of the set maximum deviation.
ØRepeat the measurement with a preemphasis of 75 µs.
5.3.12.5 Residual AM with FM
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations
Measurement ØSettings on SMIQ:
- Level 0 dBm
- Select INT in the menu MODULATION/FM/FM1 SOURCE.
- Deviation 40 kHz
- Modulation frequency 1 kHz
ØVary the carrier frequency from 5 MHz to RFmax. For recommended
setting values see Table 5-2, at least * frequencies.
ØMeasure the resulting amplitude modulation on the modulation
analyzer with a 20 Hz highpass filter, a 3 kHz lowpass filter and
peak detection.
5.3.12.6 Carrier Frequency Error with FM
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations
Measurement ØSettings on SMIQ:
- Frequency 500 MHz
- Level 0 dBm
- Select INT in the menu ANALOG MOD/FM/FM1 SOURCE.
- Deviation 0 kHz
ØSetting on modulation analyzer
- Counter function
ØMeasure the frequency error on switching on the FM.
ØIncrease the deviation to 200 kHz on the SMIQ.
ØMeasure the frequency error with FM with deviation.
SMIQ Test Procedures
1125.5555.03 E-95.37
5.3.12.7 Level Monitoring at Input EXT2
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations with audio analyzer
Test setup ØConnect the generator output of the audio analyzer to the external
modulation input EXT2.
Measurement ØSame as for AM at input EXT1.
5.3.13 Phase Modulation (Option SM-B5)
Note: As a precondition for these measurements, the measurements described under
"Frequency Modulation" must have been successfully concluded.
5.3.13.1 Deviation Setting
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations
Measurement ØSettings on SMIQ:
- Carrier frequency 1000 MHz
- Level 0 dBm
- Select INT in the menu ANALOG MOD/PM/PM1 SOURCE.
- Modulation frequency 1 kHz
- For deviation see below
ØRead the PhiM deviation from the modulation analyzer.
Recommended test deviations 0.03, 0.1, 0.3, 1, 3, 10 rad
5.3.13.2 PhiM Distortion
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations
Measurement ØSettings on SMIQ:
- Carrier frequency 1 GHz
- Level 0 dBm
- Select INT in the menu ANALOG MOD/PM/PM1 SOURCE.
- Deviation 5 rad
- Modulation frequency 1 kHz
ØRead the distortion from the modulation analyzer.
Test Procedures SMIQ
1125.5555.03 E-95.38
5.3.13.3 PhiM Frequency Response
Test assembly See section "Test Assemblies", standard test assembly for analog
modulations with audio analyzer
Measurement ØSettings on SMIQ:
- Carrier frequency 1000 MHz
- Level 0 dBm
- Select EXT1 in the menu MODULATION/PM/PM1 SOURCE.
- Deviation 5 rad
ØSetting on audio analyzer:
- Generator level 1 V (Vpeak)
ØVary the generator frequency of the analyzer to determine the
modulation frequency response.
ðThe modulation frequency response is the difference between the
greatest and the smallest modulation depth.
Note: For the FMB, it is recommended that the measurement be carried
out as frequency modulation measurement as this provides
higher accuracy; conversion to phase deviation with formula
m = deviation/fmo
d
. Since no frequency response can occur below
fmod 1000 Hz because of the DC coupling, it is sufficient to
measure the response starting from 1000 Hz (measurements
below 1000 Hz are problematic since deviations are very small).
ØRepeat the measurement with the setting PM2 SOURCE EXT2.
ØRepeat the measurement with the setting PM1 SOURCE INT and
variation of the frequency of the internal modulation generator.
5.3.14 Digital Modulation (Option SMIQB20)
The basic functioning of the module can be checked by calling up the built-in test. To do this, select
UTILITIES/TEST TEST MCOD in the menu. No fault messages should occur.
5.3.14.1 Level Error and Residual Carrier with Digital Modulation
Test equipment Spectrum analyzer (Table 5-1, item 2).
Test setup Connect spectrum analyzer to the RF socket of the SMIQ.
Measurement ØSettings on SMIQ
Level 0 dBm, test frequency
Digital modulation, switch on standard GSM
SOURCE PATTERN
PATTERN 0
SYMBOL RATE 300 kHz
STATUS first on OFF.
Ø Settings on analyzer
CENTER FREQUENCY 1 GHz
REFERENCE LEVEL 5 dBm
SPAN 1 MHz
Ø Measure the level of the unmodulated signal as reference.
Ø Settings on SMIQ
DIGITAL MOD/STATUS ON
Now measure the carrier offset by the modulation by ¼ of the
symbol rate.
It should not deviate by more than 0.3 dB of the reference value.
Ø Residual carrier = the spectral line remaining at the carrier frequency.
It should be more than 50 dB below the reference value.
Recommended test frequencies 100, 1472, (2200), 3300, 4400, 6400 MHz
SMIQ Test Procedures
1125.5555.03 E-95.39
5.3.14.2 Analog Outputs with Digital Modulation
Test equipment AC voltmeter (Table 5-1, item 2), feed-through termination (Table 5-1,
item 28).
Test setup Connect AC voltmeter with feed-through termination to the I or Q
socket of the SMIQ.
Measurement Ø Settings on SMIQ as above,
FREQ 1 GHz
A sinewave signal with a frequency equal to symbol rate/4 with
0.5 V (peak) +-5% amplitude into 50 should be measured at the
I and Q output.
5.3.14.3 Modulation Depth with ASK
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement ØSettings on SMIQ:
- Level 0 dBm, RF 1 GHz
– Switch on digital modulation ASK
– ASK DEPTH 50 %
- SYMBOL RATE 30 kHz
- FILTER SPLIT PHASE/2.00
- Data source PRBS, length 23 bits
Ø On the demodulator select
CENTER FREQUENCY 1 GHz
REFERENCE LEVEL 5 dBm and in
MODE VECTOR ANALYZER/ANALOG DEMOD
MEAS RESULT/AM SIGNAL
DEMOD BANDWIDTH 500kHz
SWEEP TIME 200us
MODULATION SUMMARY
Ø Read the AM modulation depth +-Pk/2 on the demodulator.
Ø It should be 50 +/-7%.
5.3.14.4 Deviation Error with FSK
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement ØSettings on SMIQ:
- Level 0 dBm, RF 1 GHz
- Switch on digital modulation 2FSK
- Symbol rate 1 kHz, deviation 200 Hz
- Filter GAUSS 0.2
- Data source PRBS, length 23 bits
ØMake the corresponding settings on the demodulator in
MODE VECTOR ANALYZER/DIGITAL DEMOD,
evaluation over 150 symbols, 10 averaging procedures
Ø Measure the FSK deviation error (rms) on the demodulator.
Ø Repeat the measurement with 4FSK, filter parameter 0.7.
Test Procedures SMIQ
1125.5555.03 E-95.40
5.3.14.5 Deviation Error with GFSK
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement ØSettings on SMIQ:
- Level 0 dBm, RF 1 GHz
- Switch on digital modulation GFSK
- Symbol rate 1300 kHz, deviation 650 kHz
- Filter GAUSS 0.7
- Data source PRBS, length 23 bits
ØMake the corresponding settings on the demodulator,
evaluation over 150 symbols, 10 averaging procedures
ØMeasure the GFSK deviation error (rms) on the demodulator.
5.3.14.6 Phase Error with GMSK
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement ØSettings on SMIQ:
- Level 0 dBm, RF 1 GHz
- Switch on digital modulation GMSK
- Symbol rate 1000 kHz
- Filter GAUSS 0.3 and 1 kHz
- Data source PRBS, length 23 bits
ØMake the corresponding settings on the demodulator,
evaluation over 150 symbols, 10 averaging procedures
ØMeasure the GMSK phase error (rms) on the demodulator.
5.3.14.7 Error Vector with PSK
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement ØSettings on SMIQ:
- Level 0 dBm, RF 1 GHz
- Switch on digital modulation π/4 DQPSK
- Symbol rates 1/18/192/1500 and 3000 kHz
- Filter SQR COS 0.25/0.35/0.5/0.7
- Data source PRBS, length 23 bits
ØMake the corresponding settings on the demodulator,
evaluation over 150 symbols, 10 averaging procedures
ØMeasure the error vector magnitude (rms) on the demodulator for
all combinations of the given filters and symbol rates.
5.3.14.8 Error Vector with QAM
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement ØSettings on SMIQ:
- Level 0 dBm, RF 1 GHz
- Switch on digital modulation 16QAM
- Symbol rates 1 and 3 MHz
- Filter SQR COS 0.35
- Data source PRBS, length 23 bits
ØMake the corresponding settings on the demodulator,
evaluation over 150 symbols, 10 averaging procedures
ØMeasure the error vector magnitude (rms) on the demodulator for
the given symbol rates.
SMIQ Test Procedures
1125.5555.03 E-95.41
5.3.15 Data Generator and Memory Extension (Option SMIQB11/SMIQB12)
5.3.15.1 Battery Test
Measurement Ø Setting to be made on SMIQ
UTILITIES:TEST:DGEN RAM BATTERY
Ø As result of the test triggered by pressing the SELECT key, "test
passed" should be displayed.
5.3.15.2 Function Test
Test equipment Storage oscilloscope (table 5-1, pos. 3) at outputs for serial and parallel
modulation data, clock and control signals. Recommended: BNC
adapter SMIQ-Z9 (Table 5-1, pos. 29). Pulse generator (table 5-1,
pos. 17) at TRIGIN input of PAR DATA connector.
Test method The data generator is tested by programming the data sequences
consisting of modulation data, trigger and control signals. The
programmed sequences are stored in the data memory of the data
generator and are read from there cyclically. Correct output of the
programmed lists can be checked at the output connectors.
Measurement Ø PRESET settings of SMIQ:
DIG.MOD :STATE:ON
:MODULATION TYPE:256QAM 8b/sym
:SYMBOL RATE:8500000.0sym/s
:TRIGGER:TRIGGER SOURCE:EXT
:MODE:ARMED AUTO
:SOURCE :SOURCE:DATA_LIST
:SELECT DATA LIST:CREATE NEW LIST
:EDIT DATA LIST:EDIT/VIEW
Generate the list shown below.
SELECT DATA LIST... CURRENT: DLIST0
EDIT DATA LIST... FREE 03330496 LEN 00000304
-BIT-----------------------------------------DATA----------
00000001 10101111 01010101 01010101 01010101
00000033 00110011 00110011 00110011 00110011
00000065 00010001 00010001 00010001 00010001
00000097 01110111 01110111 01110111 01110111
00000129 00000000 00000000 00001110 10101111
00000161 01010101 01010101 01010101 00110011
00000193 00110011 00110011 00110011 00010001
00000225 00010001 00010001 00010001 01110111
00000257 01110111 01110111 01110111 00000000
00000289 00000000 00001110
Test Procedures SMIQ
1125.5555.03 E-95.42
Ø Connect the storage oscilloscope to outputs DATA-D0 to D7,
BURST, LEVATT, CW, HOP, TRIGGER OUT 1 to 3, SYMBCLK
and input TRIGIN of rear-panel connector PARDATA.
Trigger to the rising edge of the signal TRIGGER OUT 3.
Ø Feed a single pulse (HCT level) to the TRIGIN input (the rising
edge is active).
Ø At the SYMBCLK output, the set symbol clock should be meas-
urable with HCT level. The remaining output signals must be stable
on the rising edge of the clock signal and have HCT level (see
qualitative timing diagram below).
Ø The TRIGIN signal is read in on the rising edge of SYMBCLK. On
the third falling edge of SYMBCLK following the read-in, the
TRIGGER OUT 3 signal must change from LOW to HIGH and be
stable on the next rising edge (see qualitative timing diagram below).
Ø Two symbol-clock periods following the signal TRIGGER OUT 3,
the eight DATA signals DATA-D0 to D7 appear. A DATA sequence
is 19 symbol-clock periods long, repeating cyclically. The following
table shows the 19 states of each DATA signal on the rising edge
of SYMBCLK.
Timing Diagram
SYMBCLK
TRIGIN
DATA signals
CONTROL signals
TRIGGER OUT 3
123
123
Table of DATA signal states
Symbol 12345678910 11 12 13 14 15 16 17 18 19
D7 1000000000000000000
D6 0111000000001111000
D5 1000111100001111000
D4 0111111111111111000
D3 1000000000000000001
D2 1111000000001111001
D1 1000111100001111001
D0 1111111111111111000
Generate a CONTROL list:
Ø SMIQ settings:
DIG.MOD :SYMBOL RATE:1000000.0sym/s
:SOURCE :CONTROL STATE:ON
:SEL.CONTROL LIST:CREATE NEW LIST
:EDIT CONTROL LIST:EDIT/VIEW
SMIQ Test Procedures
1125.5555.03 E-95.43
SELECT CONTROL LIST... CURRENT: CLIST0
EDIT CONTROL LIST... FREE 00104080 LEN 00000019
-SYMBOL----------BGATE-LATT--CW----HOP---TRIG2-TRIG1--
00000001 100000
00000002 110000
00000003 011000
00000004 001100
00000005 000110
00000006 000011
00000007 000001
00000008 000000
00000010 111111
00000012 000000
00000018 111111
00000019 000000
Ø The bit clock measured at the BIT CLK output must have a
frequency of 8 MHz and HCT level:
Ø Two symbol-clock periods following the signal TRIGGER OUT.3,
the six CONTROL signals appear. A CONTROL sequence is 19
symbol-clock periods long, repeating cyclically. The table below
shows, the 19 states of each CONTROL signal on the rising edge
of SYMB CLK.
Symbol 12345678910 11 12 13 14 15 16 17 18 19
BURST-GATE1100000001100000010
LEV-ATT 0110000001100000010
CW 0011000001100000010
HOP 0001100001100000010
TRIGOUT 2 0000110001100000010
TRIGOUT 1 0000011001100000010
5.3.15.3 Interface SERDATA
Test equipment Controller (table 5-1, item 4)
Storage oscilloscope (table 5-1, pos. 3) at output connectors SYMBOL
CLOCK and DATA.
Test method Data are transmitted from the controller via the serial RS232 interface
to the SERDATA connector of the SMIQ, where they are used for
digital modulation. Transmission is checked at the output connectors
SYMBOL CLOCK and DATA.
Measurement Ø The test can be made by any RS232 terminal program. The
interface has to be configured as follows:
19200 bps, parity none, 8 bit, 1 stopbit, hardware handshake on.
A periodic data sequence of 0011 (binary) is sent to the SERDATA
connector with 19200 bps. In ASCII code, this is equivalent to a
sequence of 33333.
Ø Setting to be made on SMIQ
UTILITIES:SYSTEM:SERDATA:BAUDRATE 19200 bps
Digital modulation, type Pi/4 DQPSK with
Symbol rate 5 kSymb/s,
Source – SERDATA
Ø The frequency of signals at SYMBOL CLOCK is to be 5 kHz
(±5%), period duration 200 µs. The frequency of signals at DATA
is to be 2.5 kHz (±5%), period duration 400 µs.
Test Procedures SMIQ
1125.5555.03 E-95.44
5.3.15.4 Memory Test (including SMIQB12)
Test method The DATA editing function FILL may be used for the simple generation
of a DATA sequence occupying the whole memory. Sufficient free
space is to be available for this test. If this is not the case, existing
DATA and CONTROL lists must be deleted or the test sequence
shortened.
The entered data are read and tested in a checksum test.
Measurement Setting to be made on SMIQ
Press the PRESET key.
DIG.MOD :STATE :OFF
:SOURCE :SOURCE:DATA_LIST
:SELECT DATA LIST:CREATE NEW LIST
:EDIT DATA LIST:FILL
Ø The menu shown below should appear. Enter the listed DATA and
the fill RANGE, which varies according to the version and
extensions. For executing the FILL function, the memory space
displayed in the list editor must be larger than the set fill range.
FILL AT 1 RANGE <Filling range>
DATA 11111111 00000000 00000000 00000000
EXECUTE
The following table shows the fill range to be set and the checksum depending on the version and the
number of fitted memory extensions (option SMIQB12).
Note: Data generator and memory extension must be of the same version.
Version Number of
SMIQB12
memory
extensions
Fill range
in bits (RANGE) Max. memory depth in bits (FREE) Checksum
hex.
2 None 3 300 000 4M – 806.144k = 3388160 2B00 0000
2 1 11 000 000 12M – 806.144k = 11776768 3A00 0000
2 2 20 000 000 20M – 806.144k = 20165376 9800 0000
4 None 15 000 000 16M – 806.144k = 15971072 F200 0000
4 1 40 000 000 48M – 806.144k = 49525504 3000 0000
4 2 80 000 000 80M – 806.144k = 83079936 6000 0000
The entered data are now read and tested in a checksum test.
Ø Setting on SMIQ
UTILITIES:TEST:GENERATE DM DATA LIST CHECKSUM
Ø The displayed checksum should agree with the values of the
above table.
Ø To check the buffer battery, repeat the checksum test upon
switching the unit off and on.
SMIQ Test Procedures
1125.5555.03 E-95.45
5.3.16 Digital Standards (Options)
5.3.16.1 Adjacent-Channel Power Measurement with Higher Resolution
5.3.16.1.1 Broadband Systems
Especially in measurements using the LOW-ACP filter (option SMIQB47), results are influenced by the
inherent noise components of the analyzer. The procedure described below allows the measurement
limit to be extended beyond that of standard settings.
Ø The adjacent-channel power measurements are made with the RF analyzer (Table 5-1, item 2)
using the CHANNEL POWER marker function.
Ø To measure the channel power, set the CENTER FREQUENCY to the carrier frequency, SPAN to
about twice the symbol rate, POWER MEAS SETTING/CHANNEL BANDWIDTH to about 1.4 times
the symbol rate (unless otherwise specified), TRACE/DETECTOR RMS, SWEEP/TIME MANUAL to
1 s, REF LEVEL to approx. 3 to 5 dB below the PEP of the SMIQ, ATTEN AUTO LOW NOISE. Note
down the channel power PChan.
Note: The dynamic range of the FSIQ is at its maximum with reference levels close below a
10 dB limit, for example -1 dB and 9 dBm with –11 dB.
Ø To measure the adjacent-channel power, detune the CENTER FREQUENCY by the channel
spacing, set CHANNEL BANDWIDTH and SPAN (1.4 times the CHANNEL BANDWIDTH) anew if
the adjacent-channel power is measured with a different bandwidth. To prevent a switchover of the
analyzer attenuator, activate REF/RF ATTEN MANUAL. Reduce the REF LEVEL by 20 dB (unless
otherwise specified). For some measurements the PLL bandwidth of the FSIQ must be set
manually. This is done under COUPLING/MAIN PLL BANDWIDTH. Read the adjacent-channel
power ACP. The measurement must be made for both sides (plus and minus the channel spacing);
the worse value is the result to be taken.
Ø In critical cases, the inherent noise of the FSIQ must be determined and subtracted. To this end,
press RF OFF on the SMIQ and read the inherent noise power PFSIQ from the FSIQ. If the inherent
noise power is below the previously measured power by more than 0.41 dB and less than 10 dB, the
adjacent-channel power can be corrected as follows:
Ø P
Corr = 10 *log10(10(ACP/10) - 10(PFSIQ/10))
Ø The relative adjacent-channel power in dBc is ACPR = PChan – PCorr.
Ø If the inherent noise power is less than 0.41 dB below the previously measured power, the power
measured is the inherent noise power of the FSIQ; the component contributed by the SMIQ cannot
be exactly determined, it is more than 10 dB below the measured value. If the inherent noise power
is more than 10 dB below the previously measured power, a correction is not necessary since the
noise component of the FSIQ is negligible.
Ø Since intermodulation products of the analyzer can be introduced especially in the first adjacent
channel, the measurement should be repeated with a 3 dB attenuator at the analyzer input at least
on preparing the test setup. The results must not be altered by this measurement.
Test Procedures SMIQ
1125.5555.03 E-95.46
5.3.16.1.2 Narrowband Systems
Ø With the systems NADC, TETRA and PDC implemented as standard, the contribution of the analyzer
can be eliminated by way of calculation in a similar way. The noise, however, is derived from the
synthesis of the analyzer (phase noise), so that it disappears on switching off the input signal. The
reference measurement should therefore be performed with the modulation switched off. This
method is correct when the noise spectrum of the unmodulated DUT is significantly below the
modulated spectrum in the range of the measured adjacent channel.
Ø As implemented in the analyzer, the measurement of the relative adjacent-channel power is
performed with the specified special settings. To reduce fluctuations in the measured values, the
results are averaged over at least 5 measurements (ACPR).
Ø The DUT is then switched to CW using the MOD ON/OFF key. 5 measurements are again averaged
(ACPRCW). Using the formula
ACPRcorr = 10 *log10(10(ACPR/10) - 10(PACPRCW/10))
a correction calculation can be performed taking into account the above limitations.
5.3.16.2 GSM/EDGE
Test equipment Demodulator for digital modulation with option K11 (Table 5-1, item 23)
Test setup ØConnect the demodulator to the RF output of the DUT, connect the
output TRIGGER OUT 2 (pin 23 of output PAR DATA, adapter
SMIQ-Z5, table 5-1, pos. 29, recommended) to EXT TRIG GATE on
the demodulator.
GSM measurement Ø Settings on SMIQ:
Level 0 dBm, RF 935.2 MHz and 2 GHz
Switch on digital standard GSM/EDGE
Ø Settings on demodulator:
MODE/ GSM BTS analyzer
SETTINGS/ EXTERNAL ATTENUATOR 46 dB
POWER VS TIME
CONTINUOUS
FULL BURST
Ø LIMIT CHECK : PASSED should be displayed on the demodulator.
Ø Set demodulator to:
PHASE/FREQUENCY ERROR
SINGLE
NO. OF BURSTS/ SET TO STANDARD
Ø The status PASSED should be indicated; check phase errors (peak
and rms) for compliance with data sheet tolerances.
Ø Set demodulator to:
TRANSIENT SPECTRUM/ SINGLE FREQ SWEEP
Ø LIMIT CHECK : PASSED should be displayed on the demodulator.
Ø On the SMIQ all SLOTs should be selected with BURST TYPE
NORM and SLOT LEVEL FULL for the measurement of the
modulation spectrum.
Ø On the demodulator set MODULATION SPECTRUM; ARFCN +-
1.8 MHz and trigger the measurement with SINGLE FREQ SWEEP.
Ø LIMIT CHECK PASSED should be displayed.
SMIQ Test Procedures
1125.5555.03 E-95.47
EDGE measurement Ø The initial state is restored on the SMIQ with SAVE/RECALL
FRAME...GET PREDEFINED FRAME...NB0 for the EDGE
measurement.
Then SLOT LEVEL ATTEN is set in SLOT 0 and
SLOT 4 is selected with
BURST TYPE EDGE and
SLOT LEVEL FULL.
Ø Settings on the analyzer:
Select EDGE in MODE VECTOR ANALYZER/DIGITAL STANDARDS.
Thus the SYNC PATTERN "edge_ts0" is selected as a standard. The
function EDIT SYNC PATTERN is used to display the pattern and to
compare it with the pattern on the display of the SMIQ (necessary
because of different modifications on the pattern). The pattern is
corrected on the analyzer in case of deviations.
ðThe displayed vector error (rms) should not exceed 2% or (if
available) the data sheet specification. The error messages "SYNC
NOT FOUND"/"BURST NOT FOUND" should not be displayed.
5.3.16.3 DECT
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement ØSettings on SMIQ:
- Level 0 dBm, RF 1880 MHz
- Switch on digital standard DECT.
Ø Make the corresponding settings on the demodulator.
Measure the DECT deviation error (rms) with the setting
SYMB TABLE / ERRORS.
Ø To measure the burst on/off ratio, operate the demodulator as a
spectrum analyzer.
Settings:
SPAN 0 Hz
RES BW 2 MHz
TRACE1 AVERAGE
TRIGGER/ VIDEO –40 dBm, SLOPE POS
SWEEP TIME MANUAL 1 ms
Ø SLOT 0 should be displayed on the analyzer. Read the level in
SLOT 0 and note it down.
Ø On the DUT, set the SLOT LEVEL in SLOT 0 to OFF.
All slots must now be switched off.
Ø Switch on TRIGGER/ FREE RUN on the analyzer.
REF LEVEL –30 dBm and
RF ATTEN MANUAL 0 dB
Ø Read the (blanked) level. With RF OFF on the DUT, the spacing
to the analyzer’s noise floor can be determined. If the spacing is
less than 10 dB and more than 0.41 dB, the noise floor can be
deducted (cf. section "Adjacent-Channel Power Measurement with
Higher Resolution"). With less than 0.41 dB, the analyzer
resolution is insufficient; the true measurement result is better by
at least 10 dB. With more than 10 dB, correction is not necessary.
Ø The burst on/off ratio is the difference between the two levels in dB.
Test Procedures SMIQ
1125.5555.03 E-95.48
5.3.16.4 NADC
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement Ø Settings on SMIQ:
Level 0 dBm, RF 824/894/1900 MHz
Switch on digital standard NADC DOWNLINK.
Select FILTER MODE LOW_EVM for error vector measurement
and LOW_ACP for ACP measurement.
Ø Select standard NADC FWD CH on the demodulator and also
make the other corresponding settings.
Under SYMB TABLE / ERRORS, read the error vector magnitude
(rms) for the RF frequencies given above.
Ø Adjacent-channel power measurement is implemented as standard
in the FSIQ.
LEVEL REF -5 dBm
ATTEN AUTO LOW NOISE
MARKER/ POWER MEAS SETTINGS:
SET NO. OF ADJ CHANNELS 3
Select ACP STANDARD NADC.
MARKER/ ADJACENT CHANNEL POWER
MARKER/ ADJUST CP SETTINGS
In addition, set the PLL bandwidth to LOW in the menu
COUPLING (after ADJUST CP SETTINGS).
Note: The measured values depend on the analyzer used. Typically
-70 dBc is measured at a spacing of 60 kHz and -73 dBc at a
spacing of 90 kHz using the FSIQ 26. Since the noise is caused
by the synthesis, a higher resolution can be obtained using the
procedure described in section "Adjacent-Channel Power
Measurement with Higher Resolution, Narrowband Systems"
(see above).
5.3.16.5 TETRA
Test equipment Demodulator for digital modulation (Table 5-1, item 23).
Measurement Ø Settings on SMIQ
Level 0 dBm, test frequencies RF 451 MHz, 988 MHz
Activate DIGITAL MOD/SELECT STANDARD TETRA
for the error vector measurement FILTER MODE LOW_EVM,
select LOW_ACP and LEVEL/LEVEL/OUTPUT MODE
LOW_DIST for ACP measurements.
Ø TETRA standard at the demodulator and make the other settings
required,
TRIGGER FIND BURST OFF,
in SYMB TABLE / ERRORS read the error vector magnitude rms
for the specified RF frequencies.
Ø Settings on SMIQ
LEVEL -5 dBm (PEP).
SMIQ Test Procedures
1125.5555.03 E-95.49
Ø The adjacent-channel measurement is implemented as standard in
the FSIQ
LEVEL REF to –5 dBm
ATTEN AUTO LOW NOISE
MARKER/ POWER MEAS SETTINGS/
SET NO. OF ADJ CHANNELS 2
Select ACP STANDARD TETRA
MARKER/ ADJACENT CHANNEL POWER
MARKER/ ADJUST CP SETTINGS
Note: The measured values depend on the analyzer used. Using
FSIQ26, 451 MHz typically –73 dBc is measured at a
spacing of 25 kHz with MAIN PLL BANDWIDTH HIGH and -
72 dBc at a spacing of 50 kHz with MAIN PLL BANDWIDTH
LOW. Since the noise is caused by the synthesis, a higher
resolution can be obtained using the procedure described in
"Adjacent-Channel Power Measurement with Higher
Resolution, Narrowband Systems" (see above). The test
frequency in the lower band must be 451 MHz so that the
correction without modulation does not suppress inherent
noise components (switchover into divider range at CW).
5.3.16.6 PDC
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement Ø Settings on SMIQ:
Level 0 dBm, RF 810/956/1501 MHz
Switch on digital standard PDC DOWNLINK.
Select FILTER MODE LOW_EVM for error vector measurement
and LOW_ACP for ACP measurement.
Ø Select LEVEL REF 5 dBm and standard PDC DOWN on the
demodulator and also make the other corresponding settings.
Under SYMB TABLE / ERRORS, read the error vector magnitude
(rms) for the RF frequencies given above.
Ø Adjacent-channel power measurement is implemented as standard
in the FSIQ, in addition the PLL bandwidth must be set to LOW in
the menu COUPLING.
Note: The measured values depend on the analyzer used. Typically -
70 dBc is measured at a spacing of 50 kHz and -74 dBc at a
spacing of 100 kHz with the aid of FSIQ26. Since the noise is
caused by the synthesis, a higher resolution can be obtained
with the procedure described in "Adjacent-Channel Power
Measurement with Higher Resolution, Narrowband Systems"
(see above). Make sure that correct power measurements are
used to determine the correction. The test specification
stipulates a peak detector. The results determined by this
detector are corrected by the factor obtained from the power
measurements.
Test Procedures SMIQ
1125.5555.03 E-95.50
5.3.16.7 PHS
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement Ø Settings on SMIQ:
Level 0 dBm, RF 1900 MHz
Switch on digital standard PHS.
Select FILTER MODE LOW_EVM for error vector measurement
and LOW_ACP for ACP measurement.
Ø Select LEVEL REF 5 dBm and standard PHS on the demodulator
and also make the other corresponding settings.
Under SYMB TABLE / ERRORS, read the error vector magnitude
(rms).
Ø Setting on SMIQ:
DIGITAL MOD/SELECT STANDARD PHS
Ø Set LEVEL REF –5 dBm ATTEN AUTO LOW NOISE on the
demodulator.
Adjacent-channel power measurement is implemented as
standard in the FSIQ.
Set POWER MEAS SETTINGS/ NO. OF CHANNELS to 3.
Ø Pressing ALT1 furnishes the value for a 600 kHz offset,
ALT2 for a 900 kHz offset.
Ø Note: Especially the values at 900 kHz offset depend on the
analyzer resolution (parameter scatter). If necessary, measure
according to the procedure described in section "Adjacent-
Channel Power Measurement with Higher Resolution, Broadband
Systems" (see above). To measure the inherent noise, the SMIQ
must be switched to RF OFF. To be able to deduct the inherent
noise component of the FSIQ, the ACP ABS setting has to be
used for the measurement.
The inherent noise component of the adjacent channels
can be deducted by means of the following formula:
ALTKorr = 10 *log10(10(ALT/10) - 10(PALT/10)).
ACPR is then ALTKORR - CH PWR
SMIQ Test Procedures
1125.5555.03 E-95.51
5.3.17 IS-95 CDMA (Option SMIQB42)
Rho factor
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement ØSettings on SMIQ:
1st measurement
- Level -15 dBm, RF 824/894/1900 MHz
- Switch on digital modulation IS95 CDMA.
- Select MODE FWD_LINK_18.
- Select filter mode LOW_EVM.
- Switch off all code channels except pilot.
- Set power for pilot channel to 0 dB.
2nd measurement
- Select MODE REV_LINK, full rate, data 0000.
Ø Settings on demodulator:
REF LEVEL –10 dBm
1st measurement: select DIGITAL STANDARDS QCDMA FWD.
2nd measurement: select QCDMA REV CH.
- Evaluation over 600 symbols
Adjacent-channel power
Test equipment RF spectrum analyzer (Table 5-1, item 2)
Test setup Connect the spectrum analyzer to the RF output of the SMIQ.
Measurement ØSettings on SMIQ:
1. Reverse Link
- DIG STD IS95
- MODE REV_LINK
- IQ FILTER 850 kHz
- DATA PRBS
- Level (PEP) Pvmmax and Pvmmin
2. Forward Link 9Chan
- Switch on DIG STD IS95.
- Select MODE FWD_LINK_18.
- SAVE/RCL MAPPING, GET PREDEFINED MAPPING, 09CHAN
- IQ FILTER 850 kHz
- Level (PEP) 0.2 and -0.2 dBm
- RF 824/894/1850/2000 MHz
ØSetting on spectrum analyzer
- LEVEL REF –5 dBm
Ø Test procedure
As described in section "Adjacent-Channel Power Measurement
with Higher Resolution, Broadband Systems" above, channel
bandwidth 1.2288 MHz, adjacent-channel bandwidth 30 kHz,
channel spacings 885 kHz, 1.25 MHz, 1.98 MHz. The PLL
bandwidth of the FSIQ must be set to LOW.
Test Procedures SMIQ
1125.5555.03 E-95.52
5.3.18 W-CDMA - NTT DoCoMo/ARIB 0.0 (Option SMIQB43)
Error vector
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement ØSettings on SMIQ:
- Level -10 dBm
- RF 1800/2000/2200 MHz
- Select digital standard W-CDMA with the following settings:
- SET DEFAULT
- MODE 4CHAN
- CHIP RATE 4.096 M
- LINK DIR DOWN
- SEQUENCE LENGTH 10 frames
- MODULATION FILTER MODE LOW_EVM
- CHNO 0 TYPE DPCH, SYMBOL RATE 32, SHO CO 9,
POWER 0, DATA PN9, TPC ALT
- Switch the other channels off (STATE OFF).
ØSettings on demodulator:
- REF LEVEL –5 dBm
- DIGITAL STANDARDS W-CDMA FWD CH
- Evaluation over 600 symbols
Adjacent-channel power
Test equipment RF spectrum analyzer (Table 5-1, item 2)
Measurement ØSettings on SMIQ:
- Level (PEP) Pvmmax and Pvmmin
- RF 1800/2000/2200 MHz
- Select digital standard W-CDMA with the following settings:
- SET DEFAULT
- MODE 4CHAN
- LINK DIR DOWN
- SEQUENCE LENGTH 10 frames
- MODULATION FILTER MODE LOW_ACP
- CHNO 1 TYPE DPCH, SYMBOL RATE 32, SHO CO 9,
POWER 0, DATA PN 9, TPC ALT
- Switch the other channels off (STATE OFF).
- For 5 MHz offset select LOW NOISE and for 10 MHz LOW
DISTORTION in the LEVEL/LEVEL/OUTPUT MODE menu.
ØSettings on spectrum analyzer:
- Determine the channel power and the adjacent-channel power at
a bandwidth of 4.096 MHz and spacings of 5 MHz and 10 MHz in
accordance with section "Adjacent-Channel Power Measurement
with Higher Resolution, Broadband Systems" above.
SMIQ Test Procedures
1125.5555.03 E-95.53
5.3.19 3GPP W-CDMA for SMIQ with firmware version up to 5.20
(Options SMIQB20 and SMIQB45)
5.3.19.1 3GPP W-CDMA with 1 Code Channel
Test equipment RF spectrum analyzer (Table 5-1, item 2)
Measurement ØGeneral settings on SMIQ
- Level (PEP) Pvmmax and Pvmmin
- RF 1800, 2000 and 2200 MHz
ØModulation settings on SMIQ:
- SET DEFAULT
- 3GPP VERSION 2.1.0
- CHIP RATE 4.096 M
- LINK DIRECTION DOWN/FORWARD
- SEQUENCE LENGTH 10
- CLIPPING LEVEL 100%
- FILTER WCDMA 0.22
ØMenu PARA. PREDEF (all parameters and channel tables of the
base station are automatically set)
- PERCH OFF
- SCCPCH OFF
- NUMBER OF DPCH 1
- SYMBOL RATE 32 ksym/s
- CREST MINIMUM
Test Procedures SMIQ
1125.5555.03 E-95.54
- EXECUTE
ØThe following settings result from this selection:
- BS 1 ON, all other channels BS OFF
Ø Menu Select BS/MS: BS1
ØChannel table:
- CHNO 2
- TYPE DPCH
- SYMB RATE 32k
- SPREAD. CODE 0
- POWER 0 dB
- DATA PN 15
- OFFS 0
- TPC ALL0
- MC STATE OFF, STATE ON
ØAll other channels: STATE OFF
SMIQ Test Procedures
1125.5555.03 E-95.55
ØSettings on demodulator for error vector measurements
- REF LEVEL same as PEP on SMIQ
- DIGITAL STANDARDS W-CDMA FWD CH
– Evaluation over 600 symbols
Ø Measure EVM (observe data in data sheet), filter mode
LOW_EVM, for SMIQB47 without and with filter 2.5 MHz.
