
RTG Core Operations Manual
Release 3.10

Real Time Genomics

Oct 29, 2018

CONTENTS

1 Overview 1
1.1 Introduction . 1
1.2 RTG software description . 1
1.3 Sequence search and alignment . 2

1.3.1 Data formatting . 3
1.3.2 Read mapping and alignment . 3
1.3.3 Read mapping output files . 4
1.3.4 Read mapping sensitivity tuning . 4
1.3.5 Protein search . 5
1.3.6 Protein search output files . 5
1.3.7 Protein search sensitivity tuning . 5
1.3.8 Benchmarking and optimization utilities . 6

1.4 Variant detection functions . 6
1.4.1 Sequence variation (SNPs, indels and complex variants) 6
1.4.2 Sequence variation with Mendelian pedigree . 7
1.4.3 Somatic sequence variation . 7
1.4.4 Coverage analysis . 7
1.4.5 Copy number variation (CNV) analysis . 8

1.5 Standard input and output file formats . 8
1.5.1 SAM/BAM files created by the RTG map command . 8
1.5.2 Variant caller output files . 9

1.6 Metagenomic analysis functions . 9
1.6.1 Contamination filtering . 9
1.6.2 Taxon abundance breakdown . 9
1.6.3 Sample relationships . 9
1.6.4 Functional protein analysis . 10

1.7 Pipelines . 10
1.8 Parallel processing . 10
1.9 Installation and deployment . 10

1.9.1 Quick start instructions . 11
1.9.2 License Management . 12

1.10 Technical assistance and support . 12

2 RTG Command Reference 13
2.1 Command line interface (CLI) . 13
2.2 RTG command syntax . 13
2.3 Data Formatting Commands . 18

2.3.1 format . 18
2.3.2 cg2sdf . 20
2.3.3 sdf2cg . 21
2.3.4 sdf2fasta . 22
2.3.5 sdf2fastq . 23
2.3.6 sdf2sam . 24
2.3.7 fastqtrim . 25

i

2.3.8 petrim . 27
2.4 Read Mapping Commands . 29

2.4.1 map . 29
2.4.2 mapf . 35
2.4.3 cgmap . 37
2.4.4 coverage . 39
2.4.5 calibrate . 41

2.5 Protein Search Commands . 42
2.5.1 mapx . 42

2.6 Assembly Commands . 44
2.6.1 assemble . 44
2.6.2 addpacbio . 46

2.7 Variant Detection Commands . 47
2.7.1 snp . 47
2.7.2 family . 51
2.7.3 somatic . 54
2.7.4 population . 58
2.7.5 lineage . 60
2.7.6 avrpredict . 62
2.7.7 avrbuild . 63
2.7.8 svprep . 64
2.7.9 discord . 65
2.7.10 sv . 67
2.7.11 cnv . 68

2.8 Metagenomics Commands . 69
2.8.1 species . 69
2.8.2 similarity . 71

2.9 Pipeline Commands . 72
2.9.1 composition-meta-pipeline . 72
2.9.2 functional-meta-pipeline . 73
2.9.3 composition-functional-meta-pipeline . 74

2.10 Simulation Commands . 76
2.10.1 genomesim . 76
2.10.2 cgsim . 77
2.10.3 readsim . 78
2.10.4 readsimeval . 80
2.10.5 popsim . 81
2.10.6 samplesim . 82
2.10.7 denovosim . 83
2.10.8 childsim . 84
2.10.9 pedsamplesim . 85
2.10.10 samplereplay . 86

2.11 Utility Commands . 86
2.11.1 bgzip . 86
2.11.2 index . 87
2.11.3 extract . 88
2.11.4 aview . 88
2.11.5 sdfstats . 90
2.11.6 sdfsplit . 91
2.11.7 sdfsubset . 92
2.11.8 sdfsubseq . 92
2.11.9 sam2bam . 93
2.11.10 sammerge . 94
2.11.11 samstats . 95
2.11.12 samrename . 96
2.11.13 mapxrename . 97
2.11.14 chrstats . 98
2.11.15 mendelian . 99

ii

2.11.16 vcfstats . 100
2.11.17 vcfmerge . 102
2.11.18 vcffilter . 103
2.11.19 vcfannotate . 108
2.11.20 vcfsubset . 109
2.11.21 vcfdecompose . 110
2.11.22 vcfeval . 111
2.11.23 svdecompose . 117
2.11.24 bndeval . 118
2.11.25 pedfilter . 120
2.11.26 pedstats . 120
2.11.27 avrstats . 123
2.11.28 rocplot . 123
2.11.29 hashdist . 127
2.11.30 ncbi2tax . 128
2.11.31 taxfilter . 128
2.11.32 taxstats . 130
2.11.33 usageserver . 131
2.11.34 version . 131
2.11.35 license . 132
2.11.36 help . 133

3 RTG product usage - baseline progressions 135
3.1 Human read mapping and sequence variant detection . 135

3.1.1 Task 1 - Format reference data . 136
3.1.2 Task 2 - Prepare sex/pedigree information . 139
3.1.3 Task 3 - Format read data . 140
3.1.4 Task 4 - Map reads to the reference genome . 141
3.1.5 Task 5 - View and evaluate mapping performance . 143
3.1.6 Task 6 - Generate and review coverage information . 144
3.1.7 Task 7 - Call sequence variants (single sample) . 144
3.1.8 Task 8 - Call sequence variants (single family) . 146
3.1.9 Task 9 - Call population sequence variants . 146

3.2 Create and use population priors in variant calling . 147
3.2.1 Task 1 - Produce population priors file . 147
3.2.2 Task 2 - Run variant calling using population priors . 148

3.3 Somatic variant detection in cancer . 148
3.3.1 Task 1 - Format reference data (Somatic) . 148
3.3.2 Task 2 - Format read data (Somatic) . 148
3.3.3 Task 3 - Map tumor and normal sample reads against the reference genome 149
3.3.4 Task 4 - Call somatic variants . 149
3.3.5 Using site-specific somatic priors . 149

3.4 AVR scoring using HAPMAP for model building . 150
3.4.1 Task 1 - Create training data . 152
3.4.2 Task 2 - Build and check AVR model . 152
3.4.3 Task 3 - Use AVR model . 153
3.4.4 Task 4 - Install AVR model . 154

3.5 RTG structural variant detection . 154
3.5.1 Task 1 - Prepare Read-group statistics files . 155
3.5.2 Task 2 - Find structural variants with sv . 155
3.5.3 Task 3 - Find structural variants with discord . 156
3.5.4 Task 4 - Report copy number variation statistics . 156

3.6 Ion Torrent bacterial mapping and sequence variant detection 156
3.6.1 Task 1 - Format bacterial reference data (Ion Torrent) 157
3.6.2 Task 2 - Format read data (Ion Torrent) . 157
3.6.3 Task 3 - Map Ion Torrent reads to the reference genome 157
3.6.4 Task 4 - Call sequence variants in haploid mode . 158

3.7 RTG contaminant filtering . 158

iii

3.7.1 Task 1 - Format reference data (contaminant filtering) 158
3.7.2 Task 2 - Format read data (contaminant filtering) . 160
3.7.3 Task 3 - Run contamination filter . 160
3.7.4 Task 4 - Manage filtered reads . 160

3.8 RTG translated protein searching . 161
3.8.1 Task 1 - Format protein data set . 161
3.8.2 Task 2 - Format DNA read set . 161
3.8.3 Task 3 - Search against protein data set . 161

3.9 RTG species frequency estimation . 162
3.9.1 Task 1 - Format reference data (species) . 162
3.9.2 Task 2 - Format read data (species) . 162
3.9.3 Task 3 - Run contamination filter (optional) . 163
3.9.4 Task 4 - Map metagenomic reads against bacterial database 163
3.9.5 Task 5 - Run species estimator . 163

3.10 RTG sample similarity . 163
3.10.1 Task 1 - Prepare read sets . 164
3.10.2 Task 2 - Generate read set name map . 164
3.10.3 Task 3 - Run similarity tool . 165

4 Administration & Capacity Planning 167
4.1 Advanced installation configuration . 167
4.2 Run-time performance optimization . 167
4.3 Alternate configurations . 168
4.4 Exception management - TalkBack and log file . 168
4.5 Usage logging . 168

4.5.1 Single-user, single machine . 169
4.5.2 Multi-user or multiple machines . 169
4.5.3 Advanced usage configuration . 170

4.6 Command-line color highlighting . 170

5 Appendix 171
5.1 RTG gapped alignment technical description . 171

5.1.1 Alignment computations . 171
5.1.2 Alignment scoring . 171

5.2 Using SAM/BAM Read Groups in RTG map . 172
5.3 RTG reference file format . 173
5.4 RTG taxonomic reference file format . 176

5.4.1 RTG taxonomy file format . 176
5.4.2 RTG taxonomy lookup file format . 177

5.5 Pedigree PED input file format . 177
5.6 RTG commands using indexed input files . 178
5.7 RTG output results file descriptions . 178

5.7.1 SAM/BAM file extensions (RTG map command output) 178
5.7.2 SAM/BAM file extensions (RTG cgmap command output) 180
5.7.3 Small-variant VCF output file description . 181
5.7.4 Regions BED output file description . 186
5.7.5 SV command output file descriptions . 187
5.7.6 Discord command output file descriptions . 189
5.7.7 Coverage command output file descriptions . 190
5.7.8 Mapx output file description . 193
5.7.9 Species results file description . 194
5.7.10 Similarity results file descriptions . 196

5.8 RTG JavaScript filtering API . 197
5.8.1 VCF record field access . 197
5.8.2 VCF record modification . 198
5.8.3 VCF header modification . 198
5.8.4 Additional information and functions . 199

5.9 Parallel processing approach . 199

iv

5.10 Distribution Contents . 200
5.11 README.txt . 201
5.12 Notice . 205

v

vi

CHAPTER

ONE

OVERVIEW

This chapter introduces the features, operational options, and installation requirements of the data analysis soft-
ware from Real Time Genomics.

1.1 Introduction

RTG software enables the development of fast, efficient software pipelines for deep genomic analysis. RTG is built
on innovative search technologies and new algorithms designed for processing high volumes of high-throughput
sequencing data from different sequencing technology platforms. The RTG sequence search and alignment func-
tions enable read mapping and protein searches with a unique combination of sensitivity and speed.

RTG-based data production pipelines support unprecedented breadth and depth of analysis on genomic data, trans-
forming researcher visibility into DNA sequence analysis and biological investigation. A comprehensive suite of
easy-to-integrate data analysis functions increases the productivity of bioinformatics specialists, freeing them to
develop analytical solutions that amplify the investigative ability unique to their organization.

RTG software supports a variety of research and medical genomics applications, such as:

• Medical Genomic Research – Compare sequence variants and structural variation between normal and
disease genomes, or over a disease progression in the same individual to identity causal loci.

• Personalized Medicine – Establish reliable, high-throughput processing pipelines that analyze individual
human genomes compared to one or more reference genomes. Use RTG software for detection of sequence
variants (SNP and indel calling, intersection scripting), as well as structural variation (coverage depth, and
copy number variation).

• Model Organisms and Basic Research – Utilize RTG mapping and variant detection commands for fo-
cused research applications such as metagenomic species identification and frequency, and metabolic path-
way analysis. Map microbial communities to generate gapped alignments of both DNA and protein se-
quence data.

• Plant Genomics – Enable investigations of new crop species and variant detection in genetically diverse
strains by leveraging RTG’s highly sensitive sequence search capabilities for strain and cross-species map-
ping applications. Flexible sensitivity tuning controls allow investigators to accommodate very high error
rates associated with unique combinations of sequencing system error, genome-specific mutation, and ag-
gressive cross-species comparisons.

1.2 RTG software description

RTG software is delivered as a single executable with multiple commands executed through a command line
interface (CLI). Commands are delivered in product packages, and for commercial users each command can be
independently enabled through a license key.

Usage:

1

http://realtimegenomics.com

RTG Core Operations Manual, Release 3.10

rtg COMMAND [OPTIONS] <REQUIRED>

RTG software delivers features in four areas:

• Sequence Search and Alignment – RTG software uses patented sequence search technology for the rapid
production of genomic sequence data. The map command implements read mapping and gapped alignment
of sequence data against a reference. The mapx command searches translated sequence data against a
protein database.

• Data Analysis – RTG software supports two pipelines for data analysis - variant detection and metage-
nomics. Purpose-built variant detection pipeline functions include several commands to identify small se-
quence variants, a cnv command to report copy number variation statistics for structural variation, and a
coverage command to report read depth across a reference.

• Reporting Options – Standard result formats and utility commands report results for validation, and ease
development of custom scripts for analysis. Scripts that produce publication quality graphics for visualiza-
tion of data analysis results are available through Real Time Genomics technical support.

• Data Center Deployment – RTG software supports typical data center standards for enterprise deploy-
ment. RTG provides automated installation and supports industry standard operating environments and
data processing systems to help maintain total cost of ownership objectives in enterprise data centers. The
RTG software can be run in compute clusters of varying sizes, and commands take advantage of multi-core
processors by default.

See also:

For detailed information about RTG command syntax and usage of individual commands, refer to RTG Command
Reference.

1.3 Sequence search and alignment

RTG software uses an edit-distance alignment score to determine best fit and alignment accuracy.

RTG software includes optimal sensitivity settings for error and mutation rates, plus command line controls and
simulation tools that allow investigators to calibrate sensitivity settings for specific data sets. Extensive filter-
ing and reporting options allow complete control over reported alignments, which leads to greater flexibility for
downstream analysis functions.

Key functionality of RTG sequence search and alignment includes:

• Read mapping by nucleotide sequence alignment to a reference genome

• Protein database searching by translated nucleotide sequence searches against protein databases

• Sensitivity tuning using parameter options for substitutions, indels, indel lengths, word or step sizes, and
alignment scores

• Filtering and reporting ambiguous reads that map to multiple locations

• Benchmarking and optimization using simulation and evaluation commands

RTG mapping commands have the following characteristics:

• Eliminates need for genome indexing

• Aligns sequence reads of any length

• Allows high mismatch levels for increased sensitivity in longer reads

• Allows detection of short indels with single end (SE) or paired end (PE) data

• Can optionally guarantee the mapping of reads with at least a specified number of substitutions and indels

• Supports a wide range of alignment scores

2 Chapter 1. Overview

RTG Core Operations Manual, Release 3.10

See also:

For detailed information about sequence search and alignment functionality, refer to Command Reference, map.

For more information about the RTG integrated software pipeline, refer to RTG product usage - baseline progres-
sions

1.3.1 Data formatting

Prior to RTG data production, reference genome and sometimes read data sequence files are typically first con-
verted to the RTG Sequence Data File (SDF) format. This is an efficient storage format optimized for fast retrieval
during data processing.

The RTG format / cg2sdf commands converts sequencing system read and reference genome sequence data
into the SDF format. The format command accepts source data in standard file formats (such as FASTA /
FASTQ / SAM / BAM) and maintains the integrity and consistency of the source data during the conversion to
SDF. Similarly, the cg2sdf command accepts data in the custom data format used for read data by Complete
Genomics, Inc. Read data may be single-end and paired-end reads of fixed or variable length. Sequence data can
be formatted as nucleotide or protein.

An SDF is a directory containing a series of files that delineate sequence and quality score information stored in a
binary format, along with metadata that describes the original sequencing system data format type:

03/19/2010 12:31 PM <DIR> .
03/19/2010 12:31 PM <DIR> ..
03/19/2010 12:31 PM 5,038 log
03/19/2010 12:31 PM 24,223 mainIndex
03/19/2010 12:31 PM 75 namedata0
03/19/2010 12:31 PM 8 nameIndex0
03/19/2010 12:31 PM 56 namepointer0
03/19/2010 12:31 PM 23,267,177 seqdata0
03/19/2010 12:31 PM 56 seqpointer0
03/19/2010 12:31 PM 8 sequenceIndex0

8 File(s) 23,296,641 bytes
2 Dir(s) 400,984,870,912 bytes free

See also:

For detailed information about formatting sequencing system reads to RTG SDF, refer to Data Formatting Com-
mands

1.3.2 Read mapping and alignment

The map command implements read mapping and alignment of sequence data against a reference genome, sup-
porting gapped alignments for both single and paired-end reads. The cgmap command performs the same function
for the gapped, paired-end read data from Complete Genomics, Inc.

A summary of the mapping results is displayed at the command line following execution of the map command, as
shown in the paired-end example below:

ARM MAPPINGS
left right both

6650124 6650124 13300248 64.2% mated uniquely (NH = 1)
186812 186812 373624 1.8% mated ambiguously (NH > 1)

1538777 1539520 3078297 14.9% unmated uniquely (NH = 1)
70667 70125 140792 0.7% unmated ambiguously (NH > 1)

0 0 0 0.0% unmapped due to read frequency (XC = B)
13624 13946 27570 0.1% unmapped with no matings but too many hits (XC =

→˓C)
109720 109765 219485 1.1% unmapped with poor matings (XC = d)

984 1003 1987 0.0% unmapped with too many matings (XC = e)
212158 211688 423846 2.0% unmapped with no matings and poor hits (XC = D)

1.3. Sequence search and alignment 3

RTG Core Operations Manual, Release 3.10

0 0 0 0.0% unmapped with no matings and too many good hits
→˓(XC = E)
1569609 1569492 3139101 15.2% unmapped with no hits

10352475 10352475 20704950 100.0% total

The following display shows the summary output for single end mapped data from the map command

READ MAPPINGS

875007 87.5% mapped uniquely (NH = 1)
25174 2.5% mapped ambiguously (NH > 1)

71 0.0% unmapped due to read frequency (XC = B)
88729 8.9% unmapped with too many hits (XC = C)
8940 0.9% unmapped with poor hits (XC = D)

0 0.0% unmapped with too many good hits (XC = E)
2079 0.2% unmapped with no hits

1000000 100.0% total

Read mapping commands also produce HTML summary reports containing more information about mapping
results.

1.3.3 Read mapping output files

The map command creates alignment reports in BAM file format and a summary report file named summary.
txt. There is also a file called progress that can be used to monitor overall progress during a run, and a file
named map.log containing technical information that may be useful for debugging. Alignment reports may
be filtered by alignment score, and/or unmapped, unmated, and ambiguous reads (those that map to multiple
locations).

When mapping, the output BAM file is named alignments.bam. The reads that did not align to the reference
will include XC attributes in the BAM file that describe why a read did not map.

See also:

For more information about the RTG map command, refer to Command Reference, map.

For details on RTG extensions to the BAM file format, refer to SAM/BAM file extensions (RTG map command
output)

1.3.4 Read mapping sensitivity tuning

The RTG map command uses default sensitivity settings that balance mapping percentage and speed requirements.
These settings deliver excellent results in most cases, especially in human read sequence data from Illumina runs
with error rates of 2% or less.

However, some experiments demand read mapping that accommodates higher machine error, genome mutation,
or cross-species comparison. For these situations, the investigator can set various tuning parameters to increase
the mapping percentage.

For reads shorter than 64 bp, RTG allows an investigator to select the number of substitutions and indels that the
map command will “at least” produce. For example, using the -a parameter to specify the number of allowed
substitutions (i.e., mismatches) at 1, will guarantee that the map command finds all alignments with at least 1
substitution.

For reads equal to or longer than 64 base pairs, RTG allows an investigator to modify word and step size parameters
related to the index. These parameters are set by default to 18 or half the read length, whichever is smaller.
Decreasing the values (using -w for word size and -s for step size) will increase the percentage of mapped reads
at the expense of additional processing time, and in the case of step size, increased memory usage.

4 Chapter 1. Overview

RTG Core Operations Manual, Release 3.10

The number of mismatches threshold can be altered to increase or decrease the number of mapped reads. Using
the --max-mated-mismatches parameter for example, an investigator might limit reported alignments to
only those at or lower than the given threshold value.

See also:

For more information about the RTG map command’s sensitivity and tuning parameters, refer to Command Ref-
erence, map

1.3.5 Protein search

The mapx command implements a search of translated nucleotide sequence data against one or more protein
databases, with alignment sensitivity adjusted for gaps and mismatches. With mapx, an investigator can sort and
classify knowns, and identify homologs and novels.

The mapx command accepts reads formatted as nucleotide data and a reference database formatted as protein data.
In a two-step process, queries that have one or more exact matches of an k-mer against the database during the
matching phase are then aligned to the subject sequence with a full edit-distance calculation using the BLOSUM62
scoring matrix.

The mapx command outputs the statistical significance of matches based on semi-global alignments (globally
across query). Reported search results may be modified by a combination of one or more thresholds on % identity,
E value, bit score and alignment score. The output results file is similar in construct to that reported by BLASTX.

See also:

For more information about the RTG mapx command please refer to Command Reference, mapx

1.3.6 Protein search output files

The mapx command writes search results and a summary file in a directory specified by the -o parameter at the
command line. The summary file is named summary.txt. There is also a file called progress that can be
used to monitor overall progress during a run, and a file named mapx.log containing technical information that
may be useful for debugging.

The protein search results are written to a file named alignments.tsv.gz. Each record in this results file,
representing a valid search result, is written as tab-separated fields on a single line. The output fields are very
similar to those reported by BLASTX.

See also:

For detailed information about the RTG mapx command results file format refer to Mapx output file description

1.3.7 Protein search sensitivity tuning

The RTG mapx command builds a set of indexes from the translated reads and scans each query for matches
according to user-specified sensitivity settings. Sensitivity is set with two parameters. The word size (-w or
--word) parameter specifies match length. The mismatches (-a or --mismatches) parameter specifies the
number and placement of k-mers across each translated query.

The alignment score threshold can be altered to increase or decrease the number of mapped reads. Using the
--max-mated-score parameter for example, an investigator might limit reported alignments to only those at
or lower than the given threshold value.

See also:

For more information about the RTG mapx command’s sensitivity and tuning parameters, refer to Mapx output
file description

1.3. Sequence search and alignment 5

RTG Core Operations Manual, Release 3.10

1.3.8 Benchmarking and optimization utilities

RTG benchmarking and optimization utilities consist of simulators that generate read and reference genome se-
quence data, and evaluators that verify the accuracy of sequence search and data analysis functions. Investigators
will use these utility commands to evaluate the use of RTG software in various read mapping and data analysis
scenarios.

RTG provides several simulators:

• genomesim The genomesim command generates a reference genome with one or more segments of
varying length and a percentage mix of nucleotide values. Use the command to create simulated genomes
for benchmarking and evaluation.

• readsim / cgsim The readsim / cgsim commands generate synthetic read sequence data from an
input reference genome, introducing errors at a specified rate. Use the commands to create simulated read
sets for benchmarking and evaluation.

• popsim, samplesim, childsim, samplereplay, denovosim These variant simulation commands
are used to create mutated genomes from a known reference by adding variants. Use these commands to
verify accuracy of variant detection analysis software for a particular experiment using different pipeline
settings.

Simulated data that is produced in SDF format can be converted into FASTA and FASTQ format sequence files
for use with other tools using the sdf2fasta and sdf2fastq commands respectively.

See also:

For more information about the RTG simulation commands, refer to Simulation Commands. Advice is available
to ensure best results. Please contact RTG technical support for assistance.

1.4 Variant detection functions

The RTG variant detection pipeline includes commands for both sequence and structural variation detection: snp,
family, population, somatic, cnv and coverage. The types of data available for analysis from the RTG
software pipeline include: Bayesian sequence variant calling (snps.vcf), structural variation analysis (cnv.
ratio) and alignment coverage depth (coverage.bed).

1.4.1 Sequence variation (SNPs, indels and complex variants)

The snp command uses a Bayesian probability model to identify and locate single and multiple nucleotide poly-
morphisms (SNPs and MNPs), indels, and complex sequence variants. The command uses standard BAM format
files as input and reports computed posterior scores, base calls, mapping quality, coverage depth, and supporting
statistics for all positions and for all variants. The snp command may be instructed to run in either haploid or
diploid calling mode, and can perform sex-aware calling to automatically switch between haploid and diploid
calling according to sex chromosomes specified for your reference species.

The snp command calls single nucleotide polymorphisms (SNPs), multiple nucleotide polymorphisms (MNPs),
and complex regions from the sorted chromosome-ordered gapped alignment (BAM) files. The snp command
makes consensus SNP and MNP calls on a diploid organism at every position (homozygous, heterozygous, and
equal) in the reference, and calls indels and complex variants of 1-50 bp (depending on input alignments).

At each position in the reference, a base pair determination is made based on statistical analysis of the accumulated
read alignments, in accordance with any priors and quality scores. The resulting predictions and accompanying
statistics are reported in industry standard VCF format.

The snps.vcf output file reports all the called variants. The location and type of the call, the base pairs (refer-
ence and called), and a confidence score are present in the snps.vcf output file. Additional ancillary statistics in
the output describe read alignment evidence that can be used to further evaluate confidence in the variant. Results
may be filtered (post variant calling) by posterior scores, coverage depth, or indels, and filtered report results may
be integrated with the SNP calls themselves.

6 Chapter 1. Overview

RTG Core Operations Manual, Release 3.10

See also:

For more information about the SNP output data, refer to Command Reference, map, Command Reference, snp
for syntax, parameters, and usage of the map and snp commands.

1.4.2 Sequence variation with Mendelian pedigree

The family command uses Bayesian analysis and the constraints of Mendelian inheritance to identify single and
multiple nucleotide variants in each member of a family group. It will usually yield a better result than running
the snp command on each individual because the Mendelian constraints help eliminate erroneous calls.

Family calling is restricted to families comprising a mother, father, and one or more sons and daughters. Family
members are identified on the command line by sample names matching those used in the input BAM files. The
family caller internally assigns the SAM records to the correct family member based on SAM read group infor-
mation. If available, it automatically makes use of coverage and quality calibration information computed during
mapping. It automatically selects the correct haploid/diploid calling depending on the sex of each individual.

The output is a multi-sample VCF file containing a call for each family member whenever any one of the family
differs from the reference genome. Each sample reports a computed posterior, base call, and ancillary statistics as
per the snp command. In addition, there is an overall posterior representing the joint likelihood of the call across
all the samples. As with the other variant detection commands, the VCF output includes a filter column containing
markers for high-coverage, high-ambiguity, and equivalent calls. It is not guaranteed that the resulting calls will
always be Mendelian across the entire family, as de novo mutations are also identified and are automatically
annotated in the output VCF.

The population command extends calling to multiple samples, which may or may not be related according
to a supplied pedigree. Mendelian constraints are employed where appropriate, and in cases where many unre-
lated samples are being called, an iterative expectation-maximization algorithm updates Bayesian priors to give
improved accuracy compared to calling samples individually with the snp command.

1.4.3 Somatic sequence variation

The somatic command uses Bayesian analysis to identify putative cancer explanations in a tumor sample. As
with the snp command, it can identify SNPs, MNPs, indels, and complex sequence variants. It operates on two
samples, an original sample (assumed to be non-cancerous) and a derived cancerous sample. The derived sample
may be a mixture of non-cancerous and cancerous sequence data. The samples are provided to the somatic
command in the form of BAM format files with appropriate sample names selected via the read group mechanism.

The somatic caller produces a VCF file detailing putative cancer explanations consisting of computed posterior
scores, base calls, and ancillary statistics for both input samples. The somatic caller handles both haploid and
diploid sequences and is sex aware. If available, it automatically makes use of coverage and quality calibration
information computed during mapping.

By default the snps.vcf output file gives each variant called where the original and derived sample differ,
together with a confidence. The file is sorted by genomic position. The same statistics reported by the snp
command per VCF record are listed for both samples. The filter column contains markers for situations of high-
coverage, high-ambiguity, and equivalent calls. This column can be used to discard unwanted results in subsequent
processing.

1.4.4 Coverage analysis

The coverage command reports read depth across a reference genome with smoothing options, and outputs the
results in the industry standard BED format. This can used to view histograms of mapped coverage data and gap
length distributions.

Use the coverage command as a tool to analyze mapping results and determine how much of the genome is
covered with mapping alignments, and how many times the same location has been mapped.

Customizable scripts are available for enabling graphical plotting of the coverage results using gnuplot.

1.4. Variant detection functions 7

RTG Core Operations Manual, Release 3.10

See also:

For more information about the RTG coverage analysis, refer to Command reference, coverage

1.4.5 Copy number variation (CNV) analysis

The cnv command identifies and reports copy number statistics that can be used for the investigation of structural
variation.

It is used to identify aberrational CNV region(s) or copy number variations in a mapped read. The RTG cnv
command identifies and reports the copy number variation ratio between two genomes.

The results of CNV detection are output to a BED file format. Customizable scripts are available for enabling
graphical plotting of the CNV results using tools such as gnuplot.

See also:

For more information about the CNV output data, refer to Command Reference, cnv

1.5 Standard input and output file formats

RTG software produces alignment and data analysis results in standard formats to allow pipeline validation and
downstream analysis.

Table : Result file formats for validation and downstream analysis

File
type

Description and Usage

BAM,
SAM

The RTG map and cgmap commands produces alignment results in the Binary Sequence
Alignment/Map (BAM) format: alignments.bam or optionally the compressed ASCII (SAM
format) equivalent alignments.sam.gz. This allows use of familiar pileup viewers for quick
visual inspection of alignment results.

TXT Many RTG commands output summary statistics as ASCII text files.
TSV Many RTG commands output results in tab separated ASCII text files. These files can typically be

loaded directly into a spreadsheet viewing program like Microsoft Excel or Open Office.
BED Some RTG commands output results in standard BED formats for further analysis and reporting.
PED Some RTG commands utilize standard PED format text files for supplying sample pedigree and sex

information.
VCF The snp, family, population and somatic commands output results in Variant Call Format

(VCF) version 4.1.

See also:

For more information about file format extensions, refer to Appendix RTG output results file descriptions

1.5.1 SAM/BAM files created by the RTG map command

The Sequence Alignment/Map (SAM/BAM) format (version 1.3) is a well-known standard for listing read align-
ments against reference sequences.

SAM records list the mapping and alignment data for each read, ordered by chromosome (or other DNA reference
sequence) location.

A sample RTG SAM file is shown in the Appendix. It describes the relationship between a read and a reference
sequence, including mismatches, insertions and deletions (indels) as determined by the RTG map aligner.

Note: RTG mapped alignments are stored in BAM format with RTG read IDs by default. This default can be
overridden using the --read-names flag or changed after processing using the RTG samrename utility to

8 Chapter 1. Overview

RTG Core Operations Manual, Release 3.10

label the reads with the sequence identifiers from the original source file. For more information, refer to the SAM
1.3 nomenclature and symbols online at: https://samtools.github.io/hts-specs/SAMv1.pdf

RTG has defined several extensions within the standard SAM/BAM format; be sure to review the SAM/BAM
format information in SAM/BAM file extensions (RTG map command output) of the Appendix to this guide for a
complete list of all extensions and differences.

By default the RTG map command produces output as compressed binary format BAM files but can be set to
produce human readable SAM files instead with the --sam flag.

1.5.2 Variant caller output files

The Variant Call Format (VCF) is a widely used standard format for storing SNPs, MNPs and indels.

A sample snps.vcf file is provided in the Appendix as an example of the output produced by an RTG variant
calling run. Each line in a snps.vcf output has tab-separated fields and represents a SNP variation calculated
from the mapped reads against the reference genome.

Note: RTG variant calls are stored in VCF format (version 4.1). For more information about the VCF format,
refer to the specification online at: https://samtools.github.io/hts-specs/VCFv4.1.pdf

RTG employs several extensions within the standard VCF format; be sure to review the VCF format information
in Small-variant VCF output file description of the Appendix to this guide for a complete list of all extensions and
differences.

See also:

For more information about file formats, refer to the Appendix, RTG output results file descriptions

1.6 Metagenomic analysis functions

The RTG metagenomic analysis pipeline includes commands for sample contamination filtering, estimation of
taxon abundances in a sample and finding relationships between samples.

1.6.1 Contamination filtering

The mapf command is used for filtering contaminant reads from a sample. It does this by performing alignment
of the reads against a reference of known contaminants and producing an output of the reads that did not align
successfully. A common use for this is to remove human DNA from a bacterial sample taken from a body site.

1.6.2 Taxon abundance breakdown

The species command is used to find the abundances of taxa within a given sample. This is accomplished by
analyzing reference genome alignment data made with a metagenomic reference database of known organisms. It
produces output in which each taxon is given a fraction representing its abundance in the sample with upper and
lower bounds and a value indicating the confidence that the taxon is actually present in the sample. An HTML
report allows interactive examination of the abundances at different taxonomic levels.

1.6.3 Sample relationships

The similarity command is used to find relationships between sample read sets. It does this by examining k-
mer word frequencies and the intersections between sets of reads. This results in the output of a similarity matrix,
a principal component analysis and nearest neighbor trees in the Newick and phyloXML formats.

1.6. Metagenomic analysis functions 9

https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/VCFv4.1.pdf

RTG Core Operations Manual, Release 3.10

1.6.4 Functional protein analysis

The mapx command is used to perform a translated nucleotide search of short reads against a reference protein
database. This results in an output similar to that reported by BLASTX.

1.7 Pipelines

Included in the RTG release are some pipeline commands which perform simple end-to-end tasks using other
RTG commands. These pipelines use mostly default settings for each of the commands called, and are meant as a
guideline to building more complex end-to-end pipelines using our tools. The metagenomic pipeline commands
are:

• species composition (composition-meta-pipeline)

• functional protein analysis (functional-meta-pipeline)

• species composition and functional protein analysis (composition-functional-meta-pipeline).

For detailed information about individual pipeline commands see Pipeline Commands

1.8 Parallel processing

The comparison of genomic variation on a large scale in real time demands parallel processing capability. Parallel
processing of gapped alignments and variant detection is recommended by RTG because it significantly reduces
wall clock time.

RTG software includes key features that make it easier for a person to prepare a job for parallel processing.
First, RTG mapping commands can be performed on a subset of a large file or set of files either by using the
--start-read and --end-read parameters or for commands that do not support this, by using sdfsplit
to break a large SDF into smaller pieces. Second, the data analysis commands accept multiple alignment files as
input from the command. Third, many RTG commands take a --region or --bed-regions parameter to
allow breaking up tasks into pieces across the reference genome.

See also:

See RTG Command Reference for command-specific details, Administration & Capacity Planning for detailed
information about estimating the number of multi-core servers needed (capacity planning), and Parallel processing
approach for a deeper discussion of compute cluster operations.

1.9 Installation and deployment

RTG is a self-contained tool that sets minimal expectations on the environment in which it is placed. It comes with
the application components it needs to execute completely, yet performance can be enhanced with some simple
modifications to the deployment configuration. This section provides guidelines for installing and creating an
optimal configuration, starting from a typical recommended system.

RTG software pipeline runs in a wide range of computing environments from dual-core processor laptops to
compute clusters with racks of dual processor quad core server nodes. However, internal human genome analysis
benchmarks suggest the use of six server nodes of the configuration shown in below.

Table : Recommended system requirements

Processor Intel Core i7-2600
Memory 48 GB RAM DDR3
Disk 5 TB, 7200 RPM (prefer SAS disk)

RTG Software can be run as a Java JAR file, but platform specific wrapper scripts are supplied to provide improved
pipeline ergonomics. Instructions for a quick start installation are provided here.

10 Chapter 1. Overview

RTG Core Operations Manual, Release 3.10

For further information about setting up per-machine configuration files, please see the README.txt contained
in the distribution zip file (a copy is also included in this manual’s appendix).

1.9.1 Quick start instructions

These instructions are intended for an individual to install and operate the RTG software without the need to
establish root / administrator privileges.

RTG software is delivered in a compressed zip file, such as: rtg-core-3.3.zip. Unzip this file to begin
installation.

Linux and Windows distributions include a Java Virtual Machine (JVM) version 1.8 that has undergone quality
assurance testing. RTG may be used on other operating systems for which a JVM version 1.8 or higher is available,
such as MacOS X or Solaris, by using the ‘no-jre’ distribution.

RTG for Java is delivered as a Java application accessed via executable wrapper script (rtg on UNIX systems,
rtg.bat on Windows) that allows a user to customize initial memory allocation and other configuration options.
It is recommended that these wrapper scripts be used rather than directly executing the Java JAR.

Here are platform-specific instructions for RTG deployment.

Linux/MacOS X:

• Unzip the RTG distribution to the desired location.

• If your installation requires a license file (rtg-license.txt), copy the license file provided by Real
Time Genomics into the RTG distribution directory.

• In a terminal, cd to the installation directory and test for success by entering ./rtg version

• On MacOS X, depending on your operating system version and configuration regarding unsigned applica-
tions, you may encounter the error message:

-bash: rtg: /usr/bin/env: bad interpreter: Operation not permitted

If this occurs, you must clear the OS X quarantine attribute with the command:

$ xattr -d com.apple.quarantine rtg

• The first time rtg is executed you will be prompted with some questions to customize your installation.
Follow the prompts.

• Enter ./rtg help for a list of rtg commands. Help for any individual command is available using the
--help flag, e.g.: ./rtg format --help

• By default, RTG software scripts establish a memory space of 90% of the available RAM - this is automati-
cally calculated. One may override this limit in the rtg.cfg settings file or on a per-run basis by supplying
RTG_MEM as an environment variable or as the first program argument, e.g.: ./rtg RTG_MEM=48g map

• [OPTIONAL] If you will be running RTG on multiple machines and would like to customize settings on
a per-machine basis, copy rtg.cfg to /etc/rtg.cfg, editing per-machine settings appropriately (re-
quires root privileges). An alternative that does not require root privileges is to copy rtg.cfg to rtg.
HOSTNAME.cfg, editing per-machine settings appropriately, where HOSTNAME is the short host name
output by the command hostname -s

Windows:

• Unzip the RTG distribution to the desired location.

• If your installation requires a license, copy the license file provided by Real Time Genomics
(rtg-license.txt) into the RTG distribution directory.

• Test for success by entering rtg version at the command line. The first time RTG is executed you will
be prompted with some questions to customize your installation. Follow the prompts.

1.9. Installation and deployment 11

RTG Core Operations Manual, Release 3.10

• Enter rtg help for a list of rtg commands. Help for any individual command is available using the
--help flag, e.g.: ./rtg format --help

• By default, RTG software scripts establish a memory space of 90% of the available RAM - this is automati-
cally calculated. One may override this limit by setting the RTG_MEM variable in the rtg.bat script or as
an environment variable.

1.9.2 License Management

Commercial distributions of RTG products require the presence of a valid license key file for operation.

The license key file must be located in the same directory as the RTG executable. The license enables the execution
of a particular command set for the purchased product(s) and features.

A license key allows flexible use of the RTG package on any node or CPU core.

To view the current license features at the command prompt, enter:

$ rtg license

See also:

For more data center deployment and instructions for editing scripts, see Administration & Capacity Planning.

1.10 Technical assistance and support

For assistance with any technical or conceptual issue that may arise during use of the RTG product, contact Real
Time Genomics Technical Support via email at support@realtimegenomics.com

In addition, a discussion group is available at: https://groups.google.com/a/realtimegenomics.com/forum/#!forum/
rtg-users

A low-traffic announcements-only group is available at: https://groups.google.com/a/realtimegenomics.com/
forum/#!forum/rtg-announce

12 Chapter 1. Overview

https://groups.google.com/a/realtimegenomics.com/forum/#!forum/rtg-users
https://groups.google.com/a/realtimegenomics.com/forum/#!forum/rtg-users
https://groups.google.com/a/realtimegenomics.com/forum/#!forum/rtg-announce
https://groups.google.com/a/realtimegenomics.com/forum/#!forum/rtg-announce

CHAPTER

TWO

RTG COMMAND REFERENCE

This chapter describes RTG commands with a generic description of parameter options and usage. This section
also includes expected operation and output results.

2.1 Command line interface (CLI)

RTG is installed as a single executable in any system subdirectory where permissions authorize a particu-
lar community of users to run the application. RTG commands are executed through the RTG command-
line interface (CLI). Each command has its own set of parameters and options described in this section.
The availability of each command may be determined by the RTG license that has been installed. Contact
support@realtimegenomics.com to discuss changing the set of commands that are enabled by your li-
cense.

Results are organized in results directories defined by command parameters and settings. The command line shell
environment should include a set of familiar text post-processing tools, such as grep, awk, or perl. Otherwise,
no additional applications such as databases or directory services are required.

2.2 RTG command syntax

Usage:

rtg COMMAND [OPTIONS] <REQUIRED>

To run an RTG command at the command prompt (either DOS window or Unix terminal), type the product name
followed by the command and all required and optional parameters. For example:

$ rtg format -o human_REF_SDF human_REF.fasta

Typically results are written to output files specified with the -o option. There is no default filename or filename
extension added to commands requiring specification of an output directory or format.

Many times, unfiltered output files are very large; the built-in compression option generates block compressed
output files with the .gz extension automatically unless the parameter -Z or --no-gzip is issued with the
command.

Many command parameters require user-supplied information of various types, as shown in the following:

Type Description
DIR, FILE File or directory name(s)
SDF Sequence data that has been formatted to SDF
INT Integer value
FLOAT Floating point decimal value
STRING A sequence of characters for comments, filenames, or labels
REGION A genomic region specification (see below)

Genomic region parameters take one of the following forms:

13

RTG Core Operations Manual, Release 3.10

• sequence_name (e.g.: chr21) corresponds to the entirety of the named sequence.

• sequence_name:start (e.g.: chr21:100000) corresponds to a single position on the named sequence.

• sequence_name:start-end (e.g.: chr21:100000-110000) corresponds to a range that extends from the
specified start position to the specified end position (inclusive). The positions are 1-based.

• sequence_name:position+length (e.g.: chr21:100000+10000) corresponds to a range that extends from
the specified start position that includes the specified number of nucleotides.

• sequence_name:position~padding (e.g.: chr21:100000~10000) corresponds to a range that spans the
specified position by the specified amount of padding on either side.

To display all parameters and syntax associated with an RTG command, enter the command and type --help. For
example: all parameters available for the RTG format command are displayed when rtg format --help
is executed, the output of which is shown below.

Usage: rtg format [OPTION]... -o SDF FILE+
[OPTION]... -o SDF -I FILE
[OPTION]... -o SDF -l FILE -r FILE

Converts the contents of sequence data files (FASTA/FASTQ/SAM/BAM) into the RTG
Sequence Data File (SDF) format.

File Input/Output
-f, --format=FORMAT format of input. Allowed values are [fasta,

fastq, sam-se, sam-pe, cg-fastq, cg-sam]
(Default is fasta)

-I, --input-list-file=FILE file containing a list of input read files (1
per line)

-l, --left=FILE left input file for FASTA/FASTQ paired end
data

-o, --output=SDF name of output SDF
-p, --protein input is protein. If this option is not

specified, then the input is assumed to
consist of nucleotides

-q, --quality-format=FORMAT format of quality data for fastq files (use
sanger for Illumina 1.8+). Allowed values are
[sanger, solexa, illumina]

-r, --right=FILE right input file for FASTA/FASTQ paired end
data

FILE+ input sequence files. May be specified 0 or
more times

Filtering
--duster treat lower case residues as unknowns
--exclude=STRING exclude input sequences based on their name.

If the input sequence contains the specified
string then that sequence is excluded from the
SDF. May be specified 0 or more times

--select-read-group=STRING when formatting from SAM/BAM input, only
include reads with this read group ID

--trim-threshold=INT trim read ends to maximise base quality above
the given threshold

Utility
--allow-duplicate-names disable checking for duplicate sequence names

-h, --help print help on command-line flag usage
--no-names do not include name data in the SDF output
--no-quality do not include quality data in the SDF output
--sam-rg=STRING|FILE file containing a single valid read group SAM

header line or a string in the form
"@RG\tID:READGROUP1\tSM:BACT_SAMPLE\tPL:ILLUMINA"

Required parameters are indicated in the usage display; optional parameters are listed immediately below the

14 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

usage information in organized categories.

Use the double-dash when typing the full-word command option, as in --output:

$ rtg format --output human_REF_SDF human_REF.fasta

Commonly used command options provide an abbreviated single-character version of a full command parameter,
indicated with only a single dash, (Thus --output is the same as specifying the command option with the
abbreviated character -o):

$ rtg format -o human_REF human_REF.fasta

A set of utility commands are provided through the CLI: version, license, and help. Start with these
commands to familiarize yourself with the software.

The rtg version command invokes the RTG software and triggers the launch of RTG product commands,
options, and utilities:

$ rtg version

It will display the version of the RTG software installed, RAM requirements, and license expiration, for example:

$rtg version
Product: RTG Core 3.5
Core Version: 6236f4e (2014-10-31)
RAM: 40.0GB of 47.0GB RAM can be used by rtg (84%)
License: Expires on 2015-09-30
License location: /home/rtgcustomer/rtg/rtg-license.txt
Contact: support@realtimegenomics.com

Patents / Patents pending:
US: 7,640,256, 13/129,329, 13/681,046, 13/681,215, 13/848,653,
13/925,704, 14/015,295, 13/971,654, 13/971,630, 14/564,810
UK: 1222923.3, 1222921.7, 1304502.6, 1311209.9, 1314888.7, 1314908.3
New Zealand: 626777, 626783, 615491, 614897, 614560
Australia: 2005255348, Singapore: 128254

Citation:
John G. Cleary, Ross Braithwaite, Kurt Gaastra, Brian S. Hilbush, Stuart
Inglis, Sean A. Irvine, Alan Jackson, Richard Littin, Sahar
Nohzadeh-Malakshah, Mehul Rathod, David Ware, Len Trigg, and Francisco
M. De La Vega. "Joint Variant and De Novo Mutation Identification on
Pedigrees from High-Throughput Sequencing Data." Journal of
Computational Biology. June 2014, 21(6): 405-419.
doi:10.1089/cmb.2014.0029.
(c) Real Time Genomics Inc, 2014

To see what commands you are licensed to use, type rtg license:

$rtg license
License: Expires on 2015-03-30
Licensed to: John Doe
License location: /home/rtgcustomer/rtg/rtg-license.txt

Command name Licensed? Release Level

Data formatting:
format Licensed GA
sdf2fasta Licensed GA
sdf2fastq Licensed GA

Utility:
bgzip Licensed GA

2.2. RTG command syntax 15

RTG Core Operations Manual, Release 3.10

index Licensed GA
extract Licensed GA
sdfstats Licensed GA
sdfsubset Licensed GA
sdfsubseq Licensed GA
mendelian Licensed GA
vcfstats Licensed GA
vcfmerge Licensed GA
vcffilter Licensed GA
vcfannotate Licensed GA
vcfsubset Licensed GA
vcfeval Licensed GA
pedfilter Licensed GA
pedstats Licensed GA
rocplot Licensed GA
version Licensed GA
license Licensed GA
help Licensed GA

To display all commands and usage parameters available to use with your license, type rtg help:

$ rtg help
Usage: rtg COMMAND [OPTION]...

rtg RTG_MEM=16G COMMAND [OPTION]... (e.g. to set maximum memory use to 16
→˓GB)

Type ``rtg help COMMAND`` for help on a specific command. The
following commands are available:

Data formatting:
format convert a FASTA file to SDF
cg2sdf convert Complete Genomics reads to SDF
sdf2fasta convert SDF to FASTA
sdf2fastq convert SDF to FASTQ
sdf2sam convert SDF to SAM/BAM

Read mapping:
map read mapping
mapf read mapping for filtering purposes
cgmap read mapping for Complete Genomics data

Protein search:
mapx translated protein search

Assembly:
assemble assemble reads into long sequences
addpacbio add Pacific Biosciences reads to an assembly

Variant detection:
calibrate create calibration data from SAM/BAM files
svprep prepare SAM/BAM files for sv analysis
sv find structural variants
discord detect structural variant breakends using discordant

→˓reads
coverage calculate depth of coverage from SAM/BAM files
snp call variants from SAM/BAM files
family call variants for a family following Mendelian

→˓inheritance
somatic call variants for a tumor/normal pair
population call variants for multiple potentially-related

→˓individuals
lineage call de novo variants in a cell lineage
avrbuild AVR model builder
avrpredict run AVR on a VCF file
cnv call CNVs from paired SAM/BAM files

Metagenomics:
species estimate species frequency in metagenomic samples

16 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

similarity calculate similarity matrix and nearest neighbor tree
Simulation:

genomesim generate simulated genome sequence
cgsim generate simulated reads from a sequence
readsim generate simulated reads from a sequence
readsimeval evaluate accuracy of mapping simulated reads
popsim generate a VCF containing simulated population

→˓variants
samplesim generate a VCF containing a genotype simulated from a

→˓population
childsim generate a VCF containing a genotype simulated as a

→˓child of two parents
denovosim generate a VCF containing a derived genotype

→˓containing de novo variants
samplereplay generate the genome corresponding to a sample genotype
cnvsim generate a mutated genome by adding CNVs to a template

Utility:
bgzip compress a file using block gzip
index create a tabix index
extract extract data from a tabix indexed file
sdfstats print statistics about an SDF
sdfsplit split an SDF into multiple parts
sdfsubset extract a subset of an SDF into a new SDF
sdfsubseq extract a subsequence from an SDF as text
sam2bam convert SAM file to BAM file and create index
sammerge merge sorted SAM/BAM files
samstats print statistics about a SAM/BAM file
samrename rename read id to read name in SAM/BAM files
mapxrename rename read id to read name in mapx output files
mendelian check a multi-sample VCF for Mendelian consistency
vcfstats print statistics from about variants contained within

→˓a VCF file
vcfmerge merge single-sample VCF files into a single multi-

→˓sample VCF
vcffilter filter records within a VCF file
vcfannotate annotate variants within a VCF file
vcfsubset create a VCF file containing a subset of the original

→˓columns
vcfeval evaluate called variants for agreement with a

→˓baseline variant set
pedfilter filter and convert a pedigree file
pedstats print information about a pedigree file
avrstats print statistics about an AVR model
rocplot plot ROC curves from vcfeval ROC data files
usageserver run a local server for collecting RTG command usage

→˓information
version print version and license information
license print license information for all commands
help print this screen or help for specified command

The help command will only list the commands for which you have a license to use.

To display help and syntax information for a specific command from the command line, type the command and
then the –help option, as in:

$ rtg format --help

Note: The following commands are synonymous: rtg help format and rtg format --help

See also:

2.2. RTG command syntax 17

RTG Core Operations Manual, Release 3.10

Refer to Installation and deployment for information about installing the RTG product executable.

2.3 Data Formatting Commands

2.3.1 format

Synopsis:

The format command converts the contents of sequence data files (FASTA/FASTQ/SAM/BAM) into the RTG
Sequence Data File (SDF) format. This step ensures efficient processing of very large data sets, by organizing the
data into multiple binary files within a named directory. The same SDF format is used for storing sequence data,
whether it be genomic reference, sequencing reads, protein sequences, etc.

Syntax:

Format one or more files specified from command line into a single SDF:

$ rtg format [OPTION] -o SDF FILE+

Format one or more files specified in a text file into a single SDF:

$ rtg format [OPTION] -o SDF -I FILE

Format mate pair reads into a single SDF:

$ rtg format [OPTION] -o SDF -l FILE -r FILE

Examples:

For FASTA (.fa) genome reference data:

$ rtg format -o maize_reference maize_chr*.fa

For FASTQ (.fq) sequence read data:

$ rtg format -f fastq -q sanger -o h1_reads -l h1_sample_left.fq -r h1_sample_
→˓right.fq

Parameters:
File Input/Output
-f --format=FORMAT The format of the input file(s). Allowed values are [fasta, fastq,

fastq-interleaved, sam-se, sam-pe] (Default is fasta).
-I --input-list-file=FILE Specifies a file containing a list of sequence data files (one per

line) to be converted into an SDF.
-l --left=FILE The left input file for FASTA/FASTQ paired end data.
-o --output=SDF The name of the output SDF.
-p --protein Set if the input consists of protein. If this option is not specified,

then the input is assumed to consist of nucleotides.
-q --quality-format=FORMAT The format of the quality data for fastq format files. (Use sanger

for Illumina1.8+). Allowed values are [sanger, solexa, illumina].
-r --right=FILE The right input file for FASTA/FASTQ paired end data.

FILE+ Specifies a sequence data file to be converted into an SDF. May
be specified 0 or more times.

18 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Filtering
--duster Treat lower case residues as unknowns.
--exclude=STRING Exclude individual input sequences based on their name. If the

input sequence name contains the specified string then that
sequence is excluded from the SDF. May be specified 0 or more
times.

--select-read-group=STRING Set to only include only reads with this read group ID when
formatting from SAM/BAM files.

--trim-threshold=INT Set to trim the read ends to maximise the base quality above the
given threshold.

Utility
--allow-duplicate-names Set to disable duplicate name detection.

-h --help Prints help on command-line flag usage.
--no-names Do not include sequence names in the resulting SDF.
--no-quality Do not include sequence quality data in the resulting SDF.
--sam-rg=STRING|FILE Specifies a file containing a single valid read group SAM header

line or a string in the form
@RG\tID:RG1\tSM:G1_SAMP\tPL:ILLUMINA.

Usage:

Formatting takes one or more input data files and creates a single SDF. Specify the type of file to be converted,
or allow default to FASTA format. To aggregate multiple input data files, such as when formatting a reference
genome consisting of multiple chromosomes, list all files on the command line or use the --input-list-file
flag to specify a file containing the list of files to process.

For input FASTA and FASTQ files which are compressed, they must have a filename extension of .gz (for gzip
compressed data) or .bz2 (for bzip2 compressed data).

When formatting human reference genome data, it is recommended that the resulting SDF be augmented with
chromosome reference metadata, in order to enable automatic sex-aware features during mapping and variant
calling. The format command will automatically recognize several common human reference genomes and
install a reference configuration file. If your reference genome is not recognized, a configuration can be manually
adapted from one of the examples provided in the RTG distribution and installed in the SDF directory. The
reference configuration is described in RTG reference file format.

When using FASTQ input files you must specify the quality format being used as one of sanger, solexa or
illumina. As of Illumina pipeline version 1.8 and higher, quality values are encoded in Sanger format and
so should be formatted using --quality-format=sanger. Output from earlier Illumina pipeline versions
should be formatted using --quality-format=illumina for Illumina pipeline versions starting with 1.3
and before 1.8, or --quality-format=solexa for Illumina pipeline versions less than 1.3.

For FASTQ files that represent paired-end read data, indicate each side respectively using the --left=FILE and
--right=FILE flags. Sometimes paired-end reads are represented in a single FASTQ file by interleaving each
side of the read. This type of input can be formatted by specifying fastq-interleaved as the format type.

The mapx command maps translated DNA sequence data against a protein reference. You must use the -p,
--protein flag to format the protein reference used by mapx.

Use the sam-se format for single end SAM/BAM input files and the sam-pe format for paired end SAM/BAM
input files. Note that if the input SAM/BAM files are sorted in coordinate order (for example if they have already
been aligned to a reference), it is recommended that they be shuffled before formatting, so that subsequent mapping
is not biased by processing reads in chromosome order. For example, a BAM file can be shuffled using samtools
collate as follows:

$ samtools collate -uOn 256 reads.bam tmp-prefix >reads_shuffled.bam

And this can be carried out on the fly during formatting using bash process redirection in order to reduce interme-
diate I/O, for example:

$ rtg format --format sam-pe <(samtools collate -uOn 256 reads.bam temp-prefix) ...

2.3. Data Formatting Commands 19

RTG Core Operations Manual, Release 3.10

The SDF for a read set can contain a SAM read group which will be automatically picked up from the input
SAM/BAM files if they contain only one read group. If the input SAM/BAM files contain multiple read groups
you must select a single read group from the SAM/BAM file to format using the --select-read-group flag
or specify a custom read group with the --sam-rg flag. The --sam-rg flag can also be used to add read group
information to reads given in other input formats. The SAM read group stored in an SDF will be automatically
used during mapping the reads it contains to provide tracking information in the output BAM files.

The --trim-threshold flag can be used to trim poor quality read ends from the input reads by inspecting
base qualities from FASTQ input. If and only if the quality of the final base of the read is less than the threshold
given, a new read length is found which maximizes the overall quality of the retained bases using the following
formula.

argmax𝑥

(︃
𝑙∑︁

𝑖=𝑥+1

(𝑇 − 𝑞(𝑖))

)︃
if 𝑞(𝑙) < 𝑇

Where l is the original read length, x is the new read length, T is the given threshold quality and q(n) is the quality
of the base at the position n of the read.

Note: Sequencing system read files and reference genome files often have the same extension and it may not
always be obvious which file is a read set and which is a genome. Before formatting a sequencing system file,
open it to see which type of file it is. For example:

$ less pf3.fa

In general, a read file typically begins with an @ or + character; a genome reference file typically begins with the
characters chr.

Normally when the input data contains multiple sequences with the same name the format command will fail with
an error. The --allow-duplicate-names flag will disable this check conserving memory, but if the input
data has multiple sequences with the same name you will not be warned. Having duplicate sequence names can
cause problems with other commands, especially for reference data since the output many commands identifies
sequences by their names.

See also:

sdf2fasta, sdf2fastq, sdfstats

2.3.2 cg2sdf

Synopsis:

Converts Complete Genomics sequencing system reads to RTG SDF format.

Syntax:

Multi-file input specified from command line:

$ rtg cg2sdf [OPTION]... -o SDF FILE+

Multi-file input specified in a text file:

$ rtg cg2sdf [OPTION]... -o SDF -I FILE

Example:

$ rtg cg2sdf -I CG_source_files -o CG_reads

Parameters:

20 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

File Input/Output
-I --input-list-file=FILE File containing a list of Complete Genomics TSV files (1 per line)
-o --output=SDF Name of output SDF.

FILE+ File in Complete Genomics TSV format. May be specified 0 or
more times.

Filtering
--max-unknowns=INT Maximum number of Ns allowed in either side for a read (Default is 5)

Utility
-h --help Print help on command-line flag usage.

--no-quality Does not include quality data in the resulting SDF.
--sam-rg=STRING|FILE File containing a single valid read group SAM header line or a string

in the form @RG\tID:RG1\tSM:G1_SAMP\tPL:COMPLETE.

Usage:

The cg2sdf command converts Complete Genomics reads into an RTG SDF.

RTG supports two versions of Complete Genomics reads: the original 35 bp paired end read structure (“version
1”); and the newer 29 bp paired end structure (“version 2”). The 29 bp reads are sometimes equivalently repre-
sented as 30 bp with a redundant single base overlap containing an ‘N’ at position 20. This alternate representation
is automatically normalised by RTG during processing.

The command accepts input files in the Complete Genomics read data format entered at the command line. The
reads for a single sample are typically supplied in a large number of files. For consistent operation with multiple
samples, use the -I, --input-list-file flag to specify a text file that lists all the files to format, specifying
one filename per line.

Using the --sam-rg flag the SDF for a read set can contain the SAM read group specified. The SAM read group
stored in an SDF will be automatically used during mapping the reads it contains to provide tracking information
in the output BAM files. For version 1 reads, the platform (PL) must be specified as COMPLETE, and for version
2 reads, the platform must be specified as COMPLETEGENOMICS.

Complete Genomics often produces “no calls” in the reads, represented by multiple Ns. Sometimes, numerous Ns
indicate a low quality read. The --max-unknowns option limits how many Ns will be added to the SDF during
conversion. If there are more than the specified number of Ns in one arm of the read, they read will not be added
to the SDF.

See also:

format, sdf2cg, cgmap, sdf2fasta, sdf2fastq, sdfstats, sdfsplit

2.3.3 sdf2cg

Synopsis:

Converts SDF formatted data into Complete Genomics TSV file(s).

Syntax:

Extract specific sequences listed on command line:

$ rtg sdf2cg [OPTION]... -i SDF -o FILE STRING+

Extract specific sequences listed in text file

$ rtg sdf2cg [OPTION]... -i SDF -o FILE -I FILE

Extract range of sequences by sequence id

$ rtg sdf2cg [OPTION]... -i SDF -o FILE --end-id INT --start-id INT

2.3. Data Formatting Commands 21

RTG Core Operations Manual, Release 3.10

Parameters:
File Input/Output
-i --input=SDF SDF containing sequences
-o --output=FILE Output filename (extension added if not present). Use ‘-‘ to write to standard

output

Filtering
--end-id=INT Exclusive upper bound on sequence id

-I --id-file=FILE File containing sequence ids, or sequence names if –names flag is set, one per
line

-n --names Interpret supplied sequence as names instead of numeric ids
--start-id=INT Inclusive lower bound on sequence id
STRING+ ID of sequence to extract, or sequence name if –names flag is set. May be

specified 0 or more times

Utility
-h --help Print help on command-line flag usage
-l --line-length=INT Maximum number of nucleotides to print on a line of output. A value of 0

indicates no limit (Default is 0)
-Z --no-gzip Do not gzip the output

Usage:

The sdf2cg command converts RTG SDF data into Complete Genomics reads format.

While any SDF data can be consumed by this command to produce a CG TSV file, real Complete Genomics
data typically has specific read lengths and other characteristics that would make normal data fed through this
command inappropriate for use in a Complete Genomics pipeline. However this command can be used to turn
SDF formatted CG data back into TSV close to its original form.

See also:

cg2sdf

2.3.4 sdf2fasta

Synopsis:

Convert SDF data into a FASTA file.

Syntax:

$ rtg sdf2fasta [OPTION]... -i SDF -o FILE

Example:

$ rtg sdf2fasta -i humanSDF -o humanFASTA_return

Parameters:
File Input/Output
-i --input=SDF SDF containing sequences.
-o --output=FILE Output filename (extension added if not present). Use ‘-‘ to write to standard

output.

