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Preface

If you are as fascinated by Cube as lam, then this book is writ-
ten for you. In my opinion, the Cube is the most intriguing puzzle ever
invented.

There are several hooks available giving a solution to Rubik's Cube, as
this book doe.s, but most give solutions that require several minutes, even
with pract ice.

Using I he system presented in this book, you will soon be able to solve
the cube in times consist en I y under one minute. I can solve the cube in
40 seconds. Teenagers seem to have better manual dexterity than the
rest of us, so I have no doubt that many of you will be able to beat 40
seconds consistently.

Furthermore, this book does not require memorizing a lot of compli-
cated algorithms, that is, methods. Most of the methods given here are
fairly simple consequences of the conjugation principle and the com-
mutator principle. These principles are explained in Chapter 2 and form
the key to understanding Iiiibik's Cube.

This book is also the only book that clearly explains exactly which
patterns are possible with Rubik's Cube and which are not. Previously,
this information was available only to experts working in an esoteric
branch of mathematics called "group theory." This book, however, is
self-contained and does not presuppose any abstruse mathematical
knowledge.

The complete solution to Rubik's Cube is given in Chapters 3
through 6. Chapter 7 gives some tips for solving the cube more
quickly. Procedures for getting pleasing—even pretty—patterns are
given in Chapter 8. Chapters 9 and 10 prove which patterns are possible
and which are not. The number of possible positions is shown to be
exactly 43,252,003,274,489,856,000. Some games and exercises are
given in Chapter 11, and a glossary at the end of the book defines all of
the relevant terms.
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Chapter 1
Introduction

In this chapter I will describe Rubik's Cube, and define some notation
and terminology that is used throughout this book. The basic problem,
of course, is to restore the cube to its original position in which each face

• was one solid color. A complete, fast, and simple solution is given in
• chapters 2 through 6.

Rubik's Cube has six faces, which are abbreviated as follows:
F front

• B back (not bottom)
R right
L left
U up
D down

Each face appears to be composed of nine small cubes, which I shall call
"cubies" to distinguish them from the entire large cube. There are three
types of cubies: corners, edges, and centers. Altogether the cube has 8

• corners, 12 edges, and 6 centers, for a total of 26 cubies (see Fig. 1.1).
Each corner cubie has three colored stickers, each edge cubic has two

stickers, and each center has one. No two cubies have the same colors.
A twist of a face moves each corner cubie to a location previously

occupied by another corner cubie. In the same manner, edge cubies are
sent to other edges.

In a sense, the centers never move. Twisting a face rotates the center of
that face but leaves it in the same position as before. Of course, you could
turn the entire cube, but no matter how the cube is scrambled, it is
always possible to turn the entire cube (without twisting any faces) so

• that the center cubies remain in their original positions. Thus, the
centers may be regarded as being fixed.
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Edge in wrong spot

Edge in correct spot with
correct orientation

Fig. 1.1. The cube
Once we regard the centers as fixed, we can identify each face by the

color of its center. To solve the cube it is necessary, for example, for the
face with the red center eventually to become a solid red face.

As for each cubic, there is one and only one place where it belongs. To
determine where a cubic belongs, look at its colors and find the matching
centers.

For example, a red and green edge cubic must border on the red and
green centers, and hence belongs between them.

To solve the cube you must not only get each cubic in its correct loca-
tion, but you must orient it correctly. A cubic is oriented correctly if each
sticker matches the color of the adjacent center. Each edge cubic has two

3

Edge in correct spot, but flipped

center edge	 corner



orientations and each corner cubic has three. If an edge does not match
the adjacent centers, it must be flipped. If a corner is not oriented cor-
rectly, it must be rotated 120 degrees until its stickers match the colors of
the centers they touch (see Fig. 1.2).

Come in place but with wrong
orientation

Corner in place with correct
orientation

Result of F applied to solved cube Result of D applied to solved cube

Fig. 1.3

4

Solved cube

Each face may be turned clockwise or counterclockwise. I' means a
90-degree clockwise twist of the front face and 11-1 refers to a 90-degree
counterclockwise twist of the front face. I?, L, U, D, and B refer to
clockwise turns of the other faces. Turning a face clockwise always
means turning that face in the direction which would be clockwise if that
face were viewed directly, head-on. See Fig. 1.3.

The nOtation LF1R means first turn the left face 90 degrees clockwise,
then turn the front face 90 degrees counterclockwise, and lastly turn the
right face 90 degrees clockwise. Raving done Lti R,ItIFL-1 restores the
cube.

R and it / are inverses to each other in the sense that R11-1 has no net
effect on the cube. (This is the reason for the 1 in the notation. It' should
be read "I? inverse.") VR also has no net effect. RR (which has the same
result as R1R) rotates the right face by 180 degrees and can be written
R2. (R2 is read "R squared.")

Top layer

Middle layer

Bottom layer

Fig. 1.4. The layers

The following five chapters give a solution to the cube by doing one
layer at a time. The layers are shown in Fig. 1.4. The top layer is the same
as the upper face. The middle layer is an example of a slice. A slice
consists of those cubies which lie between opposite faces.

Rubik's Cube may be dismantled by rotating one face 45 degrees and
prying one of the edge cub ies out as in Fig. 13. You can then remove the
other cubies easily to reveal the interior mechanism. Exactly how the
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Fig. 1.5. Disassembling the cube

Fig. 1.6. Interior of cube Fig. 2.2. F202F2U2F2U2

cube works will then be clear. When re-assembling the cube, be sure to
put it in its original position. Otherwise, as explained in Chapter 10, the
cube may be impossible to solve.

Chapter 2 •

Conjugates and Commutators

The one-minute solution 11) Rubik's Cube begins in this chapter and is
completed in Chapter O. The solution proceeds by first solving the top
face, then the middle layer, then the bottom corners, and finally the
remaining edges. At elicit singe you will use processes which move cer-
tain cubies around while only temporarily disrupting the work you have
already done. Understanding these processes is the key to solving
the cube.

A process is simply a sequence of face twists. For example, a particu-
larly nice process is given in Fig. 2.1. It interchanges a pair of edges on
the front face, and also interchanges a pair of edges on the right face,
while leaving the rest of the cube unchanged.

There are several ways to generate new processes from old ones. The
simplest way is just (0 turn the entire cube before performing a process.
For example, the process shown in Fig. 2.2. could be obtained from
Fig 2.1 by turning the entire cube.

