
Reinforcement Learning for Mapping Instructions to Actions

S.R.K. Branavan, Harr Chen, Luke S. Zettlemoyer, Regina Barzilay
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{branavan, harr, lsz, regina}@csail.mit.edu

Abstract
In this paper, we present a reinforce-
ment learning approach for mapping nat-
ural language instructions to sequences of
executable actions. We assume access to
a reward function that defines the qual-
ity of the executed actions. During train-
ing, the learner repeatedly constructs ac-
tion sequences for a set of documents, ex-
ecutes those actions, and observes the re-
sulting reward. We use a policy gradient
algorithm to estimate the parameters of a
log-linear model for action selection. We
apply our method to interpret instructions
in two domains — Windows troubleshoot-
ing guides and game tutorials. Our results
demonstrate that this method can rival su-
pervised learning techniques while requir-
ing few or no annotated training exam-
ples.1

1 Introduction
The problem of interpreting instructions written
in natural language has been widely studied since
the early days of artificial intelligence (Winograd,
1972; Di Eugenio, 1992). Mapping instructions to
a sequence of executable actions would enable the
automation of tasks that currently require human
participation. Examples include configuring soft-
ware based on how-to guides and operating simu-
lators using instruction manuals. In this paper, we
present a reinforcement learning framework for in-
ducing mappings from text to actions without the
need for annotated training examples.

For concreteness, consider instructions from a
Windows troubleshooting guide on deleting tem-
porary folders, shown in Figure 1. We aim to map

1Code, data, and annotations used in this work are avail-
able at http://groups.csail.mit.edu/rbg/code/rl/

Figure 1: A Windows troubleshooting article de-
scribing how to remove the “msdownld.tmp” tem-
porary folder.

this text to the corresponding low-level commands
and parameters. For example, properly interpret-
ing the third instruction requires clicking on a tab,
finding the appropriate option in a tree control, and
clearing its associated checkbox.

In this and many other applications, the valid-
ity of a mapping can be verified by executing the
induced actions in the corresponding environment
and observing their effects. For instance, in the
example above we can assess whether the goal
described in the instructions is achieved, i.e., the
folder is deleted. The key idea of our approach
is to leverage the validation process as the main
source of supervision to guide learning. This form
of supervision allows us to learn interpretations
of natural language instructions when standard su-
pervised techniques are not applicable, due to the
lack of human-created annotations.

Reinforcement learning is a natural framework
for building models using validation from an envi-
ronment (Sutton and Barto, 1998). We assume that
supervision is provided in the form of a reward
function that defines the quality of executed ac-
tions. During training, the learner repeatedly con-
structs action sequences for a set of given docu-
ments, executes those actions, and observes the re-
sulting reward. The learner’s goal is to estimate a

policy — a distribution over actions given instruc-
tion text and environment state — that maximizes
future expected reward. Our policy is modeled in a
log-linear fashion, allowing us to incorporate fea-
tures of both the instruction text and the environ-
ment. We employ a policy gradient algorithm to
estimate the parameters of this model.

We evaluate our method on two distinct applica-
tions: Windows troubleshooting guides and puz-
zle game tutorials. The key findings of our ex-
periments are twofold. First, models trained only
with simple reward signals achieve surprisingly
high results, coming within 11% of a fully su-
pervised method in the Windows domain. Sec-
ond, augmenting unlabeled documents with even
a small fraction of annotated examples greatly re-
duces this performance gap, to within 4% in that
domain. These results indicate the power of learn-
ing from this new form of automated supervision.

2 Related Work

Grounded Language Acquisition Our work
fits into a broader class of approaches that aim to
learn language from a situated context (Mooney,
2008a; Mooney, 2008b; Fleischman and Roy,
2005; Yu and Ballard, 2004; Siskind, 2001; Oates,
2001). Instances of such approaches include
work on inferring the meaning of words from
video data (Roy and Pentland, 2002; Barnard and
Forsyth, 2001), and interpreting the commentary
of a simulated soccer game (Chen and Mooney,
2008). Most of these approaches assume some
form of parallel data, and learn perceptual co-
occurrence patterns. In contrast, our emphasis
is on learning language by proactively interacting
with an external environment.