Ø Measure adjacent-channel power (ACPR) (cf. section "Adjacent-
Channel Power Measurement with Higher Resolution, Broadband
Systems" above), filter mode LOW_ACP, bandwidth of channel and
adjacent channel 4.096 MHz, for SMIQB47 without and with filter
2.5 MHz.
5.3.19.2 3GPP W-CDMA with 8 Code Channels
Test equipment RF spectrum analyzer (Table 5-1, item 2)
Measurement ØGeneral settings on SMIQ
- Level (PEP) Pvmmax and Pvmmin
- RF 1800, 2000 and 2200 MHz
ØModulation settings on SMIQ:
- SET DEFAULT
- 3GPP VERSION 2.1.0
- CHIP RATE 4.096 M
- LINK DIRECTION DOWN/FORWARD
- SEQUENCE LENGTH 10
- CLIPPING LEVEL 100%
- FILTER WCDMA 0.22, same as 3GPP W-CDMA with 1 code channel
ØMenu PARA. PREDEF (all parameters and channel tables of the
base station are automatically set)
- PERCH OFF
- SCCPCH OFF
- NUMBER OF DPCH 8
- SYMBOL RATE 32 ksym/s
- CREST MINIMUM
- EXECUTE
Test Procedures SMIQ
1125.5555.03 E-95.56
ØThe following settings result from this selection:
- BS 1 ON, all other channels BS OFF
ØMenu Select BS/MS: BS1
ØChannel table: CHNO 2 to 9:
CHNO SPREAD. CODE OFFS Common parameter
20 0
316 3
432 6
548 9
664 12
780 15
896 18
9 112 21
TYPE DPCH
SYMB RATE 32k
POWER 0 dB,
DATA PN 15
TPC ALL0
MC STATE OFF
STATE ON
ØAll other channels: STATE OFF
SMIQ Test Procedures
1125.5555.03 E-95.57
Ø
For 5 MHz offset, select LOW DISTORTION in the
LEVEL/LEVEL/OUTPUT MODE menu and for 10 MHz select LOW
NOISE.
Ø Measure the adjacent-channel power (ACPR) (cf. section "Adjacent-
Channel Power Measurement with Higher Resolution, Broadband
Systems" above), filter mode LOW_ACP, bandwith of channel and
adjacent channel 4.096 MHz, for SMIQB47 without and with filter
2.5 MHz.
5.3.20 3GPP W-CDMA for SMIQ with Firmware Versions 5.30 or Higher
(Options SMIQB20 and SMIQB45)
5.3.20.1 3GPP W-CDMA with 1 Code Channel
Test equipment RF spectrum analyzer (Table 5-1, item 2)
Measurement ØGeneral settings on SMIQ
- Level (PEP) Pvmmax and Pvmmin
- RF 1800, 2000 and 2200 MHz
ØModulation settings on SMIQ:
SET DEFAULT(confirm with SELECT)
- 3GPP VERSION (current version is displayed)
- CHIP RATE 3.84 Mcps
- LINK DIRECTION DOWN/FORWARD
- SEQUENCE LENGTH 10
- CLIPPING LEVEL 100%
- FILTER WCDMA 0.22
Test Procedures SMIQ
1125.5555.03 E-95.58
ØMenu PARA. PREDEF (all parameters and channel tables of the
base station are automatically set)
- CHANNELS FOR SYNC OF MOBILE OFF
- S-CCPCH OFF
- NUMBER OF DPCH 1
- SYMBOL RATE 30 ksps
- CREST MINIMUM
- EXECUTE
ØThe following settings result from this selection:
- BS 1 ON, all other channels BS OFF
Ø Menu Select BS/MS: BS1
SMIQ Test Procedures
1125.5555.03 E-95.59
ØChannel table:
- CHNO 11
- TYPE DPCH
- SYMB RATE 30 ksps
- CHAN. CODE 0
- POWER 0dB
- DATA PN 15
- T OFFS 0
- PILOT LENGTH 4
- TPC PATTERN ("0011")
- MC STATE OFF, STATE ON
ØAll other channels: STATE OFF
ØSettings on demodulator for error vector measurements
- REF LEVEL same as PEP on SMIQ
- DIGITAL STANDARDS W-CDMA FWD CH
- Evaluation over 600 symbols
Ø Measure EVM (observe data in data sheet), filter mode
LOW_EVM, for SMIQB47 without and with filter 2.5 MHz.
Ø Measure adjacent-channel power (ACPR) (cf. section "Adjacent-Chan-
nel Power Measurement with Higher Resolution, Broadband Systems"
above), filter mode LOW_ACP, bandwidth of channel and adjacent
channel 3.84 MHz, for SMIQB47 without and with filter 2.5 MHz.
Test Procedures SMIQ
1125.5555.03 E-95.60
5.3.20.2 3GPP W-CDMA with 8 Code Channels
Test equipment RF spectrum analyzer (Table 5-1, item 2)
Measurement ØGeneral settings on SMIQ
- Level (PEP) Pvmmax and Pvmmin
- RF 1800, 2000 and 2200 MHz
ØModulation settings on SMIQ (same as 3GPP W-CDMA with 1 code
channel):
- SET DEFAULT (confirm with SELECT)
- 3GPP VERSION (current version is displayed)
- CHIP RATE 3.84 Mcps
- LINK DIRECTION DOWN/FORWARD
- SEQUENCE LENGTH 10
- CLIPPING LEVEL 100%
- FILTER WCDMA 0.22,
ØMenu PARA. PREDEF (all parameters and channel tables of the
base station are automatically set)
- CHANNELS FOR SYNC OF MOBILE OFF
- S-CCPCH OFF
- NUMBER OF DPCH 8
- SYMBOL RATE 30 ksps
- CREST MINIMUM
- EXECUTE
ØThe following settings result from this selection:
- BS 1 ON, all other channels BS OFF
ØMenu Select BS/MS: BS1
ØChannel table: CHNO 11 to 18:
SMIQ Test Procedures
1125.5555.03 E-95.61
CHNO CHAN. CODE T OFFS Common parameter
11 16 0
12 32 3
13 48 6
14 64 9
15 80 12
16 96 15
17 112 18
18 0 21
TYPE DPCH
SYMB RATE 30ksps
POWER 0 dB,
DATA PN 15
PILOT LENGTH 4
TPC PATTERN ("0011")
MC STATE OFF
STATE ON
ØAll other channels: STATE OFF
Ø Measure adjacent-channel power (ACPR) (cf. section "Adjacent-Chan-
nel Power Measurement with Higher Resolution, Broadband Systems"
above), filter mode LOW_ACP, bandwidth of channel and adjacent
channel 3.84 MHz, for SMIQB47 without and with filter 2.5 MHz.
5.3.20.3 3GPP W-CDMA Test Model 1, 64 DPCH
This measurement will replace the 3GPP W-CDMA measurement with 8 code channels from software
version 5.60.
Test equipment RF spectrum analyzer (Table 5-1, item 2)
Measurement ØGeneral setting on SMIQ
- Level (PEP) Pvmmax and Pvmmin
- RF 1800, 2000 and 2200 MHz
ØModulation settings on SMIQ (as for W-CDMA/3GPP with 1 code
channel):
SET DEFAULT (confirm with SELECT)
- TEST MODELS...
- TEST1_64
- STATE ON
Test Procedures SMIQ
1125.5555.03 E-95.62
ØMeasure adjacent-channel power (ACPR) (cf. section "Adjacent-
Channel Power Measurement with Higher Resolution, Broadband
Systems", filter mode LOW_ACP, bandwidth for channel and
adjacent channel 3.84 MHz, when SMIQB47 is used without and with
2.5 MHz filter. For 5 MHz offset, select LOW DISTORTION in the
LEVEL/LEVEL/OUTPUT MODE menu and for 10 MHz select LOW
NOISE.
5.3.21 3GPP W-CDMA Enhanced Channels (SMIQB48)
5.3.21.1 External Power Control
Test equipment RF spectrum analyzer (Table 5-1, item 2)
DC-voltage source as LEVATT input signal (Table 5-1, item 12)
Measurement Ø General setting at SMIQ
- Level -10 dBm
– Test frequency 2000 MHz
Ø Modulation settings on SMIQ:
Menu DIGITAL STD/WCDMA 3GPP:
SET DEFAULT
- LINK DIRECTION DOWN/FORWARD
- SEQUENCE LENGTH 1
- CLIPPING LEVEL 100%
- FILTER WCDMA 0.22
Ø Menu BS/MS1/ENHANCED CHANNELS
- ENHANCED CHANNELS STATE ON
- EXTERNAL POWER CONTROL STATE ON
- POWER STEP 1.0 dB
- POWER UP RANGE 10 dB
- POWER DOWN RANGE 10 dB
- CHANNEL NUMBER 11
- STATE ON
- POWER CONTROL UP
SMIQ Test Procedures
1125.5555.03 E-95.63
Ø Menu Select BS/MS: BS1
- BS1 ON
Ø Menu WCDMA/3GPP:
- STATE ON
Settings on the spectrum analyzer for the channel power measurement:
Ø REF LEVEL as PEP at the SMIQ
- CENTER FREQUENCY test frequency
- POWER MEAS SETTINGS/ACP STANDARD/WCDMA-FWD,
- CHANNEL POWER, CP/ACP ABS
Ø Apply a TTL high level to the LEVATT input of the SMIQ.
The measured channel power should be 0 ± 1 dBm.
Ø Apply a TTL low level to the LEVATT input of the SMIQ.
Now the measured channel power should be -20 ± 1 dBm.
5.3.22 Bit Error Rate Test (Option SMIQB21)
Test setup Ø Inputs and outputs of this interface are connected for the function
test by means of a suitable connector (table 5-1, pos. 27).
Measurement Ø Settings on SMIQ
UTILITIES/TEST/TEST MCOD BERT
ðNo fault messages should occur.
Test Procedures SMIQ
1125.5555.03 E-95.64
5.3.23 Fading Simulation (Option SMIQB14/SMIQB15)
The basic functioning of the module can be checked by calling up the built-in test. To do this, select
UTILITIES/TEST TEST FSIM in the menu. No fault messages should occur.
5.3.23.1 Frequency Response
Test equipment - Spectrum analyzer (Table 5-1, item 2)
- Signal generator (Table 5-1, item 5)
Test setup ØConnect the RF output of the SMIQ to the spectrum analyzer
and connect the signal generator to the I input of the SMIQ.
Test method By applying a sinusoidal AC voltage to the I input, an amplitude
modulation with suppressed carrier is generated. The fading simulator
is set so that a copy of the input signal only slightly shifted in frequency
is generated at its output. The amplitude modulation is maintained.
The modulation frequency response is determined by measuring the
sidebands as a function of the frequency of the AC voltage applied.
Measurement Ø Settings on SMIQ:
- Test level -10 dBm, test frequency > 15 MHz; 400 MHz, 1.8 GHz,
2.5 GHz, 3.3 GHz, 4.4 GHz, and 6.4 GHz are recommended
- Switch on vector modulation
- Switch on fading simulation
- Path 1 with PURE DOPPLER, 0 dB, Doppler frequency 1 Hz
- Switch off all other paths
ØSetting on signal generator:
- Level 0.5 V (Vpeak) corresponding to 4 dBm
ØSettings on analyzer:
- Center frequency = test frequency,
span = 3 times the sideband frequency
- Reference level = test level
- Scale 1dB/div
ØVary the frequency from 1 MHz to 10 MHz on the signal generator
and observe the modulation sidebands on the analyzer.
ØFor evaluation, determine the difference between the modulation
sidebands and the first sideband at 1 MHz. The values of the left
and the right sideband have to be averaged.
ðThe bandwidth is twice the modulation frequency at which
-3 dB is no longer reached, with reference to 1 MHz.
SMIQ Test Procedures
1125.5555.03 E-95.65
5.3.23.2 Additional Modulation Frequency Response
Test equipment, setup and
method as above
Testing ØTwo frequency response measurements are made, the first one
with the fading simulator switched off and the second with
bandwidth measurement setting.
ðThe additional frequency response is the difference between the
first and second measurement.
5.3.23.3 Carrier Leakage for Fading
Test equipment Spectrum analyzer (table 5-1, item 2)
Test setup ØConnect the spectrum analyzer to the RF output of the SMIQ.
ØTerminate the I and the Q input with 50 .
Measurement Ø Settings on the analyzer:
Analyzer reference level to measurement level, span 10 kHz, RBW
300 Hz, VBW 300 Hz.
Ø Settings on SMIQ
- Measurement level -15 dBm
- Measurement frequencies 400 MHz, 1 GHz, 2.2 GHz and 4.4 GHz
Ø First measure the unmodulated level as a reference.
Ø Settings on SMIQ
Vector modulation ON
Fading: 1CH, PATH 1 ON, PROFILE PDOPP, FREQ RATIO 1.0 , DOPP
FREQ 1.6 kHz, PATH LOSS 0 dB, other paths OFF,
Ø Now measure carrier leakage.
ð The carrier leakage in dBc is the difference between the level of the
spectral line at the carrier frequency and the reference level.
5.3.23.4 Path Attenuation
Test assembly Test assembly with spectrum analyzer for fading simulation
Test method For vector modulation, a single-sideband amplitude modulation
(SSB-AM) is generated by applying a sinusoidal signal to the I input
and a cosine signal to the Q input. The second sideband and the
carrier are suppressed.
Testing Ø A dual-channel generator (pos. 18) is used to feed an I/Q signal to
the SMIQ via the I/Q inputs. Make sure the cables are of the same
length.
Test Procedures SMIQ
1125.5555.03 E-95.66
Settings if R&S generator ADS is to be used
Channel CH1 CH2
Waveform Sine Sine
Mode Cont Cont
Frequency 4 MHz 4 MHz
Level 1.0 V 1.0 V
Offset 0.0 V 0.0 V
Phase 0° -90°
Filter OFF OFF
Output ON ON
Make the following settings on SMIQ.
Frequency: 1 GHz
Level (PEP): 0 dBm
Vector mode: State: On
The quadrature of the input signals is at first set on the spectrum
analyzer at a span of 20 MHz. This is necessary to compensate for
small differences of cable length at the I and Q channels. Activate
SYNC/PHASE at the dual-channel generator and minimize the left
sideband with the phase.
Further settings on SMIQ:
Fading Sim: Configuration: 1CH_6P or 1CH_12P dep. on extensions
Mode: RUN
Configuration: for ref. measurement OFF, for measurement 1CH_6P
or 1CH_12P
PATH 123456
STATE ONONONONONON
PROFILE pDOPP pDOPP pDOPP pDOPP pDOPP pDOPP
DISCRETE COMP OFF OFF OFF OFF OFF OFF
POWER RATIO
FREQ RATIO 0.1 0.2 0.3 0.4 0.5 0.6
SPEED
DOPPLER FREQ 1600 1600 1600 1600 1600 1600 Hz
PATH LOSS 0.0 5.0 10.0 15.0 20.0 25.0 dB
DELAY 0.0 0.1 0.3 0.5 0.8 1.1 µs
LOGNORM STATE OFF OFF OFF OFF OFF OFF
LOCAL CONST
STD DEV
and for 12 paths are installed
PATH 7 8 9 10 11 12
STATE ONONONONONON
PROFILE pDOPP pDOPP pDOPP pDOPP pDOPP pDOPP
DISCRETE COMP OFF OFF OFF OFF OFF OFF
POWER RATIO
FREQ RATIO -0.1 -0.2 -0.3 -0.4 -0.5 -0.6
SPEED
DOPPLER FREQ 1600 1600 1600 1600 1600 1600 Hz
PATH LOSS 2.5 7.5 12.5 17.5 22.5 27.5 dB
DELAY 2.0 2.1 3.3 3.5 3.8 10.1 µs
LOGNORM STATE OFF OFF OFF OFF OFF OFF
LOCAL CONST
STD DEV
SMIQ Test Procedures
1125.5555.03 E-95.67
Ø The result is a spectrum consisting of carrier leakage, image-
frequency bands and the sought spectrum. The line of a channel is
offset by the DOPPLER FREQ * FREQ RATIO with reference to the
theoretical, undistorted line at the distance of the I/Q input frequency
(in this case 1004 MHz).
Ø The spectrum analyzer is used to measure the RF output spectrum
of the SMIQ. Recommended settings:
CENTER 1004 MHz, SPAN 3 kHz, COUPLING RATIO SPAN/RBW 100
Nominal values for the individual paths:
path delta f to line
at CONF. OFF relative level/dB tolerance
1 160 -1.65 6 paths,
-3.58 12 paths 0.5 dB
2 320 -5 0.3 dB with reference to 1st
path
3 480 -10
4 640 -15
5 800 -20
6 960 -25 0.4 dB
If 12 paths are installed:
path delta f relative level/dB tolerance
7 -160 -2.5 0.3 dB with reference to 1st
path
8 -320 -7.5
9 -480 -12.5
10 -640 -17.5
11 -800 -22.5 0.4 dB
12 -960 -27.5 0.5 dB
Ø The image-frequency band at 996 MHz should be suppressed >40
dB compared to the useful band at 1004 MHz.
Ø There is another image-frequency band at the carrier (i.e. at 1000
MHz), which should also be suppressed >40 dB. (Note: this
requires an offset-free modulation signal.)
Test Procedures SMIQ
1125.5555.03 E-95.68
5.3.23.5 Path Delay (optional)
Preliminary remark Since the delay between various paths of the fading simulator is
implemented fully digitally, a test is not necessarily required.
The required setting accuracy is guaranteed by the digital hardware
and software design.
Test assembly Test assembly with sampling oscilloscope for fading simulation
connected to the outputs I-FADED and Q-FADED.
For accurate checking of compliance with data sheet specifications,
the oscilloscope must have a sampling rate of at least
500 Msamples/s.
Test method With vector modulation and fading simulation switched on, a periodic
pulse signal with short pulses is applied to the I input of the SMIQ.
The fading simulator is set so that two transmission paths with
different delays are available. As a result, two echoes of the pulse
signal are obtained. The accuracy of the set path delay is checked by
measuring the delay between the echoes at the output of the fading
simulators.
Measurement ØSettings on SMIQ:
- Test level –10 dBm
- Switch on vector modulation
- Switch on fading simulation
- Path 1 with PURE DOPPLER, 0 dB, 0 µs, frequ. ratio 0
- Path 2 with PURE DOPPLER, 0 dB, 1 µs, frequ. ratio 0
- Other paths are switched off
ØSettings on ARB generator:
- Level 0.5 V (Vpeak)
- Channel 1 pulse signal with 100 ns switch-on time,
2.6 µs switch-off time
ØSetting on sampling oscilloscope
- Time interval 2 µs
ØMeasure the time difference between the two pulse signals at the I
or Q output of the fading simulator using the oscilloscope.
ðThe measured time difference (rising edge) must be equal to the
difference between the set path delays.
SMIQ Test Procedures
1125.5555.03 E-95.69
5.3.23.6 Doppler Shift (optional)
Preliminary remark Because the Doppler shift is fully digital in the fading simulator, no
checking is required if the path attenuation has been successfully
measured. The digital hardware and software ensures setting
accuracy.
Test set Test set with spectrum analyzer for fading simulation; if the analyzer
has no counter function, a frequency counter (table 5-1, pos. 1) has to
be used.
Test method For vector modulation, a single-sideband amplitude modulation
(SSB-AM) is generated by applying a sinusoidal signal to the I input
and a cosine signal to the Q input. The second sideband and the
carrier are suppressed.
The fading simulator is set so that only a single transmission path with
a constant amplitude is available. With a Doppler shift set, the output
frequency is shifted by the set Doppler frequency. The accuracy of the
setting is checked by measuring the output frequency for various
settings of the Doppler frequency.
Measurement ØSettings on SMIQ:
- Test level –10 dBm, test frequency 1GHz
- Switch on vector modulation
- Set fading simulation
- Path 1 with PURE DOPPLER, 0 dB
- Doppler frequencies 0.1/0.2/0.5/1 kHz
- Other paths are switched off
ØSettings on ARB generator:
- Level 0.5 V (Vpeak)
- Channel 1 sinusoidal signal 10 kHz
- Channel 2 cosine signal (90° phase rel. to channel 1), 10 kHz
ØMeasure output frequency using the frequency counter. At first the
reference frequency is measured with fading switched off, then the
shifted frequencies with fading switched on.
ðThe differences to the reference frequency determine the
Doppler frequencies.
Test Procedures SMIQ
1125.5555.03 E-95.70
5.3.24 Noise Generation and Distortion Simulation (Option SMIQB17)
The basic functioning of the module can be checked by calling up the built-in test. To do this, select
UTILITIES/TEST TEST NDSIM in the menu. No fault messages should occur.
5.1.1.1 RF Bandwidth
Test equipment - Spectrum analyzer (table 5-1, pos. 2)
- Test transmitter (table 5-1, pos. 5)
Test setup ØConnect the RF output of the SMIQ to the spectrum analyzer and
the signal generator to the I input of the SMIQ.
Test method A sinusoidal AC voltage is fed to the I input, which leads to the
generation of an amplitude modulation with carrier suppression. The
fading simulator is set such an image of the input signal is generated
at its output with a frequency that is only minimally offset. Amplitude
modulation is retained. Modulation frequency response is determined
by measuring the sidebands with reference to the frequency of the fed
AC voltage.
Measurement ØSettings on SMIQ
- Measurement level 0 dBm
- Measurement frequencies 400 MHz, 1.472 GHz, 2.2 GHz 4.4 GHz
and 6.4 GHz
- Switch on vector modulation
- Switch on DISTORTION CHARACTERISTIC TEST.
ØSetting on test transmitter
- Level 0.5 V (Vpeak) in line with 4 dBm.
ØSettings on analyzer
- Center frequency = measurement frequency, span = three times
sideband frequency
- Reference level = measurement level
- Scale 1 dB/div.
ØAdjust frequency between 1 MHz and 10 MHz at the signal
generator and observe modulation sidebands on the analyzer.
ØDetermine difference between modulation sidebands and the first
sideband at 1 MHz. For the left and right sidebands, average values
have to be taken.
ðThe bandwidth is twice the modulation frequency at which
-3 dB is no longer reached, with reference to 1 MHz.
Test setup ØConnect test transmitter to Q input of the SMIQ.
ØTerminate I input with 50.
Measurement ØAs above for I input.
SMIQ Test Procedures
1125.5555.03 E-95.71
5.3.24.2 Additional Modulation Frequency Response
Test equipment, test setup and test
method as above
Measurement ØTwo frequency response measurements are performed,
the first one with DISTORTION OFF, the second with the
bandwidth measurement setting.
ðThe additional frequency response sought is the
difference between the first and second measurement.
Test setup ØConnect signal generator to the Q input of the SMIQ.
Ø Terminate the I input with 50 .
Measurement ØAs above for I input.
5.3.24.3 Residual Carrier
Test equipment Spectrum analyzer (Table 5-1, item 2)
Test setup ØConnect the spectrum analyzer to the RF output of the SMIQ.
ØTerminate the I and the Q input with 50 .
Measurement ØSettings on SMIQ:
- Test level 0 dBm
- Test frequency 400 MHz, 1.472 GHz and 4.4 GHz
- DISTORTION CHARACTERISTIC LIST
Switch on SELECT LIST...TEST,
DISTORTION ON
- Select OFF in the menu VECTOR MOD/STATE
ØSettings on analyzer:
- Center frequency = test frequency, span = 1 MHz
- Reference level = test level
- Scale 10 dB/div
ØFirst measure the unmodulated level as a reference.
ØSwitch on vector modulation (STATE ON) and measure the residual
carrier.
ðThe residual carrier in dBc is the level of the residual signal found
referred to the output signal of the DUT without modulation
(dBc = referred to the carrier). This value must be about the
typical value (<-35 dBc) to ensure that the C/N values are
maintained.
Test Procedures SMIQ
1125.5555.03 E-95.72
5.3.24.4 Frequency Response through to I-FADED, Q-FADED Outputs
Test equipment - Spectrum analyzer (Table 5-1, item 2)
- Signal generator (Table 5-1, item 5)
Test setup ØConnect the signal generator to the I input of the SMIQ. Connect
the I-FADED output on the rear panel of the SMIQ to the spectrum
analyzer.
ØTerminate the Q input with 50 .
Test method By applying a sinusoidal AC voltage to the I input, a sinusoidal signal
will be obtained at the I-FADED output whose level can be measured
with the spectrum analyzer.
Measurement ØSettings on SMIQ:
- Switch on vector modulation
- Switch on DISTORTION CHARACTERISTIC TEST
ØSetting on signal generator:
- Level 0.5 V (Vpeak) corresponding to 4 dBm
ØSettings on analyzer:
- Start frequency = 0 MHz
- Stop frequency = 5 MHz
ØVary the frequency from 0.1 MHz to 5 MHz on the signal generator
and measure the level.
ðThe frequency response is the difference between the highest
and the lowest level.
Test setup ØConnect the Q-FADED output on the rear panel of the SMIQ to the
spectrum analyzer, connect the signal generator to the Q input of the
SMIQ.
ØTerminate the I input with 50 .
Measurement Same as for I input above.
SMIQ Test Procedures
1125.5555.03 E-95.73
5.3.24.5 Signal/Noise Ratio (Carrier/Noise Ratio)
Test equipment RF spectrum analyzer (table 5-1, pos. 2).
Test setup ØConnect analyzer to RF output of the SMIQ.
Test method Since carrier signal (C) and noise signal (N) are superimposed, a
menu has been generated with :UTILITIES:DIAG:CN/MEAS in
which either the carrier signal or the noise signal alone can be
switched on.
To determine the carrier/noise ratio, carrier power N is measured by
integration of the power density over the system bandwidth with noise
switched on, and carrier power C by integration of the power density
over the channel bandwidth with carrier switched on.
Integration is performed by the RF analyzer (table 5-1, pos. 2), using
marker functions CHANNEL POWER.
C/N[dB] = C[dBm] - N[dBm] is calculated from C[dBm] and N[dBm].
Test procedure Ø Set the test parameters on the SMIQ. Peak envelope power PEP
cannot be entered directly since it is calculated from the settings
for modulation and noise. However, a trial setting can be made,
e.g. –50 dBm, to determine the difference between PEP and
LEVEL, which renders a new level setting with the desired peak
power PEP.
Ø On analyzer:
set the reference level to peak power PEP, span to 1.2 times the
channel bandwidth,
select marker function MARKER NORMAL / CHANNEL POWER
and set it to the required channel bandwidth.
Switch on RMS detector and select a sweep time of 2 s.
Ø Select UTILITIES:DIAG:CN/MEAS CARRIER in the SMIQ
menu to generate the carrier alone.
Ø Now the channel power can be measured.
Ø Select the SMIQ setting
UTILITIES:DIAG:CN/MEAS NOISE to generate the noise
signal alone.
Ø On analyzer:
set voltage to approx. 1.2 times the system bandwidth and
CHANNEL POWER to the system bandwidth required.
Ø Now the noise power can be measured.
ðThe C/N in dB is the difference between the channel power in
dBm and noise power in dBm.
Test Procedures SMIQ
1125.5555.03 E-95.74
Measurements Ø Settings on SMIQ:
FREQ 1.472 GHz
LEVEL -10 dBm
NOISE/DIST NOISE ON
CARRIER/NOISE RATIO 10 dB
SYSTEM BANDWIDTH 1 MHz
Ø Measure C/N with channel bandwidth and system bandwidth 1 MHz.
Ø Settings on SMIQ:
FREQ 1.472 GHz
VECTOR MOD: STATE: ON
Apply full-scale level (0.500 V) to I input,
NOISE/DIST: NOISE: ON
: CARRIER / NOISE: -24, -5,4 and 20 dB
: SYSTEM BANDWITH: 10 kHz, 100kHz, 1 MHz and 10 MHz
LEVEL: 0 dBm (PEP)
Measure C/N with channel bandwidth = system bandwidth.
Ø Settings on SMIQ: FREQ 1.472 GHz
Digital modulation 2FSK with
DEVIATION 300 kHz
FILTER GAUSS 0.3
Switch on symbol rate 300 kHz.
Noise with C/N = 10 dB
Switch on SYSTEM BANDWITH = 1.2 MHz.
LEVEL 0 dBm (PEP)
Ø Measure C/N with channel bandwidth and system bandwidth 1.2 MHz.
Ø Settings on SMIQ:
FREQ 1.472 GHz
Switch on digital modulation QPSK.
Symbol rate 3.6 M
Noise WITH C/N = 10 dB
Switch on SYSTEM BANDWITH 5 MHz.
Measurement level 0 dBm (PEP)
Ø Measure C/N with channel bandwidth and system bandwidth 5 MHz.
SMIQ Test Procedures
1125.5555.03 E-95.75
5.3.24.6 Signal/Noise Ratio (Carrier/Noise Ratio) Worldspace
Test equipment See above
Test setup See above
Test method See above
Measurement Ø Settings on SMIQ:
LEVEL -15 dBm
FREQ 1.472 GHz
Switch on digital modulation standard WORLDSPACE.
Switch on filter mode LOW_EVM.
Data source PRBS
Switch on noise with C/N = -5 dB / 4 dB / 20 dB and
SYSTEM BANDWITH = 1.84 MHz.
Ø Measure C/N with channel bandwidth and system bandwidth
1.84 MHz.
ØRepeat all measurements with DISTORTION ON, LIST TWTA.
5.3.24.7 Error Vector
Test equipment Demodulator for digital modulation (Table 5-1, item 23)
Measurement ØSettings on SMIQ:
- Test level Pvmmax (PEP)
- Test frequency 1.472 GHz and frequencies according to Table 5-2
- Switch on digital modulation standard WORLDSPACE
- Switch on filter mode LOW_EVM
- Data source PRBS
- Switch on DISTORTION CHARACTERISTIC TEST
ØSettings on demodulator:
- QPSK modulation
- Symbol rate = 1.84 Msym/s
- Filter: SQR COS 0.4
- Reference level = Pvmmax + 3 dBm
- Evaluation over 150 symbols
- 10 averaging procedures
ØMeasure the error vector magnitude (rms) on the demodulator.
Test Procedures SMIQ
1125.5555.03 E-95.76
5.3.24.8 Noise Frequency Response
Test equipment Spectrum analyzer (Table 5-1, item 2)
Test setup ØConnect the spectrum analyzer to the RF output of the SMIQ.
ØTerminate the I and the Q input with 50 .
Measurement ØSettings on SMIQ:
- Test level -10 dBm
- Test frequency 1.472 GHz
- Set Noise/Disto CARRIER/NOISE RATIO 4 dB and
SYSTEM BANDWITH 1.84 MHz
- Select ON in the menu VECTOR MOD/STATE
ØSettings on analyzer:
- Center frequency = test frequency, span = 5 MHz
- Reference level = -25 dBm
- Scale 1 dB/div
- RBW 100 kHz, VBW 5 Hz
ðThe frequency response is the difference between maximum and
minimum level within the measurement bandwidth.
ØMeasure the frequency response of the noise signal between the
test frequency -1290 kHz and the test frequency +1290 kHz.
ØSetting on SMIQ:
- Set Noise/Disto SYSTEM BANDWITH 10 MHz
ØSettings on analyzer:
- Center frequency = test frequency, span 20 MHz
- RBW 500 kHz, VBW 5 Hz
ØMeasure the frequency response of the noise signal between the
test frequency -5000 kHz and the test frequency +5000 kHz.
SMIQ Test Procedures
1125.5555.03 E-95.77
5.3.25 Arbitrary Waveform Generator (ARB, Option SMIQB60)
5.3.25.1 Frequency Response
Test equipment RF spectrum analyzer (Table 5-1, item 2)
PC with WinIQSIM version 3.30 or higher and IEEE/IEC bus
connection to the SMIQ
Test setup Ø Connect spectrum analyzer to I/Q socket on front panel of the
SMIQ.
Measurement Ø Settings on spectrum analyzer
- LEVEL REF 0.0 dBm
- START FREQUENCY 0 Hz
- STOP FREQUENCY 20 MHz
Ø Settings in WinIQSIM
- File -> New -> Multi Carrier Ok
- Carrier Settings
- No. of Carriers 37
- Carrier Spacing 1000
- CW only Mode
- Channel Definition -> to ch. 30
- Accept
- Channel Definition -> to ch. 18
- Channel Definition -> State OFF
- Accept
- Ok
At present the frequency spacing is 1 MHz from 1 MHz to
12 MHz.
- SMIQ(ARB) -> Transmission...
- ARB Waveform -> Waveform Name "ARBTEST“
- Select
- Transmit
At present the waveform is in the SMIQ.
Ø Settings on SMIQ
- ARB MOD -> SELECT WAVEFORM... -> WAVEFORM...
"ARBTEST
- ARB MOD -> STATE ON
Ø Test procedure
- Marker to 1 MHz
- Delta Marker to 12 MHz
- The read level difference is the frequency response.
- Perform same measurement for I and Q
Test Procedures SMIQ
1125.5555.03 E-95.78
5.3.25.2 DC Voltage Offset
Test setup Ø Connect AC/DC voltmeter to I/Q socket on front panel of the
SMIQ.
Measurement of DC voltage
offset
Ø Measurement sequence
- Switch on 100 Hz input lowpass of voltmeter.
- Measure DC voltage at I = UI
- Measure DC voltage at Q = UQ
- Calculate offset:
Offset V
UU
IQ
=⋅ +
æ
è
ç
ç
ö
ø
÷
÷
20 10
22
log .
Perform same measurement for I and Q.
5.3.25.3 Spurious-Free Dynamic Range (SFDR)
Test equipment RF spectrum analyzer (Table 5-1, item 2)
PC with WinIQSIM version 3.30 or higher and IEEE/IEC bus
connection to the SMIQ.
Test setup Ø Connect spectrum analyzer to I/Q socket on front panel of the
SMIQ.
Measurement Ø Settings on spectrum analyzer
- LEVEL REF 10.0 dBm
- START FREQUENCY 0 Hz
- STOP FREQUENCY 20 MHz
Ø Settings in WinIQSIM
- File -> New -> Multi Carrier Ok
- Carrier Settings
- No. of Carriers 3
- Carrier Spacing 1000
- CW only Mode
- Channel Definition -> to ch. 1
- Channel Definition -> State OFF
- Accept
- Ok
At present there is a sinewave of 1 MHz for I and Q.
- SMIQ(ARB) -> Transmission...
- ARB Waveform -> Waveform Name „ARBTEST“
- Select
- Transmit
At present the waveform is in the SMIQ.
Ø SMIQ
- ARB MOD -> SELECT WAVEFORM... -> WAVEFORM...
„ARBTEST
- ARB MOD -> STATE ON
Ø Test procedure
- Marker to 1 MHz
- Delta marker to maximum spurious (0 to 12 MHz).
- Read SFDR
- Perform same measurement for I and Q
SMIQ Test Procedures
1125.5555.03 E-95.79
5.3.25.4 Level Difference of Channels
Test equipment AC/DC voltmeter (Table 5-1, item 19)
PC with WinIQSIM version 3.30 or higher and IEEE/IEC bus
connection to the SMIQ.
Test setup Ø Connect AC/DC voltmeter to I/Q socket on front panel of the
SMIQ.
Measurement Ø Settings on AC/DC voltmeter
- Mode AC
- Unit V
Ø Settings in WinIQSIM
- File -> New -> Multi Carrier Ok
- Carrier Settings
- No. of Carriers 3
- Carrier Spacing 1
- CW only Mode
- Channel Definition -> to ch. 1
- Channel Definition -> State OFF
- Accept
- Ok
At present there is a sinewave of 1 MHz for I and Q.
- SMIQ(ARB) -> Transmission...
- ARB Waveform -> Waveform Name "ARBTEST“
- Select
- Transmit
At present the waveform is in the SMIQ.
Ø SMIQ settings
- ARB MOD -> SELECT WAVEFORM... -> WAVEFORM...
"ARBTEST
- ARB MOD -> STATE ON
Ø Test procedure
- Read RMS voltage on I = UI
- Read RMS voltage on Q = UQ
- Calculate level difference:
%100
U
UU
difference Level
I
IQ
=
Test Procedures SMIQ
1125.5555.03 E-95.80
5.3.26 Additional Measurements for SMIQ03S
SMIQ03S is a variant of SMIQ03B for the XM-radio project. In addition to basic unit SMIQ03B, the
following modules are installed:
Data Generator SMIQB11 with large memory (SMIQB12)
Modulation Coder SMIQB20
COFDM Coder 2072.6895.10 model 10.
All test specifications for SMIQ03B are applicable, the measurements described here are to be
performed in addition.
Test equipment and setup Connect spectrum analyzer (Table 5-1, item 2) to the RF socket of
the SMIQ.
