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Overview

Rayleigh solves the MHD equations, in a rotating frame, within spherical shells, using the anelastic or Boussi-
nesq approximations. Derivatives in Rayleigh are calculated using a spectral transform scheme. Spherical har-
monics are used as basis functions in the horizontal direction. Chebyshev polynomials are employed in radius.
Time-stepping is accomplished used the semi-implicit Crank-Nicolson method for the linear terms, and the Adams-
Bashforth method for the nonlinear terms. Both methods are second-order in time.

This document serves as a guide to installation and running Rayleigh. Rayleigh’s diagnostics package is dis-
cussed in the companion document Rayleigh/doc/Diagnostics Plotting.html,pdf

Rayleigh is written by Nicholas Featherstone, with National-Science-Foundation support through the Geody-
namo Working Group of the Computational Infrastructure for Geodynamics (CIG; PI: Louise Kellogg).

The CIG Geodynamo Working Group Members are: Jonathon Aurnou, Benjamin Brown, Bruce Buffet, Nicholas
Featherstone, Gary Glatzmaier, Eric Heien, Moritz Heimpel ,Lorraine Hwang, Louise Kellogg, Hiroaki Matsui,
Peter Olson, Krista Soderlund, Sabine Stanley, Rakesh Yadav

Rayleigh’s implementation of the pseudo-spectral algorithm and its parallel design would not have been pos-
sible without earlier work by Gary Glatzmaier and Thomas Clune, described in:

1. Glatzmaier, G.A., 1984, J. Comp. Phys., 55, 461

2. Clune, T.C., Elliott, J.R., Miesch, M.S. & Toomre, J., 1999, Parallel Comp., 25, 361
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1 Compiling and Installing Rayleigh

A detailed explanation of the installation process may be found in the root directory of the code repository at:

Rayleigh/INSTALL.

We provide an abbreviated version of those instructions here.

1.1 Third-Party Dependencies

In order to compile Rayleigh, you will need to have MPI (Message Passing Interface) installed along with a Fortran
2003-compliant compiler. Rayleigh has been successfully compiled with GNU, Intel, and IBM compilers (PGI has
not been tested yet). Rayleigh’s configure script provides native support for the Intel and GNU compilers. See
Rayleigh\INSTALL for an example of configuration using the IBM compiler.

Rayleigh depends on the following third party libraries:

1. BLAS (Basic Linear Algebra Subprograms)

2. LAPACK (Linear Algebra PACKage)

3. FFTW 3.x (Fastest Fourier Transform in the West)

You will need to install these libraries before compiling Rayleigh. If you plan to run Rayleigh on Intel processors,
we suggest installing Intel’s Math Kernel Library (MKL) in lieu of installing these libraries individually. The Math
Kernel Library provides optimized versions of BLAS, LAPACK, and FFTW. It has been tuned, by Intel, for optimal
performance on Intel processors. At the time of this writing, MKL is provided free of charge. You may find it here.

1.2 Compilation

Rayleigh is compiled using the standard Linux installation scheme of configure/make/make-install. From within the
Rayleigh directory, run these commands:

1. ./configure – See Rayleigh/INSTALL or run ./configure --help to see relevant options.

2. make – This compiles the code

3. make install – This places the Rayleigh executables in Rayleigh/bin. If you would like to place them in (say)
/home/my rayleigh, run configure as: ./configure –prefix=/home/my rayleigh.

For most builds, two executables will be created: rayleigh.opt and rayleigh.dbg. Use them as follows:

1. When running production jobs, use rayleigh.opt.

2. If you encounter an unexpected crash and would like to report the error, rerun the job with rayleigh.dbg. This
version of the code is compiled with debugging symbols. It will (usually) produces meaningful error messages
in place of the gibberish that is output when rayleigh.opt crashes.

If configure detects the Intel compiler, you will be presented with a number of choices for the vectorization option. If
you select all, rayleigh.opt will not be created. Instead, rayleigh.sse, rayleigh.avx, etc. will be placed in Rayleigh/bin.
This is useful if running on a machine with heterogeneous node architectures (e.g., Pleiades). If you are not running
on such a machine, pick the appropriate vectorization level, and rayleigh.opt will be compiled using that vectorization
level.

1.3 Verifying Your Installation

Rayleigh comes with a benchmarking mode that help you verify that the installation is performing correctly. If you
are running Rayleigh for the first time, or running on a new machine, follow along with the example in §3, and verify
that you receive an accurate benchmark report before running a custom model.
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2 Running the Code

Whenever you run a new simulation, a similar series of steps must be performed. A summary of the typical Rayleigh
work flow is:

1. Create a unique directory for storing simulation output

2. Create a main input file

3. Copy or soft link the Rayleigh executable into the simulation directory

4. Modify main input as desired

5. Run the code

6. Examine output and restart simulation as necessary

2.1 Preparation

Each simulation run using Rayleigh should have its own directory. The code is run from within that directory, and
any output is stored in various subdirectories created by Rayleigh at run time. Wherever you create your simulation
directory, ensure that you have sufficient space to store the output.

Do not run Rayleigh from within the source code directory.
Do not cross the beams: no running two models from within the same directory.

After you create your run directory, you will want to copy (cp) or soft link (ln -s ) the executable from Rayleigh/bin
to your run directory. Soft-linking is recommended; if you recompile the code, the executable remains up-to-date. If
running on an IBM machine, copy the script named Rayleigh/etc/make dirs to your run directory and execute the
script. This will create the directory structure expected by Rayleigh for its outputs. This step is unnecessary when
compiling with the Intel or GNU compilers.

Next, you must create a main input file. This file contains the information that describes how your simulation is
run. Rayleigh always looks for a file named main input in the directory that it is launched from. Copy one of the
sample input files from the Rayleigh/etc/input examples/ into your run directory, and rename it to main input. The
file named benchmark diagnostics input can be used to generate output for the diagnostics plotting tutorial (see §6).

