
6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 1/263

Robot Framework User Guide

Version 3.0.4

Copyright © 2008-2015 Nokia Networks
Copyright © 2016- Robot Framework Foundation
Licensed under the Creative Commons Attribution 3.0 Unported license

Table of Contents

1 Getting started
1.1 Introduction
1.2 Copyright and license
1.3 Installation instructions
1.4 Demonstrations

2 Creating test data
2.1 Test data syntax
2.2 Creating test cases
2.3 Creating test suites
2.4 Using test libraries
2.5 Variables
2.6 Creating user keywords
2.7 Resource and variable files
2.8 Advanced features

3 Executing test cases
3.1 Basic usage
3.2 Test execution
3.3 Post-processing outputs
3.4 Configuring execution
3.5 Created outputs

4 Extending Robot Framework
4.1 Creating test libraries
4.2 Remote library interface
4.3 Listener interface
4.4 Extending the Robot Framework Jar

5 Supporting Tools
5.1 Library documentation tool (Libdoc)

http://creativecommons.org/licenses/by/3.0

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 2/263

5.2 Test data documentation tool (Testdoc)
5.3 Test data clean-up tool (Tidy)
5.4 External tools

6 Appendices
6.1 All available settings in test data
6.2 All command line options
6.3 Test data templates
6.4 Documentation formatting
6.5 Time format
6.6 Boolean arguments
6.7 Internal API

1 Getting started

1.1 Introduction
1.2 Copyright and license
1.3 Installation instructions
1.4 Demonstrations

1.1 Introduction

Robot Framework is a Python-based, extensible keyword-driven test automation framework for end-to-end acceptance testing and acceptance-test-driven
development (ATDD). It can be used for testing distributed, heterogeneous applications, where verification requires touching several technologies and
interfaces.

The framework has a rich ecosystem around it consisting of various generic test libraries and tools that are developed as separate projects. For more
information about Robot Framework and the ecosystem, see http://robotframework.org.

Robot Framework is open source software released under the Apache License 2.0. Its development is sponsored by the Robot Framework Foundation.

1.1.1 Why Robot Framework?
1.1.2 High-level architecture
1.1.3 Screenshots
1.1.4 Getting more information

Project pages
Mailing lists

http://robotframework.org/
http://apache.org/licenses/LICENSE-2.0
http://robotframework.org/foundation

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 3/263

1.1.1 Why Robot Framework?

Enables easy-to-use tabular syntax for creating test cases in a uniform way.
Provides ability to create reusable higher-level keywords from the existing keywords.
Provides easy-to-read result reports and logs in HTML format.
Is platform and application independent.
Provides a simple library API for creating customized test libraries which can be implemented natively with either Python or Java.
Provides a command line interface and XML based output files for integration into existing build infrastructure (continuous integration systems).
Provides support for Selenium for web testing, Java GUI testing, running processes, Telnet, SSH, and so on.
Supports creating data-driven test cases.
Has built-in support for variables, practical particularly for testing in different environments.
Provides tagging to categorize and select test cases to be executed.
Enables easy integration with source control: test suites are just files and directories that can be versioned with the production code.
Provides test-case and test-suite -level setup and teardown.
The modular architecture supports creating tests even for applications with several diverse interfaces.

1.1.2 High-level architecture

Robot Framework is a generic, application and technology independent framework. It has a highly modular architecture illustrated in the diagram below.

Robot Framework architecture

http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestSuite

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 4/263

The test data is in simple, easy-to-edit tabular format. When Robot Framework is started, it processes the test data, executes test cases and generates logs
and reports. The core framework does not know anything about the target under test, and the interaction with it is handled by test libraries. Libraries can
either use application interfaces directly or use lower level test tools as drivers.

1.1.3 Screenshots

Following screenshots show examples of the test data and created reports and logs.

Test case files

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 5/263

Reports and logs

1.1.4 Getting more information

Project pages

The number one place to find more information about Robot Framework and the rich ecosystem around it is http://robotframework.org. Robot
Framework itself is hosted on GitHub.

Mailing lists

There are several Robot Framework mailing lists where to ask and search for more information. The mailing list archives are open for everyone
(including the search engines) and everyone can also join these lists freely. Only list members can send mails, though, and to prevent spam new users are
moderated which means that it might take a little time before your first message goes through. Do not be afraid to send question to mailing lists but
remember How To Ask Questions The Smart Way.

robotframework-users
General discussion about all Robot Framework related issues. Questions and problems can be sent to this list. Used also for information sharing for
all users.

robotframework-announce

http://robotframework.org/
https://github.com/robotframework/robotframework
http://www.catb.org/~esr/faqs/smart-questions.html
http://groups.google.com/group/robotframework-users
http://groups.google.com/group/robotframework-announce

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 6/263

An announcements-only mailing list where only moderators can send messages. All announcements are sent also to the robotframework-users
mailing list so there is no need to join both lists.

robotframework-devel
Discussion about Robot Framework development.

1.2 Copyright and license

Robot Framework is open source software provided under the Apache License 2.0. Robot Framework documentation such as this User Guide use the
Creative Commons Attribution 3.0 Unported license. Most libraries and tools in the larger ecosystem around the framework are also open source, but
they may use different licenses.

The full Robot Framework copyright notice is included below:

Copyright 2008-2015 Nokia Networks

Copyright 2016- Robot Framework Foundation

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

1.3 Installation instructions

These instructions cover installing and uninstalling Robot Framework and its preconditions on different operating systems. If you already have pip
installed, it is enough to run:

pip install robotframework

1.3.1 Introduction
1.3.2 Preconditions

Python 2 vs Python 3
Python installation

http://groups.google.com/group/robotframework-devel
http://apache.org/licenses/LICENSE-2.0
http://creativecommons.org/licenses/by/3.0
http://pip-installer.org/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 7/263

Jython installation
IronPython installation
PyPy installation
Configuring PATH
Setting https_proxy

1.3.3 Installing with pip
Installing pip for Python
Installing pip for Jython
Installing pip for IronPython
Installing pip for PyPy
Using pip

1.3.4 Installing from source
Getting source code
Installation

1.3.5 Standalone JAR distribution
1.3.6 Manual installation
1.3.7 Verifying installation

Where files are installed
1.3.8 Uninstallation
1.3.9 Upgrading
1.3.10 Executing Robot Framework

Using robot and rebot scripts
Executing installed robot module
Executing installed robot directory

1.3.11 Using virtual environments

1.3.1 Introduction

Robot Framework is implemented with Python and supports also Jython (JVM), IronPython (.NET) and PyPy. Before installing the framework, an
obvious precondition is installing at least one of these interpreters.

Different ways to install Robot Framework itself are listed below and explained more thoroughly in the subsequent sections.

Installing with pip
Using pip is the recommended way to install Robot Framework. As the standard Python package manager it is included in the latest Python,
Jython and IronPython versions. If you already have pip available, you can simply execute:

pip install robotframework

Installing from source

http://robotframework.org/
http://python.org/
http://jython.org/
http://ironpython.net/
http://pypy.org/
http://pip-installer.org/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 8/263

This approach works regardless the operating system and the Python interpreter used. You can get the source code either by downloading a source
distribution from PyPI and extracting it, or by cloning the GitHub repository .

Standalone JAR distribution
If running tests with Jython is enough, the easiest approach is downloading the standalone robotframework-<version>.jar from Maven
central. The JAR distribution contains both Jython and Robot Framework and thus only requires having Java installed.

Manual installation
If you have special needs and nothing else works, you can always do a custom manual installation.

Note

Prior to Robot Framework 3.0, there were also separate Windows installers for 32bit and 64bit Python versions. Because Python 2.7.9 and newer contain pip
on Windows and Python 3 would have needed two more installers, it was decided that Windows installers are not created anymore. The recommend
installation approach also on Windows is using pip.

1.3.2 Preconditions

Robot Framework is supported on Python (both Python 2 and Python 3), Jython (JVM) and IronPython (.NET) and PyPy. The interpreter you want to
use should be installed before installing the framework itself.

Which interpreter to use depends on the needed test libraries and test environment in general. Some libraries use tools or modules that only work with
Python, while others may use Java tools that require Jython or need .NET and thus IronPython. There are also many tools and libraries that run fine with
all interpreters.

If you do not have special needs or just want to try out the framework, it is recommended to use Python. It is the most mature implementation,
considerably faster than Jython or IronPython (especially start-up time is faster), and also readily available on most UNIX-like operating systems.
Another good alternative is using the standalone JAR distribution that only has Java as a precondition.

Python 2 vs Python 3

Python 2 and Python 3 are mostly the same language, but they are not fully compatible with each others. The main difference is that in Python 3 all
strings are Unicode while in Python 2 strings are bytes by default, but there are also several other backwards incompatible changes. The last Python 2
release is Python 2.7 that was released in 2010 and will be supported until 2020. See Should I use Python 2 or 3? for more information about the
differences, which version to use, how to write code that works with both versions, and so on.

Robot Framework 3.0 is the first Robot Framework version to support Python 3. It supports also Python 2, and the plan is to continue Python 2 support
as long as Python 2 itself is officially supported. We hope that authors of the libraries and tools in the wider Robot Framework ecosystem also start
looking at Python 3 support now that the core framework supports it.

https://pypi.python.org/pypi/robotframework
https://github.com/robotframework/robotframework
http://search.maven.org/#search%7Cga%7C1%7Ca%3Arobotframework
http://java.com/
http://pip-installer.org/
https://github.com/robotframework/robotframework/issues/2218
http://python.org/
http://jython.org/
http://ironpython.net/
http://pypy.org/
https://wiki.python.org/moin/Python2orPython3

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 9/263

Python installation

On most UNIX-like systems such as Linux and OS X you have Python installed by default. If you are on Windows or otherwise need to install Python
yourself, a good place to start is http://python.org. There you can download a suitable installer and get more information about the installation process
and Python in general.

Robot Framework 3.0 supports Python 2.6, 2.7, 3.3 and newer, but the plan is to drop Python 2.6 support in RF 3.1. If you need to use older versions,
Robot Framework 2.5-2.8 support Python 2.5 and Robot Framework 2.0-2.1 support Python 2.3 and 2.4.

After installing Python, you probably still want to configure PATH to make Python itself as well as the robot and rebot runner scripts executable on the
command line.

Tip

Latest Python Windows installers allow setting PATH as part of the installation. This is disabled by default, but Add python.exe to Path can be enabled on
the Customize Python screen.

Jython installation

Using test libraries implemented with Java or that use Java tools internally requires running Robot Framework on Jython, which in turn requires Java
Runtime Environment (JRE) or Java Development Kit (JDK). Installing either of these Java distributions is out of the scope of these instructions, but you
can find more information, for example, from http://java.com.

Installing Jython is a fairly easy procedure, and the first step is getting an installer from http://jython.org. The installer is an executable JAR package,
which you can run from the command line like java -jar jython_installer-<version>.jar. Depending on the system configuration, it may also
be possible to just double-click the installer.

Robot Framework 3.0 supports Jython 2.7 which requires Java 7 or newer. If older Jython or Java versions are needed, Robot Framework 2.5-2.8
support Jython 2.5 (requires Java 5 or newer) and Robot Framework 2.0-2.1 support Jython 2.2.

After installing Jython, you probably still want to configure PATH to make Jython itself as well as the robot and rebot runner scripts executable on the
command line.

IronPython installation

IronPython allows running Robot Framework on the .NET platform and interacting with C# and other .NET languages and APIs. Only IronPython 2.7
is supported.

http://python.org/
http://python.org/
https://github.com/robotframework/robotframework/issues/2276
http://java.com/
http://jython.org/
http://java.com/
http://jython.org/
http://ironpython.net/
http://www.microsoft.com/net

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 10/263

When using IronPython, an additional dependency is installing elementtree module 1.2.7 preview release. This is required because the elementtree
module distributed with IronPython is broken. You can install the package by downloading the source distribution, unzipping it, and running ipy
setup.py install on the command prompt in the created directory.

After installing IronPython, you probably still want to configure PATH to make IronPython itself as well as the robot and rebot runner scripts
executable on the command line.

PyPy installation

PyPy is an alternative implementation of the Python language with both Python 2 and Python 3 compatible versions available. Its main advantage over
the standard Python implementation is that it can be faster and use less memory, but this depends on the context where and how it is used. If execution
speed is important, at least testing PyPY is probably a good idea.

Installing PyPy is a straightforward procedure and you can find both installers and installation instructions at http://pypy.org. After installation you
probably still want to configure PATH to make PyPy itself as well as the robot and rebot runner scripts executable on the command line.

Configuring PATH

The PATH environment variable lists locations where commands executed in a system are searched from. To make using Robot Framework easier from
the command prompt, it is recommended to add the locations where the runner scripts are installed into the PATH. It is also often useful to have the
interpreter itself in the PATH to make executing it easy.

When using Python on UNIX-like machines both Python itself and scripts installed with should be automatically in the PATH and no extra actions
needed. On Windows and with other interpreters the PATH must be configured separately.

Tip

Latest Python Windows installers allow setting PATH as part of the installation. This is disabled by default, but Add python.exe to Path can be enabled on
the Customize Python screen. It will add both the Python installation directory and the Scripts directory to the PATH.

What directories to add to PATH

What directories you need to add to the PATH depends on the interpreter and the operating system. The first location is the installation directory of the
interpreter (e.g. C:\Python27) and the other is the location where scripts are installed with that interpreter. Both Python and IronPython install scripts to
Scripts directory under the installation directory on Windows (e.g. C:\Python27\Scripts) and Jython uses bin directory regardless the operating system
(e.g. C:\jython2.7.0\bin).

http://effbot.org/downloads/#elementtree
https://github.com/IronLanguages/main/issues/968
http://pypy.org/
http://pypy.org/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 11/263

Notice that the Scripts and bin directories may not be created as part of the interpreter installation, but only later when Robot Framework or some other
third party module is installed.

Setting PATH on Windows

On Windows you can configure PATH by following the steps below. Notice that the exact setting names may be different on different Windows versions,
but the basic approach should still be the same.

1. Open Control Panel > System > Advanced > Environment Variables. There are User variables and System variables, and the
difference between them is that user variables affect only the current users, whereas system variables affect all users.

2. To edit an existing PATH value, select Edit and add ;<InstallationDir>;<ScriptsDir> at the end of the value (e.g.
;C:\Python27;C:\Python27\Scripts). Note that the semicolons (;) are important as they separate the different entries. To add a new PATH
value, select New and set both the name and the value, this time without the leading semicolon.

3. Exit the dialog with Ok to save the changes.
4. Start a new command prompt for the changes to take effect.

Notice that if you have multiple Python versions installed, the executed robot or rebot runner script will always use the one that is first in the PATH
regardless under what Python version that script is installed. To avoid that, you can always execute the installed robot module directly like
C:\Python27\python.exe -m robot.

Notice also that you should not add quotes around directories you add into the PATH (e.g. "C:\Python27\Scripts"). Quotes can cause problems with
Python programs and they are not needed in this context even if the directory path would contain spaces.

Setting PATH on UNIX-like systems

On UNIX-like systems you typically need to edit either some system wide or user specific configuration file. Which file to edit and how depends on the
system, and you need to consult your operating system documentation for more details.

Setting https_proxy

If you are installing with pip and are behind a proxy, you need to set the https_proxy environment variable. It is needed both when installing pip itself
and when using it to install Robot Framework and other Python packages.

How to set the https_proxy depends on the operating system similarly as configuring PATH. The value of this variable must be an URL of the proxy,
for example, http://10.0.0.42:8080.

1.3.3 Installing with pip

http://bugs.python.org/issue17023

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 12/263

The standard Python package manager is pip, but there are also other alternatives such as Buildout and easy_install. These instructions only cover using
pip, but other package managers ought be able to install Robot Framework as well.

Latest Python, Jython, IronPython and PyPy versions contain pip bundled in. Which versions contain it and how to possibly activate it is discussed in
sections below. See pip project pages if for the latest installation instructions if you need to install it.

Note

Only Robot Framework 2.7 and newer can be installed using pip. If you need an older version, you must use other installation approaches.

Installing pip for Python

Starting from Python 2.7.9, the standard Windows installer by default installs and activates pip. Assuming you also have configured PATH and possibly
set https_proxy, you can run pip install robotframework right after Python installation. With Python 3.4 and newer pip is officially part of the
interpreter and should be automatically available.

Outside Windows and with older Python versions you need to install pip yourself. You may be able to do it using system package managers like Apt or
Yum on Linux, but you can always use the manual installation instructions found from the pip project pages.

If you have multiple Python versions with pip installed, the version that is used when the pip command is executed depends on which pip is first in the
PATH. An alternative is executing the pip module using the selected Python version directly:

python -m pip install robotframework

python3 -m pip install robotframework

Installing pip for Jython

Jython 2.7 contain pip bundled in, but it needs to be activated before using it by running the following command:

jython -m ensurepip

Jython installs its pip into <JythonInstallation>/bin directory. Does running pip install robotframework actually use it or possibly some other pip
version depends on which pip is first in the PATH. An alternative is executing the pip module using Jython directly:

jython -m pip install robotframework

Installing pip for IronPython

http://pip-installer.org/
http://buildout.org/
http://peak.telecommunity.com/DevCenter/EasyInstall
http://pip-installer.org/
http://pip-installer.org/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 13/263

IronPython contains bundled pip starting from version 2.7.5. Similarly as with Jython, it needs to be activated first:

ipy -X:Frames -m ensurepip

Notice that with IronPython -X:Frames command line option is needed both when activating and when using pip.

IronPython installs pip into <IronPythonInstallation>/Scripts directory. Does running pip install robotframework actually use it or possibly some
other pip version depends on which pip is first in the PATH. An alternative is executing the pip module using IronPython directly:

ipy -X:Frames -m pip install robotframework

IronPython versions prior to 2.7.5 do not officially support pip.

Installing pip for PyPy

Also PyPy contains pip bundled in. It is not activated by default, but it can be activated similarly as with the other interpreters:

pypy -m ensurepip

pypy3 -m ensurepip

If you have multiple Python versions with pip installed, the version that is used when the pip command is executed depends on which pip is first in the
PATH. An alternative is executing the pip module using PyPy directly:

pypy -m pip

pypy3 -m pip

Using pip

Once you have pip installed, and have set https_proxy if you are behind a proxy, using pip on the command line is very easy. The easiest way to use pip
is by letting it find and download packages it installs from the Python Package Index (PyPI), but it can also install packages downloaded from the PyPI
separately. The most common usages are shown below and pip documentation has more information and examples.

Install the latest version (does not upgrade)

pip install robotframework

Upgrade to the latest version

pip install --upgrade robotframework

Install a specific version

pip install robotframework==2.9.2

Install separately downloaded package (no network connection needed)

http://blog.ironpython.net/2014/12/pip-in-ironpython-275.html
http://pip-installer.org/
https://pypi.python.org/pypi/robotframework
http://pip-installer.org/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 14/263

pip install robotframework-3.0.tar.gz

Install latest (possibly unreleased) code directly from GitHub

pip install git+https://github.com/robotframework/RobotFramework.git

Uninstall

pip uninstall robotframework

Notice that pip 1.4 and newer will only install stable releases by default. If you want to install an alpha, beta or release candidate, you need to either
specify the version explicitly or use the --pre option:

Install 3.0 beta 1

pip install robotframework==3.0b1

Upgrade to the latest version even if it is a pre-release

pip install --pre --upgrade robotframework

Notice that on Windows pip, by default, does not recreate robot.bat and rebot.bat start-up scripts if the same Robot Framework version is installed
multiple times using the same Python version. This mainly causes problems when using virtual environments, but is something to take into account also if
doing custom installations using pip. A workaround if using the --no-cache-dir option like pip install --no-cache-dir robotframework.
Alternatively it is possible to ignore the start-up scripts altogether and just use python -m robot and python -m robot.rebot commands instead.

1.3.4 Installing from source

This installation method can be used on any operating system with any of the supported interpreters. Installing from source can sound a bit scary, but the
procedure is actually pretty straightforward.

Getting source code

You typically get the source by downloading a source distribution from PyPI as a .tar.gz package. Once you have downloaded the package, you need
to extract it somewhere and, as a result, you get a directory named robotframework-<version>. The directory contains the source code and a
setup.py script needed for installing it.

An alternative approach for getting the source code is cloning project's GitHub repository directly. By default you will get the latest code, but you can
easily switch to different released versions or other tags.

Installation

Robot Framework is installed from source using Python's standard setup.py script. The script is in the directory containing the sources and you can run
it from the command line using any of the supported interpreters:

https://pypi.python.org/pypi/robotframework
https://github.com/robotframework/robotframework

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 15/263

python setup.py install

jython setup.py install

ipy setup.py install

pypy setup.py install

The setup.py script accepts several arguments allowing, for example, installation into a non-default location that does not require administrative rights.
It is also used for creating different distribution packages. Run python setup.py --help for more details.

1.3.5 Standalone JAR distribution

Robot Framework is also distributed as a standalone Java archive that contains both Jython and Robot Framework and only requires Java a dependency.
It is an easy way to get everything in one package that requires no installation, but has a downside that it does not work with the normal Python
interpreter.

The package is named robotframework-<version>.jar and it is available on the Maven central. After downloading the package, you can execute
tests with it like:

java -jar robotframework-3.0.jar mytests.robot

java -jar robotframework-3.0.jar --variable name:value mytests.robot

If you want to post-process outputs using Rebot or use other built-in supporting tools, you need to give the command name rebot, libdoc, testdoc or
tidy as the first argument to the JAR file:

java -jar robotframework-3.0.jar rebot output.xml

java -jar robotframework-3.0.jar libdoc MyLibrary list

For more information about the different commands, execute the JAR without arguments.

In addition to the Python standard library and Robot Framework modules, the standalone JAR versions starting from 2.9.2 also contain the PyYAML
dependency needed to handle yaml variable files.

1.3.6 Manual installation

If you do not want to use any automatic way of installing Robot Framework, you can always install it manually following these steps:

1. Get the source code. All the code is in a directory (a package in Python) called robot. If you have a source distribution or a version control
checkout, you can find it from the src directory, but you can also get it from an earlier installation.

2. Copy the source code where you want to.
3. Decide how to run tests.

http://jython.org/
http://java.com/
http://python.org/
http://search.maven.org/#search%7Cga%7C1%7Ca%3Arobotframework

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 16/263

1.3.7 Verifying installation

After a successful installation, you should be able to execute the created runner scripts with --version option and get both Robot Framework and
interpreter versions as a result:

$ robot --version

Robot Framework 3.0 (Python 2.7.10 on linux2)

$ rebot --version

Rebot 3.0 (Python 2.7.10 on linux2)

If running the runner scripts fails with a message saying that the command is not found or recognized, a good first step is double-checking the PATH
configuration. If that does not help, it is a good idea to re-read relevant sections from these instructions before searching help from the Internet or as
asking help on robotframework-users mailing list or elsewhere.

Where files are installed

When an automatic installer is used, Robot Framework source code is copied into a directory containing external Python modules. On UNIX-like
operating systems where Python is pre-installed the location of this directory varies. If you have installed the interpreter yourself, it is normally Lib/site-
packages under the interpreter installation directory, for example, C:\Python27\Lib\site-packages. The actual Robot Framework code is in a directory
named robot.

Robot Framework runner scripts are created and copied into another platform-specific location. When using Python on UNIX-like systems, they
normally go to /usr/bin or /usr/local/bin. On Windows and with Jython and IronPython, the scripts are typically either in Scripts or bin directory under
the interpreter installation directory.

1.3.8 Uninstallation

The easiest way to uninstall Robot Framework is using pip:

pip uninstall robotframework

A nice feature in pip is that it can uninstall packages even if they are installed from the source. If you do not have pip available or have done a manual
installation to a custom location, you need to find where files are installed and remove them manually.

If you have set PATH or configured the environment otherwise, you need to undo those changes separately.

1.3.9 Upgrading

http://groups.google.com/group/robotframework-users/
http://pip-installer.org/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 17/263

If you are using pip, upgrading to a new version requires either specifying the version explicitly or using the --upgrade option. If upgrading to a
preview release, --pre option is needed as well.

Upgrade to the latest stable version. This is the most common method.

pip install --upgrade robotframework

Upgrade to the latest version even if it would be a preview release.

pip install --upgrade --pre robotframework

Upgrade to the specified version.

pip install robotframework==2.9.2

When using pip, it automatically uninstalls previous versions before installation. If you are installing from source, it should be safe to just install over an
existing installation. If you encounter problems, uninstallation before installation may help.

When upgrading Robot Framework, there is always a change that the new version contains backwards incompatible changes affecting existing tests or
test infrastructure. Such changes are very rare in minor versions like 2.8.7 or 2.9.2, but more common in major versions like 2.9 and 3.0. Backwards
incompatible changes and deprecated features are explained in the release notes, and it is a good idea to study them especially when upgrading to a new
major version.

1.3.10 Executing Robot Framework

Using robot and rebot scripts

Starting from Robot Framework 3.0, tests are executed using the robot script and results post-processed with the rebot script:

robot tests.robot

rebot output.xml

Both of these scripts are installed as part of the normal installation and can be executed directly from the command line if PATH is set correctly. They are
implemented using Python except on Windows where they are batch files.

Older Robot Framework versions do not have the robot script and the rebot script is installed only with Python. Instead they have interpreter specific
scripts pybot, jybot and ipybot for test execution and jyrebot and ipyrebot for post-processing outputs. These scripts still work, but they will be
deprecated and removed in the future.

Executing installed robot module

An alternative way to run tests is executing the installed robot module or its sub module robot.run directly using Python's -m command line option.
This is especially useful if Robot Framework is used with multiple Python versions:

http://pip-installer.org/
https://docs.python.org/2/using/cmdline.html#cmdoption-m

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 18/263

python -m robot tests.robot

python3 -m robot.run tests.robot

jython -m robot tests.robot

/opt/jython/jython -m robot tests.robot

The support for python -m robot approach is a new feature in Robot Framework 3.0, but the older versions support python -m robot.run. The
latter must also be used with Python 2.6.

Post-processing outputs using the same approach works too, but the module to execute is robot.rebot:

python -m robot.rebot output.xml

Executing installed robot directory

If you know where Robot Framework is installed, you can also execute the installed robot directory or the run.py file inside it directly:

python path/to/robot/ tests.robot

jython path/to/robot/run.py tests.robot

Running the directory is a new feature in Robot Framework 3.0, but the older versions support running the robot/run.py file.

Post-processing outputs using the robot/rebot.py file works the same way too:

python path/to/robot/rebot.py output.xml

Executing Robot Framework this way is especially handy if you have done a manual installation.

1.3.11 Using virtual environments

Python virtual environments allow Python packages to be installed in an isolated location for a particular system or application, rather than installing all
packages into the same global location. Virtual environments can be created using the virtualenv tool or, starting from Python 3.3, using the standard
venv module.

Robot Framework in general works fine with virtual environments. The only problem is that when using pip on Windows, robot.bat and rebot.bat
scripts are not recreated by default. This means that if Robot Framework is installed into multiple virtual environments, the robot.bat and rebot.bat
scripts in the latter ones refer to the Python installation in the first virtual environment. A workaround is using the --no-cache-dir option when
installing. Alternatively the start-up scripts can be ignored and python -m robot and python -m robot.rebot commands used instead.

1.4 Demonstrations

https://packaging.python.org/installing/#creating-virtual-environments
https://virtualenv.pypa.io/
https://docs.python.org/3/library/venv.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 19/263

There are several demo projects that introduce Robot Framework and help getting started with it.

Quick Start Guide
Introduces the most important features of Robot Framework and acts as an executable demo.

Robot Framework demo
Simple example test cases. Demonstrates also creating custom test libraries.

Web testing demo
Demonstrates how to create tests and higher level keywords. The system under test is a simple web page that is tested using SeleniumLibrary.

SwingLibrary demo
Demonstrates using SwingLibrary for testing Java GUI applications.

ATDD with Robot Framework
Demonstrates how to use Robot Framework when following Acceptance Test Driven Development (ATDD) process.

2 Creating test data

2.1 Test data syntax
2.2 Creating test cases
2.3 Creating test suites
2.4 Using test libraries
2.5 Variables
2.6 Creating user keywords
2.7 Resource and variable files
2.8 Advanced features

2.1 Test data syntax

This section covers Robot Framework's overall test data syntax. The following sections will explain how to actually create test cases, test suites and so
on.

2.1.1 Files and directories
2.1.2 Supported file formats

HTML format
TSV format
Plain text format
reStructuredText format

https://github.com/robotframework/QuickStartGuide/blob/master/QuickStart.rst
https://bitbucket.org/robotframework/robotdemo/wiki/Home
https://bitbucket.org/robotframework/webdemo/wiki/Home
https://github.com/robotframework/SeleniumLibrary
https://github.com/robotframework/SwingLibrary/wiki/SwingLibrary-Demo
https://github.com/robotframework/SwingLibrary
https://code.google.com/p/atdd-with-robot-framework

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 20/263

2.1.3 Test data tables
2.1.4 Rules for parsing the data

Ignored data
Handling whitespace
Escaping
Dividing test data to several rows

2.1.1 Files and directories

The hierarchical structure for arranging test cases is built as follows:

Test cases are created in test case files.
A test case file automatically creates a test suite containing the test cases in that file.
A directory containing test case files forms a higher-level test suite. Such a test suite directory has suites created from test case files as its sub test
suites.
A test suite directory can also contain other test suite directories, and this hierarchical structure can be as deeply nested as needed.
Test suite directories can have a special initialization file.

In addition to this, there are:

Test libraries containing the lowest-level keywords.
Resource files with variables and higher-level user keywords.
Variable files to provide more flexible ways to create variables than resource files.

2.1.2 Supported file formats

Robot Framework test data is defined in tabular format, using either hypertext markup language (HTML), tab-separated values (TSV), plain text, or
reStructuredText (reST) formats. The details of these formats, as well as the main benefits and problems with them, are explained in the subsequent
sections. Which format to use depends on the context, but the plain text format is recommended if there are no special needs.

Robot Framework selects a parser for the test data based on the file extension. The extension is case-insensitive, and the recognized extensions are .html,
.htm and .xhtml for HTML, .tsv for TSV, .txt and special .robot for plain text, and .rst and .rest for reStructuredText.

Different test data templates are available for HTML and TSV formats to make it easier to get started writing tests.

Note

http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestSuite

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 21/263

The special .robot extension with plain text files is supported starting from Robot Framework 2.7.6.

HTML format

HTML files support formatting and free text around tables. This makes it possible to add additional information into test case files and allows creating test
case files that look like formal test specifications. The main problem with HTML format is that editing these files using normal text editors is not that
easy. Another problem is that HTML does not work as well with version control systems because the diffs resulting from changes contain HTML syntax
in addition to changes to the actual test data.

In HTML files, the test data is defined in separate tables (see the example below). Robot Framework recognizes these test data tables based on the text in
their first cell. Everything outside recognized tables is ignored.

Using the HTML format

Setting Value Value Value
Library OperatingSystem

Variable Value Value Value
${MESSAGE} Hello, world!

Test Case Action Argument Argument
My Test [Documentation] Example test

Log ${MESSAGE}
My Keyword /tmp

Another Test Should Be Equal ${MESSAGE} Hello, world!

Keyword Action Argument Argument
My Keyword [Arguments] ${path}

Directory Should Exist ${path}

Editing test data

Test data in HTML files can be edited with whichever editor you prefer, but a graphic editor, where you can actually see the tables, is recommended.
RIDE can read and write HTML files, but unfortunately it loses all HTML formatting and also possible data outside test case tables.

Encoding and entity references

https://github.com/robotframework/RIDE

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 22/263

HTML entity references (for example, ä) are supported. Additionally, any encoding can be used, assuming that it is specified in the data file.
Normal HTML files must use the META element as in the example below:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

XHTML files should use the XML preamble as in this example:

<?xml version="1.0" encoding="Big5"?>

If no encoding is specified, Robot Framework uses ISO-8859-1 by default.

TSV format

TSV files can be edited in spreadsheet programs and, because the syntax is so simple, they are easy to generate programmatically. They are also pretty
easy to edit using normal text editors and they work well in version control, but the plain text format is even better suited for these purposes.

The TSV format can be used in Robot Framework's test data for all the same purposes as HTML. In a TSV file, all the data is in one large table. Test
data tables are recognized from one or more asterisks (*), followed by a normal table name and an optional closing asterisks. Everything before the first
recognized table is ignored similarly as data outside tables in HTML data.

Using the TSV format

Setting *Value* *Value* *Value*
Library OperatingSystem

Variable *Value* *Value* *Value*
${MESSAGE} Hello, world!

Test Case *Action* *Argument* *Argument*
My Test [Documentation] Example test

Log ${MESSAGE}
My Keyword /tmp

Another Test Should Be Equal ${MESSAGE} Hello, world!

Keyword *Action* *Argument* *Argument*
My Keyword [Arguments] ${path}

Directory Should Exist ${path}

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 23/263

Editing test data

You can create and edit TSV files in any spreadsheet program, such as Microsoft Excel. Select the tab-separated format when you save the file and
remember to set the file extension to .tsv. It is also a good idea to turn all automatic corrections off and configure the tool to treat all values in the file as
plain text.

TSV files are relatively easy to edit with any text editor, especially if the editor supports visually separating tabs from spaces. The TSV format is also
supported by RIDE.

Robot Framework parses TSV data by first splitting all the content into rows and then rows into cells on the basis of the tabular characters. Spreadsheet
programs sometimes surround cells with quotes (for example, "my value") and Robot Framework removes them. Possible quotes inside the data are
doubled (for example, "my ""quoted"" value") and also this is handled correctly. If you are using a spreadsheet program to create TSV data, you
should not need to pay attention to this, but if you create data programmatically, you have to follow the same quoting conventions as spreadsheets.

Encoding

TSV files are always expected to use UTF-8 encoding. Because ASCII is a subset of UTF-8, plain ASCII is naturally supported too.

Plain text format

The plain texts format is very easy to edit using any text editor and they also work very well in version control. Because of these benefits it has became
the most used data format with Robot Framework.

The plain text format is technically otherwise similar to the TSV format but the separator between the cells is different. The TSV format uses tabs, but in
the plain text format you can use either two or more spaces or a pipe character surrounded with spaces (|).

The test data tables must have one or more asterisk before their names similarly as in the TSV format. Otherwise asterisks and possible spaces in the table
header are ignored so, for example, *** Settings *** and *Settings work the same way. Also similarly as in the TSV format, everything before the
first table is ignored.

In plain text files tabs are automatically converted to two spaces. This allows using a single tab as a separator similarly as in the TSV format. Notice,
however, that in the plain text format multiple tabs are considered to be a single separator whereas in the TSV format every tab would be a separator.

Space separated format

The number of spaces used as separator can vary, as long as there are at least two spaces, and it is thus possible to align the data nicely. This is a clear
benefit over editing the TSV format in a text editor because with TSV the alignment cannot be controlled.

https://github.com/robotframework/RIDE

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 24/263

*** Settings ***

Library OperatingSystem

*** Variables ***

${MESSAGE} Hello, world!

*** Test Cases ***

My Test

 [Documentation] Example test

 Log ${MESSAGE}

 My Keyword /tmp

Another Test

 Should Be Equal ${MESSAGE} Hello, world!

*** Keywords ***

My Keyword

 [Arguments] ${path}

 Directory Should Exist ${path}

Because space is used as separator, all empty cells must be escaped with ${EMPTY} variable or a single backslash. Otherwise handling whitespace is not
different than in other test data because leading, trailing, and consecutive spaces must always be escaped.

Tip

It is recommend to use four spaces between keywords and arguments.

Pipe and space separated format

The biggest problem of the space delimited format is that visually separating keywords from arguments can be tricky. This is a problem especially if
keywords take a lot of arguments and/or arguments contain spaces. In such cases the pipe and space delimited variant can work better because it makes
the cell boundary more visible.

| *Setting* | *Value* |

| Library | OperatingSystem |

| *Variable* | *Value* |

| ${MESSAGE} | Hello, world! |

| *Test Case* | *Action* | *Argument* |

| My Test | [Documentation] | Example test |

| | Log | ${MESSAGE} |

| | My Keyword | /tmp |

| Another Test | Should Be Equal | ${MESSAGE} | Hello, world!

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 25/263

| *Keyword* |

| My Keyword | [Arguments] | ${path}

| | Directory Should Exist | ${path}

A plain text file can contain test data in both space-only and space-and-pipe separated formats, but a single line must always use the same separator. Pipe
and space separated lines are recognized by the mandatory leading pipe, but the pipe at the end of the line is optional. There must always be at least one
space on both sides of the pipe (except at the beginning and end) but there is no need to align the pipes other than if it makes the data more clear.

There is no need to escape empty cells (other than the trailing empty cells) when using the pipe and space separated format. The only thing to take into
account is that possible pipes surrounded by spaces in the actual test data must be escaped with a backslash:

| *** Test Cases *** | | | |

| Escaping Pipe | ${file count} = | Execute Command | ls -1 *.txt \| wc -l |

| | Should Be Equal | ${file count} | 42 |

Editing and encoding

One of the biggest benefit of the plain text format over HTML and TSV is that editing it using normal text editors is very easy. Many editors and IDEs
(at least Eclipse, Emacs, Vim, and TextMate) also have plugins that support syntax highlighting Robot Framework test data and may also provide other
features such as keyword completion. The plain text format is also supported by RIDE.

Similarly as with the TSV test data, plain text files are always expected to use UTF-8 encoding. As a consequence also ASCII files are supported.

Recognized extensions

Starting from Robot Framework 2.7.6, it is possible to save plain text test data files using a special .robot extension in addition to the normal .txt
extension. The new extension makes it easier to distinguish test data files from other plain text files.

reStructuredText format

reStructuredText (reST) is an easy-to-read plain text markup syntax that is commonly used for documentation of Python projects (including Python itself,
as well as this User Guide). reST documents are most often compiled to HTML, but also other output formats are supported.

Using reST with Robot Framework allows you to mix richly formatted documents and test data in a concise text format that is easy to work with using
simple text editors, diff tools, and source control systems. In practice it combines many of the benefits of plain text and HTML formats.

When using reST files with Robot Framework, there are two ways to define the test data. Either you can use code blocks and define test cases in them
using the plain text format or alternatively you can use tables exactly like you would with the HTML format.

https://github.com/robotframework/RIDE
http://docutils.sourceforge.net/rst.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 26/263

Note

Using reST files with Robot Framework requires the Python docutils module to be installed.

Using code blocks

reStructuredText documents can contain code examples in so called code blocks. When these documents are compiled into HTML or other formats, the
code blocks are syntax highlighted using Pygments. In standard reST code blocks are started using the code directive, but Sphinx uses code-block or
sourcecode instead. The name of the programming language in the code block is given as an argument to the directive. For example, following code
blocks contain Python and Robot Framework examples, respectively:

.. code:: python

 def example_keyword():

 print 'Hello, world!'

.. code:: robotframework

 *** Test Cases ***

 Example Test

 Example Keyword

When Robot Framework parses reStructuredText files, it first searches for possible code, code-block or sourcecode blocks containing Robot
Framework test data. If such code blocks are found, data they contain is written into an in-memory file and executed. All data outside the code blocks is
ignored.

The test data in the code blocks must be defined using the plain text format. As the example below illustrates, both space and pipe separated variants are
supported:

Example

This text is outside code blocks and thus ignored.

.. code:: robotframework

 *** Settings ***

 Library OperatingSystem

 *** Variables ***

 ${MESSAGE} Hello, world!

 *** Test Cases ***

https://pypi.python.org/pypi/docutils
http://pygments.org/
http://sphinx-doc.org/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 27/263

 My Test

 [Documentation] Example test

 Log ${MESSAGE}

 My Keyword /tmp

 Another Test

 Should Be Equal ${MESSAGE} Hello, world!

Also this text is outside code blocks and ignored. Above block used

the space separated plain text format and the block below uses the pipe

separated variant.

.. code:: robotframework

 | *** Keyword *** | | |

 | My Keyword | [Arguments] | ${path} |

 | | Directory Should Exist | ${path} |

Note

Escaping using the backslash character works normally in this format. No double escaping is needed like when using reST tables.

Note

Support for test data in code blocks is a new feature in Robot Framework 2.8.2.

Using tables

If a reStructuredText document contains no code blocks with Robot Framework data, it is expected to contain the data in tables similarly as in the HTML
format. In this case Robot Framework compiles the document to HTML in memory and parses it exactly like it would parse a normal HTML file.

Robot Framework identifies test data tables based on the text in the first cell and all content outside of the recognized table types is ignored. An example
of each of the four test data tables is shown below using both simple table and grid table syntax:

Example

This text is outside tables and thus ignored.

============ ================ ======= =======

 Setting Value Value Value

============ ================ ======= =======

Library OperatingSystem

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 28/263

============ ================ ======= =======

============ ================ ======= =======

 Variable Value Value Value

============ ================ ======= =======

${MESSAGE} Hello, world!

============ ================ ======= =======

============= ================== ============ =============

 Test Case Action Argument Argument

============= ================== ============ =============

My Test [Documentation] Example test

\ Log ${MESSAGE}

\ My Keyword /tmp

\

Another Test Should Be Equal ${MESSAGE} Hello, world!

============= ================== ============ =============

Also this text is outside tables and ignored. Above tables are created

using the simple table syntax and the table below uses the grid table

approach.

+-------------+------------------------+------------+------------+

| Keyword | Action | Argument | Argument |

+-------------+------------------------+------------+------------+

| My Keyword | [Arguments] | ${path} | |

+-------------+------------------------+------------+------------+

| | Directory Should Exist | ${path} | |

+-------------+------------------------+------------+------------+

Note

Empty cells in the first column of simple tables need to be escaped. The above example uses \ but .. could also be used.

Note

Because the backslash character is an escape character in reST, specifying a backslash so that Robot Framework will see it requires escaping it with an other
backslash like \\. For example, a new line character must be written like \\n. Because the backslash is used for escaping also in Robot Framework data,
specifying a literal backslash when using reST tables requires double escaping like c:\\\\temp.

Generating HTML files based on reST files every time tests are run obviously adds some overhead. If this is a problem, it can be a good idea to convert
reST files to HTML using external tools separately, and let Robot Framework use the generated files only.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 29/263

Editing and encoding

Test data in reStructuredText files can be edited with any text editor, and many editors also provide automatic syntax highlighting for it. reST format is
not supported by RIDE, though.

Robot Framework requires reST files containing non-ASCII characters to be saved using UTF-8 encoding.

Syntax errors in reST source files

If a reStructuredText document is not syntactically correct (a malformed table for example), parsing it will fail and no test cases can be found from that
file. When executing a single reST file, Robot Framework will show the error on the console. When executing a directory, such parsing errors will
generally be ignored.

Starting from Robot Framework 2.9.2, errors below level SEVERE are ignored when running tests to avoid noise about non-standard directives and other
such markup. This may hide also real errors, but they can be seen when processing files normally.

2.1.3 Test data tables

Test data is structured in four types of tables listed below. These test data tables are identified by the first cell of the table. Recognized table names are
Settings, Variables, Test Cases, and Keywords. Matching is case-insensitive and also singular variants like Setting and Test Case are accepted.

Different test data tables

Table Used for
Settings 1) Importing test libraries, resource files and variable files.

2) Defining metadata for test suites and test cases.
Variables Defining variables that can be used elsewhere in the test

data.
Test Cases Creating test cases from available keywords.
Keywords Creating user keywords from existing lower-level keywords

2.1.4 Rules for parsing the data

Ignored data

When Robot Framework parses the test data, it ignores:

https://github.com/robotframework/RIDE
http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestSuite
http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestCase

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 30/263

All tables that do not start with a recognized table name in the first cell.
Everything else on the first row of a table apart from the first cell.
All data before the first table. If the data format allows data between tables, also that is ignored.
All empty rows, which means these kinds of rows can be used to make the tables more readable.
All empty cells at the end of rows, unless they are escaped.
All single backslashes (\) when not used for escaping.
All characters following the hash character (#), when it is the first character of a cell. This means that hash marks can be used to enter comments in
the test data.
All formatting in the HTML/reST test data.

When Robot Framework ignores some data, this data is not available in any resulting reports and, additionally, most tools used with Robot Framework
also ignore them. To add information that is visible in Robot Framework outputs, place it to the documentation or other metadata of test cases or suites, or
log it with the BuiltIn keywords Log or Comment.

Handling whitespace

Robot Framework handles whitespace the same way as they are handled in HTML source code:

Newlines, carriage returns, and tabs are converted to spaces.
Leading and trailing whitespace in all cells is ignored.
Multiple consecutive spaces are collapsed into a single space.

In addition to that, non-breaking spaces are replaced with normal spaces. This is done to avoid hard-to-debug errors when a non-breaking space is
accidentally used instead of a normal space.

If leading, trailing, or consecutive spaces are needed, they must be escaped. Newlines, carriage returns, tabs, and non-breaking spaces can be created
using escape sequences \n, \r, \t, and \xA0 respectively.

Escaping

The escape character in Robot Framework test data is the backslash (\) and additionally built-in variables ${EMPTY} and ${SPACE} can often be used for
escaping. Different escaping mechanisms are discussed in the sections below.

Escaping special characters

The backslash character can be used to escape special characters so that their literal values are used.

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 31/263

Escaping special characters

Character Meaning Examples
\$ Dollar sign, never starts a scalar variable. \${notvar}

\@ At sign, never starts a list variable. \@{notvar}

\% Percent sign, never starts an environment variable. \%{notvar}

\# Hash sign, never starts a comment. \# not comment

\= Equal sign, never part of named argument syntax. not\=named

\| Pipe character, not a separator in the pipe separated format. | Run | ps \| grep xxx |

\\ Backslash character, never escapes anything. c:\\temp, \\${var}

Forming escape sequences

The backslash character also allows creating special escape sequences that are recognized as characters that would otherwise be hard or impossible to
create in the test data.

Escape sequences

Sequence Meaning Examples
\n Newline character. first line\n2nd line

\r Carriage return character text\rmore text

\t Tab character. text\tmore text

\xhh Character with hex value hh. null byte: \x00, ä:

\xE4

\uhhhh Character with hex value hhhh. snowman: \u2603

\Uhhhhhhhh Character with hex value hhhhhhhh. love hotel: \U0001f3e9

Note

All strings created in the test data, including characters like \x02, are Unicode and must be explicitly converted to byte strings if needed. This can be done,
for example, using Convert To Bytes or Encode String To Bytes keywords in BuiltIn and String libraries, respectively, or with something like str(value) or
value.encode('UTF-8') in Python code.

Note

If invalid hexadecimal values are used with \x, \u or \U escapes, the end result is the original value without the backslash character. For example, \xAX (not
hex) and \U00110000 (too large value) result with xAX and U00110000, respectively. This behavior may change in the future, though.

Note

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/String.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 32/263

Built-in variable ${\n} can be used if operating system dependent line terminator is needed (\r\n on Windows and \n elsewhere).

Note

Possible un-escaped whitespace character after the \n is ignored. This means that two lines\nhere and two lines\n here are equivalent. The motivation
for this is to allow wrapping long lines containing newlines when using the HTML format, but the same logic is used also with other formats. An exception
to this rule is that the whitespace character is not ignored inside the extended variable syntax.

Note

\x, \u and \U escape sequences are new in Robot Framework 2.8.2.

Prevent ignoring empty cells

If empty values are needed as arguments for keywords or otherwise, they often need to be escaped to prevent them from being ignored. Empty trailing
cells must be escaped regardless of the test data format, and when using the space separated format all empty values must be escaped.

Empty cells can be escaped either with the backslash character or with built-in variable ${EMPTY}. The latter is typically recommended as it is easier to
understand. An exception to this recommendation is escaping the indented cells in for loops with a backslash when using the space separated format. All
these cases are illustrated in the following examples first in HTML and then in the space separated plain text format:

Test Case Action Argument Argument Argument
Using backslash Do Something first arg \
Using ${EMPTY} Do Something first arg ${EMPTY}
Non-trailing empty Do Something second arg # No escaping needed in HTML
For loop :FOR ${var} IN @{VALUES}

 Log ${var} # No escaping needed here either

*** Test Cases ***

Using backslash

 Do Something first arg \

Using ${EMPTY}

 Do Something first arg ${EMPTY}

Non-trailing empty

 Do Something ${EMPTY} second arg # Escaping needed in space separated format

For loop

 :FOR ${var} IN @{VALUES}

 \ Log ${var} # Escaping needed here too

Prevent ignoring spaces

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 33/263

Because leading, trailing, and consecutive spaces in cells are ignored, they need to be escaped if they are needed as arguments to keywords or otherwise.
Similarly as when preventing ignoring empty cells, it is possible to do that either using the backslash character or using built-in variable ${SPACE}.

Escaping spaces examples

Escaping with backslash Escaping with ${SPACE} Notes
\ leading space ${SPACE}leading space
trailing space \ trailing space${SPACE} Backslash must be after the space.
\ \ ${SPACE} Backslash needed on both sides.
consecutive \ \ spaces consecutive${SPACE * 3}spaces Using extended variable syntax.

As the above examples show, using the ${SPACE} variable often makes the test data easier to understand. It is especially handy in combination with the
extended variable syntax when more than one space is needed.

Dividing test data to several rows

If there is more data than readily fits a row, it possible to use ellipsis (...) to continue the previous line. In test case and keyword tables, the ellipsis must
be preceded by at least one empty cell. In settings and variable tables, it can be placed directly under the setting or variable name. In all tables, all empty
cells before the ellipsis are ignored.

Additionally, values of settings that take only one value (mainly documentations) can be split to several columns. These values will be then catenated
together with spaces when the test data is parsed. Starting from Robot Framework 2.7, documentation and test suite metadata split into multiple rows will
be catenated together with newlines.

All the syntax discussed above is illustrated in the following examples. In the first three tables test data has not been split, and the following three
illustrate how fewer columns are needed after splitting the data to several rows.

Test data that has not been split

Setting Value Value Value Value Value Value
Default Tags tag-1 tag-2 tag-3 tag-4 tag-5 tag-6

Variable Value Value Value Value Value Value
@{LIST} this list has quite many items

Test Case Action Argument Arg Arg Arg Arg Arg Arg
Example [Documentation] Documentation for this test

case.\n This can get quite
long...

 [Tags] t-1 t-2 t-3 t-4 t-5
 Do X one two three four five six
 ${var} = Get X 1 2 3 4 5 6

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 34/263

Test data split to several rows

Setting Value Value Value
Default Tags tag-1 tag-2 tag-3
... tag-4 tag-5 tag-6

Variable Value Value Value
@{LIST} this list has
... quite many items

Test Case Action Argument Argument Argument
Example [Documentation] Documentation for this test case.