Measurement Ø Settings on SMIQ
Carrier frequency 2337.490 MHz
Level 0dBm
Digital standard XM, State On
Mode: terrestrial
Select list terrestrial: TERR
Symbol Gain: 0 (384 dB < firmware version 5.30)
Preamble Gain: 0 (32 dB < firmware version 5.30)
Trigger Mode: Auto
Then:
Utilities -> DIAG -> COFDM -> MCM: ON
(a stable spectrum is obtained with the last setting)
Ø Settings on analyzer
Center: 2337.490 MHz
Span: 20 MHz
Ref Level: 0 dBm
RBW: 3 kHz
VBW: 3 kHz
Sweep Time: 5.6 s
Detector RMS
RF Atten 20 dB (important!)
Checking the spectral mask Ø Check the generated spectrum according to the following table
using the DELTA MARKER function:
Spacing to carrier frequency Minimum level Maximum level
-20 MHz - 50 dBc
-2 MHz - 33 dBc
-1.35 MHz - 30 dBc
-1.2 MHz -0.5 dBc +0.2 dBc
+1.2 MHz -0.5 dBc +0.2 dBc
+1.35 MHz -30 dBc
+2 MHz -33 dBc
+20 MHz -50 dBc
SMIQ Test Procedures
1125.5555.03 E-95.81
Example of a measurement:
Performance Test Report SMIQ
1125.5555.03 E-95.82
5.4 Performance Test Report
ROHDE&SCHWARZ VECTOR SIGNAL GENERATOR
SMIQ02B/03B/04B/06B 1125.5555.02/03/04/06
Serial number:
Person testing:
Date:
Signature:
For nominal data and limit values refer to the data sheet supplied with the instrument.
Section Characteristic Min. Actual Max. Unit
5.3.1 Display and keyboard O.K. -
5.3.2.1 Frequency setting O.K. -
5.3.2.2 Setting time
CW
VM, ALC TABLE ms
ms
5.3.2.3 Setting time
LIST MODE µs
5.3.3 Reference frequency, output level
Reference frequency, drift,
input for external reference O.K.
V
Hz
-
5.3.4.1 Frequency response at reference level
with ALC OFF
Level, total error for
RF <=2.5 GHz
RF >2.5 GHz
dB
dB
dB
dB
5.3.4.2 Output impedance (VSWR)
at max. level, lower frequency range
at max. level, upper frequency range
at low level, lower frequency range
at low level, upper frequency range
-
-
-
-
5.3.4.3 Setting time (IEC/IEEE bus)
CW, analog modulation,
with mechanical attenuator
without mechanical attenuator ms
ms
5.3.4.4 Non-interrupting level setting
Attenuator fixed 5 dB
Attenuator fixed 10 dB
Attenuator fixed 15 dB
Attenuator fixed 20 dB
Attenuator electronic 35 dB
Attenuator electronic 70 dB
Attenuator electronic 80 dB
4.85
9.7
14.2
17.5
34.0
68.5
77.5
5.15
10.3
15.8
22.5
36.0
71.5
82.5
dB
dB
dB
dB
dB
dB
dB
5.3.4.5 Overvoltage protection
DC test
RF test O.K.
O.K.
5.3.5.1 Harmonics suppression dBc
SMIQ Performance Test Report
1125.5555.03 E-95.83
Section Characteristic Min. Actual Max. Unit
5.3.5.2
5.3.5.3
Spurious, CW, offset >10 kHz
0.3 MHz to 450 MHz
> 450 MHz to 1500 MHz
> 1500 MHz to 3040 MHz
> 3040 MHz to 3300 MHz
Offset 10 kHz to < 900 MHz
> 3300 MHz to 6000 MHz
> 6000 MHz
Offset >=900 MHz, > 3300 MHz
Vector modulation, offset 10 kHz to < 300 MHz
0.3 MHz to 3300 MHz
Offset 300 MHz
0.3 MHz to 3300 MHz
Offset 10 kHz to < 900 MHz
> 3300 MHz to 6000 MHz
> 6000 MHz
Offset >=900 MHz, > 3300 MHz
dBc
dBc
dBc
dBc
dBc
dBc
dBc
dBc
dBc
dBc
dBc
dBc
5.3.5.4 Broadband noise with CW
RF > 20 MHz to 450 MHz
RF > 450 MHz to 3040 MHz
RF > 3040 MHz to 3300 MHz
RF > 3300 MHz to 6400 MHz
dBc
dBc
dBc
dBc
5.3.5.4 Broadband noise with vector mod., RF>20
MHz dBc
5.3.5.5 SSB phase noise, at 20 kHz offset,
with CW, at RF 400 MHz
1 GHz
2 GHz
3 GHz
6 GHz
with vector modulation,
at RF 400 MHz
1 GHz
2 GHz
3 GHz
6 GHz
dBc(1Hz)
dBc(1Hz)
dBc(1Hz)
dBc(1Hz)
dBc(1Hz)
dBc(1Hz)
dBc(1Hz)
dBc(1Hz)
dBc(1Hz)
dBc(1Hz)
5.3.5.6 Residual FM, rms, at 1 GHz
0.3 to 3 kHz (ITU-T)
0.02 to 23 kHz Hz
Hz
5.3.5.7 Residual AM, rms (0.02 to 23 kHz) %
5.3.6 Sweep
X-AXIS
MARKER
BLANK
O.K.
O.K.
O.K.
5.3.7 Internal modulation generator
Frequency drift
Frequency response up to 100 kHz
up to 1 MHz
Distortion
Output voltage
3 mV
10 mV
30 mV
100 mV
1 V
2 V
4 V
-
dB
dB
%
mV
mV
mV
mV
V
V
V
Performance Test Report SMIQ
1125.5555.03 E-95.84
Section Characteristic Min. Actual Max. Unit
5.3.8 Vector modulation
Input impedance I
Input impedance Q
Max. level
Error vector
rms value
peak value
Modulation frequency response
Residual carrier 0%
Residual carrier 10%
Imbalance (IQ)
Quadrature error
POW RAMP level error
POW RAMP on/off ratio
Delay time
Rise time
Fall time
-
-
dB
%
%
dB
dBc
dBc
dB
dB
µs
µs
µs
5.3.9 Amplitude modulation
Modulation depth, setting error
Distortion with AM 30%
with AM 80%
Frequency response, RF > 5 MHz
RF <= 5 MHz
Incidental PhiM
%
%
%
dB
dB
rad
5.3.9.5 Level monitoring EXT1
lower limit
upper limit V
V
5.3.10 Broadband AM
Modulation frequency response 10 MHz
30 MHz dB
dB
5.3.11 Pulse modulation
On/off ratio
Rise time
Fall time
Pulse delay
dB
µs
µs
µs
5.3.12.1 FM deviation setting
at 300 Hz
at 1 kHz
at 3 kHz
at 10 kHz
at 30 kHz
at 100 kHz
at 250 kHz
at 500 kHz
Hz
kHz
kHz
kHz
kHz
kHz
kHz
kHz
5.3.12.2 FM distortion %
5.3.12.3 FM frequency response
EXT1 10 Hz to 100 kHz
EXT2 10 Hz to 100 kHz
EXT1 10 Hz to 2 MHz
EXT2 10 Hz to 2 MHz
INT 10 Hz to 100 kHz
INT 10 Hz to 1MHz
dB
dB
dB
dB
dB
dB
FM preemphasis, deviation error
50 µs
75 µs %
%
5.3.12.5 Residual AM with FM %
5.3.12.6 Frequency offset with FM
Deviation 0 Hz
Deviation 200 Hz Hz
Hz
5.3.12.7 Level monitoring EXT2
lower limit
upper limit V
V
SMIQ Performance Test Report
1125.5555.03 E-95.85
Section Characteristic Min. Actual Max. Unit
5.3.13.1 PhiM deviation setting
at 30 mrad
at 0.1 rad
at 0.3 rad
at 1.0 rad
at 3.0 rad
at 10 rad
mrad
rad
rad
rad
rad
rad
5.3.13.2 PhiM distortion %
5.3.13.3 PhiM frequency response
EXT1
EXT2
INT
dB
dB
dB
5.3.14 Digital modulation
Level error
Residual carrier
Analog outputs
ASK modulation depth error
2FSK, shift error
4FSK, shift error
GFSK, shift error
GMSK, phase error
rms
peak
Error vector, rms, for
PSK, 1 ksymbol/s
PSK, 18 ksymbol/s
PSK, 192 ksymbol/s
PSK, 1500 ksymbol/s
PSK, 3000 ksymbol/s
QAM, 1000 ksymbol/s
QAM, 3000 ksymbol/s
ok -50 dB
dB
%
%
%
%
degree
degree
%
%
%
%
%
%
%
5.3.15 Function check of data generator O.K.
5.3.16 Digital standards
GSM, Power vs. time
phase error rms
peak
Transient spectrum
Modulation spectrum
EDGE error vector rms
DECT, Deviation error
Burst on/off
NADC, error vector, rms
ACP 30 kHz
ACP 60 kHz
ACP 90 kHz
TETRA, error vector, rms
ACP 25 kHz
ACP 50 kHz
PDC, error vector, rms
ACP 50 kHz
ACP 100 kHz
PHS, error vector, rms
ACP 600 kHz
ACP 900 kHz
O.K.
O.K.
O.K.
rad
rad
%
%
dB
%
dBc
dBc
dBc
%
dBc
dBc
%
dBc
dBc
%
dBc
dBc
5.3.17 IS95 CDMA (SMIQB42), rho factor
reverse link
forward link
ACP reverse link
ACP forward link
dBc
dBc
dBc
dBc
dBc
dBc
Performance Test Report SMIQ
1125.5555.03 E-95.86
Section Characteristic Min. Actual Max. Unit
5.3.18 W-CDMA (SMIQB43), error vector
ACP 5 MHz
ACP 10 MHz
%
dBc
dBc
5.3.19 3GPP W-CDMA (B45, 1 code channel),
Error vector
ACP 5 MHz
ACP 10 MHz
W-CDMA (B45, test model 1, 64 DPCH),
ACP 5 MHz
ACP 10 MHz
%
dBc
dBc
dBc
dBc
5.3.20 3GPP W-CDMA (SMIQB48)
Channel power at high
Channel power at low dBm
dBm
5.3.22 Bit error rate test O.K.
5.3.23 Fading simulation
Bandwidth
Additional modulation frequency response
Carrier leakage for fading
Path attenuation
Path delay (optional)
Doppler shift (optional)
MHz
dB
dBc
dB
ns
%
5.3.24 Noise generation and distortion simulation
RF Bandwidth
Additional modulation frequency response
Residual carrier
Frequency resp. up to I-FADED, Q-FADED
Carrier/noise ratio
unmodulated
with vector modulation
with 2FSK modulation
with QPSK modulation
with WorldSpace standard
Error vector
Noise frequency response 1.29 MHz
Noise frequency response 5 MHz
Hz
dB
dBc
dB
dB
dB
dB
dB
dB
%
dB
dB
5.3.25 ARB MOD SMIQB60
Frequency response up to 12 MHz
Spurious-Free Dynamic Range,
sine wave 1 MHz to 12 MHz
Level difference of channels, sine wave
1 kHz
Offset in Normal mode
dB
dB
%
dB
5.3.26 Additional measurements for SMIQ03S O.K.
SMIQ IEC/IEEE Bus Interface
1125.5555.03 E-7A.1
A Annex A
A.1 IEC/IEEE Bus Interface
The instrument is equipped with an IEC/IEEE-bus connection as a standard. The mating connector
according to IEEE 488 is at the rear of the instrument. A controller for remote control can be connected
via the interface. The connection is effected using a shielded cable.
A.1.1 Characteristics of the Interface
8-bit parallel data transfer
bidirectional data transfer
three line handshake
high data transfer rate of max. 350 kByte/s
up to 15 devices can be connected
maximal length of the connecting cables 15 m (single connection 2m)
wired OR if several instruments are connected in parallel.
12 1
13
24
shield SRQ NDAC DAV DIO4 DIO2
logic GND GND(10) GND(8) GND(6) REN DIO7
GND(11) GND(9) GND(7) DIO8 DIO6 DIO5
ATN IFC NRFD EOI DIO3 DIO1
Fig. A-1 Contact Assigment of the IEC-bus socket
A.1.2 Bus Lines
1. Data bus with 8 lines DIO 1 to DIO 8.
The transmission is bit-parallel and byte-serial in the ASCII/ISO code. DIO1 is the bit of lowest order,
DIO8 the bit of highest order.
IEC/IEEE Bus Interface SMIQ
1125.5555.03 E-7A.2
2. Control bus with 5 lines.
IFC (Interface Clear),
active low resets the interfaces of the instruments connected to the default setting.
ATN (Attention),
active low signals the transmission of interface messages
inactive high signals the transmission of device-dependent messages.
SRQ (Service Request),
active low enables a device connected to send a service request to the controller.
REN (Remote Enable),
active low permits the switchover to remote control.
EOI (End or Identify),
has two functions in connection with ATN:
active low marks the end of data transmission with ATN=high
active low triggers a parallel poll with ATN=low.
3. Handshake bus with three lines.
DAV (Data Valid),
active low signals a valid data byte on the data bus.
NRFD (Not Ready For Data),
active low signals that one of the device connected is not ready for data transfer.
NDAC (Not Data Accepted),
active low as long as the instrument connected is accepting the data present on the data bus.
A.1.3 Interface Functions
Instruments which can be remote-controlled via IEC bus can be equipped with different interface
functions. Table A-1 lists the interface functions appropriate for the instrument.
Table A-1 Interface function
Control
character Interface function
SH1 Handshake source function (source handshake)
AH1 Handshake drain function (acceptor handshake)
L4 Listener function.
T6 Talker function, ability to respond to serial poll
SR1 Service request function (Service Request)
PP1 Parallel poll function
RL1 Remote/Local switchover function
DC1 Resetting function (Device Clear)
DT1 Trigger function (Device Trigger)
SMIQ IEC/IEEE Bus Interface
1125.5555.03 E-7A.3
A.1.4 Interface Messages
Interface messages are transmitted to the instrument on the data lines, with the attention line being
active (LOW). They serve to communicate between instrument and controller.
Universal Commands
The universal commands are encoded in the range 10 through 1F hex. They are effective for all
instruments connected to the bus without addressing them before.
Table A-2 Universal Commands
Command QuickBASIC commandl Effect on the instrument
DCL (Device Clear) IBCMD (controller%, CHR$(20)) Aborts the processing of the commands just received
and sets the command processing software to a
defined initial state. Does not change the instrument
setting.
IFC (Interface Clear) IBSIC (controller%) Resets the interfaces to the default setting.
LLO (Local Lockout) IBCMD (controller%, CHR$(17)) The LOC/IEC ADDR key is disabled.
SPE (Serial Poll Enable) IBCMD (controller%, CHR$(24)) Ready for serial poll
SPD (Serial Poll Disable) IBCMD (controller%, CHR$(25)) End of serial poll
PPU Parallel Poll Unconfigure) IBCMD (controller%, CHR$(21)) End of the parallel-poll polling state
Addressed Commands
The addressed commands are encoded in the range 00 through 0F hex. They are only effective for
instruments addressed as listeners.
Table A-3 Addressed Commands
Command QuickBASIC commandl Effect on the instrument
SDC (Selected Device Clear) IBCLR (device%) Aborts the processing of the commands just received
and sets the command processing software to a
defined initial state. Does not change the instrument
setting.
GET (Group Execute Trigger) IBTRG (device%) Triggers a previously active device function (eg a
sweep). The effect of the command is the same as
with that of a pulse at the external trigger signal input.
GTL (Go to Local) IBLOC (device%) Transition to the "Local" state (manual control)
PPC (Parallel Poll Configure) IBPPC (device%, data%) Configure instrument for parallel poll. The
QuickBASIC command additionally executes PPE /
PPD.
RS-232-C Interface SMIQ
1125.5555.03 E-7A.4
A.2 RS-232-C Interface
The instrument is fitted with an RS-232-C interface as standard. The 9-pin connector is at the rear
panel. A controller can be connected via this interface for remote control.
A.2.1 Interface characteristics
Serial data transmission in asynchronous mode
Bidirectional data transmission via two separate lines
Transmission rate selectable from 1200 to 115200 baud
Logic 0 signal from +3 V to +15 V
Logic 1 signal from -15 V to -3 V
An external instrument (controller) can be connected
Software handshake (XON, XOFF)
v Hardware handshake
Fig. A-2 Pin assigment of RS-232-C connector
A.2.2 Signal lines
RxD (Receive Data),
Data line, transmission from external controller to instrument.
TxD (Transmit Data),
Data line, transmission from instrument to external controller.
DTR (Data terminal ready),
Output (log. 0 = active). With DTR, the instrument indicates that it is ready to receive data. The
DTR line controls whether the instrument is ready for reception or not.
GND,Interface ground, connected to instrument ground.
DSR (Data set ready),
(Instead of the CTS line, the DSR connector is used for instruments with a VAR2 REV3 front
module.)
RTS (Request to send),
Output (log 0 = active). With RTS, the instrument indicates that it is ready to receive data. The
RTS line controls whether the instrument is ready for reception or not.
CTS (Clear to send),
Input (log 0 = active). CTS tells the instrument that the opposite station is ready to receive data.
RxD DTR
1
6
5
9
TxD
DSR CTS
RTS
SMIQ RS-232-C Interface
1125.5555.03 E-7A.5
A.2.2.1 Transmission parameters
To ensure an error-free and correct data transmission, the parameters of the instrument and the
controller should have the same settings. The parameters are set in menu UTILITIES-SYSTEM-RS232.
Transmission rate The following baud rates can be set in the instrument:
(baud rate) 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.
Data bits Data transmission is in 8-bit ASCII code. The first bit transmitted
is the LSB (Least Significant Bit).
Start bit Each data byte begins with a start bit. The falling edge of the start
bit indicates the beginning of the data byte.
Parity bit A parity bit is not used.
Stop bit The transmission of a data byte is terminated by a stop bit.
Example:
Transmission of character A (41 hex) in the 8-bit ASCII code.
01 02 03 04 05 06 07 08 09 10
Bit 01 = Start bit Bit 02...09 = Data bits Bit 10 = Stop bit
Bitduration= 1/baud rate
A.2.3 Interface functions
For interface control, some control characters defined from 0 to 20 hex of the ASCII code can be
transmitted via the interface (see Table A-4).
Table A-4 Interface functions (RS-232-C)
Control character Interface function
<Ctrl Q> 11 hex Enables character output (XON)
<Ctrl S> 13 hex Inhibits character output (XOFF)
Break (at least 1 character only log 0) Reset instrument
0Dhex, 0Ahex Terminator <CR>, <LF>
Switchover between local/remote
RS-232-C Interface SMIQ
1125.5555.03 E-7A.6
A.2.3.1 Handshake
Software handshake
The software handshake with the XON/XOFF protocol controls data transmission. If the receiver wishes
to inhibit data entry, it sends XOFF to the transmitter. The transmitter then interrupts the data output
until it receives a XON. The same function is provided at the transmitter side (controller).
Note: Software handshake is not suitable for transmission of binary data. Use the hardware handshake.
Hardware handshake
In case of a hardware handshake the instrument signals that it is ready for reception via line DTR and
RTS. A logic 0 means "ready" and a 1 means "not ready". Whether the controller is ready for reception
or not is signalled to the instrument via lines CTS or DSR (see signal lines). The transmitter of the
instrument is switched on by a 0 and off by a 1. Line RTS remains active as long as the serial interface
is active. Line DTR controls whether the instrument is ready for reception or not.
Connection between instrument and controller
Connection of the instrument with the controller is via a so-called 0-modem cable. In this case, the data,
control and signalling lines have to be cross-connected. For a controller with a 9-pin or 25-pin connector
the following circuit diagram applies.
SMIQ Controller SMIQ Controller
9 pin 9 pin 9 pin 25 pin
1
2
3
4
5
6
7
8
9
-------------------------------------
------------RxD / TxD---------------
------------TxD / RxD---------------
------------DTR /DSR---------------
------------GND / GND-------------
------------DSR / DTR--------------
------------RTS / CTS--------------
------------CTS / RTS--------------
-------------------------------------
1
3
2
6
5
4
8
7
9
1
2
3
4
5
6
7
8
9
-------------------------------------
------------RxD / TxD---------------
------------TxD / RxD---------------
------------DTR /DSR---------------
------------GND / GND-------------
------------DSR / DTR--------------
------------RTS / CTS--------------
------------CTS / RTS--------------
-------------------------------------
8
2
3
6
7
20
5
4
22
Fig. A-3 Wiring of data, control and signalling lines for hardware handshake
SMIQ Asynchronous Interface SERDATA
1125.5555.03 E-7A.7
A.3 Asynchronous Interface SERDATA
The SERDATA interface on the rear of SMIQ serves for the asynchronous serial transmission of
modulation data. It is a RS-232-C interface with the following characteristics:
Data transmission to SMIQ in one direction only via RxD line (Receive Data).
Selectable data rate in menu UTILITIES-SYSTEM-SERDATA-BAUDRATE. The highest baud rate is
115 200.
Hardware handshake only via RTS line (Request to send). With RTS, SMIQ is ready to receive data.
After inactivating RTS, SMIQ can receive 32 bytes at max.
Data transmission with start bit, 8 data bits (= 1 byte), stop bit. A parity bit is not used. The most
significant bit of each modulation symbol has to be transmitted at first.
Note: The baud rate has to be selected at least 25% higher than the bit rate of the digital
modulation. If SMIQ has not enough data, the error message "Data underrun" will be
issued in the status line.
Connection between SERDATA and the external RS-232 data source is via a so-called null modem
cable with crossed data and control lines.
SMIQ List of Error Messages
1125.5555.03 E-7B.1
B Annex B
B.1 List of Error Messages
The following list contains all error messages for errors occurring in the instrument. The meaning of
negative error codes is defined in SCPI, positive error codes mark errors specific of the instrument.
The table contains the error code in the left-hand column. In the right-hand column the error text being
entered into the error/event queue or being displayed is printed in bold face. Below the error text, there
is an explanation as to the respective error.
B.1.1 SCPI-Specific Error Messages
No Error
Error code Error text in the case of queue poll
Error explanation
0No error
This message is output if the error queue does not contain entries.
Command Error - Faulty command; sets bit 5 in the ESR register
Error code Error text in the case of queue poll
Error explanation
-100 Command Error
The command is faulty or invalid.
-101 Invalid Character
The command contains an invalid sign.
-102 Syntax error
The command is invalid.
-103 Invalid separator
The command contains an impermissible separator.
-104 Data type error
The command contains data of the wrong type (for example a string instead of a numeric value).
Example: ON is indicated instead of a numeric value for frequency setting.
-105 GET not allowed
A Group Execute Trigger (GET) is within a command line.
-109 Missing parameter
The command contains too few parameters.
List of Error Messages SMIQ
1125.5555.03 E-7B.2
Continuation: Command Error
Error code Error text in the case of queue poll
Error explanation
-112 Program mnemonic too long
The header contains more than 12 signs.
-113 Undefined header
The header is not defined for the instrument.
Example: *XYZ is undefined for every instrument.
-114 Header suffix out of range
The header contains an impermissible numeric suffix.
Example: SOURce3 does not exist in the instrument.
-123 Exponent too large
The absolute value of the exponent is too large.
-124 Too many digits
The number contains too many digits.
-128 Numeric data not allowed
The command contains a number which is not allowed at this position.
-131 Invalid suffix
The suffix is invalid for this instrument.
Example: nHz is not defined.
-134 Suffix too long
The suffix contains more than 12 signs.
-138 Suffix not allowed
A suffix is not allowed for this command or at this position of the command.
-141 Invalid character data
The text parameter either contains an invalid sign or it is invalid for this command
Example: write error with parameter indication; SOURce:FREQuency:MODE FIKSed.
-144 Character data too long
The text parameter contains more than 12 signs.
-148 Character data not allowed
The text parameter is not allowed for this command or at this position of the command.
-158 String data not allowed
The command contains a valid character string at a position which is not allowed.
Example: A text parameter is set in quotation marks, SOURce:FREQuency:MODE "FIXed".
-161 Invalid block data
The command contains faulty block data.
Example: An END message was received before the expected number of data had been received.
-168 Block data not allowed
The command contains valid block data at an impermissible position.
-178 Expression data not allowed
The command contains a mathematical expression at an impermissible position.
SMIQ List of Error Messages
1125.5555.03 E-7B.3
Execution Error - Error in executing the command; sets bit 4 in the ESR register
Error code Error text in the case of queue poll
Error explanation
-203 Command protected
The desired command could not be executed as it was protected with a password. Use command
SYSTem:PROTect1|2|3 OFF, <password> to enable the command.
Example: The command CALibrate:LPReset? is protected with a password.
-211 Trigger ignored
The trigger (GET, *TRG or trigger signal) was ignored due to device timing considerations.
-221 Settings conflict; ...
There is a setting conflict between the two parameters indicated after the semicolon.
Example: The set FSK deviation is too large for the selected symbol rate. A value has to be corrected to
obtain a valid output signal.
-222 Data out of range
The parameter value is out of the range permitted by the instrument.
Example: Command *RCL only permits entries in the range of 0 to 50
-223 Too much data
The command contains too many data.
-224 Illegal parameter value
The parameter value is invalid.
-225 Out of memory
The storage space available in the instrument is exhausted.
Example: An attempt is made to create more than 10 Memory Sequence lists.
-226 Lists not same length
The parts of a list have different lengths. This error message is also displayed if only part of a list has
been transmitted via IEC bus. All parts of the list have to be transmitted always before it is executed.
Example: The POWer list content is longer than the FREQuency list content, or only the POWer content
is transmitted.
-230 Data corrupt or stale
The data are incomplete or invalid.
Example: The instrument has aborted a measurement.
-240 Hardware error
The command cannot be executed due to problems with the instrument hardware.
-241 Hardware missing
The command cannot be executed due to missing hardware.
Example: An option is not fitted.
-255 Directory full
The list management cannot accept any more lists as the maximum number of lists has already be
attained.
Example: Only 10 MEM SEQ lists can be created.
List of Error Messages SMIQ
1125.5555.03 E-7B.4
Device Specific Error - sets bit 3 in the ESR register.
Error code Error text in the case of queue poll
Error explanation
-310 System error
This error message suggests an error within the instrument. Please inform the R&S Service.
-311 Memory error
Error in the instrument memory.
-313 Calibration memory lost; ...
Loss of the calibration data indicated after the semicolon (usually by switching on with PRESET after the
software update). The calibration data have to be restored by internal routines (see chapter 2, section
Calibration) so that the instrument can operate properly.
-314 Save/recall memory lost
Loss of the non-volatile data stored using *SAV? command.
-315 Configuration memory lost
Loss of the non-volatile configuration data stored by the instrument.
-330 Self-test failed; ...
An error was detected in the selftest named after the semicolon. An error-free operation of the module
concerned is no longer guaranteed.
Example: "Selftest failed - CPU-RAM battery voltage below 2.5 V" indicates that the battery has to be
replaced (see service manual).
-350 Queue overflow
This error code is entered into the queue instead of the actual error code if the queue is full. It indicates
that more errors have occurred than displayed.
-360 Communication error
An error has occurred during the transmission or reception of data on the IEC/IEEE bus or via the
RS-232 interface.
Query Error - Error in data request; sets bit 2 in the ESR register.
Error code Error text in the case of queue poll
Error explanation
-410 Query INTERRUPTED
The query has been interrupted.
Example: After a query, the instrument receives new data before the response has been sent completely.
-420 Query UNTERMINATED
The query is missing or incomplete. No data in the output buffer.
-430 Query DEADLOCKED
The query cannot be processed.
Example: The input and output buffers are full, the instrument cannot continue operation.
SMIQ List of Error Messages
1125.5555.03 E-7B.5
B.1.2 SMIQ-Specific Error Messages
Device-dependent Error - device-specific error; sets bit 3 in the ESR register.
Error code Error text in the case of queue poll
Error explanation
51 IEC:No Listener
AMIQ cannot be driven, check IEC/IEEE-bus cable and address setting.
52 IEC:No Talker
AMIQ requests data although it is not addressed as a talker.
53 IEC:Timeout
The time limit for data transmission has been exceeded.
105 Frequency underrange
The frequency is below the limit value guaranteed.
106 Frequency overrange
The frequency is beyond the limit value guaranteed.
110 Output unleveled; ALC failure
Level control cannot attain the nominal value.
111 IQCON: ALC loop failure
The local level control of the IQCON module cannot attain the nominal value.
117 Dynamic level range exceeded
The difference between the maximal and minimal value of a level list is too large. An exact level setting is
no longer guaranteed.
122 User correction overrange or underrange
During user correction (UCOR) the permitted limits were exceeded.
127 Signal output/DISTORTION settings mismatch – use RECALCULATE
Settings for DISTORTION were modified during operation, they should be recalculated with
RECALCULATE.
130 FM modulator VCO unlocked
FM modulator VCO is not synchronized.
131 AM modulation frequency out of range
The AM modulation frequency is out of the permissible range.
132 PM modulation frequency out of range
The PM modulation frequency is out of the permissible range.
135 AM bandwidth reduced at RF below 5 MHz
The bandwidth of AM is reduced below 5 MHz, see data sheet.
140 This modulation forces other modulations OFF
A modulation has been switched on which cannot be used at the same time as an already active
modulation. The previous modulation has been switched off.
141 Controlling of input voltage at EXT1 not possible
The voltage monitoring at EXT1 input does not work with multi-tone or mixer modulation.
Example: AM SOURCE INT and AM SOURCE EXT are simultaneously activated.
152 Input voltage out of range; EXT1 too high
The input voltage at the EXT1 socket is too high.
153 Input voltage out of range; EXT1 too low
The input voltage at the EXT1 socket is too low.
List of Error Messages SMIQ
1125.5555.03 E-7B.6
Continuation: Device-dependent Error
Error code Error text in the case of queue poll
Error explanation
154 Input voltage out of range; EXT2 too high
The input voltage at the EXT2 socket is too high.
155 Input voltage out of range; EXT2 too low
The input voltage at the EXT2 socket is too low.
161 Output protection tripped
The overvoltage protection has responded (cf. Section 2.5.8).
171 Oven cold
The reference oscillator has not yet reached its operating temperature.
172 Reference frequency 100 MHz VCXO unlocked
The 100 MHz crystal oscillator of the reference frequency is not synchronized.
This error message often occurs with error 171 since the frequency errors of the reference oscillator
exceed the pull-in range of the 100 MHz oscillator during warmup.
173 Step synthesis unlocked
The step synthesis has not been synchronized.
180 Calibration failed; ...
The calibration named after the semicolon was not successfully performed.
181 REF OSC calibration data not used because ADJUSTMENT STATE is ON
The reference-oscillator calibration data are not used as long as ADJUSTMENT STATE is activated.
182 Calibration data missing
Calibration data are missing in the device memory. The calibration data have to be generated first by an
internal or external calibration or to be loaded into the device (see section Calibration).
183 Learning failed; ALC OFF MODE = TABLE
An error occurred on applying the internal ALC OFF table. If this error again occurs after a new internal
calibration (see chapter Calibration, CALIB ALL) there is a hardware failure. Please contact your local
Rohde & Schwarz representative.
184 MCOD calibration not correctly
The internal offset calibration of the modulation coder is faulty which generates a larger carrier leakage
with digital modulation. If this error occurs repeatedly after recalibration of vector modulation, there is a
hardware failure. Please contact your local Rohde & Schwarz representative.
200 Cannot access hardware
The data transmission to a module was unsuccessful.
201 Function not supported by this hardware revision
A later version of certain parts of the instrument is necessary to execute the function selected.
202 Diagnostic A/D converter failure
The diagnosis analog/digital converter has failed. This generates error 211 since this D/A converter is
also used for frequency setting.
203 DGEN;....
The error named after the semicolon has occurred in the data generator. If this error occurs even after
PRESET with standard settings, there is a hardware failure. Please contact your local Rohde & Schwarz
representative.
204 MCOD event ...
An error has occurred in the modulation coder during calculation. If this error occurs even after PRESET
wit standard settings, there is a hardware failure. Please contact your local Rohde & Schwarz
representative.
SMIQ List of Error Messages
1125.5555.03 E-7B.7
Continuation: Device-dependent Error
Error code Error text in the case of queue poll
Error explanation
211 Summing loop unlocked
The PLL of the summing loop has not been synchronized.
221 Digital synthesis buffer VCO unlocked
The VCO of the buffer loop has not been synchronized.
224 2.4 GHz LO loop unlocked
The 2.4 GHz local oszillator of the IQMOD module has not been synchronized.
225 MCOD: PLL unlocked
The clock generator PLL of the modulation coder is not synchronized.
Example: SOURCE EXT_SER has been selected with digital modulation but no signal is applied.
240 Invalid list; odd number of elements
The list selected contains an odd number of elements. Some lists, however, must contain an even
number of elements.
241 No list defined
There is no list defined.
242 List not learned; execute LEARn command
The instrument has been switched to LIST mode and a list has been selected. However, command
LEARn has not been executed.
243 Dwell time adjusted
A dwell time given on a list cannot be processed by the unit. The setting was automatically adjusted.
244 List is active; Cannot change, edit or delete list
A list used for modulation cannot be changed, modified or deleted at the same time. The modulation has
to be switched off beforehand.
List is protected; Cannot edit or delete list
Protected lists cannot be modified or deleted.
245 List system check failed; Reset of list system on DGEN
On power-up, errors were detected in the lists of the data generator and a reset of the list system was
performed. The stored lists are deleted. A possible cause is a flat battery (UTILITIES/TEST/DGEN RAM
BATTERY).
246 List name is reserved; Use a different name
The user tried to generate a list with an internally reserved name, another one has to be selected.
247 List is empty
The user tried to use an empty list. Data have to be entered.
251 No User Correction Table; zero assumed
An attempt has been made to switch on user correction, but no UCOR table has been stored in the
instrument yet. The instrument behaves as if a table was called which only contains 0-values.
List of Error Messages SMIQ
1125.5555.03 E-7B.8
Continuation: Device-dependent Error
Error code Error text in the case of queue poll
Error explanation
257 Hop list index exceeds list range
The index of a hop list exceeds its defined range. The index should not be used or the list should be
extended.
260 Invalid keyboard input ignored
An invalid input via the keyboard is not considered.
265 This parameter is read only
An attempt has been made to change a fixedly specified value.
270 Data output aborted
Data output was aborted on the IEC/IEEE-bus.
Example: The key [LOCAL] was pressed.
280 Use ALC OFF MODE = TABLE for uninterrupted level setting
With ALC OFF MODE S&H interruptions occur on setting the level due to sampling. To avoid this select
ALC OFF MODE = TABLE.
281 Use <MOD ON/OFF> key or switch on to recalculate
On modifying parameters some digital modulation types are switched off to allow entry of several
parameters without superfluous time-consuming intermediate calculations. After entry of all parameters,
the modulation should be switched on again. To do this press the <MOD ON/OFF> key or select STATE
ON.
304 String too long
A character string which is too long was received via the IEC bus.
Example: The names of lists have a limited length (see corresponding section).
305 Fill pattern too long; trunctated
More data have been entered with block function FILL in the list editor than the filling range (RANGE) set
permits. The exceeding data are ignored.
306 No fill pattern specified
An attempt was made to execute a filler function without having to indicate a filler pattern.
400 DGEN: no data
The DSP of the data generator receives no data from the FIFO due to overload.
Remedy: first select STATE OFF, check if the symbol rate and the trigger frequency is not too high with
external triggering, do not perform any other settings when STATE ON is selected again.
401 DGEN: no switch
The DSP of the data generator receives no signals from the check list due to overload.
Remedy: as for 400.
402 DGEN: no guard time between slots
The burstgate edges of two slots are adjacent or overlap, ramping cannot be properly performed. The
edges have to be reset.
403 DGEN: no frame counter end
Internal error message. If this error occurs even after PRESET and switching on and off, there is a
hardware failure. Please contact your local Rohde & Schwarz representative.
404 DGEN: SERDATA: not enough data
Not enough data have been delivered to SER DATA input for the set symbol rate. The data should be fed
faster or the symbol rate reduced.
410 FADING SIM: all path states set to OFF; no output level
IS95/WCDMA: all channel states set to OFF; no output level
All paths are switched off so that no output level can be generated.
SMIQ List of Error Messages
1125.5555.03 E-7B.9
Continuation: Device-dependent Error
Error code Error text in the case of queue poll
Error explanation
411 MCOD: modulation bandwidth exceeds IQ or Nyquist bandwidth
The modulation bandwidth exceeds the IQ or Nyquist bandwidth, the modulation accuracy is reduced. A
narrowband filtering or a lower symbol rate should be selected.
420 AWGN/NDSIM FPGA data loading failed
The FPGA data of AWGN/NDSIM module could not be loaded. If this error occurs again after switching
on and off, there is a hardware failure. Please contact your local Rohde & Schwarz representative.