Finally, Rayleigh has some OpenMP-related logic that is still in development. We do not support Rayleigh’s OpenMP
mode at this time, but on some systems, it can be important to explicitly disable OpenMP in order to avoid tripping
any OpenMP flags used by external libraries, such as Intel’s MKL. Please be sure and run the following command
before executing Rayleigh. This command should be precede each call to Rayleigh.

export OMP_NUM_THREADS=1 (bash)

setenv OMP_NUM_THREADS 1 (c-shell)

2.2 Code Execution and Load-Balancing

Rayleigh is parallelized using MPI and a 2-D domain decomposition. The 2-D domain decomposition means that we
envision the MPI Ranks as being distributed in rows and columns. The number of MPI ranks within a row is nprow
and the number of MPI ranks within a column is npcol. When Rayleigh is run with N MPI ranks, the following
constraint must be satisfied:

N = npcol× nprow. (1)

If this constraint is not satisfied , the code will print an error message and exit. The values of nprow and npcol can
be specified in main input or on the command line via the syntax:

mpiexec -np 8 ./rayleigh.opt -nprow 4 -npcol 2
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2.2.1 Load Balancing

Rayleigh’s performance is sensitive to the values of nprow and npcol, as well as the number of radial grid points
Nr and latitudinal grid points Nθ. If you examine the main input file, you will see that it is divided into Fortran
namelists. The first namelist is the problemsize namelist. Within this namelist, you will see a place to specify nprow
and npcol. Edit main input so that nprow and npcol agree with the N you intend to use (or use the command-line
syntax mentioned above). The dominate effect on parallel scalability is the number of messages sent per iteration.
For optimal message counts, nprow and npcol should be as close to one another in value as possible.

1. N = nprow × npcol.

2. nprow and npcol should be equal or within a factor of two of one another.

The value of nprow determines how spherical harmonics are distributed across processors. Spherical harmonics are
distributed in high-m/low-m pairs, where m is the azimuthal wavenumber. Each process is responsible for all `-values
associated with those m’s contained in memory.

The value of npcol determines how radial levels are distributed across processors. Radii are distributed uniformly
across processes in contiguous chunks. Each process is responsible for a range of radii ∆r.

The number of spherical harmonic degrees N` is defined by

N` =
2

3
Nθ (2)

For optimal load-balancing, nprow should divide evenly into Nr and npcol should divide evenly into the number of
high-m/low-m pairs (i.e., N`/2). Both nprow and npcol must be at least 2.

In summary,

1. nprow ≥ 2.

2. npcol ≥ 2.

3. n× npcol = Nr (for integer n).

4. k × npcol = 1
3Nθ (for integer k).

2.2.2 Specifying Resolution & Domain Bounds

As discussed, the number of radial grid points is denoted by Nr, and the number of θ grid points by Nθ. The number
of grid points in the φ direction is always Nφ = 2×Nθ. Nr and Nθ may each be defined in the problemsize namelist
of main input:

&problemsize_namelist

n_r = 48

n_theta = 96

/

Nr and Nθ may also be specified at the command line (overriding the values in main input) via:

mpiexec -np 8 ./rayleigh.opt -nr 48 -ntheta 96

If desired, the maximal spherical harmonic degree `max ≡ N` − 1 can be specified in lieu of Nθ. The example above
may equivalently be written:

&problemsize_namelist

n_r = 48

l_max = 63

/
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The radial domain bounds are determined by the namelist variables rmin (the lower radial boundary) and rmax
(the upper radial boundary):

&problemsize_namelist

rmin = 1.0

rmax = 2.0

/

Alternatively, the user may specify the shell depth (rmax − rmin) and aspect ratio (rmin/rmax) in lieu of rmin
and rmax. The preceding example may then be written as:

&problemsize_namelist

aspect_ratio = 0.5

shell_depth = 1.0

/

Note that the interpretation of rmin and rmax depends on whether your simulation is dimensional or nondimensional.
We discuss these alternative formulations in §4

2.3 Controlling Run Length & Time Stepping

A simulation’s runtime and time-step size can be controlled using the temporal controls namelist. The length
of time for which a simulation runs before completing is controlled by the namelist variable max time minutes.
The maximum number of time steps that a simulation will run for is determined by the value of the namelist
max iterations. The simulation will complete when it has run for max time minutes minutes or when it has run
for max iterations time steps – whichever occurs first.

Time-step size in Rayleigh is controlled by the Courant-Friedrichs-Lewy condition (CFL; as determined by the fluid
velocity and Alfvén speed). A safety factor of cflmax is applied to the maximum time step determined by the CFL.
Time-stepping is adaptive. An additional variable cflmin is used to determine if the time step should be increased.

The user may also specify the maximum allowed time-step size through the namelist variable max time step. The
minimum allowable time-step size is controlled through the variable min time step. If the CFL condition is less
than this value, the simulation will exit.

Let ∆t be the current time-step size, and let tCFL be the maximum time-step size as determined by the CFL limit.
The following logic is employed by Rayleigh when calculating the time-step size:

• IF { ∆t ≥ cflmax× tCFL } THEN { ∆t is set to cflmax× tCFL }.

• IF { ∆t ≤ cflmin× tCFL } THEN { ∆t is set to cflmax× tCFL }.