... This can get quite long...
[Tags] t-1 t-2 t-3
... t-4 t-5
Do X one two three
... four five six
${var} = Get X 1 2
 ... 3 4
 ... 5 6

2.2 Creating test cases

This section describes the overall test case syntax. Organizing test cases into test suites using test case files and test suite directories is discussed in the
next section.

2.2.1 Test case syntax
Basic syntax
Settings in the Test Case table
Test case related settings in the Setting table

2.2.2 Using arguments
Mandatory arguments
Default values
Variable number of arguments
Named arguments
Free keyword arguments
Arguments embedded to keyword names

2.2.3 Failures
When test case fails
Error messages

2.2.4 Test case name and documentation

http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestSuite

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 35/263

2.2.5 Tagging test cases
Reserved tags

2.2.6 Test setup and teardown
2.2.7 Test templates

Basic usage
Templates with embedded arguments
Templates with for loops

2.2.8 Different test case styles
Keyword-driven style
Data-driven style
Behavior-driven style

2.2.1 Test case syntax

Basic syntax

Test cases are constructed in test case tables from the available keywords. Keywords can be imported from test libraries or resource files, or created in the
keyword table of the test case file itself.

The first column in the test case table contains test case names. A test case starts from the row with something in this column and continues to the next
test case name or to the end of the table. It is an error to have something between the table headers and the first test.

The second column normally has keyword names. An exception to this rule is setting variables from keyword return values, when the second and
possibly also the subsequent columns contain variable names and a keyword name is located after them. In either case, columns after the keyword name
contain possible arguments to the specified keyword.

*** Test Cases ***

Valid Login

 Open Login Page

 Input Username demo

 Input Password mode

 Submit Credentials

 Welcome Page Should Be Open

Setting Variables

 Do Something first argument second argument

 ${value} = Get Some Value

 Should Be Equal ${value} Expected value

Note

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 36/263

Although test case names can contain any character, using ? and especially * is not generally recommended because they are considered to be wildcards when
selecting test cases. For example, trying to run only a test with name Example * like --test 'Example *' will actually run any test starting with Example.

Settings in the Test Case table

Test cases can also have their own settings. Setting names are always in the second column, where keywords normally are, and their values are in the
subsequent columns. Setting names have square brackets around them to distinguish them from keywords. The available settings are listed below and
explained later in this section.

[Documentation]
Used for specifying a test case documentation.

[Tags]
Used for tagging test cases.

[Setup], [Teardown]
Specify test setup and teardown.

[Template]
Specifies the template keyword to use. The test itself will contain only data to use as arguments to that keyword.

[Timeout]
Used for setting a test case timeout. Timeouts are discussed in their own section.

Example test case with settings:

*** Test Cases ***

Test With Settings

 [Documentation] Another dummy test

 [Tags] dummy owner-johndoe

 Log Hello, world!

Test case related settings in the Setting table

The Setting table can have the following test case related settings. These settings are mainly default values for the test case specific settings listed earlier.

Force Tags, Default Tags
The forced and default values for tags.

Test Setup, Test Teardown
The default values for test setup and teardown.

Test Template

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 37/263

The default template keyword to use.

Test Timeout
The default value for test case timeout. Timeouts are discussed in their own section.

2.2.2 Using arguments

The earlier examples have already demonstrated keywords taking different arguments, and this section discusses this important functionality more
thoroughly. How to actually implement user keywords and library keywords with different arguments is discussed in separate sections.

Keywords can accept zero or more arguments, and some arguments may have default values. What arguments a keyword accepts depends on its
implementation, and typically the best place to search this information is keyword's documentation. In the examples in this section the documentation is
expected to be generated using the Libdoc tool, but the same information is available on documentation generated by generic documentation tools such
as javadoc.

Mandatory arguments

Most keywords have a certain number of arguments that must always be given. In the keyword documentation this is denoted by specifying the argument
names separated with a comma like first, second, third. The argument names actually do not matter in this case, except that they should explain
what the argument does, but it is important to have exactly the same number of arguments as specified in the documentation. Using too few or too many
arguments will result in an error.

The test below uses keywords Create Directory and Copy File from the OperatingSystem library. Their arguments are specified as path and source,
destination, which means that they take one and two arguments, respectively. The last keyword, No Operation from BuiltIn, takes no arguments.

*** Test Cases ***

Example

 Create Directory ${TEMPDIR}/stuff

 Copy File ${CURDIR}/file.txt ${TEMPDIR}/stuff

 No Operation

Default values

Arguments often have default values which can either be given or not. In the documentation the default value is typically separated from the argument
name with an equal sign like name=default value, but with keywords implemented using Java there may be multiple implementations of the same
keyword with different arguments instead. It is possible that all the arguments have default values, but there cannot be any positional arguments after
arguments with default values.

http://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 38/263

Using default values is illustrated by the example below that uses Create File keyword which has arguments path, content=, encoding=UTF-8.
Trying to use it without any arguments or more than three arguments would not work.

*** Test Cases ***

Example

 Create File ${TEMPDIR}/empty.txt

 Create File ${TEMPDIR}/utf-8.txt Hyvä esimerkki

 Create File ${TEMPDIR}/iso-8859-1.txt Hyvä esimerkki ISO-8859-1

Variable number of arguments

It is also possible that a keyword accepts any number of arguments. These so called varargs can be combined with mandatory arguments and arguments
with default values, but they are always given after them. In the documentation they have an asterisk before the argument name like *varargs.

For example, Remove Files and Join Paths keywords from the OperatingSystem library have arguments *paths and base, *parts, respectively. The
former can be used with any number of arguments, but the latter requires at least one argument.

*** Test Cases ***

Example

 Remove Files ${TEMPDIR}/f1.txt ${TEMPDIR}/f2.txt ${TEMPDIR}/f3.txt

 @{paths} = Join Paths ${TEMPDIR} f1.txt f2.txt f3.txt f4.txt

Named arguments

The named argument syntax makes using arguments with default values more flexible, and allows explicitly labeling what a certain argument value
means. Technically named arguments work exactly like keyword arguments in Python.

Basic syntax

It is possible to name an argument given to a keyword by prefixing the value with the name of the argument like arg=value. This is especially useful
when multiple arguments have default values, as it is possible to name only some the arguments and let others use their defaults. For example, if a
keyword accepts arguments arg1=a, arg2=b, arg3=c, and it is called with one argument arg3=override, arguments arg1 and arg2 get their default
values, but arg3 gets value override. If this sounds complicated, the named arguments example below hopefully makes it more clear.

The named argument syntax is both case and space sensitive. The former means that if you have an argument arg, you must use it like arg=value, and
neither Arg=value nor ARG=value works. The latter means that spaces are not allowed before the = sign, and possible spaces after it are considered part
of the given value.

When the named argument syntax is used with user keywords, the argument names must be given without the ${} decoration. For example, user
keyword with arguments ${arg1}=first, ${arg2}=second must be used like arg2=override.

http://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
http://docs.python.org/2/tutorial/controlflow.html#keyword-arguments

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 39/263

Using normal positional arguments after named arguments like, for example, | Keyword | arg=value | positional |, does not work. Starting from
Robot Framework 2.8 this causes an explicit error. The relative order of the named arguments does not matter.

Note

Prior to Robot Framework 2.8 it was not possible to name arguments that did not have a default value.

Named arguments with variables

It is possible to use variables in both named argument names and values. If the value is a single scalar variable, it is passed to the keyword as-is. This
allows using any objects, not only strings, as values also when using the named argument syntax. For example, calling a keyword like arg=${object}
will pass the variable ${object} to the keyword without converting it to a string.

If variables are used in named argument names, variables are resolved before matching them against argument names. This is a new feature in Robot
Framework 2.8.6.

The named argument syntax requires the equal sign to be written literally in the keyword call. This means that variable alone can never trigger the named
argument syntax, not even if it has a value like foo=bar. This is important to remember especially when wrapping keywords into other keywords. If, for
example, a keyword takes a variable number of arguments like @{args} and passes all of them to another keyword using the same @{args} syntax,
possible named=arg syntax used in the calling side is not recognized. This is illustrated by the example below.

*** Test Cases ***

Example

 Run Program shell=True # This will not come as a named argument to Run Process

*** Keywords ***

Run Program

 [Arguments] @{args}

 Run Process program.py @{args} # Named arguments are not recognized from inside @{args}

If keyword needs to accept and pass forward any named arguments, it must be changed to accept free keyword arguments. See kwargs examples for a
wrapper keyword version that can pass both positional and named arguments forward.

Escaping named arguments syntax

The named argument syntax is used only when the part of the argument before the equal sign matches one of the keyword's arguments. It is possible that
there is a positional argument with a literal value like foo=quux, and also an unrelated argument with name foo. In this case the argument foo either
incorrectly gets the value quux or, more likely, there is a syntax error.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 40/263

In these rare cases where there are accidental matches, it is possible to use the backslash character to escape the syntax like foo\=quux. Now the
argument will get a literal value foo=quux. Note that escaping is not needed if there are no arguments with name foo, but because it makes the situation
more explicit, it may nevertheless be a good idea.

Where named arguments are supported

As already explained, the named argument syntax works with keywords. In addition to that, it also works when importing libraries.

Naming arguments is supported by user keywords and by most test libraries. The only exception are Java based libraries that use the static library API.
Library documentation generated with Libdoc has a note does the library support named arguments or not.

Note

Prior to Robot Framework 2.8 named argument syntax did not work with test libraries using the dynamic library API.

Named arguments example

The following example demonstrates using the named arguments syntax with library keywords, user keywords, and when importing the Telnet test
library.

*** Settings ***

Library Telnet prompt=$ default_log_level=DEBUG

*** Test Cases ***

Example

 Open connection 10.0.0.42 port=${PORT} alias=example

 List files options=-lh

 List files path=/tmp options=-l

*** Keywords ***

List files

 [Arguments] ${path}=. ${options}=

 Execute command ls ${options} ${path}

Free keyword arguments

Robot Framework 2.8 added support for Python style free keyword arguments (**kwargs). What this means is that keywords can receive all arguments
that use the name=value syntax and do not match any other arguments as kwargs.

http://robotframework.org/robotframework/latest/libraries/Telnet.html
http://docs.python.org/2/tutorial/controlflow.html#keyword-arguments

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 41/263

Free keyword arguments support variables similarly as named arguments. In practice that means that variables can be used both in names and values, but
the escape sign must always be visible literally. For example, both foo=${bar} and ${foo}=${bar} are valid, as long as the variables that are used exist.
An extra limitation is that free keyword argument names must always be strings. Support for variables in names is a new feature in Robot Framework
2.8.6, prior to that possible variables were left un-resolved.

Initially free keyword arguments only worked with Python based libraries, but Robot Framework 2.8.2 extended the support to the dynamic library API
and Robot Framework 2.8.3 extended it further to Java based libraries and to the remote library interface. Finally, user keywords got kwargs support in
Robot Framework 2.9. In other words, all keywords can nowadays support kwargs.

Kwargs examples

As the first example of using kwargs, let's take a look at Run Process keyword in the Process library. It has a signature command, *arguments,
**configuration, which means that it takes the command to execute (command), its arguments as variable number of arguments (*arguments) and
finally optional configuration parameters as free keyword arguments (**configuration). The example below also shows that variables work with free
keyword arguments exactly like when using the named argument syntax.

*** Test Cases ***

Using Kwargs

 Run Process program.py arg1 arg2 cwd=/home/user

 Run Process program.py argument shell=True env=${ENVIRON}

See Free keyword arguments (**kwargs) section under Creating test libraries for more information about using the kwargs syntax in your custom test
libraries.

As the second example, let's create a wrapper user keyword for running the program.py in the above example. The wrapper keyword Run Program
accepts any number of arguments and kwargs, and passes them forward for Run Process along with the name of the command to execute.

*** Test Cases ***

Using Kwargs

 Run Program arg1 arg2 cwd=/home/user

 Run Program argument shell=True env=${ENVIRON}

*** Keywords ***

Run Program

 [Arguments] @{arguments} &{configuration}

 Run Process program.py @{arguments} &{configuration}

Arguments embedded to keyword names

A totally different approach to specify arguments is embedding them into keyword names. This syntax is supported by both test library keywords and
user keywords.

http://robotframework.org/robotframework/latest/libraries/Process.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 42/263

2.2.3 Failures

When test case fails

A test case fails if any of the keyword it uses fails. Normally this means that execution of that test case is stopped, possible test teardown is executed, and
then execution continues from the next test case. It is also possible to use special continuable failures if stopping test execution is not desired.

Error messages

The error message assigned to a failed test case is got directly from the failed keyword. Often the error message is created by the keyword itself, but some
keywords allow configuring them.

In some circumstances, for example when continuable failures are used, a test case can fail multiple times. In that case the final error message is got by
combining the individual errors. Very long error messages are automatically cut from the middle to keep reports easier to read. Full error messages are
always visible in log file as a message of the failed keyword.

By default error messages are normal text, but starting from Robot Framework 2.8 they can contain HTML formatting. This is enabled by starting the
error message with marker string *HTML*. This marker will be removed from the final error message shown in reports and logs. Using HTML in a
custom message is shown in the second example below.

*** Test Cases ***

Normal Error

 Fail This is a rather boring example...

HTML Error

 ${number} = Get Number

 Should Be Equal ${number} 42 *HTML* Number is not my MAGIC number.

2.2.4 Test case name and documentation

The test case name comes directly from the Test Case table: it is exactly what is entered into the test case column. Test cases in one test suite should have
unique names. Pertaining to this, you can also use the automatic variable ${TEST_NAME} within the test itself to refer to the test name. It is available
whenever a test is being executed, including all user keywords, as well as the test setup and the test teardown.

The [Documentation] setting allows you to set a free documentation for a test case. That text is shown in the command line output, as well as the
resulting test logs and test reports. It is possible to use simple HTML formatting in documentation and variables can be used to make the documentation
dynamic.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 43/263

If documentation is split into multiple columns, cells in one row are concatenated together with spaces. This is mainly be useful when using the HTML
format and columns are narrow. If documentation is split into multiple rows, the created documentation lines themselves are concatenated using newlines.
Newlines are not added if a line already ends with a newline or an escaping backslash.

*** Test Cases ***

Simple

 [Documentation] Simple documentation

 No Operation

Formatting

 [Documentation] *This is bold*, _this is italic_ and here is a link: http://robotframework.org

 No Operation

Variables

 [Documentation] Executed at ${HOST} by ${USER}

 No Operation

Splitting

 [Documentation] This documentation is split into multiple columns

 No Operation

Many lines

 [Documentation] Here we have

 ... an automatic newline

 No Operation

It is important that test cases have clear and descriptive names, and in that case they normally do not need any documentation. If the logic of the test case
needs documenting, it is often a sign that keywords in the test case need better names and they are to be enhanced, instead of adding extra
documentation. Finally, metadata, such as the environment and user information in the last example above, is often better specified using tags.

2.2.5 Tagging test cases

Using tags in Robot Framework is a simple, yet powerful mechanism for classifying test cases. Tags are free text and they can be used at least for the
following purposes:

Tags are shown in test reports, logs and, of course, in the test data, so they provide metadata to test cases.
Statistics about test cases (total, passed, failed are automatically collected based on tags).
With tags, you can include or exclude test cases to be executed.
With tags, you can specify which test cases are considered critical.

In this section it is only explained how to set tags for test cases, and different ways to do it are listed below. These approaches can naturally be used
together.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 44/263

Force Tags in the Setting table
All test cases in a test case file with this setting always get specified tags. If it is used in the test suite initialization file, all test cases in
sub test suites get these tags.

Default Tags in the Setting table
Test cases that do not have a [Tags] setting of their own get these tags. Default tags are not supported in test suite initialization files.

[Tags] in the Test Case table
A test case always gets these tags. Additionally, it does not get the possible tags specified with Default Tags, so it is possible to override the
Default Tags by using empty value. It is also possible to use value NONE to override default tags.

--settag command line option
All executed test cases get tags set with this option in addition to tags they got elsewhere.

Set Tags, Remove Tags, Fail and Pass Execution keywords
These BuiltIn keywords can be used to manipulate tags dynamically during the test execution.

Tags are free text, but they are normalized so that they are converted to lowercase and all spaces are removed. If a test case gets the same tag several
times, other occurrences than the first one are removed. Tags can be created using variables, assuming that those variables exist.

*** Settings ***

Force Tags req-42

Default Tags owner-john smoke

*** Variables ***

${HOST} 10.0.1.42

*** Test Cases ***

No own tags

 [Documentation] This test has tags owner-john, smoke and req-42.

 No Operation

With own tags

 [Documentation] This test has tags not_ready, owner-mrx and req-42.

 [Tags] owner-mrx not_ready

 No Operation

Own tags with variables

 [Documentation] This test has tags host-10.0.1.42 and req-42.

 [Tags] host-${HOST}

 No Operation

Empty own tags

 [Documentation] This test has only tag req-42.

 [Tags]

 No Operation

Set Tags and Remove Tags Keywords

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 45/263

 [Documentation] This test has tags mytag and owner-john.

 Set Tags mytag

 Remove Tags smoke req-*

Reserved tags

Users are generally free to use whatever tags that work in their context. There are, however, certain tags that have a predefined meaning for Robot
Framework itself, and using them for other purposes can have unexpected results. All special tags Robot Framework has and will have in the future have
either robot- or robot: prefix. To avoid problems, users should thus not use any tag with these prefixes unless actually activating the special
functionality.

At the time of writing, the only special tags are robot-exit, that is automatically added to tests when stopping test execution gracefully, and robot:no-
dry-run, that can be used to disable the dry run mode. More usages are likely to be added in the future.

Note

The plan is to unify reserved prefixes in the future. Most likely the robot: prefix will be used with all reserved tags, but it best to avoid both of these
prefixes at the moment. See issue #2539 for details.

2.2.6 Test setup and teardown

Robot Framework has similar test setup and teardown functionality as many other test automation frameworks. In short, a test setup is something that is
executed before a test case, and a test teardown is executed after a test case. In Robot Framework setups and teardowns are just normal keywords with
possible arguments.

Setup and teardown are always a single keyword. If they need to take care of multiple separate tasks, it is possible to create higher-level user keywords
for that purpose. An alternative solution is executing multiple keywords using the BuiltIn keyword Run Keywords.

The test teardown is special in two ways. First of all, it is executed also when a test case fails, so it can be used for clean-up activities that must be done
regardless of the test case status. In addition, all the keywords in the teardown are also executed even if one of them fails. This continue on failure
functionality can be used also with normal keywords, but inside teardowns it is on by default.

The easiest way to specify a setup or a teardown for test cases in a test case file is using the Test Setup and Test Teardown settings in the Setting table.
Individual test cases can also have their own setup or teardown. They are defined with the [Setup] or [Teardown] settings in the test case table and they
override possible Test Setup and Test Teardown settings. Having no keyword after a [Setup] or [Teardown] setting means having no setup or teardown. It
is also possible to use value NONE to indicate that a test has no setup/teardown.

*** Settings ***

Test Setup Open Application App A

https://github.com/robotframework/robotframework/issues/2539
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 46/263

Test Teardown Close Application

*** Test Cases ***

Default values

 [Documentation] Setup and teardown from setting table

 Do Something

Overridden setup

 [Documentation] Own setup, teardown from setting table

 [Setup] Open Application App B

 Do Something

No teardown

 [Documentation] Default setup, no teardown at all

 Do Something

 [Teardown]

No teardown 2

 [Documentation] Setup and teardown can be disabled also with special value NONE

 Do Something

 [Teardown] NONE

Using variables

 [Documentation] Setup and teardown specified using variables

 [Setup] ${SETUP}

 Do Something

 [Teardown] ${TEARDOWN}

The name of the keyword to be executed as a setup or a teardown can be a variable. This facilitates having different setups or teardowns in different
environments by giving the keyword name as a variable from the command line.

Note

Test suites can have a setup and teardown of their own. A suite setup is executed before any test cases or sub test suites in that test suite, and similarly a suite
teardown is executed after them.

2.2.7 Test templates

Test templates convert normal keyword-driven test cases into data-driven tests. Whereas the body of a keyword-driven test case is constructed from
keywords and their possible arguments, test cases with template contain only the arguments for the template keyword. Instead of repeating the same
keyword multiple times per test and/or with all tests in a file, it is possible to use it only per test or just once per file.

Template keywords can accept both normal positional and named arguments, as well as arguments embedded to the keyword name. Unlike with other
settings, it is not possible to define a template using a variable.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 47/263

Basic usage

How a keyword accepting normal positional arguments can be used as a template is illustrated by the following example test cases. These two tests are
functionally fully identical.

*** Test Cases **

Normal test case

 Example keyword first argument second argument

Templated test case

 [Template] Example keyword

 first argument second argument

As the example illustrates, it is possible to specify the template for an individual test case using the [Template] setting. An alternative approach is using
the Test Template setting in the Setting table, in which case the template is applied for all test cases in that test case file. The [Template] setting overrides
the possible template set in the Setting table, and an empty value for [Template] means that the test has no template even when Test Template is used. It is
also possible to use value NONE to indicate that a test has no template.

If a templated test case has multiple data rows in its body, the template is applied for all the rows one by one. This means that the same keyword is
executed multiple times, once with data on each row. Templated tests are also special so that all the rounds are executed even if one or more of them fails.
It is possible to use this kind of continue on failure mode with normal tests too, but with the templated tests the mode is on automatically.

*** Settings ***

Test Template Example keyword

*** Test Cases ***

Templated test case

 first round 1 first round 2

 second round 1 second round 2

 third round 1 third round 2

Using arguments with default values or varargs, as well as using named arguments and free keyword arguments, work with templates exactly like they
work otherwise. Using variables in arguments is also supported normally.

Templates with embedded arguments

Starting from Robot Framework 2.8.2, templates support a variation of the embedded argument syntax. With templates this syntax works so that if the
template keyword has variables in its name, they are considered placeholders for arguments and replaced with the actual arguments used with the
template. The resulting keyword is then used without positional arguments. This is best illustrated with an example:

*** Test Cases ***

Normal test case with embedded arguments

 The result of 1 + 1 should be 2

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 48/263

 The result of 1 + 2 should be 3

Template with embedded arguments

 [Template] The result of ${calculation} should be ${expected}

 1 + 1 2

 1 + 2 3

*** Keywords ***

The result of ${calculation} should be ${expected}

 ${result} = Calculate ${calculation}

 Should Be Equal ${result} ${expected}

When embedded arguments are used with templates, the number of arguments in the template keyword name must match the number of arguments it is
used with. The argument names do not need to match the arguments of the original keyword, though, and it is also possible to use different arguments
altogether:

*** Test Cases ***

Different argument names

 [Template] The result of ${foo} should be ${bar}

 1 + 1 2

 1 + 2 3

Only some arguments

 [Template] The result of ${calculation} should be 3

 1 + 2

 4 - 1

New arguments

 [Template] The ${meaning} of ${life} should be 42

 result 21 * 2

The main benefit of using embedded arguments with templates is that argument names are specified explicitly. When using normal arguments, the same
effect can be achieved by naming the columns that contain arguments. This is illustrated by the data-driven style example in the next section.

Templates with for loops

If templates are used with for loops, the template is applied for all the steps inside the loop. The continue on failure mode is in use also in this case, which
means that all the steps are executed with all the looped elements even if there are failures.

*** Test Cases ***

Template and for

 [Template] Example keyword

 :FOR ${item} IN @{ITEMS}

 \ ${item} 2nd arg

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 49/263

 :FOR ${index} IN RANGE 42

 \ 1st arg ${index}

2.2.8 Different test case styles

There are several different ways in which test cases may be written. Test cases that describe some kind of workflow may be written either in keyword-
driven or behavior-driven style. Data-driven style can be used to test the same workflow with varying input data.

Keyword-driven style

Workflow tests, such as the Valid Login test described earlier, are constructed from several keywords and their possible arguments. Their normal structure
is that first the system is taken into the initial state (Open Login Page in the Valid Login example), then something is done to the system (Input Name,
Input Password, Submit Credentials), and finally it is verified that the system behaved as expected (Welcome Page Should Be Open).

Data-driven style

Another style to write test cases is the data-driven approach where test cases use only one higher-level keyword, normally created as a user keyword,
that hides the actual test workflow. These tests are very useful when there is a need to test the same scenario with different input and/or output data. It
would be possible to repeat the same keyword with every test, but the test template functionality allows specifying the keyword to use only once.

*** Settings ***

Test Template Login with invalid credentials should fail

*** Test Cases *** USERNAME PASSWORD

Invalid User Name invalid ${VALID PASSWORD}

Invalid Password ${VALID USER} invalid

Invalid User Name and Password invalid invalid

Empty User Name ${EMPTY} ${VALID PASSWORD}

Empty Password ${VALID USER} ${EMPTY}

Empty User Name and Password ${EMPTY} ${EMPTY}

Tip

Naming columns like in the example above makes tests easier to understand. This is possible because on the header row other cells except the first one are
ignored.

The above example has six separate tests, one for each invalid user/password combination, and the example below illustrates how to have only one test
with all the combinations. When using test templates, all the rounds in a test are executed even if there are failures, so there is no real functional

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 50/263

difference between these two styles. In the above example separate combinations are named so it is easier to see what they test, but having potentially
large number of these tests may mess-up statistics. Which style to use depends on the context and personal preferences.

*** Test Cases ***

Invalid Password

 [Template] Login with invalid credentials should fail

 invalid ${VALID PASSWORD}

 ${VALID USER} invalid

 invalid whatever

 ${EMPTY} ${VALID PASSWORD}

 ${VALID USER} ${EMPTY}

 ${EMPTY} ${EMPTY}

Behavior-driven style

It is also possible to write test cases as requirements that also non-technical project stakeholders must understand. These executable requirements are a
corner stone of a process commonly called Acceptance Test Driven Development (ATDD) or Specification by Example.

One way to write these requirements/tests is Given-When-Then style popularized by Behavior Driven Development (BDD). When writing test cases in
this style, the initial state is usually expressed with a keyword starting with word Given, the actions are described with keyword starting with When and
the expectations with a keyword starting with Then. Keyword starting with And or But may be used if a step has more than one action.

*** Test Cases ***

Valid Login

 Given login page is open

 When valid username and password are inserted

 and credentials are submitted

 Then welcome page should be open

Ignoring Given/When/Then/And/But prefixes

Prefixes Given, When, Then, And and But are dropped when matching keywords are searched, if no match with the full name is found. This works for
both user keywords and library keywords. For example, Given login page is open in the above example can be implemented as user keyword either with
or without the word Given. Ignoring prefixes also allows using the same keyword with different prefixes. For example Welcome page should be open
could also used as And welcome page should be open.

Note

Ignoring But prefix is new in Robot Framework 2.8.7.

http://testobsessed.com/2008/12/08/acceptance-test-driven-development-atdd-an-overview
http://en.wikipedia.org/wiki/Specification_by_example
http://en.wikipedia.org/wiki/Behavior_Driven_Development

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 51/263

Embedding data to keywords

When writing concrete examples it is useful to be able pass actual data to keyword implementations. User keywords support this by allowing embedding
arguments into keyword name.

2.3 Creating test suites

Robot Framework test cases are created in test case files, which can be organized into directories. These files and directories create a hierarchical test
suite structure.

2.3.1 Test case files
2.3.2 Test suite directories

Warning on invalid files
Initialization files

2.3.3 Test suite name and documentation
2.3.4 Free test suite metadata
2.3.5 Suite setup and teardown

2.3.1 Test case files

Robot Framework test cases are created using test case tables in test case files. Such a file automatically creates a test suite from all the test cases it
contains. There is no upper limit for how many test cases there can be, but it is recommended to have less than ten, unless the data-driven approach is
used, where one test case consists of only one high-level keyword.

The following settings in the Setting table can be used to customize the test suite:

Documentation
Used for specifying a test suite documentation

Metadata
Used for setting free test suite metadata as name-value pairs.

Suite Setup, Suite Teardown
Specify suite setup and teardown.

Note

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 52/263

All setting names can optionally include a colon at the end, for example Documentation:. This can make reading the settings easier especially when using the
plain text format.

2.3.2 Test suite directories

Test case files can be organized into directories, and these directories create higher-level test suites. A test suite created from a directory cannot have any
test cases directly, but it contains other test suites with test cases, instead. These directories can then be placed into other directories creating an even
higher-level suite. There are no limits for the structure, so test cases can be organized as needed.

When a test directory is executed, the files and directories it contains are processed recursively as follows:

Files and directories with names starting with a dot (.) or an underscore (_) are ignored.
Directories with the name CVS are ignored (case-sensitive).
Files not having one of the recognized extensions (.html, .xhtml, .htm, .tsv, .txt, .rst, .rest or .robot) are ignored (case-insensitive).
Other files and directories are processed.

If a file or directory that is processed does not contain any test cases, it is silently ignored (a message is written to the syslog) and the processing
continues.

Warning on invalid files

Normally files that do not have a valid test case table are silently ignored with a message written to the syslog. It is possible to use a command line option
--warnonskippedfiles, which turns the message into a warning shown in test execution errors.

Initialization files

A test suite created from a directory can have similar settings as a suite created from a test case file. Because a directory alone cannot have that kind of
information, it must be placed into a special test suite initialization file. An initialization file name must always be of the format __init__.ext, where the
extension must be one of the supported file formats (for example, __init__.robot or __init__.html). The name format is borrowed from Python, where
files named in this manner denote that a directory is a module.

Initialization files have the same structure and syntax as test case files, except that they cannot have test case tables and not all settings are supported.
Variables and keywords created or imported in initialization files are not available in the lower level test suites. If you need to share variables or
keywords, you can put them into resource files that can be imported both by initialization and test case files.

The main usage for initialization files is specifying test suite related settings similarly as in test case files, but setting some test case related settings is also
possible. How to use different settings in the initialization files is explained below.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 53/263

Documentation, Metadata, Suite Setup, Suite Teardown
These test suite specific settings work the same way as in test case files.

Force Tags
Specified tags are unconditionally set to all test cases in all test case files this directory contains directly or recursively.

Test Setup, Test Teardown, Test Timeout
Set the default value for test setup/teardown or test timeout to all test cases this directory contains. Can be overridden on lower level. Support for
defining test timeout in initialization files was added in Robot Framework 2.7.

Default Tags, Test Template
Not supported in initialization files.

*** Settings ***

Documentation Example suite

Suite Setup Do Something ${MESSAGE}

Force Tags example

Library SomeLibrary

*** Variables ***

${MESSAGE} Hello, world!

*** Keywords ***

Do Something

 [Arguments] ${args}

 Some Keyword ${arg}

 Another Keyword

2.3.3 Test suite name and documentation

The test suite name is constructed from the file or directory name. The name is created so that the extension is ignored, possible underscores are replaced
with spaces, and names fully in lower case are title cased. For example, some_tests.html becomes Some Tests and My_test_directory becomes My test
directory.

The file or directory name can contain a prefix to control the execution order of the suites. The prefix is separated from the base name by two
underscores and, when constructing the actual test suite name, both the prefix and underscores are removed. For example files 01__some_tests.txt and
02__more_tests.txt create test suites Some Tests and More Tests, respectively, and the former is executed before the latter.

The documentation for a test suite is set using the Documentation setting in the Setting table. It can be used in test case files or, with higher-level suites,
in test suite initialization files. Test suite documentation has exactly the same characteristics regarding to where it is shown and how it can be created as
test case documentation.

*** Settings ***

Documentation An example test suite documentation with *some* _formatting_.

... See test documentation for more documentation examples.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 54/263

Both the name and documentation of the top-level test suite can be overridden in test execution. This can be done with the command line options --name
and --doc, respectively, as explained in section Setting metadata.

2.3.4 Free test suite metadata

Test suites can also have other metadata than the documentation. This metadata is defined in the Setting table using the Metadata setting. Metadata set in
this manner is shown in test reports and logs.

The name and value for the metadata are located in the columns following Metadata. The value is handled similarly as documentation, which means that
it can be split into several cells (joined together with spaces) or into several rows (joined together with newlines), simple HTML formatting works and
even variables can be used.

*** Settings ***

Metadata Version 2.0

Metadata More Info For more information about *Robot Framework* see http://robotframework.org

Metadata Executed At ${HOST}

For top-level test suites, it is possible to set metadata also with the --metadata command line option. This is discussed in more detail in section Setting
metadata.

2.3.5 Suite setup and teardown

Not only test cases but also test suites can have a setup and a teardown. A suite setup is executed before running any of the suite's test cases or child test
suites, and a test teardown is executed after them. All test suites can have a setup and a teardown; with suites created from a directory they must be
specified in a test suite initialization file.

Similarly as with test cases, a suite setup and teardown are keywords that may take arguments. They are defined in the Setting table with Suite Setup and
Suite Teardown settings, respectively. Keyword names and possible arguments are located in the columns after the setting name.

If a suite setup fails, all test cases in it and its child test suites are immediately assigned a fail status and they are not actually executed. This makes suite
setups ideal for checking preconditions that must be met before running test cases is possible.

A suite teardown is normally used for cleaning up after all the test cases have been executed. It is executed even if the setup of the same suite fails. If the
suite teardown fails, all test cases in the suite are marked failed, regardless of their original execution status. Note that all the keywords in suite teardowns
are executed even if one of them fails.

The name of the keyword to be executed as a setup or a teardown can be a variable. This facilitates having different setups or teardowns in different
environments by giving the keyword name as a variable from the command line.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 55/263

2.4 Using test libraries

Test libraries contain those lowest-level keywords, often called library keywords, which actually interact with the system under test. All test cases always
use keywords from some library, often through higher-level user keywords. This section explains how to take test libraries into use and how to use the
keywords they provide. Creating test libraries is described in a separate section.

2.4.1 Importing libraries
Using Library setting
Using Import Library keyword

2.4.2 Specifying library to import
Using library name
Using physical path to library

2.4.3 Setting custom name to test library
2.4.4 Standard libraries

Normal standard libraries
Remote library

2.4.5 External libraries

2.4.1 Importing libraries

Test libraries are typically imported using the Library setting, but it is also possible to use the Import Library keyword.

Using Library setting

Test libraries are normally imported using the Library setting in the Setting table and having the library name in the subsequent column. Unlike most of
the other data, the library name is both case- and space-sensitive. If a library is in a package, the full name including the package name must be used.

In those cases where the library needs arguments, they are listed in the columns after the library name. It is possible to use default values, variable number
of arguments, and named arguments in test library imports similarly as with arguments to keywords. Both the library name and arguments can be set
using variables.

*** Settings ***

Library OperatingSystem

Library my.package.TestLibrary

Library MyLibrary arg1 arg2

Library ${LIBRARY}

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 56/263

It is possible to import test libraries in test case files, resource files and test suite initialization files. In all these cases, all the keywords in the imported
library are available in that file. With resource files, those keywords are also available in other files using them.

Using Import Library keyword

Another possibility to take a test library into use is using the keyword Import Library from the BuiltIn library. This keyword takes the library name and
possible arguments similarly as the Library setting. Keywords from the imported library are available in the test suite where the Import Library keyword
was used. This approach is useful in cases where the library is not available when the test execution starts and only some other keywords make it
available.

*** Test Cases ***

Example

 Do Something

 Import Library MyLibrary arg1 arg2

 KW From MyLibrary

2.4.2 Specifying library to import

Libraries to import can be specified either by using the library name or the path to the library. These approaches work the same way regardless is the
library imported using the Library setting or the Import Library keyword.

Using library name

The most common way to specify a test library to import is using its name, like it has been done in all the examples in this section. In these cases Robot
Framework tries to find the class or module implementing the library from the module search path. Libraries that are installed somehow ought to be in the
module search path automatically, but with other libraries the search path may need to be configured separately.

The biggest benefit of this approach is that when the module search path has been configured, often using a custom start-up script, normal users do not
need to think where libraries actually are installed. The drawback is that getting your own, possible very simple, libraries into the search path may require
some additional configuration.

Using physical path to library

Another mechanism for specifying the library to import is using a path to it in the file system. This path is considered relative to the directory where
current test data file is situated similarly as paths to resource and variable files. The main benefit of this approach is that there is no need to configure the
module search path.

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 57/263

If the library is a file, the path to it must contain extension. For Python libraries the extension is naturally .py and for Java libraries it can either be .class or
.java, but the class file must always be available. If Python library is implemented as a directory, the path to it must have a trailing forward slash (/).
Following examples demonstrate these different usages.

*** Settings ***

Library PythonLibrary.py

Library /absolute/path/JavaLibrary.java

Library relative/path/PythonDirLib/ possible arguments

Library ${RESOURCES}/Example.class

A limitation of this approach is that libraries implemented as Python classes must be in a module with the same name as the class. Additionally, importing
libraries distributed in JAR or ZIP packages is not possible with this mechanism.

2.4.3 Setting custom name to test library

The library name is shown in test logs before keyword names, and if multiple keywords have the same name, they must be used so that the keyword
name is prefixed with the library name. The library name is got normally from the module or class name implementing it, but there are some situations
where changing it is desirable:

There is a need to import the same library several times with different arguments. This is not possible otherwise.
The library name is inconveniently long. This can happen, for example, if a Java library has a long package name.
You want to use variables to import different libraries in different environments, but refer to them with the same name.
The library name is misleading or otherwise poor. In this case, changing the actual name is, of course, a better solution.

The basic syntax for specifying the new name is having the text WITH NAME (case-sensitive) after the library name and then having the new name in the
next cell. The specified name is shown in logs and must be used in the test data when using keywords' full name (LibraryName.Keyword Name).

*** Settings ***

Library com.company.TestLib WITH NAME TestLib

Library ${LIBRARY} WITH NAME MyName

Possible arguments to the library are placed into cells between the original library name and the WITH NAME text. The following example illustrates how
the same library can be imported several times with different arguments:

*** Settings ***

Library SomeLibrary localhost 1234 WITH NAME LocalLib

Library SomeLibrary server.domain 8080 WITH NAME RemoteLib

*** Test Cases ***

My Test

 LocalLib.Some Keyword some arg second arg

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 58/263

 RemoteLib.Some Keyword another arg whatever

 LocalLib.Another Keyword

Setting a custom name to a test library works both when importing a library in the Setting table and when using the Import Library keyword.

2.4.4 Standard libraries

Some test libraries are distributed with Robot Framework and these libraries are called standard libraries. The BuiltIn library is special, because it is
taken into use automatically and thus its keywords are always available. Other standard libraries need to be imported in the same way as any other
libraries, but there is no need to install them.

Normal standard libraries

The available normal standard libraries are listed below with links to their documentations:

BuiltIn
Collections
DateTime
Dialogs
OperatingSystem
Process
Screenshot
String
Telnet
XML

Remote library

In addition to the normal standard libraries listed above, there is also Remote library that is totally different than the other standard libraries. It does not
have any keywords of its own but it works as a proxy between Robot Framework and actual test library implementations. These libraries can be running
on other machines than the core framework and can even be implemented using languages not supported by Robot Framework natively.

See separate Remote library interface section for more information about this concept.

2.4.5 External libraries

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/Collections.html
http://robotframework.org/robotframework/latest/libraries/DateTime.html
http://robotframework.org/robotframework/latest/libraries/Dialogs.html
http://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
http://robotframework.org/robotframework/latest/libraries/Process.html
http://robotframework.org/robotframework/latest/libraries/Screenshot.html
http://robotframework.org/robotframework/latest/libraries/String.html
http://robotframework.org/robotframework/latest/libraries/Telnet.html
http://robotframework.org/robotframework/latest/libraries/XML.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 59/263

Any test library that is not one of the standard libraries is, by definition, an external library. The Robot Framework open source community has
implemented several generic libraries, such as SeleniumLibrary and SwingLibrary, which are not packaged with the core framework. A list of publicly
available libraries can be found from http://robotframework.org.

Generic and custom libraries can obviously also be implemented by teams using Robot Framework. See Creating test libraries section for more
information about that topic.

Different external libraries can have a totally different mechanism for installing them and taking them into use. Sometimes they may also require some
other dependencies to be installed separately. All libraries should have clear installation and usage documentation and they should preferably automate
the installation process.

2.5 Variables

2.5.1 Introduction
2.5.2 Variable types

Scalar variables
List variables
Dictionary variables
Environment variables
Java system properties

2.5.3 Creating variables
Variable table
Variable file
Setting variables in command line
Return values from keywords
Using Set Test/Suite/Global Variable keywords

2.5.4 Built-in variables
Operating-system variables
Number variables
Boolean and None/null variables
Space and empty variables
Automatic variables

2.5.5 Variable priorities and scopes
Variable priorities
Variable scopes

2.5.6 Advanced variable features
Extended variable syntax
Extended variable assignment
Variables inside variables

https://github.com/robotframework/SeleniumLibrary
https://github.com/robotframework/SwingLibrary
http://robotframework.org/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 60/263

2.5.1 Introduction

Variables are an integral feature of Robot Framework, and they can be used in most places in test data. Most commonly, they are used in arguments for
keywords in test case tables and keyword tables, but also all settings allow variables in their values. A normal keyword name cannot be specified with a
variable, but the BuiltIn keyword Run Keyword can be used to get the same effect.

Robot Framework has its own variables that can be used as scalars, lists or dictionaries using syntax ${SCALAR}, @{LIST} and &{DICT}, respectively. In
addition to this, environment variables can be used directly with syntax %{ENV_VAR}.

Variables are useful, for example, in these cases:

When strings change often in the test data. With variables you only need to make these changes in one place.
When creating system-independent and operating-system-independent test data. Using variables instead of hard-coded strings eases that
considerably (for example, ${RESOURCES} instead of c:\resources, or ${HOST} instead of 10.0.0.1:8080). Because variables can be set from
the command line when tests are started, changing system-specific variables is easy (for example, --variable HOST:10.0.0.2:1234 --
variable RESOURCES:/opt/resources). This also facilitates localization testing, which often involves running the same tests with different
strings.
When there is a need to have objects other than strings as arguments for keywords. This is not possible without variables.
When different keywords, even in different test libraries, need to communicate. You can assign a return value from one keyword to a variable and
pass it as an argument to another.
When values in the test data are long or otherwise complicated. For example, ${URL} is shorter than
http://long.domain.name:8080/path/to/service?foo=1&bar=2&zap=42.

If a non-existent variable is used in the test data, the keyword using it fails. If the same syntax that is used for variables is needed as a literal string, it must
be escaped with a backslash as in \${NAME}.

2.5.2 Variable types

Different variable types are explained in this section. How variables can be created is discussed in subsequent sections.

Robot Framework variables, similarly as keywords, are case-insensitive, and also spaces and underscores are ignored. However, it is recommended to
use capital letters with global variables (for example, ${PATH} or ${TWO WORDS}) and small letters with variables that are only available in certain test
cases or user keywords (for example, ${my var} or ${myVar}). Much more importantly, though, cases should be used consistently.

Variable name consists of the variable type identifier ($, @, &, %), curly braces ({, }) and actual variable name between the braces. Unlike in some
programming languages where similar variable syntax is used, curly braces are always mandatory. Variable names can basically have any characters
between the curly braces. However, using only alphabetic characters from a to z, numbers, underscore and space is recommended, and it is even a
requirement for using the extended variable syntax.

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 61/263

Scalar variables

When scalar variables are used in the test data, they are replaced with the value they are assigned to. While scalar variables are most commonly used for
simple strings, you can assign any objects, including lists, to them. The scalar variable syntax, for example ${NAME}, should be familiar to most users, as
it is also used, for example, in shell scripts and Perl programming language.

The example below illustrates the usage of scalar variables. Assuming that the variables ${GREET} and ${NAME} are available and assigned to strings
Hello and world, respectively, both the example test cases are equivalent.

*** Test Cases ***

Constants

 Log Hello

 Log Hello, world!!

Variables

 Log ${GREET}

 Log ${GREET}, ${NAME}!!

When a scalar variable is used as the only value in a test data cell, the scalar variable is replaced with the value it has. The value may be any object.
When a scalar variable is used in a test data cell with anything else (constant strings or other variables), its value is first converted into a Unicode string
and then catenated to whatever is in that cell. Converting the value into a string means that the object's method __unicode__ (in Python, with __str__
as a fallback) or toString (in Java) is called.

Note

Variable values are used as-is without conversions also when passing arguments to keywords using the named arguments syntax like argname=${var}.

The example below demonstrates the difference between having a variable in a cell alone or with other content. First, let us assume that we have a
variable ${STR} set to a string Hello, world! and ${OBJ} set to an instance of the following Java object:

public class MyObj {

 public String toString() {

 return "Hi, tellus!";

 }

}

With these two variables set, we then have the following test data:

*** Test Cases ***

Objects

 KW 1 ${STR}

 KW 2 ${OBJ}

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 62/263

 KW 3 I said "${STR}"

 KW 4 You said "${OBJ}"

Finally, when this test data is executed, different keywords receive the arguments as explained below:

KW 1 gets a string Hello, world!
KW 2 gets an object stored to variable ${OBJ}
KW 3 gets a string I said "Hello, world!"
KW 4 gets a string You said "Hi, tellus!"

Note

Converting variables to Unicode obviously fails if the variable cannot be represented as Unicode. This can happen, for example, if you try to use byte
sequences as arguments to keywords so that you catenate the values together like ${byte1}${byte2}. A workaround is creating a variable that contains the
whole value and using it alone in the cell (e.g. ${bytes}) because then the value is used as-is.

List variables

When a variable is used as a scalar like ${EXAMPLE}, its value will be used as-is. If a variable value is a list or list-like, it is also possible to use as a list
variable like @{EXAMPLE}. In this case individual list items are passed in as arguments separately. This is easiest to explain with an example. Assuming
that a variable @{USER} has value ['robot', 'secret'], the following two test cases are equivalent:

*** Test Cases ***

Constants

 Login robot secret

List Variable

 Login @{USER}

Robot Framework stores its own variables in one internal storage and allows using them as scalars, lists or dictionaries. Using a variable as a list requires
its value to be a Python list or list-like object. Robot Framework does not allow strings to be used as lists, but other iterable objects such as tuples or
dictionaries are accepted.

Prior to Robot Framework 2.9, scalar and list variables were stored separately, but it was possible to use list variables as scalars and scalar variables as
lists. This caused lot of confusion when there accidentally was a scalar variable and a list variable with same name but different value.

Using list variables with other data

It is possible to use list variables with other arguments, including other list variables.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 63/263

*** Test Cases ***

Example

 Keyword @{LIST} more args

 Keyword ${SCALAR} @{LIST} constant

 Keyword @{LIST} @{ANOTHER} @{ONE MORE}

If a list variable is used in a cell with other data (constant strings or other variables), the final value will contain a string representation of the variable
value. The end result is thus exactly the same as when using the variable as a scalar with other data in the same cell.

Accessing individual list items

It is possible to access a certain value of a list variable with the syntax @{NAME}[index], where index is the index of the selected value. Indices start
from zero, negative indices can be used to access items from the end, and trying to access a value with too large an index causes an error. Indices are
automatically converted to integers, and it is also possible to use variables as indices. List items accessed in this manner can be used similarly as scalar
variables.

*** Test Cases ***

List Variable Item

 Login @{USER}[0] @{USER}[1]

 Title Should Be Welcome @{USER}[0]!

Negative Index

 Log @{LIST}[-1]

Index As Variable

 Log @{LIST}[${INDEX}]

Using list variables with settings

List variables can be used only with some of the settings. They can be used in arguments to imported libraries and variable files, but library and variable
file names themselves cannot be list variables. Also with setups and teardowns list variable can not be used as the name of the keyword, but can be used
in arguments. With tag related settings they can be used freely. Using scalar variables is possible in those places where list variables are not supported.

*** Settings ***

Library ExampleLibrary @{LIB ARGS} # This works

Library ${LIBRARY} @{LIB ARGS} # This works

Library @{NAME AND ARGS} # This does not work

Suite Setup Some Keyword @{KW ARGS} # This works

Suite Setup ${KEYWORD} @{KW ARGS} # This works

Suite Setup @{KEYWORD} # This does not work

Default Tags @{TAGS} # This works

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 64/263

Dictionary variables

As discussed above, a variable containing a list can be used as a list variable to pass list items to a keyword as individual arguments. Similarly a variable
containing a Python dictionary or a dictionary-like object can be used as a dictionary variable like &{EXAMPLE}. In practice this means that individual
items of the dictionary are passed as named arguments to the keyword. Assuming that a variable &{USER} has value {'name': 'robot', 'password':
'secret'}, the following two test cases are equivalent.

*** Test Cases ***

Constants

 Login name=robot password=secret

Dict Variable

 Login &{USER}

Dictionary variables are new in Robot Framework 2.9.

Using dictionary variables with other data

It is possible to use dictionary variables with other arguments, including other dictionary variables. Because named argument syntax requires positional
arguments to be before named argument, dictionaries can only be followed by named arguments or other dictionaries.

*** Test Cases ***

Example

 Keyword &{DICT} named=arg

 Keyword positional @{LIST} &{DICT}

 Keyword &{DICT} &{ANOTHER} &{ONE MORE}

If a dictionary variable is used in a cell with other data (constant strings or other variables), the final value will contain a string representation of the
variable value. The end result is thus exactly the same as when using the variable as a scalar with other data in the same cell.

Accessing individual dictionary items

It is possible to access a certain value of a dictionary variable with the syntax &{NAME}[key], where key is the name of the selected value. Keys are
considered to be strings, but non-strings keys can be used as variables. Dictionary values accessed in this manner can be used similarly as scalar
variables.

If a key is a string, it is possible to access its value also using attribute access syntax ${NAME.key}. See Creating dictionary variables for more details
about this syntax.

*** Test Cases ***

Dict Variable Item

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 65/263

 Login &{USER}[name] &{USER}[password]

 Title Should Be Welcome &{USER}[name]!

Key As Variable

 Log Many &{DICT}[${KEY}] &{DICT}[${42}]

Attribute Access

 Login ${USER.name} ${USER.password}

 Title Should Be Welcome ${USER.name}!

Using dictionary variables with settings

Dictionary variables cannot generally be used with settings. The only exception are imports, setups and teardowns where dictionaries can be used as
arguments.

*** Settings ***

Library ExampleLibrary &{LIB ARGS}

Suite Setup Some Keyword &{KW ARGS} named=arg

Environment variables

Robot Framework allows using environment variables in the test data using the syntax %{ENV_VAR_NAME}. They are limited to string values.

Environment variables set in the operating system before the test execution are available during it, and it is possible to create new ones with the keyword
Set Environment Variable or delete existing ones with the keyword Delete Environment Variable, both available in the OperatingSystem library. Because
environment variables are global, environment variables set in one test case can be used in other test cases executed after it. However, changes to
environment variables are not effective after the test execution.