Reinforcement Learning for Language Pro-
cessing Reinforcement learning has been previ-
ously applied to the problem of dialogue manage-
ment (Scheffler and Young, 2002; Roy et al., 2000;
Litman et al., 2000; Singh et al., 1999). These
systems converse with a human user by taking ac-
tions that emit natural language utterances. The
reinforcement learning state space encodes infor-
mation about the goals of the user and what they
say at each time step. The learning problem is to
find an optimal policy that maps states to actions,
through a trial-and-error process of repeated inter-
action with the user.

Reinforcement learning is applied very differ-
ently in dialogue systems compared to our setup.

In some respects, our task is more easily amenable
to reinforcement learning. For instance, we are not
interacting with a human user, so the cost of inter-
action is lower. However, while the state space can
be designed to be relatively small in the dialogue
management task, our state space is determined by
the underlying environment and is typically quite
large. We address this complexity by developing
a policy gradient algorithm that learns efficiently
while exploring a small subset of the states.

3 Problem Formulation

Our task is to learn a mapping between documents
and the sequence of actions they express. Figure 2
shows how one example sentence is mapped to
three actions.

Mapping Text to Actions As input, we are
given a document d, comprising a sequence of sen-
tences (u1, . . . , u!), where each ui is a sequence
of words. Our goal is to map d to a sequence of
actions !a = (a0, . . . , an−1). Actions are predicted
and executed sequentially.2

An action a = (c, R, W ′) encompasses a com-
mand c, the command’s parameters R, and the
words W ′ specifying c and R. Elements of R re-
fer to objects available in the environment state, as
described below. Some parameters can also refer
to words in document d. Additionally, to account
for words that do not describe any actions, c can
be a null command.

The Environment The environment state E
specifies the set of objects available for interac-
tion, and their properties. In Figure 2, E is shown
on the right. The environment state E changes
in response to the execution of command c with
parameters R according to a transition distribu-
tion p(E ′|E , c, R). This distribution is a priori un-
known to the learner. As we will see in Section 5,
our approach avoids having to directly estimate
this distribution.

State To predict actions sequentially, we need to
track the state of the document-to-actions map-
ping over time. A mapping state s is a tuple
(E , d, j, W), where E refers to the current environ-
ment state; j is the index of the sentence currently
being interpreted in document d; and W contains
words that were mapped by previous actions for

2That is, action ai is executed before ai+1 is predicted.

Figure 2: A three-step mapping from an instruction sentence to a sequence of actions in Windows 2000.
For each step, the figure shows the words selected by the action, along with the corresponding system
command and its parameters. The words of W ′ are underlined, and the words of W are highlighted in
grey.

the same sentence. The mapping state s is ob-
served after each action.

The initial mapping state s0 for document d is
(Ed, d, 0, ∅); Ed is the unique starting environment
state for d. Performing action a in state s =
(E , d, j, W) leads to a new state s′ according to
distribution p(s′|s, a), defined as follows: E tran-
sitions according to p(E ′|E , c, R), W is updated
with a’s selected words, and j is incremented if
all words of the sentence have been mapped. For
the applications we consider in this work, environ-
ment state transitions, and consequently mapping
state transitions, are deterministic.

Training During training, we are provided with
a set D of documents, the ability to sample from
the transition distribution, and a reward function
r(h). Here, h = (s0, a0, . . . , sn−1, an−1, sn) is
a history of states and actions visited while in-
terpreting one document. r(h) outputs a real-
valued score that correlates with correct action
selection.3 We consider both immediate reward,
which is available after each action, and delayed
reward, which does not provide feedback until the
last action. For example, task completion is a de-
layed reward that produces a positive value after
the final action only if the task was completed suc-
cessfully. We will also demonstrate how manu-
ally annotated action sequences can be incorpo-
rated into the reward.

3In most reinforcement learning problems, the reward
function is defined over state-action pairs, as r(s, a) — in this
case, r(h) =

P
t r(st, at), and our formulation becomes a

standard finite-horizon Markov decision process. Policy gra-
dient approaches allow us to learn using the more general
case of history-based reward.

The goal of training is to estimate parameters θ
of the action selection distribution p(a|s, θ), called
the policy. Since the reward correlates with ac-
tion sequence correctness, the θ that maximizes
expected reward will yield the best actions.

4 A Log-Linear Model for Actions

Our goal is to predict a sequence of actions. We
construct this sequence by repeatedly choosing an
action given the current mapping state, and apply-
ing that action to advance to a new state.