• IF{ tCFL ≥ max time step } THEN { ∆t is set to max time step }

• IF{ tCFL ≤ min time step } THEN { Rayleigh Exits }

The default values for these variables are:

&temporal_controls_namelist

max_iterations = 1000000

max_time_minutes = 1d8

cflmax = 0.6d0

cflmin = 0.4d0

max_time_step = 1.0d0

min_time_step = 1.0d-13

/
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3 Running a Benchmark

Rayleigh has been programmed with internal testing suite so that its results may be compared against benchmarks
described in the following two papers:

1. Christensen, U.R., et al. 2001, A Numerical Dynamo Benchmark, PEPI, 128, 25

2. Jones, C.A., et al., 2011, Anelastic-Convective-Driven Dynamo Benchmarks, Icarus, 216, 120

We recommend running a benchmark whenever running Rayleigh on a new machine for the first time, or after
recompiling the code. The Christensen et al. (2001) reference describes two Boussinesq tests that Rayleigh’s results
may be compared against. The Jones et al. (2011) reference describes anelastic tests. Rayleigh has been tested
successfully against two benchmarks from each of these papers. Input files for these different tests are enumerated
in Table 1 below. In addition to the input files listed in Table 1, input examples appropriate for use as a template
for new runs are provided with the input suffix (as opposed to the minimal suffix. These input files still have
benchmark mode active. Be sure to turn this flag off if not running a benchmark.

Important: If you are not running a benchmark, but only wish to modify an existing benchmark-input file, delete
the line containing the text “benchmark mode=X.” When benchmark mode is active, custom inputs, such as Rayleigh
number, are overridden and reset to their benchmark-appropriate values.

We suggest using the c2001 case0 minimal input file for installation verification. Algorithmically, there
is little difference between the MHD, non-MHD, Boussinesq, and anelastic modes of Rayleigh. As a result, when
installing the code on a new machine, it is normally sufficient to run the cheapest benchmark, case 0 from Christensen
2001.

To run this benchmark, create a directory from within which to run your benchmark, and follow along with the
commands below. Modify the directory structure a each step as appropriate:

1. mkdir path to my sim

2. cd path to my sim

3. cp path to rayleigh/Rayleigh/etc/input examples/c2001 case0 minimal main input

4. cp path to rayleigh/Rayleigh/bin/rayleigh.opt rayleigh.opt (or use ln -s in lieu of cp)

5. mpiexec -np N ./rayleigh.opt -nprow X -npcol Y -nr R -ntheta T

For the value N, select the number of cores you wish to run with. For this short test, 32 cores is more than sufficient.
Even with only four cores, the lower-resolution test suggested below will only take around half an hour. The values
X and Y are integers that describe the process grid. They should both be at least 2, and must satisfy the expression

N = X × Y. (3)

Some suggested combinations are {N,X,Y} = {32,4,8}, {16,4,4}, {8,2,4}, {4,2,2}. The values R and T denote the
number of radial and latitudinal collocation points respectively. Select either {R,T}={48,64} or {R,T}={64,96}.
The lower-resolution case takes about 3 minutes to run on 32 Intel Haswell cores. The higher-resolution case takes
about 12 minutes to run on 32 Intel Haswell cores.

Once your simulation has run, examine the file path to my sim/Benchmark Reports/00025000. You should see
output similar to that presented in Tables 2 or 3. Your numbers may differ slightly, but all values should have a %
difference of less than 1. If this condition is satisfied, your installation is working correctly.
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Paper Benchmark Input File
Christensen et al. 2001 Case 0 Rayleigh/etc/input examples/c2001 case0 minimal
Christensen et al. 2001 Case 1(MHD) Rayleigh/etc/input examples/c2001 case1 minimal
Jones et al. 2011 Steady Hydro Rayleigh/etc/input examples/j2011 steady hydro minimal
Jones et al. 2011 Steady MHD Rayleigh/etc/input examples/j2011 steady MHD minimal

Table 1: Benchmark-input examples useful for verifying Rayleigh’s installation. Those from Christensen et al.
(2001) are Boussinesq. Those from Jones et al. (2011) are anelastic.

Observable Measured Suggested % Difference Std. Dev.
Kinetic Energy 58.347827 58.348000 -0.000297 0.000000
Temperature 0.427416 0.428120 -0.164525 0.000090
Vphi -10.118053 -10.157100 -0.384434 0.012386
Drift Frequency 0.183272 0.182400 0.477962 0.007073

Table 2: Rayleigh benchmark report for Christensen et al. (2001) case 0 when run with nr=48 and ntheta=64. Run
time was approximately 3 minutes when run on 32 Intel Haswell cores.
Run command: mpiexec -np 32 ./rayleigh.opt -nprow 4 -npcol 8 -nr 48 -ntheta 64

Observable Measured Suggested % Difference Std. Dev.
Kinetic Energy 58.347829 58.348000 -0.000294 0.000000
Temperature 0.427786 0.428120 -0.077927 0.000043
Vphi -10.140183 -10.157100 -0.166551 0.005891
Drift Frequency 0.182276 0.182400 -0.067994 0.004877

Table 3: Rayleigh benchmark report for Christensen et al. (2001) case 0 when run with nr=64 and ntheta=96. Run
time was approximately 12 minutes when run on 32 Intel Haswell cores.
Run command: mpiexec -np 32 ./rayleigh.opt -nprow 4 -npcol 8 -nr 64 -ntheta 96
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4 Physics Controls

Rayleigh solves the MHD equations in spherical geometry under the Boussinesq and anelastic approximations. Both
the equations that Rayleigh solves and its diagnostics can be formulated either dimensionally or nondimensionally.
A nondimensional Boussinesq formulation, as well as dimensional and non-dimensional anelastic formulations (based
on a polytropic reference state) are provided as part of Rayleigh.

In this section, we present the equation sets solved when running in each of these three modes, and discuss the
relevant control parameters for each mode. We also discuss the boundary conditions available in Rayleigh and those
namelist variables that can be used to modify the code’s behavior in any of these three modes.