*** Test Cases ***

Env Variables

 Log Current user: %{USER}

 Run %{JAVA_HOME}${/}javac

Java system properties

When running tests with Jython, it is possible to access Java system properties using same syntax as environment variables. If an environment variable
and a system property with same name exist, the environment variable will be used.

*** Test Cases ***

System Properties

 Log %{user.name} running tests on %{os.name}

http://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 66/263

2.5.3 Creating variables

Variables can spring into existence from different sources.

Variable table

The most common source for variables are Variable tables in test case files and resource files. Variable tables are convenient, because they allow creating
variables in the same place as the rest of the test data, and the needed syntax is very simple. Their main disadvantages are that values are always strings
and they cannot be created dynamically. If either of these is a problem, variable files can be used instead.

Creating scalar variables

The simplest possible variable assignment is setting a string into a scalar variable. This is done by giving the variable name (including ${}) in the first
column of the Variable table and the value in the second one. If the second column is empty, an empty string is set as a value. Also an already defined
variable can be used in the value.

*** Variables ***

${NAME} Robot Framework

${VERSION} 2.0

${ROBOT} ${NAME} ${VERSION}

It is also possible, but not obligatory, to use the equals sign = after the variable name to make assigning variables slightly more explicit.

*** Variables ***

${NAME} = Robot Framework

${VERSION} = 2.0

If a scalar variable has a long value, it can be split to multiple columns and rows. By default cells are catenated together using a space, but this can be
changed by having SEPARATOR=<sep> in the first cell.

*** Variables ***

${EXAMPLE} This value is joined together with a space

${MULTILINE} SEPARATOR=\n First line

... Second line Third line

Joining long values like above is a new feature in Robot Framework 2.9. Creating a scalar variable with multiple values was a syntax error in Robot
Framework 2.8 and with earlier versions it created a variable with a list value.

Creating list variables

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 67/263

Creating list variables is as easy as creating scalar variables. Again, the variable name is in the first column of the Variable table and values in the
subsequent columns. A list variable can have any number of values, starting from zero, and if many values are needed, they can be split into several
rows.

*** Variables ***

@{NAMES} Matti Teppo

@{NAMES2} @{NAMES} Seppo

@{NOTHING}

@{MANY} one two three four

... five six seven

Creating dictionary variables

Dictionary variables can be created in the variable table similarly as list variables. The difference is that items need to be created using name=value
syntax or existing dictionary variables. If there are multiple items with same name, the last value has precedence. If a name contains a literal equal sign, it
can be escaped with a backslash like \=.

*** Variables ***

&{USER 1} name=Matti address=xxx phone=123

&{USER 2} name=Teppo address=yyy phone=456

&{MANY} first=1 second=${2} ${3}=third

&{EVEN MORE} &{MANY} first=override empty=

... =empty key\=here=value

Dictionary variables have two extra properties compared to normal Python dictionaries. First of all, values of these dictionaries can be accessed like
attributes, which means that it is possible to use extended variable syntax like ${VAR.key}. This only works if the key is a valid attribute name and does
not match any normal attribute Python dictionaries have. For example, individual value &{USER}[name] can also be accessed like ${USER.name} (notice
that $ is needed in this context), but using ${MANY.3} is not possible.

Note

Starting from Robot Framework 3.0.3, dictionary variable keys are accessible recursively like ${VAR.nested.key}. This eases working with nested data
structures.

Another special property of dictionary variables is that they are ordered. This means that if these dictionaries are iterated, their items always come in the
order they are defined. This can be useful if dictionaries are used as list variables with for loops or otherwise. When a dictionary is used as a list variable,
the actual value contains dictionary keys. For example, @{MANY} variable would have value ['first', 'second', 3].

Variable file

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 68/263

Variable files are the most powerful mechanism for creating different kind of variables. It is possible to assign variables to any object using them, and
they also enable creating variables dynamically. The variable file syntax and taking variable files into use is explained in section Resource and variable
files.

Setting variables in command line

Variables can be set from the command line either individually with the --variable (-v) option or using a variable file with the
--variablefile (-V) option. Variables set from the command line are globally available for all executed test data files, and they also override possible
variables with the same names in the Variable table and in variable files imported in the test data.

The syntax for setting individual variables is --variable name:value, where name is the name of the variable without ${} and value is its value.
Several variables can be set by using this option several times. Only scalar variables can be set using this syntax and they can only get string values.
Many special characters are difficult to represent in the command line, but they can be escaped with the --escape option.

--variable EXAMPLE:value

--variable HOST:localhost:7272 --variable USER:robot

--variable ESCAPED:Qquotes_and_spacesQ --escape quot:Q --escape space:_

In the examples above, variables are set so that

${EXAMPLE} gets the value value
${HOST} and ${USER} get the values localhost:7272 and robot
${ESCAPED} gets the value "quotes and spaces"

The basic syntax for taking variable files into use from the command line is --variablefile path/to/variables.py, and Taking variable files into
use section has more details. What variables actually are created depends on what variables there are in the referenced variable file.

If both variable files and individual variables are given from the command line, the latter have higher priority.

Return values from keywords

Return values from keywords can also be set into variables. This allows communication between different keywords even in different test libraries.

Variables set in this manner are otherwise similar to any other variables, but they are available only in the local scope where they are created. Thus it is
not possible, for example, to set a variable like this in one test case and use it in another. This is because, in general, automated test cases should not
depend on each other, and accidentally setting a variable that is used elsewhere could cause hard-to-debug errors. If there is a genuine need for setting a
variable in one test case and using it in another, it is possible to use BuiltIn keywords as explained in the next section.

Assigning scalar variables

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 69/263

Any value returned by a keyword can be assigned to a scalar variable. As illustrated by the example below, the required syntax is very simple:

*** Test Cases ***

Returning

 ${x} = Get X an argument

 Log We got ${x}!

In the above example the value returned by the Get X keyword is first set into the variable ${x} and then used by the Log keyword. Having the equals
sign = after the variable name is not obligatory, but it makes the assignment more explicit. Creating local variables like this works both in test case and
user keyword level.

Notice that although a value is assigned to a scalar variable, it can be used as a list variable if it has a list-like value and as a dictionary variable if it has a
dictionary-like value.

*** Test Cases ***

Example

 ${list} = Create List first second third

 Length Should Be ${list} 3

 Log Many @{list}

Assigning list variables

If a keyword returns a list or any list-like object, it is possible to assign it to a list variable:

*** Test Cases ***

Example

 @{list} = Create List first second third

 Length Should Be ${list} 3

 Log Many @{list}

Because all Robot Framework variables are stored in the same namespace, there is not much difference between assigning a value to a scalar variable or
a list variable. This can be seen by comparing the last two examples above. The main differences are that when creating a list variable, Robot Framework
automatically verifies that the value is a list or list-like, and the stored variable value will be a new list created from the return value. When assigning to a
scalar variable, the return value is not verified and the stored value will be the exact same object that was returned.

Assigning dictionary variables

If a keyword returns a dictionary or any dictionary-like object, it is possible to assign it to a dictionary variable:

*** Test Cases ***

Example

 &{dict} = Create Dictionary first=1 second=${2} ${3}=third

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 70/263

 Length Should Be ${dict} 3

 Do Something &{dict}

 Log ${dict.first}

Because all Robot Framework variables are stored in the same namespace, it would also be possible to assign a dictionary into a scalar variable and use it
later as a dictionary when needed. There are, however, some actual benefits in creating a dictionary variable explicitly. First of all, Robot Framework
verifies that the returned value is a dictionary or dictionary-like similarly as it verifies that list variables can only get a list-like value.

A bigger benefit is that the value is converted into a special dictionary that it uses also when creating dictionary variables in the variable table. Values in
these dictionaries can be accessed using attribute access like ${dict.first} in the above example. These dictionaries are also ordered, but if the original
dictionary was not ordered, the resulting order is arbitrary.

Assigning multiple variables

If a keyword returns a list or a list-like object, it is possible to assign individual values into multiple scalar variables or into scalar variables and a list
variable.

*** Test Cases ***

Assign Multiple

 ${a} ${b} ${c} = Get Three

 ${first} @{rest} = Get Three

 @{before} ${last} = Get Three

 ${begin} @{middle} ${end} = Get Three

Assuming that the keyword Get Three returns a list [1, 2, 3], the following variables are created:

${a}, ${b} and ${c} with values 1, 2, and 3, respectively.
${first} with value 1, and @{rest} with value [2, 3].
@{before} with value [1, 2] and ${last} with value 3.
${begin} with value 1, @{middle} with value [2] and ${end} with value 3.

It is an error if the returned list has more or less values than there are scalar variables to assign. Additionally, only one list variable is allowed and
dictionary variables can only be assigned alone.

The support for assigning multiple variables was slightly changed in Robot Framework 2.9. Prior to it a list variable was only allowed as the last assigned
variable, but nowadays it can be used anywhere. Additionally, it was possible to return more values than scalar variables. In that case the last scalar
variable was magically turned into a list containing the extra values.

Using Set Test/Suite/Global Variable keywords

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 71/263

The BuiltIn library has keywords Set Test Variable, Set Suite Variable and Set Global Variable which can be used for setting variables dynamically
during the test execution. If a variable already exists within the new scope, its value will be overwritten, and otherwise a new variable is created.

Variables set with Set Test Variable keyword are available everywhere within the scope of the currently executed test case. For example, if you set a
variable in a user keyword, it is available both in the test case level and also in all other user keywords used in the current test. Other test cases will not
see variables set with this keyword.

Variables set with Set Suite Variable keyword are available everywhere within the scope of the currently executed test suite. Setting variables with this
keyword thus has the same effect as creating them using the Variable table in the test data file or importing them from variable files. Other test suites,
including possible child test suites, will not see variables set with this keyword.

Variables set with Set Global Variable keyword are globally available in all test cases and suites executed after setting them. Setting variables with this
keyword thus has the same effect as creating from the command line using the options --variable or --variablefile. Because this keyword can
change variables everywhere, it should be used with care.

Note

Set Test/Suite/Global Variable keywords set named variables directly into test, suite or global variable scope and return nothing. On the other hand, another
BuiltIn keyword Set Variable sets local variables using return values.

2.5.4 Built-in variables

Robot Framework provides some built-in variables that are available automatically.

Operating-system variables

Built-in variables related to the operating system ease making the test data operating-system-agnostic.

Available operating-system-related built-in variables

Variable Explanation
${CURDIR} An absolute path to the directory where the test data file is located. This variable is case-sensitive.
${TEMPDIR} An absolute path to the system temporary directory. In UNIX-like systems this is typically /tmp, and in Windows c:\Documents and

Settings\<user>\Local Settings\Temp.
${EXECDIR} An absolute path to the directory where test execution was started from.
${/} The system directory path separator. / in UNIX-like systems and \ in Windows.
${:} The system path element separator. : in UNIX-like systems and ; in Windows.
${\n} The system line separator. \n in UNIX-like systems and \r\n in Windows. New in version 2.7.5.

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 72/263

*** Test Cases ***

Example

 Create Binary File ${CURDIR}${/}input.data Some text here${\n}on two lines

 Set Environment Variable CLASSPATH ${TEMPDIR}${:}${CURDIR}${/}foo.jar

Number variables

The variable syntax can be used for creating both integers and floating point numbers, as illustrated in the example below. This is useful when a keyword
expects to get an actual number, and not a string that just looks like a number, as an argument.

*** Test Cases ***

Example 1A

 Connect example.com 80 # Connect gets two strings as arguments

Example 1B

 Connect example.com ${80} # Connect gets a string and an integer

Example 2

 Do X ${3.14} ${-1e-4} # Do X gets floating point numbers 3.14 and -0.0001

It is possible to create integers also from binary, octal, and hexadecimal values using 0b, 0o and 0x prefixes, respectively. The syntax is case insensitive.

*** Test Cases ***

Example

 Should Be Equal ${0b1011} ${11}

 Should Be Equal ${0o10} ${8}

 Should Be Equal ${0xff} ${255}

 Should Be Equal ${0B1010} ${0XA}

Boolean and None/null variables

Also Boolean values and Python None and Java null can be created using the variable syntax similarly as numbers.

*** Test Cases ***

Boolean

 Set Status ${true} # Set Status gets Boolean true as an argument

 Create Y something ${false} # Create Y gets a string and Boolean false

None

 Do XYZ ${None} # Do XYZ gets Python None as an argument

Null

 ${ret} = Get Value arg # Checking that Get Value returns Java null

 Should Be Equal ${ret} ${null}

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 73/263

These variables are case-insensitive, so for example ${True} and ${true} are equivalent. Additionally, ${None} and ${null} are synonyms, because
when running tests on the Jython interpreter, Jython automatically converts None and null to the correct format when necessary.

Space and empty variables

It is possible to create spaces and empty strings using variables ${SPACE} and ${EMPTY}, respectively. These variables are useful, for example, when
there would otherwise be a need to escape spaces or empty cells with a backslash. If more than one space is needed, it is possible to use the extended
variable syntax like ${SPACE * 5}. In the following example, Should Be Equal keyword gets identical arguments but those using variables are easier to
understand than those using backslashes.

*** Test Cases ***

One Space

 Should Be Equal ${SPACE} \ \

Four Spaces

 Should Be Equal ${SPACE * 4} \ \ \ \ \

Ten Spaces

 Should Be Equal ${SPACE * 10} \ \ \ \ \ \ \ \ \ \ \

Quoted Space

 Should Be Equal "${SPACE}" " "

Quoted Spaces

 Should Be Equal "${SPACE * 2}" " \ "

Empty

 Should Be Equal ${EMPTY} \

There is also an empty list variable @{EMPTY} and an empty dictionary variable &{EMPTY}. Because they have no content, they basically vanish when
used somewhere in the test data. They are useful, for example, with test templates when the template keyword is used without arguments or when
overriding list or dictionary variables in different scopes. Modifying the value of @{EMPTY} or &{EMPTY} is not possible.

*** Test Cases ***

Template

 [Template] Some keyword

 @{EMPTY}

Override

 Set Global Variable @{LIST} @{EMPTY}

 Set Suite Variable &{DICT} &{EMPTY}

Note

https://groups.google.com/group/robotframework-users/browse_thread/thread/ccc9e1cd77870437/4577836fe946e7d5?lnk=gst&q=templates#4577836fe946e7d5

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 74/263

@{EMPTY} is new in Robot Framework 2.7.4 and &{EMPTY} in Robot Framework 2.9.

Automatic variables

Some automatic variables can also be used in the test data. These variables can have different values during the test execution and some of them are not
even available all the time. Altering the value of these variables does not affect the original values, but some values can be changed dynamically using
keywords from the BuiltIn library.

Available automatic variables

Variable Explanation Available
${TEST NAME} The name of the current test case. Test case
@{TEST TAGS} Contains the tags of the current test case in alphabetical order. Can be modified dynamically

using Set Tags and Remove Tags keywords.
Test case

${TEST DOCUMENTATION} The documentation of the current test case. Can be set dynamically using using Set Test
Documentation keyword. New in Robot Framework 2.7.

Test case

${TEST STATUS} The status of the current test case, either PASS or FAIL. Test teardown
${TEST MESSAGE} The message of the current test case. Test teardown
${PREV TEST NAME} The name of the previous test case, or an empty string if no tests have been executed yet. Everywhere
${PREV TEST STATUS} The status of the previous test case: either PASS, FAIL, or an empty string when no tests have

been executed.
Everywhere

${PREV TEST MESSAGE} The possible error message of the previous test case. Everywhere
${SUITE NAME} The full name of the current test suite. Everywhere
${SUITE SOURCE} An absolute path to the suite file or directory. Everywhere
${SUITE DOCUMENTATION} The documentation of the current test suite. Can be set dynamically using using Set Suite

Documentation keyword. New in Robot Framework 2.7.
Everywhere

&{SUITE METADATA} The free metadata of the current test suite. Can be set using Set Suite Metadata keyword. New in
Robot Framework 2.7.4.

Everywhere

${SUITE STATUS} The status of the current test suite, either PASS or FAIL. Suite teardown
${SUITE MESSAGE} The full message of the current test suite, including statistics. Suite teardown
${KEYWORD STATUS} The status of the current keyword, either PASS or FAIL. New in Robot Framework 2.7 User keyword

teardown
${KEYWORD MESSAGE} The possible error message of the current keyword. New in Robot Framework 2.7. User keyword

teardown
${LOG LEVEL} Current log level. New in Robot Framework 2.8. Everywhere
${OUTPUT FILE} An absolute path to the output file. Everywhere
${LOG FILE} An absolute path to the log file or string NONE when no log file is created. Everywhere
${REPORT FILE} An absolute path to the report file or string NONE when no report is created. Everywhere

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 75/263

Variable Explanation Available
${DEBUG FILE} An absolute path to the debug file or string NONE when no debug file is created. Everywhere
${OUTPUT DIR} An absolute path to the output directory. Everywhere

Suite related variables ${SUITE SOURCE}, ${SUITE NAME}, ${SUITE DOCUMENTATION} and &{SUITE METADATA} are available already when test
libraries and variable files are imported, except to Robot Framework 2.8 and 2.8.1 where this support was broken. Possible variables in these automatic
variables are not yet resolved at the import time, though.

2.5.5 Variable priorities and scopes

Variables coming from different sources have different priorities and are available in different scopes.

Variable priorities

Variables from the command line

Variables set in the command line have the highest priority of all variables that can be set before the actual test execution starts. They
override possible variables created in Variable tables in test case files, as well as in resource and variable files imported in the test data.

Individually set variables (--variable option) override the variables set using variable files (--variablefile option). If you specify same
individual variable multiple times, the one specified last will override earlier ones. This allows setting default values for variables in a start-
up script and overriding them from the command line. Notice, though, that if multiple variable files have same variables, the ones in the file
specified first have the highest priority.

Variable table in a test case file

Variables created using the Variable table in a test case file are available for all the test cases in that file. These variables override possible
variables with same names in imported resource and variable files.

Variables created in the variable tables are available in all other tables in the file where they are created. This means that they can be used
also in the Setting table, for example, for importing more variables from resource and variable files.

Imported resource and variable files

Variables imported from the resource and variable files have the lowest priority of all variables created in the test data. Variables from
resource files and variable files have the same priority. If several resource and/or variable file have same variables, the ones in the file
imported first are taken into use.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 76/263

If a resource file imports resource files or variable files, variables in its own Variable table have a higher priority than variables it imports. All
these variables are available for files that import this resource file.

Note that variables imported from resource and variable files are not available in the Variable table of the file that imports them. This is due
to the Variable table being processed before the Setting table where the resource files and variable files are imported.

Variables set during test execution

Variables set during the test execution either using return values from keywords or using Set Test/Suite/Global Variable keywords always
override possible existing variables in the scope where they are set. In a sense they thus have the highest priority, but on the other hand they
do not affect variables outside the scope they are defined.

Built-in variables

Built-in variables like ${TEMPDIR} and ${TEST_NAME} have the highest priority of all variables. They cannot be overridden using Variable
table or from command line, but even they can be reset during the test execution. An exception to this rule are number variables, which are
resolved dynamically if no variable is found otherwise. They can thus be overridden, but that is generally a bad idea. Additionally
${CURDIR} is special because it is replaced already during the test data processing time.

Variable scopes

Depending on where and how they are created, variables can have a global, test suite, test case or local scope.

Global scope

Global variables are available everywhere in the test data. These variables are normally set from the command line with the --variable and
--variablefile options, but it is also possible to create new global variables or change the existing ones with the BuiltIn keyword Set Global Variable
anywhere in the test data. Additionally also built-in variables are global.

It is recommended to use capital letters with all global variables.

Test suite scope

Variables with the test suite scope are available anywhere in the test suite where they are defined or imported. They can be created in Variable tables,
imported from resource and variable files, or set during the test execution using the BuiltIn keyword Set Suite Variable.

The test suite scope is not recursive, which means that variables available in a higher-level test suite are not available in lower-level suites. If necessary,
resource and variable files can be used for sharing variables.

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 77/263

Since these variables can be considered global in the test suite where they are used, it is recommended to use capital letters also with them.

Test case scope

Variables with the test case scope are visible in a test case and in all user keywords the test uses. Initially there are no variables in this scope, but it is
possible to create them by using the BuiltIn keyword Set Test Variable anywhere in a test case.

Also variables in the test case scope are to some extend global. It is thus generally recommended to use capital letters with them too.

Local scope

Test cases and user keywords have a local variable scope that is not seen by other tests or keywords. Local variables can be created using return values
from executed keywords and user keywords also get them as arguments.

It is recommended to use lower-case letters with local variables.

Note

Prior to Robot Framework 2.9 variables in the local scope leaked to lower level user keywords. This was never an intended feature, and variables should be
set or passed explicitly also with earlier versions.

2.5.6 Advanced variable features

Extended variable syntax

Extended variable syntax allows accessing attributes of an object assigned to a variable (for example, ${object.attribute}) and even calling its
methods (for example, ${obj.getName()}). It works both with scalar and list variables, but is mainly useful with the former

Extended variable syntax is a powerful feature, but it should be used with care. Accessing attributes is normally not a problem, on the contrary, because
one variable containing an object with several attributes is often better than having several variables. On the other hand, calling methods, especially when
they are used with arguments, can make the test data pretty complicated to understand. If that happens, it is recommended to move the code into a test
library.

The most common usages of extended variable syntax are illustrated in the example below. First assume that we have the following variable file and test
case:

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://github.com/robotframework/robotframework/issues/532

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 78/263

class MyObject:

 def __init__(self, name):

 self.name = name

 def eat(self, what):

 return '%s eats %s' % (self.name, what)

 def __str__(self):

 return self.name

OBJECT = MyObject('Robot')

DICTIONARY = {1: 'one', 2: 'two', 3: 'three'}

*** Test Cases ***

Example

 KW 1 ${OBJECT.name}

 KW 2 ${OBJECT.eat('Cucumber')}

 KW 3 ${DICTIONARY[2]}

When this test data is executed, the keywords get the arguments as explained below:

KW 1 gets string Robot
KW 2 gets string Robot eats Cucumber
KW 3 gets string two

The extended variable syntax is evaluated in the following order:

1. The variable is searched using the full variable name. The extended variable syntax is evaluated only if no matching variable is found.
2. The name of the base variable is created. The body of the name consists of all the characters after the opening { until the first occurrence of a

character that is not an alphanumeric character or a space. For example, base variables of ${OBJECT.name} and ${DICTIONARY[2]}) are OBJECT
and DICTIONARY, respectively.

3. A variable matching the body is searched. If there is no match, an exception is raised and the test case fails.
4. The expression inside the curly brackets is evaluated as a Python expression, so that the base variable name is replaced with its value. If the

evaluation fails because of an invalid syntax or that the queried attribute does not exist, an exception is raised and the test fails.
5. The whole extended variable is replaced with the value returned from the evaluation.

If the object that is used is implemented with Java, the extended variable syntax allows you to access attributes using so-called bean properties. In
essence, this means that if you have an object with the getName method set into a variable ${OBJ}, then the syntax ${OBJ.name} is equivalent to but
clearer than ${OBJ.getName()}. The Python object used in the previous example could thus be replaced with the following Java implementation:

public class MyObject:

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 79/263

 private String name;

 public MyObject(String name) {

 name = name;

 }

 public String getName() {

 return name;

 }

 public String eat(String what) {

 return name + " eats " + what;

 }

 public String toString() {

 return name;

 }

}

Many standard Python objects, including strings and numbers, have methods that can be used with the extended variable syntax either explicitly or
implicitly. Sometimes this can be really useful and reduce the need for setting temporary variables, but it is also easy to overuse it and create really cryptic
test data. Following examples show few pretty good usages.

*** Test Cases ***

String

 ${string} = Set Variable abc

 Log ${string.upper()} # Logs 'ABC'

 Log ${string * 2} # Logs 'abcabc'

Number

 ${number} = Set Variable ${-2}

 Log ${number * 10} # Logs -20

 Log ${number.__abs__()} # Logs 2

Note that even though abs(number) is recommended over number.__abs__() in normal Python code, using ${abs(number)} does not work. This is
because the variable name must be in the beginning of the extended syntax. Using __xxx__ methods in the test data like this is already a bit questionable,
and it is normally better to move this kind of logic into test libraries.

Extended variable syntax works also in list variable context. If, for example, an object assigned to a variable ${EXTENDED} has an attribute attribute
that contains a list as a value, it can be used as a list variable @{EXTENDED.attribute}.

Extended variable assignment

Starting from Robot Framework 2.7, it is possible to set attributes of objects stored to scalar variables using keyword return values and a variation of the
extended variable syntax. Assuming we have variable ${OBJECT} from the previous examples, attributes could be set to it like in the example below.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 80/263

*** Test Cases ***

Example

 ${OBJECT.name} = Set Variable New name

 ${OBJECT.new_attr} = Set Variable New attribute

The extended variable assignment syntax is evaluated using the following rules:

1. The assigned variable must be a scalar variable and have at least one dot. Otherwise the extended assignment syntax is not used and the variable is
assigned normally.

2. If there exists a variable with the full name (e.g. ${OBJECT.name} in the example above) that variable will be assigned a new value and the
extended syntax is not used.

3. The name of the base variable is created. The body of the name consists of all the characters between the opening ${ and the last dot, for example,
OBJECT in ${OBJECT.name} and foo.bar in ${foo.bar.zap}. As the second example illustrates, the base name may contain normal extended
variable syntax.

4. The name of the attribute to set is created by taking all the characters between the last dot and the closing }, for example, name in
${OBJECT.name}. If the name does not start with a letter or underscore and contain only these characters and numbers, the attribute is considered
invalid and the extended syntax is not used. A new variable with the full name is created instead.

5. A variable matching the base name is searched. If no variable is found, the extended syntax is not used and, instead, a new variable is created
using the full variable name.

6. If the found variable is a string or a number, the extended syntax is ignored and a new variable created using the full name. This is done because
you cannot add new attributes to Python strings or numbers, and this way the new syntax is also less backwards-incompatible.

7. If all the previous rules match, the attribute is set to the base variable. If setting fails for any reason, an exception is raised and the test fails.

Note

Unlike when assigning variables normally using return values from keywords, changes to variables done using the extended assign syntax are not limited to
the current scope. Because no new variable is created but instead the state of an existing variable is changed, all tests and keywords that see that variable will
also see the changes.

Variables inside variables

Variables are allowed also inside variables, and when this syntax is used, variables are resolved from the inside out. For example, if you have a variable
${var${x}}, then ${x} is resolved first. If it has the value name, the final value is then the value of the variable ${varname}. There can be several
nested variables, but resolving the outermost fails, if any of them does not exist.

In the example below, Do X gets the value ${JOHN HOME} or ${JANE HOME}, depending on if Get Name returns john or jane. If it returns something
else, resolving ${${name} HOME} fails.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 81/263

*** Variables ***

${JOHN HOME} /home/john

${JANE HOME} /home/jane

*** Test Cases ***

Example

 ${name} = Get Name

 Do X ${${name} HOME}

2.6 Creating user keywords

Keyword tables are used to create new higher-level keywords by combining existing keywords together. These keywords are called user keywords to
differentiate them from lowest level library keywords that are implemented in test libraries. The syntax for creating user keywords is very close to the
syntax for creating test cases, which makes it easy to learn.

2.6.1 User keyword syntax
Basic syntax
Settings in the Keyword table

2.6.2 User keyword name and documentation
2.6.3 User keyword tags
2.6.4 User keyword arguments

Positional arguments
Default values with user keywords
Varargs with user keywords
Kwargs with user keywords

2.6.5 Embedding arguments into keyword name
Basic syntax
Embedded arguments matching too much
Using custom regular expressions
Behavior-driven development example

2.6.6 User keyword return values
Using [Return] setting
Using special keywords to return

2.6.7 User keyword teardown

2.6.1 User keyword syntax

Basic syntax

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 82/263

In many ways, the overall user keyword syntax is identical to the test case syntax. User keywords are created in keyword tables which differ from test
case tables only by the name that is used to identify them. User keyword names are in the first column similarly as test cases names. Also user keywords
are created from keywords, either from keywords in test libraries or other user keywords. Keyword names are normally in the second column, but when
setting variables from keyword return values, they are in the subsequent columns.

*** Keywords ***

Open Login Page

 Open Browser http://host/login.html

 Title Should Be Login Page

Title Should Start With

 [Arguments] ${expected}

 ${title} = Get Title

 Should Start With ${title} ${expected}

Most user keywords take some arguments. This important feature is used already in the second example above, and it is explained in detail later in this
section, similarly as user keyword return values.

User keywords can be created in test case files, resource files, and test suite initialization files. Keywords created in resource files are available for files
using them, whereas other keywords are only available in the files where they are created.

Settings in the Keyword table

User keywords can have similar settings as test cases, and they have the same square bracket syntax separating them from keyword names. All available
settings are listed below and explained later in this section.

[Documentation]
Used for setting a user keyword documentation.

[Tags]
Sets tags for the keyword.

[Arguments]
Specifies user keyword arguments.

[Return]
Specifies user keyword return values.

[Teardown]
Specify user keyword teardown.

[Timeout]
Sets the possible user keyword timeout. Timeouts are discussed in a section of their own.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 83/263

2.6.2 User keyword name and documentation

The user keyword name is defined in the first column of the user keyword table. Of course, the name should be descriptive, and it is acceptable to have
quite long keyword names. Actually, when creating use-case-like test cases, the highest-level keywords are often formulated as sentences or even
paragraphs.

User keywords can have a documentation that is set with the [Documentation] setting, exactly as test case documentation. This setting documents the
user keyword in the test data. It is also shown in a more formal keyword documentation, which the Libdoc tool can create from resource files. Finally, the
first row of the documentation is shown as a keyword documentation in test logs.

Sometimes keywords need to be removed, replaced with new ones, or deprecated for other reasons. User keywords can be marked deprecated by starting
the documentation with *DEPRECATED*, which will cause a warning when the keyword is used. For more information, see Deprecating keywords
section.

2.6.3 User keyword tags

Starting from Robot Framework 2.9, keywords can also have tags. User keywords tags can be set with [Tags] setting similarly as test case tags, but
possible Force Tags and Default Tags setting do not affect them. Additionally keyword tags can be specified on the last line of the documentation with
Tags: prefix and separated by a comma. For example, following two keywords would both get same three tags.

*** Keywords ***

Settings tags using separate setting

 [Tags] my fine tags

 No Operation

Settings tags using documentation

 [Documentation] I have documentation. And my documentation has tags.

 ... Tags: my, fine, tags

 No Operation

Keyword tags are shown in logs and in documentation generated by Libdoc, where the keywords can also be searched based on tags. The --
removekeywords and --flattenkeywords commandline options also support selecting keywords by tag, and new usages for keywords tags are possibly
added in later releases.

Similarly as with test case tags, user keyword tags with robot- and robot: prefixes are reserved for special features by Robot Framework itself. Users
should thus not use any tag with these prefixes unless actually activating the special functionality.

2.6.4 User keyword arguments

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 84/263

Most user keywords need to take some arguments. The syntax for specifying them is probably the most complicated feature normally needed with Robot
Framework, but even that is relatively easy, particularly in most common cases. Arguments are normally specified with the [Arguments] setting, and
argument names use the same syntax as variables, for example ${arg}.

Positional arguments

The simplest way to specify arguments (apart from not having them at all) is using only positional arguments. In most cases, this is all that is needed.

The syntax is such that first the [Arguments] setting is given and then argument names are defined in the subsequent cells. Each argument is in its own
cell, using the same syntax as with variables. The keyword must be used with as many arguments as there are argument names in its signature. The actual
argument names do not matter to the framework, but from users' perspective they should be as descriptive as possible. It is recommended to use lower-
case letters in variable names, either as ${my_arg}, ${my arg} or ${myArg}.

*** Keywords ***

One Argument

 [Arguments] ${arg_name}

 Log Got argument ${arg_name}

Three Arguments

 [Arguments] ${arg1} ${arg2} ${arg3}

 Log 1st argument: ${arg1}

 Log 2nd argument: ${arg2}

 Log 3rd argument: ${arg3}

Default values with user keywords

When creating user keywords, positional arguments are sufficient in most situations. It is, however, sometimes useful that keywords have default values
for some or all of their arguments. Also user keywords support default values, and the needed new syntax does not add very much to the already
discussed basic syntax.

In short, default values are added to arguments, so that first there is the equals sign (=) and then the value, for example ${arg}=default. There can be
many arguments with defaults, but they all must be given after the normal positional arguments. The default value can contain a variable created on test,
suite or global scope, but local variables of the keyword executor cannot be used. Starting from Robot Framework 3.0, default value can also be defined
based on earlier arguments accepted by the keyword.

Note

The syntax for default values is space sensitive. Spaces before the = sign are not allowed, and possible spaces after it are considered part of the default value
itself.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 85/263

*** Keywords ***

One Argument With Default Value

 [Arguments] ${arg}=default value

 [Documentation] This keyword takes 0-1 arguments

 Log Got argument ${arg}

Two Arguments With Defaults

 [Arguments] ${arg1}=default 1 ${arg2}=${VARIABLE}

 [Documentation] This keyword takes 0-2 arguments

 Log 1st argument ${arg1}

 Log 2nd argument ${arg2}

One Required And One With Default

 [Arguments] ${required} ${optional}=default

 [Documentation] This keyword takes 1-2 arguments

 Log Required: ${required}

 Log Optional: ${optional}

 Default Based On Earlier Argument

 [Arguments] ${a} ${b}=${a} ${c}=${a} and ${b}

 Should Be Equal ${a} ${b}

 Should Be Equal ${c} ${a} and ${b}

When a keyword accepts several arguments with default values and only some of them needs to be overridden, it is often handy to use the named
arguments syntax. When this syntax is used with user keywords, the arguments are specified without the ${} decoration. For example, the second
keyword above could be used like below and ${arg1} would still get its default value.

*** Test Cases ***

Example

 Two Arguments With Defaults arg2=new value

As all Pythonistas must have already noticed, the syntax for specifying default arguments is heavily inspired by Python syntax for function default
values.

Varargs with user keywords

Sometimes even default values are not enough and there is a need for a keyword accepting variable number of arguments. User keywords support also
this feature. All that is needed is having list variable such as @{varargs} after possible positional arguments in the keyword signature. This syntax can
be combined with the previously described default values, and at the end the list variable gets all the leftover arguments that do not match other
arguments. The list variable can thus have any number of items, even zero.

*** Keywords ***

Any Number Of Arguments

 [Arguments] @{varargs}

 Log Many @{varargs}

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 86/263

One Or More Arguments

 [Arguments] ${required} @{rest}

 Log Many ${required} @{rest}

Required, Default, Varargs

 [Arguments] ${req} ${opt}=42 @{others}

 Log Required: ${req}

 Log Optional: ${opt}

 Log Others:

 : FOR ${item} IN @{others}

 \ Log ${item}

Notice that if the last keyword above is used with more than one argument, the second argument ${opt} always gets the given value instead of the
default value. This happens even if the given value is empty. The last example also illustrates how a variable number of arguments accepted by a user
keyword can be used in a for loop. This combination of two rather advanced functions can sometimes be very useful.

The keywords in the examples above could be used, for example, like this:

*** Test Cases ***

Varargs with user keywords

 Any Number Of Arguments

 Any Number Of Arguments arg

 Any Number Of Arguments arg1 arg2 arg3 arg4

 One Or More Arguments required

 One Or More Arguments arg1 arg2 arg3 arg4

 Required, Default, Varargs required

 Required, Default, Varargs required optional

 Required, Default, Varargs arg1 arg2 arg3 arg4 arg5

Again, Pythonistas probably notice that the variable number of arguments syntax is very close to the one in Python.

Kwargs with user keywords

User keywords can also accept free keyword arguments by having a dictionary variable like &{kwargs} as the last argument after possible positional
arguments and varargs. When the keyword is called, this variable will get all named arguments that do not match any positional argument in the keyword
signature.

*** Keywords ***

Kwargs Only

 [Arguments] &{kwargs}

 Log ${kwargs}

 Log Many @{kwargs}

Positional And Kwargs

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 87/263

 [Arguments] ${required} &{extra}

 Log Many ${required} @{extra}

Run Program

 [Arguments] @{varargs} &{kwargs}

 Run Process program.py @{varargs} &{kwargs}

The last example above shows how to create a wrapper keyword that accepts any positional or named argument and passes them forward. See kwargs
examples for a full example with same keyword.

Also kwargs support with user keywords works very similarly as kwargs work in Python. In the signature and also when passing arguments forward, &
{kwargs} is pretty much the same as Python's **kwargs.

2.6.5 Embedding arguments into keyword name

Robot Framework has also another approach to pass arguments to user keywords than specifying them in cells after the keyword name as explained in
the previous section. This method is based on embedding the arguments directly into the keyword name, and its main benefit is making it easier to use
real and clear sentences as keywords.

Basic syntax

It has always been possible to use keywords like Select dog from list and Selects cat from list, but all such keywords must have been implemented
separately. The idea of embedding arguments into the keyword name is that all you need is a keyword with name like Select ${animal} from list.

*** Keywords ***

Select ${animal} from list

 Open Page Pet Selection

 Select Item From List animal_list ${animal}

Keywords using embedded arguments cannot take any "normal" arguments (specified with [Arguments] setting) but otherwise they are created just like
other user keywords. The arguments used in the name will naturally be available inside the keyword and they have different value depending on how the
keyword is called. For example, ${animal} in the previous has value dog if the keyword is used like Select dog from list. Obviously it is not mandatory
to use all these arguments inside the keyword, and they can thus be used as wildcards.

These kind of keywords are also used the same way as other keywords except that spaces and underscores are not ignored in their names. They are,
however, case-insensitive like other keywords. For example, the keyword in the example above could be used like select x from list, but not like Select x
fromlist.

Embedded arguments do not support default values or variable number of arguments like normal arguments do. Using variables when calling these
keywords is possible but that can reduce readability. Notice also that embedded arguments only work with user keywords.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 88/263

Embedded arguments matching too much

One tricky part in using embedded arguments is making sure that the values used when calling the keyword match the correct arguments. This is a
problem especially if there are multiple arguments and characters separating them may also appear in the given values. For example, keyword Select
${city} ${team} does not work correctly if used with city containing too parts like Select Los Angeles Lakers.

An easy solution to this problem is quoting the arguments (e.g. Select "${city}" "${team}") and using the keyword in quoted format (e.g. Select "Los
Angeles" "Lakers"). This approach is not enough to resolve all this kind of conflicts, though, but it is still highly recommended because it makes
arguments stand out from rest of the keyword. A more powerful but also more complicated solution, using custom regular expressions when defining
variables, is explained in the next section. Finally, if things get complicated, it might be a better idea to use normal positional arguments instead.

The problem of arguments matching too much occurs often when creating keywords that ignore given/when/then/and/but prefixes . For example,
${name} goes home matches Given Janne goes home so that ${name} gets value Given Janne. Quotes around the argument, like in "${name}" goes
home, resolve this problem easily.

Using custom regular expressions

When keywords with embedded arguments are called, the values are matched internally using regular expressions (regexps for short). The default logic
goes so that every argument in the name is replaced with a pattern .*? that basically matches any string. This logic works fairly well normally, but as just
discussed above, sometimes keywords match more than intended. Quoting or otherwise separating arguments from the other text can help but, for
example, the test below fails because keyword I execute "ls" with "-lh" matches both of the defined keywords.

*** Test Cases ***

Example

 I execute "ls"

 I execute "ls" with "-lh"

*** Keywords ***

I execute "${cmd}"

 Run Process ${cmd} shell=True

I execute "${cmd}" with "${opts}"

 Run Process ${cmd} ${opts} shell=True

A solution to this problem is using a custom regular expression that makes sure that the keyword matches only what it should in that particular context.
To be able to use this feature, and to fully understand the examples in this section, you need to understand at least the basics of the regular expression
syntax.

A custom embedded argument regular expression is defined after the base name of the argument so that the argument and the regexp are separated with a
colon. For example, an argument that should match only numbers can be defined like ${arg:\d+}. Using custom regular expressions is illustrated by the
examples below.

http://en.wikipedia.org/wiki/Regular_expression

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 89/263

*** Test Cases ***

Example

 I execute "ls"

 I execute "ls" with "-lh"

 I type 1 + 2

 I type 53 - 11

 Today is 2011-06-27

*** Keywords ***

I execute "${cmd:[^"]+}"

 Run Process ${cmd} shell=True

I execute "${cmd}" with "${opts}"

 Run Process ${cmd} ${opts} shell=True

I type ${a:\d+} ${operator:[+-]} ${b:\d+}

 Calculate ${a} ${operator} ${b}

Today is ${date:\d{4\}-\d{2\}-\d{2\}}

 Log ${date}

In the above example keyword I execute "ls" with "-lh" matches only I execute "${cmd}" with "${opts}". That is guaranteed because the custom regular
expression [^"]+ in I execute "${cmd:[^"]}" means that a matching argument cannot contain any quotes. In this case there is no need to add custom
regexps to the other I execute variant.

Tip

If you quote arguments, using regular expression [^"]+ guarantees that the argument matches only until the first closing quote.

Supported regular expression syntax

Being implemented with Python, Robot Framework naturally uses Python's re module that has pretty standard regular expressions syntax. This syntax is
otherwise fully supported with embedded arguments, but regexp extensions in format (?...) cannot be used. Notice also that matching embedded
arguments is done case-insensitively. If the regular expression syntax is invalid, creating the keyword fails with an error visible in test execution errors.

Escaping special characters

There are some special characters that need to be escaped when used in the custom embedded arguments regexp. First of all, possible closing curly
braces (}) in the pattern need to be escaped with a single backslash (\}) because otherwise the argument would end already there. This is illustrated in
the previous example with keyword Today is ${date:\d{4\}-\d{2\}-\d{2\}}.

https://docs.python.org/2/library/re.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 90/263

Backslash (\) is a special character in Python regular expression syntax and thus needs to be escaped if you want to have a literal backslash character.
The safest escape sequence in this case is four backslashes (\\\\) but, depending on the next character, also two backslashes may be enough.

Notice also that keyword names and possible embedded arguments in them should not be escaped using the normal test data escaping rules. This means
that, for example, backslashes in expressions like ${name:\w+} should not be escaped.

Using variables with custom embedded argument regular expressions

Whenever custom embedded argument regular expressions are used, Robot Framework automatically enhances the specified regexps so that they match
variables in addition to the text matching the pattern. This means that it is always possible to use variables with keywords having embedded arguments.
For example, the following test case would pass using the keywords from the earlier example.

*** Variables ***

${DATE} 2011-06-27

*** Test Cases ***

Example

 I type ${1} + ${2}

 Today is ${DATE}

A drawback of variables automatically matching custom regular expressions is that it is possible that the value the keyword gets does not actually match
the specified regexp. For example, variable ${DATE} in the above example could contain any value and Today is ${DATE} would still match the same
keyword.

Behavior-driven development example

The biggest benefit of having arguments as part of the keyword name is that it makes it easier to use higher-level sentence-like keywords when writing
test cases in behavior-driven style. The example below illustrates this. Notice also that prefixes Given, When and Then are left out of the keyword
definitions.

*** Test Cases ***

Add two numbers

 Given I have Calculator open

 When I add 2 and 40

 Then result should be 42

Add negative numbers

 Given I have Calculator open

 When I add 1 and -2

 Then result should be -1

*** Keywords ***

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 91/263

I have ${program} open

 Start Program ${program}

I add ${number 1} and ${number 2}

 Input Number ${number 1}

 Push Button +

 Input Number ${number 2}

 Push Button =

Result should be ${expected}

 ${result} = Get Result

 Should Be Equal ${result} ${expected}

Note

Embedded arguments feature in Robot Framework is inspired by how step definitions are created in a popular BDD tool Cucumber.

2.6.6 User keyword return values

Similarly as library keywords, also user keywords can return values. Typically return values are defined with the [Return] setting, but it is also possible to
use BuiltIn keywords Return From Keyword and Return From Keyword If. Regardless how values are returned, they can be assigned to variables in test
cases and in other user keywords.

Using [Return] setting

The most common case is that a user keyword returns one value and it is assigned to a scalar variable. When using the [Return] setting, this is done by
having the return value in the next cell after the setting.

User keywords can also return several values, which can then be assigned into several scalar variables at once, to a list variable, or to scalar variables and
a list variable. Several values can be returned simply by specifying those values in different cells after the [Return] setting.

*** Test Cases ***

One Return Value

 ${ret} = Return One Value argument

 Some Keyword ${ret}

Multiple Values

 ${a} ${b} ${c} = Return Three Values

 @{list} = Return Three Values

 ${scalar} @{rest} = Return Three Values

*** Keywords ***

http://cukes.info/
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 92/263

Return One Value

 [Arguments] ${arg}

 Do Something ${arg}

 ${value} = Get Some Value

 [Return] ${value}

Return Three Values

 [Return] foo bar zap

Using special keywords to return

BuiltIn keywords Return From Keyword and Return From Keyword If allow returning from a user keyword conditionally in the middle of the keyword.
Both of them also accept optional return values that are handled exactly like with the [Return] setting discussed above.

The first example below is functionally identical to the previous [Return] setting example. The second, and more advanced, example demonstrates
returning conditionally inside a for loop.

*** Test Cases ***

One Return Value

 ${ret} = Return One Value argument

 Some Keyword ${ret}

Advanced

 @{list} = Create List foo baz

 ${index} = Find Index baz @{list}

 Should Be Equal ${index} ${1}

 ${index} = Find Index non existing @{list}

 Should Be Equal ${index} ${-1}

*** Keywords ***

Return One Value

 [Arguments] ${arg}

 Do Something ${arg}

 ${value} = Get Some Value

 Return From Keyword ${value}

 Fail This is not executed

Find Index

 [Arguments] ${element} @{items}

 ${index} = Set Variable ${0}

 :FOR ${item} IN @{items}

 \ Return From Keyword If '${item}' == '${element}' ${index}

 \ ${index} = Set Variable ${index + 1}

 Return From Keyword ${-1} # Could also use [Return]

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 93/263

Note

Both Return From Keyword and Return From Keyword If are available since Robot Framework 2.8.

2.6.7 User keyword teardown

User keywords may have a teardown defined using [Teardown] setting.

Keyword teardown works much in the same way as a test case teardown. Most importantly, the teardown is always a single keyword, although it can be
another user keyword, and it gets executed also when the user keyword fails. In addition, all steps of the teardown are executed even if one of them fails.
However, a failure in keyword teardown will fail the test case and subsequent steps in the test are not run. The name of the keyword to be executed as a
teardown can also be a variable.

*** Keywords ***

With Teardown

 Do Something

 [Teardown] Log keyword teardown

Using variables

 [Documentation] Teardown given as variable

 Do Something

 [Teardown] ${TEARDOWN}

2.7 Resource and variable files

User keywords and variables in test case files and test suite initialization files can only be used in files where they are created, but resource files provide a
mechanism for sharing them. Since the resource file structure is very close to test case files, it is easy to create them.

Variable files provide a powerful mechanism for creating and sharing variables. For example, they allow values other than strings and enable creating
variables dynamically. Their flexibility comes from the fact that they are created using Python code, which also makes them somewhat more complicated
than Variable tables.

2.7.1 Resource files
Taking resource files into use
Resource file structure
Documenting resource files
Example resource file

2.7.2 Variable files
Taking variable files into use

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 94/263

Creating variables directly
Getting variables from a special function
Implementing variable file as Python or Java class
Variable file as YAML

2.7.1 Resource files

Taking resource files into use

Resource files are imported using the Resource setting in the Settings table. The path to the resource file is given in the cell after the setting name.

If the path is given in an absolute format, it is used directly. In other cases, the resource file is first searched relatively to the directory where the importing
file is located. If the file is not found there, it is then searched from the directories in Python's module search path. The path can contain variables, and it
is recommended to use them to make paths system-independent (for example, ${RESOURCES}/login_resources.html or ${RESOURCE_PATH}).
Additionally, slashes (/) in the path are automatically changed to backslashes (\) on Windows.

*** Settings ***

Resource myresources.html

Resource ../data/resources.html

Resource ${RESOURCES}/common.tsv

The user keywords and variables defined in a resource file are available in the file that takes that resource file into use. Similarly available are also all
keywords and variables from the libraries, resource files and variable files imported by the said resource file.

Resource file structure

The higher-level structure of resource files is the same as that of test case files otherwise, but, of course, they cannot contain Test Case tables.
Additionally, the Setting table in resource files can contain only import settings (Library, Resource, Variables) and Documentation. The Variable table
and Keyword table are used exactly the same way as in test case files.

If several resource files have a user keyword with the same name, they must be used so that the keyword name is prefixed with the resource file name
without the extension (for example, myresources.Some Keyword and common.Some Keyword). Moreover, if several resource files contain the same
variable, the one that is imported first is taken into use.

Documenting resource files

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 95/263

Keywords created in a resource file can be documented using [Documentation] setting. The resource file itself can have Documentation in the Setting
table similarly as test suites.

Both Libdoc and RIDE use these documentations, and they are naturally available for anyone opening resource files. The first line of the documentation
of a keyword is logged when it is run, but otherwise resource file documentations are ignored during the test execution.

Example resource file

*** Settings ***

Documentation An example resource file

Library SeleniumLibrary

Resource ${RESOURCES}/common.robot

*** Variables ***

${HOST} localhost:7272

${LOGIN URL} http://${HOST}/

${WELCOME URL} http://${HOST}/welcome.html

${BROWSER} Firefox

*** Keywords ***

Open Login Page

 [Documentation] Opens browser to login page

 Open Browser ${LOGIN URL} ${BROWSER}

 Title Should Be Login Page

Input Name

 [Arguments] ${name}

 Input Text username_field ${name}

Input Password

 [Arguments] ${password}

 Input Text password_field ${password}

2.7.2 Variable files

Variable files contain variables that can be used in the test data. Variables can also be created using variable tables or set from the command line, but
variable files allow creating them dynamically and their variables can contain any objects.

Variable files are typically implemented as Python modules and there are two different approaches for creating variables:

Creating variables directly
Variables are specified as module attributes. In simple cases, the syntax is so simple that no real programming is needed. For example, MY_VAR =
'my value' creates a variable ${MY_VAR} with the specified text as the value.

https://github.com/robotframework/RIDE

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 96/263

Getting variables from a special function
Variable files can have a special get_variables (or getVariables) method that returns variables as a mapping. Because the method can take
arguments this approach is very flexible.

