

Ruby and MongoDB
Web Development
Beginner's Guide

Create dynamic web applications by combining
the power of Ruby and MongoDB

Gautam Rege

 BIRMINGHAM - MUMBAI

Ruby and MongoDB Web Development Beginner's Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2012

Production Reference: 1180712

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-502-3

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

Credits

Author

Gautam Rege

Reviewers

Bob Chesley

Ayan Dave

Michael Kohl

Srikanth AD

Acquisition Editor

Kartikey Pandey

Lead Technical Editor

Dayan Hyames

Technical Editor

Prashant Salvi

Copy Editors

Alfida Paiva

Laxmi Subramanian

Project Coordinator

Leena Purkait

Proofreader

Linda Morris

Indexer

Hemangini Bari

Graphics

Valentina D'silva

Manu Joseph

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

About the Author

Gautam Rege has over twelve years of experience in software development. He is
a Computer Engineer from Pune Institute of Computer Technology, Pune, India. After
graduating in 2000, he worked in various Indian software development companies until
2002, after which, he settled down in Veritas Software (now Symantec). After five years
there, his urge to start his own company got the better of him and he started Josh Software
Private Limited along with his long time friend Sethupathi Asokan, who was also in Veritas.

He is currently the Managing Director at Josh Software Private Limited. Josh in Hindi
(his mother tongue) means "enthusiasm" or "passion" and these are the qualities that the
company culture is built on. Josh Software Private Limited works exclusively in Ruby and
Ruby related technologies, such as Rails – a decision Gautam and Sethu (as he is lovingly
called) took in 2007 and it has paid rich dividends today!

Acknowledgement

I would like to thank Sethu, my co-founder at Josh, for ensuring that my focus was on the
book, even during the hectic activities at work. Thanks to Satish Talim, who encouraged
me to write this book and Sameer Tilak, for providing me with valuable feedback while
writing this book! Big thanks to Michael Kohl, who was of great help in ensuring that every
tiny technical detail was accurate and rich in content. I have become "technically mature"
because of him!

The book would not have been completed without the positive and unconditional support
from my wife, Vaibhavi and daughter, Swara, who tolerated a lot of busy weekends and late
nights where I was toiling away on the book. Thank you so much!

Last, but not the least, a big thank you to Kartikey, Leena, Dayan, Ayan, Prashant, and
Vrinda from Packt, who ensured that everything I did was in order and up to the mark.

About the Reviewers

Bob Chesley is a web and database developer of around twenty years currently concentrating
on JavaScript cross platform mobile applications and SaaS backend applications that they
connect to. Bob is also a small boat builder and sailor, enjoying the green waters of the Tampa
Bay area. He can be contacted via his web site (www.nhsoftwerks.com) or via his blog
(www.cfmeta.com) or by email at bob.chesley@nhsoftwerks.com.

Ayan Dave is a software engineer with eight years of experience in building and delivering
high quality applications using languages and components in JVM ecosystem. He is passionate
about software development and enjoys exploring open source projects. He is enthusiastic
about Agile and Extreme Programming and frequently advocates for them. Over the years he
has provided consulting services to several organizations and has played many different roles.
Most recently he was the "Architectus Oryzus" for a small project team with big ideas and
subscribes to the idea that running code is the system of truth.

Ayan has a Master's degree in Computer Engineering from the University of Houston - Clear
Lake and holds PMP, PSM-1 and OCMJEA certifications. He is also a speaker on various
technical topics at local user groups and community events. He currently lives in Columbus,
Ohio and works with Quick Solutions Inc. In the digital world he can be found at
http://daveayan.com.

Michael Kohl got interested in programming, and the wider IT world, at the young age of
12. Since then, he worked as a systems administrator, systems engineer, Linux consultant,
and software developer, before crossing over into the domain of IT security where he
currently works. He's a programming language enthusiast who's especially enamored with
functional programming languages, but also has a long-standing love affair with Ruby that
started around 2003. You can find his musings online at http://citizen428.net.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1

Chapter 1: Installing MongoDB and Ruby 11
Installing Ruby 12

Using RVM on Linux or Mac OS 12
The RVM games 16
The Windows saga 17

Using rbenv for installing Ruby 17
Installing MongoDB 18
Configuring the MongoDB server 19
Starting MongoDB 19
Stopping MongoDB 21
The MongoDB CLI 21

Understanding JavaScript Object Notation (JSON) 21
Connecting to MongoDB using Mongo 22

Saving information 22
Retrieving information 23
Deleting information 24

Exporting information using mongoexport 24
Importing data using mongoimport 25
Managing backup and restore using mongodump and mongorestore 25
Saving large files using mongofiles 26
bsondump 28

Installing Rails/Sinatra 28
Summary 29

Chapter 2: Diving Deep into MongoDB 31
Creating documents 32
Time for action – creating our first document 32

NoSQL scores over SQL databases 33
Using MongoDB embedded documents 34

Table of Contents

[ii]

Time for action – embedding reviews and votes 35
Fetching embedded objects 36

Using MongoDB document relationships 36
Time for action – creating document relations 37
Comparing MongoDB versus SQL syntax 38
Using Map/Reduce instead of join 40

Understanding functional programming 40
Building the map function 40

Time for action – writing the map function for calculating vote statistics 41
Building the reduce function 41

Time for action – writing the reduce function to process emitted information 42
Understanding the Ruby perspective 43

Setting up Rails and MongoDB 43
Time for action – creating the project 43

Understanding the Rails basics 44
Using Bundler 44

Why do we need the Bundler 44

Setting up Sodibee 45
Time for action – start your engines 45

Setting up Mongoid 46

Time for action – configuring Mongoid 47
Building the models 48

Time for action – planning the object schema 48
Testing from the Rails console 52

Time for action – putting it all together 52
Understanding many-to-many relationships in MongoDB 56
Using embedded documents 57

Time for action – adding reviews to books 57
Choosing whether to embed or not to embed 58

Time for action – embedding Lease and Purchase models 59
Working with Map/Reduce 60

Time for action – writing the map function to calculate ratings 63
Time for action – writing the reduce function to process the
emitted results 64

Using Map/Reduce together 64

Time for action – working with Map/Reduce using Ruby 65
Summary 68

Chapter 3: MongoDB Internals 69
Understanding Binary JSON 70

Fetching and traversing data 71
Manipulating data 71

Table of Contents

[iii]

What is ObjectId? 71
Documents and collections 71

Capped collections 72
Dates in MongoDB 72

JavaScript and MongoDB 72
Time for action – writing our own custom functions in MongoDB 73
Ensuring write consistency or "read your writes" 73

How does MongoDB use its memory-mapped storage engine? 74
Advantages of write-ahead journaling 74

Global write lock 74
Transactional support in MongoDB 75

Understanding embedded documents and atomic updates 75
Implementing optimistic locking in MongoDB 75

Time for action – implementing optimistic locking 76
Choosing between ACID transactions and MongoDB transactions 77

Why are there no joins in MongoDB? 77
Summary 79

Chapter 4: Working Out Your Way with Queries 81
Searching by fields in a document 81
Time for action – searching by a string value 82

Querying for specific fields 84
Time for action – fetching only for specific fields 84

Using skip and limit 86
Time for action – skipping documents and limiting our search results 86

Writing conditional queries 87
Using the $or operator 88

Time for action – finding books by name or publisher 88
Writing threshold queries with $gt, $lt, $ne, $lte, and $gte 88

Time for action – finding the highly ranked books 89
Checking presence using $exists 89

Searching inside arrays 90
Time for action – searching inside reviews 90

Searching inside arrays using $in and $nin 91
Searching for exact matches using $all 92

Searching inside hashes 92
Searching inside embedded documents 93
Searching with regular expressions 93
Time for action – using regular expression searches 94
Summary 97

Table of Contents

[iv]

Chapter 5: Ruby DataMappers: Ruby and MongoDB Go Hand in Hand 99
Why do we need Ruby DataMappers 99

The mongo-ruby-driver 100
Time for action – using mongo gem 101
The Ruby DataMappers for MongoDB 103

MongoMapper 104
Mongoid 104

Setting up DataMappers 104
Configuring MongoMapper 104

Time for action – configuring MongoMapper 105
Configuring Mongoid 107

Time for action – setting up Mongoid 107
Creating, updating, and destroying documents 110

Defining fields using MongoMapper 110
Defining fields using Mongoid 111
Creating objects 111

Time for action – creating and updating objects 111
Using finder methods 112

Using find method 112
Using the first and last methods 113
Using the all method 113

Using MongoDB criteria 113
Executing conditional queries using where 113

Time for action – fetching using the where criterion 114
Revisiting limit, skip, and offset 115

Understanding model relationships 116
The one to many relation 116

Time for action – relating models 116
Using MongoMapper 116
Using Mongoid 117

The many-to-many relation 118
Time for action – categorizing books 118

MongoMapper 118
Mongoid 119
Accessing many-to-many with MongoMapper 120
Accessing many-to-many relations using Mongoid 120

The one-to-one relation 121
Using MongoMapper 122
Using Mongoid 122

Time for action – adding book details 123
Understanding polymorphic relations 124

Implementing polymorphic relations the wrong way 124
Implementing polymorphic relations the correct way 124

Table of Contents

[v]

Time for action – managing the driver entities 125
Time for action – creating vehicles using basic polymorphism 129

Choosing SCI or basic polymorphism 132

Using embedded objects 133
Time for action – creating embedded objects 134

Using MongoMapper 134
Using Mongoid 134
Using MongoMapper 137
Using Mongoid 137

Reverse embedded relations in Mongoid 137
Time for action – using embeds_one without specifying embedded_in 138
Time for action – using embeds_many without specifying embedded_in 139
Understanding embedded polymorphism 140

Single Collection Inheritance 141
Time for action – adding licenses to drivers 141

Basic embedded polymorphism 142
Time for action – insuring drivers 142
Choosing whether to embed or to associate documents 144
Mongoid or MongoMapper – the verdict 145
Summary 146

Chapter 6: Modeling Ruby with Mongoid 147
Developing a web application with Mongoid 147

Setting up Rails 148
Time for action – setting up a Rails project 148

Setting up Sinatra 149
Time for action – using Sinatra professionally 151

Understanding Rack 156
Defining attributes in models 157

Accessing attributes 158
Indexing attributes 158

Unique indexes 159
Background indexing 159
Geospatial indexing 159
Sparse indexing 160

Dynamic fields 160
Time for action – adding dynamic fields 160

Localization 162
Time for action – localizing fields 162
Using arrays and hashes in models 164

Embedded objects 165

Table of Contents

[vi]

Defining relations in models 165
Common options for all relations 165

:class_name option 166
:inverse_of option 166
:name option 166

Relation-specific options 166
Options for has_one 167

:as option 167
:autosave option 168
:dependent option 168
:foreign_key option 168

Options for has_many 168
:order option 168

Options for belongs_to 169
:index option 169
:polymorphic option 169

Options for has_and_belongs_to_many 169
:inverse_of option 170

Time for action – configuring the many-to-many relation 171
Time for action – setting up the following and followers relationship 172

Options for :embeds_one 175
:cascade_callbacks option 175
:cyclic 175

Time for action – setting up cyclic relations 175
Options for embeds_many 176

:versioned option 176

Options for embedded_in 176
:name option 177

Managing changes in models 178
Time for action – changing models 178
Mixing in Mongoid modules 179

The Paranoia module 180
Time for action – getting paranoid 180

Versioning 182
Time for action – including a version 182
Summary 185

Chapter 7: Achieving High Performance on Your Ruby Application
with MongoDB 187

Profiling MongoDB 188
Time for action – enabling profiling for MongoDB 188
Using the explain function 190
Time for action – explaining a query 190
Using covered indexes 193

Table of Contents

[vii]

Time for action – using covered indexes 193
Other MongoDB performance tuning techniques 196

Using mongostat 197
Understanding web application performance 197

Web server response time 197
Throughput 198

Load the server using httperf 198
Monitoring server performance 199

End-user response and latency 202
Optimizing our code for performance 202

Indexing fields 202
Optimizing data selection 203

Optimizing and tuning the web application stack 203
Performance of the memory-mapped storage engine 203
Choosing the Ruby application server 204

Passenger 204
Mongrel and Thin 204
Unicorn 204

Increasing performance of Mongoid using bson_ext gem 204
Caching objects 205

Memcache 205
Redis server 205

Summary 206

Chapter 8: Rack, Sinatra, Rails, and MongoDB – Making Use of them All 207
Revisiting Sodibee 208
The Rails way 208

Setting up the project 208
Modeling Sodibee 210

Time for action – modeling the Author class 210
Time for action – writing the Book, Category and Address models 211
Time for action – modeling the Order class 212

Understanding Rails routes 213
What is the RESTful interface? 214

Time for action – configuring routes 214
Understanding the Rails architecture 215
Processing a Rails request 216
Coding the Controllers and the Views 217

Time for action – writing the AuthorsController 218
Solving the N+1 query problem using the includes method 219
Relating models without persisting them 220

Designing the web application layout 223

Table of Contents

[viii]

Time for action – designing the layout 223
 Understanding the Rails asset pipeline 230

Designing the Authors listing page 231
Time for action – listing authors 231

Adding new authors and their books 234

Time for action – adding new authors and books 234
The Sinatra way 240
Time for action – setting up Sinatra and Rack 240
Testing and automation using RSpec 243

Understanding RSpec 244
Time for action – installing RSpec 244
Time for action – sporking it 246
Documenting code using YARD 247
Summary 250

Chapter 9: Going Everywhere – Geospatial Indexing with MongoDB 251
What is geolocation 252

How accurate is a geolocation 253
Converting geolocation to geocoded coordinates 253

Identifying the exact geolocation 254
Storing coordinates in MongoDB 255
Time for action – geocoding the Address model 255

Testing geolocation storage 257
Time for action – saving geolocation coordinates 257

Using geocoder to update coordinates 258
Time for action – using geocoder for storing coordinates 258
Firing geolocation queries 260
Time for action – finding nearby addresses 260

Using mongoid_spacial 262
Time for action – firing near queries in Mongoid 262

Differences between $near and $geoNear 263

Summary 264

Chapter 10: Scaling MongoDB 265
High availability and failover via replication 266

Implementing the master/slave replication 266
Time for action – setting up the master/slave replication 266

Using replica sets 271
Time for action – implementing replica sets 272

Recovering from crashes – failover 277
Adding members to the replica set 277

Implementing replica sets for Sodibee 278

Table of Contents

[ix]

Time for action – configuring replica sets for Sodibee 278
Implementing sharding 283

Creating the shards 284
Time for action – setting up the shards 284

Configuring the shards with a config server 285
Time for action – starting the config server 285

Setting up the routing service – mongos 286
Time for action – setting up mongos 286

Testing shared replication 288
Implementing Map/Reduce 289
Time for action – planning the Map/Reduce functionality 290
Time for action – Map/Reduce via the mongo console 291
Time for action – Map/Reduce via Ruby 293

Performance benchmarking 295
Time for action – iterating Ruby objects 295
Summary 298

Pop Quiz Answers 299

Index 301

Preface
And then there was light – a lightweight database! How often have we all wanted some
database that was "just a data store"? Sure, you can use it in many complex ways but in
the end, it's just a plain simple data store. Welcome MongoDB!

And then there was light – a lightweight language that was fun to program in. It supports all
the constructs of a pure object-oriented language and is fun to program in. Welcome Ruby!

Both MongoDB and Ruby are the fruits of people who wanted to simplify things in a complex
world. Ruby, written by Yokihiro Matsumoto was made, picking the best constructs from Perl,
SmallTalk and Scheme. They say Matz (as he is called lovingly) "writes in C so that you don't
have to". Ruby is an object-oriented programming language that can be summarized in one
word: fun!

It's interesting to know that Ruby was created as an "object-oriented
scripting language". However, today Ruby can be compiled using JRuby
or Rubinius, so we could call it a programming language.

MongoDB has its roots from the word "humongous" and has the primary goal to manage
humongous data! As a NoSQL database, it relies heavily on data stored as key-value pairs.

Wait! Did we hear NoSQL – (also pronounced as No Sequel or No S-Q-L)? Yes! The roots of
MongoDB lie in its data not having a structured format! Even before we dive into Ruby and
MongoDB, it makes sense to understand some of these basic premises:

 � NoSQL

 � Brewer's CAP theorem

 � Basically Available, Soft-state, Eventually-consistent (BASE)

 � ACID or BASE

Preface

[2]

Understanding NoSQL
When the world was living in an age of SQL gurus and Database Administrators with
expertise in stored procedures and triggers, a few brave men dared to rebel. The reason was
"simplicity". SQL was good to use when there was a structure and a fixed set of rules. The
common databases such as Oracle, SQL Server, MySQL, DB2, and PostgreSQL, all promoted
SQL – referential integrity, consistency, and atomic transactions. One of the SQL based rebels
- SQLite decided to be really "lite" and either ignored most of these constructs or did not
enforce them based on the premise: "Know what you are doing or beware".

Similarly, NoSQL is all about using simple keys to store data. Searching keys uses various
hashing algorithms, but at the end of the day all we have is a simple data store!

With the advent of web applications and crowd sourcing web portals, the mantra was
"more scalable than highly available" and "more speed instead of consistency". Some web
applications may be okay with these and others may not. What is important is that there is
now a choice and developers can choose wisely!

It's interesting to note that "key-value pair" databases have existed from the early 80's – the
earliest to my knowledge being Berkeley DB – blazingly fast, light-weight, and a very simple
library to use.

Brewer's CAP theorem
Brewer's CAP theorem states that any distributed computer system can support only any two
among consistency, atomicity, and partition tolerance.

 � Consistency deals with consistency of data or referential integrity

 � Atomicity deals with transactions or a set of commands that execute as
"all or nothing"

 � Partition tolerance deals with distributed data, scaling and replication

There is sufficient belief that any database can guarantee any two of the above. However, the
essence of the CAP theorem is not to find a solution to have all three behaviors, but to allow us
to look at designing databases differently based on the application we want to build!

For example, if you are building a Core Banking System (CBS), consistency and atomicity are
extremely important. The CBS must guarantee these two at the cost of partition tolerance.
Of course, a CBS has its failover systems, backup, and live replication to guarantee zero
downtime, but at the cost of additional infrastructure and usually a single large instance
of the database.

Preface

[3]

A heavily accessed information web portal with a large amount of data requires speed
and scale, not consistency. Does the order of comments submitted at the same time really
matter? What matters is how quickly and consistently the data was delivered. This is a clear
case of consistency and partition tolerance at the cost of atomicity.

An excellent article on the CAP theorem is at
http://www.julianbrowne.com/article/viewer/
brewers-cap-theorem.

What are BASE databases?
"Basically Available, Soft-state, Eventually-consistent"!!

Just the name suggests, a trade-off, BASE databases (yes, they are called BASE databases
intentionally to mock ACID databases) use some tactics to have consistency, atomicity, and
partition tolerance "eventually". They do not really defy the CAP theorem but work around it.

Simply put: I can afford my database to be consistent over time by synchronizing information
between different database nodes. I can cache data (also called "soft-state") and persist it
later to increase the response time of my database. I can have a number of database nodes
with distributed data (partition tolerance) to be highly available and any loss of connectivity
to any nodes prompts other nodes to take over!

This does not mean that BASE databases are not prone to failure. It does imply however,
that they can recover quickly and consistently. They usually reside on standard commodity
hardware, thus making them affordable for most businesses!

A lot of databases on websites prefer speed, performance, and scalability instead of pure
consistency and integrity of data. However, as the next topic will cover, it is important to
know what to choose!

Using ACID or BASE?
"Atomic, Consistent, Isolated, and Durable" (ACID) is a cliched term used for transactional
databases. ACID databases are still very popular today but BASE databases are catching up.

ACID databases are good to use when you have heavy transactions at the core of your
business processes. But most applications can live without this complexity. This does not
imply that BASE databases do not support transactions, it's just that ACID databases are
better suited for them.

Preface

[4]

Choose a database wisely – an old man said rightly! A choice of a database can decide the
future of your product. There are many databases today that we can choose from. Here are
some basic rules to help choose between databases for web applications:

 � A large number of small writes (vote up/down) – Redis

 � Auto-completion, caching – Redis, memcached

 � Data mining, trending – MongoDB, Hadoop, and Big Table

 � Content based web portals – MongoDB, Cassandra, and Sharded ACID databases

 � Financial Portals – ACID database

Using Ruby
So, if you are now convinced (or rather interested to read on about MongoDB), you might
wonder where Ruby fits in anyway? Ruby is one of the languages that is being adopted the
fastest among all the new-age object oriented languages. But the big differentiator is that
it is a language that can be used, tweaked, and cranked in any way that you want – from
writing sweet smelling code to writing a domain-specific language (DSL)!

Ruby metaprogramming lets us easily adapt to any new technology, frameworks, API, and
libraries. In fact, most new services today always bundle a Ruby gem for easy integration.

There are many Ruby implementations available today (sometimes called Rubies) such as,
the original MRI, JRuby, Rubinius, MacRuby, MagLev, and the Ruby Enterprise Edition. Each
of them has a slightly different flavors, much like the different flavors of Linux.

I often have to "sell" Ruby to nontechnical or technically biased people. This simple
experiment never fails:

When I code in Ruby, I can guarantee, "My grandmother can read my code". Can any other
language guarantee that? The following is a simple code in C:

/* A simple snippet of code in C */

for (i = 0; i < 10; i++) {
 printf("Hi");
}

And now the same code in Ruby:

The same snippet of code in Ruby

10.times do
 print "hi"
end

Preface

[5]

There is no way that the Ruby code can be misinterpreted. Yes, I am not saying that you
cannot write complex and complicated code in Ruby, but most code is simple to read and
understand. Frameworks, such as Rails and Sinatra, use this feature to ensure that the code
we see is readable! There is a lot of code under the cover which enables this though. For
example, take a look at the following Ruby code:

library.rb
class Library
 has_many :books
end

book.rb
class Book
 belongs_to :library
end

It's quite understandable that "A library has many books" and that "A book belongs to
a library".

The really fun part of working in Ruby (and Rails) is the finesse in the language. For example,
in the small Rails code snippet we just saw, books is plural and library is singular. The
framework infers the model Book model by the symbol :books and infers the Library
model from the symbol :library – it goes the distance to make code readable.

As a language, Ruby is free flowing with relaxed rules – you can define a method call true in
your calls that could return false! Ruby is a language where you do whatever you want as
long as you know its impact. It's a human language and you can do the same thing in many
different ways! There is no right or wrong way; there is only a more efficient way. Here is a
simple example to demonstrate the power of Ruby! How do you calculate the sum of all the
numbers in the array [1, 2, 3, 4, 5]?

The non-Ruby way of doing this in Ruby is:

sum = 0

for element in [1, 2, 3, 4, 5] do
 sum += element
end

The not-so-much-fun way of doing this in Ruby could be:

sum = 0

[1, 2, 3, 4, 5].each do |element|
 sum += element
end

Preface

[6]

The normal-fun way of doing this in Ruby is:

[1, 2, 3, 4, 5].inject(0) { |sum, element| sum + element }

Finally, the kick-ass way of doing this in Ruby is either one of the following:

[1, 2, 3, 4, 5].inject(&:+)
[1, 2, 3, 4, 5].reduce(:+)

There you have it! So many different ways of doing the same thing in Ruby – but notice how
most Ruby code gets done in one line.

Enjoy Ruby!

What this book covers
Chapter 1, Installing MongoDB and Ruby, describes how to install MongoDB on Linux and
Mac OS. We shall learn about the various MongoDB utilities and their usage. We then install
Ruby using RVM and also get a brief introduction to rbenv.

Chapter 2, Diving Deep into MongoDB, explains the various concepts of MongoDB and how it
differs from relational databases. We learn various techniques, such as inserting and updating
documents and searching for documents. We even get a brief introduction to Map/Reduce.

Chapter 3, MongoDB Internals, shares some details about what BSON is, usage of JavaScript,
the global write lock, and why there are no joins or transactions supported in MongoDB. If
you are a person in the fast lane, you can skip this chapter.

Chapter 4, Working Out Your Way with Queries, explains how we can query MongoDB
documents and search inside different data types such as arrays, hashes, and embedded
documents. We learn about the various query options and even regular expression
based searching.

Chapter 5, Ruby DataMappers: Ruby and MongoDB Go Hand in Hand, provides details
on how to use Ruby data mappers to query MongoDB. This is our first introduction to
MongoMapper and Mongoid. We learn how to configure both of them, query using
these data mappers, and even see some basic comparison between them.

Chapter 6, Modeling Ruby with Mongoid, introduces us to data models, Rails, Sinatra, and how
we can model data using MongoDB data mappers. This is the core of the web application and
we see various ways to model data, organize our code, and query using Mongoid.

Preface

[7]

Chapter 7, Achieving High Performance on Your Ruby Application with MongoDB,
explains the importance of profiling and ensuring better performance right from the
start of developing web applications using Ruby and MongoDB. We learn some best
practices and concepts concerning the performance of web applications, tools, and
methods which monitor the performance of our web application.

Chapter 8, Rack, Sinatra, Rails, and MongoDB – Making Use of them All, describes in
detail how to build the full web application in Rails and Sinatra using Mongoid. We
design the logical flow, the views, and even learn how to test our code and document it.

Chapter 9, Going Everywhere – Geospatial Indexing with MongoDB, helps us understand
geolocation concepts. We learn how to set up geospatial indexes, get introduced to
geocoding, and learn about geolocation spherical queries.

Chapter 10, Scaling MongoDB, provides details on how we scale MongoDB using replica
sets. We learn about sharding, replication, and how we can improve performance using
MongoDB map/reduce.

Appendix, Pop Quiz Answers, provides answers to the quizzes present at the end of chapters.

What you need for this book
This book would require the following:

 � MongoDB version 2.0.2 or latest

 � Ruby version 1.9 or latest

 � RVM (for Linux and Mac OS only)

 � DevKit (for Windows only)

 � MongoMapper

 � Mongoid

And other gems, of which I will inform you as we need them!

Who this book is for
This book assumes that you are experienced in Ruby and web development skills - HTML,
and CSS. Having knowledge of using NoSQL will help you get through the concepts quicker,
but it is not mandatory. No prior knowledge of MongoDB required.

Preface

[8]

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

book = {
 name: "Oliver Twist",
 author: "Charles Dickens",
 publisher: "Dover Publications",
 published_on: "December 30, 2002",
 category: ['Classics', 'Drama']
}

Preface

[9]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

function(key, values) {
 var result = {votes: 0}

 values.forEach(function(value) {
 result.votes += value.votes;
 });

 return result;
}

Any command-line input or output is written as follows:

$ curl -L get.rvm.io | bash -s stable

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[10]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the errata submission form link, and entering
the details of your errata. Once your errata are verified, your submission will be accepted
and the errata will be uploaded to our website, or added to any list of existing errata,
under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us
with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

1
Installing MongoDB and Ruby

MongoDB and Ruby have both been created as a result of technology getting
complicated. They both try to keep it simple and manage all the complicated
tasks at the same time. MongoDB manages "humongous" data and Ruby
is fun. Working together, they form a great bond that gives us what most
programmers desire—a fun way to build large applications!

Now that your interest has increased, we should first set up our system. In this chapter,
we will see how to do the following:

 � Install Ruby using RVM

 � Install MongoDB

 � Configure MongoDB

 � Set up the initial playground using MongoDB tools

But first, what are the basic system requirements for installing Ruby and MongoDB? Do we
need a heavy-duty server? Nah! On the contrary, any standard workstation or laptop will be
enough. Ensure that you have at least 1 GB memory and more than 32 GB disk space.

Did you say operating system? Ruby and MongoDB are both cross-platform compliant. This
means they can work on any flavor of Linux (such as Ubuntu, Red Hat, Fedora, Gentoo, and
SuSE), Mac OS (such as Leopard, Snow Leopard, and Lion) or Windows (such as XP, 2000,
and 7).

Installing MongoDB and Ruby

[12]

If you are planning on using Ruby and MongoDB professionally, my personal
recommendations for development are Mac OS or Linux. As we want to see detailed
instructions, I am going to use examples for Ubuntu or Mac OS (and point out additional
instructions for Windows whenever I can). While hosting MongoDB databases, I would
personally recommend using Linux.

It's true that Ruby is cross-platform, most Rubyists tend to
shy away from Windows as it's not always flawless. There are
efforts underway to rectify this.

Let the games begin!

Installing Ruby
I recommend using RVM (Ruby Version Manager) for installing Ruby. The detailed
instructions are available at http://beginrescueend.com/rvm/install/.

Incidentally, RVM was called Ruby Version Manager but its
name was changed to reflect how much more it does today!

Using RVM on Linux or Mac OS
On Linux or Mac OS you can run this initial command to install RVM as follows:

$ curl -L get.rvm.io | bash -s stable

$ source ~/.rvm/scripts/'rvm'

After this has been successfully run, you can verify it yourself.

$ rvm list known

If you have successfully installed RVM, this should show you the entire list of Rubies
available. You will notice that there are quite a few implementations of Ruby (MRI Ruby,
JRuby, Rubinius, REE, and so on) We are going to install MRI Ruby.

MRI Ruby is the "standard" or original Ruby implementation.
It's called Matz Ruby Interpreter.

Chapter 1

[13]

The following is what you will see if you have successfully executed the previous command:

$ rvm list known

MRI Rubies

[ruby-]1.8.6[-p420]

[ruby-]1.8.6-head

[ruby-]1.8.7[-p352]

[ruby-]1.8.7-head

[ruby-]1.9.1-p378

[ruby-]1.9.1[-p431]

[ruby-]1.9.1-head

[ruby-]1.9.2-p180

[ruby-]1.9.2[-p290]

[ruby-]1.9.2-head

[ruby-]1.9.3-preview1

[ruby-]1.9.3-rc1

[ruby-]1.9.3[-p0]

[ruby-]1.9.3-head

ruby-head

GoRuby

goruby

JRuby

jruby-1.2.0

jruby-1.3.1

jruby-1.4.0

jruby-1.6.1

jruby-1.6.2

jruby-1.6.3

jruby-1.6.4

jruby[-1.6.5]

jruby-head

Installing MongoDB and Ruby

[14]

Rubinius

rbx-1.0.1

rbx-1.1.1

rbx-1.2.3

rbx-1.2.4

rbx[-head]

rbx-2.0.0pre

Ruby Enterprise Edition

ree-1.8.6

ree[-1.8.7][-2011.03]

ree-1.8.6-head

ree-1.8.7-head

Kiji

kiji

MagLev

maglev[-26852]

maglev-head

Mac OS X Snow Leopard Only

macruby[-0.10]

macruby-nightly

macruby-head

IronRuby -- Not implemented yet.

ironruby-0.9.3

ironruby-1.0-rc2

ironruby-head

Isn't that beautiful? So many Rubies and counting!

Chapter 1

[15]

Fun fact
Ruby is probably the only language that has a plural notation!
When we work with multiple versions of Ruby, we collectively
refer to them as "Rubies"!

Before we actually install any Rubies, we should configure the RVM packages that are
necessary for all the Rubies. These are the standard packages that Ruby can integrate with,
and we install them as follows:

$ rvm package install readline

$ rvm package install iconv

$ rvm package install zlib

$ rvm package install openssl

The preceding commands install some useful libraries for all the Rubies that we will
install. These libraries make it easier to work with the command line, internationalization,
compression, and SSL. You can install these packages even after Ruby installation, but it's just
easier to install them first.

$ rvm install 1.9.3

 The preceding command will install Ruby 1.9.3 for us. However, while installing Ruby, we
also want to pre-configure it with the packages that we have installed. So, here is how we do
it, using the following commands:

$ export rvm_path=~/.rvm

$ rvm install 1.9.3 --with-readline-dir=$rvm_path/usr --with-iconv-
dir=$rvm_path/usr --with-zlib-dir=$rvm_path/usr --with-openssl-dir=$rvm_
path/usr

The preceding commands will miraculously install Ruby 1.9.3 configured with the packages
we have installed. We should see something similar to the following on our screen:

$ rvm install 1.9.3

Installing Ruby from source to: /Users/user/.rvm/rubies/ruby-1.9.3-p0,
this may take a while depending on your cpu(s)...

Installing MongoDB and Ruby

[16]

ruby-1.9.3-p0 - #fetching

ruby-1.9.3-p0 - #downloading

ruby-1.9.3-p0, this may take a while depending on your connection...

...

ruby-1.9.3-p0 - #extracting

ruby-1.9.3-p0 to /Users/user/.rvm/src/ruby-1.9.3-p0

ruby-1.9.3-p0 - #extracted to /Users/user/.rvm/src/ruby-1.9.3-p0

ruby-1.9.3-p0 - #configuring

ruby-1.9.3-p0 - #compiling

ruby-1.9.3-p0 - #installing

...

Install of ruby-1.9.3-p0 - #complete

Of course, whenever we start our machine, we do want to load RVM, so do add this line in
your startup profile script:

$ echo '[[-s "$HOME/.rvm/scripts/rvm"]] && . "$HOME/.rvm/scripts/rvm" #
Load RVM function' >> ~/.bash_profile

This will ensure that Ruby is loaded when you log in.

$ rvm requirements is a command that can assist you on
custom packages to be installed. This gives instructions based
on the operating system you are on!

The RVM games
Configuring RVM for a project can be done as follows:

$ rvm –create –rvmrc use 1.9.3%myproject

The previous command allows us to configure a gemset for our project. So, when we move
to this project, it has a .rvmrc file that gets loaded and voila — our very own
custom workspace!

Chapter 1

[17]

A gemset, as the name suggests, is a group of gems that are loaded for a particular version
of Ruby or a project. As we can have multiple versions of the same gem on a machine, we
can configure a gemset for a particular version of Ruby and for a particular version of the
gem as well!

$ cd /path/to/myproject

Using ruby 1.9.2 p180 with gemset myproject

In case you need to install something via RVM with sudo
access, remember to use rvmsudo instead of sudo!

The Windows saga
RVM does not work on Windows, instead you can use pik. All the detailed instructions
to install Ruby are available at http://rubyinstaller.org/. It is pretty simple and
a one-click installer.

Do remember to install DevKit as it is required for compiling
native gems.

Using rbenv for installing Ruby
Just like all good things, RVM becomes quite complex because the community started
contributing heavily to it. Some people wanted just a Ruby version manager, so rbenv was
born. Both are quite popular but there are quite a few differences between rbenv and RVM.

For starters, rbenv does not need to be loaded into the shell and does not override any shell
commands. It's very lightweight and unobtrusive. Install it by cloning the repository into your
home directory as .rbenv. It is done as follows:

$ cd

$ git clone git://github.com/sstephenson/rbenv.git .rbenv

Add the preceding command to the system path, that is, the $PATH variable and you're
all set.

rbenv works on a very simple concept of shims. Shims are scripts that understand what
version of Ruby we are interested in. All the versions of Ruby should be kept in the $HOME/.
rbenv/versions directory. Depending on which Ruby version is being used, the shim
inserts that particular path at the start of the $PATH variable. This way, that Ruby version
is picked up!

Installing MongoDB and Ruby

[18]

This enables us to compile the Ruby source code too (unlike RVM where we have to specify
ruby-head).

For more information on rbenv, see https://github.com/
sstephenson/rbenv.

Installing MongoDB
MongoDB installers are a bunch of binaries and libraries packaged in an archive. All you
need to do is download and extract the archive. Could this be any simpler?

On Mac OS, you have two popular package managers Homebrew and MacPorts. If you
are using Homebrew, just issue the following command:

$ brew install MongoDB

If you don't have brew installed, it is strongly recommended to install it. But don't fret.
Here is the manual way to install MongoDB on any Linux, Mac OS, or Windows machine:

1. Download MongoDB from http://www.mongodb.org/downloads.

2. Extract the .tgz file to a folder (preferably which is in your system path).

It's done!

On any Linux Shell, you can issue the following commands to download and install. Be sure
to append the /path/to/MongoDB/bin to your $PATH variable:

$ cd /usr/local/

$ curl http://fastdl.mongodb.org/linux/mongodb-linux-i686-2.0.2.tgz >
mongo.tgz

$ tar xf mongo.tgz

$ ln –s mongodb-linux-i686-2.0.2 MongoDB

For Windows, you can simply download the ZIP file and extract it in a folder. Ensure that
you update the </path/to/MongoDB/bin> in your system path.

MongoDB v1.6, v1.8, and v2.x are considerably different. Be
sure to install the latest version. Over the course of writing this
book, v2.0 was released and the latest version is v2.0.2. It is
that version that this book will reference.

Chapter 1

[19]

Configuring the MongoDB server
Before we start the MongoDB server, it's necessary to configure the path where we want to
store our data, the interface to listen on, and so on. All these configurations are stored in
mongod.conf. The default mongod.conf looks like the following code and is stored at the
same location where MongoDB is installed—in our case /usr/local/mongodb:

Store data in /usr/local/var/mongodb instead of the default /data/db
dbpath = /usr/local/var/mongodb

Only accept local connections
bind_ip = 127.0.0.1

dbpath is the location where the data will be stored. Traditionally, this used to be /data/db
but this has changed to /usr/local/var/mongodb. MongoDB will create this dbpath if
you have not created it already.

bind_ip is the interface on which the server will run. Don't mess with this entry unless
you know what you are doing!

Write-ahead logging is a technique to ensure durability and
atomicity in database systems. Before actually writing to the
database, the information (such as redo and undo) is written to a
log (called the journal). This ensures that recovering from a crash
is credible and fast. We shall learn more about this in the book.

Starting MongoDB
We can start the MongoDB server using the following command:

$ sudo mongod --config /usr/local/mongodb/mongod.conf

Remember that if we don't give the --config parameter, the default dbpath will be
taken as /data/db.

When you start the server, if all is well, you should see something like the following:

$ sudo mongod --config /usr/local/mongodb/mongod.conf

Sat Sep 10 15:46:31 [initandlisten] MongoDB starting : pid=14914
port=27017 dbpath=/usr/local/var/mongodb 64-bit

Installing MongoDB and Ruby

[20]

Sat Sep 10 15:46:31 [initandlisten] db version v2.0.2, pdfile version 4.5

Sat Sep 10 15:46:31 [initandlisten] git version:
c206d77e94bc3b65c76681df5a6b605f68a2de05

Sat Sep 10 15:46:31 [initandlisten] build sys info: Darwin erh2.10gen.
cc 9.6.0 Darwin Kernel Version 9.6.0: Mon Nov 24 17:37:00 PST 2008;
root:xnu-1228.9.59~1/RELEASE_I386 i386 BOOST_LIB_VERSION=1_40

Sat Sep 10 15:46:31 [initandlisten] journal dir=/usr/local/var/mongodb/
journal

Sat Sep 10 15:46:31 [initandlisten] recover : no journal files present,
no recovery needed

Sat Sep 10 15:46:31 [initandlisten] waiting for connections on port 27017

Sat Sep 10 15:46:31 [websvr] web admin interface listening on port 28017

The preceding process does not terminate as it is running in the foreground! Some
explanations are due here:

 � The server started with pid 14914 on port 27017 (default port)

 � The MongoDB version is 2.0.2

 � The journal path is /usr/local/var/mongodb/journal (It also mentions that
there is no current journal file, as this is the first time we are starting this up!)

 � The web admin port is on 28017

The MongoDB server has some pretty interesting command-line
options:–v is verbose. –vv is more verbose and –vvv is even
more verbose. Include multiple times for more verbosity!

There are plenty of command line options that allow us to use MongoDB in various ways.
For example:

1. --jsonp allows JSONP access.

2. --rest turns on REST API.

3. Master/Slave, options, replication options, and even sharing options
(We shall see more in Chapter 10, Scaling MongoDB).

Chapter 1

[21]

Stopping MongoDB
Press Ctrl+C if the process is running in the foreground. If it's running as a daemon, it has
its standard startup script. On Linux flavors such as Ubuntu, you have upstart scripts that
start and stop the mongod daemon. On Mac, you have launchd and launchct commands
that can start and stop the daemon. On other flavors of Linux, you would find more of the
resource scripts in the /etc/init.d directory. On Windows, the Services in the Control
Panel can control the daemon process.

The MongoDB CLI
Along with the MongoDB server binary, there are plenty of other utilities too that help us in
administration, monitoring, and management of MongoDB.

Understanding JavaScript Object Notation (JSON)
Even before we see how to use MongoDB utilities, it's important to know how information is
stored. We shall study a lot more of the object model in Chapter 2, Diving Deep into MongoDB.

What is a JavaScript object? Surely you've heard of JavaScript Object Notation (JSON).
MongoDB stores information similar to this. (It's called Binary JSON (BSON), which we shall
read more about in Chapter 3, The MongoDB Internals). BSON, in addition to JSON formats,
is ideally suited for "Document" storage. Don't worry, more information on this later!

So, if you want to save information, you simply use the JSON protocol:

{
 name : 'Gautam Rege',
 passion: ['Ruby', 'MongoDB'],
 company : {
name : "Josh Software Private Limited",
 country : 'India'
 }
}

The previous example shows us how to store information:

String: "" or ''
Integer: 10
Float: 10.1
Array: ['1', 2]
Hash: {a: 1, b: 2}

Installing MongoDB and Ruby

[22]

Connecting to MongoDB using Mongo
The Mongo client utility is used to connect to MongoDB database. Considering that this
is a Ruby and MongoDB book, it is a utility that we shall use rarely (because we shall be
accessing the database using Ruby). The Mongo CLI client, however, is indeed useful for
testing out basics.

We can connect to MongoDB databases in various ways:

$ mongo book

$ mongo 192.168.1.100/book

$ mongo db.myserver.com/book

$ mongo 192.168.1.100:9999/book

In the preceding case, we connect to a database called book on localhost, on a remote
server, or on a remote server on a different port. When you connect to a database, you
should see the following:

$ mongo book

MongoDB shell version: 2.0.2

connecting to: book

>

Saving information
To save data, use the JavaScript object and execute the following command:

> db.shelf.save({ name: 'Gautam Rege',

 passion : ['Ruby', 'MongoDB']

 })

>

The previous command saves the data (that is, usually called "Document") into the collection
shelf. We shall talk more about collections and other terminologies in Chapter 3, MongoDB
Internals. A collection can vaguely be compared to tables.

Chapter 1

[23]

Retrieving information
We have various ways to retrieve the previously stored information:

 � Fetch the first 10 objects from the book database (also called a collection),
as follows:

> db.shelf.find()

{ "_id" : ObjectId("4e6bb98a26e77d64db8a3e89"), "name" : "Gautam
Rege", "passion" : ["Ruby", MongoDB"] }

>

 � Find a specific record of the name attribute. This is achieved by executing the
following command:

> db.shelf.find({ name : 'Gautam Rege' })

{ "_id" : ObjectId("4e6bb98a26e77d64db8a3e89"), "name" : "Gautam
Rege", "passion" : ["Ruby", MongoDB"] }

>

So far so good! But you may be wondering what the big deal is. This is similar to a select
query I would have fired anyway. Well, here is where things start getting interesting.

 � Find records by using regular expressions! This is achieved by executing the
following command:

$ db.shelf.find({ name : /Rege/ })

{ "_id" : ObjectId("4e6bb98a26e77d64db8a3e89"), "name" : "Gautam
Rege", "passion" : ["Ruby", MongoDB"] }

>

 � Find records by using regular expressions using the case-insensitive flag! This is
achieved by executing the following command:

$ db.shelf.find({ name : /rege/i })

{ "_id" : ObjectId("4e6bb98a26e77d64db8a3e89"), "name" : "Gautam
Rege", "passion" : ["Ruby", MongoDB"] }

>

As we can see, it's easy when we have programming constructs mixed with database
constructs with a dash of regular expressions.

Installing MongoDB and Ruby

[24]

Deleting information
No surprises here!

 � To remove all the data from book, execute the following command:

> db.shelf.remove()

>

 � To remove specific data from book, execute the following command:

> db.shelf.remove({name : 'Gautam Rege'})

>

Exporting information using mongoexport
Ever wondered how to extract information from MongoDB? It's mongoexport! What is
pretty cool is that the Mongo data transfer protocol is all in JSON/BSON formats. So what?
- you ask. As JSON is now a universally accepted and common format of data transfer,
you can actually export the database, or the collection, directly in JSON format — so even
your web browser can process data from MongoDB. No more three-tier applications! The
opportunities are infinite!

Ok, back to basics. Here is how you can export data from MongoDB:

$ mongoexport –d book –c shelf

connected to: 127.0.0.1

{ "_id" : { "$oid" : "4e6c45b81cb76a67a0363451" }, "name" : "Gautam
Rege", "passion" : ["Ruby", MongoDB"]}

exported 1 records

This couldn't be simpler, could it? But wait, there's more. You can export this data into a
CSV file too!

$ mongoexport -d book -c shelf -f name,passion --csv -o test.csv

The preceding command saves data in a CSV file. Similarly, you can export data as a JSON
array too!

$ mongoexport -d book -c shelf --jsonArray

connected to: 127.0.0.1

[{ "_id" : { "$oid" : "4e6c61a05ff70cac810c6996" }, "name" : "Gautam
Rege", "passion" : ["Ruby", "MongoDB"] }]

exported 1 records

Chapter 1

[25]

Importing data using mongoimport
Wasn't this expected? If there is a mongoexport, you must have a mongoimport! Imagine
when you want to import information; you can do so in a JSON array, CSV, TSV or plain JSON
format. Simple and sweet!

Managing backup and restore using mongodump and
mongorestore
Backups are important for any database and MongoDB is no exception. mongodump dumps
the entire database or databases in binary JSON format. We can store this and use this later to
restore it from the backup. This is the closest resemblance to mysqldump! It is done as follows:

$ mongodump -dconfig

connected to: 127.0.0.1

DATABASE: config to dump/config

 config.version to dump/config/version.bson

 1 objects

 config.system.indexes to dump/config/system.indexes.bson

 14 objects

...

 config.collections to dump/config/collections.bson

 1 objects

 config.changelog to dump/config/changelog.bson

 10 objects

$

$ ls dump/config/

changelog.bson databases.bson mongos.bson system.indexes.bson

chunks.bson lockpings.bson settings.bson version.bson

collections.bson locks.bson shards.bson

Now that we have backed up the database, in case we need to restore it, it is just a matter
of supplying the information to mongorestore, which is done as follows:

$ mongorestore -dbkp1 dump/config/

connected to: 127.0.0.1

dump/config/changelog.bson

Installing MongoDB and Ruby

[26]

going into namespace [bkp1.changelog]

10 objects found

dump/config/chunks.bson

going into namespace [bkp1.chunks]

7 objects found

dump/config/collections.bson

 going into namespace [bkp1.collections]

1 objects found

dump/config/databases.bson

 going into namespace [bkp1.databases]

15 objects found

dump/config/lockpings.bson

 going into namespace [bkp1.lockpings]

5 objects found

...

1 objects found

dump/config/system.indexes.bson

 going into namespace [bkp1.system.indexes]

{ key: { _id: 1 }, ns: "bkp1.version", name: "_id_" }

{ key: { _id: 1 }, ns: "bkp1.settings", name: "_id_" }

{ key: { _id: 1 }, ns: "bkp1.chunks", name: "_id_" }

{ key: { ns: 1, min: 1 }, unique: true, ns: "bkp1.chunks", name: "ns_1_
min_1" }

...

{ key: { _id: 1 }, ns: "bkp1.databases", name: "_id_" }

{ key: { _id: 1 }, ns: "bkp1.collections", name: "_id_" }

14 objects found

Saving large files using mongofiles
The database should be able to store a large amount of data. Typically, the maximum size of
JSON objects stores 4 MB (and in v1.7 onwards, 16 MB). So, can we store videos and other
large documents in MongoDB? That is where the mongofiles utility helps.

MongoDB uses GridFS specification for storing large files. Language bindings are available to
store large files. GridFS splits larger files into chunks and maintains all the metadata in the
collection. It's interesting to note that GridFS is just a specification, not a mandate and all
MongoDB drivers adhere to this voluntarily.

Chapter 1

[27]

To manage large files directly in a database, we use the mongofiles utility.

$ mongofiles -d book -c shelf put /home/gautam/Relax.mov

connected to: 127.0.0.1

added file: { _id: ObjectId('4e6c6f9cc7bd0bf42f31aa3b'), filename:
"/Users/gautam/Relax.mov", chunkSize: 262144, uploadDate: new
Date(1315729317190), md5: "43883ace6022c8c6682881b55e26e745", length:
49120795 }

done!