Fig. 2.1 F2R2F2R2F2R2 •



Fig. 2.4. F PR F2R2PR2 F 1 Fig. 2.5

The slice

Fig. 2.6. 1J1FOUF-1 Fig. 2.7 U-1 1:1 U R U 1 LU R-1

To see how useful conjugation is, suppose you are looking for a process
which will interchange two pairs of cubies as shown in Fig. 2.4. This
figure is very similar to Fig. 2.1. In fact, if we rotate the front face of
Fig. 2.4 by 90 degrees, it will be exactly the same as Fig. 2.1. Then an
application of the Fig. 2.1 process will interchange the desired edges.
The front face can then be rotated back into position. We would refer to
this as the conjugate of the Fig. 2.1 process by F.

Fig. 2.3. The mirror image moves

A more interesting new process is the inverse process. This is obtained
by performing all of the operations backwards and in reverse order. Any
process followed by its inverse process will return the cube to its original
position. For example, the inverse to RUT' LT' R1D-111-1DR is
D-1 RDRUFU 11-1. The process in Fig. 2.1 is its own inverse.

Another useful process is the "mirror image." This is obtained by pro-
ceding as if you were imitating someone else working on the cube while
observing him in a mirror. The operations are changed as shown in
Fig. 2.3. For instance, the mirror image of RUMP fr D' IR1DR is
LAPFULDID-

A more subtle method is to use the conjugation principle. This says
that you get a variant ("conjugate") of a process by applying a sequence
of moves, then the process, and then the inverse to the first sequence of
moves. The conjugate is essentially the same process as the original pro-
cess, but moves different cubies.

For another example of conjugation, see Fig. 2.5. Chapter 6 gives
processes which permute (that is, rearrange) a, b, and c in Fig. 2.5 with-
out changing the other cubies. R followed by this process followed by It
permutes a, b, and d without changing any other cubies.

The conjugaton principle is very powerful. Once you learn a process
which permutes three edges without changing other cubies, then any
three edges may be permuted by an appropriate conjugate. This will be
illustrated in detail in Chapter 6.

Another useful method is the commutator principle. The commutator
of two processes is obtained by doing the two processes, and then doing
the inverses to the two processes. For example, the commutator of L and
D is LDL4

For the typical application of the commutator principle, the objective
is to do some operation on one portion of the cube while doing the inverse
operation to another portion of the cube. To accomplish this, you first
find a process which does the operation while possibly disrupting part of
the rest of the cube. The effect on some cubies can be saved by moving



them over to the unchanged portion of the cube and then performing the
inverse process. Finally, move what you have saved back to where
it belongs.

As an example of the commutator principle, consider the process
u-IFR-iuri, which flips one edge on the slice between the right and left
faces, as indicated in Fig. 2.6. The rest of the slice is unchanged,
although the right and left faces become disrupted. Now rotate the slice,
apply the inverse process (FLPRP 1 U), and rotate the slice back. The
result is that two edges on the slice will be flipped without changing the
rest of the cube.

To take another example, the conjugate If 'L 'U moves the far upper
right corner off the right face without disturbing the rest of the right face.
R followed by the inverse conjugate tr iLU puts it back in a different
spot. Thus the commutator IP URLIAIL I R4 permutes three upper
corners while leaving the rest of the cube unchanged, as shown in
Fig. 2.7. This process is called a "corner 3-cycle."

Chapter 3
The Top Face

To solve the cube in stages, we start by solving the top face. Chapter 4
explains how to solve the middle layer and the solution is completed in
chapters 5 and 6.

To solve the top face, we not only want the top face to be one solid
color, but we also want the colors on the perimeter of the top face to
match the colors of the centers of the sides, as in Fig. 3.1. (In this figure
and in the figures to follow, a blank sticker means that its color is irrele-
vant for present considerations.)

First solve the top edges. This can be done quite quickly and easily, as

Fig. 3.1. The top layer is solved Fig. 3.2. Top edges have been solved
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(b) LDI:1

Fig. 3.5. Solving the top corners

face until the spot where the edge belongs is on the left. Then apply Li
and rotate the top face back.)

The remaining possibility is that the edge is on the top face, but in the
wrong location or with the wrong orientation. In this situation, simply
turn one of the side faces (R, L, F, or B) to move it off the top face and
then solve the edge by the methods above.

Now suppose that all four top edges are in place and in the correct
orientation. To put a top corner in place, first locate the cubic and the
location where it belongs. The easiest case occurs when the cubie is on
the bottom layer and its bottom sticker is not the one that is supposed to
agree with the top color. If this happens, turn the bottom face until one of
the stickers on the desired corner matches that of an adjoining center, as
in Fig. 3.5 (a) or (b). The corner in Fig. 3.5(a) may be solved by/I-ID-1R.
(This is another example of a conjugate. You could also use the cora-

Fig. 3.6. 124DF D2F-

13

(a) It1D4R(b) RUF-1

Fig. 3.3. Putting a top edge in place

(a) R2

(a) Fig. 3.4 (b)
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I will explain in a moment. When the top edges are completed, the cube
will appear as in Fig. 3.2.

To solve an edge, locate the edge as well as the place where it belongs.
(Recall that there is only one correct position for each of the cubies.) If
the edge is on the bottom layer, turn the bottom layer until the edge is
directly below the spot where it belongs and hold the cube as in Fig. 3.3
(a) or (b). For case (a), R2 will put the edge in place. For case (b), apply
RUF1171.

If the edge is on the middle layer, hold the cube 80 that the sticker
which matches the color of the top center is in front, as in Fig. 3.4 (a) or
(b). For case (a), rotate the top face until the spot where the edge belongs
is on the right. Then apply R and rotate the top face back. Case (b) is the
mirror image, so apply the mirror image process. (That is, rotate the top
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mutator DFEr iln to obtain the same result.) Fig. 3.5(b) is the mirror
image and may be handled by LW'.

A more difficult case occurs when the wanted corner is on the bottom
layer with the top color down. In this situation, we again rotate the down
face until the wanted corner is directly below the spot where it belongs,
as in Fig. 3.6. This time h"DRID2F7 will solve it

If the wanted corner is on the top face, hold the cube so that the corner
is on the near upper right. IV D R Will put it on the bottom layer. You
can now proceed as before to solve it. After all four corners are solved,
the cube will look like the cube in Fig. 3.1. Chapter 4

The Middle Layer

When you have solved the top face, the cube should look like Fig. 3.1
and you are ready to solve the middle layer. In order to solve the middle
layer quickly, it is necessary to disrupt one of the top corners. You can
restore it after solving the middle layer edges.

To solve the middle layer edges, turn the cube over so that the solved
face is now down. Suppose that one of the edges that belongs on the
middle layer is on top. If this is the case, rotate the layers until the cube is
in either position (a) or (b) of Fig. 4.1. The edge may now be put in place
by the conjugate lin' in case (a), and by L'UL in case (b).

afri lb) 1.4U1.