Alternatively variable files can be implemented as Python or Java classes that the framework will instantiate. Also in this case it is possible to create
variables as attributes or get them from a special method.

Taking variable files into use

Setting table

All test data files can import variables using the Variables setting in the Setting table, in the same way as resource files are imported using the Resource
setting. Similarly to resource files, the path to the imported variable file is considered relative to the directory where the importing file is, and if not found,
it is searched from the directories in the module search path. The path can also contain variables, and slashes are converted to backslashes on Windows.
If an argument file takes arguments, they are specified in the cells after the path and also they can contain variables.

*** Settings ***

Variables myvariables.py

Variables ../data/variables.py

Variables ${RESOURCES}/common.py

Variables taking_arguments.py arg1 ${ARG2}

All variables from a variable file are available in the test data file that imports it. If several variable files are imported and they contain a variable with the
same name, the one in the earliest imported file is taken into use. Additionally, variables created in Variable tables and set from the command line
override variables from variable files.

Command line

Another way to take variable files into use is using the command line option --variablefile. Variable files are referenced using a path to them, and
possible arguments are joined to the path with a colon (:):

--variablefile myvariables.py

--variablefile path/variables.py

--variablefile /absolute/path/common.py

--variablefile taking_arguments.py:arg1:arg2

Starting from Robot Framework 2.8.2, variable files taken into use from the command line are also searched from the module search path similarly as
variable files imported in the Setting table.

If a variable file is given as an absolute Windows path, the colon after the drive letter is not considered a separator:

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 97/263

--variablefile C:\path\variables.py

Starting from Robot Framework 2.8.7, it is also possible to use a semicolon (;) as an argument separator. This is useful if variable file arguments
themselves contain colons, but requires surrounding the whole value with quotes on UNIX-like operating systems:

--variablefile "myvariables.py;argument:with:colons"

--variablefile C:\path\variables.py;D:\data.xls

Variables in these variable files are globally available in all test data files, similarly as individual variables set with the --variable option. If both
--variablefile and --variable options are used and there are variables with same names, those that are set individually with --variable option
take precedence.

Creating variables directly

Basic syntax

When variable files are taken into use, they are imported as Python modules and all their global attributes that do not start with an underscore (_) are
considered to be variables. Because variable names are case-insensitive, both lower- and upper-case names are possible, but in general, capital letters are
recommended for global variables and attributes.

VARIABLE = "An example string"

ANOTHER_VARIABLE = "This is pretty easy!"

INTEGER = 42

STRINGS = ["one", "two", "kolme", "four"]

NUMBERS = [1, INTEGER, 3.14]

MAPPING = {"one": 1, "two": 2, "three": 3}

In the example above, variables ${VARIABLE}, ${ANOTHER VARIABLE}, and so on, are created. The first two variables are strings, the third one is an
integer, then there are two lists, and the final value is a dictionary. All these variables can be used as a scalar variable, lists and the dictionary also a list
variable like @{STRINGS} (in the dictionary's case that variable would only contain keys), and the dictionary also as a dictionary variable like &
{MAPPING}.

To make creating a list variable or a dictionary variable more explicit, it is possible to prefix the variable name with LIST__ or DICT__, respectively:

from collections import OrderedDict

LIST__ANIMALS = ["cat", "dog"]

DICT__FINNISH = OrderedDict([("cat", "kissa"), ("dog", "koira")])

These prefixes will not be part of the final variable name, but they cause Robot Framework to validate that the value actually is list-like or dictionary-like.
With dictionaries the actual stored value is also turned into a special dictionary that is used also when creating dictionary variables in the Variable table.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 98/263

Values of these dictionaries are accessible as attributes like ${FINNISH.cat}. These dictionaries are also ordered, but preserving the source order
requires also the original dictionary to be ordered.

The variables in both the examples above could be created also using the Variable table below.

*** Variables ***

${VARIABLE} An example string

${ANOTHER VARIABLE} This is pretty easy!

${INTEGER} ${42}

@{STRINGS} one two kolme four

@{NUMBERS} ${1} ${INTEGER} ${3.14}

&{MAPPING} one=${1} two=${2} three=${3}

@{ANIMALS} cat dog

&{FINNISH} cat=kissa dog=koira

Note

Variables are not replaced in strings got from variable files. For example, VAR = "an ${example}" would create variable ${VAR} with a literal string value
an ${example} regardless would variable ${example} exist or not.

Using objects as values

Variables in variable files are not limited to having only strings or other base types as values like variable tables. Instead, their variables can contain any
objects. In the example below, the variable ${MAPPING} contains a Java Hashtable with two values (this example works only when running tests on
Jython).

from java.util import Hashtable

MAPPING = Hashtable()

MAPPING.put("one", 1)

MAPPING.put("two", 2)

The second example creates ${MAPPING} as a Python dictionary and also has two variables created from a custom object implemented in the same file.

MAPPING = {'one': 1, 'two': 2}

class MyObject:

 def __init__(self, name):

 self.name = name

OBJ1 = MyObject('John')

OBJ2 = MyObject('Jane')

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 99/263

Creating variables dynamically

Because variable files are created using a real programming language, they can have dynamic logic for setting variables.

import os

import random

import time

USER = os.getlogin() # current login name

RANDOM_INT = random.randint(0, 10) # random integer in range [0,10]

CURRENT_TIME = time.asctime() # timestamp like 'Thu Apr 6 12:45:21 2006'

if time.localtime()[3] > 12:

 AFTERNOON = True

else:

 AFTERNOON = False

The example above uses standard Python libraries to set different variables, but you can use your own code to construct the values. The example below
illustrates the concept, but similarly, your code could read the data from a database, from an external file or even ask it from the user.

import math

def get_area(diameter):

 radius = diameter / 2

 area = math.pi * radius * radius

 return area

AREA1 = get_area(1)

AREA2 = get_area(2)

Selecting which variables to include

When Robot Framework processes variable files, all their attributes that do not start with an underscore are expected to be variables. This means that
even functions or classes created in the variable file or imported from elsewhere are considered variables. For example, the last example would contain
the variables ${math} and ${get_area} in addition to ${AREA1} and ${AREA2}.

Normally the extra variables do not cause problems, but they could override some other variables and cause hard-to-debug errors. One possibility to
ignore other attributes is prefixing them with an underscore:

import math as _math

def _get_area(diameter):

 radius = diameter / 2.0

 area = _math.pi * radius * radius

 return area

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 100/263

AREA1 = _get_area(1)

AREA2 = _get_area(2)

If there is a large number of other attributes, instead of prefixing them all, it is often easier to use a special attribute __all__ and give it a list of attribute
names to be processed as variables.

import math

__all__ = ['AREA1', 'AREA2']

def get_area(diameter):

 radius = diameter / 2.0

 area = math.pi * radius * radius

 return area

AREA1 = get_area(1)

AREA2 = get_area(2)

Note

The __all__ attribute is also, and originally, used by Python to decide which attributes to import when using the syntax from modulename import *.

Getting variables from a special function

An alternative approach for getting variables is having a special get_variables function (also camelCase syntax getVariables is possible) in a
variable file. If such a function exists, Robot Framework calls it and expects to receive variables as a Python dictionary or a Java Map with variable names
as keys and variable values as values. Created variables can be used as scalars, lists, and dictionaries exactly like when creating variables directly, and it
is possible to use LIST__ and DICT__ prefixes to make creating list and dictionary variables more explicit. The example below is functionally identical to
the first creating variables directly example.

def get_variables():

 variables = {"VARIABLE ": "An example string",

 "ANOTHER VARIABLE": "This is pretty easy!",

 "INTEGER": 42,

 "STRINGS": ["one", "two", "kolme", "four"],

 "NUMBERS": [1, 42, 3.14],

 "MAPPING": {"one": 1, "two": 2, "three": 3}}

 return variables

get_variables can also take arguments, which facilitates changing what variables actually are created. Arguments to the function are set just as any
other arguments for a Python function. When taking variable files into use in the test data, arguments are specified in cells after the path to the variable
file, and in the command line they are separated from the path with a colon or a semicolon.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 101/263

The dummy example below shows how to use arguments with variable files. In a more realistic example, the argument could be a path to an external text
file or database where to read variables from.

variables1 = {'scalar': 'Scalar variable',

 'LIST__list': ['List','variable']}

variables2 = {'scalar' : 'Some other value',

 'LIST__list': ['Some','other','value'],

 'extra': 'variables1 does not have this at all'}

def get_variables(arg):

 if arg == 'one':

 return variables1

 else:

 return variables2

Implementing variable file as Python or Java class

Starting from Robot Framework 2.7, it is possible to implement variables files as Python or Java classes.

Implementation

Because variable files are always imported using a file system path, creating them as classes has some restrictions:

Python classes must have the same name as the module they are located.
Java classes must live in the default package.
Paths to Java classes must end with either .java or .class. The class file must exists in both cases.

Regardless the implementation language, the framework will create an instance of the class using no arguments and variables will be gotten from the
instance. Similarly as with modules, variables can be defined as attributes directly in the instance or gotten from a special get_variables (or
getVariables) method.

When variables are defined directly in an instance, all attributes containing callable values are ignored to avoid creating variables from possible methods
the instance has. If you would actually need callable variables, you need to use other approaches to create variable files.

Examples

The first examples create variables from attributes using both Python and Java. Both of them create variables ${VARIABLE} and @{LIST} from class
attributes and ${ANOTHER VARIABLE} from an instance attribute.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 102/263

class StaticPythonExample(object):

 variable = 'value'

 LIST__list = [1, 2, 3]

 _not_variable = 'starts with an underscore'

 def __init__(self):

 self.another_variable = 'another value'

public class StaticJavaExample {

 public static String variable = "value";

 public static String[] LIST__list = {1, 2, 3};

 private String notVariable = "is private";

 public String anotherVariable;

 public StaticJavaExample() {

 anotherVariable = "another value";

 }

}

The second examples utilizes dynamic approach for getting variables. Both of them create only one variable ${DYNAMIC VARIABLE}.

class DynamicPythonExample(object):

 def get_variables(self, *args):

 return {'dynamic variable': ' '.join(args)}

import java.util.Map;

import java.util.HashMap;

public class DynamicJavaExample {

 public Map<String, String> getVariables(String arg1, String arg2) {

 HashMap<String, String> variables = new HashMap<String, String>();

 variables.put("dynamic variable", arg1 + " " + arg2);

 return variables;

 }

}

Variable file as YAML

Variable files can also be implemented as YAML files. YAML is a data serialization language with a simple and human-friendly syntax. The following
example demonstrates a simple YAML file:

string: Hello, world!

integer: 42

list:

http://yaml.org/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 103/263

 - one

 - two

dict:

 one: yksi

 two: kaksi

 with spaces: kolme

Note

Using YAML files with Robot Framework requires PyYAML module to be installed. If you have pip installed, you can install it simply by running pip
install pyyaml.

YAML support is new in Robot Framework 2.9. Starting from version 2.9.2, the standalone JAR distribution has PyYAML included by default.

YAML variable files can be used exactly like normal variable files from the command line using --variablefile option, in the settings table using
Variables setting, and dynamically using the Import Variables keyword. The only thing to remember is that paths to YAML files must always end with
.yaml extension.

If the above YAML file is imported, it will create exactly the same variables as the following variable table:

*** Variables ***

${STRING} Hello, world!

${INTEGER} ${42}

@{LIST} one two

&{DICT} one=yksi two=kaksi

YAML files used as variable files must always be mappings in the top level. As the above example demonstrates, keys and values in the mapping
become variable names and values, respectively. Variable values can be any data types supported by YAML syntax. If names or values contain non-
ASCII characters, YAML variables files must be UTF-8 encoded.

Mappings used as values are automatically converted to special dictionaries that are used also when creating dictionary variables in the variable table.
Most importantly, values of these dictionaries are accessible as attributes like ${DICT.one}, assuming their names are valid as Python attribute names. If
the name contains spaces or is otherwise not a valid attribute name, it is always possible to access dictionary values using syntax like &{DICT}[with
spaces] syntax. The created dictionaries are also ordered, but unfortunately the original source order of in the YAML file is not preserved.

2.8 Advanced features

2.8.1 Handling keywords with same names
Keyword scopes
Specifying a keyword explicitly
Specifying explicit priority between libraries and resources

http://pyyaml.org/
http://pip-installer.org/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 104/263

2.8.2 Timeouts
Test case timeout
User keyword timeout

2.8.3 For loops
Normal for loop
Nested for loops
Using several loop variables
For-in-range loop
For-in-enumerate loop
For-in-zip loop
Exiting for loop
Continuing for loop
Removing unnecessary keywords from outputs
Repeating single keyword

2.8.4 Conditional execution
2.8.5 Parallel execution of keywords

2.8.1 Handling keywords with same names

Keywords that are used with Robot Framework are either library keywords or user keywords. The former come from standard libraries or external
libraries, and the latter are either created in the same file where they are used or then imported from resource files. When many keywords are in use, it is
quite common that some of them have the same name, and this section describes how to handle possible conflicts in these situations.

Keyword scopes

When only a keyword name is used and there are several keywords with that name, Robot Framework attempts to determine which keyword has the
highest priority based on its scope. The keyword's scope is determined on the basis of how the keyword in question is created:

1. Created as a user keyword in the same file where it is used. These keywords have the highest priority and they are always used, even if there are
other keywords with the same name elsewhere.

2. Created in a resource file and imported either directly or indirectly from another resource file. This is the second-highest priority.
3. Created in an external test library. These keywords are used, if there are no user keywords with the same name. However, if there is a keyword

with the same name in the standard library, a warning is displayed.
4. Created in a standard library. These keywords have the lowest priority.

Specifying a keyword explicitly

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 105/263

Scopes alone are not a sufficient solution, because there can be keywords with the same name in several libraries or resources, and thus, they provide a
mechanism to use only the keyword of the highest priority. In such cases, it is possible to use the full name of the keyword, where the keyword name is
prefixed with the name of the resource or library and a dot is a delimiter.

With library keywords, the long format means only using the format LibraryName.Keyword Name. For example, the keyword Run from the
OperatingSystem library could be used as OperatingSystem.Run, even if there was another Run keyword somewhere else. If the library is in a module or
package, the full module or package name must be used (for example, com.company.Library.Some Keyword). If a custom name is given to a library
using the WITH NAME syntax, the specified name must be used also in the full keyword name.

Resource files are specified in the full keyword name, similarly as library names. The name of the resource is derived from the basename of the resource
file without the file extension. For example, the keyword Example in a resource file myresources.html can be used as myresources.Example. Note that
this syntax does not work, if several resource files have the same basename. In such cases, either the files or the keywords must be renamed. The full
name of the keyword is case-, space- and underscore-insensitive, similarly as normal keyword names.

Specifying explicit priority between libraries and resources

If there are multiple conflicts between keywords, specifying all the keywords in the long format can be quite a lot work. Using the long format also
makes it impossible to create dynamic test cases or user keywords that work differently depending on which libraries or resources are available. A
solution to both of these problems is specifying the keyword priorities explicitly using the keyword Set Library Search Order from the BuiltIn library.

Note

Although the keyword has the word library in its name, it works also with resource files. As discussed above, keywords in resources always
have higher priority than keywords in libraries, though.

The Set Library Search Order accepts an ordered list or libraries and resources as arguments. When a keyword name in the test data matches multiple
keywords, the first library or resource containing the keyword is selected and that keyword implementation used. If the keyword is not found from any of
the specified libraries or resources, execution fails for conflict the same way as when the search order is not set.

For more information and examples, see the documentation of the keyword.

2.8.2 Timeouts

Keywords may be problematic in situations where they take exceptionally long to execute or just hang endlessly. Robot Framework allows you to set
timeouts both for test cases and user keywords, and if a test or keyword is not finished within the specified time, the keyword that is currently being
executed is forcefully stopped. Stopping keywords in this manner may leave the library or system under test to an unstable state, and timeouts are
recommended only when there is no safer option available. In general, libraries should be implemented so that keywords cannot hang or that they have
their own timeout mechanism, if necessary.

http://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestCase

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 106/263

Test case timeout

The test case timeout can be set either by using the Test Timeout setting in the Setting table or the [Timeout] setting in the Test Case table. Test Timeout in
the Setting table defines a default test timeout value for all the test cases in the test suite, whereas [Timeout] in the Test Case table applies a timeout to an
individual test case and overrides the possible default value.

Using an empty [Timeout] means that the test has no timeout even when Test Timeout is used. It is also possible to use value NONE for this purpose.

Regardless of where the test timeout is defined, the first cell after the setting name contains the duration of the timeout. The duration must be given in
Robot Framework's time format, that is, either directly in seconds or in a format like 1 minute 30 seconds. It must be noted that there is always some
overhead by the framework, and timeouts shorter than one second are thus not recommended.

The default error message displayed when a test timeout occurs is Test timeout <time> exceeded. It is also possible to use custom error messages,
and these messages are written into the cells after the timeout duration. The message can be split into multiple cells, similarly as documentations. Both the
timeout value and the error message may contain variables.

If there is a timeout, the keyword running is stopped at the expiration of the timeout and the test case fails. However, keywords executed as test teardown
are not interrupted if a test timeout occurs, because they are normally engaged in important clean-up activities. If necessary, it is possible to interrupt also
these keywords with user keyword timeouts.

*** Settings ***

Test Timeout 2 minutes

*** Test Cases ***

Default Timeout

 [Documentation] Timeout from the Setting table is used

 Some Keyword argument

Override

 [Documentation] Override default, use 10 seconds timeout

 [Timeout] 10

 Some Keyword argument

Custom Message

 [Documentation] Override default and use custom message

 [Timeout] 1min 10s This is my custom error

 Some Keyword argument

Variables

 [Documentation] It is possible to use variables too

 [Timeout] ${TIMEOUT}

 Some Keyword argument

No Timeout

 [Documentation] Empty timeout means no timeout even when Test Timeout has been used

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 107/263

 [Timeout]

 Some Keyword argument

No Timeout 2

 [Documentation] Disabling timeout with NONE works too and is more explicit.

 [Timeout] NONE

 Some Keyword argument

User keyword timeout

A timeout can be set for a user keyword using the [Timeout] setting in the Keyword table. The syntax for setting it, including how timeout values and
possible custom messages are given, is identical to the syntax used with test case timeouts. If no custom message is provided, the default error message
Keyword timeout <time> exceeded is used if a timeout occurs.

Starting from Robot Framework 3.0, timeout can be specified as a variable so that the variable value is given as an argument. Using global variables
works already with previous versions.

*** Keywords ***

Timed Keyword

 [Documentation] Set only the timeout value and not the custom message.

 [Timeout] 1 minute 42 seconds

 Do Something

 Do Something Else

Wrapper With Timeout

 [Arguments] @{args}

 [Documentation] This keyword is a wrapper that adds a timeout to another keyword.

 [Timeout] 2 minutes Original Keyword didn't finish in 2 minutes

 Original Keyword @{args}

Wrapper With Customizable Timeout

 [Arguments] ${timeout} @{args}

 [Documentation] Same as the above but timeout given as an argument.

 [Timeout] ${timeout}

 Original Keyword @{args}

A user keyword timeout is applicable during the execution of that user keyword. If the total time of the whole keyword is longer than the timeout value,
the currently executed keyword is stopped. User keyword timeouts are applicable also during a test case teardown, whereas test timeouts are not.

If both the test case and some of its keywords (or several nested keywords) have a timeout, the active timeout is the one with the least time left.

2.8.3 For loops

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 108/263

Repeating same actions several times is quite a common need in test automation. With Robot Framework, test libraries can have any kind of loop
constructs, and most of the time loops should be implemented in them. Robot Framework also has its own for loop syntax, which is useful, for example,
when there is a need to repeat keywords from different libraries.

For loops can be used with both test cases and user keywords. Except for really simple cases, user keywords are better, because they hide the complexity
introduced by for loops. The basic for loop syntax, FOR item IN sequence, is derived from Python, but similar syntax is possible also in shell scripts or
Perl.

Normal for loop

In a normal for loop, one variable is assigned from a list of values, one value per iteration. The syntax starts with :FOR, where colon is required to
separate the syntax from normal keywords. The next cell contains the loop variable, the subsequent cell must have IN, and the final cells contain values
over which to iterate. These values can contain variables, including list variables.

The keywords used in the for loop are on the following rows and they must be indented one cell to the right. When using the plain text format, the
indented cells must be escaped with a backslash, but with other data formats the cells can be just left empty. The for loop ends when the indentation
returns back to normal or the table ends.

*** Test Cases ***

Example 1

 :FOR ${animal} IN cat dog

 \ Log ${animal}

 \ Log 2nd keyword

 Log Outside loop

Example 2

 :FOR ${var} IN one two

 ... ${3} four ${last}

 \ Log ${var}

The for loop in Example 1 above is executed twice, so that first the loop variable ${animal} has the value cat and then dog. The loop consists of two
Log keywords. In the second example, loop values are split into two rows and the loop is run altogether five times.

It is often convenient to use for loops with list variables. This is illustrated by the example below, where @{ELEMENTS} contains an arbitrarily long list of
elements and keyword Start Element is used with all of them one by one.

*** Test Cases ***

Example

 :FOR ${element} IN @{ELEMENTS}

 \ Start Element ${element}

Nested for loops

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 109/263

Having nested for loops is not supported directly, but it is possible to use a user keyword inside a for loop and have another for loop there.

*** Keywords ***

Handle Table

 [Arguments] @{table}

 :FOR ${row} IN @{table}

 \ Handle Row @{row}

Handle Row

 [Arguments] @{row}

 :FOR ${cell} IN @{row}

 \ Handle Cell ${cell}

Using several loop variables

It is also possible to use several loop variables. The syntax is the same as with the normal for loop, but all loop variables are listed in the cells between
:FOR and IN. There can be any number of loop variables, but the number of values must be evenly dividable by the number of variables.

If there are lot of values to iterate, it is often convenient to organize them below the loop variables, as in the first loop of the example below:

*** Test Cases ***

Three loop variables

 :FOR ${index} ${english} ${finnish} IN

 ... 1 cat kissa

 ... 2 dog koira

 ... 3 horse hevonen

 \ Add to dictionary ${english} ${finnish} ${index}

 :FOR ${name} ${id} IN @{EMPLOYERS}

 \ Create ${name} ${id}

For-in-range loop

Earlier for loops always iterated over a sequence, and this is also the most common use case. Sometimes it is still convenient to have a for loop that is
executed a certain number of times, and Robot Framework has a special FOR index IN RANGE limit syntax for this purpose. This syntax is derived
from the similar Python idiom.

Similarly as other for loops, the for-in-range loop starts with :FOR and the loop variable is in the next cell. In this format there can be only one loop
variable and it contains the current loop index. The next cell must contain IN RANGE and the subsequent cells loop limits.

In the simplest case, only the upper limit of the loop is specified. In this case, loop indexes start from zero and increase by one until, but excluding, the
limit. It is also possible to give both the start and end limits. Then indexes start from the start limit, but increase similarly as in the simple case. Finally, it is
possible to give also the step value that specifies the increment to use. If the step is negative, it is used as decrement.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 110/263

It is possible to use simple arithmetics such as addition and subtraction with the range limits. This is especially useful when the limits are specified with
variables.

Starting from Robot Framework 2.8.7, it is possible to use float values for lower limit, upper limit and step.

*** Test Cases ***

Only upper limit

 [Documentation] Loops over values from 0 to 9

 :FOR ${index} IN RANGE 10

 \ Log ${index}

Start and end

 [Documentation] Loops over values from 1 to 10

 :FOR ${index} IN RANGE 1 11

 \ Log ${index}

Also step given

 [Documentation] Loops over values 5, 15, and 25

 :FOR ${index} IN RANGE 5 26 10

 \ Log ${index}

Negative step

 [Documentation] Loops over values 13, 3, and -7

 :FOR ${index} IN RANGE 13 -13 -10

 \ Log ${index}

Arithmetics

 [Documentation] Arithmetics with variable

 :FOR ${index} IN RANGE ${var}+1

 \ Log ${index}

Float parameters

 [Documentation] Loops over values 3.14, 4.34, and 5.54

 :FOR ${index} IN RANGE 3.14 6.09 1.2

 \ Log ${index}

For-in-enumerate loop

Sometimes it is useful to loop over a list and also keep track of your location inside the list. Robot Framework has a special FOR index ... IN
ENUMERATE ... syntax for this situation. This syntax is derived from the Python built-in function.

For-in-enumerate loops work just like regular for loops, except the cell after its loop variables must say IN ENUMERATE, and they must have an additional
index variable before any other loop-variables. That index variable has a value of 0 for the first iteration, 1 for the second, etc.

For example, the following two test cases do the same thing:

https://docs.python.org/2/library/functions.html#enumerate

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 111/263

*** Variables ***

@{LIST} a b c

*** Test Cases ***

Manage index manually

 ${index} = Set Variable -1

 : FOR ${item} IN @{LIST}

 \ ${index} = Evaluate ${index} + 1

 \ My Keyword ${index} ${item}

For-in-enumerate

 : FOR ${index} ${item} IN ENUMERATE @{LIST}

 \ My Keyword ${index} ${item}

Just like with regular for loops, you can loop over multiple values per loop iteration as long as the number of values in your list is evenly divisible by the
number of loop-variables (excluding the first, index variable).

*** Test Case ***

For-in-enumerate with two values per iteration

 :FOR ${index} ${english} ${finnish} IN ENUMERATE

 ... cat kissa

 ... dog koira

 ... horse hevonen

 \ Add to dictionary ${english} ${finnish} ${index}

For-in-enumerate loops are new in Robot Framework 2.9.

For-in-zip loop

Some tests build up several related lists, then loop over them together. Robot Framework has a shortcut for this case: FOR ... IN ZIP ..., which is
derived from the Python built-in zip function.

This may be easiest to show with an example:

*** Variables ***

@{NUMBERS} ${1} ${2} ${5}

@{NAMES} one two five

*** Test Cases ***

Iterate over two lists manually

 ${length}= Get Length ${NUMBERS}

 : FOR ${idx} IN RANGE ${length}

 \ Number Should Be Named ${NUMBERS}[${idx}] ${NAMES}[${idx}]

For-in-zip

https://docs.python.org/2/library/functions.html#zip

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 112/263

 : FOR ${number} ${name} IN ZIP ${NUMBERS} ${NAMES}

 \ Number Should Be Named ${number} ${name}

Similarly as for-in-range and for-in-enumerate loops, for-in-zip loops require the cell after the loop variables to read IN ZIP.

Values used with for-in-zip loops must be lists or list-like objects, and there must be same number of loop variables as lists to loop over. Looping will stop
when the shortest list is exhausted.

Note that any lists used with for-in-zip should usually be given as scalar variables like ${list}. A list variable only works if its items themselves are
lists.

For-in-zip loops are new in Robot Framework 2.9.

Exiting for loop

Normally for loops are executed until all the loop values have been iterated or a keyword used inside the loop fails. If there is a need to exit the loop
earlier, BuiltIn keywords Exit For Loop and Exit For Loop If can be used to accomplish that. They works similarly as break statement in Python, Java,
and many other programming languages.

Exit For Loop and Exit For Loop If keywords can be used directly inside a for loop or in a keyword that the loop uses. In both cases test execution
continues after the loop. It is an error to use these keywords outside a for loop.

*** Test Cases ***

Exit Example

 ${text} = Set Variable ${EMPTY}

 :FOR ${var} IN one two

 \ Run Keyword If '${var}' == 'two' Exit For Loop

 \ ${text} = Set Variable ${text}${var}

 Should Be Equal ${text} one

In the above example it would be possible to use Exit For Loop If instead of using Exit For Loop with Run Keyword If. For more information about
these keywords, including more usage examples, see their documentation in the BuiltIn library.

Note

Exit For Loop If keyword was added in Robot Framework 2.8.

Continuing for loop

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 113/263

In addition to exiting a for loop prematurely, it is also possible to continue to the next iteration of the loop before all keywords have been executed. This
can be done using BuiltIn keywords Continue For Loop and Continue For Loop If, that work like continue statement in many programming languages.

Continue For Loop and Continue For Loop If keywords can be used directly inside a for loop or in a keyword that the loop uses. In both cases rest of the
keywords in that iteration are skipped and execution continues from the next iteration. If these keywords are used on the last iteration, execution
continues after the loop. It is an error to use these keywords outside a for loop.

*** Test Cases ***

Continue Example

 ${text} = Set Variable ${EMPTY}

 :FOR ${var} IN one two three

 \ Continue For Loop If '${var}' == 'two'

 \ ${text} = Set Variable ${text}${var}

 Should Be Equal ${text} onethree

For more information about these keywords, including usage examples, see their documentation in the BuiltIn library.

Note

Both Continue For Loop and Continue For Loop If were added in Robot Framework 2.8.

Removing unnecessary keywords from outputs

For loops with multiple iterations often create lots of output and considerably increase the size of the generated output and log files. Starting from Robot
Framework 2.7, it is possible to remove unnecessary keywords from the outputs using --RemoveKeywords FOR command line option.

Repeating single keyword

For loops can be excessive in situations where there is only a need to repeat a single keyword. In these cases it is often easier to use BuiltIn keyword
Repeat Keyword. This keyword takes a keyword and how many times to repeat it as arguments. The times to repeat the keyword can have an optional
postfix times or x to make the syntax easier to read.

*** Test Cases ***

Example

 Repeat Keyword 5 Some Keyword arg1 arg2

 Repeat Keyword 42 times My Keyword

 Repeat Keyword ${var} Another Keyword argument

2.8.4 Conditional execution

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 114/263

In general, it is not recommended to have conditional logic in test cases, or even in user keywords, because it can make them hard to understand and
maintain. Instead, this kind of logic should be in test libraries, where it can be implemented using natural programming language constructs. However,
some conditional logic can be useful at times, and even though Robot Framework does not have an actual if/else construct, there are several ways to get
the same effect.

The name of the keyword used as a setup or a teardown of both test cases and test suites can be specified using a variable. This facilitates changing
them, for example, from the command line.
The BuiltIn keyword Run Keyword takes a keyword to actually execute as an argument, and it can thus be a variable. The value of the variable
can, for example, be got dynamically from an earlier keyword or given from the command line.
The BuiltIn keywords Run Keyword If and Run Keyword Unless execute a named keyword only if a certain expression is true or false,
respectively. They are ideally suited to creating simple if/else constructs. For an example, see the documentation of the former.
Another BuiltIn keyword, Set Variable If, can be used to set variables dynamically based on a given expression.
There are several BuiltIn keywords that allow executing a named keyword only if a test case or test suite has failed or passed.

2.8.5 Parallel execution of keywords

When parallel execution is needed, it must be implemented in test library level so that the library executes the code on background. Typically this means
that the library needs a keyword like Start Something that starts the execution and returns immediately, and another keyword like Get Results From
Something that waits until the result is available and returns it. See OperatingSystem library keywords Start Process and Read Process Output for an
example.

3 Executing test cases

3.1 Basic usage
3.2 Test execution
3.3 Post-processing outputs
3.4 Configuring execution
3.5 Created outputs

3.1 Basic usage

Robot Framework test cases are executed from the command line, and the end result is, by default, an output file in XML format and an HTML report
and log. After the execution, output files can be combined and otherwise post-processed with the Rebot tool.

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/OperatingSystem.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 115/263

3.1.1 Starting test execution
Synopsis
Specifying test data to be executed

3.1.2 Using command line options
Using options
Short and long options
Setting option values
Disabling options accepting no values
Simple patterns
Tag patterns
ROBOT_OPTIONS and REBOT_OPTIONS environment variables

3.1.3 Test results
Command line output
Generated output files
Return codes
Errors and warnings during execution

3.1.4 Escaping complicated characters
3.1.5 Argument files

Argument file syntax
Using argument files
Reading argument files from standard input

3.1.6 Getting help and version information
3.1.7 Creating start-up scripts

Modifying Java startup parameters
3.1.8 Debugging problems

Using the Python debugger (pdb)

3.1.1 Starting test execution

Synopsis

robot [options] data_sources

python|jython|ipy -m robot [options] data_sources

python|jython|ipy path/to/robot/ [options] data_sources

java -jar robotframework.jar [options] data_sources

Test execution is normally started using the robot runner script. Alternatively it is possible to execute the installed robot module or robot directory
directly using the selected interpreter. The final alternative is using the standalone JAR distribution.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 116/263

Note

Versions prior to Robot Framework 3.0 did not have the robot script. Instead they had pybot, jybot and ipybot scripts that executed tests using Python,
Jython and IronPython, respectively. These scripts are still installed, but the plan is to deprecate and remove them in the future.

Regardless of execution approach, the path (or paths) to the test data to be executed is given as an argument after the command. Additionally, different
command line options can be used to alter the test execution or generated outputs in many ways.

Specifying test data to be executed

Robot Framework test cases are created in files and directories, and they are executed by giving the path to the file or directory in question to the selected
runner script. The path can be absolute or, more commonly, relative to the directory where tests are executed from. The given file or directory creates the
top-level test suite, which gets its name, unless overridden with the --name option, from the file or directory name. Different execution possibilities are
illustrated in the examples below. Note that in these examples, as well as in other examples in this section, only the robot script is used, but other
execution approaches could be used similarly.

robot tests.robot

robot path/to/my_tests/

robot c:\robot\tests.robot

It is also possible to give paths to several test case files or directories at once, separated with spaces. In this case, Robot Framework creates the top-level
test suite automatically, and the specified files and directories become its child test suites. The name of the created test suite is got from child suite names
by catenating them together with an ampersand (&) and spaces. For example, the name of the top-level suite in the first example below is My Tests &
Your Tests. These automatically created names are often quite long and complicated. In most cases, it is thus better to use the --name option for
overriding it, as in the second example below:

robot my_tests.robot your_tests.robot

robot --name Example path/to/tests/pattern_*.robot

3.1.2 Using command line options

Robot Framework provides a number of command line options that can be used to control how test cases are executed and what outputs are generated.
This section explains the option syntax, and what options actually exist. How they can be used is discussed elsewhere in this chapter.

Using options

When options are used, they must always be given between the runner script and the data sources. For example:

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 117/263

robot -L debug my_tests.robot

robot --include smoke --variable HOST:10.0.0.42 path/to/tests/

Short and long options

Options always have a long name, such as --name, and the most frequently needed options also have a short name, such as -N. In addition to that, long
options can be shortened as long as they are unique. For example, --logle DEBUG works, while --lo log.html does not, because the former matches
only --loglevel, but the latter matches several options. Short and shortened options are practical when executing test cases manually, but long options
are recommended in start-up scripts, because they are easier to understand.

The long option format is case-insensitive, which facilitates writing option names in an easy-to-read format. For example, --SuiteStatLevel is
equivalent to, but easier to read than --suitestatlevel.

Setting option values

Most of the options require a value, which is given after the option name. Both short and long options accept the value separated from the option name
with a space, as in --include tag or -i tag. With long options, the separator can also be the equals sign, for example --include=tag, and with short
options the separator can be omitted, as in -itag.

Some options can be specified several times. For example, --variable VAR1:value --variable VAR2:another sets two variables. If the options that
take only one value are used several times, the value given last is effective.

Disabling options accepting no values

Options accepting no values can be disabled by using the same option again with no prefix added or dropped. The last option has precedence regardless
of how many times options are used. For example, --dryrun --dryrun --nodryrun --nostatusrc --statusrc would not activate the dry-run
mode and would return normal status rc.

Note

Support for adding or dropping no prefix is a new feature in Robot Framework 2.9. In earlier versions options accepting no values could be disabled by
using the exact same option again.

Simple patterns

Many command line options take arguments as simple patterns. These glob-like patterns are matched according to the following rules:

http://en.wikipedia.org/wiki/Glob_(programming)

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 118/263

* is a wildcard matching any string, even an empty string.
? is a wildcard matching any single character.
Unless noted otherwise, pattern matching is case, space, and underscore insensitive.

Examples:

--test Example* # Matches tests with name starting 'Example', case insensitively.

--include f?? # Matches tests with a tag that starts with 'f' or 'F' and is three characters long.

Tag patterns

Most tag related options accept arguments as tag patterns. They have all the same characteristics as simple patterns, but they also support AND, OR and
NOT operators explained below. These operators can be used for combining two or more individual tags or patterns together.

AND or &
The whole pattern matches if all individual patterns match. AND and & are equivalent:

--include fooANDbar # Matches tests containing tags 'foo' and 'bar'.

--exclude xx&yy&zz # Matches tests containing tags 'xx', 'yy', and 'zz'.

OR

The whole pattern matches if any individual pattern matches:

--include fooORbar # Matches tests containing either tag 'foo' or tag 'bar'.

--exclude xxORyyORzz # Matches tests containing any of tags 'xx', 'yy', or 'zz'.

NOT

The whole pattern matches if the pattern on the left side matches but the one on the right side does not. If used multiple times, none of the patterns
after the first NOT must not match:

--include fooNOTbar # Matches tests containing tag 'foo' but not tag 'bar'.

--exclude xxNOTyyNOTzz # Matches tests containing tag 'xx' but not tag 'yy' or tag 'zz'.

Starting from Robot Framework 2.9 the pattern can also start with NOT in which case the pattern matches if the pattern after NOT does not match:

--include NOTfoo # Matches tests not containing tag 'foo'

--include NOTfooANDbar # Matches tests not containing tags 'foo' and 'bar'

The above operators can also be used together. The operator precedence, from highest to lowest, is AND, OR and NOT:

--include xANDyORz # Matches tests containing either tags 'x' and 'y', or tag 'z'.

--include xORyNOTz # Matches tests containing either tag 'x' or 'y', but not tag 'z'.

--include xNOTyANDz # Matches tests containing tag 'x', but not tags 'y' and 'z'.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 119/263

Although tag matching itself is case-insensitive, all operators are case-sensitive and must be written with upper case letters. If tags themselves happen to
contain upper case AND, OR or NOT, they need to specified using lower case letters to avoid accidental operator usage:

--include port # Matches tests containing tag 'port', case-insensitively

--include PORT # Matches tests containing tag 'P' or 'T', case-insensitively

--exclude handoverORportNOTnotification

Note

OR operator is new in Robot Framework 2.8.4.

ROBOT_OPTIONS and REBOT_OPTIONS environment variables

Environment variables ROBOT_OPTIONS and REBOT_OPTIONS can be used to specify default options for test execution and result post-processing,
respectively. The options and their values must be defined as a space separated list and they are placed in front of any explicit options on the command
line. The main use case for these environment variables is setting global default values for certain options to avoid the need to repeat them every time
tests are run or Rebot used.

export ROBOT_OPTIONS="--critical regression --tagdoc 'mytag:Example doc with spaces'"

robot tests.robot

export REBOT_OPTIONS="--reportbackground green:yellow:red"

rebot --name example output.xml

Note

Support for ROBOT_OPTIONS and REBOT_OPTIONS environment variables was added in Robot Framework 2.8.2.

Possibility to have spaces in values by surrounding them in quotes is new in Robot Framework 2.9.2.

3.1.3 Test results

Command line output

The most visible output from test execution is the output displayed in the command line. All executed test suites and test cases, as well as their statuses,
are shown there in real time. The example below shows the output from executing a simple test suite with only two test cases:

==

Example test suite

==

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 120/263

First test :: Possible test documentation | PASS |

--

Second test | FAIL |

Error message is displayed here

==

Example test suite | FAIL |

2 critical tests, 1 passed, 1 failed

2 tests total, 1 passed, 1 failed

==

Output: /path/to/output.xml

Report: /path/to/report.html

Log: /path/to/log.html

Starting from Robot Framework 2.7, there is also a notification on the console whenever a top-level keyword in a test case ends. A green dot is used if a
keyword passes and a red F if it fails. These markers are written to the end of line and they are overwritten by the test status when the test itself ends.
Writing the markers is disabled if console output is redirected to a file.

Generated output files

The command line output is very limited, and separate output files are normally needed for investigating the test results. As the example above shows,
three output files are generated by default. The first one is in XML format and contains all the information about test execution. The second is a higher-
level report and the third is a more detailed log file. These files and other possible output files are discussed in more detail in the section Different output
files.

Return codes

Runner scripts communicate the overall test execution status to the system running them using return codes. When the execution starts successfully and
no critical test fail, the return code is zero. All possible return codes are explained in the table below.

Possible return codes

RC Explanation
0 All critical tests passed.
1-249 Returned number of critical tests failed.
250 250 or more critical failures.
251 Help or version information printed.
252 Invalid test data or command line

options.
253 Test execution stopped by user.
255 Unexpected internal error.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 121/263

Return codes should always be easily available after the execution, which makes it easy to automatically determine the overall execution status. For
example, in bash shell the return code is in special variable $?, and in Windows it is in %ERRORLEVEL% variable. If you use some external tool for running
tests, consult its documentation for how to get the return code.

The return code can be set to 0 even if there are critical failures using the --NoStatusRC command line option. This might be useful, for example, in
continuous integration servers where post-processing of results is needed before the overall status of test execution can be determined.

Note

Same return codes are also used with Rebot.

Errors and warnings during execution

During the test execution there can be unexpected problems like failing to import a library or a resource file or a keyword being deprecated. Depending
on the severity such problems are categorized as errors or warnings and they are written into the console (using the standard error stream), shown on a
separate Test Execution Errors section in log files, and also written into Robot Framework's own system log. Normally these errors and warnings are
generated by Robot Framework itself, but libraries can also log errors and warnings. Example below illustrates how errors and warnings look like in the
log file.

20090322 19:58:42.528 ERROR Error in file '/home/robot/tests.robot' in

table 'Setting' in element on row 2:

Resource file 'resource.robot' does not

exist

20090322 19:58:43.931 WARN Keyword 'SomeLibrary.Example Keyword' is

deprecated. Use keyword `Other Keyword`

instead.

3.1.4 Escaping complicated characters

Because spaces are used for separating options from each other, it is problematic to use them in option values. Some options, such as --name,
automatically convert underscores to spaces, but with others spaces must be escaped. Additionally, many special characters are complicated to use on the
command line. Because escaping complicated characters with a backslash or quoting the values does not always work too well, Robot Framework has its
own generic escaping mechanism. Another possibility is using argument files where options can be specified in the plain text format. Both of these
mechanisms work when executing tests and when post-processing outputs, and also some of the external supporting tools have the same or similar
capabilities.

In Robot Framework's command line escaping mechanism, problematic characters are escaped with freely selected text. The command line option to use
is --escape (-E), which takes an argument in the format what:with, where what is the name of the character to escape and with is the string to
escape it with. Characters that can be escaped are listed in the table below:

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 122/263

Available escapes

Character Name to use Character Name to use
& amp (paren1
' apos) paren2
@ at % percent
\ bslash | pipe
: colon ? quest
, comma " quot
{ curly1 ; semic
} curly2 / slash
$ dollar space
! exclam [square1
> gt] square2
hash * star
< lt

The following examples make the syntax more clear. In the first example, the metadata X gets the value Value with spaces, and in the second example
variable ${VAR} is assigned to "Hello, world!":

--escape space:_ --metadata X:Value_with_spaces

-E space:SP -E quot:QU -E comma:CO -E exclam:EX -v VAR:QUHelloCOSPworldEXQU

Note that all the given command line arguments, including paths to test data, are escaped. Escape character sequences thus need to be selected carefully.

3.1.5 Argument files

Argument files allow placing all or some command line options and arguments into an external file where they will be read. This avoids the problems
with characters that are problematic on the command line. If lot of options or arguments are needed, argument files also prevent the command that is used
on the command line growing too long.

Argument files are taken into use with --argumentfile (-A) option along with possible other command line options.

Note

Unlike other long command line options, --argumentfile cannot be given in shortened format like --argumentf. Additionally, using it case-insensitively
like --ArgumentFile is only supported by Robot Framework 3.0.2 and newer.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 123/263

Argument file syntax

Argument files can contain both command line options and paths to the test data, one option or data source per line. Both short and long options are
supported, but the latter are recommended because they are easier to understand. Argument files can contain any characters without escaping, but spaces
in the beginning and end of lines are ignored. Additionally, empty lines and lines starting with a hash mark (#) are ignored:

--doc This is an example (where "special characters" are ok!)

--metadata X:Value with spaces

--variable VAR:Hello, world!

This is a comment

path/to/my/tests

In the above example the separator between options and their values is a single space. In Robot Framework 2.7.6 and newer it is possible to use either an
equal sign (=) or any number of spaces. As an example, the following three lines are identical:

--name An Example

--name=An Example

--name An Example

If argument files contain non-ASCII characters, they must be saved using UTF-8 encoding.

Using argument files

Argument files can be used either alone so that they contain all the options and paths to the test data, or along with other options and paths. When an
argument file is used with other arguments, its contents are placed into the original list of arguments to the same place where the argument file option
was. This means that options in argument files can override options before it, and its options can be overridden by options after it. It is possible to use
--argumentfile option multiple times or even recursively:

robot --argumentfile all_arguments.robot

robot --name Example --argumentfile other_options_and_paths.robot

robot --argumentfile default_options.txt --name Example my_tests.robot

robot -A first.txt -A second.txt -A third.txt tests.robot

Reading argument files from standard input

Special argument file name STDIN can be used to read arguments from the standard input stream instead of a file. This can be useful when generating
arguments with a script:

generate_arguments.sh | robot --argumentfile STDIN

generate_arguments.sh | robot --name Example --argumentfile STDIN tests.robot

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 124/263

3.1.6 Getting help and version information

Both when executing test cases and when post-processing outputs, it is possible to get command line help with the option --help (-h). These help texts
have a short general overview and briefly explain the available command line options.

All runner scripts also support getting the version information with the option --version. This information also contains Python or Jython version and
the platform type:

$ robot --version

Robot Framework 3.0 (Jython 2.7.0 on java1.7.0_45)

C:\>rebot --version

Rebot 3.0 (Python 2.7.10 on win32)

3.1.7 Creating start-up scripts

Test cases are often executed automatically by a continuous integration system or some other mechanism. In such cases, there is a need to have a script
for starting the test execution, and possibly also for post-processing outputs somehow. Similar scripts are also useful when running tests manually,
especially if a large number of command line options are needed or setting up the test environment is complicated.

In UNIX-like environments, shell scripts provide a simple but powerful mechanism for creating custom start-up scripts. Windows batch files can also be
used, but they are more limited and often also more complicated. A platform-independent alternative is using Python or some other high-level
programming language. Regardless of the language, it is recommended that long option names are used, because they are easier to understand than the
short names.

In the first examples, the same web tests are executed with different browsers and the results combined afterwards. This is easy with shell scripts, as
practically you just list the needed commands one after another:

#!/bin/bash

robot --variable BROWSER:Firefox --name Firefox --log none --report none --output out/fx.xml login

robot --variable BROWSER:IE --name IE --log none --report none --output out/ie.xml login

rebot --name Login --outputdir out --output login.xml out/fx.xml out/ie.xml

Implementing the above example with Windows batch files is not very complicated, either. The most important thing to remember is that because robot
and rebot scripts are implemented as batch files on Windows, call must be used when running them from another batch file. Otherwise execution
would end when the first batch file is finished.

@echo off

call robot --variable BROWSER:Firefox --name Firefox --log none --report none --output out\fx.xml login

call robot --variable BROWSER:IE --name IE --log none --report none --output out\ie.xml login

call rebot --name Login --outputdir out --output login.xml out\fx.xml out\ie.xml

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 125/263

In the next examples, jar files under the lib directory are put into CLASSPATH before starting the test execution. In these examples, start-up scripts require
that paths to the executed test data are given as arguments. It is also possible to use command line options freely, even though some options have already
been set in the script. All this is relatively straight-forward using bash:

#!/bin/bash

cp=.

for jar in lib/*.jar; do

 cp=$cp:$jar

done

export CLASSPATH=$cp

robot --ouputdir /tmp/logs --suitestatlevel 2 $*

Implementing this using Windows batch files is slightly more complicated. The difficult part is setting the variable containing the needed JARs inside a
For loop, because, for some reason, that is not possible without a helper function.

@echo off

set CP=.

for %%jar in (lib*.jar) do (

 call :set_cp %%jar

)

set CLASSPATH=%CP%

robot --ouputdir c:\temp\logs --suitestatlevel 2 %*

goto :eof

:: Helper for setting variables inside a for loop

:set_cp

 set CP=%CP%;%1

goto :eof

Modifying Java startup parameters

Sometimes when using Jython there is need to alter the Java startup parameters. The most common use case is increasing the JVM maximum memory
size as the default value may not be enough for creating reports and logs when outputs are very big. There are two easy ways to configure JVM options:

1. Set JYTHON_OPTS environment variable. This can be done permanently in operating system level or per execution in a custom start-up script.
2. Pass the needed Java parameters with -J option to Jython that will pass them forward to Java. This is especially easy when executing installed

robot module directly:

jython -J-Xmx1024m -m robot tests.robot

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 126/263

3.1.8 Debugging problems

A test case can fail because the system under test does not work correctly, in which case the test has found a bug, or because the test itself is buggy. The
error message explaining the failure is shown on the command line output and in the report file, and sometimes the error message alone is enough to
pinpoint the problem. More often that not, however, log files are needed because they have also other log messages and they show which keyword
actually failed.

When a failure is caused by the tested application, the error message and log messages ought to be enough to understand what caused it. If that is not the
case, the test library does not provide enough information and needs to be enhanced. In this situation running the same test manually, if possible, may
also reveal more information about the issue.

Failures caused by test cases themselves or by keywords they use can sometimes be hard to debug. If the error message, for example, tells that a keyword
is used with wrong number of arguments fixing the problem is obviously easy, but if a keyword is missing or fails in unexpected way finding the root
cause can be harder. The first place to look for more information is the execution errors section in the log file. For example, an error about a failed test
library import may well explain why a test has failed due to a missing keyword.

If the log file does not provide enough information by default, it is possible to execute tests with a lower log level. For example tracebacks showing
where in the code the failure occurred are logged using the DEBUG level, and this information is invaluable when the problem is in an individual library
keyword.

Logged tracebacks do not contain information about methods inside Robot Framework itself. If you suspect an error is caused by a bug in the
framework, you can enable showing internal traces by setting environment variable ROBOT_INTERNAL_TRACES to any non-empty value. This
functionality is new in Robot Framework 2.9.2.

If the log file still does not have enough information, it is a good idea to enable the syslog and see what information it provides. It is also possible to add
some keywords to the test cases to see what is going on. Especially BuiltIn keywords Log and Log Variables are useful. If nothing else works, it is
always possible to search help from mailing lists or elsewhere.