Notice that 47 MB of data was saved in the database. I wouldn't want to leave you in the
dark, so here goes a little bit of explanation. GridFS creates an fs collection that has two
more collections called chunks and files. You can retrieve this information from MongoDB
from the command line or using Mongo CLI.

$ mongofiles –d book list

connected to: 127.0.0.1

/Users/gautam/Downloads/Relax.mov 49120795

Let's use Mongo CLI to fetch this information now. This can be done as follows:

$ mongo

MongoDB shell version: 1.8.3

connecting to: test

> use book

switched to db book

> db.fs.chunks.count()

188

> db.fs.files.count()

1

> db.fs.files.findOne()

{

 "_id" : ObjectId("4e6c6f9cc7bd0bf42f31aa3b"),

 "filename" : "/Users/gautam/Downloads/Relax.mov",

 "chunkSize" : 262144,

Installing MongoDB and Ruby

[28]

 "uploadDate" : ISODate("2011-09-11T08:21:57.190Z"),

 "md5" : "43883ace6022c8c6682881b55e26e745",

 "length" : 49120795

}

>

bsondump
This is a utility that helps analyze BSON dumps. For example, if you want to filter all the
objects from a BSON dump of the book database, you could run the following command:

$ bsondump --filter "{name:/Rege/}" dump/book/shelf.bson

This command would analyze the entire dump and get all the objects where name has the
specified value in it! The other very nice feature of bsondump is if we have a corrupted dump
during any restore, we can use the objcheck flag to ignore all the corrupt objects.

Installing Rails/Sinatra
Considering that we aim to do web development with Ruby and MongoDB, Rails or Sinatra
cannot be far behind.

Rails 3 packs a punch. Sinatra was born because Rails 2.x was a really
heavy framework. However, Rails 3 has Metal that can be configured
with only what we need in our application framework. So Rails 3 can be
as lightweight as Sinatra and also get the best of the support libraries.
So Rails 3 it is, if I have to choose between Ruby web frameworks!

Installing Rails 3 or Sinatra is as simple as one command, as follows:

$ gem install rails

$ gem install sinatra

At the time of writing this chapter, Rails 3.2 had just been released in
production mode. That is what we shall use!

Chapter 1

[29]

Summary
What we have learned so far is about getting comfortable with Ruby and MongoDB. We
installed Ruby using RVM, learned a little about rbenv and then installed MongoDB. We saw
how to configure MongoDB, start it, stop it, and finally we played around with the various
MongoDB utilities to dump information, restore it, save large files and even export to CSV
or JSON.

In the next chapter, we shall dive deep into MongoDB. We shall learn how to work with
documents, save them, fetch them, and search for them — all this using the mongo utility.
We shall also see a comparison with SQL databases.

2
Diving Deep into MongoDB

Now that we have seen the basic files and CLI utilities available with MongoDB,
we shall now use them. We shall see how these objects are modeled via Mongo
CLI as well as from the Ruby console.

In this chapter we shall learn the following:

 � Modeling the application data.

 � Mapping it to MongoDB objects.

 � Creating embedded and relational objects.

 � Fetching objects.

 � How does this differ from the SQL way?

 � Take a brief look at a Map/Reduce, with an example.

We shall start modeling an application, whereby we shall learn various constructs of
MongoDB and then integrate it into Rails and Sinatra. We are going to build the Sodibee
(pronounced as |saw-d-bee|) Library Manager.

Books belong to particular categories including Fiction, Non-fiction, Romance,
Self-learning, and so on. Books belong to an author and have one publisher.

Books can be leased or bought. When books are bought or leased, the customer's details
(such as name, address, phone, and e-mail) are registered along with the list of books
purchased or leased.

Diving Deep into MongoDB

[32]

An inventory maintains the quantity of each book with the library, the quantity sold and the
number of times it was leased.

Over the course of this book, we shall evolve this application into a full-fledged web
application powered by Ruby and MongoDB. In this chapter we will learn the various
constructs of MongoDB.

Creating documents
Let's first see how we can create documents in MongoDB. As we have briefly seen, MongoDB
deals with collections and documents instead of tables and rows.

Time for action – creating our first document
Suppose we want to create the book object having the following schema:

book = {
 name: "Oliver Twist",
 author: "Charles Dickens",
 publisher: "Dover Publications",
 published_on: "December 30, 2002",
 category: ['Classics', 'Drama']
}

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

On the Mongo CLI, we can add this book object to our collection using the following command:

> db.books.insert(book)

Suppose we also add the shelf collection (for example, the floor, the row, the column the
shelf is in, the book indexes it maintains, and so on that are part of the shelf object), which
has the following structure:

shelf : {
 name : 'Fiction',
 location : { row : 10, column : 3 },
 floor : 1
 lex : { start : 'O', end : 'P' },
}

Chapter 2

[33]

Remember, it's quite possible that a few years down the line, some shelf instances may
become obsolete and we might want to maintain their record. Maybe we could have another
shelf instance containing only books that are to be recycled or donated. What can we do?
We can approach this as follows:

 � The SQL way: Add additional columns to the table and ensure that there is a default
value set in them. This adds a lot of redundancy to the data. This also reduces the
performance a little and considerably increases the storage. Sad but true!

 � The NoSQL way: Add the additional fields whenever you want. The following are the
MongoDB schemaless object model instances:

> db.book.shelf.find()

{ "_id" : ObjectId("4e81e0c3eeef2ac76347a01c"), "name" : "Fiction",
"location" : { "row" : 10, "column" : 3 }, "floor" : 1 }

{ "_id" : ObjectId("4e81e0fdeeef2ac76347a01d"), "name" : "Romance",
"location" : { "row" : 8, "column" : 5 }, "state" : "window broken",
"comments" : "keep away from children" }

What just happened?
You will notice that the second object has more fields, namely comments and state. When
fetching objects, it's fine if you get extra data. That is the beauty of NoSQL. When the first
document is fetched (the one with the name Fiction), it will not contain the state and
comments fields but the second document (the one with the name Romance) will have them.

Are you worried what will happen if we try to access non-existing data from an object,
for example, accessing comments from the first object fetched? This can be logically
resolved—we can check the existence of a key, or default to a value in case it's not there,
or ignore its absence. This is typically done anyway in code when we access objects.

Notice that when the schema changed we did not have to add fields in every object with
default values like we do when using a SQL database. So there is no redundant information
in our database. This ensures that the storage is minimal and in turn the object information
fetched will have concise data. So there was no redundancy and no compromise on storage
or performance. But wait! There's more.

NoSQL scores over SQL databases
The way many-to-many relations are managed tells us how we can do more with MongoDB
that just cannot be simply done in a relational database. The following is an example:

Each book can have reviews and votes given by customers. We should be able to see these
reviews and votes and also maintain a list of top voted books.

Diving Deep into MongoDB

[34]

If we had to do this in a relational database, this would be somewhat like the relationship
diagram shown as follows: (get scared now!)

Book User

Votes Review

vote_count

review count

The vote_count and review_count fields are inside the books table that would need to be
updated every time a user votes up/down a book or writes a review. So, to fetch a book along
with its votes and reviews, we would need to fire three queries to fetch the information:

SELECT * from book where id = 3;

SELECT * from reviews where book_id = 3;

SELECT * from votes where book_id = 3;

We could also use a join for this:

SELECT * FROM books JOIN reviews ON reviews.book_id = books.id JOIN votes
ON votes.book_id = books.id;

In MongoDB, we can do this directly using embedded documents
or relational documents.

Using MongoDB embedded documents
Embedded documents, as the name suggests, are documents that are embedded in other
documents. This is one of the features of MongoDB and this cannot be done in relational
databases. Ever heard of a table embedded inside another table?

Instead of four tables and a complex many-to-many relationship, we can say that reviews and
votes are part of a book. So, when we fetch a book, the reviews and the votes automatically
come along with the book.

Chapter 2

[35]

Embedded documents are analogous to chapters inside a book. Chapters cannot be read
unless you open the book. Similarly embedded documents cannot be accessed unless you
access the document.

For the UML savvy, embedded documents are similar to the contains
or composition relationship.

Time for action – embedding reviews and votes
In MongoDB, the embedded object physically resides inside the parent. So if we had to
maintain reviews and votes we could model the object as follows:

book : { name: "Oliver Twist",

 reviews : [
 { user: "Gautam",
 comment: "Very interesting read"
 },
 { user: "Harry",
 comment: "Who is Oliver Twist?"
 }
]
 votes: ["Gautam", "Tom", "Dick"]
}

What just happened?
We now have reviews and votes inside the book. They cannot exist on their own. Did you
notice that they look similar to JSON hashes and arrays? Indeed, they are an array of hashes.
Embedded documents are just like hashes inside another object.

There is a subtle difference between hashes and embedded objects as we shall see later on
in the book.

Have a go hero – adding more embedded objects to the book
Try to add more embedded objects such as orders inside the book document. It works!

order = {
 name: "Toby Jones"
 type: "lease",
 units: 1,
 cost: 40
}

Diving Deep into MongoDB

[36]

Fetching embedded objects
We can fetch a book along with the reviews and the votes with it. This can be done by
executing the following command:

> var book = db.books.findOne({name : 'Oliver Twist'})

> book.reviews.length

2

> book.votes.length

3

> book.reviews

[

 { user: "Gautam",

 comment: "Very interesting read"

 },

 { user: "Harry",

 comment: "Who is Oliver Twist?"

 }

]

> book.votes

["Gautam", "Tom", "Dick"]

This does indeed look simple, doesn't it? By fetching a single object, we are able to get the
review and vote count along with the data.

Use embedded documents only if you really have to!

Embedded documents increase the size of the object. So, if we have
a large number of embedded documents, it could adversely impact
performance. Even to get the name of the book, the reviews and
the votes are fetched.

Using MongoDB document relationships
Just like we have embedded documents, we can also set up relationships between
different documents.

Chapter 2

[37]

Time for action – creating document relations
The following is another way to create the same relationship between books, users, reviews,
and votes. This is more like the SQL way.

book: {
 _id: ObjectId("4e81b95ffed0eb0c23000002"),
 name: "Oliver Twist",
 author: "Charles Dickens",
 publisher: "Dover Publications",
 published_on: "December 30, 2002",
 category: ['Classics', 'Drama']
}

Every document that is created in MongoDB has an object ID associated
with it. In the next chapter, we shall soon learn about object IDs in
MongoDB. By using these object IDs we can easily identify different
documents. They can be considered as primary keys.

So, we can also create the reviews collection and the votes collection as follows:

users: [
 {
 _id: ObjectId("8d83b612fed0eb0bee000702"),
 name: "Gautam"
 },
 {
 _id : ObjectId("ab93b612fed0eb0bee000883"),
 name: "Harry"
 }
]

reviews: [
 {
 _id: ObjectId("5e85b612fed0eb0bee000001"),
 user_id: ObjectId("8d83b612fed0eb0bee000702"),
 book_id: ObjectId("4e81b95ffed0eb0c23000002"),
 comment: "Very interesting read"
 },
 {
 _id: ObjectId("4585b612fed0eb0bee000003"),
 user_id : ObjectId("ab93b612fed0eb0bee000883"),
 book_id: ObjectId("4e81b95ffed0eb0c23000002"),

Diving Deep into MongoDB

[38]

 comment: "Who is Oliver Twist?"
 }
]

votes: [
 {
 _id: ObjectId("6e95b612fed0eb0bee000123"),
 user_id : ObjectId("8d83b612fed0eb0bee000702"),
 book_id: ObjectId("4e81b95ffed0eb0c23000002"),
 },
 {
 _id: ObjectId("4585b612fed0eb0bee000003"),
 user_id : ObjectId("ab93b612fed0eb0bee000883"),
 }
]

What just happened?
Hmm!! Not very interesting, is it? It doesn't even seem right. That's because it isn't the
right choice in this context. It's very important to know how to choose between nesting
documents and relating them.

In your object model, if you will never search by the nested document
(that is, look up for the parent from the child), embed it.

Just in case you are not sure about whether you would need to search by an embedded
document, don't worry too much – it does not mean that you cannot search among embedded
objects. You can use Map/Reduce to gather the information. There is more on this later in this
chapter and a lot more in detail, in Chapter 4, Working out Your Way with Queries.

Comparing MongoDB versus SQL syntax
This is a good time to sit back and evaluate the similarities and dissimilarities between the
MongoDB syntax and the SQL syntax. Let's map them together:

SQL commands NoSQL (MongoDB) equivalent

SELECT * FROM books db.books.find()

SELECT * FROM books WHERE
id = 3;

db.books.find({ id : 3 })

Chapter 2

[39]

SQL commands NoSQL (MongoDB) equivalent

SELECT * FROM books WHERE
name LIKE 'Oliver%'

db.books.find({ name :
/^Oliver/ })

SELECT * FROM books WHERE
name like '%Oliver%'

db.books.find({ name : /
Oliver/ })

SELECT * FROM books
WHERE publisher = 'Dover
Publications' AND
published_date = "2011-8-
01"

db.books.find({ publisher
: "Dover Publications",
published_date :
ISODate("2011-8-01") })

SELECT * FROM books WHERE
published_date > "2011-8-
01"

db.books.find ({
published_date : { $gt :
ISODate("2011-8-01") } })

SELECT name FROM books
ORDER BY published_date

db.books.find({}, { name
: 1 }).sort({ published_
date : 1 })

SELECT name FROM books
ORDER BY published_date
DESC

db.books.find({}, { name
: 1 }).sort({ published_
date : -1 })

SELECT votes.name from
books JOIN votes where
votes.book_id = books.id

db.books.find({ votes : {
$exists : 1 } }, { votes.
name : 1 })

Some more notable comparisons between MongoDB and relational databases are:

 � MongoDB does not support joins. Instead it fires multiple queries or uses
Map/Reduce. We shall soon see why the NoSQL faction does not favor joins.

 � SQL has stored procedures. MongoDB supports JavaScript functions.

 � MongoDB has indexes similar to SQL.

 � MongoDB also supports Map/Reduce functionality.

 � MongoDB supports atomic updates like SQL databases.

 � Embedded or related objects are used sometimes instead of a SQL join.

 � MongoDB collections are analogous to SQL tables.

 � MongoDB documents are analogous to SQL rows.

Diving Deep into MongoDB

[40]

Using Map/Reduce instead of join
We have seen this mentioned a few times earlier—it's worth jumping into it, at least briefly.

Map/Reduce is a concept that was introduced by Google in 2004.
It's a way of distributed task processing. We "map" tasks to works
and then "reduce" the results.

Understanding functional programming
Functional programming is a programming paradigm that has its roots from lambda calculus.
If that sounds intimidating, remember that JavaScript could be considered a functional
language. The following is a snippet of functional programming:

$(document).ready(function () {
 $('#element').click(function () {
 # do something here
 });

 $('#element2').change(function () {
 # do something here
 })

});

We can have functions inside functions. Higher-level languages (such as Java and Ruby)
support anonymous functions and closures but are still procedural functions. Functional
programs rely on results of a function being chained to other functions.

Building the map function
The map function processes a chunk of data. Data that is fed to this function could be
accessed across a distributed filesystem, multiple databases, the Internet, or even any
mathematical computation series!

function map(void) -> void

The map function "emits" information that is collected by the "mystical super gigantic
computer program" and feeds that to the reducer functions as input.

MongoDB as a database supports this paradigm making it "the all powerful" (of course
I am joking, but it does indeed make MongoDB very powerful).

Chapter 2

[41]

Time for action – writing the map function for calculating vote
statistics

Let's assume we have a document structure as follows:

{ name: "Oliver Twist",
 votes: ['Gautam', 'Harry']
 published_on: "December 30, 2002"
}

The map function for such a structure could be as follows:

function() {
 emit(this.name, {votes : this.votes});
}

What just happened?
The emit function emits the data. Notice that the data is emitted as a (key, value) structure.

 � Key: This is the parameter over which we want to gather information. Typically it
would be some primary key, or some key that helps identify the information.

For the SQL savvy, typically the key is the field we use in
the GROUP BY clause.

 � Value: This is a JSON object. This can have multiple values and this is the data that is
processed by the reduce function.

We can call emit more than once in the map function. This would mean we are processing
data multiple times for the same object.

Building the reduce function
The reduce functions are the consumer functions that process the information emitted from
the map functions and emit the results to be aggregated. For each emitted data from the
map function, a reduce function emits the result. MongoDB collects and collates the results.
This makes the system of collection and processing as a massive parallel processing system
giving the all mighty power to MongoDB.

The reduce functions have the following signature:

function reduce(key, values_array) -> value

Diving Deep into MongoDB

[42]

Time for action – writing the reduce function to process emitted
information

This could be the reduce function for the previous example:

function(key, values) {
 var result = {votes: 0}

 values.forEach(function(value) {
 result.votes += value.votes;
 });

 return result;
}

What just happened?
reduce takes an array of values – so it is important to process an array every time. Later
on in the book we shall see how there are various options to Map/Reduce that help us
process data.

Let's analyze this function in more detail:

function(key, values) {
 var result = {votes: 0}

 values.forEach(function(value) {
 result.votes += value.votes;
 });

 return result;
}

The variable result has a structure similar to what was emitted from the map function. This
is important, as we want the results from every document in the same format. If we need to
process more results, we can use the finalize function (more on that later). The result
function has the following structure:

function(key, values) {
 var result = {votes: 0}

 values.forEach(function(value) {
 result.votes += value.votes;
 });

 return result;
}

Chapter 2

[43]

The values are always passed as arrays. It's important that we iterate the array, as there
could be multiple values emitted from different map functions with the same key. So, we
processed the array to ensure that we don't overwrite the results and collate them.

Understanding the Ruby perspective
Until now we have just been playing around with MongoDB. Now let's have a look at this
from Ruby. Aaahhh… bliss!

For this example, we shall write some basic classes in Ruby. We are using Rails 3 and the
Mongoid wrapper for MongoDB. (We shall see more about MongoDB wrappers later in
the book)

Setting up Rails and MongoDB
To set up a Rails project, we first need to install the Rails gem. We shall also install the
Bundler gem that goes hand-in-hand with Rails.

Time for action – creating the project
First we shall create the sample Rails project. Assuming you have installed Ruby already, we
need to install Rails. The following command shows how to install Rails and Bundler.

$ gem install rails

$ gem install bundler

What just happened?
The preceding commands will install Rails and Bundler. For the sake of this example, I am
working with Rails 3.2.0 (that is, the current latest version) but I recommend that you should
use the latest version of Rails available.

Diving Deep into MongoDB

[44]

Understanding the Rails basics
Rails is a web framework written in Ruby. It was released publicly in 2005 and it has gathered
a lot of steam since then. It is interesting to note that until Rails 2.x, the framework was a
tightly coupled one. This was when other loosely coupled web frameworks made their way
into the developer market. The most popular among them were Merb and Sinatra. These
frameworks leveraged Ruby to its full potential but were competing against each other.

Around 2008-2009, the Rails core team (David Hanson and team)
met the makers of Merb (Yehuda Katz and team) and they got
together and discussed a strategy that has literally changed the
face of web development. Rails 3 emerged with a bang; it had a
brand new framework with Metal and Rack with loosely coupled
components and very customizable middleware. This has made
Rails extremely popular today.

Using Bundler
Bundler is another awesome gem by "Carlhuda" (Yahuda and Carl Leche) that manages gem
dependencies in Ruby applications.

Why do we need the Bundler
In the "olden" days, when everything was a system installation, things would be running
smoothly till somebody upgraded a system library or a gem... and then Kaboom! – the
application crashed for no apparent reason and no code change. Some libraries break
compatibility, which in turn requires us to install the new gems. So, even if a system
administrator upgraded the system (as a routine maintenance activity), our Ruby
application was prone to crashes.

A bigger problem arose when we were required to install multiple Ruby applications on
the same system. Ruby version, Rails version, gem versions, and system libraries all could
potentially clash to make development and deployment a nightmare!

One solution was to freeze gems and the Ruby version. This required us to ship everything into
our application bundle. Not only was this inefficient but also increased the size of the bundle.

Then came along Bundler and, as the name suggests, it keeps track of dependencies in a
Ruby application. Java has a similar package called Maven. But wait! Bundler has more in
store. We can now package gems (via a Gemfile) and specify environments with it. So, if we
require some gems only for testing, it can be specified to be a part of only the "test" group.

Chapter 2

[45]

If that's not sold you over using Bundler, we can specify the source of the gem files
too – github, sourceforge or even a gem in our local file system.

Bundler generates Gemfile.lock that manages the gem dependencies for the application.
It uses the system-installed gems; so that we don't have to freeze gems or Ruby versions with
each application.

Setting up Sodibee
Now that we have installed Rails and Bundler, it's time to set up the Sodibee project.

Time for action – start your engines
Now we shall create the Sodibee project in Rails 3. It can be done using the following
command:

$ rails new sodibee –JO

In the previous command, -J means skip-prototype (and use jQuery instead) and -O
means skip-activerecord. This is important, as we want to use MongoDB.

Add the following to Gemfile:

gem 'mongoid'
gem 'bson'
gem 'bson_ext'

Now on command line, type the following:

$ bundle install

In Rails 3.2.1 a lot of automation has been added. bundle install
is part of the process of creating a project.

What just happened?
The previous command: bundle install fetches missing gems, their dependencies, and
installs them. It then generates Gemfile.lock. After bundle install is complete, you
would see the following on the screen:

$ bundle install

Fetching source index for http://rubygems.org/

Using rake (0.9.2)

Using abstract (1.0.0)

Diving Deep into MongoDB

[46]

Using activesupport (3.2.0)

Using builder (2.1.2)

Using i18n (0.5.0)

Using activemodel (3.2.0)

Using erubis (2.6.6)

Using rack (1.2.4)

Using rack-mount (0.6.14)

Using rack-test (0.5.7)

Installing tzinfo (0.3.30)

Using actionpack (3.2.0)

Using mime-types (1.16)

Using polyglot (0.3.2)

Using treetop (1.4.10)

Using mail (2.2.19)

Using actionmailer (3.2.0)

Using arel (2.0.10)

Using activerecord (3.2.0)

Using activeresource (3.2.0)

Using bson (1.4.0)

Using bundler (1.0.10)

Using mongo (1.3.1)

Installing mongoid (2.2.1)

Using rdoc (3.9.4)

Using thor (0.14.6)

Using railties (3.2.0)

Using rails (3.2.0)

Your bundle is complete! Use `bundle show [gemname]` to see where a
bundled gem is installed.

Setting up Mongoid
Now that the Rails application is set up, let's configure Mongoid.

Mongoid is an Object Document Mapper (ODM) tool that maps Ruby objects to MongoDB
documents. We shall learn a lot more in detail in the later chapters on Mongoid and other
similar ODM tools. For now, we shall simply issue the command to configure Mongoid.

Chapter 2

[47]

Time for action – configuring Mongoid
The Mongoid gem has a Rails generator command to configure Mongoid.

A Rails generator, as the name suggests, sets up files. Generators are
used frequently in gems to set up config files, with default settings,
g can be used instead of writing generate.

$ rails g mongoid:config

What just happened?
This command created a config/mongoid.yml file that is used to connect to MongoDB.
The file would look like the following code snippet:

development:
 host: localhost
 database: sodibee_development

test:
 host: localhost
 database: sodibee_test

set these environment variables on your prod server
production:
 host: <%= ENV['MONGOID_HOST'] %>
 port: <%= ENV['MONGOID_PORT'] %>
 username: <%= ENV['MONGOID_USERNAME'] %>
 password: <%= ENV['MONGOID_PASSWORD'] %>
 database: <%= ENV['MONGOID_DATABASE'] %>
 # slaves:
 # - host: slave1.local
 # port: 27018
 # - host: slave2.local
 # port: 27019
gautam-2:sodibee gautam$

Notice that there are now three environments to work with—development, test, and
production. By default, Rails will pick up the development environment. We do not need
to explicitly create the database in MongoDB. The first call to the database will create the
database for us.

Diving Deep into MongoDB

[48]

The previous command also configures the config/application.rb to ensure that
ActiveRecord is disabled. ActiveRecord is the default Rails ORM (Object Relational Mapper).
As we are using Mongoid, we need to disable ActiveRecord.

Building the models
Now that we have the project set up, it's time we create the models. Each model will
autocreate collections in MongoDB. To create a model, all we need to do is create a file
in the app/models folder.

Time for action – planning the object schema
Here we shall build the different models and add their relations.

Building the book model
This app/models/book.rb would contain the following code:

class Book
 include Mongoid::Document

 field :title, type: String
 field :publisher, type: String
 field :published_on, type: Date

 field :votes, type: Array

 belongs_to :author
 has_and_belongs_to_many :categories

 embeds_many :reviews
end

What just happened?
Let's study the previous code snippet in more detail:

class Book
 include Mongoid::Document

 field :title, type: String
 field :publisher, type: String
 field :published_on, type: Date

Chapter 2

[49]

 field :votes, type: Array

 belongs_to :author
 has_and_belongs_to_many :categories

 embeds_many :reviews
end

The preceding code includes the Mongoid module to save the documents in MongoDB.

include is the Ruby way of adding methods to the Ruby class by
including modules. This is called module mixin. We can include as
many modules in a class as we want. Modules make the class richer
by adding all the module methods as instance methods.

extend is the Ruby way of adding class methods to a Ruby class by
including modules in it. All the methods from the modules included
become class methods.

Let's have a look at the previous snippet again:

class Book
 include Mongoid::Document

 field :title, type: String
 field :publisher, type: String
 field :published_on, type: Date

 field :votes, type: Array

 belongs_to :author
 has_and_belongs_to_many :categories

 embeds_many :reviews
end

The previous code configures the name and the type of the fields for a document.

Notice the Ruby 1.9 syntax for a hash. No more hash rockets (=>). Instead
in we use the JSON notation directly. Remember it's type:String and
not type : String. You must have the key and the colon (:) together.

Diving Deep into MongoDB

[50]

Let's have a look at the snippet again:

class Book
 include Mongoid::Document

 field :title, type: String
 field :publisher, type: String
 field :published_on, type: Date

 field :votes, type: Array

 belongs_to :author

 has_and_belongs_to_many :categories

 embeds_many :reviews
end

The previous snippet is a relational document. This means that the document has a
reference to the author document.

Let's have a look at the snippet for the second time:

class Book
 include Mongoid::Document

 field :title, type: String
 field :publisher, type: String
 field :published_on, type: Date

 field :votes, type: Array

 belongs_to :author
 has_and_belongs_to_many :categories

 embeds_many :reviews
end

The previous snippet is a many-to-many relationship between books and categories.

Let's have a look at the snippet a third time:

class Book
 include Mongoid::Document

 field :title, type: String
 field :publisher, type: String

Chapter 2

[51]

 field :published_on, type: Date

 field :votes, type: Array

 belongs_to :author
 has_and_belongs_to_many :categories

 embeds_many :reviews
end

The previous snippet is an example of nested or embedded documents. All the review
documents will be embedded into the books.

Have a go hero – building the remaining models
We need the Author, Category, and Review models. Here is how we can do this.

The app/models/author.rb file contains the following code:

class Author
 include Mongoid::Document

 field :name, type: String

 has_many :books
end

The app/models/category.rb file contains the following code:

class Category
 include Mongoid::Document

 field :name, type: String

 has_and_belongs_to_many :books
end

Note that the category and books have a many-to-many relationship. The app/models/
review.rb file contains the following code:

class Review
 include Mongoid::Document

 field :comment, type: String
 field :username, type: String

 embedded_in :book
end

Diving Deep into MongoDB

[52]

It's very important that the inverse relation that is, the embedded_in is mentioned in
reviews. This tells Mongoid how to store the embedded object. If this is not written, objects
will be not get embedded.

Testing from the Rails console
Nothing is ever complete without testing. The Rails community is almost fanatical about
integrating tests into the project. We shall learn about testing soon, but for now let's test our
code from the Rails console.

Time for action – putting it all together
Now we shall test these models to see if they indeed work as expected. We shall create
different objects and their relations. The fun begins! Let's start the Rails console and create
our first book object:

$ rails console

The Rails console is a command-line interactive command prompt
that loads the Rails environment and the models. It's the best way
to check and test if our data models are correct.

Let's create a book now. We can do that using the following code:

> b = Book.new(title: "Oliver Twist", publisher: "Dover Publications",
published_on: Date.parse("2002-12-30"))

 => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, title: "Oliver
Twist", publisher: "Dover Publications", published_on: 2002-12-30
00:00:00 UTC, votes: nil, author_id: nil, category_ids: []>

Here, we have populated the basic title, publisher, and published_on fields. Now let's
work with the relations. Let's create an author, which can be done as follows:

> Author.create(name: "Charles Dickens")

 => #<Author _id: 4e86e4b6fed0eb0be0000011, _type: nil, name: "Charles
Dickens">

Chapter 2

[53]

Let's create a couple of categories too. This can be done as follows:

> Category.create(name: "Fiction")

 => #<Category _id: 4e86e4cbfed0eb0be0000012, _type: nil, name:
"Fiction", book_ids: []>

> Category.create(name: "Drama")

 => #<Category _id: 4e86e4d9fed0eb0be0000013, _type: nil, name: "Drama",
book_ids: []>

Now, let's add an author and some categories to our book. This can be done as follows:

> b.author = Author.where(name: "Charles Dickens").first

 => #<Author _id: 4e86e4b6fed0eb0be0000011, _type: nil, name: "Charles
Dickens">

> b.categories << Category.first

 => []

> b.categories << Category.last

 => []

> b

 => #<Book _id: 4e86df21fed0eb0be000000b, _type: nil, title: "Oliver
Twist", publisher: "Dover Publications", published_on: 2002-12-30
00:00:00 UTC, votes: nil, author_id: BSON::ObjectId('4e86e4b6fed0eb0
be0000011'), category_ids: [BSON::ObjectId('4e86e4cbfed0eb0be0000012'),
BSON::ObjectId('4e86e4d9fed0eb0be0000013')]>

> b.save

 => true

Remember to save the object!

Save returns true if the object was saved successfully,
otherwise it returns false. Save will raise an exception
if the save was unsuccessful.

Diving Deep into MongoDB

[54]

What just happened?
We have just created books, authors, and categories.

Hmm... category and books have a many-to-many relationship. So does this mean that
category objects should also be updated? Let's check:

> Category.first

 => #<Category _id: 4e86e4cbfed0eb0be0000012, _type: nil, name:
"Fiction", book_ids: [BSON::ObjectId('4e86e45efed0eb0be0000010')]>

> Category.last

 => #<Category _id: 4e86e4d9fed0eb0be0000013, _type: nil, name: "Drama",
book_ids: [BSON::ObjectId('4e86e45efed0eb0be0000010')]>

Yeah!, we are in good shape.

Let's check what MongoDB has stored. Start the Mongo CLI and see the books.

We can do this as follows:

$ mongo

MongoDB shell version: 1.8.3

connecting to: test

> use sodibee_development

switched to db sodibee_development

> db.books.findOne()

{

 "_id" : ObjectId("4e86e45efed0eb0be0000010"),

 "category_ids" : [

 ObjectId("4e86e4cbfed0eb0be0000012"),

 ObjectId("4e86e4d9fed0eb0be0000013")

],

 "name" : "Oliver Twist",

 "publisher" : "Dover Publications",

 "published_on" : ISODate("2002-12-30T00:00:00Z"),

 "author_id" : ObjectId("4e86e4b6fed0eb0be0000011")

}

>

Chapter 2

[55]

And let's see the categories and author objects too

> db.categories.findOne()

{

 "_id" : ObjectId("4e86e4cbfed0eb0be0000012"),

 "book_ids" : [

 ObjectId("4e86e45efed0eb0be0000010")

],

 "name" : "Fiction"

}

> db.categories.findOne({name: "Drama"})

{

 "_id" : ObjectId("4e86e4d9fed0eb0be0000013"),

 "book_ids" : [

 ObjectId("4e86e45efed0eb0be0000010")

],

 "name" : "Drama"

}

> db.authors.findOne()

{ "_id" : ObjectId("4e86e4b6fed0eb0be0000011"), "name" : "Charles
Dickens" }

>

All is well!

Have a go hero – adding more books, authors, and categories
Let's get creative (and funny) by adding the following:

 � Adventures of Banana Man by Willie Slip in the Adventure category.

 � World's craziest Moments and Dizzying moments by Mary Go Round in
the Travel category.

 � Procrastinate and Laziness Personified by Toby D Cided in the Self-help category

Diving Deep into MongoDB

[56]

Understanding many-to-many relationships in MongoDB
In a SQL database, a many-to-many relationship is done using an intermediate table. For
example, the many-to many relationship we have mentioned previously between books
and categories, would be achieved in the following manner in a SQL database:

Books
id int(10) auto increment

name varchar(255)

Categories

id int(10) auto increment

name varchar(255)

Category_books

Id int(10) auto increment

category_id references categories(id)

As MongoDB is a schemaless database, we do not need any additional temporary collections.
The following is what the book object stores:

> db.books.findOne()
{
 "_id" : ObjectId("4e86e45efed0eb0be0000010"),
 "category_ids" : [
 ObjectId("4e86e4cbfed0eb0be0000012"),
 ObjectId("4e86e4d9fed0eb0be0000013")
],

 "name" : "Oliver Twist",
 "publisher" : "Dover Publications",
 "published_on" : ISODate("2002-12-30T00:00:00Z"),
 "author_id" : ObjectId("4e86e4b6fed0eb0be0000011")
}
>

The following is what the category object stores:

> db.categories.findOne()
{
 "_id" : ObjectId("4e86e4cbfed0eb0be0000012"),
 "book_ids" : [

Chapter 2

[57]

 ObjectId("4e86e45efed0eb0be0000010")
],
 "name" : "Fiction"
}

No intermediate collections needed!

Using embedded documents
When we built the models, we embedded reviews in the book mode. An example would be
ideal to explain this.

Time for action – adding reviews to books
Let's start the Rails console again and add reviews to books. This is done as follows:

> b = Book.where(title: "Oliver Twist").first

 => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, title: "Oliver
Twist", publisher: "Dover Publications", published_on: 2002-12-30
00:00:00 UTC, votes: nil, author_id: nil, category_ids: []>

> b.reviews.create(comment: "Fast paced book!", username: "Gautam")

 => #<Review _id: 4e86f6c8fed0eb0be0000019, _type: nil, comment: "Fast
paced book!", username: "Gautam">

> b.reviews.create(comment: "Excellent literature", username: "Tom")

 => #<Review _id: 4e86f6fffed0eb0be000001a, _type: nil, comment:
"Excellent literature", username: "Tom">

What just happened?
That's it—we just created reviews for books. Let's fetch them and check:

b.reviews

 => [#<Review _id: 4e86f68bfed0eb0be0000018, _type: nil,
comment: "Fast paced book!", username: "Gautam">, #<Review _id:
4e86f6fffed0eb0be000001a, _type: nil, comment: "Excellent literature",
username: "Tom">]

Diving Deep into MongoDB

[58]

Let's look at the following code to see what was stored in MongoDB:

> db.books.findOne()
{
 "_id" : ObjectId("4e86e45efed0eb0be0000010"),
 "author_id" : ObjectId("4e86e4b6fed0eb0be0000011"),
 "category_ids" : [
 ObjectId("4e86e4cbfed0eb0be0000012"),
 ObjectId("4e86e4d9fed0eb0be0000013")
],
 "name" : "Oliver Twist",
 "published_on" : ISODate("2002-12-30T00:00:00Z"),
 "publisher" : "Dover Publications",
 "reviews" : [
 {
 "comment" : "Fast paced book!",
 "username" : "Gautam",
 "_id" : ObjectId("4e86f68bfed0eb0be0000018")
 },
 {
 "comment" : "Excellent literature",
 "username" : "Tom",
 "_id" : ObjectId("4e86f6fffed0eb0be000001a")
 }
]

}
>

Notice that the reviews are embedded inside the book object. Now when we fetch the book
object, we will automatically get all the reviews too.

Choosing whether to embed or not to embed
Suppose we want to prepare orders for a book. The book can be leased or purchased. If
we want to maintain an order history in terms of lease and purchase, how do we build the
Lease, Purchase, and Order models?

Chapter 2

[59]

Time for action – embedding Lease and Purchase models
We have three model files Order, Lease, and Purchase as follows:

app/models/order
class Order
 include Mongoid::Document

 field :created_at, type: DateTime
 field :type, type: String # Lease, Purchase

 belongs_to :book

 embeds_one :lease
 embeds_one :purchase

end

Now, depending on the type field, we can determine which embedded object to pick up,
the lease, or the purchase. You can design the Lease and Purchase models as shown in the
following code:

app/models/lease.rb
class Lease
 include Mongoid::Document

 field :from, type: DateTime
 field :till, type: DateTime

 embedded_in :order
end

app/models/purchase.rb
class Purchase
 include Mongoid::Document

 field :quantity, type: Integer
 field :price, type: Float

 embedded_in :order
end

Diving Deep into MongoDB

[60]

Working with Map/Reduce
To see an example of how Map/Reduce works, let's now add votes to books. The following
shows how we can add votes:

{
 "username" : "Dick",
 "rating" : 5
}

Rating could be on a scale of 1 to 10, with 10 being the best. Every user can rate a book.
Our aim is to collect the total rating by all users. We shall save this information as a hash in
the votes array in the book object. This should not be confused with an embedded object
(as it does not have an object ID).

We have not seen the MongoDB data types such as ObjectId
and ISODate. We shall learn about these data types in the future
chapters. All usual data types such as integer, float, string, hash,
and array are supported.

The following is how we save this information as a hash in the votes array in the book object:

> db.books.findOne()
{
 "_id" : ObjectId("4e86e45efed0eb0be0000010"),
 "author_id" : ObjectId("4e86e4b6fed0eb0be0000011"),
 "category_ids" : [
 ObjectId("4e86e4cbfed0eb0be0000012"),
 ObjectId("4e86e4d9fed0eb0be0000013")
],
 "name" : "Oliver Twist",
 "published_on" : ISODate("2002-12-30T00:00:00Z"),
 "publisher" : "Dover Publications",
 "reviews" : [
 {
 "comment" : "Fast paced book!",
 "username" : "Gautam",
 "_id" : ObjectId("4e86f68bfed0eb0be0000018")
 },
 {
 "comment" : "Excellent literature",
 "username" : "Tom",
 "_id" : ObjectId("4e86f6fffed0eb0be000001a")
 }
],

Chapter 2

[61]

 "votes" : [
 {
 "username" : "Gautam",
 "rating" : 3
 }
]
}

Before we see the example of Map/Reduce, it would be fun to add more books and votes,
so that the Map/Reduce results make more sense. This is done as shown next:

> Book.create(name: "Great Expectations", author: Author.first)

 => #<Book _id: 4e8704fdfed0eb0f97000001, _type: nil, title: nil,
publisher: nil, published_on: nil, votes: nil, author_id: BSON::Ob
jectId('4e86e4b6fed0eb0be0000011'), category_ids: [], name: "Great
Expectations">

> Book.create(name: "A tale of two cities", author: Author.first)

 => #<Book _id: 4e870521fed0eb0f97000002, _type: nil, title: nil,
publisher: nil, published_on: nil, votes: nil, author_id: BSON::Object
Id('4e86e4b6fed0eb0be0000011'), category_ids: [], name: "A tale of two
cities">

Now let's add votes for all three books.

First, for Oliver Twist (for example, one vote by Gautam)

a = Book.first

 => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, title: nil,
publisher: "Dover Publications", published_on: 2002-12-30 00:00:00 UTC,
votes: nil, author_id: BSON::ObjectId('4e86e4b6fed0eb0be0000011'),
category_ids: [BSON::ObjectId('4e86e4cbfed0eb0be0000012'), BSON::ObjectId
('4e86e4d9fed0eb0be0000013')], name: "Oliver Twist">

> b.votes = []

 => []

> b.votes << {username: "Gautam", rating: 3} => [{:username=>"Gautam",
:rating=>3}]

> b.save

 => true

Diving Deep into MongoDB

[62]

Note that we first set b.votes = [] ,that is, an empty array. This is
because MongoDB does not add the fields to the database until they
are populated. So, by default b.votes would return nil. Hence it's
important to initialize it the first time.

Now, for Great Expectations (for example, three votes, one each by Gautam, Tom, and Dick)

> b = Book.where(name: "Great Expectations").first

 => #<Book _id: 4e8704fdfed0eb0f97000001, _type: nil, title: nil,
publisher: nil, published_on: nil, votes: nil, author_id: BSON::Ob
jectId('4e86e4b6fed0eb0be0000011'), category_ids: [], name: "Great
Expectations">

> b.votes = []

 => []

> b.votes << {username: "Gautam", rating: 9}

 => [{:username=>"Gautam", :rating=>9}]

> b.votes << {username: "Tom", rating: 3}

 => [{:username=>"Gautam", :rating=>9}, {:username=>"Tom", :rating=>3}]

> b.votes << {username: "Dick", rating: 7}

 => [{:username=>"Gautam", :rating=>9}, {:username=>"Tom", :rating=>3},
{:username=>"Dick", :rating=>7}]

> b.save

 => true

Finally, for The Tale of Two Cities (for example, two votes, one each by Gautam and Dick)

> c = Book.where(name: /cities/).first

 => #<Book _id: 4e870521fed0eb0f97000002, _type: nil, title: nil,
publisher: nil, published_on: nil, votes: nil, author_id: BSON::Object
Id('4e86e4b6fed0eb0be0000011'), category_ids: [], name: "A tale of two
cities">

Chapter 2

[63]

> c.votes = []

 => []

> c.votes << {username: "Gautam", rating: 9}

 => [{:username=>"Gautam", :rating=>9}]

> c.votes << {username: "Dick", rating: 5}

 => [{:username=>"Gautam", :rating=>9}, {:username=>"Dick", :rating=>5}]

> c.save

 => true

If we want to collect all the votes and add up the rating for each user, it can be a pretty
cumbersome task to iterate over all of these objects. This is the where Map/Reduce helps us.

One alternative to Map/Reduce in this particular example would be
to capture the vote count per book by incrementing a counter while
inserting votes and reviews itself. However, we shall use Map/Reduce
here so that we understand how it works.

Time for action – writing the map function to calculate ratings
This is how we can write the map function. As we have seen earlier, this function will emit
information, in our case, the key is the username and the value is the rating:

function() {
 this.votes.forEach(function(x) {
 emit(x.username, {rating: x.rating});
 });
}

What just happened?
This is a JavaScript function. MongoDB understands and processes all JS functions. Every time
emit() is called, some data is emitted for the reduce function to process. In the preceding
code this represents the collection object.

What we want to do is emit all the ratings for each element in the votes array for every
book. The emit() takes the key and value as parameters. So, we are emitting the users
votes for the reduce function to process. It's also important to remember the data structure
we are emitting as the value. It should be consistent for all objects. In our case {rating:
x.rating}.

Diving Deep into MongoDB

[64]

Time for action – writing the reduce function to process the
emitted results

Now let's write the reduce function. This takes a key and an array of values, shown as follows:

function(key, values) {
 var result = {rating: 0};

 values.forEach(function(value) {
 result.rating += value.rating;
 });

 return result;
}

What just happened?
The reduce function is the one which processes the values that were emitted from the
map function.

Remember that the values parameter is always an array. The map function could emit
results for the same key multiple times, so we should be sure to process the value as an
array and accumulate results. The return structure should be the same as what was emitted.

MongoDB supports Map/Reduce and will invoke Map/Reduce
functions in parallel. This gives it power over standard SQL databases.
The closest a SQL database comes to this is when we use a GROUP
BY query. It depends on the indexes and the query fired that can get
us similar results like Map/Reduce.

Using Map/Reduce together
As MongoDB requires JavaScript functions, the trick here is to pass the JavaScript functions
to the MongoDB engine via a string on the Rails console. So, we create two strings for the
map and reduce functions.

Chapter 2

[65]

Time for action – working with Map/Reduce using Ruby
We shall now create two strings in Ruby for these functions:

> map = %q{function() {

 this.votes.forEach(function(x) {

 emit(x.username, {rating: x.rating});

 });

 }

 }

> reduce = %q{function(key, values) {

 var result = {rating: 0};

 values.forEach(function(value) {

 result.rating += value.rating;

 });

 return result;

 }

 }

%q is an efficient, clean, and optimized way of writing multiline
strings in Ruby!

Remember that we are now in the MongoDB realm, so we should not work on Ruby
objects but only on the MongoDB collection. So, we call map_reduce on the book
collection, as follows:

> results = Book.collection.map_reduce(map, reduce, out: "vr")

 => #<Mongo::Collection:0x20cf7a4 @name="vr", @db=#<Mongo::DB:0x1ab8564 @
name="sodibee_development",

...

...

@cache_time=300, @cache={}, @safe=false, @pk_factory=BSON::ObjectId, @
hint=nil>

Diving Deep into MongoDB

[66]

The output you saw previously is the MongoDB collection Map/Reduce result. Let's fetch the
full results now. The following command does it for us:

> results.find().to_a

 => [{"_id"=>"Dick", "value"=>{"rating"=>12.0}}, {"_id"=>"Gautam",
"value"=>{"rating"=>21.0}}, {"_id"=>"Tom", "value"=>{"rating"=>3.0}}]

What just happened?
Voila! This shows that we have the following result:

 � Dick has 12 ratings

 � Gautam has 21 ratings

 � Tom has 3 ratings

Tally these ratings manually with the preceding code and verify.

What would you have to do if you did not have Map/Reduce?
Iterate over all book objects and collect the votes array. Then
keep a temporary hash of usernames and keep aggregating the
ratings. Lots of work indeed!

Don't always jump into using Map/Reduce. Sometimes it's just easier to query properly.
Suppose, we want to find all the books that have votes or reviews for them, what do we do?

 � Do we iterate every book object and check the length of the votes array or the
reviews array?

 � Do we run Map/Reduce for this?

 � Is there a direct query for this?

We can directly fire a query from the Rails console, as follows:

irb> Book.any_of({:reviews.exists => true}, {:votes.exists => true})

If we want to search directly on the mongo console, we have to execute the following
command:

mongo> db.books.find({"$or":[{reviews:{"$exists" : true}}, {votes :
{"$exists": true}}]})

Chapter 2

[67]

Remember, we should use Map/Reduce only when we have to process data and return
results (for example, when it's mostly statistical data). For most cases, there would be a
query (or multiple queries) that would get us our results.

Pop quiz – swimming in MongoDB and Ruby
1. How does MongoDB store data?

a. As JSON.

b. As Binary JSON or BSON.

c. As text in files.

d. An encrypted binary file.

2. What are collections in MongoDB?

a. Collections store documents.

b. Collections store other collections.

c. There is no such thing as collections.

3. How do we represent an array of hashes in MongoDB?

a. Arrays can only have strings or integers in them.

b. Like this [{ k1: "v1" }, { k1: "v2"}].

c. Hashes are not supported in MongoDB.

d. Like this { k1: ["v1", "v2"], k2: ["v1", "v2"] }.

4. Which answer represents one of the ways models in Ruby communicate
with MongoDB?

a. Models in Ruby cannot talk directly to MongoDB.

b. Install the BSON gem.

c. Install the Mongoid gem and include Mongoid::Document in the Ruby class.

d. We inherit the Ruby class from ActiveRecord::Base.

5. How are many-to-many relationships mapped in MongoDB?

a. We create a third collection to store ObjectId instances.

b. Many-to-many is not supported in MongoDB.

c. Each document saves the other in an Array field inside it.

d. Only one document saves information about the other.

Diving Deep into MongoDB

[68]

6. How can we create a join of two collections in MongoDB?

a. We cannot! Joins are not supported in MongoDB.

b. db.collection1.find({ $join: "collection2" }).

c. Always use Map/Reduce instead of joins.

d. db.join({ collection1: 1, collection2: 1 }).

Summary
Here we really jumped into Ruby and MongoDB, didn't we? We saw how to create objects in
MongoDB directly and then via Ruby using Mongoid. We saw how to set up a Rails project,
configure Mongoid, and build models. We even went the distance to see how Map/Reduce
would work in MongoDB.

We saw a lot of new things too, which require explanation. For example, the various data
types that are supported in MongoDB, such as ObjectId, ISODate.

In the next chapter, we shall dive deeper in these internal concepts and understand more
about how MongoDB works. Hang on tightly!

3
MongoDB Internals

Now that we have had a brief look at Ruby and MongoDB interactions via
Mongoid, I believe it is the right time to know what happens under the hood.
This information is good to know but not mandatory. If you are a person in the
fast lane, you can skip this chapter and go straight to Chapter 4, Working Out
Your Way with Queries.

In this chapter we shall learn:

 � What exactly MongoDB documents and objects are.

