‘® redhat.

Red Hat Enterprise Linux 7

Virtualization Deployment and
Administration Guide

Installing, configuring, and managing virtual machines on a Red Hat
Enterprise Linux physical machine

Laura Novich Dayle Parker Scott Radvan
Tahlia Richardson

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration
Guide

Installing, configuring, and managing virtual machines on a Red Hat
Enterprise Linux physical machine

Laura Novich
Red Hat Customer Content Services
Inovich@redhat.com

Dayle Parker
Red Hat Customer Content Services
dayleparker@redhat.com

Scott Radvan
Red Hat Customer Content Services
sradvan@redhat.com

Tahlia Richardson
Red Hat Customer Content Services
trichard@redhat.com

Legal Notice

Copyright © 2015 Red Hat, Inc.

This document s licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the documentis modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the rightto enforce, and agrees notto assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is aregistered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is notformally
related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service
marks or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide covers how to configure a Red Hat Enterprise Linux 7 host physical machine and
how to install and configure guest virtual machines using the KVM hypervisor. Other topics
include PCI device configuration, SR-IOV, networking, storage, device and guest virtual machine
management, as well as troubleshooting, compatibility and restrictions. To expand your
expertise, you might also be interested in the Red Hat Enterprise Virtualization (RH318) training
course.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

Part |. Deploymentt i i e e 6
Chapter 1. System reqUIremMeNtSttt ii ittt ia et et et e s anna et annnreens 7
1.1. Host system requirements 7
1.2. KVM hypervisor requirements 8
1.3. KVM guest virtual machine compatibility 9
1.4. Supported guest CPU models 9
Chapter 2. Installing the virtualization packagescciiiiiiiiiii i innnnreenns 11
2.1. Configuring a virtualization host during a new Red Hat Enterprise Linux 7 installation 11
2.2. Installing virtualization packages on an existing Red Hat Enterprise Linux system 15
2.3. Registering the hypervisor and virtual machine 16
Chapter 3. Installing a virtual machinet et 22
3.1. Guest virtual machine prerequisites and considerations 22
3.2. Creating guests with virt-install 22
3.3. Creating guests with virt-manager 26
3.4. Comparison of virt-install and virt-manager installation options 36
Chapter 4. Virtualizing Red Hat Enterprise Linux on Other Platforms 38
4.1. On VMware ESX 38
4.2. On Hyper-V 38
Chapter 5. Installing a fully-virtualized Windows guest it iinnrnnns 40
5.1. Using virt-install to create a guest 40
5.2. Tips for more efficiency with Windows guest virtual machines 41
Chapter 6. KVM Para-virtualized (Vvirtio) Driversttt rerannnrrnns 43
6.1. Installing the KVM Windows virtio drivers 44
6.2. Installing the drivers on an installed Windows guest virtual machine 45
6.3. Installing drivers during the Windows installation 54
6.4. Using KVM virtio drivers for existing devices 63
6.5. Using KVM virtio drivers for new devices 64
Chapter 7. Network configurationc..0 ittt iana i etannnreens 69
7.1. Network Address Translation (NAT) with libvirt 69
7.2. Disabling vhost-net 70
7.3. Enabling vhost-net zero-copy 71
7.4. Bridged networking 71
Chapter 8. Overcommitting with KVM i i ittt et e ens 76
8.1. Introduction 76
8.2. Overcommitting Memory 76
8.3. Overcommitting virtualized CPUs (vCPUSs) 77
Chapter 9. KVM guest timing managementc.c.ouii ittt rnnnnrrens 79
9.1. Required parameters for Red Hat Enterprise Linux guests 80
9.2. Steal time accounting 82
Chapter 10. Network booting with libvirt i it e s 83
10.1. Preparing the boot server 83
10.2. Booting a guest using PXE 84
Chapter 11. Enhancing virtualization with the QEMU guest agent and SPICE agent 86
11.1. QEMU guest agent 86

Virtualization Deployment and Administration Guide

11.2.
11.3.

Chapter 12. Nested Virtualization

12.1.
12.2.
12.3.

Part Il.

Using the QEMU guest agent with libvirt
SPICE agent

Overview
Setup
Restrictions and Limitations

Administration i it i

Chapter 13. Securing the host physical machine and improving performance

13.1.
13.2.

Chapter 14. Storage pools

14.1.
14.2.
14.3.
14.4.
14.5.
14.6.
14.7.

Chapter 15. Storage Volumes

15.1.
15.2.
15.3.
15.4.
15.5.

Chapter 16. Using gemu-img

16.1.
16.2.
16.3.
16 .4.
16.5.
16 .6.
16.7.
16.8.
16.9.

Chapter 17. KVM live migration

17.1.

Security Deployment Plan
Client access control

Disk-based storage pools
Partition-based storage pools
Directory-based storage pools
LVM-based storage pools
iSCSl-based storage pools
NFS-based storage pools

Using a NPIV virtual adapter (vHBA) with SCSI devices

Introduction

Creating volumes

Cloning volumes

Deleting and removing volumes
Adding storage devices to guests

Checking the disk image

Committing changes to an image

Converting an existing image to another format
Creating and formatting new images or devices
Displaying image information

Re-basing a backing file of an image

Re-sizing the disk image

Listing, creating, applying, and deleting a snapshot

Supported gemu-img formats

Live migration requirements

17.2. Live migration and Red Hat Enterprise Linux version compatibility

17.3. Shared storage example: NFS for a simple migration

17.4.
17.5.

Chapter 18. Guest virtual machine device configuration

18.1.
18.2.
18.3.
18 .4.
18.5.
18.6.

Live KVM migration with virsh
Migrating with virt-manager

PCl devices

USB devices

Configuring device controllers
Setting addresses for devices
Random number generator device
Assigning GPU devices

Table of Contents

Chapter 19. SR-I0V i it et ettt s s s a s s 221
19.1. Advantages of SR-IOV 222
19.2. Using SR-IOV 222
19.3. Troubleshooting SR-IOV 228

Chapter 20. Virtual Networkingttt ittt tana s eana s 229
20.1. Virtual network switches 229
20.2. Bridge Mode 230
20.3. Network Address Translation 231
20.4. DNS and DHCP 232
20.5. Routed mode 232
20.6. Isolated mode 233
20.7. The default configuration 234
20.8. Examples of common scenarios 235
20.9. Managing a virtual network 238
20.10. Creating a virtual network 239
20.11. Attaching a virtual network to a guest 246
20.12. Directly attaching to physical interface 250
20.13. Dynamically changing a host physical machine or a network bridge that is attached to a virtual
NIC 252
20.14. Applying network filtering 253
20.15. Creating Tunnels 280
20.16. Setting VLAN tags 281
20.17. Applying QoS to your virtual network 282

Chapter 21. Remote management of gUEStS ittt innrenrsnnrnnnsnns 283
21.1. Remote management with SSH 283
21.2. Remote management over TLS and SSL 286
21.3. Transport modes 288
21.4. Configuring a VNC Server 292

Chapter 22. Managing guests with the Virtual Machine Manager (virt-manager) 293
22.1. Starting virt-manager 293
22.2. The Virtual Machine Manager main window 294
22.3. The virtual hardware details window 295
22.4. Virtual Machine graphical console 302
22.5. Adding a remote connection 303
22.6. Displaying guest details 305
22.7. Performance monitoring 312
22.8. Displaying CPU usage for guests 314
22.9. Displaying CPU usage for hosts 316
22.10. Displaying Disk I/O 318
22.11. Displaying Network 1/0 321

Chapter 23. Managing guest virtual machines withvirsh 325
23.1. Guest virtual machine states 325
23.2. Running the virsh program 325
23.3. Interactive mode commands 326
23.4. Displaying the virsh version 326
23.5. Getting help 327
23.6. Sending commands with echo 328
23.7. Connecting to the hypervisor with virsh connect 328
23.8. Displaying information about guest virtual machine 328

23.9. Guest virtual machine basic commands 329

Virtualiz

23.10.
23.11.

23.12.
23.13.
23.14.
23.15.
23.16.
23.17.
23.18.
23.19.
23.20.
23.21.

23.22.
23.23.
23.24.
23.25.
23.26.

Chapter 24. Guest virtual machine disk access with offline tools

24.1.
24.2.
24.3.
24.4.
245,
24.6.
24.7.
24.8.
24.9.

24.10. virt-win-reg: Reading and editing the Windows Registry
24.11.

24.12

Chapter 25. Graphic User Interface tools for guest virtual machine management

ation Deployment and Administration Guide

Editing a guest virtual machine's configuration file
NUMA node management

Retrieving guest virtual machine information
Storage pool commands

Storage Volume Commands

Displaying per-guest virtual machine information
Managing virtual networks

Interface Commands

Managing snapshots

Guest virtual machine CPU model configuration
Configuring the guest virtual machine CPU model
Managing resources for guest virtual machines
Setting schedule parameters

Disk I/O throttling

Display or set block I/O parameters

Configuring memory Tuning

Introduction

Terminology

Installation

The guestfish shell

Other commands

virt-rescue: The rescue shell

virt-df: Monitoring disk usage

virt-resize: resizing guest virtual machines offline
virt-inspector: inspecting guest virtual machines

Using the API from Programming Languages
. virt-sysprep: resetting virtual machine settings

25.1. Using virt-viewer command line

25.2.
25.3.

Chapter 26. Manipulating the domain XML

26.1.
26.2.
26.3.
26.4.
26.5.
26.6.
26.7.
26.8.
26.9.

26.10.
26.11.
26.12.
26.13.
26.14.
26.15.
26.16.

remote-viewer
GNOME Boxes

General information and meta-data
Operating system booting
SMBIOS system information
CPU allocation

CPU tuning

Memory backing

Memory tuning

Memory allocation

NUMA node tuning

Block I/O tuning

Resource partitioning

CPU models and topology
Events configuration
Power Management
Hypervisor features

Time keeping

Shutting down, rebooting, and forcing a shutdown of a guest virtual machine

333
352
356
361
362
364
367
372
377
379
385
388
389
390
391
391
391

393
393
394
395
395
401
401
402
404
405
407
409
414

417
418
419

425
426
430
430
431
433
433
434
435
436
437
437
443
445
446
447

26.17. Timer element attributes
26.18. Devices

26.19. Storage pools

26.20. Storage Volumes

26.21. Security label

26.22. A Sample configuration file

Part lll. Appendicesttt ittt aa s et s

Appendix A. Troubleshootingttt e i

A.1. Debugging and troubleshooting tools

A.2. Preparing for disaster recovery

A.3. Creating virsh dump files

A.4. Capturing trace data on a constant basis using the Systemtap flight recorder
A.5. kvm_stat

A.6. Troubleshooting with serial consoles

A.7. Virtualization log files

A.8.Loop device errors

A.9. Live Migration Errors

A.10. Enabling Intel VT-x and AMD-V virtualization hardware extensions in BIOS
A.11. Generating a new unigue MAC address

A.12. KVM networking performance

A.13. Workaround for creating external snapshots with libvirt

A.14. Missing characters on guest console with Japanese keyboard

A.15. Guest virtual machine fails to shutdown

A.16. Disable SMART disk monitoring for guest virtual machines

A.17. libguestfs troubleshooting

A.18. Common libvirt errors and troubleshooting

Appendix B. Virtualization restrictionscciii it

B.1. KVM restrictions

B.2. Application restrictions
B.3. Other restrictions

B.4. Storage support

B.5. USB 3/ xHCI Support

Appendix C. Additional resourcesoi ittt iannar s

C.1. Online resources
C.2. Installed documentation

Appendix D. Working with IOMMU Groups 1]c.ciiiiiiiinnnrennnnns

D.1. IOMMU Overview

D.2. Adeep-dive into IOMMU groups

D.3. How to identify and assign IOMMU Groups
D.4. IOMMU strategies and case uses

Appendix E. NetKVM Driver Parametersottt ennnnns

E.1. Configurable parameters for NetKVM

Appendix F. Revision Historyttt eannnns

Table of Contents

450
451
502
508
512
514

........... 515

........... 516

516
517
518
519
521
526
527
527
527
528
529
530
531
531
532
533
533
533

.......... 562
562
565
565
565
566

.......... 567
567
567

.......... 568
568
569
570
572

.......... 574
574

Virtualization Deployment and Administration Guide

Part I. Deployment

Chapter 1. System requirements

Chapter 1. System requirements

Virtualization is available with the KVM hypervisor for Red Hat Enterprise Linux 7 on the Intel 64 and
AMD64 architectures. This chapter lists system requirements for running virtual machines, also
referred to as VMs.

1.1. Host system requirements

Minimum host system requirements
6 GB free disk space.

2 GB RAM.

Recommended system requirements
One core or thread for each virtualized CPU and one for the host.
2 GB of RAM, plus additional RAM for virtual machines.
6 GB disk space for the host, plus the required disk space for the virtual machine(s).

Most guest operating systems require at least 6 GB of disk space. Additional storage space for
each guestdepends on their workload.

Swap space

Swap space in Linux is used when the amount of physical memory (RAM) is full. If the system
needs more memory resources and the RAM is full, inactive pages in memory are moved to the
swap space. While swap space can help machines with a small amount of RAM, it should not be
considered a replacement for more RAM. Swap space is located on hard drives, which have a
slower access time than physical memory. The size of your swap partition can be calculated from
the physical RAM of the host. The Red Hat Customer Portal contains an article on safely and
efficiently determining the size of the swap partition:
https://access.redhat.com/site/solutions/15244.

When using raw image files, the total disk space required is equal to or greater than the sum of
the space required by the image files, the 6 GB of space required by the host operating system,
and the swap space for the guest.

Equation 1.1. Calculating required space for guest virtual machines using raw
images

total for raw format =images + hostspace + swap

For gcow images, you must also calculate the expected maximum storage requirements of the
guest (total for gcow format), as gcow and gcow2 images are able to grow as
required. To allow for this expansion, first multiply the expected maximum storage

https://access.redhat.com/site/solutions/15244

Virtualization Deployment and Administration Guide

requirements of the guest (expected maximum guest storage) by 1.01, and add to this
the space required by the host (host), and the necessary swap space (swap).

Equation 1.2. Calculating required space for guest virtual machines using
gqcow images

total for gcow format = (expected maximum guest storage * 1.01) + host + swap

1.2. KVM hypervisor requirements

The KVM hypervisor requires:

an Intel processor with the Intel VT-x and Intel 64 virtualization extensions for x86-based systems;
or

an AMD processor with the AMD-V and the AMD64 virtualization extensions.

Virtualization extensions (Intel VT-x or AMD-V) are required for full virtualization. Run the following
commands to determine whether your system has the hardware virtualization extensions, and that
they are enabled.

Procedure 1.1. Verifying virtualization extensions

1. Verify the CPU virtualization extensions are available

Run the following command to verify the CPU virtualization extensions are available:

$ grep -E 'svm|vmx' /proc/cpuinfo

2. Analyze the output

The following example output contains a vmx entry, indicating an Intel processor with the
Intel VT-x extension:

flags : fpu tsc msr pae mce cx8 vmx apic mtrr mca cmov pat
pse36 clflush

dts acpi mmx fxsr sse sse2 ss ht tm syscall 1m constant_tsc pni
monitor ds_cpl

vmx est tm2 cx16 xtpr lahf_1lm

The following example output contains an svm entry, indicating an AMD processor with
the AMD-V extensions:

flags : fpu tsc msr pae mce cx8 apic mtrr mca cmov pat pse36
clflush

mmx fxsr sse sse2 ht syscall nx mmxext svm fxsr_opt 1m 3dnowext
3dnow pni cx16

lahf_1lm cmp_legacy svm cr8legacy ts fid vid ttp tm stc

Ifthegrep -E 'svm|vmx' /proc/cpuinfo command returns any output, the processor
contains the hardware virtualization extensions. In some circumstances, manufacturers

Chapter 1. System requirements

disable the virtualization extensions in the BIOS. If the extensions do not appear, or full
virtualization does not work, see Procedure A.4, “Enabling virtualization extensions in BIOS”

for instructions on enabling the extensions in your BIOS configuration utility.

3. Ensure the KVM kernel modules are loaded

As an additional check, verify that the kvm modules are loaded in the kernel with the following
command:

lsmod | grep kvm

If the outputincludes kvm_intel or kvm_amd, the kvm hardware virtualization modules are
loaded.

The virsh utility (provided by the libvirt-client package) can output a full list of your system's
virtualization capabilities with the following command:

virsh capabilities

1.3. KVM guest virtual machine compatibility

Red Hat Enterprise Linux 7 servers have certain support limits.

The following URLs explain the processor and memory amount limitations for Red Hat Enterprise
Linux:

For host systems: https://access.redhat.com/articles/rhel-limits

The following URL lists guest operating systems certified to run on a Red Hat Enterprise Linux KVM
host:

https://access.redhat.com/articles/973133

For additional information on the KVM hypervisor's restrictions and support limits, see
Appendix B, Virtualization restrictions.

1.4. Supported guest CPU models

Every hypervisor has its own policy for which CPU features the guest will see by default. The set of
CPU features presented to the guest by the hypervisor depends on the CPU model chosen in the
guest virtual machine configuration.

https://access.redhat.com/articles/rhel-limits
https://access.redhat.com/articles/rhel-kvm-limits
https://access.redhat.com/articles/973133

Virtualization Deployment and Administration Guide

1.4.1. Listing the guest CPU models

To view a full list of the CPU models supported for an architecture type, run the virsh cpu-models
<arch> command. For example:

$ virsh cpu-models x86_64
486

pentium
pentium2
pentium3
pentiumpro
coreduo
n270
core2duo
gemu32
kvm32
cpu64-rhelb
cpu64-rhel6
kvm64
gemu64
conroe
Penryn
Nehalem
Westmere
SandyBridge
Haswell
athlon
phenom
Opteron_G1
Opteron_G2
Opteron_G3
Opteron_G4
Opteron_G5

$ virsh cpu-models ppc64
POWER7

POWER7_v2.1

POWER7_v2.3

POWER7+_v2.1

POWER8_v1.0

The full list of supported CPU models and features is contained in the cpu_map. xml file, located in
/usr/share/libvirt/:

cat /usr/share/libvirt/cpu_map.xml

A guest's CPU model and features can be changed in the <cpu> section of the domain XML file. See
Section 26.12, “CPU models and topology” for more information.

10

Chapter 2. Installing the virtualization packages

Chapter 2. Installing the virtualization packages

To use virtualization, the virtualization packages must be installed on your computer. Virtualization
packages can be installed either during the host installation sequence or after host installation using
the yum command and Subscription Manager.

The KVM hypervisor uses the default Red Hat Enterprise Linux kernel with the kvm kernel module.
2.1. Configuring a virtualization host during a new Red Hat Enterprise
Linux 7 installation

This section covers installing virtualization tools and virtualization packages as part of a fresh Red
Hat Enterprise Linux installation.

Procedure 2.1. Installing the virtualization package group

1. Launch the Red Hat Enterprise Linux 7 installation program

Start an interactive Red Hat Enterprise Linux 7 installation from the Red Hat Enterprise Linux
Installation CD-ROM, DVD or PXE.

2. Continue installation up to software selection

Complete the other steps up to the software selection step. The Installation Summary
screen prompts the user to complete any steps still requiring attention.

11

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html

Virtualization Deployment and Administration Guide

12

INSTALLATION SUMMARY

<« redhat

LOCALIZATION

DATE & TIME
Americas/New York timezone

LANGUAGE SUPPORT
English (United States)

SOFTWARE

INSTALLATION SOURCE
Local media

SYSTEM

INSTALLATION DESTINATION
Automatic partitioning selected

Figure 2.1. The Installation Summary screen

RED HAT ENTERPRISE LINUX 7.0 INSTALLATION
@ us

KEYBOARD
English (US)

SOFTWARE SELECTION

Minimal Install

NETWORK & HOSTNAME
Not connected

Quit Begin Installation

Software Selection defaults to Minimal Install. Open the Software Selection screen

to select the virtualization packages instead.

. Select the server type and package groups

Red Hat Enterprise Linux 7 has two available options for installing a virtualization host: a
minimal virtualization host with only the basic packages installed (Step 3.a), or a

virtualization host with packages installed to allow management of guests through a

graphical user interface (Step 3.b).

a.

Selecting a minimal virtualization host

SelecttheVirtualization Hostradio button under Base Environment, and
theVirtualization Platformcheckbox under Add-0Ons for Selected
Environment. This installs a basic virtualization environment which can be run with

virsh, or remotely over the network.

Chapter 2. Installing the virtualization packages

SOFTWARE SELECTION RED HAT ENTERPRISE LINUX 7.0 INSTALLATION
Base Environment Add-Ons for Selected Environment

Minimal Install " Metwork File System Client

Basic functionality Enables the system to attach to network storage

Infrastructure Server
Server for operating network infrastructure services Remote Management for Linux
Remote management interface for Red Hat Enterprise Linux, including

File and Print Server OpenLMl and SNMP.

File, print, and storage server for enterprises.

Virtualization Platform
Provides an interface for accessing and controlling virtualized guests

Basic Web Server

Server for serving static and dynamic internet content. and containers.

@ virtualization Host
Minimal virtualization host.
7 Server with GUI
Server for operating network infrastructure services, with a GUI.

Compatibility Libraries
Compatibility libraries for applications built en previous versions of Red

Hat Enterprise Linux.

Development Tools

A basic development environment.

Smart Card Support
Support for using smart card authentication.

Figure 2.2. Virtualization Host selected in the software selection screen

Selecting a virtualization host with a graphical user interface

Selectthe Server with GUI radio button under Base Environment, and the
checkboxes forVirtualization Client,Virtualization Hypervisor, and
Virtualization Toolsunder Add-Ons for Selected Environment. This
installs a virtualization environment along with graphical tools for installing and
managing guest virtual machines.

13

Virtualization Deployment and Administration Guide

SOFTWARE SELECTION RED HAT ENTERPRISE LINUX 7.0 INSTALLATION

Base Environment Add-Ons for Selected Environment

" Minimal Install

Basic functionality. Print Server

" Infrastructure Server Allows the system to act as a print server.

Server for operating network infrastructure services

Remote Desktop Clients
" File and Print Server

File, print, and storage server for enterprises. Remote Management for Linux

Remote management interface for Red Hat Enterprise Linux, including
" Basic Web Server OpenlLMl and SNMP
Server for serving static and dynamic internet content.
¥ Virtualization Client
" Virtualization Host Clients for installing and managing virtualization instances.
Minimal virtualization host.

© server with GUI ¥ Virtualization Hypervisor
Server for operating network infrastructure services, with a GUI. Smallest possible virtualization host installation

s Virtualization Tools

Tools for offline virtual image management.

Compatibility Libraries
Compatibility libraries for applications built on previous versions of

Red Hat Enterprise Linux.

Development Tools
A basic development environment.
Smart Card Support

Support for using smart card authentication

Figure 2.3. Server with GUI selected in the software selection screen

4. Finalize installation

On the Installation Summary screen, complete the steps as necessary and click Begin
Installation.

When the installation is complete, reboot the system.

You require a valid virtualization entitlement to receive updates for the virtualization packages.

2.1.1. Installing KVM packages with Kickstart files

Kickstart files allow for large, automated installations without a user manually installing each
individual host system.

To use a Kickstart file to install Red Hat Enterprise Linux with the virtualization packages, append the
following package groups in the %¥packages section of your Kickstart file:

@virtualization-hypervisor
@virtualization-client
@virtualization-platform
@virtualization-tools

14

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html

Chapter 2. Installing the virtualization packages

2.2. Installing virtualization packages on an existing Red Hat
Enterprise Linux system

This section describes the steps for installing the KVM hypervisor on an existing Red Hat Enterprise
Linux 7 system.

To install the packages, your machine must be registered and subscribed to the Red Hat Customer
Portal. To register via Red Hat Subscription Manager, run the subscription-manager register
command and follow the prompts. Alternatively, run the Red Hat Subscription Manager application
from Applications - System Tools on the desktop to register.

If you do not have a valid Red Hat subscription, visit the Red Hat online store to obtain one. For more

2.2.1. Installing the virtualization packages with yum

To use virtualization on Red Hat Enterprise Linux, you require at minimum the gemu-kvm, gemu-img,
and libvirt packages. These packages provide the user-level KYM emulator, disk image manager, and
virtualization management tools on the host Red Hat Enterprise Linux system.

The libvirt package provides the server and host-side libraries for interacting with hypervisors and
host systems, and the 1ibvirtd daemon that handles the library calls, manages virtual machines
and controls the hypervisor.

To install these packages, run the following command:
yum install gemu-kvm gemu-img libvirt

Several additional virtualization management packages are also available and are recommended
when using virtualization:

Recommended virtualization packages
virt-install

This package provides thevirt-install command for creating virtual machines from the
command line.

libvirt-python

The libvirt-python package contains a module that permits applications written in the Python
programming language to use the interface supplied by the libvirt API.

virt-manager

virt-manager, also known as Virtual Machine Manager, provides a graphical tool for
administering virtual machines. It uses the libvirt-client library as the management API.

libvirt-client

The libvirt-client package provides the client-side APIs and libraries for accessing libvirt
servers. The libvirt-client package includes the virsh command line tool to manage and
control virtual machines and hypervisors from the command line or a special virtualization
shell.

15

https://www.redhat.com/wapps/store/catalog.html
https://access.redhat.com/solutions/253273

Virtualization Deployment and Administration Guide

Install all of these recommended virtualization packages with the following command:

yum install virt-install libvirt-python virt-manager python-virtinst

libvirt-client

2.2.2. Installing virtualization package groups

The virtualization packages can also be installed from package groups. The following table
describes the virtualization package groups and what they provide.

Note that the gemu-img package is installed as a dependency ofthe Virtualization
package group ifitis not already installed on the system. It can also be installed manually

with the yum install qemu-img command as described previously.

Table 2.1. Virtualization Package Groups

Package Group

Description

Mandatory

Optional Packages

Virtualization
Hypervisor

Virtualization
Client

Virtualization
Platform

Virtualization
Tools

Smallest possible
virtualization host
installation

Clients for installing
and managing
virtualization
instances

Provides an interface
for accessing and
controlling virtual
machines and
containers

Tools for offline virtual
image management

Packages

libvirt, gemu-kvm

gnome-boxes, virt-
install, virt-manager,
virt-viewer

libvirt, libvirt-client, virt-
who

libguestfs

gemu-kvm-tools

virt-top, libguestfs-
tools, libguestfs-tools-c

fence-virtd-libvirt,
fence-virtd-multicast,
fence-virtd-serial,
libvirt-cim, libvirt-java,
libvirt-snmp, perl-Sys-
Virt

libguestfs-java,
libguestfs-tools,
libguestfs-tools-c

To install a package group, run the yum groupinstall <package group>command. For
instance, to install the Virtualization Tools package group,run:

yum groupinstall "Virtualization Tools"

2.3. Registering the hypervisor and virtual machine

Red Hat Enterprise Linux 6 and 7 require that every guest virtual machine is mapped to a specific
hypervisor in order to ensure that every guestis allocated the same level of subscription service. To
do this you need to install a subscription agent that automatically detects all guest Virtual Machines
(VMs) on each KVM hypervisor that is installed and registered, which in turn will create a mapping file
that sits on the host. This mapping file ensures that all guest VMs receive the following bengefits:

Subscriptions specific to virtual systems are readily available and can be applied to all of the

16

Chapter 2. Installing the virtualization packages

associated guest VMs

All subscription benefits that can be inherited from the hypervisor are readily available and can
be applied to all of the associated guest VMs.

The information provided in this chapter is specific to Red Hat Enterprise Linux subscriptions
only. If you also have a Red Hat Enterprise Virtualization subscription, or a Red Hat Satellite
subscription, you should also consult the virt-who information provided with those
subscriptions.

2.3.1. Installing virt-who on the host physical machine

1. Register the KVM hypervisor

Register the KVM Hypervisor by running the subscription-manager register
[options] command in a terminal as the root user on the host physical machine. More
options are available using the # subscription-manager register --help menu.In
cases where you are using a username and password, use the credentials that are known to
the subscription manager. If this is your very first time subscribing and you do not have a
user account, contact customer support. For example to register the VM as '‘admin’ with
‘'secret' as a password, you would send the following command:

[root@rhel-server ~]# subscription-manager register --
username=admin --password=secret --auto-attach --type=hypervisor
2. Install the virt-who packages

Install the virt-who packages, by running the following command in a terminal as root on the
host physical machine:

[root@rhel-server ~]# yum install virt-who

3. Create a virt-who configuration file

Add a configuration file in the /etc/virt-who . d/ directory. It does not matter what the
name of the file is, but you should give it a name that makes sense and the file must be
located in the /etc/virt-who . d/ directory. Inside that file add the following snippet and
remember to save the file before closing it.

[libvirt]
type=libvirt

4. Start the virt-who service

Start the virt-who service by running the following command in a terminal as root on the host
physical machine:

[root@virt-who ~]# systemctl start virt-who.service
[root@virt-who ~]# systemctl enable virt-who.service

17

Virtualization Deployment and Administration Guide

5. Confirm virt-who service is receiving guest information

At this point, the virt-who service will start collecting a list of domains from the host. Check the
/var/log/rhsm/rhsm. log file on the host physical machine to confirm that the the file
contains a list of the guest VMs. For example:

2015-05-28 12:33:31,424 DEBUG: Libvirt domains found: [{'guestId':
'58d59128-cfbb-4f2c-93de-230307db2ce®', 'attributes': {'active': 0,
'virtWhoType': 'libvirt', 'hypervisorType': 'QEMU'}, 'state': 5}]

Procedure 2.2. Managing the subscription on the customer portal

18

1. Subscribing the hypervisor

As the virtual machines will be receiving the same subscription benefits as the hypervisor, itis
important that the hypervisor has a valid subscription and that the subscription is available
for the VMs to use.

a. Login to the customer portal

Subscriptions button atthe top of the page.

b. Click the Systems link

In the Subscriber Inventory section (towards the bottom of the page), click
Systems link.

c. Select the hypervisor

On the Systems page, there is a table of all subscribed systems. Click on the name of
the hypervisor (localhost.localdomain for example). In the details page that opens,
click Attach a subscription and selectall the subscriptions listed. Click Attach
Selected. This will attach the host's physical subscription to the hypervisor so that
the guests can benefit from the subscription.

2. Subscribing the guest virtual machines - first time use

This step is for those who have a new subscription and have never subscribed a guest virtual
machine before. If you are adding virtual machines, skip this step. To consume the
subscription assigned to the hypervisor profile on the machine running the virt-who service,
auto subscribe by running the following command in a terminal, on the guest virtual machine
as root.

[root@virt-who ~]# subscription-manager attach --auto

. Subscribing additional guest virtual machines

If you just subscribed a for the first time, skip this step. If you are adding additional virtual
machines, it should be noted that running this command will not necessarily re-attach the
same pools to the hypervisor. This is because removing all subscriptions then allowing auto
attach to resolve whatis necessary for a given guest virtual machine may result in different
subscriptions consumed than before. This may not have any effect on your system, butitis
something you should be aware about. If you used a manual attachment procedure to attach
the virtual machine, which is not described below, you will need to re-attach those virtual
machines manually as the auto-attach will not work. Use the following command as rootin a

https://access.redhat.com/

Chapter 2. Installing the virtualization packages

terminal to first remove the subscriptions for the old guests and then use the auto-attach to
attach subscriptions to all the guests. Run these commands on the guest virtual machine.

[root@virt-who ~]# subscription-manager remove --all
[root@virt-who ~]# subscription-manager attach --auto

4. Confirm subscriptions are attached

Confirm that the subscription is attached to the hypervisor by running the following command
as rootin a terminal on the guest virtual machine:

[root@virt-who ~]# subscription-manager list --consumed

Output similar to the following will be displayed. Pay attention to the Subscription Details. It
should say 'Subscription is current'.

[root@virt-who ~]# subscription-manager list --consumed

S S S S S S S SR S PSP S S RS S S SRS S Sy +
Consumed Subscriptions

S S S S S S S SR S PSP S S RS S S SRS S Sy +

Subscription Name: Awesome 0S with unlimited virtual guests

Provides: Awesome 0S Server Bits

SKU: awesomeos-virt-unlimited

Contract: 0

Account: 12331131231

Serial: 7171985151317840309

Pool ID: 2c91808451873d3501518742f556143d
Provides Management: No

Active: True

Quantity Used: 1

Service Level:

Service Type:

Status Details: Subscription is current "

Subscription Type:
Starts: 01/01/2015
Ends: 12/31/2015
System Type: Virtual

t'Indkxuesifyoursubscﬂpﬂoniscunentlfyoursubscﬂpﬁonisnotcunentarlenor
message appears. One example is Guest has not been reported on any hostand is
using a temporary unmapped guest subscription. In this case the guest needs to be
subscribed. In other cases, use the information as indicated in Section 2.3.4.2, “| have

5. Register additional guests

When you install new guest VMs on the hypervisor, you must register the new VM and use the
subscription attached to the hypervisor, by running the following commands in a terminal as
root on the guest virtual machine:

[root@serverl ~]# subscription-manager register
[root@serverl ~]# subscription-manager attach --auto
[root@serverl ~]# subscription-manager list --consumed

19

Virtualization Deployment and Administration Guide

2.3.2. Registering a new guest virtual machine

In cases where a new guest virtual machineis to be created on a host thatis already registered and
running, the virt-who service must also be running. This ensures that the virt-who service maps the
guestto a hypervisor, so the system is properly registered as a virtual system. To register the virtual
machine, run the following command as rootin a terminal:

[root@virt-server ~]# subscription-manager register --username=admin --
password=secret --auto-attach

2.3.3. Removing a guest virtual machine entry

If the guest virtual machine is running, unregister the system, by running the following command in a
terminal window as root:

[root@virt-guest ~]# subscription-manager unregister

If the system has been deleted, however, the virtual service cannot tell whether the service is deleted
or paused. In that case, you must manually remove the system from the server side, using the
following steps:

1. Login to the Subscription Manager

The Subscription Manager is located on the Red Hat Customer Portal. Login to the Customer

Portal using your username and password, by clicking the login icon at the top of the screen.

2. Click the Subscriptions tab

Click the Subscriptions tab.

3. Click the Systems link

Scroll down the page and click the Systems link.

4. Delete the system

To delete the system profile, locate the specified system's profile in the table, select the check
box beside its name and click Delete.

2.3.4. Troubleshooting virt-who

2.3.4.1. Why is the hypervisor status red?

Scenario: On the server side, you deploy a gueston a hypervisor that does not have a subscription.
24 hours later, the hypervisor displays its status as red. To remedy this situation you must get a
subscription for that hypervisor. Or, permanently migrate the guest to a hypervisor with a
subscription.

2.3.4.2. 1 have subscription status errors, what do 1 do?
Scenario: Any of the following error messages display:
System not properly subscribed

Status unknown

20

https://access.redhat.com/

Chapter 2. Installing the virtualization packages

Late binding of a guestto a hypervisor through virt-who (host/guest mapping)

To find the reason for the error open the virt-who log file, named rhsm. log, located in the
/var/log/rhsm/ directory.

21

Virtualization Deployment and Administration Guide

Chapter 3. Installing a virtual machine

After you have installed the virtualization packages on your Red Hat Enterprise Linux 7 host system,
you can create guest operating systems. You can create guest virtual machines using the New button
in virt-manager or use thevirt-install command line interface to install virtual machines by a
list of parameters or with a script. Both methods are covered by this chapter.

Detailed installation instructions are available in the following chapters for specific versions of Red
Hat Enterprise Linux and Microsoft Windows.

3.1. Guest virtual machine prerequisites and considerations

Various factors should be considered before creating any guest virtual machines. Not only should

the role of a virtual machine be considered before deployment, but regular ongoing monitoring and
assessment based on variable factors (load, amount of clients) should be performed. Some factors
include:

Performance

Guest virtual machines should be deployed and configured based on their intended tasks.
Some guest systems (for instance, guests running a database server) may require special
performance considerations. Guests may require more assigned CPUs or memory based on
their role and projected system load.

Input/Output requirements and types of Input/Output

Some guest virtual machines may have a particularly high I/O requirement or may require
further considerations or projections based on the type of I/O (for instance, typical disk
block size access, or the amount of clients).

Storage

Some guest virtual machines may require higher priority access to storage or faster disk
types, or may require exclusive access to areas of storage. The amount of storage used by
guests should also be regularly monitored and taken into account when deploying and

understand that your physical storage may limit your options in your virtual storage.
Networking and network infrastructure

Depending upon your environment, some guest virtual machines could require faster
network links than other guests. Bandwidth or latency are often factors when deploying and
maintaining guests, especially as requirements or load changes.

Request requirements

SCSlrequests can only be issued to guest virtual machines on virtio drives if the virtio
drives are backed by whole disks, and the disk device parameter is set to 1un, as shown in
the following example:

<devices>
<emulator>/usr/libexec/gemu-kvm</emulator>
<disk type='block' device='lun'>

3.2. Creatina quests with virt-install

22

Chapter 3. Installing a virtual machine

You can usethevirt-install command to create virtual machines from the command line. virt-
install is used either interactively (with a graphical application such as virt-viewer) or as part of
a script to automate the creation of virtual machines. Using virt-install with kickstart files allows
for unattended installation of virtual machines.

Note that you need root privileges in order for virt-install commands to complete successfully.

Thevirt-install tool provides a number of options that can be passed on the command line.
Mostvirt-install options are notrequired. Minimum requirements are - -name, - - ram, guest
storage (--disk, --filesystemor --nodisks), and an install option. To see a complete list of
options, run the following command:

virt-install --help

Thevirt-install man page also documents each command option, important variables, and
examples.

Priorto running virt-install, qemu-img is a related command which can be used to configure

3.2.1. Network installation with virt-install

The following examples use a network bridge (named br0 in these examples), which must be created

Example 3.1. Using virt-install to install a Red Hat Enterprise Linux 6 virtual machine

This example creates a Red Hat Enterprise Linux 6 guest:

virt-install \

--name=guestl-rhel6-64 \

--disk path=/var/lib/libvirt/images/guestl-rhel6-
64 .dsk, size=8, sparse=false, cache=none \

--graphics spice \

--VCpus=2 --ram=2048 \

--location=http://examplel.com/installation_tree/RHEL6.4-Server -
x86_64/0s \

--network bridge=bro \

--o0s-type=1linux \

--o0s-variant=rhel6

The options used in this example are as follows:
- -name
The name of the virtual machine.
--disk
Specifies storage configuration details for the virtual machine.
--graphics

U A RS S R R RO) [DR S-S IR IR | [U S e SR [PORURG S PR [S Y <G |

23

Virtualization Deployment and Administration Guide

Al Hmporant opuon wricn alnows grapinical mstialauorn ol d virwal macrnine. it speclies uie
type of graphical tool to use for interactive installation, or can be setto none for a fully
automated installation by script.

--vcpus

The number of vCPUs to allocate to the guest.
--ram

The amount of memory (RAM) to allocate to the guest, in MiB.
--location

The location of the installation media. The above example uses an http:// network
installation, but several other protocols can be used.

--network bridge

Specifies the network bridge to use for installation, which must be configured before
running virt-install. See Section 7.4.1, “Configuring bridged networking on a Red Hat

--0s-type
The guest operating system type.
--os-variant

Another important option in virt-install, used to further optimize the guest configuration.
Using this option can reduce installation time and improve performance.

Running the osinfo-query os command returns a complete list of operating system
variants identified by a short ID to use with the - -os-variant option. For example, - -0s-
variant=rhel?7. 0 configures a Red Hat Enterprise Linux 7.0 virtual machine.

In Red Hat Enterprise Linux 7, the virtio-scsi controller is available for use in guests. If both the host
and guest support virtio-scsi, you can use it as follows:

Example 3.2. Using virt-install to install a guest virtual machine with the virtio-scsi
controller

The items in bold are required on top of a standard installation in order to use the virtio-scsi
controller.

virt-install \

--name=guestl-rhel7 \

--controller type=scsi,model=virtio-scsi \

--disk path=/var/lib/libvirt/images/guestil-
rhel7.dsk, size=8, sparse=false, cache=none, bus=scsi \

--graphics spice \

--VCpus=2 --ram=2048 \

--location=http://examplel.com/installation_tree/RHEL7.1-Server -
x86_64/0s \

--network bridge=bro \

--o0s-type=linux \

--o0s-variant=rhel?7

24

Chapter 3. Installing a virtual machine

Ensure that you select the correct - -os-type for your operating system when running this
command. This option prevents the installation disk from disconnecting when rebooting
during the installation procedure. The --os-variant option further optimizes the
configuration for a specific guest operating system.

3.2.2. PXE installation with virt-install

virt-install PXE installations require both the - -network=bridge: bridge_name parameter,
where bridge_name is the name of the bridge, and the - -pxe parameter.

By default, if no network is found, the guest virtual machine will attempt to boot from alternative
bootable devices. If there is no other bootable device found, the guest virtual machine will pause.

You can use the gemu-kvm boot parameter reboot - timeout to allow the guest to retry booting if
no bootable device is found, like so:

gemu-kvm -boot reboot-timeout=1000

Example 3.3. Fully-virtualized PXE installation with virt-install

virt-install --hvm --connect gemu:///system \
--network=bridge:br® --pxe --graphics spice \
--name=rhel6-machine --ram=756 --vcpus=4 \

--o0s-type=linux --os-variant=rhel6 \

--disk path=/var/lib/libvirt/images/rhel6-machine.img, size=10

Note that the command above cannot be executed in a text-only environment. A fully-virtualized (-
-hvm) guest can only be installed in a text-only environment if the - -1location and - -extra-
args '"console=console_type" are provided instead ofthe --graphics spice parameter.

3.2.3. Kickstart installation with virt-install

The following example shows using a kickstart file with virt-install:

Example 3.4. Kickstart installation with virt-install

virt-install -n rhel7ks-guest -r 1024 --
file=/var/lib/libvirt/images/rhel7ks-guest.img --file-size=10 \
--location /var/lib/libvirt/images/rhel-server-7.1-x86_64-dvd.iso --
nographics \
--extra-args="ks=http://192.168.122.1/ks.cfg ip=dhcp \
console=tty® console=ttyS0,115200n8"” --os-variant=rhel7.0

3.2.4. Guest installation with virt-install and text-based Anaconda

The following example shows using virt-install with text-based Anaconda installation:

25

Virtualization Deployment and Administration Guide

Example 3.5. Guest installation with virt-install and text-based Anaconda

virt-install -n rhel6anaconda-guest -r 1024 --
disk=path=/path/to/rhel6anaconda-guest.img, size=10 \
--location /mnt/RHEL6DVD --nographics \
--extra-args="console=tty® console=ttyS0,115200n8" \
--disk=path=/path/to/rhel6-dvd.iso,device=cdrom

3.3. Creating guests with virt-manager

virt-manager, also known as Virtual Machine Manager, is a graphical tool for creating and
managing guest virtual machines.

This section covers how to install a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat
Enterprise Linux 7 host using virt-manager.

These procedures assume that the KVM hypervisor and all other required packages are installed and
the hostis configured for virtualization. For more information on installing the virtualization
packages, refer to Chapter 2, Installing the virtualization packages.

3.3.1. virt-manager installation overview

The New VM wizard breaks down the virtual machine creation process into five steps:

1. Choosing the hypervisor and installation type

2. Locating and configuring the installation media

3. Configuring memory and CPU options

4. Configuring the virtual machine's storage

5. Configuring virtual machine name, networking, architecture, and other hardware settings
Ensure that virt-manager can access the installation media (whether locally or over the network)

before you continue.

3.3.2. Creating a Red Hat Enterprise Linux 7 guest with virt-manager

This procedure covers creating a Red Hat Enterprise Linux 7 guest virtual machine with a locally
stored installation DVD or DVD image. Red Hat Enterprise Linux 7 DVD images are available from the
Red Hat Customer Portal.

Procedure 3.1. Creating a Red Hat Enterprise Linux 7 guest virtual machine with virt-
manager using local installation media

1. Optional: Preparation

Prepare the storage environment for the virtual machine. For more information on preparing
storage, refer to Chapter 14, Storage pools.

26

https://access.redhat.com/downloads/content/69/ver=/rhel---7/7.1/x86_64/product-downloads

Chapter 3. Installing a virtual machine

Various storage types may be used for storing guest virtual machines. However, for a
virtual machine to be able to use migration features, the virtual machine must be
created on networked storage.

Red Hat Enterprise Linux 7 requires at least 1 GB of storage space. However, Red Hat
recommends at least5 GB of storage space for a Red Hat Enterprise Linux 7 installation and
for the procedures in this guide.

. Open virt-manager and start the wizard

Open virt-manager by executing the virt-manager command as root or opening
Applications - System Tools - Virtual Machine Manager. Alternatively, run the
virt-manager command as root.

Virtual Machine Manager x
File Edit View Help
E__-J Open A w
Mame ¥ (CPU usage

b localhost (QEMU)

27

Virtualization Deployment and Administration Guide

28

Figure 3.1. The Virtual Machine Manager window

Optionally, open a remote hypervisor by selecting the hypervisor and clicking the Connect
button.

Click ontheCreate a new virtual machine button to startthe new virtualized guest
wizard.

=
Figure 3.2. The Create a new virtual machine button

The New VM window opens.

. Specifyinstallation type

Select an installation type:
Local install media (ISO image or CDROM)

This method uses a CD-ROM, DVD, or image of an installation disk (for example,
.iso0).

Network Install (HTTP, FTP, or NFS)

This method involves the use of a mirrored Red Hat Enterprise Linux or Fedora
installation tree to install a guest. The installation tree must be accessible through
either HTTP, FTP, or NFS.

If you select Network Install, providethe installation URL, and the Kickstart URL
and Kernel options (ifrequired) and continue to Step 5.

Network Boot (PXE)

This method uses a Preboot eXecution Environment (PXE) server to install the guest
virtual machine. Setting up a PXE server is covered in the Deployment Guide. To
install via network boot, the guest must have a routable IP address or shared
network device.

If you select Network Boot, continue to Step 5. After all steps are completed, a

DHCP requestis sentand if a valid PXE server is found the guest virtual machine's
installation processes will start.

Import existing disk image

This method allows you to create a new guest virtual machine and import a disk
image (containing a pre-installed, bootable operating system) to it.

Chapter 3. Installing a virtual machine

New VM

m Create a new virtual machine

Connection: localhost (QEMU/KVM)

Choose how you would like to install the operating system
@ Local install media (ISO image or CDROM)
' Network Install (HTTP, FTP, or NFS)
' Metwork Boot (PXE)

' Import existing disk image

Cancel Forward

Figure 3.3. Virtual machine installation method

Click Forward to continue.

4. Select the local installation media

If you selected Local install media (ISO image or CDROM), specify your desired
local installation media.

29

Virtualization Deployment and Administration Guide

30

New VM

m Create a new virtual machine

Locate your install media

@ Use ISO image:

fvar/lib/libvirt/images/RHEL7-Server-x86| ~ | Browse...

« Automatically detect operating system based on install media

05 type: Unknown

Version: Unknown

Cancel Back Forward

Figure 3.4. Local ISO image installation

A. Ifyou wish to install from a CD-ROM or DVD, selectthe Use CDROM or DVD radio

button, and select the appropriate disk drive from the drop-down list of drives available.

. Ifyou wish to install from an ISO image, select Use IS0 image, and then click the

Browse. . . button to open the Locate media volume window.
Select the installation image you wish to use, and click Choose Volume.

If no images are displayed in the Locate media volume window, click on the Browse
Local button to browse the host machine for the installation image or DVD drive
containing the installation disk. Select the installation image or DVD drive containing the
installation disk and click Open; the volume is selected for use and you are returned to the
Create a new virtual machine wizard.

For ISO image files and guest storage images, the recommended location to use is
/var/lib/libvirt/images/. Any other location may require additional
configuration by SELinux. Refer to the Red Hat Enterprise Linux Virtualization
Security Guide or the Red Hat Enterprise Linux SELinux User's and Administrator's

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Security_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

Chapter 3. Installing a virtual machine

Next, configure the OS type and Version of the installation. Ensure that you select the
appropriate operating system type for your virtual machine. This can be specified manually
or by selecting the Automatically detect operating system based on install
media check box.

Click Forward to continue.

Configure memory (RAM) and virtual CPUs

Specify the number of CPUs and amount of memory (RAM) to allocate to the virtual machine.
The wizard shows the number of CPUs and amount of memory you can allocate; these values
affect the host's and guest's performance.

Virtual machines require sufficient physical memory (RAM) to run efficiently and effectively.
Red Hat supports a minimum of 512MB of RAM for a virtual machine. Red Hat recommends at
least 1024MB of RAM for each logical core.

Assign sufficient virtual CPUs for the virtual machine. If the virtual machine runs a multi-
threaded application, assign the number of virtual CPUs the guest virtual machine will require
to run efficiently.

You cannot assign more virtual CPUs than there are physical processors (or hyper-threads)
available on the host system. The number of virtual CPUs available is noted in theUp to X
available field.