22 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Filtering
--end-id=INT Only output sequences with sequence id less than the given number.

(Sequence ids start at 0).
--start-id=INT Only output sequences with sequence id greater than or equal to the given

number. (Sequence ids start at 0).
-I --id-file=FILE Name of a file containing a list of sequences to extract, one per line.

--names Interpret any specified sequence as names instead of numeric sequence ids.
--taxons Interpret any specified sequence as taxon ids instead of numeric sequence ids.

This option only applies to a metagenomic reference species SDF.
STRING+ Specify one or more explicit sequences to extract, as sequence id, or sequence

name if –names flag is set.

Utility
-h --help Prints help on command-line flag usage.

--interleave Interleave paired data into a single output file. Default is to split to
separate output files.

-l --line-length=INT Set the maximum number of nucleotides or amino acids to print on a line
of FASTA output. Should be nonnegative, with a value of 0 indicating that
the line length is not capped. (Default is 0).

-Z --no-gzip Set this flag to create the FASTA output file without compression. By
default the output file is compressed with blocked gzip.

Usage:

Use the sdf2fasta command to convert SDF data into FASTA format. By default, sdf2fasta creates a
separate line of FASTA output for each sequence. These lines will be as long as the sequences themselves. To
make them more readable, use the -l, --line-length flag and define a reasonable record length like 75.

By default all sequences will be extracted, but flags may be specified to extract reads within a range, or explicitly
specified reads (either by numeric sequence id or by sequence name if --names is set). Additionally, when the
input SDF is a metagenomic species reference SDF, the --taxons option, any supplied id is interpreted as a
taxon id and all sequences assigned directly to that taxon id will be output. This provides a convenient way to
extract all sequence data corresponding to a single (or multiple) species from a metagenomic species reference
SDF.

Sequence ids are numbered starting at 0, the --start-id flag is an inclusive lower bound on id and the
--end-id flag is an exclusive upper bound. For example if you have an SDF with five sequences (ids: 0, 1,
2, 3, 4) the following command:

$ rtg sdf2fasta --start-id=3 -i mySDF -o output

will extract sequences with id 3 and 4. The command:

$ rtg sdf2fasta --end-id=3 -i mySDF -o output

will extract sequences with id 0, 1, and 2. And the command:

$ rtg sdf2fasta --start-id=2 --end-id=4 -i mySDF -o output

will extract sequences with id 2 and 3.

See also:

format, sdf2fastq, sdfstats

2.3.5 sdf2fastq

Synopsis:

Convert SDF data into a FASTQ file.

Syntax:

2.3. Data Formatting Commands 23

RTG Core Operations Manual, Release 3.10

$ rtg sdf2fastq [OPTION]... -i SDF -o FILE

Example:

$ rtg sdf2fastq -i humanSDF -o humanFASTQ_return

Parameters:
File Input/Output
-i --input=SDF Specifies the SDF data to be converted.
-o --output=FILE Specifies the file name used to write the resulting FASTQ output.

Filtering
--end-id=INT Only output sequences with sequence id less than the given number. (Sequence

ids start at 0).
--start-id=INT Only output sequences with sequence id greater than or equal to the given

number. (Sequence ids start at 0).
-I --id-file=FILE Name of a file containing a list of sequences to extract, one per line.

--names Interpret any specified sequence as names instead of numeric sequence ids.
STRING+ Specify one or more explicit sequences to extract, as sequence id, or sequence

name if –names flag is set.

Utility
-h --help Prints help on command-line flag usage.
-q --default-qualty=INT Set the default quality to use if the SDF does not contain sequence

quality data (0-63).
--interleave Interleave paired data into a single output file. Default is to split to

separate output files.
-l --line-length=INT Set the maximum number of nucleotides or amino acids to print on a

line of FASTQ output. Should be nonnegative, with a value of 0
indicating that the line length is not capped. (Default is 0).

-Z --no-gzip Set this flag to create the FASTQ output file without compression. By
default the output file is compressed with blocked gzip.

Usage:

Use the sdf2fastq command to convert SDF data into FASTQ format. If no quality data is available in the
SDF, use the -q, --default-quality flag to set a quality score for the FASTQ output. The quality encoding
used during output is sanger quality encoding. By default, sdf2fastq creates a separate line of FASTQ output
for each sequence. As with sdf2fasta, there is an option to use the -l, --line-length flag to restrict the
line lengths to improve readability of long sequences.

By default all sequences will be extracted, but flags may be specified to extract reads within a range, or explicitly
specified reads (either by numeric sequence id or by sequence name if --names is set).

It may be preferable to extract data to unaligned SAM/BAM format using sdf2sam, as this preserves read-group
information stored in the SDF and may also be more convenient when dealing with paired-end data.

The --start-id and --end-id flags behave as in sdf2fasta.

See also:

format, sdf2fasta, sdf2sam, sdfstats

2.3.6 sdf2sam

Synopsis:

Convert SDF read data into unaligned SAM or BAM format file.

Syntax:

24 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

$ rtg sdf2sam [OPTION]... -i SDF -o FILE

Example:

$ rtg sdf2sam -i samplereadsSDF -o samplereads.bam

Parameters:
File Input/Output
-i --input=SDF Specifies the SDF data to be converted.
-o --output=FILE Specifies the file name used to write the resulting SAM/BAM to. The output

format is automatically determined based on the filename specified. If ‘-‘ is
given, the data is written as uncompressed SAM to standard output.

Filtering
--end-id=INT Only output sequences with sequence id less than the given number. (Sequence

ids start at 0).
--start-id=INT Only output sequences with sequence id greater than or equal to the given

number. (Sequence ids start at 0).
-I --id-file=FILE Name of a file containing a list of sequences to extract, one per line.

--names Interpret any specified sequence as names instead of numeric sequence ids.
STRING+ Specify one or more explicit sequences to extract, as sequence id, or sequence

name if –names flag is set.

Utility
-h --help Prints help on command-line flag usage.
-Z --no-gzip Set this flag when creating SAM format output to disable compression. By default

SAM is compressed with blocked gzip, and BAM is always compressed.

Usage:

Use the sdf2sam command to convert SDF data into unaligned SAM/BAM format. By default all sequences
will be extracted, but flags may be specified to extract reads within a range, or explicitly specified reads (either by
numeric sequence id or by sequence name if --names is set). This command is a useful way to export paired-end
data to a single output file while retaining any read group information that may be stored in the SDF.

The output format is either SAM/BAM depending on the specified output file name. e.g. output.sam or
output.sam.gz will output as SAM, whereas output.bam will output as BAM. If neither SAM or BAM
format is indicated by the file name then BAM will be used and the output file name adjusted accordingly. e.g
output will become output.bam. However if standard output is selected (-) then the output will always be
in uncompressed SAM format.

The --start-id and --end-if behave as in sdf2fasta.

See also:

format, sdf2fasta, sdf2fastq, sdfstats, cg2sdf , sdfsplit

2.3.7 fastqtrim

Synopsis:

Trim reads in FASTQ files.

Syntax:

$ rtg fastqtrim [OPTION]... -i FILE -o FILE

Example:

Apply hard base removal from the start of the read and quality-based trimming of terminal bases:

2.3. Data Formatting Commands 25

RTG Core Operations Manual, Release 3.10

$ rtg fastqtrim -s 12 -E 18 -i S12_R1.fastq.gz -o S12_trimmed_R1.fastq.gz

Parameters:
File Input/Output
-i --input=FILE Input FASTQ file, Use ‘-‘ to read from standard input.
-o --output=FILE Output filename. Use ‘-‘ to write to standard output.
-q --quality-format=FORMAT Quality data encoding method used in FASTQ input files

(Illumina 1.8+ uses sanger). Allowed values are [sanger, solexa,
illumina] (Default is sanger)

Filtering
--discard-empty-reads Discard reads that have zero length after trimming.

Should not be used with paired-end data.
-E --end-quality-threshold=INT Trim read ends to maximise base quality above the

given threshold (Default is 0)
--min-read-length=INT If a read ends up shorter than this threshold it will be

trimmed to zero length (Default is 0)
-S --start-quality-threshold=INT Trim read starts to maximise base quality above the

given threshold (Default is 0)
-e --trim-end-bases=INT Always trim the specified number of bases from read

end (Default is 0)
-s --trim-start-bases=INT Always trim the specified number of bases from read

start (Default is 0)

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.
-r --reverse-complement If set, output in reverse complement.

--seed=INT Seed used during subsampling.
--subsample=FLOAT If set, subsample the input to retain this fraction of reads.

-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

Use fastqtrim to apply custom trimming and preprocessing to raw FASTQ files prior to mapping and align-
ment. The format command contains some limited trimming options, which are applied to all input files,
however in some cases different or specific trimming operations need to be applied to the various input files. For
example, for paired-end data, different trimming may need to be applied for the left read files compared to the
right read files. In these cases, fastqtrim should be used to process the FASTQ files first.

The --end-quality-threshold flag can be used to trim poor quality bases from the ends of the input reads
by inspecting base qualities from FASTQ input. If and only if the quality of the final base of the read is less than
the threshold given, a new read length is found which maximizes the overall quality of the retained bases using
the following formula:

argmax𝑥

(︃
𝑙∑︁

𝑖=𝑥+1

(𝑇 − 𝑞(𝑖))

)︃
if 𝑞(𝑙) < 𝑇

where l is the original read length, x is the new read length, T is the given threshold quality and q(n) is the quality
of the base at the position n of the read. Similarly, --start-quality-threshold can be used to apply this
quality-based thresholding to the start of reads.

Some of the trimming options may result in reads that have no bases remaining. By default, these are output
as zero-length FASTQ reads, which RTG commands are able to handle normally. It is also possible to remove
zero-length reads altogether from the output with the --discard-empty-reads option, however this should
not be used when processing FASTQ files corresponding to paired-end data, otherwise the pairs in the two files
will no longer be matched.

Similarly, when using the --subsample option to down-sample a FASTQ file for paired-end data, you should
specify an explicit randomization seed via --seed and use the same seed value for the left and right files.

26 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Formatting with filtering on the fly

Running custom filtering with fastqtrim need not mean that additional disk space is required or that formatting
be slowed down due to additional disk I/O. It is possible when using standard unix shells to perform the filtering
on the fly. The following example demonstrates how to apply different trimming options to left and right files
while formatting to SDF:

$ rtg format -f fastq -o S12_trimmed.sdf \
-l <(rtg fastqtrim -s 12 -E 18 -i S12_R1.fastq.gz -o -)
-r <(rtg fastqtrim -E 18 -i S12_R2.fastq.gz -o -)

See also:

format

2.3.8 petrim

Synopsis:

Trim paired-end read FASTQ files based on read arm alignment overlap.

Syntax:

$ rtg petrim [OPTION]... -l FILE -o FILE -r FILE

Parameters:
File Input/Output
-l --left=FILE Left input FASTQ file (AKA R1)
-o --output=FILE Output filename prefix. Use ‘-‘ to write to standard output.
-q --quality-format=FORMAT Quality data encoding method used in FASTQ input files

(Illumina 1.8+ uses sanger). Allowed values are [sanger, solexa,
illumina] (Default is sanger)

-r --right=FILE Right input FASTQ file (AKA R2)

Sensitivity Tuning
--aligner-band-width=FLOAT Aligner indel band width scaling factor, fraction of read

length allowed as an indel (Default is 0.5)
--gap-extend-penalty=INT Penalty for a gap extension during alignment (Default is 1)
--gap-open-penalty=INT Penalty for a gap open during alignment (Default is 19)

-P --min-identity=INT Minimum percent identity in overlap to trigger overlap
trimming (Default is 90)

-L --min-overlap-length=INT Minimum number of bases in overlap to trigger overlap
trimming (Default is 25)

--mismatch-penalty=INT Penalty for a mismatch during alignment (Default is 9)
--soft-clip-distance=INT Soft clip alignments if indels occur INT bp from either end

(Default is 5)
--unknowns-penalty=INT Penalty for unknown nucleotides during alignment (Default

is 5)

2.3. Data Formatting Commands 27

RTG Core Operations Manual, Release 3.10

Filtering
--discard-empty-pairs If set, discard pairs where both reads have zero length

(after any trimming)
--discard-empty-reads If set, discard pairs where either read has zero length

(after any trimming)
--left-probe-length=INT Assume R1 starts with probes this long, and trim R2

bases that overlap into this (Default is 0)
-M --midpoint-merge If set, merge overlapping reads at midpoint of overlap

region. Result is in R1 (R2 will be empty)
-m --midpoint-trim If set, trim overlapping reads to midpoint of overlap

region.
--min-read-length=INT If a read ends up shorter than this threshold it will be

trimmed to zero length (Default is 0)
--mismatch-adjustment=STRING Method used to alter bases/qualities at mismatches

within overlap region. Allowed values are [none,
zero-phred, pick-best] (Default is none)

--right-probe-length=INT Assume R2 starts with probes this long, and trim R1
bases that overlap into this (Default is 0)

Utility
-h --help Print help on command-line flag usage.

--interleave Interleave paired data into a single output file. Default is to split to separate
output files.

-Z --no-gzip Do not gzip the output.
--seed=INT Seed used during subsampling.
--subsample=FLOAT If set, subsample the input to retain this fraction of reads.

-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

Paired-end read sequencing with read lengths that are long relative to the typical library fragment size can often
result in the same bases being sequenced by both arms. This repeated sequencing of bases within the same
fragment can skew variant calling, and so it can be advantageous to remove such read overlap.

In some cases, complete read-through can occur, resulting in additional adaptor or non-genomic bases being
present at the ends of reads.

In addition, some library preparation methods rely on the ligation of synthetic probe sequence to attract target
DNA, which is subsequently sequenced. Since these probe bases do not represent genomic material, they must be
removed at some point during the analytic pipeline prior to variant calling, otherwise they could act as a reference
bias when calling variants. Removal from the primary arm where the probe is attached is typically easy enough
(e.g. via fastqtrim), however in cases of high read overlap, probe sequence can also be present in the other
read arm.

petrim aligns each read arm against it’s mate with high stringency in order to identify cases of read over-
lap. The sensitivity of read overlap detection is primarily controlled through the use of --min-identity and
--min-overlap-length, although it is also possible to adjust the penalties used during alignment.

The following types of trimming or merging may be applied.

• Removal of non-genomic bases due to complete read-through. This removal is always applied.

• Removal of overlap bases impinging into regions occupied by probe bases. For example, if the left arms
contain 11-mer probes, using --left-probe-length=11 will result in the removal of any right arm
bases that overlap into the first 11 bases of the left arm. Similar trimming is available for situations where
probes are ligated to the right arm by using --right-probe-length.

• Adjustment of mismatching read bases inside areas of overlap. Such mismatches indicate that one or
other of the bases has been incorrectly sequenced. Alteration of these bases is selected by supplying the
--mismatch-adjustment flag with a value of zero-phred to alter the phred quality score of both
bases to zero, or pick-best to choose whichever base had the higher reported quality score.

28 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

• Removal of overlap regions by trimming both arms back to a point where no overlap is present. An equal
number of bases are removed from each arm. This trimming is enabled by specifying --midpoint-trim
and takes place after any read-through or probe related trimming.

• Merging non-redundant sequence from both reads to create a single read, enabled via
--midpoint-merge. This is like --midpoint-trim with a subsequent moving of the R2
read onto the end of the the R1 read (thus the R2 read becomes empty).

After trimming or merging it is possible that one or both of the arms of the pair have no bases remain-
ing, and a strategy is needed to handle these pairs. The default is to retain such pairs in the output, even
if one or both are zero-length. When both arms are zero-length, the pair can be dropped from output
with the use of --discard-empty-pairs. If downstream processing cannot handle zero-length reads,
--discard-empty-reads will drop a read pair if either of the arms is zero-length.

petrim also provides the ability to down-sample a read set by using the --subsample option. This will
produce a different sampling each time, unless an explicit randomization seed is specified via --seed.

Formatting with paired-end trimming on the fly

Running custom filtering with petrim can be done in standard Unix shells without incurring the use of additional
disk space or unduly slowing down the formatting of reads. The following example demonstrates how to apply
paired-end trimming while formatting to SDF:

$ rtg format -f fastq-interleaved -o S12_trimmed.sdf \
<(rtg petrim -l S12_R1.fastq.gz -r S12_R2.fastq.gz -m -o - --interleaved)

This can even be combined with fastqtrim to provide extremely flexible trimming:

$ rtg format -f fastq-interleaved -o S12_trimmed.sdf \
<(rtg petrim -m -o - --interleave \

-l <(rtg fastqtrim -s 12 -E 18 -i S12_R1.fastq.gz -o -) \
-r <(rtg fastqtrim -E 18 -i S12_R2.fastq.gz -o -) \

)

Note: petrim currently assumes Illumina paired-end sequencing, and aligns the reads in FR orientation. Se-
quencing methods which produce arms in a different orientation can be processed by first converting the in-
put files using fastqtrim --reverse-complement, running petrim, followed by another fastqtrim
--reverse-complement to restore the reads to their original orientation.

See also:

fastqtrim, format

2.4 Read Mapping Commands

2.4.1 map

Synopsis:

The map command aligns sequence reads onto a reference genome, creating an alignments file in the Sequence
Alignment/Map (SAM) format. It can be used to process single-end or paired-end reads, of equal or variable
length.

Syntax:

Map using an SDF or a single end sequence file:

$ rtg map [OPTION]... -o DIR -t SDF -i SDF|FILE

2.4. Read Mapping Commands 29

RTG Core Operations Manual, Release 3.10

Map using paired end sequence files:

$ rtg map [OPTION]... -o DIR -t SDF -l FILE -r FILE

Example:

$ rtg map -t strain_REF -i strain_READS -o strain_MAP -b 2 -U

Parameters:
File Input/Output
-F --format=FORMAT Input format for reads. Allowed values are [sdf, fasta, fastq,

sam-se, sam-pe] (Default is sdf)
-i --input=SDF|FILE Input read set.
-l --left=FILE Left input file for FASTA/FASTQ paired end reads.
-o --output=DIR Directory for output.
-q --quality-format=FORMAT Quality data encoding method used in FASTQ input files

(Illumina 1.8+ uses sanger). Allowed values are [sanger, solexa,
illumina] (Default is sanger)

-r --right=FILE Right input file for FASTA/FASTQ paired end reads.
--sam Output the alignment files in SAM format.

-t --template=SDF SDF containing template to map against.

30 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Sensitivity Tuning
--aligner-band-width=FLOAT Set the fraction of the read length that is allowed to be an

indel. Decreasing this factor will allow faster processing, at
the expense of only allowing shorter indels to be aligned.
(Default is 0.5).

--aligner-mode=STRING Set the aligner mode to be used. Allowed values are [auto,
table, general] (Default is auto).

--bed-regions=FILE Restrict calibration to mappings falling within the regions in
the supplied BED file.

--blacklist-threshold=INT filter k-mers that occur more than this many times in the
reference using a blacklist

--gap-extend-penalty=INT Set the penalty for extending a gap during alignment.
(Default is 1).

--gap-open-penalty=INT Set the penalty for a gap open during alignment. (Default is
19).

-c --indel-length=INT Guarantees number of positions that will be detected in a
single indel. For example, -c 3 specifies 3 nucleotide
insertions or deletions. (Default is 1).

-b --indels=INT Guarantees minimum number of indels which will be
detected when used with read less than 64 bp long. For
example -b 1 specifies 1 insertion or deletion. (Default is 1).

-M --max-fragment-size=INT The maximum permitted fragment size when mating paired
reads. (Default is 1000).

-m --min-fragment-size=INT The minimum permitted fragment size when mating paired
reads. (Default is 0).

--mismatch-penalty=INT Set the penalty for a mismatch during alignment. (Default is
9).

-d --orientation=STRING Set the orientation required for proper pairs. Allowed values
are [fr, rf, tandem, any] (Default is any).

--pedigree=FILE Genome relationships pedigree containing sex of sample.
--repeat-freq=INT% Where INT specifies the percentage of all hashes to keep,

discarding the remaining percentage of the most frequent
hashes. Increasing this value will improve the ability to map
sequences in repetitive regions at a cost of run time. It is
also possible to specify the option as an absolute count (by
omitting the percent symbol) where any hash exceeding the
threshold will be discarded from the index. (Default is
90%).

--sex=SEX Specifies the sex of the individual. Allowed values are
[male, female, either].

--soft-clip-distance=INT Set to soft clip alignments when an indel occurs within that
many nucleotides from either end of the read. (Default is 5).

-s --step=INT Set the step size. (Default is word size).
-a --substitutions=INT Guarantees minimum number of substitutions to be detected

when used with read data less than 64 bp long. (Default is
1).

--unknowns-penalty=INT Set the penalty for unknown nucleotides during alignment.
(Default is 5).

-w --word=INT Specifies an internal minimum word size used during the
initial matching phase. Word size selection optimizes the
number of reads for a desired level of sensitivity (allowed
mismatches and indels) given an acceptable alignment
speed. (Default is 22, or read length / 2, whichever is
smaller).

2.4. Read Mapping Commands 31

RTG Core Operations Manual, Release 3.10

Filtering
--end-read=INT Only map sequences with sequence id less than the given number. (Sequence

ids start at 0).
--start-read=INT Only map sequences with sequence id greater than or equal to the given

number. (Sequence ids start at 0).

Reporting
--all-hits Output all alignments meeting thresholds instead of

applying mating and N limits.
--max-mated-mismatches=INT The maximum mismatches for mappings across mated

results, alias for --max-mismatches (as absolute
value or percentage of read length). (Default is 10%).

-e --max-mismatches=INT The maximum mismatches for mappings in single-end
mode (as absolute value or percentage of read length).
(Default is 10%).

-n --max-top-results=INT Sets the maximum number of reported mapping results
(locations) per read when it maps to multiple locations
with the same alignment score (AS). Allowed values are
between 1 and 255. (Default is 5).

-E --max-unmated-mismatches=INT The maximum mismatches for mappings of unmated
results (as absolute value or percentage of read length).
(Default is 10%).

--sam-rg=STRING|FILE Specifies a file containing a single valid read group SAM
header line or a string in the form
@RG\tID:RG1\tSM:BACT\tPL:ILLUMINA.

--top-random If set, will only output a single random top hit for each
read.

Utility
-h --help Prints help on command-line flag usage.

--legacy-cigars Produce cigars in legacy format (using M instead of X or =) in SAM/BAM
output. When set will also produce the MD field.

--no-calibration Set this flag to not produce the calibration output files.
-Z --no-gzip Set this flag to create the SAM output files without compression. By default

the output files are compressed with tabix compatible blocked gzip.
--no-merge Set to output mated, unmated and unmapped alignment records into

separate SAM/BAM files.
--no-svprep Do not perform structural variant processing.
--no-unmapped Do not output unmapped reads. Some reads that map multiple times will

not be aligned, and are reported as unmapped. These reads are reported
with XC attributes that indicate the reason they were not mapped.

--no-unmated Do not output unmated reads when in paired-end mode.
--read-names Output read names instead of sequence ids in SAM/BAM files. (Uses more

RAM).
--tempdir=DIR Set the directory to use for temporary files during processing. (Defaults to

output directory).
-T --threads=INT Specify the number of threads to use in a multi-core processor. (Default is

all available cores).

Usage:

The map command locates reads against a reference using an indexed search method, aligns reads at each location,
and then reports alignments within a threshold as a record in a BAM file. Some extensions have been made to the
output format. Please consult SAM/BAM file extensions (RTG map command output) for more information.

By default the alignment records will be output into a single BAM format file called alignments.bam. When
the --sam flag is set it will instead be output in compressed SAM format to a file called alignments.sam.gz.

When using the --no-merge flag the output will be put into separate files for mated, unmated and unmapped
records depending on the kind of reads being mapped. When mapping single end reads it will produce a single

32 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

output file containing the mappings called alignments.bam. When mapping paired end reads it will produce
two files, mated.bam with paired alignments and unmated.bam with unpaired alignments. A file containing
the unmapped reads called unmapped.bam is also produced in both cases. When used in conjunction with the
--sam flag each of the separate files will be in compressed SAM format rather than BAM format.

It is highly recommended to ensure that read group tracking information is present in the output BAM files.
When mapping directly from a SAM/BAM file with a single read group, or from an SDF with the read group
information stored this is automatically set and does not need to be set manually. This read group information can
also be explicitly supplied by using the --sam-rg flag to provide a SAM-formatted read group header line. The
header should specify at least the ID, SM and PL fields for the read group. For more details see Using SAM/BAM
Read Groups in RTG map.

During mapping RTG automatically creates a calibration file alongside each BAM file containing information
about base qualities, average coverage levels etc. This calibration information is utilized during variant calling to
give more accurate results and to determine when coverage levels are abnormally high. When processing exome
data, it is important that this calibration information should only be computed for mappings within the exome
capture regions, using the --bed-regions flag to give the name of a bed file containing your vendor-supplied
exome capture regions, otherwise the computed coverage levels will be much lower than actual and subsequent
variant calling will be affected. Calibration computation is disabled when read group information is not present.
If you decide to merge BAM files, it is recommended that you use the sammerge command, as this is aware
of the calibration files and will ensure that the calibration information is preserved through the merge process.
Calibration information can also be explicitly regenerated for a BAM file by using the calibrate command.

Alignments are measured with an alignment score where each match adds 0, each mismatch (substitution) adds
--mismatch-penalty (default 9), each gap (insertion or deletion) adds --gap-open-penalty (default
19), and each gap extension adds --gap-extend-penalty (default 1). For more information about alignment
scoring see Alignment scoring.

The --aligner-band-width parameter controls the size of indels that can be aligned. It represents the
fraction of the read length that can be aligned as an indel. Decreasing this factor will allow faster processing, at
the expense of only allowing shorter indels to be aligned.

The --aligner-mode parameter controls which aligner is used during mapping. The table setting uses an
aligner that constrains alignments to those containing at most one insertion or deletion and uses an in-built non-
affine penalty table (this is not currently user modifiable) with different penalties for insertions vs deletions of
various lengths. This allows for faster alignment and better identification of longer indels. The general setting
will use the same aligner as previous versions of RTG. The default auto setting will choose the table aligner
when mapping Illumina data (as determined by the PLATFORM field of the SAM read group supplied) and the
general aligner otherwise.

As indels near the ends of reads are not necessarily very accurate, the --soft-clip-distance parameter is
used to set when soft clipping should be employed at read ends. If an indel is found within the distance specified
from either end of the read, the bases leading to the indel from that end and the indel itself will be soft clipped
instead.

The number of mismatches threshold is set with the -e parameter (--max-mismatches) as either an absolute
value or a percentage of the read length.

The map command accepts formatted reference genome and read data in the sequence data format (SDF), which
is generated with the format command. Sequences can be of any length.

The map command delivers reliable results with all sensitivity tuning and number of mismatches defaults. How-
ever, investigators can optimize mapping percentages with minimal introduction of noise (i.e., false positive align-
ments) by adjusting sensitivity settings.

For all read lengths, increasing the number of mismatches threshold percentage will pick up additional reads that
haven’t mapped as well to the reference. Take this approach when working with high error rates introduced by
genome mutation or cross-species mapping.

For reads under 64 base pairs in length, setting the -a (--substitutions), -b (--indels), and -c
(--indel-length) options will guarantee mapping of reads with at least the specified number of nucleotide
substitutions and gaps respectively. Think of it as a floor rather than a ceiling, as all reads will be aligned within
the number of mismatches threshold. Some of these alignments could have more substitutions (or more gaps and
longer gap lengths) but still score within the threshold.

2.4. Read Mapping Commands 33

RTG Core Operations Manual, Release 3.10

For reads equal to or greater than 64 base pairs in length, adjust the word and step size by setting the -w (--word)
and -s (--step) options, respectively. RTG map is a hash-based alignment algorithm and the word flag defines
the length of the hash used. Indexes are created for the read sequence data with each map command instance,
which allows the flexible tuning.

Decreasing the word size increases the percentage mapped against the trade-off of time. Small word size reduc-
tions can deliver a material difference in mapping with minimal introduction of noise. Decreasing the step size
increases the percentage mapped incrementally, but requires some more time and a cost of higher memory con-
sumption. In both cases, the trade-offs get more severe as you get farther away from the default settings and closer
to the percentage mapped maximum.

Another important parameter to consider is the --repeat-freq flag, which allows a trade-off to be made
between run time and ability to map repetitive reads. When repetitive data is present, a relatively small proportion
of the data can account for much of the run time, due to the large number of potential mapping locations. By
discarding the most repetitive hashes during index building, we can dramatically reduce elapsed run time, without
affecting the mapping of less-repetitive reads. There are two mechanisms by which this trade off can be controlled.
The --repeat-freq flag accepts an integer that denotes the frequency at which hashes will be discarded. For
example, --repeat-freq=20 will discard all hashes that occur 20 or more times in the index. Alternatively
specify a percentage of total hashes to retain in the index, discarding most repetitive hashes first. For example
--repeat-freq=95% will discard up to the most frequent 5% of hashes. Using a percentage based threshold
is recommended, as this yields a more consistent trade off as the size of a data set varies, which is important when
investigating appropriate flag settings on a subset of the data before embarking on large-scale mapping, or when
performing mapping on a cluster of servers using a variety of read set sizes. The default value has been selected
to provide a balance between speed and accuracy when mapping human whole genome sequencing reads against
a non-repeat-masked reference.

An alternative to --repeat-freq is the --blacklist-threshold flag. When set it completely overrides
the behaviour controlled by the --repeat-freq flag, instead using the threshold specified against a blacklist
installed in the reference SDF (an error will be reported if an appropriate blacklist is not available for the selected
--word size). The concept is similar to --repeat-freq except the hashes to exclude are based off frequency
within the reference rather than within the read set, this is most useful when the read data is high coverage
targeted data. This option doesn’t support the % based threshold, however since the thresholding is based off the
reference values are portable against different read set sizes. A blacklist can be created/installed using the hashdist
command.

Some reads will map to the reference more than once with the same alignment score. These ambiguous reads may
add noise that reduces the accuracy of SNP calling, or increase the available information for copy number variation
reporting in structural variation analysis. Rather than throw this information away, or make an arbitrary decision
about the read, the RTG map command identifies all locations where a read maps and provides parameters to
show or hide such alignments at varying thresholds. Parameter sweeps are typically used to determine the optimal
settings that maximize percent mapped. If in doubt, contact RTG technical support for advice.

Some reads which are marked as unmapped did have potential placements but didn’t meet some other criteria,
these unmapped records are annotated with an XC code, you can check the SAM/BAM file extensions (RTG map
command output) to find out what these codes mean.

When using the --legacy-cigars flag we also output a MD attribute on SAM records to enable location of
mismatches.

When the sex of the individual being mapped is specified using the --pedigree or --sex flag the reference
genome SDF must contain a reference.txt reference configuration file. For details of how to construct a
reference text file see RTG reference file format.

When running many copies of map in parallel on different samples within a larger project, special consideration
should be made with respect to where the data resides. Reading and writing data from and to a single disk
partition may result in undesirable I/O performance characteristics. To help alleviate this use the --tempdir
flag to specify a separate disk partition for temporary files and arrange for inputs and outputs to reside on separate
disk partitions where possible. For more details see Task 4 - Map reads to the reference genome.

See also:

format, calibrate, cgmap, mapf , mapx hashdist

34 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

2.4.2 mapf

Synopsis:

Filters reads for contaminant sequences by mapping them against the contaminant reference. It outputs two SDF
files, one containing the input reads that map to the reference and one that contains those that do not.

Syntax:

Filter an SDF or other single-file sequence source:

$ rtg mapf [OPTION]... -o DIR -t SDF -i SDF|FILE

Filter paired end sequence files:

$ rtg mapf [OPTION]... -o DIR -t SDF -l FILE -r FILE

Example:

$ rtg mapf -i reads -o filtered -t sequences

Parameters:
File Input/Output

--bam Output the alignment files in BAM format.
-F --format=FORMAT Input format for reads. Allowed values are [sdf, fasta, fastq,

sam-se, sam-pe] (Default is sdf)
-i --input=SDF|FILE Input read set.
-l --left=FILE Left input file for FASTA/FASTQ paired end reads.
-o --output=DIR Directory for output.
-q --quality-format=FORMAT Quality data encoding method used in FASTQ input files

(Illumina 1.8+ uses sanger). Allowed values are [sanger, solexa,
illumina] (Default is sanger)

-r --right=FILE Right input file for FASTA/FASTQ paired end reads.
--sam Output the alignment files in SAM format.

-t --template=SDF SDF containing template to map against.

2.4. Read Mapping Commands 35

RTG Core Operations Manual, Release 3.10

Sensitivity Tuning
--aligner-band-width=FLOAT Set the fraction of the read length that is allowed to be an

indel. Decreasing this factor will allow faster processing, at
the expense of only allowing shorter indels to be aligned.
(Default is 0.5).

--aligner-mode=STRING Set the aligner mode to be used. Allowed values are [auto,
table, general] (Default is auto).

--blacklist-threshold=INT filter k-mers that occur more than this many times in the
reference using a blacklist

--gap-extend-penalty=INT Set the penalty for extending a gap during alignment.
(Default is 1).

--gap-open-penalty=INT Set the penalty for a gap open during alignment. (Default is
19).

-c --indel-length=INT Guarantees number of positions that will be detected in a
single indel. For example, -c 3 specifies 3 nucleotide
insertions or deletions. (Default is 1).

-b --indels=INT Guarantees minimum number of indels which will be
detected when used with read less than 64 bp long. For
example -b 1 specifies 1 insertion or deletion. (Default is 1).

-M --max-fragment-size=INT The maximum permitted fragment size when mating paired
reads. (Default is 1000).

-m --min-fragment-size=INT The minimum permitted fragment size when mating paired
reads. (Default is 0).

--mismatch-penalty=INT Set the penalty for a mismatch during alignment. (Default is
9).

-d --orientation=STRING Set the orientation required for proper pairs. Allowed values
are [fr, rf, tandem, any] (Default is any).

--pedigree=FILE Genome relationships pedigree containing sex of sample.
--repeat-freq=INT% Where INT specifies the percentage of all hashes to keep,

discarding the remaining percentage of the most frequent
hashes. Increasing this value will improve the ability to map
sequences in repetitive regions at a cost of run time. It is
also possible to specify the option as an absolute count (by
omitting the percent symbol) where any hash exceeding the
threshold will be discarded from the index. (Default is
90%).

--sex=SEX Specifies the sex of the individual. Allowed values are
[male, female, either].

--soft-clip-distance=INT Set to soft clip alignments when an indel occurs within that
many nucleotides from either end of the read. (Default is 5).

-s --step=INT Set the step size. (Default is half word size).
-a --substitutions=INT Guarantees minimum number of substitutions to be detected

when used with read data less than 64 bp long. (Default is
1).

--unknowns-penalty=INT Set the penalty for unknown nucleotides during alignment.
(Default is 5).

-w --word=INT Specifies an internal minimum word size used during the
initial matching phase. Word size selection optimizes the
number of reads for a desired level of sensitivity (allowed
mismatches and indels) given an acceptable alignment
speed. (Default is 22).

Filtering
--end-read=INT Exclusive upper bound on read id.
--start-read=INT Inclusive lower bound on read id.

36 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Reporting
--max-mated-mismatches=INT Maximum mismatches for mappings across mated

results, alias for –max-mismatches (as absolute value or
percentage of read length) (Default is 10%)

-e --max-mismatches=INT Maximum mismatches for mappings in single-end mode
(as absolute value or percentage of read length) (Default
is 10%)

-E --max-unmated-mismatches=INT Maximum mismatches for mappings of unmated results
(as absolute value or percentage of read length) (Default
is 10%)

--sam-rg=STRING|FILE File containing a single valid read group SAM header
line or a string in the form
@RG\tID:READGROUP1\tSM:BACT_SAMPLE\tPL:ILLUMINA

Utility
-h --help Print help on command-line flag usage.

--legacy-cigars Use legacy cigars in output.
-Z --no-gzip Do not gzip the output.

--no-merge Output mated/unmated/unmapped alignments into separate SAM/BAM files.
--read-names Use read name in output instead of read id (Uses more RAM)
--tempdir=DIR Directory used for temporary files (Defaults to output directory)

-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

Use to filter out contaminant reads based on a set of possible contaminant sequences. The command maps the reads
against the provided contaminant sequences and produces two SDF output files, one which contains the sequences
which mapped to the contaminant and one which contains the sequences which did not. The SDF which contains
the unmapped sequences can then be used as input to further processes having had the contaminant reads filtered
out.

This command differs from regular map in that paired-end read arms are kept together – on the assumption that
it does not make sense from a contamination viewpoint that one arm came from the contaminant genome and the
other did not. Thus, with mapf, if either end of the read maps to the contaminant database, both arms of the read
are filtered.

Note: The --sam-rg flag specifies the read group information when outputting to SAM/BAM and also adjusts
the internal aligner configuration based on the platform given. Recognized platforms are ILLUMINA, LS454,
and IONTORRENT.

See also:

map, cgmap, mapx

2.4.3 cgmap

Synopsis:

Mapping function for Complete Genomics data.

Syntax:

$ rtg cgmap [OPTION]... -i SDF|FILE --mask STRING -o DIR -t SDF

Example:

$ rtg cgmap -i CG_reads --mask cg1 -o CG_map -t HUMAN_reference

Parameters:

2.4. Read Mapping Commands 37

RTG Core Operations Manual, Release 3.10

File Input/Output
-F --format=FORMAT Format of read data. Allowed values are [sdf, tsv] (Default is sdf)
-i --input=SDF|FILE Specifies the Complete Genomics reads to be mapped.
-o --output=DIR Specifies the directory where results are reported.

--sam Set to output results in SAM format instead of BAM format.
-t --template=SDF Specifies the SDF containing the reference genome to map against.

Sensitivity Tuning
--blacklist-threshold=INT filter k-mers that occur more than this many times in the

reference using a blacklist
--mask=STRING Read indexing method. Allowed values are [cg1, cg1-fast,

cg2]
-M --max-fragment-size=INT The maximum permitted fragment size when mating paired

reads. (Default is 1000).
-m --min-fragment-size=INT The minimum permitted fragment size when mating paired

reads. (Default is 0).
-d --orientation=STRING Orientation for proper pairs. Allowed values are [fr, rf,

tandem, any] (Default is any)
--pedigree Genome relationships pedigree containing sex of sample.
--penalize-unknowns If set, will treat unknown bases as mismatches.
--repeat-freq=INT% Where INT specifies the percentage of all hashes to keep,

discarding the remaining percentage of the most frequent
hashes. Increasing this value will improve the ability to map
sequences in repetitive regions at a cost of run time. It is also
possible to specify the option as an absolute count (by
omitting the percent symbol) where any hash exceeding the
threshold will be discarded from the index. (Default is 95%).

--sex=SEX Sex of individual. Allowed values are [male, female, either]

Filtering
--end-read=INT Only map sequences with sequence id less than the given number. (Sequence

ids start at 0).
--start-read=INT Only map sequences with sequence id greater than or equal to the given

number. (Sequence ids start at 0).

Reporting
--all-hits Output all alignments meeting thresholds instead of

applying mating and N limits.
-e --max-mated-mismatches=INT The maximum mismatches allowed for mated results (as

absolute value or percentage of read length). (Default is
10%).

-n --max-top-results=INT Sets the maximum number of reported mapping results
(locations) with the same alignment score (AS). Allowed
values are between 1 and 255. (Default is 5).

-E --max-unmated-mismatches=INT The maximum mismatches allowed for unmated results
(as absolute value or percentage of read length). (Default
is 10%).

--sam-rg=STRING|FILE Specifies a file containing a single valid read group SAM
header line or a string in the form
@RG\tID:RG1\tSM:BACT\tPL:COMPLETE.

38 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Utility
-h --help Prints help on command-line flag usage.

--legacy-cigars Produce cigars in legacy format (using M instead of X or =) in SAM/BAM
output. When set will also produce the MD field.

--no-calibration Set this flag to not produce the calibration output files.
-Z --no-gzip Set this flag to create the SAM output files without compression. By default

the output files are compressed with tabix compatible blocked gzip.
--no-merge Set to output mated, unmated and unmapped alignment records into

separate SAM/BAM files.
--no-svprep Do not perform structural variant processing.
--no-unmapped Do not output unmapped reads. Some reads that map multiple times will

not be aligned, and are reported as unmapped. These reads are reported
with XC attributes that indicate the reason they were not mapped.

--no-unmated Do not output unmated reads when in paired-end mode.
--tempdir=DIR Set the directory to use for temporary files during processing. (Defaults to

output directory).
-T --threads=INT Specify the number of threads to use in a multi-core processor. (Default is

all available cores).

Usage:

The cgmap command is similar in functionality to the map command with some key differences for mapping the
unique structure of Complete Genomics reads.

RTG supports two versions of Complete Genomics reads: the original 35 bp paired end read structure (“version
1”); and the newer 29 bp paired end structure (“version 2”). The 29 bp reads are sometimes equivalently repre-
sented as 30 bp with a redundant single base overlap containing an N at position 20. This alternate representation
is automatically normalised by RTG during processing.

When specifying SAM read group information during mapping, the platform should be set according to the read
structure. For version 1 reads, the platform (PL) must be specified as COMPLETE, and for version 2 reads, the
platform must be specified as COMPLETEGENOMICS.

Where the map command allows you to control the mapping sensitivity using the substitutions (-a), indels (-b)
and indel lengths (-c) flags, cgmap provides presets using the --mask flag. You will need to select a mask that
is appropriate for the version of reads you are mapping. For version 1 the mask cg1-fast is approximately
equivalent to setting the substitutions to 1 and indels to 1 in the map command, whereas the mask cg1 provides
more sensitivity to substitutions (somewhere between 1 and 2). For version 2 the mask cg2 is approximately
equivalent to the mask cg1.

See also:

map, mapf , mapx

2.4.4 coverage

Synopsis:

The coverage command measures and reports coverage depth of read alignments across a reference.

Syntax:

Multi-file input specified from command line:

$ rtg coverage [OPTION]... -o FILE+

Multi-file input specified in a text file:

$ rtg coverage [OPTION]... -o DIR -I FILE

Example:

2.4. Read Mapping Commands 39

RTG Core Operations Manual, Release 3.10

$ rtg coverage -o h1_coverage alignments.bam

Parameters:
File Input/Output

--bed-regions=FILE If set, only read SAM records that overlap the ranges contained in
the specified BED file.

--bedgraph If set, output in BEDGRAPH format (suppresses BED file output)
-I --input-list-file=FILE File containing a list of SAM/BAM format files (1 per line)

containing mapped reads.
-o --output=DIR Directory for output.

--per-base If set, output per-base counts in TSV format (suppresses BED file
output)

--per-region If set, output BED/BEDGRAPH entries per-region rather than
every coverage level change.

--region=REGION If set, only process SAM records within the specified range. The
format is one of <sequence_name>,
<sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

-t --template=SDF SDF containing the reference genome.
FILE+ SAM/BAM format files containing mapped reads. May be

specified 0 or more times.

Sensitivity Tuning
--exclude-mated Exclude all mated SAM records.
--exclude-unmated Exclude all unmated SAM records.
--keep-duplicates Don’t detect and filter duplicate reads based on mapping position.

-m --max-as-mated=INT If set, ignore mated SAM records with an alignment score (AS
attribute) that exceeds this value.

-u --max-as-unmated=INT If set, ignore unmated SAM records with an alignment score (AS
attribute) that exceeds this value.

-c --max-hits=INT If set, ignore SAM records with an alignment count that exceeds this
value.

--min-mapq=INT If set, ignore SAM records with MAPQ less than this value.
-s --smoothing=INT Smooth with this number of neighboring values (0 means no

smoothing) (Default is 50)

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.
-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

The coverage command calculates coverage depth by counting all alignments from input SAM/BAM files
against a specified reference genome. Sensitivity tuning parameters allow the investigator to test and identify the
most appropriate set of alignments to use in downstream analysis.

The coverage command provides insight into sequencing coverage for each of the reference sequences. Use
to validate mapping results and determine how much of the reference is covered with alignments and how many
times the same location is mapped. Gaps indicate no coverage in a specific location.

The default output of coverage will create a new BED entry whenever the coverage level changes. The
--smoothing flag may be supplied to smooth over a number of neighboring values in order to reduce noise
and variation in the output coverage data file. Typical values range from 0-100 but there is no limit.

When the average coverage levels over specific regions is of interest, specify the --per-region option. Rather
than creating a new coverage entry when the coverage level changes, this mode will output one record for each
region of interest containing the average coverage statistics within the region.

40 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

For detailed information on the coverage levels at a per-base resolution is available by using the --per-base
option, but be aware that the output files can be very large, so this is of most use when focusing on particular
regions..

See also:

map, snp, cnv

2.4.5 calibrate

Synopsis:

Creates quality calibration files for all supplied SAM/BAM files.

Syntax:

Multi-file input specified from command line:

$ rtg calibrate [OPTION]... -t SDF FILE+

Multi-file input specified in a text file:

$ rtg calibrate [OPTION]... -t SDF -I FILE

Example:

$ rtg calibrate -t hs_reference hs_map/alignments.bam

Parameters:
File Input/Output
-I --input-list-file=FILE File containing a list of SAM/BAM format files (1 per line)

containing mapped reads.
-m --merge=FILE If set, merge records and calibration files to this output file.
-t --template=SDF SDF containing the reference genome.

FILE+ SAM/BAM format files containing mapped reads. May be
specified 0 or more times.

Sensitivity Tuning
--bed-regions=FILE Restrict calibration to mappings falling within the supplied BED regions.
--exclude-bed=FILE BED containing regions to exclude from calibration.
--exclude-vcf=FILE VCF containing sites of known variants to exclude from calibration.

Utility
-f --force Force overwriting of calibration files.
-h --help Print help on command-line flag usage.
-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

Use to create quality calibration files for existing SAM/BAM mapping files which can be used in later com-
mands to improve results. The calibration file will have .calibration appended to the SAM/BAM file name. If the
--merge option is used, this command can be used to simultaneously merge input files to a single, calibrated
output file.

See also:

snp, map, cgmap

2.4. Read Mapping Commands 41

RTG Core Operations Manual, Release 3.10

2.5 Protein Search Commands

2.5.1 mapx

Synopsis:

The RTG mapx command searches translated read data sets of defined length (e.g., 100 bp reads) against protein
databases or translated nucleotide sequences. This similarity search with gapped alignment may be adjusted for
sensitivity to gaps and mismatches. Reported search results may be modified by a combination of one or more
thresholds on % identity, E value, bit score and alignment score. The output file of the command is similar to that
reported by BLASTX.

Syntax:

$ rtg mapx [OPTION]... -i SDF|FILE -o DIR -t SDF

Example:

$ rtg mapx -i SDF_reads -o DIR_Mappings -t SDF_proteinRef

Parameters:
File Input/Output
-F --format=FORMAT Input format for reads. Allowed values are [sdf, fasta, fastq, sam-se]

(Default is sdf)
-i --input=SDF|FILE Query read sequences.
-o --output=DIR Directory for output.
-t --template=SDF SDF containing protein database to search.

Sensitivity Tuning
-c --gap-length=INT Guarantees number of positions that will be detected in a

single gap. (Default is 1).
-b --gaps=INT Guarantees minimum number of gaps which will be detected

(if this is larger than the minimum number of mismatches
then the minimum number of mismatches is increased to the
same value). (Default is 0).

--matrix=STRING The name of the scoring matrix used during alignment.
Allowed values are [blosum45, blosum62, blosum80]
(Default is blosum62).

--min-dna-read-length=INT Specifies the minimum read length in nucleotides. Shorter
reads will be ignored. (Defaults to 3 * (word-size +
mismatches + 1)).

-a --mismatches=INT Guarantees minimum number of identical mismatches which
will be detected. (Default is 1).

--repeat-freq=INT% Where INT specifies the percentage of all hashes to keep,
discarding the remaining percentage of the most frequent
hashes. Increasing this value will improve the ability to map
sequences in repetitive regions at a cost of run time. It is also
possible to specify the option as an absolute count (by
omitting the percent symbol) where any hash exceeding the
threshold will be discarded from the index. (Default is 95%).

-w --word=INT Specifies an internal minimum word size used during the
initial matching phase. Word size selection optimizes the
number of reads for a desired level of sensitivity (allowed
mismatches and gaps) given an acceptable alignment speed.
(Default is 7).

Filtering
--end-read=INT Exclusive upper bound on read id.
--start-read=INT Inclusive lower bound on read id.

42 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Reporting
--all-hits Output all alignments meeting thresholds instead of applying

topn/topequals N limits.
-e --max-alignment-score=INT The maximum alignment score at output (as absolute value or

percentage of read length in protein space). (Default is 30%).
-E --max-e-score=FLOAT The maximum e-score at output. (Default is 10.0).
-n --max-top-results=INT Sets the maximum number of reported mapping results

(locations) per read when it maps to multiple locations with
the same alignment score (AS). Allowed values are between 1
and 255. (Default is 10).

-B --min-bit-score=FLOAT The minimum bit score at output.
-P --min-identity=INT The minimum percent identity at output. (Default is 60).
-f --output-filter=STRING The output filter. Allowed values are [topequal, topn]

(Default is topn).

Utility
-h --help Prints help on command-line flag usage.
-Z --no-gzip Set this flag to create the output files without compression. By default

the output files are compressed with blocked gzip.
--no-unmapped Do not output unmapped reads. Some reads that map multiple times will

not be aligned and can be optionally reported as unmapped in a separate
unmapped.tsv file.

--read-names Output read names instead of sequence ids in output files. (Uses more
RAM)

--suppress-protein Suppresses the output of sequence protein information.
--tempdir=DIR Set the directory used for temporary files during processing. (Defaults to

output directory).
-T --threads=INT Specify the number of threads to use in a multi-core processor. (Default

is all available cores).

Usage:

Use the mapx command for translated nucleotide search against a protein database. The command outputs the
statistical significance of matches based on semi-global alignments (globally across query), in contrast to local
alignments reported by BLAST.

This command requires a protein reference instead of a DNA reference. When formatting the protein reference,
use the -p (--protein) flag in the format command.

The mapx command builds a set of indexes from the translated reads and scans each database query for matches
according to user-specified sensitivity settings. Sensitivity is set with two parameters: the word size (-w) pa-
rameter that governs match length and the mismatches (-a) parameter that governs the number and placement of
k-mers across each translated query.

Mapping large read sets may require more RAM than is available on the current hardware. In these cases, mapping
can be split into smaller jobs each mapping a subset of the reads, where the range of reads to map is specified
using the --start-read and --end-read flags.

The formation of an index group with -w and -a combinations permits the guaranteed return of all query-subject
matches where the non-matching residue count is equal to or less than the -a setting. Higher levels of mismatches
are typically detected but not explicitly guaranteed.

In a two-step matching and alignment process, queries that have one or more exact matches of an k-mer against the
database during the matching phase are then aligned to the subject sequence. The alignment algorithm employs
a full edit-distance calculation using the BLOSUM62 scoring matrix. Resulting alignment can be filtered on E
value, bit score, % identity or raw alignment score.

The mapx command generates a tabular results file called alignments.tsv in the output directory. This
ASCII file contains columns of reported data in a format similar to that produced by BLASTX.

See also:

map, cgmap, mapf

2.5. Protein Search Commands 43

RTG Core Operations Manual, Release 3.10

2.6 Assembly Commands

2.6.1 assemble

Synopsis:

The assemble command combines short reads into longer contigs. It first constructs a de Bruijn graph and then
maps those reads/read pairs into the graph in order to resolve ambiguities. The reads must be converted to RTG
SDF format with the format command prior to assembly.

Syntax:

Assemble a set of Illumina reads into long contigs, and then use read mappings to resolve ambiguities:

$ rtg assemble [OPTION] --consensus-reads INT -k INT -o DIR SDF+

Assemble a set of 454 reads into long contigs:

$ rtg assemble [OPTION] --consensus-reads INT -k INT -o DIR -f SDF

Assemble a set of 454 and Illumina reads at once:

$ rtg assemble [OPTION] --consensus-reads INT -k INT -o DIR ILLUMINA_SDF -f 454_SDF

Improve an existing assembly by mapping additional reads and attempting to improve the consensus:

$ rtg assemble [OPTION] -g GRAPH-DIR -k INT -o DIR SDF

Example:

Illumina reads:

$ rtg assemble --consensus-reads 7 -k 32 -o assembled Illumina_reads.sdf \
--alignments assembly.alignments

Combining Illumina and 454 reads:

$ rtg assemble --consensus-reads 7 -k 32 -o assembled Illumina_reads.sdf \
-f 454_reads.sdf

Parameters:
File Input/Output
-f --454=DIR SDF containing 454 sequences to assemble. May be

specified 0 or more times.
-g --graph=DIR If you have already constructed an assembly and would

like to map additional reads to it or apply some alternate
filters you can use this flag to specify the existing graph
directory. You will still need to supply a kmer size to
indicate the amount of overlap between contigs.

-F --input-list-454=FILE File containing a list of SDF directories (1 per line)
containing 454 sequences to assemble.

-I --input-list-file=FILE File containing a list of SDF directories (1 per line)
containing Illumina sequences to assemble.

-J --input-list-mate-pair=FILE File containing a list of SDF directories (1 per line)
containing mate pair sequences to assemble.

-j --mate-pair SDF containing mate pair reads. May be specified 0 or
more times.

-o --output=DIR Specifies the directory where results are reported.
SDF+ SDF directories containing Illumina sequences to

assemble. May be specified 0 or more times.

44 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Sensitivity Tuning
--consensus-reads=INT When using read mappings to disambiguate a graph,

paths that are supported by fewer reads than the threshold
supplied here will not be collapsed (Default is 0).

-k --kmer-size=INT K-mer length to use when constructing a de Bruijn graph.
-M --max-insert=INT Maximum insert size between fragments. (Default is

automatically calculated.)
-m --min-insert=INT Minimum insert size between fragments. (Default is

automatically calculated.)
-p --min-path=INT Prior to generating a consensus, long paths will be

deleted if they are supported by fewer than
--min-path reads.

-c --minimum-kmer-frequency=INT Set minimum k-mer frequency to retain, or -1 for
automatic threshold (Default is -1).

-a --mismatches=INT Number of bases that may mismatch in an alignment or
percentage of read that may mismatch (Default is 0).

--preserve-bubbles=FLOAT Avoid merging bubbles where the ratio of k-mers on the
branches is below this (Default is 0.0). This can be used
if you wish to preserve diploid information or some near
repeats in graph construction.

-r --read-count=INT Prior to generating a consensus delete links in the graph
that are supported by fewer reads than this threshold.

-s --step=INT Step size for mapping (Default is 18).
-w --word=INT Word size for mapping (Default is 18).

Utility
-h --help Prints help on command-line flag usage.
-T --threads=INT Specify the number of threads to use in a multi-core processor. (Default is all

available cores).

Usage:

The assemble command attempts to construct long contigs from a large number of short reads. The reads must
be converted into SDFs prior to assembly. Illumina reads can be supplied with either the unnamed flag or the -I
flag, while 454 reads are supplied with -f or -F. This lets the assembler know the orientation of pairs and which
alignment strategy to use. Alternatively this command can be used to improve an existing graph, by mapping
additional reads or applying additional filters.

Output

The output of this command is a number of directories in the RTG assembly graph format (documented separately)
at each stage of the assembly. The consensus assembly is in the ‘final’ directory.

assemble.log - log file for the run
build/collapsed - contigs after tip removal/before bubble popping
build/contigs - graph prior to tip removal
build/popped - graph after bubble popping
done - file that is created when run completes
final - final consensus graph
mapped - graph including read mapping paths and counts
progress - progress file for the run
unfiltered_final - consensus graph which preserves information about merged nodes

Graph Construction

The first stage is the construction of a de Bruijn graph and the initial contig construction this includes tip removal
and bubble merging. This produces the build/popped output directory. This stage may be skipped by using
--graph to supply an existing graph. The --minimum-kmer-frequency (-c) flag affects the number of

2.6. Assembly Commands 45

RTG Core Operations Manual, Release 3.10

hashes that will be interpreted as being due to read error, and will be discarded when generating contigs. If -1 is
used the first local minimum in the hash frequency distribution will be automatically selected.

Read Mapping

The second stage is to map and pair the original reads against the contig graph. For each read/pair alignments we
attempt to find a unique alignment at the best score within the graph. Alignments may cross multiple contigs. If
a read/pair maps entirely within a single contig then that contig will have it’s ‘readCount’ attribute incremented.
Reads/pairs that map along a series of contigs will increment the ‘readCount’ of a path joining those contigs.

If you would like to manually specify the insert sizes rather than rely on the automatically calculated fragment
sizes you can use the --max-insert (-M) and --min-insert (-m) flags. Insert size is measured as the
number of bases in between the reads (from the end of the first alignment, to the start of the second). An insert
size of -10 indicates that the two fragments overlap by 10 bases, while 20 would mean that there is a gap of
20 bases between alignments. If -m and -M are omitted read mating distributions will be estimated using the
distance between read pairs that are mapped within a single contig, if initial graph construction results in a highly
fragmented graph or the insert size is large there may not be enough pairs mapping within a single contig to give
an accurate estimate.

Filtering

At this point optional filtering of mappings/paths can occur. You can use the --min-path (-p) flag to discard
paths that are not supported by a significant number of reads. The --read-count (-r) flag will disconnect
links with low mapping counts. The best value for --read-count should be related to the coverage of the
sample. Higher values can often result in longer contigs but may result in a more fragmented assembly graph.

Consensus

Finally read mappings are used to resolve ambiguities and repeats in the contig graph. The result is written to
the final directory. Within consensus generation paths containing more than --consensus-reads mapped
will potentially be merged into a single contig. Increasing this may help to reduce mis-assemblies.

See also:

format

2.6.2 addpacbio

Synopsis:

The addpacbio command adds long reads to an existing assembly to enable an improved consensus.

Syntax:

Map a set of pacbio reads to an assembled graph:

$ rtg addpacbio -g DIR -o DIR SDF+

Example:

$ rtg addpacbio --trim -g initial_assembly/final -o output pac_bio.sdf

Parameters:

46 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

File Input/Output
-g --graph=DIR Graph of the assembly to map against.
-I --input-list-file=FILE File containing a list of SDF directories (1 per line) containing

sequences to assemble.
-o --output=DIR Directory for output.

--trim Before mapping remove any short disconnected sequences from the
graph.

SDF+ SDF directories containing reads to map. May be specified 0 or
more times.

Utility
-h --help Print help on command-line flag usage.

Usage:

The addpacbio command uses an alternate mapping scheme designed to handle Pacific Biosciences reads which
are longer with a higher error rate. The reads must be converted into SDF format prior to mapping. The input
graph will usually have been constructed from short reads.

The --trim option causes short contigs (<200 bp) that don’t add connections to the graph to be removed. These
sequences don’t contribute to the consensus and are often highly repetitive resulting in lots of work for the mapper.
Setting this option will often result in much faster execution.

See also:

assemble, format

2.7 Variant Detection Commands

2.7.1 snp

Synopsis:

The snp command calls sequence variants, such as single nucleotide polymorphisms (SNPs), multi-nucleotide
polymorphisms (MNPs) and indels, from a set of alignments reported in genome-position sorted SAM/BAM.
Bayesian statistics are used to determine the likelihood that a given base pair will be a SNP (either homozygous
or heterozygous) given the sample evidence represented in the read alignments and prior knowledge about the
experiment.

Syntax:

Multi-file input specified from command line:

$ rtg snp [OPTION]... -o DIR -t SDF FILE+

Multi-file input specified in a text file:

$ rtg snp [OPTION]... -o DIR -t SDF -I FILE

Example:

$ rtg snp -o hs_snp -t hs_reference hs_map/alignments.bam

Parameters:

2.7. Variant Detection Commands 47

RTG Core Operations Manual, Release 3.10

File Input/Output
--bed-regions=FILE If set, only read SAM records that overlap the ranges contained in

the specified BED file.
-I --input-list-file=FILE File containing a list of SAM/BAM format files (1 per line)

containing mapped reads.
-o --output=DIR Directory for output.

--region=REGION If set, only process SAM records within the specified range. The
format is one of <sequence_name>,
<sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

-t --template=SDF SDF containing the reference genome.
FILE+ SAM/BAM format files containing mapped reads. May be

specified 0 or more times.

48 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Sensitivity Tuning
--enable-allelic-fraction If set, incorporate the expected allelic

fraction in scoring.
--exclude-mated Exclude all mated SAM records.
--exclude-unmated Exclude all unmated SAM records.
--keep-duplicates Don’t detect and filter duplicate reads based

on mapping position.
-m --machine-errors=STRING If set, force sequencer machine settings.

Allowed values are [default, illumina,
ls454_se, ls454_pe, complete, iontorrent]

--max-as-mated=INT If set, ignore mated SAM records with an
alignment score (AS attribute) that exceeds
this value.

--max-as-unmated=INT If set, ignore unmated SAM records with an
alignment score (AS attribute) that exceeds
this value.

--max-coverage=INT Skip calling in sites with per sample read
depth exceeding this value (Default is 200)

--max-coverage-multiplier=FLOAT Skip calling in sites with combined depth
exceeding multiplier * average combined
coverage determined from calibration
(Default is 5.0)

--max-hits=INT If set, ignore SAM records with an alignment
count that exceeds this value.

--min-base-quality=INT Phred scaled quality score, read bases below
this quality will be treated as unknowns
(Default is 0)

--min-mapq=INT If set, ignore SAM records with MAPQ less
than this value.

--min-variant-allelic-depth=FLOAT If set, also output sites that meet this
minimum quality-adjusted alternate allelic
depth.