Given a state s = (E , d, j, W), the space of pos-
sible next actions is defined by enumerating sub-
spans of unused words in the current sentence (i.e.,
subspans of the jth sentence of d not in W), and
the possible commands and parameters in envi-
ronment state E .4 We model the policy distribu-
tion p(a|s; θ) over this action space in a log-linear
fashion (Della Pietra et al., 1997; Lafferty et al.,
2001), giving us the flexibility to incorporate a di-
verse range of features. Under this representation,
the policy distribution is:

p(a|s; θ) =
eθ·φ(s,a)

∑

a′

eθ·φ(s,a′)
, (1)

where φ(s, a) ∈ Rn is an n-dimensional feature
representation. During test, actions are selected
according to the mode of this distribution.

4For parameters that refer to words, the space of possible
values is defined by the unused words in the current sentence.

5 Reinforcement Learning

During training, our goal is to find the optimal pol-
icy p(a|s; θ). Since reward correlates with correct
action selection, a natural objective is to maximize
expected future reward — that is, the reward we
expect while acting according to that policy from
state s. Formally, we maximize the value function:

Vθ(s) = Ep(h|θ) [r(h)] , (2)

where the history h is the sequence of states and
actions encountered while interpreting a single
document d ∈ D. This expectation is averaged
over all documents in D. The distribution p(h|θ)
returns the probability of seeing history h when
starting from state s and acting according to a pol-
icy with parameters θ. This distribution can be de-
composed into a product over time steps:

p(h|θ) =
n−1∏

t=0

p(at|st; θ)p(st+1|st, at). (3)

5.1 A Policy Gradient Algorithm
Our reinforcement learning problem is to find the
parameters θ that maximize Vθ from equation 2.
Although there is no closed form solution, policy
gradient algorithms (Sutton et al., 2000) estimate
the parameters θ by performing stochastic gradi-
ent ascent. The gradient of Vθ is approximated by
interacting with the environment, and the resulting
reward is used to update the estimate of θ. Policy
gradient algorithms optimize a non-convex objec-
tive and are only guaranteed to find a local opti-
mum. However, as we will see, they scale to large
state spaces and can perform well in practice.

To find the parameters θ that maximize the ob-
jective, we first compute the derivative of Vθ. Ex-
panding according to the product rule, we have:

∂

∂θ
Vθ(s) = Ep(h|θ)

[
r(h)

∑

t

∂

∂θ
log p(at|st; θ)

]
,

(4)
where the inner sum is over all time steps t in
the current history h. Expanding the inner partial
derivative we observe that:

∂

∂θ
log p(a|s; θ) = φ(s, a)−

∑

a′

φ(s, a′)p(a′|s; θ),

(5)
which is the derivative of a log-linear distribution.

Equation 5 is easy to compute directly. How-
ever, the complete derivative of Vθ in equation 4

Input: A document set D,
Feature representation φ,
Reward function r(h),
Number of iterations T

Initialization: Set θ to small random values.

for i = 1 . . . T do1
foreach d ∈ D do2

Sample history h ∼ p(h|θ) where3
h = (s0, a0, . . . , an−1, sn) as follows:

3a for t = 0 . . . n− 1 do
3b Sample action at ∼ p(a|st; θ)
3c Execute at on state st: st+1 ∼ p(s|st, at)

end

∆ ←
P

t

`
φ(st, at)−

P
a′ φ(st, a

′)p(a′|st; θ)
´

4
θ ← θ + r(h)∆5

end
end
Output: Estimate of parameters θ

Algorithm 1: A policy gradient algorithm.

is intractable, because computing the expectation
would require summing over all possible histo-
ries. Instead, policy gradient algorithms employ
stochastic gradient ascent by computing a noisy
estimate of the expectation using just a subset of
the histories. Specifically, we draw samples from
p(h|θ) by acting in the target environment, and
use these samples to approximate the expectation
in equation 4. In practice, it is often sufficient to
sample a single history h for this approximation.

Algorithm 1 details the complete policy gradi-
ent algorithm. It performs T iterations over the
set of documents D. Step 3 samples a history that
maps each document to actions. This is done by
repeatedly selecting actions according to the cur-
rent policy, and updating the state by executing the
selected actions. Steps 4 and 5 compute the empir-
ical gradient and update the parameters θ.