 � What is BSON and how is it used in MongoDB to save information?

 � How and why does MongoDB use JavaScript?

 � What are MongoDB journal entries; how and why are they written?

 � What is the global write lock and how does it function?

 � Why are there no joins in MongoDB?

We have seen some examples of MongoDB objects earlier; these objects look similar to
JSON objects. However, MongoDB does not use JSON to store information – it uses Binary
JSON (BSON) for storage. Using BSON has a lot of advantages that we shall soon see.

MongoDB Internals

[70]

Understanding Binary JSON
The following is a sample of a JSON object we have seen before:

{
 "_id" : ObjectId("4e86e45efed0eb0be0000010"),
 "author_id" : ObjectId("4e86e4b6fed0eb0be0000011"),
 "category_ids" : [
 ObjectId("4e86e4cbfed0eb0be0000012"),
 ObjectId("4e86e4d9fed0eb0be0000013")
],
 "name" : "Oliver Twist",
 "published_on" : ISODate("2002-12-30T00:00:00Z"),
 "publisher" : "Dover Publications"
}

There is a strange JSON output here (that I refrained from explaining earlier) for ObjectId
and ISODate. What is even stranger is that this data is not saved to the disk in the same
format as shown in the preceding code. Instead it is saved as Binary JSON—a serialized JSON
string. The following is a simple example:

{"hello": "world"}

Every BSON data has the following format:

<size> <type> <null byte>

The data in the preceding example is stored on the disk in the following format:

\x16\x00\x00\x00\x02hello\x00\x06\x00\x00\x00world\x00\x00

This is explained as follows:

 � \x16\x00\x00\x00: This indicates that the size of the binary data is 22 bytes
(remember 16 hex is 22 decimal)

 � \x02: This indicates that the value is a BSON string

 � hello\x00: The is the key that is always a null terminated string.

 � \x00: The BSON value has been identified as a null terminated string.

You might ask, "Why not just plain old { "hello" : world"} ?" There are plenty of reasons:

 � Binary data is easier to store and manipulate

 � Binary data is packed, so it consumes less space

 � Insertions and deletions in binary embedded objects are easy

Of course, more explanations are due!

Chapter 3

[71]

Fetching and traversing data
As the data is in BSON format, it's easy to traverse it. The first 4 bytes tell us how much
data is stored, so that objects can be easily skipped without parsing the data. It's easy to
skip embedded data too, as all the size of the data is known.

Manipulating data
When an embedded document is manipulated, MongoDB simply calculates the offset and
reaches it. Now, when some data is changed or added to this embedded objects, we don't
need to write the entire object back to the disk—MongoDB simply updates that BSON
document and the length of the data. This is quick and clean.

What is ObjectId?
ObjectId is a unique ID for a document. It is a 12-byte binary value designed to have a
reasonably high probability of being unique when allocated. By default the ObjectId
field is stored under _id.

The concept of a unique Object ID as a primary key is important for MongoDB. In a highly
scalable system, this ensures that an Object ID "almost" never repeats. The first 4 bytes of
ObjectId indicate the time (in seconds) since epoch and the last 3 bytes represent a counter.
Even if you insert two documents at the same moment, the counter value should increase.

There is nothing called guaranteed unique IDs—but it's almost guaranteed.
According to Wikipedia, "Only after generating 1 billion UUIDs every second
for the next 100 years, the probability of creating just one duplicate would
be about 50%". Object IDs are not UUIDs but guarantee uniqueness.

Object ID is generated using the timestamp, 3 bytes of the MD5 hash of the machine name,
its MAC address or a virtual machine ID, the process ID, and an ever incrementing value.
Though every object has a unique ID, you would notice incrementing values for object IDs.

Documents and collections
Documents in MongoDB are structured documents saved in BSON format as mentioned in
the earlier section. The maximum size of documents is 16 MB. It's interesting to note that
16 MB is not a limitation but is maintained for the sake of sanity!

In case we are required to store documents larger than 16 MB, MongoDB may be the wrong
choice. For storing large documents, such as videos, GridFS is recommended.

MongoDB Internals

[72]

Documents are analogous to records and are stored in collections, which are analogous
to database tables. Documents in a collection are usually structured similarly but it's
not mandatory. That means you can have differently structured documents in the same
collection. That's the essence of NoSQL or a "schema-free" database.

Collections can be scoped or namespaces. For example, we could have a collection rack
which has shelves and panels in it. These collections have other collections inside them:

db.rack
db.rack.shelves
db.rack.shelves.sections

db.rack.panels
db.rack.panels.components

Capped collections
Capped collections have a fixed number of documents in them. They can be considered as a
"queue" that discards the oldest element when the cap is reached. The ideal example for this
is log entries. We create capped collections as follows:

Db.createCollection("myqueue", {capped: true, size: 10000})

Dates in MongoDB
Dates are saved independent of the time zone. They are always stored as epoch time—the
time in seconds from January 1, 1970.

> new ISODate("2011-12-31T12:01:02+04:30")
ISODate("2011-12-31T07:31:02Z")

> new ISODate("sdf")
Tue Nov 8 08:14:49 uncaught exception: invalid ISO date

> new ISODate("garbage 2011-12-31T12:01:02+05:30 more garbage")
ISODate("2011-12-31T06:31:02Z")

JavaScript and MongoDB
JavaScript seems a strange choice for a database for server-side code execution. However, it's
definitely a better choice than writing a custom language syntax—JavaScript is a very popular
language, well known among developers, and just like MongoDB it's evolving fast too.

Chapter 3

[73]

We have already seen the use of JavaScript in Map/Reduce functions. But we can do more
than that. We can write our own custom JavaScript functions and call them when we want.
Consider them more like stored procedures written in JavaScript.

db.eval is a function that is used to evaluate custom JavaScript functions that we write.

Time for action – writing our own custom functions in MongoDB
Let's say we want to write a function to delete authors that don't have any books, we can
write this in JavaScript as follows:

function rid_fakes() {
 var ids = [];
 db.authors.find().forEach(function(obj) {
 if (db.books.find({author_id: obj._id }).length() == 0) {
 ids.push(obj._id);
 }
 });
 db.authors.remove({_id : { $in : ids }});
}

db.eval(rid_fakes);

In a Ruby app, it's recommended to manage the objects rather than the
documents. This is to ensure that the cache does not get corrupted.

Ensuring write consistency or "read your writes"
It's very important to ensure that the database is eventually consistent. As we shall soon
see, MongoDB delays all writes to the disk because the disk's I/O is slow. Write consistency
means that every time something is written to the database, the delayed write should not
cause inconsistency when we read back the data. MongoDB ensures this consistency for
every write operation and the updated value is always returned back in the read operation.
This is important for a couple of reasons:

 � Ensuring you always get the latest updated data

 � Easy and consistent crash recovery

MongoDB Internals

[74]

How does MongoDB use its memory-mapped storage engine?
MongoDB tries to be as efficient and fast as it can get. So, to cater to this, it uses
memory-mapped files for storage. This is as fast as it can get with the disk I/O and
system cache. As every operating system works with virtual memory, MongoDB
leverages this and can effectively be as large as the virtual memory allows it to be.

Memory-mapped files are segments of virtual memory that are mapped
byte-for-byte between the file and the memory. So, they can be
considered as fast as primary memory.

This also has an inherent advantage that as the operating system's virtual memory
management gets better, it automatically improves the performance of the database
storage engine too!

There is a downside to everything! Memory-mapped files store information in the memory
and sync to the database after a short while (by default in MongoDB that is 100 ms). So, we are
indeed dealing with a database where we could potentially lose the last 100 ms of information.

Advantages of write-ahead journaling
MongoDB (v1.7.5 onwards) supports write-ahead journaling. This means that before the
data is written to the collections, it is written to the journal. This ensures that there is always
write consistency. For every write to the database:

1. Information is first written to the journal.

2. After the journal entry is synchronized to the disk, data is written to
the database's memory-mapped file.

3. Information is then synchronized to the disk.

It's important to know that when a MongoDB client writes to the database, it is guaranteed
to return the updated result. If journaling fails, the entire write operation is deemed the
failed. Journaling can be turned off but it's strongly recommended to be enabled.

Global write lock
I mentioned earlier that MongoDB writes to the disk (using fsync) every 100 ms. However,
when this data is being written to the disk, it's important to keep it consistent. Hence,
MongoDB, for quite some versions, used a global write lock to ensure this.

This creates a problem because the entire database is locked until the write is complete. This
means that if we have a long running write query, the database is locked for good and the
performance and efficiency is seriously hit.

Chapter 3

[75]

The later versions of MongoDB (at the time of writing) plan to implement a collection-based
lock to ensure that we can write simultaneously across collections – but it's not there today.

What it does have instead is lock yielding. That means, any MongoDB thread will yield their
lock on page faults or long running queries. This solves the problem of the global lock to a
level of acceptable efficiency. This is also called interleaving—when a long running write is
in progress, the thread yields temporarily for intermediate reads and writes.

Transactional support in MongoDB
MongoDB's primary objectives are to manage large data, be fast, and scale easily! So,
it's never going to be a perfect fit for all applications. This has been the source of debate
between the SQL and NoSQL factions.

From a practical perspective, we should know there are no ACID transactions in MongoDB.
There are a few ways to do transactions in MongoDB but it may not always be a suitable
choice. Basically if you require a multi-document transaction, such as financial data that is
spread across different collections, MongoDB may be the wrong choice. However, for most
web applications, transactional support is usually a sanity check and not a complex rollback.
In any case, choose wisely!

Understanding embedded documents and atomic updates
All document updates in MongoDB are atomic. This can itself be a very easy way to simulate
transactional support in MongoDB. For example, if we require Orders to be created with
LineItems, we can easily simulate a transaction by embedding LineItems into Order.
That way when the document is saved, we are guaranteed atomic transactions.

Implementing optimistic locking in MongoDB
We can do optimistic locking using lock versioning. First let's understand what this means.
Every time the document, object, record, or row in the database is updated, we increment
a value of the field. When we read the document, we know the value of the field. When we
want to save the document, we ensure that the value we had read earlier has not changed.
If it's different, it means someone updated the document before us—so we need to read it
again. This is also called Compare and Set (CAS).

Optimistic locking already exists in ActiveRecord. If you simply add
a column called lock_version in your table, it starts optimistic
locking. StateObjectError is raised in case the document's
lock_version value has changed.

MongoDB Internals

[76]

Time for action – implementing optimistic locking
Let's add a field in our document called lock_version and set its initial value as 0.

When we fetch this object, we know what the version is. So, when we fire the update call,
we ensure that it's part of the object selector!

mongo> db.authors.findOne()
{
 "_id" : ObjectId("4f81832efed0eb0bbb000002"),
 "name" : "Victor Metz",
 "_type" : "Author",
 "lock_version" : 0
}

mongo> db.authors.update({ _id: ObjectId("4f81832efed0eb0bbb000002"),
lock_version: 0 }, {name: "Victor Matz", lock_version: 1})

mongo> db.authors.find({ _id: ObjectId("4f81832efed0eb0bbb000002") })
{ "_id" : ObjectId("4f81832efed0eb0bbb000002"), "name" : "Victor
Metz", "_type" : "Author", "lock_version" : 1 }

mongo> db.authors.update(db.authors.update({ _id: ObjectId("4f81832ef
ed0eb0bbb000002"), lock_version: 0 }, {name: "NO SUCH AUTHOR", lock_
version: 1})

mongo> db.authors.find({ _id: ObjectId("4f81832efed0eb0bbb000002") })
{ "_id" : ObjectId("4f81832efed0eb0bbb000002"), "name" : "Victor
Metz", "_type" : "Author", "lock_version" : 1 }

What just happened?
What's important is to keep a check on the lock_version field. When we fetched the first
author objects, the lock_version value was 0.

mongo> db.authors.update(
{ _id: ObjectId("4f81832efed0eb0bbb000002"), lock_version: 0 },
{name: "Victor Matz", lock_version: 1})

Chapter 3

[77]

We are not just updating an object that has an ID equal to 4f81832efed0eb0bbb000002
but also where the lock_version field is set. Notice that lock_version is being updated.
This is a programmer's instruction. If we don't update lock_version manually, this strategy
would fail! Now we have lock_version set at value 1. If we tried to update the object as
shown in the following code snippet, the object selection would fail and the object would
not be updated:

mongo> db.authors.update(
{ _id: ObjectId("4f81832efed0eb0bbb000002"), lock_version: 0 },
{name: "NO SUCH AUTHOR", lock_version: 1})

If that object has been modified by some other process or thread, lock_version would
have been incremented. So, the object in our preceding query would not get updated if the
lock version changes. But how do we do this in our Ruby program?

How do we perform Optimistic locking using Mongoid?

There are a few extensions available for this. See an example here at
https://github.com/burgalon/mongoid_optimistic_
locking. Basically, this changes the atomic_selector method to
include a _lock_version field and auto-increment it on every save!

Choosing between ACID transactions and MongoDB transactions
Finally, we have seen how we can manipulate data safely using atomic operations and ensure
data consistency. However, where you require transactions that span multiple documents or
tables and that is a critical feature of your application, consider not using MongoDB.

For everything else, there's MongoDB.

Why are there no joins in MongoDB?
Joins are good, they say! And for a good reason, normalization is the best option! Let's say
we have authors, books, and orders. What if we wanted to find the orders of books sold
by authors that have the name Mark! An SQL query would probably be something like the
following query:

SELECT * FROM orders, books, authors WHERE books.author_id = author.id
AND orders.book_id = book.id AND author.first_name LIKE "Mark%"

MongoDB Internals

[78]

This causes an implicit join between authors, books, and orders. This is fine only under
the following circumstances:

 � The data in authors, books, and orders is not huge! If we had 1 million entries in
each table, it could reach a temporary join of around 1 million * 1 million * 1 million
entries, degrading the performance drastically. Every RDBMS is smart enough not to
create such a huge temporary table of course, but the result set is still huge.

 � If we consider that the data is distributed between nodes (shared), the network
latency to gather information for a join from different nodes is going to be huge.

These are a few reasons why the NoSQL faction shies away from joins. As we have seen
earlier, the priorities for MongoDB is managing huge data with easy scaling, sharing, and
faster querying. So, what are the alternatives to joins? Plenty!

 � The simplest solution is to fire multiple queries and programmatically get your
results set. As querying is fast, the cumulative time taken by firing multiple queries
could be compared to a fancy single query join, if not faster!

 � Denormalize and duplicate data—sometimes, it's just easier to add some redundant
information if it's going to make querying faster.

 � Use Map/Reduce techniques to distribute and gather data from the database.

Pop quiz – the dos and don'ts of MongoDB
1. Why does MongoDB use BSON and not just JSON?

a. MongoDB wants to be different!

b. BSON enables faster inline data manipulation and traversal.

c. BSON and JSON are the same.

d. MongoDB uses JSON and not BSON.

2. How does MongoDB persist data?

a. In memory-mapped files that are flushed to the disk every 100 ms.

b. Data is saved in the memory.

c. Data is saved in files on the disk.

d. Data is not saved.

Chapter 3

[79]

3. Which of the following is true for MongoDB?

a. Joins and transactions are fully supported in MongoDB.

b. Joins are supported but transactions are not supported.

c. Joins and multi-collection transactions are not supported.

d. Single collection transactions are not supported.

4. What is write-ahead journaling in MongoDB?

a. Writes are written with a timestamp in the future.

b. Writes are written to the journal log first and then lazily to the disk.

c. Writes are written to the disk first and then to the journal log.

d. Writes are written only in the journal.

Summary
MongoDB has a lot of things going on under the covers, most of which we may either
take for granted or sometimes do not need to know to work with MongoDB. The team
behind MongoDB has been working hard to make MongoDB faster, easier, and more
humongous. If we understand how things work and what impact it's going to have on our
data or performance, it would help us build better applications by making the most of all
that is offered by MongoDB. MongoDB does not support joins and transactions. There are
alternatives to this but if you require ACID transactions, you should use an SQL database.

In the subsequent chapters, we shall learn a lot about using MongoDB but we may not see
many MongoDB internals. I do hope that this chapter makes the underlying concepts easy
to understand.

4
Working Out Your Way with Queries

Wherever there is a database, there has to be some search criteria! This
chapter takes our journey forward towards searching for data in MongoDB.
In this chapter we will see how we can search via the mongo console.

In this chapter we shall learn the techniques for:

 � Searching by field attributes (such as strings, numbers, float, and date)

 � Searching on indexed fields

 � Searching by values inside an array field

 � Searching by values inside a hash field

 � Searching inside embedded objects

 � Searching by regular expressions

Let's start searching with the help from our good old Sodibee database!

Searching by fields in a document
Let's consider a book structure like the following:

{
 "_id" : ObjectId("4e86e45efed0eb0be0000010"),
 "author_id" : ObjectId("4e86e4b6fed0eb0be0000011"),
 "category_ids" : [
 ObjectId("4e86e4cbfed0eb0be0000012"),
 ObjectId("4e86e4d9fed0eb0be0000013")
],

Working Out Your Way with Queries

[82]

 "name" : "Oliver Twist",
 "published_on" : ISODate("2002-12-30T00:00:00Z"),
 "publisher" : "Dover Publications",
 "reviews" : [
 {
 "comment" : "Fast paced book!",
 "username" : "Gautam",
 "_id" : ObjectId("4e86f68bfed0eb0be0000018")
 },
 {
 "comment" : "Excellent literature",
 "username" : "Tom",
 "_id" : ObjectId("4e86f6fffed0eb0be000001a")
 }
],
 "votes" : [
 {
 "username" : "Gautam",
 "rating" : 3
 }
]
}

We have already done this earlier, but let's reiterate and dig deeper. Let's find all the books
published by Dover Publications. First let's start the mongo console as follows:

$ mongo

MongoDB shell version: 2.0.2

connecting to: test

 > use sodibee

switched to db sodibee

Time for action – searching by a string value
Let's find all the books that were published by Dover Publications. The following code shows
us how to accomplish this:

> db.find({ publisher : "Dover Publications"})

{ "_id" : ObjectId("4e86e45efed0eb0be0000010"), "author_id" : ObjectId
("4e86e4b6fed0eb0be0000011"), "category_ids" : [
 ObjectId("4e86e4cbfed0eb0be0000012"),
 ObjectId("4e86e4d9fed0eb0be0000013")

Chapter 4

[83]

], "name" : "Oliver Twist", "publisher" : "Dover Publications",
"reviews" : [
 {
 "comment" : "Fast paced book!",
 "username" : "Gautam",
 "_id" : ObjectId("4e86f68bfed0eb0be0000018")
 },
 {
 "comment" : "Excellent literature",
 "username" : "Tom",
 "_id" : ObjectId("4e86f6fffed0eb0be000001a")
 }
], "votes" : [{ "username" : "Gautam", "rating" : 3 }] }

What just happened?
We have just fired a simple find() query on a collection to help us get the relevant
documents from the database. We can also configure the parameters in find() to get more
specific details. To see what specific parameters find() has, issue the following command:

> db.books.find

function (query, fields, limit, skip) {
 return new DBQuery(this._mongo, this._db, this, this._fullName,
this._massageObject(query), fields, limit, skip);
}

The configuration parameters for find() in the preceding code are explained as follows:

 � query: This is the selection criteria. For example, { publisher: "Dover
Publications" } as we had mentioned earlier. This is similar to the WHERE clause
in a relational query.

 � fields: These are the fields which we want selected. This is similar to the SELECT
part of a query in a relational query. By default, all fields would be selected, so
SELECT * is the default. In MongoDB we can specify inclusion as well as exclusion
of fields. We will see an example of this shortly.

 � limit: This represents the number of elements we want returned from the query.
This is similar to the LIMIT part of a relational query.

 � skip: This is the number of elements the query should skip before collecting
results. This is similar to the OFFSET part of a relational query.

Working Out Your Way with Queries

[84]

Have a go hero – search for books from an author
How do we search for books that are published by Dover Publications and written by
Mark Twain?

Hint: We need to fire two queries. The first one would be to find the author by name
"Mark Twain". Then using that ObjectId, we can find the books written by that author
and published by Dover Publications.

Querying for specific fields
Let's now evaluate these options in greater detail.

Time for action – fetching only for specific fields
First, let's select only a few fields and see how the fields parameter works. This would be
similar to an SQL query. For example:

SELECT name, published_on, publisher FROM books WHERE publisher =
"Dover Publications";

In MongoDB this is achieved as follows:

> db.books.find({ publisher: "Dover Publications"}, {name: 1,
published_on : 1, publisher : 1 })

{ "_id" : ObjectId("4e86e45efed0eb0be0000010"), "name" : "Oliver
Twist", "published_on" : ISODate("2002-12-30T00:00:00Z"), "publisher"
: "Dover Publications" }

So far so good! But here is where MongoDB is more customizable and can do something that
SQL cannot. Notice that the values for the selected fields are 1 (they can also be set to true
instead of 1). We can optionally set them to 0 or false and then these will be the fields
excluded from the result. Let's see it in action in the following code:

> db.books.find({ publisher: "Dover Publications"}, {name: 0,
published_on : 0, publisher : 0 })

{ "_id" : ObjectId("4e86e45efed0eb0be0000010"),
 "author_id" : ObjectId("4e86e4b6fed0eb0be0000011"),
 "category_ids" : [
 ObjectId("4e86e4cbfed0eb0be0000012"),
 ObjectId("4e86e4d9fed0eb0be0000013")
], "reviews" : [
 {

Chapter 4

[85]

 "comment" : "Fast paced book!",
 "username" : "Gautam",
 "_id" : ObjectId("4e86f68bfed0eb0be0000018")
 },
 {
 "comment" : "Excellent literature",
 "username" : "Tom",
 "_id" : ObjectId("4e86f6fffed0eb0be000001a")
 }
], "votes" : [{ "username" : "Gautam", "rating" : 3 }]
}

Notice that all fields are present in the result except name, published_on, and publisher.

What just happened?
Magic! Not only can we set inclusion fields but also exclusion fields. I don't believe there is
any way to set exclusion fields in an SQL query.

Let me be fair here, SQL databases intentionally do not allow exclusion
of fields from a SELECT query because of the structured nature of the
tables, so as to ensure good performance and to ensure that the contract
between the client-server is stable!

Imagine what happens to our query if we allow exclusion of columns and
those columns are deleted—so many additional checks and degradation
of performance! Code extremists would even say, you can fetch the data,
filter it later, and remove the columns you don't want!

You can add more criteria to the query field and they will be set. This would be similar to the
AND part in a WHERE clause.

Playing with inclusion and exclusion of fields

Remember that you cannot set inclusion and exclusion fields in the same
query. This means either all the fields should have value 1 or all should
have value 0. Otherwise MongoDB will throw an error 10053: You
cannot currently mix including and excluding fields.

The only exception to this is the exclusion of the _id field. We can
exclude the _id field while including others. This means db.books.
findOne({}, {_id: 0, name: 1}) is valid.

Working Out Your Way with Queries

[86]

Have a go hero – including and excluding fields
Well, go ahead and experiment with the following:

 � Set different inclusion or exclusion fields for the books document.

 � Set the limit and OFFSET for the query. Let me give you some hints here. A limit
of 0 would mean no limit. skip values can be used for paging. Give it a shot and
check a little later in the chapter whether you got it right!

Using skip and limit
skip and limit are both optional parameters to the find query. limit will limit the
number of elements in the result and skip will skip elements in the result.

Time for action – skipping documents and limiting our search
results

Suppose we want to query the second and third book in the collection. We can set the skip
value to 1 or 2 and the limit value to 1. This is done as follows:

> db.books.find({}, {}, 1, 1)

{ "_id" : ObjectId("4e8704fdfed0eb0f97000001"), "author_id" : ObjectI
d("4e86e4b6fed0eb0be0000011"), "category_ids" : [], "name" : "Great
Expectations", "votes" : [
 {
 "username" : "Gautam",
 "rating" : 9
 },
 {
 "username" : "Tom",
 "rating" : 3
 },
 {
 "username" : "Dick",
 "rating" : 7
 }
] }

> db.books.find({}, {}, 1, 2)

{ "_id" : ObjectId("4e870521fed0eb0f97000002"), "author_id" : ObjectI
d("4e86e4b6fed0eb0be0000011"), "category_ids" : [], "name" : "A tale
of two cities", "votes" : [

Chapter 4

[87]

 {
 "username" : "Gautam",
 "rating" : 9
 },
 {
 "username" : "Dick",
 "rating" : 5
 }
] }

What just happened?
Notice that in both cases, we have mentioned the query and fields parameters as an
empty hash. This is just for the sake of brevity!

limit is 1 in both cases but the skip values have changed. This would be similar to the
following SQL query:

SELECT * FROM books LIMIT 1 OFFSET 1

Have a go hero – paginating document results
To see pagination in action, it would really be cool if you add 20 books to the collection. Then
query them using the limit value as 10 with the skip value as 0 for getting results of page
1 and the skip value as 10 to get results of page 2.

There are utility methods such as findOne(), which just get us the
first record. This has only two parameters: query and fields, as
skip and limit would be irrelevant.

Writing conditional queries
We have seen how to query on multiple conditions. These were in conjunction, that is, they
were bound by the AND clause:

> db.books.find({publisher: "Dover Publications", name: "Oliver
Twist"}

This would be similar to an SQL query:

SELECT * FROM books WHERE publisher = "Dover Publications" AND name =
"Oliver Twist";

Notice that AND is the default condition when multiple query parameters are specified. But
this is not always the case!

Working Out Your Way with Queries

[88]

Using the $or operator
The $or operator is very common when we want a result set that satisfies any one of the
conditions specified.

Time for action – finding books by name or publisher
Let's find all the books that have the name Oliver Twist or are from Dover
Publications. For the sake of brevity, we shall select only the name field as follows:

db.books.find({ $or : [{ name: "Oliver Twist"} , {publisher : "Dover
Publications"}] })

This will give us our result set of books with either the name as Oliver Twist or
publisher as Dover Publications.

What just happened?
The previous query is similar to the following:

SELECT * FROM books WHERE publisher = "Dover Publications" OR name =
"Oliver Twist";

Let's look at the query parameters in a little more detail:

{$or : [
 {name: "Oliver Twist"},
 {publisher : "Dover Publications"}
]
}

$or is a special operator in MongoDB and takes an array of query parameters. We can use
this in conjunction with other parameters too:

 db.books.find({ published_on: ISODate("2002-12-30"), $or : [{ name:
"Oliver Twist"} , {publisher : "Dover Publications"}] })

This would query with AND and OR. Its SQL equivalent would be:

SELECT * from books WHERE published_on = "2002-12-30" AND (name =
"Oliver Twist" OR publisher = "Dover Publications");

Writing threshold queries with $gt, $lt, $ne, $lte, and $gte
We always require to search within a threshold, don't we?

Chapter 4

[89]

MongoDB SQL Meaning

$gt > Greater than

$lt < Less than

$gte >= Greater than or equal to

$lte <= Less than or equal to

$ne != Not equal to

Time for action – finding the highly ranked books
Suppose we add the rank field to the books, our book object will look something as follows:

{
 "_id" : ObjectId("4e870521fed0eb0f97000002"),
 "rank" : 10
}

Now, if we want to search for all books having a rank in the top 10 ranks, we can fire the
following query:

> db.books.find({ "rank" : { $lte : 10 } })

You can add more operators in the same hash too. For example, if we want to find books in
the top ten but not the top ranked book (that is, rank != 1), we can do the following:

> db.books.find({ "rank" : { $lte : 10, $ne : 1 } })

Have a go hero – find books via rank
Why don't you give this a shot?

 � Find books which have a rank between 5 and 10

 � Find books before and after a particular date

Checking presence using $exists
As MongoDB is schema free, there are times when we want to check the presence of some
field in a document. For example, over the years, our schema for books evolved and we
added some new fields. If we want to take a specific action on books that only have these
new fields, we may need to check if these fields exist.

Working Out Your Way with Queries

[90]

Suppose we want to search only for those books that have the rank field in them, it can be
done as follows:

> db.books.find({ "rank" : { $exists : 1} })

Searching inside arrays
Unlike most SQL databases, MongoDB can store values inside arrays and hashes. Now, we
shall see how we can search inside arrays.

Did you know that most of the operators we learned about earlier,
could be used directly on arrays inside a document just like normal
fields? For example:

> db.books.insert({ "categories" : [" Drama", "Action"] })

> db.books.find({ categories : { $ne : "Romance"} })

This will return the document we inserted previously. Isn't that cool?!

Time for action – searching inside reviews
Let's now have a look at our books document. We have an array of reviews. A review is an
embedded object (notice the _id parameter):

"reviews" : [
 {
 "comment" : "Fast paced book!",
 "username" : "Gautam",
 "_id" : ObjectId("4e86f68bfed0eb0be0000018")
 },
 {
 "comment" : "Excellent literature",
 "username" : "Tom",
 "_id" : ObjectId("4e86f6fffed0eb0be000001a")
 }
]

Let's try to retrieve reviews from "Gautam".

> db.books.find({ "reviews.username" : "Gautam")

Chapter 4

[91]

What just happened?
The MongoDB classic act!

"reviews.username" searches inside all the elements in the array for any field called
"username", which has the specified value.

Of course, there are other conventional ways of searching inside arrays.

Searching inside arrays using $in and $nin
This is something similar to the IN clause in SQL. Suppose we want to find documents for
a specified number of values of a field, we can use the $in operator. Let's see one of our
book objects:

> db.books.findOne()

{
 "_id" : ObjectId("4e86e45efed0eb0be0000010"),
 "author_id" : ObjectId("4e86e4b6fed0eb0be0000011"),
 "category_ids" : [
 ObjectId("4e86e4cbfed0eb0be0000012"),
 ObjectId("4e86e4d9fed0eb0be0000013")
],
 "name" : "Oliver Twist",

}

We do know that these are Category objects referenced in some other collection. But that
should not stop us from firing a direct query:

> db.books.find({ category_ids : { $in : [
 ObjectId("4e86e4cbfed0eb0be0000012"),
 ObjectId("4e86e4d9fed0eb0be0000013")
] } })

Alternatively, we could fire a NOT IN query too, as follows:

> db.books.find({ category_ids : { $nin : [
 ObjectId("555555555555555555555555"),
 ObjectId("666666666666666666666666")
] } })

This would return all the books in the collection!

Working Out Your Way with Queries

[92]

Searching for exact matches using $all
As we just saw $in helps us search for documents that have any one of the values in the
array. It's $all that searches for documents that have all the values within the array in the
field. Let's take this book object again:

> db.books.findOne()

{
 "_id" : ObjectId("4e86e45efed0eb0be0000010"),
 "author_id" : ObjectId("4e86e4b6fed0eb0be0000011"),
 "category_ids" : [
 ObjectId("4e86e4cbfed0eb0be0000012"),
 ObjectId("4e86e4d9fed0eb0be0000013")
],
 "name" : "Oliver Twist",

}

Now, if we want to find books which belong to both the categories mentioned in the
previous code, we fire the following query:

> db.books.find({ category_ids : { $all : [
 ObjectId("4e86e4cbfed0eb0be0000012"),
 ObjectId("4e86e4d9fed0eb0be0000013")
] } })

This will return all the books that are in both categories. However, unlike the earlier case of
$in, the following query will not return the previously mentioned book because it doesn't
belong to all the categories mentioned next:

> db.books.find({ category_ids : { $all : [
 ObjectId("4e86e4d9fed0eb0be0000011"),
 ObjectId("4e86e4d9fed0eb0be0000012"),
 ObjectId("4e86e4d9fed0eb0be0000013")
] } })

Searching inside hashes
Just like arrays, we also want to search inside hashes. Searching inside hashes involves keys and
values. Let's assume that the book object looks as follows (that is, a hash instead of an array):

{
 categories: {
 'drama': 1,
 'thriller': 2
 },
}

Chapter 4

[93]

We can search for all books that have the drama set as 1:

> db.books.find({ "categories.drama" : 1 })

Notice that we access hash fields just like standard JSON object access.

It's interesting to note that the criteria for searching in
hashes and arrays is the same in most cases.

Searching inside embedded documents
Searching inside embedded documents is exactly like searching inside hashes. This seems to
make sense because MongoDB saves every document as a hash.

Embedded documents are sometimes also called nested
documents in discussion.

The following is an example of an embedded document:

{
 "_id" : ObjectId("6234a68bfed0eb0beabcd234"),
 "name" : "The Adventures of Sindbad",
 "category" : {
 "_id" : ObjectId("5ad6f68bfed0eb0be1231213"),
 "name" : "Adventure",
 }
}

To fetch the category object it's exactly the same way as searching inside a hash:

> db.books.find({ "category.name" : "Adventure" }

And just like that, searching inside arrays, hashes, and embedded documents have almost
the same syntax!

Searching with regular expressions
The story isn't complete without regular expressions! Let's see a sample structure for the
names collection:

{
 _id : ObjectId("1ad6f68bfed0eb0be1231234"),
 name : "Joe"
}

Working Out Your Way with Queries

[94]

{
 _id : ObjectId("1ad6f68bfed0eb0be1231235"),
 name : "Joey"
}
{
 _id : ObjectId("1ad6f68bfed0eb0be1231236"),
 name : "Jonas South"
}
{
 _id : ObjectId("1ad6f68bfed0eb0be1231237"),
 name : "Aron Bjoe"
}

Time for action – using regular expression searches
Now if we want to search for all the objects that have Joe in their name, we can fire the
following query:

> db.names.find({ name : /Joe/})

{ _id : ObjectId("1ad6f68bfed0eb0be1231234"), name : "Joe" }
{ _id : ObjectId("1ad6f68bfed0eb0be1231235"), name : "Joey" }

Notice that we got the objects that had a "Joe" in them. But wait! What happened to the
third record, it has a Joe in it too!

MongoDB searches are case-sensitive!

Now, if we require all the names that have a joe in them, irrespective of the case, we fire a
similar query again:

> db.names.find({ name : /joe/i})

{ _id : ObjectId("1ad6f68bfed0eb0be1231234"), name : "Joe"}
{ _id : ObjectId("1ad6f68bfed0eb0be1231235"), name : "Joey"}
{ _id : ObjectId("1ad6f68bfed0eb0be1231237"), name : "Aron Bjoe"}

Now we get all three objects. What if I want only the authors who start with a Jo, we fire
another query as follows:

> db.names.find({ name : /^Jo/})

{ _id : ObjectId("1ad6f68bfed0eb0be1231234"), name : "Joe" }
{ _id : ObjectId("1ad6f68bfed0eb0be1231235"), name : "Joey" }
{ _id : ObjectId("1ad6f68bfed0eb0be1231236"), name : "Jonas South" }

Chapter 4

[95]

Notice the difference in the search result!

What just happened?
The magic of regular expressions! Here is a brief idea about how regular expressions work.
Then we can try out something complicated.

Regular expressions are divided into two parts—pattern and occurrence. Pattern, as the
name suggests, is the regular expression pattern. Occurrence is the number of times the
pattern should occur:

Pattern Occurrence

\w: Alphanumeric a*: 0 or more of a

\d: Digits a+: 1 or more of a

.: Any character a?: 0 or 1 of a

\s: Any whitespace a{10}: Exactly 10 of a

\W: Non alphanumerics a{3,10}: between 3 and 10 of a

\D: Non digits A{5,}: 5 or more of a

\S: Non whitespace a{,10}: at most 10 of a

\b: Word boundary [abc]: a or b or c

[a-z]: any character between a and z [^abc]: not a, b or c

[0-9]: Any digit between 0 and 9 ^: start of line

|: regex separator $: end of line

(...) regex group

While specifying the regular expressions, we write it entirely in front slashes (/):

/<some regex>/<flags>/

Flags can be:

 � i: Case insensitive.

 � m: Multiline.

 � x: Extended—ignore all whitespaces in the regex.

 � a: Dot all. Allow dot to match all characters, including new line characters!

Let's see examples of their usage:

For one or more occurrences of a:

/a+/

Working Out Your Way with Queries

[96]

For one or more occurrences of a followed by 0 or more of b:

/a+b*/
abc or xyz only
/abc|xyz/

For a case insensitive match for alphanumerics:

/\w/i

For zero or more occurrences of x,y or z:

/[xyz]*/

Have a go hero – validate an e-mail address
Build a regular expression to match an e-mail ID. Let's keep this simple and not strictly follow
the ISO-compliant e-mail address format. This is just for learning and fun. Here are some hints:

 � An e-mail ID should start with two alphabets

 � An e-mail ID should be alphanumeric and may contain the following special
characters such as ., +, and _

Some examples of valid e-mail IDs are gautam@joshsoftware.com and gautam.
rege@gmail.co.in while those of invalid e-mail IDs are gautam%rege@invalid and
gautam.@.com

Pop quiz – searching the right way
1. How do we find the 10th to 15th documents in the books collection, including the

10th and 15th document?

a. db.books.find({},{}, 10, 15)

b. db.books.find({}, {}, 10, 5)

c. db.books.find({}, {}, 6, 9)

d. db.books.find(10, 5)

2. How do we find the books only with the id and no other fields?

a. db.books.find({}, { _id: 1})

b. db.books.find()

c. db.books.find({_id : 1 })

d. db.books.find

Chapter 4

[97]

3. How can we find all the book documents that have a categories hash in them?

a. db.books.find($exists: { categories : 1 })

b. db.books.find({ categories: $exists })

c. db.books.exists({ categories: 1 })

d. db.books.find({ categories : { $exists : 1 } })

4. How do we find all the books whose title do not have the words the or a in it? For
example, "The Great Escape" should not be selected but "Tale of Two Cities" should
be selected.

a. db.books.find({ $nin: { title : [/the/, /a/] })

b. db.books.find({ title: { $nin : [/the\b/i, /a\b/i] } })

c. db.books.find({ title: { $ne : "the"}, { $ne : "a"} })

d. db.books.find({ title: { $neq : /the|a/i } })

Summary
In this chapter, we have seen the various ways to query objects in MongoDB. We can search
by fields, inside arrays, hashes, and even embedded objects. We can even search by regular
expressions. Searching forms a vital part of any application as there would typically be a lot
more reads than writes to the database. Searching efficiently improves the performance of
the application, so it's important that we understand these concepts well.

This is just the tip of the iceberg. In the next chapters, we shall relate these querying
paradigms via Ruby using the various Ruby DataMappers.

5
Ruby DataMappers: Ruby and

MongoDB Go Hand in Hand

This is where we shift gears. Welcome to the land of Ruby. Until now we have
been seeing how things work in MongoDB. Now, we shall connect to MongoDB
from Ruby. From here onwards there will be more of Ruby, objects, relations,
and less of MongoDB syntax.

In this chapter we shall learn the following:

 � Why we need Ruby DataMappers

 � The different Ruby DataMappers and the power of open source

 � Comparing different Ruby DataMappers

 � Querying objects

 � Managing object relations

Let's dive straight into Ruby with our Sodibee library management system!

Why do we need Ruby DataMappers
Well, how else would we connect to MongoDB? Let's first see what a data mapper is.

By definition, a datamapper is a process, framework, or library that maps two different
sources of data. In our particular case, one source is the MongoDB data structure and the
other is the Ruby object model.

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[100]

If we have a relational database, we have tables which have columns. These are often
mapped to the object-oriented language constructs—classes map to tables and attributes
map to columns. Considering the object-oriented nature of Ruby and the document data
structure of MongoDB, this makes a very good combination for a DataMapper. A class maps
to the collection name and the object is the document inside a collection. This is shown in
the following diagram:

class User {
Integer nage;
String name;
Float height;

}

Age Name Height
10 Gauta 5.10m

USER

Instead of directly firing queries on MongoDB using raw connections, it's better to have an
abstraction—via a data mapper. As is common in the open source world, there are usually
multiple options available for everything and Ruby DataMappers are no different. There are
plenty of Ruby DataMappers for MongoDB and more are being born. In this book, we shall
concentrate on a few of the most popular ones.

The mongo-ruby-driver
This is the core driver that is available via the mongo gem. To install this gem, we simply
use the following command:

$ gem install mongo

MongoDB uses Binary JSON (BSON) to save data. So it's also necessary to install bson and
bson_ext gems. In most cases, as these are dependent gems, they should install along
with the mongo gem. Remember that you require the same version for mongo, bson, and
bson_ext! At the time of writing this book, the latest version of this driver is 1.6.2.

In case you see messages like the one shown next, please ensure that bson, bson_ext,
and mongo gem have the same version:

**Notice: C extension not loaded. This is required for optimum MongoDB
Ruby driver performance.

 You can install the extension as follows:

 gem install bson_ext

 If you continue to receive this message after installing, make sure
that the bson_ext gem is in your load path and that the bson_ext and
mongo gems are of the same version.

$

Chapter 5

[101]

Time for action – using mongo gem
It's never complete without an example. So, let's write a sample Ruby program to connect to
our Sodibee database.

require 'mongo'

conn = Mongo::Connection.new
db = conn['sodibee_development']
coll = db['books']

puts coll.find.first.inspect

The output should look something like this:

$ ruby mongo_driver.rb

{"_id"=>BSON::ObjectId('4e86e45efed0eb0be0000010'), "author_id"=>BSON::O
bjectId('4e86e4b6fed0eb0be0000011'), "category_ids"=>[BSON::ObjectId('4
e86e4cbfed0eb0be0000012'), BSON::ObjectId('4e86e4d9fed0eb0be0000013')],
"name"=>"Oliver Twist", "published_on"=>2002-12-30 00:00:00 UTC,
"publisher"=>"Dover Publications", "reviews"=>[{"_id"=>BSON::ObjectId(
'4e86f68bfed0eb0be0000018'), "comment"=>"wow!", "username"=>"Gautam"},
{"comment"=>"Excellent literature", "username"=>"Tom", "_id"=>BSON::Ob
jectId('4e86f6fffed0eb0be000001a')}], "votes"=>[{"username"=>"Gautam",
"rating"=>3}]}

What just happened?
Wow! We just connected to MongoDB from a Ruby program and fetched the first book from
the books collection. Let's take this slowly, shall we? Let's see the previous code again:

require 'mongo'

conn = Mongo::Connection.new
db = conn['sodibee_development']
coll = db['books']

puts coll.find.first.inspect

The command require loads the Ruby Mongo library.

In case you are using Ruby 1.8.7, you may need to require "rubygems" or
add "rubygems" to your RUBYOPTS environment variable. In Ruby 1.9
onwards, this is implicitly included. Rubygems is a gem which helps Ruby
load Ruby library paths.

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[102]

Let's have a look at the previous code once again:

require 'mongo'

conn = Mongo::Connection.new
db = conn['sodibee_development']
coll = db['books']

puts coll.find.first.inspect

This sets up the connection with MongoDB. Did I hear you say "What the hell?!
Magically? what happened to the host or the port?" Welcome to the world of
"convention over configuration".

The Mongo driver is configured with defaults:

 � Host: Localhost is the default

 � Port: 27017 is the default

 � Options:

 � safe: If it is true, MongoDB starts in safe mode (it is false by default)

 � slave_ok: It is (false by default) set to true only when connecting to
a single slave

 � logger: Remember that logging can degrade performance (It is nil
by default)

 � pool_size: It is (1 by default) the number of sockets connections
in the pool

 � pool_timeout: It is (5.0 seconds by default) the seconds to wait
before which an exception will be thrown

 � op_timeout: It is (nil by default) the read timeout. There is no
timeout by default

 � connect_timeout: It is (nil by default) the connection timeout.
By default the connection never times out

 � ssl: It is (false by default) set to true for secure connections only

Whoa! These are a lot of options. Notice the default values. You don't need to remember
them all if you are working with defaults.

Once again, let's have a look at the previous code:

require 'mongo'

conn = Mongo::Connection.new

Chapter 5

[103]

db = conn['sodibee_development']
coll = db['books']

puts coll.find.first.inspect

We now select the database we require and the collection we want.

Guess what, looks are deceptive! The Mongo::Connection class has the method
Mongo::Connection#[] that initializes a Mongo::Db object and returns it. We can then
access the collection we want in this database. In case you require some specific options for
the database object (for example, you may want to access the database in strict mode),
you would need to explicitly instantiate the database object. This is done as follows:

db = Mongo::Db.new('sodibee_development', conn, :strict => true)

Strict mode ensures that the collection exists before accessing it.
Otherwise it throws an error.

Of course, we usually require the former:

require 'mongo'

conn = Mongo::Connection.new
db = conn['sodibee_development']
coll = db['books']

puts coll.find.first.inspect

The command coll.find gets us the collection object cursor (similar to database cursors)
and from this we print the first. We shall see a lot of the find method later on in this chapter.

The Ruby DataMappers for MongoDB
We do not want to get into details of how the mongo-ruby-driver is written. This is because
it does a lot of work under the cover and we don't want to get our hands that dirty! Think of
this like a device driver—we use them but we are not the experts who write them. So, we
leave the nitty-gritty details to the DataMappers!

There are quite a few DataMappers built in Ruby to map to documents in MongoDB. The
ones that are very popular while this book is being written, are:

 � MongoMapper

 � Mongoid

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[104]

We shall now learn how to use both and you can see for yourself which to use. It's a close
race for the winner and towards the end of this chapter I do declare a verdict based on my
experiments with them.

MongoMapper
MongoMapper was one of the first Ruby data mappers for MongoDB. Created by John
Nunemaker in early 2009, it has gained a lot of popularity. The entire library is written in
Ruby. However, the MongoMapper is tightly coupled for Rails applications and does not
use the mongo-ruby-driver.

Mongoid
The work for the mongo-ruby-driver began in late 2008 and as it got stable it was also heavily
used in Ruby DataMappers. Mongoid, which began in mid-2009 by Durran Jordan has gained
tremendous popularity. It uses the Mongo driver for accessing MongoDB.

There has not been any clear winner among them, but my preference is with Mongoid.
I do leave it to your choice which one to choose as I will be going through both of them
in some detail.

Setting up DataMappers
We have seen how we can use the mongo-ruby-driver to access the MongoDB store via Ruby.
Now, we shall see how to use DataMappers for connecting, creating, and querying documents.

Configuring MongoMapper
As with any gem installation, this is done as follows:

$ gem install mongo_mapper

If you are using Bundler, we could also set this in the Gemfile using the following:

gem 'mongo_mapper'

If you are using Rails 3.1 or greater, we can create a new Rails project as follows:

$ rails new sodibee-mm

You should see something as follows:

 create

 create README

 create Rakefile

Chapter 5

[105]

 create config.ru

 create .gitignore

 create Gemfile

 create vendor/plugins

 create vendor/plugins/.gitkeep

 run bundle install

Fetching source index for http://rubygems.org/

Using rake (0.9.2.2)

Using multi_json (1.0.4)

...

Installing sqlite3 (1.3.5) with native extensions

Installing turn (0.8.2)

Installing uglifier (1.2.0)

Your bundle is complete! Use 'bundle show [gemname]' to see where a
bundled gem is installed.

$

Now that we have set up a project, we need to install MongoMapper.

Time for action – configuring MongoMapper
Let's set up MongoMapper for generating the mongo config file.

$ rails generate mongo_mapper:config

 create config/mongo.yml

The contents of config/mongo.yml look like the following code listing:

defaults: &defaults
 host: 127.0.0.1
 port: 27017

development:
 <<: *defaults
 database: sodibee_mm_development

test:
 <<: *defaults
 database: sodibee_mm_test

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[106]

set these environment variables on your prod server
production:
 <<: *defaults
 database: sodibee_mm
 username: <%= ENV['MONGO_USERNAME'] %>
 password: <%= ENV['MONGO_PASSWORD'] %>

The preceding file is a standard YML file with defaults. Now let's generate a mongo model
as follows:

$ rails generate mongo_mapper:model Author

The preceding code should generate the following files:

 create app/models/author.rb

 invoke test_unit

 create test/unit/author_test.rb

 create test/fixtures/authors.yml

The model file would be like the following—very complicated!

class Author
 include MongoMapper::Document

end

What just happened?
We just saw two things:

 � We configured MongoMapper (through config/mongo.yml).

 � We generated models pre-configured with MongoMapper

MongoMapper::Document is a Ruby module that we can include in any model. Rails 3 now
advocates the use of ActiveModel and not inheritance from ActiveRecord.

Ruby module mixins are a unique and interesting feature of Ruby. Using
modules, we can make classes richer by including or extending modules
in classes.

Have a go hero – creating models using MongoMapper
Create the other Sodibee models for MongoMapper: book, category, and review. Refer
to Chapter 2, Diving Deep into MongoDB for details on these fields.