--min-variant-allelic-fraction=FLOAT If set, also output sites that meet this
minimum quality-adjusted alternate allelic
fraction.

-p --pedigree=FILE Genome relationships PED file containing
sex of individual.

--ploidy=STRING Ploidy to use. Allowed values are [auto,
diploid, haploid] (Default is auto)

--population-priors=FILE If set, use the VCF file to generate
population based site-specific priors.

--rdefault-mated=INT For mated reads that have no mapping
quality supplied use this as the default
quality (in Phred format from 0 to 63)
(Default is 20)

--rdefault-unmated=INT For unmated reads that have no mapping
quality supplied use this as the default
quality (in Phred format from 0 to 63)
(Default is 20)

--sex=SEX Sex of individual. Allowed values are [male,
female, either] (Default is either)

2.7. Variant Detection Commands 49

RTG Core Operations Manual, Release 3.10

Reporting
-a --all Write variant calls covering every position

irrespective of thresholds.
--avr-model=MODEL Name of AVR model to use when scoring variants.

Allowed values are [alternate.avr,
illumina-exome.avr, illumina-somatic.avr,
illumina-wgs.avr, none] or a path to a model file
(Default is illumina-wgs.avr)

--filter-ambiguity=INT Threshold for ambiguity filter applied to output
variants.

--filter-bed=FILE Apply a position based filter, retaining only variants
that fall in these BED regions.

--filter-depth=INT Apply a fixed depth of coverage filter to output
variants.

--filter-depth-multiplier=FLOAT Apply a ratio based depth filter. The filter will be
multiplier * average coverage determined from
calibration files.

--min-avr-score=FLOAT If set, fail variants with AVR scores below this value.
--snps-only If set, will output simple SNPs only.

Utility
-h --help Print help on command-line flag usage.

--no-calibration If set, ignore mapping calibration files.
-Z --no-gzip Do not gzip the output.
-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

During variant calling, a posterior distribution is calculated for each variant, which represents the knowledge
gained from the combination of prior estimates given the nature of the experiment and the actual evidence of the
read alignments. The mean of the posterior distribution is calculated and displayed with the results.

The default Bayesian model does not directly include any expectation of allelic fraction, however, for typical
germline calling it is expected that heterozygous variants should have approximately equal support both alleles at
a site. The --enable-allelic-fraction instructs the variant caller to include a term in the model which
accounts for the expected allelic fraction. This parameter reduces incorrect variant calls overall, but there may be a
loss of sensitivity to variants which do not follow normal germline expectations, such as mosaic de novo variants.
The user should decide whether to enable this flag according to their needs.

The output of the snp command is industry standard VCF that includes each variant called with confidence. The
location and type of the call, the base pairs (reference and called), and a confidence score are standard output.
Additional support statistics describe read alignment evidence that can be used to evaluate confidence in the called
SNPs.

The --all flag produces calls at all non-N base positions in the reference irrespective of thresholds and whether a
variant is called at each position. Some calls cover multiple positions so there may not be a separate call for every
nucleotide. This can be very useful for creating a full-reference consensus or for summarizing pileup information
in a text format file. However, the resulting output is quite large (one output line per base pair in the reference),
which takes longer to process and requires considerably more space to store.

Note: For more information about the snps.vcf output file column definitions, see Small-variant VCF output
file description.

Quality calibration

Read data from Complete Genomics and from manufacturers that supply data in FASTQ format include a quality
value for each base of the reads. This indicates the probability of an error in the base calling at that position

50 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

in the read. Following industry best practice we calculate recalibration tables using data from the mapping pro-
cess. These calibration files are automatically generated in the map and cgmap commands or can be manually
generated using the calibrate command. The snp command automatically detects the calibration files using
the mapping file locations. To run variant calling without calibration information for the alignment files, set the
--no-calibration flag. Note that without calibration information, the variant calling will have no knowl-
edge about the expected sequencing coverage levels, so you should set an appropriate --max-coverage value.
Failure to set an appropriate value may result in under-calling, particularly for complex variants such as indels.

Coverage filtering

The variant calls made in regions of excessive coverage are often due to incorrect mappings, particularly with
short reads. The snp command allows you to apply a maximum coverage filter with the --filter-depth and
--filter-depth-multiplier parameters.

Similarly, regions of excessive coverage can negatively impact variant calling speed so a separate set of flags allow
calling to be skipped in regions of excessive coverage. These regions are noted in the regions.bed file as an
extreme coverage region. Under normal circumstances, calibration information is used to automatically select a
coverage threshold – the maximum coverage cutoff is calculated by multiplying a coverage multiplier with the av-
erage coverage for the genome sequence (the default multiplier is 5.0). The --max-coverage-multiplier
parameter can be used to adjust the multiplier. When recalibration information is not available, the maximum
coverage cutoff is determined using the --max-coverage parameter, which sets a fixed value as the threshold
(the default is 200).

Prior distributions

The use of a prior distribution can increase the likelihood of calling novel variants by increasing the confidence
that sample evidence supports a particular variant hypothesis. With priors, the calculated range of likely variants
is smaller than that expected with a normal distribution. Currently, the genome-wide prior distribution is set by
default for the human genome (for adjusted genome priors, contact Real Time Genomics technical support for
assistance). An alternative is to supply site-specific prior information in the form of a VCF containing variants
with allele-frequency information via the --population-priors flag. This will adjust the likelihood of
calling variants that have been seen before in the population.

Adaptive Variant Rescoring

The RTG Adaptive Variant Rescoring (AVR) system uses machine learning to build adaptive models that take
into account factors not already accounted for in the Bayesian statistics model in determining the probability
that a given variant call is correct. Some pre-built AVR models are provided with the RTG software, to build
your own models you can use the avrbuild command with VCF output from RTG variant callers filtered to
a set of known correct calls and a set of known incorrect calls. These models when used either directly by the
variant callers, or when applied using the avrpredict command produce a VCF format field called AVR which
contains a probability between 0 and 1 that the call is correct. This can then be used to filter your results to remove
calls unlikely to be correct.

See also:

vcffilter, vcfannotate, coverage, cnv, family, somatic, population, calibrate

2.7.2 family

Synopsis:

The family command calls sequence variants on a combination of individuals using Mendelian inheritance.

Syntax:

Relationships specified via pedigree file, with multi-file input specified from command line:

2.7. Variant Detection Commands 51

RTG Core Operations Manual, Release 3.10

$ rtg family [OPTION]... -o DIR -t SDF -p FILE FILE+

Relationships specified via pedigree file, with multi-file input specified in a text file:

$ rtg family [OPTION]... -o DIR -t SDF -p FILE -I FILE

Relationships specified via flags, with multi-file input specified from command line:

$ rtg family [OPTION]... -o DIR -t SDF --father STRING --mother STRING \
<--daughter STRING | --son STRING>+ FILE+

Relationships specified via flags, with multi-file input specified in a text file:

$ rtg family [OPTION]... -o DIR -t SDF --father STRING --mother STRING \
<--daughter STRING | --son STRING>+ -I FILE

Example:

$ rtg family -o fam -t reference --father f_sample --mother m_sample \
--daughter d_sample --son s_sample -I samfiles.txt

Parameters:
File Input/Output

--bed-regions=FILE If set, only read SAM records that overlap the ranges contained in
the specified BED file.

--daughter=STRING Sample identifier used in read groups for a daughter sample. May
be specified 0 or more times.

--father=STRING Sample identifier used in read groups for father sample.
-I --input-list-file=FILE File containing a list of SAM/BAM format files (1 per line)

containing mapped reads.
--mother=STRING Sample identifier used in read groups for for mother sample.

-o --output=DIR Directory for output.
-p --pedigree=FILE Genome relationships PED file, if not specifying family via

–father, –mother, etc.
--region=REGION If set, only process SAM records within the specified range. The

format is one of <sequence_name>,
<sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

--son=STRING Sample identifier used in read groups for a son sample. May be
specified 0 or more times.

-t --template=SDF SDF containing the reference genome.
FILE+ SAM/BAM format files containing mapped reads. May be

specified 0 or more times.

52 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Sensitivity Tuning
--enable-allelic-fraction If set, incorporate the expected allelic fraction in

scoring.
--keep-duplicates Don’t detect and filter duplicate reads based on

mapping position.
-m --machine-errors=STRING If set, force sequencer machine settings. Allowed

values are [default, illumina, ls454_se, ls454_pe,
complete, iontorrent]

--max-coverage=INT Skip calling in sites with per sample read depth
exceeding this value (Default is 200)

--max-coverage-multiplier=FLOAT Skip calling in sites with combined depth exceeding
multiplier * average combined coverage determined
from calibration (Default is 5.0)

--min-base-quality=INT Phred scaled quality score, read bases below this
quality will be treated as unknowns (Default is 0)

--min-mapq=INT If set, ignore SAM records with MAPQ less than
this value.

--population-priors=FILE If set, use the VCF file to generate population based
site-specific priors.

--rdefault-mated=INT For mated reads that have no mapping quality
supplied use this as the default quality (in Phred
format from 0 to 63) (Default is 20)

--rdefault-unmated=INT For unmated reads that have no mapping quality
supplied use this as the default quality (in Phred
format from 0 to 63) (Default is 20)

Reporting
-a --all Write variant calls covering every position

irrespective of thresholds.
--avr-model=MODEL Name of AVR model to use when scoring variants.

Allowed values are [alternate.avr,
illumina-exome.avr, illumina-somatic.avr,
illumina-wgs.avr, none] or a path to a model file
(Default is illumina-wgs.avr)

--filter-ambiguity=INT Threshold for ambiguity filter applied to output
variants.

--filter-bed=FILE Apply a position based filter, retaining only variants
that fall in these BED regions.

--filter-depth=INT Apply a fixed depth of coverage filter to output
variants.

--filter-depth-multiplier=FLOAT Apply a ratio based depth filter. The filter will be
multiplier * average coverage determined from
calibration files.

--min-avr-score=FLOAT If set, fail variants with AVR scores below this value.
--snps-only If set, will output simple SNPs only.

Utility
-h --help Print help on command-line flag usage.

--no-calibration If set, ignore mapping calibration files.
-Z --no-gzip Do not gzip the output.
-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

The family command jointly calls samples corresponding to the parents and children of a family using
Mendelian inheritance. The family command requires a sample for each of the father, mother one or more
children, either daughters or sons.

The family relationships and sample sexes can be supplied either by the use of separate flags that indicate the sex
and relationship of each sample within the family, or by supplying a pedigree file containing this information. See

2.7. Variant Detection Commands 53

RTG Core Operations Manual, Release 3.10

ref:Pedigree PED input file format.

The family command works by considering all the evidence at each nucleotide position and makes a joint
Bayesian estimate that a given nucleotide position represents a variant in one or more of the samples. As with the
snp command, some calls may extend across multiple adjacent nucleotide positions.

The family command requires that each sample has appropriate read group information specified in the BAM
files created during mapping. For information about how to specify read group information when mapping see
Using SAM/BAM Read Groups in RTG map.

By default the VCF output consists of calls where one or more samples differ from the reference genome. The
--all flag produces calls at all non-N base positions for which there is some evidence, irrespective of thresholds
and whether or not the call is equal to the reference. Using --all can incur a significant performance penalty
and is best applied only in small regions of interest (selected with the --region or --bed-regions options).

When there is sufficient evidence, a call may be made that violates Mendelian inheritance consistency. When
this happens the output VCF will contain a DN format field which will indicate if the call for a given sample is
presumed to be a de novo call. This will also be accompanied by a DNP format field which contains a Phred scaled
probability that the call is due to an actual de novo variant.

When a child can be unambiguously phased according to Mendelian inheritance, the VCF genotype field (GT)
will use the phased separator | instead of the unphased separator /. The genotype field will be ordered such that
the allele inherited from the father is first, and that from the mother is second.

For details concerning quality calibration, prior distributions and adaptive variant rescoring refer to the information
for the snp command in snp.

See also:

snp, somatic, population, calibrate

2.7.3 somatic

Synopsis:

The somatic command calls sequence variants on an original and derived sample set.

Syntax:

Multi-file input specified from command line:

$ rtg somatic [OPTION]... -o DIR -t SDF --contamination FLOAT --derived STRING \
--original STRING FILE+

Multi-file input specified in a text file:

$ rtg somatic [OPTION]... -o DIR -t SDF --contamination FLOAT --derived STRING \
--original STRING -I FILE

Example:

$ rtg somatic -o som -t reference --derived c_sample --original n_sample \
--contamination 0.3 -I samfiles.txt

Parameters:

54 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

File Input/Output
--bed-regions=FILE If set, only read SAM records that overlap the ranges contained in

the specified BED file.
--derived=STRING Sample identifier used in read groups for derived sample.

-I --input-list-file=FILE File containing a list of SAM/BAM format files (1 per line)
containing mapped reads.

--original=STRING Sample identifier used in read groups for original sample.
-o --output=DIR Directory for output.

--region=REGION If set, only process SAM records within the specified range. The
format is one of <sequence_name>,
<sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

-t --template=SDF SDF containing the reference genome.
FILE+ SAM/BAM format files containing mapped reads. May be

specified 0 or more times.

2.7. Variant Detection Commands 55

RTG Core Operations Manual, Release 3.10

Sensitivity Tuning
--contamination=FLOAT Estimated fraction of contamination in

derived sample.
--enable-allelic-fraction If set, incorporate the expected allelic

fraction in scoring.
--enable-somatic-allelic-fraction If set, incorporate the expected somatic

allelic fraction in scoring.
-G --include-gain-of-reference Include gain of reference somatic calls in

output VCF.
--include-germline Include germline variants in output VCF.
--keep-duplicates Don’t detect and filter duplicate reads based

on mapping position.
--loh=FLOAT Prior probability that a loss of heterozygosity

event has occurred (Default is 0.0)
-m --machine-errors=STRING If set, force sequencer machine settings.

Allowed values are [default, illumina,
ls454_se, ls454_pe, complete, iontorrent]

--max-coverage=INT Skip calling in sites with per sample read
depth exceeding this value (Default is 200)

--max-coverage-multiplier=FLOAT Skip calling in sites with combined depth
exceeding multiplier * average combined
coverage determined from calibration
(Default is 25.0)

--min-base-quality=INT Phred scaled quality score, read bases below
this quality will be treated as unknowns
(Default is 0)

--min-mapq=INT If set, ignore SAM records with MAPQ less
than this value.

--min-variant-allelic-depth=FLOAT If set, also output sites that meet this
minimum quality-adjusted alternate allelic
depth.

--min-variant-allelic-fraction=FLOAT If set, also output sites that meet this
minimum quality-adjusted alternate allelic
fraction.

--population-priors=FILE If set, use the VCF file to generate
population based site-specific priors.

--rdefault-mated=INT For mated reads that have no mapping
quality supplied use this as the default
quality (in Phred format from 0 to 63)
(Default is 20)

--rdefault-unmated=INT For unmated reads that have no mapping
quality supplied use this as the default
quality (in Phred format from 0 to 63)
(Default is 20)

--sex=SEX Sex of individual. Allowed values are [male,
female, either] (Default is either)

-s --somatic=FLOAT Default prior probability of a somatic SNP
mutation in the derived sample (Default is
0.000001)

--somatic-priors=FILE If set, use the BED file to generate site
specific somatic priors.

56 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Reporting
-a --all Write variant calls covering every position

irrespective of thresholds.
--avr-model=MODEL Name of AVR model to use when scoring variants.

Allowed values are [alternate.avr,
illumina-exome.avr, illumina-somatic.avr,
illumina-wgs.avr, none] or a path to a model file
(Default is illumina-somatic.avr)

--filter-ambiguity=INT Threshold for ambiguity filter applied to output
variants.

--filter-bed=FILE Apply a position based filter, retaining only variants
that fall in these BED regions.

--filter-depth=INT Apply a fixed depth of coverage filter to output
variants.

--filter-depth-multiplier=FLOAT Apply a ratio based depth filter. The filter will be
multiplier * average coverage determined from
calibration files.

--min-avr-score=FLOAT If set, fail variants with AVR scores below this value.
--snps-only If set, will output simple SNPs only.

Utility
-h --help Print help on command-line flag usage.

--no-calibration If set, ignore mapping calibration files.
-Z --no-gzip Do not gzip the output.
-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

The somatic command performs a joint calling on an original sample corresponding to ordinary cells and a
derived sample corresponding to cancerous cells. The derived sample may be contaminated with the original
sample and the contamination level should be specified. It is also desirable that a prior probability of somatic
mutation be set. To compute a rough estimate for this, make an estimate of the number of mutations expected and
divide it by the length of the genome.

The somatic command works by considering all the evidence at each nucleotide position and makes a joint
Bayesian estimate that a given nucleotide position represents a somatic mutation in the derived sample. As with
the snp command, some calls may extend across multiple adjacent nucleotide positions.

The somatic command requires that each sample has appropriate read group information specified in the BAM
files created during mapping. For information about how to specify read group information when mapping see
Using SAM/BAM Read Groups in RTG map.

By default the VCF output consists of calls for both samples where there is a difference between the original and
derived sample. The --all flag produces calls at all non-N base positions for which there is some evidence,
irrespective of thresholds and whether or not the call is equal to the reference. Using --all can incur a signif-
icant performance penalty and is best applied only in small regions of interest (selected with the --region or
--bed-regions options). More information regarding VCF fields output by the somatic command is given in
Small-variant VCF output file description.

As with the default germline calling, the Bayesian model employed during somatic calling does not directly
include any expectation of allelic fraction for somatic variants, however, for tumors with low heterogeneity it is
expected that somatic variants should appear with particular allelic fraction according to the contamination level.
The --enable-somatic-allelic-fraction instructs the variant caller to include a term in the model
which accounts for the expected allelic fraction of somatic variants. This parameter reduces incorrect somatic
calls overall, but may not be appropriate if the tumor heterogeneity is high or if contamination is not well known.
The user should decide whether to enable this flag according to their needs. This flag can be used in conjunction
with --enable-allelic-fraction.

By default somatic scores variants with a model trained on somatic variants. If you are interested in the germline
calls (of either the normal or tumor sample), then it is preferable to use a different AVR model, for example by
adding --avr-model illumina-wgs.avr to the command line. Alternatively, using avrpredict, it is
possible after the run has completed to rescore according to a different model.

2.7. Variant Detection Commands 57

RTG Core Operations Manual, Release 3.10

The --loh parameter is used to control the sensitivity to variants occurring in regions of loss of heterozygosity.
In heterozygous regions, a somatic mutation of the form 𝑋𝑌 → 𝑍𝑍 (with 𝑋 ̸= 𝑍 and 𝑌 ̸= 𝑍) is extremely
unlikely; however, in a loss of heterozygosity region, 𝑋𝑌 → 𝑍 is plausible. As the loss of heterozygosity prior
is increased, the barrier to detecting and reporting such variants is reduced. If a region is known or suspected to
have a loss of heterozygosity, then a value close to 1 should be used when calling that region.

The --somatic-priors option allows fine-grained control over the prior probability of a site being somatic.
For further detail see Using site-specific somatic priors.

For details concerning quality calibration prior distributions refer to the information for the snp command in snp.

See also:

snp, family, population, calibrate, avrpredict

2.7.4 population

Synopsis:

The population command calls sequence variants on a set of individuals.

Syntax:

Multi-file input specified from command line:

$ rtg population [OPTION]... -o DIR -p FILE -t SDF FILE+

Multi-file input specified in a text file:

$ rtg population [OPTION]... -o DIR -p FILE -t SDF -I FILE

Example:

$ rtg population -o pop -p relations.ped -t reference -I samfiles.txt

Parameters:
File Input/Output

--bed-regions=FILE If set, only read SAM records that overlap the ranges contained in
the specified BED file.

-I --input-list-file=FILE File containing a list of SAM/BAM format files (1 per line)
containing mapped reads.

-o --output=DIR Directory for output.
-p --pedigree=FILE Genome relationships PED file.

--region=REGION If set, only process SAM records within the specified range. The
format is one of <sequence_name>,
<sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

-t --template=SDF SDF containing the reference genome.
FILE+ SAM/BAM format files containing mapped reads. May be

specified 0 or more times.

58 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Sensitivity Tuning
--enable-allelic-fraction If set, incorporate the expected allelic fraction in

scoring.
--keep-duplicates Don’t detect and filter duplicate reads based on

mapping position.
-m --machine-errors=STRING If set, force sequencer machine settings. Allowed

values are [default, illumina, ls454_se, ls454_pe,
complete, iontorrent]

--max-coverage=INT Skip calling in sites with per sample read depth
exceeding this value (Default is 200)

--max-coverage-multiplier=FLOAT Skip calling in sites with combined depth exceeding
multiplier * average combined coverage determined
from calibration (Default is 5.0)

--min-base-quality=INT Phred scaled quality score, read bases below this
quality will be treated as unknowns (Default is 0)

--min-mapq=INT If set, ignore SAM records with MAPQ less than
this value.

--pedigree-connectivity=STRING Sets mode of operation based on how well connected
the pedigree is. Allowed values are [auto, sparse,
dense] (Default is auto)

--population-priors=FILE If set, use the VCF file to generate population based
site-specific priors.

--rdefault-mated=INT For mated reads that have no mapping quality
supplied use this as the default quality (in Phred
format from 0 to 63) (Default is 20)

--rdefault-unmated=INT For unmated reads that have no mapping quality
supplied use this as the default quality (in Phred
format from 0 to 63) (Default is 20)

Reporting
-a --all Write variant calls covering every position

irrespective of thresholds.
--avr-model=MODEL Name of AVR model to use when scoring variants.

Allowed values are [alternate.avr,
illumina-exome.avr, illumina-somatic.avr,
illumina-wgs.avr, none] or a path to a model file
(Default is illumina-wgs.avr)

--filter-ambiguity=INT Threshold for ambiguity filter applied to output
variants.

--filter-bed=FILE Apply a position based filter, retaining only variants
that fall in these BED regions.

--filter-depth=INT Apply a fixed depth of coverage filter to output
variants.

--filter-depth-multiplier=FLOAT Apply a ratio based depth filter. The filter will be
multiplier * average coverage determined from
calibration files.

--impute=STRING Name of sample absent from mappings to impute
genotype for. May be specified 0 or more times, or
as a comma separated list.

--min-avr-score=FLOAT If set, fail variants with AVR scores below this value.
--snps-only If set, will output simple SNPs only.

Utility
-h --help Print help on command-line flag usage.

--no-calibration If set, ignore mapping calibration files.
-Z --no-gzip Do not gzip the output.
-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

2.7. Variant Detection Commands 59

RTG Core Operations Manual, Release 3.10

The population command performs a joint calling on a set of samples corresponding to multiple individuals
from a population.

The population command works by considering all the evidence at each nucleotide position and makes a joint
Bayesian estimate that a given nucleotide position represents a variant in one or more of the samples. As with the
snp command, some calls may extend across multiple adjacent nucleotide positions.

The population command requires that each sample has appropriate read group information specified in the
BAM files created during mapping. For information about how to specify read group information when mapping
see Using SAM/BAM Read Groups in RTG map. Also required is a pedigree file describing the samples being
processed, so that the caller can utilize pedigree information to improve the variant calling accuracy. This is
provided in a PED format file using the --pedigree flag. For more information about the PED file format see
Pedigree PED input file format.

The --pedigree-connectivity flag allows the specification of different modes for the population caller to
run in based on how well connected the pedigree samples are.

The dense pedigree mode assumes that there are one or more samples connected by a pedigree. This can in
principle be used for a single sample or for a family specified in the pedigree. It can also process a pedigree where
there are many disconnected samples or fragments of pedigrees. However, it may be more appropriate to use the
sparse mode in this case.

The sparse pedigree mode is intended for the case where there are many separate samples with no directly
known pedigree connections. It uses Hardy-Weinberg equilibrium to ensure that the calls in the different samples
are consistent with one another. Doing this may take more time than for the dense pedigree mode but will give
better results when the samples are not connected by a pedigree. It is also useful when the pedigree consists of a
large number of separate families or more complex situations where there are mixed separate samples and families
or larger fragments of pedigrees.

The default auto setting selects dense pedigree mode when the called samples form fewer than three discon-
nected pedigree fragments, otherwise sparse mode is used.

The decision about whether to use the dense or sparse pedigree mode is not necessarily clear cut. If you have
tens of separate families or samples then using the sparse pedigree mode will definitely improve performance
(at the expense of additional run time). If you have only one or two families or samples or a single large connected
pedigree then using the dense pedigree mode will be the best solution. When the coverage is lower the sparse
pedigree mode will be more valuable. When significant prior information is available in the form of a prior VCF
file, then the sparse mode will be less valuable.

By default the VCF output consists of calls where one or more samples differ from the reference genome. The
--all flag produces calls at all non-N base positions for which there is some evidence, irrespective of thresholds
and whether or not the call is equal to the reference. Using --all can incur a significant performance penalty
and is best applied only in small regions of interest (selected with the --region or --bed-regions options).

When there is sufficient evidence, a call may be made that violates Mendelian inheritance consistency for family
groupings in the pedigree. When this happens the output VCF will contain a DN format field which will indicate
if the call for a given sample is presumed to be a de novo call. This will also be accompanied by a DNP format
field which contains a Phred scaled probability that the call is due to an actual de novo variant.

When a variant call on a child in the pedigree can be unambiguously phased according to Mendelian inheritance,
the VCF genotype field (GT) will use the phased separator | instead of the unphased separator /. The genotype
field will be ordered such that the allele inherited from the father is first, and the mothers is second.

For details concerning quality calibration, prior distributions and adaptive variant rescoring refer to the information
for the snp command in snp.

See also:

snp, family, somatic, calibrate

2.7.5 lineage

Synopsis:

60 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

The lineage command calls sequence variants on a set of cell lineage samples.

Syntax:

Multi-file input specified from command line:

$ rtg lineage [OPTION]... -o DIR -p FILE -t SDF FILE+

Multi-file input specified in a text file:

$ rtg lineage [OPTION]... -o DIR -p FILE -t SDF -I FILE

Example:

$ rtg lineage -o lin -p relations.ped -t reference -I samfiles.txt

Parameters:
File Input/Output

--bed-regions=FILE If set, only read SAM records that overlap the ranges contained in
the specified BED file.

-I --input-list-file=FILE File containing a list of SAM/BAM format files (1 per line)
containing mapped reads.

-o --output=DIR Directory for output.
-p --pedigree=FILE Genome relationships PED file.

--region=REGION If set, only process SAM records within the specified range. The
format is one of <sequence_name>,
<sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

-t --template=SDF SDF containing the reference genome.
FILE+ SAM/BAM format files containing mapped reads. May be

specified 0 or more times.

Sensitivity Tuning
--enable-allelic-fraction If set, incorporate the expected allelic fraction in

scoring.
--keep-duplicates Don’t detect and filter duplicate reads based on

mapping position.
-m --machine-errors=STRING If set, force sequencer machine settings. Allowed

values are [default, illumina, ls454_se, ls454_pe,
complete, iontorrent]

--max-coverage=INT Skip calling in sites with per sample read depth
exceeding this value (Default is 200)

--max-coverage-multiplier=FLOAT Skip calling in sites with combined depth exceeding
multiplier * average combined coverage determined
from calibration (Default is 5.0)

--min-base-quality=INT Phred scaled quality score, read bases below this
quality will be treated as unknowns (Default is 0)

--min-mapq=INT If set, ignore SAM records with MAPQ less than
this value.

--population-priors=FILE If set, use the VCF file to generate population based
site-specific priors.

--rdefault-mated=INT For mated reads that have no mapping quality
supplied use this as the default quality (in Phred
format from 0 to 63) (Default is 20)

--rdefault-unmated=INT For unmated reads that have no mapping quality
supplied use this as the default quality (in Phred
format from 0 to 63) (Default is 20)

2.7. Variant Detection Commands 61

RTG Core Operations Manual, Release 3.10

Reporting
-a --all Write variant calls covering every position

irrespective of thresholds.
--avr-model=MODEL Name of AVR model to use when scoring variants.

Allowed values are [alternate.avr,
illumina-exome.avr, illumina-somatic.avr,
illumina-wgs.avr, none] or a path to a model file
(Default is illumina-wgs.avr)

--filter-ambiguity=INT Threshold for ambiguity filter applied to output
variants.

--filter-bed=FILE Apply a position based filter, retaining only variants
that fall in these BED regions.

--filter-depth=INT Apply a fixed depth of coverage filter to output
variants.

--filter-depth-multiplier=FLOAT Apply a ratio based depth filter. The filter will be
multiplier * average coverage determined from
calibration files.

--min-avr-score=FLOAT If set, fail variants with AVR scores below this value.
--snps-only If set, will output simple SNPs only.

Utility
-h --help Print help on command-line flag usage.

--no-calibration If set, ignore mapping calibration files.
-Z --no-gzip Do not gzip the output.
-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

The lineage command performs a joint calling on a set of samples from a cell lineage.

The lineage command works by considering all the evidence at each nucleotide position and makes a joint
Bayesian estimate that a given nucleotide position represents a variant in one or more of the samples. As with the
snp command, some calls may extend across multiple adjacent nucleotide positions.

The lineage command requires that each sample has appropriate read group information specified in the BAM
files created during mapping. For information about how to specify read group information when mapping see
Using SAM/BAM Read Groups in RTG map. Also required is a pedigree file describing the samples being pro-
cessed, so that the caller can utilize pedigree information to improve the variant calling accuracy. This is provided
in a PED format file using the --pedigree flag. For more information about the PED file format see Pedigree
PED input file format.

By default the VCF output consists of calls where one or more samples differ from the reference genome. The
--all flag produces calls at all non-N base positions for which there is some evidence, irrespective of thresholds
and whether or not the call is equal to the reference. Using --all can incur a significant performance penalty
and is best applied only in small regions of interest (selected with the --region or --bed-regions options).

For details concerning quality calibration, prior distributions and adaptive variant rescoring refer to the information
for the snp command in snp.

See also:

snp, family, somatic, population, calibrate

2.7.6 avrpredict

Synopsis:

The avrpredict command is used to score variants in a VCF file using an adaptive variant rescoring model.

Syntax:

62 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

$ rtg avrpredict [OPTION]... -i FILE -o FILE

Example:

$ rtg avrpredict -i snps.vcf.gz --avr-model avr.model -o avr.vcf.gz

Parameters:
File Input/Output
-i --input=FILE Input VCF file containing variants to score. Use ‘-‘ to read from standard input.
-o --output=FILE Output VCF file. Use ‘-‘ to write to standard output.

Reporting
--avr-model=MODEL Name of AVR model to use when scoring variants. Allowed

values are [alternate.avr, illumina-exome.avr,
illumina-somatic.avr, illumina-wgs.avr, none] or a path to a
model file (Default is illumina-wgs.avr)

--min-avr-score=FLOAT If set, fail variants with AVR scores below this value.
-s --sample=STRING If set, only re-score the specified samples (Default is to

re-score all samples). May be specified 0 or more times.
-f --vcf-score-field=STRING The name of the VCF FORMAT field in which to store the

computed score (Default is AVR)

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

Usage:

Used to apply an adaptive variant rescoring model to an existing VCF file produced by an RTG variant caller.
The output VCF will contain a new or updated AVR score field for the samples to which the model is being
applied. This can be used in combination with the avrbuild command to produce AVR scores from more
detailed training data for a given experiment.

By default avrpredict will write the score into the AVR field of the specified sample in the VCF. However,
it is possible to specify a different score field name using --vcf-score-field and this can be useful when
there are multiple applicable AVR models (e.g. scoring using both somatic and germline models).

See also:

avrbuild, avrstats, snp, family, population

2.7.7 avrbuild

Synopsis:

The avrbuild command is used to create adaptive variant rescoring models from positive and negative training
examples.

Syntax:

$ rtg avrbuild [OPTION]... -n FILE -o FILE -p FILE

Example:

$ rtg avrbuild -o avr.model -n fp.vcf.gz -p tp.vcf.gz --format-annotations GQ,DP

Parameters:

2.7. Variant Detection Commands 63

RTG Core Operations Manual, Release 3.10

File Input/Output
-a --annotated=FILE VCF file containing training examples annotated with CALL=TP/FP.

May be specified 0 or more times.
--bed-regions=FILE If set, only read VCF records that overlap the ranges contained in the

specified BED file.
-n --negative=FILE VCF file containing negative training examples. May be specified 0 or

more times.
-o --output=FILE Output AVR model.
-p --positive=FILE VCF file containing positive training examples. May be specified 0 or

more times.

Sensitivity Tuning
--derived-annotations=STRING Derived fields to use in model. Allowed values are [IC,

EP, LAL, QD, NAA, AN, GQD, VAF1, ZY, PD,
MEANQAD, QA, RA]. May be specified 0 or more
times, or as a comma separated list.

--format-annotations=STRING FORMAT fields to use in model. May be specified 0 or
more times, or as a comma separated list.

--info-annotations=STRING INFO fields to use in model. May be specified 0 or more
times, or as a comma separated list.

--qual-annotation If set, use QUAL annotation in model.
-s --sample=STRING The name of the sample to select (required when using

multi-sample VCF files)

Utility
-h --help Print help on command-line flag usage.
-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

Used to produce an adaptive variant rescoring model using machine learning on a set of variants produced by RTG
that have been divided into known positive and negative examples. The model will learn how to work out how
likely a call is correct based on the set of annotations provided on the command line extracted from the input VCF
files.

Input training VCF files are typically supplied as separate sets of positive and negative training examples via
--positive and --negative options.

An alternative is to supply VCF files where training instances have been annotated with their training status,
using the --annotated option. The annotation format is the same as that produced by vcfeval when using
--output-mode=annotate, so you can supply the calls.vcf.gz file produced by such runs directly to
avrbuild.

The model file produced can then be used directly when variant calling to produce an AVR score field by using
the --avr-model parameter, or applied to an existing VCF output file using the avrpredict command.

For details concerning the various VCF fields available for training see the Appendix Small-variant VCF output
file description. The derived annotations are those which can either be present in the VCF record or computed
from other fields in the VCF record.

See also:

avrpredict, avrstats, snp, family, population

2.7.8 svprep

Synopsis:

Prepares mapping output for use with the sv and discord commands. This functionality is automatically
performed by the map and cgmap commands unless --no-svprep was given during mapping, and so does not
ordinarily need to be executed separately.

Syntax:

64 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

$ rtg svprep [OPTION]... DIR

Example:

$ rtg svprep map_out

Parameters:
File Input/Output

DIR Specifies the directory containing SAM/BAM format files for preparation.

Utility
-h --help Print help on command-line flag usage.

--no-augment If set, only compute read group statistics.

Usage:

Use the svprep command to prepare mappings for structural variant analysis. The svprep command performs
three functions:

• First, it identifies discordant reads (those were there exists a unique unmated mapping for each arm of
a paired-end) and fills in the RNEXT/PNEXT/TLEN fields for these records. The augmented unmated
SAM/BAM file will replace the original.

• Secondly it identifies unmapped reads for which there exists a unique unmated mapping for the other arm
and fills in an estimated position for the unmapped read. The augmented unmapped SAM/BAM file will
replace the original.

• Thirdly it generates per read-group statistics on observed length distributions used by subsequent structural
variant analysis tools.

svprep may be instructed to perform only the last of these functions via the --no-augment flag.

The svprep functionality is integrated directly into the RTG mapping commands by default, so does not normally
need to be executed as a separate stage.

See also:

map, sv, discord

2.7.9 discord

Synopsis:

Analyses SAM records to determine the location of structural variant break-ends based on discordant mappings.

Syntax:

Multi-file input specified from command line:

$ rtg discord [OPTION]... -o DIR -t SDF -r FILE FILE+

Multi-file input specified in a text file:

$ rtg discord [OPTION]... -o DIR -t SDF -I FILE -R FILE

Example:

$ rtg discord -o break_out -t genome -I sam-list.txt -R rgstats-list.txt

Parameters:

2.7. Variant Detection Commands 65

RTG Core Operations Manual, Release 3.10

File Input/Output
--bed Produce output in BED format in addition to VCF.

-I --input-list-file=FILE File containing a list of SAM/BAM format files (1
per line) containing mapped reads.

-o --output=DIR Directory for output.
-r --readgroup-stats=FILE Text file containing read group stats. May be

specified 0 or more times.
-R --readgroup-stats-list-file=FILE File containing list of read group stats files (1 per

line)
--region=REGION If set, only process SAM records within the

specified range. The format is one of
<sequence_name>,
<sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

-t --template=SDF SDF containing the reference genome.
FILE+ SAM/BAM format files containing mapped reads.

May be specified 0 or more times.

Sensitivity Tuning
--consistent-only Only include breakends with internally consistent supporting

reads.
-m --max-as-mated=INT If set, ignore mated SAM records with an alignment score (AS

attribute) that exceeds this value.
-u --max-as-unmated=INT If set, ignore unmated SAM records with an alignment score

(AS attribute) that exceeds this value.
-c --max-hits=INT If set, ignore SAM records with an alignment count that exceeds

this value.
-s --min-support=INT Minimum number of supporting reads for a breakend (Default is

3)
--overlap-fraction=FLOAT Assume this fraction of an aligned ready may may overlap a

breakend (Default is 0.01)

Utility
-h --help Prints help on command-line flag usage.
-Z --no-gzip Set this flag to create the output files without compression. By default the output

files are compressed with tabix compatible blocked gzip.
-T --threads=INT Specify the number of threads to use in a multi-core processor. (Default is all

available cores).

Usage:

This command takes as input a set of mapped and mated reads and a genome. It locates clusters of reads whose
mates are not within the expected mating range but clustered somewhere else on the reference, indicating a poten-
tial structural variant.

The discord command considers each discordantly mapped read and calculates a constraint on the possible
locations of the structural variant break-ends. When all discordant reads within a cluster agree on the possible
break-end positions, this is considered consistent. It is also possible for the reads within a discordant cluster to be
inconsistent, usually this is a spurious call but could indicate a more complex structural variant. By default these
break-ends are included in the output VCF but marked as failing a consistency filter.

Also included in the output VCF is an INFO field indicating the number of discordant reads contributing to each
break-end, which may be useful to filter out spurious calls. Those with too few contributing reads are likely to be
incorrect, and similarly those with too many reads are likely to be a result of mapping artifacts.

For additional information about the discord command output files see Discord command output file descrip-
tions.

See also:

svprep, sv

66 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

2.7.10 sv

Synopsis:

Analyses SAM records to determine the location of structural variants.

Syntax:

Multi-file input specified from command line:

$ rtg sv [OPTION]... -o DIR -t SDF -r FILE FILE+

Multi-file input specified in a text file:

$ rtg sv [OPTION]... -o DIR -t SDF -I FILE -R FILE

Example:

$ rtg sv -o sv_out -t genome -I sam-list.txt -R rgstats-list.txt

Parameters:
File Input/Output
-I --input-list-file=FILE File containing a list of SAM/BAM format files (1

per line) containing mapped reads.
-o --output=DIR Directory for output.

--readgroup-labels=FILE File containing read group relabel mappings (1 per
line with the format:
[input_readgroup_id][tab][output_readgroup_id]).

-r --readgroup-stats=FILE Text file containing read group stats. May be
specified 0 or more times.

-R --readgroup-stats-list-file=FILE File containing list of read group stats files (1 per
line)

--region=REGION If set, only process SAM records within the
specified range. The format is one of
<sequence_name>,
<sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

--simple-signals If set, also output simple signals.
-t --template=SDF SDF containing the reference genome.

FILE+ SAM/BAM format files containing mapped reads.
May be specified 0 or more times.

Sensitivity Tuning
-f --fine-step=INT Set the step size in interesting regions. (Default is 10).
-m --max-as-mated=INT Set to ignore mated SAM records with an alignment score (AS

attribute) that exceeds this value.
-u --max-as-unmated=INT Set to ignore unmated SAM records with an alignment score (AS

attribute) that exceeds this value.
-s --step=INT Set the step size. (Default is 100).

Utility
-h --help Prints help on command-line flag usage.
-Z --no-gzip Set this flag to create the output files without compression. By default the output

files are compressed with tabix compatible blocked gzip.
-T --threads=INT Specify the number of threads to use in a multi-core processor. (Default is all

available cores).

Usage:

2.7. Variant Detection Commands 67

RTG Core Operations Manual, Release 3.10

This command takes as input a set of mappings and a reference genome. It applies Bayesian models to signals
comprised of levels of mated, unmated and discordant mappings to predict the likelihood of various structural
variant categories. The output of the sv command is in the form of two files: sv_interesting.bed.gz is a
BED format file that identifies regions that potentially indicate a structural variant of some kind; sv_bayesian.
tsv.gz is a tab separated format that contains the prediction strengths of each event model.

Table : Bayesian SV indicators

Indicator Description
normal No structural variant.
duplicate-left The left border of a duplication.
duplicate Position within a duplicated region.
duplicate-right The right border of a duplication.
delete-left The left border of a deletion.
delete Position within a deletion.
delete-right The right border of a deletion.
breakpoint A breakpoint such as at the site where a duplicated section is inserted.
novel-insertion A site receiving a novel insertion.

There are also heterozygous versions of each of these models.

The final column gives the index of the dominant hypothesis to allow easier extraction of sequences (for example
a sequence of delete-left, delete, delete-right is a strong indicator of a deletion and can be used to identify the
potential bounds of the deletion).

At this stage, analysis and filtering of the sv command output files is up to the end user.

The Bayesian sv command uses CPU proportional to the number of read groups, so it may be advantageous to
merge related read groups (those that have the same read length and fragment size characteristics). Supplying a
relabel file which maps every input read group to the same logical read group name would treat all alignments as
if there were only one read group.

For additional information about the sv command output files see SV command output file descriptions.

See also:

svprep, discord

2.7.11 cnv

Synopsis:

The cnv command identifies copy number variation statistics and reports in a BED format file. Alignments for
a test genome (typically a tumor sample) are compared to alignments for a base genome (typically a normal or
matched control), and the ratios calculated.

Syntax:

Multi-file input specified from command line:

$ rtg cnv [OPTION]... -o DIR -i FILE -j FILE

Multi-file input specified in a text file:

$ rtg cnv [OPTION]... -o DIR -I FILE -J FILE

Example:

$ rtg cnv -b 1000 -o h1_cnv -i h1_base -j h1_test

Parameters:

68 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

File Input/Output
-i --base-file=FILE SAM/BAM format files containing mapped reads for baseline. May

be specified 0 or more times.
-I --base-list-file=FILE File containing list of SAM/BAM format files (1 per line)

containing mapped reads for baseline.
-o --output=DIR Directory for output.

--region=REGION If set, only process SAM records within the specified range. The
format is one of <sequence_name>,
<sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

-t --template=SDF SDF containing the reference genome.
-j --test-file=FILE SAM/BAM format files containing mapped reads for test. May be

specified 0 or more times.
-J --test-list-file=FILE File containing list of SAM/BAM format files (1 per line)

containing mapped reads for test.

Sensitivity Tuning
-b --bucket-size=INT Set size of the buckets in the genome. Use the bucket size to

determine CNV coverage, bucket size defines the number of
nucleotides to average the coverage for in a region. (Default is 100)

--exclude-mated Set to exclude all mated SAM records.
--exclude-unmated Set to exclude all unmated SAM records.

-m --max-as-mated=INT Set to ignore mated SAM records with an alignment score (AS
attribute) that exceeds this value.

-u --max-as-unmated=INT Set to ignore unmated SAM records with an alignment score (AS
attribute) that exceeds this value.

-c --max-hits=INT Set to ignore SAM records with an alignment count that exceeds this
value. This flag is usually set to 1 because an alignment count of 1
represents uniquely mapped reads.

--min-mapq=INT Set to ignore SAM records with MAPQ less than this value.

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.
-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

The cnv command identifies aberrational CNV region(s) that support investigation of structural variation for
WGS cancer sequencing data where a matched normal sample is available. It measures and reports the ratio of
coverage depth in a test sample compared to a baseline sample. Use the --bucket-size=INT parameter to
specify the range in which CNV ratios are calculated (for data smoothing). Filter settings allow different analytical
comparisons with the same alignments.

See also:

snp, coverage

2.8 Metagenomics Commands

2.8.1 species

Synopsis:

Calculates a taxon distribution from a metagenomic sample.

Syntax:

Multi-file input specified from command line:

2.8. Metagenomics Commands 69

RTG Core Operations Manual, Release 3.10

$ rtg species [OPTION]... -t SDF -o DIR FILE+

Multi-file input specified in a text file:

$ rtg species [OPTION]... -t SDF -o DIR -I FILE

Example:

$ rtg species -t genomes -o sp_out alignments.bam

Parameters:
File Input/Output
-t --genomes=SDF SDF containing the genomes.
-I --input-list-file=FILE File containing a list of SAM/BAM format files (1 per line)

containing mapped reads.
-o --output=DIR Directory for output.
-r --relabel-species-file=FILE File containing list of species name to reference name

mappings (1 mapping per line format: [reference short
name][tab][species])

FILE+ SAM/BAM format files containing mapped reads. May be
specified 0 or more times.

Sensitivity Tuning
--exclude-mated Exclude all mated SAM records.
--exclude-unmated Exclude all unmated SAM records.

-m --max-as-mated=INT If set, ignore mated SAM records with an alignment score (AS
attribute) that exceeds this value.

-u --max-as-unmated=INT If set, ignore unmated SAM records with an alignment score (AS
attribute) that exceeds this value.

Reporting
-c --min-confidence=FLOAT Species below this confidence value will not be reported (Default is

10.0)
--print-all Print non present species in the output file.

Utility
-h --help Print help on command-line flag usage.
-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

This command takes as input a set of SAM/BAM alignment data from a sample of DNA and a set of known
genomes. It outputs an estimate of the fraction of the sample taken up by each of the genomes. For best results the
reference SDF containing the genomes should be in the RTG taxonomic reference file format. Existing metage-
nomics reference SDFs in this format are available from our website (http://www.realtimegenomics.com). For
more information about this format see RTG taxonomic reference file format.

When not using RTG taxonomic reference SDFs, if more than one sequence in the reference corresponds to the
same species, use the --relabel-species-file flag to specify a file containing the mappings of short
reference names to species names.

The species command assumes that the mappings of the sample against the reference species are well-modeled
by a Poisson distribution. A multi-dimensional direct non-linear optimization procedure is used to minimize the
error according to the Poisson model, leading to a posterior probability assignment for each of the reference
sequences. The computation can account for stretches of reference sequence not appearing in the sample and for
unmapped reads in the sample. So to get the best results, any unmapped reads should be included as part of the
input.

The posterior probabilities are used to directly compute taxon representation in two ways. The first representation
is the fractional abundance of particular taxon in the sample. The second representation is normalized to DNA
size and reports the percentage of the particular DNA sequence in the sample.

70 Chapter 2. RTG Command Reference

http://www.realtimegenomics.com

RTG Core Operations Manual, Release 3.10

Most of the columns in the species.tsv file are about estimating the abundance of particular species and
clades. The output also contains a confidence score that addresses the subtly different question, “How likely
is it that this species or clade is actually present in the sample?”. The details of the calculation are somewhat
complicated, but for a single species (more precisely, a leaf node in the taxonomy) the confidence is calculated
as a log likelihood ratio between two posteriors. Internally, the species tool computes a posterior, , connected to
the abundance estimate for a species, corresponding to the null hypothesis “species present at level 𝑃 ”. For an
alternative hypothesis, corresponding to “species not present”, another posterior, 𝑃 ′ , is computed by forcing the
estimated abundance for that species to 0. Confidence is then the log ratio of the two values, 𝐶 = 𝑙𝑛(𝑃

′

𝑃) . The
number reported in the confidence column is

√
𝐶 . Taking the square root makes the units of confidence standard

deviations and reduces the spread of values. By adjusting the --min-confidence parameter you can allow
only results with a higher confidence to be output.

In addition to the raw output file, an interactive graphical view in HTML5 is also generated. Opening this shows
the taxonomy and data on an interactive pie chart, with wedge sizes defined by either the abundance or DNA
fraction (user selectable in the report).

See also:

similarity

2.8.2 similarity

Synopsis:

Produces a similarity matrix and nearest neighbor tree from the input sequences or reads.

Syntax:

Single-file genome per sequence input:

$ rtg similarity [OPTION]... -o DIR -i SDF

Multi-file genome per label input specified in a text file:

$ rtg similarity [OPTION]... -o DIR -I FILE

Example:

$ rtg similarity -o simil_out -i species_genomes

Parameters:
File Input/Output
-I --input-list-file=FILE Specifies a file containing a labeled list of SDFs (one label and

SDF per line format: [label][space][SDF])
-i --input=SDF Specifies the SDF containing a subject data set.
-o --output=DIR Specifies the directory where results are reported.

Sensitivity Tuning
-s --step=INT Set the step size. (Default is 1).

--unique-words Set to count only unique words.
-w --word=INT Set the word size. (Default is 25).

Utility
-h --help Print help on command-line flag usage.

--max-reads=INT Set the maximum number of reads to use from each input SDF. Use to reduce
memory requirements in multi-file mode.

Usage:

Use in single-file mode to produce a similarity matrix and nearest neighbor tree where each sequence in the SDF
is treated as a single genome for the comparisons. However, if the input SDF contains a taxonomy, then individual

2.8. Metagenomics Commands 71

RTG Core Operations Manual, Release 3.10

sequences will be appropriately grouped in terms of the taxonomy and the resulting nearest neighbor tree will be
in terms of the organisms of the taxonomy.

Use in multi-file mode to produce a similarity matrix and nearest neighbor tree for labeled sets of sequences
where each label is treated as a single genome for the comparisons. The input file for this mode is of the form
[label][space][file], 1 per line where labels can be repeated to treat multiple SDFs as part of the same
genome. Example:

SARS_coronavirus sars_sample1.sdf
SARS_coronavirus sars_sample2.sdf
Bacteriophage_KVP40 kvp40_sample1.sdf
Bacteriophage_KVP40 kvp40_sample2.sdf

The similarity tool outputs phylogenetic tree files, a similarity matrix file and a principal component analysis file.
For more detail about the output files see Species results file description.

See also:

species

2.9 Pipeline Commands

RTG includes some pipeline commands that perform simple end-to-end tasks using a set of other RTG commands.

2.9.1 composition-meta-pipeline

Synopsis:

Runs a metagenomic composition pipeline. The pipeline consists of read filtering, read alignment, then species
composition.

Syntax:

SDF or single-end FASTQ input:

$ rtg composition-meta-pipeline [OPTION]... --output DIR --input SDF|FILE

Paired-end FASTQ input:

$ rtg composition-meta-pipeline [OPTION]... --output DIR --input-left FILE \
--input-right FILE

Example:

$ rtg composition-meta-pipeline --output comp_out --input bact_reads \
--filter hg19 --species bact_db

Parameters:
File Input/Output

--filter=SDF Specifies the SDF containing the filter reference sequences.
--input=SDF|FILE Specifies the path to the reads to be processed.
--input-left=FILE The left input file for FASTQ paired end reads.
--input-right=FILE The right input file for FASTQ paired end reads.
--output=DIR Specifies the directory where results are reported.
--platform Specifies the platform of the input data. (Must be one of [illumina,

iontorrent]) (Default is illumina).
--species=SDF Specifies the SDF containing species reference sequences.

Utility
-h --help Print help on command-line flag usage.

72 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Usage:

The composition-meta-pipeline command runs a sequence of RTG commands to generate a species
composition analysis from a set of input reads. Each command run outputs to a subdirectory within the output
directory set with the --output flag.

The reads input data for this command must either be in SDF format, or be FASTQ files that use Sanger quality
value encoding. If your data is not in this format, (e.g. FASTA or using Solexa quality value encoding), you should
first create an SDF containing the reads using the format command, with appropriate command-line flags.

The reads are filtered to remove contaminant reads using the mapf command using the reference from the
--filter flag. The --sam-rg flag of the mapf command is set with the platform specified by the
--platform flag. If the input is given as FASTQ instead of in SDF format, the --quality-format is
set to sanger. All other flags are left as the defaults defined in the mapf command description. The output
subdirectory for the filter results is called mapf.

The unmapped reads from the read filtering step are aligned with the map command using the reference from
the --species flag. The --sam-rg flag of the map command is set with the platform specified by the
--platform flag. The --max-mismatches flag is set to 10% if the --platform flag is set to illumina,
or 15% if set to iontorrent. The --max-top-results flag is set to 100. All other flags are left as the
defaults defined in the map command description. The output subdirectory for the alignment results is called map.

The aligned reads are processed with the species command using the reference from the --species flag. Flag
defaults defined in the species command description are used. The output subdirectory for the species composition
results is called species.

A summary report about the results of all the steps involved is output to a subdirectory called report.

This pipeline command will use a default location for the reference SDF files when not specified explicitly on
the command line. The default locations for each is within a subdirectory of the installation directory called
references, with each SDF in the directory being the same name as the flag for it. For example the --filter
flag will default to /path/to/installation/references/filter. To change the directory where
it looks for these default references set the RTG_REFERENCES_DIR configuration property to the directory
containing your default references (see Advanced installation configuration). Reference SDFs for use with the
pipeline are available for download from our website (http://www.realtimegenomics.com).

See also:

mapf , map, species, composition-functional-meta-pipeline

2.9.2 functional-meta-pipeline

Synopsis:

Runs a metagenomic functional pipeline. The pipeline consists of read filtering, then protein searching.

Syntax:

SDF or single-end FASTQ input:

$ rtg functional-meta-pipeline [OPTION]... --output DIR --input SDF|FILE

Paired-end FASTQ input:

$ rtg functional-meta-pipeline [OPTION]... --output DIR --input-left FILE \
--input-right FILE

Example:

$ rtg functional-meta-pipeline --output comp_out --input bact_reads --filter hg19 \
--protein protein_db

Parameters:

2.9. Pipeline Commands 73

http://www.realtimegenomics.com

RTG Core Operations Manual, Release 3.10

File Input/Output
--filter=SDF Specifies the SDF containing the filter reference sequences.
--input=SDF|FILE Specifies the path to the reads to be processed.
--input-left=FILE The left input file for FASTQ paired end reads.
--input-right=FILE The right input file for FASTQ paired end reads.
--output=DIR Specifies the directory where results are reported.
--platform Specifies the platform of the input data. Allowed values are [illumina,

iontorrent] (Default is illumina)
--protein=SDF Specifies the SDF containing protein reference sequences.

Utility
-h --help Print help on command-line flag usage.

Usage:

The functional-meta-pipeline command runs a sequence of RTG commands to generate a protein anal-
ysis from a set of input reads. Each command run outputs to a subdirectory within the output directory set with
the --output flag.

The reads input data for this command must either be in SDF format, or be FASTQ files that use Sanger quality
value encoding. If your data is not in this format, (e.g. FASTA or using Solexa quality value encoding), you should
first create an SDF containing the reads using the format command, with appropriate command-line flags.

The reads are filtered to remove contaminant reads using the mapf command using the reference from the
--filter flag. The --sam-rg flag of the mapf command is set with the platform specified by the
--platform flag. If the input is given as FASTQ instead of in SDF format, the --quality-format is
set to sanger. All other flags are left as the defaults defined in the mapf command description. The output
subdirectory for the filter results is called mapf.

The unmapped reads from the read filtering step are processed with the mapx command using the reference from
the --protein flag. The --max-alignment-score flag is set to 10% if the --platform flag is set to
illumina, or 15% if set to iontorrent. The --max-top-results flag is set to 10. All other flags are
left as the defaults defined in the mapx command description. If the input reads are single end the output will be
to the mapx1 subdirectory. If the input reads are paired end, the reads from each end are processed separately.
The output for the left end will be the mapx1 subdirectory and for the right end will be the mapx2 subdirectory.

A summary report about the results of all the steps involved is output to a subdirectory called report.

This pipeline command will use a default location for the reference SDF files when not specified explicitly on
the command line. The default locations for each is within a subdirectory of the installation directory called
references, with each SDF in the directory being the same name as the flag for it. For example the --filter
flag will default to /path/to/installation/references/filter. To change the directory where
it looks for these default references set the RTG_REFERENCES_DIR configuration property to the directory
containing your default references (see Advanced installation configuration). Reference SDFs for use with the
pipeline are available for download from our website (http://www.realtimegenomics.com).

See also:

mapf , mapx, composition-functional-meta-pipeline

2.9.3 composition-functional-meta-pipeline

Synopsis:

Runs the metagenomic composition and functional pipelines. The pipelines consist of read filtering, read align-
ment then species composition, and protein searching.

Syntax:

SDF or single-end FASTQ input:

$ rtg composition-functional-meta-pipeline [OPTION]... --output DIR \
--input SDF|FILE

74 Chapter 2. RTG Command Reference

http://www.realtimegenomics.com

RTG Core Operations Manual, Release 3.10

Paired-end FASTQ input:

$ rtg composition-functional-meta-pipeline [OPTION]... --output DIR \
--input-left FILE --input-right FILE

Example:

$ rtg composition-functional-meta-pipeline --output comp_out --input bact_reads \
--filter hg19 --species bact_db --protein protein_db

Parameters:
File Input/Output

--filter=SDF Specifies the SDF containing the filter reference sequences.
--input=SDF|FILE Specifies the path to the reads to be processed.
--input-left=FILE The left input file for FASTQ paired end reads.
--input-right=FILE The right input file for FASTQ paired end reads.
--output=DIR Specifies the directory where results are reported.
--platform Specifies the platform of the input data. Allowed values are [illumina,

iontorrent] (Default is illumina).
--species=SDF Specifies the SDF containing species reference sequences.
--protein=SDF Specifies the SDF containing protein reference sequences.

Utility
-h --help Print help on command-line flag usage.

Usage:

The composition-functional-meta-pipeline command runs a sequence of RTG commands to gen-
erate a species composition analysis and a protein analysis from a set of input reads. Each command run outputs
to a subdirectory within the output directory set with the --output flag.

The reads input data for this command must either be in SDF format, or be FASTQ files that use Sanger quality
value encoding. If your data is not in this format, (e.g. FASTA or using Solexa quality value encoding), you should
first create an SDF containing the reads using the format command, with appropriate command-line flags.

The reads are filtered to remove contaminant reads using the mapf command using the reference from the
--filter flag. The --sam-rg flag of the mapf command is set with the platform specified by the
--platform flag. If the input is given as FASTQ instead of in SDF format, the --quality-format is
set to sanger. All other flags are left as the defaults defined in the mapf command description. The output
subdirectory for the filter results is called mapf.

The unmapped reads from the read filtering step are aligned with the map command using the reference from
the --species flag. The --sam-rg flag of the map command is set with the platform specified by the
--platform flag. The --max-mismatches flag is set to 10% if the --platform flag is set to illumina,
or 15% if set to iontorrent. The --max-top-results flag is set to 100. All other flags are left as the
defaults defined in the map command description. The output subdirectory for the alignment results is called map.

The aligned reads are processed with the species command using the reference from the --species flag.
Flag defaults defined in the species command description are used. The output subdirectory for the species
composition results is called species.

The unmapped reads from the read filtering step are processed with the mapx command using the reference from
the --protein flag. The --max-alignment-score flag is set to 10% if the --platform flag is set to
illumina, or 15% if set to iontorrent. The --max-top-results flag is set to 10. All other flags are
left as the defaults defined in the mapx command description. If the input reads are single end the output will be
to the mapx1 subdirectory. If the input reads are paired end, the reads from each end are processed separately.
The output for the left end will be the mapx1 subdirectory and for the right end will be the mapx2 subdirectory.

A summary report about the results of all the steps involved is output to a subdirectory called report.

This pipeline command will use a default location for the reference SDF files when not specified explicitly on
the command line. The default locations for each is within a subdirectory of the installation directory called
references, with each SDF in the directory being the same name as the flag for it. For example the --filter

2.9. Pipeline Commands 75

RTG Core Operations Manual, Release 3.10

flag will default to /path/to/installation/references/filter. To change the directory where
it looks for these default references set the RTG_REFERENCES_DIR configuration property to the directory
containing your default references (see Advanced installation configuration). Reference SDFs for use with the
pipeline are available for download from our website (http://www.realtimegenomics.com).

See also:

mapf , mapx, map, species

2.10 Simulation Commands

RTG includes some simulation commands that may be useful for experimenting with effects of various RTG
command parameters or when getting familiar with RTG work flows. A simple simulation series might involve
the following commands:

$ rtg genomesim --output sim-ref-sdf --min-length 500000 --max-length 5000000 \
--num-contigs 5

$ rtg popsim --reference sim-ref-sdf --output population.vcf.gz
$ rtg samplesim --input population.vcf.gz --output sample1.vcf.gz \

--output-sdf sample1-sdf --reference sim-ref-sdf --sample sample1
$ rtg readsim --input sample1-sdf --output reads-sdf --machine illumina_pe \

-L 75 -R 75 --coverage 10
$ rtg map --template sim-ref-sdf --input reads-sdf --output sim-mapping \

--sam-rg "@RG\tID:sim-rg\tSM:sample1\tPL:ILLUMINA"
$ rtg snp --template sim-ref-sdf --output sim-name-snp sim-mapping/alignments.bam

2.10.1 genomesim

Synopsis:

Use the genomesim command to simulate a reference genome, or to create a baseline reference genome for a
research project when an actual genome reference sequence is unavailable.

Syntax:

Specify number of sequences, plus minimum and maximum lengths:

$ rtg genomesim [OPTION]... -o SDF --max-length INT --min-length INT -n INT

Specify explicit sequence lengths (one more sequences):

$ rtg genomesim [OPTION]... -o SDF -l INT

Example:

$ rtg genomesim -o genomeTest -l 500000

Parameters:
File Input/Output
-o --output=SDF The name of the output SDF.