MNew VM

Choose Memory and CPU settings
Memory (RAM): | 1024 — + MB
Upto 3752 MB available on the host
CPUs: 2 =

Up to 2 available

Cancel Back Forward

Figure 3.5. Configuring Memory and CPU

31

Virtualization Deployment and Administration Guide

After you have configured the memory and CPU settings, click Forward to continue.

Memory and virtual CPUs can be overcommitted. For more information on
overcommitting, refer to Chapter 8, Overcommitting with KVM.

6. Configure storage

Enable and assign sufficient space for your virtual machine and any applications it requires.
Assign atleast5 GB for a desktop installation or atleast 1 GB for a minimal installation.

MNew VM

m Create a new virtual machine

« Enable storage for this virtual machine
@ Create a disk image on the computer's hard drive

80 — + | GB

9.8 Gh available in the default location

' Allocate entire disk now 3

' Select managed or other existing storage

Cancel Back Forward

Figure 3.6. Configuring virtual storage

Live and offline migrations require virtual machines to be installed on shared network
storage. For information on setting up shared storage for virtual machines, refer to
Section 17.3, “Shared storage example: NFS for a simple migration”.

a. With the default local storage

SelecttheCreate a disk image on the computer's hard drive radio
button to create a file-based image in the default storage pool, the

32

Chapter 3. Installing a virtual machine

/var/lib/libvirt/images/ directory. Enter the size of the disk image to be
created. Ifthe Allocate entire disk now check box is selected, a disk image of
the size specified will be created immediately. If not, the disk image will grow as it
becomes filled.

Although the storage pool is a virtual container it is limited by two factors:
maximum size allowed to it by gemu-kvm and the size of the disk on the host
physical machine. Storage pools may not exceed the size of the disk on the
host physical machine. The maximum sizes are as follows:

virtio-blk = 2763 bytes or 8 Exabytes(using raw files or disk)

Ext4 =~ 16 TB (using 4 KB block size)

XFS =~8 Exabytes

gcow?2 and host file systems keep their own metadata and scalability

should be evaluated/tuned when trying very large image sizes. Using raw

disks means fewer layers that could affect scalability or max size.

Click Forward to create a disk image on the local hard drive. Alternatively, select
Select managed or other existing storage,then select Browse to
configure managed storage.

b. With a storage pool
If you select Select managed or other existing storage to usea storage

pool, click Browse to open the Locate or create storage volume window.

Locate or create storage volume

Storage Pools Name v Size Format Used By

default
Filesystem Directory

Browse Local New Volume Cancel

Figure 3.7. The Locate or create storage volume window

33

Virtualization Deployment and Administration Guide

34

i. Selecta storage pool fromthe Storage Pools list.

ii. Optional: Click on the New Volume button to create a new storage volume.
The Add a Storage Volume screen will appear. Enter the name of the new
storage volume.

Choose a format option from the Format dropdown menu. Format options
include raw, qcow2, and ged. Adjust other fields as desired. Note that the
gcow?2 version used here is version 3. To change the gcow version refer to

Add a Storage Volume

Create sto rage volume

Create a storage unit to be used directl':,.r b‘,r a virtual machine.

Mame: |rhel7.0-guestl

Format: | qcowd v

¥ Backing store

Storage Volume Quota
guests's available space: 650.12 GiB

Max Capacity: | 8.0 — + | GiB

Cancel Finish

Figure 3.8. The Add a Storage Volume window

Select the new volume and click Choose volume. Next, click Finish to return to the New
VM wizard. Click Forward to continue.

. Name and final configuration

Name the virtual machine. Virtual machine names can contain letters, numbers and the
following characters: underscores (_), periods (.), and hyphens (-). Virtual machine names
must be unique for migration and cannot consist only of numbers.

Verify the settings of the virtual machine and click Finish when you are satisfied; this will
create the virtual machine with default networking settings, virtualization type, and
architecture.

Chapter 3. Installing a virtual machine

New VM

m Create a new virtual machine

Ready to begin the installation

MName: |rhEL?.G—gu25t1

05: Red Hat Enterprise Linux 7.0
Install: Local CDROM/ISO
Memory: 1024 MiB
CPUs: 1

Storage: 8.0 GIB /media/guests/rhel7.0-guest1

Customize configuration before install

* Advanced options

Cancel Back Finish

Figure 3.9. Verifying the configuration

Or, to further configure the virtual machine's hardware, check the Customize
configuration before install check box to change the guest's storage or network devices,
to use the para-virtualized (virtio) drivers or to add additional devices. This opens another
wizard that will allow you to add, remove, and configure the virtual machine's hardware
settings.

Red Hat Enterprise Linux 4 or Red Hat Enterprise Linux 5 guest virtual machines
cannot be installed using graphical mode. As such, you must select "Cirrus" instead of
"QXL" as a video card.

After configuring the virtual machine's hardware, click Apply. virt-manager will then create
the virtual machine with your specified hardware settings.

35

Virtualization Deployment and Administration Guide

Click on the Advanced options down arrow to inspect and modify advanced options. For
a standard Red Hat Enterprise Linux 7 installation, none of these options require
modification.

Click Finish to continue into the Red Hat Enterprise Linux installation sequence. For more

A Red Hat Enterprise Linux 7 guest virtual machine is now created from an ISO installation disk
image.

3.4. Comparison of virt-install and virt-manager installation options

This table provides a quick reference to compare equivalentvirt-install and virt-manager
installation options for when installing a virtual machine.

Mostvirt-install options are notrequired. Minimum requirements are - -name, - - ram, guest
storage (--disk, --filesystemor --nodisks), and an install option. These options are further
specified with arguments; to see a complete list of command options and related arguments, run the
following command:

virt-install --help

In virt-manager, at minimum, a name, installation method, memory (RAM), vCPUs, storage are
required.

Table 3.1. virt-install and virt-manager configuration comparison for guest
installations

Configuration on virtual virt-install option virt-manager installation

machine wizard label and step
number

Virtual machine name --name, -n Name (step 5)

RAM to allocate (MiB) --ram, -r Memory (RAM) (step 3)

Storage - specify storage --disk Enable storage for this virtual

media machine - Create a disk image

on the computer's hard drive,
or Select managed or other
existing storage (step 4)

Storage - export a host --filesystem Enable storage for this virtual

directory to the guest machine - Select managed or
other existing storage (step 4)

Storage - configure no local --nodisks Deselect the Enable storage for

disk storage on the guest this virtual machine checkbox
(step 4)

Installation media location --file Local install media - Locate

(local install) your install media (steps 1-2)

Installation via distribution tree --location Network install » URL (steps 1-

(network install) 2)

Install guest with PXE --pxe Network boot (step 1)

Number of vCPUs --VCpus CPUs (step 3)

Host network --network Advanced options dropdown

menu (step 5)

36

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html

Chapter 3. Installing a virtual machine

Configuration on virtual virt-install option virt-manager installation

machine wizard label and step
number

Operating system --0s-type OS type (step 2)

Operating system --os-variant Version (step 2)

variant/version

Graphical display method --graphics, --nographics * virt-manager provides GUI

installation only

37

Virtualization Deployment and Administration Guide

Chapter 4. Virtualizing Red Hat Enterprise Linux on Other
Platforms

This chapter contains reference material for customers running Red Hat Enterprise Linux 7 as a
virtualized operating system on other virtualization hosts.

4.1. On VMware ESX

Red Hat Enterprise Linux 7 provides the following drivers:

vmw_balloon - a para-virtualized memory ballooning driver used when running Red Hat
Enterprise Linux on VMware hosts. For further information about this driver, refer to
http //kb VMware.com/selfservice/microsites/search.do?

vmmouse_drv - a para-virtualized mouse driver used when running Red Hat Enterprise Linux on
VMware hosts. For further information about this driver, refer to
http //kb VMware.com/selfservice/microsites/search.do?

vmware_drv - a para-virtualized video driver used when running Red Hat Enterprise Linux on
VMware hosts. For further information about this driver, refer to
http //kb VMware.com/selfservice/microsites/search.do?

vmxnet3 - a para-virtualized network adapter used when running Red Hat Enterprise Linux on
VMware hosts. For further information about this driver, refer to
http://kb.VMware. com/selfservice/microsites/search do?

vmw_pvscsi - a para-virtualized SCSI adapter used when running Red Hat Enterprise Linux on
VMware hosts. For further information about this driver, refer to
http://kb.VMware.com/selfservice/microsites/search.do?

S&cmd=displayKC&externalld 010398

4.2. On Hyper-V

Red Hat Enterprise Linux 7 ships with Microsoft's Linux Integration Services, a set of drivers that
enable synthetic device supportin supported virtualized operating systems. Red Hat Enterprise Linux
7 provides the following drivers:

hv_vmbus - a main para-virtualized driver for communicating with the Hyper-V host
hv_netvsc - a para-virtualized network driver

hv_storvsc - a para-virtualized storage (SCSI) driver

hyperv_fb - a para-virtualized framebuffer device

hyperv_keyboard - a para-virtualized keyboard driver

hid_hyperv - a para-virtualized mouse driver

hv_balloon -a memory hotplug and ballooning driver

hv_utils - a guestintegration services driver

38

http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=1002586
http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=5739104
http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=1033557
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1001805
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1010398

Chapter 4. Virtualizing Red Hat Enterprise Linux on Other Platforms

For more mformatlon about the drivers prowded refer to Mlcrosoft s websne and the Linux and

V. Access to this article may require a Mlcrosoft account.

The Hyper-V manager supports shrinking a GUID Partition Table (GPT) partitioned disk if
there is free space after the last partition, by allowing the user to drop the unused last part of
the disk. However, this operation will silently delete the secondary GPT header on the disk,
which may trigger error messages when guest examines the partition table (for example, when
printing the partition table with parted). This is a known limit of Hyper-V. As a workaround, it
is possible to manually restore the secondary GPT header with the gd i sk expert command
"e", after shrinking the GPT disk. This also occurs when using Hyper-V's Expand option, but
can also be fixed with the parted tool. Information about these commands can be viewed in
the parted (8) and gdisk(8) man pages.

For more information, see the following article: Best Practices for running Linux on Hyper-V.

39

http://technet.microsoft.com/en-us/library/dn531030.aspx.
https://technet.microsoft.com/en-us/library/dn531031.aspx
http://blogs.technet.com/b/virtualization/archive/2013/07/24/enabling-linux-support-on-windows-server-2012-r2-hyper-v.aspx
https://technet.microsoft.com/en-us/library/dn720239.aspx

Virtualization Deployment and Administration Guide

Chapter 5. Installing a fully-virtualized Windows guest

This chapter describes how to create a fully-virtualized Windows guest using the command-line
(virt-install), launch the operating system's installer inside the guest, and access the installer
through virt-viewer.

Red Hat Enterprise Linux 7 Windows guests are only supported under specific subscription
programs such as Advanced Mission Critical (AMC). If you are unsure whether your
subscription model includes support for Windows guests, please contact customer support.

To install a Windows operating system on the guest, use the virt-viewer tool. This tool allows you
to display the graphical console of a virtual machine (via the VNC protocol). In doing so, virt-
viewer allows you to install a fully-virtualized guest's operating system with that operating system's
installer (for example, the Windows 8 installer).

Installing a Windows operating system involves two major steps:
1. Creating the guest virtual machine, using either virt-install or virt-manager.

2. Installing the Windows operating system on the guest virtual machine, using virt-viewer.

virt-install orvirt-manager.

Note that this chapter does not describe how to install a Windows operating system on a fully-
virtualized guest. Rather, it only covers how to create the guest and launch the installer within the
guest. For information on how to install a Windows operating system, refer to the relevant Microsoft
installation documentation.

5.1. Using virt-install to create a guest

Thevirt-install command allows you to create a fully-virtualized guest from a terminal, for
example, without a GUIL.

Before creating the guest, consider first if the guest needs to use KVM Windows para-
virtualized (virtio) drivers. If it does, keep in mind that you can do so during or after installing
the Windows operating system on the guest. For more information about virtio drivers, refer to
Chapter 6, KVM Para-virtualized (virtio) Drivers.

For instructions on how to install KVM virtio drivers, refer to Section 6.1, “Installing the KVM
Windows virtio drivers”.

Itis possible to create a fully-virtualized guest with only a single command. To do so, run the
following program (replace the values accordingly):

virt-install \

40

Chapter 5. Installing a fully-virtualized Windows guest

--name=guest-name \

--0s-type=windows \

--network network=default \

--disk path=path-to-disk,size=disk-size \
--cdrom=path-to-install-disk \
--graphics spice --ram=1024

The path-to-disk mustbe a device (e.g. /dev/sda3) or image file
(/var/lib/libvirt/images/name. img). It must also have enough free space to support the
disk-size.

The path-to-install-disk must be a path to an ISO image, or a URL from which to access a minimal boot
ISO image.

All image files are stored in /var/1lib/1libvirt/images/ by default. Other directory
locations for file-based images are possible, but may require SELinux configuration. If you run
SELinux in enforcing mode, refer to the Red Hat Enterprise Linux SELinux User's and
Administrator's Guide for more information on SELinux.

Once the fully-virtualized guestis created, virt-viewer will launch the guest and run the operating
system's installer. Refer to the relevant Microsoft installation documentation for instructions on how
to install the operating system.

5.2. Tips for more efficiency with Windows guest virtual machines

The following flags should be set with libvirt to make sure the Windows guest virual machine works
efficiently:

hv_relaxed
hv_spinlocks=0x1fff
hv_vapic

hv_time

5.2.1. Setting the Hyper-V clock flag

To setthe Hyper-V clock flag, augment the Windows guest virtual machine XML to contain:

<domain type='kvm'>
<clock offset="utc'>
<timer name='hypervclock' present='yes'/>

</clock>

</domain>

41

Virtualization Deployment and Administration Guide

Figure 5.1. Clock element XML

This action should notbe done while the guest virtual machine is running. Shutdown the guest
virtual machine, change the XML file and then re-start the guest virtual machine.

42

Chapter 6. KVM Para-virtualized (virtio) Drivers

Chapter 6. KVM Para-virtualized (virtio) Drivers

Para-virtualized drivers enhance the performance of guests, decreasing guest I/O latency and
increasing throughputto near bare-metal levels. It is recommended to use the para-virtualized drivers
for fully virtualized guests running 1/O heavy tasks and applications.

Virtio drivers are KVM's para-virtualized device drivers, available for Windows guest virtual machines
running on KVM hosts. These drivers are included in the virtio package. The virtio package supports
block (storage) devices and network interface controllers.

Red Hat Enterprise Linux 7 Windows guests are only supported under specific subscription
programs such as Advanced Mission Critical (AMC). If you are unsure whether your
subscription model includes support for Windows guests, please contact customer support.
The KVM virtio drivers are automatically loaded and installed on the following:

Red Hat Enterprise Linux 4.8 and newer

Red Hat Enterprise Linux 5.3 and newer

Red Hat Enterprise Linux 6 and newer

Red Hat Enterprise Linux 7 and newer

Some versions of Linux based on the 2.6.27 kernel or newer kernel versions.

Versions of Red Hat Enterprise Linux in the list above detect and install the drivers; additional
installation steps are not required.

In Red Hat Enterprise Linux 3 (3.9 and above), manual installation is required.

PCl devices are limited by the virtualized system architecture. Refer to Chapter 18, Guest virtual
machine device configuration for additional limitations when using assigned devices.

Using KVM virtio drivers, the following Microsoft Windows versions are expected to run similarly to
bare-metal-based systems.

Windows Server 2003 (32-bitand 64-bit versions)
Windows Server 2008 (32-bitand 64-bit versions)
Windows Server 2008 R2 (64-bit only)

Windows 7 (32-bit and 64-bit versions)

Windows Server 2012 (64-bit only)

Windows Server 2012 R2 (64-bit only)

Windows 8 (32-bit and 64-bit versions)

43

Virtualization Deployment and Administration Guide

Windows 8.1 (32-bit and 64-bit versions)

Network connectivity issues sometimes arise when attempting to use older virtio drivers with
newer versions of QEMU. Keeping the drivers up to date is therefore recommended.

6.1. Installing the KVM Windows virtio drivers

This section covers the installation process for the KVYM Windows virtio drivers. The KVM virtio drivers
can beloaded during the Windows installation or installed after the guest's installation.

You can install the virtio drivers on a guest virtual machine using one of the following methods:
hosting the installation files on a network accessible to the virtual machine
using a virtualized CD-ROM device of the driver installation disk .iso file
using a USB drive, by mounting the same (provided) .ISO file that you would use for the CD-ROM

using a virtualized floppy device to install the drivers during boot time (required and
recommended only for Windows Server 2003)

This guide describes installation from the para-virtualized installer disk as a virtualized CD-ROM
device.

1.

Download the drivers

The virtio-win package contains the virtio block and network drivers for all supported
Windows guest virtual machines.

The virtio-win package can be found here:
https://access.redhat.com/downloads/content/rhel---7/x86_64/2476/virtio-win/1.7.1-
l.el7/noarch/fd431d51/package. It requires access to one of the following channels:

RHEL Client Supplementary (v. 7)

RHEL Server Supplementary (v. 7)

RHEL Workstation Supplementary (v. 7)

Download and install the virtio-win package on the host with the yum command.
yum install virtio-win

The list of virtio-win packages that are supported on Windows operating systems, and the
current certified package version, can be found at the following URL:

44

https://access.redhat.com/downloads/content/rhel---7/x86_64/2476/virtio-win/1.7.1-1.el7/noarch/fd431d51/package
http://www.windowsservercatalog.com/results.aspx?text=Red+Hat&bCatID=1282&avc=10&ava=0&OR=5&=Go&chtext=&cstext=&csttext=&chbtext=

Chapter 6. KVM Para-virtualized (virtio) Drivers

Note that the Red Hat Enterprise Virtualization Hypervisor and Red Hat Enterprise Linux are
created on the same code base so the drivers for the same version (for example, Red Hat
Enterprise Virtualization Hypervisor 3.3 and Red Hat Enterprise Linux 6.5) are supported for
both environments.

The virtio-win package installs a CD-ROM image, virtio-win. iso, in the
/usr/share/virtio-win/ directory.

Install the virtio drivers

When booting a Windows guest that uses virtio-win devices, the relevant virtio-win device
drivers must already be installed on this guest. The virtio-win drivers are not provided as
inbox drivers in Microsoft's Windows installation kit, so installation of a Windows gueston a
virtio-win storage device (viostor/virtio-scsi) requires that you provide the appropriate driver
during the installation, either directly fromthe virtio-win. iso or fromthe supplied Virtual
Floppy image virtio-win<version>.vfd.

6.2. Installing the drivers on an installed Windows guest virtual
machine

This procedure covers installing the virtio drivers with a virtualized CD-ROM after Windows is
installed.

Follow this procedure to add a CD-ROM image with virt-manager and then install the drivers.
Procedure 6.1. Installing from the driver CD-ROM image with virt-manager

1. Open virt-manager and the guest virtual machine

Open virt-manager, then open the guest virtual machine from the list by double-clicking
the guest name.

2. Open the hardware window

Click the lightbulb icon on the toolbar at the top of the window to view virtual hardware
details.

File Virtual b

Figure 6.1. The virtual hardware details button

Then click the Add Hardware button at the bottom of the new view that appears.

45

Virtualization Deployment and Administration Guide

Add Hardware

Figure 6.2. The virtual machine hardware information window

This opens a wizard for adding the new device.

3. Select the ISO file

Ensure thatthe Select managed or other existing storage radio button is
selected, and browse to the virtio driver's . 1so image file. The default location for the latest
version of the drivers is /usr/share/virtio-win/virtio-win. iso.

Changethe Device typeto IDE cdromand click the Forward button to proceed.

= Storage
EI Metwork
6 Input Please indicate how you would like to assign space
[Graphics on the host system for your virtual storage device,
@F Sound) Create a disk image on the computer's hard drive

Serial 3.0 :| cB

Parallel - _ _

17.9 Gb available in the default location
Channel

Allocate entire disk now
USB Host Device

® oF
PCl Host Device ® Select managed or other existing storage

TITET D

Video Browse... lf’usrf’share!virtio—wim’virtio—win.iso

Watchdog

Filesystem Device type: |_ IDE cdrom -
s S t d
. marteat Cache mode: default =
@@ USB Redirection

Storage format: A
Cancel Finish

Figure 6.3. The Add new virtual hardware wizard

4. Reboot

Reboot or start the virtual machine to begin using the driver disc. Virtualized IDE devices
require a restart to for the virtual machine to recognize the new device.

Once the CD-ROM with the drivers is attached and the virtual machine has started, proceed with
Procedure 6.2, “Windows installation on a Windows 7 virtual machine”.

Chapter 6. KVM Para-virtualized (virtio) Drivers

Procedure 6.2. Windows installation on a Windows 7 virtual machine

This procedure installs the drivers on a Windows 7 virtual machine as an example. Adapt the
Windows installation instructions to your guest's version of Windows.

1. Open the Computer Management window

On the desktop of the Windows virtual machine, click the Windows icon atthe bottom corner
of the screen to open the Start menu.

Right-click on Computer and select Manage from the pop-up menu.

Recycle Bin

| ‘ ljr Getting Started
! Connect to a Projector

Ca

Windows
Calculator

Documents
Sticky Notes

Pictures

% Snipping Tool
Music

,{Jﬁ Paint
Computer

1‘ XPS Viewer Open
MEage

@f Windows Fax and Scan
Map network drive...

%J) Remote Desktop Connectien . Disconnect network drive...

1 Show on Desktop
Q,’ Magnifier i3
Renarme

» All Programs Properties

5:22 PM

o me U g
B0 00

Figure 6.4. The Computer Management window

2. Open the Device Manager

Selectthe Device Manager from the left-most pane. This can be found under Computer
Management > System Tools.

47

Virtualization Deployment and Administration Guide

48

;é': Computer Management IEI@

File Action View Help

«=|2E HE

A Computer Management (Local | a2 Windows-PC Actions
4 [fj System Toels :> 1M Computer Tz [emerrr -
» @ Task Scheduler » g Disk drives
- 2] Event Viewer b B Display adapters More Actions s
> ga] Shared Folders b - DVD/CD-ROM drives
» :k; Lecal Users and Groups b -,EH Floppy drive controllers
. (R Performance b &;‘:l Human Interface Devices
s Device Manager b g [IDE ATA/ATAPI controllers
4 g Storage E b B Keyboards
= Disk Management b --B Mice and cther pointing devices
] ﬂ} Services and Applications b ‘__-.L Meniters

> ¥ MNetwork adapters
4[5 Other devices

: . [PCI Simple Communications Controller
» I3 Ports (COM & LPT)

>-n Processors

| Sound, video and game controllers

> M System devices

> - i Universal Serial Bus controllers

i I | 3

Figure 6.5. The Computer Management window

3. Start the driver update wizard

a. View available system devices

Expand System devices by clicking on the arrow to its left.

4 -8 System devices
. .yM ACPIFixed Feature Button
----- J& Composite Bus Enumerator
J.i;l High precision event timer
g8 Intel 823715B PCl to ISA bridge
;EJ Intel 82441FX Pentium(R) Pro Processor to PCl bridge
J!;J Microsoft ACPI-Compliant System
J!J Microsoft System Management BIOS Driver

Figure 6.6. Viewing available system devices in the Computer Management
window
b. Locate the appropriate device

There are up to four drivers available: the balloon driver, the serial driver, the network
driver, and the block driver.

Balloon, the balloon driver, affects the PCI standard RAM Controllerin
the System devices group.

Chapter 6. KVM Para-virtualized (virtio) Drivers

vioserial, the serial driver, affects the PCI Simple Communication
Controllerin the System devices group.

NetKVM, the network driver, affects the Network adapters group. This driveris
only available if a virtio NIC is configured. Configurable parameters for this driver

viostor,the block driver, affects the Disk drives group. This driveris only
available if a virtio disk is configured.

Right-click on the device whose driver you wish to update, and select Update

Driver. .. fromthe pop-up menu.

This example installs the balloon driver, so right-click on PCI standard RAM

Controller.

A Computer Management
File View Help

&= | 7EEH HE & B %S

Actien

A Computer Management (Local
4 '[['j System Tools
. @ Task Scheduler
> [{] Event Viewer
> a| Shared Folders

> -MF Network adapters -
s -5 Other devices

. I PCISimple Cornmunications Controller

» Y3 Ports (COM & LPT)

b 2 Processors

» & Local Users and Groups b -% Sound, video and game controllers
. II:?E‘:JJ Performance s M| System devices

ACPI Fixed Feature Button

Composite Bus Enumerator

High Definiticn Audie Controller

High precisicn event timer

Intel 8237158 PCI to [5A bridge

Intel 32441F Pentium (R} Pro Processerto PCT bridge
Microsoft ACPI-Compliant System

Microsoft System Management BIOS Driver
Microsoft Virtual Drive Enumerator Driver

PCI bus

=4 Device Manager
4 (55 Storage
=¥ Disk Management
> :: Services and Applications

m

PCI standard RAM Controlles
Update Driver Software...

E Plug and Play Software Devi
Remote Desktop Device Red Disable
Systern CMOS/real time clod Uninstall

UlMBus Enumerator
/M UMBus Root Bus Enumeratc

- » - i Universal Serial Bus controllers

1 [m b Properties

Scan for hardware changes

[F=1 B
Actions
Device Manager -
Mere Actions »

Launches the Update Driver Software Wizard for the selected device,

Figure 6.7. The Computer Management window

c. Open the driver update wizard

From the drop-down menu, select Update Driver Software.
driver update wizard.

Figure 6.8. Opening the driver update wizard

----- ;M PCI standard RAM Controlles

..... /M| Plug and Play Software Devi Update Driver Software...
----- 1M Rermnote Desktop Device Red Dizable

----- B System CMOS/ real time clog Uninstall

. . to access the

[

49

Virtualization Deployment and Administration Guide

4. Specifyhow to find the driver

The first page of the driver update wizard asks how you want to search for driver software.
Click on the second option, Browse my computer for driver software.

' =

(=)

b U Update Driver Software - PCI standard RAM Controller

How do you want to search for driver software?

< Search automatically for updated driver software
Windows will search your computer and the Internet for the latest driver software
for your device, unless you've disabled this feature in your device installation
settings.

< Browse my computer for driver software
Locate and install driver software manually. m

Cancel

Figure 6.9. The driver update wizard

5. Select the driver to install

a. Open afile browser

Click on Browse. . .

50

Chapter 6. KVM Para-virtualized (virtio) Drivers

P =

[me3m]

@ [l Ypdate Driver Software - PCI standard RAM Controller

Browse for driver software on your computer

Search for driver software in this location:

ChUsers\Windows\Documents - Browse... [

[¥]Include subfolders

= Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category as the device,

Tesxt][Cancel

Figure 6.10. The driver update wizard

. Browse to the location of the driver

A separate driver is provided for each combination of operating systems and
architectures. The drivers are arranged hierarchically according to their driver type,
the operating system, and the architecture on which they will be installed:
driver_type/os/arch/. For example, the Balloon driver for a Windows 7
operating system with an x86 (32-bit) architecture, resides in the Balloon/w7/x86
directory.

51

Virtualization Deployment and Administration Guide

Browse For Folder @

Select the folder that contains drivers for yvour hardware.,

PR Computer -
+ &L, Local Disk (C:)
4 é CD Drive (D) virtio-win-1.1.1
4 | Ballocn
> 2k3 L
> e 2kB L
4 4wl [
amdid B
. B0
> W xp b
Folder: X85

| Ok | || Cancel

Figure 6.11. The Browse for driver software pop-up window

Once you have navigated to the correct location, click OK.

c. Click Nextto continue

52

Chapter 6. KVM Para-virtualized (virtio) Drivers

Browse for driver software on your computer

Search for driver software in this location:

| D:\Balloonwi

Include subfolders

< Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category as the device

Figure 6.12. The Update Driver Software wizard

The following screen is displayed while the driver installs:

Installing driver software...

b

Figure 6.13. The Update Driver Software wizard

53

Virtualization Deployment and Administration Guide

6. Close the installer

The following screen is displayed when installation is complete:

w [l Update Driver Software - VirtlO Balloon Driver
Windows has successfully updated your driver software
Windows has finished installing the driver software for this device:

I

H& VirtlO Balloon Driver

Figure 6.14. The Update Driver Software wizard

Click Close to close the installer.

7. Reboot

Reboot the virtual machine to complete the driver installation.

6.3. Installing drivers during the Windows installation

This procedure covers installing the virtio drivers during a Windows installation.

This method allows a Windows guest virtual machine to use the virtio drivers for the default storage
device.

Procedure 6.3. Installing virtio drivers during the Windows installation

1. Install the virtio-win package:

yum install virtio-win

54

Chapter 6. KVM Para-virtualized (virtio) Drivers

The virtio-win package can be found here:
https://access.redhat.com/downloads/content/rhel---7/x86_64/2476/virtio-win/1.7.1-
l.el7/noarch/fd431d51/package. It requires access to one of the following channels:

RHEL Client Supplementary (v. 7)

RHEL Server Supplementary (v. 7)

RHEL Workstation Supplementary (v. 7)

2. Creating the guest virtual machine

Create the virtual machine, as normal, without starting the virtual machine. Follow one
of the procedures below.

Select one of the following guest-creation methods, and follow the instructions.

a. Creating the guest virtual machine with virsh

This method attaches the virtio driver floppy disk to a Windows guest before the
installation.

If the virtual machine is created from an XML definition file with virsh, use the virsh
define command notthe virsh create command.

i. Create, butdo not start, the virtual machine. Refer to the Red Hat Enterprise
Linux Virtualization Administration Guide for details on creating virtual machines
with the virsh command.

ii. Add the driver disk as a virtualized floppy disk with the virsh command. This
example can be copied and used if there are no other virtualized floppy
devices attached to the guest virtual machine. Note that vm_name should be
replaced with the name of the virtual machine.

virsh attach-disk vm_name /usr/share/virtio-
win/virtio-win.vfd fda --type floppy

b. Creating the guest virtual machine with virt-manager and changing the
disk type

i. Atthe final step of the virt-manager guest creation wizard, check the
Customize configuration before install checkbox.

55

https://access.redhat.com/downloads/content/rhel---7/x86_64/2476/virtio-win/1.7.1-1.el7/noarch/fd431d51/package

Virtualization Deployment and Administration Guide

m Create a new virtual machine

Ready to begin installation of win2k8-x86_.64-guest
0% Microsoft Windows Server 2008
Install: Local CODROM/ISO
Memory: 1024 MB
CPUs: 1
Storage: 8.0 GB fvar/lib/libvirt/images/win2k8 -x8 6 _6 4-guest.img

Customize configuration before install

[> Advanced options

Cancel | ‘ Back | | Finish

Figure 6.15. The virt-manager guest creation wizard

Click on the F1nish button to continue.

ii. Open the Add Hardware wizard

Click the Add Hardware button in the bottom left of the new panel.

Add Hardware

Figure 6.16. The Add Hardware button

iii. Select storage device

Storage is the default selection in the Hardware type list.

56

Chapter 6. KVM Para-virtualized (virtio) Drivers

I:E-J
oraqge
ﬂ_.l Metwork g

& Input Please indicate how you would like to assign space
‘—EJ Graphics on the host system for your virtual storage device.
@ Sound ® Create a disk image on the computer's hard drive
=4 Parallel . . .
36.5 Gb available in the default location
=4 Channel

Allocate entire disk now

o]

A% USB Host Device
2% PCl Host Device) Select managed or other existing storage
B video
EF Watchdog
Filesystem Device type: L |IDE disk =
G=a Smartcard
%m.,; martear Cache mode: default =
@ UsB Redirection

Storage format: hd

Cancel Finish

Figure 6.17. The Add new virtual hardware wizard

Ensure the Select managed or other existing storage radio button
is selected. Click Browse. . ..

@ Select managed or other existing storage

|Brnwse... | |

Figure 6.18. Select managed or existing storage

In the new window that opens, click Browse Local. Navigate to
/usr/share/virtio-win/virtio-win.vfd, and click Selectto
confirm.

Change Device typeto Floppy disk, and click Finish to continue.

L)

Device type: E Floppy disk

Figure 6.19. Change the Device type

iv. Confirm settings

Review the device settings.

57

Virtualization Deployment and Administration Guide

-‘:f_; Begin Installation !. Cancel

= i
= Overview Virtual Disk
{:} Processor Target device: Floppy 1
B8 Memory Source path: [usr/share/virtio-win/virtio-win.vfd _
By) Disconnect
@ Boot Options Storage size: 1.41 MB —
L4 Disk1l Readonly: [
E Shareable: []
B NIC :dd:c1:8b
. P Advanced options
() Input
[Display VNC 1 Tip: 'source’ refers to information seen from the host OS5,
2 while ‘target’ refers to information seen from the guest OS
t=s Console
B video
| Add Hardware | | Remove |

Figure 6.20. The virtual machine hardware information window

You have now created a removable device accessible by your virtual machine.

v. Change the hard disk type

To change the hard disk type from IDE Disk to Virtio Disk, we must first remove
the existing hard disk, Disk 1. Select the disk and click on the Remove button.

58

Chapter 6. KVM Para-virtualized (virtio) Drivers

Begin Installation @) Cancel

= overview Virtual Disk

i:E Processor Target device: Disk 1

BS Memory Source path: fvar/lib/libvirtfimages/questl-win2k8-x86_64.img
33 Boot Options Storage size: Unknown
= Readonly: [

& Foppy 1 Shareable: [

EE N|C:dd:cl:8b _

- ~ Advanced options

) Input . "
m Display VNC Disk bus: | default | ~
G=s Console Serial number:

B video

Add Hardware

Storage format:
7 Performance options

Cache mode: | default v

|0 mode: | default <

o Tip: ‘'source’ refers to information seen from the host OS,
while 'target’ refers to information seen from the guest OS

Remove |

Figure 6.21. The virtual machine hardware information window

Add a new virtual storage device by clicking Add Hardware. Then, change
the Device type from IDE disk to Virtio Disk. Click Finish to confirmthe

operation.

Metwork

1B

Y
L

Input
Graphics
Sound

5 1 1<l

Serial
Parallel
Channel

USB Host Device

iy [
'IE?O-' s %

PClI Host Device

fotrn

Video
Watchdog

O3

Filesystem
=g Smartcard

@ uUsB Redirection

Please indicate how you would like to assign space
on the host system for your virtual storage device.

® Create a disk image on the computer's hard drive
eoles

Allocate entire disk now

) Select managed or other existing storage

Device type: L2 Virtio disk =
Cache mode: default =
Storage format: hd
Cancel Finish |

59

Virtualization Deployment and Administration Guide

60

Figure 6.22. The virtual machine hardware information window

vi. Ensure settings are correct

Review the settings for VirtlO Disk 1.

-‘:f’ Begin Installation gu Cancel

= i
= Overview Virtual Disk
i::E Processor Target device: VirtlO Disk 1
B Memory Source path: /var/lib/libvirt/images/guestl-win2k&-x86_64.img
@ Boot Options Storage size: 8.00 GB
E Floppy 1 Readonly: [
= Shareable: []
B NIC:ddicl:8b
o 7 Advanced options
() Input —)
Disk bus: ‘ Virtio | C |
B pisplay VNC 0 v
&2 Console Serial number: []
o |
= Video Storage format: lraw ‘ v |
P> Performance options
5 Tip: 'source’ refers to information seen from the host 05,
while ‘target’ refers to information seen from the guest OS
| Add Hardware | | Remove |

Figure 6.23. The virtual machine hardware information window

When you are satisfied with the configuration details, click the Begin
Installation button.

I-

" Begin Installation

Figure 6.24. The Begin Installation button

c. Creating the quest virtual machine with virt-install

Chapter 6. KVM Para-virtualized (virtio) Drivers

Append the following parameter exactly as listed below to add the driver disk to the
installation with the virt-install command:

--disk path=/usr/share/virtio-win/virtio-
win.vfd, device=floppy

If the device you wish to add is a disk (thatis, nota floppy ora cdrom), you
will also need to add the bus=virtio option to the end of the - -disk
parameter, like so:

--disk path=/usr/share/virtio-win/virtio-
win.vfd, device=disk, bus=virtio

According to the version of Windows you are installing, append one of the following
options to thevirt-install command:

--0s-variant win2k3

--0s-variant win7

Additional steps for driver installation

During the installation, additional steps are required to install drivers, depending on the type
of Windows guest.

a.

Windows Server 2003

Before the installation blue screen repeatedly press F6 for third party drivers.

61

Virtualization Deployment and Administration Guide

62

indows Setup

Press Fb if you need to install a third party SCSI or RAID driver...

Figure 6.25. The Windows Setup screen

Press S to install additional device drivers.

indows Setup

p could not « ine the type of one or more m
lled in you] J ol ha C n to man
Currently, Setup wi yad support for the following m
<none >
adapt CD-ROM dri

i ne ludi
¢« from a ma

S5=Specify Additional Dewvice ENTER=Continue F3=Exit

Figure 6.26. The Windows Setup screen

Chapter 6. KVM Para-virtualized (virtio) Drivers

indows Setup

You hawve chosen to conf igure I Adapter for use with Windows,
using a device support disk ps ded by an adapter manufacturer.

Select the 3C51 Adapter you want from the following list, or press ESC
to return to the previous =

Red Hat WirtID
Red Hat VirtlID

ENTER=Select F3=Exit

Figure 6.27. The Windows Setup screen

Press Enter to continue the installation.

Windows Server 2008

Follow the same procedure for Windows Server 2003, but when the installer prompts
you for the driver, click on Load Driver, pointtheinstallerto Drive A: and pick
the driver that suits your guest operating system and architecture.

6.4. Using KVM virtio drivers for existing devices

You can modify an existing hard disk device attached to the guest to use the virtio driver instead
of the virtualized IDE driver. The example shown in this section edits libvirt configuration files. Note
that the guest virtual machine does not need to be shut down to perform these steps, however the
change will not be applied until the guestis completely shut down and rebooted.

Procedure 6.4. Using KVM virtio drivers for existing devices

1. Ensure thatyou have installed the appropriate driver (viostor), as described in Section 6.1,

“Installing the KVM Windows virtio drivers”, before continuing with this procedure.

2. Runthevirsh edit <guestname> command as root to edit the XML configuration file for
your device. For example, virsh edit guestil. The configuration files are located in
/etc/libvirt/qemu.

3. Below is a file-based block device using the virtualized IDE driver. This is a typical entry for a
virtual machine not using the virtio drivers.

<disk type='file' device='disk'>
<source file='/var/lib/libvirt/images/diskl.img'/>
<target dev='hda' bus='ide'/>

</disk>

63

Virtualization Deployment and Administration Guide

4. Change the entry to use the virtio device by modifying the bus= entry to virtio. Note that if
the disk was previously IDE it will have a target similar to hda, hdb, or hdc and so on. When
changing to bus=virtio the target needs to be changed to vda, vdb, or vdc accordingly.

<disk type='file' device='disk'>
<source file='/var/lib/libvirt/images/diskl.img'/>
<target dev='vda' bus='virtio'/>

</disk>

5. Remove the address tag inside the disk tags. This must be done for this procedure to work.
Libvirt will regenerate the address tag appropriately the next time the virtual machine is
started.

Alternatively, virt-manager, virsh attach-disk orvirsh attach-interface can add a new
device using the virtio drivers.

6.5. Using KVM virtio drivers for new devices

This procedure covers creating new devices using the KVM virtio drivers with virt-manager.

Alternatively, the virsh attach-disk orvirsh attach-interface commands can be used to
attach devices using the virtio drivers.

Ensure the drivers have been installed on the Windows guest before proceeding to install new
devices. If the drivers are unavailable the device will not be recognized and will not work.

Procedure 6.5. Adding a storage device using the virtio storage driver

1. Open the guest virtual machine by double clicking on the name of the guestin virt-
manager.

2. Open the Show virtual hardware details tab by clicking the 1ightbulb button.

File Virtual P
i g
Figure 6.28. The Show virtual hardware details tab

3. Inthe Show virtual hardware details tab, click on the Add Hardware button.

4. Select hardware type

Select Storage as the Hardware type.

64

http://www.linux-kvm.org/page/Virtio

Chapter 6. KVM Para-virtualized (virtio) Drivers
Add New Virtual Hardware

torage
@ Metwork g

) Input Please indicate how you would like to assign space on the host
LE] Graphics system for your virtual storage device.
@ Sound @ Create a disk image on the computer's hard drive
=4 Serial
80 — + |GB

=% Parallel
=% Channel

USB Host Device ¥ Allocate entire disk now

PCl Host Device Select managed or other existing storage

B video

EF Watchdog

Device type: — IDE disk v

=1 Smartcard
& Cache mode: none W

@ USB Redirection
Storage format: | raw w

Cancel Finish

Figure 6.29. The Add new virtual hardware wizard

5. Select the storage device and driver
Create a new disk image or select a storage pool volume.

Setthe Device typetoVirtio disk to usethe virtio drivers.

65

Virtualization Deployment and Administration Guide

Add Mew Virtual Hardware

M Storage Storage
BT MNetwork

=
Q!j' Input Please indicate how you would like to assign space on the host
7] Graphics system for your virtual storage device.
EF Sound @ Create a disk image on the computer's hard drive
=4 Serial
80 — + |GB
=& Parallel
=4 Channel
P USB Host Device ¥ Allocate entire disk now
[r: PCl Host Device Select managed or other existing storage
H video
ﬁF Watchdog
Device type: =2 Virtio disk W
G=d Smartcard
an Cache mode: none W
@ USB Redirection

Storage format: | raw w

Cancel Finish

Figure 6.30. The Add new virtual hardware wizard

Click Finish to complete the procedure.

Procedure 6.6. Adding a network device using the virtio network driver

1. Open the guest virtual machine by double clicking on the name of the guestin virt-
manager.

2. Open the Show virtual hardware details tab by clicking the 1ightbulb button.

File Virtual b

Figure 6.31. The Show virtual hardware details tab

3. Inthe Show virtual hardware details tab, click on the Add Hardware button.

4. Select hardware type

Select Network as the Hardware type.

66

Add New Virtual Hardware

, Storage
—r— Network
\5 Input Please indicate how you'd like to connect your
._E__] Graphics new virtual network device to the host networlk.
[= . i 1
@P Sound Host device: ‘ Virtual network 'default’: NAT | & |
‘| Serial T] ;
Parallel MAC address: 52:54:00:62:16:58 |
Channel) . ~
Device model: | Hypervisor default | &
&5 USB Host Device
Lf} PCl Host Device
H video
ﬁ} Watchdog
5 Filesystem
G=s Smartcard

§¥) USB Redirection

Cancel Finish

Figure 6.32. The Add new virtual hardware wizard

5. Select the network device and driver

Setthe Device model to virtio to use the virtio drivers. Choose the desired Host
device.

Add New Virtual Hardware

, Storage
—r— Network
h,'J Input Please indicate how you'd like to connect your
[Graphics new virtual network device to the host networlk.
[= . I 1
@F Sound Host device: ‘ Host device virbrO-nic : macvtap < |
‘| Serial '_ : ’
Parallel MAC address: 52:54:00:3bfc:%e |
Channel) . -
Device model: | virtio v
&5 USB Host Device
Lf} PCl Host Device
B video
ﬁ} Watchdog
5 Filesystem
G=s Smartcard

§¥) USB Redirection

Cancel Finish

Figure 6.33. The Add new virtual hardware wizard

Click Finish to complete the procedure.

Once all new devices are added, reboot the virtual machine. Windows virtual machines may not
recognize the devices until the guest is rebooted.

Chapter 7. Network configuration

Chapter 7. Network configuration

This chapter provides an introduction to the common networking configurations used by libvirt
based guest virtual machines. For additional information, consult the libvirt network architecture
documentation: http://libvirt.org/archnetwork.html.

Red Hat Enterprise Linux 7 supports the following networking setups for virtualization:
virtual networks using Network Address Translation (NAT)
directly allocated physical devices using PCl device assignment
directly allocated virtual functions using PCle SR-IOV

bridged networks

You must enable NAT, network bridging or directly assign a PCl device to allow external hosts
access to network services on guest virtual machines.

7.1. Network Address Translation (NAT) with libvirt

One of the most common methods for sharing network connections is to use Network Address
Translation (NAT) forwarding (also known as virtual networks).

Host configuration

Every standard 1ibvirtinstallation provides NAT-based connectivity to virtual machines as the
default virtual network. Verify thatitis available with the virsh net-list --all command.

virsh net-list --all
Name State Autostart

default active yes

If itis missing the following could be used in the XML configuration file (such as
letc/libvirtd/gemu/myguest.xml) for the guest:

11 /etc/libvirt/gemu/

total 12

drwx------ . 3 root root 4096 Nov 7 23:02 networks
-rw------- . 1 root root 2205 Nov 20 01:20 r6.4.xml
-rw------- . 1 root root 2208 Nov 8 03:19 r6.xml

The default network is defined from /etc/libvirt/gemu/networks/default. xml

Mark the default network to automatically start:

virsh net-autostart default
Network default marked as autostarted

Start the default network:

69

http://libvirt.org/archnetwork.html

Virtualization Deployment and Administration Guide

virsh net-start default
Network default started

Once the 1ibvirt default network is running, you will see an isolated bridge device. This device
does not have any physical interfaces added. The new device uses NAT and IP forwarding to connect
to the physical network. Do not add new interfaces.

brctl show
bridge name bridge id STP enabled interfaces
virbro 8000.000000000000 yes

libvirtadds iptables rules which allow traffic to and from guest virtual machines attached to
the virbroe device in the INPUT, FORWARD, OUTPUT and POSTROUTING chains. 1ibvirtthen
attempts to enable the ip_forward parameter. Some other applications may disable ip_forward,
so the best option is to add the following to /etc/sysctl. conf.

net.ipv4.ip_forward = 1

Guest virtual machine configuration

Once the host configuration is complete, a guest virtual machine can be connected to the virtual
network based on its name. To connect a guest to the 'default' virtual network, the following could be
used in the XML configuration file (such as /etc/libvirtd/gemu/myguest. xml) for the guest:

<interface type='network'>
<source network='default'/>
</interface>

Defining a MAC address is optional. If you do not define one, a MAC address is automatically
generated and used as the MAC address of the bridge device used by the network. Manually
setting the MAC address may be useful to maintain consistency or easy reference throughout
your environment, or to avoid the very small chance of a conflict.

<interface type='network'>

<source network='default'/>

<mac address='00:16:3e:1a:b3:4a'/>
</interface>

7.2. Disabling vhost-net

The vhost-net module is a kernel-level back end for virtio networking that reduces virtualization
overhead by moving virtio packet processing tasks out of user space (the QEMU process) and into
the kernel (the vhost-net driver). vhost-netis only available for virtio network interfaces. If the
vhost-net kernel module is loaded, itis enabled by default for all virtio interfaces, but can be disabled

70

Chapter 7. Network configuration
in the interface configuration in the case that a particular workload experiences a degradation in
performance when vhost-netis in use.

Specifically, when UDP traffic is sent from a host machine to a guest virtual machine on that host,
performance degradation can occur if the guest virtual machine processes incoming data at a rate
slower than the host machine sends it. In this situation, enabling vhost-net causes the UDP
socket's receive buffer to overflow more quickly, which results in greater packet loss. Itis therefore
better to disable vhost-net in this situation to slow the traffic, and improve overall performance.

To disable vhost-net, editthe <interface> sub-elementin the guest virtual machine's XML
configuration file and define the network as follows:

<interface type="network'">

<model type="virtio"/>
<driver name="gemu"/>

</interface>

Setting the driver name to qemu forces packet processing into QEMU user space, effectively disabling
vhost-net for that interface.

7.3. Enabling vhost-net zero-copy

In Red Hat Enterprise Linux 7, vhost-net zero-copy is disabled by default. To enable this action on a
permanent basis, add a new file vhost-net. conf to /etc/modprobe. d with the following
content:

options vhost_net experimental_zcopytx=1
If you want to disable this again, you can run the following:

modprobe -r vhost_net

modprobe vhost_net experimental_zcopytx=0

The first command removes the old file, the second one makes a new file (like above) and disables
zero-copy. You can use this to enable as well but the change will not be permanent.

To confirm that this has taken effect, check the output of cat
/sys/module/vhost_net/parameters/experimental_zcopytx. It should show:

$ cat /sys/module/vhost_net/parameters/experimental_zcopytx
(C]

7.4. Bridged networking

Bridged networking (also known as virtual network switching) is used to place virtual machine
network interfaces on the same network as the physical interface. Bridges require minimal
configuration and make a virtual machine appear on an existing network, which reduces
management overhead and network complexity. As bridges contain few components and

71

Virtualization Deployment and Administration Guide

configuration variables, they provide a transparent set-up which is straightforward to understand
and troubleshoot, if required.

Bridging can be configured in a virtualized environment using standard Red Hat Enterprise Linux
tools, virt-manager, or libvirt, and is described in the following sections.

However, even in a virtualized environment, bridges may be more easily created using the host
operating system's networking tools. More information about this bridge creation method can be
found in the Red Hat Enterprise Linux 7 Networking Guide.

7.4.1. Configuring bridged networking on a Red Hat Enterprise Linux 7 host

Bridged networking can be configured for virtual machines on a Red Hat Enterprise Linux host,
independent to the virtualization management tools. This configuration may be more appropriate
when the virtualization bridge is the host's only network interface, or is the host's management
network interface.