Possibly incorrect corner

Flg. 4.1. Solving middle layer if bottom is solved except for one corner

14	
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This set-up can be easily remembered by following these rules:
I. Turn the mostly solved face down.
2. Turn the possibly incorrect corner closest to you.
3. Turn the middle layer so that the location to be corrected is nearest
to you.

RUR''

Possibly incorrect corner

Fig. 4.2. Moving a middle layer edge to the top

(a) II4 DR DFD4 F4

	

	(b)1.1311:1 D4FIDF

Fig. 4.3. Solving the middle layer
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4. Turn the top until the desired edge is in the one near position where
the adjacent colors do not match up.
If the desired edge is already psi the middle layer but in the wrong

place or incorrectly oriented, then the above procedure may be used to •

move the edge to the top face. That is, turn the middle layer until the
desired edge is over the possibly incorrect corner and apply /Rik / as in
Fig. 4.2. Use the procedure again to solve the edge.

When three of the four middle layer edges are solved, turn the cube
Over again so that the mostly completed face is On top. Unless you are

uncommonly lucky, one of the top corners will be incorrect. Rotate the rn

layers until the incorrect top corner is above the incorrect middle layer.
edge. Now use the methods given in chapter 3 to restore the final
top corner.

At this point the top two layers should be completely solved except for
one middle layer edge. In the interests of speed, it is most efficient to
forget about that last edge and proceed to Chapter 5 to solve the bottom
corners. If you wish to complete the top two layers, however, you could
use the processes in Fig. 4.3. The idea here is to move a top corner down
to the bottom layer, and to restore it in a slightly different way. This
moves an edge from the bottom layer to the middle layer.

17



Bottom Color

ted corner •

Chapter 5
•Bottom'Corners

If you have successfully followed the instructions in the preceding
chapters, you now have a cube in which the top two layers are completely
solved except for possibly one edge on the middle layer. In this chapter, I
will explain how to solve the bottom corners. The strategy is to first put
them in place while ignoring orientations, and then to orient the corners.

You can view the bottom better if you turn the cube over again so that
the scrambled face is now on top. It is always possible to twist the top
face so that at least two corners are in place although possibly not
oriented. If these two are on the left side, then the other two may be
switched by LAIRIPLURAP, which is essentially the sane as the
corner 3-cycle in Fig. 2.7.

If two diagonally opposite corners need to be switched, then apply

eBottom color

Correctly orien
Fig. 5.2. LOODLD2L4
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Bottom color.

• Fig. 5.3. I.DODLD41.4DLD2L

BLUV ILfir. It will then be possible to twist the top so that all of the
top corners will be in place, although perhaps not oriented.

Now that the corners are in position, you can use the commutator
•principle to orient them. Suppose, for example, that two corners need to
be oriented as in Fig. 5.1. LDVIYILDL-1 will orient the front left upper
corner at the expense of disrupting the second and third layers. But if you
turn the top and apply the inverse process LIY IV IDLEriti, then the
second and third layers will be restored. Turning the top face will put the
top corners back in place. The net result is that two of the top corners

Fig. 5.4. It1D2R2DR2DR2D2R-1

19

Fig. 5.1.1.131:1DILDel

IVICOLD4L-1



have been oriented (by rotations of 120 degrees in opposite directions)
and the rest of the cube is left unchanged.

If only two corners need to be oriented, this procedure is the fastest
way. If three or four corners need orienting, this method could be used
repeatedly but there are faster ways. To use these faster ways, turn the
cube over again so that it is the top two layers which have been solved
(except for possibly one middle layer edge). To orient three corners, hold
the cube as in Fig. 5.1 or its mirror image. The situation in Fig. 5.2 is
solved by LDL IDLD2L-1 and the mirror image is solved by e 171RIP
ir1D2R

If all four bottom corners are incorrectly oriented, then hold the cube
so that all four corner stickers which have the bottom color are on the
right and left sides, as in Fig. 5.3. This can be solved by LDVIDLIY1
L-1DLD2L1.

In the remaining case it is possible to hold the cube so that two of the
corner stickers having the bottom color are on the left, as in Fig. 5.4.
Then R1D2R2DR29h" will orient the corners.

Chapter 6
Edges

There are a number of processes which permute three edges without
altering the rest of the cubies. These are called "edge 3-cycles." I will
give several examples in this chapter, and then explain how these edge
3-cycles may be used to complete the solution to the cube.

The simplest and easiest edge 3-cycle to understand is the com-
mutator of a 180-degree face twist with a slice twist. More specifically,
the process teurr lietPD permutes three middle layer edges as shown
in Fig. 6.1.

As explained in Chapter I, the conjugation principle may be used to
obtain other edge 3-cycles. For example, PULltirtiRUP permutes
three edges on the top face as shown in Fig. 6.2 (a). The mirror image is
shown in Fig. 6.2 (b). These two 3-cycles do not flip any edges. That is, if
the top face is one solid color it will remain that way after these 3-cycles.

If you want a top edge 3-cycle which flips edges, you can use the pro-
cess shown in Fig. 6.3. This process is more easily understood if we turn

Fig. 6.1. R2UCr1F2Uc1D

2120
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the cube over. A middle slice twist commutator, namely RC 'Fe LITI,
moves the front upper edge to the front down edge. The inverse to the
minor image puts it back in place. The result is the 3-cycle shown in
Fig. 6.3 (a). This process could also be viewed as a conjugate to the pro-
cess shown in Fig. 6.1.

•	 A very fast edge 3-cycle is LDLDLIY IY 7 ID'. It is shown in
Fig. 6.4 (a), along with its mirror image, (b). The idea here is to move the
bottom corners to the left side, twist the left side, and put the corners
back on the bottom. Alternatively, you can think of moving the upper
left cubies off of the left face.

A useful conjugate to process 6.4 (a) is given in Fig. 6.5 (a), along with
its mirror image, (b). (b) feirlit1D4R4ORDRD

(a) IDLOLD-1 1:1 D4	Fig. 6.4

(a) 124 UFUFUF lu-irlu4r1 R	 (b) I. II1 F4 U4 F-1 111 FUFUF I)

Fig. 6.5. A conjugate to process of Fig. 6.4 
kale a

00

kkl,5,FA,

(a) PULItlF2r1RUF2

Fib. 6.2. Top face is shown

a) R11.4BRAU MAR 'IL

Fig. 6.3

(b)1; R13" 1.1271U211RB4LR4 (a	 (b)

Fig. 6.6

(b) F2U401PROU1F
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(b) ru-lrulruFuru u
Fig. 6.9

(a) U FuFuFu.lriu4ru1

(b)
Fig. 6.7

With the techniques described in Chapter 3, you can solve one face;
with those of Chapter 4, three of the middle layer edges; and Chapters
explained how to finish solving the corners. If you followed all of these
steps, you should now have a cube which is solved except for—at most—
five edges. You can now finish the cube by repeatedly applying the con-
jugation principle to the 3-cycles just described.