76 Chapter 2. RTG Command Reference

http://www.realtimegenomics.com

RTG Core Operations Manual, Release 3.10

Utility
--comment=STRING Specify a comment to include in the generated SDF.
--freq=STRING Set the relative frequencies of A,C,G,T in the generated sequence.

(Default is 1,1,1,1).
-h --help Prints help on command-line flag usage.
-l --length=INT Specify the length of generated sequence. May be specified 0 or more

times, or as a comma separated list.
--max-length=INT Specify the maximum sequence length.
--min-length=INT Specify the minimum sequence length.

-n --num-contigs=INT Specify the number of sequences to generate.
--prefix=STRING Specify a sequence name prefix to be used for the generated sequences.

The default is to name the output sequences ‘simulatedSequenceN’,
where N is increasing for each sequence.

-s --seed=INT Specify seed for the random number generator.

Usage:

The genomesim command allows one to create a simulated genome with one or more contiguous sequences -
exact lengths of each contig or number of contigs with minimum and maximum lengths provided. The contents
of an SDF directory created by genomesim can be exported to a FASTA file using the sdf2fasta command.

This command is primarily useful for providing a simple randomly generated base genome for use with subsequent
simulation commands.

Each generated contig is named by appending an increasing numeric index to the specified prefix. For example
--prefix=chr --num-contigs=10 would yield contigs named chr1 through chr10.

See also:

cgsim, readsim, popsim, samplesim

2.10.2 cgsim

Synopsis:

Simulate Complete Genomics Inc sequencing reads. Supports the original 35 bp read structure (5-10-10-10), and
the newer 29 bp read structure (10-9-10).

Syntax:

Generation by genomic coverage multiplier:

$ rtg cgsim [OPTION]... -V INT -t SDF -o SDF -c FLOAT

Generation by explicit number of reads:

$ rtg cgsim [OPTION]... -V INT -t SDF -o SDF -n INT

Example:

$ rtg cgsim -V 1 -t HUMAN_reference -o CG_3x_readst -c 3

Parameters:
File Input/Output
-t --input=SDF SDF containing input genome.
-o --output=SDF Name for reads output SDF.

2.10. Simulation Commands 77

RTG Core Operations Manual, Release 3.10

Fragment Generation
--abundance If set, the user-supplied distribution represents desired

abundance.
-N --allow-unknowns Allow reads to be drawn from template fragments

containing unknown nucleotides.
-c --coverage=FLOAT Coverage, must be positive.
-D --distribution=FILE File containing probability distribution for sequence

selection.
--dna-fraction If set, the user-supplied distribution represents desired

DNA fraction.
-M --max-fragment-size=INT Maximum fragment size (Default is 500)
-m --min-fragment-size=INT Minimum fragment size (Default is 350)

--n-rate=FLOAT Rate that the machine will generate new unknowns in the
read (Default is 0.0)

-n --num-reads=INT Number of reads to be generated.
--taxonomy-distribution=FILE File containing probability distribution for sequence

selection expressed by taxonomy id.

Complete Genomics
-V --cg-read-version=INT Select Complete Genomics read structure version, 1 (35 bp) or 2 (29

bp)

Utility
--comment=STRING Comment to include in the generated SDF.

-h --help Print help on command-line flag usage.
--no-names Do not create read names in the output SDF.
--no-qualities Do not create read qualities in the output SDF.

-q --qual-range=STRING Set the range of base quality values permitted e.g.: 3-40 (Default is
fixed qualities corresponding to overall machine base error rate)

--sam-rg=STRING|FILE File containing a single valid read group SAM header line or a string
in the form
@RG\tID:READGROUP1\tSM:BACT_SAMPLE\tPL:ILLUMINA

-s --seed=INT Seed for random number generator.

Usage:

Use the cgsim command to set either --coverage or --num-reads in simulated Complete Genomics reads.
For more information about Complete Genomics reads, refer to http://www.completegenomics.com

RTG simulation tools allows for deterministic experiment repetition. The --seed parameter, for example, allows
for regeneration of exact same reads by setting the random number generator to be repeatable (without supplying
this flag a different set of reads will be generated each time).

The --distribution parameter allows you to specify the probability that a read will come from a particular
named sequence for use with metagenomic databases. Probabilities are numbers between zero and one and must
sum to one in the file.

See also:

genomesim, readsim, popsim, samplesim

2.10.3 readsim

Synopsis:

Use the readsim command to generate single or paired end reads of fixed or variable length from a reference
genome, introducing machine errors.

Syntax:

Generation by genomic coverage multiplier:

78 Chapter 2. RTG Command Reference

http://www.completegenomics.com

RTG Core Operations Manual, Release 3.10

$ rtg readsim [OPTION]... -t SDF --machine STRING -o SDF -c FLOAT

Generation by explicit number of reads:

$ rtg readsim [OPTION]... -t SDF --machine STRING -o SDF -n INT

Example:

$ rtg readsim -t genome_ref -o sim_reads -r 75 --machine illumina_se -c 30

Parameters:
File Input/Output
-t --input=SDF SDF containing input genome.

--machine=STRING Select the sequencing technology to model. Allowed values are
[illumina_se, illumina_pe, complete_genomics, complete_genomics_2,
454_pe, 454_se, iontorrent]

-o --output=SDF Name for reads output SDF.

Fragment Generation
--abundance If set, the user-supplied distribution represents desired

abundance.
-N --allow-unknowns Allow reads to be drawn from template fragments

containing unknown nucleotides.
-c --coverage=FLOAT Coverage, must be positive.
-D --distribution=FILE File containing probability distribution for sequence

selection.
--dna-fraction If set, the user-supplied distribution represents desired

DNA fraction.
-M --max-fragment-size=INT Maximum fragment size (Default is 250)
-m --min-fragment-size=INT Minimum fragment size (Default is 200)

--n-rate=FLOAT Rate that the machine will generate new unknowns in the
read (Default is 0.0)

-n --num-reads=INT Number of reads to be generated.
--taxonomy-distribution=FILE File containing probability distribution for sequence

selection expressed by taxonomy id.

Illumina PE
-L --left-read-length=INT Target read length on the left side.
-R --right-read-length=INT Target read length on the right side.

Illumina SE
-r --read-length=INT Target read length, must be positive.

454 SE/PE
--454-max-total-size=INT Maximum 454 read length (in paired end case the sum of the left

and the right read lengths)
--454-min-total-size=INT Minimum 454 read length (in paired end case the sum of the left

and the right read lengths)

IonTorrent SE
--ion-max-total-size=INT Maximum IonTorrent read length.
--ion-min-total-size=INT Minimum IonTorrent read length.

2.10. Simulation Commands 79

RTG Core Operations Manual, Release 3.10

Utility
--comment=STRING Comment to include in the generated SDF.

-h --help Print help on command-line flag usage.
--no-names Do not create read names in the output SDF.
--no-qualities Do not create read qualities in the output SDF.

-q --qual-range=STRING Set the range of base quality values permitted e.g.: 3-40 (Default is
fixed qualities corresponding to overall machine base error rate)

--sam-rg=STRING|FILE File containing a single valid read group SAM header line or a string
in the form
@RG\tID:READGROUP1\tSM:BACT_SAMPLE\tPL:ILLUMINA

-s --seed=INT Seed for random number generator.

Usage:

Create simulated reads from a reference genome by either specifying coverage depth or a total number of reads.

A typical use case involves creating a mutated genome by introducing SNPs or CNVs with popsim and
samplesim generating reads from the mutated genome with readsim, and mapping them back to the orig-
inal reference to verify the parameters used for mapping or variant detection.

RTG simulation tools allows for deterministic experiment repetition. The --seed parameter, for example, allows
for regeneration of exact same reads by setting the random number generator to be repeatable (without supplying
this flag a different set of reads will be generated each time).

The --distribution parameter allows you to specify the sequence composition of the resulting read set,
primarily for use with metagenomic databases. The distribution file is a text file containing lines of the form:

<probability><space><sequence name>

Probabilities must be between zero and one and must sum to one in the file. For reference databases containing
taxonomy information, where each species may be comprised of more than one sequence, it is instead possible to
use the --taxonomy-distribution option to specify the probabilities at a per-species level. The format of
each line in this case is:

<probability><space><taxon id>

When using --distribution or --taxonomy-distribution, the interpretation must be specified one
of --abundance or --dna-fraction. When using --abundance each specified probability reflects the
chance of selecting the specified sequence (or taxon id) from the set of sequences, and thus for a given abundance
a large sequence will be represented by more reads in the resulting set than a short sequence. In contrast, with
--dna-fraction each specified probability reflects the chance of a read being derived from the designated
sequence, and thus for a given fraction, a large sequence will have a lower depth of coverage than a short sequence.

See also:

cgsim, genomesim, popsim, samplesim

2.10.4 readsimeval

Synopsis:

Use the readsimeval command to examine the mapping accuracy of reads previously generated by the
readsim command.

Syntax:

$ rtg readsimeval [OPTION]... -o DIR -r SDF FILE+

Example:

$ rtg readsimeval -t genome_ref -o map_rse -r reads_sd map/alignments.bam

80 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Parameters:
File Input/Output
-M --mutations-vcf=FILE VCF file containing genomic mutations to be compensated for.
-o --output=DIR Directory for output.
-r --reads=SDF SDF containing reads.
-S --sample=STRING Name of the sample to use from the mutation VCF file, will default to

using the first sample in the file.
FILE+ SAM/BAM format files. Must be specified 1 or more times.

Sensitivity Tuning
--exclude-duplicates Exclude all SAM records flagged as a PCR or optical duplicate.
--exclude-mated Exclude all mated SAM records.
--exclude-unmated Exclude all unmated SAM records.
--max-as-mated=INT If set, ignore mated SAM records with an alignment score (AS

attribute) that exceeds this value.
--max-as-unmated=INT If set, ignore unmated SAM records with an alignment score (AS

attribute) that exceeds this value.
--min-mapq=INT If set, ignore SAM records with MAPQ less than this value.

-v --variance=INT Variation allowed in start position (Default is 0).

Reporting
--mapq-histogram Output histogram of MAPQ scores.
--mapq-roc Output ROC table with respect to MAPQ scores.
--score-histogram Output histogram of read alignment / generated scores.
--verbose Provide more detailed breakdown of stats.

Utility
-h --help Prints help on command-line flag usage.

Usage:

This command can be used to evaluate the mapping accuracy on reads that have been generated by the readsim
command. The ROC output files may be plotted with the rocplot command.

See also:

cgsim, readsim, rocplot

2.10.5 popsim

Synopsis:

Use the popsim command to generate a VCF containing simulated population variants. Each variant allele
generated has an associated frequency INFO field describing how frequent in the population that allele is.

Syntax:

$ rtg popsim [OPTION]... -o FILE -t SDF

Example:

$ rtg popsim -o pop.vcf -t HUMAN_reference

Parameters:
File Input/Output
-o --output=FILE Output VCF file name.
-t --reference=SDF SDF containing the reference genome.

2.10. Simulation Commands 81

RTG Core Operations Manual, Release 3.10

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--seed=INT Seed for the random number generator.

Usage:

The popsim command is used to create a VCF containing variants with frequency in population information
that can be subsequently used to simulate individual samples using the samplesim command. The frequency in
population is contained in a VCF INFO field called AF. The types of variants and the allele-frequency distribution
has been drawn from observed variants and allele frequency distribution in human studies.

See also:

readsim, genomesim, samplesim, childsim, samplereplay

2.10.6 samplesim

Synopsis:

Use the samplesim command to generate a VCF containing a genotype simulated from population variants
according to allele frequency.

Syntax:

$ rtg samplesim [OPTION]... -i FILE -o FILE -t SDF -s STRING

Example:

From a population frequency VCF:

$ rtg samplesim -i pop.vcf -o 1samples.vcf -t HUMAN_reference -s person1 --sex male

From an existing simulated VCF:

$ rtg samplesim -i 1samples.vcf -o 2samples.vcf -t HUMAN_reference -s person2 \
--sex female

Parameters:
File Input/Output
-i --input=FILE Input VCF containing population variants.
-o --output=FILE Output VCF file name.

--output-sdf=SDF If set, output an SDF containing the sample genome.
-t --reference=SDF SDF containing the reference genome.
-s --sample=STRING Name for sample.

Utility
--allow-missing-af If set, treat variants without allele frequency annotation as uniformly

likely.
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--ploidy=STRING Ploidy to use. Allowed values are [auto, diploid, haploid] (Default is
auto)

--seed=INT Seed for the random number generator.
--sex=SEX Sex of individual. Allowed values are [male, female, either] (Default is

either)

Usage:

The samplesim command is used to simulate an individuals genotype information from a population variant
frequency VCF generated by the popsim command or by previous samplesim or childsim commands. The
new output VCF will contain all the existing variants and samples with a new column for the new sample. The

82 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

genotype at each record of the VCF will be chosen randomly according to the allele frequency specified in the AF
field.

If input VCF records do not contain an AF annotation, by default any ALT allele in that record will not be selected
and so the sample will be genotyped as 0/0. Alternatively for simple simulations the --allow-missing-af
flag will treat each allele in such records as being equally likely (i.e.: effectively equivalent to AF=0.5 for a
biallelic variant, AF=0.33,0.33 for a triallelic variant, etc).

The ploidy for each genotype is automatically determined according to the ploidy of that chromosome for the
specified sex of the individual, as defined in the reference genome reference.txt file. For more information
see RTG reference file format. If the reference SDF does not contain chromosome configuration information, a
default ploidy can be specified using the --ploidy flag.

The --output-sdf flag can be used to optionally generate an SDF of the individuals genotype which can then
be used by the readsim command to simulate a read set for the individual.

See also:

readsim, genomesim, popsim, childsim, samplereplay

2.10.7 denovosim

Synopsis:

Use the denovosim command to generate a VCF containing a derived genotype containing de novo variants.

Syntax:

$ rtg denovosim [OPTION]... -i FILE --original STRING -o FILE -t SDF -s STRING

Example:

$ rtg denovosim -i sample.vcf --original personA -o 2samples.vcf \
-t HUMAN_reference -s personB

Parameters:
File Input/Output
-i --input=FILE The input VCF containing parent variants.

--original=STRING The name of the existing sample to use as the original genotype.
-o --output=FILE The output VCF file name.

--output-sdf=FILE Set to output an SDF of the genome generated.
-t --reference=SDF The SDF containing the reference genome.
-s --sample=STRING The name for the new derived sample.

Utility
-h --help Prints help on command-line flag usage.
-Z --no-gzip Set this flag to create the VCF output file without compression.

--num-mutations=INT Set the expected number of de novo mutations per genome (Default is
70).

--ploidy=STRING The ploidy to use when the reference genome does not contain a
reference text file. Allowed values are [auto, diploid, haploid] (Default
is auto)

--seed=INT Set the seed for the random number generator.
--show-mutations Set this flag to display information regarding de novo mutation points.

Usage:

The denovosim command is used to simulate a derived genotype containing de novo variants from a VCF
containing an existing genotype.

The output VCF will contain all the existing variants and samples, along with additional de novo variants. If the
original and derived sample names are different, the output will contain a new column for the mutated sample. If

2.10. Simulation Commands 83

RTG Core Operations Manual, Release 3.10

the original and derived sample names are the same, the sample in the output VCF is updated rather than creating
an entirely new sample column. When a sample receives a de novo mutation, the sample DN field is set to “Y”.

If de novo variants were introduced without regard to neighboring variants, a situation could arise where it is
not possible to unambiguously determine the haplotype of the simulated sample. To prevent this, denovosim
will not output a de novo variant that overlaps existing variants. Since denovosim chooses candidate de novo
locations before reading the input VCF, this occasionally mandates skipping a candidate de novo so the target
number of mutations may not always be reached.

The --output-sdf flag can be used to optionally generate an SDF of the derived genome which can then be
used by the readsim command to simulate a read set for the new genome.

See also:

readsim, genomesim, popsim, samplesim, samplereplay

2.10.8 childsim

Synopsis:

Use the childsim command to generate a VCF containing a genotype simulated as a child of two parents.

Syntax:

$ rtg childsim [OPTION]... --father STRING -i FILE --mother STRING -o FILE -t SDF \
-s STRING

Example:

$ rtg childsim --father person1 --mother person2 -i 2samples.vcf -o 3samples.vcf \
-t HUMAN_reference -s person3

Parameters:
File Input/Output

--father=STRING Name of the existing sample to use as the father.
-i --input=FILE Input VCF containing parent variants.

--mother=STRING Name of the existing sample to use as the mother.
-o --output=FILE Output VCF file name.

--output-sdf=SDF If set, output an SDF containing the sample genome.
-t --reference=SDF SDF containing the reference genome.
-s --sample=STRING Name for new child sample.

Utility
--extra-crossovers=FLOAT Probability of extra crossovers per chromosome (Default is 0.01)

-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--ploidy=STRING Ploidy to use. Allowed values are [auto, diploid, haploid]
(Default is auto)

--seed=INT Seed for the random number generator.
--sex=SEX Sex of individual. Allowed values are [male, female, either]

(Default is either)
--show-crossovers If set, display information regarding haplotype selection and

crossover points.

Usage:

The childsim command is used to simulate an individuals genotype information from a VCF containing the
two parent genotypes generated by previous samplesim or childsim commands. The new output VCF will
contain all the existing variants and samples with a new column for the new sample.

The ploidy for each genotype is generated according to the ploidy of that chromosome for the specified sex of the
individual, as defined in the reference genome reference.txt file. For more information see RTG reference

84 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

file format. The generated genotypes are all consistent with Mendelian inheritance (de novo variants can be
simulated with the denovosim command).

The --output-sdf flag can be used to optionally generate an SDF of the child’s genotype which can then be
used by the readsim command to simulate a read set for the child.

See also:

readsim, genomesim, popsim, samplesim, samplereplay

2.10.9 pedsamplesim

Synopsis:

Generates simulated genotypes for all members of a pedigree. pedsamplesim automatically simulates founder
individuals, inheritance by children, and de novo mutations.

Syntax:

$ rtg pedsamplesim [OPTION]... -i FILE -o DIR -p FILE -t SDF

Example:

$ rtg pedsamplesim -t reference.sdf -p family.ped -i popvars.vcf \
-o family_sim --remove-unused

Parameters:
File Input/Output
-i --input=FILE Input VCF containing parent variants.
-o --output=DIR Directory for output.

--output-sdf If set, output an SDF for the genome of each simulated sample.
-p --pedigree=FILE Genome relationships PED file.
-t --reference=SDF SDF containing the reference genome.

Utility
--extra-crossovers=FLOAT Probability of extra crossovers per chromosome (Default is 0.01)

-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--num-mutations=INT Expected number of mutations per genome (Default is 70)
--ploidy=STRING Ploidy to use. Allowed values are [auto, diploid, haploid]

(Default is auto)
--remove-unused If set, output only variants used by at least one sample.
--seed=INT Seed for the random number generator.

Usage:

The pedsamplesim uses the methods of samplesim, denovosim, and childsim to greatly ease the sim-
ulation of multiple samples. The input VCF should contain standard allele frequency INFO annotations that will
be used to simulate genotypes for any sample identified as a founder. Any samples present in the pedigree that are
already present in the input VCF will not be regenerated. To simulate genotypes for a subset of the members of
the pedigree, use pedfilter to create a filtered pedigree file that includes only the subset required.

The supplied pedigree file is first examined to identify any individuals that cannot be simulated according to
inheritance from other samples in the pedigree. Note that simulation according to inheritance requires both parents
to be present in the pedigree. These samples in the pedigree are treated as founder individuals.

Founder individuals are simulated using samplesim, where the genotypes are chosen according to the allele
frequency annotation in the input VCF.

All newly generated samples may have de novo mutations introduced according to the --num-mutations
setting. As with the denovosim command, any de novo mutations introduced in a sample will be genotyped
as homozygous reference in other pre-existing samples, and introduced variants will not overlap any pre-existing
variant loci.

2.10. Simulation Commands 85

RTG Core Operations Manual, Release 3.10

Samples that can be simulated according to Mendelian inheritance are then generated, using childsim. As
expected, as well as inheriting de novo variants from parents, each child may obtain new de novo mutations of
their own.

If the simulated samples will be used for subsequent simulated sequencing, such as via readsim, it is pos-
sible to automatically output an SDF containing the simulated genome for each sample by specifying the
--output-sdf option, obviating the need to separately use samplereplay.

See also:

pedfilter, popsim, samplesim, childsim, denovosim, samplereplay, readsim

2.10.10 samplereplay

Synopsis:

Use the samplereplay command to generate the genome SDF corresponding to a sample genotype in a VCF
file.

Syntax:

$ rtg samplereplay [OPTION]... -i FILE -o SDF -t SDF -s STRING

Example:

$ rtg samplereplay -i 3samples.vcf -o child.sdf -t HUMAN_reference -s person3

Parameters:
File Input/Output
-i --input=FILE Input VCF containing the sample genotype.
-o --output=SDF Name for output SDF.
-t --reference=SDF SDF containing the reference genome.
-s --sample=STRING Name of the sample to select from the VCF.

Utility
-h --help Print help on command-line flag usage.

Usage:

The samplereplay command can be used to generate an SDF of a genotype for a given sample from an existing
VCF file. This can be used to generate a genome from the outputs of the samplesim and childsim commands.
The output genome can then be used in simulating a read set for the sample using the readsim command.

Every chromosome for which the individual is diploid will have two sequences in the resulting SDF.

See also:

readsim, genomesim, popsim, samplesim, childsim

2.11 Utility Commands

2.11.1 bgzip

Synopsis:

Block compress a file or decompress a block compressed file. Block compressed outputs from the mapping and
variant detection commands can be indexed with the index command. They can also be processed with standard
gzip tools such as gunzip and zcat.

Syntax:

86 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

$ rtg bgzip [OPTION]... FILE+

Example:

$ rtg bgzip alignments.sam

Parameters:
File Input/Output
-l --compression-level=INT The compression level to use, between 1 (least but fast) and 9

(highest but slow) (Default is 5)
-d --decompress Decompress.
-f --force Force overwrite of output file.

--no-terminate If set, do not add the block gzip termination block.
-c --stdout Write on standard output, keep original files unchanged. Implied

when using standard input.
FILE+ File to (de)compress, use ‘-‘ for standard input. Must be specified

1 or more times.

Utility
-h --help Print help on command-line flag usage.

Usage:

Use the bgzip command to block compress files. Files such as VCF, BED, SAM, TSV must be block-compressed
before they can be indexed for fast retrieval of records corresponding to specific genomic regions.

See also:

index

2.11.2 index

Synopsis:

Create tabix index files for block compressed TAB-delimited genome position data files or BAM index files for
BAM files.

Syntax:

Multi-file input specified from command line:

$ rtg index [OPTION]... FILE+

Multi-file input specified in a text file:

$ rtg index [OPTION]... -I FILE

Example:

$ rtg index -f sam alignments.sam.gz

Parameters:
File Input/Output
-f --format=FORMAT Format of input to index. Allowed values are [sam, bam, cram, sv,

coveragetsv, bed, vcf, auto] (Default is auto)
-I --input-list-file=FILE File containing a list of block compressed files (1 per line)

containing genome position data.
FILE+ Block compressed files containing data to be indexed. May be

specified 0 or more times.

2.11. Utility Commands 87

RTG Core Operations Manual, Release 3.10

Utility
-h --help Print help on command-line flag usage.

Usage:

Use the index command to produce tabix indexes for block compressed genome position data files like SAM
files, VCF files, BED files, and the TSV output from RTG commands such as coverage. The index command
can also be used to produce BAM indexes for BAM files with no index.

See also:

map, coverage, snp, extract, bgzip

2.11.3 extract

Synopsis:

Extract specified parts of an indexed block compressed genome position data file.

Syntax:

Extract whole file:

$ rtg extract [OPTION]... FILE

Extract specific regions:

$ rtg extract [OPTION]... FILE STRING+

Example:

$ rtg extract alignments.bam 'chr1:2500000~1000'

Parameters:
File Input/Output

FILE The indexed block compressed genome position data file to extract.

Filtering
REGION+ The range to display. The format is one of <sequence_name>,

<sequence_name>:<start>-<end>, <sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>. May be specified 0 or more times.

Reporting
--header Set to also display the file header.
--header-only Set to only display the file header.

Utility
-h --help Prints help on command-line flag usage.

Usage:

Use the extract command to view specific parts of indexed block compressed genome position data files such
as those in SAM/BAM/BED/VCF format.

See also:

map, coverage, snp, index, bgzip

2.11.4 aview

Synopsis:

View read mapping and variants corresponding to a region of the genome, with output as ASCII to the terminal,
or HTML.

88 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Syntax:

$ rtg aview [OPTION]... --region STRING -t SDF FILE+

Example:

$ rtg aview -t hg19 -b omni.vcf -c calls.vcf map/alignments.bam \
--region Chr10:100000+3 -padding 30

Parameters:
File Input/Output
-b --baseline=FILE VCF file containing baseline variants.
-B --bed=FILE BED file containing regions to overlay. May be specified 0 or more

times.
-c --calls=FILE VCF file containing called variants. May be specified 0 or more

times.
-I --input-list-file=FILE File containing a list of SAM/BAM format files (1 per line)
-r --reads=SDF Read SDF (only needed to indicate correctness of simulated read

mappings). May be specified 0 or more times.
-t --template=SDF SDF containing the reference genome.

FILE+ Alignment SAM/BAM files. May be specified 0 or more times.

Filtering
-p --padding=INT Padding around region of interest (Default is to automatically determine

padding to avoid read truncation)
--region=REGION The region of interest to display. The format is one of <sequence_name>,

<sequence_name>:<start>-<end>, <sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

--sample=STRING Specify name of sample to select. May be specified 0 or more times, or as a
comma separated list.

Reporting
--html Output as HTML.
--no-base-colors Do not use base-colors.
--no-color Do not use colors.
--no-dots Display nucleotide instead of dots.
--print-cigars Print alignment cigars.
--print-mapq Print alignment MAPQ values.
--print-mate-position Print mate position.
--print-names Print read names.
--print-readgroup Print read group id for each alignment.
--print-reference-line=INT Print reference line every N lines (Default is 0)
--print-sample Print sample id for each alignment.
--print-soft-clipped-bases Print soft clipped bases.
--project-track=INT If set, project highlighting for the specified track down through

reads (Default projects the union of tracks)
--sort-readgroup Sort reads first on read group and then on start position.
--sort-reads Sort reads on start position.
--sort-sample Sort reads first on sample id and then on start position.
--unflatten Display unflattened CGI reads when present.

Utility
-h --help Print help on command-line flag usage.

Usage:

Use the aview command to display a textual view of mappings and variants corresponding to a small region of
the reference genome. This is useful when examining evidence for variant calls in a server environment where
a graphical display application such as IGV is not available. The aview command is easy to script in order to
output displays for multiple regions for later viewing (either as text or HTML).

2.11. Utility Commands 89

RTG Core Operations Manual, Release 3.10

See also:

map, snp

2.11.5 sdfstats

Synopsis:

Print statistics that describe a directory of SDF formatted data.

Syntax:

$ rtg sdfstats [OPTION]... SDF+

Example:

$ rtg sdfstats human_READS_SDF

Location : C:\human_READS_SDF
Parameters : format -f solexa -o human_READS_SDF

c:\users\Elle\human\SRR005490.fastq.gz
SDF Version : 6
Type : DNA
Source : SOLEXA
Paired arm : UNKNOWN
Number of sequences: 4193903
Maximum length : 48
Minimum length : 48
N : 931268
A : 61100096
C : 41452181
G : 45262380
T : 52561419
Total residues : 201307344
Quality scores available on this SDF

Parameters:
File Input/Output

SDF+ Specifies an SDF on which statistics are to be reported. May be specified 1 or more times.

Reporting
--lengths Set to print out the name and length of each sequence. (Not recommended for read

sets).
-p --position Set to include information about unknown bases (Ns) by read position.
-q --quality Set to display mean of quality.

--sex=SEX Set to display the reference sequence list for the given sex. Allowed values are [male,
female, either]. May be specified 0 or more times, or as a comma separated list.

--taxonomy Set to display information about the taxonomy.
-n --unknowns Set to include information about unknown bases (Ns).

Utility
-h --help Prints help on command-line flag usage.

Usage:

Use the sdfstats command to get information about the contents of SDFs.

See also:

format, cg2sdf , sdf2fasta, sdf2fastq, sdfstats, sdfsplit

90 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

2.11.6 sdfsplit

Synopsis:

Split SDF data into multiple equal segments, for parallel processing on a computer cluster when running com-
mands that do not directly support processing a subset of a data set.

Syntax:

Command line SDF list:

$ rtg sdfsplit [OPTION]... -n INT -o DIR SDF+

File-based SDF list:

$ rtg sdfsplit [OPTION]... -n INT -o DIR -I FILE

Example:

$ rtg sdfsplit -n 260000 reads -o split_reads

Parameters:
File Input/Output
-I --input-list-file=FILE Specifies a file containing a list of input SDFs (one per line).
-o --output=DIR Specifies the directory that will contain the split output bases (must

be empty if present).
SDF+ Specifies an input SDF. May be specified 0 or more times.

Utility
--allow-duplicate-names Set to disable duplicate name detection. Use this if you need to

use less memory and you are certain there are no duplicate
names in the input.

-h --help Prints help on command-line flag usage.
--in-memory Process in memory instead of from disk. (Faster but requires

more RAM).
-n --num-sequences Specifies the number of sequences allowed in each SDF.

Generally, this command is used to split up read data sets of
considerable size.

Usage:

Use the sdfsplit command to break up very large read data sets into manageable chunks for processing. Use
-o to specify the top level output directory and specify the input directories as a space separated list of paths. The
subdirectories are constructed underneath the top level output directory.

The -n flag specifies the sequence count in each of the newly created SDF directories. Select the value here to
match the RAM availability on the server node used for mapping and alignment.

The -I, --input-list-file flag allows aggregation of multiple SDF directories into one large data set,
which can then be split into chunks of appropriate size for the machine configuration available.

For example, an organization has been using server nodes with 48 GB of RAM. They split up the read data sets to
optimize processing in this environment. Next year, they buy new server nodes with 96 GB of RAM. They want
to rerun the reads against a new reference, so they use all of the existing read data set SDF directories as input into
sdfsplit and create new SDF directories with more reads in each.

Several RTG commands, like map, now have --start-read and --end-read flag options that may be
preferable to using sdfsplit in most situations.

See also:

format, cg2sdf , sdf2fasta, sdfstats, sdfsplit

2.11. Utility Commands 91

RTG Core Operations Manual, Release 3.10

2.11.7 sdfsubset

Synopsis:

Extracts a specified subset of sequences from one SDF and outputs them to another SDF.

Syntax:

Individual specification of sequence ids:

$ rtg sdfsubset [OPTION]... -i SDF -o SDF STRING+

File list specification of sequence ids:

$ rtg sdfsubset [OPTION]... -i SDF -o SDF -I FILE

Example:

$ rtg sdfsubset -i reads -o subset_reads 10 20 30 40 50

Parameters:
File Input/Output
-i --input=SDF Specifies the input SDF.
-o --output=SDF The name of the output SDF.

Filtering
--end-id=INT Only output sequences with sequence id less than the given number. (Sequence

ids start at 0).
--start-id=INT Only output sequences with sequence id greater than or equal to the given

number. (Sequence ids start at 0).
-I --id-file=FILE Name of a file containing a list of sequences to extract, one per line.

--names Interpret any specified sequence as names instead of numeric sequence ids.
STRING+ Specifies the sequence id, or sequence name if the names flag is set to extract

from the input SDF. May be specified 0 or more times.

Utility
-h --help Prints help on command-line flag usage.

Usage:

Use this command to obtain a subset of sequences from an SDF. Either specify the subset on the command line
as a list of space-separated sequence ids or using the --id-file parameter to specify a file containing a list of
sequence ids, one per line. Sequence ids start from zero and are the same as the ids that map uses by default in the
QNAME field of its BAM files.

For example:

$ rtg sdfsubset -i reads -o subset_reads 10 20 30 40 50

This will produce an SDF called subset_reads with sequences 10, 20, 30, 40 and 50 from the original SDF con-
tained in it.

See also:

sdfsubseq, sdfstats

2.11.8 sdfsubseq

Synopsis:

Prints a subsequence of a given sequence in an SDF.

Syntax:

92 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Print sequences from sequence names:

$ rtg sdfsubseq [OPTION]... -i FILE STRING+

Print sequences from sequence ids:

$ rtg sdfsubseq [OPTION]... -i FILE -I STRING+

Example:

$ rtg sdfsubseq -i reads -I 0:1+100

Parameters:
File Input/Output
-i --input=FILE Specifies the input SDF.

Filtering
-I --sequence-id If set, use sequence id instead of sequence name in region (0-based)

REGION+ The range to display. The format is one of <sequence_name>,
<sequence_name>:<start>-<end>, <sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>. Must be specified 1 or more times.

Utility
-f --fasta Set to output in FASTA format.
-q --fastq Set to output in FASTQ format.
-h --help Prints help on command-line flag usage.
-r --reverse-complement Set to output in reverse complement.

Usage:

Prints out the nucleotides or amino acids of specified regions in a set of sequences.

For example:

$ rtg sdfsubseq --input reads --sequence-id 0:1+20
AGGCGTCTGCAGCCGACGCG

See also:

sdfsubset, sdfstats

2.11.9 sam2bam

Synopsis:

Convert coordinate sorted SAM/BAM format files to a BAM format file with index.

Syntax:

$ rtg sam2bam [OPTION]... -o FILE FILE+

Example:

$ rtg sam2bam -o alignments.bam alignments.sam.gz

Parameters:
File Input/Output
-o --output=FILE Name for output BAM file.

FILE+ SAM/BAM format files containing mapped reads. Must be specified 1 or more
times.

2.11. Utility Commands 93

RTG Core Operations Manual, Release 3.10

Utility
-h --help Print help on command-line flag usage.

Usage:

Use sam2bam to convert SAM/BAM files containing mapped reads to BAM format. This command will preserve
alignment calibration information when present, by producing a calibration file alongside the output BAM file.

If additional filtering of alignments is required, use sammerge.

See also:

map, cgmap, sammerge

2.11.10 sammerge

Synopsis:

Merge and filter coordinate sorted SAM/BAM files into one SAM/BAM output.

Syntax:

Multi-file input specified from command line:

$ rtg sammerge [OPTION]... FILE+

Multi-file input specified in a text file:

$ rtg sammerge [OPTION]... -I FILE

Example:

$ rtg sammerge alignments1.bam alignments2.bam -o alignments.bam

Parameters:
File Input/Output

--bed-regions=FILE If set, only read SAM records that overlap the ranges contained in
the specified BED file.

-I --input-list-file=FILE File containing a list of SAM/BAM format files (1 per line)
containing mapped reads.

-o --output=FILE Name for output SAM/BAM file. Use ‘-‘ to write to standard
output.

--region=REGION If set, only process SAM records within the specified range. The
format is one of <sequence_name>,
<sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

-t --template=SDF SDF containing the reference genome to use when decoding
CRAM input.

FILE+ SAM/BAM format files containing coordinate-sorted reads. May
be specified 0 or more times.

94 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Sensitivity Tuning
--exclude-duplicates Exclude all SAM records flagged as a PCR or optical

duplicate.
--exclude-mated Exclude all mated SAM records.
--exclude-unmapped Exclude all unmapped SAM records.
--exclude-unmated Exclude all unmated SAM records.
--exclude-unplaced Exclude all SAM records with no alignment position.

-F --filter-flags=INT Decimal mask indicating SAM FLAG bits that must not be
set for the record.

--invert If set, invert the result of flag and attribute based filter
criteria.

-m --max-as-mated=INT If set, ignore mated SAM records with an alignment score
(AS attribute) that exceeds this value.

-u --max-as-unmated=INT If set, ignore unmated SAM records with an alignment score
(AS attribute) that exceeds this value.

-c --max-hits=INT If set, ignore SAM records with an alignment count that
exceeds this value.

--min-mapq=INT If set, ignore SAM records with MAPQ less than this value.
--min-read-length=INT If set, ignore SAM reads with read length less than this

value.
--remove-duplicates Detect and remove duplicate reads based on mapping

position.
-f --require-flags=INT Decimal mask indicating SAM FLAG bits that must be set

for the record.
-r --select-read-group=STRING Select only SAM records with this read group ID. May be

specified 0 or more times, or as a comma separated list.

Utility
-h --help Print help on command-line flag usage.

--legacy-cigars If set, produce legacy cigars (using M rather than X or =) in output.
-Z --no-gzip Do not gzip the output.

--no-header Prevent SAM/BAM header from being written.
--seed=INT Seed used during subsampling.
--subsample=FLOAT If set, subsample the input to retain this fraction of reads.

-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

Use this command to merge multiple sorted SAM/BAM files into one sorted SAM/BAM file. It can also be used
to produce a filtered set of SAM records based on the tuning criteria. If the extension of the given output file name
is .bam the output will be in BAM format instead of SAM format.

When operating on RTG BAM files that have associated calibration files present, sammerge will produce a
calibration file alongside the output BAM. However, note that when using filtering options that reject or include
alignment records according to some criterion, the merged calibration may not accurately reflect the contents of
the output BAM. In this case, a warning is issued, and you should consider running calibrate separately on
the newly created BAM file.

See also:

map, cgmap, samstats

2.11.11 samstats

Synopsis:

Print alignment statistics from the contents of the output SAM/BAM file.

Syntax:

2.11. Utility Commands 95

RTG Core Operations Manual, Release 3.10

$ rtg samstats [OPTION]... -t SDF FILE+

Example:

$ rtg samstats -t genome -i alignments.bam

Parameters:
File Input/Output
-I --input-list-file=FILE Specifies a file containing a list of SAM/BAM format files (one per

line) containing mapped reads.
-r --reads=SDF Specifies the SDF containing the reads.
-t --template=SDF Specifies the reference genome SDF.

FILE+ Specifies a SAM/BAM result file (must contain read-ids not read
names). May be specified 0 or more times.

Reporting
--consensus Set to record consensus data. Requires roughly 5 fold reference genome

length of RAM.
-D --distributions Set to display distributions of insert sizes, alignment scores and read hits.

--per-file Set to output per-file statistics as well as the summary of all SAM/BAM files.
--validate Set to validate mapping of read to reference. Tests matching of bases

according to CIGAR format.

Utility
-h --help Prints help on command-line flag usage.

Usage:

Use the samstats command to display information about a SAM/BAM file and the mapping run that created it.
When used without the original reads, samstats reports on the file contents: total records, number unmapped
and percentage accuracy of alignments compared to the reference.

When the original reads are included with the -r flag, the command reports more information about this particular
SAM/BAM file in the context of the entire read data set. This choice reports: reads reported one or more times
in the SAM/BAM file compared to the total number of reads in the SDF, the number of reads mapped at a single
location (i.e. uniquely), the maximum number of records reported for a read set by the --max-top-results
flag in the map command, and counts of the number of reads mapped at each top results level up to the maximum
allowed.

For paired-end reads, the command additionally reports a distribution for the direction of the mate pairs: FF
(forward-forward), RF (reverse-forward), FR (forward-reverse), and RR (reverse-reverse).

Add the --consensus flag to report the coverage depth across the entire alignment file and a consensus per-
centage. Consensus measures percentage agreement of alignments at base pair locations across the reference.

Set the --distributions flag to report summary detail on the number of reads mapped by alignment score
(AS field). For mated paired-end reads, a distribution of insert size is reported.

Set the --validate flag to force the reporting of problems in the alignments file.

See also:

sdfstats

2.11.12 samrename

Synopsis:

Replace read identifiers (QNAME field) in a SAM/BAM file generated by the RTG map command with the sequence
identifiers from the original sequence file.

Syntax:

96 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

$ rtg samrename [OPTION]... -i SDF FILE

Example:

$ rtg samrename -i reads alignments.bam

Parameters:
File Input/Output
-i --input=SDF Specifies the SDF containing the reads in the SAM/BAM file.
-o --output=FILE Specifies the name for the output SAM/BAM file.

FILE Specifies the input SAM/BAM file.

Filtering
--end-read=INT Set the exclusive upper bound of the read id set to rename.
--start-read=INT Set the inclusive lower bound of the read id set to rename.

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

Usage:

By default the map and cgmap commands will populate the SAM/BAM output files with internal numeric read
identifiers rather than the original read names. The samrename command replaces those internal read identi-
fiers with the original read names. If the output file is not specified, the command creates the new file in the
same directory as the input file, adding _rename to the file name. For example, alignments.bam becomes
alignments_rename.bam.

See also:

map, samstats

2.11.13 mapxrename

Synopsis:

Replaces read identifiers (read-id field) in a mapx output file generated by the RTG mapx command with the
sequence identifiers from the original sequence file.

Syntax:

$ rtg mapxrename [OPTION]... -i SDF FILE

Example:

$ rtg mapxrename -i human_protein_reads mapx_out.txt.gz

Parameters:
File Input/Output
-i --input=SDF SDF for the reads in the mapx file.
-o --output=FILE Renamed output mapx file.

FILE Input mapx file.

Utility
-h --help Print help on command-line flag usage.

Usage:

By default the mapx command will populate the output files with internal numeric read identifiers rather than the
original read names. The mapxrename command replaces those internal read identifiers with the original read
names. If the output file is not specified, the command creates the new file in the same directory as the input file,

2.11. Utility Commands 97

RTG Core Operations Manual, Release 3.10

adding _rename to the file name. For example, alignments.tsv.gz becomes alignments_rename.
tsv.gz.

See also:

mapx

2.11.14 chrstats

Synopsis:

The chrstats command checks chromosome coverage levels based on calibration files and produces warnings
if levels depart from expected coverage levels.

Syntax:

$ rtg chrstats [OPTION]... -t SDF FILE+

Example:

Check all samples using sex information from pedigree:

$ rtg chrstats -t genome_ref --pedigree ceu_trio.ped trio_map/alignments.bam

sample specified consistent possible coverage
--
NA12892 FEMALE true 56.00
NA12891 MALE true 51.75
NA12878 FEMALE true 58.11

Check a single sample without pedigree:

$ rtg chrstats -t genome_ref --sample NA12878 --sex=female \
NA12878_map/alignments.bam

sample specified consistent possible coverage

→˓----
NA12878 MALE false FEMALE 58.34 (2 of 25 sequences have
→˓unexpected coverage level)

Parameters:
File Input/Output
-I --input-list-file=FILE File containing a list of SAM/BAM format files (1 per line)

containing mapped reads.
-t --template=SDF SDF containing the reference genome.

FILE+ alignment files to process. Must be specified 1 or more times

Sensitivity Tuning
--output-pedigree=FILE output best guest of per-sample sex information to PED file

-s --sample=STRING the name of the sample to check (required when checking single
sample from multiple samples alignments)

--sex=SEX sex setting that the individual was mapped as (when not using
pedigree). Allowed values are [male, female, either] (Default is
either)

--pedigree=FILE Genome relationships PED file containing sample sex information.
--sex-z-threshold=NUM The z-score deviation threshold for sex chromosome consistency

(Default is 5.0)
--z-threshold=NUM The z-score deviation threshold for chromosome consistency

(Default is 10.0)

98 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Utility
-h --help Prints help on command-line flag usage.

Usage:

Given a set of alignments which represent genomic mapping for one or more samples, the chrstats command
examines chromosomal coverage levels and checks their expected levels with respect to each other. This can be
used to indicate gross chromosomal abnormalities, or cases where the sample sex does not match expected (e.g.
due to sample mislabelling, incorrect pedigree sex information, etc)

To ensure correct identification of expected ploidy on autosomes and sex chromosomes it is necessary to specify
a template containing an appropriate reference.txt file. See RTG reference file format for more information
on reference.txt files.

While it is best to give the template used during mapping, for checking third-party outputs any template containing
the same chromosome names and an appropriate reference.txt file will work. Note that the input alignment
files must have calibration information, as automatically produced during mapping by the map or cgmap com-
mands, or explicitly created by the calibrate command.

This command can be used with the results of either whole genome or exome sequencing, although the latter
requires that mapping (or subsequent calibration) employed the --bed-regions flag.

See also:

map, cgmap, calibrate

2.11.15 mendelian

Synopsis:

The mendelian command checks a multi-sample VCF file for variant calls which do not follow Mendelian
inheritance, and compute aggregate sample concordance.

Syntax:

$ rtg mendelian [OPTION]... -i FILE -t SDF

Example:

$ rtg mendelian -i family.vcf.gz -t genome_ref

Parameters:
File Input/Output
-i --input=FILE VCF file containing multi-sample variant calls. Use ‘-‘ to

read from standard input.
-o --output=FILE If set, output annotated calls to this VCF file. Use ‘-‘ to write

to standard output.
--output-consistent=FILE If set, output only consistent calls to this VCF file.
--output-inconsistent=FILE If set, output only non-Mendelian calls to this VCF file.

-t --template=SDF SDF containing the reference genome.

Sensitivity Tuning
--all-records Use all records, regardless of filters (Default is to only process

records where FILTER is . or PASS)
-l --lenient Allow homozygous diploid calls in place of haploid calls and

assume missing values are equal to the reference.
--min-concordance=FLOAT Percentage concordance required for consistent parentage

(Default is 99.0)
--pedigree=FILE Genome relationships PED file (Default is to extract pedigree

information from VCF header fields)

2.11. Utility Commands 99

RTG Core Operations Manual, Release 3.10

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

Usage:

Given a multi-sample VCF file for a nuclear family with a defined pedigree, the mendelian com-
mand examines the variant calls and outputs the number of violations of Mendelian inheritance. If the
--output-inconsistent parameter is set, all detected violations are written into an output VCF file. As
such, this command may be regarded as a VCF filter, outputting those variant calls needing a non-Mendelian
explanation. Such calls may be the consequence of sequencing error, calling on low-coverage, or genuine novel
variants in one or more individuals.

Pedigree information regarding the relationships between samples and the sex of each sample is extracted from
the VCF headers automatically created by the RTG pedigree-aware variant calling commands. If this pedigree
information is absent from the VCF header or is incorrect, a pedigree file can be explicitly supplied with the
--pedigree flag.

To ensure correct behavior when dealing with sex chromosomes it is necessary to specify a sex-aware reference
and ensure the sex of each sample is supplied as part of the pedigree information. While it is best to give the
reference SDF used in the creation of the VCF, for checking third-party outputs any reference SDF containing the
same chromosome names and an appropriate reference.txt file will work. For more information, see RTG
reference file format. Variants calls where the call ploidy does not match what is expected are annotated in the
output VCF with an MCP FORMAT annotation.

Particularly when evaluating VCF files that have been produced by third party tools or when the VCF is the
result of combining independent per-sample calling, it is common to end up with situations where calls are not
available for every member of the family. Under normal circumstances mendelian will attempt to determine
Mendelian consistency on the basis of the values that have been provided. Records where the presence of missing
values makes the Mendelian consistency undecidable contain MCU INFO annotations in the annotated output VCF.
The following examples illustrate some consistent, undecidable, and inconsistent calls in the presence of missing
values:

CHROM FATHER_GT MOTHER_GT SON_GT STATUS
chrX . 0/1 1 OK
chr1 ./. 1/1 1/2 MCU
chr1 ./. 1/1 2/2 MCV

Since the number of calls where one sample is missing can be quite high, an alternative option is to treat missing
values as equal to the reference by using the --lenient parameter. Note that while this approach will be correct
in most cases, it will give inaccurate results where the calling between different samples has reported the variant
in an equivalent but slightly different position or representation (e.g. positioning of indels within homopolymer
regions, differences of representation such as splitting MNPs into multiple SNPs etc).

The mendelian command computes overall concordance between related samples to assist detecting cases
where pedigree has been incorrectly recorded or samples have been mislabelled. For each child in the pedigree,
pairwise concordance is computed with respect to each parent by identifying diploid calls where the parent does
not contain either allele called in the child. Low pairwise concordance with a single parent may indicate that the
parent is the source of the problem, whereas low pairwise concordance with both parents may indicate that the
child is the source of the problem. A stricter three-way concordance is also recorded.

By default, only VCF records with the FILTER field set to PASS or missing are processed. All variant records
can be examined by specifying the --all-records parameter.

See also:

family, population, vcfstats

2.11.16 vcfstats

Synopsis:

Display simple statistics about the contents of a set of VCF files.

100 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Syntax:

$ rtg vcfstats [OPTION]... FILE+

Example:

$ rtg vcfstats /data/human/wgs/NA19240/snp_chr5.vcf.gz

Location : /data/human/wgs/NA19240/snp_chr5.vcf.gz
Passed Filters : 283144
Failed Filters : 83568
SNPs : 241595
MNPs : 5654
Insertions : 15424
Deletions : 14667
Indels : 1477
Unchanged : 4327
SNP Transitions/Transversions : 1.93 (210572/108835)
Total Het/Hom ratio : 2.13 (189645/89172)
SNP Het/Hom ratio : 2.12 (164111/77484)
MNP Het/Hom ratio : 3.72 (4457/1197)
Insertion Het/Hom ratio : 1.69 (9695/5729)
Deletion Het/Hom ratio : 2.33 (10263/4404)
Indel Het/Hom ratio : 3.13 (1119/358)
Insertion/Deletion ratio : 1.05 (15424/14667)
Indel/SNP+MNP ratio : 0.13 (31568/247249)

Parameters:
File Input/Output

--known Set to only calculate statistics for known variants.
--novel Set to only calculate statistics for novel variants.
--sample=FILE Set to only calculate statistics for the specified sample. (Default is to include all

samples). May be specified 0 or more times.
FILE+ VCF file from which to derive statistics. Use ‘-‘ to read from standard input. Must

be specified 1 or more times.

Reporting
--allele-lengths Set to output variant length histogram.

Utility
-h --help Prints help on command-line flag usage.

Usage:

Use the vcfstats command to display summary statistics for a set of VCF files. If a VCF file contains multiple
sample columns, the statistics for each sample are shown individually.

When determining the categorization of a REF to ALT transformation, some normalization is carried out to ignore
same as reference bases at the start and end of the alleles. Thus the following REF to ALT transformations are
categorized as SNPs:

A -> G (simple case)
ATGC -> ATGG (leading bases match)
ATGC -> ACGC (leading and trailing bases match)

Cases where multiple bases change, but the lengths of the two alleles do not are considered to be MNPs:

ATGC -> TTGG (two bases change)
ATGC -> GTCT (three bases change)

Cases where there is pure addition or removal of bases are classified as Insertions or Deletions respec-
tively:

2.11. Utility Commands 101

RTG Core Operations Manual, Release 3.10

A -> AT (one base insertion)
ATT -> ATTTT (two base insertion)
AT -> A (one base deletion)
ATTTT -> ATT (two base deletion)

The remaining case is there there is a length change between the REF and ALT, but it is not pure. These are called
Indels:

ATT -> CTTT (one base changed, one base inserted)
CTTT -> ATT (one base changed, one base deleted)

In the per-sample summary output of vcfstats, each genotype is classified as a whole into one of the above
categories, preferring the more complex of the transformations when ploidy is greater than one.

When computing the per-sample variant length histograms, note that the histograms are incremented for each
called allele (thus a diploid homozygous call will increment the appropriate cell by two), and the length of an
indel is taken as the change in length rather than the overall length.

See also:

snp, family, somatic, vcffilter, vcfmerge, vcfsubset

2.11.17 vcfmerge

Synopsis:

Combines the contents of two or more VCF files. The vcfmerge command can concatenate the outputs of
per-chromosome variant detection runs to create a complete genome VCF file, and also merge VCF outputs from
multiple samples to form a multi-sample VCF file.

Syntax:

$ rtg vcfmerge [OPTION]... -o FILE FILE+

Example:

$ rtg vcfmerge -o merged.vcf.gz snp1.vcf.gz snp2.vcf.gz

Parameters:
File Input/Output
-I --input-list-file=FILE File containing a list of VCF format files (1 per line) to be merged.
-o --output=FILE Output VCF file. Use ‘-‘ to write to standard output.

FILE+ Input VCF files to merge. May be specified 0 or more times.

Utility
-a --add-header=STRING|FILE File containing VCF header lines to add, or a literal header

line. May be specified 0 or more times.
-f --force-merge=STRING Allow merging of specified header ID even when descriptions

do not match. May be specified 0 or more times.
-F --force-merge-all Attempt merging of all non-matching header declarations.
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--preserve-formats If set, variants with different ALTs and unmergeable FORMAT
fields will be kept unmerged (Default is to remove those
FORMAT fields so the variants can be combined)

--stats Output statistics for the merged VCF file.

Usage:

The vcfmerge command takes a list of VCF files and outputs to a single VCF file. The input files must have
consistent header lines, although similar header lines can be forced to merge using the --force-merge param-

102 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

eter. Each VCF file must be block compressed and have a corresponding tabix index file, which is the default
for outputs from RTG variant detection tools, but may also be created from an existing VCF file using the RTG
bgzip and index commands.

There are two primary usage scenarios for the vcfmerge command. The first is to combine input VCFs cor-
responding to different genomic regions (for example, if variant calling was carried out for each chromosome
independently on different nodes of a compute cluster). The second scenario is when combining VCFs containing
variant calls for different samples (e.g. combining calls made for separate cohorts into a single VCF). If the input
VCFs contain multiple calls at the same position for the same sample, a warning is issued and only the first is kept.

When multiple records occur at the same position and the length on the reference is the same, the records will be
merged into a single record. If the merge results in a change in the set of ALT alleles, any VCF FORMAT fields
declared to be of type A, G, or R will be set to the missing value (.), as they cannot be meaningfully updated.
Similarly, if multiple input records with the same position and length on the reference contain information for
the same sample, only that information from the first record will be retained. The --preserve-formats flag
prevents this loss of information by refusing to merge the records when these conditions occur (separate records
will be output).

The --add-header option allows inserting arbitrary VCF header lines into the output VCF. For more informa-
tion, see vcfannotate.

See also:

snp, family, population, somatic, vcffilter, vcfannotate, vcfsubset, bgzip, index

2.11.18 vcffilter

Synopsis:

Filters VCF records based on various criteria. When filtering on multiple samples, if any of the specified samples
fail the criteria, the record will be filtered. By default filtered records are removed, but see the –fail, –clear-failed-
samples, and –fail-samples options for alternatives.

Syntax:

$ rtg vcffilter [OPTION]... -i FILE -o FILE

Examples:

Keep only records where the sample has depth of coverage at least 5:

$ rtg vcffilter -i snps.vcf.gz -o snps_cov5.vcf.gz -d 5

Keep only biallelic records:

$ rtg vcffilter -i snps.vcf.gz -o snps_biallelic.vcf.gz --max-alleles 2

Parameters:
File Input/Output

--all-samples Apply sample-specific criteria to all samples contained in the input VCF.
--bed-regions=FILE If set, only read VCF records that overlap the ranges contained in the

specified BED file.
-i --input=FILE VCF file containing variants to be filtered. Use ‘-‘ to read from standard

input.
-o --output=FILE Output VCF file. Use ‘-‘ to write to standard output. This option is

required, unless --javascript is being used.
--region=REGION If set, only read VCF records within the specified range. The format is

one of <sequence_name>, <sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

--sample=STRING Apply sample-specific criteria to the named sample contained in the
input VCF. May be specified 0 or more times.

2.11. Utility Commands 103

RTG Core Operations Manual, Release 3.10

Filtering (Record based)
-w --density-window=INT Window within which multiple variants are discarded.

--exclude-bed=FILE Discard all variants within the regions in this BED file.
--exclude-vcf=FILE Discard all variants that overlap with the ones in this

file.
--include-bed=FILE Only keep variants within the regions in this BED file.
--include-vcf=FILE Only keep variants that overlap with the ones in this

file.
-j --javascript=STRING Javascript filtering functions for determining whether to

keep record. May be either an expression or a file
name. May be specified 0 or more times. See Examples

-e --keep-expr=STRING Records for which this expression evaluates to true will
be retained. See Examples

-k --keep-filter=STRING Only keep variants with this FILTER tag. May be
specified 0 or more times, or as a comma separated list.

-K --keep-info=STRING Only keep variants with this INFO tag. May be
specified 0 or more times, or as a comma separated list.

--max-alleles=INT Maximum number of alleles (REF included)
-C --max-combined-read-depth=INT Maximum allowed combined read depth.
-Q --max-quality=FLOAT Maximum allowed quality.

--min-alleles=INT Minimum number of alleles (REF included)
-c --min-combined-read-depth=INT Minimum allowed combined read depth.
-q --min-quality=FLOAT Minimum allowed quality.
-r --remove-filter=STRING Remove variants with this FILTER tag. May be

specified 0 or more times, or as a comma separated list.
-R --remove-info=STRING Remove variants with this INFO tag. May be specified

0 or more times, or as a comma separated list.
--remove-overlapping Remove records that overlap with previous records.

Filtering (Sample based)
-A --max-ambiguity-ratio=FLOAT Maximum allowed ambiguity ratio.

--max-avr-score=FLOAT Maximum allowed AVR score.
--max-denovo-score=FLOAT Maximum de novo score threshold.

-G --max-genotype-quality=FLOAT Maximum allowed genotype quality.
-D --max-read-depth=INT Maximum allowed sample read depth.

--min-avr-score=FLOAT Minimum allowed AVR score.
--min-denovo-score=FLOAT Minimum de novo score threshold.

-g --min-genotype-quality=FLOAT Minimum allowed genotype quality.
-d --min-read-depth=INT Minimum allowed sample read depth.

--non-snps-only Only keep where sample variant is MNP or INDEL.
--remove-all-same-as-ref Remove where all samples are same as reference.
--remove-hom Remove where sample is homozygous.
--remove-same-as-ref Remove where sample is same as reference.
--snps-only Only keep where sample variant is a simple SNP.

Reporting
--clear-failed-samples Retain failed records, set the sample GT field to missing.

-f --fail=STRING Retain failed records, add the provided label to the FILTER field.
-F --fail-samples=STRING Retain failed records, add the provided label to the sample FT field.

Utility
-a --add-header=STRING|FILE File containing VCF header lines to add, or a literal header line.

May be specified 0 or more times.
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--no-header Prevent VCF header from being written.

Usage:

104 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Use vcffilter to get a subset of the results from variant calling based on the filtering criteria supplied by the
filter flags. Multiple criteria can be specified at once, and advanced processing can be specified via JavaScript
scripting.

When filtering on multiple samples, if any of the specified samples fail the criteria, the record will be filtered. The
default behavior is for filtered records to be excluded from output altogether, but alternatively the records can be
retained but with an additional user-specified VCF FILTER status set via --fail option, or if sample-specific
filtering criteria is being applied, only those samples can be filtered either by setting their GT field to missing by
using the --clear-failed-samples option, or by setting the FORMAT FT field with a user-specified status
via the --fail-samples option.

The --bed-regions option makes use of tabix indexes to avoid loading VCF records outside the supplied
regions, which can give faster filtering performance. If the input VCF is not indexed or being read from standard
input, or if records failing filters are to be annotated via the --fail option, use the --include-bed option
instead.

The flags --min-denovo-score and --max-denovo-score can only be used on a single sample. Records
will only be kept if the specified sample is flagged as a de novo variant and the score is within the range specified
by the flags. It will also only be kept if none of the other samples for the record are also flagged as a de novo
variant within the specified score range.

The --add-header option allows inserting arbitrary VCF header lines into the output VCF. For more informa-
tion, see vcfannotate.

A powerful general-purpose filtering capability has been included that permits the specification of filter crite-
ria as simple JavaScript expressions (--keep-expr) or more comprehensive JavaScript processing functions
(--javascript). Both --keep-expr and --javascript can take JavaScript on the command line or
if a filename is supplied then the script/expression will be read from that file. --keep-expr will be applied
before --javascript, so the --javascript record function will not be called for records filtered out by
--keep-expr.

See also:

For full details of functions available in --keep-expr and --javascript see RTG JavaScript filtering API

Simple filtering by JavaScript expression with --keep-expr

The --keep-expr flag aims to provide a convenient way to apply some simple (typically one line) filtering
expressions which are evaluated in the context of each record. The final expression of the fragment must evaluate
to a boolean value. Records which evaluate to true will be retained, while false will be removed. The value
must be of type boolean, simply being truthy/falsy (in the JavaScript sense) will raise an error.

--keep-expr examples:

The following expression keeps records where the NA12878 sample has GQ > 30 and the total depth is > 20.
JavaScript will auto convert numerical strings when comparing a string with a number, so calls to parseInt can
be omitted.

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz \
--keep-expr "'NA12878'.GQ > 30 && INFO.DP > 20"

If the field of interest may contain the missing value (‘.’) or may be entirely missing on a per-record basis, the
has() function can be used to control whether such records are kept vs filtered. For example, to keep records
with depth greater than 20, and remove any without a DP annotation:

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz \
--keep-expr "has(INFO.DP) && INFO.DP > 20"

Alternatively, to keep records with depth greater than 20, as well as those without a DP annotation:

2.11. Utility Commands 105

RTG Core Operations Manual, Release 3.10

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz \
--keep-expr "!has(INFO.DP) || INFO.DP > 20"

The next example keeps records where all samples have a depth > 10. The standard JavaScript array methods
every and some can be used to apply a condition on every sample column.