Using the Python debugger (pdb)

It is also possible to use the pdb module from the Python standard library to set a break point and interactively debug a running test. The typical way of
invoking pdb by inserting:

import pdb; pdb.set_trace()

at the location you want to break into debugger will not work correctly with Robot Framework, as the standard output stream is redirected during
keyword execution. Instead, you can use the following:

import sys, pdb; pdb.Pdb(stdout=sys.__stdout__).set_trace()

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://docs.python.org/2/library/pdb.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 127/263

from within a python library or alternativley:

Evaluate pdb.Pdb(stdout=sys.__stdout__).set_trace() modules=sys, pdb

can be used directly in a test case.

3.2 Test execution

This section describes how the test suite structure created from the parsed test data is executed, how to continue executing a test case after failures, and
how to stop the whole test execution gracefully.

3.2.1 Execution flow
Executed suites and tests
Setups and teardowns
Execution order
Passing execution

3.2.2 Continue on failure
Run Keyword And Ignore Error and Run Keyword And Expect Error keywords
Special failures from keywords
Run Keyword And Continue On Failure keyword
Execution continues on teardowns automatically
All top-level keywords are executed when tests have templates

3.2.3 Stopping test execution gracefully
Pressing Ctrl-C
Using signals
Using keywords
Stopping when first test case fails
Stopping on parsing or execution error
Handling teardowns

3.2.1 Execution flow

Executed suites and tests

Test cases are always executed within a test suite. A test suite created from a test case file has tests directly, whereas suites created from directories have
child test suites which either have tests or their own child suites. By default all the tests in an executed suite are run, but it is possible to select tests using
options --test, --suite, --include and --exclude. Suites containing no tests are ignored.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 128/263

The execution starts from the top-level test suite. If the suite has tests they are executed one-by-one, and if it has suites they are executed recursively in
depth-first order. When an individual test case is executed, the keywords it contains are run in a sequence. Normally the execution of the current test ends
if any of the keywords fails, but it is also possible to continue after failures. The exact execution order and how possible setups and teardowns affect the
execution are discussed in the following sections.

Setups and teardowns

Setups and teardowns can be used on test suite, test case and user keyword levels.

Suite setup

If a test suite has a setup, it is executed before its tests and child suites. If the suite setup passes, test execution continues normally. If it fails, all the test
cases the suite and its child suites contain are marked failed. The tests and possible suite setups and teardowns in the child test suites are not executed.

Suite setups are often used for setting up the test environment. Because tests are not run if the suite setup fails, it is easy to use suite setups for verifying
that the environment is in state in which the tests can be executed.

Suite teardown

If a test suite has a teardown, it is executed after all its test cases and child suites. Suite teardowns are executed regardless of the test status and even if the
matching suite setup fails. If the suite teardown fails, all tests in the suite are marked failed afterwards in reports and logs.

Suite teardowns are mostly used for cleaning up the test environment after the execution. To ensure that all these tasks are done, all the keywords used in
the teardown are executed even if some of them fail.

Test setup

Possible test setup is executed before the keywords of the test case. If the setup fails, the keywords are not executed. The main use for test setups is
setting up the environment for that particular test case.

Test teardown

Possible test teardown is executed after the test case has been executed. It is executed regardless of the test status and also if test setup has failed.

Similarly as suite teardown, test teardowns are used mainly for cleanup activities. Also they are executed fully even if some of their keywords fail.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 129/263

Keyword teardown

User keywords cannot have setups, but they can have teardowns that work exactly like other teardowns. Keyword teardowns are run after the keyword
is executed otherwise, regardless the status, and they are executed fully even if some of their keywords fail.

Execution order

Test cases in a test suite are executed in the same order as they are defined in the test case file. Test suites inside a higher level test suite are executed in
case-insensitive alphabetical order based on the file or directory name. If multiple files and/or directories are given from the command line, they are
executed in the order they are given.

If there is a need to use certain test suite execution order inside a directory, it is possible to add prefixes like 01 and 02 into file and directory names. Such
prefixes are not included in the generated test suite name if they are separated from the base name of the suite with two underscores:

01__my_suite.html -> My Suite

02__another_suite.html -> Another Suite

If the alphabetical ordering of test suites inside suites is problematic, a good workaround is giving them separately in the required order. This easily leads
to overly long start-up commands, but argument files allow listing files nicely one file per line.

It is also possible to randomize the execution order using the --randomize option.

Passing execution

Typically test cases, setups and teardowns are considered passed if all keywords they contain are executed and none of them fail. From Robot
Framework 2.8 onwards, it is also possible to use BuiltIn keywords Pass Execution and Pass Execution If to stop execution with PASS status and skip
the remaining keywords.

How Pass Execution and Pass Execution If behave in different situations is explained below:

When used in any setup or teardown (suite, test or keyword), these keywords pass that setup or teardown. Possible teardowns of the started
keywords are executed. Test execution or statuses are not affected otherwise.
When used in a test case outside setup or teardown, the keywords pass that particular test case. Possible test and keyword teardowns are executed.
Possible continuable failures that occur before these keyword are used, as well as failures in teardowns executed afterwards, will fail the execution.
It is mandatory to give an explanation message why execution was interrupted, and it is also possible to modify test case tags. For more details, and
usage examples, see the documentation of these keywords.

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 130/263

Passing execution in the middle of a test, setup or teardown should be used with care. In the worst case it leads to tests that skip all the parts that could
actually uncover problems in the tested application. In cases where execution cannot continue do to external factors, it is often safer to fail the test case
and make it non-critical.

3.2.2 Continue on failure

Normally test cases are stopped immediately when any of their keywords fail. This behavior shortens test execution time and prevents subsequent
keywords hanging or otherwise causing problems if the system under test is in unstable state. This has the drawback that often subsequent keywords
would give more information about the state of the system. Hence Robot Framework offers several features to continue after failures.

Run Keyword And Ignore Error and Run Keyword And Expect Error keywords

BuiltIn keywords Run Keyword And Ignore Error and Run Keyword And Expect Error handle failures so that test execution is not terminated
immediately. Though, using these keywords for this purpose often adds extra complexity to test cases, so the following features are worth considering to
make continuing after failures easier.

Special failures from keywords

Library keywords report failures using exceptions, and it is possible to use special exceptions to tell the core framework that execution can continue
regardless the failure. How these exceptions can be created is explained in the test library API chapter.

When a test ends and there has been one or more continuable failure, the test will be marked failed. If there are more than one failure, all of them will be
enumerated in the final error message:

Several failures occurred:

1) First error message.

2) Second error message ...

Test execution ends also if a normal failure occurs after continuable failures. Also in that case all the failures will be listed in the final error message.

The return value from failed keywords, possibly assigned to a variable, is always the Python None.

Run Keyword And Continue On Failure keyword

BuiltIn keyword Run Keyword And Continue On Failure allows converting any failure into a continuable failure. These failures are handled by the
framework exactly the same way as continuable failures originating from library keywords.

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 131/263

Execution continues on teardowns automatically

To make it sure that all the cleanup activities are taken care of, the continue on failure mode is automatically on in test and suite teardowns. In practice
this means that in teardowns all the keywords in all levels are always executed.

All top-level keywords are executed when tests have templates

When using test templates, all the data rows are always executed to make it sure that all the different combinations are tested. In this usage continuing is
limited to the top-level keywords, and inside them the execution ends normally if there are non-continuable failures.

3.2.3 Stopping test execution gracefully

Sometimes there is a need to stop the test execution before all the tests have finished, but so that logs and reports are created. Different ways how to
accomplish this are explained below. In all these cases the remaining test cases are marked failed.

Starting from Robot Framework 2.9 the tests that are automatically failed get robot-exit tag and the generated report will include NOT robot-exit
combined tag pattern to easily see those tests that were not skipped. Note that the test in which the exit happened does not get the robot-exit tag.

Note

The prefix used with the reserved tags is likely to be changed to robot: in the future, which means the robot-exit tag will be renamed. See issue #2539 for
more details.

Pressing Ctrl-C

The execution is stopped when Ctrl-C is pressed in the console where the tests are running. When running the tests on Python, the execution is stopped
immediately, but with Jython it ends only after the currently executing keyword ends.

If Ctrl-C is pressed again, the execution ends immediately and reports and logs are not created.

Using signals

On Unix-like machines it is possible to terminate test execution using signals INT and TERM. These signals can be sent from the command line using kill
command, and sending signals can also be easily automated.

https://github.com/robotframework/robotframework/issues/2539

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 132/263

Signals have the same limitation on Jython as pressing Ctrl-C. Similarly also the second signal stops the execution forcefully.

Using keywords

The execution can be stopped also by the executed keywords. There is a separate Fatal Error BuiltIn keyword for this purpose, and custom keywords
can use fatal exceptions when they fail.

Stopping when first test case fails

If option --exitonfailure (-X) is used, test execution stops immediately if any critical test fails. The remaining tests are marked as failed without
actually executing them.

Note

The short option -X is new in Robot Framework 3.0.1.

Stopping on parsing or execution error

Robot Framework separates failures caused by failing keywords from errors caused by, for example, invalid settings or failed test library imports. By
default these errors are reported as test execution errors, but errors themselves do not fail tests or affect execution otherwise. If --exitonerror option is
used, however, all such errors are considered fatal and execution stopped so that remaining tests are marked failed. With parsing errors encountered
before execution even starts, this means that no tests are actually run.

Note

--exitonerror is new in Robot Framework 2.8.6.

Handling teardowns

By default teardowns of the tests and suites that have been started are executed even if the test execution is stopped using one of the methods above. This
allows clean-up activities to be run regardless how execution ends.

It is also possible to skip teardowns when execution is stopped by using --skipteardownonexit option. This can be useful if, for example, clean-up
tasks take a lot of time.

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 133/263

3.3 Post-processing outputs

XML output files that are generated during the test execution can be post-processed afterwards by the Rebot tool, which is an integral part of Robot
Framework. It is used automatically when test reports and logs are generated during the test execution, and using it separately allows creating custom
reports and logs as well as combining and merging results.

3.3.1 Using Rebot
Synopsis
Specifying options and arguments
Return codes with Rebot

3.3.2 Creating different reports and logs
3.3.3 Combining outputs
3.3.4 Merging outputs

Merging re-executed tests
Merging suites executed in pieces

3.3.1 Using Rebot

Synopsis

rebot [options] robot_outputs

python|jython|ipy -m robot.rebot [options] robot_outputs

python|jython|ipy path/to/robot/rebot.py [options] robot_outputs

java -jar robotframework.jar rebot [options] robot_outputs

The most common way to use Rebot is using the rebot runner script. Alternatively it is possible to execute the installed robot.rebot module or
robot/rebot.py file directly using the selected interpreter. The final alternative is using the standalone JAR distribution.

Note

Versions prior to Robot Framework 3.0 installed the rebot script only with Python and used jyrebot and ipyrebot scripts with Jython and IronPython,
respectively. These scripts are still installed, but the plan is to deprecate and remove them in the future.

Specifying options and arguments

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 134/263

The basic syntax for using Rebot is exactly the same as when starting test execution and also most of the command line options are identical. The main
difference is that arguments to Rebot are XML output files instead of test data files or directories.

Return codes with Rebot

Return codes from Rebot are exactly same as when running tests.

3.3.2 Creating different reports and logs

You can use Rebot for creating the same reports and logs that are created automatically during the test execution. Of course, it is not sensible to create the
exactly same files, but, for example, having one report with all test cases and another with only some subset of tests can be useful:

rebot output.xml

rebot path/to/output_file.xml

rebot --include smoke --name Smoke_Tests c:\results\output.xml

Another common usage is creating only the output file when running tests (log and report generation can be disabled with --log NONE --report
NONE) and generating logs and reports later. Tests can, for example, be executed on different environments, output files collected to a central place, and
reports and logs created there. This approach can also work very well if generating reports and logs takes a lot of time when running tests on Jython.
Disabling log and report generation and generating them later with Rebot can save a lot of time and use less memory.

3.3.3 Combining outputs

An important feature in Rebot is its ability to combine outputs from different test execution rounds. This capability allows, for example, running the same
test cases on different environments and generating an overall report from all outputs. Combining outputs is extremely easy, all that needs to be done is
giving several output files as arguments:

rebot output1.xml output2.xml

rebot outputs/*.xml

When outputs are combined, a new top-level test suite is created so that test suites in the given output files are its child suites. This works the same way
when multiple test data files or directories are executed, and also in this case the name of the top-level test suite is created by joining child suite names
with an ampersand (&) and spaces. These automatically generated names are not that good, and it is often a good idea to use --name to give a more
meaningful name:

rebot --name Browser_Compatibility firefox.xml opera.xml safari.xml ie.xml

rebot --include smoke --name Smoke_Tests c:\results*.xml

3.3.4 Merging outputs

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 135/263

If same tests are re-executed or a single test suite executed in pieces, combining results like discussed above creates an unnecessary top-level test suite. In
these cases it is typically better to merge results instead. Merging is done by using --merge (-R) option which changes the way how Rebot combines
two or more output files. This option itself takes no arguments and all other command line options can be used with it normally:

rebot --merge --name Example --critical regression original.xml merged.xml

How merging works in practice is explained in the following sections discussing its two main use cases.

Merging re-executed tests

There is often a need to re-execute a subset of tests, for example, after fixing a bug in the system under test or in the tests themselves. This can be
accomplished by selecting test cases by names (--test and --suite options), tags (--include and --exclude), or by previous status (--rerunfailed
or --rerunfailedsuites).

Combining re-execution results with the original results using the default combining outputs approach does not work too well. The main problem is that
you get separate test suites and possibly already fixed failures are also shown. In this situation it is better to use --merge (-R) option to tell Rebot to
merge the results instead. In practice this means that tests from the latter test runs replace tests in the original. The usage is best illustrated by a practical
example using --rerunfailed and --merge together:

robot --output original.xml tests # first execute all tests

robot --rerunfailed original.xml --output rerun.xml tests # then re-execute failing

rebot --merge original.xml rerun.xml # finally merge results

The message of the merged tests contains a note that results have been replaced. The message also shows the old status and message of the test.

Merged results must always have same top-level test suite. Tests and suites in merged outputs that are not found from the original output are added into
the resulting output. How this works in practice is discussed in the next section.

Note

Merging re-executed results is a new feature in Robot Framework 2.8.4. Prior to Robot Framework 2.8.6 new tests or suites in merged outputs were skipped
and merging was done using --rerunmerge option.

Merging suites executed in pieces

Another important use case for the --merge option is merging results got when running a test suite in pieces using, for example, --include and
--exclude options:

robot --include smoke --output smoke.xml tests # first run some tests

robot --exclude smoke --output others.xml tests # then run others

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 136/263

rebot --merge smoke.xml others.xml # finally merge results

When merging outputs like this, the resulting output contains all tests and suites found from all given output files. If some test is found from multiple
outputs, latest results replace the earlier ones like explained in the previous section. Also this merging strategy requires the top-level test suites to be same
in all outputs.

3.4 Configuring execution

This section explains different command line options that can be used for configuring the test execution or post-processing outputs. Options related to
generated output files are discussed in the next section.

3.4.1 Selecting files to parse
3.4.2 Selecting test cases

By test suite and test case names
By tag names
Re-executing failed test cases
Re-executing failed test suites
When no tests match selection

3.4.3 Setting criticality
3.4.4 Setting metadata

Setting the name
Setting the documentation
Setting free metadata
Setting tags

3.4.5 Configuring where to search libraries and other extensions
Locations automatically in module search path
PYTHONPATH, JYTHONPATH and IRONPYTHONPATH
Using --pythonpath option
Configuring sys.path programmatically
Java classpath

3.4.6 Setting variables
3.4.7 Dry run
3.4.8 Randomizing execution order
3.4.9 Programmatic modification of test data

Example: Select every Xth test
Example: Exclude tests by name
Example: Skip setups and teardowns

3.4.10 Controlling console output
Console output type

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 137/263

Console width
Console colors
Console markers

3.4.11 Setting listeners

3.4.1 Selecting files to parse

Robot Framework supports test data in various formats, but nowadays the plain text format in dedicated *.robot files is most commonly used. If only
one file format is used in a project, it can be a good idea to limit parsing test data to only these files by using the --extension (-F) option. This is
especially useful if the executed directory contains large files that contain no test data, but have an extension that Robot Framework would parse
otherwise. Especially large HTML files, such as reports and logs you can get from Robot Framework itself, can be pretty slow to process.

The --extension option takes a file extension as an argument, and only files with that extension are parsed. It only has an effect when executing
directories, though, not when running explicitly specified individual files. It does not affect which files can be used as resource files either. If there is a
need to parse more than one kind of files, it is possible to use a colon : to separate extensions. Matching extensions is case insensitive.

robot --extension robot path/to/tests

robot --extension ROBOT:TXT path/to/tests

If files in one format use different extensions like *.html and *.htm, you need to specify those extensions separately. Using just one of them would
mean that other files in that format are skipped.

Note

Selecting files to parse is a new functionality in Robot Framework 3.0.1.

3.4.2 Selecting test cases

Robot Framework offers several command line options for selecting which test cases to execute. The same options also work when post-processing
outputs with Rebot.

By test suite and test case names

Test suites and test cases can be selected by their names with the command line options --suite (-s) and --test (-t), respectively. Both of these
options can be used several times to select several test suites or cases. Arguments to these options are case- and space-insensitive, and there can also be
simple patterns matching multiple names. If both the --suite and --test options are used, only test cases in matching suites with matching names are
selected.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 138/263

--test Example

--test mytest --test yourtest

--test example*

--test mysuite.mytest

--test *.suite.mytest

--suite example-??

--suite mysuite --test mytest --test your*

Using the --suite option is more or less the same as executing only the appropriate test case file or directory. One major benefit is the possibility to
select the suite based on its parent suite. The syntax for this is specifying both the parent and child suite names separated with a dot. In this case, the
possible setup and teardown of the parent suite are executed.

--suite parent.child

--suite myhouse.myhousemusic --test jack*

Selecting individual test cases with the --test option is very practical when creating test cases, but quite limited when running tests automatically. The
--suite option can be useful in that case, but in general, selecting test cases by tag names is more flexible.

By tag names

It is possible to include and exclude test cases by tag names with the --include (-i) and --exclude (-e) options, respectively. If the --include
option is used, only test cases having a matching tag are selected, and with the --exclude option test cases having a matching tag are not. If both are
used, only tests with a tag matching the former option, and not with a tag matching the latter, are selected.

--include example

--exclude not_ready

--include regression --exclude long_lasting

Both --include and --exclude can be used several times to match multiple tags. In that case a test is selected if it has a tag that matches any included
tags, and also has no tag that matches any excluded tags.

In addition to specifying a tag to match fully, it is possible to use tag patterns where * and ? are wildcards and AND, OR, and NOT operators can be used for
combining individual tags or patterns together:

--include feature-4?

--exclude bug*

--include fooANDbar

--exclude xxORyyORzz

--include fooNOTbar

Selecting test cases by tags is a very flexible mechanism and allows many interesting possibilities:

A subset of tests to be executed before other tests, often called smoke tests, can be tagged with smoke and executed with --include smoke.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 139/263

Unfinished test can be committed to version control with a tag such as not_ready and excluded from the test execution with --exclude
not_ready.
Tests can be tagged with sprint-<num>, where <num> specifies the number of the current sprint, and after executing all test cases, a separate
report containing only the tests for a certain sprint can be generated (for example, rebot --include sprint-42 output.xml).

Re-executing failed test cases

Command line option --rerunfailed (-R) can be used to select all failed tests from an earlier output file for re-execution. This option is useful, for
example, if running all tests takes a lot of time and one wants to iteratively fix failing test cases.

robot tests # first execute all tests

robot --rerunfailed output.xml tests # then re-execute failing

Behind the scenes this option selects the failed tests as they would have been selected individually with the --test option. It is possible to further fine-
tune the list of selected tests by using --test, --suite, --include and --exclude options.

Using an output not originating from executing the same tests that are run now causes undefined results. Additionally, it is an error if the output contains
no failed tests. Using a special value NONE as the output is same as not specifying this option at all.

Tip

Re-execution results and original results can be merged together using the --merge command line option.

Note

Re-executing failed tests is a new feature in Robot Framework 2.8. Prior to Robot Framework 2.8.4 the option was named --runfailed.

Re-executing failed test suites

Command line option rerunfailedsuites (-S) can be used to select all failed suites from an earlier output file for re-execution. Like
--rerunfailed (-R), this option is useful when full test execution takes a lot of time. Note that all tests from a failed test suite will be re-executed, even
passing ones. This option is useful when the tests in a test suite depends on each other.

Behind the scenes this option selects the failed suites as they would have been selected individually with the --suite option. It is possible to further fine-
tune the list of selected tests by using --test, --suite, --include and --exclude options.

Note

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 140/263

--rerunfailedsuites option was added in Robot Framework 3.0.1.

When no tests match selection

By default when no tests match the selection criteria test execution fails with an error like:

[ERROR] Suite 'Example' with includes 'xxx' contains no test cases.

Because no outputs are generated, this behavior can be problematic if tests are executed and results processed automatically. Luckily a command line
option --RunEmptySuite can be used to force the suite to be executed also in this case. As a result normal outputs are created but show zero executed
tests. The same option can be used also to alter the behavior when an empty directory or a test case file containing no tests is executed.

Similar situation can occur also when processing output files with Rebot. It is possible that no test match the used filtering criteria or that the output file
contained no tests to begin with. By default executing Rebot fails in these cases, but it has a separate --ProcessEmptySuite option that can be used to
alter the behavior. In practice this option works the same way as --RunEmptySuite when running tests.

Note

--ProcessEmptySuite option was added in Robot Framework 2.7.2.

3.4.3 Setting criticality

The final result of test execution is determined based on critical tests. If a single critical test fails, the whole test run is considered failed. On the other
hand, non-critical test cases can fail and the overall status is still considered passed.

All test cases are considered critical by default, but this can be changed with the --critical (-c) and --noncritical (-n) options. These options
specify which tests are critical based on tags, similarly as --include and --exclude are used to select tests by tags. If only --critical is used, test
cases with a matching tag are critical. If only --noncritical is used, tests without a matching tag are critical. Finally, if both are used, only test with a
critical tag but without a non-critical tag are critical.

Both --critical and --noncritical also support same tag patterns as --include and --exclude. This means that pattern matching is case, space,
and underscore insensitive, * and ? are supported as wildcards, and AND, OR and NOT operators can be used to create combined patterns.

--critical regression

--noncritical not_ready

--critical iter-* --critical req-* --noncritical req-6??

The most common use case for setting criticality is having test cases that are not ready or test features still under development in the test execution. These
tests could also be excluded from the test execution altogether with the --exclude option, but including them as non-critical tests enables you to see

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 141/263

when they start to pass.

Criticality set when tests are executed is not stored anywhere. If you want to keep same criticality when post-processing outputs with Rebot, you need to
use --critical and/or --noncritical also with it:

Use rebot to create new log and report from the output created during execution

robot --critical regression --outputdir all tests.robot

rebot --name Smoke --include smoke --critical regression --outputdir smoke all/output.xml

No need to use --critical/--noncritical when no log or report is created

robot --log NONE --report NONE tests.robot

rebot --critical feature1 output.xml

3.4.4 Setting metadata

Setting the name

When Robot Framework parses test data, test suite names are created from file and directory names. The name of the top-level test suite can, however, be
overridden with the command line option --name (-N). Underscores in the given name are converted to spaces automatically.

Setting the documentation

In addition to defining documentation in the test data, documentation of the top-level suite can be given from the command line with the option
--doc (-D). Underscores in the given documentation are converted to spaces, and it may contain simple HTML formatting.

Setting free metadata

Free test suite metadata may also be given from the command line with the option --metadata (-M). The argument must be in the format name:value,
where name the name of the metadata to set and value is its value. Underscores in the name and value are converted to spaces, and the latter may contain
simple HTML formatting. This option may be used several times to set multiple metadata.

Setting tags

The command line option --settag (-G) can be used to set the given tag to all executed test cases. This option may be used several times to set
multiple tags.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 142/263

3.4.5 Configuring where to search libraries and other extensions

When Robot Framework imports a test library, listener, or some other Python based extension, it uses the Python interpreter to import the module
containing the extension from the system. The list of locations where modules are looked for is called the module search path, and its contents can be
configured using different approaches explained in this section. When importing Java based libraries or other extensions on Jython, Java classpath is used
in addition to the normal module search path.

Robot Framework uses Python's module search path also when importing resource and variable files if the specified path does not match any file directly.

The module search path being set correctly so that libraries and other extensions are found is a requirement for successful test execution. If you need to
customize it using approaches explained below, it is often a good idea to create a custom start-up script.

Locations automatically in module search path

Python interpreters have their own standard library as well as a directory where third party modules are installed automatically in the module search path.
This means that test libraries packaged using Python's own packaging system are automatically installed so that they can be imported without any
additional configuration.

PYTHONPATH, JYTHONPATH and IRONPYTHONPATH

Python, Jython and IronPython read additional locations to be added to the module search path from PYTHONPATH, JYTHONPATH and IRONPYTHONPATH
environment variables, respectively. If you want to specify more than one location in any of them, you need to separate the locations with a colon on
UNIX-like machines (e.g. /opt/libs:$HOME/testlibs) and with a semicolon on Windows (e.g. D:\libs;%HOMEPATH%\testlibs).

Environment variables can be configured permanently system wide or so that they affect only a certain user. Alternatively they can be set temporarily
before running a command, something that works extremely well in custom start-up scripts.

Note

Prior to Robot Framework 2.9, contents of PYTHONPATH environment variable were added to the module search path by the framework itself when running
on Jython and IronPython. Nowadays that is not done anymore and JYTHONPATH and IRONPYTHONPATH must be used with these interpreters.

Using --pythonpath option

Robot Framework has a separate command line option --pythonpath (-P) for adding locations to the module search path. Although the option name
has the word Python in it, it works also on Jython and IronPython.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 143/263

Multiple locations can be given by separating them with a colon, regardless the operating system, or by using this option several times. The given path
can also be a glob pattern matching multiple paths, but then it typically needs to be escaped.

Examples:

--pythonpath libs

--pythonpath /opt/testlibs:mylibs.zip:yourlibs

--pythonpath mylib.jar --pythonpath lib/STAR.jar --escape star:STAR

Configuring sys.path programmatically

Python interpreters store the module search path they use as a list of strings in sys.path attribute. This list can be updated dynamically during execution,
and changes are taken into account next time when something is imported.

Java classpath

When libraries implemented in Java are imported with Jython, they can be either in Jython's normal module search path or in Java classpath. The most
common way to alter classpath is setting the CLASSPATH environment variable similarly as PYTHONPATH, JYTHONPATH or IRONPYTHONPATH. Alternatively
it is possible to use Java's -cp command line option. This option is not exposed to the robot runner script, but it is possible to use it with Jython by
adding -J prefix like jython -J-cp example.jar -m robot.run tests.robot.

When using the standalone JAR distribution, the classpath has to be set a bit differently, due to the fact that java -jar command does support the
CLASSPATH environment variable nor the -cp option. There are two different ways to configure the classpath:

java -cp lib/testlibrary.jar:lib/app.jar:robotframework-2.9.jar org.robotframework.RobotFramework tests.robot

java -Xbootclasspath/a:lib/testlibrary.jar:lib/app.jar -jar robotframework-2.9.jar tests.robot

3.4.6 Setting variables

Variables can be set from the command line either individually using the --variable (-v) option or through variable files with the
--variablefile (-V) option. Variables and variable files are explained in separate chapters, but the following examples illustrate how to use these
options:

--variable name:value

--variable OS:Linux --variable IP:10.0.0.42

--variablefile path/to/variables.py

--variablefile myvars.py:possible:arguments:here

--variable ENVIRONMENT:Windows --variablefile c:\resources\windows.py

https://docs.python.org/2/library/sys.html#sys.path
https://docs.oracle.com/javase/8/docs/technotes/tools/findingclasses.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 144/263

3.4.7 Dry run

Robot Framework supports so called dry run mode where the tests are run normally otherwise, but the keywords coming from the test libraries are not
executed at all. The dry run mode can be used to validate the test data; if the dry run passes, the data should be syntactically correct. This mode is
triggered using option --dryrun.

The dry run execution may fail for following reasons:

Using keywords that are not found.
Using keywords with wrong number of arguments.
Using user keywords that have invalid syntax.

In addition to these failures, normal execution errors are shown, for example, when test library or resource file imports cannot be resolved.

It is possible to disable dry run validation of specific user keywords by adding a special robot:no-dry-run keyword tag to them. This is useful if a
keyword fails in the dry run mode for some reason, but work fine when executed normally. Disabling the dry run more is a new feature in Robot
Framework 3.0.2.

Note

The dry run mode does not validate variables.

3.4.8 Randomizing execution order

The test execution order can be randomized using option --randomize <what>[:<seed>], where <what> is one of the following:

tests

Test cases inside each test suite are executed in random order.
suites

All test suites are executed in a random order, but test cases inside suites are run in the order they are defined.
all

Both test cases and test suites are executed in a random order.
none

Neither execution order of test nor suites is randomized. This value can be used to override the earlier value set with --randomize.

Starting from Robot Framework 2.8.5, it is possible to give a custom seed to initialize the random generator. This is useful if you want to re-run tests
using the same order as earlier. The seed is given as part of the value for --randomize in format <what>:<seed> and it must be an integer. If no seed is

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 145/263

given, it is generated randomly. The executed top level test suite automatically gets metadata named Randomized that tells both what was randomized
and what seed was used.

Examples:

robot --randomize tests my_test.robot

robot --randomize all:12345 path/to/tests

3.4.9 Programmatic modification of test data

If the provided built-in features to modify test data before execution are not enough, Robot Framework 2.9 and newer makes it possible to do custom
modifications programmatically. This is accomplished by creating a so called pre-run modifier and activating it using the --prerunmodifier option.

Pre-run modifiers should be implemented as visitors that can traverse through the executable test suite structure and modify it as needed. The visitor
interface is explained as part of the Robot Framework API documentation, and it possible to modify executed test suites, test cases and keywords using
it. The examples below ought to give an idea of how pre-run modifiers can be used and how powerful this functionality is.

When a pre-run modifier is taken into use on the command line using the --prerunmodifier option, it can be specified either as a name of the modifier
class or a path to the modifier file. If the modifier is given as a class name, the module containing the class must be in the module search path, and if the
module name is different than the class name, the given name must include both like module.ModifierClass. If the modifier is given as a path, the class
name must be same as the file name. For most parts this works exactly like when importing a test library.

If a modifier requires arguments, like the examples below do, they can be specified after the modifier name or path using either a colon (:) or a semicolon
(;) as a separator. If both are used in the value, the one first is considered to be the actual separator.

If more than one pre-run modifier is needed, they can be specified by using the --prerunmodifier option multiple times. If similar modifying is needed
before creating logs and reports, programmatic modification of results can be enabled using the --prerebotmodifier option.

Example: Select every Xth test

The first example shows how a pre-run-modifier can remove tests from the executed test suite structure. In this example only every Xth tests is preserved,
and the X is given from the command line along with an optional start index.

"""Pre-run modifier that selects only every Xth test for execution.

Starts from the first test by default. Tests are selected per suite.

"""

from robot.api import SuiteVisitor

http://robot-framework.readthedocs.org/en/master/autodoc/robot.model.html#module-robot.model.visitor
http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestSuite
http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestCase
http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.Keyword

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 146/263

class SelectEveryXthTest(SuiteVisitor):

 def __init__(self, x, start=0):

 self.x = int(x)

 self.start = int(start)

 def start_suite(self, suite):

 """Modify suite's tests to contain only every Xth."""

 suite.tests = suite.tests[self.start::self.x]

 def end_suite(self, suite):

 """Remove suites that are empty after removing tests."""

 suite.suites = [s for s in suite.suites if s.test_count > 0]

 def visit_test(self, test):

 """Avoid visiting tests and their keywords to save a little time."""

 pass

If the above pre-run modifier is in a file SelectEveryXthTest.py and the file is in the module search path, it could be used like this:

Specify the modifier as a path. Run every second test.

robot --prerunmodifier path/to/SelectEveryXthTest.py:2 tests.robot

Specify the modifier as a name. Run every third test, starting from the second.

robot --prerunmodifier SelectEveryXthTest:3:1 tests.robot

Example: Exclude tests by name

Also the second example removes tests, this time based on a given name pattern. In practice it works like a negative version of the built-in --test
option.

"""Pre-run modifier that excludes tests by their name.

Tests to exclude are specified by using a pattern that is both case and space

insensitive and supports '*' (match anything) and '?' (match single character)

as wildcards.

"""

from robot.api import SuiteVisitor

from robot.utils import Matcher

class ExcludeTests(SuiteVisitor):

 def __init__(self, pattern):

 self.matcher = Matcher(pattern)

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 147/263

 def start_suite(self, suite):

 """Remove tests that match the given pattern."""

 suite.tests = [t for t in suite.tests if not self._is_excluded(t)]

 def _is_excluded(self, test):

 return self.matcher.match(test.name) or self.matcher.match(test.longname)

 def end_suite(self, suite):

 """Remove suites that are empty after removing tests."""

 suite.suites = [s for s in suite.suites if s.test_count > 0]

 def visit_test(self, test):

 """Avoid visiting tests and their keywords to save a little time."""

 pass

Assuming the above modifier is in a file named ExcludeTests.py, it could be used like this:

Exclude test named 'Example'.

robot --prerunmodifier path/to/ExcludeTests.py:Example tests.robot

Exclude all tests ending with 'something'.

robot --prerunmodifier path/to/ExcludeTests.py:*something tests.robot

Example: Skip setups and teardowns

Sometimes when debugging tests it can be useful to disable setups or teardowns. This can be accomplished by editing the test data, but pre-run modifiers
make it easy to do that temporarily for a single run:

"""Pre-run modifiers for disabling suite and test setups and teardowns."""

from robot.api import SuiteVisitor

class SuiteSetup(SuiteVisitor):

 def start_suite(self, suite):

 suite.keywords.setup = None

class SuiteTeardown(SuiteVisitor):

 def start_suite(self, suite):

 suite.keywords.teardown = None

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 148/263

class TestSetup(SuiteVisitor):

 def start_test(self, test):

 test.keywords.setup = None

class TestTeardown(SuiteVisitor):

 def start_test(self, test):

 test.keywords.teardown = None

Assuming that the above modifiers are all in a file named disable.py and this file is in the module search path, setups and teardowns could be disabled,
for example, as follows:

Disable suite teardowns.

robot --prerunmodifier disable.SuiteTeardown tests.robot

Disable both test setups and teardowns by using '--prerunmodifier' twice.

robot --prerunmodifier disable.TestSetup --prerunmodifier disable.TestTeardown tests.robot

3.4.10 Controlling console output

There are various command line options to control how test execution is reported on the console.

Console output type

The overall console output type is set with the --console option. It supports the following case-insensitive values:

verbose

Every test suite and test case is reported individually. This is the default.
dotted

Only show . for passed test, f for failed non-critical tests, F for failed critical tests, and x for tests which are skipped because test execution exit.
Failed critical tests are listed separately after execution. This output type makes it easy to see are there any failures during execution even if there
would be a lot of tests.

quiet

No output except for errors and warnings.
none

No output whatsoever. Useful when creating a custom output using, for example, listeners.

Separate convenience options --dotted (-.) and --quiet are shortcuts for --console dotted and --console quiet, respectively.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 149/263

Examples:

robot --console quiet tests.robot

robot --dotted tests.robot

Note

--console, --dotted and --quiet are new options in Robot Framework 2.9. Prior to that the output was always the same as in the current verbose mode.

Console width

The width of the test execution output in the console can be set using the option --consolewidth (-W). The default width is 78 characters.

Tip

On many UNIX-like machines you can use handy $COLUMNS environment variable like --consolewidth $COLUMNS.

Note

Prior to Robot Framework 2.9 this functionality was enabled with --monitorwidth option that was first deprecated and is nowadays removed. The short
option -W works the same way in all versions.

Console colors

The --consolecolors (-C) option is used to control whether colors should be used in the console output. Colors are implemented using ANSI colors
except on Windows where, by default, Windows APIs are used instead. Accessing these APIs from Jython is not possible, and as a result colors do not
work with Jython on Windows.

This option supports the following case-insensitive values:

auto

Colors are enabled when outputs are written into the console, but not when they are redirected into a file or elsewhere. This is the default.
on

Colors are used also when outputs are redirected. Does not work on Windows.
ansi

Same as on but uses ANSI colors also on Windows. Useful, for example, when redirecting output to a program that understands ANSI colors.
New in Robot Framework 2.7.5.

http://en.wikipedia.org/wiki/ANSI_escape_code

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 150/263

off

Colors are disabled.

Note

Prior to Robot Framework 2.9 this functionality was enabled with --monitorcolors option that was first deprecated and is nowadays removed. The short
option -C works the same way in all versions.

Console markers

Starting from Robot Framework 2.7, special markers . (success) and F (failure) are shown on the console when using the verbose output and top level
keywords in test cases end. The markers allow following the test execution in high level, and they are erased when test cases end.

Starting from Robot Framework 2.7.4, it is possible to configure when markers are used with --consolemarkers (-K) option. It supports the following
case-insensitive values:

auto

Markers are enabled when the standard output is written into the console, but not when it is redirected into a file or elsewhere. This is the default.
on

Markers are always used.
off

Markers are disabled.

Note

Prior to Robot Framework 2.9 this functionality was enabled with --monitormarkers option that was first deprecated and is nowadays removed. The short
option -K works the same way in all versions.

3.4.11 Setting listeners

Listeners can be used to monitor the test execution. When they are taken into use from the command line, they are specified using the --listener
command line option. The value can either be a path to a listener or a listener name. See the Listener interface section for more details about importing
listeners and using them in general.

3.5 Created outputs

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 151/263

Several output files are created when tests are executed, and all of them are somehow related to test results. This section discusses what outputs are
created, how to configure where they are created, and how to fine-tune their contents.

3.5.1 Different output files
Output directory
Output file
Log file
Report file
XUnit compatible result file
Debug file
Timestamping output files
Setting titles
Setting background colors

3.5.2 Log levels
Available log levels
Setting log level
Visible log level

3.5.3 Splitting logs
3.5.4 Configuring statistics

Configuring displayed suite statistics
Including and excluding tag statistics
Generating combined tag statistics
Creating links from tag names
Adding documentation to tags

3.5.5 Removing and flattening keywords
Removing keywords
Flattening keywords

3.5.6 Setting start and end time of execution
3.5.7 Programmatic modification of results
3.5.8 System log

3.5.1 Different output files

This section explains what different output files can be created and how to configure where they are created. Output files are configured using command
line options, which get the path to the output file in question as an argument. A special value NONE (case-insensitive) can be used to disable creating a
certain output file.

Output directory

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 152/263

All output files can be set using an absolute path, in which case they are created to the specified place, but in other cases, the path is considered relative to
the output directory. The default output directory is the directory where the execution is started from, but it can be altered with the --outputdir (-d)
option. The path set with this option is, again, relative to the execution directory, but can naturally be given also as an absolute path. Regardless of how a
path to an individual output file is obtained, its parent directory is created automatically, if it does not exist already.

Output file

Output files contain all the test execution results in machine readable XML format. Log, report and xUnit files are typically generated based on them, and
they can also be combined and otherwise post-processed with Rebot.

Tip

Starting from Robot Framework 2.8, generating report and xUnit files as part of test execution does not anymore require processing output files. Disabling
log generation when running tests can thus save memory.

The command line option --output (-o) determines the path where the output file is created relative to the output directory. The default name for the
output file, when tests are run, is output.xml.

When post-processing outputs with Rebot, new output files are not created unless the --output option is explicitly used.

It is possible to disable creation of the output file when running tests by giving a special value NONE to the --output option. Prior to Robot Framework
2.8 this also automatically disabled creating log and report files, but nowadays that is not done anymore. If no outputs are needed, they should all be
explicitly disabled using --output NONE --report NONE --log NONE.

Log file

Log files contain details about the executed test cases in HTML format. They have a hierarchical structure showing test suite, test case and keyword
details. Log files are needed nearly every time when test results are to be investigated in detail. Even though log files also have statistics, reports are better
for getting an higher-level overview.

The command line option --log (-l) determines where log files are created. Unless the special value NONE is used, log files are always created and
their default name is log.html.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 153/263

An example of beginning of a log file

http://robotframework.org/robotframework/latest/images/log_passed.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 154/263

An example of a log file with keyword details visible

Report file

Report files contain an overview of the test execution results in HTML format. They have statistics based on tags and executed test suites, as well as a list
of all executed test cases. When both reports and logs are generated, the report has links to the log file for easy navigation to more detailed information. It
is easy to see the overall test execution status from report, because its background color is green, if all critical tests pass, and bright red otherwise.

The command line option --report (-r) determines where report files are created. Similarly as log files, reports are always created unless NONE is used
as a value, and their default name is report.html.

http://robotframework.org/robotframework/latest/images/log_failed.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 155/263

An example report file of successful test execution

http://robotframework.org/robotframework/latest/images/report_passed.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 156/263

An example report file of failed test execution

XUnit compatible result file

XUnit result files contain the test execution summary in xUnit compatible XML format. These files can thus be used as an input for external tools that
understand xUnit reports. For example, Jenkins continuous integration server supports generating statistics based on xUnit compatible results.

Tip

Jenkins also has a separate Robot Framework plugin.

XUnit output files are not created unless the command line option --xunit (-x) is used explicitly. This option requires a path to the generated xUnit
file, relatively to the output directory, as a value.

Because xUnit reports do not have the concept of non-critical tests, all tests in an xUnit report will be marked either passed or failed, with no distinction
between critical and non-critical tests. If this is a problem, --xunitskipnoncritical option can be used to mark non-critical tests as skipped. Skipped
tests will get a message containing the actual status and possible message of the test case in a format like FAIL: Error message.

Note

http://robotframework.org/robotframework/latest/images/report_failed.html
http://en.wikipedia.org/wiki/XUnit
http://jenkins-ci.org/
https://wiki.jenkins-ci.org/display/JENKINS/Robot+Framework+Plugin

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 157/263

--xunitskipnoncritical is a new option in Robot Framework 2.8.

Debug file

Debug files are plain text files that are written during the test execution. All messages got from test libraries are written to them, as well as information
about started and ended test suites, test cases and keywords. Debug files can be used for monitoring the test execution. This can be done using, for
example, a separate fileviewer.py tool, or in UNIX-like systems, simply with the tail -f command.

Debug files are not created unless the command line option --debugfile (-b) is used explicitly.

Timestamping output files

All output files listed in this section can be automatically timestamped with the option --timestampoutputs (-T). When this option is used, a
timestamp in the format YYYYMMDD-hhmmss is placed between the extension and the base name of each file. The example below would, for example,
create such output files as output-20080604-163225.xml and mylog-20080604-163225.html:

robot --timestampoutputs --log mylog.html --report NONE tests.robot

Setting titles

The default titles for logs and reports are generated by prefixing the name of the top-level test suite with Test Log or Test Report. Custom titles can be
given from the command line using the options --logtitle and --reporttitle, respectively. Underscores in the given titles are converted to spaces
automatically.

Example:

robot --logtitle Smoke_Test_Log --reporttitle Smoke_Test_Report --include smoke my_tests/

Setting background colors

By default the report file has a green background when all the critical tests pass and a red background otherwise. These colors can be customized by
using the --reportbackground command line option, which takes two or three colors separated with a colon as an argument:

--reportbackground blue:red

--reportbackground green:yellow:red

--reportbackground #00E:#E00

https://bitbucket.org/robotframework/robottools/src/master/fileviewer/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 158/263

If you specify two colors, the first one will be used instead of the default green color and the second instead of the default red. This allows, for example,
using blue instead of green to make backgrounds easier to separate for color blind people.

If you specify three colors, the first one will be used when all the test succeed, the second when only non-critical tests have failed, and the last when there
are critical failures. This feature thus allows using a separate background color, for example yellow, when non-critical tests have failed.

The specified colors are used as a value for the body element's background CSS property. The value is used as-is and can be a HTML color name (e.g.
red), a hexadecimal value (e.g. #f00 or #ff0000), or an RGB value (e.g. rgb(255,0,0)). The default green and red colors are specified using
hexadecimal values #9e9 and #f66, respectively.

3.5.2 Log levels

Available log levels

Messages in log files can have different log levels. Some of the messages are written by Robot Framework itself, but also executed keywords can log
information using different levels. The available log levels are:

FAIL

Used when a keyword fails. Can be used only by Robot Framework itself.
WARN

Used to display warnings. They shown also in the console and in the Test Execution Errors section in log files, but they do not affect the test case
status.

INFO

The default level for normal messages. By default, messages below this level are not shown in the log file.
DEBUG

Used for debugging purposes. Useful, for example, for logging what libraries are doing internally. When a keyword fails, a traceback showing
where in the code the failure occurred is logged using this level automatically.

TRACE

More detailed debugging level. The keyword arguments and return values are automatically logged using this level.

Setting log level

By default, log messages below the INFO level are not logged, but this threshold can be changed from the command line using the --loglevel (-L)
option. This option takes any of the available log levels as an argument, and that level becomes the new threshold level. A special value NONE can also be
used to disable logging altogether.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 159/263

It is possible to use the --loglevel option also when post-processing outputs with Rebot. This allows, for example, running tests initially with the
TRACE level, and generating smaller log files for normal viewing later with the INFO level. By default all the messages included during execution will be
included also with Rebot. Messages ignored during the execution cannot be recovered.

Another possibility to change the log level is using the BuiltIn keyword Set Log Level in the test data. It takes the same arguments as the --loglevel
option, and it also returns the old level so that it can be restored later, for example, in a test teardown.

Visible log level

Starting from Robot Framework 2.7.2, if the log file contains messages at DEBUG or TRACE levels, a visible log level drop down is shown in the upper
right corner. This allows users to remove messages below chosen level from the view. This can be useful especially when running test at TRACE level.

An example log showing the visible log level drop down

By default the drop down will be set at the lowest level in the log file, so that all messages are shown. The default visible log level can be changed using
--loglevel option by giving the default after the normal log level separated by a colon:

--loglevel DEBUG:INFO

In the above example, tests are run using level DEBUG, but the default visible level in the log file is INFO.

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/images/visible_log_level.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 160/263

3.5.3 Splitting logs

Normally the log file is just a single HTML file. When the amount of the test cases increases, the size of the file can grow so large that opening it into a
browser is inconvenient or even impossible. Hence, it is possible to use the --splitlog option to split parts of the log into external files that are loaded
transparently into the browser when needed.

The main benefit of splitting logs is that individual log parts are so small that opening and browsing the log file is possible even if the amount of the test
data is very large. A small drawback is that the overall size taken by the log file increases.

Technically the test data related to each test case is saved into a JavaScript file in the same folder as the main log file. These files have names such as log-
42.js where log is the base name of the main log file and 42 is an incremented index.

Note

When copying the log files, you need to copy also all the log-*.js files or some information will be missing.

3.5.4 Configuring statistics

There are several command line options that can be used to configure and adjust the contents of the Statistics by Tag, Statistics by Suite and Test Details
by Tag tables in different output files. All these options work both when executing test cases and when post-processing outputs.

Configuring displayed suite statistics

When a deeper suite structure is executed, showing all the test suite levels in the Statistics by Suite table may make the table somewhat difficult to read.
By default all suites are shown, but you can control this with the command line option --suitestatlevel which takes the level of suites to show as an
argument:

--suitestatlevel 3

Including and excluding tag statistics

When many tags are used, the Statistics by Tag table can become quite congested. If this happens, the command line options --tagstatinclude and
--tagstatexclude can be used to select which tags to display, similarly as --include and --exclude are used to select test cases:

--tagstatinclude some-tag --tagstatinclude another-tag

--tagstatexclude owner-*

--tagstatinclude prefix-* --tagstatexclude prefix-13

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 161/263

Generating combined tag statistics

The command line option --tagstatcombine can be used to generate aggregate tags that combine statistics from multiple tags. The combined tags are
specified using tag patterns where * and ? are supported as wildcards and AND, OR and NOT operators can be used for combining individual tags or
patterns together.

The following examples illustrate creating combined tag statistics using different patterns, and the figure below shows a snippet of the resulting Statistics
by Tag table:

--tagstatcombine owner-*

--tagstatcombine smokeANDmytag

--tagstatcombine smokeNOTowner-janne*

Examples of combined tag statistics

As the above example illustrates, the name of the added combined statistic is, by default, just the given pattern. If this is not good enough, it is possible to
give a custom name after the pattern by separating them with a colon (:). Possible underscores in the name are converted to spaces:

--tagstatcombine prio1ORprio2:High_priority_tests

Creating links from tag names

You can add external links to the Statistics by Tag table by using the command line option --tagstatlink. Arguments to this option are given in the
format tag:link:name, where tag specifies the tags to assign the link to, link is the link to be created, and name is the name to give to the link.

tag may be a single tag, but more commonly a simple pattern where * matches anything and ? matches any single character. When tag is a pattern, the
matches to wildcards may be used in link and title with the syntax %N, where "N" is the index of the match starting from 1.

The following examples illustrate the usage of this option, and the figure below shows a snippet of the resulting Statistics by Tag table when example test
data is executed with these options:

--tagstatlink mytag:http://www.google.com:Google

--tagstatlink jython-bug-*:http://bugs.jython.org/issue_%1:Jython-bugs

--tagstatlink owner-*:mailto:%1@domain.com?subject=Acceptance_Tests:Send_Mail

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 162/263

Examples of links from tag names

Adding documentation to tags

Tags can be given a documentation with the command line option --tagdoc, which takes an argument in the format tag:doc. tag is the name of the tag
to assign the documentation to, and it can also be a simple pattern matching multiple tags. doc is the assigned documentation. Underscores in the
documentation are automatically converted to spaces and it can also contain HTML formatting.

The given documentation is shown with matching tags in the Test Details by Tag table, and as a tool tip for these tags in the Statistics by Tag table. If one
tag gets multiple documentations, they are combined together and separated with an ampersand.

Examples:

--tagdoc mytag:My_documentation

--tagdoc regression:*See*_http://info.html

--tagdoc owner-*:Original_author

3.5.5 Removing and flattening keywords

Most of the content of output files comes from keywords and their log messages. When creating higher level reports, log files are not necessarily needed
at all, and in that case keywords and their messages just take space unnecessarily. Log files themselves can also grow overly large, especially if they
contain for loops or other constructs that repeat certain keywords multiple times.

In these situations, command line options --removekeywords and --flattenkeywords can be used to dispose or flatten unnecessary keywords. They
can be used both when executing test cases and when post-processing outputs. When used during execution, they only affect the log file, not the XML
output file. With rebot they affect both logs and possibly generated new output XML files.