4.1 Anelastic Mode (dimensional)

Example Input: Rayleigh/etc/input examples/main input sun

When run in dimensional, anelastic mode, reference type=2 must be specified in the Reference Namelist. In that
case, Rayleigh solves the following form of the MHD equations:

ρ̂(r)

[
∂v

∂t
+ v ·∇v + 2Ω0ẑ × v

]
=
ρ̂(r)

cP
g(r)Θ r̂ + ρ̂(r)∇

(
P

ρ̂(r)

)
+

1

4π
(∇×B)×B + ∇ ·D Momentum

ρ̂(r) T̂ (r)

[
∂Θ

∂t
+ v ·∇Θ

]
= ∇ ·

[
ρ̂(r) T̂ (r)κ(r)∇Θ

]
+Q(r) + Φ(r, θ, φ) +

η(r)

4π
[∇×B]

2
Thermal Energy

∂B

∂t
= ∇× (v ×B − η(r)∇×B ) Induction

Dij = 2ρ̂(r) ν(r)

[
eij −

1

3
∇ · v

]
Viscous Stress Tensor

Φ(r, θ, φ) = 2 ρ̂(r)ν(r)

[
eijeij −

1

3
(∇ · v)

2

]
Viscous Heating

∇ · (ρ̂(r)v) = 0 Solenoidal Mass Flux

∇ ·B = 0 Solenoidal Magnetic Field

Here, ρ̂ and T̂ are the reference-state density and temperature respectively. g is the gravitational acceleration, cP
is the specific heat at constant pressure, and Ω0 is the frame rotation rate. The velocity field vector is denoted by
v, the magnetic field vector by B, and the pressure by P . The thermal anomoly is denoted by Θ and should be
interpreted is as entropy s in this formulation. The thermal variables satisfy the linearized equation of state

P

P̂
=
T

T̂
+
ρ

ρ̂
(4)

The kinematic viscosity, thermal diffusivity, and magnetic diffusivity are given by ν, κ, and η respectively. Finally,
Q(r) is an internal heating function; it might represent radiative heating or heating due to nuclear fusion, for instance.

When running in anelastic mode, the reference type variable in the Reference Namelist must be set to 2.

Moreover, certain variables in the Reference Namelist and the Transport Namelist must be specified. The
Reference Namelist variables are described in Table 4 and the Transport Namelist variables are described in Table
5. Default values indicated in brackets.

The polytropic reference state is the same as that used in the benchmarks and is described in detail in Jones et al.
(2011).

See the example input file main input sun for a an example of how to run a solar-like model using Rayleigh’s
dimensional, anelastic formulation.
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Variable Description
poly n [0] polytropic index (P ∝ ρn)
poly Nrho [0] number of density scaleheights spanning the domain
poly mass [0] mass interior to rmin
poly rho i [0] density at rmin, ρ(r = rmin)
pressure specific heat [0] specific heat at constant pressure
angular velocity [1.0] cyclic frequency of the rotating frame

Table 4: Variables in the Reference Namelist that must be specified when running in dimensional anelastic mode.
In addition, reference type=2 must also be specified.

Variable Description
nu top [1.0] kinematic viscosity at rmax, ν(rmax)
nu type [1] determines whether ν is constant with radius (1) or varies with density (2)

nu power [0.0] exponent in : ν(r) =
(

ρ(r)
ρ(r=rmax)

)nu power

; use with nu type=2

kappa top [1.0] thermal diffusivity at rmax, κ(rmax)
kappa type [1] determines whether κ is constant with radius (1) or varies with density (2)

kappa power [0.0] exponent in : κ(r) =
(

ρ(r)
ρ(r=rmax)

)kappa power

; use with kappa type=2

eta top [1.0] magnetic diffusivity at rmax, η(rmax)
eta type [1] determines whether η is constant with radius (1) or varies with density (2)

eta power [0.0] exponent in : η(r) =
(

ρ(r)
ρ(r=rmax)

)eta power

; use with eta type=2

Table 5: Variables in the Transport Namelist that must be specified when running in dimensional anelastic mode.
In addition, reference type=2 must also be specified in the Reference Namelist.
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4.2 Boussinesq Mode (nondimensional)

Example Input: Rayleigh/etc/input examples/c2001 case1 input

When run in nondimensional Boussinesq mode, reference type=1 must be specified in the Reference Namelist. In
that case, Rayleigh employs the nondimensionalization

Length→ L (Shell Depth)

Time→ L2

ν
(Viscous Timescale)

Temperature→ ∆T (Temperature Contrast Across Shell)

Magnetic Field→
√
ρµηΩ0,

where Ω0 is the rotation rate of the grame, ρ is the (constant) density of the fluid, µ is the magnetic permeability, η
is the magnetic diffusivity, and ν is the kinematic viscosity. After nondimensionalizing, the following nondimensional
numbers appear in our equations

Pr =
ν

κ
Prandtl Number

Pm =
ν

η
Magnetic Prandtl Number

E =
ν

Ω0 L2
Ekman Number

Ra =
αg0∆T L3

νκ
Rayleigh Number,

where α is coefficient of thermal expansion, g0 is the gravitational acceleration at the top of the domain, and κ is
the thermal diffusivity.

In addition, ohmic and viscous heating, which do not appear in the Boussinesq formulation, are turned off when this
nondimensionalization is specified at runtime. Rayleigh solves the following equations when running in nondimen-
sional Boussinesq mode:

[
∂v

∂t
+ v ·∇v +

2

E
ẑ × v

]
=
Ra

Pr

(
r

ro

)n
Θ r̂ − 1

E
∇P +

1

E Pm
(∇×B)×B + ∇2v Momentum[

∂Θ

∂t
+ v ·∇Θ

]
=

1

Pr
∇2Θ Thermal Energy

∂B

∂t
= ∇× (v ×B) +

1

Pm
∇2B Induction

∇ · v = 0 Solenoidal Velocity Field

∇ ·B = 0 Solenoidal Magnetic Field,

where r0 ≡ rmax. In this formulation, Θ should be interpreted as the temperature perturbation T . Those Refer-
ence Namelist variables that must be set for this model are indicated in Table 6.