To illustrate this, suppose that you have five wrong edges: four on top
and one on the middle layer. It will usually be the case that the wrong
middle layer edge belongs on top. To correct this, rotate the top face until
a top corner matches the color of a sticker on the wrong middle layer
edge as in Fig. 6.6. (a) or (b). Now look to see where the near upper edge
belongs. It may be put there, although with possibly the wrong orienta-

don, by a procem from Fig. 6.7, 6.8, or 6.9. These are conjugates of
processes shown in Figs. 6.4, 6.3, and 6.4, respectively.

It sometimes happens that an edge is in place but flipped. You can use
the commutator principle to flip two edges, as shown in Fig. 2.6, or as
follows: The process FM" LIVD2R flips the near edge on the top face
without changing anything else on the top face. You can now turn the top
face and apply the inverse process. The result will flip two edges on the
top face without altering the rest of the cube as in Fig. 6.10.

The conjugation principle can now be used to flip any two edges.
Simple rotate a face to put the two edges on the same slice or face and

• apply one of the above methods.
Therefore, the edge 3-cycles given in this chapter may be used to put

the edges in the correct locations, although with possibly the wrong
orientations. You can then flip the incorrectly oriented edges, two at a
time. Your cube will then be solved.

Fig. 6.10. FUI:r 1 13U2D2R U
It1D2U21_2DU-1F1

(a) R F Buslu2r1 e1nr, W1 	(b)1.-1 F8-11t1F-18U4W1R1F18
Fig. 6.8



Chapter 7
Picking Up Speed

It takes a lot of practice to get your time under one minute, hut—in ad-
dition to practice—the followihg tips will increase your speed.
• The procedures in this book are designed with speed in mind, so vir-
tually all of them involve only two or three faces. For 1 process involving

•only two faces, .l have found it best to use one hand for each face. This is
• particularly true for the frequently used commutator LDL-113-1 where I

use my left hand to turn L and L' and my right hand for D and . With
practice, you can do these at a rate of three turns per second.

Most people have a favorite color which they like to solve first. Some
care should be taken here; both it and its opposite color should be among
the more visible colon. It helps to memorize the relative position of the
side colors. If this is too difficult, just memorize which colon are oppo-
site. This will enable you to solve the top face without paying too much
attention to the other centers. In fact, since you are essentially doing each

Fig. 7.3. Top two layers completed
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(a) L12-1 UF2U2PU2PU 18:1

(13) RUC' U*113

Fig. 7.4. Top face shown only

layer separately, you need not bother to align the colors of the layers
until you have solved each layer.

Whenever you have a choice of cubies to put in place, you should
always choose whatever is easiest. For example, the corners to do first
are the ones on the bottom with its top sticker on the side; this is the case
illustrated in Fig. 3.3. Another easily recognized and quickly solved
situation is shown in Fig. 7.1.

In general, flipping edges is a very slow process and should be avoided
if your goal is speed. Suppose that you have completed all of the top two
layers except for a top corner and the edge beneath it. When the last top
corner is put in place, care should be taken that the last middle layer
edge is not left flipped. If the process given in Fig. 3.5 does that, then you
could use DFD-1F 1 for Fig. 3.5(a) and .13-1F 1DF for Fig. 3.5(b).

The process given in Fig. 3.5 flips the middle layer edge. If this is not
desired, another process such as li"DREPIt iD-IR can be used.

If the last top corner is in place but incorrectly oriented, and the last

Fig. 7.5 LOR -1 D-1 1.4 R 1.12 WI LDRD*1 1:1 U2

(a) MAW 1:1 134

middle layer edge is on the bottom, then it is possible to complete the top
two layers simultaneously. Rotate the layers until the incorrectly
oriented top corner is over the incorrect cubic on the middle layer, and
the edge which belongs on the middle layer matches the color of a middle
layer center. Now hold the cube as in Fig. 7.2 and apply the process given
there. (In Fig. 7.2, (b) is the mirror image of (a), (c) is the inverse of (a),
and (d) is the mirror image of (c).) This process will complete the top two
layers, as shown in Fig. 7.3.

If you are able to complete the top two layers as in Fig. 7.3, turn the
cube over and look at what is now the top. Exactly zero, two, or four
edges will show the same color as the center. The usual case is two, which
may be increased to four by the processes indicated in Fig. 7.4. If you
now have four top edges agreeing with the center, then solve the corners.

AU but one of the processes given in Chapter 5 preserve the edge orien-
tations. The exceptional case occurs when two diagonally opposite
corners need to be interchanged. To interchange two diagonally opposite
corners, first switch two pairs of corners as in Fig. 7.5. It will then be
possible to put all of the top corners in place (although possibly not
oriented) by turning the top face. (The process given in Fig. 7.5 is an
application of the commutator principle, since LDFC ID-It'R switches
the front two corners while leaving the rest of the top face unchanged.
Alternatively, you could turn the cube over and apply FLDL-113-ILDL-1

LDL- ID- 1 F-1.)
After orienting the edges and solving the corners, the cube can usually

be solved by the process given in Fig. 6.2. The remaining cases are shown
in Fig. 7.6. These can be treated by two such 3-cycles, but they may be
handled more quickly by the conjugates of processes 2.4 and 8.3 given in
Fig. 7.6. RUI2L-111-7 P 1B-1U2BF may also be used for Fig. 7.6(a).

(13) R2L2U F2B212F2B2R2 U1L2R2

Fig. 7.6
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Fig. 8.1. 821.2u21YF282 Fig. 8.2. RCIFIr1UD4RL-1

Suppose that you solved the bottom corners before finishing the
,middle layer. You will then be in a situation where there are at most five
wrong edges. Under favorable circumstances, a 3-cycle will solve.
two edges and another 3-cycle will finish the cube. In any case, it never
takes more than three 3-cycles to solve the five edges. Flipping edges
can be avoided.

To understand how to use a 3-cycle to solve two edges at once, consid-
er Fig. 6.7(a). The process given there puts the wrong middle layer edge
correctly in place at the upper front, but the edge cubie at the upper front
might be put in place with the wrong orientation. If this happens, you
could use another 3-cycle instead. An appropriate conjugate of the
processes given in Figs. 6.2, 6.3, or 6.4 does the job. Three such conju-
gates are given in Fig. 7.7. You will easily find conjugates to handle the
other possibilities.