The Red Hat Enterprise Linux 7 Networking Guide contains detailed instructions on configuring bridged
networking. See the Red Hat Enterprise Linux 7 Networking Guide - Configure Network Bridging for

instructions on conflgurlng network bridging outside of the virtualization tools.

7.4.2. Bridged networking with Virtual Machine Manager

This section provides instructions on creating a bridge from a host machine's interface to a guest
virtual machine using virt-manager.

Depending on your environment, setting up a bridge with libvirttools in Red Hat Enterprise
Linux 7 may require disabling Network Manager, which is not recommended by Red Hat. A
bridge created with libvirt also requires libvirtd to be running for the bridge to maintain network
connectivity.

Itis recommended to configure bridged networking on the physical Red Hat Enterprise Linux
host as described in the Red Hat Enterprise Linux 7 Networking Guide, while using libvirt after

bridge creation to add virtual machine interfaces to the bridges.

Procedure 7.1. Creating a bridge with virt-manager

1. From the virt-manager main menu, click Edit > Connection Details to open the
Conhnection Details window.

2. Click the Network Interfaces tab.
3. Click the + at the bottom of the window to configure a new network interface.

4. In the Interface type drop-down menu, select Bridge, and then click Forward to continue.

72

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html

Chapter 7. Network configuration

Configure network interface

Configure network interface

Select the interface type you would like to configure.

Interface type: | Bridge v

Cancel Forward

Figure 7.1. Adding a bridge

a. In the Name field, enter a name for the bridge, such as br0.

b. Selecta Start mode from the drop-down menu. Choose from one of the following:
none - deactivates the bridge
onboot - activates the bridge on the next guest virtual machine reboot
hotplug - activates the bridge even if the guest virtual machine is running

c. Check the Activate now check box to activate the bridge immediately.

d. To configure either the IP settings or Bridge settings, click the appropriate
Configure button. A separate window will open to specify the desired settings. Make
any necessary changes and click OK when done.

e. Selectthe physical interface to connect to your virtual machines. If the interface is
currently in use by another guest virtual machine, you will receive a warning
message.

73

Virtualization Deployment and Administration Guide

6. Click Finish and the wizard closes, taking you back to the Connections menu.

Configure network interface

| | Configure network interface

MName: brO

Start mode: hotplug

Activate now: C4

IP settings: IPvd: DHCP Configure

Bridge settings: 5TP on, delay 0.00 sec Configure

Choose interface(s) to bridge:

v Name Type In use by

lo ethernet
1 vnetQ ethernet
ethernet

Cancel Back Finish

Figure 7.2. Adding a bridge

Select the bridge to use, and click Apply to exit the wizard.
To stop the interface, click the Stop Interface key. Oncethe bridge is stopped, to delete the

interface, click the Delete Interface key.

7.4.3. Bridged networking with libvirt

Depending on your environment, setting up a bridge with libvirtin Red Hat Enterprise Linux 7 may
require disabling Network Manager, which is notrecommended by Red Hat. This also requires
libvirtd to be running for the bridge to operate.

Itis recommended to configure bridged networking on the physical Red Hat Enterprise Linux host as
described in the Red Hat Enterprise Linux 7 Networking Guide.

74

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html

Chapter 7. Network configuration

libvirtis now able to take advantage of new kernel tunable parameters to manage host bridge
forwarding database (FDB) entries, thus potentially improving system network performance
when bridging multiple virtual machines. Set the macTableManager attribute of a network's
<bridge> elementto '1libvirt' in the host's XML configuration file:

f <bridge name='br0' macTableManager='libvirt'/>

This will turn off learning (flood) mode on all bridge ports, and libvirt will add or remove entries
to the FDB as necessary. Along with removing the overhead of learning the proper forwarding
ports for MAC addresses, this also allows the kernel to disable promiscuous mode on the
physical device that connects the bridge to the network, which further reduces overhead.

75

Virtualization Deployment and Administration Guide
Chapter 8. Overcommitting with KVM

8.1. Introduction

The KVM hypervisor supports overcommitting CPUs and overcommitting memory. Overcommitting is
allocating more virtualized CPUs (vCPUs) or memory than there are physical resources on the
system. With CPU overcommit, under-utilized virtualized servers or desktops can run on fewer servers
which saves a number of system resources, with the net effect of less power, cooling, and investment
in server hardware.

As most processes do not access 100% of their allocated memory all the time, KVM can use this
behavior to its advantage and allocate more memory for guest virtual machines than the host
machine actually has available, in a process called overcommiting of resources.

8.2. Overcommitting Memory

Overcommitting is not an ideal solution for all memory issues, as the recommended methods to
deal with memory shortage are to allocate less memory per guest, add more physical memory
to the host, or utilize swap space. If you decide to overcommit memory, ensure sufficient testing
is performed. Contact Red Hat support for assistance with overcommitting.

Virtual machines running on a KVM hypervisor do not have dedicated blocks of physical RAM
assigned to them. Instead, each guest functions as a Linux process where the host machine's Linux
kernel allocates memory only when requested. In addition, the host's memory manager can move the
guest's memory between its own physical memory and swap space. This is why overcommitting
requires allotting sufficient swap space on the host physical machine to accommodate all guests, as
well as enough memory for the host's processes. As a basic rule, the host's operating system
requires a maximum of 4GB of memory along with a minimum of 4GB of swap space. Refer to

partition.

The example below is provided as a guide for configuring swap only. The settings listed may
not be appropriate for your environment.

Example 8.1. Memory overcommit example

ExampleServerl has 32GB of physical RAM. The system is being configured to run 50 guest
virtual machines, each requiring 1GB of virtualized memory. As mentioned above, the host
machine's system itself needs a maximum of 4GB (apart from the guests) as well as an additional
4GB as a swap space minimum.

The swap space is calculated as follows:

76

http://kbase.redhat.com/faq/docs/DOC-15252

Chapter 8. Overcommitting with KVM

Calculate the amount of memory needed for the sum of all the virtual machines - In this
example: (50 virtual machines * 1GB of memory per virtual machine) =50GB

Add the virtual machine's memory amount to the amount needed for the host's operating
system and for the host machine's minimum swap space - In this example: 50GB guest memory
+ 4GB host's OS + 4GB minimal swap =58GB

Subtract this amount from the amount of physical RAM there is on the system - In this example
58GB - 32GB =26GB

The answer is the amount of swap space that needs to be allocated - In this example 26GB.

Overcommitting does not work with all virtual machines, but has been found to work in a
desktop virtualization setup with minimal intensive usage or running several identical guests
with KSM. Proceed with caution before changing these settings.

8.3. Overcommitting virtualized CPUs (vVCPUs)

The KVM hypervisor supports overcommitting virtualized CPUs (vCPUSs). Virtualized CPUs can be
overcommitted as far as load limits of guest virtual machines allow. Use caution when overcommitting
vCPUs, as loads near 100% may cause dropped requests or unusable response times.

In Red Hat Enterprise Linux 7, itis possible to overcommit guests with more than one vCPU (known
as symmetric multiprocessing virtual machines), however, you may experience performance
deterioration when running more cores on the virtual machine than are present on your physical
CPU. For example, a virtual machine with four vCPUs should not be run on a host machine with a
dual core processor. Overcommitting symmetric multiprocessing (SMP) virtual machines beyond the
physical number of processing cores will cause significant performance degradation, due to
programs getting less CPU time than required.

With SMP guests, some processing overhead is inherent. CPU overcommitting can increase the SMP
overhead, because time-slicing guests can make inter-CPU communication inside a guest slower.
This overhead increases with guests that have a larger number of vCPUs, or a larger overcommit
ratio.

Virtualized CPUs are overcommitted best when when a single host has multiple guests, and each
guest has a small number of vCPUs, compared to the number of host CPUs. The Linux scheduler is
very efficient with this type of load. KVM should safely support guests with loads under 100% at a
ratio of five vCPUs (on 5 virtual machines) to one physical CPU on one single host. The KVM
hypervisor will switch between all of the virtual machines, making sure that the load is balanced.

For best performance, Red Hat recommends assigning guests only as many vCPUs as are required
to run the programs that are inside each guest.

77

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Tuning_and_Optimization_Guide/index.html

Virtualization Deployment and Administration Guide

Applications which use 100% of memory or processing resources may become unstable in
overcommitted environments. Do not overcommit memory or CPUs in a production

environment without extensive testing, as the amount of SMP and the CPU overcommit ratio is
workload dependent.

78

Chapter 9. KVM guest timing management

Chapter 9. KVM guest timing management

Virtualization involves several intrinsic challenges for time keeping in guest virtual machines.
Interrupts cannot always be delivered simultaneously and instantaneously to all guest virtual
machines, because interrupts in virtual machines are not true interrupts; they are injected into the
guest virtual machine by the host machine. The host may be running another guest virtual machine,
or a different process, meaning that the precise timing typically required by interrupts may not always
be possible.

Guest virtual machines without accurate time keeping may experience issues with network
applications and processes, as session validity, migration, and other network activities rely on
timestamps to remain correct.

KVM avoids these issues by providing guest virtual machines with a para-virtualized clock (kvm-
clock). However, it is still vital to test timing before attempting activities that may be affected by time
keeping inaccuracies.

Red Hat Enterprise Linux 5.5 and newer, Red Hat Enterprise Linux 6.0 and newer, and Red Hat
Enterprise Linux 7 use kvm-clock as their default clock source. Running without kvm-clock
requires special configuration, and is not recommended.

The Network Time Protocol (NTP) daemon should be running on the host and the guest virtual
machines. Make sure to install ntp and enable the ntpd service:

Enable the ntpd service and add it to the default startup sequence:
systemctl enable ntpd

Start the service:
systemctl start ntpd

The ntpd service will correct the effects of clock skew as long as the clock runs no more than
0.05% faster or slower than the reference time source. The ntp startup script adjusts the clock
offset from the reference time by adjusting the system clock at startup time, if required.

Constant Time Stamp Counter (TSC)

Modern Intel and AMD CPUs provide a constant Time Stamp Counter (TSC). The count frequency of
the constant TSC does not vary when the CPU core itself changes frequency, for example, to comply
with a power saving policy. A CPU with a constant TSC frequency is necessary in order to use the
TSC as a clock source for KVM guests.

79

Virtualization Deployment and Administration Guide

Your CPU has a constant Time Stamp Counter if the constant_tsc flag is present. To determine if
your CPU has the constant_tsc flag run the following command:

$ cat /proc/cpuinfo | grep constant_tsc

If any outputis given your CPU has the constant_tsc bit. If no outputis given follow the
instructions below.

Configuring hosts without a constant Time Stamp Counter

Systems without a constant TSC frequency cannot use the TSC as a clock source for virtual
machines, and require additional configuration. Power management features interfere with accurate
time keeping and must be disabled for guest virtual machines to accurately keep time with KVM.

These instructions are for AMD revision F CPUs only.

system has several timers it uses to keep time. The TSC is not stable on the host, which is sometimes
caused by cpufreq changes, deep C state, or migration to a host with a faster TSC. Deep C sleep
states can stop the TSC. To prevent the kernel using deep C states append
processor.max_cstate=1 to the kernel boot. To make this change persistent, edit values of the
GRUB_CMDLINE_LINUX key in the /etc/default/grubfile. For example. if you wantto enable
emergency mode for each boot, edit the entry as follows:

GRUB_CMDLINE_LINUX="emergency"

Note that you can specify multiple parameters for the GRUB_CMDLINE_LINUX key, similarly to adding
the parameters in the GRUB 2 boot menu.

To disnable cpufreq (only necessary on hosts withoutthe constant_tsc), install kernel-tools and
enable the cpupower. service (systemctl disable cpupower. service). If you wantto
disable this service every time the guest virtual machine boots, change the configuration file in
/etc/sysconfig/cpupower and change the CPUPOWER_START_OPTS and
CPUPOWER_STOP_OPTS. Valid limits can be found in the
/sys/devices/system/cpu/[cpuid]/cpufreq/scaling_available_governors files. For
more information on this package or on power management and governors, refer to the Red Hat
Enterprise Linux 7 Power Management Guide.

9.1. Required parameters for Red Hat Enterprise Linux guests

For certain Red Hat Enterprise Linux guest virtual machines, additional kernel parameters are
required. These parameters can be set by appending them to the end of the /kernel linein the
/boot/grub2/grub. cfg file of the guest virtual machine.

The table below lists versions of Red Hat Enterprise Linux and the parameters required on the
specified systems.

Table 9.1. Kernel parameter requirements

80

https://bugzilla.redhat.com/show_bug.cgi?id=513138

Chapter 9. KVM guest timing management

‘ Red Hat Enterprise Linux version Additional guest kernel parameters

7.0 AMD64/Intel 64 with the para-virtualized Additional parameters are not required
clock

6.1 and higher AMD64/Intel 64 with the para- Additional parameters are not required
virtualized clock

6.0 AMD64/Intel 64 with the para-virtualized Additional parameters are not required
clock

6.0 AMD64/Intel 64 without the para-virtualized notsc Ipj=n

clock

5.5 AMD64/Intel 64 with the para-virtualized Additional parameters are not required
clock

5.5 AMD64/Intel 64 without the para-virtualized notsc Ipj=n

clock

5.5 x86 with the para-virtualized clock Additional parameters are not required
5.5 x86 without the para-virtualized clock clocksource=acpi_pm Ipj=n

5.4 AMD64/Intel 64 notsc

5.4 x86 clocksource=acpi_pm

5.3 AMD64/Intel 64 notsc

5.3 x86 clocksource=acpi_pm

4.8 AMD64/Intel 64 notsc

4.8 x86 clock=pmtmr

3.9 AMD64/Intel 64 Additional parameters are not required

The 1pj parameter requires a numeric value equal to the loops per jiffy value of the specific
CPU on which the guest virtual machine runs. If you do not know this value, do not setthe 1pj
parameter.

81

Virtualization Deployment and Administration Guide

A Warning

The divider kernel parameter was previously recommended for Red Hat Enterprise Linux 4
and 5 guest virtual machines that did not have high responsiveness requirements, or exist on
systems with high guest density. Itis no longer recommended for use with guests running Red
Hat Enterprise Linux 4, or Red Hat Enterprise Linux 5 versions prior to version 5.8.

divider can improve throughput on Red Hat Enterprise Linux 5 versions equal to or later
than 5.8 by lowering the frequency of timer interrupts. For example, if HZ=1000, and divider
is setto 10 (thatis,divider=10), the number of timer interrupts per period changes from the
default value (1000) to 100 (the default value, 1000, divided by the divider value, 10).

BZ#698842 details a bug in the way thatthe divider parameter interacts with interruptand
parameter can still cause kernel panic in guests using Red Hat Enterprise Linux 4, or Red Hat
Enterprise Linux 5 versions prior to version 5.8.

Red Hat Enterprise Linux 6 and newer does not have a fixed-frequency clock interrupt; it
operates in tickless mode and uses the timer dynamically as required. The divider parameter
is therefore not useful for Red Hat Enterprise Linux 6 and Red Hat Enterprise Linux 7, and
guests on these systems are not affected by this bug.

9.2. Steal time accounting

Steal time is the amount of CPU time desired by a guest virtual machine that is not provided by the
host. Steal time occurs when the host allocates these resources elsewhere: for example, to another
guest.

Steal time is reported in the CPU time fields in /proc/stat. Itis automatically reported by utilities
such as top and vmstat. Itis displayed as "%st", or in the "st" column. Note that it cannotbe
switched off.

Large amounts of steal time indicate CPU contention, which can reduce guest performance. To
relieve CPU contention, increase the guest's CPU priority or CPU quota, or run fewer guests on the
host.

82

https://bugzilla.redhat.com/show_bug.cgi?id=698842

Chapter 10. Network booting with libvirt

Chapter 10. Network booting with libvirt

Guest virtual machines can be booted with PXE enabled. PXE allows guest virtual machines to boot
and load their configuration off the network itself. This section demonstrates some basic
configuration steps to configure PXE guests with libvirt.

This section does not cover the creation of boot images or PXE servers. Itis used to explain how to
configure libvirt, in a private or bridged network, to boot a guest virtual machine with PXE booting
enabled.

A Warning

These procedures are provided only as an example. Ensure that you have sufficient backups
before proceeding.

10.1. Preparing the boot server

To perform the steps in this chapter you will need:

A PXE Server (DHCP and TFTP) - This can be a libvirtinternal server, manually-configured dhcpd
and tftpd, dnsmasq, a server configured by Cobbler, or some other server.

Bootimages - for example, PXELINUX configured manually or by Cobbler.

10.1.1. Setting up a PXE boot server on a private libvirt network

This example uses the default network. Perform the following steps:

Procedure 10.1. Configuring the PXE boot server
1. Placethe PXE bootimages and configuration in /var/1ib/tftp.

2. Run the following commands:

virsh net-destroy default
virsh net-edit default

3. Editthe <ip> elementin the configuration file for the default network to include the
appropriate address, network mask, DHCP address range, and boot file, where
BOOT_FILENAME represents the file name you are using to boot the guest virtual machine.

<ip address='192.168.122.1' netmask='255.255.255.0"'>
<tftp root='/var/lib/tftp' />
<dhcp>
<range start='192.168.122.2' end='192.168.122.254"' />
<bootp file='BOOT_FILENAME' />
</dhcp>
</ip>

4. Run:

virsh net-start default

83

Virtualization Deployment and Administration Guide

5. Bootthe guestusing PXE (refer to Section 10.2, “Booting a guest using PXE").

10.2. Booting a guest using PXE

This section demonstrates how to boot a guest virtual machine with PXE.

10.2.1. Using bridged networking

Procedure 10.2. Booting a guest using PXE and bridged networking
1. Ensure bridging is enabled such thatthe PXE boot server is available on the network.

2. Boota guestvirtual machine with PXE booting enabled. You can usethevirt-install
command to create a new virtual machine with PXE booting enabled, as shown in the
following example command:

virt-install --pxe --network bridge=breth® --prompt

Alternatively, ensure that the guest network is configured to use your bridged network, and
that the XML guest configuration file has a <boot dev="'network' /> elementinside the
<o0s> element, as shown in the following example:

<0S>
<type arch='x86_64"' machine='rhel6.2.0'>hvm</type>
<boot dev='network'/>
<boot dev='hd'/>
</0s>
<interface type='bridge'>
<mac address='52:54:00:5a:ad:cb'/>
<source bridge='bretho'/>
<target dev='vneto'/>
<alias name='neto'/>
<address type='pci' domain='QOx0000' bus='0x00' slot='0x03'
function='0x0"'/>
</interface>

10.2.2. Using a private libvirt network

Procedure 10.3. Using a private libvirt network

1. Configure PXE booting on libvirtas shown in Section 10.1.1, "Setting up a PXE boot server
on a private libvirt network”.

2. Boota guestvirtual machine using libvirt with PXE booting enabled. You can use the virt-
install command to create/install a new virtual machine using PXE:

virt-install --pxe --network network=default --prompt

Alternatively, ensure that the guest network is configured to use your bridged network, and that the
XML guest configuration file has a <boot dev='network' /> elementinside the <os> element, as
shown in the following example:

84

Chapter 10. Network booting with libvirt

<0S>
<type arch='x86_64' machine='rhel6.2.0'>hvm</type>
<boot dev='network'/>
<boot dev='hd'/>

</0s>

Also ensure that the guest virtual machine is connected to the private network:

<interface type='network'>

<mac address='52:54:00:66:79:14"'/>

<source network='default'/>

<target dev='vneto'/>

<alias name='neto'/>

<address type='pci' domain='Ox0000' bus='0x00' slot='0x03'
function='0x0"'/>
</interface>

85

Virtualization Deployment and Administration Guide

Chapter 11. Enhancing virtualization with the QEMU guest agent
and SPICE agent

Agents in Red Hat Enterprise Linux such as the QEMU guest agent and the SPICE agent can be
deployed to help the virtualization tools run more optimally on your system. These agents are
described in this chapter.

To further optimize and tune host and guest performance, see the Red Hat Enterprise Linux 7
Virtualization Tuning and Optimization Guide.

11.1. QEMU guest agent

The QEMU guest agentruns inside the guest and allows the host machine to issue commands to the
guest operating system using libvirt, helping with functions such as freezing and thawing filesystems.
The guest operating system then responds to those commands asynchronously. The QEMU guest
agent package, gemu-guest-agent, is installed by default in Red Hat Enterprise Linux 7.

CPU hotplugging and hot-unplugging are supported with the help of the QEMU guest agent on Linux
guests; CPUs can be enabled or disabled while the guestis running, thus implementing the hotplug

for more information.

This section covers the libvirt commands and options available to the guest agent.

Note thatitis only safe to rely on the QEMU guest agent when run by trusted guests. An
untrusted guest may maliciously ignore or abuse the guest agent protocol, and although built-
in safeguards existto prevent a denial of service attack on the host, the host requires guest
co-operation for operations to run as expected.

11.1.1. Setting up communication between the QEMU guest agent and host
The host machine communicates with the QEMU guest agent through a VirtlO serial connection

between the host and guest machines. A VirtlO serial channel is connected to the host via a character
device driver (typically a Unix socket), and the guest listens on this serial channel.

86

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Tuning_and_Optimization_Guide/index.html

Chapter 11. Enhancing virtualization with the QEMU guest agent and SPICE agent

The gemu-guest-agent does not detect if the host is listening to the VirtlO serial channel.
However, as the current use for this channel is to listen for host-to-guest events, the probability
of a guest virtual machine running into problems by writing to the channel with no listener is
very low. Additionally, the gemu-guest-agent protocol includes synchronization markers which
allow the host physical machine to force a guest virtual machine back into sync when issuing
a command, and libvirt already uses these markers, so that guest virtual machines are able to
safely discard any earlier pending undelivered responses.

11.1.1.1. Configuring the QEMU guest agent on a Linux guest

The QEMU guest agent can be configured on a running or shut down virtual machine. If configured
on a running guest, the guest will start using the guest agent immediately. If the guestis shut down,
the QEMU guest agent will be enabled at next boot.

Either virsh or virt-manager can be used to configure communication between the guest and the
QEMU guest agent. The following instructions describe how to configure the QEMU guest agenton a
Linux guest.

Procedure 11.1. Setting up communication between guest agent and host with virsh
on a shut down Linux guest

1. Shut down the virtual machine

Ensure the virtual machine (named rhel7 in this example) is shut down before configuring the
QEMU guest agent:

virsh shutdown rhel?
2. Add the QEMU guest agent channel to the guest XML configuration
Edit the guest's XML file to add the QEMU guest agent details:
virsh edit rhel7
Add the following to the guest's XML file and save the changes:

<channel type='unix'>
<target type='virtio' name='org.qgemu.guest_agent.0'/>
</channel>

3. Start the virtual machine

virsh start rhel?7

4. Install the QEMU guest agent on the guest

Install the QEMU guest agent if not yetinstalled in the guest virtual machine:

yum install gqemu-guest-agent

87

Virtualization Deployment and Administration Guide

5. Start the QEMU guest agent in the guest

Start the QEMU guest agent service in the guest:
systemctl start gemu-guest-agent
Alternatively, the QEMU guest agent can be configured on a running guest with the following steps:

Procedure 11.2. Setting up communication between guest agent and host on arunning
Linux guest

1. Create an XML file for the QEMU guest agent

cat agent. xml
<channel type='unix'>

<target type='virtio' name='org.gemu.guest_agent.Q'/>
</channel>

2. Attach the QEMU guest agent to the virtual machine

Attach the QEMU guest agent to the running virtual machine (named rhel7 in this example)
with this command:

virsh attach-device rhel7 agent. xml

3. Install the QEMU guest agent on the guest

Install the QEMU guest agent if not yet installed in the guest virtual machine:

yum install gqemu-guest-agent

4. Start the QEMU guest agent in the guest

Start the QEMU guest agent service in the guest:

systemctl start qemu-guest-agent

Procedure 11.3. Setting up communication between the QEMU guest agent and host
with virt-manager

1. Shut down the virtual machine
Ensure the virtual machine is shut down before configuring the QEMU guest agent.

To shutdown the virtual machine, select it from the list of virtual machines in Virtual
Machine Manager, then click the light switch icon from the menu bar.

2. Add the QEMU guest agent channel to the guest

Open the virtual machine's hardware details by clicking the lightbulb icon at the top of the
guest window.

Click the Add Hardware button to open the Add New Virtual Hardware window, and
select Channel.

88

Chapter 11. Enhancing virtualization with the QEMU guest agent and SPICE agent

Selectthe QEMU guest agent from the Name drop-down list and click Finish:

Add Mew Virtual Hardware

- Storage Channel Device

m Controller

= Network Mame: ‘ org.gemu.guest_agent.0 b ‘

& Input

I;I npY Device Type: ‘ Unix socket (unix) v ‘
Graphics -

B Sound Auto socket: v

=’E| Serial

=&| Parallel

4| Console

-d| Channel

USB Host Device
PCI Host Device
B video

= Watchdog

=/ Filesystem

=2 Smartcard

@ USB Redirection
o TPM

RNG

Panic Notifier

‘ Cancel H Finish ‘

Figure 11.1. Selecting the QEMU guest agent channel device

3. Start the virtual machine

To start the virtual machine, select it from the list of virtual machines in Virtual Machine
Manager, then click the triangle (play) icon from the menu bar.

4. Install the QEMU guest agent on the guest

Open the guest with virt-manager and install the QEMU guest agentif not yet installed in the
guest virtual machine:

yum install qemu-guest-agent

5. Start the QEMU guest agent in the guest

89

Virtualization Deployment and Administration Guide

Start the QEMU guest agent service in the guest:
systemctl start gemu-guest-agent

The QEMU guest agentis now configured on the rhel7 virtual machine.

11.1.2. Configuring the QEMU guest agent on a Windows guest

The following instructions describe how to configure the QEMU guest agent on a Windows guest
running on a Red Hat Enterprise Linux host.

Windows guest virtual machines require the QEMU guest agent package for Windows, gemu-
guest-agent-win. This agentis required for VSS (Volume Shadow Copy Service) support for
Windows guest virtual machines running on Red Hat Enterprise Linux. More information can

Procedure 11.4. Configuring the QEMU guest agent on a Windows guest

1. (Optional) Prepare the Red Hat Enterprise Linux host machine

While the virtio-win package is not required to run the QEMU guest agent, these drivers
improve performance.

a. Check for the virtio-win package on the host

Verify the following packages are installed on the Red Hat Enterprise Linux host
machine:

virtio-win, located in /usr/share/virtio-win/

b. Create an *.iso fileto copythe drivers to the Windows guest

To copy the drivers to the Windows guest, make an *. 1so file for the virtio-win
drivers using the following command:

mkisofs -o /var/lib/libvirt/images/virtiowin. iso
/usr/share/virtio-win/drivers
c. Install the drivers on the Windows guest

Install the virtio-serial drivers in the guest by mounting the *. iso to the Windows
guest to update the driver. Start the guest (in this example, the guest's name is
win7x86), then attach the driver .iso file to the guest as shown:

virsh attach-disk win7x86
/var/lib/libvirt/images/virtiowin.iso hdb

To install the drivers using the Windows Control Panel, navigate to the following
menus:

To install the virtio-win driver - Select Hardware and Sound > Device manhager

90

http://msdn.microsoft.com/en-us/library/windows/desktop/bb968832%28v=vs.85%29.aspx

Chapter 11. Enhancing virtualization with the QEMU guest agent and SPICE agent

> virtio-serial driver.

2. Shutdown the guest virtual machine

Gracefully shutdown the guest virtual machine by running the
virsh shutdown win7x86
command.

3. Add the QEMU guest agent channel to the guest from the host

Add the following elements to the guest's XML file using the# virsh edit win7x86
command and save the changes. The source socket name must be unique in the host, named
win7x86.agent in this example:

<channel type='unix'>
<source mode='bind'
path="'/var/lib/libvirt/qemu/win7x86.agent'/>
<target type='virtio' name='org.gemu.guest_agent.Q'/>
</channel>

Alternatively, this step can be completed with virt-manager:

To add the QEMU guest agent channel to the guest with virt-manager, click the lightbulb
icon atthe top of the guest window to show the virtual machine hardware details.

Click the Add Hardware button to open the Add New Virtual Hardware window and
select Channel.

Select the QEMU guest agent from the Name drop-down listand click Finish:

91

Virtualization Deployment and Administration Guide

Add Mew Virtual Hardware

H] Controller

MNetwork MName: ‘ org.gemu.guest_agent.0 - ‘

' Input Device Type: ‘ Unix socket (unix) v ‘
™ Graphics —

B Sound Auto socket: v

4| Serial

=@| Parallel

4| Console

-d| Channel

USB Host Device
PCI Host Device
B video

= Watchdog

=/ Filesystem

=2 Smartcard

@ USB Redirection
o TPM

RNG

Panic Notifier

‘ Cancel H Finish ‘

Figure 11.2. Selecting the QEMU guest agent channel device

4. Boot the Windows guest

Boot the Windows guest from the host machine to apply the changes:

[# virsh start win7x86

5. Preparing the QEMU guest agent in the Windows guest

To prepare the guest agentin the Windows guest:

a. Install the latest virtio-win package

Run the following command on the host to install the virtio-win package:

[# yum install virtio-win

92

Chapter 11. Enhancing virtualization with the QEMU guest agent and SPICE agent

b. Confirmthe installation completed

After the virtio-win package finishes installing, check the /usr/share/virtio -
win/guest-agent/ folder and you will find an file named gemu-ga-x64.msi or
gemu-ga-x86.msi as shown:

1ls -1 /usr/share/virtio-win/guest-agent/
total 1544
-rw-r--r--. 1 root root 856064 Oct 23 04:58 gemu-ga-x64.msi

-rw-r--r--. 1 root root 724992 Oct 23 04:58 gemu-ga-x86.msi

c. Install the .msi file

From the Windows guest, install the gemu-ga-x64.msi or gemu-ga-x86.msi file by
double clicking on the file. Once installed, it will be shown as a gemu-guest-agent
service in the Windows guest within the System Manager. This same manager can
be used to monitor the status of the service.

11.2. Using the QEMU guest agent with libvirt

Installing the QEMU guest agent allows various libvirt commands to become more powerful. The
guest agent enhances the following virsh commands:

virsh shutdown --mode=agent - This shutdown method is more reliable than virsh
shutdown --mode=acpi,asvirsh shutdown used with the QEMU guest agentis
guaranteed to shut down a cooperative guestin a clean state. If the agentis not present, libvirt
must instead rely on injecting an ACPI shutdown event, but some guests ignore that event and
thus will not shut down.

Can be used with the same syntax for virsh reboot.

virsh snapshot-create --quiesce - Allows the guestto flush its I/O into a stable state
before the snapshotis created, which allows use of the snapshot without having to perform a fsck
or losing partial database transactions. The guest agent allows a high level of disk contents
stability by providing guest co-operation.

virsh domfsfreeze and virsh domfsthaw - Quiesces the guest filesystem in isolation.
virsh domfstrim - Instructs the guest to trim its filesystem.

virsh domtime - Queries or sets the guest's clock.

virsh setvcpus --guest - Instructs the guestto take CPUs offline.

virsh domifaddr --source agent- Queries the guest operating system's IP address via
the guest agent.

virsh domfsinfo - Shows a list of mounted filesystems within the running guest.

virsh set-user-password - Sets the password for a user accountin the guest.

11.2.1. Creating a guest disk backup

93

Virtualization Deployment and Administration Guide

libvirt can communicate with gemu-guest-agent to ensure that snapshots of guest virtual machine file
systems are consistent internally and ready to use as needed. Guest system administrators can write
and install application-specific freeze/thaw hook scripts. Before freezing the filesystems, the gemu-
guest-agent invokes the main hook script (included in the gemu-guest-agent package). The freezing
process temporarily deactivates all guest virtual machine applications.

The snapshot process is comprised of the following steps:

File system applications / databases flush working buffers to the virtual disk and stop accepting
client connections

Applications bring their data files into a consistent state
Main hook scriptreturns
gemu-guest-agent freezes the filesystems and the management stack takes a snapshot
Snapshotis confirmed
Filesystem function resumes
Thawing happens in reverse order.

To create a snapshot of the guest's file system, run the virsh snapshot-create --quiesce --
disk-only command (alternatively, run virsh snapshot-create-as guest_name --
quiesce --disk-only,explained in further detail in Section 23.19.2, “Creating a snapshotfor
the current guest virtual machine”).

An application-specific hook script might need various SELinux permissions in order to run
correctly, as is done when the script needs to connectto a socket in order to talk to a
database. In general, local SELinux policies should be developed and installed for such
purposes. Accessing file system nodes should work out of the box, after issuing the
restorecon -FvvR command listed in Table 11.1, "QEMU guest agent package contents”

the table row labeled /etc/qemu- ga/fsfreeze hook.d/.

The gemu-guest-agent binary RPM includes the following files:

Table 11.1. QEMU guest agent package contents

‘ File name Description

/usr/lib/systemd/system/qemu-guest- Service control script (start/stop) for the QEMU

agent. service guest agent.

/etc/sysconfig/gemu-ga Configuration file for the QEMU guest agent, as
itis read by the
/usr/lib/systemd/system/qemu-guest-
agent. service control script. The settings are
documented in the file with shell script

comments.
/usr/bin/qemu-ga QEMU guest agent binary file.
/etc/gemu-ga Root directory for hook scripts.
/etc/qemu-ga/fsfreeze-hook Main hook script. No modifications are needed
here.

94

Chapter 11. Enhancing virtualization with the QEMU guest agent and SPICE agent

‘ File name Description

/etc/qgemu-ga/fsfreeze-hook.d Directory for individual, application-specific
hook scripts. The guest system administrator
should copy hook scripts manually into this
directory, ensure proper file mode bits for them,
and then run restorecon -FvVvR on this
directory.

/usr/share/qgemu-kvm/qemu-ga/ Directory with sample scripts (for example
purposes only). The scripts contained here are
not executed.

The main hook script, /etc/qemu-ga/fsfreeze-hook logs its own messages, as well as the
application-specific script's standard output and error messages, in the following log file:
/var/log/qemu-ga/fsfreeze-hook.log. For more information, refer to the gemu-guest-agent

11.3. SPICE agent

The SPICE agent helps run graphical applications such as virt-manager more smoothly, by
helping integrate the guest operating system with the SPICE client.

For example, when resizing a window in virt-manager, the SPICE agent allows for automatic X
session resolution adjustment to the client resolution. The SPICE agent also provides support for
copy and paste between the host and guest, and prevents mouse cursor lag.

For system-specific information on the SPICE agent's capabilities, see the spice-vdagent package's
READ ME file.

11.3.1. Setting up communication between the SPICE agent and host
The SPICE agent can be configured on a running or shut down virtual machine. If configured on a

running guest, the guest will start using the guest agentimmediately. If the guest is shut down, the
SPICE agent will be enabled at next boot.

Either virsh or virt-manager can be used to configure communication between the guest and the
SPICE agent. The following instructions describe how to configure the SPICE agent on a Linux guest.

Procedure 11.5. Setting up communication between guest agent and host with virsh
on aLinuxguest

1. Shut down the virtual machine

Ensure the virtual machine (named rhel7 in this example) is shut down before configuring the
SPICE agent:

virsh shutdown rhel?

2. Add the SPICE agent channel to the guest XML configuration

Editthe guest's XML file to add the SPICE agent details:
virsh edit rhel7

Add the following to the guest's XML file and save the changes:

95

http://wiki.qemu.org/Features/QAPI/GuestAgent
http://wiki.libvirt.org/page/Qemu_guest_agent

Virtualization Deployment and Administration Guide

<channel type='spicevmc'>
<target type='virtio' name='com.redhat.spice.0'/>
</channel>

3. Start the virtual machine
virsh start rhel?
4. Install the SPICE agent on the guest
Install the SPICE agent if not yet installed in the guest virtual machine:
yum install spice-vdagent
5. Start the SPICE agent in the guest
Startthe SPICE agent service in the guest:
systemctl start spice-vdagent
Alternatively, the SPICE agent can be configured on a running guest with the following steps:

Procedure 11.6. Setting up communication between SPICE agent and host on arunning
Linux guest

1. Create an XML file for the SPICE agent

cat agent.xml
<channel type='spicevmc'>

<target type='virtio' name='com.redhat.spice.0'/>
</channel>

2. Attach the SPICE agent to the virtual machine

Attach the SPICE agent to the running virtual machine (named rhel7 in this example) with this
command:

virsh attach-device rhel7 agent. xml

3. Install the SPICE agent on the guest

Install the SPICE agent if not yet installed in the guest virtual machine:

yum install spice-vdagent

4. Start the SPICE agent in the guest

Startthe SPICE agent service in the guest:

systemctl start spice-vdagent

96

Chapter 11. Enhancing virtualization with the QEMU guest agent and SPICE agent

Procedure 11.7. Setting up communication between the SPICE agent and host with
virt-manager

1. Shut down the virtual machine
Ensure the virtual machine is shut down before configuring the SPICE agent.

To shutdown the virtual machine, select it from the list of virtual machines in Virtual
Machine Manager, then click the light switch icon from the menu bar.

2. Add the SPICE agent channel to the guest

Open the virtual machine's hardware details by clicking the lightbulb icon at the top of the
guest window.

Click the Add Hardware button to open the Add New Virtual Hardware window, and
select Channel.

Select the SPICE agent from the Name drop-down listand click Finish:

Add Mew Virtual Hardware

Storage Channel Device
Controller

Metwork Name: com.redhat.spice.0 -

Input
npd Device Type: | Spice agent (spicevmc) v

Graphics

Sound

A @elmdLC

Serial

&

Parallel

&

Console
-d| Channel
USB Host Device

B e

PCI Host Device

g5
LC

Video
Watchdog

LI |

Filesystem
Smartcard

USB Redirection
TPM

RNG

Panic Motifier

g5
LC

& 0 ® 0

Cancel Finish

97

Virtualization Deployment and Administration Guide

Figure 11.3. Selecting the SPICE agent channel device

3. Start the virtual machine

To start the virtual machine, select it from the list of virtual machines in Virtual Machine
Manager, then click the triangle (play) icon from the menu bar.

4. Install the SPICE agent on the guest

Open the guest with virt-manager and install the SPICE agentif not yetinstalled in the guest
virtual machine:

yum install spice-vdagent
5. Start the SPICE agent in the guest
Startthe SPICE agent service in the guest:
systemctl start spice-vdagent

The SPICE agentis now configured on the rhel7 virtual machine.

98

Chapter 12. Nested Virtualization

Chapter 12. Nested Virtualization

12.1. Overview

As of Red Hat Enterprise Linux 7.2, nested virtualization is available as a Technology Preview for KVM
guest virtual machines. With this feature, a guest virtual machine (also referred to as level 1 or L1)
running on a physical host (level 0 or LO) can act as a hypervisor, and create its own (L2) guest
virtual machines.

Nested virtualization is useful in a variety of scenarios, such as debugging hypervisors in a
constrained environment and testing larger virtual deployments on a limited amount of physical
resources.

Nested virtualization is supported on Intel and AMD processors.

12.2. Setup

Follow these steps to enable, configure, and start using nested virtualization:

1. The feature is disabled by default. To enable it, use the following procedure on the LO host
physical machine.

For Intel:

a. Check whether nested virtualization is available on your system.
$ cat /sys/module/kvm_intel/parameters/nested

If this command returns Y or 1, the feature is enabled.
If the command returns @ or N, use steps 2 and 3.

b. Unload the kvm_intel module:
modprobe -r kvm_intel
c. Activate the nesting feature:
modprobe kvm_intel nested=1

d. The nesting feature is now enabled only until the next reboot of the LO host. To enable
it permanently, add the following line to the /etc/modprobe. d/kvm. conf file:

options kvm_intel nested=1

For AMD:

a. Check whether nested virtualization is available on your system:
$catq /sys/module/kvm_amd/parameters/nested

If this command returns "Y" or "1", the feature is enabled.

If the command returns "0" or "N", use steps 2 and 3.

99

Virtualization Deployment and Administration Guide

b. Unload the kvm_amd module
modprobe -r kvm_amd
c. Activate the nesting feature
modprobe kvm_amd nested=1

d. The nesting feature is now enabled only until the next reboot of the LO host. To enable
it permanently, add the following line to the /etc/modprobe. d/kvm. conf file:

options kvm_amd nested=1

2. Afterwards, configure your L1 virtual machine for nested virtualization using one of the
following methods:

virt-manager

a. Open the GUI of the desired guest and click the Show Virtual Hardware Details icon.

b. Selectthe Processor menu, and in the Configuration section, type host-passthrough
in the Model field (do not use the drop-down selection), and click Apply.

: 5

; Overview CPUs
Performance Logical host CPUs: 4
Current allocation: 1 +
B Memory
5 Maximum allocation: 1 +
Boot Options
= VirtlO Disk 1 Configuration
gil NIC :3f:c0:ab Copy host CPU configuration
li/ll Tablet Model: host-passthrough ~
.;ij Mouse
m== Keyboard ~ Topology
Domain XML

Add the following line to the domain XML file of the guest:
<cpu mode="'host-passthrough'/>

If the XML file already contains a <cpu> element, rewrite it.

100

Chapter 12. Nested Virtualization

3. To start using nested virtualization, install an L2 guest within the L1 guest. To do this,

12.3. Restrictions and Limitations

As of Red Hat Enterprise Linux 7.2, itis strongly recommended to run Red Hat Enterprise Linux 7.2 or
later in the LO hostand the L1 guests. L2 guests can contain any of the supported systems.

Itis not supported to migrate L2 guests.
Use of L2 guests as hypervisors and creating L3 guests is not supported.

Not all features available on the host are available to be utilized by the L1 hypervisor. For instance,
IOMMU/NT-d or APICv cannot be used by the L1 hypervisor.

Itis not possible to use nested virtualization or a subset of itif the host CPU is missing the necessary
feature flags. For example, if the host CPU does not support Extended Page Tables (EPT), then the L1
hypervisor will not be able to useiit.

To determine ifthe LO and L1 hypervisors are set up correctly, usethe $ cat /proc/cpuinfo
command on both LO and L1, and make sure that the following flags are listed for the respective
CPUs on both hypervisors:

For Intel - vmx (Hardware Virtualization)

For AMD - svm (equivalent to vmx)

101

Virtualization Deployment and Administration Guide

Part Il. Administration

102

Chapter 13. Securing the host physical machine and improving performance

Chapter 13. Securing the host physical machine and improving
performance

The following tasks and tips can assist you with increasing the performance of your Red Hat
Enterprise Linux host.

Run SELinux in enforcing mode. Set SELinux to run in enforcing mode with the setenforce
command.

setenforce 1

Remove or disable any unnecessary services such as AutoFS, NFS, FTP,HTTP, NIS, telnetd,
sendmail and so on.

Only add the minimum number of user accounts needed for platform management on the server
and remove unnecessary user accounts.

Avoid running any unessential applications on your host. Running applications on the host may
impact virtual machine performance and can affect server stability. Any application which may
crash the server will also cause all virtual machines on the server to go down.

Use a central location for virtual machine installations and images. Virtual machine images
should be stored under /var/1ib/libvirt/images/. If you are using a different directory for
your virtual machine images make sure you add the directory to your SELinux policy and relabel
it before starting the installation. Use of shareable, network storage in a central location is highly
recommended.

Additional performance tips can be found in the Red Hat Enterprise Linux Virtualization Tuning and
Optimization Guide.

Additional security tips can be found in the Red Hat Enterprise Linux Virtualization Security Guide.

13.1. Security Deployment Plan

When deploying virtualization technologies, you must ensure that the host physical machine and its
operating system cannot be compromised. In this case the host physical machine is a Red Hat
Enterprise Linux system that manages the system, devices, memory and networks as well as all guest
virtual machines. If the host physical machine is insecure, all guest virtual machines in the system
are vulnerable. There are several ways to enhance security on systems using virtualization. You or
your organization should create a Deployment Plan. This plan needs to contain the following:

Operating specifications
Specifies which services are needed on your guest virtual machines
Specifies the host physical servers as well as what supportis required for these services

Here are a few security issues to consider while developing a deployment plan:

103

https://access.redhat.com/site/documentation/

Virtualization Deployment and Administration Guide

Run only necessary services on host physical machines. The fewer processes and services
running on the host physical machine, the higher the level of security and performance.

Enable SELinux on the hypervisor. Refer to the Red Hat Enterprise Linux Virtualization Security Guide
for more information on using SELinux and virtualization.

Use a firewall to restrict traffic to the host physical machine. You can setup a firewall with default-
reject rules that will help secure the host physical machine from attacks. Itis also important to limit
network-facing services.

Do notallow normal users to access the host operating system. If the host operating system is
privileged, granting access to unprivileged accounts may compromise the level of security.

13.2. Client access control

libvirt's client access control framework allows system administrators to setup fine grained permission
rules across client users, managed objects, and APl operations. This allows client connections to be
locked down to a minimal set of privileges.

In a default configuration, the libvirtd daemon has three levels of access control. All connections start
offin an unauthenticated state, where the only APl operations allowed are those required to complete
authentication. After successful authentication, a connection either has full, unrestricted access to all
libvirt API calls, or is locked down to only "read only" operations, according to what socket the client
connection originated on. The access control framework allows authenticated connections to have
fine grained permission rules to be defined by the administrator. Every API call in libvirt has a set of
permissions that will be validated againstthe object being used. Further permissions will also be
checked if certain flags are setin the APl call. In addition to checks on the object passed in to an API
call, some methods will filter their results.

13.2.1. Access control drivers

The access control framework is designed as a pluggable system to enable future integration with
arbitrary access control technologies. By default, the none driver is used, which does no access
control checks at all. At this time, libvirt ships with support for using polkit as a real access control

The access driver is configured in the libvirtd.conf configuration file, using the access_drivers
parameter. This parameter accepts an array of access control driver names. If more than one access
driver is requested, then all must succeed in order for access to be granted. To enable 'polkit' as the
driver run the command:

augtool -s set '/files/etc/libvirt/libvirtd.conf/access_drivers[1]'
polkit

To setthe driver back to the default (no access control), run the following command:
augtool -s rm /files/etc/libvirt/libvirtd.conf/access_drivers

It should be noted that changes made to libvirtd.conf require that the libvirtd daemon be restarted.

13.2.2. Objects and permissions

104

http://libvirt.org/aclpolkit.html

Chapter 13. Securing the host physical machine and improving performance

libvirt applies access control to all the main object types in its API. Each object type, in turn, has a set
of permissions defined. To determine what permissions are checked for specific API call, consult the
APl reference manual documentation for the APl in question. For the complete list of objects and

105

http://libvirt.org/acl.html

Virtualization Deployment and Administration Guide

Chapter 14. Storage pools

This chapter includes instructions on creating storage pools of assorted types. A storage pool is a
guantity of storage set aside by an administrator, often a dedicated storage administrator, for use by
guest virtual machines. Storage pools are divided into storage volumes either by the storage
administrator or the system administrator, and the volumes are then assigned to guest virtual
machines as block devices.

For example, the storage administrator responsible for an NFS server creates a shared disk to store
all of the guest virtual machines' data. The system administrator would define a storage pool on the
virtualization host using the details of the shared disk. In this example, the administrator may want
nfs.example.com: /path/to/share to be mounted on /vm_data). When the storage pool is
started, libvirt mounts the share on the specified directory, just as if the system administrator logged in
and executed mount nfs.example.com: /path/to/share /vmdata. If the storage pool is
configured to autostart, libvirt ensures that the NFS shared disk is mounted on the directory specified
when libvirt is started.

Once the storage pool is started, the files in the NFS shared disk are reported as storage volumes,
and the storage volumes' paths may be queried using the libvirt APls. The storage volumes' paths
can then be copied into the section of a guest virtual machine's XML definition describing the source
storage for the guest virtual machine's block devices.In the case of NFS, an application using the
libvirt APIs can create and delete storage volumes in the storage pool (files in the NFS share) up to
the limit of the size of the pool (the storage capacity of the share). Not all storage pool types support
creating and deleting volumes. Stopping the storage pool (pool-destroy) undoes the start operation,
in this case, unmounting the NFS share. The data on the share is not modified by the destroy
operation, despite what the name of the command suggests. See man virsh for more details.

A second example is an iSCSI storage pool. A storage administrator provisions an iSCSl target to
present a set of LUNs to the hostrunning the virtual machines. When libvirt is configured to manage
thatiSCSI target as a storage pool, libvirt will ensure thatthe hostlogs into the iISCSI target and libvirt
can then reportthe available LUNs as storage volumes. The storage volumes' paths can be queried
and used in virtual machines' XML definitions as in the NFS example. In this case, the LUNs are
defined on the iISCSI server, and libvirt cannot create and delete volumes.

Storage pools and volumes are not required for the proper operation of guest virtual machines.
Storage pools and volumes provide a way for libvirt to ensure that a particular piece of storage will be
available for a guest virtual machine. On systems that do not use storage pools, system
administrators must ensure the availability of the guest virtual machine's storage, for example,
adding the NFS share to the host physical machine's fstab so thatthe share is mounted at boot
time.