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz \
--keep-expr "SAMPLES.every(function(s) {return s.DP > 10})"

Similarly, the following example retains records where the FILTER field is unset, or if set must be either PASS
or MED_QUAL:

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz \
--keep-expr "FILTER.every(function(f) {return f == 'PASS' || f == 'MED_QUAL'})"

Note that multi-valued INFO and FORMAT fields are not split into sub-values, so in some cases correct filtering
may require splitting the values first. For example, to select bi-allelic records with AF greater than 0.1, the
following simple selection will work:

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz \
--keep-expr "INFO.AF>=0.1"

However, in the presence of multi-allelic records, something like the following is required:

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz \
--keep-expr "INFO.AF.split(',').some(function(af) {return af >= 0.1})"

Advanced JavaScript filtering with --javascript

The --javascript option aims to support more complicated processing than --keep-expr. permitting
modification of the output VCF, or supporting use cases where the script is tasked to compute and output alternative
information in addition to (or instead of) the output VCF. The scripts specified by the user are evaluated once at
the start of processing. Two special functions may be defined in a --javascript script, which will then be
executed in different contexts:

• A function with the name record will be executed once for each VCF record. If the record function has
a return value it must have type boolean. Records which evaluate to true will be retained, while false
will be removed. If the record function has no return value then the record will be retained. The record
function is applied after any --keep-expr expression.

• A function with the name end will be called once at the end of processing. This allows reporting of
summary statistics collected during the filter process.

This --javascript flag may be specified multiple times, they will be evaluated in order, in a shared JavaScript
namespace, before VCF processing commences. This permits a use case where an initial JavaScript expression
supplies parameter values which will be required by a subsequent JavaScript file.

Example --javascript scripts:

To find indels with length greater than 5, save the following to a file named find-indels.js:

// Finds indels with length > 5
function record() {
var deltas = ALT.map(function (alt) {
return Math.abs(alt.length - REF.length);

});
return deltas.some(function (delta) {return delta > 5});

}

106 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Then perform the filtering via:

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz --javascript find-indels.js

The following example derives a new FORMAT column containing variant allelic fraction to two decimal places
based on the values in the AD and DP FORMAT annotations, for every sample contained in the VCF. Save the
following to a file named add-vaf.js:

// Derive new VAF FORMAT field for each sample
ensureFormatHeader('##FORMAT=<ID=VAF,Number=1,Type=Float,' +

'Description="Variant Allelic Fraction">');

function record() {
SAMPLES.forEach(function(sample) {
// Take all but the first AD value as numerics
var altDepths = sample.AD.split(",").slice(1);
// Find the max
var maxAltDepth = Math.max.apply(null, altDepths);
if (maxAltDepth > 0) {

sample.VAF = (maxAltDepth / sample.DP).toFixed(2);
}

});
}

Then run the filtering via:

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz --javascript add-vaf.js

The next example produces a table of binned indel lengths, save the following to a file named indel-lengths.
js:

// bin breakpoints can be customised by defining your own bins[] in a
// previous -j flag
if (typeof bins == "undefined") {
var bins = [-10, -5, -3, 0, 4, 6, 11];

}

var counts = [0];
bins.forEach(function () {counts.push(0)});
function record() {
if (ALT.length == 0) {
return false;

}
var deltas = ALT.map(function (alt) { return alt.length - REF.length; });
var maxDel = Math.min.apply(null, deltas);
var maxIns = Math.max.apply(null, deltas);
var delta = Math.abs(maxDel) > maxIns ? maxDel : maxIns;

if (delta == 0) {
return false;

}
for (var i = 0; i < bins.length; i++) {
if (delta < bins[i]) {

counts[i]++;
break;

}
}
if (delta > bins[bins.length - 1]) {
counts[counts.length - 1]++;

}
return false;

}

2.11. Utility Commands 107

RTG Core Operations Manual, Release 3.10

function end() {
print("Delta\\tCount");
for (var i = 0; i < bins.length; i++) {
print("<" + bins[i] + "\\t" + counts[i]);

}
print(">" + bins[bins.length - 1] + "\\t" + counts[counts.length - 1]);

}

Then run the filtering via:

$ rtg vcffilter -i in.vcf.gz -o out.vcf.gz --javascript indel-lengths.js

We could use this same script with adjusted bins and omitting the output of the VCF via:

$ rtg vcffilter -i in.vcf.gz -j "var bins = [-20, -10, 0, 20, 20];" \
-j indel-lengths.js

See also:

snp, family, somatic, population, vcfannotate, vcfmerge, vcfsubset

2.11.19 vcfannotate

Synopsis:

Used to add annotations to a VCF file, either to the VCF ID field, as a VCF INFO sub-field, or as a VCF FORMAT
sub-field.

Syntax:

$ rtg vcfannotate [OPTION]... -b FILE -i FILE -o FILE

Example:

$ rtg vcfannotate -b dbsnp.bed -i snps.vcf.gz -o snps-dbsnp.vcf.gz

Parameters:
File Input/Output
-i --input=FILE VCF file containing variants to annotate. Use ‘-‘ to read from standard input.
-o --output=FILE Output VCF file name. Use ‘-‘ to write to standard output.

Reporting
-A --annotation=STRING Add computed annotation to VCF records. Allowed values

are [AC, AN, EP, GQD, IC, LAL, MEANQAD, NAA, PD,
QA, QD, RA, SCONT, VAF, VAF1, ZY]. May be specified 0
or more times, or as a comma separated list.

--bed-ids=FILE Add variant IDs from BED file. May be specified 0 or more
times.

--bed-info=FILE Add INFO annotations from BED file. May be specified 0 or
more times.

--fill-an-ac Add or update the AN and AC INFO fields.
--info-description=STRING If the BED INFO field is not already declared, use this

description in the header (Default is Annotation)
--info-id=STRING The INFO ID for BED INFO annotations (Default is ANN)
--relabel=FILE Relabel samples according to old-name new-name pairs

in specified file.
--vcf-ids=FILE Add variant IDs from VCF file. May be specified 0 or more

times.

108 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Utility
-a --add-header=STRING|FILE File containing VCF header lines to add, or a literal header line.

May be specified 0 or more times.
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--no-header Prevent VCF header from being written.

Usage:

Use vcfannotate to add text annotations to variants.

A common use case is to add annotations to only those variants that fall within ranges specified in a BED or VCF
file, supplied via --bed-ids or --vcf-ids respectively. The annotations from the BED file are added as an
INFO field in the output VCF file. It can also be used to compute or fill in certain additional annotations from the
existing content. Note that this annotation method is solely based on the position and span of the variant, ignoring
actual alleles and genotypes.

If the --bed-ids flag is used, instead of adding the annotation to the INFO fields, it is added to the ID column
of the VCF file instead. If the --vcf-ids flag is used, the ID column of the input VCF file is used to update the
ID column of the output VCF file instead.

If the --fill-an-ac flag is set, the output VCF will have the AN and AC info fields (as defined in the VCF 4.1
specification) created or updated.

It is also possible to use vcfannotate to insert additional VCF header lines into the VCF header. These are
supplied using the --add-header flag which may either be a literal VCF header line (useful for adding one or
two header lines), or from a file.

$ rtg vcfannotate -i in.vcf.gz -o out.vcf.gz \
--add-header "##SAMPLE=<ID=NA24385,Sex=MALE>" \
--add-header "##SAMPLE=<ID=NA24143,Sex=FEMALE>" \
--add-header "##SAMPLE=<ID=NA24149,Sex=MALE>" \
--add-header "##PEDIGREE=<Child=NA24385,Mother=NA24143,Father=NA24149>"

or alternatively:

$ rtg vcfannotate -i in.vcf.gz -o out.vcf.gz --add-header ped_vcf_headers.txt

Care should be taken that the lines being inserted are valid VCF header lines.

If the --annotation flag is set, vcfannotate attempts to compute the specified annotation(s) and add them
as FORMAT fields in the corresponding records. Records for which particular annotations cannot be computed,
due to a lack of pre-requisite fields, will not be modified.

For a description of the meaning of fields available for annotation, see Small-variant VCF output file description.
The SCONT annotation is a convenience to annotate with all of the contrary evidence annotations: DCOC, DCOF,
OCOC, OCOF.

See also:

snp, family, somatic, population, vcffilter, vcfsubset

2.11.20 vcfsubset

Synopsis:

Create a VCF file containing a subset of the original columns.

Syntax:

$ rtg vcfsubset [OPTION]... -i FILE -o FILE

Example:

2.11. Utility Commands 109

RTG Core Operations Manual, Release 3.10

$ rtg vcfsubset -i snps.vcf.gz -o frequency.vcf.gz --keep-info AF --remove-samples

Parameters:
File Input/Output
-i --input=FILE VCF file containing variants to manipulate. Use ‘-‘ to read from standard input.
-o --output=FILE Output VCF file. Use ‘-‘ to write to standard output.

Filtering
--keep-filter=STRING Keep the specified FILTER tag. May be specified 0 or more times, or

as a comma separated list.
--keep-format=STRING Keep the specified FORMAT field. May be specified 0 or more times,

or as a comma separated list.
--keep-info=STRING Keep the specified INFO tag. May be specified 0 or more times, or as

a comma separated list.
--keep-sample=STRING Keep the specified sample. May be specified 0 or more times, or as a

comma separated list.
--remove-filter=STRING Remove the specified FILTER tag. May be specified 0 or more times,

or as a comma separated list.
--remove-filters Remove all FILTER tags.
--remove-format=STRING Remove the specified FORMAT field. May be specified 0 or more

times, or as a comma separated list.
--remove-ids Remove the contents of the ID field.
--remove-info=STRING Remove the specified INFO tag. May be specified 0 or more times, or

as a comma separated list.
--remove-infos Remove all INFO tags.
--remove-qual Remove the QUAL field.
--remove-sample=STRING Remove the specified sample. May be specified 0 or more times, or as

a comma separated list.
--remove-samples Remove all samples.

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--no-header Prevent VCF header from being written.

Usage:

Use the vcfsubset command to produce a smaller copy of an original VCF file containing only the columns
and information desired. For example, to produce a VCF containing only the information for one sample from
a multiple sample VCF file use the --keep-sample flag to specify the sample to keep. The various --keep
and --remove options can either be specified multiple times or with comma separated lists, for example,
--keep-format GT --keep-format DP is equivalent to -keep-format GT,DP.

See also:

snp, family, somatic, population, vcffilter, vcfannotate

2.11.21 vcfdecompose

Synopsis:

Decomposes complex variants within a VCF file into smaller components.

Syntax:

$ rtg vcfdecompose [OPTION]... -i FILE -o FILE

Parameters:

110 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

File Input/Output
-i --input=FILE VCF file containing variants to decompose. Use ‘-‘ to read from standard input.
-o --output=FILE Output VCF file name. Use ‘-‘ to write to standard output.
-t --template=SDF SDF of the reference genome the variants are called against.

Sensitivity Tuning
--break-indels If set, peel as many SNPs off an indel as possible.
--break-mnps If set, break MNPs into individual SNPs.

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--no-header Prevent VCF header from being written.

Usage:

The vcfdecompose command decomposes and trims variants based on a multiple sequence alignment between
the alleles in each VCF record. Only records where every ALT allele is an ordinary allele (i.e. consisting of
nucleotides) will undergo decomposition. In addition, if there are redundant same-as-reference bases in the alleles,
these will be trimmed off.

The default behaviour is to break the variant at positions where there is at least one base aligned to the reference
across all ALT alleles, so the output may contain MNPs or impure indels. If desired, MNPs can be split into
individual SNPs via --break-mnps. Similarly, impure indels can be split into a combination of SNPs and pure
indels via --break-indels.

Although decomposed variants carry through the original INFO and FORMAT annotations, the decomposition may
mean that some annotations are no longer semantically correct. In particular, any VCF FORMAT fields declared to
be of type A, G, or R will no longer be valid if the set of alleles has changed.

Note that the reference genome is an optional parameter. When variants are decomposed and trimmed, the result-
ing variant may require a padding base to be added, as required by the VCF specification. The VCF specification
suggests that the padding base should be the base before the variant (i.e. padding on the left), but sometimes this
requires knowledge of reference bases not present in the original record. When the reference genome is supplied,
vcfdecompose will ensure that any padding bases are added on the left of the variant. If the reference genome
is not supplied, padding bases may sometimes be on the right hand side of the variant. For example:

1 20 . GCGCGCGCGCG TTTGCGCGCTTGCGCGTTT . PASS . GT 1/0

will decompose without a reference genome as:

1 20 . G TTTG . PASS ORP=20;ORL=11 GT 1/0
1 25 . C CTT . PASS ORP=20;ORL=11 GT 1/0

and with a reference genome (where the reference base at position 19 can be determined to be a T) as:

1 19 . T TTTT . PASS ORP=20;ORL=11 GT 1/0
1 25 . C CTT . PASS ORP=20;ORL=11 GT 1/0

The variants that are left vs right-padded are equivalent and identified as such by haplotype-aware comparison
tools such as vcfeval.

See also:

vcffilter, vcfeval

2.11.22 vcfeval

Synopsis:

Evaluates called variants for agreement with a baseline variant set irrespective of representational differences.
Outputs a weighted ROC file which can be viewed with rtg rocplot and VCF files containing false positives

2.11. Utility Commands 111

RTG Core Operations Manual, Release 3.10

(called variants not matched in the baseline), false negatives (baseline variants not matched in the call set), and
true positives (variants that match between the baseline and calls).

The baseline variants might be the variants that were used to generate a synthetic simulated sample (such as via
popsim, samplesim, etc), a gold-standard VCF corresponding to a reference sample such as NA12878, or
simply an alternative call-set being used as a basis for comparison.

Syntax:

$ rtg vcfeval [OPTION]... -b FILE -c FILE -o DIR -t SDF

Example:

$ rtg vcfeval -b goldstandard.vcf.gz -c snps.vcf.gz -t HUMAN_reference \
--sample daughter -f AVR -o eval

Parameters:
File Input/Output
-b --baseline=FILE VCF file containing baseline variants.

--bed-regions=FILE If set, only read VCF records that overlap the ranges
contained in the specified BED file.

-c --calls=FILE VCF file containing called variants.
-e --evaluation-regions=FILE If set, evaluate within regions contained in the supplied BED

file, allowing transborder matches. To be used for truth-set
high-confidence regions or other regions of interest where
region boundary effects should be minimized.

-o --output=DIR Directory for output.
--region=REGION If set, only read VCF records within the specified range. The

format is one of <sequence_name>,
<sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

-t --template=SDF SDF of the reference genome the variants are called against.

Filtering
--all-records Use all records regardless of FILTER status (Default is to only process records

where FILTER is . or PASS)
--decompose Decompose complex variants into smaller constituents to allow partial credit.
--ref-overlap Allow alleles to overlap where bases of either allele are same-as-ref (Default is to

only allow VCF anchor base overlap)
--sample=STRING The name of the sample to select. Use <baseline_sample>,<calls_sample> to

select different sample names for baseline and calls. (Required when using
multi-sample VCF files)

--squash-ploidy Treat heterozygous genotypes as homozygous ALT in both baseline and calls, to
allow matches that ignore zygosity differences.

Reporting
-m --output-mode=STRING Output reporting mode. Allowed values are [split, annotate,

combine, ga4gh, roc-only] (Default is split)
-O --sort-order=STRING The order in which to sort the ROC scores so that good scores

come before bad scores. Allowed values are [ascending,
descending] (Default is descending)

-f --vcf-score-field=STRING The name of the VCF FORMAT field to use as the ROC score.
Also valid are QUAL, INFO.<name> or FORMAT.<name> to
select the named VCF FORMAT or INFO field (Default is GQ)

112 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Utility
-h --help Prints help on command-line flag usage.
-Z --no-gzip Set this flag to create the output files without compression.
-T --threads=INT Specify the number of threads to use in a multi-core processor. (Default is all

available cores).

Usage:

The vcfeval command can be used to generate VCF files containing called variants that were in the baseline
VCF, called variants that were not in the baseline VCF and baseline variants that were not in the called variants.
It also produces ROC curve data files based on a score contained in a VCF field which show the predictive power
of that field for the quality of the variant calls.

When developing and validating sequencing pipelines and variant calling algorithms, the comparison of variant
call sets is a common problem. The naïve way of computing these numbers is to look at the same reference
locations in the baseline (ground truth) and called variant set, and see if genotype calls match at the same posi-
tion. However, a complication arises due to possible differences in representation for indels between the baseline
and the call sets within repeats or homopolymers, and in multiple-nucleotide polymorphisms (MNPs), which en-
compass several nearby nucleotides and are locally phased. The vcfeval command includes a novel dynamic-
programming algorithm for comparing variant call sets that deals with complex call representation discrepancies,
and minimizes false positives and negatives across the entire call sets for accurate performance evaluation. A
primary advantage of vcfeval (compared to other tools) is that the evaluation does not depend on normalization
or decomposition, and so the results of analysis can easily be used to relate to the original variant calls and their
annotations.

Note that vcfeval operates at the level of local haplotypes for a sample, so for a diploid genotype, both alleles
must match in order to be considered correct. Some of the vcfeval output modes (described below) automatically
perform an additional haploid analysis phase to identify variants which may not have a diploid match but which
share a common allele (for example, zygosity errors made during calling). If desired, this more lenient haploid
comparison can be used at the outset by setting the --squash-ploidy flag (see below).

Note that variants selected for inclusion in a haplotype cannot be permitted to overlap each other (otherwise
the question arises of which variant should have priority when determining the resulting haplotype), and any
well-formed call-set should not contain these situations in order to avoid such ambiguity. When such cases are
encountered by vcfeval, the best non-overlapping result is determined. A special case of overlapping variants
is where calls are denoted as partially the same as the reference (for example, a typical heterozygous call). Strictly
speaking such variants are an assertion that the relevant haplotype bases must not be altered from the reference
and overlap should not be permitted (this is the interpretation that vcfeval employs by default). However,
sometimes as a result of using non-haplotype-aware variant calling tools or when using naïve merging of multiple
call sets, a more lenient comparison is desired. The --ref-overlap flag will permit such overlapping variants
to both match, as long as any overlap only occurs where one variant or other has asserted haplotype bases as being
the same as reference.

Common allele matching with --squash-ploidy

When --squash-ploidy is specified, a haploid match is attempted using each of the non-reference alleles
used in the sample genotype. For example if the baseline and call VCFs each had a record with the same REF and
ALT alleles declared, the following GT fields would be considered a match:

0/1, 1/1, 1/2 (genotypes match due to the 1 allele)
0/2, 1/2, 2/2 (genotypes match due to the 2 allele)

Thus --squash-ploidy matches any case where the baseline and calls share a common allele. This is most
often used to run matching that does not penalize for genotyping errors. For example, it is recommended to use
this option when matching somatic variant calls, as since somatic variation is usually associated with variable
allelic fractions and heterogeneity that mean strict diploid genotype comparisons are not appropriate.

2.11. Utility Commands 113

RTG Core Operations Manual, Release 3.10

Comparing with a VCF that has no sample column

A common scenario is to match a call set against a baseline which contains no sample column, where the objective
is to identify which baseline alleles which have been called. One example of this is to identify whether calls match
a database of known high-priority somatic variants such as COSMIC, or to find calls which have been previously
seen in a population allele database such as ExAC. Ordinarily vcfeval requires the input VCFs to contain a
sample column containing a genotype in the GT field, however, it is possible to specify a special sample name of
‘ALT’ in order to indicate that the the genotypes for comparison should be derived from the ALT alleles of the
record. This can be specified independently for baseline and calls, for example:

$ rtg vcfeval -t build37.sdf -b cosmic.vcf.gz -c tumor-calls.vcf.gz \
--squash-ploidy --sample ALT,tumor -o tumor-vs-cosmic

Which would perform a haploid matching of the GT of the called sample ‘tumor’ against all possible haploid
genotypes in the COSMIC VCF. The resulting true positives file contains all the calls containing an allele present
in the COSMIC VCF.

Note: It is also possible to run a diploid comparison by omitting --squash-ploidy, but this is not usually
required, and is computationally more intensive since there may be many more possible diploid genotypes to
explore, particularly if the ALT VCF contains many multiallelic records.)

Evaluation with respect to regions

When evaluating exome variant calls, it may be useful to restrict analysis only to exome target regions. In this
case, supply a BED file containing the list of regions to restrict analysis to via the --bed-regions flag. For
a quick way to restrict analysis only to a single region, the --region flag is also accepted. Note that when
restricting analysis to regions, there may be variants which can not be correctly evaluated near the borders of each
analysis region, if determination of equivalence would require inclusion of variants outside of the region. For this
reason, it is recommended that such regions be relatively inclusive.

When matching against gold standard truth sets which have an accompanying high-confidence regions BED file,
the flag --evaluation-regions should be used instead of --bed-regions, as it has special matching
semantics that aims to reduce comparison region boundary effects. When this comparison method is used, call
variants which match a baseline variant are only considered a true positive if the baseline variant is inside the
high confidence regions, and call variants are only considered false positive if they fall inside the high confidence
regions.

vcfeval outputs

The primary outputs of vcfeval are VCF files indicating which variants matched between the baseline and the
calls VCF, and data files containing information used to generate ROC curves with the rocplot command (or via
spreadsheet). vcfeval supports different VCF output modes which can be selected with the --output-mode
flag according to the type of analysis workflow desired. The following modes are available:

Split (--output-mode=split)

This output mode is the default, and produces separate VCF files for each of the match categories. The individual
VCF records in these files are not altered in any way, preserving all annotations present in the input files.

• tp.vcf – contains those variants from the calls VCF which agree with variants in the baseline VCF

• tp-baseline.vcf – contains those variants from the baseline VCF which agree with variants in the
calls VCF. Thus, the variants in tp.vcf and tp-baseline.vcf are equivalent. This file can be used to
successively refine a highly sensitive baseline variant set to produce a consensus from several call sets.

• fp.vcf – contains variants from the calls VCF which do not agree with baseline variants.

114 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

• fn.vcf – contains variants from the baseline VCF which were not correctly called.

This mode performs a single pass comparison, either in diploid mode (the default), or haploid mode (if
--squash-ploidy has been set). The separate output files produced by this mode allow the use of vcfeval
as an advanced haplotype-aware VCF intersection tool.

Annotate (--output-mode=annotate)

This output mode does not split the input VCFs by match status, but instead adds INFO annotations containing
the match status of each record:

• calls.vcf – contains variants from the calls VCF, augmented with match status annotations.

• baseline.vcf – contains variants from the baseline VCF, augmented with match status annotations.

This output mode automatically performs two comparison passes, the first finds diploid matches (assigned a match
status of TP), and a second pass that applies a haploid mode to the false positives and false negatives in order to
find calls (such as zygosity errors) that contain a common allele. This second category of match are annotated with
status FN_CA or FP_CA in the output VCFs, and those calls which do not have any match are assigned status FN
or FP. A status value of IGN indicates a VCF record which was ignored (for example, due to having a non-PASS
filter status, representing a structural variant, or otherwise containing a non-variant genotype). A status of OUT
indicates a VCF record which does not contain a match status due to falling outside the evaluation regions when
--evaluation-regions is being used.

Combine (–output-mode=combine)

This output mode provides an easy way to view the baseline and call variants in a single two-sample VCF.

• output.vcf – contains variants from both the baseline and calls VCFs, augmented with match status
annotations. The sample under comparison from each of the input VCFs is extracted as a column in the
output. As the VCF records from the baseline and calls typically have very different input annotations
which can be difficult to merge, and to keep the output format simple, there is no attempt to preserve any of
the original variant annotations.

As with the annotation output mode, this output mode automatically performs two comparison passes to find both
diploid matches and haploid (lenient) matches.

ROC-only (–output-mode=roc-only)

This output mode provides a lightweight way to run performance benchmarking, as VCF file output is omitted,
and only ROC data files are produced.

All of the output modes produce the following ROC data files:

• weighted_roc.tsv – contains ROC data derived from all analyzed call variants, regardless of their
representation. Columns include the score field, and standard accuracy metrics such as true positives, false
positives, false negatives, precision, sensitivity, and f-measure corresponding to each score threshold.

• snp_roc.tsv – contains ROC data derived from only those variants which were represented as SNPs.
Since the representation conventions can differ between the baseline and calls, there are some subtleties to
be aware of when interpreting metrics such as precision, sensitivity, etc, described below.

• non_snp_roc.tsv – contains ROC data derived from those variants which were not represented as
SNPs. As above, not all metrics are computed for this file.

Note: In addition, vcfeval has an output mode (--output-mode=ga4gh) which produces the intermediate
evaluation format defined by the GA4GH Benchmarking Team, without additional statistics files. This mode is not
generally intended for end users, rather it is used when vcfeval is selected as the comparison engine inside the

2.11. Utility Commands 115

RTG Core Operations Manual, Release 3.10

hap.py benchmarking tool see: https://github.com/ga4gh/benchmarking-tools and https://github.com/Illumina/
hap.py

Benchmarking comparisons using ROC and precision/sensitivity curves

Multiple ROC data files (from a single or several vcfeval runs) can be plotted with the rocplot command,
which allows output to a PNG or SVG image or analysis in an interactive GUI that provides zooming and visual-
ization of the effects of threshold adjustment. As these files are simple tab-separated-value format, they can also
be loaded into a spreadsheet tool or processed with shell scripts.

While ROC curve analysis provides a much more thorough method for examining the performance of a call
set with respect to a baseline truth set, for convenience, vcfeval also produces a summary.txt file which
indicates match summary statistics that correspond to two key points on the ROC curve. The first point is where
all called variants are included (i.e. no thresholding on a score value); and second point corresponding to a score
threshold that maximises the F-measure of the curve. While this latter point is somewhat arbitrary, it represents a
balanced tradeoff between precision and sensitivity which is likely to provide a fairer comparison when comparing
call sets from different callers.

Note that vcfeval reports true positives both counted using the baseline variant representation as well as counted
using the call variant representation. When these numbers differ greatly, it indicates a general difference in repre-
sentational conventions used between the two call sets. Since false negatives can only be measured in terms of the
baseline representation, sensitivity is defined as:

Sensitivity = TPbaseline/(TPbaseline + FN).

Conversely since false positives can only be measured in terms of the call representation, precision is defined as:

Precision = TPcall/(TPcall + FP).

Note: For definitions of the terminology used when evaluating caller accuracy, see: https://en.wikipedia.org/wiki/
Receiver_operating_characteristic and https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Benchmarking performance for SNPs versus indels

A common desire is to perform analysis separately for SNPs versus indels. However, it is important to note that
due the representation ambiguity problem, it is not always trivial to decide in a global sense whether a variant
is a SNP or an indel or other complex variant. A group of variants that may be represented as single SNPs in
one call-set may be represented as a single complex variant in another call-set. Consider the following example
reference and alternate haplotypes:

12345678901234567
REF: ATCGTAAATAAAATGCA
ALT: ATCGTAAAATAAATGCA

One variant caller might represent the haplotypes as the following VCF records:

chr1 5 . T TA . . . GT 1/1
chr1 9 . TA T . . . GT 1/1

While another variant caller could represent the same haplotypes as:

chr1 9 . T A . . . GT 1/1
chr1 10 . A T . . . GT 1/1

116 Chapter 2. RTG Command Reference

https://github.com/ga4gh/benchmarking-tools
https://github.com/Illumina/hap.py
https://github.com/Illumina/hap.py
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Sensitivity_and_specificity

RTG Core Operations Manual, Release 3.10

The decision as to which representation to use is essentially arbitrary, yet one caller has used indels (and no SNPs),
and the other has used SNPs (and no indels). For this reason it is certainly a poor idea to attempt to divide baseline
and called variants into separate SNP and indel datasets up front and perform evaluation on each set separately, as
any variants that use different representation categories will not be matched across the independent comparisons.
Any variant-type specific metrics should be computed after matching is carried out on the full variant sets.

Note that when there are different representational conventions between the baseline and calls (or between calls
from one variant caller and another), then at some level there is really a semantic difference between a “baseline
indel” and a “call-set indel” (or “variant-caller-A indel” and “variant-caller-B indel”), so caution should be applied
when making conclusions related to SNP versus indel accuracy.

In the snp_roc.tsv and non_snp_roc.tsv output files, vcfeval notes the number of baseline and call
variants of each variant type. When considering benchmarking metrics in the absence of any thresholding with
respect to a score field, it is straight-forward to use the previous formulae (i.e. sensitivity is computed using the
counts from baseline variants, and precision is computed using the counts from called variants). When computing
threshold-specific metrics for ROC data points, the computation is more involved. Since only the call variants
contain the score field used to rank variants, the number of (say) TP baseline indels that exceed threshold 𝑥 is not
defined. vcfeval computes a scaled count as:

TPbaseline_indel(𝑥) = TPcall_indel(𝑥)× TPbaseline_indel/TPcall_indel

and thus threshold-specific sensitivity is computed as

Sensitivityindel(𝑥) = TPbaseline_indel(𝑥)/(TPbaseline_indel + FNindel)

This scaling ensures that the end point of the variant type specific ROC or precision/sensitivity curve ends at the
same point that is obtained when computing metrics without any threshold.

Variant decomposition and benchmarking

In general, it is not necessary to run any variant decomposition and/or normalization on variant call sets prior to
evaluation with vcfeval, as the haplotype aware matching process can account for representation differences.
However, since matching is at the granularity of entire variants, a single long complex call will be categorized as
either correct or incorrect, even if part of the call may match. If partial credit in the case of long calls is of interest,
vcfeval includes an option to internally decompose variants prior to matching, using the --decompose flag.
This decomposition is applied to both baseline and call variants, and any output VCFs will contain the decomposed
representation. External VCF decomposition (with more control over decomposition options) is also available via
rtg vcfdecompose.

See also:

snp, popsim, samplesim, childsim, rocplot, vcfdecompose

2.11.23 svdecompose

Synopsis:

Split composite structural variants into a breakend representation.

Syntax:

$ rtg svdecompose [OPTION]... -i FILE -o FILE

Parameters:
File Input/Output
-i --input=FILE VCF file containing variants to filter. Use ‘-‘ to read from standard input.
-o --output=FILE Output VCF file name. Use ‘-‘ to write to standard output.

2.11. Utility Commands 117

RTG Core Operations Manual, Release 3.10

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

--no-header Prevent VCF header from being written.

Usage:

The svdecompose command is applied to a VCF containing structural variants and converts deletion, insertion,
inversion, and tandem duplications with SVTYPE of DEL, INS, INV, and DUP, respectively, into correspond-
ing breakend events with SVTYPE=BND. svdecompose will also decompose sequence-resolved insertions and
deletions greater than --min-indel-length into breakend representation. Records of others types are passed
through without modification.

This operation can be useful for the purposes of reducing output from various structural variant callers to a com-
mon representation to better facilitate comparison with the bndeval command.

For insertions, svdecompose will represent the insertion as breakends between the reference and a “virtual hap-
lotype”, where for example, contig “<INS_A>” represents the destination of all insertions made on chromosome
A. So if another caller produced a similar insertion event (in position and/or length), the break end versions will
also be nearby on the virtual contig. For the following insertions:

1 54712 . T TTTTTTTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTC . . .
1 934144 I_7 C CGGAGGGGAGGGCGCGGAGCGGAGG . . .
1 934144 I_22 C CGGAGGGGAGGGCGCGGAGCGGAGGGGAGGGCGCGGAGCGGAGG . . .

each insertion gets two breakends like this:

1 54712 . T T[<INS_1>:54712[. . SVTYPE=BND;CIPOS=0,0
1 54712 . T]<INS_1>:54765]C . . SVTYPE=BND;CIPOS=0,0
1 934144 I_7 C C[<INS_1>:934144[. . SVTYPE=BND;CIPOS=0,0
1 934144 I_22 C C[<INS_1>:934144[. . SVTYPE=BND;CIPOS=0,0
1 934144 I_7 C]<INS_1>:934168]G . . SVTYPE=BND;CIPOS=0,0
1 934144 I_22 C]<INS_1>:934187]G . . SVTYPE=BND;CIPOS=0,0

See also:

bndeval

2.11.24 bndeval

Synopsis:

Evaluate called breakends for agreement with a baseline breakend set. Outputs a weighted ROC file which can
be viewed with rtg rocplot and VCF files containing false positives (called breakends not matched in the
baseline), false negatives (baseline breakends not matched in the call set), and true positives (breakends that match
between the baseline and calls).

Syntax:

$ rtg bndeval [OPTION]... -b FILE -c FILE -o DIR

Parameters:
File Input/Output
-b --baseline=FILE VCF file containing baseline variants.

--bed-regions=FILE If set, only read VCF records that overlap the ranges contained in the
specified BED file.

-c --calls=FILE VCF file containing called variants.
-o --output=DIR Directory for output.

--region=REGION If set, only read VCF records within the specified range. The format is
one of <sequence_name>, <sequence_name>:<start>-<end>,
<sequence_name>:<pos>+<length> or
<sequence_name>:<pos>~<padding>

118 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Filtering
--all-records Use all records regardless of FILTER status (Default is to only process records

where FILTER is ”.” or “PASS”)
--bidirectional If set, allow matches between flipped breakends.
--tolerance=INT Positional tolerance for breakend matching (Default is 100)

Reporting
-m --output-mode=STRING Output reporting mode. Allowed values are [split, annotate]

(Default is split)
-O --sort-order=STRING The order in which to sort the ROC scores so that “good”

scores come before “bad” scores. Allowed values are
[ascending, descending] (Default is descending)

-f --vcf-score-field=STRING The name of the VCF field to use as the ROC score. Also valid
are “QUAL” or “INFO.<name>” to select the named VCF
INFO field (Default is INFO.DP)

Utility
-h --help Print help on command-line flag usage.
-Z --no-gzip Do not gzip the output.

Usage:

The bndeval command operates on VCF files containing breakends such as those produced by the discord
command. In particular, it considers records having the breakend structural variant type (SVTYPE=BND) as de-
fined in the VCF specification. Other types of record are ignored, but the svdecompose command can be
applied beforehand to split certain other structural variants (e.g., INV and DEL) or sequence-resolved insertions
and deletions into constituent breakend events.

The input and output requirements of bndeval are broadly similar to the vcfeval command. The primary
inputs to bndeval are a truth/baseline VCF containing expected breakends, and a query/call VCF containing the
called breakends. Evaluation can be restricted to particular regions by specifying a BED file.

The regions contained in the evaluation regions BED file are intersected with the breakend records contained
in the truth VCF in order to obtain a list of truth breakend regions. An evaluation region is included if there
is any overlapping truth VCF record (no attempt is made to look at the degree of overlap). Thus by supplying
either evaluation regions corresponding to targeted regions or larger gene-level regions bndeval can be used to
evaluate at different levels of granularity.

Similarly, the evaluation regions are intersected with the breakend records records contained in the calls VCF to
obtain called breakend regions.

The truth breakend regions are then intersected with the called breakend regions to obtain TP/FP/FN metrics. The
intersection supports a user-selectable tolerance in position. Further, be default, a breakend must occur in the same
orientation to be considered a match, but this constraint can be relaxed by supplying the --bidirectional
command line option.

bndeval outputs

Once complete, bndeval command produces summary statistics and the following primary result files in the
output directory:

• weighted_roc.tsv.gz - contains ROC data that can be plotted with rocplot

• baseline.bed.gz contains the truth breakend regions, where each BED record contains the region
status as TP or FN, the SVTYPE, and the span of the original truth VCF record.

• calls.bed.gz contains the called breakend regions, where each BED record contains the region status
as TP or FP, the SVTYPE, the span of the original calls VCF record, and the score value used for ranking
in the ROC plot.

• summary.txt contains the same summary statistics printed to standard output.

See also:

2.11. Utility Commands 119

RTG Core Operations Manual, Release 3.10

discord, svdecompose, vcfeval, rocplot

2.11.25 pedfilter

Synopsis:

Filter and convert a pedigree file.

Syntax:

$ rtg pedfilter [OPTION]... FILE

Example:

$ rtg pedfilter --remove-parentage mypedigree.ped

Parameters:
File Input/Output

FILE The pedigree file to process, may be PED or VCF, use ‘-‘ to read from stdin.

Filtering
--keep-family=STRING Keep only individuals with the specified family ID. May be specified 0 or

more times, or as a comma separated list.
--keep-ids=STRING Keep only individuals with the specified ID. May be specified 0 or more

times, or as a comma separated list.
--keep-primary Keep only primary individuals (those with a PED individual line / VCF

sample column)
--remove-parentage Remove all parent-child relationship information.

Reporting
--vcf Output pedigree in in the form of a VCF header rather than PED.

Utility
-h --help Print help on command-line flag usage.

Usage:

The pedfilter command can be used to perform manipulations on pedigree information and convert pedigree
information between PED and VCF header format. For more information about the PED file format see Pedigree
PED input file format.

The VCF files output by the family and population commands contain full pedigree information represented
as VCF header lines, and the pedfilter command allows this information to be extracted in PED format.

This command produces the pedigree output on standard output, which can be redirected to a file or another
pipeline command as required.

See also:

family, population, mendelian, pedstats

2.11.26 pedstats

Synopsis:

Output information from pedigree files of various formats.

Syntax:

$ rtg pedstats [OPTION]... FILE

120 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Example:

For a summary of pedigree information:

$ rtg pedstats ceph_pedigree.ped

Pedigree file: /data/ceph/ceph_pedigree.ped

Total samples: 17
Primary samples: 17
Male samples: 9
Female samples: 8
Afflicted samples: 0
Founder samples: 4
Parent-child relationships: 26
Other relationships: 0
Families: 3

To output a list of all founders:

$ rtg pedstats --founder-ids ceph_pedigree.ped
NA12889
NA12890
NA12891
NA12892

For quick pedigree visualization using GraphViz and ImageMagick, use a command-line such as:

$ dot -Tpng <(rtg pedstats --dot "A Title" mypedigree.ped) | display -

Parameters:
File Input/Output

FILE The pedigree file to process, may be PED or VCF, use ‘-‘ to read from stdin.

Reporting
-d --delimiter=STRING Output id lists using this separator (Default is \n)

--dot=STRING Output pedigree in GraphViz format, using the supplied text as a title.
--families Output information about family structures.
--female-ids Output ids of all females.
--founder-ids Output ids of all founders.
--male-ids Output ids of all males.
--maternal-ids Output ids of maternal individuals.
--paternal-ids Output ids of paternal individuals.
--primary-ids Output ids of all primary individuals.
--simple-dot When outputting GraphViz format, use a layout that looks less like a

traditional pedigree diagram but works better with large complex
pedigrees.

Utility
-h --help Print help on command-line flag usage.

Usage:

This command is used to show pedigree summary statistics or select groups of individual IDs.

When using pedstats to output a list of sample IDs, the default is to print one ID per line. Depending on
subsequent use, it may be convenient to use a different separator between output IDs. For example, with comma
separated output it is possible to directly use the results as an argument to vcfsubset:

$ rtg vcfsubset -i pedigree-calls.vcf.gz -o family1.vcf.gz \
--keep-samples <(rtg pedstats -d , --founder-ids ceph_pedigree.ped)

2.11. Utility Commands 121

RTG Core Operations Manual, Release 3.10

In addition, pedstats can be used to generate a simple pedigree visualization, using the well-known
GraphViz graphics drawing package, which can be saved to PNG or PDF. For example, with the following
chinese-trio.ped:

#PED format pedigree
#
#fam-id/ind-id/pat-id/mat-id: 0=unknown
#sex: 1=male; 2=female; 0=unknown
#phenotype: -9=missing, 0=missing; 1=unaffected; 2=affected
#
#fam-id ind-id pat-id mat-id sex phen
0 NA24631 NA24694 NA24695 1 0
0 NA24694 0 0 1 0
0 NA24695 0 0 2 0

We can visualize the pedigree with:

$ dot -Tpng <(rtg pedstats --dot "Chinese Trio" chinese-trio.ped) -o chinese-trio.
→˓png

This will create a PNG image that can be displayed in any image viewing tool and contains the pedigree structure
as shown below.

For more information about the PED file format see Pedigree PED input file format.

The VCF files output by the RTG pedigree-aware variant calling commands contain full pedigree information
represented as VCF header lines, and the pedstats command can also take these VCFs as input. For example,
given a VCF produced by the population command after calling the CEPH-1463 pedigree:

$ dot -Tpng <(rtg pedstats --dot "CEPH 1463" population-ceph-calls.vcf.gz) -o ceph-
→˓1463.png

Would produce the following pedigree directly from the VCF:

122 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Note: GraphViz is provided directly via many operating system package managers, and can also be downloaded
from their web site: https://www.graphviz.org/

See also:

family, population, pedfilter, vcfsubset

2.11.27 avrstats

Synopsis:

Print statistics that describe an AVR model.

Syntax:

$ rtg avrstats [OPTION]... FILE

Example:

$ rtg avrstats avr.model

Parameters:
Reporting

MODEL Name of AVR model to use when scoring variants.

Utility
-h --help Print help on command-line flag usage.

Usage:

Used to show some simple information about the AVR model, including when the model was built and which
predictor attributes were employed during the model build.

See also:

avrbuild, avrpredict, snp, family, population

2.11.28 rocplot

Synopsis:

Plot ROC curves from readsimeval and vcfeval ROC data files, either to an image, or using an interactive
GUI.

Syntax:

$ rtg rocplot [OPTION]... FILE+

2.11. Utility Commands 123

https://www.graphviz.org/

RTG Core Operations Manual, Release 3.10

$ rtg rocplot [OPTION]... --curve STRING

Example:

$ rtg rocplot eval/weighted_roc.tsv.gz

Parameters:
File Input/Output

--curve=STRING ROC data file with title optionally specified (path[=title]). May be specified 0 or
more times.

--png=FILE If set, output a PNG image to the given file.
--svg=FILE If set, output a SVG image to the given file.
--zoom=STRING Show a zoomed view with the given coordinates, supplied in the form

<xmax>,<ymax> or <xmin>,<ymin>,<xmax>,<ymax>
FILE+ ROC data file. May be specified 0 or more times.

Reporting
--hide-sidepane If set, hide the side pane from the GUI on startup.
--interpolate If set, interpolate curves at regular intervals.
--line-width=INT Sets the plot line width (Default is 2)

-P --precision-sensitivity If set, plot precision vs sensitivity rather than ROC.
--scores If set, show scores on the plot.

-t --title=STRING Title for the plot.

Utility
-h --help Print help on command-line flag usage.

Usage:

Used to produce ROC plots from the ROC files produced by readsimeval, bndeval and vcfeval. By
default this opens the ROC plots in an interactive viewer. On a system with only console access the plot can be
saved directly to an image file using the either the --png or --svg parameter.

ROC data files may be specified either as direct file arguments to the command, or via the --curve flag. The
former method is useful when selecting files using shell wild card globbing, and the latter method allows specifying
a custom title for each curve, so use whichever method is most convenient.

Strictly speaking, a true ROC curve should use rates rather than absolute numbers on the X and Y axes (e.g.
True Positive / Total Positives rather than True Positives on the Y, and False Positive / Total Negatives on the X
axis). However, there are a couple of difficulties involved with computing these rates with variant calling datasets.
Firstly, the truth sets do not include any indication of the set of negatives (the closest we may get is in the cases
of truth sets which contain a set of confidence regions, where it can be assumed that no other variants may be
present inside the specified regions); secondly even with knowledge of negative regions, how do you count the set
of possible negative calls, when a call could occupy multiple reference bases, or even (in the case of insertions)
zero reference bases. It is conceptually even possible to have a call-set contain more false positives than there are
reference bases. For this reason the ROC curves are plotted using the absolute counts.

Precision/sensitivity (also known as precision/recall) curves are another popular means of visualizing call-set ac-
curacy, and these metrics also do not require a count of Total Negatives and so cause no particular difficulty to plot.
Precision/sensitivity graphs can be selected from the command line via the --precision-sensitivity flag,
or may be interactively selected in the GUI.

An interesting result of ROC analysis is that although there may be few data points on an ROC graph, it is
possible to construct a filtered dataset corresponding to any point that lies on a straight line between two points
on the graph. (For example, using threshold A for 25% of the variants and threshold B for 75% of the variants
would result in accuracy that is 75% of the way between the points corresponding to thresholds A and B on the
ROC plot). So in a sense it is meaningful to connect points on an ROC graph with straight lines. However,
for precision/sensitivity graphs, it’s incorrect to connect adjacent points with a straight line, as this does not
correspond to achievable accuracy on the ROC convex hull and can over-estimate the accuracy. Instead, we can
plot appropriately interpolated values with the --interpolate option.

124 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Interactive GUI

The following image shows the rocplot GUI with an example ROC plot :

Similarly, here is an example precision/sensitivity plot:

2.11. Utility Commands 125

RTG Core Operations Manual, Release 3.10

Some quick tips for the interactive GUI:

• Select regions within the graph to zoom in. Right click within the graph area to bring up a context menu
that allows undoing the zoom one level at a time, or resetting the zoom to the default.

• The graph right click menu also allows exporting the image as PNG or SVG. (The saved image does not
include the RTG banner or background gradient).

• Click on a spot in the graph to show the equivalent accuracy metrics for that location in the status bar.
Clicking to the left or below the axes will remove the cross-hair. Note that sensitivity depends on the
baseline total number of variants being correct. If for example the ROC curve corresponds to evaluating an
exome call-set against a whole-genome baseline, this number will be inaccurate.

• A secondary cross-hair is also available by holding down shift when placing (or removing) the cross-hair.
When two cross-hairs are placed or moved, metrics in the status bar indicate the difference between the two
positions.

• Additional ROC data files can be loaded by clicking on the “Open...” button, and multiple ROC data files
within a directory can be loaded at once using multi-select.

• The “Cmd” button will open a message window that contains a command-line equivalent to the currently
displayed set of curves. This command-line may be copy-pasted, providing an easy way to replicate the
current set of curves in another session, generate a curve in a script, or share with a colleague.

• There is a drop down that allows for switching between ROC and precision/sensitivity graph types.

Each curve in the GUI has a customization widget on the right hand side of the window that allows several
operations:

• Rename the title used for the curve via the editable text.

• Temporarily hide/show the curve via selection checkbox.

126 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

• Reorder curves via drag and drop using the colored handle on the left.

• Right click within the ROC widget area to bring up a context menu that allows permanently removing that
curve, or customizing the color used for the curve

• Each curve has a slider to simulate the effect of applying a threshold on the scoring attribute. If the “show
scores” option is set, this provides an easy way to select appropriate filter threshold values, which you might
apply to variant sets using rtg vcffilter or similar VCF filtering tools.

Note: For definitions of the terminology used when evaluating caller accuracy, see: https://en.wikipedia.org/wiki/
Receiver_operating_characteristic and https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Note: For a description of the precision/sensitivity interpolation, see: “The relationship between Precision-Recall
and ROC curves”, Davis, J., (2006), https://dx.doi.org/10.1145/1143844.1143874

See also:

readsimeval, bndeval, vcfeval

2.11.29 hashdist

Synopsis:

Counts the number of times k-mers occur in an SDF and produces a histogram. Optionally creates a blacklist of
highly occurring hashes that can be used to increase mapping speed

Syntax:

$ rtg hashdist [OPTION]... -o DIR SDF

Parameters:
File Input/Output
-o --output=DIR Directory for output.

SDF SDF containing sequence data to analyse.

Sensitivity Tuning
--blacklist-threshold=INT If set, output a blacklist containing all k-mer hashes with

counts exceeding this value.
--hashmap-size-factor=FLOAT Multiplier for the minimum size of the hash map (Default

is 1.0)
--max-count=INT Soft minimum for hash count (i.e. will record exact counts

of at least this value) (Default is 500)
-s --step=INT Step size (Default is 1)
-w --word=INT Number of bases in each hash (Default is 22)

Utility
-h --help Print help on command-line flag usage.

--install-blacklist Install the blacklist into the SDF for use during mapping.
-T --threads=INT Number of threads (Default is the number of available cores)

Usage:

Used to produce a text file containing a histogram of k-mer frequencies. The --word parameter is used to select
the width of the k-mer and the --step parameter is used to select the distance between successive k-mer start
positions.

By specifying the --blacklist-threshold parameter a list k-mers that occur more than the given number
of times will be produced. Using the --install-blacklist option will install the resulting blacklist file into
the specified SDF, which will permit use of the --blacklist-threshold parameter of the map command.

2.11. Utility Commands 127

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://dx.doi.org/10.1145/1143844.1143874

RTG Core Operations Manual, Release 3.10

The --max-count parameter can be used to inexactly adjust memory requirements by setting a lower bound
on the largest k-mer count that will be recorded. For example, --max-count 500 will select a number greater
than or equal to 500 (exactly how much greater will depend on other memory requirements), and will record exact
frequencies for all k-mers than occur less than this number. All k-mers that occur more frequently than the chosen
limit will be capped at the limit.

The --hashmap-size-factor parameter controls the default size of the internal hash map, which in turn
affects the RAM required to run the command. This value may need to be increased if hashdist reports
warnings about too many hash collisions. Alternatively this parameter could be reduced in order to run on a
machine with lower RAM, but this may reduce the likelihood that the command will complete successfully.

See also:

map

2.11.30 ncbi2tax

Synopsis:

Converts the NCBI taxonomy into an RTG taxonomy for use in species database construction.

Syntax:

$ rtg ncbi2tax [OPTION]... DIR

Example:

$ wget ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz
$ tar zxf taxdump.tar.gz -C ncbitaxdir
$ rtg ncbi2tax ncbitaxdir >rtg_taxonomy.tsv

Parameters:
File Input/Output

DIR Directory containing the NCBI taxonomy dump.

Utility
-h --help Prints help on command-line flag usage.

Usage:

Used to create an RTG taxonomy file from an NCBI taxonomy dump. The resulting taxonomy TSV file can be
directly filtered with the taxfilter command prior to creating a species reference SDF according to project
needs.

For more information on the RTG taxonomy format, and the associated sequence to taxon mapping file needed to
create a species reference SDF, see RTG taxonomic reference file format.

See also:

format, species, taxfilter, taxstats

2.11.31 taxfilter

Synopsis:

Provides filtering of a metagenomic species reference database taxonomy.

Syntax:

$ rtg taxfilter [OPTION]... -i FILE -o FILE

Example:

128 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

$ rtg taxfilter -P -i species-full.sdf -o species-pruned.sdf

Parameters:
File Input/Output
-i --input=FILE Taxonomy input. May be either a taxonomy TSV file or an SDF containing

taxonomy information.
-o --output=FILE Filename for output TSV or SDF.

Filtering
-P --prune-below-internal-sequences When filtering an SDF, remove nodes below the

first containing sequence data.
-p --prune-internal-sequences When filtering an SDF, exclude sequence data from

non-leaf output nodes.
-r --remove=FILE File containing ids of nodes to remove.
-R --remove-sequences=FILE File containing ids of nodes to remove sequence

data from (if any).
--rename-norank=FILE Assign a rank to “no rank” nodes from file

containing id/rank pairs.
-s --subset=FILE File containing ids of nodes to include in subset.
-S --subtree=FILE File containing ids of nodes to include as subtrees in

subset.

Utility
-h --help Prints help on command-line flag usage.

Usage:

The taxfilter command is used to manage metagenomic species reference taxonomies and associated refer-
ence species SDF, primarily to allow redundancy reduction and extraction of a subset of the database according to
project needs.

Building a metagenomic species database from all available data typically results in a very large database with high
levels of redundancy, as often multiple strains of species are present, and often entire branches of the taxonomic
structure are irrelevant for the project at hand. The following options provides methods to prune the taxonomy to
sections of interest.

The --remove option will remove the specified taxon IDs from the taxonomy (along with any child nodes),
which can be used to exclude entire subtrees of the full taxonomy. For example, you might exclude all Proteobac-
teria by specifying that taxfilter should remove node with taxon ID 1224.

The --subset option allows retaining only the specified list of taxon IDs, along with any parent nodes required
to reach the root of the taxonomy. This would typically be used to specify a list of species or strains of interest.

The --subtree option allows retaining the specified nodes, along with their children and any parent nodes
required to reach the root of the taxonomy. For example, you could retain all Firmicutes by specifying that
taxfilter should keep the subtree with taxon ID 1239.

It is also often the case that ranks have not been fully assigned for each node in the taxonomic structure. The
--rename-norank option allows manual rank assignment for any of these nodes for which rank information
can be obtained via other means, such as manual curation.

The species command requires that the reference database not contain sequence data assigned
to internal nodes of the taxonomy, so the application of --prune-internal-sequences,
--prune-below-internal-sequences, or --remove-sequences may be required before us-
ing any such database with the species command. The taxstats command can be used to list the ids of
internal taxons that have sequence data attached.

Note that a quick way to extract all the genomic sequence associated with a species (or multiple species) is to use
the sdf2fasta command with the --taxon flag.

See also:

format, sdf2fasta, species, taxstats

2.11. Utility Commands 129

RTG Core Operations Manual, Release 3.10

2.11.32 taxstats

Synopsis:

Summarize and perform a verification of taxonomy and sequence information within a metagenomic species
reference SDF.

Syntax:

$ rtg taxstats [OPTION]... SDF

Example:

$ rtg taxstats species-full.sdf
Warning: 340 nodes have no rank
214 nodes with no rank are internal nodes
126 nodes with no rank are leaf nodes
126 nodes with no rank have sequences attached
TREE STATS
internal nodes: 3724
leaf nodes: 5183
total nodes: 8907

RANK COUNTS
rank internal leaf total
class 58 0 58
family 300 0 300
genus 940 1 941
no rank 214 126 340
order 127 0 127
phylum 34 0 34
species 1709 1703 3412
species group 34 0 34
species subgroup 7 0 7
strain 146 3347 3493
subclass 5 0 5
subfamily 17 0 17
subgenus 1 0 1
suborder 19 0 19
subphylum 1 0 1
subspecies 104 6 110
superkingdom 3 0 3
superphylum 3 0 3
tribe 2 0 2
TOTAL 3724 5183 8907

SEQUENCE LOOKUP STATS
total sequences: 309367
unique taxon ids: 5183
taxon ids in taxonomy: 5183
taxon ids not in taxonomy: 0
internal nodes: 0
leaf nodes: 5183
no rank nodes: 126

Parameters:
File Input/Output

SDF SDF to verify the taxonomy information for.

Reporting
--show-details List details of sequences attached to internal nodes of the taxonomy.

130 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

Utility
-h --help Prints help on command-line flag usage.

Usage:

The taxstats command outputs statistics regarding the contents of a metagenomic species reference database,
in order to indicate the number of members of each rank, and how many have sequence information contained
within the database.

Any discrepancies found within the database will be issued as warnings.

See also:

format, species, taxfilter

2.11.33 usageserver

Synopsis:

Start a local network usage logging server.

Syntax:

$ rtg usageserver [OPTION]...

Example:

$ rtg usageserver

Parameters:
Utility
-h --help Prints help on command-line flag usage.
-p --port=INT Set this flag to change which port to listen for usage logging connections.

(Default is 8080).
-T --threads=INT Set this flag to change the number of threads for handling incoming connections.

(Default is 4).

Usage:

Use the usageserver command to run a usage logging server for a local network. For more information about
usage logging and setup see Usage logging

2.11.34 version

Synopsis:

The RTG version display utility.

Syntax:

$ rtg version

Example:

$ rtg version

Product: RTG Core 3.9
Core Version: 718f8317b7 (2018-05-29)
RAM: 25.0GB of 31.3GB RAM can be used by rtg (79%)
CPU: Defaulting to 4 of 4 available processors (100%)
JVM: Java HotSpot(TM) 64-Bit Server VM 1.8.0_161
License: Expires on 2019-05-20
Contact: support@realtimegenomics.com

2.11. Utility Commands 131

RTG Core Operations Manual, Release 3.10

Patents / Patents pending:
US: 7,640,256, 9,165,253, 13/129,329, 13/681,046, 13/681,215, 13/848,653, 13/925,
→˓704, 14/015,295, 13/971,654, 13/971,630, 14/564,810
UK: 1222923.3, 1222921.7, 1304502.6, 1311209.9, 1314888.7, 1314908.3
New Zealand: 626777, 626783, 615491, 614897, 614560
Australia: 2005255348, Singapore: 128254

Citation (variant calling):
John G. Cleary, Ross Braithwaite, Kurt Gaastra, Brian S. Hilbush, Stuart Inglis,
→˓Sean A. Irvine, Alan Jackson, Richard Littin, Sahar Nohzadeh-Malakshah, Mehul
→˓Rathod, David Ware, Len Trigg, and Francisco M. De La Vega. "Joint Variant and
→˓De Novo Mutation Identification on Pedigrees from High-Throughput Sequencing
→˓Data." Journal of Computational Biology. June 2014, 21(6): 405-419. doi:10.1089/
→˓cmb.2014.0029.

Citation (vcfeval):
John G. Cleary, Ross Braithwaite, Kurt Gaastra, Brian S. Hilbush, Stuart Inglis,
→˓Sean A. Irvine, Alan Jackson, Richard Littin, Mehul Rathod, David Ware, Justin M.
→˓ Zook, Len Trigg, and Francisco M. De La Vega. "Comparing Variant Call Files for
→˓Performance Benchmarking of Next-Generation Sequencing Variant Calling Pipelines.
→˓" bioRxiv, 2015. doi:10.1101/023754.

(c) Real Time Genomics, 2017

Parameters:

There are no options associated with the version command.

Usage:

Use the version command to display release and version information.

See also:

help, license

2.11.35 license

Synopsis:

The RTG license display utility.

Syntax:

$ rtg license

Example:

$ rtg license

Parameters:

There are no options associated with the license command.

Usage:

Use the license command to display license information and expiration date. Output at the command line
(standard output) shows command name, licensed status, and command release level.

See also:

help, version

132 Chapter 2. RTG Command Reference

RTG Core Operations Manual, Release 3.10

2.11.36 help

Synopsis:

The RTG help command provides online help for all RTG commands.

Syntax:

List all commands:

$ rtg help

Show usage syntax and flags for one command:

$ rtg help COMMAND

Example:

$ rtg help format

Parameters:

There are no options associated with the help command.

Usage:

Use the help command to view syntax and usage information for the main rtg command as well as individual
RTG commands.

See also:

license, version

2.11. Utility Commands 133

RTG Core Operations Manual, Release 3.10

134 Chapter 2. RTG Command Reference

CHAPTER

THREE

RTG PRODUCT USAGE - BASELINE PROGRESSIONS

This chapter provides baseline task progressions that describe best-practice use of the product for data analysis.

3.1 Human read mapping and sequence variant detection

Use the following steps to detect all sequence variants between a reference genome and a sequenced DNA sample
or set of related samples. This set of tasks steps through the main functionality of the RTG variant detection
software pipeline: generating and evaluating gapped alignments, testing coverage depth, and calling sequence
variants (SNPs, MNPs, and indels). While this progression is aimed at human variant detection, the process can
easily accommodate other mammalian genomes. For non-mammalian species, some features such as sex and
pedigree-aware mapping and variant calling may need to be omitted.

The following example supports the steps typical to human whole exome or whole genome analysis in which
high-throughput sequencing with Illumina sequencing systems has generated reads of length 100 to 300 base pairs
and at 25 to 30× genome coverage.

RTG features the ability to adjust mapping and variant calling according to the sex of the individual that has been
sequenced. During mapping, reads will only be mapped against chromosomes that are present in that individu-
als genome (for example, for a female individual, reads will not be mapped to the Y chromosome). Similarly,
sex-aware variant calling will automatically determine when to switch between diploid and haploid models. In
addition, when pedigree information is available, Mendelian inheritance patterns are used to inform the variant
calling.

This example demonstrates exome variant calling, automatic sex-aware calling capabilities, and joint variant call-
ing with respect to a pedigree.

Data:

This baseline uses actual data downloaded from public databases. The reference sequence is the human GRCh38,
downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/
seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set.fna.gz
This version excludes alternate haplotypes but includes the hs38d1 decoy sequence which improves variant
calling accuracy by providing targets for reads with high homology to sites on the primary chromosomes.

The read data is from human genome sequencing of the CEPH pedigree 1463, which comprises 17 members
across three generations. Illumina sequencing data is provided as part of the Illumina Platinum Genomes project,
available via https://www.illumina.com/platinumgenomes.html and also available in the European Nucleotide
Archive. Complete Genomics sequencing data for these samples is available via http://www.completegenomics.
com/public-data/69-Genomes/

Table : Overview of basic pipeline stages

135

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set.fna.gz
https://www.illumina.com/platinumgenomes.html
http://www.completegenomics.com/public-data/69-Genomes/
http://www.completegenomics.com/public-data/69-Genomes/

RTG Core Operations Manual, Release 3.10

Task Command &
Utilities

Purpose

1 Format reference data rtg format Convert reference sequence from FASTA files to RTG
Sequence Data Format (SDF)

2 Prepare pedigree/sex
information

rtg pedstats Configure per-sample sex and pedigree relationship
information in a PED file

3 Format read data rtg format,
rtg cg2sdf

Convert read sequence from FASTA or FASTQ files to
RTG Sequence Data Format (SDF)

4 Map reads against a
reference genome

rtg map, rtg
cgmap

Generate read alignments against a given reference, and
report in a BAM file for downstream analysis

5 View alignment
results

rtg samstats Evaluate alignments and determine if the mapping should
be repeated with different settings

6 Generate coverage
information

rtg coverage Run the coverage command to generate coverage breadth
and depth statistics

7 Call sequence
variants (single
sample)

rtg snp Detect SNPs, MNPs, and indels in a sample relative to a
reference genome

8 Call sequence
variants (single
family)

rtg family Perform sex-aware joint variant calls relative to the
reference on a Mendelian family

9 Call sequence
variants (population)

rtg
population

Perform sex-aware joint variant calls relative to the
reference on a population

3.1.1 Task 1 - Format reference data

RTG requires a one-time conversion of the reference genome from FASTA files into the RTG SDF format. This
provides the software with fast access to arbitrary genomic coordinates in a pre-parsed format. In addition, meta-
data detailed autosomes and sex chromosomes is associated with the SDF, enabling automatic handing of sex
chromosomes in later tasks. This task will be completed with the format command. The conversion will create
an SDF directory containing the reference genome.