Chapter 5

[107]

Configuring Mongoid
Just like MongoMapper, Mongoid can be installed as a gem as follows:

$ gem install mongoid

You can also put the following in a Gemfile:

gem 'mongoid'

Time for action – setting up Mongoid
Once we have a project created (just like we saw earlier), we can configure Mongoid
as follows:

$ rails generate mongoid:config

 create config/mongoid.yml

The next code listing is what the config/mongoid.yml looks like:

development:
 host: localhost
 database: sodibee_development

test:
 host: localhost
 database: sodibee_test

set these environment variables on your prod server
production:
 host: <%= ENV['MONGOID_HOST'] %>
 port: <%= ENV['MONGOID_PORT'] %>
 username: <%= ENV['MONGOID_USERNAME'] %>
 password: <%= ENV['MONGOID_PASSWORD'] %>
 database: <%= ENV['MONGOID_DATABASE'] %>
 # slaves:
 # - host: slave1.local
 # port: 27018
 # - host: slave2.local
 # port: 27019

There is no direct generator for Mongoid. Simply do the following:

class Author
 include Mongoid::Document

end

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[108]

Your Rails project should not load ActiveRecord (For Rails version less than 3.0).

Ensure the following:

 � Remove config/database.yml

 � Remove the following line from config/application.rb:

require 'rails/all'

 � Add the following line in config/application.rb:

require "action_controller/railtie"
require "action_mailer/railtie"
require "active_resource/railtie"
require "rails/test_unit/railtie"

For Rails 3.1.x and Rails 3.0.x to ensure that you do not load ActiveRecord.

Execute the following command:

$ rails new <project_name> -O –skip-bundle

What just happened?
We set up Mongoid, which looks almost similar to MongoMapper. However, the
Mongoid::Document and MongoMapper::Document differ considerably in the
way they are structured internally.

MongoMapper::Document includes the various plugins as follows:

 � include Plugins::ActiveModel

 � include Plugins::Document

 � include Plugins::Querying

 � include Plugins::Associations

 � include Plugins::Caching

 � include Plugins::Clone

 � include Plugins::DynamicQuerying

 � include Plugins::Equality

 � include Plugins::Inspect

 � include Plugins::Indexes

 � include Plugins::Keys

 � include Plugins::Dirty

 � include Plugins::Logger

Chapter 5

[109]

 � include Plugins::Modifiers

 � include Plugins::Pagination

 � include Plugins::Persistence

 � include Plugins::Accessible

 � include Plugins::Protected

 � include Plugins::Rails

 � include Plugins::Safe

 � include Plugins::Sci

 � include Plugins::Scopes

 � include Plugins::Serialization

 � include Plugins::Timestamps

 � include Plugins::Userstamps

 � include Plugins::Validations

 � include Plugins::EmbeddedCallbacks

 � include Plugins::Callbacks

Mongoid::Document includes these modules via Mongoid::Components as follows:

 � include ActiveModel::Conversion

 � include ActiveModel::MassAssignmentSecurity

 � include ActiveModel::Naming

 � include ActiveModel::Observing

 � include ActiveModel::Serializers::JSON

 � include ActiveModel::Serializers::Xml

 � include Mongoid::Atomic

 � include Mongoid::Attributes

 � include Mongoid::Collections

 � include Mongoid::Copyable

 � include Mongoid::DefaultScope

 � include Mongoid::Dirty

 � include Mongoid::Extras

 � include Mongoid::Fields

 � include Mongoid::Hierarchy

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[110]

 � include Mongoid::Indexes

 � include Mongoid::Inspection

 � include Mongoid::JSON

 � include Mongoid::Keys

 � include Mongoid::Matchers

 � include Mongoid::NamedScope

 � include Mongoid::NestedAttributes

 � include Mongoid::Persistence

 � include Mongoid::Relations

 � include Mongoid::Safety

 � include Mongoid::Serialization

 � include Mongoid::Sharding

 � include Mongoid::State

 � include Mongoid::Validations

 � include Mongoid::Callbacks

 � include Mongoid::MultiDatabase

If we compare the modules, there is little to debate. Both have similar features but are
implemented in different ways internally. The only way to understand them in detail is to
dig into the code.

Initially, I did wonder about why MongoMapper and Mongoid don't
just merge like Rails and Merb. When I started digging into the code,
I realized how different the internal implementation is. Do read this
http://www.rubyinside.com/mongoid-vs-mongomapper-
two-great-mongodb-libraries-for-ruby-3432.html.

Creating, updating, and destroying documents
Now let's work with objects—creating, updating, and deleting them. But first, we need to set
up the model with attributes. We add these attributes in the models directly. Each attribute
has a name and also specifies the type of data storage. To ensure we see all the standard
data types, we shall see the Person model.

Defining fields using MongoMapper
We define the model in the app/models/person.rb file as follows:

Chapter 5

[111]

class Person
 include MongoMapper::Document

 key :name, String
 key :age, Integer
 key :height, Float
 key :born_on, Date
 key :born_at, Time
 key :interests, Array
 key :is_alive, Boolean
end

Defining fields using Mongoid
With Mongoid, there is just a difference in syntax:

class Person
 include Mongoid::Document

 field :name, type: String
 field :age, type: Integer
 field :height, type: Float
 field :born_on, type: Date
 field :born_at, type: Time
 field :interests, type: Array
 field :is_alive, type: Boolean
end

Creating objects
The way to create objects does not depend on the mapper. Just like we create objects in
Ruby, we pass the parameters as hash arguments.

Time for action – creating and updating objects
Let's create an object of the Person model with different values as shown next:

person = Person.new(name: "Tom Sawyer", age: 33, height: 5.10,
 born_on: Date.parse("1972-12-23"),
 born_at: Time.now, is_alive: true,
 interests: ["Soccer", "Movies"])

=> #<Person _id: BSON::ObjectId('4ef4ab59fed0eb8962000002'), age: 33,
born_at: Fri, 23 Dec 2011 16:24:57 UTC +00:00, born_on: Sat, 23 Dec
1972, height: 5.1, interests: ["Soccer", "Movies"], is_alive: true,
name: "Tom Sawyer">

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[112]

Now, if we want to update the previous object, we save it by calling the save method after
setting the name. It is done as follows:

person.name = "Huckleberry Finn"
person.save

Now if we want to destroy this object, we simply issue the following command:

person.destroy

That's it!

What just happened?
There is no different syntax when using Mongoid or MongoMapper. This is the real
advantage of using Ruby DataMappers.

In reality, Ruby frameworks such as Rails and Sinatra, try to be as independent of the data
source as possible. So, if we used MySQL, PostgreSQL, or any other database, we can easily
migrate them to MongoDB and vice versa by altering some part of the code.

However, this does not mean that there would be no code change. As we will soon see in
the querying documents, and later in Understanding model relationships, it's not that simple
and straightforward.

Using finder methods
This is where the real fun begins! We shall start seeing different ways to search among
objects. Both, MongoMapper and Mongoid try to adhere to the standard querying interface
as much as possible.

Finders are routines that return the objects as part of the result. Both MongoMapper and
Mongoid implement the standard querying interface.

Using find method
The find method finds the object with the specified ID:

person = Person.find('4ef4ab59fed0eb8962000002')

It's interesting to see that the MongoDB object ID is _id while for Ruby
it is id. Both can be used interchangeably.

Chapter 5

[113]

Using the first and last methods
As the name suggests, we can get the first and the last objects with these methods as follows:

Person.first # => The first object.
Person.last # => The last object.

Using the all method
As the name suggests, this method fetches all the objects. We can optionally pass it some
selection criteria too. This is done as follows:

Person.all

Or

Person.all(:age => 33)

So, what happens if we have 1 million person objects and we fire Person.all? Does this
mean all 1 million objects are fetched? MongoDB internally uses the cursor to fetch objects
in batches. By default 1000 objects are fetched.

Using MongoDB criteria
Criteria are proxy objects or intermediate results. These are not queries that are fired on the
database immediately—that is why they are called the criteria. We can chain criteria. When
all criteria are completed and we really need the data, the final query is fired and documents
are fetched from the database. This has immense advantages while programming in Ruby.

In Rails, these are called scopes (and in earlier versions they were called
named scopes).

We saw the use of all earlier. Mongoid treats all as a criteria while
MongoMapper resolves it—that is all returns an array.

Executing conditional queries using where
This is the most frequently used criterion:

Person.where(:all => 33)

This looks uncannily similar to the all method we have seen earlier. However, the result
from where is entirely different from all.

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[114]

Time for action – fetching using the where criterion
When we want to fetch (and chain) results, we use the where criteria. For example, if we
have a web application and there are different filters, such as age and name, we can chain
these criteria easily in a Ruby application as shown next:

people = Person.where(:age.gt => 15)
people = people.where(:name => /saw/i)

=> #<Person _id: BSON::ObjectId('4ef4ab59fed0eb8962000002'), age: 33,
born_at: Fri, 23 Dec 2011 16:24:57 UTC +00:00, born_on: Sat, 23 Dec
1972, height: 5.1, interests: ["Soccer", "Movies"], is_alive: true,
name: "Tom Sawyer">

What just happened?
We not only saw how criteria work but also the different selection criteria syntax. Let's
analyze this in detail.

MongoMapper uses Plucky— a gem for managing proxy objects. It
basically creates a lambda based on the selection criteria. Then we
can chain these lambda instances together and get a result.

This same functionality in Mongoid is available in the
Mongoid::Critera object. This is one of the key internal
differences between both MongoMapper and Mongoid.

Take a look at the following code:

people = Person.where(:age.gt => 15)
people = people.where(:name => /saw/i)

The previous code returns a criterion object. If we are using MongoMapper, this would
return a Plucky object:

 => #<Plucky::Query age: {"$gt"=>15}, transformer: #<Proc:0x1d8cab0@/
Users/gautam/.rvm/gems/ruby-1.9.2-p290/gems/mongo_mapper-0.10.1/lib/
mongo_mapper/plugins/querying.rb:79 (lambda)>>

If we use Mongoid, the following code would return a Mongoid::Criteria object:

 => #<Mongoid::Criteria
 selector: {},
 options: {:age=>{"$gt"=>15}},
 class: Person,
 embedded: false>

Chapter 5

[115]

It's important to remember that the database query has not been fired yet.

Notice the construct :age.gt => 15. This is the short form of writing
:age => { "$gt" => 15 } and this means "age greater than 15".

Now let's analyze the next line. This makes things very interesting!

people = Person.where(:age.gt => 15)
people = people.where(:name => /saw/i)

The people criterion is now "chained" with another criterion. If we use MongoMapper,
this is what we see of the people object now:

=> #<Plucky::Query age: {"$gt"=>15}, name: /saw/i, transformer:
#<Proc:0x1d86778@/Users/gautam/.rvm/gems/ruby-1.9.2-p290/gems/mongo_
mapper-0.10.1/lib/mongo_mapper/plugins/querying.rb:79 (lambda)>>

Did you notice the second line of code:

people = people.where(:name => /saw/i)

We have chained where to the earlier people criterion. Also notice that name: /saw/i
is now part of the selection criterion. If we use Mongoid, this would look like the following:

=> #<Mongoid::Criteria
 selector: {:age=>{"$gt"=>15}, :name=>/saw/i},
 options: {},
 class: Person,
 embedded: false>

It's interesting to know that the query has still not been fired. Only when all the criteria are
fulfilled, will the objects be fetched from the database. This is unlike an SQL query, which
directly fetches results; this is instead more efficient as we resolve the entire scope of the
selection before fetching objects.

Notice the /saw/i construct. This is a case-insensitive regular
expression search for any name that has saw in it, such as Sawyer!

Revisiting limit, skip, and offset
We have seen the use of limit, skip, and offset earlier in Chapter 4, Working Out Your
Way with Queries. Now, we shall see how simple it is to set them from MongoMapper or
Mongoid. It is done as follows:

Person.where(:age.gt => 15).limit(5)

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[116]

Pagination is an excellent example of this. This chains criteria to ensure that at most five
results are returned in the results set.

Person.all.skip(5).limit(5) # Page 2 with 5 elements
Person.all.skip(10).limit(5) # Page 3 with 5 elements

Understanding model relationships
Now we shall see different types of object relations. They are as follows :

 � One-to-many relation

 � Many-to-many relation

 � One-to-one relation

 � Polymorphic relations

The one to many relation
Let's get back to Sodibee! Let's assume that one book has one author. In a relationship
statement, this means, "An Author has many books" and "A book belongs to one author".
We write a relationship exactly like this.

Time for action – relating models
We shall see how we can set up relations in both MongoMapper as well as Mongoid.

Using MongoMapper
As we know the author model is in the app/models/author.rb file and book is in the
app/models/book.rb file:

class Author
 include MongoMapper::Document

 key :name, String

 many :books

end

class Book
 include MongoMapper::Document

 key :name, String

Chapter 5

[117]

 key :publisher, String
 key :published_on, Date

 belongs_to :author

end

Using Mongoid
The file locations remain the same, it's only the syntax that changes as follows:

class Author
 include Mongoid::Document

 field :name, type: String

 has_many :books

end

class Book
 include Mongoid::Document

 field :name, type: String
 field :publisher, type: String
 field :published_on, type: Date

 belongs_to :author

end

Let's now create some books and authors. This object creation code remains the same,
irrespective of which data mapper we use. We create books and authors as follows:

irb> charles = Author.create(name: "Charles Dickens")

 => => #<Author _id: BSON::ObjectId('4ef5a7eafed0eb8c7d000001'),
name: "Charles Dickens">

irb> b = Book.create (name: "Oliver Twist", published_on: Date.
parse("1983-12-23"), publisher: "Dover Publications", author: charles)

 => #<Book _id: BSON::ObjectId('4ef5a888fed0eb8c7d000002'), author_id:
BSON::ObjectId('4ef5a7eafed0eb8c7d000001'), name: "Oliver Twist",
published_on: Fri, 23 Dec 1983, publisher: "Dover Publications">

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[118]

What just happened?
many is a method in MongoMapper that takes the relation (also called the association) as a
parameter. Its equivalent in Mongoid is has_many.

belongs_to is a reverse relation that tells us who the parent is.

As with all relations, the child references the parent. This means the book document has an
author_id field.

In SQL, it's a thumb rule that the foreign key resides with the child table.
Similarly, the reference resides in the child document in MongoDB.

Let's look at the book creation code in more detail:

irb> b = Book.create (name: "Oliver Twist", published_on: Date.
parse("1983-12-23"), publisher: "Dover Publications", author: charles)

 => #<Book _id: BSON::ObjectId('4ef5a888fed0eb8c7d000002'), author_id:
BSON::ObjectId('4ef5a7eafed0eb8c7d000001'), name: "Oliver Twist",
published_on: Fri, 23 Dec 1983, publisher: "Dover Publications">

Notice, that we have passed author: charles, a variable which references the author
object. However, when the object is created we see author_id: BSON::ObjectId(..)

The many-to-many relation
Let's introduce the Category model here. A book can have many categories and a category
can have many books.

Time for action – categorizing books
As always, we shall now see how MongoMapper achieves a many-to-many relation first and
then how Mongoid does the same.

MongoMapper
We are adding a new model—app/models/category.rb. This is done as follows:

class Category
 include MongoMapper::Document

 key :name, String
 key :book_ids, Array

Chapter 5

[119]

 many :books, in: :book_ids

end

class Book
 include MongoMapper::Document

 key :title, String
 key :publisher, String
 key :published_on, Date

 belongs_to :author

end

Mongoid
The following code shows how we do this using Mongoid:

class Category
 include Mongoid::Document

 key :name, String

 has_and_belongs_to_many :books

end

class Book
 include MongoMapper::Document

 key :title, String
 key :publisher, String
 key :published_on, Date

 belongs_to :author
 has_and_belongs_to_many :categories

end

Here is another area where MongoMapper and Mongoid differ in the internal
implementation. Notice, that when using MongoMapper, the Book model has
no changes. This means we cannot access the categories of a book from the Book
object directly. We shall see this in more detail.

MongoMapper has only a one-way association for many-to-many.
Mongoid maintains the inverse relation, that is, it updates both
documents. A plus one for Mongoid!

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[120]

Accessing many-to-many with MongoMapper
First create a few categories as follows:

irb> fiction = Category.create(name: "Fiction")
 => #<Category _id: BSON::ObjectId('4ef5b159fed0eb8d9c00000a'), book_
ids: [], name: "Fiction">

irb> drama = Category.create(name: "Drama")
 => #<Category _id: BSON::ObjectId('4ef5b231fed0eb8df5000005'), book_
ids: [], name: "Drama">

Now, let's associate our book with these categories as follows:

irb> fiction.books << Book.first
irb> fiction.save!

So far so good! We should be able to retrieve this relation too. This is done as shown next:

irb> fiction.books

 => [#<Book _id: BSON::ObjectId('4ef5a888fed0eb8c7d000002'), author_
id: BSON::ObjectId('4ef5a7eafed0eb8c7d000001'), name: "Oliver Twist",
published_on: Fri, 23 Dec 1983, publisher: "Dover Publications">]

In MongoMapper, we cannot find the categories of a book object.
We have to look via the Category model only, as the inverse
relation is not supported yet.

Accessing many-to-many relations using Mongoid
Let's create a few categories again as follows:

irb> fiction = Category.create(name: "Fiction")
 => #<Category _id: 4e86e4cbfed0eb0be0000012, _type: nil, name:
"Fiction", book_ids: []>

irb> drama = Category.create(name: "Drama")
 => #<Category _id: 4e86e4d9fed0eb0be0000013, _type: nil, name:
"Drama", book_ids: []>

Notice the book_ids attribute. It is present because of the has_and_belongs_to_many
statement. Now let's associate the books and categories as follows:

irb> fiction.books << Book.first

Chapter 5

[121]

That's it! Now let's check the relation by fetching it as follows:

irb> fiction.books.first
 => => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, title: nil,
publisher: "Dover Publications", published_on: 2002-12-30 00:00:00
UTC, author_id: BSON::ObjectId('4e86e4b6fed0eb0be0000011'), category_
ids: [BSON::ObjectId('4e86e4cbfed0eb0be0000012')], name: "Oliver
Twist">

Looks good! However, let's go one step further than MongoMapper.

irb> Book.first.categories
 => [#<Category _id: 4e86e4cbfed0eb0be0000012, _type: nil, name:
"Fiction", book_ids: [BSON::ObjectId('4e86e45efed0eb0be0000010')]>]

What just happened?
I would give this round to Mongoid. We created many-to-many relations in both
MongoMapper and Mongoid. However, Mongoid maintains the inverse relation!

So, if we were using MongoMapper, the following relation gives an error:

irb> Book.first.categories
NoMethodError: undefined method 'categories' for #<Book:0x1d63fd4>
 from: (method_missing)

This would not happen if we were using Mongoid.

When we write many :books in the model, the many method
defines a new method called books, which references the association.
As the many-to-many relation is one-sided in MongoMapper, we have
not declared any association in the book model for categories.
Hence, the method_missing error.

One additional point to be mentioned here is that in MongoMapper,
we save information to an array, not a relation. So, the object has to be
explicitly saved. In Mongoid, we use an association to save the relation,
so we do not need to call save explicitly on the object.

The one-to-one relation
Let's add a BookDetail model to Sodibee. The BookDetail model contains information
about the number of pages, the cost, the binding style, among others.

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[122]

Using MongoMapper
We will now add the new model app/models/book_detail.rb.

In Rails, the BookDetail model is stored in the book_detail.rb
file—snake case.

We can add the BookDetail model using MongoMapper as follows:

class Book
 include MongoMapper::Document

 key :title, String
 key :publisher, String
 key :published_on, Date

 belongs_to :author
 one :book_detail

end

class BookDetail
 include MongoMapper::Document

 key :page_count, Integer
 key :price, Float
 key :binding, String
 key :isbn, String

 belongs_to :book

end

Using Mongoid
Now we will extend the book model and add the new book_detail.rb as follows:

class Book
 include MongoMapper::Document

 key :title, String
 key :publisher, String
 key :published_on, Date

 belongs_to :author
 has_and_belongs_to_many :categories
 has_one :book_detail

Chapter 5

[123]

end

class BookDetail
 include Mongoid::Document

 field :page_count, type: Integer
 field :price, type: String
 field :binding, type: String
 field :isbn, type: String

 belongs_to :book

end

Time for action – adding book details
Let's add book details for our book now. It's the same for both MongoMapper and Mongoid.
The following code shows you how to do it:

irb> oliver = Book.first
 => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, title: nil,
publisher: "Dover Publications", published_on: 2002-12-30 00:00:00
UTC, author_id: BSON::ObjectId('4e86e4b6fed0eb0be0000011'), category_
ids: [BSON::ObjectId('4e86e4cbfed0eb0be0000012')], name: "Oliver
Twist">
irb> oliver.create_book_detail(page_count: 250, price: 10, binding:
"standard", isbn: "124sdf23sd")
 => => #<BookDetail _id: 4ef5bdaafed0eb8ed7000002, _type: nil, page_
count: 250, price: 10.0, binding: "standard", isbn: "124sdf23sd",
book_id: BSON::ObjectId('4e86e45efed0eb0be0000010')>

What just happened?
We created a BookDetail object. That was obvious, wasn't it? However, a closer look at
this and we learn something new as follows:

irb> oliver.create_book_detail(page_count: 250, price: 10,

When we have only a direct single association (or relation), we build it using the create_
prefix. In the earlier case for a many-to-many relation, in case we want to add a new
category, we could do something similar to the following:

irb> oliver.categories.create(name: "New Theater")

This would create a new category and associate that category with the Book object.

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[124]

Have a go hero – create the other models
Create the Book, Author, and Category objects. Then associate them!

Understanding polymorphic relations
Before we even see how this is done using MongoMapper or Mongoid, it's important to
understand the basic concept of polymorphic relations.

Polymorphic means multiple forms or multiple behaviors. When we use it in the context of a
database, we do mean multiple forms of the object. Let's see an example.

"Abstract base objects" in technical terms and "Generic common nouns" in layman's terms
are ideal examples for explaining polymorphic relations.

For example, a vehicle could mean a two-wheeler, three-wheeler, a car, a truck or even a
space shuttle! A vehicle has at least one driver, so we have a relation between a vehicle
and its driver. Let's assume that a vehicle has only one driver. A driver has different skills.
For example he could be a cyclist, an astronaut, or an F1 driver! So, how do we map these
different types of driver profiles?

Implementing polymorphic relations the wrong way
If we are using a relational database, we can create a table called vehicles. We map all
attributes of a vehicle as columns in the table. So, we have all fields of a vehicle (right from a
cycle to a space shuttle) mapped in columns and then populate only the relevant fields. We
also keep a type column, which signifies what the vehicle type is—cycle, car, space shuttle
among others.

This is crazy because we could end up with a table having a few thousand columns! Wrong,
wrong, wrong!

You could argue that using a document database like MongoDB could alleviate this problem
— because it is schema free. So, we could create a collection called vehicles and we could
map different fields in a document and keep going until we can. The type field identifies the
type of the vehicle. However, this is still not a practical or a scalable approach and degrades
performance as data increases. Considering that a document has a limited size.

Implementing polymorphic relations the correct way
There are two types of polymorphic relations:

 � Single Collection Inheritance (SCI)

 � Basic polymorphic relations

Chapter 5

[125]

We shall study both of them in detail. After that, we shall see when to choose the right
approach. Let's study them first.

Single Collection Inheritance
This is very similar to the inheritance of standard object-oriented programming. See the
following diagram for the inheritance hierarchy for drivers:

Driver
- name : string
- age : int
+accelerate()
+brake()
+turn()

AcroSpace
-gForce:float

AcroSpace
-can_swim : boolean

Terrestrial
-license : boolean

Astronaut Pilot

-eject()

ShipDriver SubmarineDriver BikeDriver CarDriver

+reverse()

+climb()

Time for action – managing the driver entities
Let's see the code for this. First let's create the generic Driver model as follows:

app/model/driver.rb
class Driver
 include Mongoid::Document

 field :name, type: String
 field :age, type: Integer
 field :address, type: String
 field :weight, type: Float

end

This is pretty much straightforward. Now let's see the AeroSpace, Terrestrial, and
Marine classes. They are shown next:

app/models/terrestrial.rb
class Terrestrial < Driver
 field :license, type: Boolean

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[126]

end

app/models/marine.rb
class Marine < Driver
 field :can_swim, type: Boolean
end

app/model/aero_space.rb
class AeroSpace < Driver
 field :gforce, type: Float
end

Here we simply inherit from the Driver class. Let's dive deeper. Let's create the Pilot,
Astronaut, and other lower-level classes as follows:

app/models/pilot.rb
class Pilot < AeroSpace
end

app/models/astronaut.rb
class Astronaut < AeroSpace
end

app/models/ship_driver.rb
class ShipDriver < Marine
end

app/models/submarine_driver.rb
class SubmarineDriver < Marine
end

app/models/car_driver.rb
class CarDriver < Terrestrial
end

app/models/bike_driver.rb
class BikeDriver < Terrestrial
end

Now let's create some objects as follows:

irb> Pilot.create(name: "Gautam")
 => #<Pilot _id: 4ef9a410fed0eb977d000002, _type: "Pilot", name:
"Gautam", age: nil, address: nil, weight: nil, gforce: nil>

irb> CarDriver.create(name: "Car Gautam")

Chapter 5

[127]

 => #<CarDriver _id: 4ef9b206fed0eb9824000001, _type: "CarDriver",
name: "Car Gautam", age: nil, address: nil, weight: nil, license: nil>

irb> ShipDriver.create(name: "Ship Gautam")
 => #<ShipDriver _id: 4ef9b21afed0eb9824000002, _type: "ShipDriver",
name: "Ship Gautam", age: nil, address: nil, weight: nil, can_swim:
nil>

irb> > Marine.count
 => 1

> Marine.first
 => #<ShipDriver _id: 4ef9b21afed0eb9824000002, _type: "ShipDriver",
name: "Ship Gautam", age: nil, address: nil, weight: nil, can_swim:
nil>

> Terrestrial.count
 => 1

> Terrestrial.first
 => #<CarDriver _id: 4ef9b206fed0eb9824000001, _type: "CarDriver",
name: "Car Gautam", age: nil, address: nil, weight: nil, license: nil>

irb> Driver.count
 => 3

What just happened?
Using Single Collection Inheritance, we can find out how different types of drivers form
different levels of specialization.

Let's create a few objects as follows:

irb> Pilot.create(name: "Gautam")
 => #<Pilot _id: 4ef9a410fed0eb977d000002, _type: "Pilot", name:
"Gautam", age: nil, address: nil, weight: nil, gforce: nil>

irb> CarDriver.create(name: "Car Gautam")
 => #<CarDriver _id: 4ef9b206fed0eb9824000001, _type: "CarDriver",
name: "Car Gautam", age: nil, address: nil, weight: nil, license: nil>

irb> ShipDriver.create(name: "Ship Gautam")
 => #<ShipDriver _id: 4ef9b21afed0eb9824000002, _type: "ShipDriver",
name: "Ship Gautam", age: nil, address: nil, weight: nil, can_swim:
nil>

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[128]

Here we created a Pilot, ShipDriver, and a CarDriver object. All in the standard normal
way of creating objects. However, we can also access these objects in different ways.

> Marine.first
 => #<ShipDriver _id: 4ef9b21afed0eb9824000002, _type: "ShipDriver",
name: "Ship Gautam", age: nil, address: nil, weight: nil, can_swim:
nil>

Remember that we never created a Marine object. However, when we try to fetch the first
Marine object, it works! Notice that even the type of object fetched is not a Marine but a
ShipDriver object. What's going on? We wanted to fetch the first Marine object and it
returned a ShipDriver object!

This is polymorphism in action. The Marine class behaves in different ways depending on
the object it represents. In other words, the Marine class has a polymorphic relation with
its subclasses.

Going deeper into this:

irb> Driver.count
 => 3

We created a Pilot, ShipDriver, and a CarDriver but the Driver count is 3.

Basic polymorphic relations
Now let's see a different way of managing polymorphic relations. Let's consider the vehicles.
There are different types of vehicles—all having totally different properties but all are
vehicles nevertheless. So, SCI may not be a good choice for a space shuttle and a bike,
as they are entirely different vehicles!

Choosing SCI or basic polymorphism.

What you need to consider is the number of collections you want. If you
want all objects to reside in one collection use SCI. If you want objects to
reside in different collections use basic polymorphism.

In other words, in case the polymorphism is data-centric (that is, if objects
have a lot of different properties or data), use basic polymorphism.

If the polymorphism is more functionality-centric (that is, if objects have
similar properties but different functions) use SCI.

Chapter 5

[129]

Time for action – creating vehicles using basic polymorphism
Let's design the Vehicle model:

app/models/vehicle.rb

class Vehicle
 include Mongoid::Document

 belongs_to :resource, :polymorphic => true

 field :terrain, type: String
 field :cost, type: Float
 field :weight, type: Float
 field :max_speed, type: Float
end

This is the main polymorphic class. We now use this class in other models.

Unlike SCI, each model is independent, but can choose to be a part
of Vehicle. It has its own identity and does not inherit from any
parent model.

Let's create a few objects. The code to create a Bike model is as follows:

app/models/bike.rb
class Bike
 include Mongoid::Document

 has_one :vehicle, :as => :resource

 field :gears, type: Integer
 field :has_handle, type: Boolean
 field :cubic_capacity, type: Float
end

The code to create a Ship model is as follows:

app/models/ship.rb
class Ship
 include Mongoid::Document

 has_one :vehicle, :as => :resource

 field :is_military, type: Boolean

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[130]

 field :is_cruise, type: Boolean
 field :missile_capable, type: Boolean
 field :anti_aircraft, type: Boolean
 field :number_engines, type: Integer
end

The code to create a Submarine model is as follows:

app/models/submarine.rb
class Submarine
 include Mongoid::Document

 has_one :vehicle, :as => :resource

 field :max_depth, type: Float
 field :is_nuclear, type: Boolean
 field :missile_capable, type: Boolean
end

The code to create a SpaceShuttle model is as follows:

app/models/space_shuttle.rb
class SpaceShuttle
 include Mongoid::Document

 has_one :vehicle, :as => :resource

 field :boosters, type: Integer
 field :launch_location, type: String
end

The code to create an Aeroplane model is as follows:

app/models/aerorplane.rb
class Aeroplane
 include Mongoid::Document

 has_one :vehicle, :as => :resource

 field :seating, type: Integer
 field :max_altitude, type: Integer
 field :wing_span, type: Float
end

Chapter 5

[131]

The code to create a Car model is as follows:

app/models/car.rb
class Car
 include Mongoid::Document

 has_one :vehicle, :as => :resource

 field :windows, type: Integer
 field :seating, type: Integer
 field :bhp, type: Float
end

Here, you see that each model has a bunch of properties that are different from each other but
all basically fall under the Vehicle category. One of the advantages of basic polymorphism is
that it's easy to enter and exit from this pattern. It's very easy to incorporate an existing model
into a polymorphic pattern and equally easy to remove an existing model from one. We just
add or remove the relationship to the polymorphic model.

Now let's build objects as follows:

irb> ship = Ship.new(is_military: true)
 => #<Ship _id: 4f042c53fed0ebc45b000003, _type: "Ship", is_military:
true, is_cruise: nil, missile_capable: nil, anti_aircraft: nil,
number_engines: nil>

irb> vehicle = Vehicle.create(resource: ship)
 => #<Vehicle _id: 4f042c87fed0ebc481000002, _type: "Vehicle",
resource_type: "Ship", resource_id: BSON::ObjectId('4f042c53fed0ebc4
5b000003'), terrain: nil, cost: nil, weight: nil, max_speed: nil>

What just happened?
We created a Ship object and then associated it to Vehicle. Let's have a closer look at this
in the following code:

irb> vehicle = Vehicle.create(resource: ship)
 => #<Vehicle _id: 4f042c87fed0ebc481000002, _type: "Vehicle",
resource_type: "Ship", resource_id: BSON::ObjectId('4f042c53fed0ebc4
5b000003'), terrain: nil, cost: nil, weight: nil, max_speed: nil>

Notice the resource_id and resource_type fields, they define the resource that the
vehicle represents. To get actual information about the vehicle, we have to lookup the
Ship object.

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[132]

This two-step process could have been done in one step itself, as follows:

irb> Vehicle.create(resource: Ship.create(is_military: true))
 => #<Vehicle _id: 4f042de8fed0ebc4c5000004, _type: "Vehicle",
resource_type: "Ship", resource_id: BSON::ObjectId('4f042de8fed0ebc
4c5000003'), terrain: nil, cost: nil, weight: nil, max_speed: nil>

Remember, that we cannot do this the other way round:

irb>ship = Ship.create(:vehicle => Vehicle.create)
 => #<Ship _id: 4f042dd0fed0ebc4c5000002, _type: "Ship", is_military:
nil, is_cruise: nil, missile_capable: nil, anti_aircraft: nil, number_
engines: nil>

irb> Vehicle.last
 => #<Vehicle _id: 4f042dd0fed0ebc4c5000001, _type: "Vehicle",
resource_type: nil, resource_id: nil, terrain: nil, cost: nil, weight:
nil, max_speed: nil>

irb> Vehicle.create(:resource => Ship.create)

When the first command is run, the Vehicle object is created first, so the Ship object
cannot be assigned as the resource. That is the reason the Vehicle object has resource_
type and resource_id as nil. Obvious, wasn't it?

Choosing SCI or basic polymorphism
As mentioned earlier, this is the choice of single collection or multiple collections. It's best
shown by an example. The MongoDB collection looks like the following for drivers and
vehicles:

> db.drivers.find()

{"_id":ObjectId("..."), "name":"Gautam", "_type":"Pilot" }

{"_id":ObjectId("..."), "name":"Gautam", "_type":"CarDriver" }

{"_id":ObjectId("..."), "name":"Gautam", "_type":"ShipDriver" }

Notice, that for the drivers collection, the _type of objects are different in the same
collection. This is SCI!

> db.vehicles.find()

{"_id":ObjectId("..."), "_type" : "Vehicle", "resource_id" : ObjectId("4f
02077dfed0ebb308000001"), "resource_type" : "Ship" }

{"_id":ObjectId("..."), "_type" : "Vehicle", "resource_id" : ObjectId("4f
020807fed0ebb308000007"), "resource_type" : "Ship" }

However, in the vehicles collection, the _type of objects is the same—Vehicle. This is
basic polymorphism.

Chapter 5

[133]

Using embedded objects
We know what embedded objects are and we have seen this already in the previous
chapters. Now, we shall see how these are built via DataMappers. Just to recap, an
embedded document is one that resides inside a parent document. We have seen a
sample of this already, it's listed next:

book : { name: "Oliver Twist",
 ...

 reviews: [
 {
 _id: ObjectId("5e85b612fed0eb0bee000001"),
 user_id: ObjectId("8d83b612fed0eb0bee000702"),
 book_id: ObjectId("4e81b95ffed0eb0c23000002"),
 comment: "Very interesting read"
 },
 {
 _id: ObjectId("4585b612fed0eb0bee000003"),
 user_id : ObjectId("ab93b612fed0eb0bee000883"),
 book_id: ObjectId("4e81b95ffed0eb0c23000002"),
 comment: "Who is Oliver Twist?"
 }
]
...
}

In the preceding code, reviews is an array of embedded objects. How do you identify an
embedded object?

{
 _id: ObjectId("5e85b612fed0eb0bee000001"),
 user_id: ObjectId("8d83b612fed0eb0bee000702"),
 book_id: ObjectId("4e81b95ffed0eb0c23000002"),
 comment: "Very interesting read"
}

When ObjectId exists, it's an embedded object. Now, let's see how we define them using
DataMappers. As with all associations, these are two-way associations.

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[134]

Time for action – creating embedded objects
Let's continue our example and assume that a driver has one address and many bank
accounts. As addresses or bank accounts have hardly any relevance without a driver,
we choose to embed them into the Driver model.

Using MongoMapper
First let's revisit the Driver model as shown next:

class Driver
 include MongoMapper::Document

 one :address
 many :bank_accounts
end

Now let's see how the Address and BankAccount models are constructed. This is done
as follows:

app/models/address.rb
class Address
 include MongoMapper::EmbeddedDocument

 key :street, String
 key :city, String
end

app/models/bank_account.rb
class BankAccount
 include MongoMapper::EmbeddedDocument

 key :account_number, String
 key :balance, Float
end

Using Mongoid
Using Mongoid, it looks like the following:

class Driver
 include Mongoid::Document

 field :name, type: String
 ...

Chapter 5

[135]

 embeds_one :address
 embeds_many :bank_accounts
end

And the Address and BankAccount models are written as follows:

app/models/address.rb
class Address
 include Mongoid::Document

 field :street, type: String
 field :city, type: String

 embedded_in :driver
end

app/model/bank_account.rb
class BankAccount
 include Mongoid::Document

 field :account_number, type: String
 field :balance, type: Float

 embedded_in :driver
end

If we try this on the Rails console, we can create Driver, Address, and BankAccount
objects. Using either of the DataMappers, we can create the objects as follows:

irb> d = Driver.first
 => #<Pilot _id: 4ef9a410fed0eb977d000002, _type: "Pilot", name:
"Gautam", age: nil, address: nil, weight: nil, gforce: nil>

irb> d.address = Address.new(street: "SB Road", city: "Pune")
 => #<Address _id: 4f0491bcfed0ebcc59000001, _type: nil, street: "SB
Road", city: "Pune">

irb> d.bank_accounts << BankAccount.new(account_number:
"1230001231225", balance: 1231.23)
 => [#<BankAccount _id: 4f0491f6fed0ebcc59000002, _type: nil, account_
number: "1230001231225", balance: 1231.23>]

irb> d.save
 => true

irb> d = Driver.first

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[136]

 => #<Pilot _id: 4ef9a410fed0eb977d000002, _type: "Pilot", name:
"Gautam", age: nil, address: {"street"=>"SB Road", "city"=>"Pune", "_
id"=>BSON::ObjectId('4f0491bcfed0ebcc59000001')}, weight: nil, gforce:
nil>

irb> d.address
 => #<Address _id: 4f0491bcfed0ebcc59000001, _type: nil, street: "SB
Road", city: "Pune">

irb> d.bank_accounts
 => [#<BankAccount _id: 4f0491f6fed0ebcc59000002, _type: nil, account_
number: "1230001231225", balance: 1231.23>]

What just happened?
When we add an Address object or a BankAccount object to Driver, an object is created
but it's embedded inside the Driver object. If we see the MongoDB document, we will
notice the following:

mongo> db.drivers.findOne()
{ "_id" : ObjectId("4ef9a410fed0eb977d000002"), "_type" : "Pilot",
"address" : { "street" : "SB Road", "city" : "Pune", "_id" : ObjectId(
"4f0491bcfed0ebcc59000001") },
"name" : "Gautam"
"bank_accounts" : [
 {
 "account_number" : "1230001231225",
 "balance" : 1231.23,
 "_id" : ObjectId("4f0491f6fed0ebcc59000002")
 }
]
}

Notice that address and bank_accounts are fields in the document but have ObjectId
specified in them.

Remember that you cannot create or access embedded objects without
the parent object context.

If you try to create an embedded object without any context of the document it's embedded
in, you will get an error. We'll see this in the following sections.

Chapter 5

[137]

Using MongoMapper
irb> Address.create
NoMethodError: undefined method 'create' for Address:Class

The Address class does not have a create method. This is because it is embedded into
another object. Let's see if we can find an address (as weird as that sounds).

irb> > Address.first
NoMethodError: undefined method 'first' for Address:Class

That didn't work either—and rightly so.

Using Mongoid
Mongoid gives slightly different errors instead of MongoMapper:

irb> Address.create
NoMethodError: undefined method 'new?' for nil:NilClass

Undefined method!! That's a weird one! If we dig deeper into the Mongoid code, we see
that a model maps to a collection and we create documents inside that collection. Address
is not a collection (as it's an embedded document). So, when we call create on this, it tries
to resolve that model to collection. As there is no collection by this name, nil is passed to
the Persistence module, resulting in the NilClass error. Not very intuitive, but please
pardon Mongoid!

irb> Address.first
Mongoid::Errors::InvalidCollection: Access to the collection for
Address is not allowed since it is an embedded document, please access
a collection from the root document.

Wow! Finally we get an error that makes sense. Mongoid tells us to access the parent
document and not access the embedded document, as there is no collection named Address.

This error also gives more insight into how different the internal behavior
of Mongoid and MongoMapper is.

Reverse embedded relations in Mongoid
The reverse embedded relations for embedded documents is very important. Mongoid uses
them to resolve where these documents are to be embedded. Here are some things we
should keep in mind to avoid unforeseen behavior.

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[138]

Time for action – using embeds_one without specifying
embedded_in

If we only specify the embeds_one relationship in the parent but do not specify the
embedded_in relationship in the embedded relation, the document will not be
embedded and there will be no error issued either. Have a look at the following code:

class Driver
 include Mongoid::Document

 ...
 embeds_one :address
end

class Address
 include Mongoid::Document

 # have intentionally not put the embedded_in relation.
End

If we now try to embed the Address object into the Driver, a half-baked Driver object
gets created:

irb> d = Driver.first
 => #<Pilot _id: 4ef9a410fed0eb977d000002, _type: "Pilot", name:
"Gautam", age: nil, address: {"street"=>"SB Road", "city"=>"Pune", "_
id"=>BSON::ObjectId('4f0491bcfed0ebcc59000001')}, weight: nil, gforce:
nil>

irb> d.address = Address.new(street: "A new street")
 => #<Address _id: 4f0662c2fed0ebe0ee000002, _type: nil, street: "A
new street", city: nil>

irb> d.save
 => true

irb> Driver.first
 => #<Pilot _id: 4ef9a410fed0eb977d000002, _type: "Pilot", name:
"Gautam", age: nil, address: {"street"=>"SB Road", "city"=>"Pune", "_
id"=>BSON::ObjectId('4f0491bcfed0ebcc59000001')}, weight: nil, gforce:
nil>

Chapter 5

[139]

What just happened?
Notice that the address has not changed in the object saved to database, even though
MongoDB says that the object was saved correctly. The reason why the address did not
change from SB Road to A new street is because when Mongoid tried to save the
embedded document, it looked for the reverse relation and did not find it, so that data
was ignored.

Under the cover, Mongoid treats embedded models also as Mongoid::Document.
The embedded_in method helps resolve the parent.

Time for action – using embeds_many without specifying
embedded_in

Not specifying the embedded_in can cause some real problems even for a many-to-many
relation. This would create new half-baked parent objects in the collection. Have a look at
the following code:

class Driver
 include Mongoid::Document

 ...
 embeds_many :bank_accounts
end

class BankAccount
 include Mongoid::Document

 # have intentionally not put the embedded_in relation.
end

Now, if we try to add BankAccounts to the Driver object, we get into trouble! This is
shown next:

irb> d = Driver.last
 => #<Driver _id: 4f06667cfed0ebe13e000001, _type: nil, name:
nil, age: nil, address: {"_id"=>BSON::ObjectId('4f066684fed0ebe1
3e000002')}, weight: nil>

irb> d.bank_accounts << BankAccount.new
 => [#<BankAccount _id: 4f06672cfed0ebe164000001, _type: nil, account_
number: nil, balance: nil>]

irb> Driver.last
 => #<Driver _id: 4f06672cfed0ebe164000001, _type: nil, name: nil,
age: nil, address: nil, weight: nil>

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[140]

What just happened?
First we fetched the last Driver object as follows:

irb> d = Driver.last
 => #<Driver _id: 4f06667cfed0ebe13e000001, _type: nil, name:
nil, age: nil, address: {"_id"=>BSON::ObjectId('4f066684fed0ebe1
3e000002')}, weight: nil>

Here, we can see that it's a proper Driver object with some addresses embedded in it.
We also see that the Driver object has the ID 4f06667cfed0ebe13e000001.

Now, we are trying to embed a BankAccount object into the Driver bank_accounts array
but remember that we have not specified the embedded_in relation. This is done as follows:

irb> d.bank_accounts << BankAccount.new
 => [#<BankAccount _id: 4f06672cfed0ebe164000001, _type: nil, account_
number: nil, balance: nil>]

Notice, that we rightly see the BankAccount object inserted into the bank_accounts
array. However, there is something seriously wrong in the database update:

irb> Driver.last
 => #<Driver _id: 4f06672cfed0ebe164000001, _type: nil, name: nil,
age: nil, address: nil, weight: nil>

Now, if we try to fetch the last driver object, we see a Driver object with the ID
4f06672cfed0ebe164000001. This is the object ID of the BankAccount object
we created in the earlier step. So, we have a half-baked Driver object.

Be careful! As MongoDB is a schema-free database, it will allow such
incorrect behavior to creep in—but it's only we who are to blame
when we use Mongoid incorrectly.

MongoMapper, on the other hand, treats embedded documents
differently as they are MongoMapper::EmbeddedDocuments,
so this problem does not arise.

Understanding embedded polymorphism
Yes! We can use polymorphism even for embedded documents. Why treat them
differently? We already know the concept of polymorphism. Let's extend this to
embedded documents too.

Chapter 5

[141]

Single Collection Inheritance
Let's assume that a driver has different types of licenses—to fly, to drive a car, to drive a bike, to
drive a ship, to command a space shuttle, among others. As the license cannot exist without a
driver, we embed it into the Driver model. However, the license shows polymorphic behavior.

Time for action – adding licenses to drivers
First, let's embed licenses into the Driver model using Single Collection Inheritance. This
can be done as follows:

class Driver
 include Mongoid::Document

 field :name, type: String
 ...

 embeds_many :licenses
end

And now let's create a License model as follows:

app/models/lincense.rb
class License
 include Mongoid::Document

 embedded_in :driver
end

app/models/car_license.rb
class CarLicense < License
end

Let's see how to embed the License model into the Driver model in the following code:

irb> d = Driver.first
 => #<Pilot _id: 4ef9a410fed0eb977d000002, _type: "Pilot", name:
"Gautam", age: nil, address: {"street"=>"SB Road", "city"=>"Pune", "_
id"=>BSON::ObjectId('4f0491bcfed0ebcc59000001')}, weight: nil, gforce:
nil>

irb> d.licenses << CarLicense.new
 => [#<CarLicense _id: 4f065ed4fed0ebd605000003, _type: "CarLicense">]

irb> d.save
 => true

irb> Driver.first.licenses
 => [#<CarLicense _id: 4f065ed4fed0ebd605000003, _type: "CarLicense">]

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[142]

What just happened?
We can see that the licenses array now has a CarLicense object in it. It's also interesting
to see from the MongoDB console that the ID was really embedded:

{ "_id" : ObjectId("4ef9a410fed0eb977d000002"), "_type" : "Pilot",
"address" : { "street" : "SB Road", "city" : "Pune", "_id" : ObjectId(
"4f0491bcfed0ebcc59000001") }, "bank_accounts" : [
 {
 "account_number" : "1230001231225",
 "balance" : 1231.23,
 "_id" : ObjectId("4f0491f6fed0ebcc59000002")
 }
], "licenses" : [
 {
 "_id" : ObjectId("4f065ed4fed0ebd605000003"),
 "_type" : "CarLicense"
 }
], "name" : "Gautam" }

Yes it was indeed!

Basic embedded polymorphism
Let's consider the case of insurance for drivers. Assume that drivers may or may not
have insurance. For example, suppose we say that pilots and astronauts must have travel
insurance and car drivers must have theft insurance. Bike riders don't need any insurance.
In such a case, we don't want insurance to be a part of the Driver model.

Instead, we should have the option to put it in any class that really needs it. This also means
that these insurance classes may be related to different driver subclasses. As insurance is
moot without the driver's existence, we should embed it.