Note that our choice for the temperature scale assumes fixed-temperature boundary conditions. We might choose to
specify fixed-flux boundary conditions and/or an internal heating, in which case the meaning of ∆T in our equation
set changes, with ∆T ≡ L∂T∂r instead, for some fiducial value of ∂T∂r . Which regard to the temperature scaling, it is up
to the user to select boundary conditions appropriate for their desired values of ∆T . If ∆T denotes the temperature
contrast across the domain, then their boundary condition variables should look like:

&boundary\_conditions\_namelist

T_Top = 0.0d0

T_Bottom = 1.0d0

fix_tvar_top = .true.

fix_tvar_bottom = .true.

/
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Variable Description
Ekman Number The Ekman Number E
Rayleigh Number The Rayleigh Number Ra
Prandtl Number The Prandtl Number Pr
Magnetic Prandtl Number The Magnetic Prandtl Number Pm

Gravity Power Buoyancy coefficient = Ra
Pr

(
r

rmax

)gravity power

Table 6: Variables in the Reference Namelist that must be specified when running in nondimensional Boussinesq
mode. In addition, reference type=1 must also be specified.

Alternatively, if the temperature scale is determined by a gradient at one boundary, the user should ensure that the
amplitude of the temperature gradient at that boundary is 1. For example:

&boundary\_conditions\_namelist

dTdr_bottom = -1.0d0

fix_dtdr_bottom = .true.

/

Boundary conditions and internal heating are discussed in §4.4. Finally, in Boussinesq mode, the namelist variables
nu type, kappa type, and eta type should be set to 1. Their values will be determined by Pr and Pm, instead of
nu top, kappa top, or eta top.
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4.3 Anelastic Mode (nondimensional)

Example Input: Rayleigh/etc/input examples/main input jupiter

When running in nondimensional anelastic mode, you must set reference type=3 in the Reference Namelist. When
this parameter is set, the following nondimensionalization is used (following Heimpel et al., 2016, Nat. Geo, 9, 19):

Length→ L (Shell Depth)

Time→ 1

Ω0
(Rotational Timescale)

Temperature→ To ≡ T̂ (rmax) (Reference− State Temperature at Upper Boundary)

Density→ ρo ≡ ρ̂(rmax) (Reference− State Density at Upper Boundary)

Entropy→ ∆s (Entropy Constrast Across Shell)

Magnetic Field→
√
ρoµηΩ0.

We assume a polytropic background state (similar to dimensional anelastic mode), with gravity varying as 1
r2 . We fur-

ther assume that the transport coefficients ν, κ, and η do not vary with radius. The results in the nondimensionalized
equations (tildes used to indicated nondimensional reference-state values):

∂v

∂t
+ v ·∇v + 2ẑ × v = Ra∗

r2max

r2
Θ r̂ + ∇

(
P

ρ̃(r)

)
+

E

Pm ρ̃
(∇×B)×B +

E
˜ρ(r)

∇ ·D Momentum

ρ̃(r) T̃ (r)

[
∂Θ

∂t
+ v ·∇Θ

]
=

E

Pr
∇ ·

[
ρ̃(r) T̃ (r)∇Θ

]
+Q(r) +

E Di

Ra∗
Φ(r, θ, φ) +

Di E2

Pm2R∗
[∇×B]

2
Thermal Energy

∂B

∂t
= ∇×

(
v ×B − E

Pm
∇×B

)
Induction

Dij = 2ρ̃(r)

[
eij −

1

3
∇ · v

]
Viscous Stress Tensor

Φ(r, θ, φ) = 2 ρ̃(r)

[
eijeij −

1

3
(∇ · v)

2

]
Viscous Heating

∇ · (ρ̃(r)v) = 0 Solenoidal Mass Flux

∇ ·B = 0. Solenoidal Magnetic Field

In the equations above, Di is the dissipation number, defined by

Di =
go L

cP To
, (5)

where go and To are the gravitational acceleration and temperature at the outer boundary respectively. Once more,
the thermal anomoly Θ should be interpreted as entropy s. The symbol Ra∗ is the modified Rayleigh number, given
by

Ra∗ =
go
cPΩ2

0

∆s

L
(6)

Those Reference Namelist variables that must be set for this model are indicated in Table 7. As with ∆T in the
nondimensional Boussinesq mode, the user must choose boundary conditions suitable for their definition of ∆s. As
with the dimensional anelastic formulation, the background state is polytropic and is described through a polytropic
index and number of density scale heights.

Note: As with the Boussinesq mode, please set the variables nu type, kappa type, eta type in the Trans-
port Namelist.

4.4 Boundary Conditions & Internal Heating

Boundary conditions are controlled through the Boundary Conditions Namelist. All Rayleigh simulations are
run with impenetrable boundaries. These boundaries may be either no-slip or stress-free (default). If you want to
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Variable Description
Ekman Number The Ekman Number E
Modified Rayleigh Number The Modified Rayleigh Number Ra∗

Prandtl Number The Prandtl Number Pr
Magnetic Prandtl Number The Magnetic Prandtl Number Pm
poly n [0] polytropic index (P ∝ ρn)
poly Nrho [0] number of density scaleheights spanning the domain

Table 7: Variables in the Reference Namelist that must be specified when running in nondimensional anelastic
mode. In addition, reference type=3 must also be specified.

employ no-slip conditions at both boundaries, set no slip boundaries = .true.. If you wish to set no-slip conditions
at only one boundary, set no slip top=.true. or no slip bottom=.true. in the Boundary Conditions Namelist.

Magnetic boundary conditions are set to match to a potential field at each boundary. There are no supported
alternatives at this time.

By default, the thermal anomoly Θ is set to a fixed value at each boundary. The upper and lower boundary-values
are specified by setting T top and T bottom respectively in the Boundary Conditions Namelist. Their defaults
values are 1 and 0 respectively.

Alternatively, you may specify a constant value of ∂Θ/∂r at each boundary. This is accomplished by setting the
variables fix dTdr top and fix dTdr bottom. Values of the gradient may be enforced by setting the namelist
variables dTdr top and dTdr bottom. Both default to a value of zero.