421 AWGN/NDSIM distortion error
An error has occurred in the distortion simulator. If this error occurs even after PRESET wit standard
settings, there is a hardware failure. Please contact your local Rohde & Schwarz representative.
422 AWGN/NDSIM noise error
An error has occurred in the noise generator. If this error occurs even after PRESET wit standard
settings, there is a hardware failure. Please contact your local Rohde & Schwarz representative.
423 AWGN/NDSIM data calculation error; ...
Volatile error message which explains in detail how errors 420 to 422 occur.
424 AWGN/NDSIM data download error
An error has occurred during data transmission to AWGN/NDSIM. If this error occurs again after
switching on and off, there is a hardware failure. Please contact your local Rohde & Schwarz
representative.
425 AWGN/NDSIM list error; ...
The error named after the semicolon has occurred in one of the used lists, eg when several different x
and y values are entered. The list should be accordingly corrected.
426 Absolute value of level correction > crest factor of digital modulation
The LEVEL CORRECTION value available is faulty and generates an rms value which is higher than the
peak value.
440 AMIQ error; cannot detect AMIQ
The call setup to AMIQ is not possible.
Example: The IEC/IEEE-bus cable is not connected or defective, an IEC/IEEE-bus address is assigned
twice.
AMIQ error, ...
Error message of a connected AMIQ, see operating manual AMIQ
SMIQ List of Commands
1125.5555.03 C.1 E-9
C Annex C
C.1 List of Commands (with SCPI Conformity Information)
The SMIQ supports SCPI version 1994.0. For remote control, commands which were specified or
accepted in this SCPI version have been used to a large extent. Commands which are not part of the
SCPI specification are marked "not-SCPI" in the SCPI info.
Command Parameter SCPI Info Page
:ABORt[:SWEep] not-SCPI 3.17
:ABORt:LIST not-SCPI 3.17
:ABORt:MSEQuence not-SCPI 3.17
:ARB:STATe ON | OFF not-SCPI 3.18
:ARB:SEQuence AUTO | RETRigger | AAUTo | ARETrigger not-SCPI 3.19
:ARB:WAVeform:SELect ‘<name>‘ not-SCPI 3.19
:ARB:WAVeform:DELete ‘<name>‘ not-SCPI 3.19
:ARB:WAVeform:DATA name‘, <binary block data> not-SCPI 3.19
:ARB:WAVeform:CATalog? not-SCPI 3.19
:ARB:WAVeform:CATalog:LENGth? not-SCPI 3.19
:ARB:WAVeform:TAG? ‘<tagname>‘ not-SCPI 3.19
:ARB:WAVeform:FREE? not-SCPI 3.20
:ARB:WAVeform:POINts? not-SCPI 3.20
:ARB:TRIGger:SOURce INTernal | EXTernal not-SCPI 3.20
:ARB:TRIGger:DELay 0 to 65 535 not-SCPI 3.20
:ARB:TRIGger:INHibit 0 to 67.1E6 not-SCPI 3.20
:ARB:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative not-SCPI 3.20
:ARB:TRIGger:OUTPut[1]|2:DELay 0 to 524 255 not-SCPI 3.20
:ARB:TRIGger:OUTPut[1]|2:MODE USER | ‘mode_string‘ not-SCPI 3.20
:ARB:TRIGger:OUTPut[1]|2:MODE:CALalog? not-SCPI 3.20
:ARB:TRIGger:OUTPut[1]|2:ONTime 0 to 524 255 not-SCPI 3.21
:ARB:TRIGger:OUTPut[1]|2:OFFTime 0 to 524 255 not-SCPI 3.21
:ARB:ASET:STATe ON | OFF not-SCPI 3.21
:ARB:ASET:DM:IQFilter ON | OFF not-SCPI 3.21
:ARB:ASET:DM:IQSWap ON | OFF not-SCPI 3.21
:ARB:ASET:BERT:TYPE ON | OFF not-SCPI 3.21
:ARB:ASET:TRIGger:MODE ON | OFF not-SCPI 3.21
:ARB:CLOCk 1kHz to 40.0 MHz not-SCPI 3.21
:ARB:CLOCk:SOURce INTernal | EXTernal not-SCPI 3.22
:ARB:CLOCk:DELay 0.0 to 0.99 not-SCPI 3.22
:ARB:IQ:LEVel –3 dB to +6 dB not-SCPI 3.22
:ARB:IQ:LEVel:MODE MANuell | AUTO not-SCPI 3.22
:ARB:IQ:SKEW -1000 to 1000 ps not-SCPI 3.22
:BERT:STATe ON | OFF not-SCPI 3.30
:BERT:SEQuence AUTO | SINGle not-SCPI 3.30
:BERT:SETup:MCOunt 1 to 4294967294 not-SCPI 3.31
:BERT:SETup:MERRor 1 to 4294967294 not-SCPI 3.31
List of Commands SMIQ
1125.5555.03 C.2 E-9
Command Parameter SCPI Info Page
:BERT:SETup:TYPE PRBS9 | PRBS11 | PRBS15 | PRBS16 |
PRBS20 | PRBS21 | PRBS23 not-SCPI 3.31
:BERT:SETup:DATA[:POLarity] NORM | INVerted not-SCPI 3.31
:BERT:SETup:CLOCk[:POLarity] RISing | FALLing not-SCPI 3.31
:BERT:SETup:RESTart INTernal | EXTernal not-SCPI 3.31
:BERT:SETup:DENable OFF | LOW | HIGH not-SCPI 3.32
:BERT:SETup:MASK OFF | LOW | HIGH not-SCPI 3.32
:BERT:SETup:IGNore OFF | ONE | ZERO not-SCPI 3.32
:BERT:SETup:UNIT OFF | PCT | PPM not-SCPI 3.32
:BERT:STARt not-SCPI 3.32
:BERT:STOP not-SCPI 3.32
:BERT:RESult? not-SCPI 3.33
:BLER:STATe ON | OFF not-SCPI 3.34
:BLER:SEQuence AUTO | SINGle not-SCPI 3.34
:BLER:SETup:MCOunt 1 to 4294967294 not-SCPI 3.34
:BLER:SETup:MERRor 1 to 4294967294 not-SCPI 3.35
:BLER:SETup:TYPE? not-SCPI 3.35
:BLER:SETup:DATA[:POLarity] NORMal | INVerted not-SCPI 3.35
:BLER:SETup:CLOCk[:POLarity] RISing | FALLing not-SCPI 3.35
:BLER:SETup:DENable LOW | HIGH not-SCPI 3.35
:BLER:SETup:UNIT SCIentific | ENGineering | PCT | PPM not-SCPI 3.35
:BLER:STARt not-SCPI 3.35
:BLER:STOP not-SCPI 3.35
:BLER:RESult? not-SCPI 3.36
:CALibration[:ALL] 3.37
:CALibration:FSIM[:MEASure]? not-SCPI 3.37
:CALibration:LATTenuation[:MEASure]? not-SCPI 3.37
:CALibration:LEVel:DATA? not-SCPI 3.38
:CALibration:LEVel:STATe ON | OFF not-SCPI 3.38
:CALibration:LPReset[:MEASure]? not-SCPI 3.38
:CALibration:LPReset:DATA? not-SCPI 3.38
:CALibration:NDSim[:MEASure]? not-SCPI 3.38
:CALibration:ROSCillator[:DATA] 0 to 4095 not-SCPI 3.38
:CALibration:VSUMmation[:MEASure]? not-SCPI 3.39
:CALibration:VSUMmation:OFFS? not-SCPI 3.39
:CALibration:VSUMmation:DAC? not-SCPI 3.39
:CALibration:VSUMmation:KOS? not-SCPI 3.39
:CALibration:VMODulation[:MEASure]? not-SCPI 3.39
:CALibration:LFGenerator[:MEASure]? not-SCPI 3.39
:DIAGnostic:CLISt:CHECksum:CALculate 3.40
:DIAGnostic:CLISt:CHECksum:DATA? 3.40
:DIAGnostic:CNMeasure:MODE CN | CARRier | NOISe 3.40
:DIAGnostic:DLISt:CHECksum:CALculate 3.41
:DIAGnostic:DLISt:CHECksum:DATA? 3.41
:DIAGnostic:INFO:CCOunt:ATTenuator1|2|3|4|5|6? 3.41
:DIAGnostic:INFO:CCOunt:POWer? 3.41
SMIQ List of Commands
1125.5555.03 C.3 E-9
Command Parameter SCPI Info Page
:DIAGnostic:INFO:MODules? 3.41
:DIAGnostic:INFO:OTIMe? 3.42
:DIAGnostic:INFO:SDATe? 3.42
:DIAGnostic[:MEASure]:POINt? 3.42
:DISPlay:ANNotation[:ALL] ON | OFF 3.43
:DISPlay:ANNotation:AMPLitude ON | OFF 3.43
:DISPlay:ANNotation:FREQuency ON | OFF 3.43
:FORMat[:DATA] ASCii | PACKed 3.44
:FORMat:BORDer NORMal | SWAPped 3.44
:MEMory:NSTates? 3.45
:OUTPut:AMODe AUTO | FIXed | ELECtronic not-SCPI 3.46
:OUTPut:AFIXed RANGe UPPer? not-SCPI 3.46
:OUTPut:AFIXed RANGe LOWer? not-SCPI 3.46
:OUTPut:BLANk:[POLarity] NORMal | INVerted not-SCPI 3.47
:OUTPut:IMPedance? 3.47
:OUTPut:PROTection:CLEar 3.47
:OUTPut:PROTection:TRIPped? 3.47
:OUTPut[:STATe] ON | OFF 3.47
:OUTPut[:STATe]:PON OFF | UNCHanged not-SCPI 3.47
:OUTPut2[:STATe] ON | OFF 3.48
:OUTPut2:VOLTage 0 V to 4 V not-SCPI 3.48
[:SOURce]:AM:BBANd[:STATe] ON | OFF 3.50
[:SOURce]:AM[:DEPTh] 0 to 100 PCT 3.50
[:SOURce]:AM:EXTernal:COUPling AC | DC 3.50
[:SOURce]:AM:INTernal:FREQuency 0.1 Hz to 1 MHz 3.50
[:SOURce]:AM:SOURce EXT | INT | EXT, INT 3.50
[:SOURce]:AM:STATe ON | OFF 3.50
[:SOURce]:CORRection[:STATe] ON | OFF 3.51
[:SOURce]:CORRection:CSET:CATalog? not-SCPI 3.51
[:SOURce]:CORRection:CSET[:SELect] 'Tabellenname' 3.51
[:SOURce]:CORRection:CSET:DATA:FREQuency 300 kHz to RFmax {,300 kHz to RFmax} not-SCPI 3.51
[:SOURce]:CORRection:CSET:DATA:POWer -40dB to 6dB {,-40dB to 6dB} not-SCPI 3.52
[:SOURce]:CORRection:CSET:DELete 'Tabellenname' not-SCPI 3.52
[:SOURce]:DECT:STATe ON | OFF not-SCPI 3.54
[:SOURce]:DECT:STANdard not-SCPI 3.54
[:SOURce]:DECT:FORMat GFSK | P4DQpsk not-SCPI 3.55
[:SOURce]:DECT:FSK:DEViation 1kHz to 1,2 MHz not-SCPI 3.55
[:SOURce]:DECT:SRATe 1kHz to 1.2 MHz not-SCPI 3.55
[:SOURce]:DECT:FILTer:TYPE GAUSSs | SCOSine | COSine | USER not-SCPI 3.55
[:SOURce]:DECT:FILTer:SELect 'name' not-SCPI 3.55
[:SOURce]:DECT:FILTer:PARameter 0.2 to 0.7 not-SCPI 3.55
[:SOURce]:DECT:SEQuence AUTO | RETRigger | AAUTo | ARETrigger not-SCPI 3.55
[:SOURce]:DECT:TRIGger:SOURce EXTernal | INTernal not-SCPI 3.55
[:SOURce]:DECT:TRIGger:INHibit 0 to 67.1E6 not-SCPI 3.56
[:SOURce]:DECT:TRIGger:DELay 0 to 65535 not-SCPI 3.56
[:SOURce]:DECT:TRIGger:OUTPut[1]|2:DELay 0 to 11519 not-SCPI 3.56
List of Commands SMIQ
1125.5555.03 C.4 E-9
Command Parameter SCPI Info Page
[:SOURce]:DECT:TRIGger:OUTPut[2]:PERiod 1 to 67.1E6 not-SCPI 3.56
[:SOURce]:DECT:CLOCk:SOURce INTernal | EXTernal 3.56
[:SOURce]:DECT:CLOCk:DELay 0 to 1.0 not-SCPI 3.56
[:SOURce]:DECT:PRAMp:PRESet not-SCPI 3.56
[:SOURce]:DECT:PRAMp:TIME 0.25 to 16.0 not-SCPI 3.56
[:SOURce]:DECT:PRAMp:SHAPe LINear | COSine not-SCPI 3.57
[:SOURce]:DECT:PRAMp:ROFFset -9 to +9 not-SCPI 3.57
[:SOURce]:DECT:PRAMp:FOFFset -9 to +9 not-SCPI 3.57
[:SOURce]:DECT:SLOT:ATTenuation 0 to 70 dB not-SCPI 3.57
[:SOURce]:DECT:SIMulation:TADJustment -4 to +4 (in Symbolen) not-SCPI 3.57
[:SOURce]:DECT:SIMulation:JITTer 0 to 4 (in Symbolen) not-SCPI 3.57
[:SOURce]:DECT:FLISt:PREDefined:CATalog? not-SCPI 3.57
[:SOURce]:DECT:FLISt:PREDefined:LOAD 'Framelisten-Name' not-SCPI 3.57
[:SOURce]:DECT:FLISt:CATalog? not-SCPI 3.58
[:SOURce]:DECT:FLISt:LOAD ‘name’ not-SCPI 3.58
[:SOURce]:DECT:FLISt:STORe ‘Framelisten-Name’ not-SCPI 3.58
[:SOURce]:DECT:FLISt:DELete ‘name’ not-SCPI 3.58
[:SOURce]:DECT:DLISt:CATalog? not-SCPI 3.58
[:SOURce]:DECT:PREamble:TYPE NORMal | PROLonged not-SCPI 3.58
[:SOURce]:DECT:SLOT<i>:TYPE FULL | DOUBle | ADATa not-SCPI 3.58
[:SOURce]:DECT:SLOT<i>:LEVel OFF | ATT | FULL not-SCPI 3.58
[:SOURce]:DECT:SLOT<i>:PRESet not-SCPI 3.59
[:SOURce]:DECT:SLOT<i>:STSHift -9 to +9 (in Bit) not-SCPI 3.59
[:SOURce]:DECT:SLOT<i>:RAMP:CW ON | OFF not-SCPI 3.59
[:SOURce]:DECT:SLOT<i>:RAMP:DATA 0 to 111 to (12 bit) not-SCPI 3.59
[:SOURce]:DECT:SLOT<i>:PREamble:DATA 0 to 111 to (16 bit) not-SCPI 3.59
[:SOURce]:DECT:SLOT<i>:PREamble:PROLonged:DATA 0 to 111 to (32 bit) not-SCPI 3.59
[:SOURce]:DECT:SLOT<i>:SYNC #B0 to #B111 to (16Bit) not-SCPI 3.59
[:SOURce]:DECT:SLOT<i>[:SOURce]:AFIeld PN9 | PN11 | PN15 | PN16 | PN20 | PN21 |
PN23 | DLISt | SDATa not-SCPI 3.59
[:SOURce]:DECT:SLOT<i>[:SOURce]:AFIeld:DLISt 'name’ not-SCPI 3.59
[:SOURce]:DECT:SLOT<i>[:SOURce]:BFIeld PN9 | PN11 | PN15 | PN16 | PN20 | PN21 |
PN23 | DLISt | SDATa not-SCPI 3.60
[:SOURce]:DECT:SLOT<i>[:SOURce]:BFIeld:DLISt 'name’ not-SCPI 3.60
[:SOURce]:DECT:SLOT<i>[:SOURce]:ZFIeld ON | OFF not-SCPI 3.60
[:SOURce]:DISTortion[:STATe] ON | OFF not-SCPI 3.61
[:SOURce]:DISTortion:MODE POLYnomial | DATA not-SCPI 3.61
[:SOURce]:DISTortion:DATA:CATalog? not-SCPI 3.62
[:SOURce]:DISTortion:DATA:SELect 'Name der Kennlinie' not-SCPI 3.62
[:SOURce]:DISTortion:DATA:DELete 'Name der Kennlinie' not-SCPI 3.62
[:SOURce]:DISTortion:DATA:DELete:ALL not-SCPI 3.62
[:SOURce]:DISTortion:DATA:AM '-100 dB to 0 dB {, -100 dB to 0 dB} |
Blockdaten' not-SCPI 3.62
[:SOURce]:DISTortion:DATA:AM:FREE? not-SCPI 3.62
[:SOURce]:DISTortion:DATA:AM:POINTs? not-SCPI 3.62
[:SOURce]:DISTortion:DATA:AMBase '-100 dB to 0 dB {, -100 dB to 0 dB} |
Blockdaten' not-SCPI 3.62
SMIQ List of Commands
1125.5555.03 C.5 E-9
Command Parameter SCPI Info Page
[:SOURce]:DISTortion:DATA:AMBase:POINTs? not-SCPI 3.63
[:SOURce]:DISTortion:DATA:PM '-180 Grad to +180 Grad {, -180 Grad to
+180 Grad} | Blockdaten' not-SCPI 3.63
[:SOURce]:DISTortion:DATA:PM:FREE? not-SCPI 3.63
[:SOURce]:DISTortion:DATA:PM:POINTs? not-SCPI 3.63
[:SOURce]:DISTortion:DATA:PMBase '-100 dB to 0 dB {, -100 dB to 0 dB} |
block data not-SCPI 3.63
[:SOURce]:DISTortion:DATA:PMBase:POINTs? not-SCPI 3.63
[:SOURce]:DISTortion:DATA:LEVel:CORRection -20.0 to 6.00 dB not-SCPI 3.63
[:SOURce]:DISTortion:POLYnomial:AMAM:K<i> -10 dB to +10 dB not-SCPI 3.63
[:SOURce]:DISTortion:POLYnomial:AMPM:K<i> -60 deg to +60 deg not-SCPI 3.64
[:SOURce]:DISTortion:POLYnomial:IFUNction ON | OFF not-SCPI 3.64
[:SOURce]:DISTortion:POLYnomial:LEVel:CORRection -20 dB to +6 dB not-SCPI 3.64
[:SOURce]:DISTortion:RECalculate not-SCPI 3.64
[:SOURce]:DM:IQ:STATe ON | OFF not-SCPI 3.65
[:SOURce]:DM:IQ:CREStfactor 0 to 30 dB not-SCPI 3.65
[:SOURce]:DM:IQ:PRAMp OFF | AEXTernal not-SCPI 3.65
[:SOURce]:DM:IQ:IMPairment[:STATe] ON | OFF not-SCPI 3.65
[:SOURce]:DM:IQ:FILTer:STATe ON | OFF 3.66
[:SOURce]:DM:IQ:FILTer:FREQuency 850 kHz, 2,5 MHz, 5 MHz 3.66
[:SOURce]:DM:IQ:TRANsition ON | OFF 3.66
[:SOURce]:DM:LEAKage[:MAGNitude] 0 to 50.0 PCT 3.66
[:SOURce]:DM:QUADrature:ANGLe 10.0 to 10.0 DEG 3.66
[:SOURce]:DM:IQRatio[:MAGNitude] -12.0 to 12.0 PCT 3.66
[:SOURce]:DM:IQSWap[:STATe] ON | OFF not-SCPI 3.66
[:SOURce]:DM:STATe ON | OFF 3.69
[:SOURce]:DM:SEQuence AUTO | RETRigger | AAUTo | ARETrigger |
SINGle not-SCPI 3.69
[:SOURce]:DM:SOURce PRBS | PATTern | DLISt | SERial |
PARallel | SDATa 3.69
[:SOURce]:DM:PATTern ZERO | ONE | ALTernate not-SCPI 3.69
[:SOURce]:DM:PRBS[:LENGth] 9 | 15 | 16 | 20 | 21 | 23 not-SCPI 3.69
[:SOURce]:DM:DLISt:DATA 0 | 1 {,0 | 1 }.. not-SCPI 3.69
[:SOURce]:DM:DLISt:DATA? [<Start> [,<Länge>]] not-SCPI 3.70
[:SOURce]:DM:DLISt:DATA:APPend 0 | 1 {,0 | 1 }.. not-SCPI 3.70
[:SOURce]:DM:DLISt:CATalog? not-SCPI 3.70
[:SOURce]:DM:DLISt:SELect ‘<Datenlisten-Name>‘ not-SCPI 3.70
[:SOURce]:DM:DLISt:DELete ‘<Datenlisten-Name>‘ not-SCPI 3.70
[:SOURce]:DM:DLISt:COPY ‘<Datenlisten-Name>‘ not-SCPI 3.70
[:SOURce]:DM:DLISt:FREE? not-SCPI 3.70
[:SOURce]:DM:DLISt:POINts <n> not-SCPI 3.70
[:SOURce]:DM:CLISt:CONTrol[:STATe] ON | OFF not-SCPI 3.71
[:SOURce]:DM:CLISt:DATA <struc>{,<struc>} to not-SCPI 3.71
[:SOURce]:DM:CLISt:CATalog? not-SCPI 3.71
[:SOURce]:DM:CLISt:SELect ‘<name>‘ not-SCPI 3.71
[:SOURce]:DM:CLISt:DELete ‘<name>‘ not-SCPI 3.71
[:SOURce]:DM:CLISt:COPY ‘<name>‘ not-SCPI 3.72
List of Commands SMIQ
1125.5555.03 C.6 E-9
Command Parameter SCPI Info Page
[:SOURce]:DM:CLISt:FREE? not-SCPI 3.72
[:SOURce]:DM:CLISt:POINts? not-SCPI 3.72
[:SOURce]:DM:MLISt:DATA A,B,C,D,E,F,I1,Q1,I2,Q2.. not-SCPI 3.72
[:SOURce]:DM:MLISt:CATalog? not-SCPI 3.73
[:SOURce]:DM:MLISt:SELect <name> not-SCPI 3.73
[:SOURce]:DM:MLISt:DELete <name> not-SCPI 3.73
[:SOURce]:DM:MLISt:FREE? not-SCPI 3.73
[:SOURce]:DM:MLISt:POINts? not-SCPI 3.73
[:SOURce]:DM:FLISt:DATA A,B,C,D,I1,Q1,I2,Q2.. not-SCPI 3.73
[:SOURce]:DM:FLISt:CATalog? not-SCPI 3.73
[:SOURce]:DM:FLISt:SELect <name> not-SCPI 3.73
[:SOURce]:DM:FLISt:DELete <name> not-SCPI 3.74
[:SOURce]:DM:FLISt:FREE? not-SCPI 3.74
[:SOURce]:DM:FLISt:POINts? not-SCPI 3.74
[:SOURce]:DM:STANDard APCFm | APCQpsk | ASK | BLUetooth |
CDPD | CT2 | DECT | GSM | GSMEdge |
IRIDium | FIS95 | RIS95 | NADC | PDC |
PHS | TETRa | TFTS | PWT | ICOBpsk |
ICOGmsk | ICOQpsk | WORLdspace |
QWCDma | AT55
not-SCPI 3.74
[:SOURce]:DM:FORMat BPSK | QPSK | QIS95 | QINMarsat | QICO
| QWCDma | OQPSk | OIS95 | P4QPsk |
P4DQpsk | PSK8 | PSKE8 | GFSK | GMSK
| ASK | FSK2 | FSK4 | AFSK4 | QAM16 |
QAM32 | QAM 64 | QAM256 | USER
3.74
[:SOURce]:DM:MDELay? not-SCPI 3.74
[:SOURce]:DM:ASK:DEPTh 0 to 100 PCT not-SCPI 3.74
[:SOURce]:DM:FSK:DEViation 100Hz to 2.5 MHz not-SCPI 3.75
[:SOURce]:DM:SRATe 1kHz to 7 MHz not-SCPI 3.75
[:SOURce]:DM:FILTer:TYPE SCOSine | COSine | GAUSs | BESS1 |
BESS2 | IS95 | EIS95 | APCO | TETRa |
WCDMa | SPHase | USER
not-SCPI 3.75
[:SOURce]:DM:FILTer:PARameter 0.1 to 1.0 not-SCPI 3.75
[:SOURce]:DM:FILTer:MODE LACP | LEVM not-SCPI 3.75
[:SOURce]:DM:CODing OFF | DIFF | DPHS | DGRay | GSM |
NADC | PDC | PHS | TETRa | TFTS |
INMarsat | APCO25 | VDL
not-SCPI 3.75
[:SOURce]:DM:CLOCk:SOURce INTernal | EXTernal | COUPled 3.75
[:SOURce]:DM:CLOCk:MODE BIT | SYMBol not-SCPI 3.76
[:SOURce]:DM:CLOCk:DELay 0 to 1.0 not-SCPI 3.76
[:SOURce]:DM:CLOCk:POLarity NORMal | INVerted not-SCPI 3.76
[:SOURce]:DM:LDIStortion[:STATe] ON | OFF not-SCPI 3.76
[:SOURce]:DM:PRAMp[:STATe] ON | OFF not-SCPI 3.76
[:SOURce]:DM:PRAMp:SOURce CLISt | AEXTernal | DEXTernal not-SCPI 3.76
[:SOURce]:DM:PRAMp:TIME 0.25 to 32 not-SCPI 3.76
[:SOURce]:DM:PRAMp:DELay -1.0 to +5.0 not-SCPI 3.76
[:SOURce]:DM:PRAMp:SHAPe LINear | COSine not-SCPI 3.77
[:SOURce]:DM:PRAMp:ATTenuation 0 to 70.0 dB not-SCPI 3.77
[:SOURce]:DM:TRIGger:SOURce EXTernal | INTernal not-SCPI 3.77
[:SOURce]:DM:TRIGger:INHibit 0 to 67.1E6 not-SCPI 3.77
SMIQ List of Commands
1125.5555.03 C.7 E-9
Command Parameter SCPI Info Page
[:SOURce]:DM:TRIGger:DELay 0 to 65535 not-SCPI 3.77
[:SOURce]:DM:TRIGger:SLOPe POSitive | NEGative not-SCPI 3.77
[:SOURce]:DM:THReshold[:ALL] -2,5 to 2,5 V 3.77
[:SOURce]:DM:INPut:IMPedance G1K | G50 | ECL not-SCPI 3.77
[:SOURce]:FM1|2[:DEViation] 0 to 1 MHz 3.78
[:SOURce]:FM1|2:EXTernal1|2:COUPling AC | DC 3.78
[:SOURce]:FM1|2:INTernal:FREQuency 0.1 Hz to 1 MHz 3.79
[:SOURce]:FM1|2:PREemphasis 0 | 50us | 75us 3.79
[:SOURce]:FM1|2:SOURce INTernal | EXTernal1 | EXTernal2 3.79
[:SOURce]:FM1|2:STATe ON | OFF 3.79
[:SOURce]:FREQuency:CENTer 300 kHz to RFmax 3.80
[:SOURce]:FREQuency[:CW | :FIXed] 300 kHz to RFmax 3.80
[:SOURce]:FREQuency[:CW | :FIXed]:RCL INCLude | EXCLude 3.80
[:SOURce]:FREQuency:MANual 300 kHz to RFmax 3.80
[:SOURce]:FREQuency:MODE CW | FIXed | SWEep | LIST 3.81
[:SOURce]:FREQuency:OFFSet -50 to +50 GHz 3.81
[:SOURce]:FREQuency:SPAN 0 to RFmax 3.81
[:SOURce]:FREQuency:STARt 300 kHz to RFmax 3.81
[:SOURce]:FREQuency:STOP 300 kHz to RFmax 3.81
[:SOURce]:FREQuency:STEP[:INCRement] 0 to 1 GHz 3.81
[:SOURce]:FSIMulator:ALL[:STATe] ON | OFF not-SCPI 3.84
[:SOURce]:FSIMulator[:STATe] ON | OFF not-SCPI 3.84
[:SOURce]:FSIMulator:CONFigure S6Path | S12Path | D6Path not-SCPI 3.84
[:SOURce]:FSIMulator:SEQuence RUN | STOP not-SCPI 3.84
[:SOURce]:FSIMulator:SEQuence:RESet not-SCPI 3.84
[:SOURce]:FSIMulator:IGNore:RFCHanges not-SCPI 3.84
[:SOURce]:FSIMulator:SPEed:UNIT MPS | KMPH | MPH not-SCPI 3.85
[:SOURce]:FSIMulator:STANdard CDMA8 | CDMA30 | CDMA100 | NADC8 |
NADC50 | NADC100 | GTU3 | GTU50 |
GHT100 | GRA250 | GET50 | GET100 | PTU1
| PTU50 | PTU100 | PHT100 | PRA130 |
PET50 | PET100 | TTU | THT | TET
not-SCPI 3.85
[:SOURce]:FSIMulator:ILOSs:MODE NORMal | LACP not-SCPI 3.86
[:SOURce]:FSIMulator:COUPle:SPEed? ON | OFF not-SCPI 3.86
[:SOURce]:FSIMulator:COUPle:CORRelation:COEFficient ON | OFF not-SCPI 3.86
[:SOURce]:FSIMulator:COUPle:LOGNormal:LCONstant ON | OFF not-SCPI 3.86
[:SOURce]:FSIMulator:COUPle:LOGNormal:CSTD ON | OFF not-SCPI 3.86
[:SOURce]:FSIMulator:CFACtor:EXTern? not-SCPI 3.86
[:SOURce]:FSIMulator:DEFault not-SCPI 3.86
[:SOURce]:FSIMulator:PATH<i>:STATE ON | OFF not-SCPI 3.87
[:SOURce]:FSIMulator:PATH<i>:PROFile PDOPpler | RAYLeigh | RICE | CPHase not-SCPI 3.87
[:SOURce]:FSIMulator:PATH<i>:DCOMponent:STATe ON | OFF not-SCPI 3.87
[:SOURce]:FSIMulator:PATH<i>:PRATio -30 to +30 dB not-SCPI 3.87
[:SOURce]:FSIMulator:PATH<i>:FRATio -1.0 to +1.0 not-SCPI 3.87
[:SOURce]:FSIMulator:PATH<i>:CPHase 0 to 360 DEG not-SCPI 3.87
[:SOURce]:FSIMulator:PATH<i>:SPEed 0.005 to 27777 (in MPS; m/s) not-SCPI 3.87
[:SOURce]:FSIMulator:PATH<i>:FDOPpler 0.1 to 1600 Hz not-SCPI 3.87
List of Commands SMIQ
1125.5555.03 C.8 E-9
Command Parameter SCPI Info Page
[:SOURce]:FSIMulator:PATH<i>:LOSS 0 to 50.0 dB not-SCPI 3.87
[:SOURce]:FSIMulator:PATH<i>:DELay 0 to 1638.0 E-6S not-SCPI 3.88
[:SOURce]:FSIMulator:PATH<i>:CORRelation:PATH 0 | 7 to 12 not-SCPI 3.88
[:SOURce]:FSIMulator:PATH<i>:CORRelation:COEFficent 0 to 1.0 not-SCPI 3.88
[:SOURce]:FSIMulator:PATH<i>:CORRelation:PHASe 0 to 359 DEG not-SCPI 3.88
[:SOURce]:FSIMulator:PATH<i>:LOGNormal:STATe ON | OFF not-SCPI 3.88
[:SOURce]:FSIMulator:PATH<i>:LOGNormal:LCONstant 0 to 99 999 (in m) not-SCPI 3.88
[:SOURce]:FSIMulator:PATH<i>:LOGNormal:CSTD 0 to 12.0 dB not-SCPI 3.88
[:SOURce]:FSIMulator:FDELay[:STATe] ON | OFF not-SCPI 3.88
[:SOURce]:FSIMulator:FDELay:STANdard G3C1 | G3C2 | G3C3 | G3C4 | G3UEC1 |
G3UEC2 | G3UEC3 | G3UEC4 | G3UEC5 |
G3UEC6
not-SCPI 3.88
[:SOURce]:FSIMulator:FDELay:SPEed:UNIT MPS | KMPH | MPH not-SCPI 3.89
[:SOURce]:FSIMulator:FDELay:DEFault not-SCPI 3.89
[:SOURce]:FSIMulator:FDELay:PATH<i>:STATE ON | OFF not-SCPI 3.89
[:SOURce]:FSIMulator:FDELay:PATH<i>:PROFile PDOPpler | RAYLeigh not-SCPI 3.89
[:SOURce]:FSIMulator:FDELay:PATH<i>:FRATio -1.0 to +1.0 not-SCPI 3.89
[:SOURce]:FSIMulator:FDELay:PATH<i>:SPEed 0.005 to 27777 (in MPS; m/s) not-SCPI 3.90
[:SOURce]:FSIMulator:FDELay:PATH<i>:FDOPpler 0.1 to 1600 Hz not-SCPI 3.90
[:SOURce]:FSIMulator:FDELay:PATH<i>:LOSS 0 to 50.0 dB not-SCPI 3.90
[:SOURce]:FSIMulator:FDELay:PATH<i>:DELay 25ns to 1637us not-SCPI 3.90
[:SOURce]:FSIMulator:MDELay[:STATe] ON | OFF not-SCPI 3.90
[:SOURce]:FSIMulator:MDELay:DEFault not-SCPI 3.90
[:SOURce]:FSIMulator:MDELay:REFerence:LOSS 0 to 50.0 dB not-SCPI 3.90
[:SOURce]:FSIMulator:MDELay:REFerence:DELay 0 to 1638.0 E-6S not-SCPI 3.90
[:SOURce]:FSIMulator:MDELay:MOVing:LOSS 0 to 50.0 dB not-SCPI 3.91
[:SOURce]:FSIMulator:MDELay:MOVing:DELay:MEAN 0.25us to 1637.8us not-SCPI 3.91
[:SOURce]:FSIMulator:MDELay:MOVing:DELay:VARiation 300ns to 100us not-SCPI 3.91
[:SOURce]:FSIMulator:MDELay:MOVing:VPERiod 10 to 500s not-SCPI 3.91
[:SOURce]:FSIMulator:BIRThdeath[:STATe] ON | OFF not-SCPI 3.91
[:SOURce]:FSIMulator:BIRThdeath:ILOSs:MODE NORMal | LACP not-SCPI 3.91
[:SOURce]:FSIMulator:BIRThdeath:DEFault not-SCPI 3.91
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:PROFile PDOPpler not-SCPI 3.92
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:FRATio -1.0 to +1.0 not-SCPI 3.92
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:SPEed 0.005 to 27777 (in MPS; m/s) not-SCPI 3.92
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:FDOPpler 0.1 to 1600 Hz not-SCPI 3.92
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:LOSS 0 to 50.0 dB not-SCPI 3.92
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:DELay 5us to 1000s not-SCPI 3.92
[:SOURce]:FSIMulator:BIRThdeath:PATH<i>:HOPPing:DW
ELl 100ms to 5s not-SCPI 3.92
[:SOURce]:GPS:STATe ON | OFF 3.93
[:SOURce]:GPS:PRESet:STANdard not-SCPI 3.93
[:SOURce]:GPS:PRESet:RF not-SCPI 3.94
[:SOURce]:GPS:SEQuence AUTO | RETRigger | AAUTo | ARETrigger not-SCPI 3.94
[:SOURce]:GPS:TRIGger:SOURce EXTernal | INTernal not-SCPI 3.94
[:SOURce]:GPS:TRIGger:DELay 0 to 20359 not-SCPI 3.94
[:SOURce]:GPS:TRIGger:INHibit 0 to 67.1E6 not-SCPI 3.94
SMIQ List of Commands
1125.5555.03 C.9 E-9
Command Parameter SCPI Info Page
[:SOURce]:GPS:TRIGger:OUTPut[1]|2:DELay CODE | NBIT | NWORd | SFRame | FRAMe not-SCPI 3.94
[:SOURce]:GPS:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative not-SCPI 3.94
[:SOURce]:GPS:TRIGger:OUTPut[1]|2:DELay 0 to 6137999 not-SCPI 3.94
[:SOURce]:GPS:CURRent: :FREQuency? not-SCPI 3.94
[:SOURce]:GPS:CURRent:SRATe? 1kHz to 200 kHz not-SCPI 3.95
[:SOURce]:GPS:DSHift -10 kHz to 10 kHz not-SCPI 3.95
[:SOURce]:GPS:SRATe 500000 to 1500000 not-SCPI 3.95
[:SOURce]:GPS:CODE 1 to 37 not-SCPI 3.95
[:SOURce]:GPS:DATA PATTern | DLISt not-SCPI 3.95
[:SOURce]:GPS:DATA:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.95
[:SOURce]:GPS:DATA:DLISt 'Datenliste-Name' not-SCPI 3.95
[:SOURce]:GPS:DLISt:CATalog? not-SCPI 3.95
[:SOURce]:GSM:STATe ON | OFF not-SCPI 3.97
[:SOURce]:GSM:STANdard not-SCPI 3.97
[:SOURce]:GSM:FORMat GMSK | GFSK not-SCPI 3.97
[:SOURce]:GSM:FSK:DEViation 1kHz to 300 kHz not-SCPI 3.97
[:SOURce]:GSM:SRATe 1kHz to 300 kHz not-SCPI 3.97
[:SOURce]:GSM:FILTer:TYPE GAUSs not-SCPI 3.97
[:SOURce]:GSM:FILTer:PARameter 0.2 to 0.7 not-SCPI 3.98
[:SOURce]:GSM:SEQuence AUTO | RETRigger | AAUTo | ARETrigger not-SCPI 3.98
[:SOURce]:GSM:TRIGger:SOURce EXTernal | INTernal not-SCPI 3.98
[:SOURce]:GSM:TRIGger:INHibit 0 to 67.1E6 not-SCPI 3.98
[:SOURce]:GSM:TRIGger:DELay 0 to 65535 not-SCPI 3.98
[:SOURce]:GSM:TRIGger:OUTPut SLOT | FRAME not-SCPI 3.98
[:SOURce]:GSM:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative not-SCPI 3.98
[:SOURce]:GSM:TRIGger:OUTPut[1]|2:DELay 0 to 1249 not-SCPI 3.98
[:SOURce]:GSM:TRIGger:OUTPut[2]:PERiod 1 to 67.1E6 not-SCPI 3.98
[:SOURce]:GSM:CLOCk:SOURce INTernal | EXTernal 3.98
[:SOURce]:GSM:CLOCk:DELay 0 to 1.0 not-SCPI 3.99
[:SOURce]:GSM:PRAMp:PRESet not-SCPI 3.99
[:SOURce]:GSM:PRAMp:TIME 0.25 to 16.0 not-SCPI 3.99
[:SOURce]:GSM:PRAMp:DELay -1.0 to +1.0 not-SCPI 3.99
[:SOURce]:GSM:PRAMp:SHAPe LINear | COSine not-SCPI 3.99
[:SOURce]:GSM:PRAMp:ROFFset -9 to +9 not-SCPI 3.99
[:SOURce]:GSM:PRAMp:FOFFset -9 to +9 not-SCPI 3.99