Time for action – insuring drivers
Let's prepare different types of insurance as follows:

app/models/pilot.rb
class Pilot < AeroSpace
 embeds_many :insurances, as: :insurable
end

app/models/car_driver.rb
class CarDriver < Terrestrial
 embeds_many :insurance, as: :insurable

Chapter 5

[143]

end

app/models/astronaut.rb
class Astronaut < AeroSpace
 embeds_many :insurances, as: :insurable
end

And now we design the Insurance class as follows:

app/models/insurance.rb
class Insurance
 include Mongoid::Document

 embedded_in :insurable, polymorphic: true
end

app/models/travel_insurance.rb
class TravelInsurance < Insurance
end

app/models/theft_insurance.rb
class TheftInsurance < Insurance
end

Now let's provide insurance policies for our drivers as follows:

irb> p = Pilot.first
 => #<Pilot _id: 4ef9a410fed0eb977d000002, _type: "Pilot", name:
"Gautam", age: nil, address: {"street"=>"asfds", "city"=>"Pune", "_id
"=>BSON::ObjectId('4f0491bcfed0ebcc59000001')}, weight: nil, gforce:
nil>

irb> p.insurances << TravelInsurance.new
 => [#<TravelInsurance _id: 4f06ad2efed0ebe598000002, _type:
"TravelInsurance">]

irb> a = Astronaut.first
 => #<Astronaut _id: 4f069fd8fed0ebe45d000001, _type: "Astronaut",
name: nil, age: nil, address: nil, weight: nil, gforce: nil>

irb> a.insurances << TravelInsurance.new
 => [#<TravelInsurance _id: 4f06b058fed0ebe598000004, _type:
"TravelInsurance">]

irb> a.insurances << FireInsurance.new

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[144]

 => [#<FireInsurance _id: 4f06ad6bfed0ebe598000003, _type:
"FireInsurance">]

irb> a.insurances
 => [#<FireInsurance _id: 4f06ad6bfed0ebe598000003, _type:
"FireInsurance">, #<TravelInsurance _id: 4f06b058fed0ebe598000004,
_type: "TravelInsurance">]

What just happened?
Let's have a closer look at the preceding commands:

irb> p = Pilot.first
 => #<Pilot _id: 4ef9a410fed0eb977d000002, _type: "Pilot", name:
"Gautam", age: nil, address: {"street"=>"asfds", "city"=>"Pune", "_id
"=>BSON::ObjectId('4f0491bcfed0ebcc59000001')}, weight: nil, gforce:
nil>

irb> p.insurances << TravelInsurance.new
 => [#<TravelInsurance _id: 4f06ad2efed0ebe598000002, _type:
"TravelInsurance">]

Here, Insurance is polymorphic. This means that the Insurance object can be embedded
in multiple parents. In this case, we have TravelInsurance (that is, a model, which
inherits from Insurance) being assigned to the Pilot class:

irb> a = Astronaut.first
 => #<Astronaut _id: 4f069fd8fed0ebe45d000001, _type: "Astronaut",
name: nil, age: nil, address: nil, weight: nil, gforce: nil>

irb> a.insurances << TravelInsurance.new
 => [#<TravelInsurance _id: 4f06b058fed0ebe598000004, _type:
"TravelInsurance">]

Now, we have the TravelInsurance object being embedded in the Astronaut class. This
shows us the polymorphic nature of the Insurance embedded object – it can be embedded
in different parents.

Have a go hero
Why don't you try and assign TheftInsurance to CarDriver?

Choosing whether to embed or to associate documents
This is indeed sometimes a dilemma. While modeling data, if you see that the child document
cannot exist without the parent object and if you are relatively sure that you would not need to
search for the child objects directly, you could embed them.

Chapter 5

[145]

For the UML savvy, a composition relation is a good candidate for embedding.

When in doubt do not embed!

So, what happens if you embed an object and realize later that you need to process
embedded objects? Or maybe the relation was wrong—it should not have been embedded?
Don't worry! The following are a couple of options you have:

 � Change the code from embed to association. As MongoDB is schema free, new
objects will automatically pick up the relation.

 � Fire queries on the embedded objects if required. But, this may not be a good
solution as it would mean unnecessary calls for even basic lookups.

Mongoid or MongoMapper – the verdict
It's neutral! Stick to either Mongoid or MongoMapper, not both at the same time.
My personal preference is Mongoid as it's closer to the ActiveModel relations than
MongoMapper.

The following are some points to ponder:

 � MongoMapper has lesser documentation than Mongoid and it's sometimes
not up-to-date.

 � Many-to-many associations are updated only one-sided in MongoMapper.
Mongoid gets this right and both objects keep an array of each other, so we
can query both ways.

 � Sometime errors spewed by MongoMapper and Mongoid can be intimidating.
It usually means we are doing something wrong.

 � There are no embedded reverse associations in MongoMapper. This is advantageous
because unlike Mongoid, MongoMapper does not use the reverse association for
creating embedded objects. Having it, however, gives better visibility to us and is
also more aligned with the ActiveModel relations.

Overall, it's a matter of choice. I have chosen Mongoid as my DataMapper. It's also
interesting to realize that merging the two into a new MongoDB mapper would be
very complex, as both of them work in different ways internally.

Diversity and constructive competition between Mongoid and
MongoMapper gives us much better productivity.

Ruby DataMappers: Ruby and MongoDB Go Hand in Hand

[146]

Pop quiz – Mongoid, MongoMapper, and more
1. Which of the following does not define a MongoDB aware model?

a. include Mongoid::Document

b. include MongoMapper::Document

c. include MongoMapper::EmbeddedDocument

d. include Mongoid::EmbeddedDocument

2. In Mongoid, what is the reverse embedded relation method?

a. belongs_to

b. embedded_in

c. has_many

d. has_and_belongs_to_many

3. Which of the following is not true for Single Collection Inheritance?

a. All documents are stored in a single collection.

b. A single collection contains different types of documents.

c. The resource_id and resource_type determine the document type.

d. All models are inherited from a single base model.

4. Which of the following mentions a true difference between Mongoid and
MongoMapper?

a. Unlike Mongoid, MongoMapper has only one-way association for
many-to-many relations.

b. Unlike MongoMapper, Mongoid supports embedded polymorphic relations.

c. Mongoid has modules and MongoMapper has plugins.

d. MongoMapper has Plucky and Mongoid has Criteria.

Summary
In this chapter we learned how MongoDB mappers work using Mongoid and MongoMapper.
We saw how we can configure Mongoid and MongoMapper. We then fired queries to fetch,
create, and update documents. We also implemented the basic relations—one-to-one,
one-to-many, and many-to-many. We played around the concept of polymorphic relations
and how we can implement them in documents, as well as embedded documents.

In the next chapter we shall see how we can create a web application using all that we have
learned in this chapter. We shall integrate Ruby DataMappers with Rails and Sinatra. If the
going was a breeze until now, it gets windy after this!

6
Modeling Ruby with Mongoid

I have been unfair with you in the previous chapters! We have been seeing a
lot of Ruby code using MongoMapper and Mongoid but I have not explained
how that works. Chapter 4, Working Out Your Way with Queries taught us how
to query in MongoDB. Chapter 5, Ruby DataMappers: Ruby and MongoDB Go
Hand in Hand showed us how to interact with MongoDB from Ruby. In this
chapter, we once again change gears and shall look at the first step to get our
Ruby application onto the web, building models using Mongoid. This is one step
closer to the web application we want to build!

In this chapter we shall learn the following:

 � Setting up a Mongoid project in Rails, Sinatra, and a simple Rack application

 � Defining attributes in Mongoid and their options

 � Defining different types of relations in Mongoid

 � Using arrays and hashes in our model

 � Embedding documents in the model

 � Setting up indexes for faster querying

 � Making changes in our models and the impact it has on the database documents

Developing a web application with Mongoid
Choices are tough but inevitable—Mongoid or MongoMapper? This book here onwards
would use Mongoid as its data mapper and we shall see more of web development using
Ruby and MongoDB via Mongoid.

Modeling Ruby with Mongoid

[148]

Setting up Rails
We have already seen in the earlier chapter how to set up a Rails application for Mongoid
and MongoMapper. Here is a summary again.

Time for action – setting up a Rails project
We are using Rails 3 to set up a new project and we shall continue our library management
system: Sodibee. We can set up Rails for Sodibee using the following commands:

$ rails new sodibee –OT

 create

 create README

 create Rakefile

...

 create vendor/plugins/.gitkeep

 run bundle install

$

Now, verify that the config/application.rb has the following code in it. Notice that the
ActiveRecord railtie is commented out:

require File.expand_path('../boot', __FILE__)

Pick the frameworks you want:
require "active_record/railtie"
require "action_controller/railtie"
require "action_mailer/railtie"
require "active_resource/railtie"
require "rails/test_unit/railtie"

A railtie is a class that sits at the core of the Rails framework. It's the glue
that ties in every component into the Rails core framework. Using railties,
we can easily add/modify the Rails initialization process and add/extend
the Rails framework.

What just happened?
Let's briefly look at the options we have when initializing a Rails project:

 � -O: Using this option, the Rails project skips Active Record files

 � -T: Using this option, the Rails project skips Test::Unit files.

Chapter 6

[149]

We can now configure Mongoid into the Rails application. First, ensure that the Gemfile has
Mongoid configured:

gem 'mongoid'
gem 'bson'
gem 'bson_ext'

Ensure that bson, bson_ext, and mongo gems have the same version!
At the time of writing this book, I was using version 1.6.2.

Now ensure that Mongoid is configured properly:

$ rails generate mongoid:config

This generates the config/mongoid.yml file that has some default configuration for the
database connectivity. The file should look like the following:

development:
 host: localhost
 database: sodibee_development

test:
 host: localhost
 database: sodibee_test

set these environment variables on your prod server
production:
 host: <%= ENV['MONGOID_HOST'] %>
 port: <%= ENV['MONGOID_PORT'] %>
 username: <%= ENV['MONGOID_USERNAME'] %>
 password: <%= ENV['MONGOID_PASSWORD'] %>
 database: <%= ENV['MONGOID_DATABASE'] %>
 # slaves:
 # - host: slave1.local
 # port: 27018
 # - host: slave2.local
 # port: 27019

Setting up Sinatra
When using Sinatra remember only two words: light-weight and Rack. We can write a fully
functional web application in four lines of code:

require 'sinatra'

get '/hi' do
 "Hello World!"
end

Modeling Ruby with Mongoid

[150]

Sinatra was a rebel that was welcomed. There was a time when
ActiveRecord ruled and was so tightly coupled with Ruby on Rails
that it was virtually impossible to use anything else. The controllers
packed so much in them, that the framework became really heavy.

Blake Mizerany wrote Sinatra as a light-weight framework. It came with
minimal or no baggage and ran as a simple Rack application! Merb too
made a strong appearance around this time but it was heavier than
Sinatra and lighter than Rails (2.x).

The Rails 3 core team realized the value of being pluggable and
redesigned the architecture with Metal. Metal is a pluggable middleware
manager, where one can configure how heavy the framework should
be. Today, Rails 3 can do everything as lightly as Sinatra can do and even
allows a seamless addition of our own middleware in the Rack – so for
the remainder of this book we will see Rails 3!

Kudos to Sinatra and Merb!

The modular version of building a Sinatra application requires only two files
primarily—the config.ru and a main application code file. A typical config.ru
would look like the following:

This file is used by Rack-based servers to start the application.

require 'sinatra'
require './app'

run Sinatra::Application

The app.rb (our application code file) looks like the following:

require 'sinatra'

get "/" do
 "Hello Word"
end

This is almost similar to writing it in a single file except that config.ru is a rackup file, so
we can configure it directly with any Rack application. Running this is as simple as follows:

$ rackup config.ru

INFO WEBrick 1.3.1

INFO ruby 1.9.2 (2011-07-09) [i386-darwin9.8.0]

INFO WEBrick::HTTPServer#start: pid=16574 port=9292

Chapter 6

[151]

And now when we start the browser, we can see the output:

Time for action – using Sinatra professionally
Now, let's take a little more professional approach by adding a Gemfile to the application. In
the same folder as the other two files, let's add the Gemfile with the following contents:

source :rubygems

gem 'sinatra'

And now we simply bundle this together and run it:

$ bundle install

...

$ bundle exec rackup config.ru

INFO WEBrick 1.3.1

INFO ruby 1.9.2 (2011-07-09) [i386-darwin9.8.0]

INFO WEBrick::HTTPServer#start: pid=16574 port=9292

This is now a full-fledged setup.

Now, let's see how we can add Mongoid to this application. We need to simply add models
to the application. In other words, just require these model files. Here are the changes we
make to the Gemfile:

source :rubygems

gem 'sinatra'
gem 'mongoid'
gem 'bson'
gem 'bson_ext'

Modeling Ruby with Mongoid

[152]

As we have included Mongoid, let's also include the Mongoid models. But first, let's create
the models in the models directory:

$ mkdir models

And let's add some models. We can add the Author, Book, and Category models as follows:

models/author.rb
class Author
 include Mongoid::Document

 field :name, type: String

end

models/book.rb
class Book
 include Mongoid::Document

 field :title, type: String
 field :publisher, type: String
 field :published_on, type: Date

end

models/category.rb
class Category
 include Mongoid::Document

 field :name, type: String

end

Now that we have added the models, we should also include them properly in the
config.ru and also configure MongoDB. The config.ru is configured as:

require 'sinatra'
require 'mongoid'

require './app'

Dir["models/*.rb"].each do |file|
 require "./models/#{File.basename(file, '.rb')}"
end

run Sinatra::Application

Chapter 6

[153]

And this is what the code in the main application file, called app.rb, should look like:

app.rb

require 'mongoid'
require 'sinatra'

configure do
 Mongoid.configure do |config|
 name = "sodibee_development"
 host = "localhost"
 config.master = Mongo::Connection.new.db(name)
 config.persist_in_safe_mode = false
 end
end

get "/" do
 "Hello World"
end

get "/books" do
 Book.first.name
end

That's it! Let's see what the browser has to say now:

What just happened?
We got MongoDB working using a Sinatra application. Let's see the code in detail. The
Gemfile needs no explanation as it has the gems we require—sinatra, mongoid,
and bson_ext. Let's look at the config.ru rackup file, it looks like this:

require 'sinatra'
require 'mongoid'

require './app'

Modeling Ruby with Mongoid

[154]

Dir["models/*.rb"].each do |file|
 require "./models/#{File.basename(file, '.rb')}"
end

run Sinatra::Application

Requiring the mongoid and sinatra gems is straightforward. However, we also need to
include app.rb—the main application. Let's have a look at the config.ru rackup file again:

require 'sinatra'
require 'mongoid'

require './app'

Dir["models/*.rb"].each do |file|
 require "./models/#{File.basename(file, '.rb')}"
end

run Sinatra::Application

The highlighted code lists all the .rb files in a directory and loads them. Let's take a look at
config.ru a second time:

require 'sinatra'
require 'mongoid'

require './app'

Dir["models/*.rb"].each do |file|
 require "./models/#{File.basename(file, '.rb')}"
end

run Sinatra::Application

The highlighted code is a call to actually run the Sinatra application. Remember, that we have
already loaded the application file that has routes, configuration, and control code!

Let's have a look at the main application file app.rb:

app.rb

require 'mongoid'
require 'sinatra'

configure do

Chapter 6

[155]

 Mongoid.configure do |config|
 name = "sodibee_development"
 host = "localhost"
 config.master = Mongo::Connection.new.db(name)
 config.persist_in_safe_mode = false
 end
end

get "/" do
 "Hello World"
end

get "/books" do
 Book.first.name
end

The configure block sets up MongoDB. We set the name as well as host and use the
mongo-ruby-driver to configure the database. Now, all the models that have mongoid
included in them and they can directly access the database!

Have a look at app.rb again:

app.rb

require 'mongoid'
require 'sinatra'

configure do
 Mongoid.configure do |config|
 name = "sodibee_development"
 host = "localhost"
 config.master = Mongo::Connection.new.db(name)
 config.persist_in_safe_mode = false
 end
end

get "/" do
 "Hello World"
end

get "/books" do
 Book.first.name
end

Modeling Ruby with Mongoid

[156]

This is the web server root path. That means that if the URL does not contain anything but
the domain and the port, this path will be used. An application must have at least this route
defined to work.

Let's take a look at app.rb a third time:

app.rb

require 'mongoid'
require 'sinatra'

configure do
 Mongoid.configure do |config|
 name = "sodibee_development"
 host = "localhost"
 config.master = Mongo::Connection.new.db(name)
 config.persist_in_safe_mode = false
 end
end

get "/" do
 "Hello World"
end

get "/books" do
 Book.first.name
end

Using the "/books" route for the Sinatra application, we can directly access the books using
the Book model. The preceding code prints the name of the first book!

It's interesting to note that the models (Book, Author, among others)
have not changed, whether it's Sinatra or a Rails application!

Understanding Rack
We have heard the word Rack earlier. But what is Rack and what does it mean?

Rack is the glue that binds web frameworks with the web servers. Every web server is expected
to respond to HTTP requests with a status, header, and body. Rack simplifies this and defines
the standard in which a web server should respond. The simplest Rack application is:

class HelloWorld
 def call(env)
 [200, {"Content-Type" => "text/plain"}, ["Hello world!"]]
 end
end

Chapter 6

[157]

The previous code is from one of the famous resources for introducing Rack
http://chneukirchen.org/blog/archive/2007/02/introducing-rack.html.
This is an excellent example to understand what Rack means. In the preceding code, 200
represents the HTTP status code,{"Content-Type" => "text/plain"} represents
the HTTP headers, and [" Hello world!"] is the HTTP body.

Simple and sweet! Where do Sinatra and Rails fit in? They fit right into the Rack by
implementing the call method internally.

Defining attributes in models
Until now we have seen how attributes are added in models. But we never really dug
deeper to find out how that works.

A typical model looks like the following:

class Book
 include Mongoid::Document

 field :title, type: String
 field :publisher, type: String
 field :published_on, type: Date

 field :votes, type: Array
 field :reviews, type: Hash
end

The field method from Mongoid::Document takes at least one mandatory parameter
and some optional arguments—name is mandatory and here are some optional arguments.
The ones we would use most are :type and :default. The optional arguments are
explained as follows:

 � :type: It is the data type which should either be a String, Data, Integer, Float,
Bignum, Boolean, or something similar

 � :as: This is required when specifying a polymorphic relation

 � :default: This sets the default value to the field

 � :localize: It tells Mongoid that this is i18n compliant

 � :identity: This is for specifying the information for the identity map

We may not specify any options. This is taken as an on-the-fly configuration. It's
advantageous if all the fields are strings or we know what we are typecasting them as.
This improves performance but is not recommended. It also leads to code readability
issues and could cause problems later.

Modeling Ruby with Mongoid

[158]

The :default option is very interesting. It can be set to a value or even be a block of code:

field :published_on, default: Time.now

Alternatively, we could also use a block of code for default:

field :published_on, default: { Time.now – 2.years }

Accessing attributes
We access the attributes in any of the following ways:

 � book = Book.first

 � book.name # => "Oliver Twist"

 � book[:name] # => "Oliver Twist"

 � book.read_attribute(:name) # => "Oliver Twist"

Similarly, we can set values too, as follows:

 � book.name = "Something Else"

 � book[:name] = "Something Else"

 � book.write_attribute(:name, "Something Else")

We can also set multiple attributes at the same time, as follows:

Book.write_attributes(name: "Something Else", publisher: "Dover")

Indexing attributes
Indexing fields improves performance for lookups. We can add various types of indexes to
models. Basic indexing is done as follows:

class Book
 include Mongoid::Document

 field :publisher, type: String
 ...

 index :publisher
end

But we can specify different types of indexes too.

Chapter 6

[159]

Unique indexes
This is the most common type of indexing scheme. We can ensure that the indexes are
unique. It is done as follows:

class Book
 include Mongoid::Document

 field :publisher, type: String
 ...

 index :publisher, unique: true
end

Background indexing
Creating indexes in real time can be expensive as it blocks the database operations
while creating indexes. Adding the background option does indexing in the background,
as follows:

class Book
 include Mongoid::Document

 field :publisher, type: String
 ...

 index :publisher, unique: true, background: true
end

Geospatial indexing
We shall see details of geospatial indexing in later chapters. In a nut shell though, when we
require a latitude and longitude field for a model, we can leverage the in-built geospatial
indexing provided by MongoDB with help from a custom class in app/models/ named as
location.rb:

class Location
 include Mongoid::Document

 field :coordinates, type: Array

 index [[:coordinates, Mongo::GEO2D]]
end

Modeling Ruby with Mongoid

[160]

Sparse indexing
When we don't want to index every document but only those that have any indexed fields,
we term it as a sparse index. It's done as follows:

class Book
 include Mongoid::Document

 field :publisher, type: String
 ...

 index :publisher, sparse: true
end

Remember, that when we use sparse indexes, results returned from the query could be only
from the indexed document and not on all the documents in the collection. So, be careful.

Currently, there can be only one indexed field as a sparse.

Dynamic fields
As MongoDB is schema free, does it mean that we can actually define fields on-the-fly? Yes!
So, not only do we not need a structured schema, in fact we may not require a schema at all!

This helps in cases where the schema is subject to change frequently. Dynamic fields are
turned on by default in Mongoid. This means that if we define a field that does not exist
in the schema, it will automagically get added to the document. Isn't that really cool. Let's
consider the basic Book model:

class Book
 include Mongoid::Document

 field :publisher, type: String
 field :name, type: String
end

Time for action – adding dynamic fields
Let's see how this works! Execute the following:

irb>b = Book.first

 => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, publisher: "Dover
Publications", name: "Oliver Twist">

irb> b[:dedication] = "The kids"

Chapter 6

[161]

 => "The kids"

irb> b.save!

 => true

irb> b

 => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, publisher: "Dover
Publications", name: "Oliver Twist", dedication: "The kids">

What just happened?
As per the Book model, there are only two fields: publisher and name for a book.
However, we can easily add a new field dedication to this document. Though it seems
straightforward, there are a couple of things that we should know.

For dynamic fields, we do not have the getter/setter routines. It means, for the case just
discussed, when we add a dynamic field dedication to the document, we cannot access
the object with b.dedication. That will throw a NoMethodError exception as follows:

> b.dedication

NoMethodError: undefined method 'dedication' for #<Book:0x1e0e2e0>

...

> b.dedication = "Not for the kids"

NoMethodError: undefined method 'dedication=' for #<Book:0x1e0e2e0>

...

Why is it like this, you ask? Well, let's look at it objectively. If, for every dynamic field, the
Ruby DataMapper adds a getter/setter routine (that is, dedication and dedication=
methods), the class code will become huge and unmanageable. More importantly, if we add
fields whose names conflict with internal method names, it can cause a lot of trouble. So,
dynamic fields are only accessible by the [] methods that is, b[:dedication].

Modeling Ruby with Mongoid

[162]

Localization
Most databases require Localization and Internationalization. In turn, Mongoid and
MongoMapper both use the i18n gem for internationalization.

Internationalization and Localization are very commonly misunderstood.

Internationalization deals with the process of setting up localization! For
example, managing different character encoding schemes (UTF8, UTF16,
among others), date formats, currency formats, and so on.

Localization is displaying information based on the locale – language
symbols, currency, character markups like é or symbols like a or currency
like €, and so on.

Time for action – localizing fields
Let's see how we can configure localized data in Mongoid:

class Book
 include Mongoid::Document

 field :publisher, type: String
 field :price, localize: true
 end

Note, that we have not defined the type for the field price; instead we have set the
localize option. This internally tells Mongoid to store this data as a hash! Depending
on the different locales supported, the different currency will get set. Let's execute the
following commands:

irb> b = Book.first

 => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, publisher: "Dover
Publications", name: "Oliver Twist", price: nil>

irb> I18n.locale

 => :en

irb> b.price = "40$"

 => "40$"

irb> I18n.locale => :hi

 => :hi

irb> b.price = "Rs. 2000"

Chapter 6

[163]

 => "Rs. 2000"

irb> b.save

 => true

irb> b

 => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, publisher: "Dover
Publications", name: "Oliver Twist", price: {"en"=>"40$", "hi"=>"Rs.
2000"}>

irb> b.price_translations

 => {"en"=>"40$", "hi"=>"Rs. 2000"}

What just happened?
As price is defined as a localized field, Mongoid automatically maintained a hash of locales
and its localized values. Now, depending on the locale, the information will be displayed:

irb> I18n.locale = :en

 => :en

irb> b.price

 => "40$"

As we can see, if the locale is :en, the price is shown as "40$". Similarly, if the locale is :hi,
the price is shown as "Rs. 2000":

irb> I18n.locale = :hi

 => :hi

irb> b.price

 => "Rs. 2000"

Ensure that you have a Mongoid version greater than 2.4.0!

Modeling Ruby with Mongoid

[164]

Using arrays and hashes in models
Just like we have fields with different basic data types, we can also add fields as arrays and
hashes. They make the models richer.

Arrays are used for sequential storage. Hashes are used for quicker lookups.
This acts as the basis for choosing an array or a hash to store data.

This is how we define them in the models:

class Book
 include Mongoid::Document

 field :votes, type: Array
 field :reviews, type: Hash

end

Let's add some votes to the Book as follows:

irb> b = Book.first

 => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, title: nil,
publisher: "Dover Publications">

irb> b.votes << [{"username"=>"Gautam", "rating"=>3}]

 => [{"username"=>"Gautam", "rating"=>3}]

irb> vote = b.votes[0]

 => {"username"=>"Gautam", "rating"=>3}

irb> vote['username']

 => 'Gautam'

Now let's add some reviews to a book, as follows:

irb> b.reviews["Gautam"] = "Very entertaining book"

 => "Very entertaining book"

irb> b

 => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, title: nil,
publisher: "Dover Publications", vote: [{"username"=>"Gautam",
"rating"=>3}], reviews: { "Gautam" => "Very entertaining book" }>

Chapter 6

[165]

Embedded objects
We can embed documents using relations, as we shall see later on in this chapter. Embedded
documents look like hashes with keys and values with the exception that they have the _id
field as the object ID.

When should we embed objects and when should we just use hashes?

ActiveModel callbacks are called on embedded objects unlike direct
hashes. So, if we need to do some pre-processing (like setting default
values to the object) or post-processing (maybe logging in to a remote
service or sending e-mail notifications), we can use the ActiveModel
callbacks like before_save and after_save in embedded objects.

Defining relations in models
Let's see how relations are set up using Mongoid. We have seen a preview in earlier chapters
about this. Now, we shall take a deeper dive. We have taken the top down approach earlier
and seen the following:

 � Many-to-one relations

 � One-to-one relations

 � Many-to-many relations

 � Polymorphic relations

Now, we shall see a different side to them. We shall study the different relations based on
the method options available. All relations when defined in the models can be configured
minutely using different parameters, as follows:

 � name: This is a mandatory name of the relation and is a symbol by which
the relation will be referenced

 � options: It is a hash that is used to configure the relation

 � block: This is an optional block of code to configure some relations

Common options for all relations
The following options are common for all the relations:

 � :class_name: The class name if it's not determined from the name.

 � :extend: This is the module which will be extended.

 � :inverse_class_name: This is used to determine the foreign key.

Modeling Ruby with Mongoid

[166]

 � :inverse_of: This is the reverse relation, it is very important for creating or
embedding relations.

 � :name: The name of the relation.

 � :relation: The type of the relation. (Referenced::One, Embedded::In,
among others).

 � :validate: True or false. This is true by default as we validate the relation.

Among these options :extend, :inverse_class_name,
:relation are mostly for internal use. In case we define a new
relationship strategy, it would be used. Of course, we would be
better off contributing to the Mongoid gem for approval anyway!

:class_name option
In case the related model cannot be deduced from the name, we would need to specify
this option:

class Foo
 include Mongoid::Document

 has_many :bar_alias, class_name: "Bar"
end

Here when we access the relation bar_alias, the Bar class and its collection would
be accessed.

:inverse_of option
In a many-to-many relation, Mongoid saves the information on both sides of the relation.
This is called the inverse relation. We shall see a more detailed example in the many-to-many
relation later.

:name option
Suppose we want to reference relations with a different name, then we use this option. For
example, if we had location information embedded into different documents, they would
need to be referenced by different names. We shall see an example of this soon.

Relation-specific options
Some of the following options are applicable to each relation. As we study the relations, we
shall see which ones are applicable to which relation. The following is a summary of what
they mean:

Chapter 6

[167]

 � :as: This option is required when defining polymorphic relations

 � :autosave: This option saves the related child automatically when the
parent is saved

 � :dependent: We use this option to destroy all child objects just like a
cascaded delete

 � :foreign_key: This option indicates an explicitly defined foreign key

 � :order: Set the default order for the relation

 � :index: This option indicates the indexed relation field

 � :polymorphic: This option specifies if the relation is a polymorphic relation

 � :cyclic: This option specifies if a relation is a cyclic embedded relation.

 � :cascaded_callbacks: This option invokes cascaded callbacks on
embedded objects

 � :versioned: This option helps manage versions of embedded documents

We shall see where these relations make sense and also look into their details and study
the various relations.

Options for has_one
As the method name suggests, this sets up the parent relation for a model having only
one child:

class Book
 include Mongoid::Document

 has_one :book_detail
end

This implies that "A Book has one BookDetail". This method takes the following options:

:as option
When a relation is a polymorphic relation, we need to use this option:

class Ship
 include Mongoid::Document

 has_one :vehicle, as: resource
end

This tells the has_one method that the vehicle is a polymorphic relation that can be
accessed via the resource_type and resource_id fields in the vehicles collection.

Modeling Ruby with Mongoid

[168]

:autosave option
This option is true by default. When the object is created, the related child objects are
also created. In case the object is updated, only the parent object is updated.

:dependent option
:dependent is used for cascaded deletion. We can specify various values:

 � :delete and :delete_all: This deletes the relation but does not invoke
the ActiveModel :before_delete and :after_delete callback.

 � :destroy and :destroy_all: This deletes the relation and also invokes
the callbacks.

 � :nullify and :nullify_all: This is used only for embedded documents.
When this is specified, the embedded document reference is set to nil.

:before_delete and :after_delete are ActiveModel
callbacks. As the names suggest they are invoked before and after
any document is deleted.

:foreign_key option
When the referenced key is different and is not the standard _id prefix, we need to specify
it like this:

 class Book
 include Mongoid::Document

 has_one :book_detail, foreign_key: :book_detail_info
end

Options for has_many
This method sets the parent relation for many child objects. The has_many method takes
the following options in addition to :as, :autosave, :dependent, and :foreign_key.

:order option
We can specify the order in a relation as follows:

class Author
 include Mongoid::Document

 has_many :books, order: { title: 1 }
end

Chapter 6

[169]

This will get the books of an author sorted by title in ascending order.

Options for belongs_to
This is the child side of the relation. It must be set to complement a has_one or a
has_many relation. This method takes the following options in addition to :autosave
and :foreign_key.

:index option
This option determines if the foreign key is indexed or not. It's recommended that the
foreign keys be indexed. The values are set to true or false, as shown in the following code:

class Book
 include Mongoid::Document

 has_one :review, index: true
end

:polymorphic option
We have already seen polymorphic relations in detail. This option sets the polymorphic
resource as follows:

class Vehicle
 include Mongoid::Document

 belongs_to :resource, :polymorphic => true
end

This is used to complement the :as option for the parent relationship!

Options for has_and_belongs_to_many
This is the many-to-many relationship method. A typical class would look like the following:

class Book
 include Mongoid::Document

 has_and_belongs_to_many :categories
end

class Category
 include Mongoid::Document

 has_and_belongs_to_many :books
end

Modeling Ruby with Mongoid

[170]

It takes all the standard options such as :autosave, :dependent, :foreign_key,
:index, and :order.

A many-to-many relation cannot be a part of a polymorphic relation, as
a polymorphic relation expects an explicit parent-child relationship and
many-to-many relations are peer relations.

:inverse_of option
Among all the options, the inverse_of relation is a very interesting one. As with
many-to-many relations, the document IDs are stored as arrays on both sides of the
association. So, in the case of Category and Book objects shown previously, book_ids
and category_ids are arrays that store the ObjectId values of the other relations.
Let's see the basic many-to-many relation setup. Execute the following commands:

irb> b = Book.first
=> #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, title: nil,
publisher: "Dover Publications", name: "Oliver Twist">

irb> c = Category.first
 => #<Category _id: 4e86e4cbfed0eb0be0000012, _type: nil, name:
"Fiction">

irb> > c.books << Book.first
 => [BSON::ObjectId('4e86e45efed0eb0be0000010')]

irb> b.categories << c
 => [BSON::ObjectId('4e86e4cbfed0eb0be0000012')]

irb> b
 => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, title: nil,
publisher: "Dover Publications", category_ids: [BSON::ObjectId('4e86e4
cbfed0eb0be0000012')], name: "Oliver Twist">

irb> c
 => #<Category _id: 4e86e4cbfed0eb0be0000012, _type: nil, name:
"Fiction", book_ids: [BSON::ObjectId('4e86e45efed0eb0be0000010')]>

In the following code, we can see that both the related objects, Book and Category, keep
the array [BSON::ObjectId()] that contains object ID references of each other:

irb> b
 => #<Book _id: 4e86e45efed0eb0be0000010, _type: nil, title: nil,
publisher: "Dover Publications",
category_ids: [BSON::ObjectId('4e86e4cbfed0eb0be0000012')],

Chapter 6

[171]

 name: "Oliver Twist">

irb> c
 => #<Category _id: 4e86e4cbfed0eb0be0000012, _type: nil, name:
"Fiction",
book_ids: [BSON::ObjectId('4e86e45efed0eb0be0000010')]>

Time for action – configuring the many-to-many relation
The inverse_of option helps us configure this a little more. If we want only one-sided
references to be stored, we can set this flag to false. By default the flag would be true. In
this case, if we did not want to store the category_ids in the Book object, we could
change it a little:

class Category
 include Mongoid::Document

 has_and_belongs_to_many :books, inverse_of: nil
end

Let's see what happens when we execute the following:

irb> b = Book.new
 => #<Book _id: 4ef5ab79fed0eb89bf000002, _type: nil, title: nil,
publisher: "Dover Publications", category_ids = [], category_name:
"Oliver Twist">

irb> c = Category.last
 => #<Category _id: 4ef5b48efed0eb8d17000001, _type: nil, name:
"Drama", book_ids: []>

irb> c.books << b
 => [BSON::ObjectId('4ef5ab79fed0eb89bf000002')]

irb> c
 => #<Category _id: 4ef5b48efed0eb8d17000001, _type: nil, name:
"Drama", book_ids: [BSON::ObjectId('4ef5ab79fed0eb89bf000002')]>

irb> b
 => #<Book _id: 4ef5ab79fed0eb89bf000002, _type: nil, title: nil,
publisher: "Dover Publications", category_ids = [], category_name:
"Oliver Twist">

Modeling Ruby with Mongoid

[172]

What just happened?
Seems almost as similar to the earlier version. However, let's take a closer look:

irb> c
 => #<Category _id: 4ef5b48efed0eb8d17000001, _type: nil, name:
"Drama",
book_ids: [BSON::ObjectId('4ef5ab79fed0eb89bf000002')]>

irb> b
 => #<Book _id: 4ef5ab79fed0eb89bf000002, _type: nil, title: nil,
publisher: "Dover Publications",
category_ids = [],
category_name: "Oliver Twist">

Notice that the inverse relation was not set in Book object. In other words, as the inverse_of
was nil, the array that should have contained the object IDs of the categories, is empty. In the
preceding example category_ids will not be updated only if the Category object is updated
with books.

If you update the books with categories, that is, b.categories
<< c, then category_ids in the Book object will get populated.

I leave it for you to decide if this is a bug or a feature?

Let's see another example in the following section.

Time for action – setting up the following and followers
relationship

Let's see if we can set up following and followers between authors. An author can
follow other authors and be followed by others too:

class Author
 include Mongoid::Document

 has_and_belongs_to_many :followers,
 class_name: "Author",
 inverse_of: :following

 has_and_belongs_to_many :following,
 class_name: "Author",
 inverse_of: :followers

end

Chapter 6

[173]

Let's set up some relationships between authors as follows:

irb> > a = Author.first
 => #<Author _id: 4e86e4b6fed0eb0be0000011, _type: nil, name: "Charles
Dickens", follower_ids: [], following_ids: []>

irb> > b = Author.last
 => #<Author _id: 4ef5ab6ffed0eb89bf000001, _type: nil, name: "Mark
Twain", follower_ids: [], following_ids: []>

irb> a.following << b
 => [BSON::ObjectId('4ef5ab6ffed0eb89bf000001')]

irb> a
 => #<Author _id: 4e86e4b6fed0eb0be0000011, _type: nil, name: "Charles
Dickens", follower_ids: [], following_ids: [BSON::ObjectId('4ef5ab6ffe
d0eb89bf000001')]>

irb> b
 => #<Author _id: 4ef5ab6ffed0eb89bf000001, _type: nil, name: "Mark
Twain", follower_ids: [BSON::ObjectId('4e86e4b6fed0eb0be0000011')],
following_ids: []>

irb> a.following
 => [#<Author _id: 4ef5ab6ffed0eb89bf000001, _type: nil, name: "Mark
Twain", follower_ids: [BSON::ObjectId('4e86e4b6fed0eb0be0000011')],
following_ids: []>]

irb> b.followers
 => [#<Author _id: 4e86e4b6fed0eb0be0000011, _type: nil, name:
"Charles Dickens", follower_ids: [], following_ids: [BSON::ObjectId('4
ef5ab6ffed0eb89bf000001')]>]

What just happened?
Here, let's analyze the code carefully! We wanted followers and following between authors.
As an author can have many followers and can also follow many authors, we set this up as a
many-to-many relation. This is shown next:

class Author
 include Mongoid::Document

 has_and_belongs_to_many :followers,
 class_name: "Author",
 inverse_of: :following

 has_and_belongs_to_many :following,
 class_name: "Author",
 inverse_of: :followers
end

Modeling Ruby with Mongoid

[174]

Note that it's the Author model that an author follows and can get followed. So the class
name is the same. This is also called a recursive relation:

class Author
 include Mongoid::Document

 has_and_belongs_to_many :followers,
 class_name: "Author",
 inverse_of: :following

 has_and_belongs_to_many :following,
 class_name: "Author",
 inverse_of: :followers
end

Now, we want to maintain different arrays for following and followers. So, whenever we
define the follower relation, we need to update its counterpart or the inverse relation too!
That is why the :following relation has inverse_of :followers and vice versa! This
is shown clearly in the following code:

class Author
 include Mongoid::Document

 has_and_belongs_to_many :followers,
 class_name: "Author",
 inverse_of: :following

 has_and_belongs_to_many :following,
 class_name: "Author",
 inverse_of: :followers
end

Now, let's see the actual working of this relationship. When we set up the following for one
author, we did it as follows:

irb> a.following << b
 => [BSON::ObjectId('4ef5ab6ffed0eb89bf000001')]

When this is done, we can see that the follower_ids of the Author object a and the
following_ids of the Author object b are updated together! This is shown in the
following code:

irb> a.following
 => [#<Author _id: 4ef5ab6ffed0eb89bf000001, _type: nil, name: "Mark
Twain",
follower_ids: [BSON::ObjectId('4e86e4b6fed0eb0be0000011')],

Chapter 6

[175]

following_ids: []>]

irb> b.followers
 => [#<Author _id: 4e86e4b6fed0eb0be0000011, _type: nil, name:
"Charles Dickens",
follower_ids: [],
following_ids: [BSON::ObjectId('4ef5ab6ffed0eb89bf000001')]>]

Options for :embeds_one
This method sets up the parent embedded relation for a single embedded child. As
embedded documents can be polymorphic, the :as option is supported. In addition
to this, the other supported options are as follows:

:cascade_callbacks option
As embedded documents are part of the parent, their callbacks are not invoked when
the parent is saved. We need to explicitly set this option if we want the embedded child
document to process callbacks:

class Book
 include Mongoid::Document

 embeds_one :book_info, cascade_callbacks: true
end

:cyclic
This is used as an option for recursive or cyclic relationships. This method is very specific
for embedded documents. This method is useful for setting up a hierarchy of embedded
documents—a single parent and multiple embedded child documents. We shall see this
being used with the versioning module too a little later.

Time for action – setting up cyclic relations
We have seen how we can configure an author with following and followers using the
inverse_of option. Now, let's build the Author and his followers using cyclic relationships!
This can be done as follows:

class Author
 include Mongoid::Document

 embeds_many :child_authors, class_name: "Author", cyclic: true
 embedded_in :parent_author, class_name: "Author", cyclic: true

end

Modeling Ruby with Mongoid

[176]

And let's update the objects as follows:

irb> a = Author.first

 => #<Author _id: 4e86e4b6fed0eb0be0000011, _type: nil, name: "Charles
Dickens">

irb> a.child_authors << Author.last

 => true

irb> a.child_authors.first.parent_author

 => #<Author _id: 4ef5ab6ffed0eb89bf000001, _type: nil, name: "Mark
Twain">

What just happened?
We now embed an array called child_authors into the Author document and reference
the parent using the parent_author field.

We can also do the exact same thing we just saw using the following code:

class author
 include Mongoid::Document

 recursively_embeds_many

end

Options for embeds_many
This is a method to embed documents. It takes these additional options including the already
explained :as, :cascade_callbacks, :cyclic, and :order.

:versioned option
We can version different embedded documents. This should not be used directly but via the
versioning module. This automatically embeds versions as an embedded document array in
the document. We shall learn about this later in the chapter.

Options for embedded_in
This method tells us which object this is embedded in. It's very important that this be
configured when we are setting up the embedded relations.

Without embedded_in method in the model, the document
would not get embedded at all!

Chapter 6

[177]

class Review
 include Mongoid::Document

 embedded_in :book
end

This tells Mongoid that the review document is embedded inside the book.

Have a go hero – embedded polymorphic relations
As we must set the embedded_in relation between the parent and the child, how do we
embed the same document in different objects? Make it polymorphic! We have seen some
examples of how to write polymorphic relations for embedded objects in the previous
chapter. Go for it!

:name option
What if we want to save the relation twice in the same parent class? For example, in the
Vehicle model, we want the source and the destination fields but both are Location
objects. The name option specifies in which field the information would be stored. Have a
look at the following code:

class Vehicle
 include Mongoid::Document

 embeds_one :source, class_name: "Location"
 embeds_one :destination, class_name: "Location"
end

class Location
 include Mongoid::Document

 embedded_in :vehicle, name: :source
 embedded_in :vehicle, name: :destination
end

Let's see how this would work. Execute the following code:

irb> v = Vehicle.first

 => #<Vehicle _id: 4f042dd0fed0ebc4c5000001, _type: "Vehicle">

irb> v.source = Location.new

 => #<Location _id: 4f214bf7fed0eb863b000001, _type: nil>

irb> v.destination = Location.new

 => #<Location _id: 4f214bfcfed0eb863b000002, _type: nil>

Modeling Ruby with Mongoid

[178]

This is how we can embed the same object into the document under different names using
the :name option just explained.

Managing changes in models
What happens if we require some changes to the document schema?

If this were the SQL book, I would have said that we require some way to use statements like
ALTER TABLE, ADD COLUMN, CHANGE COLUMN, and so on. You would need some way to
maintain the changes and, if required, roll back the changes.

In Rails, this is done using migrations. A sample migration looks like the following:

class RemoveNameToUsers < ActiveRecord::Migration
 def self.up
 remove_column :users, :name
 end

 def self.down
 add_column :users, :name, :string
 end
end

The up method is called when we are setting up the database and the down method is called
when we want to rollback.

But wait, this is MongoDB, it's a schema-free database, so what should we do? – Nothing!

Time for action – changing models
Let's take a look at the Book model:

class Book
 include Mongoid::Document

 field :title, type: String
 field :publisher, type: String
end

If we have such a model, what does the object look like? Execute the following command to
find out:

irb> Book.create(publisher: "Dover")

 => #<Book _id: 4f216427fed0eb86ac000001, _type: nil, title: nil,
publisher: "Dover">

Chapter 6

[179]

Now, suppose we wanted to add a few fields to the Book model, how do we do that?
Change the code! The code would now look like the following:

class Book
 include Mongoid::Document

 field :title, type: String
 field :publisher, type: String
 field :published_on, type: Date
end

What just happened?
Now, let's see what happens when we create a new object as well as access the earlier
one we created. Execute the following commands:

irb> Book.create(publisher: "Packt", published_on: Date.today)

 => #<Book _id: 4f21660cfed0eb86ac000002, _type: nil, title: nil,
publisher: "Packt", published_on: 2012-01-26 00:00:00 UTC>

So far, so good! But what happens to the earlier object created?

irb> Book.where(publisher: "Dover").first

 => #<Book _id: 4f216427fed0eb86ac000001, _type: nil, title: nil,
publisher: "Dover", published_on: nil>

Notice the published_on field that is nil!

Always try to avoid removing fields – it can cause undue trouble.

So, go forth and change the models to your heart's content! No worries.

Mixing in Mongoid modules
Mongoid has a very good way to customize or extend the functionality using modules. Not
everything is bundled into the default Mongoid::Document. They are bundled as modules
and can be included into the classes to make them richer.

Ruby modules can be defined as a bunch of methods that can be
included or extended. When we include modules, the methods
can be accessed as instance methods. When we extend modules,
the methods become class methods.

Modeling Ruby with Mongoid

[180]

We shall see a few of the modules that are bundled along with Mongoid. There are plenty
of gems available and being contributed which are very helpful.

The Paranoia module
This is a module which can be included if we require soft deletion. Documents are not really
deleted but marked for deletion. Basically, a field called deleted_at gets added to the object.

When the :delete or :destroy method is called, the timestamp is set for this field.
A default scope is added to the model which fetches only those objects which have
deleted_at = null.

Time for action – getting paranoid
First let's include the Paranoia module:

class IAmParanoid
 include Mongoid::Document
 include Mongoid::Paranoia

end

That's it! Let's see the impact of this module:

irb> IAmParanoid.count

 => 0

irb> a = IAmParanoid.create

 => #<IAmParanoid _id: 4f22eca5fed0eb9dfc000001, _type: nil, deleted_at:
nil>

irb> b = IAmParanoid.create

 => #<IAmParanoid _id: 4f22eca9fed0eb9dfc000002, _type: nil, deleted_at:
nil>

irb> IAmParanoid.count

 => 2

irb> > a.remove

 => true

irb> IAmParanoid.count

 => 1

Chapter 6

[181]

irb> a = IAmParanoid.deleted.first

 => #<IAmParanoid _id: 4f22eca9fed0eb9dfc000002, _type: nil, deleted_at:
2012-01-27 18:28:13 UTC>

irb> a.restore

 => 2012-01-27 18:28:13 UTC

irb> IAmParanoid.count

 => 2

What just happened?
When we added the Paranoia module, it added a field called deleted_at into the object.

irb> a = IAmParanoid.create
 => #<IAmParanoid _id: 4f22eca9fed0eb9dfc000002, _type: nil,
 deleted_at: nil>

When we invoke the remove method, the deleted_at gets updated. Because the Paranoia
module is included:

 � A field called deleted_at is added to the document.

 � A default criteria is added with the condition where(:deleted_at => nil).

 � A scope called deleted is added to where(:deleted_at.ne => nil).

Now, when we invoke any finder or criteria methods, we get all objects apart from the
ones removed:

irb> a.remove
 => true

irb> IAmParanoid.count
 => 1

If we want to fetch the deleted objects, we can use the scope deleted:

irb> IAmParanoid.deleted.first
 => #<IAmParanoid _id: 4f22eca9fed0eb9dfc000002, _type: nil, deleted_
at: 2012-01-27 18:28:13 UTC>

To restore the deleted objects, we can simply call restore.

To really delete objects permanently from the database, even if we have
included the Paranoia module, we can call either the destroy! or
delete! methods.

Modeling Ruby with Mongoid

[182]

Versioning
If we want to maintain the changes made to the objects, we can include the
Versioning module.

This module embeds a versions object and maintains the versions for the object.
By default, the latest version is returned for the object attributes. However, we can
also fetch earlier versions of the object.

Time for action – including a version
Let's go versioning:

class Delta
 include Mongoid::Document
 include Mongoid::Versioning

 field :name, type: String
end

Let's see it in action:

irb> a = Delta.create

 => #<Delta _id: 4f22f748fed0eb9e6e000003, _type: nil, version: 1, name:
nil>

irb> a.name = "First"

 => "First"

irb> a.save

 => true

irb> a

 => #<Delta _id: 4f22f748fed0eb9e6e000003, _type: nil, version: 2, name:
"First">

irb> a.name = "Second"

 => "Second"

irb> a.save

 => true

irb> a

Chapter 6

[183]

 => #<Delta _id: 4f22f748fed0eb9e6e000003, _type: nil, version: 3, name:
"Second">

irb> a.revise!

 => true

irb> a

 => #<Delta _id: 4f22f748fed0eb9e6e000003, _type: nil, version: 4, name:
"Second">

What just happened?
When we included the Versioning module:

 � A field called version gets added to the document with default value 1

 � A cyclic relation called versions gets added

The model is now configured to update the version every time the object is saved. When it's
created the first time, notice that the version number is set:

irb> a
 => #<Delta _id: 4f22f748fed0eb9e6e000003, _type: nil,
version: 1,
name: nil>

Every time, the object is saved, the version number is incremented and the versioned
attributes (that is, all the fields in the document) get saved inside the versions embedded
object's array and the version is incremented.