In many domains, interacting with the environ-
ment is expensive. Therefore, we use two tech-
niques that allow us to take maximum advantage
of each environment interaction. First, a his-
tory h = (s0, a0, . . . , sn) contains subsequences
(si, ai, . . . sn) for i = 1 to n − 1, each with its
own reward value given by the environment as a
side effect of executing h. We apply the update
from equation 5 for each subsequence. Second,
for a sampled history h, we can propose alterna-
tive histories h′ that result in the same commands
and parameters with different word spans. We can
again apply equation 5 for each h′, weighted by its
probability under the current policy, p(h′|θ)

p(h|θ) .

The algorithm we have presented belongs to
a family of policy gradient algorithms that have
been successfully used for complex tasks such as
robot control (Ng et al., 2003). Our formulation is
unique in how it represents natural language in the
reinforcement learning framework.

5.2 Reward Functions and ML Estimation
We can design a range of reward functions to guide
learning, depending on the availability of anno-
tated data and environment feedback. Consider the
case when every training document d ∈ D is an-
notated with its correct sequence of actions, and
state transitions are deterministic. Given these ex-
amples, it is straightforward to construct a reward
function that connects policy gradient to maxi-
mum likelihood. Specifically, define a reward
function r(h) that returns one when h matches the
annotation for the document being analyzed, and
zero otherwise. Policy gradient performs stochas-
tic gradient ascent on the objective from equa-
tion 2, performing one update per document. For
document d, this objective becomes:

Ep(h|θ)[r(h)] =
∑

h

r(h)p(h|θ) = p(hd|θ),

where hd is the history corresponding to the an-
notated action sequence. Thus, with this reward
policy gradient is equivalent to stochastic gradient
ascent with a maximum likelihood objective.

At the other extreme, when annotations are
completely unavailable, learning is still possi-
ble given informative feedback from the environ-
ment. Crucially, this feedback only needs to cor-
relate with action sequence quality. We detail
environment-based reward functions in the next
section. As our results will show, reward func-
tions built using this kind of feedback can provide
strong guidance for learning. We will also con-
sider reward functions that combine annotated su-
pervision with environment feedback.

6 Applying the Model

We study two applications of our model: follow-
ing instructions to perform software tasks, and
solving a puzzle game using tutorial guides.

6.1 Microsoft Windows Help and Support
On its Help and Support website,5 Microsoft pub-
lishes a number of articles describing how to per-

5support.microsoft.com

Notation
o Parameter referring to an environment object
L Set of object class names (e.g. “button”)
V Vocabulary

Features on W and object o
Test if o is visible in s
Test if o has input focus
Test if o is in the foreground
Test if o was previously interacted with
Test if o came into existence since last action
Min. edit distance between w ∈ W and object labels in s

Features on words in W , command c, and object o
∀c′ ∈ C, w ∈ V : test if c′ = c and w ∈ W
∀c′ ∈ C, l ∈ L: test if c′ = c and l is the class of o

Table 1: Example features in the Windows do-
main. All features are binary, except for the nor-
malized edit distance which is real-valued.

form tasks and troubleshoot problems in the Win-
dows operating systems. Examples of such tasks
include installing patches and changing security
settings. Figure 1 shows one such article.

Our goal is to automatically execute these sup-
port articles in the Windows 2000 environment.
Here, the environment state is the set of visi-
ble user interface (UI) objects, and object prop-
erties such as label, location, and parent window.
Possible commands include left-click, right-click,
double-click, and type-into, all of which take a UI
object as a parameter; type-into additionally re-
quires a parameter for the input text.

Table 1 lists some of the features we use for this
domain. These features capture various aspects of
the action under consideration, the current Win-
dows UI state, and the input instructions. For ex-
ample, one lexical feature measures the similar-
ity of a word in the sentence to the UI labels of
objects in the environment. Environment-specific
features, such as whether an object is currently in
focus, are useful when selecting the object to ma-
nipulate. In total, there are 4,438 features.

Reward Function Environment feedback can
be used as a reward function in this domain. An
obvious reward would be task completion (e.g.,
whether the stated computer problem was fixed).
Unfortunately, verifying task completion is a chal-
lenging system issue in its own right.