When applying a particularly complicated use of the conjugation
principle, you may get stuck trying to "unconjugate." Of course, this is
simply the inverse of what you did earlier—if only you could remember
exactly what you did earlier. A useful device is to remember just the last
twist. Then just concentrate on restoring a face that had been solved
befure conjugating.

With practice, all of the processes in this book will become automatic.
Your hands will be able to perform them without your thinking about
them. When this happens, try to look ahead to see what the next process
will be. For instance, while putting a middle layer edge in place, look for
the other middle layer edges. While correcting the corners, see what
needs to be done to the edges. This will only save a few seconds, but if you
expect to solve the cube in under one minute, those seconds count.

Chapter 8
Patterns

Besides restoring the cube to its original position, you can create
patterns on its surfaces. You can discover many pleasing, even pretty,
patterns for yourself by experimenting with a solved cube. Those I con-
sider the best are given in this chapter. You will find your own favorites.

Not all patterns you might think possible are possible. (This is
explained in Chapter 10.) But if you know how to solve the cube,
theoretically, you should be able to construct directly any possible pat-
tern without first actually solving the cube. In practice, however, it is
usually much easier to solve the cube before proceeding to do patterns.

One way to find patterns is to dismantle the cube and reassemble it in
pattern form. This, I think most of us would agree, is cheating. Another
big drawback to this method is that you may get an impossible pattern
from it As a test, try to restore the cube to its original position. You will
be able to restore it if and only if the pattern is possible. (Another method

Fig. 7.8. LU2F1121.-1U212-1LF-1U21:1,
or 1221.4131eLU2RLIBR2L,
or L2F1LFLFLF-114r
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Fig. 8.6. Apply F-1 134 R41,1R4D4R4
DRDRD BF to the pattern shown in
Fig. 8.2.

Fig. 8.7. Apply LR DFDFDF-11134F1
D 1 P1 R4 L4 to the pattern shown in
Fig.. 8.6.

Fig. 8.3 U2D2R2U2D212

Fig. 8.4. R21spesusF2B2R2L2D2 Fig. 8 5. L it2i2F2B2U2F2B2R2i2D2

n•n

Fig. 8.9

for determining which patterns are possible will be given in Chapter 10.)
Many nice patterns may be found by starting with a solved cube and

making only 180 degree turns or slice twists. For example, turn each of
the three slices (in any order) 180 degrees and you will obtain an X on
each face as in Fig. 8.1. Another example is the commutator of two 90
degree slice twists; this has an 0 on each face and is shown in Fig. 8.2.

• The process shown in Fig. 8.3 is very useful. A slight variation of it
yields a + on four sides, as in Fig. 8.4. The conjugate by L gives Fig. 8.5,
which has a + on each of the six faces.

Depending on how you hold the cube, the process given in Fig. 8.5
may be viewed as a process that moves the corners while preserving the
edges and centers, or as a process that moves the edges and centers while

• preserving the corners.
Fig. 8.6 has a U on each face and may be obtained from Fig. 8.2 by the

•conjugate of the process of Fig. 6.4 (b) by F-113-1. Youran then obtain a
worm-like pattern by applying the edge 3-cycle given in Fig. 8.7. A
similar pattern is given in Fig. 8.8.

A more difficult pattern is the "cube within a cube" shown in Fig. 8.9.
The other three faces look similar to the three shown in Fig. 8.9. To
obtain this pattern, start with the pattern shown in Fig. 8.2. The front
upper right and back lower left corners may be re-oriented by a conju-
gate of a commutator. That is, we know from Chapter 5 how to orient
two corners if they are both on top, so put the back down left corner on
top. A conjugate of the process given in Fig. 5.1 which does this is given
in Fig. 8.10. To finish the pattern, you need two edge 3-cycles, one of
which is shown in Fig. 8.11. As usual, you can get this as a conjugate of

AMP"	 ailirnY
VZ 000 104/?fit

01/ZVaiz100000

Fig: 8.8. DR2L2D4 R2U2D212U21Y,
then r1RO4Flt1 U2D2I.84 UL 1 B D2U2
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Fig. 8.12. R2D2L2R21.YCR

Kear view

one of the basic 3-cycles given in Chapter 6. A mirror image process will
take care of the rest of the cube.

There are several patterns such as Fig. 8.12 which have stripes on the
faces, but the best is shown in Fig. 8.13. Each face has three stripes.
Three of the faces have three of the colors in each possible order and the
other three faces have the remaining three colors in each possible order.

To get the pattern in Fig. 8.13, do the commutator LDL-11)-1 three
times to interchange two pairs of corners. Interchange the remaining two
pairs of corners with another triple commutator. Now four of the edges
will appear flipped relative to the adjacent corners. Flip these edges.
Stripes can now be obtained by a simple conjugate of the process given in
Fig. 8.3. The cube may be restored by repeating each of these steps in
any order.

The procedures for constructing patterns in this chapter were chosen
because they are easy to understand and because they illustrate general
techniques which may be used to construct other patterns. However,

Fig. 8.10. Result of applying
1.2 LDLI D-1 LDO U LI:r1 L2 DLD-1 1:1 1.14 12

to cube shown in Fig. 8.2.

Fig. 8.11. UR R1.41312-1LU2RL-1BR-1112-1LY1

some of the patterns may be constructed more efficiently. For example,
Figs. 8.7, 8.8, 8.9, and 8.13 may be obtained from the solved cube by the
processes given below:

Fig. 8.7 - RUI2D-1RtlF13-1D-IPIK1FeRU2FR21-111-11.1-1P1U2FR;
Fig. 8.8 - BR/P/VR2DR1L/TIR2UB2/PDR2D1;
Fig. 8.9- FILPIBU2B-IURU2lifriFBDFID2FUIL-1D2LB-1.
Fig. 8.13-112BUR21P R 72It i UR2U-113-1R2 12,

then tiFfitneU /32 Lt ifilfier i t./2 132,
then BL2 R2 F213FR

4

Att‘ # 4 wr.,	 4 .1.	
et: ;to:

50"A
7-M4

%

Front view

Fig. 8.13. This pattern is obtained via the following steps:
1. WOW three times;
2. RUlti tll three times;
3. REI UR4 F U134 el Fu-kri Du-1;
4. trI B1-1 084	DeLD-213
s. F U2D2PU2D2132 F"1
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Chapter 9
Permutations

If Rubik's Cube is dismantled and reassembled in a different way
than intended, then it may not be possible to restore it to its original posi-
tion. In other words, not all arrangements of the cubes can be obtained
by turning the faces. For example, it is not possible for all but one of the
cubies to be in its correct position and orientation.