[:SOURce]:GSM:SLOT:ATTenuation 0 to 70 dB not-SCPI 3.99
[:SOURce]:GSM:FLISt:PREDefined:CATalog? not-SCPI 3.100
[:SOURce]:GSM:FLISt:PREDefined:LOAD 'Framelisten-Name' not-SCPI 3.100
[:SOURce]:GSM:FLISt:CATalog? not-SCPI 3.100
[:SOURce]:GSM:FLISt:LOAD ‘Framelisten-Name’ not-SCPI 3.100
[:SOURce]:GSM:FLISt:STORe ‘Framelisten-Name’ not-SCPI 3.100
[:SOURce]:GSM:FLISt:DELete Framelisten-Name’ not-SCPI 3.100
[:SOURce]:GSM:DLISt:CATalog? not-SCPI 3.100
[:SOURce]:GSM:SLOT<i>:TYPE NORM | DUMMy | ADATa | EDGE not-SCPI 3.100
[:SOURce]:GSM:SLOT<i>:LEVel OFF | ATT | FULL not-SCPI 3.101
[:SOURce]:GSM:SLOT<i>:PRESet not-SCPI 3.101
List of Commands SMIQ
1125.5555.03 C.10 E-9
Command Parameter SCPI Info Page
[:SOURce]:GSM:SLOT<i>:HOPPing:TRIGger ON | OFF not-SCPI 3.101
[:SOURce]:GSM:SLOT<i>[:SOURce]:DATA PN9 | PN11 | PN15 | PN16 | PN20 | PN21 |
PN23 | DLISt | SDATa not-SCPI 3.101
[:SOURce]:GSM:SLOT<i>[:SOURce]:DATA:DLISt ‘name’ not-SCPI 3.101
[:SOURce]:GSM:SLOT<i>:SF 0 | 1 not-SCPI 3.101
[:SOURce]:GSM:SLOT<i>:TSC:SELect T0 to T7 | USER not-SCPI 3.101
[:SOURce]:GSM:SLOT<i>:TSC:USER #B0 to #B1111 to (26/78 bits) not-SCPI 3.101
[:SOURce]:IS95:STATe ON | OFF not-SCPI 3.103
[:SOURce]:IS95:MODE FLINk18 | FLINk64 | RLINk | RLCoded not-SCPI 3.103
[:SOURce]:IS95:PRESet not-SCPI 3.103
[:SOURce]:IS95:CRATe 1kHz to 7MHz not-SCPI 3.103
[:SOURce]:IS95:FILTer:FTYPe SCOSine | COSine | IS95 | EIS95 | USER not-SCPI 3.104
[:SOURce]:IS95:FILTer:RTYPe SCOSine | COSine | IS95 | EIS95 | USER not-SCPI 3.104
[:SOURce]:IS95:FILTer:FSELect 'name' not-SCPI 3.104
[:SOURce]:IS95:FILTer:RSELect 'name' not-SCPI 3.104
[:SOURce]:IS95:FILTer:PARameter 0.1 to 0.7 not-SCPI 3.104
[:SOURce]:IS95:FILTer:MODE LACP | LEVM not-SCPI 3.104
[:SOURce]:IS95:LDIStortion[:STATe] ON | OFF not-SCPI 3.104
[:SOURce]:IS95:SEQuence AUTO | RETRigger | AAUTo | ARETrigger not-SCPI 3.105
[:SOURce]:IS95:TRIGger:SOURce EXTernal | INTernal not-SCPI 3.105
[:SOURce]:IS95:TRIGger:INHibit 0 to 65535 not-SCPI 3.105
[:SOURce]:IS95:TRIGger:DELay 0 to 65535 not-SCPI 3.105
[:SOURce]:IS95:TRIGger:OUTPut[1]|2 FRame | SSRollover | SFRame | ESECond
| GATE not-SCPI 3.105
[:SOURce]:IS95:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative not-SCPI 3.105
[:SOURce]:IS95:TRIGger:OUTPut[1]|2:DELay -32768 to 32768 not-SCPI 3.105
[:SOURce]:IS95:CLOCk:MODE CHIP | CHIP4 | CHIP8 | CHIP16 not-SCPI 3.106
[:SOURce]:IS95:CLOCk:SOURce INTernal | EXTernal not-SCPI 3.106
[:SOURce]:IS95:CLOCk:DELay 0 to 1.00 not-SCPI 3.106
[:SOURce]:IS95:POWer? not-SCPI 3.106
[:SOURce]:IS95:POWer:ADJust not-SCPI 3.106
[:SOURce]:IS95:MAPPing:PREDefined:CATalog? not-SCPI 3.106
[:SOURce]:IS95:MAPPing:PREDefined:LOAD 'name' not-SCPI 3.106
[:SOURce]:IS95:MAPPing:CATalog? not-SCPI 3.106
[:SOURce]:IS95:MAPPing:LOAD ‘name’ not-SCPI 3.107
[:SOURce]:IS95:MAPPing:STORe ‘name’ not-SCPI 3.107
[:SOURce]:IS95:MAPPing:DELete name’ not-SCPI 3.107
[:SOURce]:IS95:CHANnel<1...17>:WALShcode 0 to 63 not-SCPI 3.107
[:SOURce]:IS95:CHANnel<0...3>:POWer -30dB to 0dB not-SCPI 3.107
[:SOURce]:IS95:CHANnel<1...63>:DATA ZERO | ONE | ALTernate | PRBS not-SCPI 3.107
[:SOURce]:IS95:CHANnel<0...63>:STATe ON | OFF not-SCPI 3.107
[:SOURce]:IS95:RATE FULL | HALF not-SCPI 3.108
[:SOURce]:IS95:RANDomizer ON | OFF not-SCPI 3.108
[:SOURce]:IS95:DATA ZERO | ONE | ALTernate| PRBS | DLISt not-SCPI 3.108
[:SOURce]:IS95:DLISt ’name’ not-SCPI 3.108
[:SOURce]:IS95:DLISt:CATalog? not-SCPI 3.108
SMIQ List of Commands
1125.5555.03 C.11 E-9
Command Parameter SCPI Info Page
[:SOURce]:IS95:RLCoded:CType TRAF14400 | TRAF7200 | TRAF3600 |
TRAF1800 | ACC4800 | TRAF9600 |
TRAF4800 | TRAF2400 | TRAF1200
not-SCPI 3.108
[:SOURce]:IS95:RLCoded:DATA PN9 | PN11 | PN15 | PN16 | PN20 | PN 21 |
PN23 | DLISt not-SCPI 3.108
[:SOURce]:IS95:RLCoded:DLISt ’name’ not-SCPI 3.108
[:SOURce]:IS95:RLCoded:FQINdicator ON | OFF not-SCPI 3.108
[:SOURce]:IS95:RLCoded:CENCoder ON | OFF not-SCPI 3.109
[:SOURce]:IS95:RLCoded:BINTerleaver ON | OFF not-SCPI 3.109
[:SOURce]:IS95:RLCoded:EBIT 0 | 1 not-SCPI 3.109
[:SOURce]:LIST:CATalog? not-SCPI 3.110
[:SOURce]:LIST:DELete 'Listenname' not-SCPI 3.110
[:SOURce]:LIST:DELete:ALL not-SCPI 3.110
[:SOURce]:LIST:DWELl 1 ms to 1 s 3.110
[:SOURce]:LIST:FREE? not-SCPI 3.110
[:SOURce]:LIST:FREQuency 300 kHz to RFmax {, 300 kHz to RFmax}|
block data 3.111
[:SOURce]:LIST:FREQuency:POINts? 3.111
[:SOURce]:LIST:LEARn not-SCPI 3.111
[:SOURce]:LIST:MODE AUTO | STEP not-SCPI 3.111
[:SOURce]:LIST:POWer -144 to 16 dBm {, -144 to 16 dBm} | block
data 3.111
[:SOURce]:LIST:POWer:POINts? 3.111
[:SOURce]:LIST:SELect 'name' not-SCPI 3.111
[:SOURce]:MARKer1|2|3|4[:FSWeep]:AMPLitude ON | OFF 3.112
[:SOURce]:MARKer1|2|3|4[:FSWeep]:AOFF 3.112
[:SOURce]:MARKer1|2|3|4[:FSWeep]:FREQuency 300 kHz to RFmax 3.112
[:SOURce]:MARKer1|2|3|4[:FSWeep][:STATe] ON | OFF 3.113
[:SOURce]:MARKer1|2|3|4:PSWeep:AOFF not-SCPI 3.113
[:SOURce]:MARKer1|2|3|4:PSWeep:POWer -144 dBm to +16 dBm not-SCPI 3.113
[:SOURce]:MARKer1|2|3|4:PSWeep[:STATe] ON | OFF not-SCPI 3.113
[:SOURce]:MARKer:POLarity NORMal | INVerted not-SCPI 3.113
[:SOURce]:MODulation[ALL]:STATe ON | OFF not SCPI 3.114
[:SOURce]:NADC:STATe ON | OFF not-SCPI 3.116
[:SOURce]:NADC:STANdard not-SCPI 3.116
[:SOURce]:NADC:SRATe 1kHz to 200 kHz not-SCPI 3.116
[:SOURce]:NADC:FILTer:TYPE SCOSine | COSine | USER not-SCPI 3.117
[:SOURce]:NADC:FILTer:SELect 'name' not-SCPI 3.117
[:SOURce]:NADC:FILTer:PARameter 0.1 to 0.7 not-SCPI 3.117
[:SOURce]:NADC:FILTer:MODE LACP | LEVM not-SCPI 3.117
[:SOURce]:NADC:LDIStortion[:STATe] ON | OFF not-SCPI 3.117
[:SOURce]:NADC:SEQuence AUTO | RETRigger | AAUTo | ARETrigger not-SCPI 3.117
[:SOURce]:NADC:TRIGger:SOURce EXTernal | INTernal not-SCPI 3.117
[:SOURce]:NADC:TRIGger:INHibit 0 to 67.1E6 not-SCPI 3.117
[:SOURce]:NADC:TRIGger:DELay 0 to 65535 not-SCPI 3.117
[:SOURce]:NADC:TRIGger:OUTPut[1]|2:DELay 0 to 971 not-SCPI 3.118
[:SOURce]:NADC:TRIGger:OUTPut[2]:PERiod 1 to 67.1E6 not-SCPI 3.118
List of Commands SMIQ
1125.5555.03 C.12 E-9
Command Parameter SCPI Info Page
[:SOURce]:NADC:CLOCk:SOURce INTernal | EXTernal 3.118
[:SOURce]:NADC:CLOCk:MODE BIT | SYMBol not-SCPI 3.118
[:SOURce]:NADC:CLOCk:DELay 0 to 1.0 not-SCPI 3.118
[:SOURce]:NADC:PRAMp:PRESet not-SCPI 3.118
[:SOURce]:NADC:PRAMp:TIME 0.25 to 16.0 not-SCPI 3.118
[:SOURce]:NADC:PRAMp:DELay -1.0 to +1.0 not-SCPI 3.118
[:SOURce]:NADC:PRAMp:SHAPe LINear | COSine not-SCPI 3.119
[:SOURce]:NADC:PRAMp:ROFFset -9 to +9 not-SCPI 3.119
[:SOURce]:NADC:PRAMp:FOFFset -9 to +9 not-SCPI 3.119
[:SOURce]:NADC:SLOT:ATTenuation 0 to 70 dB not-SCPI 3.119
[:SOURce]:NADC:LINK UP | DOWN not-SCPI 3.119
[:SOURce]:NADC:RCONfiguration AHALf | FULL1 | FULL2 | FULL3 | FULL12 |
FULL13 | FULL23 | AFUL not-SCPI 3.119
[:SOURce]:NADC:FLISt:PREDefined:CATalog? not-SCPI 3.120
[:SOURce]:NADC:FLISt:PREDefined:LOAD 'name' not-SCPI 3.120
[:SOURce]:NADC:FLISt:CATalog? not-SCPI 3.120
[:SOURce]:NADC:FLISt:LOAD ‘name’ not-SCPI 3.120
[:SOURce]:NADC:FLISt:STORe 'name' not-SCPI 3.120
[:SOURce]:NADC:FLISt:DELete ‘name’ not-SCPI 3.120
[:SOURce]:NADC:DLISt:CATalog? not-SCPI 3.120
[:SOURce]:NADC:SLOT<i>:LEVel OFF | ATT | FULL not-SCPI 3.121
[:SOURce]:NADC:SLOT<i>:TYPE TCH | SHORt | ADATa not-SCPI 3.121
[:SOURce]:NADC:SLOT<i>:PRESet not-SCPI 3.121
[:SOURce]:NADC:SLOT<i>[:SOURce]:SACChannel PN9 | PN11 | PN15 | PN16 | PN20 | PN21 |
PN23 | DLISt | SDATa not-SCPI 3.121
[:SOURce]:NADC:SLOT<i>[:SOURce]:SACChannel:DLISt 'name' not-SCPI 3.121
[:SOURce]:NADC:SLOT<i>[:SOURce]:DATA PN9 | PN11 | PN15 | PN16 | PN20 | PN21 |
PN23 | DLISt | SDATa not-SCPI 3.121
[:SOURce]:NADC:SLOT<i>[:SOURce]:DATA:DLISt 'name' not-SCPI 3.122
[:SOURce]:NADC:SLOT<i>:SYNC #H0 to #HFFFFFFF (28 bits) not-SCPI 3.122
[:SOURce]:NADC:SLOT<i>:CDVCc #H0 to #HFFF (12 bits) not-SCPI 3.122
[:SOURce]:NADC:SLOT<i>:RSVD #H800 to #HFFF (12 bits) not-SCPI 3.122
[:SOURce]:NOISe[:STATe] ON | OFF not-SCPI 3.123
[:SOURce]:NOISe:SNRatio 5.0 to 30.0 dB not-SCPI 3.123
[:SOURce]:NOISe:BANDwidth 10000 to 10000000 Hz not-SCPI 3.123
[:SOURce]:PDC:STATe ON | OFF not-SCPI 3.125
[:SOURce]:PDC:STANdard not-SCPI 3.126
[:SOURce]:PDC:SRATe 1kHz to 200 kHz not-SCPI 3.126
[:SOURce]:PDC:FILTer:TYPE SCOSine | COSine | USER not-SCPI 3.126
[:SOURce]:PDC:FILTer:SELect 'name' not-SCPI 3.126
[:SOURce]:PDC:FILTer:PARameter 0.1..0.7 not-SCPI 3.126
[:SOURce]:PDC:FILTer:MODE LACP | LEVM not-SCPI 3.126
[:SOURce]:PDC:LDIStortion[:STATe] ON | OFF not-SCPI 3.126
[:SOURce]:PDC:SEQuence AUTO | RETRigger | AAUTo | ARETrigger not-SCPI 3.126
[:SOURce]:PDC:TRIGger:SOURce EXTernal | INTernal not-SCPI 3.126
[:SOURce]:PDC:TRIGger:INHibit 0 to 67.1E6 not-SCPI 3.127
[:SOURce]:PDC:TRIGger:DELay 0 to 65535 not-SCPI 3.127
SMIQ List of Commands
1125.5555.03 C.13 E-9
Command Parameter SCPI Info Page
[:SOURce]:PDC:TRIGger:OUTPut[1]|2:DELay 0 to 839 not-SCPI 3.127
[:SOURce]:PDC:TRIGger:OUTPut[2]:PERiod 1 to 67.1E6 not-SCPI 3.127
[:SOURce]:PDC:CLOCk:SOURce INTernal | EXTernal 3.127
[:SOURce]:PDC:CLOCk:MODE BIT | SYMBol not-SCPI 3.127
[:SOURce]:PDC:CLOCk:DELay 0 to 1.0 not-SCPI 3.127
[:SOURce]:PDC:PRAMp:PRESet not-SCPI 3.127
[:SOURce]:PDC:PRAMp:TIME 0.25 to 16.0 not-SCPI 3.128
[:SOURce]:PDC:PRAMp:DELay -1.0 to +1.0 not-SCPI 3.128
[:SOURce]:PDC:PRAMp:SHAPe LINear | COSine not-SCPI 3.128
[:SOURce]:PDC:PRAMp:ROFFset -9 to +9 not-SCPI 3.128
[:SOURce]:PDC:PRAMp:FOFFset -9 to +9 not-SCPI 3.128
[:SOURce]:PDC:SLOT:ATTenuation 0 to 70 dB not-SCPI 3.128
[:SOURce]:PDC:LINK UP | DOWN not-SCPI 3.128
[:SOURce]:PDC:RCONfiguration AHALf | FULL0 | FULL1 | FULL2 | FULL10 |
FULL20 | FULL21 | AFUL not-SCPI 3.128
[:SOURce]:PDC:FLISt:PREDefined:CATalog? not-SCPI 3.129
[:SOURce]:PDC:FLISt:PREDefined:LOAD 'name' not-SCPI 3.129
[:SOURce]:PDC:FLISt:CATalog? not-SCPI 3.129
[:SOURce]:PDC:FLISt:LOAD ‘name’ not-SCPI 3.129
[:SOURce]:PDC:FLISt:STORe ‘name’ not-SCPI 3.129
[:SOURce]:PDC:FLISt:DELete ‘name’ not-SCPI 3.129
[:SOURce]:PDC:DLISt:CATalog? not-SCPI 3.130
[:SOURce]:PDC:SLOT<i>:TYPE TCH | SYNC | VOX | ADATa not-SCPI 3.130
[:SOURce]:PDC:SLOT<i>:LEVel OFF | ATT | FULL not-SCPI 3.130
[:SOURce]:PDC:SLOT<i>:PRESet not-SCPI 3.130
[:SOURce]:PDC:SLOT<i>:SCRamble:STATe ON | OFF not-SCPI 3.130
[:SOURce]:PDC:SLOT<i>SCRamble:STARt #H1 to #H1FF (9 bit) not-SCPI 3.130
[:SOURce]:PDC:SLOT<i>:SFRame:STATe ON | OFF not-SCPI 3.131
[:SOURce]:PDC:SLOT<i>:SFRame:RCHPosition 1 to 17 not-SCPI 3.131
[:SOURce]:PDC:SLOT<i>[:SOURce]:DATA PN9 | PN11 | PN15 | PN16 | PN20 | PN21 |
PN23 | DLISt | SDATa not-SCPI 3.131
[:SOURce]:PDC:SLOT<i>[:SOURce]:DATA:DLISt 'name' not-SCPI 3.131
[:SOURce]:PDC:SLOT<i>[:SOURce]:SACChannel PN9 | PN11 | PN15 | PN16 | PN20 | PN21 |
PN23 | DLISt | SDATa not-SCPI 3.131
[:SOURce]:PDC:SLOT<i>[:SOURce]:SACChannel:DLISt 'Datenliste-Name' not-SCPI 3.131
[:SOURce]:PDC:SLOT<i>[:SOURce]:RCHannel PN9 | PN11 | PN15 | PN16 | PN20 | PN21 |
PN23 | DLISt | SDATa not-SCPI 3.131
[:SOURce]:PDC:SLOT<i>[:SOURce]:RCHannel:DLISt 'name’ not-SCPI 3.132
[:SOURce]:PDC:SLOT<i>[:SOURce]:SI PN9 | PN11 | PN15 | PN16 | PN20 | PN21 |
PN23 | DLISt | SDATa not-SCPI 3.132
[:SOURce]:PDC:SLOT<i>[:SOURce]:SI:DLISt 'name' not-SCPI 3.132
[:SOURce]:PDC:SLOT<i>:PREamble #H0 to #H to (2/6/48/102 bits) not-SCPI 3.132
[:SOURce]:PDC:SLOT<i>:SYNC #H0 to #HFF (20/32bits) not-SCPI 3.132
[:SOURce]:PDC:SLOT<i>:SYNC2 #H0 to #HFF to (20/32 bits) not-SCPI 3.132
[:SOURce]:PDC:SLOT<i>:CCODe #H0 to #HFF (8 bits) not-SCPI 3.132
[:SOURce]:PDC:SLOT<i>:POSTamble #H0 to #H3FF to (78 bits) not-SCPI 3.132
[:SOURce]:PDC:SLOT<i>:SF 0 | 1 not-SCPI 3.132
List of Commands SMIQ
1125.5555.03 C.14 E-9
Command Parameter SCPI Info Page
[:SOURce]:PHASe[:ADJust] -360 deg to +360 deg 3.133
[:SOURce]:PHASe:REFerence 3.133
[:SOURce]:PHS:STATe ON | OFF not-SCPI 3.135
[:SOURce]:PHS:STANdard not-SCPI 3.135
[:SOURce]:PHS:SRATe 1kHz to 200 kHz not-SCPI 3.135
[:SOURce]:PHS:FILTer:TYPE SCOSine | COSine | USER not-SCPI 3.135
[:SOURce]:PHS:FILTer:SELect 'name' not-SCPI 3.136
[:SOURce]:PHS:FILTer:PARameter 0.1 to 0.7 not-SCPI 3.136
[:SOURce]:PHS:FILTer:MODE LACP | LEVM not-SCPI 3.136
[:SOURce]:PHS:LDIStortion[:STATe] ON | OFF not-SCPI 3.136
[:SOURce]:PHS:SEQuence AUTO | RETRigger | AAUTo | ARETrigger not-SCPI 3.136
[:SOURce]:PHS:TRIGger:SOURce EXTernal | INTernal not-SCPI 3.136
[:SOURce]:PHS:TRIGger:INHibit 0 to 67.1E6 not-SCPI 3.136
[:SOURce]:PHS:TRIGger:DELay 0 to 65535 not-SCPI 3.136
[:SOURce]:PHS:TRIGger:OUTPut SLOT | FRAME not-SCPI 3.136
[:SOURce]:PHS:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative not-SCPI 3.136
[:SOURce]:PHS:TRIGger:OUTPut[2]:PERiod 1 to 67.1E6 not-SCPI 3.137
[:SOURce]:PHS:CLOCk:SOURce INTernal | EXTernal 3.137
[:SOURce]:PHS:CLOCk:MODE BIT | SYMBol not-SCPI 3.137
[:SOURce]:PHS:CLOCk:DELay 0 to 1.0 not-SCPI 3.137
[:SOURce]:PHS:PRAMp:PRESet not-SCPI 3.137
[:SOURce]:PHS:PRAMp:TIME 0.25 to 16.0 not-SCPI 3.137
[:SOURce]:PHS:PRAMp:DELay -1.0 to +1.0 not-SCPI 3.137
[:SOURce]:PHS:PRAMp:SHAPe LINear | COSine not-SCPI 3.138
[:SOURce]:PHS:PRAMp:ROFFset -9 to +9 not-SCPI 3.138
[:SOURce]:PHS:PRAMp:FOFFset -9 to +9 not-SCPI 3.138
[:SOURce]:PHS:SLOT:ATTenuation 0 to 70 dB not-SCPI 3.138
[:SOURce]:PHS:FLISt:PREDefined:CATalog? not-SCPI 3.138
[:SOURce]:PHS:FLISt:PREDefined:LOAD 'name' not-SCPI 3.138
[:SOURce]:PHS:FLISt:CATalog? not-SCPI 3.138
[:SOURce]:PHS:FLISt:LOAD ‘name’ not-SCPI 3.138
[:SOURce]:PHS:FLISt:STORe ‘name’ not-SCPI 3.138
[:SOURce]:PHS:FLISt:DELete ‘name’ not-SCPI 3.139
[:SOURce]:PHS:DLISt:CATalog? not-SCPI 3.139
[:SOURce]:PHS:SLOT<i>:TYPE TCHFull | TCHHalf | SYNC | VOX | ADATa not-SCPI 3.139
[:SOURce]:PHS:SLOT<i>:LEVel OFF | ATT | FULL not-SCPI 3.139
[:SOURce]:PHS:SLOT<i>:PRESet not-SCPI 3.139
[:SOURce]:PHS:SLOT<i>:SCRamble:STATe ON | OFF not-SCPI 3.139
[:SOURce]:PHS:SLOT<i>SCRamble:CODE #HO to #H3FF not-SCPI 3.140
[:SOURce]:PHS:SLOT<i>:ENCRyption:STATe ON | OFF not-SCPI 3.140
[:SOURce]:PHS:SLOT<i>:ENCRyption:KEY #HO to #HFFFF not-SCPI 3.140
[:SOURce]:PHS:SLOT<i>:UWORd #HO to #HFFFFFFFF not-SCPI 3.140
[:SOURce]:PHS:SLOT<i>:CSID #HO to #H3FFFFFFFFFF not-SCPI 3.140
[:SOURce]:PHS:SLOT<i>:PSID #HO to #HFFFFFFF not-SCPI 3.140
[:SOURce]:PHS:SLOT<i>:IDLe #HO to #H3FFFFFFFF not-SCPI 3.140
[:SOURce]:PHS:SLOT<i>[:SOURce]:SACChannel PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | not-SCPI 3.140
SMIQ List of Commands
1125.5555.03 C.15 E-9
Command Parameter SCPI Info Page
PN23 | DLISt | SDATa
[:SOURce]:PHS:SLOT<i>[:SOURce]:SACChannel:DLISt 'name’ not-SCPI 3.141
[:SOURce]:PHS:SLOT<i>[:SOURce]:TCHannel PN9 | PN11 | PN15 | PN16 | PN20 | PN21 |
PN23 | DLISt | SDATa not-SCPI 3.141
[:SOURce]:PHS:SLOT<i>[:SOURce]:TCHannel:DLISt 'name' not-SCPI 3.141
[:SOURce]:PM1|2[:DEViation] -360 to +360 deg 3.142
[:SOURce]:PM1|2:EXTernal1| 2:COUPling AC | DC 3.142
[:SOURce]:PM1|2:INTernal:FREQuency 0.1 Hz to 1 MHz 3.143
[:SOURce]:PM1|2:SOURce INTernal | EXTernal1 | EXTernal2 3.143
[:SOURce]:PM1|2:STATe ON | OFF 3.143
[:SOURce]:POWer:ALC:TABLe[:MEASure]? 3.144
[:SOURce]:POWer:ALC[:STATe] ON | OFF | AUTO 3.144
[:SOURce]:POWer:ALC:SEARch ON | OFF | ONCE 3.145
[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] -144 to +16 dBm 3.145
[:SOURce]:POWer[:LEVel][:IMMediate]:OFFSet -100 to +100 dB 3.145
[:SOURce]:POWer[:LEVel][:IMMediate][:AMPL]:RCL INCLude | EXCLude 3.145
[:SOURce]:POWer:LIMit[:AMPLitude] -144 to +16 dBm 3.145
[:SOURce]:POWer:MANual -144 to +16 dBm 3.146
[:SOURce]:POWer:MODE FIXed | SWEep | LIST 3.146
[:SOURce]:POWer:PEP? 3.146
[:SOURce]:POWer:STARt -144 to +16 dBm 3.146
[:SOURce]:POWer:STOP -144 to +16 dBm 3.146
[:SOURce]:POWer:STEP[:INCRement] 0.1 to 10 dB 3.146
[:SOURce]:PULM:POLarity NORMal | INVerted 3.147
[:SOURce]:PULM:STATe ON | OFF 3.147
[:SOURce]:ROSCillator:EXTernal:FREQuency 1 to 16 MHz 3.148
[:SOURce]:ROSCillator[:INTernal]:ADJust[:STATe] ON | OFF not-SCPI 3.148
[:SOURce]:ROSCillator[:INTernal]:ADJust:VALue 0 to 4095 not-SCPI 3.148
[:SOURce]:ROSCillator:SOURce INTernal | EXTernal 3.148
[:SOURce]:SWEep:BTIMe NORMal | LONG not-SCPI 3.149
[:SOURce]:SWEep[:FREQuency]:DWELl 10 ms to 5 s not-SCPI 3.149
[:SOURce]:SWEep[:FREQuency]:MODE AUTO | MANual | STEP not-SCPI 3.149
[:SOURce]:SWEep[:FREQuency]:POINts Zahl not-SCPI 3.150
[:SOURce]:SWEep[:FREQuency]:SPACing LINear | LOGarithmic not-SCPI 3.150
[:SOURce]:SWEep[:FREQuency]:STEP[:LINear] 0 to 1 GHz not-SCPI 3.150
[:SOURce]:SWEep[:FREQuency]:STEP:LOGarithmic 0.01 to 50 PCT not-SCPI 3.150
[:SOURce]:SWEep:POWer:DWELl 10 ms to 5 s not-SCPI 3.150
[:SOURce]:SWEep:POWer:MODE AUTO | MANual | STEP not-SCPI 3.151
[:SOURce]:SWEep:POWer:POINts Zahl not-SCPI 3.151
[:SOURce]:SWEep:POWer:STEP[:LOGarithmic] 0 to .10 dB not-SCPI 3.151
[:SOURce]:WCDMa:STATe ON | OFF not-SCPI 3.153
[:SOURce]:WCDMa:MODE CHAN4 | CHAN8 | CHAN15 not-SCPI 3.153
[:SOURce]:WCDMa:PRESet not-SCPI 3.153
[:SOURce]:WCDMa:CRATe R4M | R8M not-SCPI 3.154
[:SOURce]:WCDMa:LINK DOWN | UP | UPMulti not-SCPI 3.154
[:SOURce]:WCDMa:FORMat QPSK | OQPSK not-SCPI 3.154
List of Commands SMIQ
1125.5555.03 C.16 E-9
Command Parameter SCPI Info Page
[:SOURce]:WCDMa:CRATe:VARiation 100cps to 7.5Mcps not-SCPI 3.154
[:SOURce]:WCDMa:FILTer:TYPe SCOSine | COSine | WCDMa | USER not-SCPI 3.154
[:SOURce]:WCDMa:FILTer:SELect 'name' not-SCPI 3.154
[:SOURce]:WCDMa:FILTer:PARameter 0.1 to 0.7 not-SCPI 3.154
[:SOURce]:WCDMa:FILTer:MODE LACP | LEVM not-SCPI 3.154
[:SOURce]:WCDMa:LDIStortion[:STATe] ON | OFF not-SCPI 3.155
[:SOURce]:WCDMa:SEQuence AUTO | RETRigger | AAUTo | ARETrigger not-SCPI 3.155
[:SOURce]:WCDMa:TRIGger:SOURce EXTernal | INTernal not-SCPI 3.155
[:SOURce]:WCDMa:TRIGger:INHibit 0 to 67108863 not-SCPI 3.155
[:SOURce]:WCDMa:TRIGger:DELay 0 to 40959 not-SCPI 3.155
[:SOURce]:WCDMa:TRIGger:OUTPut[1]|2 SLOT | RFRameCSPeriod not-SCPI 3.155
[:SOURce]:WCDMa:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative not-SCPI 3.155
[:SOURce]:WCDMa:TRIGger:OUTPut[1]|2:DELay 0 to 40959 (81919) not-SCPI 3.156
[:SOURce]:WCDMa:CLOCk:SOURce INTernal | EXTernal not-SCPI 3.156
[:SOURce]:WCDMa:POWer? not-SCPI 3.156
[:SOURce]:WCDMa:POWer:ADJust not-SCPI 3.156
[:SOURce]:WCDMa:MULTicode:STATe ON | OFF63 not-SCPI 3.156
[:SOURce]:WCDMa:MULTicode:MASTer 0 to 3 not-SCPI 3.156
[:SOURce]:WCDMa:MULTicode:CHANnels #H0 to # HFF not-SCPI 3.156
[:SOURce]:WCDMa:SLENgth 1 to 256 not-SCPI 3.156
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:TYPE PERCh | CCPCh | DPCH | DPDCh |
DPCCh | ALL not-SCPI 3.157
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:SRATe D16 | D32 | D64 | D128 | D256 | D512 | D1024 not-SCPI 3.157
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:SCODe 0 to 511 not-SCPI 3.157
[:SOURce]:WCDMa:CHANnel<0...14>:LCODe #H0 to #H3FFFF (#H1FFFFFFFFFF) not-SCPI 3.157
[:SOURce]:WCDMa:CHANnel<0...14>:LCODe:OFFSet 0 to 40959 (81919) not-SCPI 3.157
[:SOURce]:WCDMa:CHANnel<0...14>:SCODe:LMS #H0 to #HFF not-SCPI 3.158
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:POWer -30dB to 0dB not-SCPI 3.158
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:DATA PN9 | PN11 | PN15 | PN16 | DLISt not-SCPI 3.158
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:DATA:DLISt ’name’ not-SCPI 3.158
[:SOURce]:WCDMa:CHANnel<0...14>[:I]|:Q:DATA:OFFSet 0 to 10239 not-SCPI 3.158
[:SOURce]:WCDMa:CHANnel<1...14>:TPC ZERO | ONE | ALTernate | DLISt not-SCPI 3.158
[:SOURce]:WCDMa:CHANnel<1...14>:TPC:DLISt ’name’ not-SCPI 3.158
[:SOURce]:WCDMa:CHANnel<0...14>:STATe ON | OFF not-SCPI 3.158
[:SOURce]:W3GPp:CALCulate:PROGress? not-SCPI 3.163
[:SOURce]:W3GPp:STATe ON | OFF not-SCPI 3.163
[:SOURce]:W3GPp:PRESet not-SCPI 3.163
[:SOURce]:W3GPp:SETTing:CATalog? not-SCPI 3.163
[:SOURce]:W3GPp:SETTing:LOAD ‘name of sequence’ not-SCPI 3.163
[:SOURce]:W3GPp:SETTing:STORe name of sequence’ not-SCPI 3.163
[:SOURce]:W3GPp:SETTing:DELete ‘name of sequence’ not-SCPI 3.164
[:SOURce]:W3GPp:SETTing:TMODel[:BST] 'name' not-SCPI 3.164
[:SOURce]:W3GPp:SETTing:TMODel[:BST] not-SCPI 3.164
[:SOURce]:W3GPp:SETTing:TMODel:MST 'name' not-SCPI 3.164
[:SOURce]:W3GPp:SETTing:TMODel[:MST] not-SCPI 3.164
[:SOURce]:W3GPp:GPP3:VERSion? not-SCPI 3.164
SMIQ List of Commands
1125.5555.03 C.17 E-9
Command Parameter SCPI Info Page
[:SOURce]:W3GPp:CRATe? not-SCPI 3.164
[:SOURce]:W3GPp:LINK FORWard | REVerse not-SCPI 3.165
[:SOURce]:W3GPp:SLENgth 1 to 13 not-SCPI 3.165
[:SOURce]:W3GPp:CLIPping:LEVel 1 to 100PCT not-SCPI 3.165
[:SOURce]:W3GPp:FILTer:TYPe SCOSine | COSine | WCDMa | USER not-SCPI 3.165
[:SOURce]:W3GPp:FILTer:SELect 'name' not-SCPI 3.165
[:SOURce]:W3GPp:FILTer:PARameter 0.1 to 0.99 not-SCPI 3.165
[:SOURce]:W3GPp:FILTer:MODE LACP | LEVM not-SCPI 3.166
[:SOURce]:W3GPp:CRATe:VARiation 100 Hz to 18 MHz not-SCPI 3.166
[:SOURce]:W3GPp:PPARameter:SCHannels ON | OFF not-SCPI 3.166
[:SOURce]:W3GPp:PPARameter:SCCPch:STATe ON | OFF not-SCPI 3.166
[:SOURce]:W3GPp:PPARameter:SCCPch:SRATe D15K | D30K | D60K | D120K | D240K |
D480K | D960K not-SCPI 3.166
[:SOURce]:W3GPp:PPARameter:DPCH:COUNt 0 to 512 not-SCPI 3.166
[:SOURce]:W3GPp:PPARameter:SRATe D7K5| D15K | D30K | D60K | D120K |
D240K | D480K | D960K not-SCPI 3.166
[:SOURce]:W3GPp:PPARameter:CRESt MINimum | AVERage | WORSt not-SCPI 3.166
[:SOURce]:W3GPp:PPARameter:EXECute not-SCPI 3.166
[:SOURce]:W3GPp:COPY:SOURce 1 to 4 not-SCPI 3.167
[:SOURce]:W3GPp:COPY:DESTination 1 to 4 not-SCPI 3.167
[:SOURce]:W3GPp:COPY:COFFset 0 to 511 not-SCPI 3.167
[:SOURce]:W3GPp:COPY:EXECute not-SCPI 3.167
[:SOURce]:W3GPp:SEQuence AUTO | RETRigger | AAUTo | ARETrigger not-SCPI 3.167
[:SOURce]:W3GPp:TRIGger:SOURce EXTernal | INTernal not-SCPI 3.167
[:SOURce]:W3GPp:TRIGger:DELay 0 to 38399 not-SCPI 3.167
[:SOURce]:W3GPp:TRIGger:INHibit 0 to 67108863 not-SCPI 3.167
[:SOURce]:W3GPp:TRIGger:OUTPut[1]|2 SLOT | RFRame | CSPeriod | ECSPeriod | SFNR not-SCPI 3.168
[:SOURce]:W3GPp:TRIGger:OUTPut[1]|2:POLarity POSitive | NEGative not-SCPI 3.168
[:SOURce]:W3GPp:TRIGger:OUTPut[1]|2:DELay 0 to 38399 not-SCPI 3.168
[:SOURce]:W3GPp:CLOCk:SOURce INTernal | EXTernal not-SCPI 3.168
[:SOURce]:W3GPp:CLOCk:MODE CHIP | CHIP4 not-SCPI 3.168
[:SOURce]:W3GPp:CLOCk:DELay 0 to 0.99 not-SCPI 3.168
[:SOURce]:W3GPp:POWer? not-SCPI 3.168
[:SOURce]:W3GPp:POWer:ADJust not-SCPI 3.168
[:SOURce]:W3GPp:BSTation<i>:STATe ON | OFF not-SCPI 3.169
[:SOURce]:W3GPp:BSTation<i>:SCODe #H0 to #H5FFF not-SCPI 3.169
[:SOURce]:W3GPp:BSTation<i>:SCODe ON | OFF not-SCPI 3.169
[:SOURce]:W3GPp:BSTation<i>:TFCI 0 to 1023 not-SCPI 3.169
[:SOURce]:W3GPp:BSTation<i>:TFCI:STATe ON | OFF not-SCPI 3.169
[:SOURce]:W3GPp:BSTation<i>:SSCG? not-SCPI 3.169
[:SOURce]:W3GPp:BSTation<i>:TPC:READ CONTinuous | S0A | S1A | S01A | S10A not-SCPI 3.169
[:SOURce]:W3GPp:BSTation<i>:TPC:MISuse ON | OFF not-SCPI 3.169
[:SOURce]:W3GPp:BSTation<i>:TPC:POWer:STEP -10.0 to 10.0 dB not-SCPI 3.169
[:SOURce]:W3GPp:BSTation<i>:TRANsmit:DIVersity OFF | ANT1 | ANT2 not-SCPI 3.170
[:SOURce]:W3GPp: BSTation:PINDicator:COUNt D18 | D36 | D72 | D144 not-SCPI 3.170
[:SOURce]:W3GPp:MCHannel:STARt 11 to 138 not-SCPI 3.170
List of Commands SMIQ
1125.5555.03 C.18 E-9
Command Parameter SCPI Info Page
[:SOURce]:W3GPp:MCHannel:STOP 11 to 138 not-SCPI 3.170
[:SOURce]:W3GPp:MCHannel:SRATe D7K5 | D15K | D30K | D60K | D120K |
D240K | D480K | D960K not-SCPI 3.170
[:SOURce]:W3GPp:MCHannel:STOP Bit2 | Bit4 | Bit8 | Bit16 not-SCPI 3.170
[:SOURce]:W3GPp:MCHannel:CCODe 0 to (511) not-SCPI 3.170
[:SOURce]:W3GPp:MCHannel:CCODe:STEP 0 to (511) not-SCPI 3.170
[:SOURce]:W3GPp:MCHannel:POWer -60 dB to 0 dB not-SCPI 3.170
[:SOURce]:W3GPp:MCHannel:POWer:STEP -60 dB to +60 dB not-SCPI 3.171
[:SOURce]:W3GPp:MCHannel:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern not-SCPI 3.171
[:SOURce]:W3GPp:MCHannel:DATA:PATTern ##B0 to #B111..1, 1 to 24 not-SCPI 3.171
[:SOURce]:W3GPp:MCHannel:TIMing:OFFSet 0 to 149 not-SCPI 3.171
[:SOURce]:W3GPp:MCHannel:TIMing:OFFSet:STEP 0 to 149 not-SCPI 3.171
[:SOURce]:W3GPp:MCHannel:TPC ZERO | ONE | PATTern not-SCPI 3.171
[:SOURce]:W3GPp:MCHannel:TPC:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.171