Removing keywords

The --removekeywords option removes keywords and their messages altogether. It has the following modes of operation, and it can be used multiple
times to enable multiple modes. Keywords that contain errors or warnings are not removed except when using the ALL mode.

ALL

Remove data from all keywords unconditionally.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 163/263

PASSED

Remove keyword data from passed test cases. In most cases, log files created using this option contain enough information to investigate possible
failures.

FOR

Remove all passed iterations from for loops except the last one.
WUKS

Remove all failing keywords inside BuiltIn keyword Wait Until Keyword Succeeds except the last one.
NAME:<pattern>

Remove data from all keywords matching the given pattern regardless the keyword status. The pattern is matched against the full name of the
keyword, prefixed with the possible library or resource file name. The pattern is case, space, and underscore insensitive, and it supports simple
patterns with * and ? as wildcards.

TAG:<pattern>

Remove data from keywords with tags that match the given pattern. Tags are case and space insensitive and they can be specified using tag
patterns where * and ? are supported as wildcards and AND, OR and NOT operators can be used for combining individual tags or patterns together.
Can be used both with library keyword tags and user keyword tags.

Examples:

rebot --removekeywords all --output removed.xml output.xml

robot --removekeywords passed --removekeywords for tests.robot

robot --removekeywords name:HugeKeyword --removekeywords name:resource.* tests.robot

robot --removekeywords tag:huge tests.robot

Removing keywords is done after parsing the output file and generating an internal model based on it. Thus it does not reduce memory usage as much as
flattening keywords.

Note

The support for using --removekeywords when executing tests as well as FOR and WUKS modes were added in Robot Framework 2.7.

Note

NAME:<pattern> mode was added in Robot Framework 2.8.2 and TAG:<pattern> in 2.9.

Flattening keywords

The --flattenkeywords option flattens matching keywords. In practice this means that matching keywords get all log messages from their child
keywords, recursively, and child keywords are discarded otherwise. Flattening supports the following modes:

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 164/263

FOR

Flatten for loops fully.
FORITEM

Flatten individual for loop iterations.
NAME:<pattern>

Flatten keywords matching the given pattern. Pattern matching rules are same as when removing keywords using NAME:<pattern> mode.
TAG:<pattern>

Flatten keywords with tags matching the given pattern. Pattern matching rules are same as when removing keywords using TAG:<pattern> mode.

Examples:

robot --flattenkeywords name:HugeKeyword --flattenkeywords name:resource.* tests.robot

rebot --flattenkeywords foritem --output flattened.xml original.xml

Flattening keywords is done already when the output file is parsed initially. This can save a significant amount of memory especially with deeply nested
keyword structures.

Note

Flattening keywords is a new feature in Robot Framework 2.8.2, FOR and FORITEM modes were added in 2.8.5 and TAG:<pattern> in 2.9.

3.5.6 Setting start and end time of execution

When combining outputs using Rebot, it is possible to set the start and end time of the combined test suite using the options --starttime and
--endtime, respectively. This is convenient, because by default, combined suites do not have these values. When both the start and end time are given,
the elapsed time is also calculated based on them. Otherwise the elapsed time is got by adding the elapsed times of the child test suites together.

It is also possible to use the above mentioned options to set start and end times for a single suite when using Rebot. Using these options with a single
output always affects the elapsed time of the suite.

Times must be given as timestamps in the format YYYY-MM-DD hh:mm:ss.mil, where all separators are optional and the parts from milliseconds to hours
can be omitted. For example, 2008-06-11 17:59:20.495 is equivalent both to 20080611-175920.495 and 20080611175920495, and also mere
20080611 would work.

Examples:

rebot --starttime 20080611-17:59:20.495 output1.xml output2.xml

rebot --starttime 20080611-175920 --endtime 20080611-180242 *.xml

rebot --starttime 20110302-1317 --endtime 20110302-11418 myoutput.xml

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 165/263

3.5.7 Programmatic modification of results

If the provided built-in features to modify results are are not enough, Robot Framework 2.9 and newer makes it possible to do custom modifications
programmatically. This is accomplished by creating a model modifier and activating it using the --prerebotmodifier option.

This functionality works nearly exactly like programmatic modification of test data that can be enabled with the --prerunmodifier option. The obvious
difference is that this time modifiers operate with the result model, not the running model. For example, the following modifier marks all passed tests that
have taken more time than allowed as failed:

from robot.api import SuiteVisitor

class ExecutionTimeChecker(SuiteVisitor):

 def __init__(self, max_seconds):

 self.max_milliseconds = float(max_seconds) * 1000

 def visit_test(self, test):

 if test.status == 'PASS' and test.elapsedtime > self.max_milliseconds:

 test.status = 'FAIL'

 test.message = 'Test execution took too long.'

If the above modifier would be in file ExecutionTimeChecker.py, it could be used, for example, like this:

Specify modifier as a path when running tests. Maximum time is 42 seconds.

robot --prerebotmodifier path/to/ExecutionTimeChecker.py:42 tests.robot

Specify modifier as a name when using Rebot. Maximum time is 3.14 seconds.

ExecutionTimeChecker.py must be in the module search path.

rebot --prerebotmodifier ExecutionTimeChecker:3.14 output.xml

If more than one model modifier is needed, they can be specified by using the --prerebotmodifier option multiple times. When executing tests, it is
possible to use --prerunmodifier and --prerebotmodifier options together.

3.5.8 System log

Robot Framework has its own plain-text system log where it writes information about

Processed and skipped test data files
Imported test libraries, resource files and variable files
Executed test suites and test cases
Created outputs

http://robot-framework.readthedocs.org/en/master/autodoc/robot.result.html#module-robot.result.model
http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#module-robot.running.model

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 166/263

Normally users never need this information, but it can be useful when investigating problems with test libraries or Robot Framework itself. A system log
is not created by default, but it can be enabled by setting the environment variable ROBOT_SYSLOG_FILE so that it contains a path to the selected file.

A system log has the same log levels as a normal log file, with the exception that instead of FAIL it has the ERROR level. The threshold level to use can be
altered using the ROBOT_SYSLOG_LEVEL environment variable like shown in the example below. Possible unexpected errors and warnings are written into
the system log in addition to the console and the normal log file.

#!/bin/bash

export ROBOT_SYSLOG_FILE=/tmp/syslog.txt

export ROBOT_SYSLOG_LEVEL=DEBUG

robot --name Syslog_example path/to/tests

4 Extending Robot Framework

4.1 Creating test libraries
4.2 Remote library interface
4.3 Listener interface
4.4 Extending the Robot Framework Jar

4.1 Creating test libraries

Robot Framework's actual testing capabilities are provided by test libraries. There are many existing libraries, some of which are even bundled with the
core framework, but there is still often a need to create new ones. This task is not too complicated because, as this chapter illustrates, Robot Framework's
library API is simple and straightforward.

4.1.1 Introduction
Supported programming languages
Different test library APIs

4.1.2 Creating test library class or module
Test library names
Providing arguments to test libraries
Test library scope
Specifying library version
Specifying documentation format
Library acting as listener

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 167/263

4.1.3 Creating static keywords
What methods are considered keywords
Keyword names
Keyword tags
Keyword arguments
Default values to keywords
Variable number of arguments (*varargs)
Free keyword arguments (**kwargs)
Argument types
Using decorators
Embedding arguments into keyword names

4.1.4 Communicating with Robot Framework
Reporting keyword status
Stopping test execution
Continuing test execution despite of failures
Logging information
Programmatic logging APIs
Logging during library initialization
Returning values
Communication when using threads

4.1.5 Distributing test libraries
Documenting libraries
Testing libraries
Packaging libraries
Deprecating keywords

4.1.6 Dynamic library API
Getting keyword names
Running keywords
Getting keyword arguments
Getting keyword tags
Getting keyword documentation
Getting general library documentation
Named argument syntax with dynamic libraries
Free keyword arguments with dynamic libraries
Summary

4.1.7 Hybrid library API
Getting keyword names
Running keywords
Getting keyword arguments and documentation
Summary

4.1.8 Using Robot Framework's internal modules

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 168/263

Available APIs
Using BuiltIn library

4.1.9 Extending existing test libraries
Modifying original source code
Using inheritance
Using other libraries directly
Getting active library instance from Robot Framework
Libraries using dynamic or hybrid API

4.1.1 Introduction

Supported programming languages

Robot Framework itself is written with Python and naturally test libraries extending it can be implemented using the same language. When running the
framework on Jython, libraries can also be implemented using Java. Pure Python code works both on Python and Jython, assuming that it does not use
syntax or modules that are not available on Jython. When using Python, it is also possible to implement libraries with C using Python C API, although it
is often easier to interact with C code from Python libraries using ctypes module.

Libraries implemented using these natively supported languages can also act as wrappers to functionality implemented using other programming
languages. A good example of this approach is the Remote library, and another widely used approaches is running external scripts or tools as separate
processes.

Tip

Python Tutorial for Robot Framework Test Library Developers covers enough of Python language to get started writing test libraries using it. It also contains
a simple example library and test cases that you can execute and otherwise investigate on your machine.

Different test library APIs

Robot Framework has three different test library APIs.

Static API

The simplest approach is having a module (in Python) or a class (in Python or Java) with methods which map directly to keyword names.
Keywords also take the same arguments as the methods implementing them. Keywords report failures with exceptions, log by writing to
standard output and can return values using the return statement.

http://python.org/
http://jython.org/
http://java.com/
http://docs.python.org/c-api/index.html
http://docs.python.org/library/ctypes.html
http://code.google.com/p/robotframework/wiki/PythonTutorial

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 169/263

Dynamic API

Dynamic libraries are classes that implement a method to get the names of the keywords they implement, and another method to execute a
named keyword with given arguments. The names of the keywords to implement, as well as how they are executed, can be determined
dynamically at runtime, but reporting the status, logging and returning values is done similarly as in the static API.

Hybrid API

This is a hybrid between the static and the dynamic API. Libraries are classes with a method telling what keywords they implement, but
those keywords must be available directly. Everything else except discovering what keywords are implemented is similar as in the static
API.

All these APIs are described in this chapter. Everything is based on how the static API works, so its functions are discussed first. How the dynamic
library API and the hybrid library API differ from it is then discussed in sections of their own.

The examples in this chapter are mainly about using Python, but they should be easy to understand also for Java-only developers. In those few cases
where APIs have differences, both usages are explained with adequate examples.

4.1.2 Creating test library class or module

Test libraries can be implemented as Python modules and Python or Java classes.

Test library names

The name of a test library that is used when a library is imported is the same as the name of the module or class implementing it. For example, if you
have a Python module MyLibrary (that is, file MyLibrary.py), it will create a library with name MyLibrary. Similarly, a Java class YourLibrary, when it
is not in any package, creates a library with exactly that name.

Python classes are always inside a module. If the name of a class implementing a library is the same as the name of the module, Robot Framework allows
dropping the class name when importing the library. For example, class MyLib in MyLib.py file can be used as a library with just name MyLib. This also
works with submodules so that if, for example, parent.MyLib module has class MyLib, importing it using just parent.MyLib works. If the module name
and class name are different, libraries must be taken into use using both module and class names, such as mymodule.MyLibrary or
parent.submodule.MyLib.

Java classes in a non-default package must be taken into use with the full name. For example, class MyLib in com.mycompany.myproject package must
be imported with name com.mycompany.myproject.MyLib.

Note

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 170/263

Dropping class names with submodules works only in Robot Framework 2.8.4 and newer. With earlier versions you need to include also the class name like
parent.MyLib.MyLib.

Tip

If the library name is really long, for example when the Java package name is long, it is recommended to give the library a simpler alias by using the WITH
NAME syntax.

Providing arguments to test libraries

All test libraries implemented as classes can take arguments. These arguments are specified in the Setting table after the library name, and when Robot
Framework creates an instance of the imported library, it passes them to its constructor. Libraries implemented as a module cannot take any arguments, so
trying to use those results in an error.

The number of arguments needed by the library is the same as the number of arguments accepted by the library's constructor. The default values and
variable number of arguments work similarly as with keyword arguments, with the exception that there is no variable argument support for Java libraries.
Arguments passed to the library, as well as the library name itself, can be specified using variables, so it is possible to alter them, for example, from the
command line.

*** Settings ***

Library MyLibrary 10.0.0.1 8080

Library AnotherLib ${VAR}

Example implementations, first one in Python and second in Java, for the libraries used in the above example:

from example import Connection

class MyLibrary:

 def __init__(self, host, port=80):

 self._conn = Connection(host, int(port))

 def send_message(self, message):

 self._conn.send(message)

public class AnotherLib {

 private String setting = null;

 public AnotherLib(String setting) {

 setting = setting;

 }

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 171/263

 public void doSomething() {

 if setting.equals("42") {

 // do something ...

 }

 }

}

Test library scope

Libraries implemented as classes can have an internal state, which can be altered by keywords and with arguments to the constructor of the library.
Because the state can affect how keywords actually behave, it is important to make sure that changes in one test case do not accidentally affect other test
cases. These kind of dependencies may create hard-to-debug problems, for example, when new test cases are added and they use the library
inconsistently.

Robot Framework attempts to keep test cases independent from each other: by default, it creates new instances of test libraries for every test case.
However, this behavior is not always desirable, because sometimes test cases should be able to share a common state. Additionally, all libraries do not
have a state and creating new instances of them is simply not needed.

Test libraries can control when new libraries are created with a class attribute ROBOT_LIBRARY_SCOPE . This attribute must be a string and it can have the
following three values:

TEST CASE

A new instance is created for every test case. A possible suite setup and suite teardown share yet another instance. This is the default.
TEST SUITE

A new instance is created for every test suite. The lowest-level test suites, created from test case files and containing test cases, have instances of
their own, and higher-level suites all get their own instances for their possible setups and teardowns.

GLOBAL

Only one instance is created during the whole test execution and it is shared by all test cases and test suites. Libraries created from modules are
always global.

Note

If a library is imported multiple times with different arguments, a new instance is created every time regardless the scope.

When the TEST SUITE or GLOBAL scopes are used with test libraries that have a state, it is recommended that libraries have some special keyword for
cleaning up the state. This keyword can then be used, for example, in a suite setup or teardown to ensure that test cases in the next test suites can start
from a known state. For example, SeleniumLibrary uses the GLOBAL scope to enable using the same browser in different test cases without having to
reopen it, and it also has the Close All Browsers keyword for easily closing all opened browsers.

Example Python library using the TEST SUITE scope:

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 172/263

class ExampleLibrary:

 ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

 def __init__(self):

 self._counter = 0

 def count(self):

 self._counter += 1

 print self._counter

 def clear_counter(self):

 self._counter = 0

Example Java library using the GLOBAL scope:

public class ExampleLibrary {

 public static final String ROBOT_LIBRARY_SCOPE = "GLOBAL";

 private int counter = 0;

 public void count() {

 counter += 1;

 System.out.println(counter);

 }

 public void clearCounter() {

 counter = 0;

 }

}

Specifying library version

When a test library is taken into use, Robot Framework tries to determine its version. This information is then written into the syslog to provide
debugging information. Library documentation tool Libdoc also writes this information into the keyword documentations it generates.

Version information is read from attribute ROBOT_LIBRARY_VERSION, similarly as test library scope is read from ROBOT_LIBRARY_SCOPE. If
ROBOT_LIBRARY_VERSION does not exist, information is tried to be read from __version__ attribute. These attributes must be class or module attributes,
depending whether the library is implemented as a class or a module. For Java libraries the version attribute must be declared as static final.

An example Python module using __version__:

__version__ = '0.1'

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 173/263

def keyword():

 pass

A Java class using ROBOT_LIBRARY_VERSION:

public class VersionExample {

 public static final String ROBOT_LIBRARY_VERSION = "1.0.2";

 public void keyword() {

 }

}

Specifying documentation format

Starting from Robot Framework 2.7.5, library documentation tool Libdoc supports documentation in multiple formats. If you want to use something else
than Robot Framework's own documentation formatting, you can specify the format in the source code using ROBOT_LIBRARY_DOC_FORMAT attribute
similarly as scope and version are set with their own ROBOT_LIBRARY_* attributes.

The possible case-insensitive values for documentation format are ROBOT (default), HTML, TEXT (plain text), and reST (reStructuredText). Using the reST
format requires the docutils module to be installed when documentation is generated.

Setting the documentation format is illustrated by the following Python and Java examples that use reStructuredText and HTML formats, respectively.
See Documenting libraries section and Libdoc chapter for more information about documenting test libraries in general.

"""A library for *documentation format* demonstration purposes.

This documentation is created using reStructuredText__. Here is a link

to the only \`Keyword\`.

__ http://docutils.sourceforge.net

"""

ROBOT_LIBRARY_DOC_FORMAT = 'reST'

def keyword():

 """**Nothing** to see here. Not even in the table below.

 ======= ===== =====

 Table here has

 nothing to see.

 ======= ===== =====

 """

 pass

http://docutils.sourceforge.net/rst.html
https://pypi.python.org/pypi/docutils

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 174/263

/**

 * A library for <i>documentation format</i> demonstration purposes.

 *

 * This documentation is created using HTML.

 * Here is a link to the only `Keyword`.

 */

public class DocFormatExample {

 public static final String ROBOT_LIBRARY_DOC_FORMAT = "HTML";

 /**Nothing to see here. Not even in the table below.

 *

 * <table>

 * <tr><td>Table</td><td>here</td><td>has</td></tr>

 * <tr><td>nothing</td><td>to</td><td>see.</td></tr>

 * </table>

 */

 public void keyword() {

 }

}

Library acting as listener

Listener interface allows external listeners to get notifications about test execution. They are called, for example, when suites, tests, and keywords start
and end. Sometimes getting such notifications is also useful for test libraries, and they can register a custom listener by using ROBOT_LIBRARY_LISTENER
attribute. The value of this attribute should be an instance of the listener to use, possibly the library itself. For more information and examples see Test
libraries as listeners section.

4.1.3 Creating static keywords

What methods are considered keywords

When the static library API is used, Robot Framework uses reflection to find out what public methods the library class or module contains. It will
exclude all methods starting with an underscore (unless using a custom keyword name), and with Java libraries also methods implemented only in the
implicit base class java.lang.Object are excluded. All the methods that are not ignored are considered keywords. For example, the Python and Java
libraries below implement a single keyword My Keyword.

class MyLibrary:

 def my_keyword(self, arg):

 return self._helper_method(arg)

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 175/263

 def _helper_method(self, arg):

 return arg.upper()

public class MyLibrary {

 public String myKeyword(String arg) {

 return helperMethod(arg);

 }

 private String helperMethod(String arg) {

 return arg.toUpperCase();

 }

}

When implementing a library as a Python or Java class, also methods in possible base classes are considered keywords. When implementing a library as
a Python module, also possible functions imported into the module namespace become keywords. For example, if the module below would be used as a
library, it would contain keywords Example Keyword, Second Example and also Current Thread.

from threading import current_thread

def example_keyword():

 print 'Running in thread "%s".' % current_thread().name

def second_example():

 pass

A simple way to avoid imported functions becoming keywords is to only import modules (e.g. import threading) and use functions via the module
(e.g threading.current_thread()). Alternatively functions could be given an alias starting with an underscore at the import time (e.g. from
threading import current_thread as _current_thread).

A more explicit way to limit what functions become keywords is using the module level __all__ attribute that Python itself uses for similar purposes. If
it is used, only the listed functions can be keywords. For example, the library below implements only keywords Example Keyword and Second Example.

from threading import current_thread

__all__ = ['example_keyword', 'second_example']

def example_keyword():

 print 'Running in thread "%s".' % current_thread().name

def second_example():

 pass

https://docs.python.org/2/tutorial/modules.html#importing-from-a-package

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 176/263

def not_exposed_as_keyword():

 pass

Keyword names

Keyword names used in the test data are compared with method names to find the method implementing these keywords. Name comparison is case-
insensitive, and also spaces and underscores are ignored. For example, the method hello maps to the keyword name Hello, hello or even h e l l o.
Similarly both the do_nothing and doNothing methods can be used as the Do Nothing keyword in the test data.

Example Python library implemented as a module in the MyLibrary.py file:

def hello(name):

 print "Hello, %s!" % name

def do_nothing():

 pass

Example Java library implemented as a class in the MyLibrary.java file:

public class MyLibrary {

 public void hello(String name) {

 System.out.println("Hello, " + name + "!");

 }

 public void doNothing() {

 }

}

The example below illustrates how the example libraries above can be used. If you want to try this yourself, make sure that the library is in the module
search path.

*** Settings ***

Library MyLibrary

*** Test Cases ***

My Test

 Do Nothing

 Hello world

Using a custom keyword name

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 177/263

It is possible to expose a different name for a keyword instead of the default keyword name which maps to the method name. This can be accomplished
by setting the robot_name attribute on the method to the desired custom name. This is typically easiest done by using the robot.api.deco.keyword
decorator as follows:

from robot.api.deco import keyword

@keyword('Login Via User Panel')

def login(username, password):

 # ...

*** Test Cases ***

My Test

 Login Via User Panel ${username} ${password}

Using this decorator without an argument will have no effect on the exposed keyword name, but will still set the robot_name attribute. This allows
marking methods to expose as keywords without actually changing keyword names. Starting from Robot Framework 3.0.2, methods that have the
robot_name attribute also create keywords even if the method name itself would start with an underscore.

Setting a custom keyword name can also enable library keywords to accept arguments using Embedded Arguments syntax.

Keyword tags

Starting from Robot Framework 2.9, library keywords and user keywords can have tags. Library keywords can define them by setting the robot_tags
attribute on the method to a list of desired tags. The robot.api.deco.keyword decorator may be used as a shortcut for setting this attribute when used
as follows:

from robot.api.deco import keyword

@keyword(tags=['tag1', 'tag2'])

def login(username, password):

 # ...

@keyword('Custom name', ['tags', 'here'])

def another_example():

 # ...

Another option for setting tags is giving them on the last line of keyword documentation with Tags: prefix and separated by a comma. For example:

def login(username, password):

 """Log user in to SUT.

 Tags: tag1, tag2

 """

 # ...

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 178/263

Keyword arguments

With a static and hybrid API, the information on how many arguments a keyword needs is got directly from the method that implements it. Libraries
using the dynamic library API have other means for sharing this information, so this section is not relevant to them.

The most common and also the simplest situation is when a keyword needs an exact number of arguments. In this case, both the Python and Java
methods simply take exactly those arguments. For example, a method implementing a keyword with no arguments takes no arguments either, a method
implementing a keyword with one argument also takes one argument, and so on.

Example Python keywords taking different numbers of arguments:

def no_arguments():

 print "Keyword got no arguments."

def one_argument(arg):

 print "Keyword got one argument '%s'." % arg

def three_arguments(a1, a2, a3):

 print "Keyword got three arguments '%s', '%s' and '%s'." % (a1, a2, a3)

Note

A major limitation with Java libraries using the static library API is that they do not support the named argument syntax. If this is a blocker, it is possible to
either use Python or switch to the dynamic library API.

Default values to keywords

It is often useful that some of the arguments that a keyword uses have default values. Python and Java have different syntax for handling default values to
methods, and the natural syntax of these languages can be used when creating test libraries for Robot Framework.

Default values with Python

In Python a method has always exactly one implementation and possible default values are specified in the method signature. The syntax, which is
familiar to all Python programmers, is illustrated below:

def one_default(arg='default'):

 print "Argument has value %s" % arg

def multiple_defaults(arg1, arg2='default 1', arg3='default 2'):

 print "Got arguments %s, %s and %s" % (arg1, arg2, arg3)

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 179/263

The first example keyword above can be used either with zero or one arguments. If no arguments are given, arg gets the value default. If there is one
argument, arg gets that value, and calling the keyword with more than one argument fails. In the second example, one argument is always required, but
the second and the third one have default values, so it is possible to use the keyword with one to three arguments.

*** Test Cases ***

Defaults

 One Default

 One Default argument

 Multiple Defaults required arg

 Multiple Defaults required arg optional

 Multiple Defaults required arg optional 1 optional 2

Default values with Java

In Java one method can have several implementations with different signatures. Robot Framework regards all these implementations as one keyword,
which can be used with different arguments. This syntax can thus be used to provide support for the default values. This is illustrated by the example
below, which is functionally identical to the earlier Python example:

public void oneDefault(String arg) {

 System.out.println("Argument has value " + arg);

}

public void oneDefault() {

 oneDefault("default");

}

public void multipleDefaults(String arg1, String arg2, String arg3) {

 System.out.println("Got arguments " + arg1 + ", " + arg2 + " and " + arg3);

}

public void multipleDefaults(String arg1, String arg2) {

 multipleDefaults(arg1, arg2, "default 2");

}

public void multipleDefaults(String arg1) {

 multipleDefaults(arg1, "default 1");

}

Variable number of arguments (*varargs)

Robot Framework supports also keywords that take any number of arguments. Similarly as with the default values, the actual syntax to use in test
libraries is different in Python and Java.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 180/263

Variable number of arguments with Python

Python supports methods accepting any number of arguments. The same syntax works in libraries and, as the examples below show, it can also be
combined with other ways of specifying arguments:

def any_arguments(*args):

 print "Got arguments:"

 for arg in args:

 print arg

def one_required(required, *others):

 print "Required: %s\nOthers:" % required

 for arg in others:

 print arg

def also_defaults(req, def1="default 1", def2="default 2", *rest):

 print req, def1, def2, rest

*** Test Cases ***

Varargs

 Any Arguments

 Any Arguments argument

 Any Arguments arg 1 arg 2 arg 3 arg 4 arg 5

 One Required required arg

 One Required required arg another arg yet another

 Also Defaults required

 Also Defaults required these two have defaults

 Also Defaults 1 2 3 4 5 6

Variable number of arguments with Java

Robot Framework supports Java varargs syntax for defining variable number of arguments. For example, the following two keywords are functionally
identical to the above Python examples with same names:

public void anyArguments(String... varargs) {

 System.out.println("Got arguments:");

 for (String arg: varargs) {

 System.out.println(arg);

 }

}

public void oneRequired(String required, String... others) {

 System.out.println("Required: " + required + "\nOthers:");

 for (String arg: others) {

 System.out.println(arg);

http://docs.oracle.com/javase/1.5.0/docs/guide/language/varargs.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 181/263

 }

}

It is also possible to use variable number of arguments also by having an array or, starting from Robot Framework 2.8.3, java.util.List as the last
argument, or second to last if free keyword arguments (**kwargs) are used. This is illustrated by the following examples that are functionally identical to
the previous ones:

public void anyArguments(String[] varargs) {

 System.out.println("Got arguments:");

 for (String arg: varargs) {

 System.out.println(arg);

 }

}

public void oneRequired(String required, List<String> others) {

 System.out.println("Required: " + required + "\nOthers:");

 for (String arg: others) {

 System.out.println(arg);

 }

}

Note

Only java.util.List is supported as varargs, not any of its sub types.

The support for variable number of arguments with Java keywords has one limitation: it works only when methods have one signature. Thus it is not
possible to have Java keywords with both default values and varargs. In addition to that, only Robot Framework 2.8 and newer support using varargs
with library constructors.

Free keyword arguments (**kwargs)

Robot Framework 2.8 added the support for free keyword arguments using Python's **kwargs syntax. How to use the syntax in the test data is
discussed in Free keyword arguments section under Creating test cases. In this section we take a look at how to actually use it in custom test libraries.

Free keyword arguments with Python

If you are already familiar how kwargs work with Python, understanding how they work with Robot Framework test libraries is rather simple. The
example below shows the basic functionality:

def example_keyword(**stuff):

 for name, value in stuff.items():

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 182/263

 print name, value

*** Test Cases ***

Keyword Arguments

 Example Keyword hello=world # Logs 'hello world'.

 Example Keyword foo=1 bar=42 # Logs 'foo 1' and 'bar 42'.

Basically, all arguments at the end of the keyword call that use the named argument syntax name=value, and that do not match any other arguments, are
passed to the keyword as kwargs. To avoid using a literal value like foo=quux as a free keyword argument, it must be escaped like foo\=quux.

The following example illustrates how normal arguments, varargs, and kwargs work together:

def various_args(arg, *varargs, **kwargs):

 print 'arg:', arg

 for value in varargs:

 print 'vararg:', value

 for name, value in sorted(kwargs.items()):

 print 'kwarg:', name, value

*** Test Cases ***

Positional

 Various Args hello world # Logs 'arg: hello' and 'vararg: world'.

Named

 Various Args arg=value # Logs 'arg: value'.

Kwargs

 Various Args a=1 b=2 c=3 # Logs 'kwarg: a 1', 'kwarg: b 2' and 'kwarg: c 3'.

 Various Args c=3 a=1 b=2 # Same as above. Order does not matter.

Positional and kwargs

 Various Args 1 2 kw=3 # Logs 'arg: 1', 'vararg: 2' and 'kwarg: kw 3'.

Named and kwargs

 Various Args arg=value hello=world # Logs 'arg: value' and 'kwarg: hello world'.

 Various Args hello=world arg=value # Same as above. Order does not matter.

For a real world example of using a signature exactly like in the above example, see Run Process and Start Keyword keywords in the Process library.

Free keyword arguments with Java

Starting from Robot Framework 2.8.3, also Java libraries support the free keyword arguments syntax. Java itself has no kwargs syntax, but keywords can
have java.util.Map as the last argument to specify that they accept kwargs.

http://robotframework.org/robotframework/latest/libraries/Process.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 183/263

If a Java keyword accepts kwargs, Robot Framework will automatically pack all arguments in name=value syntax at the end of the keyword call into a
Map and pass it to the keyword. For example, following example keywords can be used exactly like the previous Python examples:

public void exampleKeyword(Map<String, String> stuff):

 for (String key: stuff.keySet())

 System.out.println(key + " " + stuff.get(key));

public void variousArgs(String arg, List<String> varargs, Map<String, Object> kwargs):

 System.out.println("arg: " + arg);

 for (String varg: varargs)

 System.out.println("vararg: " + varg);

 for (String key: kwargs.keySet())

 System.out.println("kwarg: " + key + " " + kwargs.get(key));

Note

The type of the kwargs argument must be exactly java.util.Map, not any of its sub types.

Note

Similarly as with the varargs support, a keyword supporting kwargs cannot have more than one signature.

Argument types

Normally keyword arguments come to Robot Framework as strings. If keywords require some other types, it is possible to either use variables or convert
strings to required types inside keywords. With Java keywords base types are also coerced automatically.

Argument types with Python

Because arguments in Python do not have any type information, there is no possibility to automatically convert strings to other types when using Python
libraries. Calling a Python method implementing a keyword with a correct number of arguments always succeeds, but the execution fails later if the
arguments are incompatible. Luckily with Python it is simple to convert arguments to suitable types inside keywords:

def connect_to_host(address, port=25):

 port = int(port)

 # ...

Argument types with Java

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 184/263

Arguments to Java methods have types, and all the base types are handled automatically. This means that arguments that are normal strings in the test
data are coerced to correct type at runtime. The types that can be coerced are:

integer types (byte, short, int, long)
floating point types (float and double)
the boolean type
object versions of the above types e.g. java.lang.Integer

The coercion is done for arguments that have the same or compatible type across all the signatures of the keyword method. In the following example, the
conversion can be done for keywords doubleArgument and compatibleTypes, but not for conflictingTypes.

public void doubleArgument(double arg) {}

public void compatibleTypes(String arg1, Integer arg2) {}

public void compatibleTypes(String arg2, Integer arg2, Boolean arg3) {}

public void conflictingTypes(String arg1, int arg2) {}

public void conflictingTypes(int arg1, String arg2) {}

The coercion works with the numeric types if the test data has a string containing a number, and with the boolean type the data must contain either string
true or false. Coercion is only done if the original value was a string from the test data, but it is of course still possible to use variables containing
correct types with these keywords. Using variables is the only option if keywords have conflicting signatures.

*** Test Cases ***

Coercion

 Double Argument 3.14

 Double Argument 2e16

 Compatible Types Hello, world! 1234

 Compatible Types Hi again! -10 true

No Coercion

 Double Argument ${3.14}

 Conflicting Types 1 ${2} # must use variables

 Conflicting Types ${1} 2

Starting from Robot Framework 2.8, argument type coercion works also with Java library constructors.

Using decorators

When writing static keywords, it is sometimes useful to modify them with Python's decorators. However, decorators modify function signatures, and can
confuse Robot Framework's introspection when determining which arguments keywords accept. This is especially problematic when creating library

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 185/263

documentation with Libdoc and when using RIDE. To avoid this issue, either do not use decorators, or use the handy decorator module to create
signature-preserving decorators.

Embedding arguments into keyword names

Library keywords can also accept arguments which are passed using Embedded Argument syntax. The robot.api.deco.keyword decorator can be
used to create a custom keyword name for the keyword which includes the desired syntax.

from robot.api.deco import keyword

@keyword('Add ${quantity:\d+} Copies Of ${item} To Cart')

def add_copies_to_cart(quantity, item):

 # ...

*** Test Cases ***

My Test

 Add 7 Copies Of Coffee To Cart

4.1.4 Communicating with Robot Framework

After a method implementing a keyword is called, it can use any mechanism to communicate with the system under test. It can then also send messages
to Robot Framework's log file, return information that can be saved to variables and, most importantly, report if the keyword passed or not.

Reporting keyword status

Reporting keyword status is done simply using exceptions. If an executed method raises an exception, the keyword status is FAIL, and if it returns
normally, the status is PASS.

The error message shown in logs, reports and the console is created from the exception type and its message. With generic exceptions (for example,
AssertionError, Exception, and RuntimeError), only the exception message is used, and with others, the message is created in the format
ExceptionType: Actual message.

Starting from Robot Framework 2.8.2, it is possible to avoid adding the exception type as a prefix to failure message also with non generic exceptions.
This is done by adding a special ROBOT_SUPPRESS_NAME attribute with value True to your exception.

Python:

class MyError(RuntimeError):

 ROBOT_SUPPRESS_NAME = True

https://github.com/robotframework/RIDE
http://micheles.googlecode.com/hg/decorator/documentation.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 186/263

Java:

public class MyError extends RuntimeException {

 public static final boolean ROBOT_SUPPRESS_NAME = true;

}

In all cases, it is important for the users that the exception message is as informative as possible.

HTML in error messages

Starting from Robot Framework 2.8, it is also possible have HTML formatted error messages by starting the message with text *HTML*:

raise AssertionError("*HTML* Robot Framework rulez!!")

This method can be used both when raising an exception in a library, like in the example above, and when users provide an error message in the test data.

Cutting long messages automatically

If the error message is longer than 40 lines, it will be automatically cut from the middle to prevent reports from getting too long and difficult to read. The
full error message is always shown in the log message of the failed keyword.

Tracebacks

The traceback of the exception is also logged using DEBUG log level. These messages are not visible in log files by default because they are very rarely
interesting for normal users. When developing libraries, it is often a good idea to run tests using --loglevel DEBUG.

Stopping test execution

It is possible to fail a test case so that the whole test execution is stopped. This is done simply by having a special ROBOT_EXIT_ON_FAILURE attribute
with True value set on the exception raised from the keyword. This is illustrated in the examples below.

Python:

class MyFatalError(RuntimeError):

 ROBOT_EXIT_ON_FAILURE = True

Java:

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 187/263

public class MyFatalError extends RuntimeException {

 public static final boolean ROBOT_EXIT_ON_FAILURE = true;

}

Continuing test execution despite of failures

It is possible to continue test execution even when there are failures. The way to signal this from test libraries is adding a special
ROBOT_CONTINUE_ON_FAILURE attribute with True value to the exception used to communicate the failure. This is demonstrated by the examples below.

Python:

class MyContinuableError(RuntimeError):

 ROBOT_CONTINUE_ON_FAILURE = True

Java:

public class MyContinuableError extends RuntimeException {

 public static final boolean ROBOT_CONTINUE_ON_FAILURE = true;

}

Logging information

Exception messages are not the only way to give information to the users. In addition to them, methods can also send messages to log files simply by
writing to the standard output stream (stdout) or to the standard error stream (stderr), and they can even use different log levels. Another, and often better,
logging possibility is using the programmatic logging APIs.

By default, everything written by a method into the standard output is written to the log file as a single entry with the log level INFO. Messages written
into the standard error are handled similarly otherwise, but they are echoed back to the original stderr after the keyword execution has finished. It is thus
possible to use the stderr if you need some messages to be visible on the console where tests are executed.

Using log levels

To use other log levels than INFO, or to create several messages, specify the log level explicitly by embedding the level into the message in the format
LEVEL Actual log message, where *LEVEL* must be in the beginning of a line and LEVEL is one of the available logging levels TRACE, DEBUG,
INFO, WARN, ERROR and HTML.

Errors and warnings

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 188/263

Messages with ERROR or WARN level are automatically written to the console and a separate Test Execution Errors section in the log files. This makes
these messages more visible than others and allows using them for reporting important but non-critical problems to users.

Note

In Robot Framework 2.9, new functionality was added to automatically add ERRORs logged by keywords to the Test Execution Errors section.

Logging HTML

Everything normally logged by the library will be converted into a format that can be safely represented as HTML. For example, foo will be
displayed in the log exactly like that and not as foo. If libraries want to use formatting, links, display images and so on, they can use a special pseudo log
level HTML. Robot Framework will write these messages directly into the log with the INFO level, so they can use any HTML syntax they want. Notice
that this feature needs to be used with care, because, for example, one badly placed </table> tag can ruin the log file quite badly.

When using the public logging API, various logging methods have optional html attribute that can be set to True to enable logging in HTML format.

Timestamps

By default messages logged via the standard output or error streams get their timestamps when the executed keyword ends. This means that the
timestamps are not accurate and debugging problems especially with longer running keywords can be problematic.

Keywords have a possibility to add an accurate timestamp to the messages they log if there is a need. The timestamp must be given as milliseconds since
the Unix epoch and it must be placed after the log level separated from it with a colon:

INFO:1308435758660 Message with timestamp

HTML:1308435758661 HTML message with timestamp

As illustrated by the examples below, adding the timestamp is easy both using Python and Java. If you are using Python, it is, however, even easier to get
accurate timestamps using the programmatic logging APIs. A big benefit of adding timestamps explicitly is that this approach works also with the remote
library interface.

Python:

import time

def example_keyword():

 print '*INFO:%d* Message with timestamp' % (time.time()*1000)

Java:

http://en.wikipedia.org/wiki/Unix_epoch

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 189/263

public void exampleKeyword() {

 System.out.println("*INFO:" + System.currentTimeMillis() + "* Message with timestamp");

}

Logging to console

If libraries need to write something to the console they have several options. As already discussed, warnings and all messages written to the standard
error stream are written both to the log file and to the console. Both of these options have a limitation that the messages end up to the console only after
the currently executing keyword finishes. A bonus is that these approaches work both with Python and Java based libraries.

Another option, that is only available with Python, is writing messages to sys.__stdout__ or sys.__stderr__. When using this approach, messages
are written to the console immediately and are not written to the log file at all:

import sys

def my_keyword(arg):

 sys.__stdout__.write('Got arg %s\n' % arg)

The final option is using the public logging API:

from robot.api import logger

def log_to_console(arg):

 logger.console('Got arg %s' % arg)

def log_to_console_and_log_file(arg):

 logger.info('Got arg %s' % arg, also_console=True)

Logging example

In most cases, the INFO level is adequate. The levels below it, DEBUG and TRACE, are useful for writing debug information. These messages are normally
not shown, but they can facilitate debugging possible problems in the library itself. The WARN or ERROR level can be used to make messages more visible
and HTML is useful if any kind of formatting is needed.

The following examples clarify how logging with different levels works. Java programmers should regard the code print 'message' as pseudocode
meaning System.out.println("message");.

print 'Hello from a library.'

print '*WARN* Warning from a library.'

print '*ERROR* Something unexpected happen that may indicate a problem in the test.'

print '*INFO* Hello again!'

print 'This will be part of the previous message.'

print '*INFO* This is a new message.'

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 190/263

print '*INFO* This is normal text.'

print '*HTML* This is bold.'

print '*HTML* Robot Framework'

16:18:42.123 INFO Hello from a library.

16:18:42.123 WARN Warning from a library.

16:18:42.123 ERROR Something unexpected happen that may indicate a

problem in the test.

16:18:42.123 INFO Hello again!

 This will be part of the previous message.

16:18:42.123 INFO This is a new message.

16:18:42.123 INFO This is normal text.

16:18:42.123 INFO This is bold.

16:18:42.123 INFO Robot Framework

Programmatic logging APIs

Programmatic APIs provide somewhat cleaner way to log information than using the standard output and error streams. Currently these interfaces are
available only to Python bases test libraries.

Public logging API

Robot Framework has a Python based logging API for writing messages to the log file and to the console. Test libraries can use this API like
logger.info('My message') instead of logging through the standard output like print '*INFO* My message'. In addition to a programmatic
interface being a lot cleaner to use, this API has a benefit that the log messages have accurate timestamps.

The public logging API is thoroughly documented as part of the API documentation at https://robot-framework.readthedocs.org. Below is a simple usage
example:

from robot.api import logger

def my_keyword(arg):

 logger.debug('Got argument %s' % arg)

 do_something()

 logger.info('<i>This</i> is a boring example', html=True)

 logger.console('Hello, console!')

An obvious limitation is that test libraries using this logging API have a dependency to Robot Framework. Before version 2.8.7 Robot also had to be
running for the logging to work. Starting from Robot Framework 2.8.7 if Robot is not running the messages are redirected automatically to Python's
standard logging module.

http://robotframework.org/
https://robot-framework.readthedocs.org/en/latest/autodoc/robot.api.html#module-robot.api.logger
https://robot-framework.readthedocs.org/
http://docs.python.org/library/logging.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 191/263

Using Python's standard logging module

In addition to the new public logging API, Robot Framework offers a built-in support to Python's standard logging module. This works so that all
messages that are received by the root logger of the module are automatically propagated to Robot Framework's log file. Also this API produces log
messages with accurate timestamps, but logging HTML messages or writing messages to the console are not supported. A big benefit, illustrated also by
the simple example below, is that using this logging API creates no dependency to Robot Framework.

import logging

def my_keyword(arg):

 logging.debug('Got argument %s' % arg)

 do_something()

 logging.info('This is a boring example')

The logging module has slightly different log levels than Robot Framework. Its levels DEBUG, INFO, WARNING and ERROR are mapped directly to the
matching Robot Framework log levels, and CRITICAL is mapped to ERROR. Custom log levels are mapped to the closest standard level smaller than the
custom level. For example, a level between INFO and WARNING is mapped to Robot Framework's INFO level.

Logging during library initialization

Libraries can also log during the test library import and initialization. These messages do not appear in the log file like the normal log messages, but are
instead written to the syslog. This allows logging any kind of useful debug information about the library initialization. Messages logged using the WARN or
ERROR levels are also visible in the test execution errors section in the log file.

Logging during the import and initialization is possible both using the standard output and error streams and the programmatic logging APIs. Both of
these are demonstrated below.

Java library logging via stdout during initialization:

public class LoggingDuringInitialization {

 public LoggingDuringInitialization() {

 System.out.println("*INFO* Initializing library");

 }

 public void keyword() {

 // ...

 }

}

Python library logging using the logging API during import:

http://docs.python.org/library/logging.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 192/263

from robot.api import logger

logger.debug("Importing library")

def keyword():

 # ...

Note

If you log something during initialization, i.e. in Python __init__ or in Java constructor, the messages may be logged multiple times depending on the test
library scope.

Returning values

The final way for keywords to communicate back to the core framework is returning information retrieved from the system under test or generated by
some other means. The returned values can be assigned to variables in the test data and then used as inputs for other keywords, even from different test
libraries.

Values are returned using the return statement both from the Python and Java methods. Normally, one value is assigned into one scalar variable, as
illustrated in the example below. This example also illustrates that it is possible to return any objects and to use extended variable syntax to access object
attributes.

from mymodule import MyObject

def return_string():

 return "Hello, world!"

def return_object(name):

 return MyObject(name)

*** Test Cases ***

Returning one value

 ${string} = Return String

 Should Be Equal ${string} Hello, world!

 ${object} = Return Object Robot

 Should Be Equal ${object.name} Robot

Keywords can also return values so that they can be assigned into several scalar variables at once, into a list variable, or into scalar variables and a list
variable. All these usages require that returned values are Python lists or tuples or in Java arrays, Lists, or Iterators.

def return_two_values():

 return 'first value', 'second value'

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 193/263

def return_multiple_values():

 return ['a', 'list', 'of', 'strings']

*** Test Cases ***

Returning multiple values

 ${var1} ${var2} = Return Two Values

 Should Be Equal ${var1} first value

 Should Be Equal ${var2} second value

 @{list} = Return Two Values

 Should Be Equal @{list}[0] first value

 Should Be Equal @{list}[1] second value

 ${s1} ${s2} @{li} = Return Multiple Values

 Should Be Equal ${s1} ${s2} a list

 Should Be Equal @{li}[0] @{li}[1] of strings

Communication when using threads

If a library uses threads, it should generally communicate with the framework only from the main thread. If a worker thread has, for example, a failure to
report or something to log, it should pass the information first to the main thread, which can then use exceptions or other mechanisms explained in this
section for communication with the framework.

This is especially important when threads are run on background while other keywords are running. Results of communicating with the framework in
that case are undefined and can in the worst case cause a crash or a corrupted output file. If a keyword starts something on background, there should be
another keyword that checks the status of the worker thread and reports gathered information accordingly.

Messages logged by non-main threads using the normal logging methods from programmatic logging APIs are silently ignored.

There is also a BackgroundLogger in separate robotbackgroundlogger project, with a similar API as the standard robot.api.logger. Normal logging
methods will ignore messages from other than main thread, but the BackgroundLogger will save the background messages so that they can be later
logged to Robot's log.

4.1.5 Distributing test libraries

Documenting libraries

A test library without documentation about what keywords it contains and what those keywords do is rather useless. To ease maintenance, it is highly
recommended that library documentation is included in the source code and generated from it. Basically, that means using docstrings with Python and
Javadoc with Java, as in the examples below.

class MyLibrary:

 """This is an example library with some documentation."""

https://github.com/robotframework/robotbackgroundlogger
http://www.python.org/dev/peps/pep-0257
http://java.sun.com/j2se/javadoc/writingdoccomments/index.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 194/263

 def keyword_with_short_documentation(self, argument):

 """This keyword has only a short documentation"""

 pass

 def keyword_with_longer_documentation(self):

 """First line of the documentation is here.

 Longer documentation continues here and it can contain

 multiple lines or paragraphs.

 """

 pass

/**

 * This is an example library with some documentation.

 */

public class MyLibrary {

 /**

 * This keyword has only a short documentation

 */

 public void keywordWithShortDocumentation(String argument) {

 }

 /**

 * First line of the documentation is here.

 *

 * Longer documentation continues here and it can contain

 * multiple lines or paragraphs.

 */

 public void keywordWithLongerDocumentation() {

 }

}

Both Python and Java have tools for creating an API documentation of a library documented as above. However, outputs from these tools can be slightly
technical for some users. Another alternative is using Robot Framework's own documentation tool Libdoc. This tool can create a library documentation
from both Python and Java libraries using the static library API, such as the ones above, but it also handles libraries using the dynamic library API and
hybrid library API.

The first line of a keyword documentation is used for a special purpose and should contain a short overall description of the keyword. It is used as a short
documentation, for example as a tool tip, by Libdoc and also shown in the test logs. However, the latter does not work with Java libraries using the static
API, because their documentations are lost in compilation and not available at runtime.

By default documentation is considered to follow Robot Framework's documentation formatting rules. This simple format allows often used styles like
bold and _italic_, tables, lists, links, etc. Starting from Robot Framework 2.7.5, it is possible to use also HTML, plain text and reStructuredText

http://docutils.sourceforge.net/rst.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 195/263

formats. See Specifying documentation format section for information how to set the format in the library source code and Libdoc chapter for more
information about the formats in general.

Note

If you want to use non-ASCII characters in the documentation of Python libraries, you must either use UTF-8 as your source code encoding or create
docstrings as Unicode.

Testing libraries

Any non-trivial test library needs to be thoroughly tested to prevent bugs in them. Of course, this testing should be automated to make it easy to rerun
tests when libraries are changed.

Both Python and Java have excellent unit testing tools, and they suite very well for testing libraries. There are no major differences in using them for this
purpose compared to using them for some other testing. The developers familiar with these tools do not need to learn anything new, and the developers
not familiar with them should learn them anyway.

It is also easy to use Robot Framework itself for testing libraries and that way have actual end-to-end acceptance tests for them. There are plenty of useful
keywords in the BuiltIn library for this purpose. One worth mentioning specifically is Run Keyword And Expect Error, which is useful for testing that
keywords report errors correctly.

Whether to use a unit- or acceptance-level testing approach depends on the context. If there is a need to simulate the actual system under test, it is often
easier on the unit level. On the other hand, acceptance tests ensure that keywords do work through Robot Framework. If you cannot decide, of course it
is possible to use both the approaches.

Packaging libraries

After a library is implemented, documented, and tested, it still needs to be distributed to the users. With simple libraries consisting of a single file, it is
often enough to ask the users to copy that file somewhere and set the module search path accordingly. More complicated libraries should be packaged to
make the installation easier.

Since libraries are normal programming code, they can be packaged using normal packaging tools. With Python, good options include distutils,
contained by Python's standard library, and the newer setuptools. A benefit of these tools is that library modules are installed into a location that is
automatically in the module search path.

When using Java, it is natural to package libraries into a JAR archive. The JAR package must be put into the module search path before running tests,
but it is easy to create a start-up script that does that automatically.

http://www.python.org/dev/peps/pep-0263
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://docs.python.org/dist/dist.html
http://peak.telecommunity.com/DevCenter/setuptools

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 196/263

Deprecating keywords

Sometimes there is a need to replace existing keywords with new ones or remove them altogether. Just informing the users about the change may not
always be enough, and it is more efficient to get warnings at runtime. To support that, Robot Framework has a capability to mark keywords deprecated.
This makes it easier to find old keywords from the test data and remove or replace them.

Keywords can be deprecated by starting their documentation with text *DEPRECATED, case-sensitive, and having a closing * also on the first line of the
documentation. For example, *DEPRECATED*, *DEPRECATED.*, and *DEPRECATED in version 1.5.* are all valid markers.

When a deprecated keyword is executed, a deprecation warning is logged and the warning is shown also in the console and the Test Execution Errors
section in log files. The deprecation warning starts with text Keyword '<name>' is deprecated. and has rest of the short documentation after the
deprecation marker, if any, afterwards. For example, if the following keyword is executed, there will be a warning like shown below in the log file.

def example_keyword(argument):

 """*DEPRECATED!!* Use keyword `Other Keyword` instead.