For variant calling and CNV analysis, the reference genome should ideally employ fully assembled chromosomes
(as opposed to contig-based coordinates where expected ploidy and inheritance characteristics may be unknown).

First, observe a typical genome reference with multiple chromosomes stored in compressed FASTA format.

$ ls -l /data/human/grch38/fasta
874637925 Feb 28 11:00 GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set.fna.
→˓gz

Now, use the format command to convert this input file into a single SDF directory for the reference genome. If
the reference is comprised of multiple input files, these should be supplied on a single command line.

$ rtg format -o grch38 /data/human/grch38/fasta/GCA_000001405.15_GRCh38_no_alt_
→˓plus_hs38d1_analysis_set.fna.gz
Formatting FASTA data
Processing "/data/human/grch38/fasta/GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_
→˓analysis_set.fna.gz"
Unexpected symbol "M" in sequence "chr1 AC:CM000663.2 gi:568336023 LN:248956422
→˓ rl:Chromosome M5:6aef897c3d6ff0c78aff06ac189178dd AS:GRCh38" replaced with "N
→˓".
[...]

Detected: 'Human GRCh38 with UCSC naming', installing reference.txt

Input Data
Files : GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set.fna.gz
Format : FASTA
Type : DNA
Number of sequences: 2580

136 Chapter 3. RTG product usage - baseline progressions

RTG Core Operations Manual, Release 3.10

Total residues : 3105715063
Minimum length : 970
Maximum length : 248956422

Output Data
SDF-ID : c477b940-e9e7-4068-b7ed-f8968de308e3
Number of sequences: 2580
Total residues : 3105715063
Minimum length : 970
Maximum length : 248956422

This takes the human reference FASTA file and creates a directory called grch38 containing the SDF. If the
reference genome contains IUPAC ambiguity codes or other non-DNA characters these are replaced with ‘N’
(unknown) in the formatted SDF. The first few such codes will generate warning messages as above. Every SDF
contains a unique SDF-ID identifier that is reported in log files of subsequent commands and to help identify
potential pipeline issues that arise from incorrectly using different human reference builds at different pipeline
stages.

Note: When formatting a reference genome, the format command will automatically recognize several com-
mon human reference genomes and install a reference.txt configuration file. For reference genomes which
are not recognized, you should copy or create an appropriate reference.txt file into the SDF directory if you
plan on performing sex-aware mapping and variant calling. See RTG reference file format

You can use the sdfstats command to show statistics for your reference SDF, including the individual sequence
lengths.

$ rtg sdfstats --lengths grch38
Type : DNA
Number of sequences: 2580
Maximum length : 248956422
Minimum length : 970
Sequence names : yes
Sex metadata : yes
Taxonomy metadata : no
N : 165046090
A : 868075685
C : 599957776
G : 602090069
T : 870545443
Total residues : 3105715063
Residue qualities : no

Sequence lengths:
chr1 248956422
chr2 242193529
chr3 198295559
chr4 190214555
chr5 181538259
chr6 170805979
chr7 159345973
chr8 145138636
chr9 138394717
chr10 133797422
chr11 135086622
chr12 133275309
chr13 114364328
chr14 107043718
chr15 101991189
chr16 90338345
chr17 83257441

3.1. Human read mapping and sequence variant detection 137

RTG Core Operations Manual, Release 3.10

chr18 80373285
chr19 58617616
chr20 64444167
chr21 46709983
chr22 50818468
chrX 156040895
chrY 57227415
chrM 16569
chr1_KI270706v1_random 175055
chr1_KI270707v1_random 32032
chr1_KI270708v1_random 127682
[...]

Note the presence of reference chromosome metadata on the line Sex metadata. This indicates that the in-
formation for sex-aware processing is present. you can use the sdfstats command to verify the chromosome
ploidy information for each sex. For the male sex chromosomes the PAR region mappings are also displayed.

$ rtg sdfstats grch38 --sex male --sex female
[...]
Sequences for sex=MALE:
chr1 DIPLOID linear 248956422
chr2 DIPLOID linear 242193529
chr3 DIPLOID linear 198295559
chr4 DIPLOID linear 190214555
chr5 DIPLOID linear 181538259
chr6 DIPLOID linear 170805979
chr7 DIPLOID linear 159345973
chr8 DIPLOID linear 145138636
chr9 DIPLOID linear 138394717
chr10 DIPLOID linear 133797422
chr11 DIPLOID linear 135086622
chr12 DIPLOID linear 133275309
chr13 DIPLOID linear 114364328
chr14 DIPLOID linear 107043718
chr15 DIPLOID linear 101991189
chr16 DIPLOID linear 90338345
chr17 DIPLOID linear 83257441
chr18 DIPLOID linear 80373285
chr19 DIPLOID linear 58617616
chr20 DIPLOID linear 64444167
chr21 DIPLOID linear 46709983
chr22 DIPLOID linear 50818468
chrX HAPLOID linear 156040895 ~=chrY

chrX:10001-2781479 chrY:10001-2781479
chrX:155701383-156030895 chrY:56887903-57217415

chrY HAPLOID linear 57227415 ~=chrX
chrX:10001-2781479 chrY:10001-2781479
chrX:155701383-156030895 chrY:56887903-57217415

chrM POLYPLOID circular 16569
chr1_KI270706v1_random DIPLOID linear 175055
[...]

Sequences for sex=FEMALE:
chr1 DIPLOID linear 248956422
chr2 DIPLOID linear 242193529
chr3 DIPLOID linear 198295559
chr4 DIPLOID linear 190214555
chr5 DIPLOID linear 181538259
chr6 DIPLOID linear 170805979
chr7 DIPLOID linear 159345973
chr8 DIPLOID linear 145138636
chr9 DIPLOID linear 138394717

138 Chapter 3. RTG product usage - baseline progressions

RTG Core Operations Manual, Release 3.10

chr10 DIPLOID linear 133797422
chr11 DIPLOID linear 135086622
chr12 DIPLOID linear 133275309
chr13 DIPLOID linear 114364328
chr14 DIPLOID linear 107043718
chr15 DIPLOID linear 101991189
chr16 DIPLOID linear 90338345
chr17 DIPLOID linear 83257441
chr18 DIPLOID linear 80373285
chr19 DIPLOID linear 58617616
chr20 DIPLOID linear 64444167
chr21 DIPLOID linear 46709983
chr22 DIPLOID linear 50818468
chrX DIPLOID linear 156040895
chrY NONE linear 57227415
chrM POLYPLOID circular 16569
chr1_KI270706v1_random DIPLOID linear 175055
[...]

3.1.2 Task 2 - Prepare sex/pedigree information

RTG commands for mapping and variant calling multiple samples make use of a pedigree file specifying sample
names, their sex, and any relations between them. This is done by creating a standard PED format file containing
information about the individual samples using a text editor. For example a PED file for the CEPH 1463 pedigree
looks like the following.

$ cat population.ped
PED format pedigree for CEPH/Utah 1463
fam-id ind-id pat-id mat-id sex phen
1 NA12889 0 0 1 0
1 NA12890 0 0 2 0
1 NA12877 NA12889 NA12890 1 0
2 NA12891 0 0 1 0
2 NA12892 0 0 2 0
2 NA12878 NA12891 NA12892 2 0
3 NA12879 NA12877 NA12878 2 0
3 NA12880 NA12877 NA12878 2 0
3 NA12881 NA12877 NA12878 2 0
3 NA12882 NA12877 NA12878 1 0
3 NA12883 NA12877 NA12878 1 0
3 NA12884 NA12877 NA12878 1 0
3 NA12885 NA12877 NA12878 2 0
3 NA12886 NA12877 NA12878 1 0
3 NA12887 NA12877 NA12878 2 0
3 NA12888 NA12877 NA12878 1 0
3 NA12893 NA12877 NA12878 1 0

A value of 0 indicates the field is unknown or that the sample is not present. Note that the IDs used in columns
2, 3, and 4 must match the sample IDs used during data formatting and variant calling. The sex field (column 5)
may be 0 if the sex of a sample is unknown. The family ID in column 1 is ignored as RTG identifies family units
according to the relationship information. You can use the pedstats command to verify the correct format:

$ rtg pedstats ceph-1463.ped
Pedigree file: ceph-1463.ped
Total samples: 17
Primary samples: 17
Male samples: 9
Female samples: 8
Afflicted samples: 0
Founder samples: 4

3.1. Human read mapping and sequence variant detection 139

RTG Core Operations Manual, Release 3.10

Parent-child relationships: 26
Other relationships: 0
Families: 3

The pedstats command can also output the pedigree structure in a format that can be displayed using the dot
command from the Graphviz suite.

$ dot -Tpng <(rtg pedstats --dot "CEPH 1463" ceph-1463.ped) -o ceph-1463.png

This will create a PNG image that can be displayed in any image viewing tool.

$ firefox ceph-1463.png

This will display the pedigree structure as shown below.

For more information about the PED file format see Pedigree PED input file format.

3.1.3 Task 3 - Format read data

RTG mapping tools accept input read sequence data either in the RTG SDF format or other common sequence
formats such as FASTA, FASTQ, or SAM/BAM. There are pros and cons as to whether to perform an initial format
of the read sequence data to RTG SDF:

• Pre-formatting requires an extra one-off workflow step (the format command), whereas native input file
formats are directly accepted by many RTG commands.

• Pre-formatting requires extra disk space for the SDF (although these can be deleted after processing if
required).

• With pre-formatting, decompression, parsing and error checking raw files is carried out only once, whereas
native formats require this processing each time.

• Pre-formatting permits random access to individual sequences or blocks of sequences, whereas with native
formats, the whole file leading up to the region of interest must also be decompressed, and parsed.

• Pre-formatting permits loading of sequence data, sequence names, and sequence quality values indepen-
dently, allowing reduced RAM use during mapping

Thus, pre-formatting read sequence data can result in lower overall resource requirements (and faster throughput)
than processing native file formats directly.

In this example we will be converting read sequence data from FASTQ files into the RTG SDF format. This task
will be completed with the format command. The conversion will create one or more SDF directories for the
reads.

Take a paired set of reads in FASTQ format and convert it into RTG data format (SDF). This example shows one
lane of data, taking as input both left and right paired files from the same run.

$ mkdir sample_NA12878
$ rtg format -f fastq -q sanger -o sample_NA12878/NA12878_L001 \

-l /data/reads/NA12878/NA12878_L001_1.fq.gz \

140 Chapter 3. RTG product usage - baseline progressions

RTG Core Operations Manual, Release 3.10

-r /data/reads/NA12878/NA12878_L001_2.fq.gz \
--sam-rg "@RG\\tID:NA12878_L001\\tSM:NA12878\\tPL:ILLUMINA"

This creates a directory named NA12878_L001 with two subdirectories, named left and right. Use the
sdfstats command to verify this step.

$ rtg sdfstats sample_NA12878/NA12878_L001

It is good practice to ensure the output BAM files contain tracking information regarding the read set. This is
achieved by storing the tracking information in the reads SDF by using the --sam-rg flag to provide a SAM-
formatted read group header line. The header should specify at least the ID, SM and PL fields for the read group.
The platform field (PL) values currently recognized by the RTG command for this attribute are ILLUMINA,
LS454, IONTORRENT, COMPLETE, and COMPLETEGENOMICS. This information will automatically be used
during mapping to enable automatic creation of calibration files that are used to perform base-quality recalibration
during variant calling. In addition, the sample field (SM) is used to segregate samples when using multi-sample
variant calling commands such as family, population, and somatic, and should correspond to the sample
ids used in the corresponding pedigree file. The read group id field (ID) is a unique identifier used to group of
reads that have the same source DNA and sequencing characteristics (for example, pertain to the same sequencing
lane for the sample). For more details see Using SAM/BAM Read Groups in RTG map.

If the read group information is not specified when formatting the reads, it can be set during mapping instead using
the --sam-rg flag of map.

Repeat this step for all available read data associated with the sample or samples to be processed. This example
shows how this can be done with the format command in a loop.

$ for left_fq in /data/reads/NA12878/NA12878*_1.fq.gz; do
right_fq=${left_fq/_1.fq.gz/_2.fq.gz}
lane_id=$(basename ${left_fq/_1.fq.gz})
rtg format -f fastq -q sanger -o ${lane_id} -l ${left_fq} -r ${right_fq} \

--sam-rg "@RG\tID:${lane_id}\tSM:NA12878\tPL:ILLUMINA"
done

RTG supports the custom read structure of Complete Genomics data. In this case, use the cg2sdf command to
convert the GGI .tsv files into RTG SDF format. This example shows one run of data, taking as input a CGI read
data file. It is important when mapping Complete Genomics reads that your read group information should set the
platform field (PL) appropriately. For version 1 reads (35 base-pair reads), the platform should be COMPLETE.
For version 2 reads (29 or 30 base-pair reads) the platform should be COMPLETEGENOMICS.

$ rtg cg2sdf -o sample_NA12878/NA12878_GS002290 /data/reads/cg/NA12878/GS002290.
→˓tsv \

--sam-rg "@RG\tID:GS002290\tSM:NA12878\tPL:COMPLETE"

As with the formatting of Illumina data, this creates a directory named GS00290 with two subdirectories, named
left and right. You can use the sdfstats command to verify this step.

$ rtg sdfstats sample_NA12878/NA12878_GS002290

Notice that during formatting we used the same sample identifier for both the Illumina and Complete Genomics
data, which allows subsequent variant calling to associate both read sets with the NA12878 individual.

Repeat the formatting for other samples to be processed. When formatting data sets corresponding to other mem-
bers of the pedigree, be sure to use the correct sample identifier for each individual.

3.1.4 Task 4 - Map reads to the reference genome

Map the sequence reads against the human reference genome to generate alignments in the BAM (Binary Sequence
Alignment/Map) file format.

The RTG map command provides multiple tuning parameters to adjust sensitivity and selectivity at the read map-
ping stage. In general, whole genome mapping strategies aim to capture the highest number of reads possessing

3.1. Human read mapping and sequence variant detection 141

RTG Core Operations Manual, Release 3.10

variant data and which map with a high degree of specificity to the human genome. Complete Genomics data has
particular mapping requirements, and for this data use the separate cgmap command.

Depending on the downstream analysis required, the mapping may be adjusted to restrict alignments to unique
genomic positions or to allow reporting of ambiguous mappings at equivalent regions throughout the genome.
This example will show the recommended steps for human genome analysis.

By default, the mapping will report positions for all mated pairs and unmated reads that map to the reference
genome to 5 or fewer positions, those with no good alignments or with more than 5 equally good alignment
positions are considered unmapped and are flagged as such in the output.

Note that when mapping each individual we supply the pedigree file with --pedigree to automatically de-
termine the appropriate sex to be used when mapping each sample. For a female sample, this will result in no
mappings being made to the Y chromosome. It is also possible to manually specify the sex of each sample via
--sex=male or --sex=female as appropriate, but using the pedigree file streamlines the process across all
samples.

For the whole-genome Illumina data, a suitable map command is:

$ mkdir map_sample_NA12878
$ rtg map -t grch38 --pedigree ceph-1463.ped \

-i sample_NA12878/NA12878_L001 -o map_sample_NA12878/NA12878_L001 \

For Complete Genomics reads we use the cgmap command.

$ mkdir cgmap_sample_NA12878
$ rtg cgmap -t grch38 --pedigree ceph-1463.ped --mask cg1 \

-i sample_NA12878/NA12878_GS002290 -o map_sample_NA12878/NA12878_GS002290 \

The selection of the --mask parameter depends on the length of the Complete Genomics reads to be mapped.
The cg1 and cg1-fast masks are appropriate for 35 base-pair reads and the cg2 mask is appropriate for 29 or
30 base-pair reads. See cgmap for more detail.

When the mapping command completes, multiple files will have been written to the output directory of the map-
ping run. By default the alignments.bam file is produced and a BAM index (alignments.bam.bai) is
automatically created to permit efficient extraction of mappings within particular genomic regions. This behavior
is necessary for subsequent analysis of the mappings, but can be performed manually using the index command.

During mapping RTG automatically creates a calibration file (alignments.bam.calibration) containing
information about base qualities, average coverage levels, etc. This calibration information is utilized during vari-
ant calling to improve accuracy and to determine when coverage levels are abnormally high. When processing
exome or other targeted data, it is important that this calibration information should only be computed for map-
pings within the exome capture regions, otherwise the computed typical coverage levels will be much lower than
actual. This can result in RTG discarding many variant calls as being over-coverage. The correct workflow for
exome processing is to specify --bed-regions to supply a BED file describing the exome regions at the same
time as mapping, to ensure appropriate calibration is computed.

$ rtg map -t grch38 --pedigree ceph-1463.ped --bed-regions exome-regions.bed \
-i sample_NA12878/NA12878_L001 -o map_sample_NA12878/NA12878_L001 \

Note that supplying a BED file does restrict the locations to which reads are mapped, it is only used to ensure
calibration information is correctly calculated.

Note: The exome capture BED file must correspond to the correct reference you are mapping and calling against.
You may need to run the BED file supplied by your sequencing vendor through a lift-over tool if the reference
genome versions differ.

The size of the job should be tuned to the available memory of the server node. You can perform mapping in
segments by using the --start-read and --end-read flags during mapping. Currently, a 48 GB RAM
system as specified in the technical requirements section can process 100 million reads in about an hour. The
following example would work to map a data set containing just over 100 million reads in batches of 10 million.

142 Chapter 3. RTG product usage - baseline progressions

RTG Core Operations Manual, Release 3.10

$ for ((j=0;j<10;j++)); do
rtg map -t grch38 --pedigree ceph-1463.ped \

-i sample1-100M -o map_sample1-$j \
--start-read=$((j*10000000)) --end-read=$(((j+1)*10000000))

done

Note that each of these runs can be executed independently of the others. This allows parallel processing in a
compute cluster that can reduce wall clock time.

In a parallel compute cluster special consideration is needed with respect to where data resides during the mapping
process. Reading and writing data from and to a single networked disk partition may result in undesirable I/O
performance characteristics depending on the size and structure of the compute cluster. One way to minimize the
adverse affects of I/O limitations is to separate input data sets and map output directories, storing them on different
network disk partitions.

Using the --tempdir flag allows the map command to use a directory other than the output directory to store
temporary files that are output during the mapping process. The size of the temporary files is the same as the
total size of files in the map output directory after processing has finished. The following example shows how to
modify the above example to place outputs on a separate partition to the inputs.

$ mkdir /partition3/map_temp_sample1
$ for ((j=0;j<10;j++)); do

rtg map -t /partition1/grch38 --pedigree /partition1/ceph-1463.ped \
-i /partition1/sample1-100M \
-o /partition2/map_sample1-$j \
--start-read=$((j*1000000)) --end-read=$(((j+1)*1000000)) \
--tempdir /partition3/map_temp_sample1

done

Processing other samples in the pedigree is a matter of specifying different input SDF and output directories.

3.1.5 Task 5 - View and evaluate mapping performance

An alignments.bam file can be viewed directly using the RTG extract command in conjunction with a
shell command such as less to quickly inspect the results.

$ rtg extract map_sample_NA12878/NA12878_L001-0/alignments.bam | less -S

Since the mappings are indexed by default, it is also possible to view mappings corresponding to particular ge-
nomic regions. For example:

$ rtg extract map_sample_NA12878/NA12878_L001-0/alignments.bam chr6:1000000-
→˓5000000 \
| less -S

The mapping output directory also contains a simple HTML summary report giving information about mapping
counts, alignment score distribution, paired-end insert size distribution, etc. This can be viewed in your web
browser. For example:

$ firefox map_sample_NA12878/NA12878_L001-0/index.html

For more detailed summary statistics, use the samstats command. This example will report information such as
total records, number unmapped, specific details about the mate pair reads, and distributions for alignment scores,
insert sizes and read hits.

$ rtg samstats -t grch38 map_sample_NA12878/NA12878_L001-0/alignments.bam \
-r sample_NA12878/NA12878_L001 --distributions

Finally, the short summary of mapping produced on the terminal at the end of the map run, is also available as
summary.txt in the mapping output directory.

3.1. Human read mapping and sequence variant detection 143

RTG Core Operations Manual, Release 3.10

3.1.6 Task 6 - Generate and review coverage information

For human genomic analysis, it is important to have sufficient coverage over the entire genome to detect variants
accurately and minimize false negative calls. The coverage command provides detailed statistics for depth of
coverage and gap size distribution. If coverage proves to be inadequate or spotty, remapping the data with different
sensitivity tuning or rerunning the sample with different sequencing technology may help.

This example shows the coverage command used with all alignments, both mated and unmated, for the entire
sample. The -s flag is used to introduce smoothing of the data, by default the data will not be smoothed. While
you can supply the coverage command with the names of BAM files individually on the command line, this
becomes unwieldy when the mapping has been carried out in many smaller jobs. In this command we will use the
-I flag to supply a text file containing the names of all the mapping output BAM files, one per line. One example
way to create this file is with the following command (assuming all your mapping runs have used a common root
directory):

$ find map_sample_NA12878 -name "*.bam" > NA12878-bam-files.txt
$ rtg coverage -t grch38 -s 20 -o cov_sample_NA12878 -I NA12878-bam-files.txt

For exome or other targeted data, the coverage command can be instructed to focus only within the target regions
by supplying the target regions BED file.

$ rtg coverage -t grch38 --bed-regions exome-regions.bed -s 20 \
-o cov_sample_NA12878 -I NA12878-bam-files.txt

By default the coverage command will generate a BED formatted file containing regions of similar coverage.
This BED file can be loaded into a genome browser to visualize the coverage, and may also be examined on the
command line. For example:

$ rtg extract cov_sample_NA12878/coverage.bed.gz 'chr6:1000000-5000000' | less

The coverage command also creates a simple HTML summary report containing graphs of the depth of cover-
age distribution and cumulative depth of coverage. This can be viewed in your web browser. For example:

$ firefox cov_sample_NA12878/index.html

The coverage command has several options that alter the way that coverage levels are reported (for example,
determining callability or giving per-region reporting). See coverage for more detail.

3.1.7 Task 7 - Call sequence variants (single sample)

The primary germline variant calling commands in the RTG suite are the snp command for detecting variants
in a single sample, the family command for performing simultaneous joint calling of multiple family members
within a single family, and the population command for performing simultaneous joint calling of multiple
population members with varying degrees of relatedness. Where possible, we recommend using joint calling, as
this ensures the maximum use of pedigree information as well as preventing cross-sample variant representation
inconsistency that can occur when calling multiple samples individually. All of the RTG variant callers are sex-
aware, producing calls of appropriate ploidy on the sex chromosomes and within PAR regions.

In this section, we demonstrate single sample calling with snp. For family calling, see Task 8 - Call sequence
variants (single family), and for population calling, see Task 9 - Call population sequence variants.

The snp command detects sequence variants in a single sample, given adequate but not excessively high coverage
of reads against the reference genome. As with the coverage command, we can supply a file containing a list of
all the needed input files. In this case the mapping calibration files will be automatically detected at the location
of the BAM files themselves and will be used in order to enable base quality recalibration during variant calling.

This example takes all available BAM files for the sample and calls SNP, MNP, and indel sequence variants.

$ rtg snp -t grch38 --pedigree ceph-1463.ped \
-o snp_sample_NA12878 -I sample_NA12878-bam-files

144 Chapter 3. RTG product usage - baseline progressions

RTG Core Operations Manual, Release 3.10

Here we supply the pedigree file in order to inform the variant caller of the sample sex. While multiple samples
may be listed in the pedigree file, the snp command will object if mappings for multiple samples are supplied as
input.

For exome data it is also recommended to provide the BED file describing the exome regions to the variant caller
in order to filter the output produced to be within the exome regions. There are two approaches here. The first
is to instruct the variant caller to only perform variant calling at sites within the exome regions by supplying the
--bed-regions option:

$ rtg snp -t grch38 --pedigree ceph-1463.ped --bed-regions exome-regions.bed \
-o snp_sample_NA12878 -I sample_NA12878-bam-files

This approach is computationally more efficient. However, if calls at off-target sites are potentially of interest,
a second approach is to call variants at all sites but automatically filter variants as being off-target in the VCF
FILTER field by using the --filter-bed option:

$ rtg snp -t grch38 --pedigree ceph-1463.ped --filter-bed exome-regions.bed \
-o snp_sample_NA12878 -I sample_NA12878-bam-files

If you do not have a BED file that specifies the exome capture regions for your reference genome, you should
supply the --max-coverage flag during variant calling to indicate an appropriate coverage threshold for over-
coverage situations. A typical value is 5 times the expected coverage level within exome regions.

The snp command will perform the Bayesian variant calling and will use a default AVR model for scoring variant
call quality. If you have a more appropriate model available, you should supply this with the --avr-model flag.
RTG supplies some pre-built models which work well in a wide variety of cases, and includes tools for building
custom AVR models. See AVR scoring using HAPMAP for model building for more information on building
custom models.

The snp command will output variant call summary information upon completion, and this is also available in
the output directory in the file summary.txt.

Variants are produced in standard VCF format. Since the variant calls are compressed and indexed by default, it
is possible to view calls corresponding to particular genomic regions. For example:

$ rtg extract snp_sample_NA12878/snps.vcf.gz chr6:1000000-5000000 | less -S

Inspecting the output VCF for this run will show that no variants have been called for the Y chromosome. If you
carry out similar sex-aware calling for the father of the trio, NA12891, inspection of the output VCF will show
haploid variant calls for the X and Y chromosomes.

$ rtg extract snp_sample_NA12891/snps.vcf.gz chrX | head
$ rtg extract snp_sample_NA12891/snps.vcf.gz chrY | head

RTG also supports automatic handling of pseudoautosomal regions (PAR) and will produce haploid or diploid
calls within the X PAR regions as appropriate for the sex of the individual.

A simple way to improve throughput is to call variants using a separate job for each reference sequence. Each of
these runs could be executed on independent nodes of a cluster in order to reduce wall clock time.

$ for seq in M {1..22} X Y; do
rtg snp -t grch38 --pedigree ceph-1463.ped -I sample_NA12878-bam-files \

-o snp_sample_NA12878_chr"$seq" --region chr"$seq"
done

After the separate variant calling jobs complete, the VCF files for each chromosome can be combined into a single
file, if desired, by using a vcfmerge command such as:

$ rtg vcfmerge -o snp_sample_NA12878.vcf.gz snp_sample_NA12878_chr*/snps.vcf.gz

The individual snp commands will have output summary information about the variant calls made in each job.
Combined summary information can be output for the merged VCF file with the vcfstats command.

3.1. Human read mapping and sequence variant detection 145

RTG Core Operations Manual, Release 3.10

$ rtg vcfstats snp_sample_NA12878.vcf.gz

Simple filtering of variants can be applied using the vcffilter command. For example, filtering calls by
genotype quality or AVR score can be accomplished with a command such as:

$ rtg vcffilter --min-genotype-quality 50 -i snp_sample_NA12878.vcf.gz \
-o filtered_sample_NA12878.vcf.gz

In this case, any variants failing the filter will be removed. Alternatively, failing variants can be kept but marked
with a custom VCF FILTER field, such as:

$ rtg vcffilter --fail LOW-GQ --min-genotype-quality 50 \
-i snp_sample_NA12878.vcf.gz -o filtered_sample_NA12878.vcf.gz

3.1.8 Task 8 - Call sequence variants (single family)

This section demonstrates joint calling multiple samples comprising a single Mendelian family. RTG is unique
in supporting family calling beyond a single-child trio, and directly supports jointly calling a family involving
multiple offspring. In this example, we call the large family of the CEPH pedigree containing 11 children.

The family command is invoked similarly to the snp command except you need to specify the way the samples
relate to each other. This is done by specifying the corresponding sample ID used during mapping to the command
line flags --mother, --father, --daughter and --son.

Note: The RTG family command only supports a basic family relationship of a mother, father and one or more
children, either daughters or sons. For other pedigrees, use the population command.

To run the family command on the trio of NA12892 (mother), NA12891 (father) and NA12878 (daughter) you
need to provide all the mapping files for the samples. The mapping calibration files will be automatically detected
at the locations of the mapping files. To specify these in a file list for input you could run:

$ find /partition2/map_trio -name "alignments.bam" > map_trio-bam-files

To run the family command you then specify the sample ID for each member of the trio to the appropriate flag.

$ rtg family --mother NA12892 --father NA12891 --daughter NA12878 -t grch38 \
-o trio_variants -I map_trio-bam-files

Examining the snps.vcf.gz file in the output directory will show individual columns for the variants of each
family member. For more details about the VCF output file see Small-variant VCF output file description

Note: Per-family relationship information can also be specified using a pedigree PED file with the --pedigree
flag. In this case, the pedigree file should contain a single family only.

3.1.9 Task 9 - Call population sequence variants

This section demonstrates joint variant calling of multiple potentially related or unrelated individuals in a popula-
tion.

The population command is invoked similarly to the snp command except you must specify the pedigree file
containing information about each sample and the relationships (if any) between them.

To run the population command on the population of NA12892, NA12891, NA19240 and NA12878 you need
to provide all the mapping files for the samples. The mapping calibration files will be automatically detected at
the locations of the mapping files. To specify these in a file list for input you could run:

146 Chapter 3. RTG product usage - baseline progressions

RTG Core Operations Manual, Release 3.10

$ find /partition2/map_population -name "alignments.bam" > map_population-bam-files

To run the population command you specify the PED file containing the sample ID for each member of the
population in the individual ID column.

$ rtg population -t grch38 --pedigree ceph-1463.ped -o pop_variants \
-I map_population-bam-files

Examining the snps.vcf.gz file in the output directory will show individual columns for the variants of each
member of the population. For more details about the VCF output file see Small-variant VCF output file descrip-
tion.

3.2 Create and use population priors in variant calling

To improve the accuracy of variant calling on new members of a population, a file containing the allele counts of
the population’s known variants may be supplied. This information is used as an extra set of prior probabilities
when making calls.

Sources of this allele count data can be external, for instance the 1000 genomes project, or from prior variant
calling on other members of the population. An example use case of the latter follows.

Data

For this use case it is assumed that the following data is available:

• /data/runs/20humans.vcf.gz - output from a previous population command run on 20 humans
from a population.

• /data/reference/human_reference - SDF containing the human reference sequences.

• /data/mappings/new_human.txt - text file containing a list of BAM files with the sequence align-
ments for the new member of the population.

Table : Overview of pipeline tasks.

Task Command &
Utilities

Purpose

1 Produce population
priors file

rtg
vcfannotate,
rtg vcfsubset

Produce a reusable set of population priors from an
existing VCF file

2 Run variant calling
using population
priors

rtg snp Perform variant calling on the new member of the
population using the new population priors to improve
results

3.2.1 Task 1 - Produce population priors file

Using a full VCF file for a large population as population priors can be slow, as it contains lots of unnecessary
information. The AC and AN fields are the standard VCF specification fields representing the allele count in
genotypes, and total number of alleles in called genotypes. For more information on these fields, see the VCF
specification at https://samtools.github.io/hts-specs/VCFv4.1.pdf. Alternatively, retaining only the GT field for
each sample is sufficient, however this is less efficient both computationally and size-wise.

To calculate and annotate the AC and AN fields for a VCF file, use the RTG command vcfannotate with the
parameter --fill-an-ac:

$ rtg vcfannotate --fill-an-ac -i /data/runs/20humans.vcf.gz \
-o 20humans_an_ac.vcf.gz

Then remove all unnecessary data from the file using the RTG command vcfsubset as follows:

3.2. Create and use population priors in variant calling 147

https://samtools.github.io/hts-specs/VCFv4.1.pdf

RTG Core Operations Manual, Release 3.10

$ rtg vcfsubset --keep-info AC,AN --remove-samples \
-i 20humans_an_ac.vcf.gz -o 20humans_priors.vcf.gz

This output is block compressed and tabix indexed by default, which is necessary for the population priors input.
There will be an additional file output called 20humans_priors.vcf.gz.tbi which is the tabix index file.

The resulting population priors can now be stored in a suitable location to be used for any further runs as required.

$ cp 20humans_priors.vcf.gz* /data/population_priors/

3.2.2 Task 2 - Run variant calling using population priors

The population priors can now be used to improve variant calling on new members of the population supplying
the --population-priors parameter to any of the variant caller commands.

$ rtg snp -o new_human_snps -t /data/reference/human_reference \
-I /data/mappings/new_human.txt \
--population-priors /data/population_priors/20humans_priors.vcf.gz

3.3 Somatic variant detection in cancer

Use the following ordered steps to detect somatic variations between normal and tumor samples.

Table : Overview of somatic pipeline tasks.

Task Command
& Utilities

Purpose

1 Format reference data rtg
format

Convert reference sequence from FASTA file to RTG Sequence
Data Format (SDF)

2 Format read data rtg
format

Convert read sequence from FASTA and FASTQ files to RTG
Sequence Data Format (SDF)

3 Map reads against the
reference genome

rtg map Generate read alignments for the normal and cancer samples,
and report in a BAM file for downstream analysis

4 Call somatic variants rtg
somatic

Detect somatic variants between the normal and tumor samples

3.3.1 Task 1 - Format reference data (Somatic)

Format the human reference data to RTG SDF using Task 1 of RTG mapping and sequence variant detection. In
the following tasks it is assumed the human reference SDF is called grch38.

3.3.2 Task 2 - Format read data (Somatic)

Format the normal and tumor sample read data sets to RTG SDF using Task 2 of RTG mapping and sequence
variant detection. In this example we assume there are 20 lanes of data for each sample.

$ for ((i=1;i<20;i++)); do
$ rtg format -f fastq -q solexa -o normal_reads_${i} \

-l /data/reads/normal/${i}/reads_1.fq \
-r /data/reads/normal/${i}/reads_2.fq \
--sam-rg "@RG\tID:normal_${lane_id}\tSM:sm_normal\tPL:ILLUMINA"

done
$ for ((i=1;i<20;i++)); do
$ rtg format -f fastq -q solexa -o tumor_reads_${i} \

-l /data/reads/tumor/${i}/reads_1.fq \

148 Chapter 3. RTG product usage - baseline progressions

RTG Core Operations Manual, Release 3.10

-r /data/reads/tumor/${i}/reads_2.fq \
--sam-rg "@RG\tID:tumor_${lane_id}\tSM:sm_tumor\tPL:ILLUMINA"

done

3.3.3 Task 3 - Map tumor and normal sample reads against the reference genome

Map the normal and tumor sample reads against the reference genome as in Task 4 - Map reads to the refer-
ence genome. The mapping must be done with appropriate read group information for each read set with the
--sam-rg flag. All mappings on the normal should have the same sample ID and all mappings on the tumor
should have the same sample ID, but the sample ID should be different between the tumor mappings and normal
mappings.

$ for ((i=1;i<20;i++)); do
rtg map -i normal_reads_${i} -t grch38 -o normal_map_${i}

done
$ for ((i=1;i<20;i++)); do

rtg map -i cancer_reads_${i} -t grch38 -o cancer_map_${i}
done

3.3.4 Task 4 - Call somatic variants

The somatic command is invoked similarly to the snp command except you need to specify some extra de-
tails. Firstly you need to specify the sample IDs corresponding to the normal and cancer samples, with the
--original and --derived flags respectively. Secondly you may optionally specify the estimated level of
contamination of the tumor sample with normal tissue using the --contamination flag.

$ rtg somatic -t grch38 -o somatic_out --derived sm_tumor --original sm_normal \
--contamination 0.1 normal_map_*/alignments.bam tumor_map_*/alignments.bam

Examining the snps.vcf.gz file in the output directory will show a column each for the variants of the normal
and tumor samples and will contain variants where the tumor sample differs from the normal sample. The somatic
command stores information in the VCF INFO fields NCS, and LOH, and FORMAT fields SSC and SS. For more
details about the VCF output file see Small-variant VCF output file description.

3.3.5 Using site-specific somatic priors

The somatic command has a default prior of 0.000001 (1e-6) for a particular site being somatic. Since the
human genome comprises some 3.2 GB, this prior corresponds to an expectation of about 3200 somatic variants
in a whole genome sample. Depending on the expected number of variants for a particular sample, it may be
appropriate to raise or lower this prior. In general, decreasing the prior increases specificity while increasing the
prior increases sensitivity.

Of course, not every site is equally likely to lead to a somatic variant. To support different priors for different
sites we provide a facility to set a prior on per site basis via a BED file we call site-specific somatic
priors. The --somatic-priors command line option is used to provide the file to the somatic command.

The site-specific somatic priors can cover as many or as few sites as desired. Any site not covered by a specific
prior will use the default prior. The format of the file is a BED file where the fourth column of each line gives the
explicit prior for the indicated region, for example,

1 14906 14910 1e-8

denotes that the prior for bases 14907, 14908, 14909, and 14910 on chromosome 1 is 1e-8 rather than the default.
(Recall that BED files use 0-based indices.) If the BED file contains more than one prior covering a particular
site, then the largest prior covering that site is used. When making a complex call, the prior used is the arithmetic
average of priors in the region of the complex call.

3.3. Somatic variant detection in cancer 149

RTG Core Operations Manual, Release 3.10

A typical starting point for making somatic site-specific priors might include a database of known cancer sites (for
example, COSMIC) and a database of sites known to be variant in the population (for example, dbSNP). The idea
is that the COSMIC sites are more likely to be somatic and should have a higher prior, while those in dbSNP are
less likely to be somatic and should have a lower prior.

The following recipe can be used to build the BED file where some sites have a lower prior of 1e-8 and others
have a higher prior of 1e-5. The procedure can be easily modified to incorporate additional inputs each with its
own prior.

First, collect prerequisites in the form of VCF files (here using the names cosmic.vcf.gz and dbsnp.vcf.
gz, but, of course, any other VCFs can also be used).

$ COSMIC=cosmic.vcf.gz
$ DBSNP=dbsnp.vcf.gz

Convert each VCF file into a BED file with the desired priors taking care to convert from 1-based coordinates in
VCF to 0-based coordinates in VCF.

$ zcat ${COSMIC} | awk -vOFS='\t' '/^[^#]/{print $1,$2-1,$2+length($4)-1,"1e-5"}'\
| sort -Vu >p0.bed

$ zcat ${DBSNP} | awk -vOFS='\t' '/^[^#]/{print $1,$2-1,$2+length($4)-1,"1e-8"}'\
| sort -Vu >p1.bed

[Optional] Collapse adjacent intervals together. One way of doing this is to use the bedtools merge facility.
This can result in a smaller final result when the intervals are dense.

$ bedtools merge -c 4 -o distinct -i p0.bed >p0.tmp && mv p0.tmp p0.bed
$ bedtools merge -c 4 -o distinct -i p1.bed >p1.tmp && mv p1.tmp p1.bed

In general, care must be taken to ensure intersecting sites are handled in the desired manner. Since in this case
we want to use COSMIC in preference to dbSNP and prior(COSMIC) > prior(dbSNP), we can simply merge the
outputs because the somatic caller will choose the larger prior in the case of overlap.

$ sort --merge -V p0.bed p1.bed | rtg bgzip - >somatic-priors.bed.gz

To support somatic calling on restricted regions, construct a tabix index for the priors file.

$ rtg index -f bed somatic-priors.bed.gz

The site-specific somatic BED file is now ready to be used by the somatic command:

$ rtg somatic --somatic-priors somatic-priors.bed.gz ...

3.4 AVR scoring using HAPMAP for model building

AVR (Adaptive Variant Rescoring) is a machine learning technology for learning and predicting which calls are
likely correct. It comprises of a learning algorithm that takes training examples and infers a model about what
constitutes a good call and a prediction engine which applies the model to variants and estimates their correctness.
It includes attributes of the call that are not considered by the internal Bayesian statistics model to make better
predictions as to the correctness of a variant call.

Each of the RTG variant callers (snp, family, population) automatically runs a default AVR model, pro-
ducing an AVR attribute for each sample. The model can be changed with the --avr-model parameter, and the
AVR functionality can be turned off completely by specifying the special ‘none‘ model.

Example command line usage. Turn AVR rescoring off:

$ rtg family --mother NA12892 --father NA12891 --daughter NA12878 -t grch38 \
-o trio_variants -I map_trio-bam-files --avr-model none

150 Chapter 3. RTG product usage - baseline progressions

http://cancer.sanger.ac.uk/cosmic
http://www.ncbi.nlm.nih.gov/SNP/

RTG Core Operations Manual, Release 3.10

Apply default RTG AVR model:

$ rtg family --mother NA12892 --father NA12891 --daughter NA12878 -t grch38 \
-o trio_variants -I map_trio-bam-files

Apply a custom AVR model:

$ rtg family --mother NA12892 --father NA12891 --daughter NA12878 -t grch38 \
-o trio_variants -I map_trio-bam-files --avr-model /path/to/my/custom.avr

The effectiveness of AVR is strongly dependent on the quality of the training data. In general, the more training
data you have, the better the model will be. Ideally the training data should have the same characteristics as the
calls to be predicted; that is, the same platform, the same reference, the same coverage, etc. There also needs to
be a balance of positive and negative training examples. In reality, these conditions can only be met to varying
degrees, but AVR will try to make the most of what it is given.

A given AVR model is tied to a set of attributes corresponding to fields in VCF records or quantities that are
derivable from those fields. The attributes chosen can take into account anomalies associated with different se-
quencing technologies. Examples of attributes are things like quality of the call, zygosity of the call, strand bias,
allele balance, and whether or not the call is complex. Not all attributes are equally predictive and it is the job of
the machine learning to determine which combinations of attributes lead to the best predictions. When building
a model it is necessary to provide the list of attributes to be used. In general, providing more attributes gives the
AVR model a better chance at learning what constitutes a good call. There are two caveats; the attributes used
during training need to be present in the calls to be predicted and some attributes like DP are vulnerable to changes
in coverage. AVR is able to cope with missing values during both training and prediction.

The training data needs to comprise both positive and negative examples. Ideally we would know exactly the truth
status of each training example, but in reality this must be approximated by reference to some combination of
baseline information.

In the example that follows, the HAPMAP database will be used to produce and then use an AVR model on a set
of output variants, a process that can be used when no appropriate AVR model is already available. The HAPMAP
database will be used to determine which of the variants will be considered correct for training purposes. This
will introduce two types of error; correct calls which are not in HAPMAP will be marked as negative training
examples and a few incorrect calls occurring at HAPMAP sites will be marked as positive training examples.

Data

Reference SDF on which variant calling was performed, in this example assumed to be an existing SDF containing
the 1000 genomes build 37 phase 2 reference

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.
gz). For this example this will be called /data/reference/1000g_v37_phase2.

The HAPMAP variants file from the Broad Institute data bundle

(ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/2.5/b37/hapmap_3.3.b37.vcf.gz). For this example
this will be called /data/hapmap_3.3.b37.vcf.gz.

The example will be performed on the merged results of the RTG family command for the 1000 genomes CEU
trio NA12878, NA12891 and NA12892. For this example this will be called /data/runs/NA12878trio/
family.vcf.gz.

Table : Overview of basic pipeline tasks.

3.4. AVR scoring using HAPMAP for model building 151

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/2.5/b37/hapmap_3.3.b37.vcf.gz

RTG Core Operations Manual, Release 3.10

Task Command & Utilities Purpose
1 Create

training data
rtg vcffilter To generate positive and negative examples for

the AVR machine learning model to train on
2 Build and

check AVR
model

rtg avrbuild, rtg
avrstats

To create and check an AVR model

3 Use AVR
model

rtg avrpredict, rtg snp,
rtg family, rtg
population

To apply the AVR model to the existing output
or to use it directly during variant calling

4 Install AVR
model

cp Install model in standard RTG model location
for later reuse

3.4.1 Task 1 - Create training data

The first step is to use the vcffilter command to split the variant calls into positive and negative training ex-
amples with respect to HAPMAP. It is also possible to build training sets using the vcfeval command, however
this is less appropriate for dealing with sites rather than calls, and experiments indicate using vcffilter leads
to better training sets.

$ rtg vcffilter --include-vcf /data/hapmap_3.3.b37.vcf.gz -o pos-NA12878.vcf.gz \
-i /data/runs/NA12878trio/family.vcf.gz --sample NA12878 --remove-same-as-ref

$ rtg vcffilter --exclude-vcf /data/hapmap_3.3.b37.vcf.gz -o neg-NA12878.vcf.gz \
-i /data/runs/NA12878trio/family.vcf.gz --sample NA12878 --remove-same-as-ref

Optionally check that the training data looks reasonable. There should be a reasonable amount of both positive
and negative examples and all expected chromosomes should be represented.

3.4.2 Task 2 - Build and check AVR model

The next step is to build an AVR model. Select the attributes that will be used with some consideration to portabil-
ity and the nature of the training set. Here we have excluded XRX and LAL because HAPMAP is primarily SNP
locations and does not capture complex calls. By excluding XRX and LAL we prevent the model from learning that
complex calls are bad. We have also excluded DP because we want a model somewhat independent of coverage
level. Building the model can take a large amount of RAM and several hours. The amount of memory required is
proportional to the number of training instances.

A list of derived annotations that can be used are available in the documentation for avrbuild. For VCF INFO and
FORMAT annotations check the header of the VCF file for available fields. The VCF fields output by RTG variant
callers are described in Small-variant VCF output file description.

$ rtg avrbuild -o NA12878model.avr --info-annotations DPR \
--format-annotations DPR,AR,ABP,SBP,RPB,GQ \
--derived-annotations IC,EP,QD,AN,PD,GQD,ZY \
--sample NA12878 -p pos-NA12878.vcf.gz -n neg-NA12878.vcf.gz

Examine the statistics output to the screen to check things look reasonable. Due to how attributes are computed
there can be missing values, but it is a bad sign if any attribute is missing from most samples.

Total number of examples: 5073752
Total number of positive examples: 680677
Total number of negative examples: 4393075
Total weight of positive examples: 2536873.27
Total weight of negative examples: 2536876.42
Number of examples with missing values:
DERIVED-AN 0
DERIVED-EP 0
DERIVED-GQD 0
DERIVED-IC 915424
DERIVED-PD 0

152 Chapter 3. RTG product usage - baseline progressions

RTG Core Operations Manual, Release 3.10

DERIVED-QD 0
DERIVED-ZY 0
FORMAT-ABP 13602
FORMAT-AR 8375
FORMAT-DPR 0
FORMAT-GQ 0
FORMAT-RPB 8375
FORMAT-SBP 37129
INFO-DPR 0
Hold-out score: 69.1821% (96853407/139997752)
Attribute importance estimate for DERIVED-AN: 0.0304% (29443/96853407)
Attribute importance estimate for DERIVED-EP: 1.2691% (1229135/96853407)
Attribute importance estimate for DERIVED-GQD: 4.7844%
(4633873/96853407)
Attribute importance estimate for DERIVED-IC: 4.7748% (4624554/96853407)
Attribute importance estimate for DERIVED-PD: 0.0000% (0/96853407)
Attribute importance estimate for DERIVED-QD: 6.8396% (6624383/96853407)
Attribute importance estimate for DERIVED-ZY: 0.8693% (841925/96853407)
Attribute importance estimate for FORMAT-ABP: 5.4232% (5252533/96853407)
Attribute importance estimate for FORMAT-AR: 2.6008% (2518955/96853407)
Attribute importance estimate for FORMAT-DPR: 3.3186% (3214163/96853407)
Attribute importance estimate for FORMAT-GQ: 3.4268% (3319009/96853407)
Attribute importance estimate for FORMAT-RPB: 0.2176% (210761/96853407)
Attribute importance estimate for FORMAT-SBP: 0.0219% (21196/96853407)
Attribute importance estimate for INFO-DPR: 4.6525% (4506074/96853407)

Optionally check the resulting model file using the avrstats command. This will produce a short summary of
the model including the attributes used during the build.

$ rtg avrstats NA12878model.avr
Location : NA12878model.avr
Parameters : avrbuild -o NA12878model.avr --info-annotations DPR --derived-
→˓annotations IC,EP,QD,AN,PD,GQD,ZY --format-annotations DPR,AR,ABP,SBP,RPB,GQ --
→˓sample NA12878 -p pos-NA12878.vcf.gz -n neg-NA12878.vcf.gz
Date built : 2013-05-17-09-41-17
AVR Version : 1
AVR-ID : 7ded37d7-817f-467b-a7da-73e374719c7f
Type : ML
QUAL used : false
INFO fields : DPR
FORMAT fields : DPR,AR,ABP,SBP,RPB,GQ
Derived fields: IC,EP,QD,AN,PD,GQD,ZY

3.4.3 Task 3 - Use AVR model

The model is now ready to be used. It can be applied to the existing variant calling output by using the
avrpredict command.

$ rtg avrpredict --avr-model NA12878model.avr \
-i /data/runs/NA12878trio/family.vcf.gz -o predict.vcf.gz

This will create or update the AVR FORMAT field in the VCF output file with a score between 0 and 1. The higher
the resulting score the more likely it is correct. To select an appropriate cutoff value for further analysis of variants
some approaches might include measuring the Ti/Tv ratio or measuring sensitivity against another standard such
as OMNI at varying score cutoffs.

The model can also be used directly in any new variant calling runs:

$ rtg snp --avr-model NA12878model.avr -t grch38 -o snp_sample_NA12878 --sex
→˓female \
-I sample_NA12878-map-files

3.4. AVR scoring using HAPMAP for model building 153

RTG Core Operations Manual, Release 3.10

$ rtg population --avr-model NA12878model.avr -t grch38 -o pop_variants \
-I map_population-bam-files

3.4.4 Task 4 - Install AVR model

The custom AVR model can be installed into a standard location so that it can be referred to by a short name (rather
than the full file path name) in the avrpredict and variant caller commands. The default location for AVR
models is within a subdirectory of the RTG installation directory called models, and each file in that directory
with a .avr extension is a model that can be accessed by its short name. For example if the NA12878model.
avr model file is placed in /path/to/rtg/installation/models/NA12878model.avr it can be
accessed by any user either using the full path to the model:

$ rtg snp --avr-model /path/to/rtg/installation/models/NA12878model.avr \
-o snp_sample_NA12878 -t grch38 --sex female -I sample_NA12878-map-files

or, by just the model file name:

$ rtg snp --avr-model NA12878model.avr -o snp_sample_NA12878 -t grch38 --sex
→˓female \
-I sample_NA12878-map-files

The AVR model directory will already contain the models prebuilt by RTG:

• illumina-exome.avr - model built from Illumina exome sequencing data. If you are running variant
calling Illumina exome data you may want to use this model instead of the default, although the default
should still be effective.

• illumina-wgs.avr - model built from Illumina whole genome sequencing data. This model is the
default model when running normal variant calling.

• illumina-somatic.avr - model built from somatic samples using Illumina sequencing. It is ap-
plicable to somatic variant calling, where a variety of allelic fractions are to be expected in somatic
variants. The somatic command defaults to this AVR model. If you want to score germline variants
in a somatic run, it is preferable to use illumina-wgs.avr or illumina-exome.wgs instead.

• alternate.avr - model built using XRX, ZY and GQD attributes. This should be platform independent
and may be a better choice if a more specific model for your data is unavailable. In particular, this model
may be more appropriate for scoring the results of variant calling in situations where unusual allele-balance
is expected (for example somatic calling with contamination, or calling high amplification data where allele
drop out is expected)

It is possible to score a sample with more than one AVR model, by running avrpredict with another model
and using a different field name specified with --vcf-score-field.

3.5 RTG structural variant detection

RTG has developed tools to assist in discovering structural variant regions in whole genome sequencing data.
The tools can be used to locate likely structural variant breakpoints and regions that have been duplicated or
deleted. These tools are capable of processing whole genome mapping data containing multiple read groups in a
streamlined fashion.

In this example, it is assumed that alignment has been carried out as described in Task 4 - Map reads to the
reference genome. For structural variant detection it is particularly important to specify the read group information
with the --sam-rg flag either during the formatting of the reads or for the map command explicitly. The
structural variant tools currently requires the PL (platform) attribute to be either ILLUMINA (for Illumina reads)
or COMPLETE (for Complete Genomics reads).

Table : Overview of structural variants analysis pipeline tasks.

154 Chapter 3. RTG product usage - baseline progressions

RTG Core Operations Manual, Release 3.10

Task Command &
Utilities

Purpose

1 Prepare read group
statistics file

find Identify read group statistics files created during
mapping

2 Find structural variants
with sv

rtg sv Process prepared mapping results to identify likely
structural variants

3 Find structural variants
with discord

rtg
discord

Process prepared mapping results to identify likely
structural variant breakends

4 Find copy number
variants

rtg cnv Detect copy number variants between a pair of samples

3.5.1 Task 1 - Prepare Read-group statistics files

Mapping identifies discordant read matings and inserts the pair information for unique unmated reads into the
SAM records. The map command also produces a file within the directory called rgstats.tsv containing
read group statistics.

The sv and discord structural variant callers require the read group statistics files to be supplied, so as with
multiple BAM files, it is possible to create a text file listing the locations of all the required statistics files:

$ find /partition2/map_sample_NA12878 -name "rgstats.tsv" \
> sample_NA12878-rgstats-files

3.5.2 Task 2 - Find structural variants with sv

Once mapping is complete one can run the structural variants analysis tool. To run the sv tool you need to supply
the mapping BAM files and the read group statistics files. As with the variant caller commands, this can be a large
number of files and so input can be specified using list files.

$ rtg sv -t grch38 -o sample_NA12878-sv -I sample_NA12878-bam-files \
-R sample_NA12878-rgstats-files

$ ls -l sample_NA12878-sv
30 Oct 1 16:56 done

15440 Oct 1 16:56 progress
0 Oct 1 16:56 summary.txt

122762 Oct 1 16:56 sv_bayesian.tsv.gz
9032 Oct 1 16:56 sv.log

The file sv_bayesian.tsv.gz contains a trace of the strengths of alternative bayesian hypothesis at points
along the reference genome. The currently supported hypotheses are shown in the following table.

Table : Structural variant hypotheses.

Hypothesis Semantics
normal Normal mappings, no structural variants
duplicate Above normal mappings, potential duplication region
delete Below normal mappings, potential deletion region
delete-left Mapping data suggest the left breakpoint of a deletion
delete-right Mapping data suggest the right breakpoint of a deletion
duplicate-left Mapping data suggest the left boundary of a region that has been copied elsewhere
duplicate-right Mapping data suggest the right boundary of a region that has been copied elsewhere
breakpoint Mapping data suggest this location has received an insertion of copied genome
novel-insertion Mapping data suggests this location has received an insertion of material not present

in the reference

For convenience, the last column of the output file gives the index of the hypothesis with the maximum strength,
to make it easier to identify regions where this changes for further investigation by the researcher.

3.5. RTG structural variant detection 155

RTG Core Operations Manual, Release 3.10

The sv command also supports calling on individual chromosomes (or regions within a chromosome) with the
--region parameter, and this can be used to increase overall throughput.

$ for seq in M {1..22} X Y; do
rtg sv -o sv_sample_NA12878-chr${seq} -t grch38 -I sample_NA12878-sam-files \
-R sample_NA12878-rgstats-files --region chr${seq}

done

3.5.3 Task 3 - Find structural variants with discord

A second tool for finding structural variant break-ends is based on detecting cluster of discordantly mapped reads,
those where both ends of a read are mapped but are mapped either in an unexpected orientation or with a TLEN
outside the normal range for that read group. As with the sv command, discord requires the read group
statistics to be supplied.

$ rtg discord -t grch38 -o discord_sample_NA12878 -I sample_NA12878-bam-files \
-R sample_NA12878-rgstats-files --bed

As with sv, the discord command also supports using the --region flag:

$ for seq in M {1..22} X Y; do
rtg discord -o discord_sample_NA12878-chr${seq} -t grch38 \
-I sample_NA12878-bam-files -R sample_NA12878-rgstats-files \
--region chr${seq}

done

The default output is in VCF format, following the VCF 4.1 specification for break-ends. However, as most third-
party tools currently don’t support this type of VCF, it is also possible to output each break-end as a separate
region in a BED file.

3.5.4 Task 4 - Report copy number variation statistics

With two genome samples, one can compare the relative depth of coverage by region to identify copy number
variation ratios that may indicate structural variation. A common use case is where you have two samples from a
cancer patient, one from normal tissue and another from a tumor.

Run the cnv command with the default bucket size of 100, this is the number of nucleotides for which to average
the coverage.

$ rtg cnv -o cnv_s1_s2 -I sample1-map-files -J sample2-map-files

View the resulting output as a set of records that show cnv ratio at locations across the genome, where the locations
are defined by the bucket size.

$ zless cnv_s1_/cnv.txt.gz

For deeper investigation, contact Real Time Genomics technical support for extensible reporting scripts specific
to copy number variation reporting.

3.6 Ion Torrent bacterial mapping and sequence variant detection

The following example supports the steps typical to bacterial genome analysis in which an Ion Torrent sequencer
has generated reads at 10 fold coverage.

Data

The baseline uses actual data downloaded from the Ion community. The reference sequence is “Escherichia coli
K-12 sub-strain DH10B”, available from the NCBI RefSeq database, accession NC_010473 (http://www.ncbi.

156 Chapter 3. RTG product usage - baseline progressions

http://www.ncbi.nlm.nih.gov/nuccore/NC_010473
http://www.ncbi.nlm.nih.gov/nuccore/NC_010473

RTG Core Operations Manual, Release 3.10

nlm.nih.gov/nuccore/NC_010473). The read data is comprised of Ion Torrent PGM run B14-387, which can be
found at the Ion community (http://lifetech-it.hosted.jivesoftware.com, requires registration).

Table : Overview of basic pipeline tasks.

Task Command
& Utilities

Purpose

1 Format reference data rtg
format

Convert reference sequence from FASTA file to RTG Sequence
Data Format (SDF)

2 Format read data rtg
format

Convert read sequence from FASTA and FASTQ files to RTG
Sequence Data Format (SDF)

3 Map reads against the
reference genome

rtg map Generate read alignments for the normal and cancer samples,
and report in a BAM file for downstream analysis

4 Call sequence variants
in haploid mode

rtg snp Detect SNPs, MNPs, and indels in haploid sample relative to
the reference genome

3.6.1 Task 1 - Format bacterial reference data (Ion Torrent)

Mapping and variant detection requires a conversion of the reference genome from FASTA files into the RTG SDF
format. This task will be completed with the format command. The conversion will create an SDF directory
containing the reference genome.

Use the format command to convert the FASTA file into an SDF directory for the reference genome.

$ rtg format -o ecoli-DH10B \
/data/bacteria/Escherichia_coli_K_12_substr__DH10B_uid58979/NC_010473.fna

3.6.2 Task 2 - Format read data (Ion Torrent)

Mapping and variant detection of Ion Torrent data requires a conversion of the read sequence data from FASTQ
files into the RTG SDF format. Additionally, it is recommended that read trimming based on the quality data
present within the FASTQ file be performed as part of this conversion.

Use the format command to convert the read FASTQ file into an SDF directory, using the quality threshold
option to trim poor quality ends of reads.

$ rtg format -f fastq -q solexa --trim-threshold=15 -o B14-387-reads \
/data/reads/R_2011_07_19_20_05_38_user_B14-387-r121336-314_pool30-ms_Auto_B14\

-387-r121336-314_pool30-ms_8399.fastq

3.6.3 Task 3 - Map Ion Torrent reads to the reference genome

Map the sequence reads against the reference genome to generate alignments in BAM format.

The RTG map command provides a means for the mapping of Ion Torrent reads to a reference genome. When
mapping Ion Torrent reads, a read group with the platform field (PL) set to IONTORRENT should be provided.

$ rtg map -i B14-387-reads -t ecoli-DH10B -o B14-387-map \
--sam-rg "@RG\tID:B14-387-r121336\tSM:B14-387\tPL:IONTORRENT"

Multiple files are written to the output directory of the mapping run. For further variant calling, the
alignments.bam file has the associated required index file alignments.bam.bai. The additional files
alignments.bam.calibration contains metadata to provide more accurate variant calling.

3.6. Ion Torrent bacterial mapping and sequence variant detection 157

http://www.ncbi.nlm.nih.gov/nuccore/NC_010473
http://www.ncbi.nlm.nih.gov/nuccore/NC_010473
http://lifetech-it.hosted.jivesoftware.com

RTG Core Operations Manual, Release 3.10

3.6.4 Task 4 - Call sequence variants in haploid mode

Call haploid sequence variants in the mapped reads against the reference genome to generate a variants file in the
VCF format.

The snp command will automatically set machine error calibration parameters according to the platform (PL
attribute) specified in the SAM read group, in this example to the Ion Torrent parameters. The snp command
defaults to diploid variant calling, so for this bacterial example haploid mode will be specified. The automatically
included .calibration files provide additional information specific to the mapping data for improved variant
calling.

$ rtg snp -t ecoli-DH10B -o B14-387-snp --ploidy=haploid B14-387-map/alignments.bam

Examining the snps.vcf.gz file in the output directory will show that variants have been called in haploid
mode. For more details about the VCF output file see Small-variant VCF output file description.

3.7 RTG contaminant filtering

Use the following set of tasks to remove contaminated reads from a sequenced DNA sample.

The RTG contamination filter, called mapf, removes contaminant reads by mapping against a database of potential
contaminant sequences. For example, a bacterial metagenomic sample may have some amount of human sequence
contaminating it. The following process removes any human reads leaving only bacteria reads.

Table : Overview of contaminant filtering tasks.