To see which positions are possible, we must first study permutations.
A permutation is any rearrangement of some set of objects. For example,
a permutation of [I, 2, 3, 4, 5] can be:

1 2 3 4 5t t ttt
3 2 51 4

In this example, 1 is "sent" to 3, and so forth. Two permutations may be
combined to get a third permutation. I call this multiplication, even
though numbers are not being multiplied in the usual sense. For exam-

I	 2	 3	 4	 5
*	 *

5	 134

ple, and the second sends 5 to 4 so the "product" sends 3 to 4, and
so forth.

Any process on the cube may be a permutation of the cubies. The
product of two processes is just the process obtained by doing one pro-
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cess after another. (Of course, the order in which the processes are done
does make a difference. This multiplication is not "commutative." The
commutator is an expression of this fact.)

As you shall soon see, any permutation may be regarded as "positive"
or "negative.' This definition will have the property that when two per-
mutations are multiplied, they satisfy the multiplication table of
Fig. 9.2. For example, pos x neg = neg, that is, the product of a positive
and a negative permutation is always a negative permutation.

Fig. 9.1. Multiplying two permutations to get the permutation on the right
1 234  5
* + I
3 2 5 1 4

*	 *
1 2 4 5 3

1 2 3 4 5
* * *
1 2 4 5 3

The "identity" permutation

1 2 3 4 5
*	 *
1 2 3 4 5

is an example of a positive permutation. A "transposition" is a permuta-
tion such as

1 2 3 4 5

1 4 3 2 5

which interchanges two items and leaves everything else fixed. Any
transposition is defined to be negative.

To see whether some more complicated permutation is positive or
negative, all you have to do is "factor" it into transpositions. For exam-
ple, the more complicated permutation

1 2 3 4 5ttttt
3 2 5 1 4
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X

Fig. 9.2. The multiplication table for signs
of permutations

may be factored as a product of three transpositions:

1 2 3 4 5
lk	 +

4 2 3 1 5
*t+tt
3 2 4 1 5

I
32 5 1 4

It is therefore negative, since each transposition is negative and

neg X'ne• X neg = neg

The above factorizaton is somewhat arbitrary, of course, and could
have been done in many other ways. For instance, omitting the arrows,
another factorizaton is given by:

1 2 3 4 5
2 1 3 4 5
2 1 3 5 4
2 3 1 5 4
3 2 1 5• 4
3 2 5 I 4

This time five transpositions were used rather than three. However this
does not contradict the original permutation being negative since

neg X neg X neg X neg X neg = neg

It is a remarkable fact that if a permutation can be factored into an
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odd number of transpositions, then any other factorization of that per-
mutation will also have an odd number of transpositions. And if a per-
mutation can be factored into an even number of transpositions, then
any other factorization will have an even number of transpositions.

It follows from this fact that the procedure above defines a consistent
method for determining the "sign" of a permutation. That is, a permuta-
tion is positive if it can be factored into an even number of transpositions
and negative if it can be factored into an odd number of transpositions.

To understand why this remarkable fact should be true, consider a
factorization of the identity permutation into transpositions involving
only "nearest neighbors," such as

I 2 3 4 5
2 I 3 4 5
2 3 1 4 5
2 3 1 5 4
3 2 I 5' 4
3 I 2 5 4
1 3 2 54
1 2 3 5 4
I 2 3 4 5

This factorization required an even number of steps, namely eight. This
agrees with the fact that the identity is positive.

In any such factorization, the only way "I" could get to the right of
"2" is by transposing "1" and "2'. And that is the only way "I" could get
back to the left of "2". Since "I" begins and ends to the left of "2", the
factorization must involve this transposition an even number of times.
Likewise, each other transposition must occur an even number of times.
Hence the total number of transpositions is even.

Now suppose, for the sake of obtaining a contradiction, that some
permutation had a factorization into an even number of nearest neigh-
bor transpositions and also an odd number of nearest neighbor trans-
positions. By reversing the order of one of these, we could string the
factorizations together to get a factorization of the identity. Since an
even number plus an odd number is odd, this would be a factorization of
the identity into an odd number of nearest neighbor transpositions. Butt
just proved this to be impossible. Therefore any two factorizations of a
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permutation into (nearest neighbor) transpositions must have the same
parity (that is, both be even or both be odd). This proves the remarkable
fact cited above, at least for the case of nearest neighbor transpositions.
(Problem 20 in chapter 11 shows that this last restriction is superfluous.)

In the following chapter, we shall also need some facts about "modu-
lar" arithmetic. We will look at the set [0, + 1, —1] with the addition
table in Fig. 9.3. This is easy to remember if you just pretend that 3 = 0.
For example:

1 + I = 2 = 3 — 1 = 0 — 1 = —1

This may seem somewhat unnatural, but many systems obey such laws.
For example, if + 1 means "clockwise rotation by 120 degrees" and — 1
means "counterclockwise rotation by 120 degrees," then

1 + 1 = "clockwise rotation by 120 degrees" followed by
another "clockwise rotation by 120 degrees"
"clockwise rotation by 240 degrees"
"counterclockwise rotation by 120 degrees"

+. 0 +1 —1

0 0 +1 —1

+1 +1

—1 —1 0 +1

Chapter 10
Counting Cube Positions

Why are some Rubik's Cube positions possible and some impossible?
In this chapter, I apply the somewhat theoretical discussion of permuta-
tions in Chapter 9 to answer this question. The number of possible
positions is shown to be approximately 43 quintillion.

A sequence of turns on the cube can be considered a permutation in
several different ways: it permutes the cubies, it permutes the edges, it
permutes the corners, it permutes the stickers, etc. If you turn one face
90 degrees, then the edges are permuted as a "4-cycle" (see Fig. 10.1).
This is negative, as can be seen by the factorization

I 2 3 4
2 1 3 4
2 3 1 4
2 3 4 1

1234
+

2341

Fig. 10.1

Fig. 9.3. An addition table
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If, however, we consider the 90-degree twist as a permutation on the
edge stickers, then it is a product of two 4-cycles (see Fig. 10.2). This
must be positive since it is a product of two negative permutations.

Clearly, any permutation of the cube is a product of 90-degree face
twists. Since any product of positive permutations is positive, any possi-
ble position must be an even permutation of edge stickers. In particular,
•if all of the edge stickers are in place, then the number of incorrectly
oriented edges must be even. For example, Fig. 10.3 shows a transposi-
tion of two edge stickers. This is negative and hence impossible.