4.4.1 Internal Heating

The internal heating function Q(r) is activated and described by two variables in the Reference Namelist. These
are Luminosity and heating type. Note that these values are part of the Reference Namelist and not the
Boundary Conditions namelist. Three heating types (0,1, and 4) are fully supported at this time. Heating type
zero corresponds to no heating. This is the default.

Heating type=1: This heating type is given by :

Q(r) = γ ρ̂(r) T̂ (r) (7)

where γ is a normalization constant defined such that

4π

∫ r=rmax

r=rmin

Q(r) r2dr = Luminosity. (8)

This heating profile is particularly useful for emulating radiative heating in a stellar convection zone.

Heating type=4: This heating type corresponds a heating that is variable in radius, but constant in energy density.
Namely

ρ̂T̂
∂Θ

∂t
= γ. (9)

The constant γ in this case is also set by enforcing Equation 8.

4.5 General Physics Controls

A number of logical variables can be used to turn certain physics on (value = .true.) or off ( value = .false.). These
variables are described in Table 8, with default values indicated in brackets.

4.6 Initializing a Model

A Rayleigh simulation may be initialized with a random thermal and/or magnetic field, or it may be restarted from
an existing checkpoint file (see §5 for a detailed discussion of checkpointing). This behavior is controlled through the
initial conditions namelist and the init type and magnetic init type variables. The init type variable controls
the behavior of the velocity and thermal fields at initialization time. Available options are:
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Variable Description
magnetism [.false.] Turn magnetism on or off
rotation [.false.] Turn rotation on or off (pressure is not scaled by E when off)
lorentz forces [.true.] Turn Lorentz forces on or off (magnetism must be .true.)
viscous heating [.true.] Turn viscous heating on or off (inactive in Boussinesq mode)
ohmic heating [.true.] Turn ohmic heating off or on (inactive in Boussinesq mode)

Table 8: Variables in the Physical Controls Namelist that may be specified to control run behavior (defaults
indicated in brackets)

• init type=-1 ; read velocity and thermal fields from a checkpoint file

• init type=1 ; Christensen et al. (2001) case 0 benchmark init ( {` = 4,m = 4} temperature mode)

• init type=6 ; Jones et al. (2011) steady anelastic benchmark ( {` = 19,m = 19} entropy mode)

• init type=7 ; random temperature or entropy perturbation

When initializing a random thermal field, all spherical harmonic modes are independently initialized with a random
amplitude whose maximum possible value is determined by the namelist variable temp amp. The mathematical
form of of this random initialization is given by

T (r, θ, φ) =
∑
`

∑
m

cm` f(r)g(`)Ym
` (θ, φ), (10)

where the cm` ’s are (complex) random amplitudes, distributed normally within the range [-temp amp, temp amp].
The radial amplitude f(r) is designed to taper off to zero at the boundaries and is given by

f(r) =
1

2

[
1− cos

(
2π

r − rmin
rmax− rmin

)]
. (11)

The amplitude function g(`) concentrates power in the central band of spherical harmonic modes used in the simu-
lation. It is given by

g(`) = exp

[
−9

(
2 `− `max

`max

)2
]
, (12)

which is itself, admittedly, a bit random.

When initializing using a random thermal perturbation, it is important to consider whether it makes sense to sepa-
rately initialize the spherically-symmetric component of the thermal field with a profile that is in conductive balance.
This is almost certainly the case when running with fixed temperature conditions. The logical namelist variable
conductive profile can be used for this purpose. It’s default value is .false. (off), and its value is ignored com-
pletely when restarting from a checkpoint. To initialize a simulation with a random temperature field superimposed
on a spherically-symmetric, conductive background state, something similar to the following should appear in your
main input file:

&initial_conditions_namelist

init_type=7

temp_amp = 1.0d-4

conductive_profile=.true.

/

Magnetic-field initialization follows a similar pattern. Available values for magnetic input type are:

• magnetic init type = -1 ; read magnetic field from a checkpoint file

• magnetic init type = 1 ; Christensen et al. (2001) case 0 benchmark init

• magnetic init type = 7 ; randomized vector potential
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For the randomized magnetic field, both the poloidal and toroidal vector-potential functions are given a random
power distribution described by Equation 10. Each mode’s random amplitude is then determined by namelist
variable mag amp. This variable should be interpreted as an approximate magnetic field strength (it’s value is
rescaled appropriately for the poloidal and toroidal vector potentials, which are differentiated to yield the magnetic
field).

When initializing all fields from scratch, a main input file should contain something similar to:

&initial_conditions_namelist

init_type=7

temp_amp = 1.0d-4

conductive_profile=.true. ! Not always necessary (problem dependent) ...

magnetic_init_type=7

mag_amp = 1.0d-1

/
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Filename Contents
00010000 W Poloidal Stream function (at time step 10,000)
00010000 Z Toroidal Stream function
00010000 P Pressure
00010000 S Entropy
00010000 C Poloidal Vector Potential
00010000 A Toroidal Vector Potential
00010000 WAB Adams-Bashforth (A-B) terms for radial momentum (W) equation
00010000 ZAB A-B terms for radial vorticity (Z) equation
00010000 PAB A-B terms for horizontal divergence of momentum (dWdr) equation
00010000 SAB A-B terms for Entropy equation
00010000 CAB A-B terms for C-equation
00010000 AAB A-B terms for A-equation
00010000 grid etc grid and time-stepping info

Table 9: Example checkpoint file collection for a time step 10,000. File contents are indicated.

5 Checkpointing

We refer to saved states in Rayleigh as checkpoints. A single checkpoint consists of 13 files when magnetism is
activated, and 9 files when magnetism is turned off. A checkpoint written at time step X contains all information
needed to advance the system to time step X+1. Checkpoint filenames end with a suffix indicating the contents of
the file (see Table 9). Each checkpoint filename possess a prefix as well. Files belonging to the same checkpoint share
the same prefix. A checkpoint file collection, written at time step 10,000 would look like that shown in Table 9.