Instead, we rely on a noisy method of check-
ing whether execution can proceed from one sen-
tence to the next: at least one word in each sen-
tence has to correspond to an object in the envi-

Figure 3: Crossblock puzzle with tutorial. For this
level, four squares in a row or column must be re-
moved at once. The first move specified by the
tutorial is greyed in the puzzle.

ronment.6 For instance, in the sentence from Fig-
ure 2 the word “Run” matches the Run... menu
item. If no words in a sentence match a current
environment object, then one of the previous sen-
tences was analyzed incorrectly. In this case, we
assign the history a reward of -1. This reward is
not guaranteed to penalize all incorrect histories,
because there may be false positive matches be-
tween the sentence and the environment. When
at least one word matches, we assign a positive
reward that linearly increases with the percentage
of words assigned to non-null commands, and lin-
early decreases with the number of output actions.
This reward signal encourages analyses that inter-
pret all of the words without producing spurious
actions.

6.2 Crossblock: A Puzzle Game
Our second application is to a puzzle game called
Crossblock, available online as a Flash game.7

Each of 50 puzzles is played on a grid, where some
grid positions are filled with squares. The object
of the game is to clear the grid by drawing vertical
or horizontal line segments that remove groups of
squares. Each segment must exactly cross a spe-
cific number of squares, ranging from two to seven
depending on the puzzle. Humans players have
found this game challenging and engaging enough
to warrant posting textual tutorials.8 A sample
puzzle and tutorial are shown in Figure 3.

The environment is defined by the state of the
grid. The only command is clear, which takes a
parameter specifying the orientation (row or col-
umn) and grid location of the line segment to be

6We assume that a word maps to an environment object if
the edit distance between the word and the object’s name is
below a threshold value.

7hexaditidom.deviantart.com/art/Crossblock-108669149
8www.jayisgames.com/archives/2009/01/crossblock.php

removed. The challenge in this domain is to seg-
ment the text into the phrases describing each ac-
tion, and then correctly identify the line segments
from references such as “the bottom four from the
second column from the left.”

For this domain, we use two sets of binary fea-
tures on state-action pairs (s, a). First, for each
vocabulary word w, we define a feature that is one
if w is the last word of a’s consumed words W ′.
These features help identify the proper text seg-
mentation points between actions. Second, we in-
troduce features for pairs of vocabulary word w
and attributes of action a, e.g., the line orientation
and grid locations of the squares that a would re-
move. This set of features enables us to match
words (e.g., “row”) with objects in the environ-
ment (e.g., a move that removes a horizontal series
of squares). In total, there are 8,094 features.

Reward Function For Crossblock it is easy to
directly verify task completion, which we use as
the basis of our reward function. The reward r(h)
is -1 if h ends in a state where the puzzle cannot
be completed. For solved puzzles, the reward is
a positive value proportional to the percentage of
words assigned to non-null commands.

7 Experimental Setup

Datasets For the Windows domain, our dataset
consists of 128 documents, divided into 70 for
training, 18 for development, and 40 for test. In
the puzzle game domain, we use 50 tutorials,
divided into 40 for training and 10 for test.9

Statistics for the datasets are shown below.

Windows Puzzle
Total # of documents 128 50
Total # of words 5562 994
Vocabulary size 610 46
Avg. words per sentence 9.93 19.88
Avg. sentences per document 4.38 1.00
Avg. actions per document 10.37 5.86

The data exhibits certain qualities that make
for a challenging learning problem. For instance,
there are a surprising variety of linguistic con-
structs — as Figure 4 shows, in the Windows do-
main even a simple command is expressed in at
least six different ways.

9For Crossblock, because the number of puzzles is lim-
ited, we did not hold out a separate development set, and re-
port averaged results over five training/test splits.

Figure 4: Variations of “click internet options on
the tools menu” present in the Windows corpus.

Experimental Framework To apply our algo-
rithm to the Windows domain, we use the Win32
application programming interface to simulate hu-
man interactions with the user interface, and to
gather environment state information. The operat-
ing system environment is hosted within a virtual
machine,10 allowing us to rapidly save and reset
system state snapshots. For the puzzle game do-
main, we replicated the game with an implemen-
tation that facilitates automatic play.

As is commonly done in reinforcement learn-
ing, we use a softmax temperature parameter to
smooth the policy distribution (Sutton and Barto,
1998), set to 0.1 in our experiments. For Windows,
the development set is used to select the best pa-
rameters. For Crossblock, we choose the parame-
ters that produce the highest reward during train-
ing. During evaluation, we use these parameters
to predict mappings for the test documents.