[:SOURce]:W3GPp:MCHannel:MCODe ON | OFF not-SCPI 3.171
[:SOURce]:W3GPp:MCHannel:STATe ON | OFF not-SCPI 3.171
[:SOURce]:W3GPp:BSTation<i>:MCHannel:EXECute not-SCPI 3.172
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:SRATe D7K5 | D15K | D30K | D60K | D120K |
D240K | D480K | D960K not-SCPI 3.172
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:CCODe 0 to 511 not-SCPI 3.172
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:POWer -60 dB to 0 dB not-SCPI 3.172
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern not-SCPI 3.172
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:DATA:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.172
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:TOFFset 0 to 149 not-SCPI 3.173
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:TPC ZERO | ONE | PATTern not-SCPI 3.173
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:PLENgth BIT2 | BIT4 | BIT8 | BIT16 | OFF not-SCPI 3.173
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:TPC:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.173
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:MCODe ON | OFF not-SCPI 3.173
[:SOURce]:W3GPp:BSTation<i>:CHANnel<n>:STATe ON | OFF not-SCPI 3.173
[:SOURce]:W3GPp :BSTation<i>:DOMain:ERRor? not-SCPI 3.173
[:SOURce]:W3GPp:MSTation<i>:STATe ON | OFF not-SCPI 3.173
[:SOURce]:W3GPp:MSTation<i>:MODE PRACh | PCPCh | DPCDch not-SCPI 3.173
[:SOURce]:W3GPp:MSTation<i>:SCODe #H0 to #HFFFFFF not-SCPI 3.174
[:SOURce]:W3GPp:MSTation<i>:SCODe:MODE LONG | SHORt | OFF not-SCPI 3.174
[:SOURce]:W3GPp:MSTation<i>:TPC:DATA ZERO | ONE | PATTern (| DLISt) not-SCPI 3.174
[:SOURce]:W3GPp:MSTation<i>:TPC:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.174
[:SOURce]:W3GPp:MSTation<i>:TPC:READ CONTinuous | S0A | S1A | S01A | S10A not-SCPI 3.174
[:SOURce]:W3GPp:MSTation<i>:PRACh: PREPetition 1 to 10 not-SCPI 3.174
[:SOURce]:W3GPp:MSTation<i>:PRACh:PPOWer -60 to 0 dB not-SCPI 3.174
[:SOURce]:W3GPp:MSTation<i>:PRACh:DPOWer -60 to 0 dB not-SCPI 3.174
[:SOURce]:W3GPp:MSTation<i>:PRACh:CPOWer -60 to 0 dB not-SCPI 3.175
[:SOURce]:W3GPp:MSTation<i>:PRACh:MLENgth 1 | 2 not-SCPI 3.175
[:SOURce]:W3GPp:MSTation<i>:PRACh:SIGNature 0 to 15 not-SCPI 3.175
[:SOURce]:W3GPp:MSTation<i>:PRACh:ASLot 0 to 14 not-SCPI 3.175
[:SOURce]:W3GPp:MSTation<i>:PRACh:SRATe D15K | D30K | D60K | D120K not-SCPI 3.175
SMIQ List of Commands
1125.5555.03 C.19 E-9
Command Parameter SCPI Info Page
[:SOURce]:W3GPp:MSTation<i>:PRACh:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern not-SCPI 3.175
[:SOURce]:W3GPp:MSTation<i>:PRACh:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.175
[:SOURce]:W3GPp:MSTation<i>:PRACh:TFCI 0 to 1023 not-SCPI 3.175
[:SOURce]:W3GPp:MSTation<i>:PCPCh:PREPetition 0 to 10 not-SCPI 3.175
[:SOURce]:W3GPp:MSTation<i>:PCPCh:PPOWer -60 to 0 dB not-SCPI 3.176
[:SOURce]:W3GPp:MSTation<i>:PCPCh:PPOWer:STEP 0 to 10 dB not-SCPI 3.176
[:SOURce]:W3GPp:MSTation<i>:PCPCh:DPOWer -60 to 0 dB not-SCPI 3.176
[:SOURce]:W3GPp:MSTation<i>:PCPCh:CPOWer -60 to 0 dB not-SCPI 3.176
[:SOURce]:W3GPp:MSTation<i>:PCPCh:MLENgth 0 to 10 not-SCPI 3.176
[:SOURce]:W3GPp:MSTation<i>:PCPCh:PLENgth S0 | S8 not-SCPI 3.176
[:SOURce]:W3GPp:MSTation<i>:PCPCh:SIGNature 0 to 15 not-SCPI 3.176
[:SOURce]:W3GPp:MSTation<i>:PCPCh:ASLot 0 to 14 not-SCPI 3.176
[:SOURce]:W3GPp:MSTation<i>:PCPCh:FBI:MODE OFF | D1B | D2B not-SCPI 3.176
[:SOURce]:W3GPp:MSTation<i>:PCPCh:FBI:DATA ZERO | ONE | PATTern not-SCPI 3.176
[:SOURce]:W3GPp:MSTation<i>:PCPCh:FBI:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.177
[:SOURce]:W3GPp:MSTation<i>:PCPCh:SRATe D15K | D30K | D60K | D120K | D240K |
D480K | D960K not-SCPI 3.177
[:SOURce]:W3GPp:MSTation<i>:PCPCh:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern not-SCPI 3.177
[:SOURce]:W3GPp:MSTation<i>:PCPCh:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.177
[:SOURce]:W3GPp:MSTation<i>:PCPCh:TFCI 0 to 1023 not-SCPI 3.177
[:SOURce]:W3GPp:MSTation<i>:DPCCh:POWer -60 to 0 dB not-SCPI 3.177
[:SOURce]:W3GPp:MSTation<i>:DPCCh:TOFFset? not-SCPI 3.177
[:SOURce]:W3GPp:MSTation<i>:DPCCh:TFCI 0 to 1023 not-SCPI 3.177
[:SOURce]:W3GPp:MSTation<i>:DPCCh:TFCI:STATe ON | OFF not-SCPI 3.178
[:SOURce]:W3GPp:MSTation<i>:DPCCh:FBI:MODE OFF | D1B | D2B not-SCPI 3.178
[:SOURce]:W3GPp:MSTation<i>:DPCCh:FBI:DATA ZERO | ONE | PATTern not-SCPI 3.178
[:SOURce]:W3GPp:MSTation<i>:DPCCh:FBI:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.178
[:SOURce]:W3GPp:MSTation<i>:DPCCh:TPC:MISuse ON | OFF not-SCPI 3.178
[:SOURce]:W3GPp:MSTation<i>:DPCCh:TPC:PSTep -10 to 10 dB not-SCPI 3.178
[:SOURce]:W3GPp:MSTation<i>:DPDCh:ORATe D15K | D30K | D60K | D120K | D240K |
D480K | D960K | X2 | X3 | X4 | X5 | X6 not-SCPI 3.179
[:SOURce]:W3GPp:MSTation<i>:DPDCh:POWer 0 to 15 not-SCPI 3.179
[:SOURce]:W3GPp:MSTation<i>:DPDCh<j>:SRAte? D15K | D30K | D60K | D120K | D240K |
D480K | D960K not-SCPI 3.179
[:SOURce]:W3GPp:MSTation<i>:DPDCh<j>:TYPE? not-SCPI 3.179
[:SOURce]:W3GPp:MSTation<i>:DPDCh<j>:CCODe? not-SCPI 3.179
[:SOURce]:W3GPp:MSTation<i>:DPDCh<j>:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern not-SCPI 3.179
[:SOURce]:W3GPp:MSTation<i>:DPDCh<j>:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.179
[:SOURce]:W3GPp:BSTation:ENHanced:STATe ON | OFF not-SCPI 3.183
[:SOURce]:W3GPp:BSTation:ENHanced:PCCPch[:STATe] ON | OFF not-SCPI 3.183
[:SOURce]:W3GPp:BSTation:ENHanced:CCODing:STATe ON | OFF not-SCPI 3.183
[:SOURce]:W3GPp:BSTation:ENHanced:CCODing:TYPE M12K2 | M64K | M144K | M384K | AMR not-SCPI 3.183
[:SOURce]:W3GPp:BSTation:ENHanced:CCODing:INTerle
aver[1] ON | OFF not-SCPI 3.183
[:SOURce]:W3GPp:BSTation:ENHanced:CCODing:INTerle ON | OFF not-SCPI 3.183
List of Commands SMIQ
1125.5555.03 C.20 E-9
Command Parameter SCPI Info Page
aver2
[:SOURce]:W3GPp:BSTation:ENHanced:EPOWer:STATe ON | OFF not-SCPI 3.183
[:SOURce]:W3GPp:BSTation:ENHanced:EPOWer:STEP 0 to 6.0 dB not-SCPI 3.183
[:SOURce]:W3GPp:BSTation:ENHanced:EPOWer:RANGe:
UP 0 to 30.0 dB not-SCPI 3.184
[:SOURce]:W3GPp:BSTation:ENHanced:EPOWer:RANGe:
DOWN 0 to 30.0 dB not-SCPI 3.184
[:SOURce]:W3GPp:BSTation:ENHanced:SLENgth 1 to (800) not-SCPI 3.184
[:SOURce]:W3GPp:BSTation:ENHanced:SLENgth:FREE? not-SCPI 3.184
[:SOURce]:W3GPp:BSTation:ENHanced:PCCPch
:SLENgth not-SCPI 3.184
[:SOURce]:W3GPp:BSTation:ENHanced:SRATe D7K5 | D15K | D30K | D60K | D120K |
D240K | D480K | D960K not-SCPI 3.184
[:SOURce]:W3GPp:BSTation:ENHanced:TOFFset 0 to 149 not-SCPI 3.184
[:SOURce]:W3GPp:BSTation:ENHanced:PLENgth BIT2 | BIT4 | BIT8 | BIT16 not-SCPI 3.184
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BIT:STATe ON | OFF not-SCPI 3.184
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BIT:RATE 1E-1 to 1E-7 not-SCPI 3.184
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BIT:DPCH? not-SCPI 3.184
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BIT:DTCH? not-SCPI 3.185
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BIT:DCCH? not-SCPI 3.185
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BLOCk:
STATe ON | OFF not-SCPI 3.185
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BLOCk:
RATE 1E-1 to 1E-7 not-SCPI 3.185
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BLOCk:
DTCH? not-SCPI 3.185
[:SOURce]:W3GPp:BSTation:ENHanced:DERRor:BLOCk:
DCCH? not-SCPI 3.185
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:STATe ON | OFF not-SCPI 3.185
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:CHN
Code 0 to (511) not-SCPI 3.185
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:PO
Wer:STARt -60.0 to 0 dB not-SCPI 3.185
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:PO
Wer:CONTrol OFF | UP | DOWN not-SCPI 3.186
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern | DLISt not-SCPI 3.186
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DAT
A:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.186
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DAT
A:DSELect 'name' not-SCPI 3.186
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DTC
H PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern | DLISt not-SCPI 3.186
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DTC
H:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.186
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DTC
H:DSELect 'name' not-SCPI 3.186
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DCCH PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern | DLISt not-SCPI 3.186
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DCC
H:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.187
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:DCC
H:DSELect 'name' not-SCPI 3.187
SMIQ List of Commands
1125.5555.03 C.21 E-9
Command Parameter SCPI Info Page
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:TPC ZERO | ONE | PATTern | DLISt not-SCPI 3.187
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:TPC
:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.187
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:TPC
:DSELect 'name' not-SCPI 3.187
[:SOURce]:W3GPp:BSTation:ENHanced:CHANnel<i>:MCODe ON | OFF not-SCPI 3.187
[:SOURce]:W3GPp:BSTation:OCNS:STATe ON | OFF not-SCPI 3.187
[:SOURce]:W3GPp:BSTation:OCNS:COUNt 1 to (508) not-SCPI 3.188
[:SOURce]:W3GPp:BSTation:OCNS:SRATe D7K5 | D15K | D30K | D60K | D120K | D240K
| D480K | D960K not-SCPI 3.188
[:SOURce]:W3GPp:BSTation:OCNS:CRESt MINimum | AVERage | WORSt not-SCPI 3.188
[:SOURce]:W3GPp:BSTation:OCNS:POWer -60.0 to 0 dB not-SCPI 3.188
[:SOURce]:W3GPp:BSTation:OCNS:PCCPch:STATe ON | OFF not-SCPI 3.188
[:SOURce]:W3GPp:BSTation:OCNS:PCCPch:POWer -60.0 to 0dB not-SCPI 3.188
[:SOURce]:W3GPp:BSTation:OCNS:EPOWer -60.0 to 0 dB not-SCPI 3.188
[:SOURce]:W3GPp:BSTation:OCNS:EXECute not-SCPI 3.188
[:SOURce]:W3GPp:MSTation:ENHanced:STATe ON | OFF not-SCPI 3.188
[:SOURce]:W3GPp:MSTation:ENHanced:CCODing:STATe ON | OFF not-SCPI 3.189
[:SOURce]:W3GPp:MSTation:ENHanced:CCODing:TYPE M12K2 | M64K | M144K | M384K | AMR not-SCPI 3.189
[:SOURce]:W3GPp:MSTation:ENHanced:CCODing:INTerle
aver[1] ON | OFF not-SCPI 3.189
[:SOURce]:W3GPp:MSTation:ENHanced:CCODing:INTerle
aver2 ON | OFF not-SCPI 3.189
[:SOURce]:W3GPp:MSTation:ENHanced:EPOWer:STATe ON | OFF not-SCPI 3.189
[:SOURce]:W3GPp:MSTation:ENHanced:EPOWer:STEP 0 to 6.0 dB not-SCPI 3.189
[:SOURce]:W3GPp:MSTation:ENHanced:EPOWer:RANGe
:UP 0 to 30.0 dB not-SCPI 3.189
[:SOURce]:W3GPp:MSTation:ENHanced:EPOWer:RANGe
:DOWN 0 to 30.0 dB not-SCPI 3.189
[:SOURce]:W3GPp:MSTation:ENHanced:SLENgth 1 to (800) not-SCPI 3.189
[:SOURce]:W3GPp:MSTation:ENHanced:SLENgth:FREE? not-SCPI 3.189
[:SOURce]:W3GPp:MSTation:ENHanced:ORATe D15K | D30K | D60K | D120K | D240K |
D480K | D960K | X2 | X3 | X4 | X5 | X6 not-SCPI 3.190
[:SOURce]:W3GPp:MSTation:ENHanced:DPCCh:STATe ON | OFF not-SCPI 3.190
[:SOURce]:W3GPp:MSTation:ENHanced:POWer:DPCCh 0 to -60.0 dB not-SCPI 3.190
[:SOURce]:W3GPp:MSTation:ENHanced:POWer:DPDCh 0 to -60.0 dB not-SCPI 3.190
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BIT:STATe ON | OFF not-SCPI 3.190
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BIT:RATE 1E-1 to 1E-7 not-SCPI 3.190
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BIT:DP
DCh not-SCPI 3.190
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BIT:DTCH? not-SCPI 3.190
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BIT
:DCCH? not-SCPI 3.190
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BLOCk:
STATe ON | OFF not-SCPI 3.190
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BLOCk:
RATE 1E-1 to 1E-7 not-SCPI 3.190
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BLOCk
:DTCH? not-SCPI 3.191
[:SOURce]:W3GPp:MSTation:ENHanced:DERRor:BLOCk
:DCCH? not-SCPI 3.191
List of Commands SMIQ
1125.5555.03 C.22 E-9
Command Parameter SCPI Info Page
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:SRATe? not-SCPI 3.191
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>
:CHNCode? not-SCPI 3.191
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>
:DATA PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern | DLISt not-SCPI 3.191
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DATA:PA
TTern #B0 to #B111..1, 1 to 24 not-SCPI 3.191
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DAT
A:DSELect 'name' not-SCPI 3.191
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DTCH PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern | DLISt not-SCPI 3.192
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DTC
H:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.192
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>
:DTCH:DSELect 'name' not-SCPI 3.192
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DCCH PN9 | PN11 | PN15 | PN16 | ZERO | ONE |
PATTern | DLISt not-SCPI 3.192
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DC
CH:PATTern #B0 to #B111..1, 1 to 24 not-SCPI 3.192
[:SOURce]:W3GPp:MSTation:ENHanced:CHANnel<i>:DC
CH:DSELect 'name' not-SCPI 3.192
[:SOURce]:W3GPp:MSTation:ADDitional:STATe ON | OFF not-SCPI 3.192
[:SOURce]:W3GPp:MSTation:ADDitional:COUNt 1 to 50 not-SCPI 3.193
[:SOURce]:W3GPp:MSTation:ADDitional:SCODe:STEP #H1 to #H1000 not-SCPI 3.193
[:SOURce]:W3GPp:MSTation:ADDitional:POWer:OFFset -20.0 to 20.0 dB not-SCPI 3.193
:SOURce2:FREQuency[:CW | :FIXed] 0.1 Hz to 1 MHz 3.194
:SOURce2:FREQuency:MANual 0.1 Hz to 1 MHz 3.194
:SOURce2:FREQuency:MODE CW|FIXed | SWEep 3.195
:SOURce2:FREQuency:STARt 0.1 Hz to 1 MHz 3.195
:SOURce2:FREQuency:STOP 0.1 Hz to 1 MHz 3.195
:SOURce2:MARKer1|2|3[:FSWeep]:AOFF 3.196
:SOURce2:MARKer1|2|3[:FSWeep]:FREQuency 0.1 Hz to 1 MHz 3.196
:SOURce2:MARKer1|2|3[:FSWeep][:STATe] ON | OFF 3.196
:SOURce2:MARKer1|2|3:POLarity NORMal | INVerted not-SCPI 3.196
:SOURce2:SWEep:BTIMe NORMal | LONG not-SCPI 3.197
:SOURce2:SWEep[:FREQuency]:DWELl 1 ms to 1 s not-SCPI 3.197
:SOURce2:SWEep[:FREQuency]:MODE AUTO | MANual | STEP not-SCPI 3.197
:SOURce2:SWEep[:FREQuency]:POINts Zahl not-SCPI 3.198
:SOURce2:SWEep[:FREQuency]:SPACing LINear | LOGarithmic not-SCPI 3.198
:SOURce2:SWEep[:FREQuency]:STEP[:LINear] 0 to 500 kHz not-SCPI 3.198
:SOURce2:SWEep[:FREQuency]:STEP:LOGarithmic 0.01 to 50 PCT not-SCPI 3.198
:STATus:OPERation[:EVENt]? 3.199
:STATus:OPERation:CONDition? 3.199
:STATus:OPERation:PTRansition 0 to 32767 3.199
:STATus:OPERation:NTRansition 0 to 32767 3.199
:STATus:OPERation:ENABle 0 to 32767 3.200
:STATus:PRESet 3.200
:STATus:QUEStionable[:EVENt]? 3.200
:STATus:QUEStionable:CONDition? 3.200
SMIQ List of Commands
1125.5555.03 C.23 E-9
Command Parameter SCPI Info Page
:STATus:QUEStionable:PTRansition 0 to 32767 3.200
:STATus:QUEStionable:NTRansition 0 to 32767 3.200
:STATus:QUEStionable:ENABle 0 to 32767 3.200
:STATus:QUEue [:NEXT]? 3.200
:SYSTem:BEEPer:STATe ON | OFF 3.202
:SYSTem:COMMunicate:GPIB:LTERminator EOI | STANdard 3.202
:SYSTem:COMMunicate:GPIB[:SELF]:ADDRess 1 to 30 3.202
:SYSTem:COMMunicate:SDATa:BAUD 1200| 2400| 4800| 9600| 19200| 38400|
57600| 115200 3.202
:SYSTem:COMMunicate:SERial:BAUD 1200| 2400| 4800| 9600| 19200| 38400|
57600| 115200 3.202
:SYSTem:COMMunicate:SERial:CONTrol:RTS ON | IBFull | RFR 3.202
:SYSTem:COMMunicate:SERial:PACE XON | NONE 3.203
:SYSTem:ERRor? 3.203
:SYSTem:KLOCk ON | OFF 3.203
:SYSTem:MODE FIXed | MSEQuence not-SCPI 3.203
:SYSTem:MSEQuence:CATalog? not-SCPI 3.203
:SYSTem:MSEQuence:DELete ' name of sequence ' not-SCPI 3.204
:SYSTem:MSEQuence:DELete:ALL not-SCPI 3.204
:SYSTem:MSEQuence:DWELl 50 ms to 60 s{,50 ms to 60 s} not-SCPI 3.204
:SYSTem:MSEQuence:FREE? not-SCPI 3.204
:SYSTem:MSEQuence:MODE AUTO | STEP not-SCPI 3.204
:SYSTem:MSEQuence[:RCL] 1 to 50 {,1 to 50} not-SCPI 3.204
:SYSTem:MSEQuence[:RCL]:POINts? not-SCPI 3.205
:SYSTem:MSEQuence:SELect ' name of sequence ' not-SCPI 3.205
:SYSTem:PRESet 3.205
:SYSTem:PROTect[:STATe] ON | OFF, Passwort not-SCPI 3.205
:SYSTem:SECurity[:STATe] ON | OFF 3.205
:SYSTem:SERRor? not-SCPI 3.206
:SYSTem:VERSion? 3.206
:SYSTem:SSAVe 1 to 1000 not-SCPI 3.206
:SYSTem:SREStore 1 to 1000 not-SCPI 3.206
! <least sign. byte><most sign. byte> not-SCPI 3.206
:TEST:DIRect:ATTC Subaddress {,hex data string} 3.208
:TEST:DIRect:DGEN Subaddress {,hex data string} 3.208
:TEST:DIRect:DSYN0MUX Subaddress {,hex data string} 3.208
:TEST:DIRect:DSYN1MUX Subaddress {,hex data string} 3.208
:TEST:DIRect:FMOD Subaddress {,hex data string} 3.208
:TEST:DIRect:FSIM1M Subaddress {,hex data string} 3.208
:TEST:DIRect:FSIM2M Subaddress {,hex data string} 3.208
:TEST:DIRect:IQCON Subaddress {,hex data string} 3.208
:TEST:DIRect:IQMOD Subaddress {,hex data string} 3.208
:TEST:DIRect:MCOD Subaddress {,hex data string} 3.208
:TEST:DIRect:NDSim Subaddress {,hex data string} 3.208
:TEST:DIRect:REFSS Subaddress {,hex data string} 3.208
:TEST:DIRect:ROSC Subaddress {,hex data string} 3.208
List of Commands SMIQ
1125.5555.03 C.24 E-9
Command Parameter SCPI Info Page
:TEST:DIRect:SUM Subaddress {,hex data string} 3.208
:TEST:MCOD? 3.209
:TEST:BERT? 3.209
:TEST:FSIM? 3.209
:TEST:RAM? 3.209
:TEST:ROM? 3.209
:TEST:BATTery[:RAM]? 3.209
:TEST:BATTery:DGEN? 3.209
:TRIGger1|2[:SWEep][:IMMediate] not-SCPI 3.210
:TRIGger1|2[:SWEep]:SOURce AUTO | SINGle | EXTernal not-SCPI 3.211
:TRIGger:BERT[:IMMediate] not-SCPI 3.211
:TRIGger:BERT[:IMMediate] not-SCPI 3.211
:TRIGger:LIST[:IMMediate] not-SCPI 3.211
:TRIGger:LIST:SOURce AUTO | SINGle | EXTernal | HO not-SCPI 3.212
:TRIGger:DM[:IMMediate] not-SCPI 3.212
:TRIGger:DM:SOURce AUTO | SINGle | EXTernal not-SCPI 3.212
:TRIGger:MSEQuence[:IMMediate] not-SCPI 3.213
:TRIGger:MSEQuence:SOURce SINGle | EXTernal | AUTO not-SCPI 3.213
:TRIGger:SLOPe POSitive | NEGative not-SCPI 3.213
:UNIT:ANGLe DEGRee | DEGree | RADian 3.214
:UNIT:POWer DBM | DBW | DBMW | DBUW | DBV |
DBMV | DBUV | V 3.214
SMIQ Programming Examples
1125.5555.03 E-7D.1
D Annex D
D.1 Programming Examples
The examples explain the programming of the instrument and can serve as a basis to solve more
complex programming tasks.
QuickBASIC has been used as programming language. However, the programs can be translated into
other languages.
1. Including IEC-Bus Library for QuickBasic
REM ----------- Include IEC-bus library for quickbasic ------------
'$INCLUDE: 'c:\qbasic\qbdecl4.bas
2. Initialization and Default Status
The IEC bus as well as the settings of the instrument are brought into a defined default status at the
beginning of every program. Subroutines "InitController" and "InitDevice" are used to this
effect.
2.1. Initiate Controller
REM ------------ Initiate Instrument -----------
REM InitController
iecaddress% = 28 'IEC-bus address of the instrument
CALL IBFIND("DEV1", generator%) 'Open port to the instrument
CALL IBPAD(generator%, iecaddress%) 'Inform controller on instrument address
CALL IBTMO(generator%, 11) 'Response time to 1 sec
REM ************************************************************************
2.2. Initiate Instrument
The IEC-bus status registers and instrument settings of the SMIQ are brought into the default status.
REM ------------ Initiate Instrument --------------
REM InitDevice
CALL IBWRT(generator%, "*CLS") 'Reset status register
CALL IBWRT(generator%, "*RST") 'Reset instrument
CALL IBWRT(generator%, "OUTPUT ON") 'Switch on RF output
REM*************************************************************************
Programming Examples SMIQ
1125.5555.03 D.2 E-7
3. Transmission of Instrument Setting Commands
Output frequency, output level and AM modulation are set in this example. The settings correspond to
the sample setting for first users in manual control. By analogy to the step width setting of the rotary
knob, the step width is additionally set for the alteration of the RF frequency in the case of UP and
DOWN.
REM -------- Instrument setting commands -------------
CALL IBWRT(generator%, "FREQUENCY 250E6") 'RF Frequency 250 MHz
CALL IBWRT(generator%, "POWER -10") 'Output power -10 dBm
CALL IBWRT(generator%, "AM 80") 'AM with modulaton index of 80%
CALL IBWRT(generator%, "AM:INTERNAL1:FREQUENCY 3KHZ") 'Modulation frequency 3kHz
CALL IBWRT(generator%, "AM:SOURCE INT") 'Modulation source LF generator 1
CALL IBWRT(generator%, "FREQUENCY:STEP 12500") 'Step width RF frequency 12.5kHz
REM ***********************************************************************
4. Switchover to Manual Control
REM -------- Switch instrument over to manual control -----------
CALL IBLOC(generator%) 'Set instrument to Local state
REM ***********************************************************************
5. Reading out Instrument Settings
The settings made in example 3 are read out here. The abbreviated commands are used.
REM --------------- Reading out instrument settings -----------------------
RFfrequency$ = SPACE$(20) 'Provide text variables with 20 characters
CALL IBWRT(generator%, "FREQ?") 'Request frequency setting
CALL IBRD(generator%, RFfrequency$) 'Read value
RFlevel$ = SPACE$(20) 'Provide text variables with 20 characters
CALL IBWRT(generator%, "POW?") 'Request level setting
CALL IBRD(generator%, RFlevel$) 'Read value
AMmodulationdepth$ = SPACE$(20) 'Provide text variables with 20 characters
CALL IBWRT(generator%, "AM?") 'Request setting of modulation depth
CALL IBRD(generator%, AMmodulationdepth$) 'Read value
AMfrequency$ = SPACE$(20) 'Provide text variables with 20 characters
CALL IBWRT(generator%, "AM:INT:FREQ?") 'Request modulation frequency setting
CALL IBRD(generator%, AMfrequency$) 'Read value
Stepwidth$ = SPACE$(20) 'Provide text variables with 20 characters
CALL IBWRT(generator%, "FREQ:STEP?") 'Request step width setting
CALL IBRD(generator%, stepwidth$) 'Read value
REM ---------------------- Display values on the screen ---------------
PRINT "RF frequency: "; RFfrequency$,
PRINT "RF level: "; RFlevel$,
PRINT "AM modulationdepth:"; AMmodulationdepth$,
PRINT "AM frequency: "; AMfrequency$,
PRINT "Step width: "; stepwidth$
REM **********************************************************************
SMIQ Programming Examples
1125.5555.03 E-7D.3
6. List Management
REM ----------------------------- Example of list management -------------------------CALL
IBWRT(generator%, "SYST:MSEQ:SELECT "+CHR$(34)+"MSEQ1"+CHR$(34))
'Select list "MSEQ1", is generated if necessary
CALL IBWRT(generator%, "SYST:MSEQ: 1,3,7,2,5,7,7) 'Fill RCL list with values
CALL IBWRT(generator%, "SYST:MSEQ:DWELL 0.2") '200ms per step
CALL IBWRT(generator%, "TRIGGER:MSEQ:SOURCE AUTO") 'Permanently repeat MSEQ automatically
CALL IBWRT(generator%, "SYST:MODE MSEQ") 'Switch over instrument to MSEQ mode
REM **********************************************************************
7. Command synchronization
The possibilities for synchronization implemented in the following example are described in Section
Command Order and Command Synchronization.
REM ----------------------- Examples of command synchronization ----------------------
REM Command ROSCILLATOR:SOURCE INT has a relatively long execution time
REM (over 300ms). It is to be ensured that the next command is only executed
REM when the reference oscillator has settled.
REM First possibility: Use of *WAI ---------------------------------------------
CALL IBWRT(generator%, "ROSCILLATOR:SOURCE INT; *WAI; :FREQUENCY 100MHZ")
REM Second possibility: Use of *OPC? -------------------------------------------
OpcOk$ = SPACE$(2) 'Space for *OPC? - Provide response
CALL IBWRT(generator%, "ROSCILLATOR:SOURCE INT; *OPC?")
REM ----------- here the controller can service other instruments ----------------------
CALL IBRD(generator%, OpcOk$) 'Wait for "1" from *OPC?
REM Third possibility: Use of *OPC
REM In order to be able to use the service request function in conjugation with a National
REM Instruments GPIB driver, the setting "Disable Auto Serial Poll" must be changed to "yes"
REM by means of IBCONF.