These files contain all information needed to advance the system state from time step 10,000 to time step 10,001.
Checkpoints come in two flavors, denoted by two different prefix conventions: standard checkpoints and quick-
saves. This section discusses how to generate and restart from both types of checkpoints.

5.1 Standard Checkpoints

Standard checkpoints are intended to serve as regularly spaced restart points for a given run. These files begin with
an 8-digit prefix indicating the time step at which the checkpoint was created.

5.1.1 Generating Standard Checkpoints

The frequency with which standard checkpoints are generated can be controlled by modifying the checkpoint interval
variable in the temporal controls namelist. For example, if you want to generate a checkpoint once every 50,000
time steps, you would modify your main input file to read:

&temporal_controls_namelist

checkpoint_interval = 50000 ! Checkpoint every 50,000 time steps

/

The default value of checkpoint interval is 1,000,000, which is typically much larger than what you will use in practice.

5.1.2 Restarts From Standard Checkpoints

Restarting from a checkpoint is accomplished by first assigning a value of -1 to the variables init type and/or
magnetic init type in the initial conditions namelist. In addition, the time step from which you wish to
restart from should be specified using the restart iter variable in the initial conditions namelist. The example
below will restart both the magnetic and hydrodynamic variables using the set of checkpoint files beginning with the
prefix 00005000.

&initial_conditions_namelist

init_type = -1 !Restart magnetic and hydro variables from time step 5,000

17



magnetic_init_type = -1

restart_iter = 5000

/

When both values are set to -1, hydrodynamic and magnetic variables are read from the relevant checkpoint files.
Alternatively, magnetic and hydrodynamic variables may be initialized separately. This allows you to add magnetism
to an already equilibrated hydrodynamic case, for instance. The example below will initialize the system with a
random magnetic field, but it will read the hydrodynamic information (W,Z,S,P) from a checkpoint created at time
step 50,000:

&initial_conditions_namelist

init_type = -1 ! Restart hydro from time step 5,000

magnetic_init_type = 7 ! Add a random magnetic field

restart_iter = 5000

/

In addition to specifying the checkpoint time step manually, you can tell Rayleigh to simply restart using the last
checkpoint written by assigning a value of zero to init type:

&initial_conditions_namelist

init_type = -1

magnetic_init_type = 7

restart_iter = 0 ! Restart using the most recent checkpoint

/

In this case, Rayleigh reads the last checkpoint file (found within the Checkpoints directory) to determine which
checkpoint it reads.

5.2 Quicksaves

In practice, Rayleigh checkpoints are used for two purposes: (1) guarding against unexpected crashes and (2)
supplementing a run’s record with a series of restart points. While standard checkpoints may serve both purposes,
the frequency with which checkpoints are written for purpose (1) is often much higher than that needed for purpose
(2). This means that a lot of data culling is performed at the end of a run or, if disk space is a particularly limiting
factor, during the run itself. For this reason, Rayleigh has a quicksave checkpointing scheme in addition to the
standard scheme. Quicksaves can be written with high-cadence, but require low storage due to the rotating reuse of
quicksave files.

5.2.1 1.2.1 Generating Quicksaves

The cadence with which quicksaves are written can be specified by setting the quicksave interval variable in the
temporal controls namelist. Alternatively, the elapsed wall time (in minutes) that passes between quicksaves
may be controlled by specifying the quicksave minutes variable. If both quicksave interval and quicksave minutes
are specified, quicksave minutes takes precedence.

What distinguishes quicksaves from standard checkpoints is that only a specified number of quicksaves exist on the
disk at any given time. That number is determined by the value of num quicksaves. Quicksave files begin with the
prefix quicksave XX, where XX is a 2-digit code, ranging from 1 through num quicksaves and indicates the quicksave
number. Consider the following example:

&temporal_controls_namelist

checkpoint_interval = 35000 ! Generate a standard checkpoint once every 35,000 time steps

quicksave_interval = 10000 ! Generate a quicksave once every 10,000 time steps

num_quicksaves = 2 ! Keep only two quicksaves on disk at a time

/

At time step 10,000, a set of checkpoint files beginning with prefix quicksave 01 will be generated. At time step
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20,000, a set of checkpoint files beginning with prefix quicksave 02 will be generated. Following that, at time step
30,000, another checkpoint will be generated, but it will overwrite the existing quicksave 01 files. At time step 40,000,
the quicksave 02 files will be overwritten, and so forth. Because the num quicsaves was set to 2, filenames with
prefix quicksave 03 will never be generated.

Note that checkpoints beginning with an 8-digit prefix (e.g., 00035000) are still written to disk regularly and are not
affected by the quicksave checkpointing. On time steps where a quicksave and a standard checkpoint would both
be written, only the standard checkpoint is written. Thus, at time step 70,000 in the example above, a standard
checkpoint would be written, and the files beginning with quicksave 01 would remain unaltered.

5.2.2 1.2.2 Restarting from Quicksaves

Restarting from quicksave XX may be accomplished by specifying the value of restart iter to be -XX (i.e., the negative
of the quicksave you wish to restart from). The following example shows how to restart the hydrodynamic variables
from quicksave 02, while also initializing a random magnetic field. “‘

&initial_conditions_namelist

init_type = -1 ! Restart hydro variables from a checkpoint

magnetic_init_type = 7 ! Initialize a random magnetic field

restart_iter = -2 ! Restart from quicksave number 2

/

Note that the file last checkpoint contains the number of last checkpoint written. This might be a quicksave or a
standard checkpoint. Specifying a value of zero for restart iter thus works with quicksaves and standard checkpoints
alike.