If we want to update the version without any changes, we can use the revise! method.

Some more fancy stuff with versioning

If you want to save the document but don't want to version it, use
the versionless method. This temporarily disables versioning, for
example, object.versionless(&:save).

If you want to see changes made to the object, use the :previous_
changes method.

If you want to see the versioned objects, use the :versions method.

Notice, that we mentioned cyclic relationship. We saw this earlier in the embedded relations.
For versioning, we need exactly one parent and many child documents of the same class
embedded in it!

Modeling Ruby with Mongoid

[184]

Pop quiz – dancing with Mongoid models
1. Which of the following is the incorrect way of accessing the title field of

the Book model?

a. Book.first.title.

b. Book.first[:title].

c. Book.first.read_attribute(:title).

d. Book.first.get_title.

2. When a field is localized, how is that field stored in the database?

a. As an embedded object.

b. As an array.

c. As a hash.

d. As a comma-separated string.

3. What does the cascaded_callbacks option do?

a. Enables callback invocation on the embedded object.

b. Cascaded deletes the callbacks in children.

c. Enables callback invocation for parent object.

d. Disables callback invocation on the embedded object.

4. What would recursively_embeds_many in the Author model not do?

a. Add a cyclic embeds_many relation for Author.

b. It creates an array of embedded objects called child_authors.

c. Add a field called parent_author in the Author model.

d. Adds a field called author_count in the Author model.

5. Why do we need to specify the embedded_in relation in the embedded Model?

a. Mongoid needs to index this embedded object.

b. All documents are Mongoid::Document. This is the only way Mongoid
knows that the document is embedded in another document.

c. Mongoid needs to store this in the embedded collection.

d. When Mongoid::EmbeddedDocument is specified, we do not need this
relation, otherwise we need it.

Chapter 6

[185]

Summary
This chapter took us deeper into modeling Ruby classes using Mongoid. We took a deep dive
into how we can set attributes, relations, and use different modules available in Mongoid.
We are now getting closer to building our web application! We saw how a Sinatra application
is set up as well as where the Rack fits in!

Before we get the web application up and running, I believe it's important to understand
performance tuning and optimization. The next chapter deals with this. If you live in the fast
lane, skip to Chapter 8, Rack, Sinatra, Rails and MongoDB – Making Use of them All where we
make use of Rack, MongoDB, Rails, and Sinatra to get the web application up and running!

7
Achieving High Performance on Your

Ruby Application with MongoDB

Who doesn't care about performance? After all, that's what matters in the end.
We could have the best application but if it does not live up to the mark, it's of
no use. How does one know if our application is performing well? How does
one gauge if we are doing it right? How do we get the best performance out
of our application?

In this chapter we shall see the following:

 � How we can configure MongoDB for high performance

 � How we can leverage Ruby to achieve higher performance with MongoDB

 � What we mean by performance of a web application

 � How we can optimize a web application stack

By the end of this chapter, we shall see how our MongoDB server is configured to power
a high performance web application. We shall also see the various techniques available in
Ruby for achieving higher performance.

Achieving High Performance on Your Ruby Application with MongoDB

[188]

Profiling MongoDB
Let's first understand what we mean by profiling!

How do we know if the queries that we are firing in MongoDB are efficient? How can we
measure the time taken for queries and find out which are slow-running queries? If we
are able to find this information, we can analyze the results and improve our slow-running
queries as well as optimize the queries. This is called profiling.

Almost all databases, including relational databases provide tools for
profiling and logging slow queries. MongoDB is not different.

Time for action – enabling profiling for MongoDB
We can enable profiling from the command line as well as from the mongo console. Let's
start it from the command line, as follows:

$ sudo mongod run --config /etc/mongodb.conf --rest -vvvv --profile=1

This enables the profiling and sets it at level 1.

There are three modes of profiling:
0: This indicates profiling is disabled.
1: This indicates profiling suited to write only slow operations.
2: This indicates profiling suited to write all operations.

Even if profiling is disabled, the slow queries (the ones taking longer
than 100 ms by default) get logged to the console!

If you already have a MongoDB service running, we can enable this from the mongo console,
too. This can be done as follows:

mongo> db.setProfilingLevel(1)
{ "was" : 0, "slowms" : 100, "ok" : 1 }

mongo>

To see profiling in action, we can issue the following commands on the mongo console:

mongo> db.system.profile.find()
{ "ts" : ISODate("2012-06-08T07:26:43.186Z"), "op" : "query", "ns" :
"sodibee_development.authors", "query" : { "name" : /in/ }, "nscanned"
: 609, "nreturned" : 101, "responseLength" : 6613, "millis" : 10,
"client" : "127.0.0.1", "user" : "" }

Chapter 7

[189]

What just happened?
When we enable profiling, the information is logged in to the db.system.profile
collection. Let's dig deeper. Have a look at the following:

mongo> db.setProfilingLevel(1)
{ "was" : 0, "slowms" : 100, "ok" : 1 }

mongo>

The slowms option tells MongoDB what should be the threshold time for slow queries. The
was field tells us what the earlier profiling level was. Now, let's see a profile log. Execute the
following command:

mongo> db.system.profile.find()
{ "ts" : ISODate("2012-06-08T07:26:43.186Z"),
 "op" : "query", "ns" : "sodibee_development.authors",
"query" : { "name" : /in/ }, "nscanned" : 609, "nreturned" : 101,
"responseLength" : 6613, "millis" : 10, "client" : "127.0.0.1", "user"
: "" }

In the preceding command op and ns parameters specify the operation and the collection
that was profiled. The query parameter logs the query that was fired. The nscanned
parameter specifies the number of objects that were scanned for fetching the result. The
nreturned parameter specifies the number of objects in the result.

Optimization and performance tuning – tip 1

If you see that the nscanned parameter is much higher than nreturned,
it means that there are a lot of unnecessary objects being scanned.

To resolve this, add an index on these fields used in the search criteria.

Have a look at the previous command a third time:

mongo> db.system.profile.find()
{ "ts" : ISODate("2012-06-08T07:26:43.186Z"),
 "op" : "query", "ns" : "sodibee_development.authors",
 "query" : { "name" : /in/ }, "nscanned" : 609, "nreturned" : 101,
 "responseLength" : 6613, "millis" : 10,
 "client" : "127.0.0.1", "user" : ""
}

Achieving High Performance on Your Ruby Application with MongoDB

[190]

The responseLength or reslen parameter specifies the number of bytes in the result and
the millis parameter indicates the time in milliseconds taken by MongoDB for processing
this query.

Optimization and performance tuning – tip 2

If you see that reslen is huge—a few hundred kilobytes or more—the
resultant data being returned is huge and this impacts on the performance.
Use the field selector in the find method to retrieve only the fields you
need.

If I need only the names of authors, we can optimize the query to
db.authors.find({ name: /in/ }, {name: 1}), so that it will
fetch the authors that have an in in their name but return only their names
and not all the fields. This will reduce the length of the result set.

Using the explain function
It's all very well to use the profiler, but that is a reactive measure. That means, we have to
analyze existing queries and then optimize them. Is there a way I can take some preventive
measures and write an optimized query directly? MongoDB provides the explain function
to get more information about the performance of the query.

Time for action – explaining a query
Let's say, we want to see how the performance will be for the authors with names that have
the in search criterion in them. Execute the following query:

> db.authors.find({name: /in/}).explain()
{
 "cursor" : "BasicCursor",
 "nscanned" : 20004,
 "nscannedObjects" : 20004,
 "n" : 3037,
 "millis" : 30,
 "nYields" : 0,
 "nChunkSkips" : 0,
 "isMultiKey" : false,
 "indexOnly" : false,
 "indexBounds" : {

 }
}

Chapter 7

[191]

We can see that the previous query was fired in 30 milliseconds. Now let's index the name
field and then see the result again. We can index the name field as:

>db.authors.ensureIndex({name: 1})
>

Now, let's fire the query to find the authors with names that have the in search criterion in
them again, this time after name has been indexed. Execute the following:

> db.authors.find({name: /in/}).explain()
{
 "cursor" : "BtreeCursor name_1 multi",
 "nscanned" : 20004,
 "nscannedObjects" : 3037,
 "n" : 3037,
 "millis" : 50,
 "nYields" : 0,
 "nChunkSkips" : 0,
 "isMultiKey" : false,
 "indexOnly" : false,
 "indexBounds" : {
 "name" : [
 [
 "",
 {

 }
],
 [
 /in/,
 /in/
]
]
 }
}
>

What just happened?
When we invoke the explain function, the query is run and the performance data is
calculated. Let's take a deeper look at the query again:

> db.authors.find({name: /in/}).explain()
{
 "cursor" : "BasicCursor",
 "nscanned" : 20004,

Achieving High Performance on Your Ruby Application with MongoDB

[192]

 "nscannedObjects" : 20004,
 "n" : 3037,
 "millis" : 30,
 "nYields" : 0,
 "nChunkSkips" : 0,
 "isMultiKey" : false,
 "indexOnly" : false,
 "indexBounds" : {

 }
}

In this query, MongoDB used the BasicCursor, as the name was not indexed then.
nscanned denotes the number of items, that is, objects and indexes to be examined.
nscannedObjects denotes the objects examined and n is the result. We can see that
it takes 30 milliseconds.

Now, if we see that the result after name is indexed, we see a different output as follows:

> db.authors.find({name: /in/}).explain()
{
 "cursor" : "BtreeCursor name_1 multi",
 "nscanned" : 20004,
 "nscannedObjects" : 3037,
 "n" : 3037,
 "millis" : 50,
 "nYields" : 0,
 "nChunkSkips" : 0,
 "isMultiKey" : false,
 "indexOnly" : false,
 "indexBounds" : {
 "name" : [
 [
 "",
 {

 }
],
 [
 /in/,
 /in/
]
]
 }
}

Chapter 7

[193]

Here we can see that the BtreeCursor has been used. We also see a huge difference in
nscanned and nscannedObjects. This is the result of indexing and performance tuning.

Did you notice, however, that the time taken for the indexed query is longer than a basic
query! So, did we really optimize the performance?

Yes! Firstly, we ensured that using the index, we have got a far lesser subset of objects. As
the number of objects increase, the indexing will become more and more efficient. As we
shall soon see in the next section, indexing also reduces querying time!

Using covered indexes
Covered indexes means that all the fields that are being queried and fetched are indexed. If
such is the case, the performance of indexed queries becomes excellent! This is because we
need not search the documents, only the indexes. As indexes are smaller in size, they can
reside entirely in memory and therefore, are accessed very fast.

Time for action – using covered indexes
To test the real power of indexed searches, let's load the database and query during a heavy
load. We can easily load the authors using our fake_authors rake task as follows:

$ rake fake_authors

As we know, this will start creating 10,000 more authors. During this time, we shall fire the
indexed query and then the covered index query! First we run the indexed query as follows:

> db.authors.find({name: /in/}).explain()
{
 "cursor" : "BtreeCursor name_1 multi",
 "nscanned" : 21695,
 "nscannedObjects" : 3285,
 "n" : 3285,
 "millis" : 248,
 "nYields" : 24,
 "nChunkSkips" : 0,
 "isMultiKey" : false,
 "indexOnly" : false,
 "indexBounds" : {
 "name" : [
 [
 "",
 {

Achieving High Performance on Your Ruby Application with MongoDB

[194]

 }
],
 [
 /in/,
 /in/
]
]
 }
}

Now, let's fire the covered indexed query as follows:

> db.authors.find({name: /in/}, {_id:0, name:1}).explain()
{
 "cursor" : "BtreeCursor name_1 multi",
 "nscanned" : 27420,
 "nscannedObjects" : 4228,
 "n" : 4228,
 "millis" : 81,
 "nYields" : 19,
 "nChunkSkips" : 0,
 "isMultiKey" : false,
 "indexOnly" : true,
 "indexBounds" : {
 "name" : [
 [
 "",
 {

 }
],
 [
 /in/,
 /in/
]
]
 }
}

Notice that the indexed query scanned 21695 objects and took 248 ms and the covered
indexed query scanned 27420 but took only 81 ms!

Chapter 7

[195]

What just happened?
Let's analyze the output results a little more. Have a look at them again:

> db.authors.find({name: /in/}).explain()
{
 "cursor" : "BtreeCursor name_1 multi",
 "nscanned" : 21695,
 "nscannedObjects" : 3285,
 "n" : 3285,
 "millis" : 248,
 "nYields" : 24,
 "nChunkSkips" : 0,
 "isMultiKey" : false,
 "indexOnly" : false,
 "indexBounds" : {
 "name" : [
 [
 "",
 {

 }
],
 [
 /in/,
 /in/
]
]
 }

The nYields parameter means the number of times the database lock was yielded—that
means it had to yield the lock for a write operation (remember we are creating 10,000
authors). The query completed in 248 ms because of the yields. Now let's see the query
for covered indexes as follows:

> db.authors.find({name: /in/}, {_id:0, name:1}).explain()
{
 "cursor" : "BtreeCursor name_1 multi",
 "nscanned" : 27420,
 "nscannedObjects" : 4228,
 "n" : 4228,
 "millis" : 81,
 "nYields" : 19,
 "nChunkSkips" : 0,
 "isMultiKey" : false,

Achieving High Performance on Your Ruby Application with MongoDB

[196]

 "indexOnly" : true,
 "indexBounds" : {
 "name" : [
 [
 "",
 {

 }
],
 [
 /in/,
 /in/
]
]
 }
}

Here, the performance of the query is excellent! What happened here is that MongoDB did
not search in the documents but only in the indexes (as indexOnly is true). It was able
to do this because all query fields, as well as the fields to be fetched were indexed! Notice
that 27420 objects were scanned in 81 ms and this is a huge performance increase over the
earlier query.

Optimization and performance tuning – tip 3

For collections which are fetched very often, index the fields that would
be queried and use the explain method to check if the query would
indeed be fast.

Notice that when using covered indexes, it's imperative to exclude the
_id field and fetch only the fields that were indexed.

Other MongoDB performance tuning techniques
Now we shall see some more techniques where we can keep checking the performance of
operations in MongoDB.

Optimization and performance tuning – tip 4

 � Use the currentOP method to find out the current queries that are in progress.

 � In a shared environment or when using replica sets, enable reads on slaves!

Chapter 7

[197]

Using mongostat
mongostat is a utility that can print the database statistics on the console every second.
The following is what it looks like:

$ mongostat -n20

connected to: 127.0.0.1

insert query update delete getmore command flushes mapped vsize res
locked % idx miss % qr|qw ar|aw netIn netOut conn time

 0 0 0 0 0 1 0 208m 3.01g 31m
0 0 0|0 0|0 62b 1k 1 15:04:27

As we can see from the output, this prints insert, update, delete, and other basic
queries along with a lot more detail!

Understanding web application performance
Achieving high performance from a web application is critical. This is because there are a lot
of criteria that determine performance. The following are some of the standard parameters
typically considered:

 � Web server response time

 � Throughput

 � User satisfaction – Apdex score

 � Concurrency – Requests Per Minute (RPM)

 � Network latency and end-user response

These are only a few parameters that are used for determining web application performance.

Usually if the web server response is under 500 ms and the end-user
response is under three seconds, your application is considered to be
in good shape.

Web server response time
Web server response is the time taken for any server to respond to an HTTP request.
Typically, if we look at the log files that are generated for a Rails application, it gives us
some idea about this. The log files would contain something like the following:

Started GET "/books" for 127.0.0.1 at 2012-1-28 23:11:35 +0530
...
...

 Completed 200 OK in 359ms (Views: 184.8ms)

Achieving High Performance on Your Ruby Application with MongoDB

[198]

In the previous code, we can see that a GET request was started and completed in 359ms.
Out of this, 184.8ms were spent in rendering HTML. If we are seeing the MongoDB output,
we can see other performance metrics—time taken in the database:

Sat Jan 28 23:11:35 [conn86] command sodibee_development.$cmd command:
{ count: "books", query: {}, fields: null }

ntoreturn:1 reslen:48 178ms

The web server response obviously includes the time that is spent in the database access
too. This is the total time taken by the web server to respond to an HTTP GET request. This
does not imply that the user sees the web browser page update so quickly. This means that
the web server can respond to this request in about 359ms.

As the data increases, it's quite likely that the response time would increase a bit.

Throughput
The number of simultaneous requests that a web server can handle are called concurrent
requests. Now, this translates to various factors. Is the web server multithreaded? Does it
use a connection pool? Is the web server using evented I/O?

Most web servers are multithreaded. This means that a thread processes every HTTP
request that comes to the web server. There is always a limit to the maximum number of
threads spawned. Sometimes, web servers use a thread pool and a database connection
pool. Basically, these are spawned threads, which process one request at a time. When the
request is processed, they don't "die", they simply pick up the next request or wait for one.

New web servers use the reactor pattern to process incoming HTTP requests.

Reactor pattern is a design pattern wherein the system "reacts" to
actions. In the case of web servers, a thread is spawned or used for
each HTTP request received. In other words, the web server "reacts"
by spawning a thread per request.

In any setup, it's pretty difficult to find out the true concurrency of a system. This is typically
done in two ways as explained in the following sections:

Load the server using httperf
Bombard the web server with different types of requests using tools such as, httperf or
ApacheBench (ab).

httperf --timeout=10 --client=0/1 --server=<server-name> --port=80
--uri=/some/uri --wsess=50,5,2 –rate

Chapter 7

[199]

This creates 50 sessions every second, which sends five requests each, after an interval
of two seconds. There are plenty of options that can be used with httperf that can give
various load options.

We can map different response times to a number of requests (shown in different colors in
the following graph). httperf generates a graph that looks something like the following:

10 20 30 40 50 60 70 80 90 100

1000

0

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
(m

s)

Avg. Response Time

Requests / sec

A graph like this tells us the server performance under different loads. From the previously
shown data, we can deduce that the average response time is around five seconds and it
increases as the load gradually increases from 10 concurrent requests per second to 100
requests per second.

Monitoring server performance
Loading the server seems fine when we have the resources and our web application is
already built. However, what can we do if we are building the application? One of the ways
of doing this is to continuously monitor the server. There are plenty of ways to monitor
server performance but by far the most reliable I have found is RPM from New Relic.

Achieving High Performance on Your Ruby Application with MongoDB

[200]

The following is what the dashboard looks like:

Web External

10:55 11:00

Average: 219 ms

Throughput (rpm)

100

50

0
10:40 10:50 11:00

Ruby Database

10:40 10:45 10:50

Average response time, broken down by tier (ms) Apdex score 0.94 [0.5]

1

0.9

0.8

?

Apdex score

0.940.5

?

216 ms

Resp. time

48 rpm

Throughput

10%

CPU Usage

421 MB

Memory1 server

asterisk.acemoney.Internal
4 instances

Resent events

NO EVENT IN THE LAST 3DAYS

Average: 46.5

10:35
0

100

200

300

400

There is a lot of in-depth analysis that it can provide too!

Let's see these in more detail.

Average response time
This gives us real time performance metrics as follows:

Ruby Database Web External

10:35 10:40 10:45 10:50 10:55 11:00
0

100

200

300

400

Average response time, broken down by tier (ms) Average: 219 ms

We can see that the average response time is 219 ms—with the detailed split of time spent
in the database, Ruby processing, and even external calls.

Chapter 7

[201]

Concurrency/throughput
The throughput is considered in RPM. Considering that requests per second would virtually
be the profiling request itself, it would kill the throughput results. So it's easier to average
the results over a minute:

Throughput (rpm) Average: 46.5

100

50

0
10:40 10:50 11:00

This tells that the average RPM is 46.5. This tells us the real-time concurrency of the system.

Apdex Score
Apdex is the short name for Application Performance Index. There are various ways and
different means to identify the Apdex. New Relic defines the Apdex on a percentage scale.
So, the closer the Apdex is to 1, the better the application performance.

Apdex scores are samples taken from real time requests per minute and distributed into
different categories such as Satisfied, Tolerating, and Frustrated:

Apdex score 0.94 [0.5]

1

0.9

0.8

?

Finally, we can always see a summary of what's happening in real time, shown as follows:

Apdex score

0.940.5

?

216 ms 48 rpm 10% 421 MB

Resp. time Throughput CPU Usage Memory

Achieving High Performance on Your Ruby Application with MongoDB

[202]

End-user response and latency
A server response time is not always enough. We also want to ensure that our end-user web
page has refreshed in the proper time. Typically, end-user response under three seconds is
considered decent:

Browser page load time

0 sec

1 sec

2 sec

3 sec

4 sec

5 sec

6 sec

10:45 10:50 10:55 11:00 11:05 11:10

Web application Network DOM processing Page rendering

Average: 1.9 sec

The preceding screenshot shows us that the average page rendering time was 1.9 seconds.
If we also look closely, the maximum colored area is the network latency!

Optimizing our code for performance
Now that we have seen what performance is all about, let's see how we can tune our
application with MongoDB for better performance.

Indexing fields
As we have seen earlier, using indexes increases the performance quite a lot, especially
for reads! Indexes are stored in binary trees. Remember that indexes require more storage
computation due to an addition of information to B-trees during inserts and removal of data
from B-trees during deletes. This makes the inserts and updates fractionally slower.

However, in a typical web application there is always a lot more data retrieval than updates,
so using indexes judiciously makes sense.

Do not use indexes for write-intensive operations, as they would be
counter productive!

Chapter 7

[203]

Optimizing data selection
Even though indexes help increase performance, it never harms in taking a few good
practices to ensure the database is not over loaded and hence available for more requests,
which in turn increases overall performance.

Never fetch all the documents in a collection. Use pagination and
limit to a convenient number depending on your application.

Remember, that as a web application usually has a long life, data would grow! So, if you keep
fetching all the fields in a document all the time, we would be degrading the performance
over time.

Fetch only the fields you require if we are not caching anything.

If you don't require the entire document, why fetch all of it? However, if you couple this with
a caching strategy, it makes sense to actually fetch the entire document. As we shall see
later about caching strategies, it pays to fetch the entire document when working in a Rack
application with caching enabled.

Optimizing and tuning the web application stack
We have seen how to tune a database and what web application performance is all about.
There's more! We can tune our Ruby web application to enhance the performance further.
Ruby, when used in conjunction with the right application stack can make a world of
difference.

Performance of the memory-mapped storage engine
This is the default storage engine used by MongoDB and is enabled by default. It uses
memory-mapped files for its disk I/O. This gives advantages of memory-like speeds and
also ensures that the file system cache and the database cache are the same!

As MongoDB uses the standard memory-mapped files, the operating system's virtual
memory manager takes care of the size, swapping, and management of these files.
As the OS virtual memory manager is updated, it automatically boosts MongoDB's
performance. That means, two benefits for the price of one!

Achieving High Performance on Your Ruby Application with MongoDB

[204]

Choosing the Ruby application server
A web server is one that processes HTTP requests. Some of the popular web servers are
Apache and nginx. However, the request could be processed by different application
servers—PHP, Java, Ruby, or similar ones. Once the request is sent to the application server,
it needs to process it quickly. The performance of these application servers is critical.

There are plenty of Rails application servers available. All these application servers are Rack
applications, so it's very convenient to switch between them. At the time of writing this
book, these are the currently available and recommended choices for web servers.

Passenger
This is a library that compiles nicely with Apache or nginx. A Rack application can be easily
configured to run a Sinatra or Rails application. The library needs to be complied and loaded
at runtime. Passenger spawns and reaps worker processes depending on the load on the
web server. This makes it a very powerful choice for scalable web servers.

Mongrel and Thin
Mongrel is a web server that processes Rails requests. Thin is Mongrel plus evented I/O
and Rack bundled together. The number of worker processes can easily be configured. Both
are very fast and very efficient. We can configure various options with this, including the
maximum number of connections per worker.

Unicorn
Unicorn is known for its stability and reliability. It is relatively newer than the others but
addresses issues such as respawning on failures and preempting slow requests. It uses the
Unix domain sockets for load balancing instead of HAProxy in the case of Thin or Mongrel.

All these web servers are really good for deploying Ruby web applications and they
significantly improve the performance of the application.

Increasing performance of Mongoid using bson_ext gem
bson_ext gem is a C extension to accelerate BSON serialization. This significantly
increases the performance. It is used in conjunction with mongoid and bson gems
and is highly recommended.

Chapter 7

[205]

Caching objects
When we fetch information from the database, we can store it in the memory for some
time—called the time to live(TTL). So, in case we need to fetch the same object again,
instead of querying the database, we look up the cache. This increases performance, as
a memory read is much faster than a database read (which is disk I/O). This also keeps a
lesser load on the database.

When we have a caching layer enabled, this is how data is fetched:

 � Look up the cache for the object

 � If found, return it

 � If not found, look up the database and fetch the data

 � Save it to cache and return it

Some caching strategies even allow "lazy writes". This means that we can use caching not
just for reads but also for updates! When an object is updated, we update it in memory,
mark it to be updated, and return the response immediately. This has a tremendous
performance boost and this information is written to the database later, typically a few
seconds later. So, if we have a thousand increments to an object, not only is it faster and
gives better performance, the lazy write ensures that writes to the database are optimized
and aren't done for each change of the object.

Remember that this "eventual consistency" would not be the right choice
for very heavy transaction-related web applications. So, we should choose
a caching strategy carefully.

It's also very important to remember that we fetch the entire document
from the database when we cache them as objects.

Memcache
Instead of using the system memory for the caching, we can alternatively set up a memcache
server and configure the Rack application to use this for caching! This is the recommended
and standard practice for large scale web-based applications.

Redis server
Redis is an in-memory database that can be used as an object cache. As it guarantees atomic
updates and lazy persistence, it is also an excellent choice. Remember that it adds one more
point of failure in the stack, so it should be monitored. Moreover, Redis also consumes
memory, so remember to have a good memory bank (of at least 1 GB or 2 GB) in large-scale
production systems.

Achieving High Performance on Your Ruby Application with MongoDB

[206]

Summary
In this chapter we have learned the concept of web application performance and seen the
different parameters considered when we evaluate a web application. We tuned MongoDB
queries for performance using indexes and covered indexes. We saw how we can tune the
database and what MongoDB already provides to ensure that performance is good. We
also saw how we can optimize our Ruby web application by making the right choice of web
servers and an appropriate object caching strategy.

In the next chapter, we shall build the entire web application making use of Ruby, Rack, and
MongoDB via Mongoid. This would be pretty exciting as we shall finally see things taking
shape and it should be satisfying!

8
Rack, Sinatra, Rails, and

MongoDB – Making Use of them All

This is a web development guide! Until now, we have been reinforcing
our concepts! Building the data models and control logic is the core of the
application. Now we shall put all these pieces together in a web application.

In this chapter we will learn the following:

 � Modeling objects in Sinatra and Rails

 � Building the logic and control flow

 � Designing the Views – web interface

 � Testing web applications

 � Documenting our code

This chapter will explain in detail how a Rack application is built. We shall touch upon some
interesting tools, such as RSpec for testing and YARD for documentation. But we shall only
skim these concepts, as these are concepts for which there are books available.

By the end of this chapter, we shall have a full-fledged web application up and running in
Sinatra and in Rails.

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[208]

Revisiting Sodibee
We have played around with some aspects of Sodibee, such as Book, Author, and
Category. Now, we shall build the full-fledged web application in Rails and Sinatra. This
is what we are going to do – it's what we started out with, and a little more—The Sodibee
(pronounced as |saw-d-bee|) Library Manager.

Books belong to categories like Fiction, Non-fiction, Romance, Self-learning and
so on. Books have one author and one publisher. Books can be rated and reviewed.

Books can be leased or bought. When books are bought or leased, the customer's details
(such as name, address, phone, and e-mail) are registered, along with the list of books
purchased or leased. A ledger is maintained on the quantity of each book sold and the
number of times it was leased.

The Rails way
Rails is an amazing framework when it comes to evolution! It evolves at a rapid pace and
there are so many new components available to plug into Rails, that we could be left
overwhelmed! For our application, we shall use the following components:

 � Rails 3.2.2 (the latest version currently available)

 � Ruby 1.9.3

 � MongoDB using the mongoid gem

 � The Twitter Bootstrap framework for the UI

 � Haml for Views

 � Sass for all our CSS work

 � CoffeeScript for all our JavaScript work

 � jQuery (the default JavaScripting option)

 � simple_form and nested_form for HTML forms

Wow! Has this become a little exhaustive? Don't worry, as we will shortly see, Rails is all
about "convention over configuration" and by using the right tools for the right job, you
end up writing very little code for a lot of functionality!

Setting up the project
We have already seen this a couple of times. Here it is in brief again:

$ rails new sodibee –JO

Chapter 8

[209]

Following is the Gemfile that we shall use:

source 'https://rubygems.org'

gem 'rails', '3.2.2' # Rails Version.

gem 'mongoid' # MongoDB config
gem 'bson'
gem 'bson_ext'

gem 'haml' # Templating markup
gem 'haml-rails'

gem "jquery-rails" # jQUery config

Need nested form from the git repos to ensure it's the latest one
gem "nested_form", :git => 'git://github.com/ryanb/nested_form.git'
gem 'simple_form'

Rails Asset pipeline
group :assets do
 gem 'sass-rails', '~> 3.2.3' # Sass
 gem 'coffee-rails', '~> 3.2.1' # CoffeeScript
 gem 'bootstrap-sass', '~> 2.0.1' # Bootstrap
 gem 'uglifier', '>= 1.0.3'
end

group :development, :test do
 gem 'rspec-rails'
 gem 'spork' # speedy testing!
end

As you can see, we have gems for MongoDB, Haml, Sass, Bootstrap and even jQuery.
nested_form and simple_form (as we shall see later) are very useful gems for HTML forms.

Let's update the bundle for this Rails project:

$ bundle install

$ rails g mongoid:config

Remember to remove activerecord from the config/application.rb file. This is
how the config/application.rb file should look like:

require "action_controller/railtie"
require "action_mailer/railtie"
require "active_resource/railtie"
require "sprockets/railtie"

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[210]

Modeling Sodibee
While we look at these models, we shall also learn a few Rails concepts along the way!

Time for action – modeling the Author class
First let's write the Author model. We do it as follows:

class Author
 include Mongoid::Document

 field :name, type: String

 validates_presence_of :name

 has_one :address, as: :location, autosave: true, dependent: :destroy
 has_many :books, autosave: true, dependent: :destroy

 accepts_nested_attributes_for :books, :address, allow_destroy: true
end

What just happened?
An author has many books and has one address. This is declared as follows:

class Author
...
 has_many :books, autosave: true, dependent: :destroy

 has_one :address, as: :location, autosave: true, dependent: :destroy
...

end

We have already seen relationships via Mongoid, but here are a few
more options:

 � :autosave: This option is specified in the parent model and enables
its associated child objects to be saved along with the parent

 � :as: This is the polymorphic relation

 � :dependent: This option is also specified on the parent model and
ensures that the dependent child objects are destroyed when the
parent is destroyed

When we are creating an author, we would also like to update all the books written by the
author as well as update his address. We do this by accepting nested attributes:

class Author
...
 accepts_nested_attributes_for :books, :address, allow_destroy: true
...
end

Chapter 8

[211]

As the name suggests, accepts_nested_attributes_for accepts nested attributes for
the child relation.

We can only accept nested attributes for children. That means we
should use them only in the parent relation.

We shall see how this comes into play when we build the Views.

Update the Author model as follows:

class Author
...
 validates_presence_of :name
...
end

Because this is a Mongoid document, it has all the features that are available with
ActiveModel, such as ActiveModel::Validations. So we can use all the available
validations here. In this case, we validate the presence of the name to ensure that an
Author object is not created without the name!

Time for action – writing the Book, Category and Address models
Now let's take a look at the remaining models. The Book model is as follows:

app/models/book.rb

class Book
 include Mongoid::Document

 field :title, type: String
 field :publisher, type: String
 field :published_on, type: Date
 field :price, localize: true
 field :votes, type: Array

 validates :title, presence: true

 belongs_to :author
 has_and_belongs_to_many :categories

 embeds_many :reviews
end

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[212]

Now let's add the Category and Address model:

app/models/category.rb

class Category
 include Mongoid::Document

 field :name, type: String

 has_and_belongs_to_many :books
end

app/models/address.rb

class Address
 include Mongoid::Document

 field :street, type: String
 field :zip, type: Integer
 field :city, type: String
 field :state, type: String
 field :country, type: String

 belongs_to :location, polymorphic: true
end

What just happened?
Nothing that we didn't already know! We have seen all these fields and relations in the
earlier chapters! Remember that Address has a polymorphic relation as it can be related
to any other model!

Time for action – modeling the Order class
Now, let's look at a few new aspects! An order is of two types; either a lease or a purchase.
The Order model can be written as follows:

app/models/order.rb
class Order
 include Mongoid::Document

 field :created_at, type: DateTime
 field :type, type: String # Lease, Purchase

 belongs_to :book
 belongs_to :member

Chapter 8

[213]

 embeds_one :lease
 embeds_one :purchase
end

The Purchase model can be written as follows:

app/models/purchase.rb
class Purchase
 include Mongoid::Document

 field :quantity, type: Integer
 field :price, type: Float

 embedded_in :order
end

The Lease model can be written as follows:

app/models/lease.rb
class Lease
 include Mongoid::Document

 field :from, type: DateTime
 field :till, type: DateTime

 embedded_in :order
end

What just happened?
Here we are following the standard paradigm for a type field. If the type is :lease, we
shall look up the Lease embedded object. If it's :purchase, we shall look up the Purchase
embedded object. We could have made this polymorphic, but then how will we learn the
different ways of coding?

Understanding Rails routes
What are routes, did you say? They are the URLs that we shall use to access the application
from the web browser. Rails goes one step further and sets up RESTful routes by default.

REST stands for REpresentational State Transfer. It represents resources
and actions performed on them. Given a combination of the resource,
HTTP verbs (GET, PUT, POST and DELETE) and some basic actions, we
can define standard operations.

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[214]

What is the RESTful interface?
RESTful interfaces are the definition of resources from which the URLs are generated. We can
understand this better from the following table:

HTTP Verb Author Resource URL Controller Action Description

GET /authors :index List all Authors

GET /authors/:id :show Show Author details

GET /authors/:id/edit :edit Show the edit Author form

PUT /authors/:id :update Update Author

POST /authors :create Create Author

GET /authors/new :new Show the new author form

DELETE /authors/:id :destroy Delete an Author

Time for action – configuring routes
We can invoke different URLs depending on the action we want to perform. We configure the
routes for our application in config/routes.rb:

Sodibee::Application.routes.draw do

 resources :authors do
 resources :books
 end

 resources :orders
 resource :categories

 root :to => 'authors#index'
end

What just happened?
These are the basic routes. Let's see them one by one:

Sodibee::Application.routes.draw do

 resources :authors do
 resources :books
 end

 resources :orders
 resource :categories

 root :to => 'authors#index'
end

Chapter 8

[215]

The highlighted line of code in config/routes.rb generates various routes. We can see
them by issuing the following command:

$ rake routes

categories POST /categories(.:format) categories#create

new_categories GET /categories/new(.:format) categories#new

edit_categories GET /categories/edit(.:format) categories#edit

 GET /categories(.:format) categories#show

 PUT /categories(.:format) categories#update

 DELETE /categories(.:format) categories#destroy

As we can see, different HTTP verbs and the URLs map to different actions. Here
categories is a resource. Just like we have resources, we also have nested resources;
for example, books cannot exist without an author. Have a look at the following:

 Sodibee::Application.routes.draw do

 resources :authors do
 resources :books
 end

 resources :orders
 resource :categories

 root :to => 'authors#index'
end

Here, books can be accessed only in the namespace of the author. So, this builds URLs like
this: /authors/:author_id/books/:id.

Understanding the Rails architecture
This is a good time to explain how a Rails request is processed. As you are probably aware,
Rails follows the Model-View-Controller (MVC) architecture, that is, it follows the MVC
design pattern. The aim of this architecture is to divide the application into more than just
one long procedural program!

The Model holds all the data manipulation code. Typically, most of the code resides in the
models. The data validations, relationships, pre and post processing of data, pre and post
action callbacks are written in models. Models should be fat!

Domain-Driven Design by Eric Evans is an excellent book that talks about
writing code, based on domain logic and organizing the complexity. In Rails
terminology, we extensively use modules and include them in the models
to keep models thin and keep the domain logic separate.

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[216]

The Controller controls the flow for processing the request. Authentication and authorization
checks are done here. The flow of control on an action's success or failure is written here. For
example, what should be done if an object cannot be saved or updated? It also has pre and
post action filters. Controllers should be skinny!

The View is the final HTML that is rendered. Writing raw HTML can be very tedious, so it's
usually managed via templates—ERB, Haml, Liquid, Jade, Slim, and so on. These are the
template markup languages that generate HTML and can also process Ruby embedded in
them. Haml is what we shall be using. Views should avoid processing code as it impacts the
performance drastically. They should typically only access data, as Ruby instance variables
or JSON.

The Helper is a module that helps the Views process Ruby code in a cleaner way. Suppose we
need to manipulate some data, rather than writing it in the View, it should be written in the
Helper. This also avoids rewriting code and obeys the Don't Repeat Yourself(DRY) principle.

I'll say it again "Don't Repeat Yourself", "Don't Repeat Yourself"! (Just couldn't resist
repeating myself here!)

Processing a Rails request
Ever wondered what really happens when a Rails request is received? With so many different
components floating around, how are these pieces of the puzzle put together? The following
diagram should clear things for you:

Controller

Routing Engine

Views

Models Database

A Rails request is processed as follows:

 � When a Rails request comes to the web server, the Rack (remember?) identifies the
HTTP Verb, the request parameters, and the URI (the string after the host name).
For example, if we type the URL http://localhost:3000/authors/new in the
browser's address bar, the Rails server will identify this as a GET request with the
URI as /authors and as there are no parameters passed, the params will be an
empty hash.

 � Now, the Rails web server resolves the URI and maps it to a Controller and an
action. It parses the URI and maps it to a URI format as seen in the rake routes
command. As we can see, this will map to the Authors#index action. We shall see
more detailed examples shortly.

Chapter 8

[217]

 � Now, we know the Controller name (AuthorsController) and the action (index).
An AuthorsController object is created for this request and the index action is
invoked on that object. With that, we are now in the Controller code!

 � The Controller's action now processes the request and accesses the Models and
gathers the information required.

 � Now, when it's time to send back a response, just as the Controller and action
were resolved, we need to find the template for this action. It would reside in the
views/<controller name>/<action template> and in our example, it would
be views/authors/index.html.haml.

 � Here lies the "Rails magic" (very rarely explained in Rails books). After the Controller
processing is done, the Rails web server creates an instance of the ActionView
object (it's a class which helps in rendering) and copies all the instance variables
from the Controller object we created into this object. Yes! That's right, we can
copy instance variables from one object to another.

 � Now, we pass the template file to this object and process it along with direct access
to the instance variables! Voila – the output is an HTML response.

Tips to ensure higher efficiency and productivity in your code
 � Try never to fetch too much data in your Controller's instance

variables. If there are 100,000 objects fetched from the database,
not only is it heavy on memory but also it would mean we have to
copy these 100,000 objects into the View, which can be expensive.
Use pagination!

 � Don't keep unnecessary instance variables in the Controller. Create
only those instance variables that will be accessed in the Views.

 � Ensure that models are not accessed from the Views.
Understandably, this will reduce efficiency because data access
from the Views means database I/O!

Coding the Controllers and the Views
Here is where our web application kicks in. Let's write some Controllers first. Every Rails
application has the default Controller as ApplicationController. For example, consider
the following:

class ApplicationController < ActionController::Base
 protect_from_forgery
end

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[218]

protect_from_forgery is a method which uses the Cross Site
Request Forgery (CSRF) token to ensure that the data is being posted
from a secure form.

There are more ways to secure a Rails application. Recently, a
mass assignment vulnerability was found and resolved using
attr_accessible but not before the mighty Github portal was
hacked. (http://github.com/blog/1068-public-key-
security-vulnerability-and-mitigation)

Time for action – writing the AuthorsController
Now we shall see what the Authors Controller has in store for us. Have a look at RESTful
routes again and remember that all the RESTful actions are methods in the Controller class.
Have a look a the AuthorsController:

app/controllers/authors_controller.rb

class AuthorsController < ApplicationController

 # GET /authors
 def index
 @authors = Author.all.includes(:books)
 end

 # GET /authors/new
 def new
 @author = Author.new
 @author.build_address
 @author.books.build
 end

 # POST /authors
 def create
 @author = Author.new(params[:author])
 @author.save!
 redirect_to authors_path, notice: "Author created successfully"

 rescue
 render :new
 end

 # GET /authors/:id/edit
 def edit

Chapter 8

[219]

 @author = Author.find(params[:id])
 @author.build_address unless @author.address
 @author.books.build if @author.books.empty?
 end

 # PUT /authors/:id
 def update
 @author = Author.find(params[:id])
 if @author.update_attributes(params[:author])
 redirect_to authors_path, notice: "Author updated successfully"
 else
 render :edit
 end
 end
end

It's still too early to run and test this code. We need to build the Views before we can see
something in the browser!

What just happened?
Let's take a look at the index method:

 # GET /authors
 def index
 @authors = Author.all.includes(:books)
 end

The preceding method lists all the authors. (We are ignoring pagination here and fetching all
the authors.) As we need to render the author objects in the Views, we are storing them in
an instance variable @authors.

Solving the N+1 query problem using the includes method
includes is a method that does "eager loading" of associated objects. Suppose we want to
show the author names and the book titles for that author, we would need to fetch the Book
object for each author.

The inefficient way to do this is to only fetch the Author object and then on-demand, fetch
the Book object when needed. This means that if there are 100 authors, we will be firing 101
queries – one for fetching all the authors and one query for fetching books for each author!
This is indeed expensive. This is also popularly called the N+1 query problem!

The efficient way of doing this is by firing one query to fetch the authors and only one
more query to fetch all the books of the selected authors. So, whether I have 10 authors
or 100,000 authors, I will always fire only two queries!

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[220]

Alright! Let's get back to the code now. Now let's see the new and create methods:

GET /authors/new
def new
 @author = Author.new
 @author.build_address
 @author.books.build
end

POST /authors
def create
 @author = Author.new(params[:author])
 @author.save!
 redirect_to authors_path, notice: "Author created successfully"

 rescue
 render :new
end

The new and create methods are used in tandem. In the new method, what's important to
see are the following two lines used for building the related objects:

GET /authors/new
def new
 @author = Author.new
 @author.build_address
 @author.books.build
end

Hey! We haven't even saved an object to the database, so how are we relating them? That's
the beauty of Rails relations. When the Author object is created, it does not mean it's saved
to the database. When the save is called in the create method, it is actually persistent in
the database!

Relating models without persisting them
Did I hear you ask, what's the difference between build_address and books.build?
Why not build_books or address.build? Here it goes!

As the Author model has only one address (the has_one relation), we can call a method
directly – build_address. If this were @author.address.build, it would throw an
exception saying build call on nil object. As the Author model has many books (the
has_many relation) it's internally stored as an empty array. So we can call @author.
books.build on it.

Chapter 8

[221]

Hey! What does .build do anyway? How is it different from new? Another good question!

When we create an object using new, it has an id that is not saved to the database (yet). We
can use .build to create an associated objects in memory using the relations even on these
objects that are not in the database.

@author.books.build and @author.books.new are equivalent,
as books is an array because of the has_many relation!

Back to our code again. Let's have a look at the code for the POST request:

POST /authors
def create
 @author = Author.new(params[:author])
 @author.save!
 redirect_to authors_path, notice: "Author created successfully"

 rescue
 render :new
end

For creating an author, we require a POST request to /authors! If all the validations pass
(such as, name of author is present), the @author instance variable is instantiated. When
we call the @author.save! it is actually saved to the database!

"Bang methods" such as, save! or create! have a special meaning.
An exception will be raised in case the object cannot be persisted.

save and create can also be invoked but they do not raise an
exception. They simply return true or false.

If anything goes wrong in the preceding method, an exception will be raised and the Author
object will have its errors field populated! On the basis of this errors field, we can show
relevant error messages in the browser. We shall soon see in the Views, what the Rails
framework does for us "automagically".

If the object is successfully saved to the database, the Controller redirects the request to the
author's index page!

Let's see the edit and update methods now:

 # GET /authors/:id/edit
 def edit
 @author = Author.find(params[:id])
 @author.build_address unless @author.address

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[222]

 @author.books.build if @author.books.empty?
 end

 # PUT /authors/:id
 def update
 @author = Author.find(params[:id])
 if @author.update_attributes(params[:author])
 redirect_to authors_path, notice: "Author updated successfully"
 else
 render :edit
 end
 end

This is similar to the new and create methods, except that we search for the relevant object
from the database using the find method.

Notice the :id in the route /authors/:id/edit. How did we access it from params? Hey!
What are these params?

params is a hash stored in the HTTPRequest object and accessible
to the Controller method that is invoked. params contains all the route
parameters, (such as :id, the one we just saw), the GET parameters,
(such as, ?foo=bar in the URL) and the POST parameters (from
the HTTP forms). So we don't have to do any special handling to fetch
parameters, they are already there for us. Thank you Rack!

The update method also shows us an interesting idiom:

 # PUT /authors/:id
 def update
 @author = Author.find(params[:id])
 if @author.update_attributes(params[:author])
 redirect_to authors_path, notice: "Author updated successfully"
 else
 render :edit
 end
 end

Instead of using save! or update! we are using the return value of update_attributes
and testing it for true or false. If the object is saved successfully to the database, the
control should redirect to the Author's index otherwise, it should render the edit action
with the @author object errors to indicate the error messages.

Chapter 8

[223]

Designing the web application layout
Finally, we shall now learn how to render the data we have collected in a neat and clean
way! Welcome Bootstrap and Haml!

Late in 2011, Twitter released a framework called Bootstrap. It's a bunch of CSS and JS files.
They are unobtrusive and integrated with jQuery. They even have a responsive design! (that
is, it would work on all media—phones, tablets, and the web.)

The layout of an application is the base page design. It has a header, content, and footer.
Let's design this!

Time for action – designing the layout
Start your engines! Let's start the server:

$ rails s

=> Booting WEBrick

=> Rails 3.2.2 application starting in development on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

INFO WEBrick 1.3.1

INFO ruby 1.9.2 (2011-07-09) [i386-darwin9.8.0]

INFO WEBrick::HTTPServer#start: pid=15943 port=3000

Now type http://localhost:3000 in the browser's address bar and we are on our way!

Here are some tips to remember for the basic Rails setup

In case you see the "Welcome to Ruby On Rails" page, remove the
public/index.html page.

In case you see an error saying No route matches [GET] "/", add root
:to => 'authors#index' to your config/routes file.

Here is our layout, it's "bootstrapped". This is how our app/views/layouts/
application.html.haml looks:

!!!
%html{:lang => :en}
 %head
 %meta{:charset => "utf-8"}/
 %meta{:content => "width=device-width, initial-scale=1.0", :name
=> "viewport"}/
 %title Sodibee Library Manager

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[224]

 = javascript_include_tag "application"
 = stylesheet_link_tag "application"
 = csrf_meta_tags

 %body
 .navbar
 .navbar-inner
 .container-fluid
 = link_to "Sodibee", root_path, :class => 'brand'
 %ul.nav
 %li.dropdown
 %a.dropdown-toggle{ :href => '#', "data-toggle" =>
"dropdown"}
 ="Authors"
 %b.caret
 %ul.dropdown-menu
 %li= link_to "List Authors", authors_path
 %li= link_to "New Author", new_author_path
 %li= link_to "Orders", orders_path
 %li= link_to "New Order", new_order_path
 .container
 .content
 = yield
 .footer
 %p Packt Publishing © Company 2011

In case you see the app/views/layouts/application.html.erb
file, you can simply remove it. We are using Haml and not ERB.

In case you see an error Missing template authors/index, simply add an empty file
app/views/authors/index.html.haml. We can add the Haml code into it later.

We also have to configure the JavaScript and CSS via the Asset pipeline. Let's take a look at
the main JavaScript file app/assets/javascript/application.js:

//= require jquery
//= require jquery_ujs
//= require bootstrap
//= require_tree .

And now, let's configure our stylesheets. In case there is already an app/assets/
application.css file, remove it entirely and add a new file app/assets/application.
css.sass with the following contents:

@import 'bootstrap'

Chapter 8

[225]

Now, type the URL http://localhost:3000 in the browser's address bar and you should
see our application with a very neat and fancy layout, shown as follows:

What just happened?
Rails Magic! That's what just happened. Let's study this in detail.