One of the advantages of using libvirt to manage storage pools and volumes is libvirt's remote
protocol, so itis possible to manage all aspects of a guest virtual machine's life cycle, as well as the
configuration of the resources required by the guest virtual machine. These operations can be
performed on a remote host entirely within the libvirt API. As a result, a management application using
libvirt can enable a user to perform all the required tasks for configuring the host physical machine for
a guest virtual machine such as: allocating resources, running the guest virtual machine, shutting it
down and de-allocating the resources, without requiring shell access or any other control channel.

Although the storage pool is a virtual container itis limited by two factors: maximum size allowed to it
by gemu-kvm and the size of the disk on the host machine. Storage pools may not exceed the size of
the disk on the host machine. The maximum sizes are as follows:

virtio-blk = 2763 bytes or 8 Exabytes(using raw files or disk)

Ext4 =~ 16 TB (using 4 KB block size)

106

Chapter 14. Storage pools

XFS = ~8 Exabytes

gcow2 and host file systems keep their own metadata and scalability should be evaluated/tuned
when trying very large image sizes. Using raw disks means fewer layers that could affect
scalability or max size.

libvirt uses a directory-based storage pool, the /var/1lib/1libvirt/images/ directory, as the
default storage pool. The default storage pool can be changed to another storage pool.

Local storage pools - Local storage pools are directly attached to the host physical machine
server. Local storage pools include: local directories, directly attached disks, physical partitions,
and LVM volume groups. These storage volumes store guest virtual machine images or are
attached to guest virtual machines as additional storage. As local storage pools are directly
attached to the host physical machine server, they are useful for development, testing and small
deployments that do not require migration or large numbers of guest virtual machines. Local
storage pools are not suitable for many production environments as local storage pools do not
support live migration.

Networked (shared) storage pools - Networked storage pools include storage devices
shared over a network using standard protocols. Networked storage is required when migrating
virtual machines between host physical machines with virt-manager, butis optional when
migrating with virsh. Networked storage pools are managed by libvirt. Supported protocols for
networked storage pools include:

Fibre Channel-based LUNs
iISCSI

NFS

GFS2

SCSI RDMA protocols (SCSI RCP), the block export protocol used in InfiniBand and 10GbE
iWARP adapters.

Multi-path storage pools should not be created or used as they are not fully supported.

Example 14.1. NFS storage pool

Suppose a storage administrator responsible for an NFS server creates a share to store guest
virtual machines' data. The system administrator defines a pool on the host physical machine with
the details of the share (nfs.example.com:/path/to/share should be mounted on /vm_data).
When the pool is started, libvirt mounts the share on the specified directory, just as if the system
administrator logged in and executed mount nfs.example.com:/path/to/share /vmdata.
If the pool is configured to autostart, libvirt ensures that the NFS share is mounted on the directory
specified when libvirtis started.

Once the pool starts, the files that the NFS share, are reported as volumes, and the storage
volumes' paths are then queried using the libvirt APIs. The volumes' paths can then be copied into
the section of a guest virtual machine's XML definition file describing the source storage for the
guest virtual machine's block devices. With NFS, applications using the libvirt APIs can create and
delete volumes in the pool (files within the NFS share) up to the limit of the size of the pool (the

107

Virtualization Deployment and Administration Guide

maximum storage capacity of the share). Not all pool types support creating and deleting volumes.
Stopping the pool negates the start operation, in this case, unmounts the NFS share. The data on
the share is not modified by the destroy operation, despite the name. See man virsh for more
details.

Storage pools and volumes are not required for the proper operation of guest virtual
machines. Pools and volumes provide a way for libvirt to ensure that a particular piece of
storage will be available for a guest virtual machine, but some administrators will prefer to
manage their own storage and guest virtual machines will operate properly without any pools
or volumes defined. On systems that do not use pools, system administrators must ensure the
availability of the guest virtual machines' storage using whatever tools they prefer, for
example, adding the NFS share to the host physical machine's fstab so that the share is
mounted at boot time.

14.1. Disk-based storage pools

This section covers creating disk based storage devices for guest virtual machines.

Guests should not be given write access to whole disks or block devices (for example,
/dev/sdb). Use partitions (for example, /dev/sdb1) or LVM volumes.

If you pass an entire block device to the guest, the guest will likely partition it or create its own
LVM groups on it. This can cause the host physical machine to detect these partitions or LVM
groups and cause errors.

14.1.1. Creating a disk based storage pool using virsh

This procedure creates a new storage pool using a disk device with the virsh command.

A Warning

Dedicating a disk to a storage pool will reformat and erase all data presently stored on the
disk device. It is strongly recommended to back up the data on the storage device before
commencing with the following procedure:

1. Create a GPT disk label on the disk

The disk must be relabeled with a GUID Patrtition Table (GPT) disk label. GPT disk labels allow
for creating a large numbers of partitions, up to 128 partitions, on each device. GPT partition
tables can store partition data for far more partitions than the MS-DOS patrtition table.

parted /dev/sdb

108

GNU Parted 2.1

Using /dev/sdb

Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) mklabel

New disk label type? gpt

(parted) quit

Information: You may need to update /etc/fstab.

#

2. Create the storage pool configuration file

Create a temporary XML text file containing the storage pool information required for the new
device.

The file must be in the format shown below, and contain the following fields:
<name>guest_images_disk</name>

The name parameter determines the name of the storage pool. This example uses
the name guest_images_disk in the example below.

<device path="'/dev/sdb'l>

The device parameter with the path attribute specifies the device path of the
storage device. This example uses the device /dev/sdb.

<target> <path>/dev</path></target>

The file system target parameter with the path sub-parameter determines the
location on the host physical machine file system to attach volumes created with
this storage pool.

For example, sdbl, sdb2, sdb3. Using /dev/, as in the example below, means
volumes created from this storage pool can be accessed as /dev/sdbl, /devisdb2,
/dev/sdb3.

<format type="'gpt'/>

The format parameter specifies the partition table type. This example uses the gpt
in the example below, to match the GPT disk label type created in the previous step.

Create the XML file for the storage pool device with a text editor.

Example 14.2. Disk based storage device storage pool

<pool type='disk'>
<name>guest_images_disk</name>
<source>
<device path='/dev/sdb'/>
<format type='gpt'/>
</source>
<target>
<path>/dev</path>
</target>
</pool>

3. Attach the device

Add the storage pool definition using the virsh pool-define command with the XML
configuration file created in the previous step.

virsh pool-define ~/guest_images_disk.xml
Pool guest_images_disk defined from /root/guest_images_disk.xml
virsh pool-list --all

Name State Autostart
default active yes
guest_images_disk inactive no

4. Start the storage pool

Start the storage pool with the virsh pool-start command. Verify the pool is started with
thevirsh pool-list --all command.

virsh pool-start guest_images_disk
Pool guest_images_disk started
virsh pool-list --all

Name State Autostart
default active yes
guest_images_disk active no

5. Turn on autostart

Turn on autostart for the storage pool. Autostart configures the 1ibvirtd service to start
the storage pool when the service starts.

virsh pool-autostart guest_images_disk
Pool guest_images_disk marked as autostarted
virsh pool-list --all

Name State Autostart
default active yes
guest_images_disk active yes

6. Verifythe storage pool configuration

Verify the storage pool was created correctly, the sizes reported correctly, and the state
reports as running.

virsh pool-info guest_images_disk

Name: guest_images_disk

UUID: 551a67c8-5f2a-012c-3844-df29b167431c
State: running

Capacity: 465.76 GB

Allocation: 0.00

Available: 465.76 GB

1ls -la /dev/sdb

Chapter 14. Storage pools

brw-rw----. 1 root disk 8, 16 May 30 14:08 /dev/sdb
virsh vol-list guest_images_disk
Name Path

7. Optional: Remove the temporary configuration file

Remove the temporary storage pool XML configuration file ifitis not needed anymore.
rm ~/guest_images_disk.xml
A disk based storage pool is now available.

14.1.2. Deleting a storage pool using virsh

The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guest virtual machines using the same pool, itis best to stop
the storage pool and release any resources in use by it.

virsh pool-destroy guest_images_disk
2. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

14.2. Partition-based storage pools

This section covers using a pre-formatted block device, a partition, as a storage pool.

For the following examples, a host physical machine has a 500GB hard drive (/dev/sdc)
partitioned into one 500GB, ext4 formatted partition (/dev/sdc1). We set up a storage pool for it
using the procedure below.

14.2.1. Creating a partition-based storage pool using virt-manager
This procedure creates a new storage pool using a partition of a storage device.
Procedure 14.1. Creating a partition-based storage pool with virt-manager

1. Open the storage pool settings

a. In the virt-manager graphical interface, select the host physical machine from the
main window.

Open the Edit menu and select Connection Details

111

Virtualization Deployment and Administration Guide

Virtual Machine Manager

File Edit View Help

E—-J Connection Details ~
Virtual Machine Details
Nam v CPU usage
Delete
. Preferences
-—-—.-: Shut off

Figure 14.1. Connection Details

b. Click on the Storage tab ofthe Connection Details window.

File

Overview Virtual Networks I|i Storage i|I Network Interfaces

default default: 1.69 GB Free/ 1741 GB In Use

Filesystem Directory

Pool Type: Filesystem Directory
Location: fvar/lib/libvirt/images
State: B3 Active

Autestart: ¢ On Boot

Volumes _?'
Volumes v | Size Format Used By
test-guestnew.img 8.00 GB raw
test-vm.img 5.00 GB raw test-vm
+ | \,) Q‘) New Yolume | | Delete Volume | | Apply

Figure 14.2. Storage tab

2. Create the new storage pool

a. Add a new pool (part 1)

Press the + button (the add pool button). The Add a New Storage Pool wizard

appears.

Choose a Name for the storage pool. This example uses the name guest_images_fs.

Changethe Typeto fs: Pre-Formatted Block Device.

112

Chapter 14. Storage pools

Add a New Storage Pool

1 Add Storage Pool Step 1 of 2

Specify a storage location to be later split into virtual machine storage.

MName: |guest_images_f5|

, .
Type: fs: Pre-Formatted Block Device v

| | |
Cancel Back Forward

Figure 14.3. Storage pool name and type

Press the Forward button to continue.

b. Add a new pool (part 2)

Changethe Target Path, Format, and Source Path fields.

Add a New Storage Pool

[5 Add Storage Pool Step 2 of 2

Specify a storage location to be later split into virtual machine storage.

|
Target Path: | /var/lib/libvirt/images/quest_i * || Browse

, !
Format: extd W

| .
Source Path: |Idew’5dcl W Browse

Cancel | | Back | | Finish

113

Virtualization Deployment and Administration Guide
Figure 14.4. Storage pool path and format

Target Path

Enter the location to mount the source device for the storage pool in the
Target Path field. If the location does not already exist, virt-manager
will create the directory.

Format

Select a format from the Format list. The device is formatted with the selected
format.

This example uses the ext4 file system, the default Red Hat Enterprise Linux
file system.

Source Path
Enter the device in the Source Path field.
This example uses the /dev/sdc1 device.

Verify the details and press the Finish button to create the storage pool.

3. Verifythe new storage pool

The new storage pool appears in the storage list on the left after a few seconds. Verify the size
is reported as expected, 458.20 GB Free in this example. Verify the State field reports the new
storage pool as Active.

Select the storage pool. In the Autostart field, click the On Boot checkbox. This will make
sure the storage device starts whenever the 1ibvirtd service starts.

File

Overview Virtual Networks | Storage

559, default guest_images_fs: 458.20 GB Free/197.91 MB In Use
Filesystem Directory Pool Type: Pre-Formatted Block Device
0% Location: fguest_images
State: I3 Active
Autostart: On Boot
Volumes

Volumes v | Size Format

‘ El ‘ |°| New Volume

114

Chapter 14. Storage pools

Figure 14.5. Storage list confirmation

The storage pool is now created, closethe Connection Details window.

14.2.2. Deleting a storage pool using virt-manager
This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guest virtual machines using the same pool, itis best to stop
the storage pool and release any resources in use by it. To do this, select the storage pool
you want to stop and click the red Xicon at the bottom of the Storage window.

File

—
Overview Virtual Metworks | Storage | Network Interfaces

default: 1.69 GB Free/17.41 GB In Use
Filesystem Directory Pool Type: Filesystem Directory
Location: fvar/lib/libvirt/images

State: K= Active

Autostart: % On Boot

=

Volumes | |5

Volumes v Size Format Used By
test-guestnew.img &.00 GB raw

test-vm.img 500 GB raw test-vm

L !' - MNew Volume

Figure 14.6. Stop Icon

2. Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop
the storage pool first.

14.2.3. Creating a partition-based storage pool using virsh

This section covers creating a partition-based storage pool with the virsh command.

Do not use this procedure to assign an entire disk as a storage pool (for example,
/dev/sdb). Guests should not be given write access to whole disks or block devices. Only
use this method to assign partitions (for example, /dev/sdb1) to storage pools.

115

Virtualization Deployment and Administration Guide

Procedure 14.2. Creating pre-formatted block device storage pools using virsh

1. Create the storage pool definition

Use the virsh pool-define-as command to create a new storage pool definition. There are
three options that must be provided to define a pre-formatted disk as a storage pool:

Partition name

The name parameter determines the name of the storage pool. This example uses
the name guest _images_fs in the example below.

device

The device parameter with the path attribute specifies the device path of the
storage device. This example uses the partition /dev/sdc1.

mountpoint

The mountpoint on the local file system where the formatted device will be
mounted. If the mount point directory does not exist, the virsh command can create
the directory.

The directory /guest_images is used in this example.

virsh pool-define-as guest_images_fs fs - - /dev/sdcl -
"/guest_images"
Pool guest_images_fs defined

The new pool is now created.

2. Verifythe new pool

List the present storage pools.

virsh pool-list --all

Name State Autostart
default active yes
guest_images_fs inactive no

3. Create the mount point

Usethevirsh pool-build command to create a mount point for a pre-formatted file
system storage pool.

virsh pool-build guest_images_fs

Pool guest_images_fs built

ls -la /guest_images

total 8

drwx------ . 2 root root 4096 May 31 19:38
dr-xr-xr-x. 25 root root 4096 May 31 19:38
virsh pool-list --all

Name State Autostart
default active yes
guest_images_fs inactive no

116

4. Start the storage pool

Usethevirsh pool-start command to mountthe file system onto the mount point and

make the pool available for use.

virsh pool-start guest_images_fs
Pool guest_images_fs started
virsh pool-list --all

Name State Autostart
default active yes
guest_images_fs active no

5. Turn on autostart

By default, a storage pool is defined with virsh is not set to automatically start each time
libvirtd starts. Turn on automatic start with the virsh pool-autostart command. The

storage pool is now automatically started each time 1ibvirtd starts.

virsh pool-autostart guest_images_fs
Pool guest_images_fs marked as autostarted

virsh pool-list --all

Name State Autostart
default active yes
guest_images_fs active yes

6. Verifythe storage pool

Verify the storage pool was created correctly, the sizes reported are as expected, and the state
is reported as running. Verify there is a "lost+found" directory in the mount point on the file

system, indicating the device is mounted.

virsh pool-info guest_images_fs

Name: guest_images_fs

UUID: C7466869-e82a-a66Cc-2187-dc9d6f0877d0
State: running

Persistent: yes

Autostart: yes

Capacity: 458.39 GB

Allocation: 197.91 MB

Available: 458.20 GB

mount | grep /guest_images

/dev/sdcl on /guest_images type extd (rw)

ls -la /guest_images

total 24

drwxr-xr-x. 3 root root 4096 May 31 19:47
dr-xr-xr-x. 25 root root 4096 May 31 19:38
drwx------ . 2 root root 16384 May 31 14:18 lost+found

14.2.4. Deleting a storage pool using virsh

Virtualization Deployment and Administration Guide

1. To avoid any issues with other guest virtual machines using the same pool, itis best to stop
the storage pool and release any resources in use by it.

virsh pool-destroy guest_images_disk

2. Optionally, if you want to remove the directory where the storage pool resides use the
following command:

virsh pool-delete guest_images_disk

3. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

14 .3. Directory-based storage pools

This section covers storing guest virtual machines in a directory on the host physical machine.

Directory-based storage pools can be created with virt-manager orthe virsh command line

tools.

14.3.1. Creating a directory-based storage pool with virt-manager

1. Create the local directory

a.

118

Optional: Create a new directory for the storage pool

Create the directory on the host physical machine for the storage pool. This example
uses a directory named /guest virtual machine_images.

mkdir /guest_images

. Set directory ownership

Change the user and group ownership of the directory. The directory must be owned
by the root user.

chown root:root /guest_images

. Set directory permissions

Change the file permissions of the directory.

chmod 700 /guest_images

. Verifythe changes

Verify the permissions were modified. The output shows a correctly configured empty
directory.

Chapter 14. Storage pools

ls -la /guest_images

total 8

drwx------ . 2 root root 4096 May 28 13:57
dr-xr-xr-x. 26 root root 4096 May 28 13:57

2. Configure SELinuxfile contexts

Configure the correct SELinux context for the new directory. Note that the name of the pool
and the directory do not have to match. However, when you shutdown the guest virtual
machine, libvirt has to set the context back to a default value. The context of the directory
determines what this default valueis. It is worth explicitly labeling the directory virt_image_t,
so that when the guest virtual machine is shutdown, the images get labeled 'virt_image_t' and
are thus isolated from other processes running on the host physical machine.

semanage fcontext -a -t virt_image_t '/guest_images(/.*)?'
restorecon -R /guest_images

3. Open the storage pool settings

a.

In the virt-manager graphical interface, select the host physical machine from the
main window.

Open the Edit menu and select Connection Details

File View Help
L

Nam(Delete v CPU usage

Preferences
VM-RHEL
|_i=‘_| Running

= localhost (QEMU)

VM-RHEL
|_i=‘_| Running

< myhypervisor (QEMU)

VM-RHEL
|_i=‘_| Running

Figure 14.7. Connection details window

b. Click on the Storage tab ofthe Connection Details window.

119

Virtualization Deployment and Administration Guide

File

T

Overview | Virtual Networks .'I Storage IIINetworkIn'terfaces |

Filesystem Directory

Volumes _ja'

Pool Type: Filesystem Directory
Location: fvar/lib/libvirt/images
State: B3 Active

Autestart: ¢ On Boot

default default: 1.69 GB Free/ 1741 GB In Use

Volumes v | Size Format Used By
test-guestnew.img 8.00 GB raw
test-vm.img 5.00 GB raw test-vm
= @® @ New Volume | | Delete Volume || Apply

Figure 14.8. Storage tab

4. Create the new storage pool

120

a. Add anew pool (part 1)

Press the + button (the add pool button). The Add a New Storage Pool wizard

appears.

Choose a Name for the storage pool. This example uses the name guest_images.
Changethe Typetodir: Filesystem Directory.

| Add Storage Pool

Specify a storage location to be later split into virtual machine storage.

Name: [guest_images_did

Type: [dir: Filesystem Directory

-
e

l
|

Step 1 of 2

Name: Name for the
storage object.

Figure 14.9. Name the storage pool

Cancel

Back Forward

Chapter 14. Storage pools

Press the Forward button to continue.

b. Add a new pool (part 2)
Changethe Target Path field. For example, /guest_images.

Verify the details and press the Finish button to create the storage pool.

5. Verifythe new storage pool

The new storage pool appears in the storage list on the left after a few seconds. Verify the size
is reported as expected, 36.41 GB Free in this example. Verify the State field reports the new
storage pool as Active.

Select the storage pool. In the Autostart field, confirm thatthe On Boot checkbox is
checked. This will make sure the storage pool starts whenever the 1ibvirtd service starts.

File

Overview | Virtual Networks | Storage

269, default guest_images_dir: 36.41 GB Free/12.80 GB In Use
Filesystem Directory Pool Type: Filesystemn Directory
26% Location: fguest_images
State: i Active
Autostart: On Boot
Volumes

Volumes v | Size Format

El S 9 New Volume

Figure 14.10. Verifythe storage pool information
The storage pool is now created, closethe Connection Details window.

14.3.2. Deleting a storage pool using virt-manager

This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guest virtual machines using the same pool, itis best to stop
the storage pool and release any resources in use by it. To do this, select the storage pool
you want to stop and click the red Xicon atthe bottom of the Storage window.

121

Virtualization Deployment and Administration Guide

File
| !
Overview Virtual Metworks | Storage | Network Interfaces

default: 1.69 GB Free/ 17.41 GB In Use
Filesystem Directory Pool Type: Filesystem Directory
Location: fvar/lib/libvirt/images
State: K3 Active

Autostart: % On Boot

Volumes | | (5

Volumes v Size Format Used By
test-guestnew.img &.00 GB raw

test-vm.img 500 GB raw test-vm

= (] MNew Volume

4 o

Figure 14.11. Stop Icon

2. Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop
the storage pool first.

14.3.3. Creating a directory-based storage pool with virsh

1. Create the storage pool definition

Usethevirsh pool-define-as command to define a new storage pool. There are two
options required for creating directory-based storage pools:

The name of the storage pool.

This example uses the name guest_images. All further virsh commands used in this
example use this name.

The path to a file system directory for storing guest image files. If this directory does not
exist, virsh will create it.

This example uses the /guest_images directory.

virsh pool-define-as guest_images dir - - - - "/guest_images"
Pool guest_images defined

2. Verify the storage poolis listed

Verify the storage pool object is created correctly and the state reports itas inactive.

virsh pool-list --all
Name State Autostart

122

default active yes
guest_images inactive no

3. Create the local directory

Usethevirsh pool-build command to build the directory-based storage pool for the
directory guest_images (for example), as shown:

virsh pool-build guest_images

Pool guest_images built

ls -la /guest_images

total 8

drwx------ . 2 root root 4096 May 30 02:44
dr-xr-xr-x. 26 root root 4096 May 30 02:44
virsh pool-list --all

Name State Autostart
default active yes
guest_images inactive no

4. Start the storage pool

Use the virsh command pool -start to enable a directory storage pool, thereby allowing
allowing volumes of the pool to be used as guest disk images.

virsh pool-start guest_images
Pool guest_images started
virsh pool-list --all

Name State Autostart
default active yes
guest_images active no

5. Turn on autostart

Turn on autostart for the storage pool. Autostart configures the 1ibvirtd service to start
the storage pool when the service starts.

virsh pool-autostart guest_images
Pool guest_images marked as autostarted
virsh pool-list --all

Name State Autostart
default active yes
guest_images active yes

6. Verifythe storage pool configuration

Verify the storage pool was created correctly, the size is reported correctly, and the state is
reported as running. If you wantthe pool to be accessible even if the guest virtual machine
is notrunning, make sure thatPersistentis reported as yes. If you want the pool to start
automatically when the service starts, make sure that Autostartis reported as yes.

Virtualization Deployment and Administration Guide

virsh pool-info guest_images

Name: guest_images

UUID: 779081bf-7a82-107b-2874-al19a9c51d24c
State: running

Persistent: yes

Autostart: yes

Capacity: 49.22 GB

Allocation: 12.80 GB

Available: 36.41 GB

1ls -la /guest_images

total 8

drwx------ . 2 root root 4096 May 30 02:44
dr-xr-xr-x. 26 root root 4096 May 30 02:44
#

A directory-based storage pool is now available.

14.3.4. Deleting a storage pool using virsh

The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guest virtual machines using the same pool, itis best to stop
the storage pool and release any resources in use by it.

virsh pool-destroy guest_images_disk

2. Optionally, if you want to remove the directory where the storage pool resides use the
following command:

virsh pool-delete guest_images_disk
3. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

14.4. LVM-based storage pools

This chapter covers using LVM volume groups as storage pools.

LVM-based storage groups provide the full flexibility of LVM.

Thin provisioning is currently not possible with LVM based storage pools.

124

Chapter 14. Storage pools

Please refer to the Red Hat Enterprise Linux Storage Administration Guide for more details on LVM.

LVM-based storage pools require a full disk partition. If activating a new partition/device with
these procedures, the partition will be formatted and all data will be erased. If using the host's
existing Volume Group (VG) nothing will be erased. Itis recommended to back up the storage
device before commencing the following procedure.

14.4.1. Creating an LVM-based storage pool with virt-manager

LVM-based storage pools can use existing LVM volume groups or create new LVM volume groups on
a blank partition.

1. Optional: Create new partition for LVM volumes

These steps describe how to create a new partition and LVM volume group on a new hard
disk drive.

This procedure will remove all data from the selected storage device.

a. Create a nhew partition

Use the fdisk command to create a new disk partition from the command line. The
following example creates a new partition that uses the entire disk on the storage
device /dev/sdb.

fdisk /dev/sdb
Command (m for help):

Press n for a new partition.

b. Press p for a primary partition.

Command action
e extended
p primary partition (1-4)

c. Choose an available partition number. In this example the first partition is chosen by
entering 1.

Partition number (1-4): 1

d. Enter the default first cylinder by pressing Enter.

125

Virtualization Deployment and Administration Guide

First cylinder (1-400, default 1):

e. Selectthe size of the partition. In this example the entire disk is allocated by pressing
Enter.

Last cylinder or +size or +sizeM or +sizeK (2-400, default
400):

f. Setthe type of partition by pressing t.
Command (m for help): t

g. Choose the partition you created in the previous steps. In this example, the partition
number is 1.

Partition number (1-4): 1
h. Enter 8e for a Linux LVM partition.

Hex code (type L to list codes): 8e
i. write changes to disk and quit.

Command (m for help): w
Command (m for help): g
j.- Create a new LVM volume group

Create a new LVM volume group with the vgcreate command. This example creates
a volume group named guest _images_Ilvm.

vgcreate guest_images_lvm /dev/sdb1l
Physical volume "/dev/vdb1" successfully created
Volume group '"guest_images_lvm" successfully created

The new LVM volume group, guest_images_Ilvm, can now be used for an LVM-based storage
pool.

2. Open the storage pool settings
a. In the virt-manager graphical interface, select the host from the main window.

Open the Edit menu and select Connection Details

126

Chapter 14. Storage pools

File

Edit

View Help

Virtual Machine Manager

E- Connection Details ~
Virtual Machine Details
Nam v CPU usage
Delete
. Preferences
L Shut off
Figure 14.12. Connection details
b. Click on the Storage tab.
File
Overview Virtual Networks I|i Storage i|I Network Interfaces
default default: 1.69 GB Free/ 1741 GB In Use
Filesystem Directory Pool Type: Filesystem Directory
Location: fvar/lib/libvirt/images
State: B3 Active
Autostart: @ On Boot
Volumes __?'
Volumes v | Size Format Used By
test-guestnew.img 8.00 GB raw
test-vm.img 5.00 GB raw test-vm
4 \!) (’:) New Volume | | Delete Volume || Apply

Figure 14.13. Storage tab

3. Create the new storage pool

a. Start the Wizard

Press the + button (the add pool button). The Add a New Storage Pool wizard

appears.

Choose a Name for the storage pool. We use guest_images_Ivm for this example. Then

changethe Typeto logical:

LVM Volume Group, and

127

Virtualization Deployment and Administration Guide

| Add Storage Pool Step 1 of 2
Specify a storage location to be later split into virtual machine storage.
Name: [guest_imaQES_Ium] Name: Name for the
storage object.
Type: | logical: LVM Volume Group - |
Cancel | | Forward |

Figure 14.14. Add LVM storage pool

Press the Forward button to continue.

b. Add a new pool (part 2)
Changethe Target Path field. This example uses /guest_images.

Now fill in the Target Path and Source Path fields, then tick theBuild Pool
check box.

Usethe Target Path field to either select an existing LVM volume group or as the
name for a new volume group. The default formatis /dev/storage pool name.

This example uses a new volume group named /dev/guest_images_Ilvm.

The Source Path field is optional if an existing LVM volume group is used in the
Target Path.

For new LVM volume groups, input the location of a storage device in the Source
Path field. This example uses a blank partition /dev/sdc.

TheBuild Pool checkbox instructs virt-manager to create a new LVM
volume group. If you are using an existing volume group you should not select the
Build Pool checkbox.

This example is using a blank partition to create a new volume group so the
Build Pool checkbox mustbe selected.

128

Chapter 14. Storage pools

| | Add Storage Pool Step 2 of 2
Specify a storage location to be later split into virtual machine storage.

Target Path: [fdewguest_images_lum v | |B[owse| Build: Create a logical
volume group from
Source Path: [Ededec \Browse| the source device.
Build Pool:
Cancel | | Back | | Finish

Figure 14.15. Add target and source

Verify the details and press the Finish button format the LVM volume group and
create the storage pool.

c. Confirmthe device to be formatted

Awarning message appears.

R Building a pool of this type will format the
A source device. Are you sure you want to 'build’
AR this pool?

Figure 14.16. Warning message

Press the Yes button to proceed to erase all data on the storage device and create
the storage pool.

4. Verifythe new storage pool

The new storage pool will appear in the list on the left after a few seconds. Verify the details
are what you expect, 465.76 GB Free in our example. Also verify the State field reports the
new storage pool as Active.

Itis generally a good idea to have the Autostart check box enabled, to ensure the storage
pool starts automatically with libvirtd.

129

Virtualization Deployment and Administration Guide

File
Overview Virtual Networks Storage
26y, default guest_images_lvm: 465.76 GB Free/0.00 MB In Use
Filesystem Directory Pool Type: LVM Volume Group
; Location: [!devfguest_images_lvm

State: 2 Active
Autostart: & On Boot
Volumes

Volumes v Size Format

B W New Volume

Figure 14.17. Confirm LVM storage pool details
Close the Host Details dialog, as the task is now complete.

14.4.2. Deleting a storage pool using virt-manager

This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guest virtual machines using the same pool, itis best to stop
the storage pool and release any resources in use by it. To do this, select the storage pool
you want to stop and click the red Xicon atthe bottom of the Storage window.

130

Chapter 14. Storage pools

File

—
Overview | Virtual Networks | Storage | Network Interfaces

default: 1.69 GB Free/17.41 GB In Use
Filesystem Directory Pool Type: Filesystem Directory
Location: fvar/lib/libvirt/images

State: K3 Active

Autostart: % On Boot

Volumes | | (5

Volumes v Size Format Used By
test-guestnew.img &.00 GB raw

test-vm.img 500 GB raw test-vm

= (] MNew Volume

4 o

Figure 14.18. Stop Icon

2. Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop
the storage pool first.

14.4.3. Creating an LVM-based storage pool with virsh
This section outlines the steps required to create an LVM-based storage pool with the virsh

command. It uses the example of a pool named guest_images_lvm from a single drive
(/dev/sdc). Thisis only an example and your settings should be substituted as appropriate.

Procedure 14.3. Creating ah LVM-based storage pool with virsh

1. Definethe pool name guest_images_lvm.

virsh pool-define-as guest_images_lvm logical - - /dev/sdc
libvirt_1lvm \ /dev/libvirt_1lvm
Pool guest_images_lvm defined

2. Build the pool according to the specified name. If you are using an already existing volume
group, skip this step.

virsh pool-build guest_images_1lvm

Pool guest_images_lvm built

3. Initialize the new pool.

131

virsh pool-start guest_images_lvm

Pool guest_images_lvm started
4. Show the volume group information with the vgs command.
VvQgs
VG #PV #LV #SN Attr VSize VFree
libvirt_1lvm 1 0] @ wz--n- 465.76g 465.76g

5. Setthe pool to start automatically.

virsh pool-autostart guest_images_1lvm
Pool guest_images_lvm marked as autostarted

6. Listthe available pools with the virsh command.

virsh pool-list --all

Name State Autostart
default active yes
guest_images_lvm active yes

\I

. The following commands demonstrate the creation of three volumes (volumel, volume2 and
volume3) within this pool.

virsh vol-create-as guest_images_lvm volumel 8G
Vol volumel created

virsh vol-create-as guest_images_lvm volume2 8G
Vol volume2 created

virsh vol-create-as guest_images_lvm volume3 8G
Vol volume3 created

8. Listthe available volumes in this pool with the virsh command.

virsh vol-1list guest_images_lvm

Name Path

volumel /dev/1libvirt_lvm/volumel
volume?2 /dev/1libvirt_lvm/volume?2
volume3 /dev/1libvirt_lvm/volume3

9. The following two commands (1vscan and 1vs) display further information about the newly
created volumes.

lvscan

ACTIVE '/dev/1libvirt_1lvm/volumel' [8.00 GiB] inherit
ACTIVE '/dev/1libvirt_1lvm/volume2' [8.00 GiB] inherit
ACTIVE '/dev/1libvirt_1lvm/volume3' [8.00 GiB] inherit

1lvs

Chapter 14. Storage pools

LV VG Attr LSize Pool Origin Data% Move Log
Copy% Convert

volumel 1libvirt_1lvm -wi-a- 8.00g

volume2 libvirt_1lvm -wi-a- 8.00g

volume3 libvirt_1lvm -wi-a- 8.00g

14.4.4. Deleting a storage pool using virsh

The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guests using the same pool, itis best to stop the storage pool
and release any resources in use by it.

virsh pool-destroy guest_images_disk

2. Optionally, if you want to remove the directory where the storage pool resides use the
following command:

virsh pool-delete guest_images_disk
3. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

14.5. iSCSI-based storage pools

This section covers using iISCSI-based devices to store guest virtual machines. This allows for more
flexible storage options such as using iISCSI as a block storage device. The iSCSI devices use an
LIO target, which is a multi-protocol SCSl target for Linux. In addition to iISCSI, LIO also supports
Fibre Channel and Fibre Channel over Ethernet (FCoE).

iISCSI (Internet Small Computer System Interface) is a network protocol for sharing storage devices.
iSCSI connects initiators (storage clients) to targets (storage servers) using SCSl instructions over
the IP layer.

14.5.1. Configuring a software iSCSI target

Introduced in Red Hat Enterprise Linux 7, iSCSI targets are created with the targetcli package, which
provides a command set for creating software-backed iSCSI targets.

Procedure 14.4. Creating an iSCSI target

1. Install the required package

Install the targetclipackage and all dependencies:

yum install targetcli

2. Launch targetcli

Launch the targetcli command set:

133

Virtualization Deployment and Administration Guide

targetcli

Create storage objects

Create three storage objects as follows, using the device created in Section 14.4, “LVM-based
storage pools”:

a. Create a block storage object, by changing into the /backstores/block directory
and running the following command:

create [block-name][filepath]
For example:
create blockl dev=/dev/vdb1l

b. Create a fileio object, by changing into the fileio directory and running the
following command:

create [fileioname] [imagename] [image-size]
For example:
create fileiol /foo.img 50M

c. Create a ramdisk object by changing into the ramd i sk directory, and running the
following command:

create [ramdiskname] [size]
For example:
create ramdiskl 1M
d. Remember the names of the disks you created in this step, as you will need them later.

4. Navigate to the /iscsi directory

Change into the 1scsi directory:

#cd /iscsi

5. Create iSCSI target
Create an iSCSl targetin one of two ways:
a. create with no additional parameters, automatically generates the IQN.

b. create ign.2010-05.com.example. serverl:iscsirhel7guest creates a
specific IQN on a specific server.

134

Define the target portal group (TPG)

Each iSCSl target needs to have a target portal group (TPG) defined. In this example, the
default tpg1 will be used, butyou can add additional tpgs as well. As this is the most
common configuration, the example will configure tpg1. To do this, make sure you are still in
the /iscsi directory and change to the /tpg1 directory.

/iscsi>iqn.iqn.2010 -
05.com.example. serverl:iscsirhel7guest/tpg1l
. Define the portal IP address

In order to export the block storage over iSCSI, the portals, LUNs, and ACLs mustall be
configured first.

The portal includes the IP address and TCP port that the target will listen on, and the
initiators will connectto. iISCSI uses port 3260, which is the port that will be configured by
default. To connect to this port, run the following command from the /tpg directory:

portals/ create

This command will have all available IP addresses listening to this port. To specify thatonly
one specific IP address will listen on the port, run portals/ create [ipaddress], and
the specified IP address will be configured to listen to port 3260.

. Configure the LUNs and assign the storage objects to the fabric

This step uses the storage devices created in Step 3. Make sure you change into the luns

05.com.example. serverl:iscsirhel7guest, for example.

a. Assign the first LUN to the ramdisk as follows:
create /backstores/ramdisk/ramdiski1
b. Assign the second LUN to the block disk as follows:
create /backstores/block/block1
c. Assign the third LUN to the fileio disk as follows:
create /backstores/fileio/filel
d. Listing the resulting LUNs should resemble this screen output:

/iscsi/ign.20...csirhel7guest/tpgl 1s

o- tgp1l
............... [enabled, auth]
O_
= o

JUN S, e e e e e
........................ [3 LUNS]

| o-
JUND . o e e e e
............ [ramdisk/ramdiski]

| o-
JUN . e e e e e
..... [block/blockl (dev/vdb1l)]

| o-
0
...... [fileio/filel (foo.img)]

0_
POr LAl S, o it e e
...................... [1 Portal]

o- IP-

ADDRESS 828 ¢ 0 0 0 0 000 00000000000000000000000000000000000000GG0 8
....................... [0K]

Creating ACLs for each initiator

This step allows for the creation of authentication when the initiator connects, and it also
allows for restriction of specified LUNs to specified initiators. Both targets and initiators have
unigue names. iSCSl initiators use an IQN.

a. To find the IQN of the iSCSl initiator, run the following command, replacing the name
of the initiator

cat /etc/iscsi/initiatorname.iscsi

Use this IQN to create the ACLs.
b. Change to the acls directory.

c. Runthecommand create [iqn], orto create specific ACLs, refer to the following
example:

create iqn.2010-05.com.example.foo:888

Alternatively, to configure the kernel target to use a single user ID and password for
all initiators, and allow all initiators to log in with that user ID and password, use the
following commands (replacing userid and password):

set auth userid=redhat

set auth password=passwordil23

set attribute authentication=1

set attribute generate_node_acls=1

H H HF H*

10. Make the configuration persistent with the saveconfig command. This will overwrite the
previous boot settings. Alternatively, running exit from the targetcli saves the target
configuration by default.

11. Enable the service with systemctl enable target. service to apply the saved settings
on next boot.

Chapter 14. Storage pools

Procedure 14.5. Optional steps

1. Create LVM volumes

LVM volumes are useful for iISCSI backing images. LVM snapshots and re-sizing can be
beneficial for guest virtual machines. This example creates an LVM image named virtimagel
on a new volume group named virtstore on a RAID5 array for hosting guest virtual machines
with iSCSI.

a. Create the RAID array

Creating software RAID5 arrays is covered by the Red Hat Enterprise Linux Deployment
Guide.

b. Create the LVM volume group

Create a logical volume group named virtstore with the vgcreate command.

vgcreate virtstore /dev/md1

c. Create aLVM logical volume

Create a logical volume group named virtimagel on the virtstore volume group with a
size of 20GB using the 1vcreate command.

lvcreate **size 20G -n virtimagel virtstore

The new logical volume, virtimagel, is ready to use for iSCSI.

Using LVM volumes for kernel target backstores can cause issues if the initiator
also partitions the exported volume with LVM. This can be solved by adding
global_filter = ["r|~/dev/vg0O]|"] to /etc/1lvm/1lvm.conf

2. Optional: Test discovery

Test whether the new iSCSI device is discoverable.

iscsiadm --mode discovery --type sendtargets --portal
serverl.example.com
127.0.0.1:3260,1 ign.2010-05.com.example.serverl:iscsirhel7guest

3. Optional: Test attaching the device

Attach the new device (ign.2010-05.com.example.serverl:iscsirhel7guest) to determine whether
the device can be attached.

iscsiadm -d2 -m node --login
scsiadm: Max file limits 1024 1024

Logging in to [iface: default, target: iqn.2010-

137

Virtualization Deployment and Administration Guide

05.com.example.serverl:iscsirhel7guest, portal: 10.0.0.1,3260]

Login to [iface: default, target: iqgn.2010-

05.com.example.serverl:iscsirhel7guest, portal: 10.0.0.1,3260]

successful.

4. Detach the device.

 # iscsiadm -d2 -m node --logout
scsiadm: Max file limits 1024 1024

Logging out of session [sid: 2, target: ign.2010-

Logout of [sid: 2, target: ign.2010-

successful.

05.com.example.serverl:iscsirhel7guest, portal: 10.0.0.1,3260

05.com.example.serverl:iscsirhel7guest, portal: 10.0.0.1,3260]

An iSCSl device is now ready to use for virtualization.

14.5.2. Creating an iSCSI storage pool in virt-manager

This procedure covers creating a storage pool with an iISCSl targetin virt-manager.
Procedure 14.6. Adding an iSCSI device to virt-manager

1. Open the host machine's storage details

a. In virt-manager, click the Edit and select Connection Details fromthe

dropdown menu.

Virtual Machine Manager

File Edit View Help

. I
dam

N

Delete

Preferences

— Shut off

Figure 14.19. Connection details

b. Click on the Storage tab.

138

v CPU usage

Chapter 14. Storage pools

File

‘{ Dverview[Virtual I\Iet'mur{}rksjl Storage \Network Interfaces \

default default: 1.69 GB Free/ 1741 GBIn Use

Filesystem Directory

Pool Type: Filesystem Directory
Location: fvar/lib/libvirt/images
State: 3 Active

Autostart: & On Boot

Volumes ‘ @ ‘
Volumes v Size Format Used By
test-guestnew.img 8.00 GB raw
test-vm.img 5.00 GB raw test-vm
‘ 4 l = I @ l ® ‘ New Volume ‘ [Delete Volume H ."-‘-.pplyl

Figure 14.20. Storage menu

2. Add a new pool (Step 1 of 2)

Press the + button (the add pool button). The Add a New Storage Pool wizard appears.

' Add Storage Pool Step 1 of 2
Specify a storage location to be later split into virtual machine storage.
Name: Iis::sirhelﬁguest]
Type: [iS{si: iSCSI Target "]
Cancel | | Back | | Forward

Figure 14.21. Add an iSCSI storage pool name and type

139

Virtualization Deployment and Administration Guide

Choose a name for the storage pool, change the Type to iISCSI, and press Forward to
continue.

3. Add a new pool (Step 2 of 2)

You will need the information you used in Section 14.5, “iSCSI-based storage pools” and

Step 6 to complete the fields in this menu.

a. Enter the iSCSI source and target. The Format option is not available as formatting is
handled by the guest virtual machines. Itis not advised to editthe Target Path. The
default target path value, /dev/disk/by-path/, adds the drive path to that
directory. The target path should be the same on all host physical machines for
migration.

b. Enter the hostname or IP address of the iSCSI target. This example uses
hostl.example.com.

c. Inthe Source Path field, enter the iISCSI target IQN. If you look at Step 6 in

/etc/target/targets.conf file.This exampleusesiqn. 2010 -
05.com.example. serverl:iscsirhel7guest.

d. Check the IQN checkbox to enter the IQN for the initiator. This example uses
iqn.2010-05.com.example.hostl:iscsirhel?.

e. Click Finish to create the new storage pool.

| Add Storage Pool Step 2 of 2

Specify a storage location to be later split into virtual machine storage.

Target Path: |f'dewdi5kmy-path | EI_'DWSE| Host: Name of the
host sharing the

Host Name: [hDStl.exampIe.cnm|] storage.

Source Path: |iqn.zﬂlﬂ-ﬂﬁ.cnm.example.se

IQN: [iqn.EGlﬂ-ﬂS.cnm.example.hnstl:iscsirﬁ]

Cancel || Back || Finish

Figure 14.22. Create an iSCSI storage pool

14.5.3. Deleting a storage pool using virt-manager

This procedure demonstrates how to delete a storage pool.

140

Chapter 14. Storage pools

1. To avoid any issues with other guest virtual machines using the same pool, itis best to stop
the storage pool and release any resources in use by it. To do this, select the storage pool
you want to stop and click the red Xicon at the bottom of the Storage window.

File

—
Overview | Virtual Networks | Storage | Network Interfaces

default: 1.69 GB Free/17.41 GB In Use
Filesystem Directory Pool Type: Filesystem Directory
Location: fvar/lib/libvirt/images

State: K3 Active

Autostart: % On Boot

Volumes | | (5

Volumes v Size Format Used By
test-guestnew.img &.00 GB raw

test-vm.img 500 GB raw test-vm

e (] New Volume

— o

Figure 14.23. Stop Icon

2. Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop
the storage pool first.

14.5.4. Creating an iSCSI-based storage pool with virsh

1. Optional: Secure the storage pool

2. Define the storage pool

Storage pool definitions can be created with the virsh command line tool. Creating storage
pools with virsh is useful for system administrators using scripts to create multiple storage
pools.

Thevirsh pool-define-as command has several parameters which are accepted in the
following format:

virsh pool-define-as name type source-host source-path source-dev
source-name target

The parameters are explained as follows:

141

Virtualization Deployment and Administration Guide

type

defines this pool as a particular type, iSCSI for example
name

sets the name for the storage pool; must be unique
source-host and source-path

the hostname and iSCSI IQN respectively
source-devand source-name

these parameters are not required for iISCSI-based pools; use a - character to leave
the field blank.

target
defines the location for mounting the iSCSI device on the host machine

The example below creates the same iISCSI-based storage pool as thevirsh pool-
define-as example above:

virsh pool-define-as --name iscsirhel7pool --type iscsi \
--source-host serveril.example.com \
--source-dev igqn.2010-05.com.example.serverl:iscsirhel7guest \
--target /dev/disk/by-path

Pool iscsirhel7pool defined

3. Verifythe storage poolis listed

Verify the storage pool object is created correctly and the state is inactive.

virsh pool-list --all

Name State Autostart
default active yes
iscsirhel7pool inactive no

4. Optional: Establish a direct connection to the iSCSI storage pool

This step is optional, butit allows you to establish a direct connection to the iSCSI storage
pool. By default this is enabled, but if the connection is to the host machine (and not direct to
the network) you can change it back by editing the domain XML for the virtual machine to
reflect this example:

<disk type='volume' device='disk'>
<driver name='gemu'/>
<source pool='iscsi' volume='unit:0:0:1' mode='direct'/>
<target dev='vda' bus='virtio'/>
<address type='pci' domain='0Ox0000' bus='0x00' slot='0x06"

142

Chapter 14. Storage pools

function='0x0"'/>
</disk>

Figure 14.24. Disk type element XML example

The same iSCSI storage pool can be used for a LUN or a disk, by specifying the disk
device as eithera disk or 1un See Section 15.5.3, “Adding SCSI LUN-based

storage to a guest.

Additionally, the source mode can be specified as mode="'host' for a connection
to the host machine.

If you have configured authentication on the iSCSI server as detailed in Step 9, then the
following XML used as a <disk> sub-element will provide the authentication credentials for
the disk. Section 14.5.5, “Securing an iISCSI storage pool” describes how to configure the

libvirt secret.

<auth type='chap' username='redhat'>
<secret usage='iscsirhel7secret'/>
</auth>

. Start the storage pool

Usethevirsh pool-startto enable a directory storage pool. This allows the storage pool
to be used for volumes and guest virtual machines.

virsh pool-start iscsirhel7pool
Pool iscsirhel7pool started
virsh pool-list --all

Name State Autostart
default active yes
iscsirhel7pool active no

. Turn on autostart

Turn on autostart for the storage pool. Autostart configures the 1ibvirtd service to start
the storage pool when the service starts.

virsh pool-autostart iscsirhel7pool
Pool iscsirhel7pool marked as autostarted

Verify that the iscsirhel7pool pool has autostart enabled:

virsh pool-list --all
Name State Autostart

143

Virtualization Deployment and Administration Guide

default active yes
iscsirhel7pool active yes

7. Verifythe storage pool configuration

Verify the storage pool was created correctly, the sizes report correctly, and the state reports
as running.

virsh pool-info iscsirhel7pool

Name: iscsirhel7pool

UUID: afcc5367-6770-e151-bcb3-847bc36c5e28
State: running

Persistent: unknown

Autostart: yes

Capacity: 100.31 GB

Allocation: 0.00

Available: 100.31 GB

An iSCSI-based storage pool called iscsirhel7pool is now available.

14.5.5. Securing an iSCSI storage pool

Username and password parameters can be configured with virsh to secure an iSCSI storage pool.
This can be configured before or after the pool is defined, but the pool must be started for the
authentication settings to take effect.

Procedure 14.7. Configuring authentication for a storage pool with virsh

1. Create a libvirt secret file

Create a libvirt secret XML file called secret. xml, using the following example:

cat secret.xml
<secret ephemeral='no' private='yes'>
<description>Passphrase for the iSCSI example.com
server</description>
<auth type='chap' username='redhat'/>
<usage type='iscsi'>
<target>iscsirhel7secret</target>
</usage>
</secret>

2. Define the secret file

Define the secret. xml file with virsh:

virsh secret-define secret.xml

3. Verify the secret file's UUID

Verify the UUID in secret. xml:

virsh secret-list

144

Chapter 14. Storage pools

2d7891af-20be-4e5e-af83-190e8a922360 1iscsi iscsirhel7secret

4. Assigh a secret to the UUID

Assign a secret to that UUID, using the following command syntax as an example:

MYSECRET= printf %s "passwordl123" | base64"
virsh secret-set-value 2d7891af-20be-4e5e-af83-190e8a922360
$MYSECRET

This ensures the CHAP username and password are setin a libvirt-controlled secret list.