 This keyword does something to given ``argument`` and returns results.

 """

 return do_something(argument)

20080911 16:00:22.650 WARN Keyword 'SomeLibrary.Example Keyword' is

deprecated. Use keyword `Other Keyword`

instead.

This deprecation system works with most test libraries and also with user keywords. The only exception are keywords implemented in a Java test library
that uses the static library interface because their documentation is not available at runtime. With such keywords, it possible to use user keywords as
wrappers and deprecate them.

Note

Prior to Robot Framework 2.9 the documentation must start with *DEPRECATED* exactly without any extra content before the closing *.

4.1.6 Dynamic library API

The dynamic API is in most ways similar to the static API. For example, reporting the keyword status, logging, and returning values works exactly the
same way. Most importantly, there are no differences in importing dynamic libraries and using their keywords compared to other libraries. In other words,
users do not need to know what APIs their libraries use.

Only differences between static and dynamic libraries are how Robot Framework discovers what keywords a library implements, what arguments and
documentation these keywords have, and how the keywords are actually executed. With the static API, all this is done using reflection (except for the

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 197/263

documentation of Java libraries), but dynamic libraries have special methods that are used for these purposes.

One of the benefits of the dynamic API is that you have more flexibility in organizing your library. With the static API, you must have all keywords in
one class or module, whereas with the dynamic API, you can, for example, implement each keyword as a separate class. This use case is not so
important with Python, though, because its dynamic capabilities and multi-inheritance already give plenty of flexibility, and there is also possibility to use
the hybrid library API.

Another major use case for the dynamic API is implementing a library so that it works as proxy for an actual library possibly running on some other
process or even on another machine. This kind of a proxy library can be very thin, and because keyword names and all other information is got
dynamically, there is no need to update the proxy when new keywords are added to the actual library.

This section explains how the dynamic API works between Robot Framework and dynamic libraries. It does not matter for Robot Framework how these
libraries are actually implemented (for example, how calls to the run_keyword method are mapped to a correct keyword implementation), and many
different approaches are possible. However, if you use Java, you may want to examine the JavaLibCore project before implementing your own system.
This collection of reusable tools supports several ways of creating keywords, and it is likely that it already has a mechanism that suites your needs.
Python users may also find the similar PythonLibCore project useful.

Getting keyword names

Dynamic libraries tell what keywords they implement with the get_keyword_names method. The method also has the alias getKeywordNames that is
recommended when using Java. This method cannot take any arguments, and it must return a list or array of strings containing the names of the
keywords that the library implements.

If the returned keyword names contain several words, they can be returned separated with spaces or underscores, or in the camelCase format. For
example, ['first keyword', 'second keyword'], ['first_keyword', 'second_keyword'], and ['firstKeyword', 'secondKeyword']
would all be mapped to keywords First Keyword and Second Keyword.

Dynamic libraries must always have this method. If it is missing, or if calling it fails for some reason, the library is considered a static library.

Marking methods to expose as keywords

If a dynamic library should contain both methods which are meant to be keywords and methods which are meant to be private helper methods, it may be
wise to mark the keyword methods as such so it is easier to implement get_keyword_names. The robot.api.deco.keyword decorator allows an easy
way to do this since it creates a custom robot_name attribute on the decorated method. This allows generating the list of keywords just by checking for
the robot_name attribute on every method in the library during get_keyword_names. See Using a custom keyword name for more about this decorator.

from robot.api.deco import keyword

class DynamicExample:

https://github.com/robotframework/JavalibCore
https://github.com/robotframework/PythonLibCore

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 198/263

 def get_keyword_names(self):

 return [name for name in dir(self) if hasattr(getattr(self, name), 'robot_name')]

 def helper_method(self):

 # ...

 @keyword

 def keyword_method(self):

 # ...

Running keywords

Dynamic libraries have a special run_keyword (alias runKeyword) method for executing their keywords. When a keyword from a dynamic library is
used in the test data, Robot Framework uses the library's run_keyword method to get it executed. This method takes two or three arguments. The first
argument is a string containing the name of the keyword to be executed in the same format as returned by get_keyword_names. The second argument is
a list or array of arguments given to the keyword in the test data.

The optional third argument is a dictionary (map in Java) that gets possible free keyword arguments (**kwargs) passed to the keyword. See free
keyword arguments with dynamic libraries section for more details about using kwargs with dynamic test libraries.

After getting keyword name and arguments, the library can execute the keyword freely, but it must use the same mechanism to communicate with the
framework as static libraries. This means using exceptions for reporting keyword status, logging by writing to the standard output or by using provided
logging APIs, and using the return statement in run_keyword for returning something.

Every dynamic library must have both the get_keyword_names and run_keyword methods but rest of the methods in the dynamic API are optional.
The example below shows a working, albeit trivial, dynamic library implemented in Python.

class DynamicExample:

 def get_keyword_names(self):

 return ['first keyword', 'second keyword']

 def run_keyword(self, name, args):

 print "Running keyword '%s' with arguments %s." % (name, args)

Getting keyword arguments

If a dynamic library only implements the get_keyword_names and run_keyword methods, Robot Framework does not have any information about the
arguments that the implemented keywords need. For example, both First Keyword and Second Keyword in the example above could be used with any
number of arguments. This is problematic, because most real keywords expect a certain number of keywords, and under these circumstances they would
need to check the argument counts themselves.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 199/263

Dynamic libraries can tell Robot Framework what arguments the keywords it implements expect by using the get_keyword_arguments (alias
getKeywordArguments) method. This method takes the name of a keyword as an argument, and returns a list or array of strings containing the
arguments accepted by that keyword.

Similarly as static keywords, dynamic keywords can require any number of arguments, have default values, and accept variable number of arguments
and free keyword arguments. The syntax for how to represent all these different variables is explained in the following table. Note that the examples use
Python syntax for lists, but Java developers should use Java lists or String arrays instead.

Representing different arguments with get_keyword_arguments

Expected arguments How to represent Examples Limits
(min/max)

No arguments Empty list. [] 0/0
One or more argument List of strings containing argument names. ['one_argument']

['a1', 'a2', 'a3']

1/1
3/3

Default values for arguments Default values separated from names with =.
Default values are always considered to be strings.

['arg=default value']

['a', 'b=1', 'c=2']

0/1
1/3

Variable number of arguments
(varargs)

Last (or second last with kwargs) argument has *
before its name.

['*varargs']

['a', 'b=42', '*rest']

0/any
1/any

Free keyword arguments (kwargs) Last arguments has ** before its name. ['**kwargs']

['a', 'b=42', '**kws']

['*varargs', '**kwargs']

0/0
1/2
0/any

When the get_keyword_arguments is used, Robot Framework automatically calculates how many positional arguments the keyword requires and does
it support free keyword arguments or not. If a keyword is used with invalid arguments, an error occurs and run_keyword is not even called.

The actual argument names and default values that are returned are also important. They are needed for named argument support and the Libdoc tool
needs them to be able to create a meaningful library documentation.

If get_keyword_arguments is missing or returns None or null for a certain keyword, that keyword gets an argument specification accepting all
arguments. This automatic argument spec is either [*varargs, **kwargs] or [*varargs], depending does run_keyword support kwargs by having
three arguments or not.

Getting keyword tags

Starting from Robot Framework 3.0.2, dynamic libraries can report keyword tags by using the get_keyword_tags method (alias getKeywordTags). It
gets a keyword name as an argument, and should return corresponding tags as a list of strings.

Alternatively it is possible to specify tags on the last row of the documentation returned by the get_keyword_documentation method discussed below.
This requires starting the last row with Tags: and listing tags after it like Tags: first tag, second, third. This approach works also with Robot

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 200/263

Framework versions prior to 3.0.2.

Tip

The get_keyword_tags method is guaranteed to be called before the get_keyword_documentation method. This makes it easy to embed tags into the
documentation only if the get_keyword_tags method is not called.

Getting keyword documentation

If dynamic libraries want to provide keyword documentation, they can implement the get_keyword_documentation method (alias
getKeywordDocumentation). It takes a keyword name as an argument and, as the method name implies, returns its documentation as a string.

The returned documentation is used similarly as the keyword documentation string with static libraries implemented with Python. The main use case is
getting keywords' documentations into a library documentation generated by Libdoc. Additionally, the first line of the documentation (until the first \n) is
shown in test logs.

Getting general library documentation

The get_keyword_documentation method can also be used for specifying overall library documentation. This documentation is not used when tests are
executed, but it can make the documentation generated by Libdoc much better.

Dynamic libraries can provide both general library documentation and documentation related to taking the library into use. The former is got by calling
get_keyword_documentation with special value __intro__, and the latter is got using value __init__. How the documentation is presented is best
tested with Libdoc in practice.

Python based dynamic libraries can also specify the general library documentation directly in the code as the docstring of the library class and its
__init__ method. If a non-empty documentation is got both directly from the code and from the get_keyword_documentation method, the latter has
precedence.

Named argument syntax with dynamic libraries

Starting from Robot Framework 2.8, also the dynamic library API supports the named argument syntax. Using the syntax works based on the argument
names and default values got from the library using the get_keyword_arguments method.

For the most parts, the named arguments syntax works with dynamic keywords exactly like it works with any other keyword supporting it. The only
special case is the situation where a keyword has multiple arguments with default values, and only some of the latter ones are given. In that case the
framework fills the skipped optional arguments based on the default values returned by the get_keyword_arguments method.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 201/263

Using the named argument syntax with dynamic libraries is illustrated by the following examples. All the examples use a keyword Dynamic that has
been specified to have argument specification [arg1, arg2=xxx, arg3=yyy]. The comment shows the arguments that the keyword is actually called
with.

*** Test Cases ***

Only positional

 Dynamic a # [a]

 Dynamic a b # [a, b]

 Dynamic a b c # [a, b, c]

Named

 Dynamic a arg2=b # [a, b]

 Dynamic a b arg3=c # [a, b, c]

 Dynamic a arg2=b arg3=c # [a, b, c]

 Dynamic arg1=a arg2=b arg3=c # [a, b, c]

Fill skipped

 Dynamic a arg3=c # [a, xxx, c]

Free keyword arguments with dynamic libraries

Starting from Robot Framework 2.8.2, dynamic libraries can also support free keyword arguments (**kwargs). A mandatory precondition for this
support is that the run_keyword method takes three arguments: the third one will get kwargs when they are used. Kwargs are passed to the keyword as a
dictionary (Python) or Map (Java).

What arguments a keyword accepts depends on what get_keyword_arguments returns for it. If the last argument starts with **, that keyword is
recognized to accept kwargs.

Using the free keyword argument syntax with dynamic libraries is illustrated by the following examples. All the examples use a keyword Dynamic that
has been specified to have argument specification [arg1=xxx, arg2=yyy, **kwargs]. The comment shows the arguments that the keyword is actually
called with.

*** Test Cases ***

No arguments

 Dynamic # [], {}

Only positional

 Dynamic a # [a], {}

 Dynamic a b # [a, b], {}

Only kwargs

 Dynamic a=1 # [], {a: 1}

 Dynamic a=1 b=2 c=3 # [], {a: 1, b: 2, c: 3}

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 202/263

Positional and kwargs

 Dynamic a b=2 # [a], {b: 2}

 Dynamic a b=2 c=3 # [a], {b: 2, c: 3}

Named and kwargs

 Dynamic arg1=a b=2 # [a], {b: 2}

 Dynamic arg2=a b=2 c=3 # [xxx, a], {b: 2, c: 3}

Summary

All special methods in the dynamic API are listed in the table below. Method names are listed in the underscore format, but their camelCase aliases work
exactly the same way.

All special methods in the dynamic API

Name Arguments Purpose
get_keyword_names Return names of the implemented keywords.
run_keyword name, arguments, kwargs Execute the specified keyword with given arguments. kwargs is optional.
get_keyword_arguments name Return keywords' argument specifications. Optional method.
get_keyword_documentation name Return keywords' and library's documentation. Optional method.

It is possible to write a formal interface specification in Java as below. However, remember that libraries do not need to implement any explicit interface,
because Robot Framework directly checks with reflection if the library has the required get_keyword_names and run_keyword methods or their
camelCase aliases. Additionally, get_keyword_arguments and get_keyword_documentation are completely optional.

public interface RobotFrameworkDynamicAPI {

 List<String> getKeywordNames();

 Object runKeyword(String name, List arguments);

 Object runKeyword(String name, List arguments, Map kwargs);

 List<String> getKeywordArguments(String name);

 String getKeywordDocumentation(String name);

}

Note

In addition to using List, it is possible to use also arrays like Object[] or String[].

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 203/263

A good example of using the dynamic API is Robot Framework's own Remote library.

4.1.7 Hybrid library API

The hybrid library API is, as its name implies, a hybrid between the static API and the dynamic API. Just as with the dynamic API, it is possible to
implement a library using the hybrid API only as a class.

Getting keyword names

Keyword names are got in the exactly same way as with the dynamic API. In practice, the library needs to have the get_keyword_names or
getKeywordNames method returning a list of keyword names that the library implements.

Running keywords

In the hybrid API, there is no run_keyword method for executing keywords. Instead, Robot Framework uses reflection to find methods implementing
keywords, similarly as with the static API. A library using the hybrid API can either have those methods implemented directly or, more importantly, it
can handle them dynamically.

In Python, it is easy to handle missing methods dynamically with the __getattr__ method. This special method is probably familiar to most Python
programmers and they can immediately understand the following example. Others may find it easier to consult Python Reference Manual first.

from somewhere import external_keyword

class HybridExample:

 def get_keyword_names(self):

 return ['my_keyword', 'external_keyword']

 def my_keyword(self, arg):

 print "My Keyword called with '%s'" % arg

 def __getattr__(self, name):

 if name == 'external_keyword':

 return external_keyword

 raise AttributeError("Non-existing attribute '%s'" % name)

Note that __getattr__ does not execute the actual keyword like run_keyword does with the dynamic API. Instead, it only returns a callable object that
is then executed by Robot Framework.

http://docs.python.org/reference/datamodel.html#attribute-access

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 204/263

Another point to be noted is that Robot Framework uses the same names that are returned from get_keyword_names for finding the methods
implementing them. Thus the names of the methods that are implemented in the class itself must be returned in the same format as they are defined. For
example, the library above would not work correctly, if get_keyword_names returned My Keyword instead of my_keyword.

The hybrid API is not very useful with Java, because it is not possible to handle missing methods with it. Of course, it is possible to implement all the
methods in the library class, but that brings few benefits compared to the static API.

Getting keyword arguments and documentation

When this API is used, Robot Framework uses reflection to find the methods implementing keywords, similarly as with the static API. After getting a
reference to the method, it searches for arguments and documentation from it, in the same way as when using the static API. Thus there is no need for
special methods for getting arguments and documentation like there is with the dynamic API.

Summary

When implementing a test library in Python, the hybrid API has the same dynamic capabilities as the actual dynamic API. A great benefit with it is that
there is no need to have special methods for getting keyword arguments and documentation. It is also often practical that the only real dynamic keywords
need to be handled in __getattr__ and others can be implemented directly in the main library class.

Because of the clear benefits and equal capabilities, the hybrid API is in most cases a better alternative than the dynamic API when using Python. One
notable exception is implementing a library as a proxy for an actual library implementation elsewhere, because then the actual keyword must be executed
elsewhere and the proxy can only pass forward the keyword name and arguments.

A good example of using the hybrid API is Robot Framework's own Telnet library.

4.1.8 Using Robot Framework's internal modules

Test libraries implemented with Python can use Robot Framework's internal modules, for example, to get information about the executed tests and the
settings that are used. This powerful mechanism to communicate with the framework should be used with care, though, because all Robot Framework's
APIs are not meant to be used by externally and they might change radically between different framework versions.

Available APIs

Starting from Robot Framework 2.7, API documentation is hosted separately at the excellent Read the Docs service. If you are unsure how to use certain
API or is using them forward compatible, please send a question to mailing list.

http://robotframework.org/robotframework/latest/libraries/Telnet.html
http://robot-framework.readthedocs.org/
http://readthedocs.org/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 205/263

Using BuiltIn library

The safest API to use are methods implementing keywords in the BuiltIn library. Changes to keywords are rare and they are always done so that old
usage is first deprecated. One of the most useful methods is replace_variables which allows accessing currently available variables. The following
example demonstrates how to get ${OUTPUT_DIR} which is one of the many handy automatic variables. It is also possible to set new variables from
libraries using set_test_variable, set_suite_variable and set_global_variable.

import os.path

from robot.libraries.BuiltIn import BuiltIn

def do_something(argument):

 output = do_something_that_creates_a_lot_of_output(argument)

 outputdir = BuiltIn().replace_variables('${OUTPUTDIR}')

 path = os.path.join(outputdir, 'results.txt')

 f = open(path, 'w')

 f.write(output)

 f.close()

 print '*HTML* Output written to results.txt'

The only catch with using methods from BuiltIn is that all run_keyword method variants must be handled specially. Methods that use run_keyword
methods have to be registered as run keywords themselves using register_run_keyword method in BuiltIn module. This method's documentation
explains why this needs to be done and obviously also how to do it.

4.1.9 Extending existing test libraries

This section explains different approaches how to add new functionality to existing test libraries and how to use them in your own libraries otherwise.

Modifying original source code

If you have access to the source code of the library you want to extend, you can naturally modify the source code directly. The biggest problem of this
approach is that it can be hard for you to update the original library without affecting your changes. For users it may also be confusing to use a library
that has different functionality than the original one. Repackaging the library may also be a big extra task.

This approach works extremely well if the enhancements are generic and you plan to submit them back to the original developers. If your changes are
applied to the original library, they are included in the future releases and all the problems discussed above are mitigated. If changes are non-generic, or
you for some other reason cannot submit them back, the approaches explained in the subsequent sections probably work better.

Using inheritance

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 206/263

Another straightforward way to extend an existing library is using inheritance. This is illustrated by the example below that adds new Title Should Start
With keyword to the SeleniumLibrary. This example uses Python, but you can obviously extend an existing Java library in Java code the same way.

from SeleniumLibrary import SeleniumLibrary

class ExtendedSeleniumLibrary(SeleniumLibrary):

 def title_should_start_with(self, expected):

 title = self.get_title()

 if not title.startswith(expected):

 raise AssertionError("Title '%s' did not start with '%s'"

 % (title, expected))

A big difference with this approach compared to modifying the original library is that the new library has a different name than the original. A benefit is
that you can easily tell that you are using a custom library, but a big problem is that you cannot easily use the new library with the original. First of all
your new library will have same keywords as the original meaning that there is always conflict. Another problem is that the libraries do not share their
state.

This approach works well when you start to use a new library and want to add custom enhancements to it from the beginning. Otherwise other
mechanisms explained in this section are probably better.

Using other libraries directly

Because test libraries are technically just classes or modules, a simple way to use another library is importing it and using its methods. This approach
works great when the methods are static and do not depend on the library state. This is illustrated by the earlier example that uses Robot Framework's
BuiltIn library.

If the library has state, however, things may not work as you would hope. The library instance you use in your library will not be the same as the
framework uses, and thus changes done by executed keywords are not visible to your library. The next section explains how to get an access to the same
library instance that the framework uses.

Getting active library instance from Robot Framework

BuiltIn keyword Get Library Instance can be used to get the currently active library instance from the framework itself. The library instance returned by
this keyword is the same as the framework itself uses, and thus there is no problem seeing the correct library state. Although this functionality is available
as a keyword, it is typically used in test libraries directly by importing the BuiltIn library class as discussed earlier. The following example illustrates how
to implement the same Title Should Start With keyword as in the earlier example about using inheritance.

from robot.libraries.BuiltIn import BuiltIn

def title_should_start_with(expected):

https://github.com/robotframework/SeleniumLibrary
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 207/263

 seleniumlib = BuiltIn().get_library_instance('SeleniumLibrary')

 title = seleniumlib.get_title()

 if not title.startswith(expected):

 raise AssertionError("Title '%s' did not start with '%s'"

 % (title, expected))

This approach is clearly better than importing the library directly and using it when the library has a state. The biggest benefit over inheritance is that you
can use the original library normally and use the new library in addition to it when needed. That is demonstrated in the example below where the code
from the previous examples is expected to be available in a new library SeLibExtensions.

*** Settings ***

Library SeleniumLibrary

Library SeLibExtensions

*** Test Cases ***

Example

 Open Browser http://example # SeleniumLibrary

 Title Should Start With Example # SeLibExtensions

Libraries using dynamic or hybrid API

Test libraries that use the dynamic or hybrid library API often have their own systems how to extend them. With these libraries you need to ask guidance
from the library developers or consult the library documentation or source code.

4.2 Remote library interface

The remote library interface provides means for having test libraries on different machines than where Robot Framework itself is running, and also for
implementing libraries using other languages than the natively supported Python and Java. For a test library, user remote libraries look pretty much the
same as any other test library, and developing test libraries using the remote library interface is also very close to creating normal test libraries.

4.2.1 Introduction
4.2.2 Putting Remote library to use

Importing Remote library
Starting and stopping remote servers

4.2.3 Supported argument and return value types
4.2.4 Remote protocol

Required methods
Getting remote keyword names and other information
Executing remote keywords
Different argument syntaxes

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 208/263

4.2.1 Introduction

There are two main reasons for using the remote library API:

It is possible to have actual libraries on different machines than where Robot Framework is running. This allows interesting possibilities for
distributed testing.
Test libraries can be implemented using any language that supports XML-RPC protocol. There exists ready-made generic remote servers for
various languages like Python, Java, Ruby, .NET, and so on.

The remote library interface is provided by the Remote library that is one of the standard libraries. This library does not have any keywords of its own,
but it works as a proxy between the core framework and keywords implemented elsewhere. The Remote library interacts with actual library
implementations through remote servers, and the Remote library and servers communicate using a simple remote protocol on top of an XML-RPC
channel. The high level architecture of all this is illustrated in the picture below:

Robot Framework architecture with Remote library

Note

The remote client uses Python's standard xmlrpclib module. It does not support custom XML-RPC extensions implemented by some XML-RPC servers.

4.2.2 Putting Remote library to use

Importing Remote library

http://www.xmlrpc.com/
https://github.com/robotframework/RemoteInterface#available-remote-servers
http://docs.python.org/2/library/xmlrpclib.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 209/263

The Remote library needs to know the address of the remote server but otherwise importing it and using keywords that it provides is no different to how
other libraries are used. If you need to use the Remote library multiple times in a test suite, or just want to give it a more descriptive name, you can import
it using the WITH NAME syntax.

*** Settings ***

Library Remote http://127.0.0.1:8270 WITH NAME Example1

Library Remote http://example.com:8080/ WITH NAME Example2

Library Remote http://10.0.0.2/example 1 minute WITH NAME Example3

The URL used by the first example above is also the default address that the Remote library uses if no address is given.

The last example above shows how to give a custom timeout to the Remote library as an optional second argument. The timeout is used when initially
connecting to the server and if a connection accidentally closes. Timeout can be given in Robot Framework time format like 60s or 2 minutes 10
seconds. The default timeout is typically several minutes, but it depends on the operating system and its configuration. Notice that setting a timeout that
is shorter than keyword execution time will interrupt the keyword. Setting a custom timeout does not work with IronPython.

Note

Port 8270 is the default port that remote servers are expected to use and it has been registered by IANA for this purpose. This port number was selected
because 82 and 70 are the ASCII codes of letters R and F, respectively.

Note

When connecting to the local machine, it is recommended to use IP address 127.0.0.1 instead of machine name localhost. This avoids address resolution
that can be extremely slow at least on Windows.

Note

If the URI contains no path after the server address, the xmlrpclib module used by the Remote library will use /RPC2 path by default. In practice using
http://127.0.0.1:8270 is thus identical to using http://127.0.0.1:8270/RPC2. Depending on the remote server this may or may not be a problem. No
extra path is appended if the address has a path even if the path is just /. For example, neither http://127.0.0.1:8270/ nor
http://127.0.0.1:8270/my/path will be modified.

Starting and stopping remote servers

Before the Remote library can be imported, the remote server providing the actual keywords must be started. If the server is started before launching the
test execution, it is possible to use the normal Library setting like in the above example. Alternatively other keywords, for example from Process or SSH
libraries, can start the server up, but then you may need to use Import Library keyword because the library is not available when the test execution starts.

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?search=8270
http://stackoverflow.com/questions/14504450/pythons-xmlrpc-extremely-slow-one-second-per-call
http://docs.python.org/2/library/xmlrpclib.html
http://robotframework.org/robotframework/latest/libraries/Process.html
https://github.com/robotframework/SSHLibrary

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 210/263

How a remote server can be stopped depends on how it is implemented. Typically servers support the following methods:

Regardless of the library used, remote servers should provide Stop Remote Server keyword that can be easily used by executed tests.
Remote servers should have stop_remote_server method in their XML-RPC interface.
Hitting Ctrl-C on the console where the server is running should stop the server.
The server process can be terminated using tools provided by the operating system (e.g. kill).

Note

Servers may be configured so that users cannot stop it with Stop Remote Server keyword or stop_remote_server method.

4.2.3 Supported argument and return value types

Because the XML-RPC protocol does not support all possible object types, the values transferred between the Remote library and remote servers must be
converted to compatible types. This applies to the keyword arguments the Remote library passes to remote servers and to the return values servers give
back to the Remote library.

Both the Remote library and the Python remote server handle Python values according to the following rules. Other remote servers should behave
similarly.

Strings, numbers and Boolean values are passed without modifications.
Python None is converted to an empty string.
All lists, tuples, and other iterable objects (except strings and dictionaries) are passed as lists so that their contents are converted recursively.
Dictionaries and other mappings are passed as dicts so that their keys are converted to strings and values converted to supported types recursively.
Returned dictionaries are converted to so called dot-accessible dicts that allow accessing keys as attributes using the extended variable syntax like
${result.key}. This works also with nested dictionaries like ${root.child.leaf}.
Strings containing bytes in the ASCII range that cannot be represented in XML (e.g. the null byte) are sent as Binary objects that internally use
XML-RPC base64 data type. Received Binary objects are automatically converted to byte strings.
Other types are converted to strings.

Note

Prior to Robot Framework 2.8.3, only lists, tuples, and dictionaries were handled according to the above rules. General iterables and mappings were not
supported. Additionally binary support is new in Robot Framework 2.8.4 and returning dot-accessible dictionaries new in Robot Framework 2.9.

http://docs.python.org/2/library/xmlrpclib.html#binary-objects

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 211/263

4.2.4 Remote protocol

This section explains the protocol that is used between the Remote library and remote servers. This information is mainly targeted for people who want to
create new remote servers. The provided Python and Ruby servers can also be used as examples.

The remote protocol is implemented on top of XML-RPC, which is a simple remote procedure call protocol using XML over HTTP. Most mainstream
languages (Python, Java, C, Ruby, Perl, Javascript, PHP, ...) have a support for XML-RPC either built-in or as an extension.

Required methods

A remote server is an XML-RPC server that must have the same methods in its public interface as the dynamic library API has. Only
get_keyword_names and run_keyword are actually required, but get_keyword_arguments, get_keyword_tags and get_keyword_documentation
are also recommended. Notice that using the camelCase format like getKeywordNames in method names is not possible similarly as in the normal
dynamic API. How the actual keywords are implemented is not relevant for the Remote library. Remote servers can either act as wrappers for the real test
libraries, like the available generic remote servers do, or they can implement keywords themselves.

Remote servers should additionally have stop_remote_server method in their public interface to ease stopping them. They should also automatically
expose this method as Stop Remote Server keyword to allow using it in the test data regardless of the test library. Allowing users to stop the server is not
always desirable, and servers may support disabling this functionality somehow. The method, and also the exposed keyword, should return True or
False depending on whether stopping is allowed or not. That makes it possible for external tools to know if stopping the server succeeded.

The Python remote server can be used as a reference implementation.

Getting remote keyword names and other information

The Remote library gets the list of keywords that a remote server provides by using the get_keyword_names method. Remote servers must implement
this method and the method must return keyword names as a list of strings.

Remote servers can, and should, also implement get_keyword_arguments, get_keyword_tags and get_keyword_documentation methods to
provide more information about the keywords. All these methods take the name of the keyword as an argument. Arguments must be returned as a list of
strings in the same format as with dynamic libraries, tags as a list of strings, and documentation as a string.

Remote servers can also provide general library documentation to be used when generating documentation with the Libdoc tool.

Note

get_keyword_tags is new in Robot Framework 3.0.2. With earlier versions keyword tags can be embedded into the keyword documentation.

http://www.xmlrpc.com/
https://github.com/robotframework/RemoteInterface#available-remote-servers
https://github.com/robotframework/PythonRemoteServer

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 212/263

Executing remote keywords

When the Remote library wants the server to execute some keyword, it calls the remote server's run_keyword method and passes it the keyword name, a
list of arguments, and possibly a dictionary of free keyword arguments. Base types can be used as arguments directly, but more complex types are
converted to supported types.

The server must return results of the execution in a result dictionary (or map, depending on terminology) containing items explained in the following
table. Notice that only the status entry is mandatory, others can be omitted if they are not applicable.

Entries in the remote result dictionary

Name Explanation
status Mandatory execution status. Either PASS or FAIL.
output Possible output to write into the log file. Must be given as a single string but can contain multiple messages and different log levels in

format *INFO* First message\n*HTML* 2nd\n*WARN* Another message. It is also possible to embed timestamps to the
log messages like *INFO:1308435758660* Message with timestamp.

return Possible return value. Must be one of the supported types.
error Possible error message. Used only when the execution fails.
traceback Possible stack trace to write into the log file using DEBUG level when the execution fails.
continuable When set to True, or any value considered True in Python, the occurred failure is considered continuable. New in Robot Framework

2.8.4.
fatal Like continuable, but denotes that the occurred failure is fatal. Also new in Robot Framework 2.8.4.

Different argument syntaxes

The Remote library is a dynamic library, and in general it handles different argument syntaxes according to the same rules as any other dynamic library.
This includes mandatory arguments, default values, varargs, as well as named argument syntax.

Also free keyword arguments (**kwargs) works mostly the same way as with other dynamic libraries. First of all, the get_keyword_arguments must
return an argument specification that contains **kwargs exactly like with any other dynamic library. The main difference is that remote servers'
run_keyword method must have optional third argument that gets the kwargs specified by the user. The third argument must be optional because, for
backwards-compatibility reasons, the Remote library passes kwargs to the run_keyword method only when they have been used in the test data.

In practice run_keyword should look something like the following Python and Java examples, depending on how the language handles optional
arguments.

def run_keyword(name, args, kwargs=None):

 # ...

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 213/263

public Map run_keyword(String name, List args) {

 // ...

}

public Map run_keyword(String name, List args, Map kwargs) {

 // ...

}

Note

Remote library supports **kwargs starting from Robot Framework 2.8.3.

4.3 Listener interface

Robot Framework has a listener interface that can be used to receive notifications about test execution. Example usages include external test monitors,
sending a mail message when a test fails, and communicating with other systems. Listener API version 3 also makes it possible to modify tests and results
during the test execution.

Listeners are classes or modules with certain special methods, and they can be implemented both with Python and Java. Listeners that monitor the whole
test execution must be taken into use from the command line. In addition to that, test libraries can register listeners that receive notifications while that
library is active.

4.3.1 Taking listeners into use
4.3.2 Listener interface versions
4.3.3 Listener interface methods

Listener version 2
Listener version 3

4.3.4 Listeners logging
4.3.5 Listener examples

Getting information
Modifying execution and results

4.3.6 Test libraries as listeners
Registering listener
Called listener methods

4.3.1 Taking listeners into use

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 214/263

Listeners are taken into use from the command line with the --listener option so that the name of the listener is given to it as an argument. The listener
name is got from the name of the class or module implementing the listener interface, similarly as test library names are got from classes implementing
them. The specified listeners must be in the same module search path where test libraries are searched from when they are imported. Other option is to
give an absolute or a relative path to the listener file similarly as with test libraries. It is possible to take multiple listeners into use by using this option
several times:

robot --listener MyListener tests.robot

robot --listener com.company.package.Listener tests.robot

robot --listener path/to/MyListener.py tests.robot

robot --listener module.Listener --listener AnotherListener tests.robot

It is also possible to give arguments to listener classes from the command line. Arguments are specified after the listener name (or path) using a colon (:)
as a separator. If a listener is given as an absolute Windows path, the colon after the drive letter is not considered a separator. Starting from Robot
Framework 2.8.7, it is possible to use a semicolon (;) as an alternative argument separator. This is useful if listener arguments themselves contain colons,
but requires surrounding the whole value with quotes on UNIX-like operating systems:

robot --listener listener.py:arg1:arg2 tests.robot

robot --listener "listener.py;arg:with:colons" tests.robot

robot --listener C:\Path\Listener.py;D:\data;E:\extra tests.robot

4.3.2 Listener interface versions

There are two supported listener interface versions. Listener version 2 has been available since Robot Framework 2.1, and version 3 is supported by
Robot Framework 3.0 and newer. A listener must have attribute ROBOT_LISTENER_API_VERSION with value 2 or 3, either as a string or as an integer,
depending on which API version it uses. There has also been an older listener version 1, but it is not supported anymore by Robot Framework 3.0.

The main difference between listener versions 2 and 3 is that the former only gets information about the execution but cannot directly affect it. The latter
interface gets data and result objects Robot Framework itself uses and is thus able to alter execution and change results. See listener examples for more
information about what listeners can do.

Another difference between versions 2 and 3 is that the former supports both Python and Java but the latter supports only Python.

4.3.3 Listener interface methods

Robot Framework creates instances of listener classes when the test execution starts and uses listeners implemented as modules directly. During the test
execution different listener methods are called when test suites, test cases and keywords start and end. Additional methods are called when a library or a
resource or variable file is imported, when output files are ready, and finally when the whole test execution ends. A listener is not required to implement
any official interface, and it only needs to have the methods it actually needs.

Listener versions 2 and 3 have mostly the same methods, but the arguments they accept are different. These methods and their arguments are explained in
the following sections. All methods that have an underscore in their name have also camelCase alternative. For example, start_suite method can be

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 215/263

used also with name startSuite.

Listener version 2

Listener methods in the API version 2 are listed in the following table. All methods related to test execution progress have the same signature
method(name, attributes), where attributes is a dictionary containing details of the event. Listener methods are free to do whatever they want to
do with the information they receive, but they cannot directly change it. If that is needed, listener version 3 can be used instead.

Methods in the listener API 2

Method Arguments Documentation
start_suite name, attributes Called when a test suite starts.

Contents of the attribute dictionary:

id: Suite id. s1 for the top level suite, s1-s1 for its first child suite, s1-s2 for the second
child, and so on. New in RF 2.8.5.
longname: Suite name including parent suites.
doc: Suite documentation.
metadata: Free test suite metadata as a dictionary/map.
source: An absolute path of the file/directory the suite was created from. New in RF 2.7.
suites: Names of the direct child suites this suite has as a list.
tests: Names of the tests this suite has as a list. Does not include tests of the possible child
suites.
totaltests: The total number of tests in this suite. and all its sub-suites as an integer.
starttime: Suite execution start time.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 216/263

Method Arguments Documentation
end_suite name, attributes Called when a test suite ends.

Contents of the attribute dictionary:

id: Same as in start_suite.
longname: Same as in start_suite.
doc: Same as in start_suite.
metadata: Same as in start_suite.
source: Same as in start_suite.
starttime: Same as in start_suite.
endtime: Suite execution end time.
elapsedtime: Total execution time in milliseconds as an integer
status: Suite status as string PASS or FAIL.
statistics: Suite statistics (number of passed and failed tests in the suite) as a string.
message: Error message if suite setup or teardown has failed, empty otherwise.

start_test name, attributes Called when a test case starts.

Contents of the attribute dictionary:

id: Test id in format like s1-s2-t2, where the beginning is the parent suite id and the last part
shows test index in that suite. New in RF 2.8.5.
longname: Test name including parent suites.
doc: Test documentation.
tags: Test tags as a list of strings.
critical: yes or no depending is test considered critical or not.
template: The name of the template used for the test. An empty string if the test not
templated.
starttime: Test execution execution start time.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 217/263

Method Arguments Documentation
end_test name, attributes Called when a test case ends.

Contents of the attribute dictionary:

id: Same as in start_test.
longname: Same as in start_test.
doc: Same as in start_test.
tags: Same as in start_test.
critical: Same as in start_test.
template: Same as in start_test.
starttime: Same as in start_test.
endtime: Test execution execution end time.
elapsedtime: Total execution time in milliseconds as an integer
status: Test status as string PASS or FAIL.
message: Status message. Normally an error message or an empty string.

start_keyword name, attributes Called when a keyword starts.

name is the full keyword name containing possible library or resource name as a prefix. For example,
MyLibrary.Example Keyword.

Contents of the attribute dictionary:

type: String Keyword for normal keywords, Setup or Teardown for the top level keyword
used as setup/teardown, For for for loops, and For Item for individual for loop iterations.
NOTE: Keyword type reporting was changed in RF 3.0. See issue #2248 for details.
kwname: Name of the keyword without library or resource prefix. New in RF 2.9.
libname: Name of the library or resource the keyword belongs to, or an empty string when the
keyword is in a test case file. New in RF 2.9.
doc: Keyword documentation.
args: Keyword's arguments as a list of strings.
assign: A list of variable names that keyword's return value is assigned to. New in RF 2.9.
tags: Keyword tags as a list of strings. New in RF 3.0.
starttime: Keyword execution start time.

https://github.com/robotframework/robotframework/issues/2248

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 218/263

Method Arguments Documentation
end_keyword name, attributes Called when a keyword ends.

name is the full keyword name containing possible library or resource name as a prefix. For example,
MyLibrary.Example Keyword.

Contents of the attribute dictionary:

type: Same as with start_keyword.
kwname: Same as with start_keyword.
libname: Same as with start_keyword.
doc: Same as with start_keyword.
args: Same as with start_keyword.
assign: Same as with start_keyword.
tags: Same as with start_keyword.
starttime: Same as with start_keyword.
endtime: Keyword execution end time.
elapsedtime: Total execution time in milliseconds as an integer
status: Keyword status as string PASS or FAIL.

log_message message Called when an executed keyword writes a log message.

message is a dictionary with the following contents:

message: The content of the message.
level: Log level used in logging the message.
timestamp: Message creation time in format YYYY-MM-DD hh:mm:ss.mil.
html: String yes or no denoting whether the message should be interpreted as HTML or not.

Starting from RF 3.0, this method is not called if the message has level below the current threshold
level.

message message Called when the framework itself writes a syslog message.

message is a dictionary with the same contents as with log_message method.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 219/263

Method Arguments Documentation
library_import name, attributes Called when a library has been imported.

name is the name of the imported library. If the library has been imported using the WITH NAME
syntax, name is the specified alias.

Contents of the attribute dictionary:

args: Arguments passed to the library as a list.
originalname: The original library name when using the WITH NAME syntax, otherwise
same as name.
source: An absolute path to the library source. None with libraries implemented with Java or if
getting the source of the library failed for some reason.
importer: An absolute path to the file importing the library. None when BuiltIn is imported
well as when using the Import Library keyword.

New in Robot Framework 2.9.
resource_import name, attributes Called when a resource file has been imported.

name is the name of the imported resource file without the file extension.

Contents of the attribute dictionary:

source: An absolute path to the imported resource file.
importer: An absolute path to the file importing the resource file. None when using the Import
Resource keyword.

New in Robot Framework 2.9.
variables_import name, attributes Called when a variable file has been imported.

name is the name of the imported variable file with the file extension.

Contents of the attribute dictionary:

args: Arguments passed to the variable file as a list.
source: An absolute path to the imported variable file.
importer: An absolute path to the file importing the resource file. None when using the Import
Variables keyword.

New in Robot Framework 2.9.
output_file path Called when writing to an output file is ready.

path is an absolute path to the file.

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 220/263

Method Arguments Documentation
log_file path Called when writing to a log file is ready.

path is an absolute path to the file.
report_file path Called when writing to a report file is ready.

path is an absolute path to the file.
xunit_file path Called when writing to an xunit file is ready.

path is an absolute path to the file.
debug_file path Called when writing to a debug file is ready.

path is an absolute path to the file.
close Called when the whole test execution ends.

With library listeners called when the library goes out of scope.

The available methods and their arguments are also shown in a formal Java interface specification below. Contents of the java.util.Map attributes
are as in the table above. It should be remembered that a listener does not need to implement any explicit interface or have all these methods.

public interface RobotListenerInterface {

 public static final int ROBOT_LISTENER_API_VERSION = 2;

 void startSuite(String name, java.util.Map attributes);

 void endSuite(String name, java.util.Map attributes);

 void startTest(String name, java.util.Map attributes);

 void endTest(String name, java.util.Map attributes);

 void startKeyword(String name, java.util.Map attributes);

 void endKeyword(String name, java.util.Map attributes);

 void logMessage(java.util.Map message);

 void message(java.util.Map message);

 void outputFile(String path);

 void logFile(String path);

 void reportFile(String path);

 void debugFile(String path);

 void close();

}

Listener version 3

Listener version 3 has mostly the same methods as listener version 2 but arguments of the methods related to test execution are different. This API gets
actual running and result model objects used by Robot Framework itself, and listeners can both directly query information they need and also change the
model objects on the fly.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 221/263

Listener version 3 was introduced in Robot Framework 3.0. At least initially it does not have all methods that the version 2 has. The main reason is that
suitable model objects are not available internally. The close method and methods related to output files are called exactly same way in both versions.

Methods in the listener API 3

Method Arguments Documentation
start_suite data, result Called when a test suite starts.

data and result are model objects representing the executed test suite and its execution results,
respectively.

end_suite data, result Called when a test suite ends.

Same arguments as with start_suite.
start_test data, result Called when a test case starts.

data and result are model objects representing the executed test case and its execution results,
respectively.

end_test data, result Called when a test case ends.

Same arguments as with start_test.
start_keyword N/A Not implemented in RF 3.0.
end_keyword N/A Not implemented in RF 3.0.
log_message message Called when an executed keyword writes a log message. message is a model object representing the

logged message.

This method is not called if the message has level below the current threshold level.
message message Called when the framework itself writes a syslog message.

message is same object as with log_message.
library_import N/A Not implemented in RF 3.0.
resource_import N/A Not implemented in RF 3.0.
variables_import N/A Not implemented in RF 3.0.
output_file path Called when writing to an output file is ready.

path is an absolute path to the file.
log_file path Called when writing to a log file is ready.

path is an absolute path to the file.
report_file path Called when writing to a report file is ready.

path is an absolute path to the file.

https://github.com/robotframework/robotframework/issues/1208#issuecomment-164910769
http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestSuite
http://robot-framework.readthedocs.org/en/master/autodoc/robot.result.html#robot.result.model.TestSuite
http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestCase
http://robot-framework.readthedocs.org/en/master/autodoc/robot.result.html#robot.result.model.TestCase
http://robot-framework.readthedocs.org/en/master/autodoc/robot.result.html#robot.result.model.Message

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 222/263

Method Arguments Documentation
xunit_file path Called when writing to an xunit file is ready.

path is an absolute path to the file.
debug_file path Called when writing to a debug file is ready.

path is an absolute path to the file.
close Called when the whole test execution ends.

With library listeners called when the library goes out of scope.

4.3.4 Listeners logging

Robot Framework offers a programmatic logging APIs that listeners can utilize. There are some limitations, however, and how different listener methods
can log messages is explained in the table below.

How listener methods can log

Methods Explanation
start_keyword, end_keyword, log_message Messages are logged to the normal log file under the executed keyword.
start_suite, end_suite, start_test, end_test Messages are logged to the syslog. Warnings are shown also in the execution errors section of the normal log

file.
message Messages are normally logged to the syslog. If this method is used while a keyword is executing, messages are

logged to the normal log file.
Other methods Messages are only logged to the syslog.

Note

To avoid recursion, messages logged by listeners are not sent to listener methods log_message and message.

4.3.5 Listener examples

This section contains examples using the listener interface. There are first examples that just receive information from Robot Framework and then
examples that modify executed tests and created results.

Getting information

The first example is implemented as Python module and uses the listener version 2.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 223/263

"""Listener that stops execution if a test fails."""

ROBOT_LISTENER_API_VERSION = 2

def end_test(name, attrs):

 if attrs['status'] == 'FAIL':

 print 'Test "%s" failed: %s' % (name, attrs['message'])

 raw_input('Press enter to continue.')

If the above example would be saved to, for example, PauseExecution.py file, it could be used from the command line like this:

robot --listener path/to/PauseExecution.py tests.robot

The same example could also be implemented also using the newer listener version 3 and used exactly the same way from the command line.

"""Listener that stops execution if a test fails."""

ROBOT_LISTENER_API_VERSION = 3

def end_test(data, result):

 if not result.passed:

 print 'Test "%s" failed: %s' % (result.name, result.message)

 raw_input('Press enter to continue.')

The next example, which still uses Python, is slightly more complicated. It writes all the information it gets into a text file in a temporary directory
without much formatting. The filename may be given from the command line, but also has a default value. Note that in real usage, the debug file
functionality available through the command line option --debugfile is probably more useful than this example.

import os.path

import tempfile

class PythonListener:

 ROBOT_LISTENER_API_VERSION = 2

 def __init__(self, filename='listen.txt'):

 outpath = os.path.join(tempfile.gettempdir(), filename)

 self.outfile = open(outpath, 'w')

 def start_suite(self, name, attrs):

 self.outfile.write("%s '%s'\n" % (name, attrs['doc']))

 def start_test(self, name, attrs):

 tags = ' '.join(attrs['tags'])

 self.outfile.write("- %s '%s' [%s] :: " % (name, attrs['doc'], tags))

 def end_test(self, name, attrs):

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 224/263

 if attrs['status'] == 'PASS':

 self.outfile.write('PASS\n')

 else:

 self.outfile.write('FAIL: %s\n' % attrs['message'])

 def end_suite(self, name, attrs):

 self.outfile.write('%s\n%s\n' % (attrs['status'], attrs['message']))

 def close(self):

 self.outfile.close()

The following example implements the same functionality as the previous one, but uses Java instead of Python.

import java.io.*;

import java.util.Map;

import java.util.List;

public class JavaListener {

 public static final int ROBOT_LISTENER_API_VERSION = 2;

 public static final String DEFAULT_FILENAME = "listen_java.txt";

 private BufferedWriter outfile = null;

 public JavaListener() throws IOException {

 this(DEFAULT_FILENAME);

 }

 public JavaListener(String filename) throws IOException {

 String tmpdir = System.getProperty("java.io.tmpdir");

 String sep = System.getProperty("file.separator");

 String outpath = tmpdir + sep + filename;

 outfile = new BufferedWriter(new FileWriter(outpath));

 }

 public void startSuite(String name, Map attrs) throws IOException {

 outfile.write(name + " '" + attrs.get("doc") + "'\n");

 }

 public void startTest(String name, Map attrs) throws IOException {

 outfile.write("- " + name + " '" + attrs.get("doc") + "' [");

 List tags = (List)attrs.get("tags");

 for (int i=0; i < tags.size(); i++) {

 outfile.write(tags.get(i) + " ");

 }

 outfile.write("] :: ");

 }

 public void endTest(String name, Map attrs) throws IOException {

 String status = attrs.get("status").toString();

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 225/263

 if (status.equals("PASS")) {

 outfile.write("PASS\n");

 }

 else {

 outfile.write("FAIL: " + attrs.get("message") + "\n");

 }

 }

 public void endSuite(String name, Map attrs) throws IOException {

 outfile.write(attrs.get("status") + "\n" + attrs.get("message") + "\n");

 }

 public void close() throws IOException {

 outfile.close();

 }

}

Modifying execution and results

These examples illustrate how to modify the executed tests and suites as well as the execution results. All these examples require using the listener
version 3.

Modifying executed suites and tests

Changing what is executed requires modifying the model object containing the executed test suite or test case objects passed as the first argument to
start_suite and start_test methods. This is illustrated by the example below that adds a new test to each executed test suite and a new keyword to
each test.

ROBOT_LISTENER_API_VERSION = 3

def start_suite(suite, result):

 suite.tests.create(name='New test')

def start_test(test, result):

 test.keywords.create(name='Log', args=['Keyword added by listener!'])

Trying to modify execution in end_suite or end_test methods does not work, simply because that suite or test has already been executed. Trying to
modify the name, documentation or other similar metadata of the current suite or test in start_suite or start_test method does not work either,
because the corresponding result object has already been created. Only changes to child tests or keywords actually have an effect.

This API is very similar to the pre-run modifier API that can be used to modify suites and tests before the whole test execution starts. The main benefit of
using the listener API is that modifications can be done dynamically based on execution results or otherwise. This allows, for example, interesting
possibilities for model based testing.

http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestSuite
http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestCase

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 226/263

Although the listener interface is not built on top of Robot Framework's internal visitor interface similarly as the pre-run modifier API, listeners can still
use the visitors interface themselves. For example, the SelectEveryXthTest visitor used in pre-run modifier examples could be used like this:

from SelectEveryXthTest import SelectEveryXthTest

ROBOT_LISTENER_API_VERSION = 3

def start_suite(suite, result):

 selector = SelectEveryXthTest(x=2)

 suite.visit(selector)

Modifying results

Test execution results can be altered by modifying test suite and test case result objects passed as the second argument to start_suite and start_test
methods, respectively, and by modifying the message object passed to the log_message method. This is demonstrated by the following listener that is
implemented as a class.

class ResultModifier(object):

 ROBOT_LISTENER_API_VERSION = 3

 def __init__(self, max_seconds=10):

 self.max_milliseconds = float(max_seconds) * 1000

 def start_suite(self, data, suite):

 suite.doc = 'Documentation set by listener.'

 # Information about tests only available via data at this point.

 smoke_tests = [test for test in data.tests if 'smoke' in test.tags]

 suite.metadata['Smoke tests'] = len(smoke_tests)

 def end_test(self, data, test):

 if test.status == 'PASS' and test.elapsedtime > self.max_milliseconds:

 test.status = 'FAIL'

 test.message = 'Test execution took too long.'

 def log_message(self, msg):

 if msg.level == 'WARN' and not msg.html:

 msg.message = '<b style="font-size: 1.5em">%s' % msg.message

 msg.html = True

A limitation is that modifying the name of the current test suite or test case is not possible because it has already been written to the output.xml file when
listeners are called. Due to the same reason modifying already finished tests in the end_suite method has no effect either.