CALL IBWRT(generator%, "*SRE 32") 'Permit service request for ESR
CALL IBWRT(generator%, "*ESE 1") 'Set event-enable bit for operation-complete bit
ON PEN GOSUB OpcReady 'Initialization of the service request routine
PEN ON
CALL IBWRT(generator%, "ROSCILLATOR:SOURCE INT; *OPC")
REM Continue main program here
STOP 'End of program
OpcReady:
REM As soon as the reference oscillator has settled, this subroutine is activated
REM Program suitable reaction to the OPC service request.
ON PEN GOSUB OpcReady 'Enable SRQ routine again
RETURN
REM **********************************************************************
Programming Examples SMIQ
1125.5555.03 D.4 E-7
8. Service Request
The service request routine requires an extended initialization of the instrument in which the respective
bits of the transition and enable registers are set.
In order to be able to use the service request function in conjugation with a National Instruments GPIB
driver, the setting "Disable Auto Serial Poll" must be changed to "yes" by means of IBCONF.
REM -------- Example of initialization of the SRQ in the case of errors --------------
CALL IBWRT(generator%, "*CLS") 'Reset status reporting system
CALL IBWRT(generator%, "*SRE 168") 'Permit service request for STAT:OPER-,
'STAT:QUES- and ESR register
CALL IBWRT(generator%, "*ESE 60") 'Set event-enable bit for command, execution,
'device-dependent and query error
CALL IBWRT(generator%, "STAT:OPER:ENAB 32767") 'Set OPERation enable bit for all events
CALL IBWRT(generator%, "STAT:OPER:PTR 32767") 'Set appropriate OPERation Ptransition bits
CALL IBWRT(generator%, "STAT:OPER:ENAB 32767") 'Set questionable enable bits for all events
CALL IBWRT(generator%, "STAT:OPER:PTR 32767") 'Set appropriate questionable Ptransition bits
ON PEN GOSUB Srq 'Initialization of the service request routine
PEN ON
REM Continue main program here
STOP 'End of program
A service request is then processed in the service request routine.
Note: The variables userN% and userM% must be pre-assigned usefully.
Srq:
REM ------------------- Service request routine ----------------------------
DO
SRQFOUND% = 0
FOR I% = userN% TO userM% 'Poll all bus users
ON ERROR GOTO nouser 'No user existing
CALL IBRSP(I%, STB%) 'Serial poll, read status byte
IF STB% > 0 THE 'This instrument has bits set in the STB
SRQFOUND% = 1
IF (STB% AND 16) > 0 THEN GOSUB Outputqueue
IF (STB% AND 4) > 0 THEN GOSUB Failure
IF (STB% AND 8) > 0 THEN GOSUB Questionablestatus
IF (STB% AND 128) > 0 THEN GOSUB Operationstatus
IF (STB% AND 32) > 0 THEN GOSUB Esrread
END IF
nouser:
NEXT I%
LOOP UNTIL SRQFOUND% = 0
ON ERROR GOTO error handling
ON PEN GOSUB Srq: RETURN 'Enable SRQ routine again;
'End of SRQ routine
SMIQ Programming Examples
1125.5555.03 E-7D.5
Reading out the status event registers, the output buffer and the error/event queue is effected in
subroutines.
REM ---------------- Subroutines for the individual STB bits --------------
Outputqueue: 'Reading the output buffer
Message$ = SPACE$(100) 'Make space for response
CALL IBRD(generator%, Message$)
PRINT "Message in output buffer :"; Message$
RETURN
Failure: 'Read error queue
ERROR$ = SPACE$(100) 'Make space for error variable
CALL IBWRT(generator%, "SYSTEM:ERROR?")
CALL IBRD(generator%, ERROR$)
PRINT "Error text :"; ERROR$
RETURN
Questionablestatus: 'Read questionable status register
Ques$ = SPACE$(20) 'Preallocate blanks to text variable
CALL IBWRT(generator%, "STATus:QUEStionable:EVENt?")
CALL IBRD(generator%, Ques$)
IF (VAL(Ques$) AND 128) > 0 THEN PRINT "Calibration ?" 'Calibration is questionable
IF (VAL(Ques$) AND 1) > 0 THEN PRINT "Voltage ?" 'Output level is questionable
RETURN
Operationstatus: 'Read operation status register
Oper$ = SPACE$(20) 'Preallocate blanks to text variable
CALL IBWRT(generator%, "STATus:OPERation:EVENt?")
CALL IBRD(generator%, Oper$)
IF (VAL(Oper$) AND 1) > 0 THEN PRINT "Calibration"
IF (VAL(Oper$) AND 2) > 0 THEN PRINT "Settling"
IF (VAL(Oper$) AND 8) > 0 THEN PRINT "Sweeping"
IF (VAL(Oper$) AND 32) > 0 THEN PRINT "Wait for trigger"
RETURN
Esrread: 'Read event status register
Esr$ = SPACE$(20) 'Preallocate blanks to text variable
CALL IBWRT(generator%, "*ESR?") 'Read ESR
CALL IBRD(generator%, Esr$)
IF (VAL(Esr$) AND 1) > 0 THEN PRINT "Operation complete"
IF (VAL(Esr$) AND 4) > 0 THEN GOTO Failure
IF (VAL(Esr$) AND 8) > 0 THEN PRINT "Device dependent error"
IF (VAL(Esr$) AND 16) > 0 THEN GOTO Failure
IF (VAL(Esr$) AND 32) > 0 THEN GOTO Failure
IF (VAL(Esr$) AND 64) > 0 THEN PRINT "User request"
IF (VAL(Esr$) AND 128) > 0 THEN PRINT "Power on"
RETURN
REM **********************************************************************
REM --------------------------- Error routine --------------------------------
Error handling:
PRINT "ERROR" 'Output error message
STOP 'Stop software
SMIQ Index
1125.5555.03 I.1 E-9
Index
#
π
/4DQPSK modulation......................................................2.88
A
A field (DECT) ....................................................... 2.332, 3.59
Abort actions triggered......................................................3.17
Active edge (external trigger)........... 2.114, 2.429, 3.77, 3.214
Additional........................................................................3.180
mobile station...........................................................3.192
Additional MS (Enhanced Channels) ..............................2.260
Address
IEC/IEEE bus ................................................ 2.410, 3.202
Addressed commands ....................................................... A.3
ALC TABLE- calibration.......................................2.421, 3.144
AM/AM conversion .........................................................2.387
AM/PM conversion .........................................................2.387
Amplitude marker (RF sweep) ........................................2.397
Amplitude marker (RF-sweep) ........................................3.112
Amplitude modulation ..............................................2.59, 3.50
frequency ..........................................................2.59, 3.50
test procedure ............................................................5.31
ANTENNA DIVERSITY (3GPP W-CDMA)........... 2.196, 3.170
ARB.......................................................................2.341, 3.18
AMIQ compatible commands......................................3.29
Interpolation rate ......................................................2.343
Use of WinIQSIM......................................................2.344
Waveform format........................................................3.23
ARB waveform
Automatic SMIQ settings ................................. 2.352, 3.21
converting...................................................................3.29
Creating manually.......................................................3.25
Data ...........................................................................3.19
Delete..............................................................2.352, 3.19
IQ level............................................................2.355, 3.22
Select.............................................................. 2.349, 3.19
Arbitrary Waveform Generator............................... 2.341, 3.18
test procedure ............................................................5.77
Area constant (fading simulation).............................2.77, 3.88
ASCII character (
#
)...........................................................3.11
Asterix ..............................................................................3.11
Attenuator.........................................................................2.48
Attenuator circuits
indication..................................................................2.427
ATTENUATOR MODE FIXED ..........................................5.17
AWGN signal..................................................................2.383
B
B field (DECT) ....................................................... 2.332, 3.60
Base station
CDMA.......................................................................2.130
configuration (3GPP W-CDMA).................................. 2.193
DECT .......................................................................2.318
Enhanced.................................................................3.183
GSM/EDGE..............................................................2.301
NADC.......................................................................2.262
name (3GPP W-CDMA)............................................2.194
OCNS.......................................................................3.187
PDC .........................................................................2.279
PHS ......................................................................... 2.115
W-CDMA.................................................................. 2.150
Baseband filter
3GPP W-CDMA.............................................2.182, 3.165
GSM/EDGE ............................................................... 3.97
W-CDMA........................................................2.157, 3.154
Battery test
data generator.............................................................. 4.2
RAM............................................................................. 4.2
Test procedure........................................................... 5.41
Baud rate
RS232.................................................... 2.411, 3.202, A.5
SERDATA......................................................2.412, 3.202
BB-AM .................................................................... 2.60, 3.50
BB-AM output..................................................................... 2.7
Beeper .................................................................2.430, 3.202
BER (connector) ............................................................... 1.15
BER interface................................................................... 2.19
BIRTH-DEATH
Dwell period...................................................... 2.84, 3.92
Bit clock
DECT.............................................................. 2.326, 3.56
digital modulation............................................ 2.111, 3.76
NADC.............................................................2.270, 3.118
PDC...............................................................2.287, 3.127
PHS ...............................................................2.123, 3.137
BIT CLOCK input/output....................................2.7, 2.95, 3.77
Bit error (Enhanced Channels)..................3.184, 3.185, 3.190
Bit error rate test
continuous measurement........................................... 3.30
single measurement................................................... 3.30
Bit error rate test BERT...............................2.366, 2.368, 3.30
Break ....................................................................... 2.375
Continuous measurement ........................................ 2.370
Cyclic random sequences ........................................ 2.374
Cyclic restart............................................................ 2.375
Data interruption ...................................................... 2.374
DECT....................................................................... 2.319
Integrating .................................................................2.375
Interrupted random sequence.....................................2.375
Memory wrap-around............................................... 2.375
mode............................................................... 2.370, 3.30
problems and solutions ............................................ 2.377
Single measurement ................................................ 2.370
statistics................................................................... 2.376
synchronization........................................................ 2.377
termination criteria.................................................... 2.376
test procedure............................................................ 5.63
value range.............................................................. 2.376
Bit error rates ................................................................. 2.230
Bit errors (Enhanced Channels) ..................................... 2.244
BITCLK output.................................................................. 2.15
BLANK output ..................................2.21, 2.394, 2.402, 2.429
Blank time ............................................................2.429, 3.149
Block data........................................................................ 3.44
Block error rate measurement BERT
continuous measurement......................................... 2.379
operating mode........................................................ 2.379
termination criteria.................................................... 2.381
Block error rate measurement BLER................................ 3.34
continuous measurement........................................... 3.34
single measurement........................................ 2.379, 3.34
statistics................................................................... 2.380
synchronization........................................................ 2.382
Index SMIQ
1125.5555.03 I.2 E-9
value range ............................................................... 2.380
Boolean parameter .............................................................3.9
Brief instructions.................................................................3.1
Brightness
control (oscilloscope)................................................2.395
display.................................................................1.2, 2.11
Broadband amplitude modulation (BB-AM) ..............2.60, 3.50
test procedure ............................................................5.33
Broadband FM
test assembly ...............................................................5.3
Burst
Normal Burst (GSM/EDGE)......................................2.316
BURST GATE input/output...............................................2.15
Burst gate signal (digital modulation) ............ 2.93, 2.112, 3.71
Burst type
GSM/EDGE..............................................................2.316
BxT rate (digital modulation) .................................. 2.107, 3.75
C
Calibration
ALC TABLE...................................................2.421, 3.144
disable......................................................................3.205
FADING SIM ..............................................................3.37
LEV ATT............................................... 2.422, 2.423, 3.37
LEV PRESET..................................................2.420, 3.38
LEVEL.............................................................2.417, 3.38
password.......................................................2.417, 3.205
REF OSC ........................................................2.417, 3.38
VCO SUM .......................................................2.418, 3.39
VECTOR MOD................................................2.419, 3.39
Cancellation......................................................... 2.228, 2.232
CARRIER/NOISE RATIO ...................................... 2.384, 5.75
Caution messages..........................................................2.433
CCDF (3GPP W-CDMA).................................................2.191
CCDF (ARB)...................................................................2.343
CDMA.................................................................. 2.130, 3.102
CDVCC (NADC) .............................................................2.275
Cell station (CS)
DECT .......................................................................2.318
GSM/EDGE..............................................................2.301
NADC.......................................................................2.262
PDC .........................................................................2.279
PHS..........................................................................2.115
Center frequency (RF sweep)................................ 2.396, 3.80
Channel (CDMA) .................................................2.145, 3.107
Channel coding
enhanced channels ..................................................2.243
Enhanced Channels .................................................3.183
mobile station.....................................................3.189
Channel configuration
base station (3GPP W-CDMA).................................. 2.193
delete (3GPP W-CDMA)................................ 2.180, 3.164
load (3GPP W-CDMA)................................... 2.180, 3.163
mobile station (3GPP W-CDMA)...............................2.199
Several DPCHs (3GPP W-CDMA)............................. 2.208
store (3GPP W-CDMA) ................................. 2.180, 3.163
Channel graph (3GPP W-CDMA)..................................... 2.210
Channel parameters (3GPP W-CDMA) ............................ 2.210
Channel simulation (3GPP W-CDMA) ................... 2.209, 3.171
Channel table DPDCH....................................................2.207
Channel types
3GPP W-CDMA........................................................2.170
Channel-coded P-CCPCH ................................... 2.236, 2.242
Channelization code (3GPP W-CDMA) .......2.197, 2.211, 3.172
step width ................................................................. 2.209
Channelization code (enhanced channels)......................2.251
Channelization code (Enhanced Channels) ....................3.185
Channelization code generator .......................................2.174
Character data....................................................................3.8
Characteristics
distortion .................................................................. 2.387
Check
rated characteristics..................................................... 5.1
Checksum
control list............................................................ 3.41, 4.2
data list ............................................................... 3.40, 4.2
Chip clock
3GPP W-CDMA ..................................2.183, 2.187, 3.168
CDMA............................................................2.143, 3.106
W-CDMA........................................................2.160, 3.156
Chip rate
3GPP W-CDMA.............................................2.182, 2.338
CDMA............................................................2.138, 3.103
W-CDMA........................................................2.157, 3.154
CI - Channel Identifier-data field (PHS) .......................... 2.128
Cleaning the outside........................................................... 4.1
Clipping (3GPP WCDMA).....................................2.182, 3.165
CLIPPING LEVEL (3GPP W-CDMA)
Effect on signal ........................................................ 2.213
Clock recovery (BLER)................................................... 2.382
Clock source
3GPP W-CDMA .............................................. 2.187, 3.168
ARB ................................................................ 2.354, 3.22
CDMA............................................................2.143, 3.106
DECT.............................................................. 2.326, 3.56
digital modulation............................................ 2.111, 3.75
GSM/EDGE .................................................... 2.308, 3.98
NADC.............................................................2.269, 3.118
PDC...............................................................2.286, 3.127
PHS ...............................................................2.123, 3.137
W-CDMA........................................................2.160, 3.156
CMOS-RAM ....................................................................... 1.2
Code domain
Conflict ................................................................... 2.212
Display..................................................................... 2.212
Code tree of channelization codes ....................................2.211
Coding (digital modulation).................2.87, 2.104, 2.108, 3.75
Colon................................................................................ 3.11
Color code data field (PDC)..................................2.293, 2.300
Combination of modulation methods ................................ 2.91
Comma ............................................................................ 3.11
Command
addressed....................................................................A.3
line structure ................................................................ 3.8
list ................................................................................C.1
parameter..................................................................... 3.9
recognition ............................................................... 3.216
sequence ................................................................. 3.217
structure....................................................................... 3.6
synchronization........................................................ 3.217
syntax elements......................................................... 3.11
universal ......................................................................A.3
Commands
AMIQ compatible commands ..................................... 3.29
Common commands............................................... 3.5, 3.14
Complementary cumulative distribution function (3GPP W-
CDMA) ........................................................................... 2.191
Condition register ........................................................ 3.219
Constellation (3GPP W-CDMA)...................................... 2.192
Constellation of previous perch channel......................... 2.221
Contrast (display)...................................................... 1.2, 2.11
Control list (digital modulation) ......................2.93, 2.103, 3.71
checksum................................................................... 3.40
Conversion
AM/AM..................................................................... 2.387
interpolation points............................................. 2.387
AM/PM..................................................................... 2.387
Interpolation points ............................................ 2.387
Copy data of a base/mobile station (3GPP W-CDMA)2.184,
3.167
Correlation (fading simulation).......................................... 3.88
SMIQ Index
1125.5555.03 I.3 E-9
Counter.................................................................. 2.427, 3.42
Coupled parameters ................................................2.74, 3.86
Coupling
EXT1 (AM) ........................................................2.59, 3.50
EXT1/2
FM...............................................................2.61, 3.78
PM ............................................................2.63, 3.142
CRC
Polynomial................................................................2.380
CRC (Cyclic Redundancy Code).....................................2.333
Crest factor.....................................................................2.230
3GPP W-CDMA............................................. 2.189, 3.166
enhanced Channels..................................................2.257
Enhanced Channels .................................................3.188
Crosstalk ........................................................................2.233
CS-ID - Cell Station ID (PHS) .............................. 2.128, 3.140
CW input/output................................................................2.15
CW signal (digital modulation) ..........................................2.93
D
Data
bits (RS232) ......................................................2.411, A.5
input/output ................................................ 2.7, 2.13, 2.96
lines (IEC/IEEE-bus) ................................................... A.1
offset ........................................................................3.158
rate (CDMA) .................................................. 2.145, 3.108
Data enable input............................................................2.375
Data generator
installation ....................................................................1.7
test procedure ............................................................5.41
Data list ...........2.129, 2.147, 2.275, 2.294, 2.313, 2.333, 3.69
checksum............................................................3.41, 4.2
enhanced channels ..................................................2.252
GSM/EDGE..............................................................2.317
Data source....................................................................2.174
data field........................................................ 2.251, 3.186
DCCH field ...............................................................3.192
DCCH field ...............................................................3.186
DTCH field................................................................3.186
DTCH field................................................................3.192
TPC field ....................................................... 2.252, 3.187
DC voltage offset
test procedure ............................................................5.78
DCL................................................................................3.215
Decimal point...............................................................2.3, 3.9
DECT.....................................................................2.318, 3.53
test procedure ............................................................5.47
Default setting
3GPP W-CDMA............................................. 2.335, 2.336
Default setting (3GPP W-CDMA)......................... 2.180, 3.163
Default setting (CDMA)........................................2.138, 3.103
Default setting (W-CDMA) ................................... 2.156, 3.153
Default values (3GPP W-CDMA)....................................2.216
Delay
clock
3GPP W-CDMA....................................... 2.187, 3.168
ARB ..........................................................2.354, 3.22
CDMA ..................................................... 2.143, 3.106
DECT........................................................2.326, 3.56
digital modulation ...................................... 2.111, 3.76
GSM/EDGE............................................... 2.309, 3.99
NADC...................................................... 2.270, 3.118
PDC ........................................................ 2.287, 3.127
PHS ........................................................ 2.123, 3.137
signal
3GPP W-CDMA ........................... 2.186, 2.337, 3.168
ARB ..........................................................2.347, 3.20
DECT........................................................2.325, 3.56
GSM/EDGE............................................... 2.308, 3.98
NADC ......................................................2.269, 3.118
PDC.........................................................2.286, 3.127
PHS.........................................................2.122, 3.136
trigger
3GPP W-CDMA............................2.185, 2.336, 3.167
ARB.......................................................... 2.347, 3.20
CDMA......................................................2.141, 3.105
DECT........................................................ 2.325, 3.56
digital modulation...................................... 2.110, 3.77
GSM/EDGE .............................................. 2.307, 3.98
NADC ......................................................2.268, 3.117
PDC.........................................................2.285, 3.127
PHS.........................................................2.122, 3.136
W-CDMA .................................................2.159, 3.155
Delay range
Fading simulation....................................................... 2.84
Delete
all data stored ................................................2.413, 3.205
frame (DECT).................................................. 2.329, 3.58
frame (GSM/EDGE).......................................2.311, 3.100
frame (NADC) ................................................2.272, 3.120
frame (PDC)...................................................2.289, 3.129
frame (PHS)...................................................2.125, 3.139
list .............................................................................. 2.33
list entry ..................................................................... 2.39
mapping (CDMA) ...........................................2.145, 3.107
memory..........................................................2.413, 3.205
Delimiter......................................................................... 3.215
Delta phase..........................................................2.415, 3.133
Demultiplexer ................................................................. 2.176
Detuning, external .......................................................... 2.414
Deviation
FM .................................................................... 2.61, 3.78
FSK (digital modulation).................................. 2.106, 3.75
PM .................................................................. 2.63, 3.142
Deviation error
FSK............................................................................ 5.39
GFSK......................................................................... 5.40
Deviation limits
FM ............................................................................. 2.62
PM ............................................................................. 2.64
Differential coding (digital modulation)................... 2.104, 3.75
Digit cursor....................................................................... 2.23
Digital modulation.................................................... 2.86, 3.65
coding ............................................................... 2.87, 3.75
constellation diagram ................................................. 2.87
control list........................................................ 2.103, 3.71
data list2.103, 2.129, 2.147, 2.275, 2.294, 2.313, 2.333,
3.69
envelope control.............................................. 2.99, 2.112
FSK............................................................................ 2.89
menu........................................................................ 2.101
modulation data ......................................2.92, 2.102, 3.69
modulation methods................................................... 2.87
PRBS data................................................................. 2.94
PSK ........................................................................... 2.87
QAM .......................................................................... 2.87
setting conflicts .......................................................... 2.91
test procedure............................................................ 5.38
trigger.............................................................. 2.109, 3.77
Digital standard
3GPP W-CDMA.............................................2.169, 3.159
DECT.............................................................. 2.318, 3.53
GSM/EDGE .................................................... 2.301, 3.96
IS-95 CDMA...................................................2.130, 3.102
NADC.............................................................2.262, 3.115
PDC...............................................................2.279, 3.124
PHS ...............................................................2.115, 3.134
test procedure............................................................ 5.45
W-CDMA........................................................2.150, 3.152
Digital synthesis (slot) ........................................................ 1.5
Disabling keyboard......................................................... 3.203
Index SMIQ
1125.5555.03 I.4 E-9
Display
brightness...................................................................2.11
contrast ......................................................................2.11
test procedure ..............................................................5.8
Distortion characteristics.................................................2.387
calculation from polynomial equations ......................2.390
enter a new distortion characteristic .........................2.389
loading new distortion characteristics .......................2.387
selection...................................................................2.385
Distortion simulation
test procedure ............................................................5.70
Distortion simulator.........................................................2.383
level correction.........................................................2.388
Domain conflict.............................................................2.212
Doppler shift
Fading simulation ...........2.76, 2.80, 2.84, 3.87, 3.89, 3.92
Downlink
DECT .......................................................................2.318
GSM/EDGE..............................................................2.301
NADC.......................................................................2.262
PDC .........................................................................2.279
PHS..........................................................................2.115
Downlink signal
3 GPPW-CDMA............................................. 2.182, 3.165
DPCCH POWER ............................................................2.256
DPDCH POWER ............................................................2.255
DUMMY Burst (GSM/EDGE) ..........................................2.314
Duration blank signal ...........................................2.429, 3.197
Dwell list
LIST .........................................................................2.404
MSEQ ...........................................................2.406, 3.204
Dwell time
level sweep ................................................... 2.398, 3.150
LF sweep....................................................... 2.400, 3.197
LIST .............................................................. 2.404, 3.110
MSEQ ...........................................................2.409, 3.204
RF sweep...................................................... 2.397, 3.149
E
ECL output .....................................................................2.114
Edge (external trigger)..................... 2.114, 2.429, 3.77, 3.214
Edit list..............................................................................2.35
EMF..................................................................................2.53
Enable register ...............................................................3.219
Encryption scrambling (PHS)............................... 2.127, 3.140
Enhanced channels
bit error.......................................................... 3.185, 3.190
bit errors...................................................................2.244
channel coding .........................................................2.243
channel start power ..................................................2.251
channelization code..................................................2.251
data source ..............................2.251, 2.252, 3.186, 3.192
external power control mechanismus........................2.254
multicode..................................................................2.252
symbol rate...............................................................2.256
Enhanced Channels ............................................2.236, 3.180
Additional MS ...........................................................2.260
Base station .............................................................3.183
bit error.....................................................................3.184
Branching with 3GPP W-CDMA ...............................2.237
channel coding .........................................................3.183
channel start power ..................................................3.185
channelization code..................................................3.185
crest factor .................................................... 2.257, 3.188
data field...................................................................3.187
data source ..............................................................3.186
External power control..............................................2.256
external power control mechanism ..... 2.246, 3.183, 3.189
Maximum input level.................................................2.259
mobile station........................................................... 3.188
Multicode ................................................................. 3.187
OCNS channels ....................................................... 3.187
Overall symbol rate in uplink.................................... 2.255
overall symbol rate uplink......................................... 3.190
sequence length....................................................... 3.184
Sequence length...................................................... 2.248
symbol rate ....................................................2.248, 3.184
test procedure............................................................ 5.62
timing offset ...................................................2.249, 3.184
Enhanced P-CCHCP/BCH State.................................... 2.241
Envelope control
DECT.............................................................. 2.327, 3.56
digital modulation....................................2.99, 2.112, 3.76
GSM/EDGE .................................................... 2.309, 3.99
NADC.............................................................2.270, 3.118
PDC...............................................................2.287, 3.128
PHS ...............................................................2.124, 3.137
Envelopes (3GPP W-CDMA) ........................................ 2.224
EOI (command line) ........................................................... 3.8
EPROM, test...................................................................... 4.2
Equalizer (CDMA) .......................................................... 2.138
Error messages............................................ 2.433, 3.206, B.1
Error queue ...............................................3.200, 3.203, 3.226
Error rate measurement BLER
operating mode.......................................................... 3.34
Error vector
noise generation and distortion simulation ................. 5.75
PSK ........................................................................... 5.40
QAM .......................................................................... 5.40
test procedure............................................................ 5.27
Error vector magnitude
measure..................................................................... 5.27
ESE (event status enable register)................................. 3.222
Event status enable register (ESE) ................................ 3.222
Exponent............................................................................ 3.9
EXT TUNE input.................................................... 2.21, 2.414
EXT1/2
coupling .......................2.59, 2.61, 2.63, 3.50, 3.78, 3.142
input........................................................................... 2.21
External detuning ........................................................... 2.414
External modulation sources ........................................ 2.55
External power control
Enhanced Channels................................................. 2.256
External power control mechanism.2.246, 2.254, 3.183, 3.189
External reference................................................2.414, 3.148
External trigger
active edge ................................2.114, 2.429, 3.77, 3.214
LIST...............................................................2.402, 3.212
MSEQ............................................................2.407, 3.214
sweep ............................................................2.394, 3.210
F
Fading simulation.................................................... 2.70, 3.82
Area constant.................................................... 2.77, 3.88
BIRTH-DEATH........................................................... 2.83
Configuration.............................................2.72, 2.73, 3.84
Correlation ........................................................ 2.77, 3.88
Correlation between paths ......................................... 2.72
Correlation coefficient ....................................... 2.77, 3.88
Coupled parameters.......................................... 2.74, 3.86
Delay range................................................................ 2.84
Doppler shift...................2.76, 2.80, 2.84, 3.87, 3.89, 3.92
Dwell period...................................................... 2.84, 3.92
Fine Delay.................................................................. 2.78
Insertion loss....................................2.74, 2.84, 3.86, 3.91
Log Normal fading............................................. 2.77, 3.88
Moving Delay............................................................. 2.81
Output power ............................................................. 2.71
SMIQ Index
1125.5555.03 I.5 E-9
Profile.............................2.75, 2.80, 2.84, 3.87, 3.89, 3.92
Pseudo Noise Generator ...................................2.73, 3.84
Rayleigh fading................................ 2.75, 2.80, 3.87, 3.89
Ricean fading ....................................................2.75, 3.87
Signal delay...........2.76, 2.80, 2.82, 2.84, 3.88, 3.90, 3.92
Standard Fading.........................................................2.73
test assembly ...............................................................5.6
test procedure ............................................................5.64
Time grid ....................................................................2.84
Two-channel fading ....................................................2.71
Variation period .................................................2.82, 3.91
Fading simulator
calibration...................................................................3.37
installation ....................................................................1.8
slot ...............................................................................1.5
test................................................................................ 4.2
FBI (3GPP W-CDMA)............................... 2.175, 2.204, 2.206
Filter
3GPP W-CDMA.............2.182, 2.183, 2.339, 3.165, 3.166
CDMA............................................................2.138, 3.104
DECT .............................................................. 2.323, 3.55
digital modulation.............................................2.107, 3.75
GSM/EDGE............................................ 2.306, 3.97, 3.98
NADC............................................................2.267, 3.116
PDC .............................................................. 2.284, 3.126
PHS............................................................... 2.120, 3.135
W-CDMA....................................................... 2.157, 3.154
Filtering...........................................................................2.177
Fitting options.....................................................................1.4
FM coupling............................................................. 2.61, 3.78
deviation............................................................ 2.61, 3.78
deviation limits............................................................2.62
frequency ..........................................................2.61, 3.79
modulator .....................................................................1.6
slot .........................................................................1.5
preemphasis............................................. 2.61, 2.62, 3.79
Format, data (IEC/IEEE bus) ............................................3.44
Forward link signal (CDMA)................................. 2.136, 3.103
Frame
DECT .............................................................. 2.328, 3.57
GSM/EDGE...................................................2.310, 3.100
NADC............................................................2.272, 3.120
PDC .............................................................. 2.288, 3.129
PHS............................................................... 2.125, 3.138
Frequency
accuracy......................................................................1.2
AM.....................................................................2.59, 3.50
FM.....................................................................2.61, 3.79
indication....................................................................2.22
suppression...............................................2.413, 3.43
LF generator.................................................. 2.391, 3.194
LF sweep....................................................... 2.399, 3.195
list (LIST)....................................................... 2.401, 3.111
offset .................................................................2.45, 3.81
PM................................................................... 2.63, 3.143
RF output signal .........................................................3.80
RF sweep........................................................ 2.396, 3.81
test procedure ..............................................................5.8
Frequency marker
LF sweep....................................................... 2.400, 3.196
RF sweep...................................................... 2.397, 3.112
Frequency modulation (FM)..................................... 2.61, 3.78
test procedure ............................................................5.34
Frequency range (3GPP W-CDMA)................................2.225
Frequency sweep
LF..................................................................2.399, 3.197
RF .................................................................2.396, 3.149
FSK modulation (digital modulation) .................................2.89
Full rate (CDMA).................................................. 2.146, 3.108
Functional test ....................................................................4.1
G
GET (Group Execute Trigger) ........................................ 3.216
GPS.. ............................................................................... 3.93
GSM/EDGE........................................................... 2.301, 3.96
test procedure............................................................ 5.46
Guard data field
DECT....................................................................... 2.333
GSM/EDGE ............................................................. 2.314
NADC....................................................................... 2.274
PDC....................................................2.295, 2.297, 2.299
PHS ......................................................................... 2.129
H
Half rate (CDMA)..................................................2.146, 3.108
Handshake (RS232)..................................... 2.411, 3.202, A.6
Header (commands)........................................................... 3.6
Header field (display) ..................................................... 2.22
HOP mode(LIST)..................................................2.402, 3.213
HOP output ...................................................................... 2.15
HOP trigger signal (GSM/EDGE)..........................2.312, 3.101
Hopping.......................................................................... 2.316
Hopping signal (digital modulation)................................... 2.93
I
I FADED output................................................................ 2.13
I/Q constellation diagram ................................................. 2.87
filter............................................................................ 2.68
modulation ..............................................2.66, 2.356, 3.65
I/Q imbalance
test procedure............................................................ 5.29
I/Q modulator
calibration ....................................................... 2.419, 3.39
Idle data field (PHS)....................................................... 2.129
IEC/IEEE bus
address..........................................................2.410, 3.202
interface..............................................................2.19, A.1
language.................................................................. 2.414
Imbalance ............................................................... 2.67, 3.66
Impairment ......................................................2.67, 2.69, 3.65
Indentations.................................................................... 3.12
Indication
attenuator circuits..................................................... 2.427
counter..................................................................... 2.427
error messages..............................................2.433, 3.200
modules .......................................................... 2.424, 3.41
operating hours.......................................................... 3.42
operating-hours........................................................ 2.427
serial number .................................................. 2.427, 3.15
software version.............................................. 2.427, 3.42
suppress .................................................................. 2.413
Inhibition of retrigger
3GPP W-CDMA.............................................2.185, 3.167
ARB ................................................................ 2.347, 3.20
CDMA............................................................2.141, 3.105
DECT.............................................................. 2.325, 3.56
digital modulation............................................ 2.110, 3.77
GSM/EDGE .................................................... 2.307, 3.98
NADC.............................................................2.269, 3.117
PDC...............................................................2.286, 3.127
PHS ...............................................................2.122, 3.136
W-CDMA........................................................2.159, 3.155
Inhibition trigger
3GPP W-CDMA ....................................................... 2.337
Initial status........................................................................ 1.2
Input................................................................................. 2.15
Index SMIQ
1125.5555.03 I.6 E-9
BIT CLOCK .........................................................2.7, 2.95
buffer........................................................................3.215
correction ...................................................................2.27
CW.............................................................................2.15
data............................................................................2.13
DATA ..................................................................2.7, 2.96
Data enable..............................................................2.375
DATA-Dx....................................................................2.97
EXT TUNE ......................................................2.21, 2.414
EXT1/2.......................................................................2.21
LEV-ATT ....................................................................2.15
POW RAMP ......................................................2.17, 2.99
PULS..........................................................................2.21
REF............................................................................2.19
RES..........................................................................2.375
resistance.......................................................... 2.19, 2.21
SER DATA ........................................................2.17, 2.98
SYMBCLK.........................................................2.13, 2.97
SYMBOL CLOCK................................................2.7, 2.95
TRIGGER.............2.21, 2.394, 2.402, 2.407, 2.429, 3.214
TRIGIN.......................................................................2.15
Inputs for modulations ......................................................2.55
Insert list entry..................................................................2.38
Installation
options..........................................................................1.4
software options.........................................1.15, 2.431
Instrument reset.............................................. 1.3, 3.16, 3.205
Instrument settings
recall .................................................................2.43, 3.16
save ..................................................................2.43, 3.16
Integrating BER measurement ......................................... 2.375
Interface
BER............................................................................2.19
functions (IEC/IEEE-bus)............................................. A.2
functions (RS-232-C)................................................... A.5
IEC/IEEE-bus.............................................................2.19
messages (IEC/IEEE-bus)........................................... A.3
PAR DATA .................................................................2.97
RS232 ........................................................................2.19
SERDATA ...........................................................2.98, A.7
Interleaver function (Enhanced Channels) ......................3.183
Intermodulation suppression.............................................2.50
Interpolation rate (ARB)..................................................2.343
Interrupt..........................................................................3.221
Interrupt-free level setting.................................................2.50
IQ AUX output ..................................................................2.13
IQ Multiplex (W-CDMA) ..................................................2.165
IS-95 CDMA ........................................................ 2.130, 3.102
test procedure ............................................................5.51
IST flag.............................................................................3.15
J
Jitter simulation (DECT)..................................................2.328
K
Key-/...................................................................................2.3
[ASSIGN]...........................................................2.11, 2.25
[BACKSPACE] .............................................................2.3
[ERROR] ...........................................................2.9, 2.433
[FREQ]................................................................2.3, 2.45
[G/n
]
.............................................................................
2.5
[HELP]............................................................... 2.9, 2.432
[k/m] .............................................................................2.5
[LEVEL]...............................................................2.3, 2.47
[LOCAL] ................................................................2.9, 3.3
[M/
µ]
.............................................................................