5. Add an authentication entryto the storage pool

Modify the <source> entry in the storage pool's XML file using virsh editand add an
<auth> element, specifying authentication type,username,and secret usage.

The following shows an example of a storage pool XML definition with authentication
configured:

cat iscsirhel7pool.xml
<pool type='iscsi'>
<name>iscsirhel7pool</name>
<source>
<host name='192.168.122.1'/>
<device path='ign.2010-
05.com.example.serverl:iscsirhel7guest'/>
<auth type='chap' username='redhat'>
<secret usage='iscsirhel7secret'/>
</auth>
</source>
<target>
<path>/dev/disk/by-path</path>
</target>
</pool>

The <auth> sub-element exists in different locations within the guest XML's <pool>
and <disk> elements. For a <pool>, <auth> is specified within the <source>
element, as this describes where to find the pool sources, since authentication is a
property of some pool sources (iISCSIland RBD). For a <disk>, which is a sub-
element of a domain, the authentication to the iISCSI or RBD disk is a property of the
disk. See Section 14.5.4, “Creating an iSCS|I-based storage pool with virsh”Creating

an iSCSl-based storage pool with virsh for an example of <disk> configured in the
guest XML.

6. Activate the changes in the storage pool

145

Virtualization Deployment and Administration Guide

The storage pool must be started to activate these changes.

If the storage pool has notyet been started, foIIow the steps in Section 14.5.4, “Creating an

If the pool has already been started, run the following commands to stop and restart the
storage pool:

virsh pool-destroy iscsirhel7pool
virsh pool-start iscsirhel7pool

14.5.6. Deleting a storage pool using virsh

The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guest virtual machines using the same pool, itis best to stop
the storage pool and release any resources in use by it.

virsh pool-destroy iscsirhel7pool
2. Remove the storage pool's definition

virsh pool-undefine iscsirhel7pool

14.6. NFS-based storage pools

This procedure covers creating a storage pool with a NFS mount pointin virt-manager.

14.6.1. Creating a NFS-based storage pool with virt-manager

1. Open the host physical machine's storage tab
Open the Storage tab in the Host Details window.
a. Open virt-manager.

b. Selecta host physical machine fromthe main virt-manager window. Click Edit
menu and select Connection Details.

Virtual Machine Manager - | O

File Edit View Help

. I

Nam v CPU usage
Delete
- e
Preferences
Sht of

146

Chapter 14. Storage pools

Figure 14.25. Connection details

c. Click on the Storage tab.

File

default

Filesystem Directory

default:

Pool Type:

Overview Virtual Networks I|i Storage i|I Network Interfaces

169 GBFree/ 1741 GBInUse

Filesystem Directory

Location: fvar/lib/libvirt/images

State: K3 Active

Autostart: @ On Boot

Volumes _%'

Volumes v | Size Format Used By
test-guestnew.img 8.00 GB raw

test-vm.img 5.00 GB raw test-vm

+[[®[®

Mew Volume

Delete

Volume

Apply

Figure 14.26. Storage tab

2. Create anew pool (part 1)

Press the + button (the add pool button). The Add a New Storage Pool wizard appears.

147

Virtualization Deployment and Administration Guide

. Add Storage Pool Step 1 of 2
Specify a storage location to be later split into virtual machine storage.
Name: [nfstn’ al] Type: Storage device
type the pool will
Type: | netfs: Network Exported Directory v | represent.
Cancel Forward

Figure 14.27. Add an NFS name and type

Choose a name for the storage pool and press Forward to continue.

3. Create a new pool (part 2)

Enter the target path for the device, the hostname and the NFS share path. Setthe Format
option to NFS or auto (to detect the type). The target path must be identical on all host
physical machines for migration.

Enter the hostname or IP address of the NFS server. This example uses
serverl.example.com.

Enter the NFS path. This example uses /nfstrial.

148

Chapter 14. Storage pools

| Add Storage Pool Step 2 of 2
Specify a storage location to be later split into virtual machine storage.
Target Path: |fﬁ.rarflibflibuirt.fimagesfnfstn’a | B[crwse| Source path: Path on
the host that is being
Format: | nfs z shared.

Host Mame: [sewerl.example.cnm l

Source Path: |;'nf5tr1'a|

Cancel || Back || Finish

Figure 14.28. Create an NFS storage pool
Press Finish to create the new storage pool.

14.6.2. Deleting a storage pool using virt-manager

This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guests using the same pool, itis best to stop the storage pool
and release any resources in use by it. To do this, select the storage pool you want to stop
and click the red Xicon at the bottom of the Storage window.

149

Virtualization Deployment and Administration Guide

File

—
Overview | Virtual Networks | Storage | Network Interfaces

default: 1.69 GB Free/ 1741 GB In Use
Filesystem Directory Pool Type: Filesystem Directory
Location: fvar/lib/libvirt/images

State: KA Active

Autostart: % On Boot
Volumes \j

Volumes v Size Format Used By
test-guestnew.img &.00 GB raw

test-vm.img 500 GB raw test-vm

= »] - MNew Volume

b

Figure 14.29. Stop Icon

2. Delete the storage pool by clicking the Trash can icon. Thisicon is only enabled if you stop
the storage pool first.

14.7. Using a NPIV virtual adapter (vHBA) with SCSI devices

NPIV (N_Port ID Virtualization) is a software technology that allows sharing of a single physical
Fibre Channel host bus adapter (HBA).

This allows multiple guests to see the same storage from multiple physical hosts, and thus allows for
easier migration paths for the storage. As a result, there is no need for the migration to create or copy
storage, as long as the correct storage path is specified.

In virtualization, the virtual host bus adapter, or vHBA, controls the LUNs for virtual machines. For a
hostto share one Fibre Channel device path between multiple KVM guests, a vHBA must be created
for each virtual machine. A single vHBA must not be used by multiple KVM guests.

Each vHBA is identified by its own WWNN (World Wide Node Name) and WWPN (World Wide Port
Name). The path to the storage is determined by the WWNN and WWPN values.

This section provides instructions for configuring a vHBA persistently on a virtual machine.

Before creating a VHBA, itis recommended to configure storage array (SAN)-side zoning in the
host LUN to provide isolation between guests and prevent the possibility of data corruption.

150

Chapter 14. Storage pools

14.7.1. Creating a VHBA
Procedure 14.8. Creating a vHBA

1. Locate HBAs on the host system

To locate the HBAs on your host system, use the virsh nodedev-list --cap vports
command.

For example, the following output shows a host that has two HBAs that support vHBA:

virsh nodedev-1list --cap vports
scsi_host3
scsi_host4

2. Check the HBA's details
Usethevirsh nodedev-dumpxml HBA device command to see the HBA's details.

The XML output fromthe virsh nodedev-dumpxml command will list the fields <name>
<wwnn>, and <wwpn>, which are used to create a VHBA. The <max_vports> value shows the
maximum number of supported vHBAs.

virsh nodedev-dumpxml scsi_host3
<device>
<name>scsi_host3</name>

<path>/sys/devices/pcif000:00/0000:00:04.0/0000:10:00.0/host3</path
>
<parent>pci_0000_10_00_0</parent>
<capability type='scsi_host'>
<host>3</host>
<unique_id>0</unique_id>
<capability type='fc_host'>
<wwnn>20000000c9848140</wwnn>
<wwpn>10000000c9848140</wwpn>
<fabric_wwn>2002000573de9a81</fabric_wwn>
</capability>
<capability type='vport_ops'>
<max_vports>127</max_vports>
<vports>0</vports>
</capability>
</capability>
</device>

In this example, the <max_vports> value shows there are a total 127 virtual ports available
for use in the HBA configuration. The <vports> value shows the number of virtual ports
currently being used. These values update after creating a vHBA.

3. Create a vHBA host device

Create an XML file similar to the following (in this example, named vhba_host3.xml) for the
vHBA host.

cat vhba_host3.xml

151

Virtualization Deployment and Administration Guide

<device>
<parent>scsi_host3</parent>
<capability type='scsi_host'>
<capability type='fc_host'>
</capability>
</capability>
</device>

The <parent> field specifies the HBA device to associate with this vHBA device. The details
in the <device>tag are used in the next step to create a new vHBA device for the host. See

4. Create anew vHBA on the vHBA host device

To create a vVHBA on vhba_host3, use the virsh nodedev-create command:

virsh nodedev-create vhba_host3.xml
Node device scsi_host5 created from vhba_host3.xml

5. Verifythe vHBA

Verify the new vHBA's details (scsi_host5) with the virsh nodedev-dumpxml command:

virsh nodedev-dumpxml scsi_host5
<device>
<name>scsi_host5</name>

<path>/sys/devices/pcif000:00/0000:00:04.0/0000:10:00.0/host3/vport
-3:0-0/host5</path>
<parent>scsi_host3</parent>
<capability type='scsi_host'>
<host>5</host>
<unique_id>2</unique_id>
<capability type='fc_host'>
<wwnn>5001a4a93526d0al</wwnn>
<wwpn>500l1lad4ace3ee@47d</wwpn>
<fabric_wwn>2002000573de9a81</fabric_wwn>
</capability>
</capability>
</device>

14.7.2. Creating a storage pool using the vHBA

Itis recommended to define a libvirt storage pool based on the vHBA in order to preserve the vHBA
configuration.

Using a storage pool has two primary advantages:
the libvirt code can easily find the LUN's path via virsh command output, and

virtual machine migration requires only defining and starting a storage pool with the same vHBA
name on the target machine. To do this, the vHBA LUN, libvirt storage pool and volume name must

152

http://libvirt.org/formatnode.html

Chapter 14. Storage pools

1. Create a SCSI storage pool

To create a persistent vHBA configuration, first create a libvirt ' scsi' storage pool XML file
using the format below. It is recommended to use a stable location for the <path> value, such
as one ofthe /dev/disk/by-{path|id|uuid|label} locations on your system. More
information on <path> and the elements within <target> can be found at

In this example, the ' scsi' storage pool is named vhbapool host3.xml:

<pool type='scsi'>
<name>vhbapool_host3</name>
<source>
<adapter type='fc_host' wwnn='5001a4a93526d0al'
wwpn="'5001a4ace3ee047d' />
</source>
<target>
<path>/dev/disk/by-path</path>
<permissions>
<mode>0700</mode>
<owner>0</owner>
<group>0</group>
</permissions>
</target>
</pool>

The pool must be type="'scsi' and the source adapter type mustbe ' fc_host'.
For a persistent configuration across host reboots, the wwnn and wwpn attributes must
be the values assigned to the VHBA (scsi_host5 in this example) by libvirt.

Optionally, the ' parent' attribute can be used in the <adapter> field to identify the parent
scsi_host device as the VHBA. Note, the value is not the scsi_host of the vHBA created by
virsh nodedev-create, butitis the parent of that vHBA.

Providing the ' parent' attribute is also useful for duplicate pool definition checks. This is
more importantin environments where both the ' fc_host' and 'scsi_host' source
adapter pools are being used, to ensure a new definition does not duplicate using the same
scsi_host of another existing storage pool.

The following example shows the optional ' parent' attribute used in the <adapter> field in
a storage pool configuration:

<adapter type='fc_host' parent='scsi_host3' wwnn='5001a4a93526d0a1l’'
wwpn="'5001a4ace3ee047d' />

2. Define the pool

To define the storage pool (named vhbapool_host3 in this example) persistently, use the
virsh pool-define command:

virsh pool-define vhbapool_host3.xml
Pool vhbapool_host3 defined from vhbapool_host3.xml

153

http://libvirt.org/formatstorage.html

Virtualization Deployment and Administration Guide

3. Start the pool

Start the storage pool with the following command:

virsh pool-start vhbapool_host3
Pool vhbapool_host3 started

When starting the pool, libvirt will check if the vHBA with same wwpn: wwnn already
exists. If itdoes not yet exist, a new vHBA with the provided wwpn : wwnn will be created
and the configuration will not be persistent. Correspondingly, when destroying the
pool, libvirt will destroy the vHBA using the same wwpn: wwnn values as well.

4. Enable autostart

Finally, to ensure that subsequent host reboots will automatically define vHBAs for use in
virtual machines, set the storage pool autostart feature (in this example, for a pool named
vhbapool_host3):

virsh pool-autostart vhbapool_ host3

14.7.3. Configuring the virtual machine to use a vHBA LUN

After a storage pool is created for a vHBA, add the vHBA LUN to the virtual machine configuration.

1. Find available LUNs

First,usethevirsh vol-1list command in order to generate a list of available LUNs on
the vHBA. For example:

virsh vol-list vhbapool_host3

Name Path

unit:0:4:0 /dev/disk/by-path/pci-0000:10:00.0-fc-
0x5006016844602198-1un-0

unit:0:5:0 /dev/disk/by-path/pci-0000:10:00.0-fc-

0x5006016044602198-1un-0

The list of LUN names displayed will be available for use as disk volumes in virtual machine
configurations.

2. Add the vHBA LUN to the virtual machine

Add the vHBA LUN to the virtual machine by creating a disk volume on the virtual machine in
the virtual machine's XML. Specify the storage pool and the volume in the <source>
parameter, using the following as an example:

<disk type='volume' device='disk'>

154

Chapter 14. Storage pools

<driver name='gemu' type='raw'/>
<source pool='vhbapool_host3' volume='unit:0:4:0'/>
<target dev='hda' bus='ide'/>

</disk>

To specify a 1un device instead of a disk, refer to the following example:

<disk type='volume' device='lun' sgio='unfiltered'>
<driver name='gemu' type='raw'/>
<source pool='vhbapool_host3' volume='unit:0:4:0'
mode="'host'/>
<target dev='sda' bus='scsi'/>
<shareable />
</disk>

See Section 15.5.3, “Adding SCSI LUN-based storage to a guest” for XML configuration

14.7.4. Destroying the vHBA storage pool

A VvHBA created by the storage pool can be destroyed by the virsh pool-destroy command:
virsh pool-destroy vhbapool_host3

Note that executing the virsh pool-destroy command will also remove the vHBA that was

To verify the pool and vHBA have been destroyed, run
virsh nodedev-list --cap scsi_host

scsi_host5 will no longer appear in the list of results.

155

Virtualization Deployment and Administration Guide
Chapter 15. Storage Volumes

15.1. Introduction

Storage pools are divided into storage volumes. Storage volumes are an abstraction of physical
partitions, LVM logical volumes, file-based disk images and other storage types handled by libvirt.
Storage volumes are presented to guest virtual machines as local storage devices regardless of the
underlying hardware. Note the sections below do not contain all of the possible commands and
arguments that virsh allows, for more information refer to Section 23.15, “Storage Volume

To reference a specific volume, three approaches are possible:
The name of the volume and the storage pool

Avolume may be referred to by name, along with an identifier for the storage pool itbelongs
in. On the virsh command line, this takes the form - -pool storage pool volume_name.

For example, a volume named firstimage in the guest_images pool.

virsh vol-info --pool guest_images firstimage

Name: firstimage
Type: block
Capacity: 20.00 GB
Allocation: 20.00 GB
virsh #

The full path to the storage on the host physical machine system

Avolume may also be referred to by its full path on the file system. When using this
approach, a pool identifier does not need to be included.

For example, a volume named secondimage.img, visible to the host physical machine system
as /images/secondimage.img. The image can be referred to as /images/secondimage.img.

virsh vol-info /images/secondimage.img

Name: secondimage.img
Type: file

Capacity: 20.00 GB
Allocation: 136.00 kB

The unique volume key

When a volume is first created in the virtualization system, a unique identifier is generated
and assigned to it. The unique identifier is termed the volume key. The format of this volume
key varies upon the storage used.

When used with block based storage such as LVM, the volume key may follow this format:

156

Chapter 15. Storage Volumes

c3pKz4-gPVc-Xf7M-7WNM-WJc8-qSiz-mtvpGn

When used with file based storage, the volume key may instead be a copy of the full path to
the volume storage.

/images/secondimage.img
For example, a volume with the volume key of Wivnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr:

virsh vol-info Wlvnf7-a4a3-Tlje-1JDa-9eak-PZBv-LoZuUr

Name: firstimage
Type: block
Capacity: 20.00 GB
Allocation: 20.00 GB

virsh provides commands for converting between a volume name, volume path, or volume key:

vol-name

Returns the volume name when provided with a volume path or volume key.

virsh vol-name /dev/guest_images/firstimage
firstimage
virsh vol-name Wlvnf7-a4a3-Tlje-1JDa-9eak-PZBv-LoZuUr

vol-path

Returns the volume path when provided with a volume key, or a storage pool identifier and
volume name.

virsh vol-path Wlvnf7-a4a3-Tlje-1JDa-9eak-PZBv-LoZuUr
/dev/guest_images/firstimage

virsh vol-path --pool guest_images firstimage
/dev/guest_images/firstimage

The vol-key command

Returns the volume key when provided with a volume path, or a storage pool identifier and
volume name.

virsh vol-key /dev/guest_images/firstimage
Wlvnf7-a4a3-Tlje-1JDa-9eak-PZBv-LoZuUr

virsh vol-key --pool guest_images firstimage
Wlvnf7-a4a3-Tlje-1JDa-9eak-PZBv-LoZuUr

15.2. Creating volumes

This section shows how to create disk volumes inside a block based storage pool. In the example
below,thevirsh vol-create-as command will create a storage volume with a specific size in GB
within the guest_images_disk storage pool. As this command is repeated per volume needed, three
volumes are created as shown in the example. For additional parameters and arguments refer to

157

Virtualization Deployment and Administration Guide

virsh vol-create-as guest_images_disk volumel 8G
Vol volumel created

virsh vol-create-as guest_images_disk volume2 8G
Vol volume2 created

virsh vol-create-as guest_images_disk volume3 8G
Vol volume3 created

virsh vol-list guest_images_disk

Name Path

volumel /dev/sdb1l
volume?2 /dev/sdb2
volume3 /dev/sdb3

parted -s /dev/sdb print

Model: ATA ST3500418AS (scsi)

Disk /dev/sdb: 500GB

Sector size (logical/physical): 512B/512B
Partition Table: gpt

Number Start End Size File system Name Flags
2 17.4kB 8590MB 8590MB primary
3 8590MB 17.2GB 8590MB primary
1 21.5GB 30.1GB 8590MB primary

15.3. Cloning volumes

The new volume will be allocated from storage in the same storage pool as the volume being cloned.
The virsh vol-clone musthavethe --pool argument which dictates the name of the storage
pool that contains the volume to be cloned. The rest of the command names the volume to be cloned
(volume3) and the name of the new volume that was cloned (clonel). Thevirsh vol-list
command lists the volumes that are presentin the storage pool (guest_images_disk). For additional
commands and arguments refer to Section 23.15.1.2, “Cloning a storage volume”

virsh vol-clone --pool guest_images_disk volume3 clonel
Vol clonel cloned from volume3

virsh vol-list guest_images_disk

Name Path

volumel /dev/sdb1l
volume?2 /dev/sdb2
volume3 /dev/sdb3
clonel /dev/sdb4

parted -s /dev/sdb print
Model: ATA ST3500418AS (scsi)
Disk /dev/sdb: 500GB

158

Chapter 15. Storage Volumes

Sector size (logical/physical): 512B/512B
Partition Table: msdos

Number Start End Size File system Name Flags
1 4211MB 12.8GB 8595MB primary
2 12.8GB 21.4GB 8595MB primary
3 21.4GB 30.0GB 8595MB primary
4 30.0GB 38.6GB 8595MB primary

15.4. Deleting and removing volumes

For the virsh commands you need to delete and remove a volume, refer to Section 23.15.2, “Deleting
storage volumes”.

15.5. Adding storage devices to guests

This section covers adding storage devices to a guest. Additional storage can only be added as
needed. The following types of storage is discussed in this section:

File based storage. Refer to Section 15.5.1, “Adding file based storage to a guest”.

Block devices - including CD-ROM, DVD and floppy devices. Refer to Section 15.5.2, “Adding
hard drives and other block devices to a guest”.

SCSI controllers and devices. If your host physical machine can accommodate it, up to 100 SCSI
controllers can be added to any guest virtual machine. Refer to Section 15.5.4, “Managing
storage controllers in a guest virtual machine”.

15.5.1. Adding file based storage to a guest

File-based storage is a collection of files that are stored on the host physical machines file system
that act as virtualized hard drives for guests. To add file-based storage, perform the following steps:

Procedure 15.1. Adding file-based storage

1. Create a storage file or use an existing file (such as an IMG file). Note that both of the
following commands create a 4GB file which can be used as additional storage for a guest:

Pre-allocated files are recommended for file-based storage images. Create a pre-allocated
file using the following dd command as shown:

dd if=/dev/zero of=/var/lib/libvirt/images/FileName.img bs=1G
count=4

Alternatively, create a sparse file instead of a pre-allocated file. Sparse files are created
much faster and can be used for testing, but are not recommended for production
environments due to data integrity and performance issues.

dd if=/dev/zero of=/var/lib/libvirt/images/FileName.img bs=1G
seek=4096 count=4

159

Virtualization Deployment and Administration Guide

2. Create the additional storage by writing a <disk> elementin a new file. In this example, this file

will be known as NewStorage. xml.

A <disk> element describes the source of the disk, and a device name for the virtual block
device. The device name should be unique across all devices in the guest, and identifies the
bus on which the guest will find the virtual block device. The following example defines a
virtio block device whose source is a file-based storage container named FileName. img:

<disk type='file' device='disk'>
<driver name='gemu' type='raw' cache='none'/>
<source file='/var/lib/libvirt/images/FileName.img'/>
<target dev='vdb'/>

</disk>

Device names can also start with "hd" or "sd", identifying respectively an IDE and a SCSI
disk. The configuration file can also contain an <address> sub-element that specifies the
position on the bus for the new device. In the case of virtio block devices, this should be a
PCl address. Omitting the <add ress> sub-element lets libvirt locate and assign the next
available PCl slot.

3. Attach the CD-ROM as follows:

<disk type='file' device='cdrom'>
<driver name='gemu' type='raw' cache='none'/>
<source file='/var/lib/libvirt/images/FileName.img'/>
<readonly/>
<target dev='hdc'/>

</disk >

4. Add the device defined in NewStorage. xml with your guest (Guest1):

160

virsh attach-device --config Guestl ~/NewStorage.xml

This change will only apply after the guest has been destroyed and restarted. In
addition, persistent devices can only be added to a persistent domain, thatis a
domain whose configuration has been saved with virsh define command.

If the guestis running, and you want the new device to be added temporarily until the guestis
destroyed, omitthe --config option:

virsh attach-device Guestl ~/NewStorage.xml

Chapter 15. Storage Volumes

The virsh command allows for an attach-disk command that can set a limited
number of parameters with a simpler syntax and without the need to create an XML file.
The attach-disk command is used in a similar manner to the attach-device
command mentioned previously, as shown:

virsh attach-disk Guest1l
/var/lib/libvirt/images/FileName.img vdb --cache none

Note thatthe virsh attach-disk command also accepts the --config option.

5. Startthe guest machine (if itis currently notrunning):

virsh start Guestl

The following steps are Linux guest specific. Other operating systems handle new
storage devices in different ways. For other systems, refer to that operating system's
documentation.

Partitioning the disk drive

The guest now has a hard disk device called /dev/vdb. If required, partition this disk drive
and format the partitions. If you do not see the device that you added, then it indicates that
there is an issue with the disk hotplug in your guest's operating system.

a. Start fdisk for the new device:

fdisk /dev/vdb
Command (m for help):

b. Type nfor a new partition.

c. The following appears:

Command action
e extended
p primary partition (1-4)

Type p for a primary partition.

d. Choose an available partition number. In this example, the first partition is chosen by
entering 1.

Partition number (1-4): 1

161

Virtualization Deployment and Administration Guide

e. Enter the default first cylinder by pressing Enter.
First cylinder (1-400, default 1):

f. Selectthe size of the partition. In this example the entire disk is allocated by pressing
Enter.

Last cylinder or +size or +sizeM or +sizeK (2-400, default
400):

g. Enter t to configure the partition type.
Command (m for help): t

h. Selectthe partition you created in the previous steps. In this example, the partition
number is 1 as there was only one partition created and fdisk automatically selected
partition 1.

Partition number (1-4): 1
i. Enter 83 for a Linux partition.
Hex code (type L to list codes): 83
j. Enter w to write changes and quit.
Command (m for help): w
k. Formatthe new partition with the ext3 file system.
mke2fs -j /dev/vdb1l

7. Create a mount directory, and mountthe disk on the guest. In this example, the directory is
located in myfiles.

mkdir /myfiles
mount /dev/vdbl /myfiles

The guest now has an additional virtualized file-based storage device. Note however, that
this storage will not mount persistently across reboot unless defined in the guest's
/etc/fstab file:

/dev/vdb1l /myfiles ext3 defaults 00

15.5.2. Adding hard drives and other block devices to a guest

System administrators have the option to use additional hard drives to provide increased storage
space for a guest, or to separate system data from user data.

Procedure 15.2. Adding physical block devices to guests

162

Chapter 15. Storage Volumes

1. This procedure describes how to add a hard drive on the host physical machine to a guest. It
applies to all physical block devices, including CD-ROM, DVD and floppy devices.

Physically attach the hard disk device to the host physical machine. Configure the host
physical machine if the drive is not accessible by default.

2. Do one of the following:

a. Create the additional storage by writing a disk elementin a new file. In this example,
this file will be known as NewStorage. xml. The following example is a configuration
file section which contains an additional device-based storage container for the host
physical machine partition /dev/sro0 :

<disk type='block' device='disk'>
<driver name='gemu' type='raw' cache='none'/>
<source dev='/dev/sro'/>
<target dev='vdc' bus='virtio'/>

</disk>

b. Follow the instruction in the previous section to attach the device to the guest virtual
machine. Alternatively, you can usethe virsh attach-disk command, as shown:

virsh attach-disk Guestl /dev/sr0® vdc

Note that the following options are available:

The virsh attach-disk command also accepts the --config, --type, and -
-mode options, as shown:

virsh attach-disk Guestl /dev/sr0® vdc --config --type
cdrom --mode readonly

Additionally, --type also accepts --type disk in cases where the deviceis a
hard drive.

3. The guestvirtual machine now has a new hard disk device called /dev/vdc on Linux (or
something similar, depending on what the guest virtual machine OS chooses) . You can now
initialize the disk from the guest virtual machine, following the standard procedures for the
guest virtual machine's operating system. Refer to Procedure 15.1, “Adding file-based

163

Virtualization Deployment and Administration Guide

The host physical machine should not use filesystem labels to identify file systems in
the fstab file, the initrd file or on the kernel command line. Doing so presents a
security risk if less guest virtual machines, have write access to whole partitions or LVM
volumes, because a guest virtual machine could potentially write a filesystem label
belonging to the host physical machine, to its own block device storage. Upon reboot
of the host physical machine, the host physical machine could then mistakenly use the
guest virtual machine's disk as a system disk, which would compromise the host
physical machine system.

Itis preferable to use the UUID of a device to identify itin the fstab file, the 1nitrd file
or on the kernel command line. While using UUIDs is still not completely secure on
certain file systems, a similar compromise with UUID is significantly less feasible.

Guest virtual machines should not be given write access to whole disks or block
devices (for example, /dev/sdb). Guest virtual machines with access to whole block
devices may be able to modify volume labels, which can be used to compromise the
host physical machine system. Use partitions (for example, /dev/sdb1) or LVM
volumes to preventthls issue. Refer to https /laccess.redhat. com/documentatlon/en—

are using raw access to partitions, for example, /dev/sdb1 or raw disks such as
/dev/sdb, you should configure LVM to only scan disks that are safe, using the
global_filter setting Refer to https://access.redhat.com/documentation/en-

command.

15.5.3. Adding SCSI LUN-based storage to a guest

A host SCSI LUN device can be exposed entirely to the guest using three mechanisms, depending on
your host configuration. Exposing the SCSI LUN device in this way allows for SCSI commands to be
executed directly to the LUN on the guest. This is useful as a means to share a LUN between guests,
as well as to share Fibre Channel storage between hosts.

164

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/LVM_CLI.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/LVM_examples.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/lvmconf_file.html

Chapter 15. Storage Volumes

The optional sgio attribute controls whether unprivileged SCSI Generical I/0 (SG_IO)
commands are filtered for a device="'1lun' disk. The sgio attribute can be specified as
'filtered' or 'unfiltered', butmustbesetto 'unfiltered' to allowSG IO ioctl
commands to be passed through on the guestin a persistent reservation.

In addition to setting sgio="'unfiltered', the <shareable> element mustbe setto share
a LUN between guests. The sgio attribute defaultsto ' filtered' if not specified.

The <disk> XML attribute device="'1lun' is valid for the following guest disk configurations:

type='block' for <source dev='/dev/sdX'... />

<disk type='block' device='lun' sgio='unfiltered'>
<driver name='gemu' type='raw'/>
<source dev='/dev/disk/by-path/pci-0000\:04\:00.1-fc-
0x203400a0b85ad1d7-1un-0"'/>
<target dev='sda' bus='scsi'/>
<shareable />
</disk>

The backslashes prior to the colons in the <source> device name are required

type="'network' for<source protocol='iscsi'... />

<disk type='network' device='disk' sgio='unfiltered'>
<driver name='gemu' type='raw'/>
<source protocol='iscsi' name='ign.2013-07.com.example:iscsi-net-
pool/1'>
<host name='example.com' port='3260"'/>
</source>
<auth username='myuser'>
<secret type='iscsi' usage='libvirtiscsi'/>
</auth>
<target dev='sda' bus='scsi'/>
<shareable />
</disk>

type="'volume' when using an iSCSI or a NPIV/IVHBA source pool as the SCSI source pool.

The following example XML shows a guest using an iSCSI source pool (named iscsi-net-pool) as
the SCSI source pool:

<disk type='volume' device='lun' sgio='unfiltered'>
<driver name='gemu' type='raw'/>
<source pool='iscsi-net-pool' volume='unit:0:0:1' mode='host'/>
<target dev='sda' bus='scsi'/>

165

Virtualization Deployment and Administration Guide

<shareable />
</disk>

The mode= option within the <source> tag is optional, but if used, it must be set to
'"host' and not 'direct'. When setto 'host', libvirt will find the path to the device on
the local host. When setto 'direct', libvirt will generate the path to the device using the

source pool's source host data.

The iISCSI pool (iscsi-net-pool) in the example above will have a similar configuration to the
following:

virsh pool-dumpxml iscsi-net-pool
<pool type='iscsi'>
<name>iscsi-net-pool</name>
<capacity unit='bytes'>11274289152</capacity>
<allocation unit='bytes'>11274289152</allocation>
<available unit='bytes'>0</available>
<source>
<host name='192.168.122.1' port='3260"'/>
<device path='iqgn.2013-12.com.example:iscsi-chap-netpool'/>
<auth type='chap' username='redhat'>
<secret usage='libvirtiscsi'/>
</auth>
</source>
<target>
<path>/dev/disk/by-path</path>
<permissions>
<mode>0755</mode>
</permissions>
</target>
</pool>

To verify the details of the available LUNs in the iSCSI source pool, run the following command:

virsh vol-list iscsi-net-pool

Name Path

unit:0:0:1 /dev/disk/by-path/ip-192.168.122.1:3260-iscsi-
iqn.2013-12.com.example:iscsi-chap-netpool-lun-1

unit:0:0:2 /dev/disk/by-path/ip-192.168.122.1:3260-iscsi-

iqn.2013-12.com.example:iscsi-chap-netpool-lun-2

type="'volume' when using a NPIV/IVHBA source pool as the SCSI source pool.

The following example XML shows a guest using a NPIV/VHBA source pool (named
vhbapool _host3) as the SCSI source pool:

<disk type='volume' device='lun' sgio='unfiltered'>

<driver name='gemu' type='raw'/>
<source pool='vhbapool_host3' volume='unit:0:1:0'/>

166

Chapter 15. Storage Volumes

<target dev='sda' bus='scsi'/>
<shareable />
</disk>

The NPIV/IVHBA pool (vhbapool_host3) in the example above will have a similar configuration to:

virsh pool-dumpxml vhbapool_host3
<pool type='scsi'>
<name>vhbapool_host3</name>
<capacity unit='bytes'>0</capacity>
<allocation unit='bytes'>0</allocation>
<available unit='bytes'>0</available>
<source>
<adapter type='fc_host' parent='scsi_host3' managed='yes'
wwnn="'5001a4a93526d0al' wwpn='5001lad4ace3ee0@45d'/>
</source>
<target>
<path>/dev/disk/by-path</path>
<permissions>
<mode>0700</mode>
<owner>0</owner>
<group>0</group>
</permissions>
</target>
</pool>

To verify the details of the available LUNs on the vHBA, run the following command:

virsh vol-list vhbapool_host3

Name Path

unit:0:0:0 /dev/disk/by-path/pci-0000:10:00.0-fc-
0x5006016044602198-1un-0

unit:0:1:0 /dev/disk/by-path/pci-0000:10:00.0-fc-

0x5006016844602198-1un-0

For more information on using a NP1V vHBA with SCSI devices, see Section 14.7.3, “Configuring

The following procedure shows an example of adding a SCSI LUN-based storage device to a guest.
Any of the above <disk device='lun'> guestdisk configurations can be attached with this
method. Substitute configurations according to your environment.

Procedure 15.3. Attaching SCSI LUN-based storage to a guest

1. Create the device file by writing a <disk> element in a new file, and save this file with an XML
extension (in this example, sda.xml):

cat sda.xml

<disk type='volume' device='lun' sgio='unfiltered'>
<driver name='gemu' type='raw'/>
<source pool='vhbapool_host3' volume='unit:0:1:0'/>

167

Virtualization Deployment and Administration Guide

<target dev='sda' bus='scsi'/>
<shareable />

</disk>

2. Associate the device created in sda.xml with your guest virtual machine (Guestl, for example):

virsh attach-device --config Guestl ~/sda.xml

Running the virsh attach-device command with the - -config option requires a
guestreboot to add the device permanently to the guest. Alternatively, the - -
persistent option can be used instead of - -config, which can also be used to
hotplug the device to a guest.

Alternatively, the SCSI LUN-based storage can be attached or configured on the guest using virt-
manager. To configure this using virt-manager, click the Add Hardware button and add a virtual
disk with the desired parameters, or change the settings of an existing SCSI LUN device from this
window. In Red Hat Enterprise Linux 7.2, the SGIO value can also be configured in virt-manager:

rhel7-2-gquest Virtual Machine = o x

File Virtual Machine View SendKey

W

=

Overview
Performance
Processor

Memory

#lOEIE

Boot Options
B scSilunl
B NIC:05:d7:b6
[#] Tablet

’i‘) Mouse
== Keyboard

@ Display Spice

L

Sound: ich®
=0 Serial 1

&y Channel gemu-ga
@i Channel spice
B video @XL

m Controller USB

m Controller PCI

B controler scsi

Add Hardware

B -~ | I

Virtual Disk

Source path: /dev/sda
Device type: SCSILlunl
Storage size: Unknown
Readonly:
Shareable:

¥ Advanced options

Disle bus: | SC51 hi

Serial number:
S5GIO: | unfiltered -
Storage format: | raw -

» Performance options

P 10 Tuning

Remove Cancel Apply

Figure 15.1. Configuring SCSI LUN storage with virt-manager

15.5.4. Managing storage controllers in a guest virtual machine

168

Chapter 15. Storage Volumes

Unlike virtio disks, SCSI devices require the presence of a controller in the guest virtual machine.
This section details the necessary steps to create a virtual SCSI controller (also known as "Host Bus
Adapter", or HBA), and to add SCSI storage to the guest virtual machine.

Procedure 15.4. Creating a virtual SCSI controller

1. Display the configuration of the guest virtual machine (6uest1) and look for a pre-existing
SCSI controller:

virsh dumpxml Guestl | grep controller.*scsi

If a device controller is present, the command will output one or more lines similar to the
following:

<controller type='scsi' model='virtio-scsi' index='0'/>

2. Ifthe previous step did not show a device controller, create the description for one in a new
file and add itto the virtual machine, using the following steps:

a. Create the device controller by writing a <controller> elementin a new file and
save this file with an XML extension. virtio-scsi-controller. xml, for example.

<controller type='scsi' model='virtio-scsi'/>

b. Associate the device controller you just created in virtio-scsi-controller. xml
with your guest virtual machine (Guestl, for example):

virsh attach-device --config Guestl ~/virtio-scsi-
controller.xml

In this example the - -config option behaves the same as it does for disks. Refer to
Procedure 15.2, “Adding physical block devices to guests” for more information.

3. Add a new SCSI disk or CD-ROM. The new disk can be added using the methods in sections
Sectlon 15.5.1, “Adding flle based storage to a guest” and Section 15. 5 2, “Addlng hard

device name that starts with sd. The supported limit for each controller is 1024 virtio-scsi
disks, butitis possible that other available resources in the host (such as file descriptors) are
exhausted with fewer disks.

For more mformatlon refer to the following Red Hat Enterprlse Linux 6 Whltepaper The next—

virsh attach-disk Guestl /var/lib/libvirt/images/FileName.img sdb
--cache none

Depending on the version of the driver in the guest virtual machine, the new disk may not be
detected immediately by a running guest virtual machine. Follow the steps in the Red Hat
Enterprise Linux Storage Administration Guide.

169

http://www.redhat.com/en/resources/rhel-next-gen-storage-for-rhel-kernel-vm

Virtualization Deployment and Administration Guide

Chapter 16. Using gemu-img

The gemu-img command line tool is used for formatting, modifying, and verifying various file systems
used by KVM. gemu-img options and usages are highlighted in the sections that follow.

16.1. Checking the disk image
To perform a consistency check on a disk image with the file name imgname.

gemu-img check [-f format] imgname

Only the gcow2, qcow?2 version3, and vdi formats support consistency checks.

16.2. Committing changes to an image

Commit any changes recorded in the specified image file (imgname) to the file's base image with the
gemu-img commit command. Optionally, specify the file's format type (fmt).

gemu-img commit [-f qcow2] [-t cache] imgname

16.3. Converting an existing image to another format

The convert option is used to convert one recognized image format to another image format. Refer

gemu-img convert [-c] [-p] [-f fmt] [-t cache] [-0 output_fmt] [-0
options] [-S sparse_size] filename output_filename

The -p parameter shows the progress of the command (optional and not for every command) and -S
flag allows for the creation of a sparse file, which is included within the disk image. Sparse files in all
purposes function like a standard file, except that the physical blocks that only contain zeros (i.e.,
nothing). When the Operating System sees this file, it treats it as it exists and takes up actual disk
space, even though in reality it doesn't take any. This is particularly helpful when creating a disk for
a guest virtual machine as this gives the appearance that the disk has taken much more disk space
than it has. For example, if you set -S to 50Gb on a disk image thatis 10Gb, then your 10Gb of disk
space will appear to be 60Gb in size even though only 10Gb is actually being used.

Convert the disk image filename to disk image output_filename using formatoutput_format.

The disk image can be optionally compressed with the -¢ option, or encrypted with the -0 option by

setting -0 encryption. Note that the options available with the -o parameter differ with the selected
format.

Only the qcow2 and gcow?2 format supports encryption or compression. gqcow2 encryption uses the
AES format with secure 128-bit keys. qcow2 compression is read-only, so if a compressed sector is
converted from gcow2 format, it is written to the new format as uncompressed data.

170

Chapter 16. Using gemu-img

Image conversion is also useful to get a smaller image when using a format which can grow, such as
gcow or cow. The empty sectors are detected and suppressed from the destination image.

16.4. Creating and formatting new images or devices
Create the new disk image filename of size size and format format.
gemu-img create [-f format] [-0 options] filename [size]

If a base image is specified with -o backing_file=filename, the image will only record
differences between itself and the base image. The backing file will not be modified unless you use
the commit command. No size needs to be specified in this case.

16.5. Displaying image information

The info parameter displays information about a disk image fiename. The format for the info
option is as follows:

gemu-img info [-f format] filename

This command is often used to discover the size reserved on disk which can be different from the
displayed size. If snapshots are stored in the disk image, they are displayed also. This command will
show for example, how much space is being taken by a qcow2 image on a block device. This is done
by running the qemu-img. You can check that the image in use is the one that matches the output of
theqemu-img info command with the gemu-img check command.

gemu-img info /dev/vg-90.100-sluo/lv-90-100-sluo
image: /dev/vg-90.100-sluo/lv-90-100-sluo
file format: qcow2
virtual size: 20G (21474836480 bytes)
disk size: O
cluster_size: 65536
16.6. Re-basing a backing file of an image

The qemu-img rebase changes the backing file of an image.

gemu-img rebase [-f fmt] [-t cache] [-p] [-u] -b backing_file [-F
backing_fmt] filename

The backing file is changed to backing_file and (if the format of filename supports the feature), the
backing file formatis changed to backing_format.

Only the gcow?2 format supports changing the backing file (rebase).

There are two different modes in which rebase can operate: safe and unsafe.

171

Virtualization Deployment and Administration Guide

safe modeis used by default and performs a real rebase operation. The new backing file may differ
fromthe old one and the gemu-img rebase command will take care of keeping the guest virtual
machine-visible content of filename unchanged. In order to achieve this, any clusters that differ
between backing_file and old backing file of flename are merged into filename before making any
changes to the backing file.

Note that safe mode is an expensive operation, comparable to converting an image. The old
backing file is required for it to complete successfully.

unsafe mode is used ifthe -u option is passed to gqemu-img rebase. In this mode, only the
backing file name and format of filename is changed, without any checks taking place on the file
contents. Make sure the new backing file is specified correctly or the guest-visible content of the
image will be corrupted.

This mode is useful for renaming or moving the backing file. It can be used without an accessible old
backing file. For instance, it can be used to fix an image whose backing file has already been moved
or renamed.

16.7. Re-sizing the disk image

Change the disk image filename as if it had been created with size size. Only images in raw format can
be re-sized in both directions, whereas qcow?2 version 2 or gcow?2 version 3 images can be grown
but cannot be shrunk.

Use the following to set the size of the disk image filename to size bytes:
gemu-img resize filename size

You can also re-size relative to the current size of the disk image. To give a size relative to the current
size, prefix the number of bytes with + to grow, or - to reduce the size of the disk image by that
number of bytes. Adding a unit suffix allows you to setthe image size in kilobytes (K), megabytes (M),
gigabytes (G) or terabytes (T).

gemu-img resize filename [+]|-]size[K|M|G|T]

A Warning

Before using this command to shrink a disk image, you must use file system and partitioning
tools inside the VM itself to reduce allocated file systems and partition sizes accordingly.
Failure to do so will resultin data loss.

After using this command to grow a disk image, you must use file system and partitioning tools
inside the VM to actually begin using the new space on the device.

16.8. Listing, creating, applying, and deleting a snapshot

Using different parameters from the gemu-img snapshot command you can list, apply, create, or
delete an existing snapshot (snapshot) of specified image (filename).

gemu-img snapshot [-1 | -a snapshot | -c snapshot | -d snapshot]
filename

172

Chapter 16. Using qemu-img

The accepted arguments are as follows:
-1 lists all snapshots associated with the specified disk image.
The apply option, -a, reverts the disk image (filename) to the state of a previously saved snapshot.
-c creates a snapshot (snapshot) of an image (filename).

-d deletes the specified snapshot.

16.9. Supported gemu-img formats

When a format is specified in any of the gemu-img commands, the following format types may be
used:

raw - Raw disk image format (default). This can be the fastest file-based format. If your file system
supports holes (for example in ext2 or ext3), then only the written sectors will reserve space. Use
gemu-img info to obtain the real size used by theimage or1s -1s on Unix/Linux. Although
Raw images give optimal performance, only very basic features are available with a Raw image
(no snapshots etc.).

gcow2 - QEMU image format, the most versatile format with the best feature set. Use it to have
optional AES encryption, zlib-based compression, support of multiple VM snapshots, and smaller
images, which are useful on file systems that do not support holes . Note that this expansive
feature set comes at the cost of performance.

Although only the formats above can be used to run on a guest virtual machine or host physical
machine machine, gemu-img also recognizes and supports the following formats in order to
convert from them into either raw , or qcow2 format. The format of an image is usually detected
automatically. In addition to converting these formats into raw or qcow2 , they can be converted
back from raw or gqcow2 to the original format. Note that the qcow2 version supplied with Red Hat
Enterprise Linux 7 is 1.1. The format that is supplied with previous versions of Red Hat

Enterprise Linux will be 0.10. You can revertimage files to previous versions of gcow2. To know
which version you are using, run qemu-img info qcow2 [imagefilename.img] command.

bochs - Bochs disk image format.

cloop - Linux Compressed Loop image, useful only to reuse directly compressed CD-ROM
images present for example in the Knoppix CD-ROMs.

cow - User Mode Linux Copy On Write image format. The cow formatis included only for
compatibility with previous versions.

dmg - Mac disk image format.

nbd - Network block device.

parallels - Parallels virtualization disk image format.

gcow - Old QEMU image format. Only included for compatibility with older versions.
vdi - Oracle VM VirtualBox hard disk image format.

vmd k - VMware 3 and 4 compatible image format.

vvfat - Virtual VFAT disk image format.

173

Virtualization Deployment and Administration Guide

Chapter 17. KVM live migration

This chapter covers migrating guest virtual machines running on one host physical machine to
another. In both instances, the host physical machines are running the KVM hypervisor.

Migration describes the process of moving a guest virtual machine from one host physical machine
to another. This is possible because guest virtual machines are running in a virtualized environment
instead of directly on the hardware. Migration is useful for:

Load balancing - guest virtual machines can be moved to host physical machines with lower
usage when their host physical machine becomes overloaded, or another host physical machine
is under-utilized.

Hardware independence - when we need to upgrade, add, or remove hardware devices on the
host physical machine, we can safely relocate guest virtual machines to other host physical
machines. This means that guest virtual machines do not experience any downtime for hardware
improvements.

Energy saving - guest virtual machines can be redistributed to other host physical machines and
can thus be powered off to save energy and cut costs in low usage periods.

Geographic migration - guest virtual machines can be moved to another location for lower latency
or in serious circumstances.

Migration works by sending the state of the guest virtual machine's memory and any virtualized
devices to a destination host physical machine. Itis recommended to use shared, networked storage
to store the guest virtual machine's images to be migrated. Itis also recommended to use libvirt-
managed storage pools for shared storage when migrating virtual machines.

Migrations can be performed live or not.

In a live migration, the guest virtual machine continues to run on the source host physical machine,
while its memory pages are transferred to the destination host physical machine. During migration,
KVM monitors the source for any changes in pages it has already transferred, and begins to transfer
these changes when all of the initial pages have been transferred. KVM also estimates transfer speed
during migration, so when the remaining amount of data to transfer will take a certain configurable
period of time (10ms by default), KVM suspends the original guest virtual machine, transfers the
remaining data, and resumes the same guest virtual machine on the destination host physical
machine.

In contrast, a non-live migration (offline migration) suspends the guest virtual machine and then
copies the guest virtual machine's memory to the destination host physical machine. The guest
virtual machine is then resumed on the destination host physical machine and the memory the guest
virtual machine used on the source host physical machine is freed. The time it takes to complete such
a migration only depends on network bandwidth and latency. If the network is experiencing heavy
use or low bandwidth, the migration will take much longer. It should be noted that if the original guest
virtual machine modifies pages faster than KVM can transfer them to the destination host physical
machine, offline migration must be used, as live migration would never complete.

If you are migrating a guest virtual machine that has virtio devices on it please adhere to the

17.1. Live miaration reauirements

174

Chapter 17. KVM live migration

— e s s = s g Rt s — s s = o — e — - e e —

Migrating guest virtual machines requires the following:

Migration requirements
A guest virtual machine installed on shared storage using one of the following protocols:
Fibre Channel-based LUNs
iISCSI
FCoE
NFS
GFS2

SCSI RDMA protocols (SCSI RCP): the block export protocol used in Infiniband and 10GbE
iIWARP adapters

Make sure that the libvirtd service is enabled.
systemctl enable libvirtd

Make sure that the libvirtd service is running.
systemctl restart libvirtd

. Itis also important to note that the ability to migrate effectively is dependent on the parameter
settings in the /etc/1libvirt/1libvirtd. conf configuration file.

Both systems must have the appropriate TCP/IP ports open. In cases where a firewall is used refer
to the Red Hat Enterprise Linux Virtualization Security Guide for detailed portinformation.

A separate system exporting the shared storage medium. Storage should notreside on either of
the two host physical machines being used for migration.

Shared storage must mount at the same location on source and destination systems. The
mounted directory names must be identical. Although it is possible to keep the images using
different paths, itis not recommended. Note that, if you are intending to use virt-manager to
perform the migration, the path names must be identical. If however you intend to use virsh to
perform the migration, different network configurations and mount directories can be used with the
help of --xml option or pre-hooks when doing migrations (refer to Live Migration Limitations). For

When migration is attempted on an existing guest virtual machine in a public bridge+tap network,
the source and destination host physical machines must be located in the same network.
Otherwise, the guest virtual machine network will not operate after migration.