A closer look at the Top Navigation bar reveals that Authors is a drop-down menu with two
more options: List Authors and New Author. This was all coded in Haml:

Haml is an indentation-aware templating language. It looks neat and tidy
and you can find a lot more information at http://haml-lang.com.

A very quick Haml reference can be explained as follows:

% adds HTML tags like span, div, p and so on.

. adds the class attribute to div tag. For example, .footer creates
the <div class="footer"> tag.

adds the id attribute to the div tag. For example, #authors creates
the <div id="authors"> tag.

Both can be used in tandem. For example, #authors.well creates the
<div id="authors" class="well"> tag.

= suffix implies Ruby code processing. For example, %p= 1 + 1 creates
<p>2</p>.

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[226]

Now let's see the code in application.html.haml:

!!!
%html{:lang => :en}
 %head
 %meta{:charset => "utf-8"}/
 %meta{:content => "width=device-width, initial-scale=1.0", :name
=> "viewport"}/
 %title Sodibee Library Manager
 = javascript_include_tag "application"
 = stylesheet_link_tag "application"
 = csrf_meta_tags

 %body
 .navbar
 .navbar-inner
 .container-fluid
 = link_to "Sodibee", root_path, :class => 'brand'
 %ul.nav
 %li.dropdown
 %a.dropdown-toggle{ :href => '#', "data-toggle" =>
"dropdown"}
 ="Authors"
 %b.caret
 %ul.dropdown-menu
 %li= link_to "List Authors", authors_path
 %li= link_to "New Author", new_author_path
 %li= link_to "Orders", orders_path
 %li= link_to "New Order", new_order_path
 .container
 .content
 = yield
 .footer
 %p Packt Publishing © Company 2011

We just saw the core HTML header generation. We can define HTML meta tags here, as well
as the default title of the page and load JavaScript and CSS! The CSRF token is added here by
default as a security measure.

The %meta{:content => "width=device-width, initial-
scale=1.0", :name => "viewport"}/ gets Bootstrap to configure the
Views as a responsive layout, that is these pages will be seen properly aligned
on any device—a computer monitor, an iPhone, or any mobile, or touch device.

Chapter 8

[227]

Take a look at the preceding Haml code again:

!!!
%html{:lang => :en}
 %head
 %meta{:charset => "utf-8"}/
 %meta{:content => "width=device-width, initial-scale=1.0", :name
=> "viewport"}/
 %title Sodibee Library Manager
 = javascript_include_tag "application"
 = stylesheet_link_tag "application"
 = csrf_meta_tags

 %body
 .navbar
 .navbar-inner
 .container-fluid
 = link_to "Sodibee", root_path, :class => 'brand'
 %ul.nav
 %li.dropdown
 %a{:class => 'dropdown-toggle', :href => '#', :data =>
{:toggle => 'dropdown'}}
 ="Authors"
 %b.caret
 %ul.dropdown-menu
 %li= link_to "List Authors", authors_path
 %li= link_to "New Author", new_author_path
 %li= link_to "Orders", orders_path
 %li= link_to "New Order", new_order_path
 .container
 .content
 = yield
 .footer
 %p Packt Publishing © Company 2011

In the preceding code, the highlighted part is the navigation bar—the black bar that we see!
We can define our application logo there, as shown in the following code:

!!!
%html{:lang => :en}
 %head
 %meta{:charset => "utf-8"}/
 %meta{:content => "width=device-width, initial-scale=1.0", :name
=> "viewport"}/
 %title Sodibee Library Manager

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[228]

 = javascript_include_tag "application"
 = stylesheet_link_tag "application"
 = csrf_meta_tags

 %body
 .navbar
 .navbar-inner
 .container-fluid
 = link_to "Sodibee", root_path, :class => 'brand'
 %ul.nav
 %li.dropdown
 %a{:class => 'dropdown-toggle', :href => '#', :data =>
{:toggle => 'dropdown'}}
 ="Authors"
 %b.caret
 %ul.dropdown-menu
 %li= link_to "List Authors", authors_path
 %li= link_to "New Author", new_author_path
 %li= link_to "Orders", orders_path
 %li= link_to "New Order", new_order_path
 .container
 .content
 = yield
 .footer
 %p Packt Publishing © Company 2011

The highlighted part of the code is a drop-down menu bar, as we can see in our application.
Let's now see the Haml code for the Orders drop-down menu bar:

!!!
%html{:lang => :en}
 %head
 %meta{:charset => "utf-8"}/
 %meta{:content => "width=device-width, initial-scale=1.0", :name
=> "viewport"}/
 %title Sodibee Library Manager
 = javascript_include_tag "application"
 = stylesheet_link_tag "application"
 = csrf_meta_tags

 %body
 .navbar
 .navbar-inner
 .container-fluid
 = link_to "Sodibee", root_path, :class => 'brand'

Chapter 8

[229]

 %ul.nav
 %li.dropdown
 %a{:class => 'dropdown-toggle', :href => '#', :data =>
{:toggle => 'dropdown'}}
 ="Authors"
 %b.caret
 %ul.dropdown-menu
 %li= link_to "List Authors", authors_path
 %li= link_to "New Author", new_author_path
 %li= link_to "Orders", orders_path
 %li= link_to "New Order", new_order_path
 .container
 .content
 = yield
 .footer
 %p Packt Publishing © Company 2011

And the highlighted statements are standard top-level menu items!

Have a look at the code for the yield method:

!!!
%html{:lang => :en}
 %head
 %meta{:charset => "utf-8"}/
 %meta{:content => "width=device-width, initial-scale=1.0", :name
=> "viewport"}/
 %title Sodibee Library Manager
 = javascript_include_tag "application"
 = stylesheet_link_tag "application"
 = csrf_meta_tags

 %body
 .navbar
 .navbar-inner
 .container-fluid
 = link_to "Sodibee", root_path, :class => 'brand'
 %ul.nav
 %li.dropdown
 %a{:class => 'dropdown-toggle', :href => '#', :data =>
{:toggle => 'dropdown'}}
 ="Authors"
 %b.caret
 %ul.dropdown-menu
 %li= link_to "List Authors", authors_path

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[230]

 %li= link_to "New Author", new_author_path
 %li= link_to "Orders", orders_path
 %li= link_to "New Order", new_order_path
 .container
 .content
 = yield
 .footer
 %p Packt Publishing © Company 2011

This is where the dynamic code is rendered! yield is a Ruby method that renders any block
of code passed. All the code that we want to dynamically change and render in this layout is
automatically passed as a block of Haml with Ruby code embedded in it!

 Understanding the Rails asset pipeline
Rails 3.1 introduced the asset pipeline—in short, a clean and neat way to provide assets.
Assets are images, JavaScript, and CSS. Earlier, we had to put all the .js, .css and image
files in the public/ directory. The problem with this was that if a page did not want to use
a particular JavaScript or a CSS file, it still loaded them all, although it was using the same
layout (but without JavaScript or CSS).

All the custom JavaScript was put in an application.js JavaScript file and all custom
CSS was put in a common CSS file. With the asset pipeline, it's a more streamlined and
customized approach to serving assets. All the assets are compiled and compressed into
a single JS and CSS file with an e-tag (an expiry tag).

Read more about sprockets and the asset pipeline at http://guides.
rubyonrails.org/asset_pipeline.html. Sprockets is a gem
that helps in assembling and compiling assets using directives.

Rails 3 projects are bundled with the jquery-rails gem and hence we have access to
jQuery by default. We also want to use Twitter Bootstrap. Hence, we have bundled the
bootstrap-sass gem in the Gemfile. To bundle all the Bootstrap JavaScript files in our
asset pipeline, we use the Sprocket directive shown next. If we open the app/assets/
application.js file, we would see the following:

//= require jquery
//= require jquery_ujs
//= require bootstrap
//= require_tree .

This automatically includes all the bootstrap JavaScript into the asset pipeline. As we can see,
we also include jquery, jquery_ujs and any custom JavaScript file in the app/asssets/
javascripts directory. This keeps our project code incredibly clean.

Chapter 8

[231]

Just like we have included the Bootstrap JavaScript files, we also need to include the
Bootstrap CSS files. In the app/assets/stylesheets/application.css.sass ,the
SASS file, we invoke the following command to include all the Bootstrap CSS styles:

@import 'bootstrap'

Designing the Authors listing page
So, what and how do we render the authors? We want to list the author in a table along with
their books!

Time for action – listing authors
 Here is the app/views/authors/index.html.haml:

%h1 All Authors
%table{:class => "table table-striped table-bordered table-condensed"}
 %thead
 %tr
 %th Name
 %th Books
 %tbody
 - @authors.each do |author|
 %tr
 %th= link_to author.name, edit_author_path(author)
 %th= author.books.collect(&:title).to_sentence

Now when we invoke http://localhost:3000/authors via the browser, we should see
the following screenshot:

As we have not added any authors yet, it's empty, but looking pretty! If you were using
the same MongoDB database while experimenting during the earlier chapters, you would
actually see the authors and their books here!

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[232]

What just happened?
Before we see the View code in detail, let's quickly revisit our Controller code:

class AuthorsController < ApplicationController

 # GET /authors
 def index
 @authors = Author.all.includes(:books)
 end
...
end

We are fetching all the authors and their books in the instance variable @authors (eager
loading the books, remember?). Now let's see the View code in detail:

%h1 All Authors
%table{:class => "table table-striped table-bordered table-condensed"}
 %thead
 %tr
 %th Name
 %th Books
 %tbody
 - @authors.each do |author|
 %tr
 %th= link_to author.name, edit_author_path(author)
 %th= author.books.collect(&:title).to_sentence

The preceding part of the code creates the table. Notice, that we have given some styles to
the table. These are picked up from the Bootstrap:

%h1 All Authors
%table{:class => "table table-striped table-bordered table-condensed"}
 %thead
 %tr
 %th Name
 %th Books
 %tbody
 - @authors.each do |author|
 %tr
 %th= link_to author.name, edit_author_path(author)
 %th= author.books.collect(&:title).to_sentence

What we just saw, is the core of the Haml logic and Ruby code integrated. We are iterating
over the @authors array and listing the authors name in the first column. In the second
column, we are collecting the titles of all the books of that author and converting them
into a sentence—a little ActiveSupport magic here!

Chapter 8

[233]

Read about Bootstrap at http://twitter.github.com/
bootstrap/

ActiveSupport provides a lot of utility methods for Controllers
and Views. Having a good knowledge of these methods can really
help us write very very good code.

Let's get a little deeper into this particular Ruby code and understand some more facets of
Ruby! Take a look at the following line of code:

author.books.collect(&:title).to_sentence

author is an Author object.

author.books is an array of books that this author has written.

collect is a method that iterates over an array and returns the objects that match the
criteria in the block of code provided. The one we just saw is a concise code and this could
also be written as follows:

author.books.collect do |book|
 book.title
end

The preceding code basically collects all the titles of the books. map is an alias of collect.
Ruby has plenty of such alias methods to help programmers from different programming
backgrounds to remember method names. collect has its roots from Smalltalk while map
or transform is used in most other higher-level languages.

The to_sentence method is pretty interesting. ActiveSupport goes the distance to make
our life easy with arrays! Let's see this using the following examples:

irb> [1, 2, 3].to_sentence

 => "1, 2, and 3"

irb> [1,2].to_sentence

 => "1 and 2"

irb> [].to_sentence

 => ""

irb> [1].to_sentence

 => "1"

irb> [1, 2, 3, 4].to_sentence

 => "1, 2, 3, and 4"

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[234]

Isn't that beautiful? to_sentence automatically manages punctuations and the last "and"! If
we add authors and books, we should see something, as shown in the following screenshot:

Adding new authors and their books
When we create authors, we want their books to be added too at that time. In other words,
we want the form for creating a book to be nested inside the form for creating an author.
These are called nested attributes. First we need to tweak the Author model for this.

Time for action – adding new authors and books
First let's see how the Author model has changed a bit to accommodate book attributes!
Have a look at the following code:

class Author
 include Mongoid::Document

 field :name, type: String

 validates_presence_of :name

 has_one :address, as: :location, autosave: true, dependent: :destroy
 has_many :books, autosave: true, dependent: :destroy

 accepts_nested_attributes_for :books, :address, allow_destroy: true
end

Now we add the nested template app/views/authors/new.html.haml, HAML file:

%h2 New Author

= simple_nested_form_for(@author, :html => {:class => 'well form-
horizontal'}) do |f|
 = f.input :name
 = render 'shared/address', :f => f

Chapter 8

[235]

 %h2 Books
 = f.fields_for :books do |b|
 %fieldset{:class => 'well'}
 = b.input :title
 = b.input :publisher
 = b.association :categories, collection: Category.all
 = b.link_to_remove "Remove", :class => 'btn btn-danger btn-mini'

 = f.link_to_add "Add Book", :books, :class => 'btn btn-success'
 = f.submit :class => 'btn-primary'

The preceding code is the template that will be rendered when the
AuthorsController#new action is invoked from the URL http://localhost:3000/
authors/new, that is, when we click on New Author from the menu bar we will see the
following screen:

What just happened?
A lot just happened! Let's take it step by step. Remember we have installed simple_form
and nested_form gems! These kick in here and do their magic. Let's see the code of nested
attributes first:

class Author
 include Mongoid::Document

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[236]

 field :name, type: String

 validates_presence_of :name

 has_one :address, as: :location, autosave: true, dependent: :destroy
 has_many :books, autosave: true, dependent: :destroy

 accepts_nested_attributes_for :books, :address, allow_destroy: true
end

The accepts_nested_attributes_for method ensures that for the Author object,
it will also directly access or save its books and address. We have seen the code in the
Controller already where the address and book objects are built! Here is a brief reminder:

def new
 @author = Author.new
 @author.build_address
 @author.books.build
end

Now, we shall see the code of the View:

%h2 New Author

= simple_nested_form_for(@author, :html => {:class => 'well form-
horizontal'}) do |f|
 = f.input :name
 = render 'shared/address', :f => f

 %h2 Books
 = f.fields_for :books do |b|
 %fieldset{:class => 'well'}
 = b.input :title
 = b.input :publisher
 = b.association :categories, collection: Category.all
 = b.link_to_remove "Remove", :class => 'btn btn-danger btn-mini'

 = f.link_to_add "Add Book", :books, :class => 'btn btn-success'

 = f.submit :class => 'btn-primary'

Using simple_nested_form_for instead of the traditional form_for gems makes the
form alive to nested fields as well as simple_form fields!

Chapter 8

[237]

Configuring for nested_form

When using nested form, we initially need to add a custom JavaScript
file. This is done using the rails generate nested_
form:install command.

This command generates a public/javascripts/nested_form.
js file. It is recommended that this be moved to app/assets/
javascripts directory so that it gets bundled in the asset pipeline.

Have a look at the following code snippet:

%h2 New Author

= simple_nested_form_for(@author, :html => {:class => 'well form-
horizontal'}) do |f|
 = f.input :name
 = render 'shared/address', :f => f

 %h2 Books
 = f.fields_for :books do |b|
 %fieldset{:class => 'well'}
 = b.input :title
 = b.input :publisher
 = b.association :categories, collection: Category.all
 = b.link_to_remove "Remove", :class => 'btn btn-danger btn-mini'

 = f.link_to_add "Add Book", :books, :class => 'btn btn-success'

 = f.submit :class => 'btn-primary'

This is nested_form kicking in!

simple_form methods set the form fields based on the type of data,
so it will automatically render the string as a text field, a date as the
default date format fields, and so on.

It also creates a <label> field based on the name of the field.

If that was not enough, it also checks on validations and if a field has
:presence => true (for example, the :name field of Author),
it will automatically add a * to the label and a required =
"required" to the form input element.

When using simple_nested_form_for, the fields_for picks up the association
(remember an author has many books) and renders the book object fields.

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[238]

simple_form also understands these associations automagically! As books and categories
have a many-to-many relation, it shows the categories as a multi-select input!

We can add more books using the Add Book button and remove book objects via the
Remove button.

nested_form uses a combination of JavaScript and a blueprint template
that is generated using the association and the fields of the associated object

Address and Books are now populated as nested attributes:

Similarly, we can add and remove books using the nested_form helpers. Nested form
enables some smart ways to add more books and remove them using some simple JavaScript
and blueprint templates. A blueprint template is an HTML <div> tag that is not rendered,
but used for creating more <div> tags which are part of the form that would be sent to the
server for creation of the author and the author's books:

Chapter 8

[239]

But that's not all! simple_form also helps us render validations and errors properly!
Remember that the title of the book and the name of the author are mandatory, these
are shown with an asterisk next to the label!

What if the form is submitted but has some validation errors? We know that the new
action is rendered and the @author object has errors populated. But how are they
shown? They are shown as follows:

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[240]

Welcome to Rails!

Have a go hero
 � Why don't you Bootstrap the members or the orders MVC?

 � Why don't you implement the Author Edit functionality?

 � Members have an address (it's polymorphic)

 � Orders have an embedded type, Purchase or Lease.

 � Books can have reviews and votes from members (nested attributes!)

The Sinatra way
Now that we have seen this the Rails way, let's see how this is done using Sinatra and Rack!

Time for action – setting up Sinatra and Rack
As we have seen before, Sinatra requires very little configuration. Here is our Gemfile:

source 'https://rubygems.org'

gem 'sinatra'

Bundle edge Rails instead:
gem 'rails', :git => 'git://github.com/rails/rails.git'
gem 'mongoid'
gem 'bson'

gem 'haml'

We have removed a lot of gems (such as rails, simple_form, nested_form,
bootstrap-sass, and all the asset gems). This is because some are very Rails dependent.
To get the power of Bootstrap JavaScript and the CSS, we simply copy them in a directory
where we shall keep all the static assets:

$ ls -R public/

css/ img/ js/

public//css:

bootstrap.css

public//img:

Chapter 8

[241]

glyphicons-halflings-white.png glyphicons-halflings.png

public//js:

bootstrap.js jquery.js

Now, we configure Sinatra to "talk" to MongoDB! This is done as follows:

require 'mongoid'
require 'sinatra'

configure do
 Mongoid.configure do |config|
 name = "sodibee_development"
 host = "localhost"
 config.master = Mongo::Connection.new.db(name)
 config.persist_in_safe_mode = false
 end
end

The MongoDB models don't change at all. And as the core of the application is in these
models, this makes life really easy! All we have to do is load the Ruby classes! This is done
as follows:

require 'mongoid'
require 'sinatra'

configure do
 Mongoid.configure do |config|
 name = "sodibee_development"
 host = "localhost"
 config.master = Mongo::Connection.new.db(name)
 config.persist_in_safe_mode = false
 end

 enable :sessions
end

Routes and Controller logic is bundled up together in Sinatra! So, we can simply take some
Controller logic out of the Rails application and put it in our app.rb file, as shown in the
following code:

get "/authors" do
 @authors = Author.all
 haml :'authors/index'
end

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[242]

Here is what our layout looks like. This is the views/layout.haml—the default layout:

!!!
%html{:lang => :en}
 %head
 %meta{:charset => "utf-8"}/
 %title Sodibee Library Manager
 %script{:src => "/js/jquery.js", :type => "text/javascript"}
 %script{:src => "/js/bootstrap.js", :type => "text/javascript"}
 %script{:src => "/js/bootstrap-dropdown.js", :type => "text/
javascript"}
 %script{:src => "/js/bootstrap-collapse.js", :type => "text/
javascript"}
 %link{:href => '/css/bootstrap.css', :rel => 'stylesheet', :type
=> 'text/css'}

 %body
 .navbar
 .navbar-inner
 .container-fluid
 %a{:href => "/", :class => 'brand'} Sodibee
 %ul.nav
 %li.dropdown
 %a{:class => 'dropdown-toggle', :href => '#', :data =>
{:toggle => 'dropdown'}}
 ="Authors"
 %b.caret
 %ul.dropdown-menu
 %li
 %a{:href => '/authors'} List Authors
 %li
 %a{:href => '/authors/new'} New Author
 %li
 %a{:href => "/orders"} Orders
 %li
 %a{:href => "/orders/new"} New Order
 .container
 .content
 = yield
 .footer
 %p Packt Publishing © Company 2011

As this is not Rails, there is no ActionView and its FormHelpers
available. So, we need to rewrite the Views and make them independent
of Rails. This increases our overhead a little.

Chapter 8

[243]

Let's rackup and be on our way! Let's execute the following commands:

$ rackup config.ru

INFO WEBrick 1.3.1

INFO ruby 1.9.2 (2011-07-09) [i386-darwin9.8.0]

INFO WEBrick::HTTPServer#start: pid=17348 port=9292

The result is visible! The browser will display our application as follows:

What just happened?
We successfully set up a Sinatra application with Rack and MongoDB! And as we have seen,
it isn't very difficult to move our code between compliant Rack applications! Points to note
are as follows:

 � The MongoDB models (the core) do not change at all

 � The Controller code remains the same

 � The routes are configured in a slightly different way in Sinatra and Rails

 � We need to make a lot of changes in the Views because in Rails, we used
FormHelpers and ActionView methods that are not available with Sinatra

Have a go hero
Why don't you try and add the /authors/new functionality?

Testing and automation using RSpec
No application is complete without proper tests in place. We shall not go into a lot of
automated testing concepts here because there are books about this. We shall touch
upon a few concepts though.

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[244]

Understanding RSpec
RSpec is a popular autotest tool used very heavily, especially in a Rails application. We can
test Models, routes, Controllers and even Views in an automated way.

Time for action – installing RSpec
Ensure that you have the following gem in your Gemfile:

group :development, :test do
 gem 'rspec-rails'
 gem 'spork'
 gem 'faker'
end

In our Rails application, to set up RSpec we need to invoke the following command:

$ rails generate rspec:install

 create .rspec

 create spec

 create spec/spec_helper.rb

Removing specific ActiveRecord configuration.

You will need to comment the following lines in the spec/spec_helper.
rb file to ensure there aren't any errors due to ActiveRecord:

 � config.fixture_path = "#{::Rails.root}/spec/
fixtures"

 � config.use_transactional_fixtures = true

Now, we can write some RSpec code on our own. We can write the Author model test
specifications in spec/models/author_spec.rb:

require 'spec_helper'

describe Author do
 it "should be created if name is provided" do
 Author.create(name: "test").should be_valid
 end

 it "should not be created without a name" do
 Author.create.should_not be_valid
 end
end

Chapter 8

[245]

To see if the test cases pass, we can run RSpec, as follows:

$ rspec spec/models

..

Finished in 5.08 seconds

2 examples, 0 failures

Depending on the machine, the Ruby version, the Rails version, and the
RSpec version, the speed of the tests may vary.

What just happened?
Let's look at what we tested! But first, let's look at some basics of RSpec:

 � describe: This is a method (yes, a method) that takes a string and a block of code
which has all the test cases in it.

 � it: This is another method that takes a string as the name of the test case and a
block of code for the actual test case.

 � should: This is a method that does the actual validation of the test case. If this
method returns true, the test case passes, otherwise it fails.

 � should_not: This is the inverse of the should method.

 � be_valid: This is a method which validates an object's existence.

There are plenty of other methods that you can read up in the RSpec book! Let's look at
one test case! Have a look at the following code snippet:

 it "should be created if name is provided" do
 Author.create(name: "test").should be_valid
 end

Here, we create an author and test if it "should be valid". If the object is successfully created,
it will not be nil or in other words, it will be valid!

Notice that running two tests took about five seconds! Welcome spork— a speedy way to
get RSpec up and running.

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[246]

Time for action – sporking it
First, install spork – add it to the Gemfile if it's not already there in the following manner:

gem 'spork'

Now, we install spork in the following manner:

$ spork –-bootstrap

Using RSpec

Bootstrapping /Users/gautam/Documents/books/ruby_and_mongodb/Book/code/
sodibee/spec/spec_helper.rb.

Done. Edit /Users/gautam/Documents/books/ruby_and_mongodb/Book/code/
sodibee/spec/spec_helper.rb now with your favorite text editor and follow
the instructions.

Now, if we do indeed follow the instructions, we can configure spork. Open the spec/spec_
helper.rb and move the original spec_helper code inside the prefork code. This will
preconfigure spork for RSpec! This is what the file looks like:

require 'spork'

Spork.prefork do
 ENV["RAILS_ENV"] ||= 'test'
 require File.expand_path("../../config/environment", __FILE__)
 require 'rspec/rails'
 require 'rspec/autorun'

 Dir[Rails.root.join("spec/support/**/*.rb")].each {|f| require f}

 RSpec.configure do |config|
 config.infer_base_class_for_anonymous_controllers = false
 end

end

Spork.each_run do
 # This code will be run each time you run your specs.

end

Now, let's see what changes. First, start spork in one terminal, as follows:

$ spork

Using RSpec

Preloading Rails environment

Chapter 8

[247]

Loading Spork.prefork block...

Spork is ready and listening on 8989!

Now, in another terminal let's run RSpec and see what happens:

$ rspec spec

..

Finished in 0.04797 seconds

2 examples, 0 failures

What just happened?
Wow! We finished the test cases in 0.04797 seconds instead of the earlier run of 5.08
seconds! That's a huge boost to testing. What spork does is that it preloads the Rails
environment and runs all the test cases in parallel.

Have a go hero
Let's write out test cases for books, orders and members!

Documenting code using YARD
Just like testing is very important, so is documentation. After some research, I strongly
recommend using YARD. YARD generates HTML documentation for models and Controllers.

You can install YARD using the following command:

$ gem install yard

To write code documentation, this is how our file would look. I am taking the example of
the Book model. This is what it looks like:

##
This class defines the details of a Book.
#

class Book
 include Mongoid::Document

 # @return [String] The title of the book
 field :title, type: String

 # @return [String] The publisher of the book
 field :publisher, type: String

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[248]

 # @return [String] The date the book is published on
 field :published_on, type: Date

 # @return [String] The price of the book is a localized string
 # Depending on the locale, the prices are updated as
 # per their currency rate.
 field :price, localize: true

 # @return [Array] An array of votes in the format that we can
identify
 # upvotes and downvotes! Hence each element of the array
 # is an hash in a fixed format.
 # { 'name' => 1 } # => upvote
 # { 'name' => -1 } # => downvote
 field :votes, type: Array

 # @return [Author] This is the author of the book.
 belongs_to :author

 # @return [Array] The array of Category objects.
 # These are the categories that this book belongs
to.
 has_and_belongs_to_many :categories

 # @return [Array] This returns the array of all embedded reviews.
 embeds_many :reviews

 # @return [Boolean] true if the validation of title passes
 validates :title, presence: true

end

To generate the documentation, issue the following command:

$ yard doc

Files: 11

Modules: 1 (1 undocumented)

Classes: 10 (8 undocumented)

Constants: 0 (0 undocumented)

Methods: 5 (0 undocumented)

 43.75% documented

Chapter 8

[249]

This generates the documentation, as shown in the following screenshot:

YARD documentation is all in markdown. And it supports special tags such as @params,
@return that enable us to write easy and good documentation. Go ahead and learn it!

Pop quiz – it's all about the web
1. Is it true that Rails and Sinatra are Rack applications?

a. Yes.

b. No.

c. Rails can be configured to not use the Rack.

d. What is the rack again?

2. How is data made available to the Views from the Controllers?

a. No data from the Controllers is available for the Views.

b. All instance variables in the Controllers are available to the Views.

c. All local variables in the Controllers are available to the Views.

d. JSON data is passed to the Views.

Rack, Sinatra, Rails, and MongoDB – Making Use of them All

[250]

3. What does accept_nested_attributes_for do?

a. It accepts nested attributes for an HTTP request.

b. A parent model can access the data of child objects using this method.

c. It's a method that enables child objects to be created or updated, along
with a parent object creation or update.

d. It nests or embeds child objects into the parent.

4. Which of the following enables us to write HTML templates with embedded Ruby
in it?

a. Sass.

b. Bootstrap.

c. CoffeeScript.

d. Haml.

5. Which of the following is not true for the Rails asset pipeline?

a. It compresses assets like JavaScript, Images and CSS for speed.

b. It can process Sass and CoffeeScript and compile them into CSS
and JavaScript.

c. It uses the sprocket gem for managing the asset pipeline.

d. It compiles Ruby code into HTML.

Summary
W00t! This has been a chapter where we actually built a fully functional web application
using Rails and Sinatra. We have seen how to model a web application in the previous
chapters. Now, we used them. We saw what Rails routes are and how they are processed.
We were introduced to Twitter Bootstrap, Haml and Sass. We also looked at some very
useful gems such as, simple_form and nested_form. We briefly looked at how to test an
application and even document it!

You're all set to explore the wonderful world of MongoDB and Ruby now. The more you
experiment the more you will learn. The next couple of chapters would deal with leveraging
MongoDB specific features. In the next chapter, we shall leverage MongoDB geospatial
indexing to make our applications location aware. The last chapter deals with scaling
MongoDB and some more Map/Reduce!

9
Going Everywhere – Geospatial

Indexing with MongoDB

MongoDB has geospatial indexing enabled by default. Woh! Let's talk in normal
English here.

This is the age of location sensitive information. If I am in London, I would like
to know the local news, deals, restaurants, and maybe even friends who are
nearby. There are services that do this already – Foursquare, Gowalla (now
with Facebook), Google Maps, and now Facebook.

The basic concept of geolocation is to isolate the exact location (to as close as
possible) and provide services related to that location. Geospatial indexing is
a way to use this information from the database. We index these coordinates
because it helps us query faster.

So, how is this related to MongoDB? Remember that, when we say "near a
location", it could mean a circle, a rectangle or even a sphere around our
location! The distance could be in miles or kilometers or meters. This causes
a sizable amount of complexity in calculation. We have to find out the range
of nearby coordinates and then look up the database for information that is
within that range! Not an easy task, as we shall soon see.

MongoDB comes to our rescue because it already has the capability of
querying, storing coordinates and looking up geolocation data.

Going Everywhere – Geospatial Indexing with MongoDB

[252]

In this chapter we shall learn the following:

 � What do we mean by geolocation

 � How is the geolocation calculated

 � How can we store this information in MongoDB

 � How can we use it in our application via Mongoid

Geographical Information Systems(GIS) are all based on geolocations. Some relational
databases do support geospatial indexing, for example PostGIS, which is an extension to
PostgreSQL. MongoDB has these capabilities built right into it.

What is geolocation
Let's split the word geolocation. Geo means the earth and location means position.
So geolocation means our position on the earth. As we know, the earth is divided into
latitudes and longitudes, as shown in the following image taken from Wikipedia:

60

-30

-60

North Pole

La
tit

ud
e

Equator

South Pole Prime Meridian
Lo

ng
itu

de

180-150

-120

-60

-30
00

0

900

-900

60

30

90
0

120

150

-90
0

30
0

0
0

As we can see, latitudes range from 90° to -90° and longitudes range from 180° to 0°. The
0° latitude is the equator and the 0° longitude runs via Greenwich in UK. If we see both,
the latitudes and longitudes, the earth is entirely divided into segments and we can
identify every position on the earth's surface.

At the equator, the distance between the degrees in the longitudes is approximately 111.3
km and this distance keeps reducing as the latitude goes North or South. At 60° latitude,
the distance between the degrees in the longitudes is 55.65 km.

Chapter 9

[253]

How accurate is a geolocation
Understandably, we need to know both, the latitude and the longitude to identify the
location. But the distance between latitudes and longitudes is too large to get the exact
location, say within a few meters!

To cater to this, the distance between each degree of latitude and longitude is divided
into 60 minutes and each minute is divided into 60 seconds. Doing this gets us even closer
to pinpointing a location. Keep in mind that the distances between each longitude and
latitude vary for every second! At the equator (0° latitude), one-second difference between
the latitudes is about 30.715 m and decreases as we move towards the poles. One-second
difference between longitudes at the equator is 30.92 m and one-second difference between
longitudes at 30° latitude is 26.76 m.

Given that the earth's radius is about 6.3 million meters (6371 km as per MongoDB), getting
an accuracy of within 30 m suits us just fine. Generalizing this, for a 0.0001° change, the
accuracy is between 5 m and 11 m!

The earth's radius has been calculated using various different models.

Mean radius: 6,371.009 km.
Great-circle radius: 6,372.797 km.
Authalic radius: 6,371.0072 km.
Volumetric radius: 6,371.0008 km.
Meridional radius: 6,367.445 km.

Read more at http://en.wikipedia.org/wiki/Earth_
radius#Mean_radii.

Converting geolocation to geocoded coordinates
Typically a position on the earth is written as 40°26' 21''N 79°58' 36''W. This means the
latitude is 40 degrees north latitude and a further 26 minutes and 21 seconds northward
and 79° west longitude and a further 58 minutes and 36 seconds westward!

Using this convention is easy to read but very difficult for calculations. So, we convert these
Degrees Minutes Seconds (DMS) to a Decimal degree. Basically, we convert the minute and
second to a fraction. Simply put, there are 3600 seconds between degrees. So, 1 second is
approximately 0.00027777 minutes. In the previous example, 26 minutes and 21 seconds is
(26 * 60) + 21 = 1,581 seconds.

So, the Decimal degree of latitude 40°26' 21" N is 40.4390437. North is a positive result
and south is a negative result. Similarly, east is a positive result and west is a negative
result. It is these Decimal degrees that we save as float values in the MongoDB that act
as the coordinates!

Going Everywhere – Geospatial Indexing with MongoDB

[254]

Identifying the exact geolocation
Converting geolocation to geocoded coordinates is one thing but how does one find the actual
location on the earth? Am I sitting in the Sahara desert in Africa or in a pub in London or at
home in India? There are various techniques and tools that help us find out this information:

 � GPS devices. These use the geostationary satellites for isolating the exact
coordinates of the device and in turn your exact location. These are by far the most
accurate. These are used heavily in navigation systems.

Most modern devices (such as, smartphones and tablets) support
GPS. Access to GPS satellites has traditionally been under the
gamut of the military and only in the last decade has GPS access
been provided for commercial use by navigation systems.

 � Mobile phone. Depending on the phone, we can get the coordinates in varying
levels of accuracy. Some smart phones (such as, iPhone, BlackBerry, and Android)
use advanced location-based applications that need to be installed. Some phones
also use a hybrid way (a combination of network-based and handset-based
positioning) to find the exact location.

 � Mobile Network. The mobile network operators get geolocation information from
the location of the cell-phone tower. This is not very accurate for identifying the
exact location but for handsets that do not have any software installed, this serves
well. Some SIM cards too can be used for getting the exact location using raw radio
measurements from the handset.

 � Network devices. When we are connected to the Internet, our devices (such as,
phones or computers) are assigned an IP address. This is the least accurate means of
getting a geolocation, but the router static IP address can also give us a geolocation.
This depends on various Internet Service Providers (ISP), the geography, Internet
density, and so on.

 � Map APIs. Google, Yahoo!, geocoder, and Bing are some services which have latitudes
and longitudes mapped to addresses in the world. They are by no means complete but
they are very extensive and ever increasing. These Map APIs are very heavily used in
web applications to find the exact latitude and longitude of an address.

HTML 5 provides support to find the geolocation of the machine
using one or more of the ways mentioned in the preceding list.
Read more at http://dev.w3.org/geo/api/spec-
source.html.

Chapter 9

[255]

In a nutshell, it's almost always possible to get some sort of a geolocation but with varying
levels of accuracy.

It may be worth our time to see the future of geolocation-sensitive
applications!

Foursquare, Gowalla (now with Facebook), Yelp, Twitter, and a lot of
other social media applications are using location-based applications
for generating revenue. This has lead to a new era of "Social Location
Marketing" (Do read Social Location Marketing: Outshining Your
Competitors on Foursquare, Gowalla, Yelp & Other Location Sharing
Sites by Simon Salt).

There are a lot of web portals that target the local communities
for getting good local deals, local news, promoting local events
and even local organizations! This causes the web portal to give us
more relevant information and thereby engages users. This, in turn
increases revenues and profit.

Storing coordinates in MongoDB
Let's see how we can add geospatial indexes to MongoDB.

Time for action – geocoding the Address model
As the Address is a model for storing the location, we can use it for geospatial indexing!
This is done as follows:

class Address
 include Mongoid::Document

 field :street, type: String
 field :zip, type: Integer
 field :city, type: String
 field :state, type: String
 field :country, type: String

 field :coordinates, type: Array
 index [[:coordinates, Mongo::GEO2D]]

 belongs_to :location, polymorphic: true
end

Going Everywhere – Geospatial Indexing with MongoDB

[256]

The indexes need to be created in the model manually. Mongoid will not issue commands to
create them unless explicitly told to do so. Let's create indexes as follows:

$ rake db:mongoid:create_indexes

Generated indexes for Address

Generated indexes for Author

Generated indexes for Book

Generated indexes for Category

Not a Mongoid parent model: app/models/lease.rb

Generated indexes for Member

Generated indexes for Order

Not a Mongoid parent model: app/models/purchase.rb

Not a Mongoid parent model: app/models/review.rb

What just happened?
MongoDB has now created indexes for the models.

Index creation is not geospatial specific. We could use this command for
all models too. Notice that it has created indexes for all models. Indexing
helps in speeding up queries.

Have a look at the following code snippet:

class Address
 include Mongoid::Document

 field :street, type: String
 field :zip, type: Integer
 field :city, type: String
 field :state, type: String
 field :country, type: String

 field :coordinates, type: Array
 index [[:coordinates, Mongo::GEO2D]]

 belongs_to :location, polymorphic: true
end

Here we are creating a standard array but we shall ensure that it stores only two values, the
latitude first and then the longitude. For example, [10.123244, -87.783562]. The index
actually tells MongoDB that this is a Mongo::GEO2D index. It also sets the default minimum
and maximum value to -180 to 180 (that is, the range of decimal degrees). We can override
this range if we want, as follows:

index [[:coordinates, Mongo::GEO2D]], min: -500, max: 500

Chapter 9

[257]

Internally, it sets the index as a 2d index. 2d means two dimensional that is, it knows that it
is a spatial index. When we issue the command to create indexes, Mongoid creates indexes
by default for the _id field, that is, the object ID. It also created a 2d index for addresses.
This can be seen on the MongoDB console:

Fri Mar 16 14:40:30 [conn262] query sodibee_development.system.namespaces
nscanned:25 nreturned:25 reslen:1556 228ms

Fri Mar 16 14:40:30 [conn262] build index sodibee_development.addresses {
coordinates: "2d" }

Fri Mar 16 14:40:30 [conn262] build index done 3 records 0.3 secs

Fri Mar 16 14:40:30 [conn262] insert sodibee_development.system.indexes
620ms

It's also interesting to note that embedded documents, such as Lease, Purchase, and
Review do not get indexed on their _id fields because they cannot be directly accessed.
However, you can index fields inside embedded documents using the dot notation! If we
require to say the :price from the Purchase model we can index it too! This can be done
as follows:

class Order
 ...
 embeds_one :purchase

 index :"purchase.price"
end

Testing geolocation storage
Ok! Back to geospatial indexing. Suppose our latitude and longitude of an address is known
(we shall see soon, how we can determine it programmatically), we can add it to the database.

Time for action – saving geolocation coordinates
Suppose our latitude and longitude is 10.123123 and -87.1231231 respectively, we can add
it directly to the coordinates array, as:

irb> a = Author.last

 => #<Author _id: 4f55abf8fed0eb2f6c00002d, _type: "Author", name:
"Gautam Rege">

irb> a.address

 => #<Address _id: 4f55abf8fed0eb2f6c00002e, _type: "Address", street:
"101 Union Street", zip: nil, city: "Pasedena", state: "CA", country:
"US", coordinates: nil, location_type: "Author", location_id: BSON::Objec
tId('4f55abf8fed0eb2f6c00002d')>

Going Everywhere – Geospatial Indexing with MongoDB

[258]

irb> a.address.coordinates = [10.123123, -87.1231231]

 => [10.123123, -87.1231231]

irb> a.save

 => true

What just happened?
We save the coordinates into the array.

So, how did one get the latitude and longitude anyway?

Using Map APIs from Google (or Yahoo!, Bing and geocoder),we can get
the latitude and longitude of a particular address if Google Maps can find
that address. This is called geocoding. In Ruby, we have plenty of gems
available for this. I personally recommend geocoder for this.

Using geocoder to update coordinates
We can use the geocoder gem to find the latitude and longitude of some actual address.

Time for action – using geocoder for storing coordinates
Add geocoder to the Gemfile first:

gem 'geocoder'

Now let's update the Address model, as follows:

class Address
 include Mongoid::Document
 include Geocoder::Model::Mongoid

 field :street, type: String
 field :zip, type: Integer
 field :city, type: String
 field :state, type: String
 field :country, type: String
 field :coordinates, type: Array

 belongs_to :location, polymorphic: true

 geocoded_by :formatted_addr
 after_validation :geocode

Chapter 9

[259]

 def formatted_addr
 [street, city, state, country].join(',')
 end

end

Now let's save some addresses. Execute the following commands:

irb> a = Author.new(name: "Gautam Rege")

 => #<Author _id: 4fbf4c78fed0ebcdd0000004, _type: "Author", name:
"Gautam Rege">

irb > a.address = Address.new(street: "102 Union Street", city:
"Pasedena", state: "CA", country: "US")

 => #<Address _id: 4fbf4caffed0ebcdd0000006, _type: "Address", street:
"102 Union Street", zip: nil, city: "Pasedena", state: "CA", country:
"US", coordinates: nil, location_type: "Author", location_id: BSON::Objec
tId('4fbf4c78fed0ebcdd0000004')>

irb> a.save

 => true

irb> a.address

 => #<Address _id: 4fbf4caffed0ebcdd0000006, _type: "Address", street:
"102 Union Street", zip: nil, city: "Pasedena", state: "CA", country:
"US", coordinates: [-118.1481163, 34.1467468], location_type: "Author",
location_id: BSON::ObjectId('4fbf4c78fed0ebcdd0000004')>

irb> a.address.coordinates

 => [-118.1481163, 34.1467468]

What just happened?
When we use geocoder gem, we have set up an after_validation callback. When the
object is validated, we look up the geocoder, fetch its coordinates and save them in the object.

The geocoder gem has various lookup services that it can refer to, such
as Google Map APIs, Yahoo! Maps, Bing, FreeGeoIP, among others and it
defaults to Google – you can configure these lookups yourself.

Suppose you enter an unknown address and the service cannot find the
geolocation, it returns and does not update the coordinates-you're on
your own then!

Going Everywhere – Geospatial Indexing with MongoDB

[260]

Firing geolocation queries
Now that we have added the coordinates, let's see if this works!

Time for action – finding nearby addresses
Let's see if we can find addresses near some particular coordinates! Let's execute the
following commands:

> Address.near(:coordinates => [10.123122, -87.1231230]).first

 => #<Address _id: 4f55abf8fed0eb2f6c00002e, _type: "Address", street:
"101 Union Street", zip: nil, city: "Pasedena", state: "CA", country:
"US", coordinates: [10.123123, -87.1231231], location_type: "Author",
location_id: BSON::ObjectId('4f55abf8fed0eb2f6c00002d')>

Wow!

What just happened?
When we search for data near some coordinates, it returns us the address we had. So far so
good! Let's look at this particular statement of code:

> Address.near(:coordinates => [10.123122, -87.1231230]).first

Here near is a criterion that is available only for 2d indexes.

But wait, we did not specify how near or how far from the coordinates we should lookup,
did we? Let's try something here. Let's see if near has a default nearby distance. If we
search for [0, 0], would this object be returned? Try executing the following command:

> Address.near(:coordinates => [0, 0]).first

 => #<Address _id: 4f55abf8fed0eb2f6c00002e, _type: "Address", street:
"101 Union Street", zip: nil, city: "Pasedena", state: "CA", country:
"US", coordinates: [10.123123, -87.1231231], location_type: "Author",
location_id: BSON::ObjectId('4f55abf8fed0eb2f6c00002d')>

Holy cow! What's going on here? By no means can [10.123123, -87.1231231]
be anywhere near [0, 0]. Let's see what the mongo console says. Is this a bug in
Mongoid, MongoDB, or are we doing something wrong? Let's see! Let's execute the
following commands:

$ mongo

MongoDB shell version: 2.0.2

useconnecting to: test

Chapter 9

[261]

> use sodibee_development

switched to db sodibee_development

> db.addresses.find({ coordinates: { $near: [0, 0] } })

{ "_id" : ObjectId("4f55abf8fed0eb2f6c00002e"), "_type" : "Address",
"coordinates" : [10.123123, -87.1231231], "location_id" : ObjectId("4
f55abf8fed0eb2f6c00002d"), "location_type" : "Author", "state" : "CA",
"street" : "101 Union Street", "zip" : nil }

Woh! Here is how this works! "near" is a relative term, we have not told MongoDB what near
is! So, MongoDB gets us the nearest 100 objects by default. As there is only one object in
the Address collection, it gets returned. If we require to really get nearby objects within a
particular range, we need to specify it using $maxDistance.

$maxDistance is always specified in radians. Converting to radians is
trivial. MongoDB takes the earth's radius as 6371 km. So, if we want a range
of 1000 km, it means it's (1000 / 6371) radians that is, 0.1569 radians.
Similarly, we can use any unit of distance and calculate the radians!

Now let's try this again:

> db.addresses.find({ coordinates: { $near: [0, 0] }, $maxDistance: 1 })

>

And we get an empty result, phew!

Now let's test these constraints with the coordinates [10.123123, -87.1231231]. We
shall keep the latitude as 10° and change the longitude by 1° in both directions. Let's execute
the following queries:

> db.addresses.find({ coordinates: { $near: [10, -87], $maxDistance : 1 }
})

{ "_id" : ObjectId("4f55abf8fed0eb2f6c00002e"), "_type" : "Address",
"coordinates" : [10.123123, -87.1231231], "location_id" : ObjectId("4
f55abf8fed0eb2f6c00002d"), "location_type" : "Author", "state" : "CA",
"street" : "101 Union Street", "zip" : nil }

> db.addresses.find({ coordinates: { $near: [10, -86], $maxDistance : 1 }
})

> db.addresses.find({ coordinates: { $near: [10, -88], $maxDistance : 1 }
})

{ "_id" : ObjectId("4f55abf8fed0eb2f6c00002e"), "_type" : "Address",
"coordinates" : [10.123123, -87.1231231], "location_id" : ObjectId("4
f55abf8fed0eb2f6c00002d"), "location_type" : "Author", "state" : "CA",
"street" : "101 Union Street", "zip" : nil }

Going Everywhere – Geospatial Indexing with MongoDB

[262]

We see that the address is not found within 1° of [10, -86]. Nice! Now let's keep the
longitude the same and change the latitude by 1° in both directions:

> db.addresses.find({ coordinates: { $near: [11, -87], $maxDistance : 1 }
})

{ "_id" : ObjectId("4f55abf8fed0eb2f6c00002e"), "_type" : "Address",
"coordinates" : [10.123123, -87.1231231], "location_id" : ObjectId("4
f55abf8fed0eb2f6c00002d"), "location_type" : "Author", "state" : "CA",
"street" : "101 Union Street", "zip" : nil }

> db.addresses.find({ coordinates: { $near: [9, -87], $maxDistance : 1 }
})

> db.addresses.find({ coordinates: { $near: [10, -87], $maxDistance : 1 }
})

{ "_id" : ObjectId("4f55abf8fed0eb2f6c00002e"), "_type" : "Address",
"coordinates" : [10.123123, -87.1231231], "location_id" : ObjectId("4
f55abf8fed0eb2f6c00002d"), "location_type" : "Author", "state" : "CA",
"street" : "101 Union Street", "zip" : nil }

Awesome! We see that for [9, -87], we don't get a result. The very fact that in some
preceding cases, for a circular area of 1°, we are able to fetch the object and a fail implies
that the $near query works now using $maxDistance.

Using mongoid_spacial
So how do we do this using Mongoid?

There is an interesting story to this. It was deemed better to keep geolocation
queries for MongoDB in a separate gem to ensure that the mongoid gem
remains "thin". So, the mongoid_geo gem was created. And if that was not
enough, mongoid_geo has now evolved into mongoid_spacial.