2.5
[MENU 1/2] ....................................................... 2.11, 2.25
[MOD ON/OFF].........................................2.9, 2.58, 2.428
[PRESET] ............................................................. 1.3, 2.9
[RCL] .................................................................. 2.3, 2.43
[RETURN]........................................................... 2.5, 2.23
[RF ON/OFF] ..............................................2.9, 2.26, 2.54
[SAVE]................................................................ 2.3, 2.43
[SELECT]............................................................ 2.5, 2.23
[STATUS].......................................................... 2.9, 2.432
[X1/Enter]..................................................................... 2.5
Key words (commands)...................................................... 3.6
Keyboard
disabling................................................................... 3.203
test procedure.............................................................. 5.8
L
Leakage .................................................................. 2.67, 3.66
LEARN (LIST mode) ............................................2.404, 3.111
LEV ATT
calibration .............................................2.422, 2.423, 3.37
input/output................................................................ 2.15
Level
attenuation
DECT........................................................ 2.328, 3.57
digital modulation..............................2.93, 2.112, 3.77
GSM/EDGE .............................................. 2.310, 3.99
NADC ......................................................2.271, 3.119
PDC.........................................................2.288, 3.128
PHS.........................................................2.125, 3.138
calibration .................................................................. 3.38
control............................................................. 2.50, 3.144
control of burst
DECT........................................................ 2.327, 3.56
digital modulation...................................... 2.112, 3.76
GSM/EDGE .............................................. 2.309, 3.99
NADC ......................................................2.270, 3.118
PDC.........................................................2.287, 3.128
PHS.........................................................2.124, 3.137
correction
list UCOR.................................................... 2.52, 3.51
indication.................................................................... 2.22
resolution............................................................. 2.48
suppression .............................................. 2.413, 3.43
limit ................................................................. 2.48, 3.145
list ..................................................................2.401, 3.111
marker............................................................2.399, 3.113
offset............................................................... 2.48, 3.145
presetting (calibration)................................................ 3.38
RF output........................................................ 2.47, 3.145
sweep .................................................2.398, 3.146, 3.150
test procedure............................................................ 5.12
unit..........................................................2.26, 2.47, 3.215
Level correction
polynomial................................................................ 2.386
Polynomial ................................................................. 3.64
Level reduction
GSM/EDGE ............................................................. 2.316
LF frequency.......................................................2.391, 3.194
generator ..............................................2.57, 2.391, 3.194
output......................................................2.21, 2.391, 3.48
sweep ............................................................2.399, 3.195
Link direction
3 GPP W-CDMA ............................................2.182, 3.165
List commands ...................................................................C.1
control (digital modulation) ......................2.93, 2.103, 3.71
delete......................................................................... 2.34
SMIQ Index
1125.5555.03 I.7 E-9
dwell (LIST)................................................... 2.404, 3.110
dwell (MSEQ)................................................ 2.406, 3.204
edit .............................................................................2.35
fill................................................................................2.36
frequency (LIST)............................................ 2.401, 3.111
function LEARN............................................. 2.404, 3.111
generate.....................................................................2.33
instrument states (MSEQ) ........................................3.204
level (LIST).................................................... 2.401, 3.111
level correction (UCOR).....................................2.52, 3.51
manual processing of the list ....................................2.402
open...........................................................................2.33
operating modes (LIST)...................... 2.401, 3.110, 3.213
operating modes (MSEQ)................... 2.407, 3.204, 3.214
select..........................................................................2.33
store...........................................................................2.35
LIST
inputs/outputs...........................................................2.402
operating modes.......................................................3.111
List entry
delete .........................................................................2.39
insert ..........................................................................2.38
Load
frame (DECT).................................................. 2.329, 3.58
frame (GSM/EDGE).......................................2.311, 3.100
frame (NADC)................................................ 2.272, 3.120
frame (PDC) ..................................................2.289, 3.129
frame (PHS) ..................................................2.125, 3.138
mapping (CDMA)........................................... 2.144, 3.107
Log Normal fading ...................................................2.77, 3.88
Long form (commands).......................................................3.7
Low-distortion mode
CDMA.......................................................................3.104
digital modulation........................................................3.76
NADC............................................................2.267, 3.117
PDC .............................................................. 2.284, 3.126
PHS..........................................................................3.136
W-CDMA....................................................... 2.158, 3.155
Lower-case (commands) ....................................................3.7
M
Magnitude spectrum of a W-CDMA signal ......................2.225
Maintenance.......................................................................4.1
Mapping (CDMA).................................................2.144, 3.106
Mapping data list (digital modulation)................................3.72
Marker
level sweep ................................................... 2.399, 3.113
LF sweep....................................................... 2.400, 3.196
RF sweep...................................................... 2.397, 3.112
MARKER
output ...................2.21, 2.395, 2.403, 2.429, 3.113, 3.196
Maximal deviation
FM..............................................................................2.62
PM..............................................................................2.64
Maximum input level (Enhanced Channels)....................2.259
Maximum value (commands)..............................................3.9
Memory
delete ............................................................ 2.413, 3.205
depth (data generator)................................................2.92
extension....................................................................2.86
installation..............................................................1.7
sequence (MSEQ).............................. 2.406, 3.203, 3.214
Memory extension SMIQB12
test procedure ............................................................5.41
Menu
ANALOG MOD - AM...................................................2.59
ANALOG MOD - BB-AM.............................................2.60
ANALOG MOD - FM...................................................2.61
ANALOG MOD - PM...................................................2.63
BIRTH-DEATH........................................................... 2.83
call............................................................................. 2.25
cursor......................................................................... 2.23
DIGITAL MOD.......................................................... 2.101
DIGITAL STD - DECT.............................................. 2.322
DIGITAL STD - GSM/EDGE .................................... 2.305
DIGITAL STD - IS-95- MODE - FWD_LINK_18........ 2.136
DIGITAL STD - IS-95- MODE - REV_LINK .............. 2.146
DIGITAL STD - IS-95- MODE - REV_LINK_CODED 2.148
DIGITAL STD - NADC.............................................. 2.266
DIGITAL STD - PDC................................................ 2.283
DIGITAL STD - PHS ................................................ 2.119
DIGITAL STD - WCDMA/3GPP - Downlink.............. 2.338
DIGITAL STD - WCDMA/3GPP – downlink menu.... 2.179
ERROR.................................................................... 2.433
fields ......................................................................... 2.23
FINE DELAY.............................................................. 2.78
FREQUENCY ............................................................ 2.45
HELP ....................................................................... 2.432
keys ............................................................................. 2.5
LEVEL - ALC .................................................... 2.51, 2.53
LEVEL - EMF............................................................. 2.53
LEVEL - LEVEL ......................................................... 2.47
LEVEL - UCOR.......................................................... 2.52
LF OUTPUT............................................................. 2.391
LIST......................................................................... 2.403
MEM SEQ................................................................ 2.408
MODULATION - PULSE ............................................ 2.65
MOVING DELAY........................................................ 2.81
NOISE/DIST ............................................................ 2.384
NOISE/DIST - POLYNOMIAL .................................. 2.385
overview (3GPP W-CDMA)...................................... 2.178
path............................................................................ 2.23
quick selection ........................................................... 2.25
STATUS................................................................... 2.432
store.......................................................................... 2.25
summary.................................................................... 2.44
SWEEP - FREQ....................................................... 2.396
SWEEP - LEVEL ..................................................... 2.398
SWEEP - LF GEN.................................................... 2.399
UTILITIES - AUX I/O................................................ 2.429
UTILITIES - BEEPER .............................................. 2.430
UTILITIES - CALIB - ALC TABLE ............................ 2.421
UTILITIES - CALIB - ALL ......................................... 2.417
UTILITIES - CALIB - LEV ATT................................. 2.422
UTILITIES - CALIB - LEV PRESET.......................... 2.420
UTILITIES - CALIB - VCO SUM............................... 2.418
UTILITIES - CALIB - VECTOR MOD........................ 2.419
UTILITIES - DIAG - C/N MEAS................................ 2.426
UTILITIES - DIAG - CONFIG ................................... 2.424
UTILITIES - DIAG - PARAM .................................... 2.427
UTILITIES - DIAG - TPOINT.................................... 2.425
UTILITIES - INSTALL .............................................. 2.431
UTILITIES - MOD KEY ............................................ 2.428
UTILITIES - PHASE................................................. 2.415
UTILITIES - PROTECT............................................ 2.416
UTILITIES - REF OSC............................................. 2.414
UTILITIES - SYSTEM - GPIB................................... 2.410
UTILITIES - SYSTEM - LANGUAGE ....................... 2.414
UTILITIES - SYSTEM - RS232 ................................ 2.411
UTILITIES - SYSTEM - SECURITY ......................... 2.413
UTILITIES - SYSTEM - SERDATA .......................... 2.412
UTILITIES - TEST........................................................ 4.2
VECTOR MOD........................................................... 2.67
Menü
DIGITAL STD - WCDMA/3GPP - Downlink.............. 2.335
Messages
IEC/IEEE-bus............................................................... 3.5
RS232.......................................................................... 3.5
Minimum value (commands)............................................... 3.8
Misuse (3GPP W-CDMA)..........................2.195, 2.206, 3.169
Mobile station
Index SMIQ
1125.5555.03 I.8 E-9
additional..................................................................3.192
CDMA.......................................................................2.130
configuration (3GPP W-CDMA)................................2.199
Enhanced.................................................................3.188
W-CDMA..................................................................2.150
Modulation
AM.....................................................................2.59, 3.50
analog
test assembly.........................................................5.2
BB-AM............................................................... 2.60, 3.50
data (digital modulation) ........2.92, 2.96, 2.97, 2.102, 3.69
asynchronous transmission..................................2.98
DECT .............................................................. 2.318, 3.53
Delay........................................................................2.106
digital.................................................................2.86, 3.67
external signal ............................................................2.56
FM.....................................................................2.61, 3.78
GSM/EDGE.....................................................2.301, 3.96
I/Q .....................................................................2.66, 3.65
inputs .........................................................................2.55
IS-95 CDMA.................................................. 2.130, 3.102
methods (digital modulation).......................................2.87
NADC............................................................2.262, 3.115
PDC .............................................................. 2.279, 3.124
PHS............................................................... 2.115, 3.134
PM................................................................... 2.63, 3.142
pulse ...............................................................2.65, 3.147
simultaneous ..............................................................2.57
sources.......................................................................2.55
vector ................................................................2.66, 3.65
W-CDMA..................................................................2.150
Modulation coder
installation ..................................................................1.13
Modulation data
GSM/EDGE..............................................................2.317
Modulation depth
AM.....................................................................2.59, 3.50
ASK............................................................................5.39
DECT .........................................................................3.55
PM................................................................... 2.63, 3.142
Modulation generator
test procedure ............................................................5.25
Module indication...................................................2.424, 3.41
MSEQ (Memory Sequence)...................... 2.406, 3.203, 3.214
Multi Channel (3GPP W-CDMA).....................................2.208
Multichannel (3GPP W-CDMA).......................................3.170
Multicode........................................................................2.177
3GPP W-CDMA ........................................................ 3.173
Channel simulation (3GPP W-CDMA) ............. 2.209, 3.171
enhanced channels ..................................................2.252
Enhanced Channels .................................................3.187
W-CDMA....................................................... 2.161, 3.156
Multiplex
Link Direction (W-CDMA) .........................................2.156
Multisignal measurements ................................................2.50
N
NADC.................................................................. 2.262, 3.115
test procedure ............................................................5.48
Name of sequence (MSEQ)................................... 2.34, 3.205
NAN....................................................................................3.9
New Line (command line) ...................................................3.8
NINF...................................................................................3.9
Noise generation
test procedure ............................................................5.70
Noise generator and distortion simulator...................2.383
installation ................................................................1.12
NORM, Normal Burst (GSM/EDGE) ...............................2.312
NTRansition register ....................................................3.219
Numeric
input field ..................................................................... 2.3
suffix ............................................................................ 3.7
values ................................................................... 2.3, 3.9
Nyquist filter
3GPP W-CDMA.............................................2.182, 3.165
CDMA.................................................2.138, 2.139, 3.104
DECT.............................................................. 2.323, 3.55
NADC.............................................................2.267, 3.116
PDC...............................................................2.284, 3.126
PHS ...............................................................2.120, 3.135
W-CDMA........................................................2.157, 3.154
O
OCNS............................................................................. 3.180
base station ............................................................. 3.187
Measurement........................................................... 2.260
OCNS channels ............................................................. 3.187
fraction of power ...................................................... 2.258
Offset
frequency.......................................................... 2.46, 3.81
level ................................................................ 2.48, 3.145
Operating hours ............................................................... 3.42
Operating modes
LIST................................ 2.401, 3.81, 3.111, 3.146, 3.212
MSEQ.................................................2.407, 3.203, 3.214
sweep .................. 2.393, 3.81, 3.146, 3.149, 3.197, 3.210
Operating-hours ............................................................. 2.427
Option
fitting............................................................................ 1.4
SM-B1 - Reference oscillator OCXO................. 1.5, 2.414
SM-B5 - FM/PM modulator..........................1.6, 2.61, 2.63
SMIQB11 - Data Generator................................. 1.7, 2.92
SMIQB12 - Memory Extension................................... 2.92
SMIQB14 - Fading Simulator ....................................... 1.8
SMIQB15 - Second Fading Simulator ........................ 1.10
SMIQB17 - Noise generator and distortion simulator
....................................................................... 1.12, 2.383
SMIQB19 - Rear panel connections for RF and LF .... 1.16
SMIQB20 - Modulation Coder ........................... 1.13, 2.86
SMIQB21 – Bit Error Rate Test....................... 1.14, 2.368
SMIQB42 - Digital Standard IS-95 CDMA ................ 2.130
SMIQB47 - LOW ACP Filter....................................... 2.68
SMIQB48 - Enhanced Channels .............................. 2.236
SMIQB60 - Arbitrary Waveform Generator............... 2.341
Orthogonality ......................................................... 2.226, 2.230
Output
BB-AM ......................................................................... 2.7
BIT CLOCK.................................................................. 2.7
BITCLK ...................................................................... 2.15
BLANK.......................................2.21, 2.394, 2.402, 2.429
buffer ....................................................................... 3.217
CW............................................................................. 2.15
data............................................................................ 2.13
DATA........................................................................... 2.7
ECL.......................................................................... 2.114
HOP........................................................................... 2.15
I FADED..................................................................... 2.13
IQ AUX ...................................................................... 2.13
LEV-ATT.................................................................... 2.15
level RF........................................................... 2.47, 3.144
LF ...........................................................2.21, 2.391, 3.48
MARKER ............. 2.21, 2.395, 2.403, 2.429, 3.113, 3.196
POW RAMP...................................................... 2.17, 2.99
Q.................................................................................. 2.9
Q FADED................................................................... 2.13
REF ................................................................ 2.19, 2.414
RF...............................................................2.9, 3.47, 3.80
SYMBCLK.................................................................. 2.13
SMIQ Index
1125.5555.03 I.9 E-9
SYMBOL CLOCK.........................................................2.7
TRIGOUT...................................................................2.15
voltage.............................................................2.391, 3.48
X_AXIS ...........................................................2.21, 2.394
Output impedance
test assembly ...............................................................5.5
OVEN COLD ......................................................................1.2
Overall symbol rate
enhanced channels in uplink ....................................2.255
Enhanced Channels in uplink ...................................3.190
Overlapping execution....................................................3.216
OVERLOAD......................................................................2.54
Overload protection .................................................2.54, 3.47
Overmodulation ................................................................2.57
Overview
menus ........................................................................2.44
modulation sources ....................................................2.55
slots..............................................................................1.5
status register...........................................................3.220
syntax elements .........................................................3.11
P
Page indicators................................................................ 2.196
PAR DATA interface.........................................................2.97
Para. Predef. (3GPP W-CDMA)......................................2.189
Parallel modulation data ...................................................2.97
Parallel poll.....................................................................3.226
Parallel poll enable register (PPE) ..................................3.222
Parameter (commands) ......................................................3.9
Parity (RS232)........................................................ 3.202, A.5
Password............................................................. 2.416, 3.205
Path (commands) ...............................................................3.6
Pattern setting
getting started.............................................................2.27
list editor.....................................................................2.39
P-CCPCH/BCH...............................................................2.238
PCPCH (3GPP W-CDMA)..............................................2.204
PDC..................................................................... 2.279, 3.124
test procedure ............................................................5.49
Performance test report ....................................................5.82
Period of output signal
DECT .............................................................. 2.325, 3.56
GSM/EDGE.....................................................2.308, 3.98
NADC............................................................2.269, 3.118
PDC .............................................................. 2.286, 3.127
PHS............................................................... 2.122, 3.137
Personal station (PS)
DECT .......................................................................2.318
GSM/EDGE..............................................................2.301
NADC.......................................................................2.262
PDC .........................................................................2.279
PHS..........................................................................2.115
Phase (RF output signal) ..................................... 2.415, 3.133
Phase error
GMSK ........................................................................5.40
Phase modulation..................................................2.63, 3.142
test procedure ............................................................5.37
Phase noise
test assembly ...............................................................5.5
PHS.....................................................................2.115, 3.134
test procedure ............................................................5.50
Physical quantities..............................................................3.8
PM coupling........................................................... 2.63, 3.142
deviation.......................................................... 2.63, 3.142
deviation limits............................................................2.64
frequency ........................................................ 2.63, 3.143
generator.........................................................2.63, 3.142
modulator ..........................................................1.6, 3.142
slot......................................................................... 1.5
Polarity
BLANK signal.................................................. 2.429, 3.47
marker signal ......................................2.429, 3.113, 3.196
pulse modulation............................................. 2.65, 3.147
signal
3GPP W-CDMA................................................. 2.186
3GPP W-CDMA signal....................................... 2.337
GSM .................................................................. 2.308
Trigger
ARB.......................................................... 2.347, 3.20
Polynomial
coefficient AM-AM.................................................... 2.385
Coefficient AM-AM..................................................... 3.63
coefficient AM-PM.................................................... 2.385
Coefficient AM-PM..................................................... 3.64
entering the parameters ........................................... 2.385
equations ................................................................. 2.390
level correction......................................................... 2.386
Level correction.......................................................... 3.64
PRBS....................................................................... 2.375
POW RAMP input/output......................................... 2.17, 2.99
Power
channel (CDMA) .................................2.145, 3.106, 3.107
channel (W-CDMA)..................2.163, 2.167, 3.156, 3.158
gating (CDMA)...............................................2.146, 3.108
ramping (DECT).............................................. 2.327, 3.56
ramping (digital modulation)............................ 2.112, 3.76
ramping (GSM/EDGE) .................................... 2.309, 3.99
ramping (NADC).............................................2.270, 3.118
ramping (PDC)...............................................2.287, 3.128
ramping (PHS) ...............................................2.124, 3.137
ratio (fading simulation).............................................. 3.87
supply .......................................................................... 1.1
total (W-CDMA)........................................................ 3.156
Power control ................................................................. 2.176
Power offset (additional MS) .......................................... 2.261
PPE (Parallel poll enable register).................................. 3.222
PRACH (3GPP W-CDMA).............................................. 2.202
PRBS
Polynomial ............................................................... 2.375
PRBS data (digital modulation)................................ 2.94, 3.69
Preamble (DECT)
normal...................................................................... 2.331
prolonged................................................................. 2.332
Preamble (PHS)............................................................. 2.128
Preamble data field (PDC).........................2.292, 2.297, 2.299
Preamble Repetition.............................................2.202, 2.203
Preemphasis (FM)...........................................2.61, 2.62, 3.79
Preset (instrument states) ....................................... 1.3, 3.205
Profile (fading simulation)..... 2.75, 2.80, 2.84, 3.87, 3.89, 3.92
Programming Examples .....................................................D.1
Protection level............................................................... 3.205
Protective circuit...................................................... 2.54, 3.47
PS-ID-Code-Data field (PHS)......................................... 2.129
PSK modulation ............................................................... 2.87
PTRansition register .................................................... 3.219
Pulling range .................................................................. 2.414
PULS input....................................................................... 2.21
Pulse modulation................................................... 2.65, 3.147
polarity ............................................................ 2.65, 3.147
test assembly............................................................... 5.4
test procedure............................................................ 5.33
Pure doppler profile (fading simulation) ............................ 3.87
Putting into operation ......................................................... 1.1
Q
Q FADED output .............................................................. 2.13
Q output ............................................................................. 2.9
Index SMIQ
1125.5555.03 I.10 E-9
QAM modulation...............................................................2.87
Quadrature error
vector modulation ....................................................5.29
Quadrature offset.....................................................2.67, 3.66
Queries..............................................................................3.5
responses.....................................................................3.8
Question...........................................................................3.11
Quick selection
menu ..........................................................................2.25
parameter..................................................................2.25
Quotation marks ...............................................................3.11
R
Rack 19"...........................................................................1.16
RAM, test............................................................................4.2
Ramp data field
NADC.......................................................................2.274
PDC .........................................................................2.292
PHS..........................................................................2.128
RAMP data field
DECT .......................................................................2.331
Rated characteristics
checking.......................................................................5.1
test procedures.............................................................5.8
Rayleigh fading...................................... 2.75, 2.80, 3.87, 3.89
RCL list (MSEQ).................................................. 2.406, 3.204
RECALCULATE ....................................................2.386, 3.64
Recall
frame (DECT).................................................. 2.329, 3.58
frame (GSM/EDGE).......................................2.311, 3.100
frame (NADC)................................................ 2.272, 3.120
frame (PDC) ..................................................2.289, 3.129
frame (PHS) ..................................................2.125, 3.138
instrument settings ............................................2.43, 3.16
mapping (CDMA)........................................... 2.144, 3.107
REF input/output......................................... 2.19, 2.414, 3.148
Reference
external ......................................................... 2.414, 3.148
internal ..........................................................2.414, 3.148
oscillator (calibration)....................................... 2.417, 3.38
oscillator OCXO...................................... 1.5, 2.414, 3.148
Reference frequency
test procedure ............................................................5.12
Remote control ...................................................................3.1
REMOTE state ...................................................................3.2
Remove paneling..............................................................1.4
RES input .......................................................................2.375
Reset status reporting system ........................................3.227
Responses to queries.........................................................3.8
Reverse link signal (CDMA)...................... 2.146, 2.148, 3.103
RF frequency ..........................................................2.45, 3.80
output ..................................................................2.9, 3.47
output level...................................................... 2.47, 3.145
sweep............................................................ 2.396, 3.149
RF OFF ............................................................................2.54
Ricean fading...........................................................2.75, 3.87
Roll-off factor
3GPP W-CDMA............................................. 2.183, 3.165
CDMA............................................................2.139, 3.104
digital modulation.............................................2.107, 3.75
NADC............................................................2.267, 3.117
PDC .............................................................. 2.284, 3.126
PHS............................................................... 2.120, 3.136
W-CDMA....................................................... 2.157, 3.154
Rotary knob...............................................................2.7, 2.23
RS232 interface...................................2.19, 2.411, 3.202, A.4
S
Same data (3GPP W-CDMA)......................................... 2.226
Sample setting ................................................................. 2.27
Sample-and-hold mode .................................................... 2.50
Save
frame (DECT).................................................. 2.329, 3.58
frame (GSM/EDGE).......................................2.311, 3.100
frame (NADC) ................................................2.272, 3.120
frame (PDC)...................................................2.289, 3.129
frame (PHS)...................................................2.125, 3.138
instrument settings............................................ 2.43, 3.16
mapping (CDMA) ...........................................2.145, 3.107
SCPI
conformity information..................................................C.1
introduction .................................................................. 3.5
Scrambling
PDC....................................................2.291, 2.299, 3.130
PHS ...............................................................2.127, 3.139
Scrambling code ............................................................ 2.232
Scrambling code generator......................................... 2.171
Scrambling Unit............................................................ 2.174
Scrollbar........................................................................... 2.23
Select
1-out-of-n .................................................................. 2.24
mark........................................................................... 2.23
Self test...........................................................3.16, 3.207, 4.1
Semicolon ........................................................................ 3.11
Sequence length (3GPP W-CDMA)......................2.182, 3.165
SER DATA input ............................................................ 2.412
SERDATA-Interface ...........................................................A.7
Serial modulation data (digital modulation)....................... 2.96
Serial number........................................................ 2.427, 3.15
Serial poll ....................................................................... 3.225
Service request (SRQ).......................................... 3.16, 3.225
Service request enable register (SRE) .................. 3.16, 3.221
Setting commands........................................................... 3.5
Setting conflicts (digital modulation)................................. 2.91
Setting time
Test assembly.............................................................. 5.6
Setting value................................................................... 2.24
Settling bit .................................................................... 3.223
SFN................................................................................ 2.242
SFN restart..................................................................... 2.242
SFN Restart Trigger ....................................................... 2.215
Short form (commands)...................................................... 3.7
Sign.................................................................................... 3.9
Signal (data generator)
BGATE (burst gate) ................................................... 2.93
CW (continuous wave)............................................... 2.93
HOP (hopping)........................................................... 2.93
LATT (level attenuation)............................................. 2.93
TRIG1/2 (trigger output1/2) ........................................ 2.93
Signal delay
Fading simulation.. 2.76, 2.80, 2.82, 2.84, 3.88, 3.90, 3.92
Signal generation
downlink (W-CDMA)................................................. 2.150
downlink and uplink without IQ multiplex (W-CDMA) 2.154
uplink with IQ multiplex (W-CDMA) ................2.151, 2.165
Signature (3GPP W-CDMA)......................2.175, 2.202, 2.204
Simulation of scenarios .................................................. 2.234
Simultaneous modulation ................................................. 2.57
SlotConfiguration
GSM/EDGE ....................................................... 2.316
Slot (DECT).................................................................... 2.330
Slot and frame builder ................................................. 2.175
SMIQ03S
Additional measurements........................................... 5.80
Software option.............................................................. 2.431
Software version ................................................... 2.427, 3.42
SOURce
SMIQ Index
1125.5555.03 I.11 E-9
Modulation subsystem..............................................3.114
Source resistance.............................................................2.54
Span (RF sweep)................................................... 2.396, 3.81
Special characters ..........................................................3.13
Spectral purity..........................................................2.62, 2.64
test procedure ............................................................5.18
Spectrum of a W-CDMA signal.......................................2.225
Spreading scheme..........................................................2.220
Spurious-Free Dynamic Range
test procedure ............................................................5.78
Square brackets .................................................................3.7
SRE (service request enable register) ................... 3.16, 3.221
SRQ (service request) ...........................................3.16, 3.225
Standard Fading...............................................................2.73
STANDBY mode.................................................. 1.1, 1.2, 2.11
Start bit (RS232)............................................................... A.5
Start frequency
LF sweep....................................................... 2.400, 3.195
RF sweep........................................................ 2.396, 3.81
Start level (level sweep)....................................... 2.398, 3.146
State REMOTE...................................................................3.2
STATus
OPERation register........................................3.199, 3.223
QUEStionable register................................... 3.200, 3.224
Status byte (STB) ...........................................................3.221
Status line .......................................................................2.22
STATUS page ................................................................2.432
Status register (overview)...............................................3.220
Status reporting system..................................................3.218
STB (status byte)............................................................3.221
Steal Flag data field (PDC) .................................. 2.293, 2.300
Step width
frequency ..........................................................2.45, 3.81
level.................................................................2.48, 3.146
level sweep ................................................... 2.398, 3.151
LF sweep....................................................... 2.400, 3.198
RF sweep...................................................... 2.397, 3.150
rotary knob
frequency variation......................................2.45, 3.81
level ...................................................................3.146
level variation.......................................................2.48
Stop bit (RS232)...........................................2.411, 3.202, A.5
Stop frequency
LF sweep....................................................... 2.400, 3.195
RF sweep........................................................ 2.396, 3.81
Stop level (level sweep)..................................................3.146
Storage...............................................................................4.1
Store
frame (DECT).................................................. 2.329, 3.58
frame (GSM/EDGE).......................................2.311, 3.100
frame (NADC)................................................ 2.272, 3.120
frame (PDC) ..................................................2.289, 3.129
frame (PHS) ..................................................2.125, 3.138
instrument settings ............................................2.43, 3.16
list...............................................................................2.35
mapping (CDMA)........................................... 2.145, 3.107
Structure
command......................................................................3.6
command line...............................................................3.8
Sum bit..........................................................................3.219
Sum deviation...................................................................2.57
Sum modulation depth......................................................2.57
two-tone modulation ...................................................2.57
Summation .....................................................................2.177
Summing loop.................................................................2.418
slot ...............................................................................1.5
Sweep ............................................................................2.392
level.................................................... 2.398, 3.146, 3.151
level sweep ..............................................................2.398
LF..................................................................2.399, 3.197
outputs .....................................................................2.394
RF ........................................................ 2.396, 3.81, 3.149
test procedure............................................................ 5.24
trigger.............................................................2.394, 3.210
Switchover to remote control.............................................. 3.2
SYMBCLK input/output ........................................... 2.13, 2.97
Symbol............................................................................. 2.25
Symbol clock
CDMA ...................................................................... 2.142
digital modulation............................................ 2.111, 3.76
NADC.............................................................2.270, 3.118
PDC...............................................................2.287, 3.127
PHS ...............................................................2.123, 3.137
SYMBOL CLOCK input/output .................................. 2.7, 2.95
Symbol rate
3GPP W-CDMA........................ 2.189, 2.197, 2.208, 3.170
DECT.............................................................. 2.323, 3.55
digital modulation............................................ 2.106, 3.75
enhanced channels.............................2.248, 2.256, 3.184
GSM/EDGE .................................................... 2.305, 3.97
NADC.............................................................2.267, 3.116
OCNS ............................................................2.257, 3.188
PDC...............................................................2.284, 3.126
PHS ...............................................................2.120, 3.135
SYNC burst (DECT) ....................................................... 2.330
SYNC burst (PHS) ......................................................... 2.127
Synchronization
CDMA ...................................................................... 2.133
command................................................................. 3.217
DECT....................................................................... 2.319
PHS ......................................................................... 2.116
signal generation (digital modulation)......................... 2.93
W-CDMA.................................................................. 2.152
Synchronization signal
3GPP W-CDMA ....................................................... 2.215
Synthesis range ...................................................... 2.62, 2.64
System bandwidth.......................................................... 2.384
System components (3GPP W-CDMA).......................... 2.171
System frame number ...............................2.236, 2.238, 2.242
System Frame Number .................................................. 2.241
System information BCH................................................ 2.242
T
Tags (ARB) ...................................................................... 3.23
Tail data field (GSM/EDGE) .................................2.312, 2.316
TCH, Traffic Channel configuration
NADC.............................................................2.274, 3.121
PDC...............................................................2.291, 3.130
PHS ...............................................................2.127, 3.139
Termination criteria
BLER ....................................................................... 2.381
Test................................................................................ 2.427
Test assembly.................................................................... 5.2
analog modulations...................................................... 5.2
broadband FM.............................................................. 5.3
fading simulation.......................................................... 5.6
output impedance......................................................... 5.5
pulse modulation.......................................................... 5.4
Setting time.................................................................. 5.6
SSB phase noise ......................................................... 5.5
vector modulation......................................................... 5.4
Test equipment .................................................................. 5.1
Test frequency (recommended).......................................... 5.7
Test level (recommended).................................................. 5.7
Test model (3GPP W-CDMA)......................................... 2.180
Test points ............................................................ 2.425, 3.42
Test procedure
3GPP W-CDMA ......................................................... 5.53
amplitude modulation ................................................. 5.31
Arbitrary Waveform Generator ................................... 5.77
Bit error rate test ........................................................ 5.63
Index SMIQ
1125.5555.03 I.12 E-9
broadband AM............................................................5.33
data generator............................................................5.41
DC voltage offset........................................................5.78
DECT .........................................................................5.47
digital modulation........................................................5.38
digital standards .........................................................5.45
Enhanced Channels ...................................................5.62
error vector.................................................................5.27
fading simulation ........................................................5.64
frequency .....................................................................5.8
frequency modulation .................................................5.34
GSM/EDGE................................................................5.46
I/Q imbalance.............................................................5.29
IS-95 CDMA...............................................................5.51
level............................................................................5.12
Measurements for SMIQ03S ......................................5.80
memory extension SMIQB12......................................5.41
modulation generator..................................................5.25
NADC.........................................................................5.48
noise generation and distortion simulation..................5.70
PDC ...........................................................................5.49
phase modulation .......................................................5.37
PHS............................................................................5.50
pulse modulation ........................................................5.33
reference frequency....................................................5.12
spectral purity.............................................................5.18
spurious-free dynamic range ......................................5.78
sweep.........................................................................5.24
TETRA .......................................................................5.48
vector modulation.......................................................5.26
W-CDMA....................................................................5.52
Test procedures..................................................................5.8
TETRA - Digital standard
test procedure ............................................................5.48
TFCI (3GPP W-CDMA)...................2.175, 2.194, 2.205, 3.169
Time domain (3GPP W-CDMA)......................................2.219
Time grid
Fading simulation .......................................................2.84
Timing offset (3GPP W-CDMA)2.176, 2.198, 2.205, 2.209,
2.229, 3.173
Timing offset (Enhanced Channels)................................2.249
Total power
3GPP W-CDMA...............................................2.187, 3.168
CDMA............................................................2.143, 3.106
TPC (3GPP W-CDMA) ...................2.175, 2.198, 2.200, 3.173
TPC bit (3GPP W-CDMA)......................... 2.195, 2.206, 3.169
Training sequence code (GSM/EDGE) ................ 2.312, 2.317
Transfer clock.................................................................2.373
Trigger
3GPP W-CDMA.................................. 2.184, 2.336, 3.167
active edge................................ 2.114, 2.429, 3.77, 3.214
ARB................................................................. 2.347, 3.20
CDMA............................................................2.140, 3.105
DECT ................................................... 2.319, 2.323, 3.55
delay
3GPP W-CDMA .................................................2.336
digital modulation.................................... 2.109, 3.69, 3.77
GPS ...........................................................................3.94
GSM/EDGE.....................................................2.306, 3.98
inhibition
3GPP W-CDMA .................................................2.337
ARB ..........................................................2.347, 3.20
inhibition (3GPP W-CDMA) ........................... 2.185, 3.167
inhibition (CDMA) .......................................... 2.141, 3.105
inhibition (DECT).............................................2.325, 3.56
inhibition (digital modulation) ........................... 2.110, 3.77
inhibition (GSM/EDGE).................................... 2.307, 3.98
inhibition (NADC)........................................... 2.269, 3.117
inhibition (PDC) .............................................2.286, 3.127
inhibition (PHS) ............................................. 2.122, 3.136
inhibition (W-CDMA).................................................2.159
LIST .............................................................. 2.402, 3.212
MSEQ...................................................................... 3.214
NADC.............................................................2.267, 3.117
OFF TIME (ARB) ............................................ 2.348, 3.21
ON TIME (ARB).............................................. 2.348, 3.21
oscilloscope ...................................................2.394, 3.112
PDC...............................................................2.284, 3.126
PHS ....................................................2.116, 2.120, 3.136
Sequence control (ARB) ................................. 2.345, 3.19
source
3GPP W-CDMA............................2.185, 2.336, 3.167
ARB.......................................................... 2.347, 3.20
sweep ............................................................2.394, 3.210
W-CDMA........................................................2.158, 3.155
XY recorder....................................................2.394, 3.149
TRIGGER
input...........................................2.21, 2.402, 2.407, 2.429
Trigger generator (ARB)................................................. 2.344
Trigger Out GSM............................................................ 2.308
Trigger signal
3GPP W-CDMA ....................................................... 2.215
Triggering action............................................................ 2.25
TRIGIN input.................................................................... 2.15
TRIGOUT output.............................................................. 2.15
Truth values ....................................................................... 3.8
Tuning voltage................................................................ 2.415
Two-channel fading.......................................................... 2.71
Two-tone modulation........................................................ 2.57
U
UCOR (level correction) .......................................... 2.52, 3.51
Uncorrelated data (3GPP W-CDMA).............................. 2.226
Unique word (PHS) ........................................................ 2.128
Unit ...................................................................2.5, 3.8, 3.215
Universal commands..........................................................A.3
Uplink
DECT....................................................................... 2.318
GSM/EDGE ............................................................. 2.301
NADC....................................................................... 2.262
PDC......................................................................... 2.279
PHS ......................................................................... 2.115
Uplink signal
3 GPPW-CDMA .............................................2.182, 3.165
User correction (UCOR).......................................... 2.52, 3.51
V
Variation period
Fading simulation.............................................. 2.82, 3.91
VCO SUM calibration ............................................ 2.418, 3.39
Vector modulation ................................2.66, 2.67, 2.356, 3.65
calibration ....................................................... 2.419, 3.39
IQ filter....................................................................... 2.68
Quadrature error ...................................................... 5.29
test assembly............................................................... 5.4
test procedure............................................................ 5.26
Ventilation ducts .............................................................. 1.4
Voltage
external modulation signal.......................................... 2.56
LF output......................................................... 2.391, 3.48
VOX
PDC...............................................................2.298, 3.130
PHS ...............................................................2.127, 3.139
SMIQ Index
1125.5555.03 I.13 E-9
W
Walsh code (CDMA)............................................ 2.145, 3.107
Waveform memory (3GPP W-CDMA).............................2.183
W-CDMA ........................................................................2.150
Multicode..................................................................3.156
test procedure ............................................................5.52
Trigger......................................................................2.158
W-CDMA 3GPP................................................... 2.169, 3.159
Additional .................................................................3.180
Enhanced Channels .................................................3.180
OCNS.......................................................................3.180
test procedure ............................................................5.53
White space......................................................................3.11
WinIQSIM
Support of ARB ........................................................2.344
X
X field (DECT)................................................................ 2.333
X_AXIS output ...................................................... 2.21, 2.394
XY recorder..........................................................2.394, 3.149
Z
Z field (DECT)....................................................... 2.333, 3.60

Navigation menu