175

http://www.libvirt.org/hooks.html

Virtualization Deployment and Administration Guide

Guest virtual machine migration has the following limitations when used on Red Hat Enterprise
Linux with virtualization technology based on KVM:

Pointto point migration — must be done manually to designate destination hypervisor from
originating hypervisor

No validation or roll-back is available

Determination of target may only be done manually

Storage migration cannot be performed live on Red Hat Enterprise Linux 7, but you can

migrate storage while the guest virtual machine is powered down. Live storage migration is
available on Red Hat Enterprise Virtualization . Call your service representative for details.

Procedure 17.1. Configuring libvirtd.conf

1. Opening the 1ibvirtd. conf requires running the command as root:
vim /etc/libvirt/libvirtd.conf

2. Change the parameters as needed and save the file.

3. Restartthe 1ibvirtd service:

systemctl restart libvirtd

17.2. Live migration and Red Hat Enterprise Linux version compatibility

Table 17.1. Live Migration Compatibility

Migration Release Type Example Live Migration Notes
Method Support
Forward Major release 6.5+ - 7. Fully supported Any issues
should be
reported
Backward Major release 7X - 6.y Not supported
Forward Minor release 7x - 7y (7.0 - Fully supported Any issues
7.1) should be
reported
Backward Minor release 7y - 7x (7.1 > Fully supported Any issues
7.0) should be
reported

Troubleshooting problems with migration

Issues with the migration protocol — If backward migration ends with "unknown section
error", repeating the migration process can repair the issue as it may be a transient error. If not,
please reportthe problem.

176

Chapter 17. KVM live migration

Configuring network storage

Configure shared storage and install a guest virtual machine on the shared storage.

17.3. Shared storage example: NFS for a simple migration

This example uses NFS to share guest virtual machine images with other KVM host physical
machines. Although not practical for large installations, itis presented to demonstrate
migration techniques only. Do not use this example for migrating or running more than a few
guest virtual machines. In addition, itis required that the synch parameter is enabled. This is
required for proper export of the NFS storage.

Also note, that the instructions provided herin are not meant to replace the detailed instructions
found in Red Hat Linux Storage Administration Guide. Refer to this guide for information on configuring
NFS, opening IP tables, and configuring the firewall.

Make sure that NFS file locking is notused as itis not supported in KVM.

1. Export your libvirt image directory

Migration requires storage to reside on a system that is separate to the migration target
systems. On this separate system, export the storage by adding the defaultimage directory to
the /etc/exports file:

/var/lib/libvirt/images *.example.com(rw,no_root_squash, sync)
Change the hostname parameter as required for your environment.

2. Start NFS

a. Install the NFS packages if they are not yet installed:
yum install nfs-utils

b. Make sure that the ports for NFS in iptables (2049, for example) are opened and
add NFS to the /etc/hosts.allow file.

c. Startthe NFS service:

systemctl restart nfs-server

3. Mount the shared storage on the destination

177

Virtualization Deployment and Administration Guide

On the migration destination system, mountthe /var/l1ib/libvirt/images directory:

mount storage host:/var/lib/libvirt/images
/var/lib/libvirt/images

Whichever directory is chosen for the source host physical machine must be exactly
the same as that on the destination host physical machine. This applies to all types of
shared storage. The directory must be the same or the migration with virt-manager will
fail.

17.4. Live KVM migration with virsh

A guest virtual machine can be migrated to another host physical machine with the virsh command.
The migrate command accepts parameters in the following format:

virsh migrate --live GuestName DestinationURL

Note that the --live option may be eliminated when live migration is not desired. Additional options are

The GuestName parameter represents the name of the guest virtual machine which you want to
migrate.

The DestinationURL parameter is the connection URL of the destination host physical machine.
The destination system must run the same version of Red Hat Enterprise Linux, be using the same
hypervisor and have 1ibvirtrunning.

The DestinationURL parameter for normal migration and peer2peer migration has different
semantics:

normal migration: the DestinationURL is the URL of the target host physical machine as
seen from the source guest virtual machine.

peer2peer migration: DestinationURL is the URL of the target host physical machine as
seen from the source host physical machine.

Once the command is entered, you will be prompted for the root password of the destination system.

Name resolution must be working on both sides (source and destination) in order for
migration to succeed. Each side must be able to find the other. Make sure that you can ping
one side to the other to check that the name resolution is working.

178

Chapter 17. KVM live migration

Example: live migration with virsh

This example migrates fromhostl. example.comto host2. example. com. Change the host
physical machine names for your environment. This example migrates a virtual machine named
guestl-rhel6-64.

This example assumes you have fully configured shared storage and meet all the prerequisites

1.

Verify the guest virtual machine is running

From the source system, hostl. example. com, verify guesti-rhel6-64 is running:

[root@hostl ~]# virsh list
Id Name State

10 guestl-rhel6-64 running

Migrate the guest virtual machine

Execute the following command to live migrate the guest virtual machine to the destination,
host2. example.com. Append /system to the end of the destination URL to tell libvirt that
you need full access.

virsh migrate --live guestli-rhel7-64
gemu+ssh://host2.example.com/system

Once the command is entered you will be prompted for the root password of the destination
system.

Wait

The migration may take some time depending on load and the size of the guest virtual
machine. virsh only reports errors. The guest virtual machine continues to run on the
source host physical machine until fully migrated.

Verify the guest virtual machine has arrived at the destination host

From the destination system, host2. example. com, verify guestl-rhel7-64 is running:

[root@host2 ~]# virsh list
Id Name State

10 guestl-rhel7-64 running

The live migration is now complete.

179

Virtualization Deployment and Administration Guide

libvirt supports a variety of networking methods including TLS/SSL, UNIX sockets, SSH, and
unencrypted TCP. Refer to Chapter 21, Remote management of guests for more information on
using other methods.

Non-running guest virtual machines cannot be migrated with the virsh migrate command.
To migrate a non-running guest virtual machine, the following script should be used:

virsh -c qemu+ssh://<target-system-FQDN> migrate --offline --
persistent

17.4.1. Additional tips for migration with virsh

Itis possible to perform multiple, concurrent live migrations where each migration runs in a separate
command shell. However, this should be done with caution and should involve careful calculations

as each migration instance uses one MAX_CLIENT from each side (source and target). As the default
setting is 20, there is enough to run 10 instances without changing the settings. Should you need to
change the settings, refer to the procedure Procedure 17.1, “Configuring libvirtd.conf”.

2. Look for the Processing controls section.

HHRHHABHHBH AR HH R H AR H AR HH R H B H AR H AR H A H BB H AR HHA R H AR H AR AR HHRHH
#

Processing controls

#

The maximum number of concurrent client connections to allow
over all sockets combined.
#max_clients = 20

The minimum limit sets the number of workers to start up
initially. If the number of active clients exceeds this,
then more threads are spawned, upto max_workers limit.
Typically you'd want max_workers to equal maximum number
of clients allowed

#min_workers = 5

#max_workers = 20

H o HF OH H*

The number of priority workers. If all workers from above
pool will stuck, some calls marked as high priority

(notably domainDestroy) can be executed in this pool.
#prio_workers = 5

180

Chapter 17. KVM live migration

Total global limit on concurrent RPC calls. Should be

at least as large as max_workers. Beyond this, RPC requests
will be read into memory and queued. This directly impact
memory usage, currently each request requires 256 KB of
memory. So by default upto 5 MB of memory is used

XXX this isn't actually enforced yet, only the per-client
limit is used so far
#max_requests = 20

H o HFH O H HH

Limit on concurrent requests from a single client
connection. To avoid one client monopolizing the server
this should be a small fraction of the global max_requests
and max_workers parameter

#max_client_requests = 5

H H HF H

HHHH BB HHHHHBHHAH AR B HHAH AR HHHHH BB HAH AR B HHH AR B HHAH AR HHHH BB HHHH

3. Changethemax_clients and max_workers parameters settings. It is recommended that
the number be the same in both parameters. The max_clients will use 2 clients per
migration (one per side) and max_workers will use 1 worker on the source and 0 workers on
the destination during the perform phase and 1 worker on the destination during the finish
phase.

The max_clients and max_workers parameters settings are effected by all guest
virtual machine connections to the libvirtd service. This means that any user thatis
using the same guest virtual machine and is performing a migration at the same time
will also beholden to the limits setin the the max_clients and max_workers
parameters settings. This is why the maximum value needs to be considered carefully
before performing a concurrent live migration.

Themax_clients parameter controls how many clients are allowed to connect to
libvirt. When a large number of containers are started at once, this limit can be easily
reached and exceeded. The value of the max_clients parameter could be increased
to avoid this, but doing so can leave the system more vulnerable to denial of service
(DoS) attacks against instances. To alleviate this problem, a new
max_anonymous_clients setting has been introduced in Red Hat Enterprise Linux
7.0 that specifies a limit of connections which are accepted but not yet authenticated.
You can implement a combination of max_clients and max_anonymous_clients
to suit your workload.

4. Save the file and restart the service.

181

Virtualization Deployment and Administration Guide

There may be cases where a migration connection drops because there are too many
ssh sessions that have been started, but not yet authenticated. By default, sshd allows
only 10 sessions to be in a "pre-authenticated state" at any time. This setting is
controlled by the MaxStartups parameter in the sshd configuration file (located here:
/etc/ssh/sshd_config), which may require some adjustment. Adjusting this
parameter should be done with caution as the limitation is putin place to prevent DoS
attacks (and over-use of resources in general). Setting this value too high will negate
its purpose. To change this parameter, edit the file /etc/ssh/sshd_config, remove
the # from the beginning of the MaxStartups line, and change the 10 (default value)
to a higher number. Remember to save the file and restart the sshd service. For more
information, refer to the sshd_config man page.

17.4.2. Additional options for the virsh migrate command

In addition to --1ive, virsh migrate accepts the following options:
--direct - used for direct migration
--p2p - used for peer-2-peer migration
--tunneled - used for tunneled migration

--offline - migrates domain definition without starting the domain on destination and without
stopping iton source host. Offline migration may be used with inactive domains and it must be
used with the - -persistent option.

--persistent - leaves the domain persistent on destination host physical machine
--undefinesource - undefines the domain on the source host physical machine
--suspend - leaves the domain paused on the destination host physical machine

--change-protection - enforces that no incompatible configuration changes will be made to
the domain while the migration is underway; this flag is implicitly enabled when supported by the
hypervisor, but can be explicitly used to reject the migration if the hypervisor lacks change
protection support.

- -unsafe - forces the migration to occur, ignoring all safety procedures.
--verbose - displays the progress of migration as itis occurring

--compressed - activates compression of memory pages that have to be transferred repeatedly
during live migration.

--abort-on-error - cancels the migration if a soft error (for example I/O error) happens during
the migration.

--domain name - sets the domain name, id or uuid.

--desturi uri - connection URI of the destination host as seen from the client (normal
migration) or source (p2p migration).

--migrateuri uri -the migration URI, which can usually be omitted.

--graphicsuri uri - graphics URIto be used for seamless graphics migration.

182

Chapter 17. KVM live migration

--listen-address address - sets the listen address that the hypervisor on the destination
side should bind to for incoming migration.

--timeout seconds - forces a guest virtual machine to suspend when the live migration
counter exceeds N seconds. It can only be used with a live migration. Once the timeout is initiated,
the migration continues on the suspended guest virtual machine.

--dname newname - is used for renaming the domain during migration, which also usually can
be omitted

--xml filename - the filename indicated can be used to supply an alternative XML file for use
on the destination to supply a larger set of changes to any host-specific portions of the domain
XML, such as accounting for naming differences between source and destination in accessing
underlying storage. This option is usually omitted.

In addtion the following commands may help as well:

virsh migrate-setmaxdowntime domain downtime - will seta maximum tolerable
downtime for a domain which is being live-migrated to another host. The specified downtime is in
milliseconds. The domain specified must be the same domain thatis being migrated.

virsh migrate-compcache domain --size - will setand or getthe size of the cache in
bytes which is used for compressing repeatedly transferred memory pages during a live migration.
When the - -size is not used the command displays the current size of the compression cache.
When --sizeis used, and specified in bytes, the hypervisor is asked to change compression to
match the indicated size, following which the current size is displayed. The --size argumentis
supposed to be used while the domain is being live migrated as a reaction to the migration
progress and increasing number of compression cache misses obtained from the
domjobingfo.

virsh migrate-setspeed domain bandwidth - sets the migration bandwidth in Mib/sec for
the specified domain which is being migrated to another host.

virsh migrate-getspeed domain - gets the maximum migration bandwidth thatis available
in Mib/sec for the specified domain.

Refer to Live Migration Limitations or the virsh man page for more information.

17.5. Migrating with virt-manager

This section covers migrating a KVM guest virtual machine with virt-manager from one host
physical machine to another.

1. Open virt-manager

Open virt-manager. Choose Applications - System Tools - Virtual Machine
Manager from the main menu bar to launch virt-manager.

183

Virtualization Deployment and Administration Guide

File Edit View Help

i

Name v CPU usage
=~ localhost (QEMLU)

i RHEL-3.9

Shutoff

H RHEL-4.8

Shutoff

i RHEL-6&

Shutoff

|| guestl-rhel&é-64

Running

Figure 17.1. Virt-Manager maih menu

2. Connect to the target host physical machine

Connectto the target host physical machine by clicking on the File menu, then click Add
Connection.

|Edit View Help

Close Ctri+w
Quit Ctrl+0Q
= localhost (LEMU)

i RHEL-3.9

Shutoff

v CPU usage

RHEL-4.8
Shutoff

RHEL-&
Shutoff

[
[
guestl-rhels-64

Running

Figure 17.2. Open Add Connection window

3. Add connection

The Add Connection window appears.

184

Chapter 17. KVM live migration

Hypervisor: | QEMU/KVM s
Connect to remote host
Method: | SSH S
Username: |root
Hostname: |virtlab22 w

Autoconnect:]
Generated URI: gemu+ssh://root@virtlab22/system

| Cancel || Connect |

Figure 17.3. Adding a connection to the target host physical machine

Enter the following details:
Hypervisor: Select QEMU/KVM.
Method: Select the connection method.
Username: Enter the username for the remote host physical machine.

Ho stname: Enter the hostname for the remote host physical machine.

Click the Connect button. An SSH connection is used in this example, so the specified user's

password must be entered in the next step.

<?> root@virtlab22's password:

I

Passphrase length hidden intentionally

| Cancel || oK

Figure 17.4. Enter password

185

Virtualization Deployment and Administration Guide

4. Migrate guest virtual machines

Open the list of guests inside the source host physical machine (click the small triangle on
the left of the host name) and right click on the guest thatis to be migrated (guestl-rhel6-
64 in this example) and click Migrate.

File Edit View Help

E S @ -

Name v (CPU usage
=~ localhost (QEMLU)
- RHEL-3.9
= Shutoff
- RHEL-4.8
= Shutoff
- RHEL-6
= Shutoff
guestl-rhel6-64
Running Run
= wirtlab22 (QEMLU} Pause
[l RHEL6 Shut Down >
= Shutoff
Clone...
T] - -
Delete
Open

Figure 17.5. Choosing the guest to be migrated

In the New Host field, use the drop-down list to select the host physical machine you wish to
migrate the guest virtual machine to and click Migrate.

186

Chapter 17. KVM live migration

[Migrate 'guestl-rhel6-64'

Name: guestl-rhel6-64
Original host: virtlabl8

MNew host: | virtlab22 (QEMU)

L

Migrate offline: [

= Advanced options

Tunnel migration through libvirt's daemon: ||

Max downtime: [] |20 | ms
Connectivity
Address: [|
port: (J [49152 |3
Bandwidth: [|0 :| Mbps
| Cancel | | Migrate

Figure 17.6. Choosing the destination host physical machine and starting the
migration process

A progress window will appear.

Migrating VM 'guestl-rhel6-64' from virtlabl8
to virtlab2 2. This may take awhile.

Migrating domain

Figure 17.7. Progress window

187

Virtualization Deployment and Administration Guide

virt-manager now displays the newly migrated guest virtual machine running in the
destination host. The guest virtual machine thatwas running in the source host physical
machine is now listed inthe Shutoff state.

File Edit View Help

. (S8 Open [> G) v

Name v~ CPU usage

=~ localhost (QEMU}

- RHEL-2.D

= Shutoff

RHEL-4.8
Shutoff

RHEL-&
Shutoff

guestl-rhelé-64
m Shutoff

- virtlab22 (QEMU)
RHELG

-' Shutoff

guestl-rhelé-64
Running

Figure 17.8. Migrated guest virtual machine running in the destination host
physical machine

5. Optional - View the storage details for the host physical machine
In the Edit menu, click Connection Details, the Connection Details window appears.

Click the Storage tab. The iSCSI target details for the destination host physical machine is
shown. Note that the migrated guest virtual machine is listed as using the storage

188

Chapter 17. KVM live migration

File

Qverview l Virtual Networks| Storage ‘ Network Interfacesl

1o, default iscsirhel6guest: 0.00 MB Free / 30.00 GB In Use
Filesystem Directory Pool Type: iSCSI Target
iscsirhel6gues! (- i _
T Location: [fdewdlsk,fby path
State: [a Active
Autostart: [Never
Volumes @
. | Volumes ~ | Size Format Used By
| unit:0:0:0 30.00 GB dos guestl-rhel6-64

Apply |
APPTY

‘:‘@‘:| lﬂE‘.‘W Volumel |;t- ele Volume

Figure 17.9. Storage details

This host was defined by the following XML configuration:

. N

<pool type='iscsi'>
<name>iscsirhel6guest</name>
<source>
<host name='virtlab22.example.com.'/>
<device path='ign.2001-05.com.iscsivendor:0-8a0906-
fbab74a06-a700000017a4cc89-rhevh'/>
</source>
<target>
<path>/dev/disk/by-path</path>
</target>
</pool>

(& J

Figure 17.10. XML configuration for the destination host physical machine

189

Virtualization Deployment and Administration Guide

Chapter 18. Guest virtual machine device configuration

Red Hat Enterprise Linux 7 supports three classes of devices for guest virtual machines:

Emulated devices are purely virtual devices that mimic real hardware, allowing unmodified guest
operating systems to work with them using their standard in-box drivers. Red Hat Enterprise Linux
7 supports up to 216 virtio devices.

Virtio devices are purely virtual devices designed to work optimally in a virtual machine. Virtio
devices are similar to emulated devices, however, non-Linux virtual machines do notinclude the
drivers they require by default. Virtualization management software like the Virtual Machine
Manager (virt-manager) and the Red Hat Enterprise Virtualization Hypervisor install these
drivers automatically for supported non-Linux guest operating systems. Red Hat Enterprise Linux
7 supports up to 700 scsi disks.

Assigned devices are physical devices that are exposed to the virtual machine. This method is also
known as '‘passthrough'. Device assignment allows virtual machines exclusive access to PCI
devices for a range of tasks, and allows PCl devices to appear and behave as if they were
physically attached to the guest operating system. Red Hat Enterprise Linux 7 supports up to 32
assigned devices per virtual machine.

Device assignmentis supported on PCle devices, including select graphics devices. Nvidia K-
series Quadro, GRID, and Tesla graphics card GPU functions are now supported with device
assignmentin Red Hat Enterprise Linux 7. Parallel PCl devices may be supported as assigned
devices, but they have severe limitations due to security and system configuration conflicts. Refer
to the sections within this chapter for more details regarding specific series and versions that are
supported.

Red Hat Enterprise Linux 7 supports PCl hotplug of devices exposed as single function slots to the
virtual machine. Single function host devices and individual functions of multi-function host devices
may be configured to enable this. Configurations exposing devices as multi-function PCI slots to the
virtual machine are recommended only for non-hotplug applications.

Platform support for interrupt remapping is required to fully isolate a guest with assigned
devices from the host. Without such support, the host may be vulnerable to interruptinjection
attacks from a malicious guest. In an environment where guests are trusted, the admin may
opt-in to still allow PCIl device assignment using the allow_unsafe_interrupts option to
the vfio_iommu_typel module. This may either be done persistently by adding a .conffile
(e.g.local.conf)to /etc/modprobe. d containing the following:

options vfio_iommu_typel allow_unsafe_interrupts=1
or dynamically using the sysfs entry to do the same:

echo 1 >
/sys/module/vfio_iommu_typel/parameters/allow_unsafe_interrupts

18.1. PCl devices

190

Chapter 18. Guest virtual machine device configuration

PCl device assignmentis only available on hardware platforms supporting either Intel VT-d or AMD
IOMMU. These Intel VT-d or AMD IOMMU specifications must be enabled in BIOS for PCl device
assignmentto function.

Procedure 18.1. Preparing an Intel system for PCl device assignment

1. Enable the Intel VT-d specifications

The Intel VT-d specifications provide hardware support for directly assigning a physical
device to a virtual machine. These specifications are required to use PCl device assignment
with Red Hat Enterprise Linux.

The Intel VT-d specifications must be enabled in the BIOS. Some system manufacturers
disable these specifications by default. The terms used to refer to these specifications can
differ between manufacturers; consult your system manufacturer's documentation for the
appropriate terms.

2. Activate Intel VT-d in the kernel

Activate Intel VT-d in the kernel by adding the intel_iommu=pt parameter to the end of the
GRUB_CMDLINX_LINUX line, within the quotes, in the /etc/sysconfig/grub file.

Instead of using the *_iommu=pt parameter for device assignment, which puts IOMMU
into passthrough mode, itis also possible to use *_iommu=on. However, iommu=on
should be used with caution, as it enables IOMMU for all devices, including those not
used for device assignment by KVM, which may have a negative impact on guest
performance.

The example below is a modified grub file with Intel VT-d activated.

GRUB_CMDLINE_LINUX="rd.lvm.lv=vg_VolGroup00/LogVolol
vconsole.font=latarcyrheb-sun16 rd.lvm.lv=vg_VolGroup_1/root
vconsole.keymap=us $([-x /usr/sbin/rhcrashkernel-param] &&
/usr/sbin/

rhcrashkernel-param || :) rhgb quiet intel_iommu=pt"

3. Regenerate config file
Regenerate /boot/grub2/grub.cfg by running:
grub2-mkconfig -o /boot/grub2/grub.cfg

4. Readyto use

Reboot the system to enable the changes. Your system is now capable of PCl device
assignment.

Procedure 18.2. Preparing an AMD system for PCl device assignment

1. Enable the AMD IOMMU specifications

191

Virtualization Deployment and Administration Guide

The AMD IOMMU specifications are required to use PCl device assignment in Red Hat
Enterprise Linux. These specifications must be enabled in the BIOS. Some system
manufacturers disable these specifications by default.

2. Enable IOMMU kernel support

Append amd_iommu=pt to the end of the GRUB_CMDLINX_ LINUX line, within the quotes, in
/etc/sysconfig/grub so that AMD IOMMU specifications are enabled at boot.

3. Regenerate config file

Regenerate /boot/grub2/grub.cfg by running:

grub2-mkconfig -o /boot/grub2/grub.cfg

4. Readyto use

Reboot the system to enable the changes. Your system is now capable of PCl device
assignment.

18.1.1. Assigning a PCI device with virsh

These steps cover assigning a PCl device to a virtual machine on a KVM hypervisor.

This example uses a PCle network controller with the PClI identifier code, pci_0000_61_600_60, and
a fully virtualized guest machine named guestl-rhel7-64.

Procedure 18.3. Assighing a PCl device to a guest virtual machine with virsh

1. Identifythe device

First, identify the PCl device designated for device assignment to the virtual machine. Use the
1spci command to list the available PCl devices. You can refine the output of L spci with

grep.

This example uses the Ethernet controller highlighted in the following output:

lspci | grep Ethernet

00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit
Network Connection

01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit
Network Connection (rev 01)

01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit
Network Connection (rev 01)

This Ethernet controller is shown with the shortidentifier 80 : 19 . 0. We need to find out the
full identifier used by virsh in order to assign this PCl device to a virtual machine.

192

To do so,usethevirsh nodedev-1list command to listall devices of a particular type
(pci) that are attached to the host machine. Then look at the output for the string that maps
to the short identifier of the device you wish to use.

This example shows the string that maps to the Ethernet controller with the short identifier
00:19.0. Notethatthe : and . characters are replaced with underscores in the full
identifier.

virsh nodedev-list --cap pci
pci_0000_00_00_0
pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14_0
pci_0000_00_14_1
pci_0000_00_14_2
pci_0000_00_14_3
pci_0000_00_19_0
pci_0000_00_1a_0
pci_0000_00_1a_1
pci_0000_00_1a_2
pci_0000_00_1a_7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_0000_00_1c_1
pci_0000_00_1c_4
pci_0000_0060_1d_0
pci_0000_0060_1d_1
pci_0000_0060_1d_2
pci_00600_0060_1d_7
pci_0000_00_1e_0
pci_0000_00_1f_0
pci_0000_00_1f_2
pci_0000_00_1f_3
pci_0000_01 060_0
pci_0000_01 00_1
pci_0000_02_00_0
pci_0000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

Record the PCl device number that maps to the device you want to use; this is required in
other steps.

. Review device information

Information on the domain, bus, and function are available from output of the virsh
nodedev-dumpxml command:

virsh nodedev-dumpxml pci_0000_00_19_0

Virtualization Deployment and Administration Guide

<device>
<name>pci_0000_00_19_0</name>
<parent>computer</parent>
<driver>
<name>e1l000e</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>0</bus>
<slot>25</slot>
<function>0</function>
<product id='0x1502'>82579LM Gigabit Network
Connection</product>
<vendor 1id='0x8086'>Intel Corporation</vendor>
<iommuGroup number='7'>
<address domain='0Ox0000' bus='0x00' slot='0x19'
function='0x0"'/>
</iommuGroup>
</capability>
</device>

Figure 18.1. Dump contents

An IOMMU group is determined based on the visibility and isolation of devices from the
perspective of the IOMMU. Each IOMMU group may contain one or more devices. When
multiple devices are present, all endpoints within the IOMMU group must be claimed for
any device within the group to be assigned to a guest. This can be accomplished
either by also assigning the extra endpoints to the guest or by detaching them from the
hostdriver using virsh nodedev-detach. Devices contained within a single group
may not be split between multiple guests or split between host and guest. Non-
endpoint devices such as PCle root ports, switch ports, and bridges should not be
detached from the host drivers and will not interfere with assignment of endpoints.

Devices within an IOMMU group can be determined using the iommuGroup section of
the virsh nodedev-dumpxml output. Each member of the group is provided via a
separate "address" field. This information may also be found in sysfs using the
following:

$ 1ls /sys/bus/pci/devices/0000:01:00.0/iommu_group/devices/
An example of the output from this would be:
0000:01:00.0 0000:01:00.1

To assigh only 0000.01.00.0 to the guest, the unused endpoint should be detached
from the host before starting the guest:

$ virsh nodedev-detach pci_00600_01_00_1

194

Chapter 18. Guest virtual machine device configuration

3. Determine required configuration details

Refer to the output fromthe virsh nodedev-dumpxml pci_0000_00_19_0 command
for the values required for the configuration file.

The example device has the following values: bus =0, slot =25 and function =0. The decimal
configuration uses those three values:

bus='0"

slot="'25"
function='0"

4. Add configuration details

Run virsh edit, specifying the virtual machine name, and add a device entry in the
<source> section to assign the PCl device to the guest virtual machine.

virsh edit guestil-rhel7-64

<hostdev mode='subsystem' type='pci' managed='yes'>
<source>
<address domain='0"' bus='0' slot='25' function='0'/>
</source>
</hostdev>

Figure 18.2. Add PCl device

Alternately, run virsh attach-device, specifying the virtual machine name and the
guest's XML file:

virsh attach-device guestl-rhel7-64 file.xml

5. Start the virtual machine
virsh start guestil-rhel7-64

The PCl device should now be successfully assigned to the virtual machine, and accessible to the
guest operating system.

18.1.2. Assigning a PCl device with virt-manager

PCl devices can be added to guest virtual machines using the graphical virt-managertool. The
following procedure adds a Gigabit Ethernet controller to a guest virtual machine.

Procedure 18.4. Assighing a PCl device to a guest virtual machine using virt-manager

1. Open the hardware settings

Open the guest virtual machine and click the Add Hardware button to add a new device to
the virtual machine.

195

Virtualization Deployment and Administration Guide

| gue
File Virtual Machine View Send Key

=@ > 0o -

stl-rhel6-64 Virtual Machin

< oe
Rt Basic Details
huy Performance
: -rhel6-64
c} Processor Name: guestl-rhel6-6
= Memory uui: bed7388a-bbf2-db3a-e962-b97cabe514bd
33 Boot Options Status: = Shutoff
e Description: |
3 Virtio Disk 1 prion-;j
B NIC :79:35:e9
[# Tablet
() Mouse
B Dpisplay VNC Hypervisor Details
- P Y_ Hypervisor: kvm
Q sound: kche Architecture: x86_64
t&" SehiE: Emulator: Jfusrflibexec/gemu-kvm
B video
Operating System
Hostname: unknown
Product name: unknown
[» Applications
[» Machine Settings
[» Security

l Add Hardware k'—]

Figure 18.3. The virtual machine hardware information window

2. Select a PCl device
Select PCl Host Device from the Hardware list on the left.
Select an unused PCI device. Note that selecting PCI devices presently in use by another

guest causes errors. In this example, a spare 82576 network device is used. Click Finish to
complete setup.

196

Chapter 18. Guest virtual machine device configuration

é f’:‘::agek PCIl Device
etwor

=

() Input Please indicate what physical device

IEJ Graphics to connect to the virtual machine.

Eif sound Host Device:

=4 serial 00:1D:2 82801)1 (ICH10 Family) USB UHCI Controller #3 &
=4 Parallel 00:1D:7 82801)I (ICH10 Family) USB2 EHCI Controller #1

=4 Channel 00:1E:0 82801 PCI Bridge

&% USB Host Device 00:1F:0 82801JIR (ICH10R) LPC Interface Controller

o =
o PCl Host Device 00:1F:2 82801)I (ICH10 Family) SATA AHCI Controller

B video 00:1F:3 82801J1 (ICH10 Family) SMBus Controller
m Watchdug '01:00:0 82576 Gigabit Network Connection
Filesysten 01:00:1 Interface eth3 (82576 Gigabit Network Connection)
= Smartcard 02:00:0 R580 [Radeon X1900 XT] (Primary)

02:00:1 R580 [Radeon X1900 XT] (Secondary)

106:00:0 88SE6121 SATA Il Controller - =

(<l _m I [2)

f gance.-l. | l E-'Lni-sh

Figure 18.4. The Add new virtual hardware wizard

3. Add the new device

The setup is complete and the guest virtual machine now has direct access to the PCl device.

197

Virtualization Deployment and Administration Guide

b guestl-rhel6-64 Virtual Machine =l@lE
File Virtual Machine View Send Key
-0 m@ -
e
Basic Details
performance
{3 BrGchsinr Name: guestl-rhel6-64
=8 Memory uuID: b8d7388a-bbf2-db3a-e962-b97cabe514bd
% Boot Options Status: = Running
= Description:
2 virtlo pisk 1 i
B NIC :79:35:9
[Tablet
& 1ok H isor Detail
= ervisor 5
[E pisplay VNC yP 2
o) Hypervisor: kvm
B Sound: iché Architecture: x86_64
& Serial 1 Emulator: jusr/libexecigemu-kvm
B PCi0000:01:00.0
B video Operating System
- Hostname: unknown
Product name: unknown
[Applications
[Machine Settings
[» security
| Add Hardware

Figure 18.5. The virtual machine hardware information window

If device assighment fails, there may be other endpoints in the same IOMMU group that are still
attached to the host. There is no way to retrieve group information using virt-manager, but

virsh commands can be used to analyze the bounds of the IOMMU group and if necessary
sequester devices.

Refer to the Note in Section 18.1.1, “Assigning a PCIl device with virsh” for more information on
IOMMU groups and how to detach endpoint devices using virsh.

18.1.3. PCl device assignment with virt-install

To usevirt-install to assign a PCl device, use the - -host -device parameter.

Procedure 18.5. Assighing a PCl device to a virtual machine with virt-install

1. Identifythe device

198

Identify the PCIl device designated for device assignment to the guest virtual machine.

lspci | grep Ethernet

00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit
Network Connection

01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit
Network Connection (rev 01)

01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit
Network Connection (rev 01)

Thevirsh nodedev-1ist command lists all devices attached to the system, and identifies
each PCl device with a string. To limit output to only PCl devices, run the following command:

virsh nodedev-list --cap pci
pci_0000_00_00_0
pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14_0
pci_0000_0060_14_1
pci_0000_00_14_2
pci_0000_00_14_3
pci_0000_00_19_0
pci_0000_00_1a_0
pci_0000_00_1a_1
pci_0000_00_1a_2
pci_0000_00_1a_7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_0000_00_1c_1
pci_0000_00_1c_4
pci_0000_0060_1d_0
pci_0000_0060_1d_1
pci_0000_0060_1d_2
pci_0000_0060_1d_7
pci_0000_00_1e_0
pci_0000_00_1f_0
pci_0000_0060_1f_2
pci_0000_00_1f_3
pci_0000_01 00_0
pci_0000_01 00_1
pci_0000_02_00_0
pci_0000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

Record the PCl device number; the number is needed in other steps.

Information on the domain, bus and function are available from output of the virsh
nodedev-dumpxml command:

virsh nodedev-dumpxml pci_0000_01 00_0

Virtualization Deployment and Administration Guide

<device>
<name>pci_0000_01 00_0</name>
<parent>pci_0000_00_01_0</parent>
<driver>
<name>igb</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>1</bus>
<slot>0</slot>
<function>0</function>
<product id='0x10c9'>82576 Gigabit Network Connection</product>
<vendor id='0x8086'>Intel Corporation</vendor>
<iommuGroup number='7'>
<address domain='0Ox0000' bus='0x00' slot='0x19'
function='0x0"'/>
</iommuGroup>
</capability>
</device>

Figure 18.6. PCl device file contents

If there are multiple endpoints in the IOMMU group and not all of them are assigned to
the guest, you will need to manually detach the other endpoint(s) from the host by
running the following command before you start the guest:

$ virsh nodedev-detach pci_0000_0060_19 1

2. Add the device

Use the PCl identifier output fromthe virsh nodedev command as the value for the - -
host-device parameter.

virt-install \

--name=guestl-rhel7-64 \

--disk path=/var/lib/libvirt/images/guestl-rhel7-64.img, size=8 \
--nonsparse --graphics spice \

--VCpus=2 --ram=2048 \
--location=http://examplel.com/installation_tree/RHEL7.0-Server -
x86_64/0s \

200

Chapter 18. Guest virtual machine device configuration

--nonetworks \

--o0s-type=1linux \
--0s-variant=rhel?
--host-device=pci_000060_01_00_0

3. Complete the installation

Complete the guestinstallation. The PCl device should be attached to the guest.

18.1.4. Detaching an assigned PCI device

When a host PCl device has been assigned to a guest machine, the host can no longer use the
device. Read this section to learn how to detach the device from the guest with virsh or virt-
manager so itis available for host use.

Procedure 18.6. Detaching a PCl device from a guest with virsh

1. Detach the device

Use the following command to detach the PCl device from the guest by removing itin the
guest's XML file:

virsh detach-device name_of_guest file.xml

2. Re-attach the device to the host (optional)

If the device is in managed mode, skip this step. The device will be returned to the host
automatically.

If the device is not using managed mode, use the following command to re-attach the PCI
device to the host machine:

virsh nodedev-reattach device
For example, to re-attach the pci_0000_01_00_0 device to the host:
virsh nodedev-reattach pci_0000_01 00_0
The device is now available for host use.
Procedure 18.7. Detaching a PCI Device from a guest with virt-manager

1. Open the virtual hardware details screen

In virt-manager, double-click on the virtual machine that contains the device. Select the
Show virtual hardware details button to display a list of virtual hardware.

File Virtual b

201

Virtualization Deployment and Administration Guide
Figure 18.7. The virtual hardware details button

2. Select and remove the device

Selectthe PCl device to be detached from the list of virtual devices in the left panel.

File Virtual Machine View Send Key
-

L]
= Overview Physical PCI Device

Performance Device: 00:1D:0 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1

Processor
Memory
Boot Options
VirtlO Disk 1
NIC:f4:28:82
Tablet

NalwloE

Mouse
Display Spice
Sound: ich6
Serial 1

Channel

Wl 6 0 8

Video
EF Controller USB
EF Controller Virtio Serial

Add Hardware Remove

Figure 18.8. Selecting the PCl device to be detached

Click the Remove button to confirm. The device is now available for host use.

18.1.5. Creating PCI bridges

Peripheral Component Interconnects (PCI) bridges are used to attach to devices such as network
cards, modems and sound cards. Just like their physical counterparts, virtual devices can also be
attached to a PCI Bridge. In the past, only 31 PCl devices could be added to any guest virtual
machine. Now, when a 31st PCl device is added, a PCl bridge is automatically placed in the 31st slot
moving the additional PCIl device to the PCl bridge. Each PCI bridge has 31 slots for 31 additional
devices, all of which can be bridges. In this manner, over 900 devices can be available for guest
virtual machines. Note that this action cannot be performed when the guest virtual machine is
running. You must add the PCl device on a guest virtual machine thatis shutdown.

18.1.5.1. PCI Bridge hotplug/unhotplug support
PCI Bridge hotplug/unhotplug is supported on the following device types:
virtio-net-pci

virtio-scsi-pci

202

Chapter 18. Guest virtual machine device configuration

1000
rt18139
virtio-serial-pci

virtio-balloon-pci

18.1.6. PCI passthrough

A PCl network device (specified by the <source> element) is directly assigned to the guest using
generic device passthrough, after first optionally setting the device's MAC address to the configured
value, and associating the device with an 802.1Qbh capable switch using an optionally specified
<virtualport> element (see the examples of virtualport given above for type='direct' network
devices). Note that - due to limitations in standard single-port PCl ethernet card driver design - only
SR-IOV (Single Root I/O Virtualization) virtual function (VF) devices can be assigned in this manner;
to assign a standard single-port PCl or PCle Ethernet card to a guest, use the traditional <hostdev>
device definition.

To use VFIO device assignment rather than traditional/legacy KVM device assignment (VFIO is a new
method of device assignment that is compatible with UEFI Secure Boot), a <type='hostdev'>
interface can have an optional driver sub-element with a name attribute set to "vfio". To use legacy
KVM device assignment you can set name to "kvm" (or simply omit the <driver> element, since
<driver="'kvm'>is currently the default).

Note that this "intelligent passthrough" of network devices is very similar to the functionality of a
standard <hostdev> device, the difference being that this method allows specifying a MAC address
and <virtualport> for the passed-through device. If these capabilities are not required, if you
have a standard single-port PCI, PCle, or USB network card that does not support SR-IOV (and
hence would anyway lose the configured MAC address during reset after being assigned to the guest
domain), or if you are using a version of libvirt older than 0.9.11, you should use standard
<hostdev> to assign the device to the guestinstead of <interface type='hostdev'/>.

<devices>
<interface type='hostdev'>
<driver name='vfio'/>
<source>
<address type='pci' domain='QOx0000' bus='0x00' slot='0x07'
function='0x0"'/>
</source>
<mac address='52:54:00:6d:90:02"'>
<virtualport type='802.1Qbh'>
<parameters profileid='finance'/>
</virtualport>
</interface>
</devices>

Figure 18.9. XML example for PCl device assignment

18.1.7. Configuring PCIl assignment (passthrough) with SR-IOV devices

This section is for SR-IOV devices only. SR-IOV network cards provide multiple Virtual Functions (VFs)
that can each be individually assigned to a guest virtual machines using PCl device assignment.

203

Virtualization Deployment and Administration Guide

Once assigned, each will behave as a full physical network device. This permits many guest virtual
machines to gain the performance advantage of direct PCl device assignment, while only using a
single slot on the host physical machine.

These VFs can be assigned to guest virtual machines in the traditional manner using the element
<hostdev>, butas SR-IOV VF network devices do not have permanent unique MAC addresses, it
causes issues where the guest virtual machine's network settings would have to be re-configured
each time the host physical machine is rebooted. To remedy this, you would need to set the MAC
address prior to assigning the VF to the host physical machine and you would need to set this each
and every time the guest virtual machine boots. In order to assign this MAC address as well as other
options, refert to the procedure described in Procedure 18.8, “Configuring MAC addresses, VLAN,

Procedure 18.8. Configuring MAC addresses, VLAN, and virtual ports for assigning PCI
devices on SR-I0V

Itis importantto note that the <hostdev> element cannot be used for function-specific items like
MAC address assignment, VLAN tag ID assignment, or virtual port assignment because the <mac>,
<vlan>, and <virtualport> elements are notvalid children for <hostdev>. As they are valid for
<interface>, supportfor a new interface type was added (<interface type='hostdev'>).
This new interface device type behaves as a hybrid of an <interface> and <hostdev>. Thus,
before assigning the PCl device to the guest virtual machine, libvirt initializes the network-specific
hardware/switch thatis indicated (such as setting the MAC address, setting a vLAN tag, and/or
associating with an 802.1Qbh switch) in the guest virtual machine's XML configuration file. For
information on setting the vLAN tag, refer to Section 20.16, “Setting VLAN tags”.

1. Shutdown the guest virtual machine

Using virsh shutdown command (refer to Section 23.10.2, “Shutting down Red Hat

Enterprise Linux 6 guests on a Red Hat Enterprise Linux 7 host”), shutdown the guest virtual

machine named guestVM.

virsh shutdown guestVvM

2. Gatherinformation

In order to use <interface type='hostdev'>, you musthave an SR-IOV-capable
network card, host physical machine hardware that supports either the Intel VT-d or AMD
IOMMU extensions, and you must know the PCIl address of the VF that you wish to assign.

3. Open the XML file for editing

Run the#virsh save-image-edit command to open the XML file for editing (refer to
Section 23.9.11, “Editing the guest virtual machine configuration files” for more information).

As you would want to restore the guest virtual machine to its former running state, the - -
running would be used in this case. The name of the configuration file in this example is
guestVM.xml, as the name of the guest virtual machine is guestVM.

virsh save-image-edit guestVM.xml --running
The guestVM.xml opens in your default editor.

4. Edit the XML file

Update the configuration file (guestVM.xml) to have a <devices> entry similar to the
following:

204

Chapter 18. Guest virtual machine device configuration

<devices>

<interface type='hostdev' managed='yes'>
<source>
<address type='pci' domain='Ox0' bus='0x00' slot='0Ox07'
function='0x0'/> <!/--these values can be decimal as well-->
</source>
<mac address='52:54:00:6d:90:02"'/>
<!--sets the mac address-->
<virtualport type='802.1Qbh'>
<!l--sets the virtual port for the 802.1Qbh switch-->
<parameters profileid='finance'/>
</virtualport>
<vlan>
<!--sets the vlan tag-->
<tag id='42'/>
</vlan>
</interface>

</devices>

Figure 18.10. Sample domain XML for hostdevinterface type

Note that if you do not provide a MAC address, one will be automatically generated, just as

with any other type of interface device. Also, the <virtualport> elementis only used if you
are connecting to an 802.11Qgh hardware switch (802.11Qbg (a.k.a. "VEPA") switches are

currently not supported.

5. Re-start the guest virtual machine

Run the virsh start command to restart the guest virtual machine you shutdown in the first
step (example uses guestVM as the guest virtual machine's domain name). Refer to
Section 23.9.1, “Starting a virtual machine” for more information.

virsh start guestVvM

When the guest virtual machine starts, it sees the network device provided to it by the physical
host machine's adapter, with the configured MAC address. This MAC address will remain
unchanged across guest virtual machine and host physical machine reboots.

18.1.8. Setting PCI device assignment from a pool of SR-IOV virtual functions

Hard coding the PCl addresses of a particular Virtual Functions (VFs) into a guest's configuration has
two serious limitations

The specified VF must be available any time the guest virtual machine is started, implying that the
administrator must permanently assign each VF to a single guest virtual machine (or modify the
configuration file for every guest virtual machine to specify a currently unused VF's PCl address
each time every guest virtual machine is started).

If the guest vitual machine is moved to another host physical machine, that host physical machine

205

Virtualization Deployment and Administration Guide

must have exactly the same hardware in the same location on the PCl bus (or, again, the guest
vitual machine configuration must be modified prior to start).

Itis possible to avoid both of these problems by creating a libvirt network with a device pool
containing all the VFs of an SR-IOV device. Once thatis done you would configure the guest virtual
machine to reference this network. Each time the guest is started, a single VF will be allocated from
the pool and assigned to the guest virtual machine. When the guest virtual machine is stopped, the
VF will be returned to the pool for use by another guest virtual machine.

Procedure 18.9. Creating a device pool

206

1. Shutdown the guest virtual machine

Using virsh shutdown command (refer to Section 23.10.2, “Shutting down Red Hat

Enterprise Linux 6 guests on a Red Hat Enterprise Linux 7 host”), shutdown the guest virtual

machine named guestVM.

virsh shutdown guestVM

. Create a configuration file

Using your editor of chocice create an XML file (hamed passthrough.xml, for example) in the
/tmp directory. Make sure to replace pf dev="'eth3' with the netdev name of your own SR-
IOV device's PF

The following is an example network definition that will make available a pool of all VFs for
the SR-IOV adapter with its physical function (PF) at "eth3' on the host physical machine:

<network>

<name>passthrough</name> </-- This is the name of the file you
created -->

<forward mode='hostdev' managed='yes'>

<pf dev='myNetDevName'/> <!-- Use the netdev name of your
SR-IOV devices PF here -->
</forward>
</network>

Figure 18.11. Sample network definition domain XML

. Load the new XML file

Run the following command, replacing /tmp/passthrough.xml, with the name and location of
your XML file you created in the previous step:

virsh net-define /tmp/passthrough.xml

Restarting the guest

Run the following replacing passthrough.xml, with the name of your XML file you created in the
previous step:

Chapter 18. Guest virtual machine device configuration

virsh net-autostart passthrough # virsh net-start passthrough

5. Re-start the guest virtual machine

Run the virsh start command to restart the guest virtual machine you shutdown in the first
step (example uses guestVM as the guest virtual machine's domain name). Refer to

virsh start guestVvM

6. Initiating passthrough for devices

Although only a single device is shown, libvirt will automatically derive the list of all VFs
associated with that PF the first time a guest virtual machine is started with an interface
definition in its domain XML like the following:

<interface type='network'>
<source network='passthrough'>
</interface>

Figure 18.12. Sample domain XML for interface network definition

7. Verification

You can verify this by running virsh net-dumpxml passthrough command after starting
the first guest that uses the network; you will get output similar to the following:

<network connections='1'>
<name>passthrough</name>
<uuid>a6b49429-d353-d7ad-3185-4451cc786437</uuid>
<forward mode='hostdev' managed='yes'>
<pf dev='eth3'/>
<address type='pci' domain='QOx0000' bus='0x02' slot='0x10"
function='0x1'/>
<address type='pci' domain='0Ox0000' bus='0x02' slot='0x10"
function='0x3"'/>
<address type='pci' domain='0Ox0000' bus='0x02' slot='0x10"
function='0x5"'/>
<address type='pci' domain='QOx0000' bus='0x02' slot='0x10"
function="'0x7'/>
<address type='pci' domain='QOx0000' bus='0x02' slot='0Ox11'
function='0x1"'/>
<address type='pci' domain='Ox0000' bus='0x02' slot='0Ox11'
function='0x3"'/>
<address type='pci' domain='0Ox0000' bus='0x02' slot='0Ox11'
function='0x5"'/>

207

Virtualization Deployment and Administration Guide

</forward>
</network>

Figure 18.13. XML dump file passthrough contents

18.2. USB devices

This section gives the commands required for handling USB devices.

18.2.1. Assighing USB devices to guest virtual machines

Most devices such as web cameras, card readers, disk drives, keyboards, mice, etc are connected to
a computer using a USB portand cable. There are two ways to pass such devices to a guest virtual
machine:

Using USB passthrough - this requires the device to be physically connected to the host physical
machine thatis hosting the guest virtual machine. SPICE is not needed in this case. USB devices
on the host can be passed to the guest via the command line or virt-manager. Refer to

Section 22.3.2, “Attaching USB devices to a guest virtual machine” for virt manager directions.

Using USB re-direction - USB re-direction is best used in cases where there is a host physical
machine thatis running in a data center. The user connects to his/her guest virtual machine from
a local machine or thin client. On this local machine there is a SPICE client. The user can attach
any USB device to the thin client and the SPICE client will redirect the device to the host physical
machine on the data center so it can be used by the guest virtual machine thatis running on the
thin client. For instructions via the virt-manager refer to Section 22.3.3, “USB redirection”.

18.2.2. Setting a limit on USB device redirection

To filter out certain devices from redirection, pass the filter property to -device usb-redir.The
filter property takes a string consisting of filter rules, the format for a rule is:

<class>:<vendor>:<product>:<version>:<allow>

Usethe value -1 to designateitto acceptany value for a particular field. You may use multiple rules
on the same command line using | as a separator. Note that if a device matches none of the passed
in rules, redirecting it will not be allowed!