Evaluation Metrics For evaluation, we com-
pare the results to manually constructed sequences
of actions. We measure the number of correct ac-
tions, sentences, and documents. An action is cor-
rect if it matches the annotations in terms of com-
mand and parameters. A sentence is correct if all
of its actions are correctly identified, and analo-
gously for documents.11 Statistical significance is
measured with the sign test.

Additionally, we compute a word alignment
score to investigate the extent to which the input
text is used to construct correct analyses. This
score measures the percentage of words that are
aligned to the corresponding annotated actions in
correctly analyzed documents.

Baselines We consider the following baselines
to characterize the performance of our approach.

10VMware Workstation, available at www.vmware.com
11In these tasks, each action depends on the correct execu-

tion of all previous actions, so a single error can render the
remainder of that document’s mapping incorrect. In addition,
due to variability in document lengths, overall action accu-
racy is not guaranteed to be higher than document accuracy.

• Full Supervision Sequence prediction prob-
lems like ours are typically addressed us-
ing supervised techniques. We measure how
a standard supervised approach would per-
form on this task by using a reward signal
based on manual annotations of output ac-
tion sequences, as defined in Section 5.2. As
shown there, policy gradient with this re-
ward is equivalent to stochastic gradient as-
cent with a maximum likelihood objective.

• Partial Supervision We consider the case
when only a subset of training documents is
annotated, and environment reward is used
for the remainder. Our method seamlessly
combines these two kinds of rewards.

• Random and Majority (Windows) We con-
sider two naı̈ve baselines. Both scan through
each sentence from left to right. A com-
mand c is executed on the object whose name
is encountered first in the sentence. This
command c is either selected randomly, or
set to the majority command, which is left-
click. This procedure is repeated until no
more words match environment objects.

• Random (Puzzle) We consider a baseline
that randomly selects among the actions that
are valid in the current game state.12

8 Results

Table 2 presents evaluation results on the test sets.
There are several indicators of the difficulty of this
task. The random and majority baselines’ poor
performance in both domains indicates that naı̈ve
approaches are inadequate for these tasks. The
performance of the fully supervised approach pro-
vides further evidence that the task is challenging.
This difficulty can be attributed in part to the large
branching factor of possible actions at each step —
on average, there are 27.14 choices per action in
the Windows domain, and 9.78 in the Crossblock
domain.

In both domains, the learners relying only
on environment reward perform well. Although
the fully supervised approach performs the best,
adding just a few annotated training examples
to the environment-based learner significantly re-
duces the performance gap.

12Since action selection is among objects, there is no natu-
ral majority baseline for the puzzle.

Windows Puzzle
Action Sent. Doc. Word Action Doc. Word

Random baseline 0.128 0.101 0.000 —– 0.081 0.111 —–
Majority baseline 0.287 0.197 0.100 —– —– —– —–
Environment reward ∗ 0.647 ∗ 0.590 ∗ 0.375 0.819 ∗ 0.428 ∗ 0.453 0.686
Partial supervision % 0.723 ∗ 0.702 0.475 0.989 0.575 ∗ 0.523 0.850
Full supervision % 0.756 0.714 0.525 0.991 0.632 0.630 0.869

Table 2: Performance on the test set with different reward signals and baselines. Our evaluation measures
the proportion of correct actions, sentences, and documents. We also report the percentage of correct
word alignments for the successfully completed documents. Note the puzzle domain has only single-
sentence documents, so its sentence and document scores are identical. The partial supervision line
refers to 20 out of 70 annotated training documents for Windows, and 10 out of 40 for the puzzle. Each
result marked with ∗ or % is a statistically significant improvement over the result immediately above it;
∗ indicates p < 0.01 and % indicates p < 0.05.

Figure 5: Comparison of two training scenarios where training is done using a subset of annotated
documents, with and without environment reward for the remaining unannotated documents.

Figure 5 shows the overall tradeoff between an-
notation effort and system performance for the two
domains. The ability to make this tradeoff is one
of the advantages of our approach. The figure also
shows that augmenting annotated documents with
additional environment-reward documents invari-
ably improves performance.