Task Command &
Utilities

Purpose

1 Format
reference data

rtg format Convert reference sequence from FASTA file to RTG Sequence
Data Format (SDF)

2 Format read data rtg format Convert read sequence from FASTA and FASTQ files to RTG
Sequence Data Format (SDF)

3 Run
contamination
filter

rtg mapf Produce the SDF file of reads which map to the contaminant and
the SDF file of those that do not

4 Manage filtered
reads

mv Set up the results for use in further processing

3.7.1 Task 1 - Format reference data (contaminant filtering)

RTG tools require a conversion of reference sequences from FASTA files into the RTG SDF format. This task will
be completed with the format command. The conversion will create an SDF directory containing the reference
genome.

First, observe a typical genome reference with multiple chromosome sequences stored in compressed FASTA
format.

$ ls -l /data/human/hg19/
43026389 Mar 21 2009 chr10.fa.gz
42966674 Mar 21 2009 chr11.fa.gz
42648875 Mar 21 2009 chr12.fa.gz
31517348 Mar 21 2009 chr13.fa.gz
28970334 Mar 21 2009 chr14.fa.gz
26828094 Mar 21 2009 chr15.fa.gz
25667827 Mar 21 2009 chr16.fa.gz
25139792 Mar 21 2009 chr17.fa.gz
24574571 Mar 21 2009 chr18.fa.gz
17606811 Mar 21 2009 chr19.fa.gz
73773666 Mar 21 2009 chr1.fa.gz

158 Chapter 3. RTG product usage - baseline progressions

RTG Core Operations Manual, Release 3.10

19513342 Mar 21 2009 chr20.fa.gz
11549785 Mar 21 2009 chr21.fa.gz
11327826 Mar 21 2009 chr22.fa.gz
78240395 Mar 21 2009 chr2.fa.gz
64033758 Mar 21 2009 chr3.fa.gz
61700369 Mar 21 2009 chr4.fa.gz
58378199 Mar 21 2009 chr5.fa.gz
54997756 Mar 21 2009 chr6.fa.gz
50667196 Mar 21 2009 chr7.fa.gz
46889258 Mar 21 2009 chr8.fa.gz
39464200 Mar 21 2009 chr9.fa.gz

5537 Mar 21 2009 chrM.fa.gz
49278128 Mar 21 2009 chrX.fa.gz
8276338 Mar 21 2009 chrY.fa.gz

Now, use the format command to convert multiple input files into a single SDF directory for the reference.

$ rtg format -o hg19 /data/human/hg19/chrM.fa.gz \
/data/human/hg19/chr[1-9].fa.gz \
/data/human/hg19/chr1[0-9].fa.gz \
/data/human/hg19/chr2[0-9].fa.gz \
/data/human/hg19/chrX.fa.gz \
/data/human/hg19/chrY.fa.gz

This takes the human reference FASTA files and creates a directory called hg19 containing the SDF, with chro-
mosomes ordered in the standard UCSC ordering. You can use the sdfstats command to show statistics for
your reference SDF, including the individual sequence lengths.

$ rtg sdfstats --lengths hg19
Type : DNA
Number of sequences: 25
Maximum length : 249250621
Minimum length : 16571
Sequence names : yes
N : 234350281
A : 844868045
C : 585017944
G : 585360436
T : 846097277
Total residues : 3095693983
Residue qualities : no
Sequence lengths:
chrM 16571
chr1 249250621
chr2 243199373
chr3 198022430
chr4 191154276
chr5 180915260
chr6 171115067
chr7 159138663
chr8 146364022
chr9 141213431
chr10 135534747
chr11 135006516
chr12 133851895
chr13 115169878
chr14 107349540
chr15 102531392
chr16 90354753
chr17 81195210
chr18 78077248
chr19 59128983

3.7. RTG contaminant filtering 159

RTG Core Operations Manual, Release 3.10

chr20 63025520
chr21 48129895
chr22 51304566
chrX 155270560
chrY 59373566

3.7.2 Task 2 - Format read data (contaminant filtering)

RTG tools require a conversion of read sequence data from FASTA or FASTQ files into the RTG SDF format. This
task will be completed with the format command. The conversion will create an SDF directory for the sample
reads.

Take a paired set of reads in FASTQ format and convert it into RTG data format (SDF). This example shows one
run of data, taking as input both left and right mate pairs from the same run.

$ rtg format -f fastq -q sanger -o bacteria-sample \
-l /data/reads/bacteria/sample_1.fq \
-r /data/reads/bacteria/sample_2.fq

This creates a directory named bacteria-sample with two subdirectories, named left and right. Use the sdfstats
command to verify this step.

$ rtg sdfstats bacteria-sample

3.7.3 Task 3 - Run contamination filter

The mapf command functions in much the same way as the map command, but instead of producing BAM files
of the mappings it produces two SDF directories, one containing reads that map to the reference and the other with
reads that do not map. As with the map command there are multiple tuning parameters to adjust sensitivity and
selectivity of the mappings. As with the map command, you can use the --start-read and --end-read
flags to perform the mapping in smaller sections if required. The default mapf settings are similar to map although
the word size and step sizes have been adjusted to yield more sensitive mappings.

$ rtg mapf -t hg19 -i bacteria-sample -o filter-sample

In the filter-sample output directory there are, amongst other files, two directories named alignments.
sdf and unmapped.sdf. The alignments.sdf directory is an SDF of the reads that mapped to the refer-
ence, and the unmapped.sdf directory is an SDF of the reads that did not map.

$ ls -l filter-sample/
4096 Sep 30 16:02 alignments.sdf/

33 Sep 30 16:02 done
2776886 Sep 30 16:02 mapf.log

12625 Sep 30 16:02 progress
143 Sep 30 16:02 summary.txt

4096 Sep 30 16:02 unmapped.sdf/

3.7.4 Task 4 - Manage filtered reads

Depending on the use case, either rename, move or delete the filtered SDF directories as necessary. In this
example the reads that did not map to the contamination reference are to be used in further processing, so rename
the unmapped.sdf directory.

$ mv filter-sample/unmapped.sdf bacteria-sample-filtered

The filtered read set is now ready for subsequent processing, such as with the mapx or species tools.

160 Chapter 3. RTG product usage - baseline progressions

RTG Core Operations Manual, Release 3.10

3.8 RTG translated protein searching

Use the following set of tasks to search DNA reads against a protein data set.

The RTG protein search tool, mapx translates nucleotide reads into protein space and search them against a protein
data set. For example, a sample taken from a human gut can be searched against a protein data set to determine
which kinds of protein families are present in the sample.

For this example we will search a human gut sample read set against an NCBI non-redundant protein data set. In
the following tasks it is assumed non-redundant protein data set is called nr.fasta and the human gut sample
is called human-gut.fastq.

Table : Overview of translated protein searching tasks.

Task Command &
Utilities

Purpose

1 Format protein data
set

rtg format Convert protein data set from FASTA to RTG sequence data
format (SDF)

2 Format DNA read
set

rtg format Convert read sequence from FASTA and FASTQ files to RTG
Sequence Data Format (SDF)

3 Search against
protein data set

rtg mapx Generate search results with alignments in tabular format

3.8.1 Task 1 - Format protein data set

The mapx command requires a conversion of a protein data set from FASTA files into RTG SDF format. This
task will be completed with the format command. The conversion will create an SDF directory containing the
protein data set.

$ rtg format -p -o nr /data/NCBI-nr/nr.fasta

The above command will take the nr.fasta file and create a directory called nr containing the SDF. Note that
the -p option is used to create the SDF with protein data.

3.8.2 Task 2 - Format DNA read set

The mapx command requires a conversion of the DNA read set data from FASTA or FASTQ files into RTG SDF
format. This task will be completed with the format command. The following command assumes the sample
read data set is in Solexa FASTQ format.

$ rtg format -f fastq -q solexa -o human-gut /data/human-gut-sample.fastq

3.8.3 Task 3 - Search against protein data set

Search the DNA reads against the protein data set and generate alignments in tabular format.

The mapx command provides multiple tuning parameters to adjust sensitivity and selectivity at the search stage.
As with the map command, you can use the --start-read and --end-read flags to perform the mapping
in smaller sections if required. In general, protein search strategies are based on protein similarity also known as
identity.

The search example below uses a sensitivity setting that will guarantee reporting with reads that align with 4
substitutions and 1 indels.

$ rtg mapx -t nr -i human-gut -o mapx_results -a 3 -b 1

The alignments.tsv.gz file in the mapx_results output directory contains tabular output with align-
ments. For more information about this output format see Mapx output file description.

3.8. RTG translated protein searching 161

RTG Core Operations Manual, Release 3.10

3.9 RTG species frequency estimation

Use the following set of tasks to estimate the frequency of bacterial species in a metagenomic sample. The RTG
species frequency estimator, called species, takes a set of reads mapped against a bacterial database and from
this estimates the relative frequency of each species in the database.

Table : Overview of species frequency estimation tasks.

Task Command
& Utilities

Purpose

1 Format reference data rtg
format

Convert reference sequence from FASTA file to RTG
Sequence Data Format (SDF)

2 Format read data rtg
format

Convert read sequence from FASTA and FASTQ files to RTG
Sequence Data Format (SDF)

3 Run contamination filter
(optional)

rtg
mapf

Produce the SDF file of reads which map to the contaminant
and the SDF file of those that do not

4 Map metagenomic reads
against bacterial database

rtg map Generate read alignments against a given reference, and
report in a BAM file for downstream analysis

5 Run species estimator rtg
species

Produce a text file which contains a list of species, one per
line, with an estimate of the relative frequency in the sample

3.9.1 Task 1 - Format reference data (species)

RTG tools require a conversion of reference sequences from FASTA files into the RTG SDF format. This task will
be completed with the format command. The conversion will create an SDF directory containing the reference
sequences.

Use the format command to convert multiple input files into a single SDF directory for the reference database.

$ rtg format -o bacteria-db /data/bacteria/db/*.fa.gz

This takes the reference FASTA files and creates a directory called bacteria-db containing the SDF. You can
use the sdfstats command to show statistics for your reference SDF.

$ rtg sdfstats bacteria-db
Type : DNA
Number of sequences: 311276
Maximum length : 13033779
Minimum length : 0
Sequence names : yes
N : 33864547
A : 4167856151
C : 4080877385
G : 4072353906
T : 4177108579
Total residues : 16532060568
Residue qualities : no

Alternatively a species reference SDF for running the species command can be obtained from our website
(http://www.realtimegenomics.com).

3.9.2 Task 2 - Format read data (species)

RTG tools require a conversion of read sequence data from FASTA or FASTQ files into the RTG SDF format. This
task will be completed with the format command. The conversion will create an SDF directory for the sample
reads.

Take a paired set of reads in FASTQ format and convert it into RTG data format (SDF). This example shows one
run of data, taking as input both left and right mate pairs from the same run.

162 Chapter 3. RTG product usage - baseline progressions

http://www.realtimegenomics.com

RTG Core Operations Manual, Release 3.10

$ rtg format -f fastq -q sanger -o bacteria-sample \
-l /data/reads/bacteria/sample_1.fq \
-r /data/reads/bacteria/sample_2.fq

This creates a directory named bacteria-sample with two subdirectories, named ‘left’ and ‘right’. Use the
sdfstats command to verify this step.

$ rtg sdfstats bacteria-sample

3.9.3 Task 3 - Run contamination filter (optional)

Optionally filter the metagenomic read sample to remove human contamination using Tasks 1 through 4 of RTG
contaminant filtering

3.9.4 Task 4 - Map metagenomic reads against bacterial database

Map the metagenomic reads against the reference database to generate alignments in the BAM format (Binary
Sequence Alignment/Map file format). The read set in this example is paired end.

It is recommended that during mapping either the --max-top-results flag be set to a high value, such as
100, or that the --all-hits option be used. This helps ensure that all relevant species in the database are
accurately represented in the output. However, note that a very large --max-top-results requires additional
memory during mapping.

$ rtg map -i bacteria-sample -t bacteria-db -o map-sample -n 100

3.9.5 Task 5 - Run species estimator

The species estimator, species, takes as input the BAM format files from the mapping performed against the
reference database.

$ rtg species -t bacteria-db -o species-result map-sample/alignments.bam

This run generates a new output directory species_result. The main result file in this directory will be called
species.tsv. In the output the bacterial species are ordered from most to least abundant. The output file can
be directly loaded into a spreadsheet program like Microsoft Excel.

The species.tsv file contains results for both species with associated genomic sequences and internal nodes
in the taxonomy. In some scenarios it will only be necessary to examine those rows corresponding to sequences
in the database, such rows have a Y in the has-sequence column. Internal taxonomy nodes (i.e. ones that have
no associated sequence data) always have a breadth and depth of coverage of zero because no reads directly map
to them. For further detail on the species.tsv file format see Species results file description

Also produced is an HTML5 summary file called index.html which contains an interactive pie chart detailing
the results.

The best results are obtained when as many relevant records as possible are given to the species estimator. If you
have insufficient memory to use all your mapping results then using the filtering options may help. You could
filter the results by selecting mappings with good alignment scores or mated only reads.

3.10 RTG sample similarity

Use the following set of tasks to produce a similarity matrix from the comparison of a group of read sets. An ex-
ample use case is in metagenomics where several bacteria samples taken from different sites need to be compared.

3.10. RTG sample similarity 163

RTG Core Operations Manual, Release 3.10

The similarity command performs a similarity analysis on multiple read sets independent of any reference
genome. It does this by examining k-mer word frequencies and the intersections between sets of reads.

Table : Overview of sample similarity tasks.

Task Command &
Utilities

Purpose

1 Prepare read sets rtg format Convert reference sequence from FASTA file to RTG
Sequence Data Format (SDF)

2 Generate read set
name map

text-editor Produce the map of names to read set SDF locations

3 Run similarity tool rtg
similarity

Process the read sets for similarity

3.10.1 Task 1 - Prepare read sets

RTG tools require a conversion of read sequence data from FASTA or FASTQ files into the RTG SDF format. This
task will be completed with the format command. The conversion will create an SDF directory for the sample
reads.

Take a paired set of reads in FASTQ format and convert it into RTG data format (SDF). This example shows one
run of data, taking as input both left and right mate pairs from the same run.

$ rtg format -f fastq -q sanger -o /data/reads/read-sample1-sdf \
-l /data/reads/fastq/read-sample1_1.fq \
-r /data/reads/fastq/read-sample2_2.fq

This creates a directory named ‘read-sample1-sdf’ with two subdirectories, named ‘left’ and ‘right’. Use the
sdfstats command to verify this step.

$ rtg sdfstats /data/reads/read-sample1-sdf

Repeat for all read samples to be compared. This example shows how this can be done with the format command
in a loop.

$ for left_fq in /data/reads/fastq/*_1.fq; do
right_fq=${left_fq/_1.fq/_2.fq}
sample_id=$(basename ${left_fq/_1.fq})
rtg format -f fastq -q sanger -o /data/reads/${sample_id}-sdf -l ${left_fq} \

-r ${right_fq}
done

3.10.2 Task 2 - Generate read set name map

With a text editor, or other tool, create a text file containing a list of sample name to sample read SDF file locations.
If two or more read sets are from the same sample they can be combined by giving them the same sample name in
the file list.

$ cat read-set-list.txt
sample1 /data/reads/read-sample1-sdf
sample2 /data/reads/read-sample2-sdf
sample3 /data/reads/read-sample3-sdf
sample4 /data/reads/read-sample4-sdf
sample5 /data/reads/read-sample5-sdf

164 Chapter 3. RTG product usage - baseline progressions

RTG Core Operations Manual, Release 3.10

3.10.3 Task 3 - Run similarity tool

Run the similarity command setting the k-mer word size (-w parameter) and the step size (-s parameter) on
the read sets by specifying the file listing the read sets. Some experimentation should be performed with different
word and step size parameters to find good trade-offs between memory usage and run time. Should it be necessary
to reduce the memory used it is possible to limit the number of reads used from each SDF by specifying the
--max-reads parameter.

$ rtg similarity -w 25 -s 25 --max-reads 1000000 -I read-set-list.txt \
-o similarity-output

The program puts its output in the specified output directory.

$ ls similarity-output/
4693 Aug 29 20:17 closest.tre

19393 Aug 29 20:17 closest.xml
33 Aug 29 20:17 done

11363 Aug 29 20:17 similarity.log
48901 Aug 29 20:17 similarity.tsv

693 Aug 29 20:17 progress

The similarity.tsv file is a tab separated file containing a matrix of counts of the number of k-mers in
common between each pair of samples. The closest.tre and closest.xml files are nearest neighbor trees
built from the counts from the similarity matrix. The closest.tre is in Newick format and the closest.
xml file is phyloXML. The similarity.pca file contains a principal component analysis on the similarity
matrix in similarity.tsv.

You may wish to view closest.tre or closest.xml in your preferred tree viewing tool or use the principal
component analysis output in similarity.pca to produce a three-dimensional grouping plot showing visually
the clustering of samples.

3.10. RTG sample similarity 165

RTG Core Operations Manual, Release 3.10

166 Chapter 3. RTG product usage - baseline progressions

CHAPTER

FOUR

ADMINISTRATION & CAPACITY PLANNING

4.1 Advanced installation configuration

RTG software can be shared by a group of users by installing on a centrally available file directory or shared drive.
Assignment of execution privileges can be determined by the administrator, independent of the software license
file. For commercial users, the software license prepared by Real Time Genomics (rtg-license.txt) need
only be included in the same directory as the executable (RTG.jar) and the run-time scripts (rtg or rtg.bat).

During installation on Unix systems, a configuration file named rtg.cfg is created in the installation directory.
By editing this configuration file, one may alter further configuration variables appropriate to the specific deploy-
ment requirements of the organization. On Windows systems, these variables are set in the rtg.bat file in the
installation directory. These configuration variables include:

Variable Description
RTG_MEM Specify the maximum memory for Java run-time execution. Use a G suffix for

gigabytes, e.g.: RTG_MEM=48G. The default memory allocation is 90% of
system memory.

RTG_JAVA Specify the path to Java (default assumes current path).
RTG_JAR Indicate the path to the RTG.jar executable (default assumes current path).
RTG_JAVA_OPTS Provide any additional Java JVM options.
RTG_DEFAULT_THREADS By default any RTG module with a --threads parameter will automatically

use the number of cores as the number of threads. This setting makes the
specified number the default for the --threads parameter instead.

RTG_PROXY Specify the http proxy server for TalkBack exception management (default is
no http proxy).

RTG_TALKBACK Send log files for crash-severity exception conditions (default is true, set to
false to disable).

RTG_USAGE If set to true, enable simple usage logging.
RTG_USAGE_DIR Destination directory when performing single-user file-based usage logging.
RTG_USAGE_HOST Server URL when performing server-based logging.
RTG_USAGE_OPTIONAL May contain a comma-separated list of the names of optional fields to include

in usage logging (when enabled). Any of username, hostname and
commandline may be set here.

RTG_REFERENCES_DIR Specifies an alternate directory containing metagenomic pipeline reference
datasets.

RTG_MODELS_DIR Specifies an alternate directory containing AVR models.

4.2 Run-time performance optimization

CPU — Multi-core operation finishes jobs faster by processing multiple application threads in parallel. By default
RTG uses all available cores of a multi-processor server node. With a command line parameter setting, RTG
operation can be limited to a specified number of cores if desired.

Memory — Adding more memory can improve performance where very high read coverage is desired. RTG
creates and uses indexes to speed up genomic data processing. The more RAM you have, the more reads you can

167

RTG Core Operations Manual, Release 3.10

process in memory in a run. We use 48 GB as a rule of thumb for processing human data. However, a smaller
number of reads can be processed in as little as 2 GB.

Disk Capacity — Disk requirements are highly dependent on the size of the underlying data sets, the amount of
information needed to hold quality scores, and the number of runs needed to investigate the impact of varying
levels of sensitivity. Though all data is handled and stored in compressed form by default, a realistic minimum
disk size for handling human data is 1 TB. As a rule of thumb, for every 2 GB of input read data expect to add 1
GB of index data and 1 GB of output files per run. Additionally, leave another 2 GB free for temporary storage
during processing.

4.3 Alternate configurations

Demonstration system — For training, testing, demonstrating, processing and otherwise working with smaller
genomes, RTG works just fine on a newer laptop system with an Intel processor. For example, product testing in
support of this documentation was executed on a MacBook PC (Intel Core 2 Duo processor, 2.1 GHz clock speed,
1 processor, 2 cores, 3 MB L2 Cache, 4 GB RAM, 290 GB 5400 RPM Serial-ATA disk)

Clustered system — The comparison of genomic variation on a large scale demands extensive processing capa-
bility. Assuming standard CPU hardware as described above, scale up to meet your institutional or major product
needs by adding more rack-mounted boards and blades into rack servers in your data center. To estimate the num-
ber of cores required, first estimate the number of jobs to be run, noting size and sensitivity requirements. Then
apply the appropriate benchmark figures for different size jobs run with varying sensitivity, dividing the number
of reads to be processed by the reads/second/core.

4.4 Exception management - TalkBack and log file

Many RTG commands generate a log file with each run that is saved to the results output directory. The contents
of the file contain lists of job parameters, system configuration, and run-time information.

In the case of internal exceptions, additional information is recorded in the log file specific to the problem encoun-
tered. Fatal exceptions are trapped and notification is sent to Real Time Genomics with a copy of the log file. This
mechanism is called TalkBack and uses an embedded URL to which RTG sends the report.

The following sample log displays the software version information, parameter list, and run-time progress.

2009-09-05 21:38:10 RTG version = v2.0b build 20013 (2009-10-03)
2009-09-05 21:38:10 java.runtime.name = Java(TM) SE Runtime Environment
2009-09-05 21:38:10 java.runtime.version = 1.6.0_07-b06-153
2009-09-05 21:38:10 os.arch = x86_64
2009-09-05 21:38:10 os.freememory = 1792544768
2009-09-05 21:38:10 os.name = Mac OS X
2009-09-05 21:38:10 os.totalmemory = 4294967296
2009-09-05 21:38:10 os.version = 10.5.8
2009-09-05 21:38:10 Command line arguments: [-a, 1, -b, 0, -w, 16, -f, topn, -n, 5,
→˓ -P, -o, pflow, -i, pfreads, -t, pftemplate]
2009-09-05 21:38:10 NgsParams threshold=20 threads=2
2009-09-05 21:39:59 Index[0] memory performance

TalkBack may be disabled by adding RTG_TALK_BACK=false to the rtg.cfg configuration file (Unix) or
the rtg.bat file (Window) as described in Advanced installation configuration.

4.5 Usage logging

RTG has the ability to record simple command usage information for submission to Real Time Genomics. The
first time RTG is run (typically during installation), the user will be asked whether to enable usage logging. This
information may be required for customers with a pay-per-use license. Other customers may choose to send this

168 Chapter 4. Administration & Capacity Planning

RTG Core Operations Manual, Release 3.10

information to give Real Time Genomics feedback on which commands and features are commonly used or to
locally log RTG command use for their own analysis.

A usage record contains the following fields:

• Time and date

• License serial number

• Unique ID for the run

• Version of RTG software

• RTG command name, without parameters (e.g. map)

• Status (Started / Failed / Succeeded)

• A command-specific field (e.g. number of reads)

For example:

2013-02-11 11:38:38007 4f6c2eca-0bfc-4267-be70-b7baa85ebf66 RTG Core v2.7
→˓build d74f45d (2013-02-04) format Start N/A

No confidential information is included in these records. It is possible to add extra fields, such as the user name
running the command, host name of the machine running the command, and full command-line parameters, how-
ever as these fields may contain confidential information, they must be explicitly enabled as described in Advanced
installation configuration.

When RTG is first installed, you will be asked whether to enable user logging. Usage logging can also be manually
enabled by editing the rtg.cfg file (or rtg.bat file on Windows) and setting RTG_USAGE=true. If the
RTG_USAGE_DIR and RTG_USAGE_HOST settings are empty, the default behavior is to directly submit usage
records to an RTG hosted server via HTTPS. This feature requires the machine running RTG to have access to the
Internet.

For cases where the machines running RTG do not have access to the Internet, there are two alternatives for
collecting usage information.

4.5.1 Single-user, single machine

Usage information can be recorded directly to a text file. To enable this option, edit the rtg.cfg file (or rtg.
bat file on Windows), and set the RTG_USAGE_DIR to the name of a directory where the user has write permis-
sions. For example:

RTG_USAGE=true
RTG_USAGE_DIR=/opt/rtg-usage

Within this directory, the RTG usage information will be written to a text file named after the date of the current
month, in the form YYYY-MM.txt. A new file will be created each month. This text file can be manually sent to
Real Time Genomics when requested.

4.5.2 Multi-user or multiple machines

In this case, a local server can be started to collect usage information from compute nodes and recorded to local
files for later manual submission. To configure this method of collecting usage information, edit the rtg.cfg
file (or rtg.bat file on Windows), and set the RTG_USAGE_DIR to the name of a directory where the local
server will store usage logs, and RTG_USAGE_HOST to a URL consisting of the name of the local machine that
will run the server and the network port on which the server will listen. For example if the server will be run on a
machine named gridhost.mylan.net, listening on port 9090, writing usage information into the directory
/opt/rtg-usage/, set:

4.5. Usage logging 169

RTG Core Operations Manual, Release 3.10

RTG_USAGE=true
RTG_USAGE_DIR=/opt/rtg-usage
RTG_USAGE_HOST=http://gridhost.mylan.net:9090/

On the machine gridhost, run the command:

$ rtg usageserver

Which will start the local usage server listening. Now when RTG commands are run on other nodes or as other
users, they will submit usage records to this sever for collation.

Within the usage directory, the RTG usage information will be written to a text file named after the date of the
current month, in the form YYYY-MM.txt. A new file will be created each month. This text file can be manually
sent to Real Time Genomics when requested.

4.5.3 Advanced usage configuration

If you wish to augment usage information with any of the optional fields, edit the rtg.cfg file (or rtg.bat file
on Windows) and set the RTG_USAGE_OPTIONAL to a comma separated list containing any of the following:

• username - adds the username of the user running the RTG command.

• hostname - adds the machine name running the RTG command.

• commandline - adds the command line, including parameters, of the RTG command (this field will be
truncated if the length exceeds 1000 characters).

For example:

RTG_USAGE_OPTIONAL=username,hostname,commandline

4.6 Command-line color highlighting

Some RTG commands make use of ANSI colors to visually enhance terminal output, and the decision as to
whether to colorize the output is automatically determined, although some commands also contain additional
flags to control colorization.

The default behaviour of output colorization can be configured by defining a Java system property named rtg.
default-markup with an appropriate value and supplying it via RTG_JAVA_OPTS. For example, to disable
output colorization, use:

RTG_JAVA_OPTS="-Drtg.default-markup=none"

The possible values for rtg.default-markup are:

• auto - automatically enable ANSI markup when running on non-Windows OS and when I/O is detected to
be a console.

• none - disable ANSI markup.

• ansi - enable ANSI markup. This may be useful if you are using Windows OS and have installed an
ANSI-capable terminal such as ANSICON, ConEmu or Console 2.

170 Chapter 4. Administration & Capacity Planning

CHAPTER

FIVE

APPENDIX

5.1 RTG gapped alignment technical description

Real Time Genomics utilizes its own DNA sequence alignment tool and scoring system for aligned reads. Most
methods for sequence comparison and alignment use a small set of operations derived from the notion of edit
distance1 to discover differences between two DNA sequences. The edit operations introduce insertions, deletions,
and substitutions to transform one sequence into another. Alignments are termed global if they extend over all
residues of both sequences.

Most programs for finding global alignments are based on the Needleman-Wunsch algorithm2. Alternatively,
alignments may be local, in which case reported alignments may contain subsequences of the input sequences.
The Smith-Waterman variation on the Needleman-Wunsch algorithm finds such alignments3. The proprietary RTG
algorithm employs a further variation of this approach, using a dynamic programming edit-distance calculation
for alignment of reads to a reference sequence. The alignment is semi-global in that it always covers the entire
read but usually only covers a portion of the reference.

5.1.1 Alignment computations

Following the read mapping stage, the RTG aligner is presented with a read, a reference, a putative start position,
and the frame. An alignment is produced with a corrected start position, which is subsequently converted by RTG
into a SAM record.

If the corrected start position differs from the putative start position, then the alignment may be recomputed
starting from the new start position (this is because slightly different alignments can result depending on the start
position given to the aligner). Later stages in the RTG pipeline may decide to discard the alignment or to identify
alignments together (for the purpose of removing duplicates). But the reference is always presented in the forward-
sense and the edit-distance code itself makes the necessary adjustment for reverse complement cases. This avoids
having to construct a reverse complement copy of the reference.

The matrix is initialized in a manner such that a small shift in start position incurs no penalty, but as the shift
increases, an increasing penalty is applied. If after completing the alignment, such a path is still chosen, then
the penalty is removed from the resulting score. This penalty is designed to prevent the algorithm from making
extreme decisions like deleting the entire reference.

5.1.2 Alignment scoring

The basic costs used in the alignment are 0 for a match, 9 for a substitution, 19 for initiating an insertion or
deletion, and 1 for continuing an insertion or deletion. All of these except for the match score can be overridden
using the --mismatch-penalty parameter (for substitutions), the --gap-open-penalty parameter (for
initiating an insertion or deletion) and the --gap-extend-penalty parameter (for continuing an insertion or
deletion).

1 Levenshtein, V. I.(1966) Binary codes capable of correcting deletions, insertions and reversal. Soviet Physics Doklady, 6:707-710.
2 Needleman, S. B and Wunsch, C. D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two

proteins. Journal of Molecular Biology, 48:443-453
3 Smith, T. F. and Waterman, M. S. (1981) Identification of common molecular subsequences. Journal of Molecular Biology. 147:195-197.

171

RTG Core Operations Manual, Release 3.10

By default the penalty for matching an unknown nucleotide (n) in the read or reference is 5, however this can be
overridden using the --unknowns-penalty flag. Note that regardless of the penalty for unknown nucleotides
the CIGAR will always indicate unknown bases as mismatches. Occasionally, alignments may go outside the
limits of the reference (that is, off the left or right ends of the reference). Such virtual bases are considered as
unknown nucleotides.

Once the alignment is determined, the sum of these costs for the alignment path is reported as the alignment
score and produced in the AS field of the corresponding SAM record. If there is a tie between an indel versus
substitution operation for a particular matrix cell, then the tie is broken in favor of the substitution (except in the
special case of the last column on the reference).

In the following example, the alignment score is 48, comprising a penalty of 20 for a two-nucleotide insert in the
reference, 9 for a mismatch, and 19 for a one-nucleotide insert in the read. Notice there is no penalty for unknown
nucleotide.

accg--gactctctgacgctgcncgtacgtgccaaaaataagt (reference)
|||| |||||| ||||||||||||||||| ||||||||||||
accgttgactctgtgacgctgcacgtacgt-ccaaaaataagt (read)

In addition to the alignment score, a CIGAR is also reported in SAM records.

References for this section

5.2 Using SAM/BAM Read Groups in RTG map

It is good practice to ensure the output BAM files from the map command contain tracking information regarding
the sample and read set. This is accomplished by specifying a read group to assign reads to. See the SAM
specification for the full details of read groups, however for RTG tools, it is important to specify at least ID,
SM and PL fields in the read group. The ID field should be a unique identifier for the read group, while the
SM field should contain an identifier for the sample that was sequenced. Thus, you may have the same sample
identifier present in multiple read groups (for example if the sample was sequenced in multiple lanes or by different
sequencing technologies). All sample names employed by pedigree or sample-oriented commands should match
the values supplied in the SM field, while sequencer calibration information is grouped by the read group ID field,
and certain algorithm configuration (for example aligner penalties) may have appropriate defaults selected based
on the PL field.

While it is possible to post-process BAM files to add this information, it is more efficient to supply the read group
information either during mapping or when formatting read data to SDF. For the RTG software, the read group
can either be specified in a string on the command line or by creating a file containing the SAM-formatted read
group header entry to be passed to the command.

To specify a read group on the command line directly use a string encapsulated in double quotes using \t to
denote a TAB character:

$ rtg map ... --sam-rg "@RG\tID:SRR002978\tSM:NA19240\tPL:ILLUMINA" ...

To specify a read group using a file, create or use a file containing a single SAM-formatted read group header line:

$ echo -e "@RG\tID:SRR002978\tSM:NA19240\tPL:ILLUMINA" > mysamrg.txt
$ cat mysamrg.txt
@RG ID:SRR002978 SM:NA19240 PL:ILLUMINA
$ rtg map ... --sam-rg mysamrg.txt ...

Note that when supplying read group headers in a file literal TAB characters, not \t, are required to separate
fields.

The platform tags supported by RTG are ILLUMINA for Illumina reads, COMPLETE for Complete Genomics
version 1 reads, COMPLETEGENOMICS for Complete Genomics version 2 reads, LS454 for 454 Life Sciences
reads and IONTORRENT for Ion Torrent reads.

172 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

When mapping directly from SAM/BAM input with a single read group, this will automatically be set using that
read group. The read group will also be automatically set when mapping from an SDF which had the read group
information stored in it during formatting.

5.3 RTG reference file format

Many RTG commands can make use of additional information about the structure of a reference genome, such
as expected ploidy, sex chromosomes, location of PAR regions, etc. When appropriate, this information may be
stored inside a reference genome’s SDF directory in a file called reference.txt.

The format command will automatically identify several common reference genomes during formatting and
will create a reference.txt in the resulting SDF. However, for non-human reference genomes, or less com-
mon human reference genomes, a pre-built reference configuration file may not be available, and will need to be
manually provided in order to make use of RTG sex-aware pipeline features.

Several example reference.txt files for different human reference versions are included as part of the RTG
distribution in the scripts subdirectory, so for common reference versions it will suffice to copy the appropriate
example file into the formatted reference SDF with the name reference.txt, or use one of these example files
as the basis for your specific reference genome.

To see how a reference text file will be interpreted by the chromosomes in an SDF for a given sex you can use the
sdfstats command with the --sex flag. For example:

$ rtg sdfstats --sex male /data/human/ref/hg19

Location : /data/human/ref/hg19
Parameters : format -o /data/human/ref/hg19 -I chromosomes.txt
SDF Version : 11
Type : DNA
Source : UNKNOWN
Paired arm : UNKNOWN
SDF-ID : b6318de1-8107-4b11-bdd9-fb8b6b34c5d0
Number of sequences : 25
Maximum length : 249250621
Minimum length : 16571
Sequence names : yes
N : 234350281
A : 844868045
C : 585017944
G : 585360436
T : 846097277
Total residues : 3095693983
Residue qualities : no

Sequences for sex=MALE:
chrM POLYPLOID circular 16571
chr1 DIPLOID linear 249250621
chr2 DIPLOID linear 243199373
chr3 DIPLOID linear 198022430
chr4 DIPLOID linear 191154276
chr5 DIPLOID linear 180915260
chr6 DIPLOID linear 171115067
chr7 DIPLOID linear 159138663
chr8 DIPLOID linear 146364022
chr9 DIPLOID linear 141213431
chr10 DIPLOID linear 135534747
chr11 DIPLOID linear 135006516
chr12 DIPLOID linear 133851895
chr13 DIPLOID linear 115169878
chr14 DIPLOID linear 107349540
chr15 DIPLOID linear 102531392

5.3. RTG reference file format 173

RTG Core Operations Manual, Release 3.10

chr16 DIPLOID linear 90354753
chr17 DIPLOID linear 81195210
chr18 DIPLOID linear 78077248
chr19 DIPLOID linear 59128983
chr20 DIPLOID linear 63025520
chr21 DIPLOID linear 48129895
chr22 DIPLOID linear 51304566
chrX HAPLOID linear 155270560 ~=chrY

chrX:60001-2699520 chrY:10001-2649520
chrX:154931044-155260560 chrY:59034050-59363566

chrY HAPLOID linear 59373566 ~=chrX
chrX:60001-2699520 chrY:10001-2649520
chrX:154931044-155260560 chrY:59034050-59363566

The reference file is primarily intended for XY sex determination but should be able to handle ZW and X0 sex
determination also.

The following describes the reference file text format in more detail. The file contains lines with TAB separated
fields describing the properties of the chromosomes. Comments within the reference.txt file are preceded
by the character #. The first line of the file that is not a comment or blank must be the version line.

version1

The remaining lines have the following common structure:

<sex> <line-type> <line-setting>...

The sex field is one of male, female or either. The line-type field is one of def for default sequence settings,
seq for specific chromosomal sequence settings and dup for defining pseudo-autosomal regions. The line-setting
fields are a variable number of fields based on the line type given.

The default sequence settings line can only be specified with either for the sex field, can only be specified once
and must be specified if there are not individual chromosome settings for all chromosomes and other contigs. It is
specified with the following structure:

either def <ploidy> <shape>

The ploidy field is one of diploid, haploid, polyploid or none. The shape field is one of circular or
linear.

The specific chromosome settings lines are similar to the default chromosome settings lines. All the sex field
options can be used, however for any one chromosome you can only specify a single line for either or two lines
for male and female. They are specified with the following structure:

<sex> seq <chromosome-name> <ploidy> <shape> [allosome]

The ploidy and shape fields are the same as for the default chromosome settings line. The chromosome-name field
is the name of the chromosome to which the line applies. The allosome field is optional and is used to specify the
allosome pair of a haploid chromosome.

The pseudo-autosomal region settings line can be set with any of the sex field options and any number of the lines
can be defined as necessary. It has the following format:

<sex> dup <region> <region>

The regions must be taken from two haploid chromosomes for a given sex, have the same length and not go past
the end of the chromosome. The regions are given in the format <chromosome-name>:<start>-<end>
where start and end are positions counting from one and the end is non-inclusive.

An example for the HG19 human reference:

Reference specification for hg19, see
http://genome.ucsc.edu/cgi-bin/hgTracks?hgsid=184117983&chromInfoPage=

174 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

version 1
Unless otherwise specified, assume diploid linear. Well-formed
chromosomes should be explicitly listed separately so this
applies primarily to unplaced contigs and decoy sequences
either def diploid linear
List the autosomal chromosomes explicitly. These are used to help
determine "normal" coverage levels during mapping and variant calling
either seq chr1 diploid linear
either seq chr2 diploid linear
either seq chr3 diploid linear
either seq chr4 diploid linear
either seq chr5 diploid linear
either seq chr6 diploid linear
either seq chr7 diploid linear
either seq chr8 diploid linear
either seq chr9 diploid linear
either seq chr10 diploid linear
either seq chr11 diploid linear
either seq chr12 diploid linear
either seq chr13 diploid linear
either seq chr14 diploid linear
either seq chr15 diploid linear
either seq chr16 diploid linear
either seq chr17 diploid linear
either seq chr18 diploid linear
either seq chr19 diploid linear
either seq chr20 diploid linear
either seq chr21 diploid linear
either seq chr22 diploid linear
Define how the male and female get the X and Y chromosomes
male seq chrX haploid linear chrY
male seq chrY haploid linear chrX
female seq chrX diploid linear
female seq chrY none linear
#PAR1 pseudoautosomal region
male dup chrX:60001-2699520 chrY:10001-2649520
#PAR2 pseudoautosomal region
male dup chrX:154931044-155260560 chrY:59034050-59363566
And the mitochondria
either seq chrM polyploid circular

As of the current version of the RTG software the following are the effects of various settings in the reference.
txt file when processing a sample with the matching sex.

A ploidy setting of none will prevent reads from mapping to that chromosome and any variant calling from being
done in that chromosome.

A ploidy setting of diploid, haploid or polyploid does not currently affect the output of mapping.

A ploidy setting of diploid will treat the chromosome as having two distinct copies during variant calling,
meaning that both homozygous and heterozygous diploid genotypes may be called for the chromosome.

A ploidy setting of haploid will treat the chromosome as having one copy during variant calling, meaning that
only haploid genotypes will be called for the chromosome.

A ploidy setting of polyploid will treat the chromosome as having one copy during variant calling, meaning
that only haploid genotypes will be called for the chromosome. For variant calling with a pedigree, maternal
inheritance is assumed for polyploid sequences.

The shape of the chromosome does not currently affect the output of mapping or variant calling.

The allosome pairs do not currently affect the output of mapping or variant calling (but are used by simulated data
generation commands).

The pseudo-autosomal regions will cause the second half of the region pair to be skipped during mapping. During

5.3. RTG reference file format 175

RTG Core Operations Manual, Release 3.10

variant calling the first half of the region pair will be called as diploid and the second half will not have calls
made for it. For the example reference.txt provided earlier this means that when mapping a male the X
chromosome sections of the pseudo-autosomal regions will be mapped to exclusively and for variant calling the
X chromosome sections will be called as diploid while the Y chromosome sections will be skipped. There may be
some edge effects up to a read length either side of a pseudo-autosomal region boundary.

5.4 RTG taxonomic reference file format

When using a metagenomic reference SDF in the species command, a taxonomy can be applied to impute
associations between reference sequences. This is done using two files contained in the SDF directory. The
first file (taxonomy.tsv) contains an RTG taxonomy tree and the second file (taxonomy_lookup.tsv)
contains a mapping between taxon IDs and reference sequence names. Using a reference SDF containing these
files allows the output of certain commands to include results at different taxonomic ranks allowing analysis at
differing taxonomic levels.

Pre-constructed metagenomic reference SDFs in this format will be available from our website (http://www.
realtimegenomics.com). For custom reference SDF creation, the ncbi2tax and taxfilter commands can
assist the creation of a custom taxonomy.tsv file from an NCBI taxonomy dump. The taxstats command
can check the validity of a metagenomic reference SDF.

5.4.1 RTG taxonomy file format

The RTG taxonomy file format describes the structure of the taxonomy tree. It contains multiple lines with each
line being either a comment or holding data required to describe a node in the taxonomy tree.

Lines starting with a ‘#’ are comments and do not contain data. They may appear anywhere through the file. The
first line of the file must be a comment containing the RTG taxonomy file version number.

Each data line in the file represents a node in the taxonomy tree and is comprised of four tab separated values. The
values on each line are:

1. The unique taxon ID of the node in the tree. This must be an integer value greater than or equal to 1.

2. The taxon ID of the parent of this node. This must be an integer value corresponding to another node in the
tree.

3. The rank of the node in the taxonomy. This is a free format string that can contain any character other than
a tab.

4. The name of the node in the taxonomy. This is a free format string that can contain any character other than
a tab.

The root of the tree is special and must have a taxon ID of 1. Since the root has no parent it can have a parent ID
of either 1 (itself) or -1. The RTG taxonomy file should contain a complete and fully connected tree that has a
single root and no loops.

An example of the first few lines of a taxonomy.tsv file:

#RTG taxonomy version 1.0
#taxID parID rankname
1-1 no rank root
129081 no rank unclassified sequences
40816912908 no rank metagenomes
410657408169 no rank ecological metagenomes
527640410657 species microbial mat metagenome
1315671 no rank cellular organisms
2131567 superkingdom Bacteria
11172 phylum Cyanobacteria

176 Chapter 5. Appendix

http://www.realtimegenomics.com
http://www.realtimegenomics.com

RTG Core Operations Manual, Release 3.10

5.4.2 RTG taxonomy lookup file format

The RTG taxonomy lookup file format associates SDF sequence names with taxon IDs in the taxonomy tree. It
contains one line for every sequence in the SDF, with each line containing two tab separated values.

The values on each line are:

1. The taxonomy node ID that the sequence is associated with. This must be an integer value that corresponds
to a node ID from the taxonomy tree.

2. The name of the sequence as it appears in the SDF. (These can be discovered using the --lengths option
of the sdfstats command)

A single taxon ID may be associated with multiple sequence names. This is a way to group the chromosomes and
plasmids belonging to a single organism.

An example of some lines from a taxonomy_lookup.tsv file:

1219061gi|407098174|gb|AMQV00000000.1|AMQV01000000
1219061gi|407098172|gb|AMQV01000002.1|
1219061gi|407098170|gb|AMQV01000004.1|
1219061gi|407098168|gb|AMQV01000006.1|

5.5 Pedigree PED input file format

The PED file format is a white space (tab or space) delimited ASCII file. Lines starting with # are ignored. It has
exactly six required columns in the following order.

Column Definition
Family
ID

Alphanumeric ID of a family group. This field is ignored by RTG commands.

Individ-
ual
ID

Alphanumeric ID of an individual. This corresponds to the Sample ID specified in the read group
of the individual (SM field).

Paternal
ID

Alphanumeric ID of the paternal parent for the individual. This corresponds to the Sample ID
specified in the read group of the paternal parent (SM field).

Mater-
nal
ID

Alphanumeric ID of the maternal parent for the individual. This corresponds to the Sample ID
specified in the read group of the maternal parent (SM field).

Sex The sex of the individual specified as using 1 for male, 2 for female and any other number as
unknown.

Pheno-
type

The phenotype of the individual specified using -9 or 0 for unknown, 1 for unaffected and 2 for
affected.

Note: The PED format is based on the PED format defined by the PLINK project: http://pngu.mgh.harvard.edu/
~purcell/plink/data.shtml#ped

The value ‘0’ can be used as a missing value for Family ID, Paternal ID and Maternal ID.

The following is an example of what a PED file may look like.

PED format pedigree
fam-id ind-id pat-id mat-id sex phen
FAM01 NA19238 0 0 2 0
FAM01 NA19239 0 0 1 0
FAM01 NA19240 NA19239 NA19238 2 0
0 NA12878 0 0 2 0

When specifying a pedigree for the lineage command, use either the pat-id or mat-id as appropriate to the
gender of the sample cell lineage. The following is an example of what a cell lineage PED file may look like.

5.5. Pedigree PED input file format 177

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped

RTG Core Operations Manual, Release 3.10

PED format pedigree
fam-id ind-id pat-id mat-id sex phen
LIN BASE 0 0 2 0
LIN GENA 0 BASE 2 0
LIN GENB 0 BASE 2 0
LIN GENA-A 0 GENA 2 0

RTG includes commands such as pedfilter and pedstats for simple viewing, filtering and conversion of
pedigree files.

5.6 RTG commands using indexed input files

Several RTG commands require coordinate indexed input files to operate and several more require them when the
--region or --bed-regions parameter is used. The index files used are standard tabix or BAM index files.

The RTG commands which produce the inputs used by these commands will by default produce them with ap-
propriate index files. To produce indexes for files from third party sources or RTG command output where the
--no-index or --no-gzip parameters were set, use the RTG bgzip and index commands.

5.7 RTG output results file descriptions

RTG software produces output results in standard formats that may contain additional information for the unique
requirements of a particular data analysis function.

Several of the RTG commands that output results to a directory also output a simple summary report of the results
of the command in HTML format. The report file for these commands will be called index.html and will be
contained in the output directory.

5.7.1 SAM/BAM file extensions (RTG map command output)

The Sequence Alignment/Map (SAM/BAM) format is a well-known standard for listing read alignments against
reference sequences. SAM records list the mapping and alignment data for each read, ordered by chromosome (or
other DNA reference sequence) location.

Note: For a thorough description of the SAM format please refer to the specification at https://samtools.github.
io/hts-specs/SAMv1.pdf

The map command reports alignments in the SAM/BAM format with some minor differences.

A sample RTG SAM file is shown below, describing the relationship between a read and a reference sequence,
including gaps and mismatches as determined by the RTG map aligner.

@HD VN:1.0 SO:coordinate
@PG ID:RTG VN:v2.0-EAP2.1 build 25581 (2010-03-11) CL:map -t human_REF_SDF -i
→˓human_READS_SDF -o humanMAPPING8 -w 22 -a 2 -b 2 -c 2
@SQ SN:chr1 LN:643292
@SQ SN:chr2 LN:947102
@SQ SN:chr3 LN:1060087
@SQ SN:chr4 LN:1204112
@SQ SN:chr5 LN:1343552
@SQ SN:chr6 LN:1418244
@SQ SN:chr7 LN:1501719
@SQ SN:chr8 LN:1419563
@SQ SN:chr9 LN:1541723
@SQ SN:chr10 LN:1694445

178 Chapter 5. Appendix

https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf

RTG Core Operations Manual, Release 3.10

@SQ SN:chr11 LN:2035250
@SQ SN:chr12 LN:2271477
@SQ SN:chr13 LN:2895605
@SQ SN:chr14 LN:3291006
1035263 0 chr1 606 255 2X18=1X11=1X15= * 0 0
→˓ AATACTTTTCATTCTTTACTATTACTTACTTATTCTTACTTACTTACT * AS:i:4
→˓NM:i:4 IH:i:1 NH:i:1
1572864 16 chr1 2041 255 48= * 0 0
→˓TACTTACTTTCTTCTTACTTATGTGGTAATAAGCTACTCGGTTGGGCA * AS:i:0 NM:i:0
→˓IH:i:1 NH:i:1
2649455 0 chr1 3421 255 2X46= * 0 0
→˓AAGTACTTCTTAGTTCAATTACTATCATCATCTTACCTAATTACTACT * AS:i:2 NM:i:2
→˓IH:i:1 NH:i:1

RTG identifies each query name (or QNAME) with an RTG identifier, which replaced the original identifier asso-
ciated with the read data. The RTG samrename utility is used to relabel the alignment records with the original
sequence names.

The CIGAR format has evolved from the original SAM specification. Formerly, a CIGAR string might appear as
283M1D1I32N8M, where M indicated a match or mismatch, I indicated an insertion, D indicated a deletion, and
N indicated a skipped region.

In the sample SAM file above, the RTG CIGAR score characters are modified as represented by the string
2X18=1X11=1X15=, where X indicates a mismatch, = indicates a match, I indicates an insertion, and D in-
dicates a deletion. Obviously, this provides more specificity around the precise location of the mismatch in the
alignment.

Notice that optional fields are reported as in SAM for alignment score (AS), number of nucleotide differences (NM),
number of reported alignments for a particular read (NH), number of stored alignments (IH) and depending on flag
settings, the field containing the string describing mismatching positions (MD) may be included. The alignment
score is calculated and reported for RTG as described in RTG gapped alignment technical description.

The following list describes RTG SAM/BAM file characteristics that may depart from or be undescribed in the
SAM specification.

• Paired-end sequencing data

• FLAG is set to 0x02 in properly paired reads and unset for unmated or unmapped reads.

• For all non-uniquely mapped reads FLAG 0x100 is set.

• Unmated and unmapped reads will have the FLAG 0x08 set to reflect whether the mate has been mapped,
however RNEXT and PNEXT will always be “*”.

• For mapped reads, the SAM standard NH attribute is used, even for uniquely mapped reads (NH:i:1).

• Single-end sequencing data

• For all non-uniquely mapped reads FLAG 0x100 is set.

• For mapped reads, the SAM standard NH attribute is used, even for uniquely mapped reads (NH:i:1).

• Unmapped reads

• RNAME and CIGAR are set as “*”.

• POS, and MAPQ are set as 0.

For mated records, the XA attribute contains the sum of the alignment scores for each arm. It is this score that is
used to determine the equality for the max top results for mated records. All the mated records for a read should
have the same XA score.

In addition, for unmapped read arms, the optional attribute XC may be displayed in SAM/BAM files, using a
character code that indicates the internal read mapping stage where the read arm was discarded as unmated or
unmapped. If this is reported, it means that the read arm had matching hits at one point during the mapping phase.

Single-end SAM character codes include:

5.7. RTG output results file descriptions 179

RTG Core Operations Manual, Release 3.10

Character Definition
XC:A:B Indicates that the number of raw index hits for the read exceeded the internal threshold of

65536.
XC:A:C Indicates that after initial ranking of hits for the read, too many hits were present (affected by

--max-top-results).
XC:A:D Indicates that after alignment scores are calculated, the ≤ 𝑁 remaining hits were discarded

because they exceeded the mismatches threshold (affected by --max-mismatches).
XC:A:E Indicates that there were good scoring hits, but the arm was discarded because there were too

many of these hits (affected by --max-top-results).

Paired-end SAM character codes include:

Character Definition
XC:A:B Indicates that the number of raw index hits for the read exceeded the internal threshold of

65536.
XC:A:C Indicates that there were index matches for the read arm, but no potential mated hits were found

(affected by --min-fragment-size and --max-fragment-size), and after ranking
candidate unpaired results there were too many hits (affected by --max-top-results).

XC:A:d Indicates that potential mated hits were found for this read arm with its mate, but were
discarded because they exceeded the mismatches threshold (affected by
--max-mated-mismatches).

XC:A:D Indicates that no potential mated hits were found, and after alignment scores are calculated, the
(≤ 𝑁) remaining hits were discarded because they exceeded the mismatches threshold
(affected by --max-unmated-mismatches).

XC:A:e Indicates that good scoring hits were found for this read arm with its mate, but were discarded
because there were too many hits at the best score (affected by --max-top-results).

XC:A:E Indicates that no potential mated hits were found, there were good scoring unmated hits, but the
arm was discarded because there were too many of these hits (affected by
--max-top-results).

5.7.2 SAM/BAM file extensions (RTG cgmap command output)

In addition to the file extensions described for the map command in SAM/BAM file extensions (RTG map command
output), the cgmap command also outputs several additional fields specific to the nature of Complete Genomics
reads.

A sample RTG SAM file is shown below, describing the relationship between some reads and a reference sequence,
including gaps, mismatches and overlaps as determined by the RTG cgmap aligner.

@HD VN:1.0 SO:coordinate
@PG ID:RTG PN:RTG VN:v2.3 CL:cgmap -i bac_READS_SDF -t bac_REF_SDF -o bac_MAPPING -
→˓e 7 -E 5
@SQ SN:bac LN:100262
1 179 bac 441 55 24=5N10= = 765 324 TGACGCCTCTGCTCTTGCAAGTCNTTCACATTCA 544400/31/
→˓1*2*858154468!073./66222 AS:i:0 MQ:i:255 XU:Z:5=1B19=1R5N10= XQ:Z:+ XA:i:0
→˓IH:i:1 NH:i:1
1 115 bac 765 55 10=5N8=1I14= = 441 -324 ANAGAACTGGAACCATTCATGGAAGGCCAGTGA 5!5/1,+!
→˓431/..,153002076-13435001 AS:i:0 MQ:i:255 XU:Z:1=1R5=1R2=5N8=1I11=2B5= XQ:Z:74
→˓XR:Z:TA XA:i:0 IH:i:1 NH:i:1
83 179 bac 4963 55 3=1X19=5N10= = 5257 294 GGAAGGAGTGCTGCAGGCCGACCCTCATGGAGA 42062-
→˓51/4-1,55.010456-27/2711032 AS:i:1 MQ:i:255 XU:Z:3=1X1=2B20=5N10= XQ:Z:-. XR:Z:A
→˓XA:i:1 IH:i:1 NH:i:1
83 115 bac 5257 55 10=5N25= = 4963 -294 CCTCCTAGCGGTACATCTCCAGCCCCTTCCTAGNA
→˓55541*,-/3+1,2,13525167".21806010!2 AS:i:0 MQ:i:255 XU:Z:10=5N23=1R1= XA:i:1
→˓IH:i:1 NH:i:1

The XU field is an extended CIGAR format which has additional characters for encoding extra information about
a Complete Genomics read. The extra characters are B for encoding a backstep on the reference (overlap in the
read), T for an unknown nucleotide in the reference and R for an unknown nucleotide in the read. In the case
where both the reference and the read have an unknown nucleotide at the same place the R character is used.

180 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

The XQ field is the quality in the same format as the SAM QUAL field for the nucleotides in the overlap region of
the read. It is present when backsteps exist in the extended CIGAR field.

The XR field contains the nucleotides from the read which differ from the reference (read delta). It is present when
there are mismatches, inserts, unknowns on the reference or soft clipping represented in the extended CIGAR.

Using these three additional fields with the QUAL field, position that the read mapped to, and the reference, it is
possible to reconstruct the original Complete Genomics read.

For example:

Record:
Position 4963 42062-51/4-1,55.010456-27/2711032 XU:Z:3=1X1=2B20=5N10= XQ:Z:-.
→˓XR:Z:A

Reference 4960-5010:
CCTGGAGG GAGTGCTGCAGGCCGACCAGCAACTCATGGAGAAGACCAAGG

GGAAGGGGAGTGCTGCAGGCCGACC CTCATGGAGA
42062-.-51/4-1,55.010456-_____27/2711032

Flattened Read from SAM file:
GGAAGGAGTGCTGCAGGCCGACCCTCATGGAGA
42062-51/4-1,55.010456-27/2711032

Reconstructed Read:
GGAAGGGGAGTGCTGCAGGCCGACCCTCATGGAGA
42062-.-51/4-1,55.010456-27/2711032

This example shows how the mismatch and read delta replace the nucleotide from the reference to form the read.
It also shows that the backstep in the extended CIGAR is used to record overlap in the read. Note that the number
of additional quality characters in the corresponds to the number of backsteps and that the additional quality
characters will always be inserted into the read qualities on the inner-most side of the overlap region.

Record:
Position 65 5!5/1,+!431/..,153002076-134735001 XU:Z:1=1R5=1T2=5N8=1I11=2B5=
→˓XR:Z:TA XQ:Z:74

Reference 760-810
AGAGGAGAGAACNGGTTTGGAACCATTC TGGAAGGCCAG TGAGCTGTGTT

ANAGAACTGG_____AACCATTCATGGAAGGCCAGAGTGA
5!5/1,+143_____1/..,153002076-1347435001

Flattened Read from SAM file:
ANAGAACTGGAACCATTCATGGAAGGCCAGTGA
5!5/1,+!431/..,153002076-13435001

Reconstructed Read:
ANAGAACNGGAACCATTCATGGAAGGCCAGAGTGA
5!5/1,+1431/..,153002076-1347435001

This example shows how the R character in the extended CIGAR corresponds to an unknown in the read and how
the T character corresponds to an unknown in the reference. Note that when there is an unknown in the reference
but not in the read the nucleotide is included in the read delta as are inserted nucleotides. Also note that although
the backstep is used in this case to reconstruct part of the outside five nucleotides the overlap quality characters
still correspond to the inside nucleotides.

5.7.3 Small-variant VCF output file description

The snp, family, somatic and population commands call single nucleotide polymorphisms (SNPs), mul-
tiple nucleotide polymorphisms (MNPs), and indels for a single individual, a family of individuals or a cancer and
normal pair respectively. At each position in the reference, a base pair determination is made based on statisti-

5.7. RTG output results file descriptions 181

RTG Core Operations Manual, Release 3.10

cal analysis of the accumulated read alignments. The predictions and accompanying statistics are reported in a
text-based output file named snps.vcf.

Note: RTG variant calls are stored in VCF format (version 4.1). For more information about the VCF format,
refer to the specification online at: https://samtools.github.io/hts-specs/VCFv4.1.pdf

The snps.vcf output file displays each variant called with confidence. The location and type of the call, the base
pairs (reference and called), and a confidence score are standard output in the snps.vcf output file. Additional
support statistics in the output describe read alignment evidence that can be used to evaluate confidence in the
called variants.

The commands also produce a summary.txt file which has simple counts of the variants detected and some
ratios which can be used as a quick indication of SNP calling performance.

The following sample snps.vcf file is an example of the output produced by an RTG SNP call run. Each line
in a snps.vcf output has tab-separated fields and represents a SNP variation calculated from the mapped reads
against the reference genome.

This file represents the variations per chromosome as a result of the SAM/BAM mapped alignments against a
reference genome.

##fileformat=VCFv4.1
##fileDate=20110524
##source=RTGv2.2 build 35188 (2011-05-18)
##CL=snp -o snp-hslo-18-u -t hst1 hslo-18-u/alignments.bam
##RUN-ID=b1f96b37-7f77-4d74-b472-2a36ba21397e
##reference=hst1
##contig=<ID="chr1",length=207900>
##INFO=<ID=XRX,Number=0,Type=Flag,Description="RTG variant was called using
→˓complex caller">
##INFO=<ID=CT,Number=1,Type=Integer,Description="Coverage threshold that was
→˓applied">
##FILTER=<ID=OC,Description="Coverage threshold exceeded">
##FILTER=<ID=RC,Description="RTG variant is a complex region">
##FILTER=<ID=RX,Description="RTG variant contained within hypercomplex region">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=RE,Number=1,Type=Float,Description="RTG Total Error">
##FORMAT=<ID=AR,Number=1,Type=Float,Description="Ambiguity Ratio">
##FORMAT=<ID=GQ,Number=1,Type=Float,Description="Genotype Quality">
##FORMAT=<ID=RS,Number=.,Type=String,Description="RTG Support Statistics">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE
chr1 43230 . A G 17.1 PASS .
→˓GT:DP:RE:AR:GQ:RS 1/1:7:0.280:0.000:17.1:G,7,0.280
chr1 43494 . TTTAAAT TT:CTTAAAC 181.6 PASS .
→˓GT:DP:RE:AR:GQ:RS 1/2:10:0.428:0.024:15.3:CTTAAC,5,0.373
chr1 43638 . T C 15.3 PASS .
→˓GT:DP:RE:AR:GQ:RS 1/1:6:0.210:0.000:15.3:C,6,0.210
chr1 43918 . C T 11.4 PASS .
→˓GT:DP:RE:AR:GQ:RS 1/1:5:0.494:0.000:11.4:T,5,0.494
chr1 44038 . C T 18.9 PASS .
→˓GT:DP:RE:AR:GQ:RS 1/1:8:0.672:0.000:18.9:T,8,0.672
chr1 44173 . A G 12.0 PASS .
→˓GT:DP:RE:AR:GQ:RS 1/1:5:0.185:0.000:12.0:G,5,0.185
chr1 44218 . TCCTCCA ACCACCT 385.4 PASS .
→˓GT:DP:RE:AR:GQ:RS 1/1:43:3.925:0.015:80.8:ACCACCT,5,0.003,CCCCCCA,1,0.631,
→˓CCCTCCA,1,0.631, TCCTCCA,30,2.024,TCCTTCA,4,0.635,~A,1,0.000,~TCCA,1,0.001
chr1 44329 . A G 12.2 PASS .
→˓GT:DP:RE:AR:GQ:RS 1/1:5:0.208:0.000:12.2:G,5,0.208
chr1 44502 . T C 6.0 PASS .
→˓GT:DP:RE:AR:GQ:RS 1/1:3:0.160:0.000:6.0:C,3,0.160
chr1 44533 . G A 13.7 PASS .
→˓GT:DP:RE:AR:GQ:RS 1/1:6:0.421:0.000:13.7:A,6,0.421

182 Chapter 5. Appendix

https://samtools.github.io/hts-specs/VCFv4.1.pdf

RTG Core Operations Manual, Release 3.10

chr1 202801 . A G 15.8 PASS .
→˓GT:DP:RE:AR:GQ:RS 0/1:66:30.544:0.000:15.8:A,50,24.508,C,1,0.502,G,13,4.529,T,
→˓2,1.004

Note: The VCF specification defines the semantics of the QUAL column differently for records that contain any
ALT alleles from those which do not, and that the QUAL column is also defined as a score applying across the set
of all samples in the VCF. Thus for multi-sample calling commands such as family, population, somatic,
etc, the QUAL score is not necessarily an indication of the of quality the call of any particular sample.