Example 18.1. An example of limiting redirection with a windows guest virtual
machine

1. Prepare a Windows 7 guest virtual machine.

2. Add the following code excerptto the guest virtual machine's' domain xml file:

<redirdev bus='usb' type='spicevmc'>
<alias name='redir0'/>
<address type='usb' bus='0' port='3'/>

208

Chapter 18. Guest virtual machine device configuration

</redirdev>
<redirfilter>
<usbdev class='0x08' vendor='0x1234"' product='0OxBEEF'

version='2.0' allow='yes'/>
<usbdev class='-1' vendor='-1' product='-1' version='-1'

allow='no'/>
</redirfilter>

3. Startthe guestvirtual machine and confirm the setting changes by running the following:

#ps -ef | grep $guest_name

-device usb-redir,chardev=charredir0,id=rediro, /
filter=0x08:0x1234 : 0xBEEF:0x0200:1] -1: -1: -1: -
1:0,bus=usb.0,port=3

4. Plug a USB device into a host physical machine, and use virt-manager to connect to the
guest virtual machine.

5. Click USB device selection in the menu, which will produce the following message:
"Some USB devices are blocked by host policy". Click OK to confirm and continue.

The filter takes effect.

6. To make sure that the filter captures properly check the USB device vendor and product,
then make the following changes in the host physical machine's domain XML to allow for

USB redirection.

<redirfilter>
<usbdev class='0x08' vendor='0x0951' product='0x1625"
version='2.0' allow='yes'/>
<usbdev allow='no'/>
</redirfilter>

7. Restartthe guest virtual machine, then use virt-viewer to connect to the guest virtual
machine. The USB device will now redirect traffic to the guest virtual machine.

18.3. Configuring device controllers

Depending on the guest virtual machine architecture, some device buses can appear more than
once, with a group of virtual devices tied to a virtual controller. Normally, libvirt can automatically
infer such controllers without requiring explicit XML markup, butin some cases itis better to explicitly
set a virtual controller element.

<devices>
<controller type='ide' index='0'/>
<controller type='virtio-serial' index='0Q' ports='16' vectors='4'/>
<controller type='virtio-serial' index='1'>
<address type='pci' domain='0Ox0000' bus='0x00' slot='0Ox0a'

209

Virtualization Deployment and Administration Guide

function='0x0"'/>
</controller>

</devices>

Figure 18.14. Domain XML example for virtual controllers

Each controller has a mandatory attribute <controller type>, which mustbe one of:

ide

fdc

scsi

sata

usb

ccid

virtio-serial

pci

The <controller> element has a mandatory attribute <controller index> which is the decimal
integer describing in which order the bus controller is encountered (for use in controller attributes of
<address> elements). When <controller type ='virtio-serial'> there aretwo additional
optional attributes (named ports and vectors), which control how many devices can be connected
through the controller.

When <controller type ='scsi'>, thereis an optional attribute model model, which can have
the following values:

auto
buslogic
ibmvscsi
Isilogic
Isisas1068
Isisas1078
virtio-scsi
VMPVSCSi

When <controller type ='usb'>, thereis an optional attribute model model, which can have
the following values:

piix3-uhci
piix4-uhci

ehci

210

Chapter 18. Guest virtual machine device configuration

ich9-ehcil
ich9-uhcil
ich9-uhci2
ich9-uhci3
vt82c686b-uhci
pci-ohci
nec-xhci

Note that if the USB bus needs to be explicitly disabled for the guest virtual machine,
<model="'none'> may be used..

For controllers that are themselves devices on a PCl or USB bus, an optional sub-element
<address> can specify the exact relationship of the controller to its master bus, with semantics as
shown in Section 18.4, “Setting addresses for devices”.

An optional sub-element <driver> can specify the driver specific options. Currently it only supports
attribute queues, which specifies the number of queues for the controller. For best performance, it's
recommended to specify a value matching the number of vCPUs.

USB companion controllers have an optional sub-element <master> to specify the exact
relationship of the companion to its master controller. Acompanion controller is on the same bus as
its master, so the companion index value should be equal.

An example XML which can be used is as follows:

<devices>
<controller type='usb' index='®' model='ich9-ehcil'>
<address type='pci' domain='Q@' bus='0' slot='4' function='7'/>
</controller>
<controller type='usb' index='0®' model='ich9-uhcil'>
<master startport='0'/>
<address type='pci' domain='Q@' bus='0' slot='4' function='0"
multifunction='on'/>
</controller>

</devices>

Figure 18.15. Domain XML example for USB controllers

PCI controllers have an optional model attribute with the following possible values:
pci-root

pcie-root

211

Virtualization Deployment and Administration Guide

pci-bridge
dmi-to-pci-bridge

For machine types which provide an implicit PCI bus, the pci-root controller with index="'0" is
auto-added and required to use PCl devices. pci-root has no address. PCl bridges are auto-added if
there are too many devices to fiton the one bus provided by model="pci-root',ora PClbus
number greater than zero was specified. PCl bridges can also be specified manually, but their
addresses should only refer to PCl buses provided by already specified PCl controllers. Leaving
gaps in the PCIl controller indexes might lead to an invalid configuration. The following XML example
can be added to the <devices> section:

<devices>
<controller type='pci' index='0' model='pci-root'/>
<controller type='pci' index='1' model='pci-bridge'>
<address type='pci' domain='Q@' bus='0' slot='5' function='0"
multifunction='off'/>
</controller>
</devices>

Figure 18.16. Domain XML example for PCI bridge

For machine types which provide an implicit PCI Express (PCle) bus (for example, the machine types
based on the Q35 chipset), the pcie-root controller with index="'0" is auto-added to the domain's
configuration. pcie-root has also no address, but provides 31 slots (humbered 1-31) and can only be
used to attach PCle devices. In order to connect standard PCl devices on a system which has a pcie-
root controller, a pci controller with model="dmi-to-pci-bridge' is automatically added. A
dmi-to-pci-bridge controller plugs into a PCle slot (as provided by pcie-root), and itself provides 31
standard PCl slots (which are not hot-pluggable). In order to have hot-pluggable PCl slots in the
guest system, a pci-bridge controller will also be automatically created and connected to one of the
slots of the auto-created dmi-to-pci-bridge controller; all guest devices with PCl addresses that are
auto-determined by libvirt will be placed on this pci-bridge device.

<devices>
<controller type='pci' index='0' model='pcie-root'/>
<controller type='pci' index='1' model='dmi-to-pci-bridge'>
<address type='pci' domain='0' bus='0' slot='Oxe' function='0'/>
</controller>
<controller type='pci' index='2' model='pci-bridge'>
<address type='pci' domain='@' bus='1' slot='1' function='0'/>
</controller>
</devices>

212

Chapter 18. Guest virtual machine device configuration
Figure 18.17. Domain XML example for PCle (PCI express)

The following XML configuration is used for USB 3.0 / xHCI emulation:

<devices>
<controller type='usb' index='3' model='nec-xhci'>
<address type='pci' domain='QOx0000' bus='0x00' slot='0Ox0Of"'
function='0x0"'/>
</controller>
</devices>

Figure 18.18. Domain XML example for USB3/xHCI devices

18.4. Setting addresses for devices

Many devices have an optional <address> sub-element which is used to describe where the device
is placed on the virtual bus presented to the guest virtual machine. If an address (or any optional
attribute within an address) is omitted on input, libvirt will generate an appropriate address; but an

Every address has a mandatory attribute type that describes which bus the device is on. The choice
of which address to use for a given device is constrained in part by the device and the architecture of
the guest virtual machine. For example, a <disk> device uses type="'drive', whilea <console>
device would use type="pci' on i686 or x86_64 guest virtual machine architectures. Each
address type has further optional attributes that control where on the bus the device will be placed as
described in the table:

Table 18.1. Supported device address types

‘ Address type Description

type='pci' PCl addresses have the following additional
attributes:

domain (a 2-byte hex integer, not currently
used by gemu)

bus (a hex value between 0 and Oxff,
inclusive)

slot (a hex value between 0x0 and Ox1f,
inclusive)

function (a value between 0 and 7, inclusive)
multifunction controls turning on the
multifunction bit for a particular slot/function
in the PCIl control register By defaultitis set
to 'off', but should be setto 'on’ for function 0
of a slot that will have multiple functions
used.

213

Virtualization Deployment and Administration Guide

‘ Address type Description

type='drive' Drive addresses have the following additional
attributes:

controller (a 2-digit controller number)
bus (a 2-digit bus number

target (a 2-digit bus number)

unit (a 2-digit unitnumber on the bus)

type='virtio-serial' Each virtio-serial address has the following
additional attributes:

controller (a 2-digit controller number)
bus (a 2-digit bus number)
slot (a 2-digit slot within the bus)

type='ccid’ A CCID address, for smart-cards, has the
following additional attributes:

bus (a 2-digit bus number)
slot attribute (a 2-digit slot within the bus)

type='usb’ USB addresses have the following additional
attributes:

bus (a hex value between 0 and Oxfff,
inclusive)

port (a dotted notation of up to four octets,
such as 1.2 or2.1.3.1)

type='isa' ISA addresses have the following additional
attributes:

iobase
irq

18.5. Random number generator device

virtio-rng is a virtual hardware random number generator device that can provide the guest with fresh
entropy upon request. The driver feeds the data back to the guest virtual machine's OS.

On the host physical machine, the hardware rng interface creates a chardev at /dev/hwrng, which
can be opened and then read to fetch entropy from the host physical machine. Coupled with the rngd
daemon, the entropy from the host physical machine can be routed to the guest virtual machine's
/dev/random, which is the primary source of randomness.

Using a random number generator is particularly useful when a device such as a keyboard, mouse
and other inputs are not enough to generate sufficient entropy on the guest virtual machine.The
virtual random number generator device allows the host physical machine to pass through entropy
to guest virtual machine operating systems. This procedure can be done either via the command line
or via virt-manager. For virt-manager instructions refer to Procedure 18.10, “Implementing virtio-rng via

Procedure 18.10. Implementing virtio-rng via Virtualzation Manager

214

Chapter 18. Guest virtual machine device configuration

1. Shutdown the guest virtual machine.

2. Selectthe guest virtual machine and from the Edit menu, select Virtual Machine Details, to
open the Details window for the specified guest virtual machine.

3. Clickthe Add Hardware button.

4. In the Add New Virtual Hardware window, select RNG to open the Random Number
Generator window.

Add Mew Virtual Hardware

= Stor
orage Random Number Generator
r'!:_EI Metworl

q:j Input Please indicate the parameters of the RNG device,
(] Graphics

= Type: | Random e
@ Sound
=4 Serial Backend Type:
=& Parallel Backend Mode:
= Channel
:o USB Host Device Device: | /devirandom
FCl Host Device Host:
B video
Bind Host:
E} Watchdog
)
fE=a Smartcard

@ uUsB Redirection
9 RNG

Cancel Finish

Figure 18.19. Random Number Generator window

Enter the desired parameters and click Finish when done. The parameters are explained in

Procedure 18.11. Implementing virtio-rng via command line tools
1. Shutdown the guest virtual machine.

2. Using virsh edit domain-name command, open the XML file for the desired guest virtual
machine.

3. Editthe <devices> elementto include the following:

215

Virtualization Deployment and Administration Guide

<devices>
<rng model='virtio'>
<rate period="2000" bytes="1234"/>
<backend model='random'>/dev/random</backend>
<!/-- OR -->
<backend model='egd' type='udp'>
<source mode='bind' service='1234"'>
<source mode='connect' host physical machine='1.2.3.4"
service="'1234"'>
</backend>
</rng>
</devices>

Figure 18.20. Random number generator device

The random number generator device allows the following attributes/elements:

virtio-rng elements

model - Therequired model attribute specifies what type of RNG device is provided.
'virtio!'

<backend> - The <backend> element specifies the source of entropy to be used for the
domain. The source model is configured using the model attribute. Supported source
models include ' random' — /dev/random (default setting) or similar device as source
and 'egd' which sets a EGD protocol backend.

backend type='random' - This <backend> type expects a non-blocking character
device as input. Examples of such devices are /dev/random and /dev/urandom. The
file name is specified as contents of the <backend> element. When no file name is
specified the hypervisor defaultis used.

<backend type='egd'>- This backend connects to a source using the EGD protocol.
The source is specified as a character device. Refer to character device host physical
machine interface for more information.

18.6. Assigning GPU devices

Red Hat Enterprise Linux 7 supports PCl device assignment of NVIDIA K-Series Quadro (model 2000
series or higher), GRID, and Tesla as non-VGA graphics devices. Currently up to two GPUs may be
attached to the virtual machine in addition to one of the standard, emulated VGA interfaces. The
emulated VGA s used for pre-boot and installation and the NVIDIA GPU takes over when the NVIDIA
graphics drivers are loaded. Note that the NVIDIA Quadro 2000 is not supported, nor is the Quadro
K420 card.

This procedure will, in short, identify the device from Ispci, detach it from host physical machine and
then attach it to the guest virtual machine.

1. Enable IOMMU supportin the host physical machine kernel

216

Chapter 18. Guest virtual machine device configuration

For an Intel VT-d system this is done by adding the intel_iommu=pt parameter to the kernel
command line. For an AMD-Vi system, the option is amd_iommu=pt. To enable this option
you will need to edit or add the GRUB_CMDLINX_LINUX line to the /etc/sysconfig/grub
configuration file as follows:

GRUB_CMDLINE_LINUX="rd.lvm.lv=vg_VolGroup@0/LogVolol
vconsole.font=latarcyrheb-sun16 rd.lvm.lv=vg_VolGroup_1/root
vconsole.keymap=us $([-x /usr/sbin/rhcrashkernel-param] &&
/usr/sbin/rhcrashkernel-param || :) rhgb quiet intel_iommu=pt"

2. Regenerate the bootloader configuration

Regenerate the bootloader configuration using the grub2-mkconfig to include this option, by
running the following command:

grub2-mkconfig -o /etc/grub2.cfg
Note that if you are using a UEFI-based host, the target file will be /etc/grub2-efi.cfg.

3. Reboot the host physical machine

In order for this option to take effect, reboot the host physical machine with the following
command:

reboot
Procedure 18.12. Excluding the GPU device from binding to the host physical machine
driver

For GPU assighment itis recommended to exclude the device from binding to host drivers as these
drivers often do not supportdynamic unbinding of the device.

1. Identifythe PCl bus address

To identify the PCl bus address and IDs of the device, run the following 1spci command. In
this example, a VGA controller such as a Quadro or GRID card is used as follows:

lspci -Dnn | grep VGA
0000:02:00.0 VGA compatible controller [0300]: NVIDIA Corporation
GK106GL [Quadro K4000] [10de:11fa] (rev al)

The resulting search reveals that the PCl bus address of this device is 0000:02:00.0 and the
PCI IDs for the device are 10de:11fa.

2. Prevent the native host physical machine driver fromusing the GPU device

217

Virtualization Deployment and Administration Guide

To prevent the native host physical machine driver from using the GPU device you can use a
PCI ID with the pci-stub driver. To do this, append the following additional option to the
GRUB_CMDLINX_LINUX configuration file located in /etc/sysconfig/grub as follows:

pci-stub.ids=10de:11fa
To add additional PCI IDs for pci-stub, separate them with a comma.

3. Regenerate the bootloader configuration

Regenerate the bootloader configuration using the grub2-mkconfig to include this option, by
running the following command:

grub2-mkconfig -o /etc/grub2.cfg

Note that if you are using a UEFI-based host, the target file will be /etc/grub2-efi.cfg.

4. Reboot the host physical machine

In order for this option to take effect, reboot the host physical machine with the following
command:

reboot

The virsh commands can be used to further evaluate the device, however in order to use virsh with
the devices you need to convert the PCl bus address to libvirt compatible format by appending pci_
and converting delimiters to underscores. In this example the libvirt address of PCl device
0000:02:00.0 becomes pci_0000_02 00_0. The nodedev-dumpxml option provides additional
information for the device as shown:

virsh nodedev-dumpxml pci_0000_02_00_0

<device>
<name>pci_0000_02_00_0</name>
<path>/sys/devices/pcif000:00/0000:00:03.0/0000:02:00.0</path>
<parent>pci_0000_00_03_0</parent>
<driver>
<name>pci-stub</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>2</bus>
<slot>0</slot>
<function>0</function>
<product id='Oxl1ifa'>GK106GL [Quadro K4000]</product>
<vendor id='0x10de'>NVIDIA Corporation</vendor>
<!-- pay attention to this part -->
<iommuGroup number='13'>
<address domain='0x0000' bus='0x02' slot='0x00' function='0x0'/>
<address domain='0x0000' bus='0x02' slot='0x00' function='0Ox1'/>
</iommuGroup>

218

Chapter 18. Guest virtual machine device configuration

<pci-express>
<link validity='cap' port='0' speed='8' width='16"'/>
<link validity='sta' speed='2.5' width='16"'/>
</pci-express>
</capability>
</device>

Figure 18.21. XML file adaptation for GPU - Example

Particularly importantin this outputis the <iommuGroup> element. The iommuGroup indicates the
set of devices which are considered isolated from other devices due to IOMMU capabilities and PCI
bus topologies. All of the endpoint devices within the iommuGroup (ie. devices that are not PCle root
ports, bridges, or switch ports) need to be unbound from the native host drivers in order to be
assigned to a guest. In the example above, the group is composed of the GPU device (0000:02:00.0)

Assignment of Nvidia audio functions is not supported due to hardware issues with legacy
interrupt support. In order to assign the GPU to a guest, the audio function must first be
detached from native host drivers. This can either be done by using Ispci to find the PCI IDs
for the device and appending it to the pci-stub.ids option or dynamically using the nodedev-
detach option of virsh. For example:

virsh nodedev-detach pci_0000_02_00_1
Device pci_0000_02_00_1 detached

The GPU audio function is generally not useful without the GPU itself, so it's generally recommended
to use the pci-stub.ids option instead.

The GPU can be attached to the VM using virt-manager or using virsh, either by directly editing the
VM XML (virsh edit [domain]) or attaching the GPU to the domain with virsh attach-
device. Ifyou areusing thevirsh attach-device command, an XML fragment first needs to be
created for the device, such as the following:

<hostdev mode='subsystem' type='pci' managed='yes'>
<driver name='vfio'/>
<source>
<address domain='0Ox0000' bus='0x02' slot='0x00' function='0Ox0'/>
</source>
</hostdev>

Figure 18.22. XML file for attaching GPU - Example

Savethisto a file and run virsh attach-device [domain] [file] --persistentto
include the XML in the VM configuration. Note that the assigned GPU is added in addition to the

219

Virtualization Deployment and Administration Guide

existing emulated graphics device in the guest virtual machine. The assigned GPU is handled as a
secondary graphics device in the VM. Assignment as a primary graphics device is not supported and
emulated graphics devices in the VM's XML should not be removed.

When using an assigned Nvidia GPU in the guest, only the Nvidia drivers are supported.
Other drivers may notwork and may generate errors. For a Red Hat Enterprise Linux 7 guest,
the nouveau driver can be blacklisted using the option modprobe. blacklist=nouveau on
the kernel command line during install. For information on other guest virtual machines refer to
the operating system's specific documentation.

When configuring Xorg for use with an assigned GPU in a KVM guest, the BusID option must be
added to xorg.confto specify the guest address of the GPU. For example, within the guest determine
the PCl bus address of the GPU (this will be different than the host address):

lspci | grep VGA

00:02.0 VGA compatible controller: Device 1234:1111

00:09.0 VGA compatible controller: NVIDIA Corporation GK106GL [Quadro
K4000] (rev al)

In this example the address is 00:09.0. The file /etc/X11/xorg . conf is then modified to add the
highlighted entry below.

Section "Device"

Identifier "Device0"

Driver "nvidia"

VendorName "NVIDIA Corporation"

BusID "PCI:0:9:0"
EndSection

Depending on the guest operating system, with the Nvidia drivers loaded, the guest may support
using both the emulated graphics and assigned graphics simultaneously or may disable the
emulated graphics. Note that access to the assigned graphics framebuffer is not provided by tools
such as virt-manager. If the assigned GPU is not connected to a physical display, guest-based
remoting solutions may be necessary to access the GPU desktop. As with all PCl device assignment,
migration of a guest with an assigned GPU is not supported and each GPU is owned exclusively by
a single guest. Depending on the guest operating system, hotplug support of GPUs may be
available.

220

Chapter 19. SR-10V

Chapter 19. SR-IOV

Developed by the PCI-SIG (PCI Special Interest Group), the Single Root I/O Virtualization (SR-I0OV)
specification is a standard for a type of PCl device assignment that can share a single device to
multiple virtual machines. SR-IOV improves device performance for virtual machines.

Virtual machines that use the Xeon E3-1200 series chip set, do not support SR-IOV. More

\?ﬁ Guest 1 #fj Guest 2

Guest OS Guest 05
Virtual
NIC
Physical NIC

Hypervisor Driver

/O MMU (Intel VT-d or AMD I0MMU)

Virtual Virtual Physical
Funection Function Function

SR-I0V PCI Device (NIC)

——

Host System

Figure 19.1. How SR-10OV works

SR-IOV enables a Single Root Function (for example, a single Ethernet port), to appear as multiple,
separate, physical devices. A physical device with SR-IOV capabilities can be configured to appear
in the PCIl configuration space as multiple functions. Each device has its own configuration space
complete with Base Address Registers (BARS).

SR-IOV uses two PCI functions:

Physical Functions (PFs) are full PCle devices thatinclude the SR-IOV capabilities. Physical
Functions are discovered, managed, and configured as normal PCl devices. Physical Functions
configure and manage the SR-IOV functionality by assigning Virtual Functions.

Virtual Functions (VFs) are simple PCle functions that only process I/O. Each Virtual Function is
derived from a Physical Function. The number of Virtual Functions a device may have is limited
by the device hardware. A single Ethernet port, the Physical Device, may map to many Virtual
Functions that can be shared to virtual machines.

The hypervisor can map one or more Virtual Functions to a virtual machine. The Virtual Function's
configuration space is then mapped to the configuration space presented to the guest.

221

http://vfio.blogspot.com/2014/08/iommu-groups-inside-and-out.html

Virtualization Deployment and Administration Guide

Each Virtual Function can only be mapped to a single guest at a time, as Virtual Functions require
real hardware resources. Avirtual machine can have multiple Virtual Functions. A Virtual Function
appears as a network card in the same way as a normal network card would appear to an operating
system.

The SR-IOV drivers are implemented in the kernel. The core implementation is contained in the PCI
subsystem, but there must also be driver support for both the Physical Function (PF) and Virtual
Function (VF) devices. An SR-IOV capable device can allocate VFs from a PF. The VFs appear as
PCl devices which are backed on the physical PCl device by resources such as queues and register
sets.

19.1. Advantages of SR-IOV

SR-IOV devices can share a single physical port with multiple virtual machines.

Virtual Functions have near-native performance and provide better performance than para-
virtualized drivers and emulated access. Virtual Functions provide data protection between virtual
machines on the same physical server as the data is managed and controlled by the hardware.

These features allow for increased virtual machine density on hosts within a data center.

SR-I0V is better able to utilize the bandwidth of devices with multiple guests.

19.2. Using SR-IOV

This section covers the use of PCl passthrough to assign a Virtual Function of an SR-IOV capable
multiport network card to a virtual machine as a network device.

SR-I0OV Virtual Functions (VFs) can be assigned to virtual machines by adding a device entry in
<hostdev> with thevirsh editorvirsh attach-device command. However, this can be
problematic because unlike a regular network device, an SR-IOV VF network device does not have a
permanent unique MAC address, and is assigned a new MAC address each time the host is rebooted.
Because of this, even if the guest is assigned the same VF after a reboot, when the hostis rebooted
the guest determines its network adapter to have a new MAC address. As a result, the guest believes
there is new hardware connected each time, and will usually require re-configuration of the guest's
network settings.

libvirt-0.9.10 and newer contains the <interface type='hostdev'> interface device. Using this
interface device, libvirt will first perform any network-specific hardware/switch initialization indicated
(such as setting the MAC address, VLAN tag, or 802.1Qbh virtualport parameters), then perform the
PCl device assignment to the guest.

Using the <interface type='hostdev'> interface device requires:
an SR-IOV-capable network card,
host hardware that supports either the Intel VT-d or the AMD IOMMU extensions, and

the PCl address of the VF to be assignhed.

Assignment of an SR-I0OV device to a virtual machine requires that the host hardware supports
the Intel VT-d or the AMD IOMMU specification.

222

Chapter 19. SR-10V

To attach an SR-IOV network device on an Intel or an AMD system, follow this procedure:
Procedure 19.1. Attach an SR-IOV network device on an Intel or AMD system

1. Enable Intel VT-d or the AMD IOMMU specifications in the BIOS and kernel

On an Intel system, enable Intel VT-d in the BIOS ifitis not enabled already. Refer to
Procedure 18.1, “Preparing an Intel system for PCl device assignment” for procedural help on

enabling Intel VT-d in the BIOS and kernel.
Skip this step if Intel VT-d is already enabled and working.

On an AMD system, enable the AMD IOMMU specifications in the BIOS if they are not enabled
already. Refer to Procedure 18.2, “Preparing an AMD system for PCI device assignment” for

procedural help on enabling IOMMU in the BIOS.

2. Verify support

Verify if the PCl device with SR-IOV capabilities is detected. This example lists an Intel 82576
network interface card which supports SR-IOV. Use the 1 spci command to verify whether the
device was detected.

lspci

03:00.0 Ethernet controller: Intel Corporation 82576 Gigabit
Network Connection (rev 01)

03:00.1 Ethernet controller: Intel Corporation 82576 Gigabit
Network Connection (rev 01)

Note that the output has been modified to remove all other devices.

3. Start the SR-IOV kernel modules

If the device is supported the driver kernel module should be loaded automatically by the
kernel. Optional parameters can be passed to the module using the modprobe command.
The Intel 82576 network interface card uses the igb driver kernel module.

modprobe igb [<option>=<VAL1>, <VAL2>,]
lsmod |grep igb

igb 87592 0

dca 6708 1 igb

4. Activate Virtual Functions

The max_vfs parameter of the 1gb module allocates the maximum number of Virtual
Functions. The max_vfs parameter causes the driver to spawn, up to the value of the
parameter in, Virtual Functions. For this particular card the valid range is 0 to 7.

Remove the module to change the variable.
modprobe -r igb

Restart the module with the max_vfs setto 7 or any number of Virtual Functions up to the
maximum supported by your device.

modprobe igb max_vfs=7

223

Virtualization Deployment and Administration Guide

5. Make the Virtual Functions persistent

To make the Virtual Functions persistent across reboots, add the following to the
/etc/rc.d/rc.local file. Specify the number of VFs desired (in this example, 2), up to the
limit supported by the network interface card, and replace enp14s0f0 with the PF network
device name(s):

echo 2 > /sys/class/net/enpl4s0f@/device/sriov_numvfs

This will ensure the feature is enabled at boot-time.

Ifthe /etc/rc.d/rc. local file does not already exist on your system, first create the
file, then make it executable with this command:

chmod +x /etc/rc.d/rc.local

6. Inspect the new Virtual Functions

Using the 1spci command, listthe newly added Virtual Functions attached to the Intel 82576
network device. (Alternatively, use grep to search for Virtual Function,to search for
devices that support Virtual Functions.)

lspci | grep 82576

0b:00.0 Ethernet controller: Intel Corporation 82576 Gigabit
Network Connection (rev 01)

0b:00.1 Ethernet controller: Intel Corporation 82576 Gigabit
Network Connection (rev 01)

0b:10.0 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

0b:10.1 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

0b:10.2 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

0b:10.3 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

0b:10.4 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

0b:10.5 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

0b:10.6 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

0b:10.7 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

0b:11.0 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

Ob:11.1 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

Ob:11.2 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

0b:11.3 Ethernet controller: Intel Corporation 82576 Virtual

224

Function (rev 01)
Ob:11.4 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)
Ob:11.5 Ethernet controller: Intel Corporation 82576 Virtual
Function (rev 01)

The identifier for the PCl device is found with the -n parameter of the 1spci command. The
Physical Functions correspondto 6b: 0.0 and 0b: 00 . 1. All Virtual Functions have
Virtual Functionin the description

. Verify devices exist with virsh

The 1ibvirt service mustrecognize the device before adding a device to a virtual machine
libvirtuses a similar notation to the 1spci output. All punctuation characters, ; and ., in
1spci output are changed to underscores (_).

Usethevirsh nodedev-1list command and the grep command to filter the Intel 82576
network device from the list of available host devices. @b is the filter for the Intel 82576
network devices in this example. This may vary for your system and may result in additional
devices.

virsh nodedev-list | grep 0b
pci_0000_0b_00_0
pci_0000_0b_00_1
pci_0000_0b_10_0
pci_0000_0b_10_1
pci_00600_0b_10_2
pci_0000_0b_10_3
pci_0000_0b_10_4
pci_0000_0b_10_5
pci_0000_0b_10_6
pci_0000_0b_11 7
pci_0000_060b_11 1
pci_0000_0b_11 2
pci_0000_0b_11_3
pci_0000_0b_11 4
pci_0000_0b_11_5

The serial numbers for the Virtual Functions and Physical Functions should be in the list.

. Get device details with virsh

Thepci_0000_0b_00_0 isone ofthe Physical Functions and pci_0000_0b_10_0 is
the first corresponding Virtual Function for that Physical Function. Use the virsh
nodedev-dumpxml command to get advanced output for both devices.

virsh nodedev-dumpxml pci_0000_0b_00_06
<device>
<name>pci_0000_0b_00_0</name>
<parent>pci_0000_00_01 0</parent>
<driver>
<name>igb</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>11</bus>

Virtualization Deployment and Administration Guide

<slot>0</slot>
<function>0</function>
<product id='0x10c9'>Intel Corporation</product>
<vendor id='0x8086'>82576 Gigabit Network Connection</vendor>
</capability>
</device>

virsh nodedev-dumpxml pci_0000_0b_10_0
<device>
<name>pci_0000_0b_10_0</name>
<parent>pci_0000_00_01 0</parent>
<driver>
<name>igbvf</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>11</bus>
<slot>16</slot>
<function>0</function>
<product id='Ox10ca'>Intel Corporation</product>
<vendor id='0x8086'>82576 Virtual Function</vendor>
</capability>
</device>

This example adds the Virtual Function pci_0000_0b_10_0 to the virtual machine in Step

9. Note the bus, slot and function parameters of the Virtual Function: these are required
for adding the device.

Copy these parameters into a temporary XML file, such as /tmp/new-interface. xml for
example.

<interface type='hostdev' managed='yes'>
<source>
<address type='pci' domain='0Q' bus='11' slot='16"
function='0"'/>
</source>
</interface>

226

Chapter 19. SR-10V

If you do not specify a MAC address, one will be automatically generated. The
<virtualport> elementis only used when connecting to an 802.11Qbh hardware
switch. The <vlan> element will transparently put the guest's device on the VLAN
tagged 42.

When the virtual machine starts, it should see a network device of the type provided by
the physical adapter, with the configured MAC address. This MAC address will remain
unchanged across host and guest reboots.

The following <interface> example shows the syntax for the optional <mac
address>, <virtualport>, and <vlan> elements. In practice, use either the <vlan>
or <virtualport> element, not both simultaneously as shown in the example:

<devices>

<interface type='hostdev' managed='yes'>
<source>
<address type='pci' domain='0' bus='11' slot='16"'
function='0"'/>

</source>
<mac address='52:54:00:6d:90:02'>
<vlan>
<tag id='42'/>
</vlan>

<virtualport type='802.1Qbh'>
<parameters profileid='finance'/>
</virtualport>
</interface>

</devices>

Add the Virtual Function to the virtual machine

Add the Virtual Function to the virtual machine using the following command with the
temporary file created in the previous step. This attaches the new device immediately and
saves it for subsequent guest restarts.

virsh attach-device MyGuest /tmp/new-interface.xml --live --config

Specifying the --1ive option with virsh attach-device attaches the new device to the
running guest. Using the - -config option ensures the new device is available after future
guest restarts.

227

Virtualization Deployment and Administration Guide

The virtual machine detects a new network interface card. This new card is the Virtual Function of the

The --1ive option is only accepted when the guestis running. virsh will return an
error ifthe --1ive option is used on a non-running guest.

SR-IOV device.

19.3. Troubleshooting SR-I0V

This section contains solutions for problems which may affect SR-IOV. If you need additional help,
refer to Appendlx A, Troubleshootlng as well as Section 18.1.8, “Setting PCl device assignment from a

228

Error starting the guest

When starting a configured virtual machine, an error occurs as follows:

virsh start test

error: Failed to start domain test

error: Requested operation is not valid: PCI device 0000:03:10.1
is in use by domain rhel7?

This error is often caused by a device thatis already assigned to another guest or to the
host itself.

Error migrating, saving, or dumping the guest

Attempts to migrate and dump the virtual machine cause an error similar to the following:

virsh dump rhel7/tmp/rhel7.dump
error: Failed to core dump domain rhel7 to /tmp/rhel7.dump

error: internal error: unable to execute QEMU command 'migrate'
State blocked by non-migratable device '0000:00:03.0/vfio-pci'

Because device assignment uses hardware on the specific host where the virtual machine

was started, guest migration and save are not supported when device assignmentis in use.
Currently, the same limitation also applies to core-dumping a guest; this may change in the
future. Itis important to note that QEMU does not currently support migrate, save, and dump

operations on guest virtual machines with PCI devices attached. Currently it only can

support these actions with USB devices. Work is currently being done to improve this in the

future.

Chapter 20. Virtual Networking

Chapter 20. Virtual Networking

This chapter introduces the concepts needed to create, start, stop, remove, and modify virtual
networks with libvirt.

Additional information can be found in the libvirt reference chapter

20.1. Virtual network switches

Libvirt virtual networking uses the concept of a virtual network switch. A virtual network switch is a
software construct that operates on a host physical machine server, to which virtual machines
(guests) connect. The network traffic for a guestis directed through this switch:

Host Server

Virtual

[T]E:"j Machine

Figure 20.1. Virtual network switch with two guests

Linux host physical machine servers represent a virtual network switch as a network interface. When
the libvirtd daemon (Libvirtd) is firstinstalled and started, the default network interface
representing the virtual network switch is virbro.

229

Virtualization Deployment and Administration Guide

virtual network switch
virbro

Figure 20.2. Linux host physical machine with an interface to a virtual network switch

This virbro interface can be viewed with the ifconfig and ip commands like any other interface:

$ ifconfig virbro
virbro Link encap:Ethernet HWaddr 1B:C4:94:CF:FD:17
inet addr:192.168.122.1 Bcast:192.168.122.255
Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:11 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:3097 (3.0 KiB)

$ ip addr show virbro
3: virbr®: <BROADCAST, MULTICAST,UP, LOWER_UP> mtu 1500 qdisc noqueue
state UNKNOWN

link/ether 1b:c4:94:cf:fd:17 brd ff:ff:ff:ff:ff:ff

inet 192.168.122.1/24 brd 192.168.122.255 scope global virbro

20.2. Bridge Mode

When using Bridge mode, all of the guest virtual machines appear within the same subnet as the host
physical machine. All other physical machines on the same physical network are aware of the virtual
machines, and can access the virtual machines. Bridging operates on Layer 2 of the OSI networking
model.

Itis possible to use multiple physical interfaces on the hypervisor by joining them together with a
bond. The bond is then added to a bridge and then guest virtual machines are added onto the
bridge as well. However, the bonding driver has several modes of operation, and only a few of these
modes work with a bridge where virtual guest machines are in use.

230

Chapter 20. Virtual Networking

The only bonding modes that should be used with a guest virtual machine are Mode 1, Mode
2,and Mode 4. Under no circumstances should Modes 0, 3,5, or 6 be used. It should also be
noted that mii-monitoring should be used to monitor bonding modes as arp-monitoring does
not work.

20.3. Network Address Translation

By default, virtual network switches operate in NAT mode. They use IP masquerading rather than
SNAT (Source-NAT) or DNAT (Destination-NAT). IP masquerading enables connected guests to use
the host physical machine IP address for communication to any external network. By default,
computers that are placed externally to the host physical machine cannot communicate to the guests
inside when the virtual network switch is operating in NAT mode, as shown in the following diagram:

Virtual switch: NAT mode
_,,—f"d\\

l \ Host Server

..-"""H“w‘!_!_.__._.__.—f:
10.10.10.190

All communication to
systems outside of

the host, appears to Virtual
come from the host Machine
IP address. ' 192.168.122.210
virtual network switch
10.10.10.190 in this in NAT mode

* Virtual
example. \ﬁﬁ)‘iﬂ Machine

192.168.122.220

Figure 20.3. Virtual network switch using NAT with two guests

Virtual network switches use NAT configured by iptables rules. Editing these rules while the
switch is running is not recommended, as incorrect rules may result in the switch being unable
to communicate.

231

https://access.redhat.com/solutions/67546
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Deployment_Guide/sec-Establishing_a_Bond_Connection.html

Virtualization Deployment and Administration Guide

If the switch is notrunning, you can set th public IP range for foward mode NAT in order to create a
port masquerading range by running:

iptables -j SNAT --to-source [start]-[end]

20.4. DNS and DHCP

IP information can be assigned to guests via DHCP. Apool of addresses can be assigned to a
virtual network switch for this purpose. Libvirt uses the dnsmasq program for this. An instance of
dnsmasq is automatically configured and started by libvirt for each virtual network switch that needs
it.

Virtualization Host Server

Virtual

Virtual network — \?‘Iﬂ Whariene

switch
192.168.122.210

<> Virtual
Using DHCP range: Sl \ﬂﬁf@ Machine
192.168.122.2 - 192.168.122.254 192 168.122.220

Figure 20.4. Virtual network switch running dnsmasq

20.5. Routed mode

When using Routed mode, the virtual switch connects to the physical LAN connected to the host
physical machine, passing traffic back and forth without the use of NAT. The virtual switch can
examine all traffic and use the information contained within the network packets to make routing
decisions. When using this mode, all of the virtual machines are in their own subnet, routed through
a virtual switch. This situation is not always ideal as no other host physical machines on the
physical network are aware of the virtual machines without manual physical router configuration,
and cannot access the virtual machines. Routed mode operates at Layer 3 of the OSI networking
model.

232

Chapter 20. Virtual Networking

Virtual switch: Routed mode

Host Server

10.10.10.1

The host acts as a
router, letting the

outside world Virtual
communicate with :) Machine
the virtual machines 10.10.10.100
by IP address. virtual network switch
in routed mode Virtual
10.10.10.100, } Machine
and 10.10.10.101, 10.10.10.101

in this example.

Figure 20.5. Virtual network switch in routed mode

20.6. Isolated mode

When using Isolated mode, guests connected to the virtual switch can communicate with each other,

and with the host physical machine, but their traffic will not pass outside of the host physical

machine, nor can they receive traffic from outside the host physical machine. Using dnsmasq in this
mode is required for basic functionality such as DHCP. However, even if this network is isolated from

any physical network, DNS names are still resolved. Therefore a situation can arise when DNS

names resolve but ICMP echo request (ping) commands fail.

233

Virtualization Deployment and Administration Guide

Virtual switch: Isolated mode

\ Host Server
14

No external network X
traffic gets to, nor
comes from, the
virtual machines

Virtual
Machine

virtual network switch

in isolated mode Virtual

\mﬁ?j Machine

192.168.122.220

Figure 20.6. Virtual network switch in isolated mode

20.7. The default configuration

When the libvirtd daemon (Libvirtd) is firstinstalled, it contains an initial virtual network switch
configuration in NAT mode. This configuration is used so thatinstalled guests can communicate to
the external network, through the host physical machine. The following image demonstrates this
default configuration for 1ibvirtd:

234

Chapter 20. Virtual Networking

libvirt's default network configuration

Virtualization Host Server

Physical
ethernet
port (eth0)

Virtual network
switch: MAT mode

Virtual Virtual
Machine Machine
Virtual Virtual
Machine Machine

Figure 20.7. Default libvirt network configuration

Avirtual network can be restricted to a specific physical interface. This may be useful on a
physical system that has several interfaces (for example, eth@, ethl and eth2). This is only
useful in routed and NAT modes, and can be defined in the dev=<interface> option, orin
virt-manager when creating a new virtual network.

20.8. Examples of common scenarios

This section demonstrates different virtual networking modes and provides some example scenarios.

20.8.1. Bridged mode

Bridged mode operates on Layer 2 of the OSI model. When used, all of the guest virtual machines will
appear on the same subnet as the host physical machine. The most common use cases for bridged
mode include:

Deploying guest virtual machines in an existing network alongside host physical machines
making the difference between virtual and physical machines transparent to the end user.

Deploying guest virtual machines without making any changes to existing physical network
configuration settings.

235

Virtualization Deployment and Administration Guide

Deploying guest virtual machines which must be easily accessible to an existing physical
network. Placing guest virtual machines on a physical network where they must access services
within an existing broadcast domain, such as DHCP.

Connecting guest virtual machines to an exsting network where VLANs are used.

20.8.2. Routed mode

DMz

Consider a network where one or more nodes are placed in a controlled sub-network for security
reasons. The deployment of a special sub-network such as this is a common practice, and the sub-
network is known as a DMZ. Refer to the following diagram for more details on this layout:

Firewall

Wide Area ' ¢ | Local Area
Network < » Network

DMZ

C Host Server
1 .

Virtual
Machine

virtual network switch
in routed mode Virtual
Machine

Figure 20.8. Sample DMZ configuration

Host physical machines in a DMZ typically provide services to WAN (external) host physical
machines as well as LAN (internal) host physical machines. As this requires them to be accessible
from multiple locations, and considering that these locations are controlled and operated in different
ways based on their security and trust level, routed mode is the best configuration for this
environment.

Virtual Server hosting

236

Chapter 20. Virtual Networking

Consider a virtual server hosting company that has several host physical machines, each with two
physical network connections. One interface is used for management and accounting, the other is for
the virtual machines to connect through. Each guest has its own public IP address, but the host
physical machines use private IP address as management of the guests can only be performed by
internal administrators. Refer to the following diagram to understand this scenario:

‘_’ . Host Server
1

*------.-hqlh IOJIO.IO-I

~

The host can be \
administered through *
one network interface
while virtual machines
provide their services

Virtual

\@éﬁ Machine
<Public IP>

throu.;gh t:'.‘:" Et::'fer L virtual network switch
Yeskees st in routed mode Virtual
M) Machine
<Public IP>

Figure 20.9. Virtual server hosting sample configuration

When the host physical machine has a public IP address and the virtual machines have static public
IP addresses, bridged networking cannot be used, as the provider only accepts packets from the
MAC address of the public host physical machine. The following diagram demonstrates this:

C' Host Server
il '
ﬁ

192.168.0.1

The host acts as a
router, letting the

outside world Virtual
communicate with Machine
the virtual machines 192.168.1.10
by IP address. virtual network switch
in routed mode Virtual
192168.1.10 Machine
and192.168.1.11
192.168.1.11

in this example.

Figure 20.10. Virtual server using static IP addresses

20.8.3. NAT mode
237

Virtualization Deployment and Administration Guide

NAT (Network Address Translation) mode is the default mode. It can be used for testing when there is
no need for direct network visibility.

20.8.4. Isolated mode

Isolated mode allows virtual machines to communicate with each other only. They are unable to
interact with the physical network.

20.9. Managing a virtual network

To configure a virtual network on your system:

1. Fromthe Edit menu, selectConnection Details.

Z1[=8 Edit

View Help
E‘J Connection Details

Virtual Machine Details
Nami Delete v CPU usage

19 d
Preferences

= localhost (UEMLUY

VM-RHEL
= Running

myhypervisor (QEMU) - Not Connected

Figure 20.11. Selecting a host physical machine's details

2. This will open the Connection Details menu. Click the Virtual Networks tab.

238

Chapter 20. Virtual Networking

Eile
Overview Iwﬂisl‘ Storage | Network Interfaces
3 default ’ Basic details

Name: [default

Device: [uirbrﬂ

State: =2 Active
Autostart: On Boot

IPv4 configuration

Network: [192.163.122.0}24

DHCP start: [192.168.122.2

DHCP end: [192.168.122.254

Forwarding: =& NAT

/e

Figure 20.12. Virtual network configuration

3. All available virtual networks are listed on the left-hand box of the menu. You can edit the

configuration of a virtual network by selecting it from this box and editing as you see fit.

20.10. Creating a virtual network

To create a virtual network on your system using the Virtual Manager (virt-manager):

1. Open theVirtual Networks tab from within the Connection Details menu. Click
Add Network button, identified by a plus sign (+) icon. For more information, refer to

the

239

Virtualization Deployment and Administration Guide

Eile

overview |'u'irtua| Ned

” Storage I Network Interfaces

5 default Basic details

=

Name: [default

Device: [\.firbr[}

State: =2 Active
Autostart: On Boot

. IPv4 configuration

 Network: [192.168.122.0/24

" DHCP start: 192.168.122.2

DHCP end: [192.168.122.254

Forwarding: =& NAT

Figure 20.13. Virtual network configuration

This will open the Create a new virtual network window. Click Forward to continue.

240

Creating a new virtual network

This assistant will guide you through creating a new
virtual network. You will be asked for some
information about the virtual network you'd like to
create, such as:

e A name for your new virtual network
e The IPv4 address and netmask to assign

The address range from which the DHCP
server will allocate addresses for virtual machines

e Whether to forward traffic to the physical network

Cancel . Forward |

Figure 20.14. Creating a new virtual network

2. Enter an appropriate name for your virtual network and click Forward.

Naming your virtual network

Please choose a name for your virtual network:

Network Name: |network1] |
]

Example: networkl

Cancel Back Forward

Figure 20.15. Naming your virtual network

3. Enter an IPv4 address space for your virtual network and click Forward.

Choosing an IPv4 address space

You will need to choose an IPv4 address
space for the virtual network:

Network: |192.168.100.0/24

= Hint: The network should be chosen from one
= of the IPv4 private address ranges. eg
10.0.0.0/8, 172.16.0.0/12, 0r 192.168.0.0/16

Netmask: 255.255.255.0
Broadcast: 192.168.100.255
Gateway: 192.168.100.1
Size: 256 addresses

Type: Private

Cancel Back | Forward |

Figure 20.16. Choosing an IPv4 address space

4. Define the DHCP range for your virtual network by specifying a Start and End range of IP
addresses. Click Forward to continue.

Virtualization Deployment and Administration Guide

Selecting the DHCP range

Please choose the range of addresses the DHCP server will
allocate to virtual machines attached to the virtual network.

Enable DHCP:

Start: [192.168.100.128 :|

End: [192.155.10{1.254 :|

=) Tip: Unless you wish to reserve some addresses to

= allow static network configuration in virtual
machines, these parameters can be left with their
default values.

Cancel Back | Forward .

Figure 20.17. Selecting the DHCP range

5. Select how the virtual network should connect to the physical network.

244

Connecting to physical network

Please indicate whether this virtual network
should be connected to the physical network.

@ lsolated virtual network

) Forwarding to physical network

Destination:

Mode:

Cancel Back | Forward .

Figure 20.18. Connecting to physical network

If you select Forwarding to physical network, choose whetherthe Destination
should be Any physical device or a specific physical device. Also select whether the
Mode should be NAT or Routed.

Click Forward to continue.

. You are now ready to create the network. Check the configuration of your network and click
Finish.

Ready to create network

Summary
Network name: networkl
IPv4 network

MNetwork: 192.168.100.0/24
Gateway: 192.168.100.1
Metmask: 255.255.255.0

DHCP

Start address: 192.168.100.128
End address: 192.168.100.254

Forwarding
Connectivity: Isolated network

Cancel Back | Finish '

Figure 20.19. Ready to create network

7. The new virtual network is now available in the Virtual Networks tab ofthe Connection
Details window.

20.11. Attaching a virtual network to a guest

To attach a virtual network to a guest:

1. IntheVirtual Machine Manager window, highlightthe guest that will have the network
assigned.

Chapter 20. Virtual Networking

File Edit View Help
Es | Emopen > m @ -

Name W

= localhost (QEMLU)
guestl-rhel5-64
Running

guestl-rhel6-64
Running

guestl-win2k3-64
Shutoff

rhelé-64-pxe
Shutoff

mEE

Figure 20.20. Selecting a virtual machine to display

2. Fromthe Virtual Machine Manager Edit menu, selectVirtual Machine Details.

File | =« | View Help
Connection Details
Virtual Machine Details

Nam(pelete ~ CPU usage
¥ leg EBreferences
guestl-rhel5-64
L.-:—‘ Running

- guestl-win2k3-64

Shutoff

D guestl-rhel6-64
Shutoff

- rhel6-64-pxe

Shutoff

Figure 20.21. Displaying the virtual machine details

3. Clickthe Add Hardware button on the Virtual Machine Details window.

247

Virtualization Deployment and Administration Guide

test-vm Virtual Machine - | 0| x

File Virtual Machine View Send Key

= -
hid ; w a o
= | > |

=

=_ Overview

Performance

Processor
==

Basic Details

Memory UuiD: 4381f9ce-fafl-4505-b56a-66081ffc52c3
Boot Options Status: = Shutoff
L VirtlO Disk 1 Description:

o
(%) IDE COROM 1
B NIC :bbe:ff

ILJI Tablet Hypervisor Details

@ Mouse Hypervisor: kvm

@ Display Spice Architecture: x86_64

HF Sound: ich6 Emulator: fusr/libexec/gemu-kvm
65}5 Serial 1 Operating System

&= Channel Hostname: unknown

IE' Video QXL Product name: unknown

H} Controller USB

b Applications
MF Controller PCI

B controlter IDE » Machine Settings
H} Controller Virtio Serial
u b Security
RNG
Add Hardware Cancel Apply

Figure 20.22. The Virtual Machine Details window

4. Inthe Add new virtual hardware window, select Network from the left pane, and select
your network name (networkl in this example) from the Host device menu and click
Finish.