This API is very similar to the pre-Rebot modifier API that can be used to modify results before report and log are generated. The main difference is that
listeners modify also the created output.xml file.

http://robot-framework.readthedocs.org/en/master/autodoc/robot.model.html#module-robot.model.visitor
http://robot-framework.readthedocs.org/en/master/autodoc/robot.result.html#robot.result.model.TestSuite
http://robot-framework.readthedocs.org/en/master/autodoc/robot.result.html#robot.result.model.TestCase
http://robot-framework.readthedocs.org/en/master/autodoc/robot.result.html#robot.result.model.Message

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 227/263

4.3.6 Test libraries as listeners

Sometimes it is useful also for test libraries to get notifications about test execution. This allows them, for example, to perform certain clean-up activities
automatically when a test suite or the whole test execution ends.

Note

This functionality is new in Robot Framework 2.8.5.

Registering listener

A test library can register a listener by using ROBOT_LIBRARY_LISTENER attribute. The value of this attribute should be an instance of the listener to use.
It may be a totally independent listener or the library itself can act as a listener. To avoid listener methods to be exposed as keywords in the latter case, it
is possible to prefix them with an underscore. For example, instead of using end_suite or endSuite, it is possible to use _end_suite or _endSuite.

Following examples illustrates using an external listener as well as library acting as a listener itself:

import my.project.Listener;

public class JavaLibraryWithExternalListener {

 public static final Listener ROBOT_LIBRARY_LISTENER = new Listener();

 public static final String ROBOT_LIBRARY_SCOPE = "GLOBAL";

 public static final int ROBOT_LISTENER_API_VERSION = 2;

 // actual library code here ...

}

class PythonLibraryAsListenerItself(object):

 ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

 ROBOT_LISTENER_API_VERSION = 2

 def __init__(self):

 self.ROBOT_LIBRARY_LISTENER = self

 def _end_suite(self, name, attrs):

 print 'Suite %s (%s) ending.' % (name, attrs['id'])

 # actual library code here ...

As the seconds example above already demonstrated, library listeners have to specify listener interface versions using ROBOT_LISTENER_API_VERSION
attribute exactly like any other listener.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 228/263

Starting from version 2.9, you can also provide any list like object of instances in the ROBOT_LIBRARY_LISTENER attribute. This will cause all instances
of the list to be registered as listeners.

Called listener methods

Library's listener will get notifications about all events in suites where the library is imported. In practice this means that start_suite, end_suite,
start_test, end_test, start_keyword, end_keyword, log_message, and message methods are called inside those suites.

If the library creates a new listener instance every time when the library itself is instantiated, the actual listener instance to use will change according to
the test library scope. In addition to the previously listed listener methods, close method is called when the library goes out of the scope.

See Listener interface methods section above for more information about all these methods.

4.4 Extending the Robot Framework Jar

Adding additional test libraries or support code to the Robot Framework jar is quite straightforward using the jar command included in standard JDK
installation. Python code must be placed in Lib directory inside the jar and Java code can be placed directly to the root of the jar, according to package
structure.

For example, to add Python package mytestlib to the jar, first copy the mytestlib directory under a directory called Lib, then run following command in
the directory containing Lib:

jar uf /path/to/robotframework-2.7.1.jar Lib

To add compiled java classes to the jar, you must have a directory structure corresponding to the Java package structure and add that recursively to the
zip.

For example, to add class MyLib.class, in package org.test, the file must be in org/test/MyLib.class and you can execute:

jar uf /path/to/robotframework-2.7.1.jar org

5 Supporting Tools

5.1 Library documentation tool (Libdoc)
5.2 Test data documentation tool (Testdoc)
5.3 Test data clean-up tool (Tidy)
5.4 External tools

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 229/263

5.1 Library documentation tool (Libdoc)

5.1.1 General usage
5.1.2 Writing documentation
5.1.3 Documentation syntax
5.1.4 Internal linking
5.1.5 Representing arguments
5.1.6 Libdoc example

Libdoc is Robot Framework's built-in tool for generating keyword documentation for test libraries and resource files in HTML and XML formats. The
former format is suitable for humans and the latter for RIDE and other tools. Libdoc also has few special commands to show library or resource
information on the console.

Documentation can be created for:

test libraries implemented with Python or Java using the normal static library API,
test libraries using the dynamic API, including remote libraries, and
resource files.

Additionally it is possible to use XML spec created by Libdoc earlier as an input.

5.1.1 General usage

Synopsis

python -m robot.libdoc [options] library_or_resource output_file

python -m robot.libdoc [options] library_or_resource list|show|version [names]

Options

-f, --format <html|xml>

 Specifies whether to generate HTML or XML output. If this options is not used, the format is got from the extension of the
output file.

-F, --docformat <robot|html|text|rest>

 Specifies the source documentation format. Possible values are Robot Framework's documentation format, HTML, plain text,
and reStructuredText. Default value can be specified in test library source code and the initial default value is robot. New in

https://github.com/robotframework/RIDE

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 230/263

Robot Framework 2.7.5.
-N, --name <newname>

 Sets the name of the documented library or resource.
-V, --version <newversion>

 Sets the version of the documented library or resource. The default value for test libraries is got from the source code.
-P, --pythonpath <path>

 Additional locations where to search for libraries and resources similarly as when running tests.
-E, --escape <what:with>

 Escapes characters which are problematic in console. what is the name of the character to escape and with is the string to
escape it with. Available escapes are listed in the --help output.

-h,

--help

Prints this help.

Alternative execution

Although Libdoc is used only with Python in the synopsis above, it works also with Jython and IronPython. When documenting Java libraries, Jython is
actually required.

In the synopsis Libdoc is executed as an installed module (python -m robot.libdoc). In addition to that, it can be run also as a script:

python path/robot/libdoc.py [options] arguments

Executing as a script can be useful if you have done manual installation or otherwise just have the robot directory with the source code somewhere in
your system.

Specifying library or resource file

Python libraries and dynamic libraries with name or path

When documenting libraries implemented with Python or that use the dynamic library API, it is possible to specify the library either by using just the
library name or path to the library source code. In the former case the library is searched using the module search path and its name must be in the same
format as in Robot Framework test data.

If these libraries require arguments when they are imported, the arguments must be catenated with the library name or path using two colons like
MyLibrary::arg1::arg2. If arguments change what keywords the library provides or otherwise alter its documentation, it might be a good idea to use
--name option to also change the library name accordingly.

Java libraries with path

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 231/263

A Java test library implemented using the static library API can be specified by giving the path to the source code file containing the library
implementation. Additionally, tools.jar, which is part of the Java JDK distribution, must be found from CLASSPATH when Libdoc is executed. Notice that
generating documentation for Java libraries works only with Jython.

Resource files with path

Resource files must always be specified using a path. If the path does not exist, resource files are also searched from all directories in the module search
path similarly as when executing test cases.

Generating documentation

When generating documentation in HTML or XML format, the output file must be specified as the second argument after the library/resource name or
path. Output format is got automatically from the extension but can also be set using the --format option.

Examples:

python -m robot.libdoc OperatingSystem OperatingSystem.html

python -m robot.libdoc --name MyLibrary Remote::http://10.0.0.42:8270 MyLibrary.xml

python -m robot.libdoc test/resource.html doc/resource_doc.html

jython -m robot.libdoc --version 1.0 MyJavaLibrary.java MyJavaLibrary.html

jython -m robot.libdoc my.organization.DynamicJavaLibrary my.organization.DynamicJavaLibrary.xml

Viewing information on console

Libdoc has three special commands to show information on the console. These commands are used instead of the name of the output file, and they can
also take additional arguments.

list

List names of the keywords the library/resource contains. Can be limited to show only certain keywords by passing optional patterns as arguments.
Keyword is listed if its name contains given pattern.

show

Show library/resource documentation. Can be limited to show only certain keywords by passing names as arguments. Keyword is shown if its
name matches any given name. Special argument intro will show only the library introduction and importing sections.

version

Show library version

Optional patterns given to list and show are case and space insensitive. Both also accept * and ? as wildcards.

Examples:

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 232/263

python -m robot.libdoc Dialogs list

python -m robot.libdoc SeleniumLibrary list browser

python -m robot.libdoc Remote::10.0.0.42:8270 show

python -m robot.libdoc Dialogs show PauseExecution execute*

python -m robot.libdoc SeleniumLibrary show intro

python -m robot.libdoc SeleniumLibrary version

5.1.2 Writing documentation

This section discusses writing documentation for Python and Java based test libraries that use the static library API as well as for dynamic libraries and
resource files. Creating test libraries and resource files is described in more details elsewhere in the User Guide.

Python libraries

The documentation for Python libraries that use the static library API is written simply as doc strings for the library class or module and for methods
implementing keywords. The first line of the method documentation is considered as a short documentation for the keyword (used, for example, as a tool
tip in links in the generated HTML documentation), and it should thus be as describing as possible, but not too long.

The simple example below illustrates how to write the documentation in general, and there is a bit longer example at the end of this chapter containing
also an example of the generated documentation.

class ExampleLib:

 """Library for demo purposes.

 This library is only used in an example and it doesn't do anything useful.

 """

 def my_keyword(self):

 """Does nothing."""

 pass

 def your_keyword(self, arg):

 """Takes one argument and *does nothing* with it.

 Examples:

 | Your Keyword | xxx |

 | Your Keyword | yyy |

 """

 pass

Tip

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 233/263

If you want to use non-ASCII charactes in the documentation of Python libraries, you must either use UTF-8 as your source code encoding or create
docstrings as Unicode.

For more information on Python documentation strings, see PEP-257.

Java libraries

Documentation for Java libraries that use the static library API is written as normal Javadoc comments for the library class and methods. In this case
Libdoc actually uses the Javadoc tool internally, and thus tools.jar containing it must be in CLASSPATH. This jar file is part of the normal Java SDK
distribution and ought to be found from bin directory under the Java SDK installation.

The following simple example has exactly same documentation (and functionality) than the earlier Python example.

/**

 * Library for demo purposes.

 *

 * This library is only used in an example and it doesn't do anything useful.

 */

public class ExampleLib {

 /**

 * Does nothing.

 */

 public void myKeyword() {

 }

 /**

 * Takes one argument and *does nothing* with it.

 *

 * Examples:

 * | Your Keyword | xxx |

 * | Your Keyword | yyy |

 */

 public void yourKeyword(String arg) {

 }

}

Dynamic libraries

To be able to generate meaningful documentation for dynamic libraries, the libraries must return keyword argument names and documentation using
get_keyword_arguments and get_keyword_documentation methods (or using their camelCase variants getKeywordArguments and

http://www.python.org/dev/peps/pep-0263
http://www.python.org/dev/peps/pep-0257
http://en.wikipedia.org/wiki/Javadoc

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 234/263

getKeywordDocumentation). Libraries can also support general library documentation via special __intro__ and __init__ values to the
get_keyword_documentation method.

See the Dynamic library API section for more information about how to create these methods.

Importing section

A separate section about how the library is imported is created based on its initialization methods. For a Python library, if it has an __init__ method that
takes arguments in addition to self, its documentation and arguments are shown. For a Java library, if it has a public constructor that accepts arguments,
all its public constructors are shown.

class TestLibrary:

 def __init__(self, mode='default')

 """Creates new TestLibrary. `mode` argument is used to determine mode."""

 self.mode = mode

 def some_keyword(self, arg):

 """Does something based on given `arg`.

 What is done depends on the `mode` specified when `importing` the library.

 """

 if self.mode == 'secret':

 # ...

Resource file documentation

Keywords in resource files can have documentation using [Documentation] setting, and this documentation is also used by Libdoc. First line of the
documentation (until the first implicit newline or explicit \n) is considered to be the short documentation similarly as with test libraries.

Also the resource file itself can have Documentation in the Setting table for documenting the whole resource file.

Possible variables in resource files can not be documented.

*** Settings ***

Documentation Resource file for demo purposes.

... This resource is only used in an example and it doesn't do anything useful.

*** Keywords ***

My Keyword

 [Documentation] Does nothing

 No Operation

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 235/263

Your Keyword

 [Arguments] ${arg}

 [Documentation] Takes one argument and *does nothing* with it.

 ...

 ... Examples:

 ... | Your Keyword | xxx |

 ... | Your Keyword | yyy |

 No Operation

5.1.3 Documentation syntax

Libdoc supports documentation in Robot Framework's own documentation syntax, HTML, plain text, and reStructuredText. The format to use can be
specified in test library source code using ROBOT_LIBRARY_DOC_FORMAT attribute or given from the command line using --docformat (-F) option. In
both cases the possible case-insensitive values are ROBOT (default), HTML, TEXT and reST.

Robot Framework's own documentation format is the default and generally recommended format. Other formats are especially useful when using
existing code with existing documentation in test libraries. Support for other formats was added in Robot Framework 2.7.5.

Robot Framework documentation syntax

Most important features in Robot Framework's documentation syntax are formatting using *bold* and _italic_, custom links and automatic
conversion of URLs to links, and the possibility to create tables and pre-formatted text blocks (useful for examples) simply with pipe character. If
documentation gets longer, support for section titles (new in Robot Framework 2.7.5) can also be handy.

Some of the most important formatting features are illustrated in the example below. Notice that since this is the default format, there is no need to use
ROBOT_LIBRARY_DOC_FORMAT attribute nor give the format from the command line.

"""Example library in Robot Framework format.

- Formatting with *bold* and _italic_.

- URLs like http://example.com are turned to links.

- Custom links like [http://robotframework.org|Robot Framework] are supported.

- Linking to `My Keyword` works.

"""

def my_keyword():

 """Nothing more to see here."""

HTML documentation syntax

http://docutils.sourceforge.net/rst.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 236/263

When using HTML format, you can create documentation pretty much freely using any syntax. The main drawback is that HTML markup is not that
human friendly, and that can make the documentation in the source code hard to maintain and read. Documentation in HTML format is used by Libdoc
directly without any transformation or escaping. The special syntax for linking to keywords using syntax like `My Keyword` is supported, however.

Example below contains the same formatting examples as the previous example. Now ROBOT_LIBRARY_DOC_FORMAT attribute must be used or format
given on the command line like --docformat HTML.

"""Example library in HTML format.

 Formatting with bold and <i>italic</i>.

 URLs are not turned to links automatically.

 Custom links like HTML are supported.

 Linking to `My Keyword` works.

"""

ROBOT_LIBRARY_DOC_FORMAT = 'HTML'

def my_keyword():

 """Nothing more to see here."""

Plain text documentation syntax

When the plain text format is used, Libdoc uses the documentation as-is. Newlines and other whitespace are preserved except for indentation, and
HTML special characters (<>&) escaped. The only formatting done is turning URLs into clickable links and supporting internal linking like `My
Keyword`.

"""Example library in plain text format.

- Formatting is not supported.

- URLs like http://example.com are turned to links.

- Custom links are not supported.

- Linking to `My Keyword` works.

"""

ROBOT_LIBRARY_DOC_FORMAT = 'text'

def my_keyword():

 """Nothing more to see here."""

reStructuredText documentation syntax

reStructuredText is simple yet powerful markup syntax used widely in Python projects (including this User Guide) and elsewhere. The main limitation is
that you need to have the docutils module installed to be able to generate documentation using it. Because backtick characters have special meaning in

http://docutils.sourceforge.net/rst.html
https://pypi.python.org/pypi/docutils

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 237/263

reStructuredText, linking to keywords requires them to be escaped like \`My Keyword\`.

One of the nice features that reStructured supports is the ability to mark code blocks that can be syntax highlighted. The code block syntax has always
worked with Robot Framework, but they are highlighted only in RF 3.0.1 and newer. Syntax highlight requires additional Pygments module and
supports all the languages that Pygments supports.

"""Example library in reStructuredText format.

- Formatting with **bold** and *italic*.

- URLs like http://example.com are turned to links.

- Custom links like reStructuredText__ are supported.

- Linking to \`My Keyword\` works but requires backtics to be escaped.

__ http://docutils.sourceforge.net

.. code:: robotframework

 *** Test Cases ***

 Example

 My keyword # How cool is this!!?!!?!1!!

"""

ROBOT_LIBRARY_DOC_FORMAT = 'reST'

def my_keyword():

 """Nothing more to see here."""

5.1.4 Internal linking

Libdoc supports internal linking to keywords and different sections in the documentation. Linking is done by surrounding the target name with backtick
characters like `target`. Target names are case-insensitive and possible targets are explained in the subsequent sections.

There is no error or warning if a link target is not found, but instead Libdoc just formats the text in italics. Earlier this formatting was recommended to be
used when referring to keyword arguments, but that was problematic because it could accidentally create internal links. Nowadays it is recommended to
use inline code style with double backticks like ``argument`` instead. The old formatting of single backticks may even be removed in the future in
favor of giving an error when a link target is not found.

In addition to the examples in the following sections, internal linking and argument formatting is shown also in the longer example at the end of this
chapter.

Linking to keywords

http://pygments.org/

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 238/263

All keywords the library have automatically create link targets and they can be linked using syntax `Keyword Name`. This is illustrated with the example
below where both keywords have links to each others.

def keyword(log_level="INFO"):

 """Does something and logs the output using the given level.

 Valid values for log level` are "INFO" (default) "DEBUG" and "TRACE".

 See also `Another Keyword`.

 """

 # ...

def another_keyword(argument, log_level="INFO"):

 """Does something with the given argument else and logs the output.

 See `Keyword` for information about valid log levels.

 """

 # ...

Note

When using reStructuredText documentation syntax, backticks must be escaped like \`Keyword Name\`.

Linking to automatic sections

The documentation generated by Libdoc always contains sections for overall library introduction, shortcuts to keywords, and for actual keywords. If a
library itself takes arguments, there is also separate importing section.

All these sections act as targets that can be linked, and the possible target names are listed in the table below. Using these targets is shown in the example
of the next section.

Automatic section link targets

Section Target
Introduction `introduction` and `library introduction`
Importing `importing` and `library importing`
Shortcuts `shortcuts` (New in Robot Framework 2.7.5.)
Keywords `keywords` (New in Robot Framework 2.7.5.)

Linking to custom sections

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 239/263

Starting from version 2.7.5, Robot Framework's documentation syntax supports custom section titles, and the titles used in the library or resource file
introduction automatically create link targets. The example below illustrates linking both to automatic and custom sections:

"""Library for Libdoc demonstration purposes.

This library does not do anything useful.

= My section =

We do have a custom section in the documentation, though.

"""

def keyword():

 """Does nothing.

 See `introduction` for more information and `My section` to test how

 linking to custom sections works.

 """

 pass

Note

Linking to custom sections works only when using Robot Framework documentation syntax.

Note

Prior to Robot Framework 2.8, only the first level section titles were linkable.

5.1.5 Representing arguments

Libdoc handles keywords' arguments automatically so that arguments specified for methods in libraries or user keywords in resource files are listed in a
separate column. User keyword arguments are shown without ${} or @{} to make arguments look the same regardless where keywords originated from.

Regardless how keywords are actually implemented, Libdoc shows arguments similarly as when creating keywords in Python. This formatting is
explained more thoroughly in the table below.

How Libdoc represents arguments

Arguments Now represented Examples
No arguments Empty column.
One or more argument List of strings containing argument names. one_argument

a1, a2, a3

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 240/263

Arguments Now represented Examples
Default values for arguments Default values separated from names with =. arg=default value

a, b=1, c=2

Variable number of arguments (varargs) Last (or second last with kwargs) argument has * before its
name.

*varargs

a, b=42, *rest

Free keyword arguments (kwargs) Last arguments has ** before its name. **kwargs

a, b=42, **kws

*varargs, **kwargs

When referring to arguments in keyword documentation, it is recommended to use inline code style like ``argument``.

5.1.6 Libdoc example

The following example illustrates how to use the most important documentation formatting possibilities, internal linking, and so on. Click here to see how
the generated documentation looks like.

class LoggingLibrary:

 """Library for logging messages.

 = Table of contents =

 - `Usage`

 - `Valid log levels`

 - `Examples`

 - `Importing`

 - `Shortcuts`

 - `Keywords`

 = Usage =

 This library has several keyword, for example `Log Message`, for logging

 messages. In reality the library is used only for _Libdoc_ demonstration

 purposes.

 = Valid log levels =

 Valid log levels are ``INFO``, ``DEBUG``, and ``TRACE``. The default log

 level can be set during `importing`.

 = Examples =

 Notice how keywords are linked from examples.

 | `Log Message` | My message | | |

 | `Log Two Messages` | My message | Second message | level=DEBUG |

http://robotframework.org/robotframework/latest/images/LoggingLibrary.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 241/263

 | `Log Messages` | First message | Second message | Third message |

 """

 ROBOT_LIBRARY_VERSION = '0.1'

 def __init__(self, default_level='INFO'):

 """The default log level can be given at library import time.

 See `Valid log levels` section for information about available log

 levels.

 Examples:

 | =Setting= | =Value= | =Value= | =Comment= |

 | Library | LoggingLibrary | | # Use default level (INFO) |

 | Library | LoggingLibrary | DEBUG | # Use the given level |

 """

 self.default_level = self._verify_level(default_level)

 def _verify_level(self, level):

 level = level.upper()

 if level not in ['INFO', 'DEBUG', 'TRACE']:

 raise RuntimeError("Invalid log level'%s'. Valid levels are "

 "'INFO', 'DEBUG', and 'TRACE'")

 return level

 def log_message(self, message, level=None):

 """Writes given message to the log file using the specified log level.

 The message to log and the log level to use are defined using

 ``message`` and ``level`` arguments, respectively.

 If no log level is given, the default level given during `library

 importing` is used.

 """

 level = self._verify_level(level) if level else self.default_level

 print "*%s* %s" % (level, message)

 def log_two_messages(self, message1, message2, level=None):

 """Writes given messages to the log file using the specified log level.

 See `Log Message` keyword for more information.

 """

 self.log_message(message1, level)

 self.log_message(message2, level)

 def log_messages(self, *messages):

 """Logs given messages using the log level set during `importing`.

 See also `Log Message` and `Log Two Messages`.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 242/263

 """

 for msg in messages:

 self.log_message(msg)

All standard libraries have documentation generated by Libdoc and their documentation (and source code) act as a more realistic examples.

5.2 Test data documentation tool (Testdoc)

5.2.1 General usage
5.2.2 Generating documentation

Testdoc is Robot Framework's built-in tool for generating high level documentation based on test cases. The created documentation is in HTML format
and it includes name, documentation and other metadata of each test suite and test case, as well as the top-level keywords and their arguments.

5.2.1 General usage

Synopsis

python -m robot.testdoc [options] data_sources output_file

Options

-T, --title <title>

 Set the title of the generated documentation. Underscores in the title are converted to spaces. The default title is the name of
the top level suite.

-N, --name <name>

 Override the name of the top level test suite.
-D, --doc <doc>

 Override the documentation of the top level test suite.
-M, --metadata <name:value>

 Set/override free metadata of the top level test suite.
-G, --settag <tag>

 Set given tag(s) to all test cases.
-t, --test <name>

 Include tests by name.
-s, --suite <name>

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 243/263

 Include suites by name.
-i, --include <tag>

 Include tests by tags.
-e, --exclude <tag>

 Exclude tests by tags.
-A, --argumentfile <path>

 Text file to read more arguments from. Works exactly like argument files when running tests. New in Robot Framework
3.0.2.

-h,

--help

Print this help in the console.

All options except --title have exactly the same semantics as same options have when executing test cases.

5.2.2 Generating documentation

Data can be given as a single file, directory, or as multiple files and directories. In all these cases, the last argument must be the file where to write the
output.

Testdoc works with all interpreters supported by Robot Framework (Python, Jython and IronPython). It can be executed as an installed module like
python -m robot.testdoc or as a script like python path/robot/testdoc.py.

Examples:

python -m robot.testdoc my_test.html testdoc.html

jython -m robot.testdoc --name smoke_tests --include smoke path/to/my_tests smoke.html

ipy path/to/robot/testdoc.py first_suite.txt second_suite.txt output.html

5.3 Test data clean-up tool (Tidy)

5.3.1 General usage
5.3.2 Cleaning up test data
5.3.3 Changing test data format

Tidy is Robot Framework's built-in a tool for cleaning up and changing the format of Robot Framework test data files.

The output is written into the standard output stream by default, but an optional output file can be given starting from Robot Framework 2.7.5. Files can
also be modified in-place using --inplace or --recursive options.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 244/263

5.3.1 General usage

Synopsis

python -m robot.tidy [options] inputfile

python -m robot.tidy [options] inputfile [outputfile]

python -m robot.tidy --inplace [options] inputfile [more input files]

python -m robot.tidy --recursive [options] directory

Options

-i,

--inplace

Tidy given file(s) so that original file(s) are overwritten (or removed, if the format is changed). When this option is used, it is
possible to give multiple input files. Examples:

python -m robot.tidy --inplace tests.html

python -m robot.tidy --inplace --format txt *.html

-r, --recursive

 Process given directory recursively. Files in the directory are processed in place similarly as when --inplace option is
used.

-f, --format <robot|txt|html|tsv>

 Output file format. If the output file is given explicitly, the default value is got from its extension. Otherwise the format is
not changed.

-p, --use-pipes

 Use a pipe character (|) as a cell separator in the txt format.
-s, --spacecount <number>

 The number of spaces between cells in the txt format. New in Robot Framework 2.7.3.
-l, --lineseparator <native|windows|unix>

 Line separator to use in outputs. The default is 'native'.

native: use operating system's native line separators
windows: use Windows line separators (CRLF)
unix: use Unix line separators (LF)

New in Robot Framework 2.7.6.
-h,

--help

Show this help.

Alternative execution

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 245/263

Although Tidy is used only with Python in the synopsis above, it works also with Jython and IronPython. In the synopsis Tidy is executed as an installed
module (python -m robot.tidy), but it can be run also as a script:

python path/robot/tidy.py [options] arguments

Executing as a script can be useful if you have done manual installation or otherwise just have the robot directory with the source code somewhere in
your system.

Output encoding

All output files are written using UTF-8 encoding. Outputs written to the console use the current console encoding.

5.3.2 Cleaning up test data

Test case files created with HTML editors or written by hand can be normalized using Tidy. Tidy always writes consistent headers, consistent order for
settings, and consistent amount of whitespace between cells and tables.

Examples:

python -m robot.tidy messed_up_tests.html cleaned_tests.html

python -m robot.tidy --inplace tests.txt

5.3.3 Changing test data format

Robot Framework supports test data in HTML, TSV and TXT formats and Tidy makes changing between the formats trivial. Input format is always
determined based on the extension of the input file. Output format can be set using the --format option, and the default value is got from the extension
of the possible output file.

Examples:

python -m robot.tidy tests.html tests.txt

python -m robot.tidy --format txt --inplace tests.html

python -m robot.tidy --format tsv --recursive mytests

5.4 External tools

There are plenty of external tools that can be used with Robot Framework. These tools include test data editor RIDE, extensions for various IDEs and
text editors, plugins to continuous integration systems and build tools, and so on.

https://github.com/robotframework/RIDE

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 246/263

These tools are developed as separate projects independently from Robot Framework itself. For a list of the available tools see
http://robotframework.org/#tools.

Note

Some supporting tools used to be distributed with Robot Framework itself. Nowadays all those tools are also available separately and they were removed
both from the repository and source distribution in Robot Framework 2.8.6.

6 Appendices

6.1 All available settings in test data
6.2 All command line options
6.3 Test data templates
6.4 Documentation formatting
6.5 Time format
6.6 Boolean arguments
6.7 Internal API

6.1 All available settings in test data

6.1.1 Setting table
6.1.2 Test Case table
6.1.3 Keyword table

6.1.1 Setting table

The Setting table is used to import test libraries, resource files and variable files and to define metadata for test suites and test cases. It can be included in
test case files and resource files. Note that in a resource file, a Setting table can only include settings for importing libraries, resources, and variables.

Settings available in the Setting table

Name Description
Library Used for importing libraries.
Resource Used for taking resource files into use.
Variables Used for taking variable files into use.

http://robotframework.org/#tools

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 247/263

Name Description
Documentation Used for specifying a test suite or resource file documentation.
Metadata Used for setting free test suite metadata.
Suite Setup Used for specifying the suite setup.
Suite Teardown Used for specifying the suite teardown.
Force Tags Used for specifying forced values for tags when tagging test cases.
Default Tags Used for specifying default values for tags when tagging test

cases.
Test Setup Used for specifying a default test setup.
Test Teardown Used for specifying a default test teardown.
Test Template Used for specifying a default template keyword for test cases.
Test Timeout Used for specifying a default test case timeout.

Note

All setting names can optionally include a colon at the end, for example Documentation:. This can make reading the settings easier especially when using the
plain text format.

6.1.2 Test Case table

The settings in the Test Case table are always specific to the test case for which they are defined. Some of these settings override the default values
defined in the Settings table.

Settings available in the Test Case table

Name Description
[Documentation] Used for specifying a test case documentation.
[Tags] Used for tagging test cases.
[Setup] Used for specifying a test setup.
[Teardown] Used for specifying a test teardown.
[Template] Used for specifying a template keyword.
[Timeout] Used for specifying a test case timeout.

6.1.3 Keyword table

Settings in the Keyword table are specific to the user keyword for which they are defined.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 248/263

Settings available in the Keyword table

Name Description
[Documentation] Used for specifying a user keyword documentation.
[Tags] Used for specifying user keyword tags.
[Arguments] Used for specifying user keyword arguments.
[Return] Used for specifying user keyword return values.
[Teardown] Used for specifying user keyword teardown.
[Timeout] Used for specifying a user keyword timeout.

6.2 All command line options

This appendix lists all the command line options that are available when executing test cases and when post-processing outputs. Also environment
variables affecting execution and post-processing are listed.

6.2.1 Command line options for test execution
6.2.2 Command line options for post-processing outputs
6.2.3 Environment variables for execution and post-processing

6.2.1 Command line options for test execution

-F, --extension <value>

 Parse only these files when executing a directory.
-N, --name <name>

 Sets the name of the top-level test suite.
-D, --doc <document>

 Sets the documentation of the top-level test suite.
-M, --metadata <name:value>

 Sets free metadata for the top level test suite.
-G, --settag <tag>

 Sets the tag(s) to all executed test cases.
-t, --test <name>

 Selects the test cases by name.
-s, --suite <name>

 Selects the test suites by name.
-R, --rerunfailed <file>

 Selects failed tests from an earlier output file to be re-executed.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 249/263

-S, --rerunfailedsuites <file>

 Selects failed test suites from an earlier output file to be re-executed.
-i, --include <tag>

 Selects the test cases by tag.
-e, --exclude <tag>

 Selects the test cases by tag.
-c, --critical <tag>

 Tests that have the given tag are considered critical.
-n, --noncritical <tag>

 Tests that have the given tag are not critical.
-v, --variable <name:value>

 Sets individual variables.
-V, --variablefile <path:args>

 Sets variables using variable files.
-d, --outputdir <dir>

 Defines where to create output files.
-o, --output <file>

 Sets the path to the generated output file.
-l, --log <file>

 Sets the path to the generated log file.
-r, --report <file>

 Sets the path to the generated report file.
-x, --xunit <file>

 Sets the path to the generated xUnit compatible result file.
--xunitskipnoncritical

 Mark non-critical tests on xUnit compatible result file as skipped.
-b, --debugfile <file>

 A debug file that is written during execution.
-T, --timestampoutputs

 Adds a timestamp to all output files.
--splitlog Split log file into smaller pieces that open in browser transparently.
--logtitle <title>

 Sets a title for the generated test log.
--reporttitle <title>

 Sets a title for the generated test report.
--reportbackground <colors>

 Sets background colors of the generated report.
-L, --loglevel <level>

 Sets the threshold level for logging. Optionally the default visible log level can be given separated with a colon (:).
--suitestatlevel <level>

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 250/263

 Defines how many levels to show in the Statistics by Suite table in outputs.
--tagstatinclude <tag>

 Includes only these tags in the Statistics by Tag table.
--tagstatexclude <tag>

 Excludes these tags from the Statistics by Tag table.
--tagstatcombine <tags:title>

 Creates combined statistics based on tags.
--tagdoc <pattern:doc>

 Adds documentation to the specified tags.
--tagstatlink <pattern:link:title>

 Adds external links to the Statistics by Tag table.
--removekeywords <all|passed|name:pattern|tag:pattern|for|wuks>

 Removes keyword data from the generated log file.
--flattenkeywords <for|foritem|name:pattern|tag:pattern>

 Flattens keywords in the generated log file.
--listener <name:args>

 Sets a listener for monitoring test execution.
--warnonskippedfiles

 Show a warning when an invalid file is skipped.
--nostatusrc Sets the return code to zero regardless of failures in test cases. Error codes are returned normally.
--runemptysuite

 Executes tests also if the selected test suites are empty.
--dryrun In the dry run mode tests are run without executing keywords originating from test libraries. Useful for validating test

data syntax.
-X, --exitonfailure

 Stops test execution if any critical test fails.
--exitonerror Stops test execution if any error occurs when parsing test data, importing libraries, and so on.
--skipteardownonexit

 Skips teardowns is test execution is prematurely stopped.
--prerunmodifier <name:args>

 Activate programmatic modification of test data.
--prerebotmodifier <name:args>

 Activate programmatic modification of results.
--randomize <all|suites|tests|none>

 Randomizes test execution order.
--console <verbose|dotted|quiet|none>

 Console output type.
--dotted Shortcut for --console dotted.
--quiet Shortcut for --console quiet.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 251/263

-W, --consolewidth <width>

 Sets the width of the console output.
-C, --consolecolors <auto|on|ansi|off>

 Specifies are colors used on the console.
-K, --consolemarkers <auto|on|off>

 Show markers on the console when top level keywords in a test case end.
-P, --pythonpath <path>

 Additional locations to add to the module search path.
-E, --escape <what:with>

 Escapes characters that are problematic in the console.
-A, --argumentfile <path>

 A text file to read more arguments from.
-h, --help Prints usage instructions.
--version Prints the version information.

6.2.2 Command line options for post-processing outputs

-R, --merge Changes result combining behavior to merging.
-N, --name <name>

 Sets the name of the top level test suite.
-D, --doc <document>

 Sets the documentation of the top-level test suite.
-M, --metadata <name:value>

 Sets free metadata for the top-level test suite.
-G, --settag <tag>

 Sets the tag(s) to all processed test cases.
-t, --test <name>

 Selects the test cases by name.
-s, --suite <name>

 Selects the test suites by name.
-i, --include <tag>

 Selects the test cases by tag.
-e, --exclude <tag>

 Selects the test cases by tag.
-c, --critical <tag>

 Tests that have the given tag are considered critical.
-n, --noncritical <tag>

 Tests that have the given tag are not critical.
-d, --outputdir <dir>

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 252/263

 Defines where to create output files.
-o, --output <file>

 Sets the path to the generated output file.
-l, --log <file>

 Sets the path to the generated log file.
-r, --report <file>

 Sets the path to the generated report file.
-x, --xunit <file>

 Sets the path to the generated xUnit compatible result file.
--xunitskipnoncritical

 Mark non-critical tests on xUnit compatible result file as skipped.
-T, --timestampoutputs

 Adds a timestamp to all output files.
--splitlog Split log file into smaller pieces that open in browser transparently.
--logtitle <title>

 Sets a title for the generated test log.
--reporttitle <title>

 Sets a title for the generated test report.
--reportbackground <colors>

 Sets background colors of the generated report.
-L, --loglevel <level>

 Sets the threshold level to select log messages. Optionally the default visible log level can be given separated with a
colon (:).

--suitestatlevel <level>

 Defines how many levels to show in the Statistics by Suite table in outputs.
--tagstatinclude <tag>

 Includes only these tags in the Statistics by Tag table.
--tagstatexclude <tag>

 Excludes these tags from the Statistics by Tag table.
--tagstatcombine <tags:title>

 Creates combined statistics based on tags.
--tagdoc <pattern:doc>

 Adds documentation to the specified tags.
--tagstatlink <pattern:link:title>

 Adds external links to the Statistics by Tag table.
--removekeywords <all|passed|name:pattern|tag:pattern|for|wuks>

 Removes keyword data from the generated outputs.
--flattenkeywords <for|foritem|name:pattern|tag:pattern>

 Flattens keywords in the generated outputs.
--starttime <timestamp>

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 253/263

 Sets the starting time of test execution when creating reports.
--endtime <timestamp>

 Sets the ending time of test execution when creating reports.
--nostatusrc Sets the return code to zero regardless of failures in test cases. Error codes are returned normally.
--processemptysuite

 Processes output files even if files contain empty test suites.
--prerebotmodifier <name:args>

 Activate programmatic modification of results.
-C, --consolecolors <auto|on|ansi|off>

 Specifies are colors used on the console.
-P, --pythonpath <path>

 Additional locations to add to the module search path.
-E, --escape <what:with>

 Escapes characters that are problematic in the console.
-A, --argumentfile <path>

 A text file to read more arguments from.
-h, --help Prints usage instructions.
--version Prints the version information.

6.2.3 Environment variables for execution and post-processing

ROBOT_OPTIONS and REBOT_OPTIONS
Space separated list of default options to be placed in front of any explicit options on the command line.

ROBOT_SYSLOG_FILE

Path to a syslog file where Robot Framework writes internal information about parsing test case files and running tests.
ROBOT_SYSLOG_LEVEL

Log level to use when writing to the syslog file.
ROBOT_INTERNAL_TRACES

When set to any non-empty value, Robot Framework's internal methods are included in error tracebacks.

6.3 Test data templates

These templates can be used when creating test data for Robot Framework. There are templates both for test case and resource files, and resource
templates can also be used to create test suite initialization files.

Templates are available in HTML format and TSV format and they can be customized freely. There are no templates for the plain text format because it
requires so little boilerplate that templates would not be very useful.

http://robot-framework.readthedocs.org/en/master/autodoc/robot.running.html#robot.running.model.TestCase

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 254/263

testcase_template.html
Test case file template in HTML format.

testcase_template.tsv
Test case file template in TSV format.

resource_template.html
Resource file template in HTML format.

resource_template.tsv
Resource file template in TSV format.

attd_template.html
Template for creating test cases in Acceptance Test-Driven Development (ATDD) style. These tests are created from high-level keywords needing
no arguments, and the template has been simplified accordingly.

Templates are available through this user guide, they are included in the source distribution, and they can also be found from the project pages.

6.4 Documentation formatting

It is possible to use simple HTML formatting with test suite, test case and user keyword documentation and free test suite metadata in the test data, as
well as when documenting test libraries. The formatting is similar to the style used in most wikis, and it is designed to be understandable both as plain
text and after the HTML transformation.

6.4.1 Representing newlines
Newlines in test data
Documentation in test libraries

6.4.2 Paragraphs
6.4.3 Inline styles
6.4.4 URLs
6.4.5 Custom links and images

Link with text content
Link with image content
Image with title text

6.4.6 Section titles
6.4.7 Tables
6.4.8 Lists
6.4.9 Preformatted text
6.4.10 Horizontal ruler

http://robotframework.org/robotframework/latest/templates/testcase_template.html
http://robotframework.org/robotframework/latest/templates/testcase_template.tsv
http://robotframework.org/robotframework/latest/templates/resource_template.html
http://robotframework.org/robotframework/latest/templates/resource_template.tsv
http://robotframework.org/robotframework/latest/templates/atdd_template.html
https://github.com/robotframework/robotframework/tree/master/templates

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 255/263

6.4.1 Representing newlines

Newlines in test data

When documenting test suites, test cases and keywords or adding metadata to test suites, newlines can be added manually using the literal newline
character sequence (\n).

*** Settings ***

Documentation First line.\n\nSecond paragraph, this time\nwith multiple lines.

Metadata Example Value\nin two lines

Adding newlines manually to a long documentation takes some effort and extra characters also make the documentation harder to read. Starting from
Robot Framework 2.7, this is not required as newlines are inserted automatically between continued documentation and metadata lines. In practice this
means that the above example could be written also as follows.

*** Settings ***

Documentation

... First line.

...

... Second paragraph, this time

... with multiple lines.

Metadata

... Example

... Value

... in two lines

No automatic newline is added if a line already ends with a literal newline or if it ends with an escaping backslash. If documentation or metadata is
defined in multiple columns, cells in a same row are concatenated together with spaces. This kind of splitting can be a good idea especially when using
the HTML format and columns are narrow. Different ways to split documentation are illustrated in the examples below where all test cases end up
having the same two line documentation.

*** Test Cases ***

 Example 1

 [Documentation] First line\n Second line in multiple parts

 No Operation

 Example 2

 [Documentation] First line

 ... Second line in multiple parts

 No Operation

 Example 3

 [Documentation] First line\n

 ... Second line in\

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 256/263

 ... multiple parts

 No Operation

Documentation in test libraries

With library documentations normal newlines are enough, and for example the following keyword documentation would create same end result as the
test suite documentation in the previous section.

def example_keyword():

 """First line.

 Second paragraph, this time

 with multiple lines.

 """

 pass

6.4.2 Paragraphs

Starting from Robot Framework 2.7.2, all regular text in the formatted HTML documentation is represented as paragraphs. In practice, lines separated by
a single newline will be combined in a paragraph regardless whether the newline is added manually or automatically. Multiple paragraphs can be
separated with an empty line (i.e. two newlines) and also tables, lists, and other specially formatted blocks discussed in subsequent sections end a
paragraph.

For example, the following test suite or resource file documentation:

*** Settings ***

Documentation

... First paragraph has only one line.

...

... Second paragraph, this time created

... with multiple lines.

will be formatted in HTML as:

First paragraph has only one line.

Second paragraph, this time created with multiple lines.

Note

Prior to 2.7.2 handling paragraphs was inconsistent. In documentation generated with Libdoc lines were combined to paragraphs but in documentations
shown in log and report they were not.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 257/263

6.4.3 Inline styles

The documentation syntax supports inline styles bold, italic and code. Bold text can be created by having an asterisk before and after the selected word
or words, for example *this is bold*. Italic style works similarly, but the special character to use is an underscore, for example, _italic_. It is also
possible to have bold italic with the syntax _*bold italic*_.

The code style is created using double backticks like ``code``. The result is monospaced text with light gray background. Support for code style is new
in Robot Framework 2.8.6.

Asterisks, underscores or double backticks alone, or in the middle of a word, do not start formatting, but punctuation characters before or after them are
allowed. When multiple lines form a paragraph, all inline styles can span over multiple lines.

Inline style examples

Unformatted Formatted
bold bold
italic italic
*bold italic* bold italic
``code`` code

bold, then _italic_ and finally ``some code`` bold, then italic and finally some code
This is *bold\n

 on multiple\n
 lines*.

This is bold
 on multiple
 lines.

6.4.4 URLs

All strings that look like URLs are automatically converted into clickable links. Additionally, URLs that end with extension .jpg, .jpeg, .png, .gif or .bmp
(case-insensitive) will automatically create images. For example, URLs like http://example.com are turned into links, and http:///host/image.jpg
and file:///path/chart.png into images.

The automatic conversion of URLs to links is applied to all the data in logs and reports, but creating images is done only for test suite, test case and
keyword documentation, and for test suite metadata.

6.4.5 Custom links and images

Starting from Robot Framework 2.7, it is possible to create custom links and embed images using special syntax [link|content]. This creates a link or
image depending are link and content images. They are considered images if they have the same image extensions that are special with URLs. The
surrounding square brackets and the pipe character between the parts are mandatory in all cases.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 258/263

Link with text content

If neither link nor content is an image, the end result is a normal link where link is the link target and content the visible text:

[file.html|this file] -> this file

[http://host|that host] -> that host

Link with image content

If content is an image, you get a link where the link content is an image. Link target is created by link and it can be either text or image:

[robot.html|robot.png] ->

[image.jpg|thumb.jpg] ->

Image with title text

If link is an image but content is not, the syntax creates an image where the content is the title text shown when mouse is over the image:

[robot.jpeg|Robot rocks!] ->

6.4.6 Section titles

If documentation gets longer, it is often a good idea to split it into sections. Starting from Robot Framework 2.7.5, it is possible to separate sections with
titles using syntax = My Title =, where the number of equal signs denotes the level of the title:

= First section =

== Subsection ==

Some text.

== Second subsection ==

More text.

= Second section =

You probably got the idea.

Notice that only three title levels are supported and that spaces between equal signs and the title text are mandatory.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 259/263

6.4.7 Tables

Tables are created using pipe characters with spaces around them as column separators and newlines as row separators. Header cells can be created by
surrounding the cell content with equal signs and optional spaces like = Header = or =Header=. Tables cells can also contain links and formatting such
as bold and italic:

| =A= | =B= | = C = |

| _1_ | Hello | world! |

| _2_ | Hi |

The created table always has a thin border and normal text is left-aligned. Text in header cells is bold and centered. Empty cells are automatically added
to make rows equally long. For example, the above example would be formatted like this in HTML:

A B C
1 Hello world
2 Hi

Note

Support for table headers is a new feature in Robot Framework 2.8.2.

6.4.8 Lists

Lists are created by starting a line with a hyphen and space ('- '). List items can be split into multiple lines by indenting continuing lines with one or more
spaces. A line that does not start with '- ' and is not indented ends the list:

Example:

- a list item

- second list item

 is continued

This is outside the list.

The above documentation is formatted like this in HTML:

Example:

a list item
second list item is continued

This is outside the list.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 260/263

Note

Support for formatting lists was added in 2.7.2. Prior to that, the same syntax prevented Libdoc from combining lines to paragraphs, so the end result was
similar. Support for splitting list items into multiple lines was added in 2.7.4.

6.4.9 Preformatted text

Starting from Robot Framework 2.7, it is possible to embed blocks of preformatted text in the documentation. Preformatted block is created by starting
lines with '| ', one space being mandatory after the pipe character except on otherwise empty lines. The starting '| ' sequence will be removed from the
resulting HTML, but all other whitespace is preserved.

In the following documentation, the two middle lines form a preformatted block when converted to HTML:

Doc before block:

| inside block

| some additional whitespace

After block.

The above documentation is formatted like this:

Doc before block:

inside block

 some additional whitespace

After block.

When documenting suites, tests or keywords in Robot Framework test data, having multiple spaces requires escaping with a backslash to prevent
ignoring spaces. The example above would thus be written like this:

Doc before block:

| inside block

| \ \ \ some \ \ additional whitespace

After block.

6.4.10 Horizontal ruler

Horizontal rulers (the <hr> tag) make it possible to separate larger sections from each others, and they can be created by having three or more hyphens
alone on a line:

Some text here.

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 261/263

More text...

The above documentation is formatted like this:

Some text here.

More text...

6.5 Time format

Robot Framework has its own time format that is both flexible to use and easy to understand. It is used by several keywords (for example, BuiltIn
keywords Sleep and Wait Until Keyword Succeeds), DateTime library, and timeouts.

6.5.1 Time as number

The time can always be given as a plain number, in which case it is interpreted to be seconds. Both integers and floating point numbers work, and it is
possible to use either real numbers or strings containing numerical values.

6.5.2 Time as time string

Representing the time as a time string means using a format such as 2 minutes 42 seconds, which is normally easier to understand than just having the
value as seconds. It is, for example, not so easy to understand how long a time 4200 is in seconds, but 1 hour 10 minutes is clear immediately.

The basic idea of this format is having first a number and then a text specifying what time that number represents. Numbers can be either integers or
floating point numbers, the whole format is case and space insensitive, and it is possible to add - prefix to specify negative times. The available time
specifiers are:

days, day, d
hours, hour, h
minutes, minute, mins, min, m
seconds, second, secs, sec, s
milliseconds, millisecond, millis, ms

Examples:

http://robotframework.org/robotframework/latest/libraries/BuiltIn.html
http://robotframework.org/robotframework/latest/libraries/DateTime.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 262/263

1 min 30 secs

1.5 minutes

90 s

1 day 2 hours 3 minutes 4 seconds 5 milliseconds

1d 2h 3m 4s 5ms

- 10 seconds

6.5.3 Time as "timer" string

Starting from Robot Framework 2.8.5, time can also be given in timer like format hh:mm:ss.mil. In this format both hour and millisecond parts are
optional, leading and trailing zeros can be left out when they are not meaningful, and negative times can be represented by adding the - prefix. For
example, following timer and time string values are identical:

Timer and time string examples

Timer Time string
00:00:01 1 second
01:02:03 1 hour 2 minutes 3 seconds
1:00:00 1 hour
100:00:00 100 hours
00:02 2 seconds
42:00 42 minutes
00:01:02.003 1 minute 2 seconds 3 milliseconds
00:01.5 1.5 seconds
-01:02.345 - 1 minute 2 seconds 345 milliseconds

6.6 Boolean arguments

Many keywords in Robot Framework standard libraries accept arguments that are handled as Boolean values true or false. If such an argument is given
as a string, it is considered false if it is either empty or case-insensitively equal to false or no. Other strings are considered true regardless their value,
and other argument types are tested using same rules as in Python.

Keyword can also accept other special strings than false and no that are to be considered false. For example, BuiltIn keyword Should Be True used in
the examples below considers string no values given to its values argument as false.

*** Keywords ***

True examples

 Should Be Equal ${x} ${y} Custom error values=True # Strings are generally true.

 Should Be Equal ${x} ${y} Custom error values=yes # Same as the above.

 Should Be Equal ${x} ${y} Custom error values=${TRUE} # Python `True` is true.

http://docs.python.org/2/library/stdtypes.html#truth-value-testing
http://robotframework.org/robotframework/latest/libraries/BuiltIn.html

6/24/2018 Robot Framework User Guide

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pypy-installation 263/263

 Should Be Equal ${x} ${y} Custom error values=${42} # Numbers other than 0 are true.

False examples

 Should Be Equal ${x} ${y} Custom error values=False # String `false` is false.

 Should Be Equal ${x} ${y} Custom error values=no # Also string `no` is false.

 Should Be Equal ${x} ${y} Custom error values=${EMPTY} # Empty string is false.

 Should Be Equal ${x} ${y} Custom error values=${FALSE} # Python `False` is false.

 Should Be Equal ${x} ${y} Custom error values=no values # Special false string in this context.

Note that prior to Robot Framework 2.9 handling Boolean arguments was inconsistent. Some keywords followed the above rules, but others simply
considered all non-empty strings, including false and no, to be true.

6.7 Internal API

Starting from Robot Framework 2.7, API documentation is hosted separately at the excellent Read the Docs service. If you are unsure how to use certain
API or is using them forward compatible, please send a question to mailing list.

Generated by reStructuredText. Syntax highlighting by Pygments.

Generated on: 2018-04-25 20:41 UTC.

http://robot-framework.readthedocs.org/
http://readthedocs.org/
http://docutils.sourceforge.net/rst.html
http://pygments.org/