5.3 1.3 Checkpoint Logs

When checkpoints are written, the number of the most recent checkpoint is appended to a file named checkpoint log,
found in the Checkpoints directory. The checkpoint log can be used to identify the time step number of a quicksave
file that otherwise has no identifying information. While this information is also contained in the grid etc file, those
are written in unformatted binary and cumbersome to access from the terminal command line.

An entry in the log of ”00050000 02” means that a checkpoint was written at time step 50,000 to quicksave 02. An
entry lacking a two-digit number indicates that a standard checkpoint was written at that time step. The most
recent entry in the checkpoint log always comes at the end of the file.

6 Diagnostic Outputs

Rayleigh comes bundled with an in-situ diagnostics package that allows the user to sample a simulation in a variety
of ways, and at user-specified intervals throughout a run. This package is comprised of roughly 17,000 lines of code
(about half of the Rayleigh code base), and it is complex enough that we describe it in two other documents. We
refer the user to :

1. The diagnostics plotting manual, provided in three formats:

• Rayleigh/etc/analysis/Diagnostics Plotting.ipynb (Jupyter Python notebook format; recommended for
interactive use)

• Rayleigh/doc/Diagnostics Plotting.html (recommended for optimal viewing; generated from the .ipynb
file)

• Rayleigh/doc/Diagnostics Plotting.pdf (same content as .html and .ipynb, but formatting quality is infe-
rior)

2. Rayleigh/doc/rayleigh output variables.pdf – This companion document provides the output menu system
referred to in the main diagnostics documentation.

A number of stand-alone Python plotting examples may also be found in the Rayleigh/etc/analysis directory.
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7 I/O Redirection

Rayleigh writes all text output (e.g., error messages, iteration counter, etc.) to stdout by default. Different computing
centers handle stdout in different ways, but typically one of two path is taken. On some machines, a log file is created
immediately and updated continuously as the simulation runs. On other machines, stdout is buffered on-node and
written to disk only when the run has terminated.

There are situations where it can be advantageous to have a regularly updated log file whose update frequency may
be controlled. This feature exists in Rayleigh and may be accessed by assigning values to stdout flush interval
and stdout file in the io controls namelist.

&io_controls_namelist

stdout_flush_interval = 1000

stdout_file = ‘routput’

/

Set stdout file to the name of a file that will contain Rayleigh’s text output. In the example above, a file named
routput will be appear in the simulation directory and will be updated periodically throughout the run. The variable
stdout flush interval determines how many lines of text are buffered before they are flushed to routput. Rayleigh
prints time-step information during each time step, and so setting this variable to a relatively large number (e.g.,
100+) prevents excessive disk access from occurring throughout the run. In the example above, a text buffer flush
will occur once 1000 lines of text have been accumulated.

Changes in the time-step size and self-termination of the run will also force a text-buffer flush. Unexpected crashes
and sudden termination by the system job scheduler do not force a buffer flush. Note that the default value of
stdout file is ‘nofile’. If this value is specified, output will directed to normal stdout.
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8 Ensemble Mode

Rayleigh can also be used to run multiple simulations under the umbrella of a single executable. This functionality is
particularly useful for running parameter space studies, which often consist of mulitple, similarly-sized simulations,
in one shot. Moreover, as some queuing systems favor large jobs over small jobs, an ensemble mode is useful for
advancing multiple small simulations through the queue in a reasonable timeframe.

Running Rayleigh in ensemble mode is relatively straightforward. To begin with, create a directory for each simulation
as you normally would, and place an appropriately modified main input into each directory. These directories should
all reside within the same parent directory. Within that parent directory, you should place a copy of the Rayleigh
executable (or a softlink). In addition, you should create a text file named run list that contains the name of each
simulation directory, one name per line. An ensemble job may then be executed by calling Rayleigh with nruns
command line flag as:

user@machinename ~/runs/ $ mpiexec -np Y ./rayleigh.opt -nruns X

Here, Y is the total number of cores needed by all X simulations listed in run list.

Example: Suppose you wish to run three simulations at once from within a parent directory named ensemble and
that the simulation directories are named run1, run2, and run3. When performing an ls from within ensemble, you
should see 5 items.

user@machinename ~/runs/ $ cd ensemble

user@machinename ~/runs/ensemble $ ls

rayleigh.opt run1 run2 run3 run_list

In this example, the contents of run list should be the local names of your ensemble run-directories, namely run1,
run2, and run3.

user@machinename ~runs/ensemble $ more run_list

run1

run2

run3

<-- place an empty line here

Note that some Fortran implementations will not read the last line in run list unless it ends in a newline character.
Avoid unexpected crashes by hitting ”enter” following your final entry in run list.

Before running Rayleigh, make sure you know how many cores each simulation needs by examining the main input
files:

user@machinename ~runs/ensemble $ head run1/main_input

&problemsize_namelist

n_r = 128

n_theta = 192

nprow = 16

npcol = 16

/

user@machinename ~runs/ensemble $ head run2/main_input

&problemsize_namelist

n_r = 128

n_theta = 384

nprow = 32

npcol = 16

/

user@machinename ~runs/ensemble $ head run3/main_input

&problemsize_namelist

n_r = 64
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n_theta = 192

nprow = 16

npcol = 16

/

In this example, we need a total of 1024 cores (256+512+256) to execute three simulations, and so the relevant call
to Rayleigh would be:

user@machinename ~/runs/ $ mpiexec -np 1024 ./rayleigh.opt -nruns 3

Closing Notes: When running in ensemble mode, it is strongly recommended that you redirect standard output for
each simulation to a text file (see §7). Otherwise, all simulations write to the same default (machine-dependent) log
file, making it difficult to read. Moreover, some machines such as NASA Pleiades will terminate a run if the log file
becomes too long. This is easy to do when multiple simulations are writing to the same file.

Finally, The flags -nprow and -npcol are ignored when -nruns is specified. The row and column configuration for
all simulations needs to be specified in their respective main input files instead.
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