The word alignment results from Table 2 in-
dicate that the learners are mapping the correct
words to actions for documents that are success-
fully completed. For example, the models that per-
form best in the Windows domain achieve nearly
perfect word alignment scores.

To further assess the contribution of the instruc-
tion text, we train a variant of our model without
access to text features. This is possible in the game
domain, where all of the puzzles share a single
goal state that is independent of the instructions.
This variant solves 34% of the puzzles, suggest-
ing that access to the instructions significantly im-
proves performance.

9 Conclusions

In this paper, we presented a reinforcement learn-
ing approach for inducing a mapping between in-
structions and actions. This approach is able to use
environment-based rewards, such as task comple-
tion, to learn to analyze text. We showed that hav-
ing access to a suitable reward function can signif-
icantly reduce the need for annotations.

Acknowledgments

The authors acknowledge the support of the NSF
(CAREER grant IIS-0448168, grant IIS-0835445,
grant IIS-0835652, and a Graduate Research Fel-
lowship) and the ONR. Thanks to Michael Collins,
Amir Globerson, Tommi Jaakkola, Leslie Pack
Kaelbling, Dina Katabi, Martin Rinard, and mem-
bers of the MIT NLP group for their suggestions
and comments. Any opinions, findings, conclu-
sions, or recommendations expressed in this paper
are those of the authors, and do not necessarily re-
flect the views of the funding organizations.

References
Kobus Barnard and David A. Forsyth. 2001. Learning

the semantics of words and pictures. In Proceedings
of ICCV.

David L. Chen and Raymond J. Mooney. 2008. Learn-
ing to sportscast: a test of grounded language acqui-
sition. In Proceedings of ICML.

Stephen Della Pietra, Vincent J. Della Pietra, and
John D. Lafferty. 1997. Inducing features of ran-
dom fields. IEEE Trans. Pattern Anal. Mach. Intell.,
19(4):380–393.

Barbara Di Eugenio. 1992. Understanding natural lan-
guage instructions: the case of purpose clauses. In
Proceedings of ACL.

Michael Fleischman and Deb Roy. 2005. Intentional
context in situated language learning. In Proceed-
ings of CoNLL.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of ICML.

Diane J. Litman, Michael S. Kearns, Satinder Singh,
and Marilyn A. Walker. 2000. Automatic optimiza-
tion of dialogue management. In Proceedings of
COLING.

Raymond J. Mooney. 2008a. Learning language
from its perceptual context. In Proceedings of
ECML/PKDD.

Raymond J. Mooney. 2008b. Learning to connect lan-
guage and perception. In Proceedings of AAAI.

Andrew Y. Ng, H. Jin Kim, Michael I. Jordan, and
Shankar Sastry. 2003. Autonomous helicopter flight
via reinforcement learning. In Advances in NIPS.

James Timothy Oates. 2001. Grounding knowledge
in sensors: Unsupervised learning for language and
planning. Ph.D. thesis, University of Massachusetts
Amherst.

Deb K. Roy and Alex P. Pentland. 2002. Learn-
ing words from sights and sounds: a computational
model. Cognitive Science 26, pages 113–146.

Nicholas Roy, Joelle Pineau, and Sebastian Thrun.
2000. Spoken dialogue management using proba-
bilistic reasoning. In Proceedings of ACL.

Konrad Scheffler and Steve Young. 2002. Automatic
learning of dialogue strategy using dialogue simula-
tion and reinforcement learning. In Proceedings of
HLT.

Satinder P. Singh, Michael J. Kearns, Diane J. Litman,
and Marilyn A. Walker. 1999. Reinforcement learn-
ing for spoken dialogue systems. In Advances in
NIPS.

Jeffrey Mark Siskind. 2001. Grounding the lexical se-
mantics of verbs in visual perception using force dy-
namics and event logic. J. Artif. Intell. Res. (JAIR),
15:31–90.

Richard S. Sutton and Andrew G. Barto. 1998. Re-
inforcement Learning: An Introduction. The MIT
Press.

Richard S. Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 2000. Policy gradient meth-
ods for reinforcement learning with function approx-
imation. In Advances in NIPS.

Terry Winograd. 1972. Understanding Natural Lan-
guage. Academic Press.

Chen Yu and Dana H. Ballard. 2004. On the integra-
tion of grounding language and learning objects. In
Proceedings of AAAI.