As mentioned, a 90-degree face twist is a 4-cycle on the edges, and
therefore negative. Similarly, it is also a 4-cycle on the corners. / Thus a
90-degree face twist satisfies the following equation:

sign of permutation on edges = sign of permutation on corners

The multiplication law says that the product of the signs is the sign of the
product, so this equation continues to hold for arbitrary sequence of 90
degree face twists. Thus the equation holds for any possible position of
the cube.

In particular, if all of the corners are in place, the sign of the permuta-
tion on the edges must be positive. For example, Fig. 10.4 is impossible

•even though the sign of the permutation on the edge stickers is positive.
To study corner orientations, select two colors which occur on oppo-

site faces when the cube is restored to its original position. Call these
"good" colors and the other four colors "bad." Then each comer has
exactly one good sticker.

1 2 3 4 5 6 7 8
ttt++ttt
2 3 4 1 6 7 8 5

Fig. 10.2
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As we have seen, not all of these are obtainable from the starting posi-
tion by twisting faces (that is, without taking the cube apart). There
were three reasons for this. The first was that the sign of the permutation
on the edge stickers is positive. This cut down the number of possibilities
by a factor of 2. The other two reasons give factors of 2 and 3. Thus the
count above is too many by a factor of 2 x 2 x 3 = 12 and the number
of positions obtainable from the initial position is

= 43,252,003,274,489,856,000% 4.3 x 10"

•This is a large number. It is approximately equal to 100 times the age
of the universe in seconds, or the distance in inches that light would
travel in 100 years. It is also approximately the number of electrons in a
speck of dust.

It is not known what the most efficient method for solving the cube is,
but it is possible to show that there are some positions which require at
least 19 90-degree face twists to solve.

To prove this, first note that since the cube has 6 faces and each face
may be turned clockwise or counterclockwise, there are 12 possible
90-degree face twists. If you start with the solved cube, there are 12
positions which may be obtained by exactly one 90-degree face twist.
There are 12 x 12 = 1212 processes involving exactly two 90-degree
face twists. These do not all give different positions, since for example
tur has the same effect as in. Therefore, the number of positions
obtainable from two 90-degree face twists is less than 122.
• Likewise, the number of positions which could be obtained from the
solved cube by making exacdy 18 90-degree face twists is less than 12/8.
The number of positions which could be obtained by 18 or fewer 90-
degree face twists is less than

1+ 121 + 122 + . . . + 12'° al 3 x 10"

Therefore, since this is less than the total number of possible cube
positions, there must be some positions which require at least 19
90-degree face twists to solve.

Now take a scrambled cube and lay it flat on the table. Define a corner
to have "quark number" zero if its good sticker faces either up or down.

• Let it have quark number + 1 if a counterclockwise twist of 120 degrees
•would change its quark number to zero. Otherwise let it have quark
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Fig. 10.4

number —1. Quark numbers may be added or subtracted according
to the rules given at the end of Chapter 9. The quark number of the
(scrambled) cube is the sum of the quark numbers of the eight corners.

It is not hard to see that a 90-degree face twist increases the quark
numbers of two corners by 1 and decreases the quark numbers of two
other corners by 1. Hence the quark number of the cube is unchanged.
Since the restored cube has quark number zero, and any possible posi-
tion is obtained by a sequence of 90-degree face twists, it follows that
any possible position must have zero quark number. In particular, if all
corners are in place, it is not possible to have exactly one corner oriented
incorrectly. All quarks appear in threes, or in quark- antiquark pairs.

We have therefore shown that any possible position of the cube must
satisfy the following three rules:
• 1. The sign of the permutation on the edge stickers is positive.

2. The sign of the permutation on the edge cubies equals the sign of
the permutation on the corner cubies.

3. The quark number is zero.
Furthermore, problem 21 of chapter 11 shows that any position satis-

fying these rules must be possible. Thus you can determine whether or
not a position is possible by checking to see if it satisfies the three rules
just given.

If you dismantle the cube, how many ways are there to reassemble
it? First consider the centers. Any of the six centers can be put face
down. This leaves four centers which could be put in front. The remain-
ing centers are determined. Thus there are 6 x 4 = 24 ways to arrange
the centers.

Fig. 10.3 The unseen part is solved.

There are 8 places to put the first corner. This leaves 7 places for the
next corner, 6 for the following one, etc. Hence there are 8 x 7 x 6% 5
x4 x3 x 2 x 1 ways to put the corners in, ignoring orientations. (This
quantity is called "8 factorial" and is abbreviated "81".) Each corner has
3 orientations, so there are 81 x 38 possibilities altogether.

There are 12 edges and 2 orientations for each edge, so similar reason-
ing gives 121 x 2 12 ways to assemble the edges. Thus there are

24 x 8! X 38 x 121X 212

ways to assemble the cube.
For 24 of these positions, each face is a solid color. It is not really fair to

count these as different, since any one may be obtained from any other
by turning the whole cube (and not twisting any faces). So if we keep the
centers fixed, there are

x 311 X 121* 212

ways to assemble the cube.



Chapter 11
Games and Exercises

1. Race. Try to get your time consistently under one minute.
2. Have a friend twist a solved cube five times. Try to restore it using

only five twists.
3. Two or more people can try to restore a scrambled cube as follows:

Each person makes six twists in private (out of sight) and hands it
to the next person. No conununication is allowed. The object is to
solve the cube in as few turns as possible. (If this game is too
difficult, try playing it with ten twists per person.)

4. The 2 x 2 x 2 version of the usual 3 x 3 x 3 Rubik's Cube can
be simulated by paying attention only to the corners. How many
twists does it take you to solve the corners while ignoring the
edges and centers? As a variation of game no. 2, have a friend
solve the corners while leaving the edges and centers scrambled
and then make four random twists. The object is to restore the
corners using only four twists.

5. Any number of people can play the following game: Consider
some pattern such as those given in chapter 8 and see who can
obtain the pattern from the solved cube in the fewest number of
turns. For example, how many twists do you need to obtain the
striped pattern of Fig. 8.13?

6. The process PR' iLD2R2L2FR2L2D2a1F2fr i flips each of the
four edges on the down face. Use the commutator principle to
explain why this process works.

7. Consider the edge 3-cycle shown in Fig. 6.1. There are other
sequences of twists which accomplish the same result, such as
111 R2UD VD. Find one that involves only 180-degree
rotations.

8. If you are given a cube which has been scrambled with 180-
degree rotations only, can you restore it using only 180-degree
rotations? (This is not too hard if you solved problem no. 7.)