RTG adds custom fields to the VCF format to better account for some of its unique variant calling features,
described in the tables below. The exact set of fields used depend on the module run, with some fields only
appropriate and present for family calling, somatic calling, etc.

Table : RTG VCF file FILTER fields

Value Description
PASS Standard VCF PASS, if variant meets all the filtering criteria.
OC A predicted variation that has exceeded the maximum coverage filter threshold.
a<number> A predicted variation that had greater than the given percentage of ambiguously mapped

reads overlapping it. The number in the value is the percentage specified by the
--max-ambiguity flag.

RCEQUIV A predicted variation that is the same as a previous variant within a homopolymer or
repeat region.

RC The variant caller encountered a complex looking situation. A typical example would be a
long insert. Some complex regions may result in simple calls.

RX This call was made within a long complex region. Note that no attempt is made to
generate complex calls in very long complex regions.

IONT A predicted variation that failed to pass homopolymer constraints specific to IonTorrent
reads.

OTHER The variant was filtered for an unknown reason.
AVR<number> A predicted variation that had less than the given value for the AVR score. The number in

the value is the minimum AVR score specified by the --min-avr-score flag.
BED The predicted variant falls outside the BED calling regions defined by the

--filter-bed flag.

Table : RTG VCF file INFO fields

Value Description
NCS=<value> The Phred scaled posterior probability that the variant at this site is present in the cancer,

output by the somatic command.
LOH=<value> The value shows on a scale from -1 to 1 if the evidence of a call would suggest a loss of

heterozygosity. A long run of high values is a strong indicator of a loss of heterozygosity
event.

DP=<depth> The combined read depth of multi-sample variant calls.
DPR=<ratio> The ratio of combined read depth to the expected combined read depth.
XRX Indicates the variant was called using the RTG complex caller. This means that a realign-

ment of the reads relative to the reference and each other was required to make this call.
RCE Indicates the variant is the same as one or more other variants within a homopolymer or

repeat region.
NREF Indicates the variant is called at a site where the reference is unknown, and so some other

scores that require exact knowledge of the reference may not be produced.
CT=<value> The maximum coverage threshold that was applied when the given variant has been filtered

for being over the coverage threshold.
AC The standard VCF allele count in genotypes field. For each ALT allele, in the same order as

listed, the count of the allele in the genotypes.
AN The standard VCF total number of alleles in called genotypes field.
STRL The number of adjacent simple tandem repeats on the reference sequence.
STRU The length of the repeating unit in a simple tandem repeat.

5.7. RTG output results file descriptions 183

RTG Core Operations Manual, Release 3.10

Table : RTG VCF file FORMAT fields

Value Description
GT The standard VCF format genotype field.
DP The standard VCF format read depth field.
DPR The ratio of read depth to the expected read depth.
VA The allele index (using same numbering as the GT field) of the most frequent non-REF allele.

This allele may not necessarily be part of the genotype that was actually called.
RE The total error across bases of the reads at the SNP location. This is a corrective factor calculated

from the r and q read mapping quality scores that adjusts the level of confidence higher or lower
relative to read depth.

AR The ratio of reads contributing to the variant that are considered to be ambiguous to uniquely
mapped reads.

RQ The Phred scaled posterior probability that the sample is not identical to the reference.
GQ The standard VCF format genotype quality field. This is the Phred scaled posterior score of the

call. It is not necessarily the same as the QUAL column score.
GQD The genotype quality divided by the read depth of the sample.
QD The quality field divided by the sum of the read depth for all samples.
DN Indicates with a value of Y if the call for this sample is a putative de novo mutation, or N to

indicate that the sample is not a de novo mutation. Note that even in cases when the GT of the
sample and the parents would otherwise seem to indicate a de novo mutation, this field may
be set to N when the variant caller has assigned a sufficiently low score to the likelihood that a
de novo event has occurred.

DNP The Phred scaled probability that the call for this sample is due to a de novo mutation.
OCOC The count of evidence that is considered contrary to the call made for this sample, observed in

the original sample.
For example, in a normal-cancer somatic call of 0/0 -> 1/0, the OCOC value is the count of the
somatic (1) allele in the normal sample.
Usually a high OCOC value indicates an unreliable call.

OCOF The fraction of evidence that is considered contrary to the call made for this sample, observed
in the original sample.
For example, in a somatic call of 0/0 -> 1/0, the OCOF value is the fraction of the somatic (1)
allele in the normal sample.
The OCOF and OCOC attributes are also applicable to de novo calls, where the evidence in the
parents for the de novo allele is considered contrary.
Usually a high OCOF value indicates an unreliable call.

DCOC The count of evidence that is considered contrary to the call made for this sample, observed in
the derived sample.
For example, in a normal-cancer somatic call of 0/1 -> 2/0, the DCOC value is the count of the
germline (1) allele in the somatic sample.
In cases of high sample purity, a high DCOC value may indicate an unreliable call.

DCOF The fraction of evidence that is considered contrary to the call made for this sample, observed
in the derived sample.
For example, in a somatic call of 0/1 -> 2/0, the DCOF value is the fraction of the germline (1)
allele in the somatic sample.
The DCOF and DCOC attributes are also applicable to pedigree aware calls, where the evidence
of non-inherited parental alleles in the child is considered contrary.
In cases of high sample purity, a high DCOF value may indicate an unreliable call.

ABP The Phred scaled probability that allele imbalance is present in the call.
SBP The Phred scaled probability that strand bias is present in the call.
RPB The Phred scaled probability that read position bias is present in the call.
PPB The Phred scaled probability that bias in the proportion of alignments that are properly paired is

present in the call.
PUR The ratio of placed unmapped reads to mapped reads.

Continued on next page

184 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

Table 5.1 – continued from previous page
Value Description
RS Statistical information about the evidence for the prediction which consists of a variable number

of groups of three fields, each separated by commas. The three fields are allele, count, and the
sum of probability error (computed from the Phred quality). The sum of counts should equal
DP and the sum of the errors should equal RE.

DH An alternative disagreeing hypothesis in the same format as the genotype field. This can occur
when a sample intersects multiple families in a pedigree when doing population calling.

AD The allelic depths for the reference and alternate alleles in the order listed.
ADE The allelic depths for the reference and alternate alleles in the order listed, after adjusting for

poor base quality and mapping quality.
AQ The sum of the quality of evidence (including base quality and mapping quality) for the reference

and alternate alleles in the order listed.
MEANQAD The difference in the mean AQ between the two called alleles.
SSC The score for the somatic mutation specified by the GT field.
SS The somatic status of the genotype for this sample. A value of 0 indicates none or wild type, a

value of 1 indicates a germline variant, and a value of 2 indicates a somatic variant.
GL The log10 scaled likelihoods for all possible genotypes given the set of alleles defined in the

REF and ALT fields as defined in the VCF specifications.
VAF The VAF field contains the estimated variant allelic fraction of each alternate allele, in the order

listed.
VAF1 The VAF1 field contains the estimated variant allelic fraction of the most abundant non-reference

allele. This attribute may be more suitable for AVR model building and filtering than the multi-
valued VAF annotation.

IC The inbreeding coefficient for the site.
EP The Phred scaled probability that the site is not in Hardy-Weinberg equilibrium.
LAL The length of the longest allele for the site.
NAA The number of alternate alleles for the site.
PD The ploidy of the sample.
ZY The zygosity of the sample.
RA Categorizes the call as hom-ref (RR), hom-alt (AA), het-ref (RA), or het-alt (AB), independent of

phase or ALT allele indices.
QA Sum of quality of the alternate observations.
CLUS The number of variants in this sample within five bases of the current variant.
AVR The adaptive variant rescoring value. It is a value between 0 and 1 that represents the probability

that the variant for the sample is correct.

The following examples of what a variant call may look like only includes the bare minimum sample field infor-
mation for clarity.

#Examples of calls:
g1 64 . T A 74.0 PASS . GT 1/1 #Homozygous SNP
g1 9 . GAC G 9.0 PASS . GT 1/1 #Homozygous deletion
g1 16 . A ACGT 27.0 PASS . GT 1/1 #Homozygous insertion
g1 54 . T TA 14.0 PASS . GT 1/0 #Heterozygous insertion
g1 17 . ACGT A 71.0 PASS . GT 0/1 #Heterozygous deletion
g1 61 . TTA GCG,AAT 74.0 PASS . GT 1/2 #Heterozygous MNP
g1 3 . A . 11.0 PASS . GT 0/0 #Equality call
g1 32 . CGT . 89.0 PASS . GT 0/0 #Equality call
g1 88 . A G 249.5 PASS . GT 1 #Haploid SNP
g1 33 . A T 20.0 PASS RCE GT 1/1 #Variant which is
→˓equivalent to other variants
g1 42 . A T 13.0 RCEQUIV RCE GT 1/1 #Variant filtered due to
→˓equivalence to other variants
g1 45 . A C 5.0 OC CT=100 GT 1/1 #Variant which exceeds the
→˓coverage threshold of 100
g1 76 . G C 10.0 a10.0 . GT 1/1 #Variant which had
→˓ambiguous mappings overlapping it

5.7. RTG output results file descriptions 185

RTG Core Operations Manual, Release 3.10

g1 74 . A . 3.0 RC . GT 0/0 #Complex call with no
→˓prediction
g1 90 . G C 15.0 RX . GT 1/1 #Homozygous SNP called
→˓within a large complex region
g1 99 . C G 15.0 IONT . GT 1/1 #Variant that failed
→˓IonTorrent homopolymer constraints
g1 33 . A G,C 13.0 PASS . GT 0/1 0/2 0/2 1/2 #Mendelian
→˓family call
g1 90 . G A 20.0 PASS LOH=1 GT:SSC:SS 0/1 0/0:24.0:2
→˓#Somatic mutation

In the outputs from the family, population and somatic commands some additional information about
the samples are provided through the PEDIGREE and SAMPLE header lines.

The family or population command output includes additional sample sex and pedigree information within
the headers like the following:

##PEDIGREE=<Child=SM_SON,Mother=SM_MOTHER,Father=SM_FATHER>
##SAMPLE=<ID=SM_SON,Sex=MALE>
##SAMPLE=<ID=SM_MOTHER,Sex=FEMALE>
##SAMPLE=<ID=SM_FATHER,Sex=MALE>

The pedigree information contained within VCF header fields is also used by the mendelian, pedfilter, and
pedstats commands.

The somatic command output includes information about sample relationships and genome mixtures using
headers like the following:

##PEDIGREE=<Derived=SM_TUMOR,Original=SM_BASE>
##SAMPLE=<ID=SM_BASE,Genomes=SM_BASE,Mixture=1.0,Sex=MALE,Description="Original
→˓genome">
##SAMPLE=<ID=SM_TUMOR,Genomes=SM_BASE;SM_TUMOR,Mixture=0.2;0.8,Sex=MALE,
→˓Description="Original genome;Derived genome">

5.7.4 Regions BED output file description

The snp, family, population and somatic commands all output a BED file containing regions that were
considered to be complex.

The following sample regions.bed file is an example of the output produced by an RTG variant calling run.
Each line in a regions.bed output has tab-separated fields and represents a region in the reference genome
that was considered to be complex.

CFTR.3.70s 7 7 complex-called
CFTR.3.70s 15 15 complex-called
CFTR.3.70s 18 18 complex-called
CFTR.3.70s 21 21 complex-called
CFTR.3.70s 26 30 complex-called
CFTR.3.70s 42 45 complex-over-coverage
CFTR.3.70s 84 93 extreme-coverage
CFTR.3.70s 133 165 hyper-complex
CFTR.3.70s 169 186 complex-called
CFTR.3.70s 189 195 complex-called
CFTR.3.70s 198 198 complex-no-variant
CFTR.3.70s 300 310 complex-no-hypotheses
CFTR.3.70s 435 439 complex-too-many-hypotheses

The columns in order are:

1. Sequence name

2. Region start, counting from 0

186 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

3. Region end, counting from 0, not inclusive

4. Name of the region type

Table : Region type names

Value Description
complex-called Complex regions that were called using complex calling.
hyper-complex Long complex regions for which no call attempt was made.
extreme-coverage No calls made in this region due to extreme coverage.
complex-over-coverage Complex region has greater than the maximum coverage allowed.
complex-no-hypotheses No hypotheses could be created for the complex region.
complex-no-variant Complex region evaluation resulted in no variants.
complex-too-many-hypotheses Complex region had too many hypotheses for evaluation.

5.7.5 SV command output file descriptions

The sv command is used to predict the likelihood of various structural variant categories. The outputs produced
are sv_interesting.bed.gz which is a BED format file that identifies regions that could indicate a struc-
tural variant and sv_bayesian.tsv.gz a tab separated format file containing prediction strengths of event
models.

The following is an example of the sv_interesting.bed.gz file output.

#chr start end areas maxscore average
chr1 10 100 1 584.5470 315.8478
chr1 49760 53270 5 630.3273 380.2483

Table : SV_INTERESTING.BED file output column descriptions

Column Description
chr The chromosome name.
start The start position in the reference chromosome.
end The end position in the reference chromosome.
areas The number of distinct model areas contained in the region.
maxscore The maximum score reached by a model in the given region.
average The average score for the model areas covered by this region.

The following is an example of the sv_bayesian.tsv.gz file output.

#Version v2.3.2 build 5c2ee18 (2011-10-05), SV bayesian output v0.1
#CL sv --step 100 --fine-step 10 --readgroup-stats map/rgstats.tsv --template /
→˓data/human/hg18.sdf -o sv map/alignments.bam
#RUN-ID 8acc8413-0daf-455d-bf9f-41d195dec4cd
#template-name position normal duplicate delete delete-left delete-right
→˓duplicate-left duplicate-right breakpoint novel-insertion max-index
chr1 11 -584.5470 -1582.1325 -3538.0052 -4168.1398 584.5470 -932.2432 -
→˓1219.9770 -630.1436 -664.3196 4
chr1 21 -521.2708 -1508.9226 -3617.4369 -4247.5716 521.2708 -865.7595 -
→˓1156.7007 -630.1450 -671.1980 4
chr1 31 -443.5759 -1425.2073 -3626.2318 -4256.3664 443.5759 -788.1160 -
→˓1079.0058 -630.1468 -662.5068 4
chr1 41 -372.8984 -1346.1013 -3676.6399 -4306.7745 372.8984 -715.6147 -
→˓1008.3284 -630.1490 -662.4542 4
chr1 51 -326.3469 -1288.4120 -3790.0943 -4420.2290 326.3469 -663.2324 -961.
→˓7768 -630.1516 -660.6529 4
chr1 61 -269.1376 -1223.0752 -3849.6462 -4479.7808 269.1376 -604.2883 -904.
→˓5676 -630.1545 -669.2223 4
chr1 71 -201.0995 -1146.3076 -3907.0182 -4537.1529 201.0995 -534.3735 -836.
→˓5295 -630.1578 -673.4514 4
chr1 81 -109.1116 -1046.1921 -3931.7913 -4561.9260 109.1116 -442.1511 -744.
→˓5415 -630.1612 -669.0146 4

5.7. RTG output results file descriptions 187

RTG Core Operations Manual, Release 3.10

chr1 91 -14.6429 -941.7897 -3980.0307 -4610.1653 14.6429 -345.7608 -650.
→˓0728 -630.1648 -664.5593 4
chr1 101 60.8820 -918.1163 -4095.1224 -4725.2570 -60.8820 -329.0012 -635.
→˓4300 -691.0506 -719.2296 0
chr1 111 117.6873 -911.1928 -4194.5855 -4824.7202 -117.6873 -327.5866 -635.
→˓4300 -747.8596 -775.8622 0
chr1 121 199.2098 -898.2490 -4380.5384 -5010.6731 -199.2098 -321.7577 -635.
→˓4300 -829.3856 -857.1902 0

Table : SV_BAYESIAN.TSV file output column descriptions

Column Description
template-name The chromosome name.
position The position in the reference chromosome.
normal The prediction strength for the normal model.
duplicate The prediction strength for the duplicate model.
delete The prediction strength for the delete model.
delete-left The prediction strength for the delete-left model.
delete-right The prediction strength for the delete-right model.
duplicate-left The prediction strength for the duplicate-left model.
duplicate-right The prediction strength for the duplicate-right model.
breakpoint The prediction strength for the breakpoint model.
novel-insertion The prediction strength for the novel-insertion model.
max-index The index of the model that has the maximum prediction strength for this line. The

index starts from 0 meaning normal and is in the same order as the model columns.

When the --simple-signals parameter is set an additional file called sv_simple.tsv.gz is output
which is a tab separated format file containing the raw signals used by the sv command. The following is an
example of the sv_simple.tsv.gz output file.

#Version v2.3.2 build 5c2ee18 (2011-10-05), SV simple output v0.1
#CL sv --step 100 --fine-step 10 --readgroup-stats map/rgstats.tsv --template /
→˓data/human/hg18.sdf -o sv map/alignments.bam --simple-signals
#RUN-ID 8acc8413-0daf-455d-bf9f-41d195dec4cd
#template-name position proper-left discordant-left unmated-left proper-right
→˓ discordant-right unmated-right not-paired unique ambiguous n-count
chr1 11 17.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 18.0000 0.
→˓0000 0.0000
chr1 21 14.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 15.0000 0.
→˓0000 0.0000
chr1 31 13.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 13.0000 0.
→˓0000 0.0000
chr1 41 10.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 11.0000 0.
→˓0000 0.0000
chr1 51 11.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 11.0000 0.
→˓0000 0.0000
chr1 61 12.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12.0000 0.
→˓0000 0.0000
chr1 71 11.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 11.0000 0.
→˓0000 0.0000
chr1 81 17.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 17.0000 0.
→˓0000 0.0000
chr1 91 17.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 17.0000 0.
→˓0000 0.0000
chr1 101 9.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 10.0000 0.
→˓0000 0.0000
chr1 111 10.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10.0000 0.
→˓0000 0.0000
chr1 121 12.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 13.0000 0.
→˓0000 0.0000

Table : SV_SIMPLE.TSV file output column descriptions

188 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

Column Description
template-name The chromosome name.
position The position in the reference chromosome.
proper-left Count of properly paired left reads mapped in this location.
discordant-left Count of discordantly paired left reads mapped in this location.
unmated-left Count of unmated left reads mapped in this location.
proper-right Count of properly paired right reads mapped in this location.
discordant-right Count of discordantly paired right reads mapped in this location.
unmated-right Count of unmated right reads mapped in this location.
not-paired Count of single end reads mapped in this location.
unique Count of unique mappings in this location.
ambiguous Count of ambiguous mappings in this location.
n-count The number of unknown bases on the reference for this location.

5.7.6 Discord command output file descriptions

The discord command uses clusters of discordant reads to find possible locations for structural variant break-
ends. The breakends are output in a VCF file called discord_pairs.vcf.gz using the ALT and INFO fields
as defined in the VCF specification.

Note: RTG structural variant calls are stored in VCF format (version 4.1). For more information about the VCF
format, refer to the specification online at: https://samtools.github.io/hts-specs/VCFv4.1.pdf

The following is an example of the VCF output of the discord command:

##fileformat=VCFv4.1
##fileDate=20120305
##source=RTGv2.5 build 9f7b8a5 (2012-03-05)
##CL=discord --template hst1 -o discord --readgroup-stats map/rgstats.tsv map/
→˓alignments.bam
##RUN-ID=4157329b-edb9-419a-9129-44116e7a2195
##TEMPLATE-SDF-ID=4ecc9eb83e0ccec4
##reference=hst1
##contig=<ID="chr1",length=207900>
##INFO=<ID=CIPOS,Number=2,Type=Integer,Description="Confidence interval around POS
→˓for imprecise variants">
##INFO=<ID=IMPRECISE,Number=0,Type=Flag,Description="Imprecise structural variation
→˓">
##INFO=<ID=SVTYPE,Number=1,Type=String,Description="Type of structural variant">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FILTER=<ID=INCONSISTENT,Description="Supporting reads are inconsistent as to
→˓breakend location">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE
chr1 50005 . A A[simulatedSequence1:52999[. PASS IMPRECISE;SVTYPE=BND;
→˓DP=506;CIPOS=0,0 GT 1/1
chr1 52999 . G]simulatedSequence1:50005]G . PASS IMPRECISE;SVTYPE=BND;
→˓DP=506;CIPOS=0,0 GT 1/1

RTG adds custom fields to the VCF format to better account for some of its unique structural variant calling
features, described in the tables below.

Table : RTG VCF file FILTER fields

Value Description
PASS Standard VCF “PASS”, if breakend meets all the filtering criteria.
INCONSISTENT Breakend with discordant read cluster that does not agree on the possible positions.

Table : RTG VCF file INFO fields

5.7. RTG output results file descriptions 189

https://samtools.github.io/hts-specs/VCFv4.1.pdf

RTG Core Operations Manual, Release 3.10

Value Description
DP=<depth> Indicates the number of discordant reads contributing to the cluster at this breakend.

If the --bed parameter is set the discord command also outputs a BED format file called discord_pairs.
bed.gz containing the break-end regions. Any break-ends which do not have a PASS in the filter field of the
VCF output will be preceded by the comment character in the BED file output.

The following is an example of the BED output from the discord command:

#Version v2.5 build 9f7b8a5 (2012-03-05), Discordance output 1
#CL discord --bed --template hst1 -o discord --readgroup-stats map/rgstats.tsv
→˓map/alignments.bam
#RUN-ID 4157329b-edb9-419a-9129-44116e7a2195
#chromosome start end remote count
chr1 50004 50004 remote:chr1:52998-52998 506
chr1 52998 52998 remote:chr1:50004-50004 506

The columns in the example are in BED file order:

1. Chromosome name

2. Start position in chromosome

3. End position in chromosome

4. Location of remote break-end matching this one

5. Count of discordant reads contributing to the break-end

5.7.7 Coverage command output file descriptions

The coverage command works out the coverage depth for a set of read alignments for a given reference. With
default settings this will produce a BED format file containing the regions with a specific read depth. These
regions are calculated by taking the read depth of each position as the average of itself and the read depths of the
positions to the left and right of it out to the number specified with the --smoothing flag and then grouping the
resulting values which have the same average read depth.

The following is an example of the BED output from the coverage command:

#Version v2.3.2 build 5c2ee18 (2011-10-05), Coverage BED output v1.0
#CL coverage -o coverage-hslo-18-u -t hst1 hslo-18-u/alignments.bam
#RUN-ID c0561a1d-fb3b-4062-96ca-cad2cc3c476a
#sequence start end label coverage
chr1 0 4 chr1 2
chr1 4 13 chr1 3
chr1 13 22 chr1 4
chr1 22 29 chr1 5
chr1 29 38 chr1 6
chr1 38 45 chr1 7
chr1 45 53 chr1 8
chr1 53 64 chr1 9
chr1 64 80 chr1 10
chr1 80 128 chr1 11
chr1 128 137 chr1 10
chr1 137 157 chr1 11
chr1 157 164 chr1 12
chr1 164 169 chr1 13
chr1 169 174 chr1 14
chr1 174 177 chr1 15
chr1 177 181 chr1 16

The columns in the example are in BED file order:

1. Chromosome name

190 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

2. Start position in chromosome

3. End position in chromosome

4. Name or label of the feature, this is generally the name of the chromosome or name of any BED features
overlapping the coverage region

5. Depth of coverage for the range specified

When the --per-region flag is set, the coverage command will alter the criteria for outputting a BED
record. Rather than defining regions having the same level of coverage, a BED record will be produced for each
input BED region, containing the average coverage over that region.

When the --bedgraph flag is set, the coverage command will produce a BEDGRAPH format file with the
regions calculated in the same way as for BED format output.

The following is an example of the BEDGRAPH output from the coverage command:

#Version v2.5.0 build 79d6626 (2011-10-05), Coverage BEDGRAPH output v1.0
#CL coverage -o coverage-hslo-18-u -t hst1 hslo-18-u/alignments.bam --bedgraph
#RUN-ID 36c48ec4-52b7-48d5-b68c-71dce5dba129
track type=bedGraph name=coverage
chr1 0 4 2
chr1 4 13 3
chr1 13 22 4
chr1 22 29 5
chr1 29 38 6
chr1 38 45 7
chr1 45 53 8
chr1 53 64 9
chr1 64 80 10
chr1 80 128 11
chr1 128 137 10
chr1 137 157 11
chr1 157 164 12
chr1 164 169 13
chr1 169 174 14
chr1 174 177 15
chr1 177 181 16

The columns in the example are in BEDGRAPH file order:

1. Chromosome name

2. Start position in chromosome

3. End position in chromosome

4. Depth of coverage for the range specified

When the --per-base flag is set when running the coverage command will produce a tab separated value
file with the coverage information for each individual base in the reference.

The following is an example of the TSV output from the coverage command:

#Version v2.3.2 build 5c2ee18 (2011-10-05), Coverage output v1.0
#CL coverage -o coverage-hslo-18-u-per-base -t hst1 hslo-18-u/alignments.bam --
→˓per-base
#RUN-ID 7798b1a5-2159-48e6-976e-86b4f8e98fa6
#sequence position unique-count ambiguous-count score
chr1 0 0 0 0.00
chr1 1 0 0 0.00
chr1 2 1 0 1.00
chr1 3 1 0 1.00
chr1 4 1 0 1.00
chr1 5 1 0 1.00
chr1 6 1 0 1.00

5.7. RTG output results file descriptions 191

RTG Core Operations Manual, Release 3.10

chr1 7 2 0 2.00
chr1 8 2 0 2.00
chr1 9 2 1 2.50

Table : COVERAGE.TSV file output column descriptions

Column Description
sequence The chromosome name.
position The position in the reference chromosome.
unique-count The count of reads covering this position with IH equal to one.
ambiguous-count The count of reads covering this position with IH greater than one.
score The sum of one divided by the IH value for all the reads covering this position.

The coverage command produces a stats.tsv file with coverage statistics for each chromosome in the
reference and the reference as a whole. The following is an example file:

#depth breadth covered size name
28.3238 0.9998 23766 23770 chr1
28.0013 0.9997 41447 41459 chr2
28.3151 0.9994 24930 24946 chr3
28.4955 0.9999 87734 87741 chr4
28.3822 0.9999 32600 32604 chr5
28.7159 0.9999 55042 55047 chr6
28.1109 0.9998 34887 34894 chr7
28.3305 0.9999 50025 50032 chr8
28.2229 0.9998 49627 49639 chr9
28.3817 0.9999 15912 15914 chr10
28.3569 0.9998 415970 416046 all sequences

Table : STATS.TSV column descriptions

Column Description
depth The average depth of coverage for the region where each base position is calculated as the sum

of one divided by the IH of each read alignment which covers the position.
breadth The fraction of the non-N region base positions which have a depth of one or greater.
covered The number of non-N bases in the region which have a depth of one or greater.
size The number of non-N bases in the region.
name The name of the region, or “all sequences” for the entire reference.

For whole-genome coverage runs, the region names are each of the chromosomes. For exome data, or other
targeted sequencing where a BED file was provided, the region names are obtained from the BED file.

The coverage command produces a levels.tsv file with some statistics about the coverage levels. The
following is the start of an example file:

#coverage_level count %age %cumulative
0 83 0.02 100.00
1 84 0.02 99.98
2 86 0.02 99.96
3 87 0.02 99.94
4 88 0.02 99.92
5 154 0.04 99.90

Table : LEVELS.TSV column descriptions

Column Description
coverage_level The coverage level.
count The count of the number of bases at this coverage level.
%age The percentage of the reference at this coverage level.
%cumulative The percentage of the reference at this coverage level or higher.

192 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

5.7.8 Mapx output file description

The mapx command searches protein databases with translated nucleotide sequences. It reports matches filtered
on a combination of percent identity, e-score, bit-score and alignment score. The matches are reported in an ASCII
file called alignments.tsv with each match reported on a single line as a tab-separated value record.

The following results file is an example of the output produced by mapx:

#template-name frame read-id template-start template-end template-length read-
→˓start read-end read-length template-protein read-protein alignment identical
→˓%identical positive %positive mismatches raw-score bit-score e-score
gi|212691090|ref|ZP_03299218.1| +1 0 179 211 429 1 99
→˓ 100 nirqgsrtfgilcmpkasgnypallrvpgagvr
→˓nirqgsrtfgifcmpkasgnypallrvpgaggr nirqgsrtfgi cmpkasgnypallrvpgag r 31
→˓ 94 31 94 2 -162 67.0 2.3e-11
gi|255013538|ref|ZP_05285664.1| +1 0 176 208 428 1 99
→˓ 100 nvrpgsrtygilcmpkkegkypallrvpgagir
→˓nirqgsrtfgifcmpkasgnypallrvpgaggr n+r gsrt+gi cmpk g ypallrvpgag r 25
→˓ 76 27 82 6 -136 57.0 2.3e-8
gi|260172804|ref|ZP_05759216.1| +1 0 185 217 435 1 99
→˓ 100 nicngsrtfgilcipkkpgkypallrvpgagvr
→˓nirqgsrtfgifcmpkasgnypallrvpgaggr ni gsrtfgi c+pk g ypallrvpgag r 25
→˓ 76 26 79 7 -129 54.3 1.5e-7
gi|224537502|ref|ZP_03678041.1| +1 0 162 194 414 1 99
→˓ 100 tdrwgsrfygvlcvpkkegkypallrvpgagir
→˓nirqgsrtfgifcmpkasgnypallrvpgaggr r gsr +g+ c+pk g ypallrvpgag r 21
→˓64 24 73 9 -111 47.4 1.8e-5

The following table provides descriptions of each column in the mapx output file format, listed from left to right.

Table : ALIGNMENTS.TSV file output column descriptions

5.7. RTG output results file descriptions 193

RTG Core Operations Manual, Release 3.10

Column Description
template-name ID or description of protein (reference) with match.
frame Denotes translation frame on forward (1,2,3) or reverse strand.
read-id Numeric ID of read from SDF.
template-start Start position of alignment on protein subject.
template-end End position of alignment on protein subject.
template-length Amino acid length of protein subject.
read-start Start position of alignment on read nucleotide sequence.
read-end End position of alignment on read nucleotide sequence.
read-length Total nucleotide length of read.
template-protein Amino acid sequence of aligned protein reference.
read-protein Amino acid sequence of aligned translated read.
alignment Amino acid alignment of match.
identical Count of identities in alignment between reference and translated read.
%identical Percent identity of match between reference and translated read, for exact matches

only (global across translated read).
positive Count of identical and similar amino acids in alignment between translated read

and reference.
%positive Percent similarity between reference and translated read, for exact and similar

matches (global across translated read).
mismatches Count of mismatches between reference and translated read.
raw-score RTG alignment score (S); The alignment score is the negated sum of all single

protein raw scores plus its penalties for gaps, which is the edit distance using one
of the scoring matrices. Note that the RTG alignment score is the negated raw
score of BLAST.

bit-score Bit score is computed from the alignment score using the following formula:
bit-score = ((𝜆×−𝑆)− ln(𝐾))/ ln(2)
where 𝜆 and 𝐾 are taken from the matrix defaults [Blast pp.302-304] and 𝑆 is the
RTG alignment score.

e-score e-score is computed from the alignment score using the following formula:
e-score = 𝐾 ×𝑚′ × 𝑛× 𝑒(𝜆×𝑆)

𝑛 is the total length of the database.
𝑚′ is the effective length of the query (read):
𝑚′ = max(1, querylength + 𝜆× 𝑆/𝐻)

When the --unmapped-reads flag is set, unmapped reads are reported in an ASCII file called unmapped.
tsv with each read reported on a single line as a tab-separated value record. Each read in the unmapped output
has a character code indicating the reason the read was not mapped, with no code indicating that read had no
matches.

Character codes for unmapped reads include:

Character Description
d Indicates that after alignment scores are calculated, the remaining hits were discarded because

they exceeded the alignment score threshold (affected by --max-alignment-score).
e Indicates that there were good scoring hits, but the arm was discarded because there were too

many of these hits (affected by --max-top-results).
f Indicates that there was a good hit which failed the percent identity threshold (affected by

--min-identity).
g Indicates that there was a good hit which failed the e-score threshold (affected by

--max-e-score).
h Indicates that there was a good hit which failed the bit score threshold (affected by

--min-bit-score).

5.7.9 Species results file description

The species command estimates the proportion of taxa in a given set of BAM files. It does this by taking a set
of BAM files which were mapped against a set of known genome sequences. The proportions are reported in a tab

194 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

separated ASCII file called species.tsv with each taxon reported on a separate line. The header lines include
the command line and reference sets used.

In addition to the raw output, some basic diversity metrics are produced and output to the screen and to a file
named summary.txt. The metrics included are:

:clist - Shannon (see http://en.wikipedia.org/wiki/Diversity_index#Shannon_index) - Pielou (see http://en.
wikipedia.org/wiki/Species_evenness) - Inverse Simpson (see http://en.wikipedia.org/wiki/Diversity_index#
Inverse_Simpson_index)

For an interactive graphical view of the species command output, an HTML5 report named index.html.
Opening this shows the taxonomy and data on an interactive pie chart, with wedge sizes defined by either the
abundance or DNA fraction (user selectable in the report).

The following results file is an example of the output produced by species:

#abundance abundance-low abundance-high DNA-fraction DNA-fraction-low DNA-fraction-
→˓high confidence coverage-depth coverage-breadth reference-length mapped-reads
→˓has-reference taxa-count taxon-id parent-id rank taxonomy-name
0.1693 0.1677 0.1710 0.06157 0.06097 0.06217 4.2e+02 0.4919 0.3915 1496992 20456.
→˓00 Y 1 3 1 species Acholeplasma_laidlawii
0.1682 0.1671 0.1693 0.1384 0.1375 0.1393 6.6e+02 0.4892 0.3918 3389227 46059.50 Y
→˓1 4 1 species Acidiphilium_cryptum
0.1680 0.1667 0.1692 0.09967 0.09891 0.1004 5.5e+02 0.4890 0.3887 2443540 33189.00
→˓Y 1 6 1 species Acidothermus_cellulolyticus
0.1677 0.1668 0.1685 0.2301 0.2289 0.2313 8.7e+02 0.4877 0.3887 5650368 76543.00 Y
→˓1 5 1 species Acidobacteria_bacterium
0.1646 0.1638 0.1655 0.2140 0.2129 0.2152 8.3e+02 0.4795 0.3886 5352772 71295.50 Y
→˓1 7 1 species Acidovorax_avenae
0.1622 0.1614 0.1630 0.2562 0.2550 0.2574 9.2e+02 0.4721 0.3836 6503724 85288.00 Y
→˓1 2 1 species Acaryochloris_marina

The following table provides descriptions of each column in the species output file format, listed from left to right.

Table : SPECIES.TSV file output column descriptions

5.7. RTG output results file descriptions 195

http://en.wikipedia.org/wiki/Diversity_index#Shannon_index
http://en.wikipedia.org/wiki/Species_evenness
http://en.wikipedia.org/wiki/Species_evenness
http://en.wikipedia.org/wiki/Diversity_index#Inverse_Simpson_index
http://en.wikipedia.org/wiki/Diversity_index#Inverse_Simpson_index

RTG Core Operations Manual, Release 3.10

Column Description
abundance Fraction of the individuals in the sample that belong to this taxon. The output file

is sorted on this column.
abundance-low Lower bound three standard deviations below the abundance.
abundance-high Upper bound three standard deviations above the abundance.
DNA-fraction Raw fraction of the DNA that maps to this taxon.
DNA-fraction-low Lower bound three standard deviations below the DNA-fraction.
DNA-fraction-high Upper bound three standard deviations above the DNA-fraction.
confidence Confidence that this taxon is present in the sample. (Computed as the number of

standard deviations away from the null hypotheses).
coverage-depth The coverage depth of reads mapped to the taxon sequences, adjusted for the IH

(number of output alignments) of the individual reads. (Zero if no reference
sequences for the taxon).

coverage-breadth The fraction of the taxon sequences covered by the reads. (Zero if no reference
sequences for the taxon).

reference-length The total length of the reference sequences, will be 0 if the taxon does not have
associated reference sequences.

mapped-reads The count of the reads which mapped to this taxon, adjusted for the IH (number
of output alignments) of the individual reads.

has-reference Y if the taxon has associated reference sequences, otherwise N.
taxa-count The count of the number of taxa that are descendants of this taxon (including

itself) and which are above the minimum confidence threshold.
taxon-id The taxonomic ID for this result.
parent-id The taxonomic ID of this results parent.
rank The taxonomic rank associated with this result. This can be used to filter results

into meaningful sets at different taxonomic ranks.
taxonomy-name The taxonomic name for this result.

5.7.10 Similarity results file descriptions

The similarity command estimates how closely related a set of samples are to each other. It produces output
in the form of a similarity matrix (similarity.tsv), a principal component analysis (similarity.pca)
and two formats for phylogenetic trees showing relationships (closest.tre and closest.xml).

The similarity matrix file is a tab separated format file containing an 𝑁 ×𝑁 matrix of the matching k-mer counts,
where N is the number of samples. An example of a similarity.tsv file:

#rtg similarity --unique-words -o similarity-out -I samples.txt -w 20 -s 15
F1_G_S_1M F1_N_AN_1M F1_O_BM_1M F1_O_SP_1M F1_O_TD_1M F1_V_
→˓PF_1M
F1_G_S_1M 8406725 4873 18425 13203 14746 10201
F1_N_AN_1M 4873 3551445 113310 117696 68118 245516
F1_O_BM_1M 18425 113310 6588017 579048 782011 152603
F1_O_SP_1M 13203 117696 579048 8583126 248654 161950
F1_O_TD_1M 14746 68118 782011 248654 9134232 79949
F1_V_PF_1M 10201 245516 152603 161950 79949 6000623

The principal component analysis file is a tab separated format file containing principal component groupings in
three columns of real numbers, followed by the name of the sample. This can be turned into a 3D plot show-
ing relationship groupings, by treating each line as a single point in three dimensional space. An example of a
similarity.pca file:

0.0906 -0.1505 0.0471 F1_G_S_1M
-0.1207 -0.0610 -0.0348 F1_N_AN_1M
-0.0479 0.1889 -0.0119 F1_O_BM_1M
-0.0229 0.0893 0.0996 F1_O_SP_1M
0.0162 0.1375 -0.1384 F1_O_TD_1M
-0.1503 -0.0619 -0.0341 F1_V_PF_1M

196 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

The files containing the relationships as phylogenetic trees are in the Newick (closest.tre) and phyloXML
(closest.xml) formats. For more information about the Newick tree format see http://en.wikipedia.org/wiki/
Newick_format. For more information about the phyloXML format see http://www.phyloxml.org.

5.8 RTG JavaScript filtering API

The vcffilter command permits filtering VCF records via user-supplied JavaScript expressions or scripts
containing JavaScript functions that operate on VCF records. The JavaScript environment has an API provided
that enables convenient access to components of a VCF record in order to satisfy common use cases.

5.8.1 VCF record field access

This section describes the supported methods to access components of an individual VCF record. In the following
descriptions, assume the input VCF contains the following excerpt (the full header has been omitted):

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA12877 NA12878
1 11259340 . G C,T . PASS DP=795;DPR=0.581;ABC=4.5 GT:DP 1/2:65 1/0:15

CHROM, POS, ID, REF, QUAL

Within the context of a --keep-expr or record function these variables will provide access to the String
representation of the VCF column of the same name.

CHROM; // "1"
POS; // "11259340"
ID; // "."
REF; // "G"
QUAL; // "."

ALT, FILTER

Will retrieve an array of the values in the column.

ALT; // ["C", "T"]
FILTER; // ["PASS"]

INFO.{INFO_FIELD}

The values in the INFO field are accessible through properties on the INFO object indexed by INFO ID. These
properties will be the string representation of info values with multiple values delimited with “,”. Missing fields
will be represented by “.”. Assigning to these properties will update the VCF record. This will be undefined for
fields not declared in the header.

INFO.DP; // "795"
INFO.ABC; // "4,5"

{SAMPLE_NAME}.{FORMAT_FIELD}

The JavaScript String prototype has been extended to allow access to the format fields for each sample. The string
representation of values in the sample column are accessible as properties on the string matching the sample name
named after the FORMAT field ID.

5.8. RTG JavaScript filtering API 197

http://en.wikipedia.org/wiki/Newick_format
http://en.wikipedia.org/wiki/Newick_format
http://www.phyloxml.org

RTG Core Operations Manual, Release 3.10

'NA12877'.GT; // "1/2"
'NA12878'.GT; // "1/0"

Note that these properties are only defined for fields that are declared in the VCF header (any that are not declared
in the header will be undefined). See below for how to add new INFO or FORMAT field declarations.

5.8.2 VCF record modification

Most components of VCF records can be written or updated in a fairly natural manner by direct assignment in
order to make modifications. For example:

ID = "rs23987382"; // Will change the ID value
QUAL = "50"; // Will change the QUAL value
FILTER = "FAIL"; // Will set the FILTER value
INFO.DPR = "0.01"; // Will change the value of the DPR info field
'NA12877'.DP = "10"; // Will change the DP field of the NA12877 sample

Other components of the VCF record (such as CHROM, POS, REF, and ALT) are considered immutable and can
not currently be altered.

Direct assignment to ID and FILTER fields accept either a string containing semicolon separated values, or a list
of values. For example:

ID = 'rs23987382;COSM3805';
ID = ['rs23987382', 'COSM3805'];
FILTER = 'BAZ;BANG';
FILTER = ['BAZ', 'BANG'];

Note that although the FILTER field returns an array when read, any changes made to this array directly are not
reflected back into the VCF record.

Adding a filter to existing filters is a common operation and can be accomplished by the above assignment meth-
ods, for example by adding a value to the existing list and then setting the result:

var f = FILTER;
f.push('BOING');
FILTER = f;

However, since this is a little unwieldy, a convenience function called add() can be used (and may be chained):

FILTER.add('BOING');
FILTER.add(['BOING', 'DOING');
FILTER.add('BOING').add('DOING');

5.8.3 VCF header modification

Functions are provided that allow the addition of new FILTER, INFO and FORMAT fields to the header
and records. It is recommended that the following functions only be used within the run-once portion of
--javascript.

ensureFormatHeader(FORMAT_HEADER_STRING)

Add a new FORMAT field to the VCF if it is not already present. This will add a FORMAT declaration line to the
header and define the corresponding accessor methods for use in record processing.

ensureFormatHeader('##FORMAT=<ID=GL,Number=G,Type=Float,' +
'Description="Log_10 scaled genotype likelihoods.">');

198 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

ensureInfoHeader(INFO_HEADER_STRING)

Add a new INFO field to the VCF if it is not already present. This will add an INFO declaration line to the header
and define the corresponding accessor methods for use in record processing.

ensureInfoHeader('##INFO=<ID=CT,Number=1,Type=Integer,' +
'Description="Coverage threshold that was applied">');

ensureFilterHeader(FILTER_HEADER_STRING)

Add a new FILTER field to the VCF header if it is not already present. This will add an FILTER declaration line
to the header.

ensureFilterHeader('##INFO=<ID=FAIL_VAL,' +
'Description="Failed validation">');

5.8.4 Additional information and functions

SAMPLES

This variable contains an array of the sample names in the VCF header.

SAMPLES; // ['NA12877', 'NA12878']

print({STRING})

Writes the provided string to standard output.

print('The samples are: ' + SAMPLES);

checkMinVersion(RTG_MINIMUM_VERSION)

Checks the version of RTG that the script is running under, and exits with an error message if the version of RTG
does not meet the minimum required version. This is useful when distributing scripts that make use of features
that are not present in earlier versions of RTG.

checkMinVersion('3.9.2');

See also:

For javascript filtering usage and examples see vcffilter

5.9 Parallel processing approach

The comparison of genomic variation on a large scale in real time demands parallel processing capability. On
a single server node, RTG automatically splits up compute-intensive commands like map and snp into multiple
threads that run simultaneously (unless explicitly directed otherwise through the -T option).

To get a further reduction in wall clock time and optimize job execution on different size server nodes, a full read
mapping and alignment run can be split into smaller jobs running in parallel on multiple servers.

How it works

With read mapping, very large numbers of reads may be aligned to a single reference genome. For example,
35 fold coverage of the human genome with 2×36 base pair data requires processing of 1,500 million reads.

5.9. Parallel processing approach 199

RTG Core Operations Manual, Release 3.10

Fortunately, multiple alignment files can be easily combined with other alignment files if the reference is held
constant. Thus, the problem can easily be made parallel by breaking up the read data into multiple data sets and
executing on separate compute nodes.

The steps for clustered read mappings with RTG are as follows:

Create multiple jobs of single end data, and start them on different nodes. By creating files with the individual
jobs, these can be saved for repeated runs. This example shows the mapping of single end read data to a reference.

$ echo "rtg map -a 1 -b 0 -w 12 --start-read=0 --end-read=10000000 \
-o ${RESULTS}/00 -i ${READ_DATA} -t ${REFERENCE}" > split-job-00

$ rsh host0 split-job-00
$ echo "rtg map -a 1 -b 0 -w 12 --start-read=10000000 --end-read=20000000 \

-o ${RESULTS}/01 -i ${READ_DATA} -t ${REFERENCE}" > split-job-01
$ rsh host1 split-job-01

Repeat for as many segments of read data as required. This step can vary based on your configuration, but the
basic idea is to create a command line script and then run it remotely. Store read, reference, and output results data
in a central location for easier management. Shell variables that specify data location by URL are recommended
to keep it all straight.

Run SNP caller to get variant detection results

$ rtg snp -t ${REFERENCE} -o ${RESULTS} ${RESULTS}/*/alignments.bam

With this pipeline, each job runs to completion on separate nodes mapping the reads against the same reference
genome. Each node should have sufficient, dedicated memory. RTG will automatically use the available cores of
the processor to run multi-threaded tasks.

Note: The map command does not require specific assignment of input files for left and right mate pair read data
sets; this is handled automatically by the format command. The result is an SDF directory structure, with left and
right SDF directories underneath a directory named by the -o parameter. Each of the left and right directories
share a GUID and are identified as left or right arms respectively. The map command uses this information to
verify that left and right arms are correct before processing.

Complete Genomics use case

Complete Genomics data has 70 lanes, typically. For clustered processing, plan one lane of mapping per SDF. If
you have 7 machines available, map 10 on each machine resulting in 70 SDFs per machine, and 70 directories of
BAM files per machine.

SDF read data is loaded into RAM during execution of the RTG cgmap command. For example, using human
genomic data, ~1.28 billion reads (each with 70 bp of information) can be divided into chunks that can fit into
memory by the cgmap command.

If you have multi-core server nodes available, the cgmap command will use multiple cores simultaneously. You
can use the -T flag to adjust the number of cores used. Clustered processing dramatically reduces the wall clock
time of the total job. At the end, the snp and cnv commands will accept multiple alignment files created by
mapping runs at one time, where different sets of reads are mapped to the same reference.

5.10 Distribution Contents

The contents of the RTG distribution zip file should include:

• The RTG executable JAR file.

• RTG executable wrapper script.

• Example scripts and files.

• This operations manual.

200 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

• A release notes file and a readme file.

Some distributions also include an appropriate java runtime environment (JRE) for your operating system.

5.11 README.txt

For reference purposes, a copy of the distribution README.txt file follows:

=== RTG.VERSION ===

RTG software from Real Time Genomics includes tools for the processing
and analysis of plant, animal and human sequence data from high
throughput sequencing systems. Product usage and administration is
described in the accompanying RTG Operations Manual.

Quick Start Instructions
========================

RTG software is delivered as a command-line Java application accessed
via a wrapper script that allows a user to customize initial memory
allocation and other configuration options. It is recommended that
these wrapper scripts be used rather than directly accessing the Java
JAR.

For individual use, follow these quick start instructions.

No-JRE:

The no-JRE distribution does not include a Java Runtime Environment
and instead uses the system-installed Java. Ensure that at the
command line you can enter "java -version" and that this command
reports a java version of 1.7 or higher before proceeding with the
steps below. This may require setting your PATH environment variable
to include the location of an appropriate version of java.

Linux/MacOS X:

Unzip the RTG distribution to the desired location.

If your RTG distribution requires a license file (rtg-license.txt),
copy the license file from Real Time Genomics into the RTG
distribution directory.

In a terminal, cd to the installation directory and test for success
by entering "./rtg version"

On MacOS X, depending on your operating system version and
configuration regarding unsigned applications, you may encounter the
error message:

-bash: rtg: /usr/bin/env: bad interpreter: Operation not permitted

If this occurs, you must clear the OS X quarantine attribute with
the command:

xattr -d com.apple.quarantine rtg

The first time rtg is executed you will be prompted with some
questions to customize your installation. Follow the prompts.

5.11. README.txt 201

RTG Core Operations Manual, Release 3.10

Enter "./rtg help" for a list of rtg commands. Help for any individual
command is available using the --help flag, e.g.: "./rtg format --help"

By default, RTG software scripts establish a memory space of 90% of
the available RAM - this is automatically calculated. One may
override this limit in the rtg.cfg settings file or on a per-run
basis by supplying RTG_MEM as an environment variable or as the
first program argument, e.g.: "./rtg RTG_MEM=48g map"

[OPTIONAL] If you will be running rtg on multiple machines and would
like to customize settings on a per-machine basis, copy
rtg.cfg to /etc/rtg.cfg, editing per-machine settings
appropriately (requires root privileges). An alternative that does
not require root privileges is to copy rtg.example.cfg to
rtg.HOSTNAME.cfg, editing per-machine settings appropriately, where
HOSTNAME is the short host name output by the command "hostname -s"

Windows:

Unzip the RTG distribution to the desired location.

If your RTG distribution requires a license file (rtg-license.txt),
copy the license file from Real Time Genomics into the RTG
distribution directory.

Test for success by entering "rtg version" at the command line. The
first time rtg is executed you will be prompted with some
questions to customize your installation. Follow the prompts.

Enter "rtg help" for a list of rtg commands. Help for any individual
command is available using the --help flag, e.g.: "rtg format --help"

By default, RTG software scripts establish a memory space of 90% of
the available RAM - this is automatically calculated. One may
override this limit by setting the RTG_MEM variable in the rtg.bat
script or as an environment variable.

The scripts subdirectory contains demos, helper scripts, and example
configuration files, and comprehensive documentation is contained in
the RTG Operations Manual.

Using the above quick start installation steps, an individual can
execute RTG software in a remote computing environment without the
need to establish root privileges. Include the necessary data files
in directories within the workspace and upload the entire workspace to
the remote system (either stand-alone or cluster).

For data center deployment and instructions for editing scripts,
please consult the Administration chapter of the RTG Operations Manual.

A discussion group is now available for general questions, tips, and other
discussions. It may be viewed or joined at:
https://groups.google.com/a/realtimegenomics.com/forum/#!forum/rtg-users

To be informed of new software releases, subscribe to the low-traffic
rtg-announce group at:
https://groups.google.com/a/realtimegenomics.com/forum/#!forum/rtg-announce

Citing RTG
==========

John G. Cleary, Ross Braithwaite, Kurt Gaastra, Brian S. Hilbush,

202 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

Stuart Inglis, Sean A. Irvine, Alan Jackson, Richard Littin, Sahar
Nohzadeh-Malakshah, Mehul Rathod, David Ware, Len Trigg, and Francisco
M. De La Vega. "Joint Variant and De Novo Mutation Identification on
Pedigrees from High-Throughput Sequencing Data." Journal of
Computational Biology. June 2014, 21(6):
405-419. doi:10.1089/cmb.2014.0029.

Terms of Use
============

This proprietary software program is the property of Real Time
Genomics. All use of this software program is subject to the
terms of an applicable end user license agreement.

Patents
=======

US: 7,640,256, 13/129,329, 13/681,046, 13/681,215, 13/848,653,
13/925,704, 14/015,295, 13/971,654, 13/971,630, 14/564,810
UK: 1222923.3, 1222921.7, 1304502.6, 1311209.9, 1314888.7, 1314908.3
New Zealand: 626777, 626783, 615491, 614897, 614560
Australia: 2005255348, Singapore: 128254
Other patents pending

Third Party Software Used
=========================

RTG software uses the open source htsjdk library
(https://github.com/samtools/htsjdk) for reading and writing SAM
files, under the terms of following license:

The MIT License

Copyright (c) 2009 The Broad Institute

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

RTG software uses the bzip2 library included in the open source Ant project
(http://ant.apache.org/) for decompressing bzip2 format files, under the
following license:

Copyright 1999-2010 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not

5.11. README.txt 203

RTG Core Operations Manual, Release 3.10

use this file except in compliance with the License. You may obtain a copy of
the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

RTG Software uses a modified version of
java/util/zip/GZIPInputStream.java (available in the accompanying
gzipfix.jar) from OpenJDK 7 under the terms of the following license:

This code is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 only, as
published by the Free Software Foundation. Oracle designates this
particular file as subject to the "Classpath" exception as provided
by Oracle in the LICENSE file that accompanied this code.

This code is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
version 2 for more details (a copy is included in the LICENSE file that
accompanied this code).

You should have received a copy of the GNU General Public License version
2 along with this work; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.

Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
or visit http://www.oracle.com if you need additional information or have
any questions.

RTG Software uses hierarchical data visualization software from
http://sourceforge.net/projects/krona/ under the terms of the
following license:

Copyright (c) 2011, Battelle National Biodefense Institute (BNBI);
all rights reserved. Authored by: Brian Ondov, Nicholas Bergman, and
Adam Phillippy

This Software was prepared for the Department of Homeland Security
(DHS) by the Battelle National Biodefense Institute, LLC (BNBI) as
part of contract HSHQDC-07-C-00020 to manage and operate the National
Biodefense Analysis and Countermeasures Center (NBACC), a Federally
Funded Research and Development Center.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

204 Chapter 5. Appendix

RTG Core Operations Manual, Release 3.10

* Neither the name of the Battelle National Biodefense Institute nor
the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

5.12 Notice

Real Time Genomics does not assume any liability arising out of the application or use of any software described
herein. Further, Real Time Genomics does not convey any license under its patent, trademark, copyright, or
common-law rights nor the similar rights of others.

Real Time Genomics reserves the right to make any changes in any processes, products, or parts thereof, described
herein, without notice. While every effort has been made to make this guide as complete and accurate as possible
as of the publication date, no warranty of fitness is implied.

© 2017 Real Time Genomics All rights reserved.

Illumina, Solexa, Complete Genomics, Ion Torrent, Roche, ABI, Life Technologies, and PacBio are registered
trademarks and all other brands referenced in this document are the property of their respective owners.

5.12. Notice 205

	Overview
	Introduction
	RTG software description
	Sequence search and alignment
	Data formatting
	Read mapping and alignment
	Read mapping output files
	Read mapping sensitivity tuning
	Protein search
	Protein search output files
	Protein search sensitivity tuning
	Benchmarking and optimization utilities

	Variant detection functions
	Sequence variation (SNPs, indels and complex variants)
	Sequence variation with Mendelian pedigree
	Somatic sequence variation
	Coverage analysis
	Copy number variation (CNV) analysis

	Standard input and output file formats
	SAM/BAM files created by the RTG map command
	Variant caller output files

	Metagenomic analysis functions
	Contamination filtering
	Taxon abundance breakdown
	Sample relationships
	Functional protein analysis

	Pipelines
	Parallel processing
	Installation and deployment
	Quick start instructions
	License Management

	Technical assistance and support

	RTG Command Reference
	Command line interface (CLI)
	RTG command syntax
	Data Formatting Commands
	format
	cg2sdf
	sdf2cg
	sdf2fasta
	sdf2fastq
	sdf2sam
	fastqtrim
	petrim

	Read Mapping Commands
	map
	mapf
	cgmap
	coverage
	calibrate

	Protein Search Commands
	mapx

	Assembly Commands
	assemble
	addpacbio

	Variant Detection Commands
	snp
	family
	somatic
	population
	lineage
	avrpredict
	avrbuild
	svprep
	discord
	sv
	cnv

	Metagenomics Commands
	species
	similarity

	Pipeline Commands
	composition-meta-pipeline
	functional-meta-pipeline
	composition-functional-meta-pipeline

	Simulation Commands
	genomesim
	cgsim
	readsim
	readsimeval
	popsim
	samplesim
	denovosim
	childsim
	pedsamplesim
	samplereplay

	Utility Commands
	bgzip
	index
	extract
	aview
	sdfstats
	sdfsplit
	sdfsubset
	sdfsubseq
	sam2bam
	sammerge
	samstats
	samrename
	mapxrename
	chrstats
	mendelian
	vcfstats
	vcfmerge
	vcffilter
	vcfannotate
	vcfsubset
	vcfdecompose
	vcfeval
	svdecompose
	bndeval
	pedfilter
	pedstats
	avrstats
	rocplot
	hashdist
	ncbi2tax
	taxfilter
	taxstats
	usageserver
	version
	license
	help

	RTG product usage - baseline progressions
	Human read mapping and sequence variant detection
	Task 1 - Format reference data
	Task 2 - Prepare sex/pedigree information
	Task 3 - Format read data
	Task 4 - Map reads to the reference genome
	Task 5 - View and evaluate mapping performance
	Task 6 - Generate and review coverage information
	Task 7 - Call sequence variants (single sample)
	Task 8 - Call sequence variants (single family)
	Task 9 - Call population sequence variants

	Create and use population priors in variant calling
	Task 1 - Produce population priors file
	Task 2 - Run variant calling using population priors

	Somatic variant detection in cancer
	Task 1 - Format reference data (Somatic)
	Task 2 - Format read data (Somatic)
	Task 3 - Map tumor and normal sample reads against the reference genome
	Task 4 - Call somatic variants
	Using site-specific somatic priors

	AVR scoring using HAPMAP for model building
	Task 1 - Create training data
	Task 2 - Build and check AVR model
	Task 3 - Use AVR model
	Task 4 - Install AVR model

	RTG structural variant detection
	Task 1 - Prepare Read-group statistics files
	Task 2 - Find structural variants with sv
	Task 3 - Find structural variants with discord
	Task 4 - Report copy number variation statistics

	Ion Torrent bacterial mapping and sequence variant detection
	Task 1 - Format bacterial reference data (Ion Torrent)
	Task 2 - Format read data (Ion Torrent)
	Task 3 - Map Ion Torrent reads to the reference genome
	Task 4 - Call sequence variants in haploid mode

	RTG contaminant filtering
	Task 1 - Format reference data (contaminant filtering)
	Task 2 - Format read data (contaminant filtering)
	Task 3 - Run contamination filter
	Task 4 - Manage filtered reads

	RTG translated protein searching
	Task 1 - Format protein data set
	Task 2 - Format DNA read set
	Task 3 - Search against protein data set

	RTG species frequency estimation
	Task 1 - Format reference data (species)
	Task 2 - Format read data (species)
	Task 3 - Run contamination filter (optional)
	Task 4 - Map metagenomic reads against bacterial database
	Task 5 - Run species estimator

	RTG sample similarity
	Task 1 - Prepare read sets
	Task 2 - Generate read set name map
	Task 3 - Run similarity tool

	Administration & Capacity Planning
	Advanced installation configuration
	Run-time performance optimization
	Alternate configurations
	Exception management - TalkBack and log file
	Usage logging
	Single-user, single machine
	Multi-user or multiple machines
	Advanced usage configuration

	Command-line color highlighting

	Appendix
	RTG gapped alignment technical description
	Alignment computations
	Alignment scoring

	Using SAM/BAM Read Groups in RTG map
	RTG reference file format
	RTG taxonomic reference file format
	RTG taxonomy file format
	RTG taxonomy lookup file format

	Pedigree PED input file format
	RTG commands using indexed input files
	RTG output results file descriptions
	SAM/BAM file extensions (RTG map command output)
	SAM/BAM file extensions (RTG cgmap command output)
	Small-variant VCF output file description
	Regions BED output file description
	SV command output file descriptions
	Discord command output file descriptions
	Coverage command output file descriptions
	Mapx output file description
	Species results file description
	Similarity results file descriptions

	RTG JavaScript filtering API
	VCF record field access
	VCF record modification
	VCF header modification
	Additional information and functions

	Parallel processing approach
	Distribution Contents
	README.txt
	Notice