248

Storage

[

Input
Graphics
Sound

Bimc

Serial

Parallel

USB Host Device
PCl Host Device
Video

Watchdog

HIDeser))

Chapter 20. Virtual Networ

king

Please indicate how you'd like to connect your
new virtual network device to the host network.

Host device: [‘u’irtual network 'networkl’ : Isolated network =

MAC address: |52:54:00:24:df:61

Device model: | Hypervisor default | &

Cancel Finish

Figure 20.23. Select your network from the Add new virtual hardware window

5. The new network is now displayed as a virtual network interface that will be presented to the

guestupon launch.

249

Virtualization Deployment and Administration Guide

File WVirtual Machine View Send Key
=0 0@ &

Overview

m

Virtual Network Interface

Performance Source device: Virtual network 'networkl' : Isolated network
Processor

Device model: | Hypervisor default £

Mermaor
'y‘- MAC address: 52:54:00:24:df:61

Boot Options

VirtlO Disk 1

NIC :79:35:e9

Tablet
Mouse
Display VNC
Sound: ich6
Serial 1
Video

WHRWORENDY NEE

| Add Hardware | Remove

Figure 20.24. New network shown in guest hardware list

20.12. Directly attaching to physical interface

The instructions provided in this chapter will assistin the direct attachment of the virtual machine's
NIC to the given physical interface of the host physical machine. If you want to use an assignment

being the default mode. Their behavior is as follows:

Physical interface delivery modes
vepa

All VMs' packets are sent to the external bridge. Packets whose destination is a VM on the
same host physical machine as where the packet originates from are sent back to the host
physical machine by the VEPA capable bridge (today's bridges are typically not VEPA
capable).

bridge

Packets whose destination is on the same host physical machine as where they originate

250

Chapter 20. Virtual Networking

from are directly delivered to the target macvtap device. Both origin and destination devices
need to be in bridge mode for direct delivery. If either one of them is in vepa mode, a VEPA
capable bridge is required.

private

All packets are sent to the external bridge and will only be delivered to a target VM on the
same host physical machine if they are sentthrough an external router or gateway and that
device sends them back to the host physical machine. This procedure is followed if either
the source or destination device is in private mode.

passthrough

This feature attaches a virtual function of a SRIOV capable NIC directly to a VM without
losing the migration capability. All packets are sent to the VF/IF of the configured network
device. Depending on the capabilities of the device additional prerequisites or limitations
may apply; for example, on Linux this requires kernel 2.6.38 or newer.

Each of the four modes is configured by changing the domain xml file. Once this file is opened,
change the mode setting as shown:

<devices>

<interface type='direct'>
<source dev='eth®' mode='vepa'/>
</interface>
</devices>

The network access of direct attached guest virtual machines can be managed by the hardware
switch to which the physical interface of the host physical machine is connected to.

The interface can have additional parameters as shown below, if the switch is conforming to the IEEE
802.1Qbg standard. The parameters of the virtualport element are documented in more detail in the
IEEE 802.1Qbg standard. The values are network specific and should be provided by the network
administrator. In 802.1Qbg terms, the Virtual Station Interface (VSI) represents the virtual interface of
a virtual machine.

Note that IEEE 802.1Qbg requires a non-zero value for the VLAN ID. Also if the switch is conforming
to the IEEE 802.1Qbh standard, the values are network specific and should be provided by the
network administrator.

Virtual Station Interface types
managerid

The VSI Manager ID identifies the database containing the VSI type and instance
definitions. This is an integer value and the value 0 is reserved.

typeid

The VSI Type ID identifies a VS| type characterizing the network access. VS| types are
typically managed by network administrator. This is an integer value.

typeidversion

The VSI Type Version allows multiple versions of a VSI Type. This is an integer value.

251

Virtualization Deployment and Administration Guide

instanceid

The VSl Instance ID Identifier is generated when a VSl instance (i.e. a virtual interface of a
virtual machine) is created. This is a globally unique identifier.

profileid

The profile ID contains the name of the port profile thatis to be applied onto this interface.
This name is resolved by the port profile database into the network parameters from the port
profile, and those network parameters will be applied to this interface.

Each of the four types is configured by changing the domain xml file. Once this file is opened,
change the mode setting as shown:

<devices>

<interface type='direct'>
<source dev='eth0.2' mode='vepa'/>
<virtualport type="802.1Qbg">
<parameters managerid="11" typeid="1193047" typeidversion="2"
instanceid="09b11c53-8b5c-4eeb-8f00-d84eaalaaadf" />
</virtualport>
</interface>
</devices>

The profile ID is shown here:
<devices>

<interface type='direct'>
<source dev='eth®' mode='private'/>
<virtualport type='802.1Qbh'>
<parameters profileid='finance'/>
</virtualport>
</interface>
</devices>

20.13. Dynamically changing a host physical machine or a network
bridge that is attached to a virtual NIC

This section demonstrates how to move the vNIC of a guest virtual machine from one bridge to
another while the guest virtual machine is running without compromising the guest virtual machine

1. Prepare guest virtual machine with a configuration similar to the following:

<interface type='bridge'>
<mac address='52:54:00:4a:c9:5e'/>
<source bridge='virbro'/>
<model type='virtio'/>
</interface>

2. Prepare an XML file for interface update:

252

cat bri.xml

<interface type='bridge'>

<mac address='52:54:00:4a:¢c9:5e'/>

<source bridge='virbri'/>
<model type='virtio'/>
</interface>

Chapter 20. Virtual Networking

3. Startthe guestvirtual machine, confirm the guest virtual machine's network functionality, and
check that the guest virtual machine's vnetX is connected to the bridge you indicated.

brctl show

bridge name bridge id

virbro 8000.5254007da9f2
virbrO-nic

vheto
virbri 8000.525400682996
virbri-nic

STP enabled interfaces
yes

yes

4. Update the guest virtual machine's network with the new interface parameters with the

following command:

virsh update-device testl bri.xml

Device updated successfully

5. On the guestvirtual machine, run service network restart. The guestyvirtual machine
gets a new IP address for virbrl. Check the guest virtual machine's vnetO is connected to the

new bridge(virbrl)

brctl show

bridge name bridge id

virbro 8000.5254007da9f2
virbri 8000.525400682996
vneto

20.14. Applying network filtering

STP enabled interfaces
yes virbrO-nic
yes virbri-nic

This section provides an introduction to libvirt's network filters, their goals, concepts and XML format.

20.14.1. Introduction

The goal of the network filtering, is to enable administrators of a virtualized system to configure and
enforce network traffic filtering rules on virtual machines and manage the parameters of network
traffic that virtual machines are allowed to send or receive. The network traffic filtering rules are
applied on the host physical machine when a virtual machine is started. Since the filtering rules
cannot be circumvented from within the virtual machine, it makes them mandatory from the point of

view of a virtual machine user.

From the point of view of the guest virtual machine, the network filtering system allows each virtual

253

Virtualization Deployment and Administration Guide

machine's network traffic filtering rules to be configured individually on a per interface basis. These
rules are applied on the host physical machine when the virtual machine is started and can be
modified while the virtual machine is running. The latter can be achieved by modifying the XML
description of a network filter.

Multiple virtual machines can make use of the same generic network filter. When such a filter is
modified, the network traffic filtering rules of all running virtual machines that reference this filter are
updated. The machines that are not running will update on start.

As previously mentioned, applying network traffic filtering rules can be done on individual network
interfaces that are configured for certain types of network configurations. Supported network types
include:

network
ethernet -- must be used in bridging mode

bridge

Example 20.1. An example of network filtering

The interface XML is used to reference a top-level filter. In the following example, the interface
description references the filter clean-traffic.

<devices>
<interface type='bridge'>
<mac address='00:16:3e:5d:c7:9e'/>
<filterref filter='clean-traffic'/>
</interface>
</devices>

Network filters are written in XML and may either contain: references to other filters, rules for traffic
filtering, or hold a combination of both. The above referenced filter clean-traffic is a filter that only
contains references to other filters and no actual filtering rules. Since references to other filters can
be used, a tree of filters can be built. The clean-traffic filter can be viewed using the command: #
virsh nwfilter-dumpxml clean-traffic.

As previously mentioned, a single network filter can be referenced by multiple virtual machines.
Since interfaces will typically have individual parameters associated with their respective traffic
filtering rules, the rules described in a filter's XML can be generalized using variables. In this case,
the variable name is used in the filter XML and the name and value are provided at the place where
the filter is referenced.

Example 20.2. Description extended

In the following example, the interface description has been extended with the parameter IP and a
dotted IP address as a value.

<devices>
<interface type='bridge'>
<mac address='00:16:3e:5d:c7:9e'/>
<filterref filter='clean-traffic'>

254

Chapter 20. Virtual Networking

<parameter name='IP' value='10.0.0.1'/>
</filterref>
</interface>
</devices>

In this particular example, the clean-traffic network traffic filter will be represented with the IP
address parameter 10.0.0.1 and as per the rule dictates that all traffic from this interface will always
be using 10.0.0.1 as the source IP address, which is one of the purpose of this particular filter.

20.14.2. Filtering chains

Filtering rules are organized in filter chains. These chains can be thought of as having a tree
structure with packet filtering rules as entries in individual chains (branches).

Packets start their filter evaluation in the root chain and can then continue their evaluation in other
chains, return from those chains back into the root chain or be dropped or accepted by a filtering
rule in one of the traversed chains.

Libvirt's network filtering system automatically creates individual root chains for every virtual
machine's network interface on which the user chooses to activate traffic filtering. The user may write
filtering rules that are either directly instantiated in the root chain or may create protocol-specific
filtering chains for efficient evaluation of protocol-specific rules.

The following chains exist:

root

mac

stp (spanning tree protocol)
vlan

arp and rarp

ipv4

ipv6

Multiple chains evaluating the mac, stp, vlan, arp, rarp, ipv4, or ipv6 protocol can be created using
the protocol name only as a prefix in the chain's name.

Example 20.3. ARP traffic filtering

This example allows chains with names arp-xyz or arp-test to be specified and have their ARP
protocol packets evaluated in those chains.

The following filter XML shows an example of filtering ARP traffic in the arp chain.

<filter name='no-arp-spoofing' chain='arp' priority='-500"'>
<uuid>f88f1932-debf-4aal-9fbe-f10d3aad4bc95</uuid>
<rule action='drop' direction='out' priority='300'>
<mac match='no' srcmacaddr="'$MAC'/>
</rule>
<rule action='drop' direction='out' priority='350'>
<arp match='no' arpsrcmacaddr="'$MAC'/>

255

Virtualization Deployment and Administration Guide

</rule>

<rule action='drop' direction='out' priority='400'>
<arp match='no' arpsrcipaddr='$IP'/>

</rule>

<rule action='drop' direction='in' priority='450"'>
<arp opcode='Reply'/>
<arp match='no' arpdstmacaddr='$MAC'/>

</rule>

<rule action='drop' direction='in' priority='500"'>
<arp match='no' arpdstipaddr='$IP'/>

</rule>

<rule action='accept' direction='inout' priority='600"'>
<arp opcode='Request'/>

</rule>

<rule action='accept' direction='inout' priority='650"'>
<arp opcode='Reply'/>

</rule>

<rule action='drop' direction='inout' priority='1000"'/>

</filter>

The consequence of putting ARP-specific rules in the arp chain, rather than for example in the root
chain, is that packets protocols other than ARP do not need to be evaluated by ARP protocol-
specific rules. This improves the efficiency of the traffic filtering. However, one must then pay
attention to only putting filtering rules for the given protocol into the chain since other rules will not
be evaluated. For example, an IPv4 rule will not be evaluated in the ARP chain since IPv4 protocol
packets will not traverse the ARP chain.

20.14.3. Filtering chain priorities
As previously mentioned, when creating a filtering rule, all chains are connected to the root chain.

The order in which those chains are accessed is influenced by the priority of the chain. The following
table shows the chains that can be assigned a priority and their default priorities.

Table 20.1. Filtering chain default priorities values

‘Chajn(preﬁx) Default priority

stp -810
mac -800
vlan -750
ipvd -700
ipv6 -600
arp -500
rarp -400

256

Chapter 20. Virtual Networking

A chain with a lower priority value is accessed before one with a higher value.

The chains listed in Table 20.1, “Filtering chain default priorities values” can be also be
assigned custom priorities by writing a value in the range [-1000 to 1000] into the priority
(XML) attribute in the filter node. Section 20.14.2, “Filtering chains”filter shows the default

priority of -500 for arp chains, for example.

20.14.4. Usage of variables in filters

There are two variables that have been reserved for usage by the network traffic filtering subsystem:
MAC and IP.

MAC is designated for the MAC address of the network interface. A filtering rule that references this
variable will automatically be replaced with the MAC address of the interface. This works without the
user having to explicitly provide the MAC parameter. Even though itis possible to specify the MAC
parameter similar to the IP parameter above, itis discouraged since libvirt knows what MAC address
an interface will be using.

The parameter IP represents the IP address that the operating system inside the virtual machine is
expected to use on the given interface. The IP parameter is special in so far as the libvirt daemon will
try to determine the IP address (and thus the IP parameter's value) thatis being used on an interface
if the parameter is not explicitly provided but referenced. For current limitations on IP address
detection, consult the section on limitations Section 20 14. 12 “Limitations” on how to use this feature

the filter no-arp-spoofing, WhICh is an example of usmg a network filter XML to reference the MAC
and IP variables.

Note that referenced variables are always prefixed with the character $. The format of the value of a
variable must be of the type expected by the filter attribute identified in the XML. In the above example,
the IP parameter must hold a legal IP address in standard format. Failure to provide the correct
structure will result in the filter variable not being replaced with a value and will prevent a virtual
machine from starting or will prevent an interface from attaching when hotplugging is being used.
Some of the types that are expected for each XML attribute are shown in the example Example 20.4,
“Sample variable types”.

Example 20.4. Sample variable types

As variables can contain lists of elements, (the variable IP can contain multiple IP addresses that
are valid on a particular interface, for example), the notation for providing multiple elements for the
IP variable is:

<devices>
<interface type='bridge'>
<mac address='00:16:3e:5d:c7:9¢e'/>
<filterref filter='clean-traffic'>
<parameter name='IP' value='10.0.0.1'/>
<parameter name='IP' value='10.0.0.2'/>
<parameter name='IP' value='10.0.0.3'/>
</filterref>
</interface>
</devices>

257

Virtualization Deployment and Administration Guide

This XML file creates filters to enable multiple IP addresses per interface. Each of the IP addresses
will resultin a separate filtering rule. Therefore using the XML above and the the following rule,
three individual filtering rules (one for each IP address) will be created:

<rule action='accept' direction='in' priority='500"'>
<tcp srpipaddr='$IP'/>
</rule>

As itis possible to access individual elements of a variable holding a list of elements, a filtering
rule like the following accesses the 2nd element of the variable DSTPORTS.

<rule action='accept' direction='in' priority='500"'>
<udp dstportstart='$DSTPORTS[1]'/>
</rule>

Example 20.5. Using a variety of variables

As itis possible to create filtering rules that represent all of the permissible rules from different lists
using the notation SVARIABLE[@<iterator id="x">]. The following rule allows a virtual
machine to receive traffic on a set of ports, which are specified in DSTPORTS, from the set of
source IP address specified in SRCIPADDRESSES. The rule generates all combinations of
elements of the variable DSTPORTS with those of SRCIPADDRESSES by using two independent
iterators to access their elements.

<rule action='accept' direction='in' priority='500'>
<ip srcipaddr='$SRCIPADDRESSES[@1]' dstportstart='$DSTPORTS[@2]'/>
</rule>

Assign concrete values to SRCIPADDRESSES and DSTPORTS as shown:

SRCIPADDRESSES = [10.0.0.1, 11.1.2.3]
DSTPORTS = [80, 8080]

Assigning values to the variables using $SRCIPADDRESSES[@1] and $DSTPORTS[@2] would
then resultin all variants of addresses and ports being created as shown:

10.0.0.1, 80
10.0.0.1, 8080
11.1.2.3, 80
11.1.2.3, 8080

Accessing the same variables using a single iterator, for example by using the notation
$SRCIPADDRESSES[@1] and $DSTPORTS[@1], would resultin parallel access to both lists
and resultin the following combination:

10.0.0.1, 80

11.1.2.3, 8080

258

Chapter 20. Virtual Networking

$VARIABLE is short-hand for SVARIABLE[@0]. The former notation always assumes the role
of iterator with i terator id="0" added as shown in the opening paragraph atthe top of
this section.

20.14.5. Automatic IP address detection and DHCP snhooping

20.14.5.1. Introduction

The detection of IP addresses used on a virtual machine's interface is automatically activated if the
variable IP is referenced but no value has been assigned to it. The variable CTRL_IP_LEARNING
can be used to specify the IP address learning method to use. Valid values include: any, dhcp, or
none.

The value any instructs libvirt to use any packet to determine the address in use by a virtual machine,
which is the default setting if the variable TRL_IP_LEARNING is not set. This method will only detect
a single IP address per interface. Once a guest virtual machine's IP address has been detected, its IP
network traffic will be locked to that address, if for example, IP address spoofing is prevented by one
of its filters. In that case, the user of the VM will not be able to change the IP address on the interface
inside the guest virtual machine, which would be considered IP address spoofing. When a guest
virtual machine is migrated to another host physical machine or resumed after a suspend operation,
the first packet sent by the guest virtual machine will again determine the IP address that the guest
virtual machine can use on a particular interface.

The value of dhcp instructs libvirt to only honor DHCP server-assigned addresses with valid leases.
This method supports the detection and usage of multiple IP address per interface. When a guest
virtual machine resumes after a suspend operation, any valid IP address leases are applied to its
filters. Otherwise the guest virtual machine is expected to use DHCP to obtain a new IP addresses.
When a guest virtual machine migrates to another physical host physical machine, the guest virtual
machine is required to re-run the DHCP protocol.

If CTRL_IP_LEARNING is set to none, libvirt does notdo IP address learning and referencing IP
without assigning it an explicit value is an error.

20.14.5.2. DHCP snooping

CTRL_IP_LEARNING=dhcp (DHCP snooping) provides additional anti-spoofing security,
especially when combined with a filter allowing only trusted DHCP servers to assign IP addresses.
To enable this, set the variable DHCPSERVER to the IP address of a valid DHCP server and provide
filters that use this variable to filter incoming DHCP responses.

When DHCP snooping is enabled and the DHCP lease expires, the guest virtual machine will no
longer be able to use the IP address until it acquires a new, valid lease from a DHCP server. If the
guest virtual machine is migrated, it must get a new valid DHCP lease to use an IP address (e.g., by
bringing the VM interface down and up again).

259

Virtualization Deployment and Administration Guide

Automatic DHCP detection listens to the DHCP traffic the guest virtual machine exchanges with
the DHCP server of the infrastructure. To avoid denial-of-service attacks on libvirt, the
evaluation of those packets is rate-limited, meaning that a guest virtual machine sending an
excessive number of DHCP packets per second on an interface will not have all of those
packets evaluated and thus filters may not get adapted. Normal DHCP client behavior is
assumed to send a low number of DHCP packets per second. Further, it is important to setup
appropriate filters on all guest virtual machines in the infrastructure to avoid them being able
to send DHCP packets. Therefore guest virtual machines must either be prevented from
sending UDP and TCP traffic from port67 to port 68 or the DHCPSERVER variable should be
used on all guest virtual machines to restrict DHCP server messages to only be allowed to
originate from trusted DHCP servers. At the same time anti-spoofing prevention must be
enabled on all guest virtual machines in the subnet.

Example 20.6. Activating IPs for DHCP snooping

The following XML provides an example for the activation of IP address learning using the DHCP
snooping method:

<interface type='bridge'>
<source bridge='virbro'/>
<filterref filter='clean-traffic'>
<parameter name='CTRL_IP_LEARNING' value='dhcp'/>
</filterref>
</interface>

20.14.6. Reserved Variables

Table 20.2, “Reserved variables” shows the variables that are considered reserved and are used by

Table 20.2. Reserved variables

‘ Variable Name Definition

MAC The MAC address of the interface

IP The list of IP addresses in use by an interface

IPV6 Not currently implemented: the list of IPV6
addresses in use by an interface

DHCPSERVER The list of IP addresses of trusted DHCP servers

DHCPSERVERV6 Not currently implemented: The list of IPv6
addresses of trusted DHCP servers

CTRL_IP_LEARNING The choice of the IP address detection mode

20.14.7. Element and attribute overview

The root element required for all network filters is named <filter> with two possible attributes. The
name attribute provides a unique name of the given filter. The chain attribute is optional but allows
certain filters to be better organized for more efficient processing by the firewall subsystem of the
underlying host physical machine. Currently the system only supports the following chains: root,

260

Chapter 20. Virtual Networking

ipv4,ipv6, arp and rarp.

20.14.8. References to other filters

Any filter may hold references to other filters. Individual filters may be referenced multiple times in a
filter tree but references between filters must notintroduce loops.

Example 20.7. An Example of a clean traffic filter

The following shows the XML of the clean-traffic network filter referencing several other filters.

<filter name='clean-traffic'>
<uuid>6ef53069-ba34-94a0-d33d-17751b9b8chi</uuid>
<filterref filter='no-mac-spoofing'/>
<filterref filter='no-ip-spoofing'/>
<filterref filter='allow-incoming-ipv4'/>
<filterref filter='no-arp-spoofing'/>
<filterref filter='no-other-12-traffic'/>
<filterref filter='qgemu-announce-self'/>
</filter>

To reference another filter, the XML node <filterref> needs to be provided inside a filter node.
This node must have the attribute filter whose value contains the name of the filter to be referenced.

New network filters can be defined at any time and may contain references to network filters that are
not known to libvirt, yet. However, once a virtual machine is started or a network interface referencing
a filter is to be hotplugged, all network filters in the filter tree must be available. Otherwise the virtual
machine will not start or the network interface cannot be attached.

20.14.9. Filter rules

The following XML shows a simple example of a network traffic filter implementing a rule to drop traffic
if the IP address (provided through the value of the variable IP) in an outgoing IP packetis not the
expected one, thus preventing IP address spoofing by the VM.

Example 20.8. Example of network traffic filtering

<filter name='no-ip-spoofing' chain='ipv4'>
<uuid>fce8ae33-e69e-83bf-262e-30786c1f8072</uuid>
<rule action='drop' direction='out' priority='500'>
<ip match='no' srcipaddr='$IP'/>
</rule>
</filter>

The traffic filtering rule starts with the rule node. This node may contain up to three of the following
attributes:

action is mandatory can have the following values:
drop (matching the rule silently discards the packet with no further analysis)

reject (matching the rule generates an ICMP reject message with no further analysis)

261

Virtualization Deployment and Administration Guide

accept (matching the rule accepts the packet with no further analysis)

return (matching the rule passes this filter, but returns control to the calling filter for further
analysis)

continue (matching the rule goes on to the nextrule for further analysis)
direction is mandatory can have the following values:

in for incomming traffic

out for outgoing traffic

inout for incoming and outgoing traffic

priority is optional. The priority of the rule controls the order in which the rule will be instantiated
relative to other rules. Rules with lower values will be instantiated before rules with higher values.
Valid values arein the range of -1000 to 1000. If this attribute is not provided, priority 500 will be
assigned by default. Note that filtering rules in the root chain are sorted with filters connected to

the root chain following their priorities. This allows to interleave filtering rules with access to filter

statematch is optional. Possible values are '0' or 'false' to turn the underlying connection state
matching off. The default setting is 'true' or 1

For more information see Section 20.14.11, “Advanced Filter Configuration Topics”.

filter is referenced whose traffic of type jp is also associated with the chain jpv4 then that filter's rules
will be ordered relative to the priority=500 of the shown rule.

Arule may contain a single rule for filtering of traffic. The above example shows that traffic of type ip

is to be filtered.

20.14.10. Supported protocols

The following sections list and give some details about the protocols that are supported by the
network filtering subsystem. This type of traffic rule is provided in the rule node as a nested node.
Depending on the traffic type a rule is filtering, the attributes are different. The above example showed
the single attribute srcipaddr thatis valid inside the ip traffic filtering node. The following sections
show what attributes are valid and what type of data they are expecting. The following datatypes are
available:

UINT8 : 8 bitinteger; range 0-255

UINT16: 16 bitinteger; range 0-65535

MAC_ADDR: MAC address in dotted decimal format, i.e., 00:11:22:33:44:55

MAC_MASK: MAC address mask in MAC address format, i.e., FF:FF:FF:FC:00:00

IP_ADDR: IP address in dotted decimal format, i.e., 10.1.2.3

IP_MASK: IP address mask in either dotted decimal format (255.255.248.0) or CIDR mask (0-32)
IPV6_ADDR: IPv6 address in numbers format, i.e., FFFF::1

IPV6_MASK: IPv6 mask in numbers format (FFFF:FFFF:FC00::) or CIDR mask (0-128)

262

Chapter 20. Virtual Networking

STRING: A string
BOOLEAN: 'true', 'yes', '1' or ‘false’, 'no’, '0'

IPSETFLAGS: The source and destination flags of the ipset described by up to 6 'src' or 'dst’
elements selecting features from either the source or destination part of the packet header;
example: src,src,dst. The number of 'selectors' to provide here depends on the type of ipset thatis
referenced

Every attribute except for those of type IP_MASK or IPV6_MASK can be negated using the match
attribute with value no. Multiple negated attributes may be grouped together. The following XML
fragment shows such an example using abstract attributes.

[...]
<rule action='drop' direction='in'>
<protocol match='no' attributel='valuel' attribute2='value2'/>
<protocol attribute3='value3'/>
</rule>

[...]

Rules behave evaluate the rule as well as look atitlogically within the boundaries of the given
protocol attributes. Thus, if a single attribute's value does not match the one given in the rule, the
whole rule will be skipped during the evaluation process. Therefore, in the above example incoming
traffic will only be dropped if: the protocol property attributel does not match both valuel and
the protocol property attribute2 does not match value2 and the protocol property attribute3
matches value3.

20.14.10.1. MAC (Ethernet)
Protocol ID: mac

Rules of this type should go into the root chain.

Table 20.3. MAC protocol types

‘ Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to MAC address
of sender

dstmacaddr MAC_ADDR MAC address of destination

dstmacmask MAC_MASK Mask applied to MAC address
of destination

protocolid UINT16 (0x600-0xffff), STRING Layer 3 protocol ID. Valid
strings include [arp, rarp, ipv4,
ipv6]

comment STRING text string up to 256 characters

The filter can be written as such:

[...]
<mac match='no' srcmacaddr='$MAC'/>
[...]

20.14.10.2. VLAN (802.1Q)

263

Virtualization Deployment and Administration Guide

Protocol ID: vlan

Rules of this type should go either into the root or vlan chain.

Table 20.4. VLAN protocol types

Definition

‘ Attribute Name Datatype

srcmacaddr MAC_ADDR

srcmacmask MAC_MASK

dstmacaddr MAC_ADDR

dstmacmask MAC_MASK

vlan-id UINT16 (0x0-0xfff, 0 - 4095)
encap-protocol UINT16 (0x03c-0xfff), String
comment STRING

20.14.10.3. STP (Spanning Tree Protocol)
Protocol ID: stp

Rules of this type should go either into the root or stp chain.

Table 20.5. STP protocol types

MAC address of sender

Mask applied to MAC address
of sender

MAC address of destination

Mask applied to MAC address
of destination

VLAN ID

Encapsulated layer 3 protocol
ID, valid strings are arp, ipv4,
ipv6

text string up to 256 characters

Definition

‘ Attribute Name Datatype

srcmacaddr MAC_ADDR
srcmacmask MAC_MASK
type UINT8

flags UINT8
root-priority UINT16
root-priority-hi UINT16 (0x0-0xfff, 0 - 4095)
root-address MAC _ADDRESS
root-address-mask MAC _MASK
roor-cost UINT32
root-cost-hi UINT32
sender-priority-hi UINT16
sender-address MAC_ADDRESS
sender-address-mask MAC_MASK
port UINT16

port_hi UINT16
msg-age UINT16
msg-age-hi UINT16
max-age-hi UINT16
hello-time UINT16
hello-time-hi UINT16
forward-delay UINT16

264

MAC address of sender

Mask applied to MAC address
of sender

Bridge Protocol Data Unit
(BPDU) type

BPDU flagdstmacmask
Root priority range start
Root priority range end
root MAC Address

root MAC Address mask
Root path cost (range start)
Root path costrange end
Sender prioriry range end
BPDU sender MAC address

BPDU sender MAC address
mask

Port identifier (range start)
Portidentifier range end
Message age timer (range start)
Message age timer range end
Maximum age time range end
Hello time timer (range start)
Hello time timer range end
Forward delay (range start)

‘ Attribute Name

forward-delay-hi

comment

20.14.10.4. ARP/RARP
Protocol ID: arp or rarp

Rules of this type should either go into the root or arp/rarp chain.

Datatype

UINT16

STRING

Table 20.6. ARP and RARP protocol types

‘ Attribute Name

srcmacaddr
srcmacmask

dstmacaddr
dstmacmask

hwtype
protocoltype
opcode

arpsrcmacaddr
arpdstmacaddr
arpsrcipaddr
arpdstipaddr

gratututous

comment

20.14.10.5.1PV4

Protocol ID: ip

Rules of this type should either go into the root or ipv4 chain.

Datatype

MAC_ADDR
MAC_MASK

MAC_ADDR
MAC_MASK

UINT16
UINT16
UINT16, STRING

MAC_ADDR
MAC ADDR
IP_ADDR
IP_ADDR

BOOLEAN

STRING

Table 20.7. IPv4 protocol types

‘ Attribute Name

srcmacaddr

Datatype
MAC_ADDR

Chapter 20. Virtual Networking

Definition

Forward delay range end

text string up to 256 characters

Definition
MAC address of sender

Mask applied to MAC address
of sender

MAC address of destination
Mask applied to MAC address
of destination

Hardware type

Protocol type

Opcode valid strings are:
Request, Reply,
Request_Reverse,
Reply_Reverse,
DRARP_Request,
DRARP_Reply, DRARP_Error,
INARP_Request, ARP_NAK
Source MAC address in
ARP/RARP packet
Destination MAC address in
ARP/RARP packet

Source IP address in
ARP/RARP packet
Destination IP address in
ARP/RARP packet

Boolean indiating whether to
check for a gratuitous ARP
packet

text string up to 256 characters

Definition
MAC address of sender

265

Virtualization Deployment and Administration Guide

‘ Attribute Name
srcmacmask

dstmacaddr
dstmacmask

srcipaddr
srcipmask

dstipaddr
dstipmask

protocol

srcportstart
srcportend

dstportstart
dstportend

comment

20.14.10.6.1Pv6

Protocol ID: ipv6

Rules of this type should either go into the root or ipv6 chain.

Datatype
MAC_MASK

MAC_ADDR
MAC_MASK

IP_ADDR
IP_MASK

IP_ADDR
IP_MASK

UINT8, STRING

UINT16
UINT16

UNIT16

UNIT16

STRING

Table 20.8. IPv6 protocol types

‘ Attribute Name

srcmacaddr
srcmacmask

dstmacaddr
dstmacmask

srcipaddr
srcipmask

dstipaddr
dstipmask

266

Datatype

MAC_ADDR
MAC_MASK

MAC_ADDR
MAC_MASK

IP_ADDR
IP_MASK

IP_ADDR
IP_MASK

Definition

Mask applied to MAC address
of sender

MAC address of destination

Mask applied to MAC address
of destination

Source IP address

Mask applied to source IP
address

Destination IP address

Mask applied to destination IP
address

Layer 4 protocol identifier. Valid
strings for protocol are: tcp,
udp, udplite, esp, ah, icmp,
igmp, sctp

Start of range of valid source
ports; requires protocol

End of range of valid source
ports; requires protocol
Start of range of valid
destination ports; requires
protocol

End of range of valid
destination ports; requires
protocol

text string up to 256 characters

Definition
MAC address of sender

Mask applied to MAC address
of sender

MAC address of destination

Mask applied to MAC address
of destination

Source IP address

Mask applied to source IP
address

Destination IP address

Mask applied to destination IP
address

Chapter 20. Virtual Networking

‘ Attribute Name Datatype Definition

protocol UINT8, STRING Layer 4 protocol identifier. Valid
strings for protocol are: tcp,
udp, udplite, esp, ah, icmpv6,
sctp

scrportstart UNIT16 Start of range of valid source
ports; requires protocol

srcportend UINT16 End of range of valid source
ports; requires protocol

dstportstart UNIT16 Start of range of valid
destination ports; requires
protocol

dstportend UNIT16 End of range of valid
destination ports; requires
protocol

comment STRING text string up to 256 characters

20.14.10.7. TCPIUDPISCTP

Protocol ID: tcp, udp, sctp

The chain parameter is ignored for this type of traffic and should either be omitted or setto root. .

Table 20.9. TCP/UDPISCTP protocol types

‘ Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP
address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

scripto IP_ADDR Start of range of source IP
address

srcipfrom IP_ADDR End of range of source IP
address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

scrportstart UNIT16 Start of range of valid source
ports; requires protocol

srcportend UINT16 End of range of valid source
ports; requires protocol

dstportstart UNIT16 Start of range of valid
destination ports; requires
protocol

dstportend UNIT16 End of range of valid
destination ports; requires
protocol

comment STRING text string up to 256 characters

267

Virtualization Deployment and Administration Guide

‘ Attribute Name Datatype Definition

state STRING comma separated list of
NEW,ESTABLISHED,RELATED I
NVALID or NONE

flags STRING TCP-only: format of mask/flags
with mask and flags each being

a comma separated list of
SYN,ACK,URG,PSH,FIN,RST or

NONE or ALL

ipset STRING The name of an IPSet managed
outside of libvirt

ipsetflags IPSETFLAGS flags for the IPSet; requires

ipset attribute

20.14.10.8. ICMP
Protocol ID: icmp

Note: The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 20.10. ICMP protocol types

‘ Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to the MAC
address of the sender

dstmacaddr MAD_ADDR MAC address of the destination

dstmacmask MAC_MASK Mask applied to the MAC
address of the destination

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP
address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

srcipfrom IP_ADDR start of range of source IP
address

scripto IP_ADDR end of range of source IP
address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

type UNIT16 ICMP type

code UNIT16 ICMP code

comment STRING text string up to 256 characters

state STRING comma separated list of

NEW,ESTABLISHED ,RELATED,I
NVALID or NONE

ipset STRING The name of an IPSet managed
outside of libvirt

268

Chapter 20. Virtual Networking

‘ Attribute Name Datatype Definition

ipsetflags IPSETFLAGS flags for the IPSet; requires
ipset attribute

20.14.10.9. IGMP, ESP, AH, UDPLITE, "ALL'
Protocol ID: igmp, esp, ah, udplite, all

The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 20.11. IGMP, ESP, AH, UDPLITE, 'ALL'

‘ Attribute Name Datatype Definition

srcmacaddr MAC_ADDR MAC address of sender

srcmacmask MAC_MASK Mask applied to the MAC
address of the sender

dstmacaddr MAD_ADDR MAC address of the destination

dstmacmask MAC_MASK Mask applied to the MAC
address of the destination

srcipaddr IP_ADDR Source IP address

srcipmask IP_MASK Mask applied to source IP
address

dstipaddr IP_ADDR Destination IP address

dstipmask IP_MASK Mask applied to destination IP
address

srcipfrom IP_ADDR start of range of source IP
address

scripto IP_ADDR end of range of source IP
address

dstipfrom IP_ADDR Start of range of destination IP
address

dstipto IP_ADDR End of range of destination IP
address

comment STRING text string up to 256 characters

state STRING comma separated list of

NEW,ESTABLISHED ,RELATED,I
NVALID or NONE

ipset STRING The name of an IPSet managed
outside of libvirt
ipsetflags IPSETFLAGS flags for the IPSet; requires

ipset attribute

20.14.10.10. TCP/UDP/ISCTP overiIPV6
Protocol ID: tcp-ipv6, udp-ipv6, sctp-ipv6

The chain parameter is ignored for this type of traffic and should either be omitted or set to root.
Table 20.12. TCP, UDP, SCTP over IPv6 protocol types

‘ Attribute Name Datatype Definition
srcmacaddr MAC_ADDR MAC address of sender

269

Virtualization Deployment and Administration Guide

‘ Attribute Name Datatype
srcipaddr IP_ADDR
srcipmask IP_MASK
dstipaddr IP_ADDR
dstipmask IP_MASK
srcipfrom IP_ADDR
scripto IP_ADDR
dstipfrom IP_ADDR
dstipto IP_ADDR
srcportstart UINT16
srcportend UINT16
dstportstart UINT16
dstportend UINT16
comment STRING
state STRING
ipset STRING
ipsetflags IPSETFLAGS

20.14.10.11. ICMPV6

Protocol ID: icmpv6

Definition
Source IP address

Mask applied to source IP
address

Destination IP address

Mask applied to destination IP
address

start of range of source IP
address

end of range of source IP
address

Start of range of destination IP
address

End of range of destination IP
address

Start of range of valid source
ports

End of range of valid source
ports

Start of range of valid
destination ports

End of range of valid
destination ports

text string up to 256 characters
comma separated list of
NEW,ESTABLISHED,RELATED,I
NVALID or NONE

The name of an IPSet managed
outside of libvirt

flags for the IPSet; requires
ipset attribute

The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 20.13. ICMPv6 protocol types

‘ Attribute Name Datatype
srcmacaddr MAC_ADDR
srcipaddr IP_ADDR
srcipmask IP_MASK
dstipaddr IP_ADDR
dstipmask IP_MASK
srcipfrom IP_ADDR
scripto IP_ADDR

270

Definition
MAC address of sender
Source IP address

Mask applied to source IP
address

Destination IP address

Mask applied to destination IP
address

start of range of source IP
address

end of range of source IP
address

‘ Attribute Name Datatype
dstipfrom IP_ADDR
dstipto IP_ADDR
type UINT16
code UINT16
comment STRING
state STRING
ipset STRING
ipsetflags IPSETFLAGS

20.14.10.12. IGMP, ESP, AH, UDPLITE, 'ALL' over IPv6

Protocol ID: igmp-ipv6, esp-ipv6, ah-ipv6, udplite-ipv6, all-ipv6

Chapter 20. Virtual Networking

Definition
Start of range of destination IP
address

End of range of destination IP
address

ICMPV6 type
ICMPvV6 code
text string up to 256 characters

comma separated list of
NEW,ESTABLISHED,RELATED I
NVALID or NONE

The name of an IPSet managed
outside of libvirt

flags for the IPSet; requires
ipset attribute

The chain parameter is ignored for this type of traffic and should either be omitted or set to root.

Table 20.14. IGMP, ESP, AH, UDPLITE, 'ALL' over IPv protocol types

‘ Attribute Name Datatype
srcmacaddr MAC_ADDR
srcipaddr IP_ADDR
srcipmask IP_MASK
dstipaddr IP_ADDR
dstipmask IP_MASK
srcipfrom IP_ADDR
scripto IP_ADDR
dstipfrom IP_ADDR
dstipto IP_ADDR
comment STRING
state STRING
ipset STRING
ipsetflags IPSETFLAGS

20.14.11. Advanced Filter Configuration Topics

The following sections discuss advanced filter configuration topics.

Definition
MAC address of sender
Source IP address

Mask applied to source IP
address

Destination IP address

Mask applied to destination IP
address

start of range of source IP
address

end of range of source IP
address

Start of range of destination IP
address

End of range of destination IP
address

text string up to 256 characters
comma separated list of
NEW,ESTABLISHED,RELATED I
NVALID or NONE

The name of an IPSet managed
outside of libvirt

flags for the IPSet; requires
ipset attribute

271

Virtualization Deployment and Administration Guide

20.14.11.1. Connection tracking

The network filtering subsystem (on Linux) makes use of the connection tracking support of IP tables.
This helps in enforcing the direction of the network traffic (state match) as well as counting and
limiting the number of simultaneous connections towards a guest virtual machine. As an example, if a
guest virtual machine has TCP port 8080 open as a server, clients may connect to the guest virtual
machine on port 8080. Connection tracking and enforcement of the direction and then prevents the
guest virtual machine from initiating a connection from (TCP client) port 8080 to the host physical
machine back to a remote host physical machine. More importantly, tracking helps to prevent remote
attackers from establishing a connection back to a guest virtual machine. For example, if the user
inside the guest virtual machine established a connection to port 80 on an attacker site, then the
attacker will not be able to initiate a connection from TCP port 80 back towards the guest virtual
machine. By default the connection state match that enables connection tracking and then
enforcement of the direction of traffic is turned on.

Example 20.9. XML example for turning off connections to the TCP port

The following shows an example XML fragment where this feature has been turned off for incoming
connections to TCP port 12345.

[...]

<rule direction='in' action='accept' statematch='false'>
<cp dstportstart='12345"'/>

</rule>

[...]

This now allows incoming traffic to TCP port 12345, but would also enable the initiation from
(client) TCP port 12345 within the VM, which may or may not be desirable.

20.14.11.2. Limiting Number of Connections

To limit the number of connections a guest virtual machine may establish, a rule must be provided
that sets a limit of connections for a given type of traffic. If for example a VM is supposed to be
allowed to only ping one other IP address at a time and is supposed to have only one active
incoming ssh connection at a time.

Example 20.10. XML sample file that sets limits to connections

The following XML fragment can be used to limit connections

[...]

<rule action='drop' direction='in' priority='400'>
<tcp connlimit-above='1'/>

</rule>

<rule action='accept' direction='in' priority='500"'>
<tcp dstportstart='22"'/>

</rule>

<rule action='drop' direction='out' priority='400'>
<icmp connlimit-above='1'/>

</rule>

<rule action='accept' direction='out' priority='500"'>
<icmp/>

</rule>

272

Chapter 20. Virtual Networking

<rule action='accept' direction='out' priority='500"'>
<udp dstportstart='53'/>

</rule>

<rule action='drop' direction='inout' priority='1000"'>
<all/>

</rule>

[...]

Limitation rules must be listed in the XML prior to the rules for accepting traffic. According to
the XML file in Example 20.10, "XML sample file that sets limits to connections”, an additional
to avoid ssh sessions not getting established for reasons related to DNS lookup failures by
the ssh daemon. Leaving this rule out may resultin the ssh client hanging unexpectedly as it
tries to connect. Additional caution should be used in regards to handling timeouts related to
tracking of traffic. An ICMP ping that the user may have terminated inside the guest virtual
machine may have a long timeout in the host physical machine's connection tracking system
and will therefore not allow another ICMP ping to go through.

The best solution is to tune the timeout in the host physical machine's sysfs with the
following command:# echo 3 >
/proc/sys/net/netfilter/nf_conntrack_icmp_timeout. This command sets the
ICMP connection tracking timeout to 3 seconds. The effect of this is that once one ping is
terminated, another one can start after 3 seconds.

If for any reason the guest virtual machine has not properly closed its TCP connection, the
connection to be held open for a longer period of time, especially if the TCP timeout value was
set for a large amount of time on the host physical machine. In addition, any idle connection
may resultin a time out in the connection tracking system which can be re-activated once
packets are exchanged.

However, if the limit is set too low, newly initiated connections may force an idle connection
into TCP backoff. Therefore, the limit of connections should be set rather high so that
fluctuations in new TCP connections don't cause odd traffic behavior in relation to idle
connections.

20.14.11.3. Command line tools

virsh has been extended with life-cycle support for network filters. All commands related to the
network filtering subsystem start with the prefix nwfilter. The following commands are available:

nwfilter-1list:lists UUIDs and names of all network filters

nwfilter-define :defines a new network filter or updates an existing one (must supply a
name)

nwfilter-undefine : deletes a specified network filter (must supply a name). Do not delete a
network filter currently in use.

nwfilter-dumpxml : displays a specified network filter (must supply a name)

nwfilter-edit: edits a specified network filter (must supply a name)

273

Virtualization Deployment and Administration Guide

20.14.11.4. Pre-existing network filters

The following is a list of example network filters that are automatically installed with libvirt:

Table 20.15. ICMPv6 protocol types

‘ Command Name Description

no-arp-spoofing Prevents a guest virtual machine from spoofing
ARP traffic; this filter only allows ARP request
and reply messages and enforces that those
packets contain the MAC and IP addresses of
the guest virtual machine.

allow-dhcp Allows a guest virtual machine to request an IP
address via DHCP (from any DHCP server)
allow-dhcp-server Allows a guest virtual machine to request an IP

address from a specified DHCP server. The
dotted decimal IP address of the DHCP server
must be provided in a reference to this filter. The
name of the variable must be DHCPSERVER.

no-ip-spoofing Prevents a guest virtual machine from sending
IP packets with a source IP address different
from the one inside the packet.

no-ip-multicast Prevents a guest virtual machine from sending
IP multicast packets.

clean-traffic Prevents MAC, IP and ARP spoofing. This filter
references several other filters as building
blocks.

These filters are only building blocks and require a combination with other filters to provide useful
network traffic filtering. The most used one in the above listis the clean-traffic filter. This filter itself can
for example be combined with the no-jp-multicast filter to prevent virtual machines from sending IP
multicast traffic on top of the prevention of packet spoofing.

20.14.11.5. Writing your own filters

Since libvirt only provides a couple of example networking filters, you may consider writing your own.
When planning on doing so there are a couple of things you may need to know regarding the
network filtering subsystem and how it works internally. Certainly you also have to know and
understand the protocols very well that you want to be filtering on so that no further traffic than what
you want can pass and thatin fact the traffic you wantto allow does pass.

The network filtering subsystem is currently only available on Linux host physical machines and only
works for QEMU and KVM type of virtual machines. On Linux, it builds upon the support for ebtables,

iptables and ip6tables and makes use of their features. Considering the list found in

Section 20.14.10, “Supported protocols” the following protocols can be implemented using ebtables:

stp (spanning tree protocol)
vlan (802.1Q)

arp, rarp

ipv4

ipv6

274

Chapter 20. Virtual Networking

Any protocol thatruns over IPv4 is supported using iptables, those over IPv6 are implemented using
ip6tables.

Using a Linux host physical machine, all traffic filtering rules created by libvirt's network filtering
subsystem first passes through the filtering supportimplemented by ebtables and only afterwards
through iptables or ip6tables filters. If a filter tree has rules with the protocols including: mac, stp,
vlan arp, rarp, ipv4, or ipv6; the ebtable rules and values listed will automatically be used first.

Multiple chains for the same protocol can be created. The name of the chain must have a prefix of
one of the previously enumerated protocols. To create an additional chain for handling of ARP
traffic, a chain with name arp-test, can for example be specified.

As an example, itis possible to filter on UDP traffic by source and destination ports using the ip
protocol filter and specifying attributes for the protocol, source and destination IP addresses and
ports of UDP packets that are to be accepted. This allows early filtering of UDP traffic with ebtables.
However, once an IP or IPv6 packet, such as a UDP packet, has passed the ebtables layer and there
is atleastone rule in a filter tree that instantiates iptables or ip6tables rules, a rule to letthe UDP
packet pass will also be necessary to be provided for those filtering layers. This can be achieved with
a rule containing an appropriate udp or udp-ipv6 traffic filtering node.

Example 20.11. Creating a custom filter
Suppose a filter is needed to fulfill the following list of requirements:
prevents a VM's interface from MAC, IP and ARP spoofing
opens only TCP ports 22 and 80 of a VM's interface
allows the VM to send ping traffic from an interface but not letthe VM be pinged on the interface
allows the VM to do DNS lookups (UDP towards port 53)

The requirement to prevent spoofing is fulfilled by the existing clean-traffic network filter, thus
the way to do this is to reference it from a custom filter.

To enable traffic for TCP ports 22 and 80, two rules are added to enable this type of traffic. To
allow the guest virtual machine to send ping traffic a rule is added for ICMP traffic. For simplicity
reasons, general ICMP traffic will be allowed to be initiated from the guest virtual machine, and will
not be specified to ICMP echo request and response messages. All other traffic will be prevented to
reach or be initiated by the guest virtual machine. To do this a rule will be added that drops all
other traffic. Assuming the guest virtual machine is called test and the interface to associate our
filter with is called eth@, a filter is created named test-etho0.

The result of these considerations is the following network filter XML:

<filter name='test-etho'>
<l- - This rule references the clean traffic filter to prevent MAC,
IP and ARP spoofing. By not providing an IP address parameter, libvirt
will detect the IP address the guest virtual machine is using. - ->
<filterref filter='clean-traffic'/>

<!- - This rule enables TCP ports 22 (ssh) and 80 (http) to be
reachable - ->
<rule action='accept' direction='in'>
<tcp dstports<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>