9. If all of the cubies are solved except for those on two faces, is it
possible to solve the cube by turning only those two faces?

10. If someone makes a random sequence of F and U turns, can you
find a method which will restore the cube using only F and U
turns?

11. The processes RL, FB, UD, and their inverses are called antislice
moves. Find a sequence of antislice moves which flips all of the
edges on the U and D faces.

12. Suppose you are given a cube which has been scrambled with
antislice moves. Find a method which will restore it with antislice
moves.

13. Is there a process which has the same result as U but which only
involves R, L, F, B, and D. How about one that only involves four
other faces?

14. If you take the cube in its original position and apply some
process to it repeatedly, you will eventually restore the cube.
Why is this so? How many times are needed for the conunu-
tator LDL-117 1 ? For FR? For Fit'? For 11F2B4UB-1?

For 82R20L21 2? For P21/2/120? For it D2R11 1 RPM' D?
(Hint: It is possible to figure out the answer without repeating the
process.)

15. If orientations of the centers are considered, then the centers are
not really fixed. Suppose you mark your cube (while in the start-
ing position) as in Fig. 11.1. If you then scramble and restore it,
you will find that the arrows may not match up. Can you find a

Fig. 11.1
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method which will match the arrows? In particular, can you find•	

a .process which will rotate two centers 90 degrees and leave
everything else fixed?

16. Why is it impossible to rotate one center by 90 degrees and leave
' all elsefixed? (Hint: Use signs of permutations as in Chapter 10.)

. 17: Suppose a process changes exactly three edges and leaves the rest
of th& cube unaffected. If we repeat this process three times, will
we then necessarily get the original position? How about a
process that changes only one corner? Two corners? Three
corners? Four corners?

.18. Throughout this book I have taken the point of view that the
centers are fixed. However, for the sake of this problem, let us
'consider processes which turn the entire cube. Then there are
processes such as the one in Fig. 8.2 which permute the centers
while preserving the other cubies. How many permutations of the
centers are possible?

19. Show that the cube has 88,580,102,706,155,225,088,000
possible positions if center orientations are considered. (See
problem nos. 15 and 16.)

20. Show that any transposition can be factored into an odd number
of nearest neighbor transpositions.

21. Suppose that a cube is dismantled and reassembled in a random
manner. Show that the cube can be solved if the three rules in
Chapter 10 are satisfied.

22. If the cube has been solved except that some of the corners on the
top face are incorrectly oriented, then the following method will
iolve the cube: Apply LDL1D-1 repeated y until the front upper

left corner is correctly oriented. Then turn the top face and repeat
the procedure. When all of the top corners have been oriented,
the rest of the cube will be solved as well. Why does this
method work?

23. One of the patterns shown in Fig. 11.2 is possible. Which is it?
(You can find the answer by applying RFECILIII2DPBR112
UR2 Ul DR2FBUT 1 IV R2 EP to the solved cube.) For the impos-
sible pattern, how many of the three rules in Chapter 10 are vio-
lated?

24. Show that the cube has 3,981,312 possible positions which have
the following property: the color, of each sticker matches that of
she center of either the face it is on or the opposite face. Prove that
exactly 663,552 of these can be solved using only 180-degree
twists.

25. Show that there must be some positions of the cube which require
at least 18 face twists to solve. (In this problem, a face twist may
be by 90 or by 180 degrees.)

.11111/2111111111111P:
I.41111/ 1 "	 k
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Fig. 11.2. The rear views are similar.
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Glossary

antislice move—One of the processes RL, FB, UD,	 PI B-1, or
•1D-1.

8-90-degree clockwise twist of the back (not bottom) face. The
direction is clockwise as you face the back of the cube.

center—The cubie in center of a face.
clockwise—The direction that the hands of a clock would move if the

clock were situated on the face of the cube.
color—The color of a face is the color of its center.
commutator—If X and Y are processes with inverses V and	 their

commutator is xyriri. See Chapter 2.
conjugate—The conjugate of Y by X is XYX. gee Chapter 2.
counterclockwise—The direction opposite to clockwise.
corner—A cubic having three colored stickers.
cube—The entire Rubik's Cube, not to be confused with the cubies.
cubies—The small cubes of which Rubik's Cube appears to be com-

posed. There are 8 corners, 12 edges, and 6 centers, for a total of
26 cubies.

cycle—A permutation that permutes objects in a cyclic manner. An
example of a 3-cycle is the permutation of [1, 2, 3] that sends I to 2,2
to 3, and 3 to 1. A corner 3-cycle is given in Fig. 2.7 and an edge
3-cycle in Fig. 6.1. Some 4-cycles are given in Chapter 9.

D-90-degree clockwise twist of the down face. The twist is clockwise
as viewed from below the cube.

edge—A cubic having two colored stickers.
F-90-degree clockwise twist of the front face.
face—A side of the cube. The cube has six faces.
flip—To reverse orientation (of an edge). See Fig. 1.2.
inverse—A process that reverses the effect of some other process. See

Chapter 2.
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L-90-degree clockwise Sin of the left face.
layer—One of the three horizontal levels. The top and bottom layers

each have nine cubies and the middle layer has eight. See Fig. 1.4.
mirror image process—The process obtained by observing someone in

a mirror. The right and left hands get interchanged. See Chapter 2.
negative permutation—A permutation that can be factored into an odd

number of transpositions.
orient—To put a cubie in its correct orientation. A cubic is correctly

oriented if its stickers match the colors of the nearby centers.
orientation—The way a cubie's stickers are situated relative to the

nearby center cubies.
permutation—A rearrangement. See Chapter 9.
permute—To rearrange. Each process permutes the cubits.
positive permutation—A permutation that can be factored into an even

number of transpositions.
possible position of the cube—A position obtainable from the solved

cube by a sequence of face twists. Dismantling the cube is not allowed.
process--A sequence of operations on the cube such as in Fig. 2.1.
quark—An incorrectly oriented corner cubic is either a quark or an

antiquark. See Chapter 10.
R-90-degree clockwise rotation of the right face.
slice—Those cubies between opposite faces, as shown in Fig. 1.4. There

are three slices, each having four edges and four centers.
slice twist—A rotation of a slice. Except for a turn of the entire cube,

these are equivalent to Ril l, LW', FB-I,	 UD-1, and Du-i.
solve a cubic—To put the cubic in place with the correct orientation.
solved cube—A cube with each face having one solid color.
stickers—The colored material glued to the cubies Each corner has

three stickers, each edge has two stickers, and each center has one.
transposition—A permutation that interchanges two objects and leaves

everything else fixed.-
U-90-degree clockwise rotation of the upper face.
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