Time for action – firing near queries in Mongoid
Let's add the gem to the Gemfile:

gem 'mongoid_spacial'

Now, for some minor changes in our code:

class Address
 include Mongoid::Document
 include Geocoder::Model::Mongoid

Chapter 9

[263]

 include Mongoid::Spacial::Document

 field :street, type: String
...
 field :coordinates, type: Array

 spacial_index :coordinates
end

As we have already created indexes in the database, we don't need to run the rake
db:mongoid:create_indexes command! Now, let's try our geolocation queries for
the coordinates [10.123123, -87.1231231]. Let's execute the following commands:

irb> Address.geo_near([10.923124, -87.8231232], max_distance: 1)

 => []

irb > Address.geo_near([10.923124, -87.8231232], max_distance: 2)

 => #<Address _id: 4f55abf8fed0eb2f6c00002e, _type: "Address", street:
"101 Union Street", zip: nil, city: "Pasedena", state: "CA", country:
"US", coordinates: [10.123123, -87.1231231], location_type: "Author",
location_id: BSON::ObjectId('4f55abf8fed0eb2f6c00002d')>

What just happened?
If we search within a distance equal to 1 radian around [10.92, -81.82], we don't find
our address. But if we search within a distance of two radians, we find our address. So, it
works! mongoid_spacial introduces a new criterion that taps the $geoNear operation
in MongoDB.

$geoNear is available only from MongoDB v1.8 onwards

Let's take a few steps back and see what the difference is between $near and $geoNear
in MongoDB.

Differences between $near and $geoNear
The earth is round but maps are flat.

In MongoDB, when we use 2D spatial indexing and use $near, it's like searching within a
box or rectangle with the center of the box as the point we want to search with. Basically,
the Pythagoras theorem is used to calculate the range of the box around the 2D point.

Going Everywhere – Geospatial Indexing with MongoDB

[264]

However, the earth is not flat but is a sphere. The longitudinal distances differ depending on
the latitude. The default $near query does not cater to this as it is treated as a true 2D area
for searching. So, the surface area changes when we consider a point on a sphere. This is
what $geoNear does. It searches in a spherical manner and hence will give more accurate
results when we use geospatial indexes.

Nothing would explain this better than an example:

irb> Address.geo_near([10.923124, -87.8231232], max_distance: 1)
=> []

irb> Address.geo_near([10.923124, -87.8231232], max_distance: 1,
spherical: true)

 => [#<Address _id: 4f55abf8fed0eb2f6c00002e, _type: "Address", street:
"101 Union Street", zip: nil, city: "Pasedena", state: "CA", country:
"US", coordinates: [10.123123, -87.1231231], location_type: "Author",
location_id: BSON::ObjectId('4f55abf8fed0eb2f6c00002d')>]

As we can see, just by adding an option spherical, MongoDB does a spherical search and
the results change.

Summary
In this chapter, we have added geolocation to the Address model. We learned what is
geolocation and how coordinates are mapped on the earth. We learned the use of $near
and $geoNear, which do a box and a spherical search respectively. Finally, we plugged in
the geocoder and mongoid_spacial gems for geolocation. You are now all set to build
geolocation sensitive applications.

While you build your kick-ass application using MongoDB and Ruby, it's important to
understand that scale should not hamper the growth of your web application. To be able
to scale a web application and the database to millions of users, the right infrastructure is
mandatory. MongoDB, as the name suggests, manages humongous data. Scalability is one
of the powerful features that we shall learn in the next chapter.

10
Scaling MongoDB

This is the grand finale! Knowing how to use MongoDB is one thing but taking
it to the next level—building large-scale applications, requires a lot more
knowledge. In this chapter we shall see how we can use MongoDB to build
large Internet applications.

In this chapter we will learn the following:

 � Replication using master/slave configuration

 � Replication using replica sets

 � Scaling MongoDB using sharding

 � High performance with large data using Map/Reduce

Scaling can be horizontal or vertical. Vertical scaling is when we upgrade the systems,
by adding more memory, disk space, and CPUs. Horizontal scaling is when we add more
commodity nodes or machines to the system. This chapter discusses how we can scale
MongoDB horizontally!

By the end of this chapter we would have learned how to manage failover and high
availability using MongoDB slaves and replica sets. We shall also see how we can use
sharding to distribute the load across nodes when there are a huge number of documents.
Finally, we shall see how we can use Map/Reduce techniques to collect and analyze large
sets of data with high efficiency.

Scaling MongoDB

[266]

High availability and failover via replication
First let's understand what these terms mean.

High availability is when we can guarantee accessibility to the server. The higher the number
of nodes that work together, the more the reliability and in turn, the availability of the system.

Failover is a term frequently used when a node in the system goes down and the request
needs to be seamlessly handled by another node thereafter!

Replication, as the name suggests, is duplicating data on another node. This also adds
redundancy to the system, that is there are more nodes with the same data and hence
the chances of losing information due to machine failure is lesser.

There are two types of replication schemes in MongoDB—master/slave replication and
replica sets, as shown in the following diagram:

Master/Slave Replication

Member 2
RECOVERING

Member 1
SECONDARY Member 3

PRIMARY

Master

Slave(s)

Replica Set

Implementing the master/slave replication
This is standard practice with most databases. Typically there is one master and multiple
slaves. This is also called the active/passive mode. All writes are only to the master and
reads can be either from the master or slave. This ensures that there is write consistency
with the database—which means that there will never be a case where data is written
that will cause inconsistency in the database.

Time for action – setting up the master/slave replication
Let's set up the basic master/slave replication. We shall need two machines for this.

First, start the master:

server-1$ mongod --master

Chapter 10

[267]

Now, we will start the slave server:

server-2$ mongod --slave --source server-1

That's it! Now we have server-2 which is a slave of server-1 and all the databases on
server-1 are seamlessly replicated to server-2.

In case server-1 goes down, you need to change the configuration of
the application to point to server-2.

What just happened?
We fired two simple commands and see that everything has started working. Let's
understand them in detail:

$ sudo mongod --master -vvvv

This command will pick up the default mongod.conf file and start this server as the master!

Remember that –vvvv means very verbose. The more v you add, the
more verbose output on the console.

If all is well, you should see this on the console:

[initandlisten] MongoDB starting : pid=53165 port=27017 dbpath=/usr/
local/var/mongodb master=1 64-bit host=server-1
[initandlisten] db version v2.0.2, pdfile version 4.5
...
[initandlisten] Accessing: local for the first time
[initandlisten] query local.system.namespaces reslen:20 0ms
...
[initandlisten] master=true
[initandlisten] ******
[initandlisten] creating replication oplog of size: 183MB...
[initandlisten] create collection local.oplog.$main { size:
192000000.0, capped: true, autoIndexId: false }
[initandlisten] New namespace: local.oplog.$main
[initandlisten] New namespace: local.system.namespaces
...
[FileAllocator] allocating new datafile /usr/local/var/mongodb/local.
ns, filling with zeroes...
[FileAllocator] creating directory /usr/local/var/mongodb/_tmp
[FileAllocator] done allocating datafile /usr/local/var/mongodb/local.
ns, size: 16MB, took 2.174 secs

Scaling MongoDB

[268]

[FileAllocator] allocating new datafile /usr/local/var/mongodb/
local.0, filling with zeroes...
...
[initandlisten] runQuery called local.oplog.$main { query: {},
orderby: { $natural: -1 } }
[initandlisten] query local.oplog.$main ntoreturn:1 nscanned:1
nreturned:1 reslen:64 372ms
...
[initandlisten] waiting for connections on port 27017
[websvr] fd limit hard:9223372036854775807 soft:256 max conn: 204
[websvr] admin web console waiting for connections on port 28017

The console log we see is a very detailed one as it helps us understand how MongoDB
replication works! Let's see this in smaller parts:

[initandlisten] master=true
[initandlisten] ******
[initandlisten] creating replication oplog of size: 183MB...
[initandlisten] create collection local.oplog.$main { size:
192000000.0, capped: true, autoIndexId: false }
[initandlisten] New namespace: local.oplog.$main
[initandlisten] New namespace: local.system.namespaces

We can see that the server has started as the master. The local.oplog.$main is a capped
collection which saves all transaction log entries that will be replicated over to the slaves.

[FileAllocator] allocating new datafile /usr/local/var/mongodb/local.
ns, filling with zeroes...
[FileAllocator] creating directory /usr/local/var/mongodb/_tmp
[FileAllocator] done allocating datafile /usr/local/var/mongodb/local.
ns, size: 16MB, took 2.174 secs

When we set up the master for the first time, this local.oplog.$main capped collection and
the local namespace is created (and depending on the machine this can take a few minutes!).

...
[initandlisten] runQuery called local.oplog.$main { query: {},
orderby: { $natural: -1 } }
[initandlisten] query local.oplog.$main ntoreturn:1 nscanned:1
nreturned:1 reslen:64 372ms
...

This is where the transaction logs are checked for their natural order and setup. After this,
the master server is waiting for connections and serving requests normally.

Chapter 10

[269]

Now let's see what happens when a slave connects:

$ sudo mongod --slave --source 192.168.1.141
[initandlisten] MongoDB starting : pid=20653 port=27017 dbpath=/usr/
local/var/mongodb slave=1 64-bit host=server-2
...
[replslave] repl: from host:192.168.1.141
[replslave] repl: applied 1 operations
[replslave] repl: end sync_pullOpLog syncedTo: Apr 5 15:33:41
4f7d6dfd:1
[replslave] repl: sleep 1 sec before next pass

At this point, the slave has sent a request to the master for syncing and received a reply. A lot
of interesting things happen on the master:

[initandlisten] connection accepted from 192.168.1.153:63591 #1
[conn1] runQuery called admin.$cmd { handshake: ObjectId('4f7d6d3fb7d3
2a318178619f') }
[conn1] run command admin.$cmd { handshake: ObjectId('4f7d6d3fb7d32a3
18178619f') }
[conn1] command admin.$cmd command: { handshake: ObjectId('4f7d6d3fb7d
32a318178619f') } ntoreturn:1 reslen:37 0ms
[conn1] runQuery called local.oplog.$main { query: {}, orderby: {
$natural: -1 } }
[conn1] query local.oplog.$main ntoreturn:1 nreturned:1 reslen:64 0ms

This is the master/slave handshake and they exchange object IDs so that the master knows
which slave has connected:

[conn1] runQuery called admin.$cmd { listDatabases: 1 }
[conn1] run command admin.$cmd { listDatabases: 1 }
[conn1] command: { listDatabases: 1 }

Next up, the master checks for which databases should be replicated:

[conn1] command admin.$cmd command: { listDatabases: 1 } ntoreturn:1
reslen:195 1143ms
[conn1] runQuery called local.oplog.$main { ts: { $gte: new
Date(5727855097040338945) } }
[conn1] query local.oplog.$main nreturned:1 reslen:64 47ms
 BackgroundJob starting: SlaveTracking

Now, it checks the transaction log (local.oplog.$main) to see where it should start the
replication from and then spawns a SlaveTracking background job. This happens as follows:

[slaveTracking] New namespace: local.slaves
[slaveTracking] adding _id index for collection local.slaves
[slaveTracking] New namespace: local.system.indexes

Scaling MongoDB

[270]

[slaveTracking] build index local.slaves { _id: 1 }
mem info: before index start vsize: 3509 resident: 41 mapped: 544
[slaveTracking] external sort root: /usr/local/var/mongodb/_tmp/
esort.1333620219.2003184756/
mem info: before final sort vsize: 3509 resident: 41 mapped: 544
mem info: after final sort vsize: 3509 resident: 41 mapped: 544
[slaveTracking] external sort used : 0 files in 0 secs
[slaveTracking] New namespace: local.slaves.$_id_
[slaveTracking] done building bottom layer, going to commit
[slaveTracking] fastBuildIndex dupsToDrop:0
[slaveTracking] build index done 0 records 0.023 secs

In case the local.slaves collection has not been built, the master builds it and indexes it:

[slaveTracking] update local.slaves query: { _id: ObjectId('4f7d6d3
fb7d32a318178619f'), host: "192.168.1.153", ns: "local.oplog.$main"
} update: { $set: { syncedTo: Timestamp 1333620189000|1 } }
fastmodinsert:1 134ms

Here, the slave is added with host information and its timestamp for replication. After this
is done, there are continuous sync commands that would go back and forth between the
master and the slave like this:

[conn1] getmore local.oplog.$main query: { ts: { $gte: new
Date(5727855097040338945) } } cursorid:1979419191886059940 reslen:20
2311ms
[conn1] running multiple plans

[conn1] getmore local.oplog.$main query: { ts: { $gte: new
Date(5727855097040338945) } } cursorid:1979419191886059940 nreturned:1
reslen:64 886ms

The sync commands are continuous, they do not directly interfere with
the routine database processing for the master, but they can consume
valuable CPU and network resources.

It is recommended to keep the slave behind the master for an acceptable
duration that depends on the application. We use the --slavedelay
option for this.

What happens if the master goes down? The slave shows log entries like this:

[replslave] repl: from host:192.168.1.141
[replslave] repl: AssertionException dbclient error communicating with
server: 192.168.1.141
repl: sleep 2 sec before next pass
[replslave] repl: from host:192.168.1.141

Chapter 10

[271]

[replslave] repl: couldn't connect to server 192.168.1.141
[replslave] repl: sleep 3 sec before next pass
[replslave] repl: from host:192.168.1.141

Once the master comes up again, the syncing begins.

It is possible to have a configuration such that the writes are always
on the master but reads can be from the master or slave.

Suppose you want to simulate the master/slave configuration on a
single machine, remember to run the slave on a different port

$ sudo mongod --slave --source localhost --port 27123

Using replica sets
Using replica sets is the recommended approach for replication and failover.

Replica sets are available only in MongoDB versions after v1.6.

Replica sets, as the name suggests, are a bunch of MongoDB nodes that work together
and keep replicas of the data. This is not a master/slave configuration! Nodes elect a
leader, which then behaves as the master and the other nodes become the slaves and
receive replication data. According to replica set terminology, they are called PRIMARY and
SECONDARY respectively.

As this is the normal case for ensuring write consistency, we can write on to PRIMARY and
if required read from SECONDARY. The beauty of replica sets is the election process. Nodes
exchange handshakes and vote or veto nodes and finally elect a PRIMARY. We can also insert
arbiters to ensure enough members for the voting process.

Arbiters are very light-weighted MongoDB instances that only
vote! They are not replication nodes and are involved only in the
voting process

Scaling MongoDB

[272]

Time for action – implementing replica sets
We can simulate replica sets on a single machine too. We need three different terminals for
this—Terminal 1, Terminal 2, and Terminal 3, to start the three different MongoDB processes:

Term-1 $ sudo mongod --replSet sodibee --port 27017 --dbpath /data/repl1

Term-2 $ sudo mongod --replSet sodibee --port 27018 --dbpath /data/repl2

Term-3 $ sudo mongod --replSet sodibee --port 27019 --dbpath /data/repl3

Notice, that the replica set has the same name in all instances. As we are running this on
the same machine, we need to specify different ports. The default port is fine if running on
different instances. Once these are started, on the database console, we shall see something
like this:

[initandlisten] MongoDB starting : pid=21876 port=27017 dbpath=/data/
repl1 64-bit host=gautam-2.local
[initandlisten] db version v2.0.2, pdfile version 4.5
...
[rsStart] sodibee can't get local.system.replset config from self or
any seed (EMPTYCONFIG)
[rsStart] sodibee info you may need to run replSetInitiate --
rs.initiate() in the shell -- if that is not already done

As we can see, just starting them up (like in the case of the master/slave configuration) is not
enough! We need to initialize the replica sets. To do this, we need to login to the PRIMARY,
that is, the node we want to replicate to the other MongoDB instances.

Remember, that the MongoDB instance you initiate the replication
command will be PRIMARY at first. The SECONDARY nodes have
to have a clean dbpath, that is, they cannot have existing data! All
members of the replica sets must be empty except the initiator!

Let's execute the following commands:

$ mongo localhost:27017

MongoDB shell version: 2.0.2

connecting to: localhost:27017/test

> config = {_id: sodibee, members: [

 {_id: 0, host: 'localhost:27017'},

 {_id: 1, host: 'localhost:27018'},

 {_id: 2, host: 'localhost:27019'}

Chapter 10

[273]

]}

{

 "_id" : "sodibee",

 "members" : [

 {

 "_id" : 0,

 "host" : "localhost:27017"

 },

 {

 "_id" : 1,

 "host" : "localhost:27018"

 },

 {

 "_id" : 2,

 "host" : "localhost:27019"

 }

]

}

> rs.initiate(config);

{

 "info" : "Config now saved locally. Should come online in about a
minute.",

 "ok" : 1

}

This instantiates the replica sets and we are all set!

What just happened?
We started three instances of MongoDB with the --replSet option. Then we initialized
the replica sets and we were on our way. Let's see what happened here!

> config = {_id: sodibee, members: [
 {_id: 0, host: 'localhost:27017'},
 {_id: 1, host: 'localhost:27018'},
 {_id: 2, host: 'localhost:27019'}
]}

Scaling MongoDB

[274]

This is the configuration we have explicitly set up, as per the MongoDB instances we
configured earlier. Then we need to initialize them:

> rs.initiate(config);
{
 "info" : "Config now saved locally. Should come online in about a
minute.",
 "ok" : 1
}

When we run this initiate command with the configuration we have specified, voting
between the replica sets takes place and they elect a primary. The following is what we see
on the MongoDB console which we connected to initiate replica sets:

[conn2] sodibee replSetInitiate admin command received from client
[conn2] sodibee replSetInitiate config object parses ok, 3 members
specified
[conn2] sodibee replSetInitiate all members seem up
[conn2] ******
[conn2] creating replication oplog of size: 183MB...
[FileAllocator] allocating new datafile /data/repl1/local.ns, filling
with zeroes...

This is what we see on the other MongoDB consoles:

[rsStart] trying to contact localhost:27017
[rsStart] sodibee got config version 1 from a remote, saving locally
[rsStart] sodibee info saving a newer config version to local.system.
replset
[FileAllocator] allocating new datafile /data/repl2/local.ns, filling
with zeroes...

Basically, every instance is setting up their local systems for saving information. After this the
voting process begins. We see messages like the following, on the node that becomes the
PRIMARY node:

[rsMgr] replSet PRIMARY
[rsSync] replSet SECONDARY
[rsMgr] not electing self, localhost:27019 would veto
[rsMgr] replSet info electSelf 0
[rsMgr] replSet PRIMARY

And, we see messages like this on the nodes which become SECONDARY:

[rsStart] sodibee saveConfigLocally done
[rsStart] replSet STARTUP2
[rsSync] ******
[rsSync] creating replication oplog of size: 183MB...

Chapter 10

[275]

[rsHealthPoll] replSet member localhost:27017 is up
[rsHealthPoll] replSet member localhost:27017 is now in state
SECONDARY
[rsHealthPoll] replSet member localhost:27019 is up
[rsHealthPoll] replSet member localhost:27019 is now in state STARTUP2
[conn4] sodibee info voting yea for localhost:27017 (0)
[rsHealthPoll] replSet member localhost:27019 is now in state
RECOVERING
[conn4] sodibee info voting yea for localhost:27017 (0)
[rsHealthPoll] replSet member localhost:27017 is now in state PRIMARY

To see if a MongoDB node is primary or secondary, we can connect to any MongoDB node
and execute the following command:

$ mongo localhost:27019

MongoDB shell version: 2.0.2

connecting to: localhost:27019/test

SECONDARY> rs.status()

As we can see, when we connect to a node, it tells us if the node was a PRIMARY or a
SECONDARY. In the preceding case, we connected to a secondary. rs.status() tells us
the status of the replica sets. The result of the rs.status() command is given as follows:

{
 "set" : "replSet",
 "date" : ISODate("2012-04-06T07:18:56Z"),
 "myState" : 2,
 "syncingTo" : "localhost:27017",
 "members" : [
 {
 "_id" : 0,
 "name" : "localhost:27017",
 "health" : 1,
 "state" : 1,
 "stateStr" : "PRIMARY",
 "uptime" : 139,
 "optime" : {
 "t" : 1333696634000,
 "i" : 1
 },
 "optimeDate" : ISODate("2012-04-06T07:17:14Z"),
 "lastHeartbeat" : ISODate("2012-04-06T07:18:55Z"),
 "pingMs" : 0
 },

Scaling MongoDB

[276]

 {
 "_id" : 1,
 "name" : "localhost:27018",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "uptime" : 141,
 "optime" : {
 "t" : 1333696634000,
 "i" : 1
 },
 "optimeDate" : ISODate("2012-04-06T07:17:14Z"),
 "lastHeartbeat" : ISODate("2012-04-06T07:18:55Z"),
 "pingMs" : 0
 },
 {
 "_id" : 2,
 "name" : "localhost:27019",
 "health" : 1,
 "state" : 2,
 "stateStr" : "SECONDARY",
 "optime" : {
 "t" : 1333696634000,
 "i" : 1
 },
 "optimeDate" : ISODate("2012-04-06T07:17:14Z"),
 "self" : true
 }
],
 "ok" : 1
}

As we can see, there is always only one PRIMARY and the other nodes will sync with this
PRIMARY. Let's now see how we access and write data! Execute the following commands:

$ mongo localhost:27017

MongoDB shell version: 2.0.2

connecting to: localhost:27017/test

PRIMARY> db.messages.insert({name: "Sodibee works!"});

PRIMARY>

PRIMARY> db.messages.find()

{ "_id" : ObjectId("4f7e921f9f044ed2db843466"), "name" : "Sodibee works!"
}

Chapter 10

[277]

Let's see what happens if we try to read and write from a SECONDARY:

$ mongo localhost:27018

MongoDB shell version: 2.0.2

connecting to: localhost:27018/test

SECONDARY> db.messages.find()

error: { "$err" : "not master and slaveok=false", "code" : 13435 }

As this is the secondary, we cannot read or write to it, it's just for replication! But if we really
do want to read from the SECONDARY to improve read performance, we can configure it
using rs.slaveOk(), shown as follows:

SECONDARY> rs.slaveOk();

not master and slaveok=false

SECONDARY> db.messages.find()

{ "_id" : ObjectId("4f7e921f9f044ed2db843466"), "name" : "Sodibee works!"
}

Recovering from crashes – failover
What happens if the PRIMARY crashes or shuts down? We can easily simulate this by either
killing the PRIMARY or if it's running in foreground, press Ctrl + C. The replica sets detect that
the PRIMARY is down and vote among each other to become the PRIMARY node! We can
see something like this on the console:

[rsHealthPoll] sodibee member localhost:27017 is now in state DOWN
[rsMgr] not electing self, localhost:27019 would veto
[conn21] sodibee info voting yea for localhost:27019 (2)
[rsHealthPoll] sodibee member localhost:27019 is now in state PRIMARY

As we can see the PRIMARY changed automatically.

Adding members to the replica set
Now, suppose we have started up with three members in a replica set and we need to scale
up with one more, it's very easy to do so! First start a new MongoDB instance on a different
machine or on the same machine on a different port. This is done as follows:

$ sudo mongod --replSet sodibee --port 27020 --dbpath /data/repl4

Scaling MongoDB

[278]

We need to add this to the replica set configuration. So, we connect to the PRIMARY and
reconfigure the replica set. This is done by executing the following commands:

$ mongo

MongoDB shell version: 2.0.2

connecting to: test

PRIMARY> rs.add("localhost:27020")

{ "ok" : 1 }

Voila! You just scaled up the setup. This will automatically start the replication process as a
SECONDARY for the new node.

Implementing replica sets for Sodibee
So far so good! How do we use these replica sets in our Ruby web application? Let's see how
we can use replica sets in Sodibee!

Time for action – configuring replica sets for Sodibee
Let's restart MongoDB service as a replica set:

$ sudo mongod --rest -vvvv --replSet sodibee

Note, that the command is the same as it was for the master/slave except for the additional
--replSet option! Now also start the other MongoDB instance to be part of the replica set.
In our case, let's simulate this on a single host. So, we shall start this MongoDB instance on a
different port:

$ sudo mongod --replSet sodibee --port 27019 --dbpath /data/sodibee1

Now these two instances are set up, all we need to do is initiate the replica sets and get
started! Let's do that!

It's strongly recommended to have at least three members in a replica
set. As we shall soon see, this is needed to ensure a quorum during
the voting process!

Let's execute the following commands:

$ mongo

MongoDB shell version: 2.0.2

connecting to: test

Chapter 10

[279]

> config = { _id: 'sodibee', members: [

... {_id: 0, host: 'localhost:27017'},

... {_id: 1, host: 'localhost:27019'}

...]}

{

 "_id" : "sodibee",

 "members" : [

 {

 "_id" : 0,

 "host" : "localhost:27017"

 },

 {

 "_id" : 1,

 "host" : "localhost:27019"

 }

]

}

> rs.initiate(config)

{

 "info" : "Config now saved locally. Should come online in about a
minute.",

 "ok" : 1

}

Now these two MongoDB replica sets will "talk" to each other and become the PRIMARY
and SECONDARY automatically.

Let's configure config/mongoid.yml now with this new configuration. This is done
as follows:

development:
 database: sodibee_development
 hosts:
 - - localhost
 - 27017
 - - localhost
 - 27019
 read_secondary: true

Scaling MongoDB

[280]

That's it! Restart the server and we are done! Let's test this out. Let's say we are editing
the details of an author, as shown in the following screenshot:

While doing so, before we can click on the Update Author button, the PRIMARY crashes!
(In our case, we do a Ctrl + C and stop it). Now two things can happen:

 � We refresh the page before the SECONDARY becomes PRIMARY (in those few
seconds of a changeover)

 � We wait for a few seconds after which the SECONDARY becomes PRIMARY

In case we don't wait long enough, we could see an exception, as shown in the
following screenshot:

Chapter 10

[281]

This exception is because the current connection is not resolved! Refresh the page and it
should start working! If we do that however, much to our chagrin, we see another exception,
as shown in the following screenshot:

Jeez! This is not working. Let's do something different. Let's add a third member to this
replica set:

$ sudo mongod --replSet sodibee --port 27018 --dbpath /data/sodibee2

Let's also add this to our replica sets:

$ mongo

MongoDB shell version: 2.0.2

connecting to: test

PRIMARY> rs.add("localhost:27018")

{ "ok" : 1 }

PRIMARY>

Scaling MongoDB

[282]

Now, reconfigure mongoid.yml to add this third member:

development:
 database: sodibee_development
 hosts:
 - - localhost
 - 27017
 - - localhost
 - 27018
 - - localhost
 - 27019
 read_secondary: true

Restart the server and refresh the page. It works now!

What just happened?
When a MongoDB connection is lost, Mongoid automatically creates another connection
with the next PRIMARY node in the replica set. This can take a few seconds during which
we get some connection-reset errors. Considering a web application, this is fine!

When working with MongoDB replica sets, never work only with two nodes! It's always
advisable to work with at least three members in our replica set. These are three MongoDB
instances or three members with one member being an arbiter!

This is important because in a voting scenario, we need a majority to make a node a
PRIMARY! If we have only two members in a replica set and one of them goes down,
we don't have a majority to promote the other node as the PRIMARY. In such a case
you would see a console log like this:

[rsMgr] can't see a majority of the set, relinquishing primary

[rsMgr] replSet relinquishing primary state

[rsMgr] replSet SECONDARY

[rsMgr] replSet closing client sockets after reqlinquishing primary

In our earlier case when we had only two members, we saw the couldn't connect to
server (that is, the primary node) exception, precisely for this reason. When we added a
third member to the set, one of them became a PRIMARY and things started working.

We could have started the third instance only as an arbiter if we don't really want to
replicate data more than twice.

PRIMARY> rs.add("localhost:27018", arbiterOnly: true)

Chapter 10

[283]

Implementing sharding
Sharding is the real horizontal scaling out. Replication is to ensure data safety, failover,
and high availability. Both are configured in a similar way and work in conjunction, but
are conceptually very different!

Sharding is where we distribute the data among various MongoDB instances, not replicate
but distribute! So, in Sodibee, we can distribute the authors based on their names.

In real-world scenarios, tweets of different people can be sharded and
stored in different servers. Twitter uses MySQL sharding using Gizzard.
Read more here (http://engineering.twitter.com/2010/04/
introducing-gizzard-framework-for.html)

PostgreSQL provides partitioning which is the same as sharding in
MongoDB. Read more about it at http://www.postgresql.org/
docs/current/interactive/ddl-partitioning.html.

To give you an idea of how sharding would take place, take a look at the following diagram:

client

Adam
Bob

David
Julie
Sue
Tim
Zack

mongos

Bob
David
Julie

Sue
Tim

Adam
Zack

Basically, all names of authors would be stored in different MongoDB instances based on
some criteria, called a shard key. In the preceding diagram the shard key is the name! The
client does not even realize that the results are coming from a shard. This greatly improves
the performance of reads and writes!

Scaling MongoDB

[284]

Creating the shards
As we have seen, sharding and replication are different. One of the ways to get the best of
replication and sharding is combining them and using a sharded replica set! Let's see how
this is done!

Time for action – setting up the shards
Let's see how we can set up shards. Ideally, we should use different machines, but we can do
that on a single machine for now!

First, we need to start the MongoDB instances with the --shardsvr option:

$ sudo mongod --shardsvr --port 27025 --dbpath /data/shard2

This is one of our new shard servers running on port 27025. As we already have a replica
set created earlier, we shall create a replicated shard with it! Just like earlier, we add the
--shardsvr option to it too:

$ sudo mongod --replSet sodibee --port 27018 --dbpath /data/sodibee2
--shardsvr

Let's have three replica sets configured with this shard running on ports 27018, 29019, and
27020. This is done as follows:

$ mongo localhost:27018

MongoDB shell version: 2.0.2

connecting to: localhost:27018/test

PRIMARY> rs.config()

{

 "_id" : "sodibee",

 "version" : 4,

 "members" : [

 {

 "_id" : 1,

 "host" : "localhost:27019"

 },

 {

 "_id" : 2,

 "host" : "localhost:27018"

 },

Chapter 10

[285]

 {

 "_id" : 3,

 "host" : "localhost:27020"

 }

]

}

What just happened?
We now have two shards:

 � One is a standalone MongoDB instance running on port 27025

 � One is a sharded replica set with the name sodibee

Configuring the shards with a config server
The config server is the central server that has information about where all the shards reside.
All nodes communicate with the config server to know who is in the system.

Time for action – starting the config server
Start another MongoDB instance with the --configsvr flag:

$ sudo mongod -vvvv --configsvr --port 27200

The default port is 27019, so we specify a different port 27200, as 27019 is already used by
one of the shards. We now need to set up the sharding configuration on this server. This is
done as follows:

$ mongo

MongoDB shell version: 2.0.2

connecting to: test

mongos> use admin

switched to db admin

mongos> db.runCommand({ addshard: "localhost:27025" })

{ "shardAdded" : "shard0000", "ok" : 1 }

mongos> db.runCommand({ addshard: "sodibee/localhost:27018,localhost:270
19,localhost:27020" })

{ "shardAdded" : "sodibee", "ok" : 1 }

Scaling MongoDB

[286]

Notice the difference in syntax while adding a shard and a shard
with replica sets!

Now, we need to enable sharding for the database:

mongos> db.runCommand({ enablesharding: "sodibee_development" })

{ "ok" : 1 }

Finally, we need to configure the shard key. In our case, we shall configure it for the author
names! We can do this as follows:

mongos> db.runCommand({ shardcollection : "sodibee_development.authors",
key : {name : 1

{ "collectionsharded" : "sodibee_development.authors", "ok" : 1 }

What just happened?
We are almost set now. We have started the configuration server and loaded the options
for sharding. We are sharding on the author name here. It's important to remember some
rules here:

 � The shard key should be unique so as to ensure consistency

 � Shard keys are immutable, that is, they cannot be changed

 � Never query a shard directly, as it will return only partial results. Each shard is, after
all, a MongoDB instance

 � Prior to v2.0 sharding was not secure. Post v2.0 sharding has an authentication mode

Setting up the routing service – mongos
The mongos process is the routing service for a MongoDB cluster. This basically "talks" to
the config server. It is not a MongoDB instance but a non-persistent router. It gets all its
information from the config server. It also acts as the load balancer.

Time for action – setting up mongos
For all servers that need to connect to this MongoDB cluster, it should go via this mongos
router! First start it up with the configuration server details:

$ sudo mongos --configdb localhost:27200 --chunkSize 1

Now, this service will listen on the default 27017 port.

Chapter 10

[287]

What just happened?
After you start mongos, you should see something like this on the console:

mongos db version v2.0.2, pdfile version 4.5 starting (--help for
usage)
...
[Balancer] about to contact config servers and shards
[mongosMain] waiting for connections on port 27017
[Balancer] updated set (sodibee) to: sodibee/
localhost:27018,localhost:27020
[Balancer] updated set (sodibee) to: sodibee/localhost:27018,localhost
:27020,localhost:27019
[ReplicaSetMonitorWatcher] starting
[Balancer] config servers and shards contacted successfully
...

Notice that mongos now waits for client connections and has contacted the config servers
and shards. It now knows where to send the incoming requests for getting results.

The default chunk size is 64 MB. In order to simulate sharding I have
kept it at 1 MB using the option --chunkSize.

Now, all that remains is to configure our Rails server to talk to mongos instead of the replica
sets directly. Basically reset the configuration back to:

 development:
 host: localhost
 database: sodibee_development

Configuring Mongoid models for the shard key

We have configured, in our example, the sharding on the authors
collection and the shard key is the author's name. This should be
reflected in the models.

The shard key should be indexed.

Make the relevant change in the models to reflect the shard key:

class Author
 include Mongoid::Document

 ...

 index :name
 shard_key :name
end

Scaling MongoDB

[288]

Start your engines, that is, restart the Rails server and the data will be automatically sharded
and replicated.

Testing shared replication
The process we just saw is depicted in the following diagram:

CLIENT

Config
Server

mongos

Shard001
CLIENT

CLIENT
Replica Set

Shard(sodibee)

When a request is sent to the mongos server, it looks up the config server and reads
information about the shards. Then, depending on the request and shard key, it sends
the request to the relevant shard.

How do we see what is getting sharded? Or how do we know it's really getting sharded?
Well, you won't from the web application. But you can execute some administrative
commands and find out:

$ mongo

MongoDB shell version: 2.0.2

connecting to: test

mongos> db.printShardingStatus()

You should see something like the following:

--- Sharding Status ---
 sharding version: { "_id" : 1, "version" : 3 }
 shards:
 { "_id" : "shard0000", "host" : "localhost:27025" }
 { "_id" : "sodibee", "host" : "sodibee/localhost:27018,localhost
:27020,localhost:27019" }

Chapter 10

[289]

 databases:
 { "_id" : "admin", "partitioned" : false, "primary" : "config"
}
 { "_id" : "sodibee_development", "partitioned" : true,
"primary" : "sodibee" }
 sodibee_development.authors chunks:
 sodibee 2
 shard0000 1
 { "name" : { $minKey : 1 } } -->> {
 "name" :
"000094f21fd7d6af713da9e5ba1fc23b30f283d4632a12f3a88ff4518dcdfa30"
} on : sodibee { "t" : 2000, "i" : 1 }
 {
 "name" :
"000094f21fd7d6af713da9e5ba1fc23b30f283d4632a12f3a88ff4518dcdfa30"
} -->> {
 "name" :
"ffff7bbf1dc325ce05d5be442d24ee26a1ab33ffb9663cfb4449a8c7d564a888"
} on : sodibee { "t" : 1000, "i" : 3 }
 {
 "name" :
"ffff7bbf1dc325ce05d5be442d24ee26a1ab33ffb9663cfb4449a8c7d564a888"
} -->> { "name" : { $maxKey : 1 } } on : shard0000 { "t" : 2000, "i" :
0 }
 { "_id" : "sodibee", "partitioned" : true, "primary" :
"shard0000" }

Notice that the collection data is sharded between two nodes, out of which one is a replica set!

Implementing Map/Reduce
Until now, we have seen how to ensure that our data is safe using replica sets. We have also
seen how to shard data so that the distributed system can scale! Along with scale, we also
want to ensure that we do not degrade our performance over a large set of data. This is
where Map/Reduce comes into the picture. We have discussed what Map/Reduce is earlier
in the book. Now, we see it practically and see how it makes sense to be used!

We have seen earlier the concept of Map/Reduce. Let's refresh it briefly. We can "map"
our data into multiple independent tasks, process the temporary results and "reduce" the
results in parallel. Basically, we spawn many parallel tasks to mappers. These mappers
(which can be threads, processes, servers, among others) process a specific dataset and
spew out results to the reducers. As the reducers keep getting information, they update
the final results with this data.

Scaling MongoDB

[290]

This is how massively parallel processing is done! In MongoDB, map and reduce functions
are written as JavaScript functions. Using the evented nature of JavaScript, Map/Reduce is a
very handy ingrained functionality of MongoDB.

Time for action – planning the Map/Reduce functionality
In Sodibee, suppose we want to show the statistical count of authors by the starting alphabet
of their name, it is a good case for using Map/Reduce. We want to see information like this:

Authors starting with "a": 1020
Authors starting with "b": 477
Authors starting with "c": 719
Authors starting with "d": 586
Authors starting with "e": 678

First, let's create many authors in our database. For this we shall use the faker gem, so
that we can generate nice names. This is the rake task that we can use to generate ten
thousand authors:

require 'faker'
task :fake_authors => :environment do
 10000.times do
 a = Author.create(:name => "#{Faker::Name.first_name}
#{Faker::Name.last_name}")
 end
end

To run this, we simply use rake:

$ bundle exec rake fake_authors

What just happened?
This should have created 10,000 authors in our database. Test and check that authors are
getting created correctly from the rails console:

$ rails c

irb > Author.limit(5).collect(&:name)

 => ["Victor Metz", "Dayana Rau", "Ada Wiza", "Price Osinski", "Virgie
Hand"]

First, let's see how this could work in the MongoDB console. In our case, the map function is
to get the name of the author. They emit the result for the first letter of the author's name.
For example, if the authors name is "Charles Dickens", we want to emit the key as "c" and
the count as 1.

Chapter 10

[291]

Time for action – Map/Reduce via the mongo console
Let's execute the following commands:

$ mongo

MongoDB shell version: 2.0.2

connecting to: test

mongos> use sodibee_development

switched to db sodibee_development

mongos> map = function () {

 emit(this.name.toLowerCase()[0], {count:1});

 }

mongos> reduce = function (key, values) {

 var r = {count:0};

 values.forEach(function (value) {

 r.count += value.count;

 });

 return r;

 }

mongos> res = db.authors.mapReduce(map, reduce, { out: "authors_dr" });

mongos> db.authors_dr.find()

{ "_id" : "a", "value" : { "count" : 1020 } }

{ "_id" : "b", "value" : { "count" : 477 } }

{ "_id" : "c", "value" : { "count" : 719 } }

{ "_id" : "d", "value" : { "count" : 586 } }

{ "_id" : "e", "value" : { "count" : 678 } }

{ "_id" : "f", "value" : { "count" : 240 } }

{ "_id" : "g", "value" : { "count" : 396 } }

...

Scaling MongoDB

[292]

What just happened?
Running a Map/Reduce task is about the map function and the reducer. Let's see this in detail:

map = function () {
 emit(this.name.toLowerCase()[0], {count:1});
}

This function will be executed for each Author document. It first takes the name and converts
it to lowercase. Then, it emits the first character of the name along with the count as 1.

The reduce function looks like the following:

reduce = function (key, values) {
 var r = {count:0};
 values.forEach(function (value) {
 r.count += value.count;
 });
 return r;
}

The reduce function takes two parameters: the key that was emitted and an array of the
values for this particular key.

A map function is executed once for each member of the dataset. In case of reducers
however, it is given an array of results emitted by the mapper function as well as the
temporary reduced results.

For example, suppose we have 10 authors starting with "a". There would be 10 results emitted
by the mappers. However, when the reducer function is called, it would be given the emitted
result that is { count: 1} along with a temporary reduced result, {count: 8}.

It's very important not to assume that the value passed to the reducers
is the same as that emitted from the map function. In most cases, it
would be different.

This is what the result of the mapReduce function looks like:

mongos> res = db.authors.mapReduce(map, reduce, { out: "authors_dr" }
);
{
 "result" : "authors_dr",
 "shardCounts" : {
 "localhost:27025" : {
 "input" : 0,
 "emit" : 0,
 "reduce" : 0,

Chapter 10

[293]

 "output" : 0
 },
 "sodibee/localhost:27018,localhost:27020,localhost:27019" : {
 "input" : 10000,
 "emit" : 10000,
 "reduce" : 251,
 "output" : 26
 }
 },
 "counts" : {
 "emit" : NumberLong(10000),
 "input" : NumberLong(10000),
 "output" : NumberLong(26),
 "reduce" : NumberLong(251)
 },
 "ok" : 1,
 "timeMillis" : 980,
 "timing" : {
 "shards" : 633,
 "final" : 346
 },
}

As we can see, there are 10,000 emitted results but only 251 reducer invocations!

In a sharded environment, MongoDB automatically distributes the map
functions if the input collection is sharded. By default, the output collection
of the reduce function is not shared and remains on one of the shards.

It's interesting to note that the request for 10,000 nodes went to only one shard because
the data is stored on that node only. If the chunk size increases beyond that value set in the
configuration, then it will get sharded.

Implementing this in Ruby is no different from MongoDB. As we have to pass the JavaScript
functions to MongoDB, we do it via strings!

Time for action – Map/Reduce via Ruby
We modify the Author model to help us generate statistical data, as follows:

class Author
 include Mongoid::Document
 ...

Scaling MongoDB

[294]

 def self.statistics
 map = %q{function() {
 emit(this.name.toLowerCase()[0], {count:1});
 }
 }

 reduce = %q{function(key, values) {
 var r = { count: 0 };
 values.forEach(function(value) {
 r.count += value.count;
 })
 return r;
 }
 }

 res = Author.collection.map_reduce(map, reduce, out: "author_
stats")
 end
end

As we can see, the functions are exactly the same as those that we tried out on the
MongoDB console! Let's run this:

$ rails c

Loading development environment (Rails 3.2.0)

irb> res = Author.statistics

 => #<Mongo::Collection:0x1cd25ac @name="author_stats", @
db=#<Mongo::DB:0x1fef8ac @name="sodibee_development",

...

> res.find().to_a

 => [

{"_id"=>"a", "value"=>{"count"=>1028.0}},

{"_id"=>"b", "value"=>{"count"=>352.0}},

{"_id"=>"c", "value"=>{"count"=>1164.0}},

{"_id"=>"d", "value"=>{"count"=>932.0}},

{"_id"=>"e", "value"=>{"count"=>162.0}},

{"_id"=>"f", "value"=>{"count"=>1336.0}},

{"_id"=>"g", "value"=>{"count"=>1393.0}},

...

Chapter 10

[295]

What just happened?
This gives us the output we need. How do we know that the all the authors were indeed
computed? Let's execute the following command to find out:

> res.find().to_a.inject(0) do |sum, e|

... sum + e["value"]["count"]

... end

 => 10000.0

Performance benchmarking
You may ask, is it really worth the effort to do a mapReduce? Why not just access all the
objects and iterate? How much difference would it actually make? A world of difference!

Time for action – iterating Ruby objects
If we had to write this function in plain Ruby using iterations, we would write something
like this:

class Author
 include Mongoid::Document
 ...

 def self.statistics_depr
 matches = {}
 Author.all.each do | a|
 key = a.name.downcase.first
 matches[key] = matches[key].to_i + 1
 end
 matches
 end
end

Ruby has a module called "Benchmark" which helps us find out the
real time for any method call.

Let's benchmark Ruby object processing and mapReduce calls:

$ rails c

irb> Author.count

=> 10000

Scaling MongoDB

[296]

irb> Benchmark.realtime { Author.statistics }

 => 1.116757869720459

irb> Benchmark.realtime { Author.statistics_depr }

 => 1.9303243160247803

Let's increase the number of authors to 30,000 now by invoking rake twice:

$ rake fake_authors

$ rake fake_authors

Now, let's see the benchmarks:

irb> Author.count

 => 30000

irb> Benchmark.realtime { Author.statistics }

 => 1.4425742626190186

irb> Benchmark.realtime { Author.statistics_depr }

 => 6.486238956451416

What just happened?
We just saw the power of Map/Reduce. It took approximately 6.5 seconds to iterate the
Ruby objects where as it took 1.44 seconds to run the mapReduce function. If we see this
in more detail, as the scale increases, see how skewed the results are:

Number of authors Map/Reduce Ruby iteration

10,000 1.116 seconds 1.930 seconds

30,000 1.442 seconds 6.486 seconds

50,000 2.087 seconds 10.422 seconds

70,000 2.921 seconds 14.228 seconds

100,000 4.017 seconds 21.217 seconds

Needless to say, Map/Reduce is indeed very helpful.

Chapter 10

[297]

Pop quiz – scaling our web app
1. How does MongoDB scale as a database?

a. Vertically and Horizontally.

b. Horizontally.

c. Vertically.

d. Diagonally.

2. Which of the following is incorrect for a master/slave configuration?

a. There must be only one master and many slaves.

b. Slaves are always read-only that is, we cannot write to them.

c. Slaves will elect a master automatically if the master crashes.

d. Slaves can be added anytime to the setup.

3. Which of the following is true for replica sets?

a. You must have at least three nodes for replica sets to start with
replication process.

b. When the PRIMARY fails, you should have at least three nodes in the
replica set to elect a new PRIMARY.

c. For the voting process, you must have at least one arbiter node in a
replica set.

d. When the failed PRIMARY comes up again, it regains ownership as
the PRIMARY.

4. What effect does the --chunkSize option in sharding have?

a. It sets the size of the chunk in MB, so that the documents are distributed
when that threshold is crossed.

b. Chunk size is the amount of data fetched from the shard.

c. Chunk size determines the number of shards in the setup.

d. Chunk size is the maximum size of the document chunk that is stored in
each shard.

5. Why does the reduce function take the key and a values array as a parameter?

a. One key will have many different values.

b. values array contains temporary results as well as emitted results for
that key.

c. The map function emits an array, so the reduce function processes an array.

d. All the emitted values are passed to the reduce function in the array.

Scaling MongoDB

[298]

Summary
In this chapter, we have seen various important aspects about data—safety, scaling, and
performance under scaling. We have seen how we can replicate data using a master/slave
configuration. We can create replica sets for failover and high availability and how we can
scale using shards and even shared replica sets! We saw how efficient Map/Reduce functions
are with large datasets.

This does indeed bring us to the very end of the journey. I hope this book can help you build
large scale web applications using Ruby and MongoDB.

Pop Quiz Answers

Chapter 2: Diving Deep into MongoDB
1 2 3 4 5 6

b a b c c a

Chapter 3: MongoDB Internals
1 2 3 4

b a c b

Chapter 4: Working out your Way with Queries
1 2 3 4

b a d b

Chapter 5: Ruby DataMappers: Ruby and MongoDB Go
Hand in Hand

1 2 3 4

d b c a

Pop Quiz Answers

[300]

Chapter 6: Modeling Ruby with Mongoid
1 2 3 4 5

d c a d b

Chapter 8: Rack, Sinatra, Rails and MongoDB - Making use
of them all

1 2 3 4 5

a b c d d

Chapter 10: Scaling MongoDB
1 2 3 4 5

b c b a b

Index
Symbols
$exists

used, for checking presence 89
$geoNear query 264
$gt 89
$gte 89
$in and $nin

used, for searching inside arrays 91
$lt 89
$lte 89
$ne 89
$near and $geoNear

differences 263
$near query 264
$or operator 88
:as option 167
@author instance variable 221
@authors array 232
:autosave option 167, 168
:cascade_callbacks option 175
:cascaded_callbacks option 167
:class_name option 166
:cyclic option 167, 175
:dependent option 167

about 168
values 168

:embeds_one, options
about 175
:cascade_callbacks option 175
:cyclic 175

:foreign_key option 167, 168
:index option 167, 169

:inverse_of option 166, 170
:name optiont 166, 177
:order option 167, 168
:polymorphic option 167, 169
--replSet option 273
:versioned option 167, 176

A
accepts_nested_attributes_for method 236
ACID transactions and MongoDB transactions

selecting between 77
active/passive mode 266
ActiveSupport 233
Address model

geocoding 255, 256
Aeroplane model 130
AeroSpace 125
all method 113
Apdex 201
Apdex Score, server performance 201
ApplicationController 217
Application Performance Index. See Apdex
arbiters 271
arrays

searching in 90
arrays and hashes

embedded objects 165
using, in models 164

atomic updates 75
attributes, in models

accessing 158
defining 157

[302]

dynamic fields 160
indexing 158
localization 162

author: charles 118
Author class

modeling 210
author document 50
author_id field 118
Author object 219
AuthorsController

about 217
models, relating 220-222
N+1 query problem, solving 219, 220
writing 218, 219

Authors listing page
authors, listing 231-234
books, adding 234-239
designing 231
new authors, adding 234-239

average response time, server performance 200

B
basic embedded polymorphism, embedded

polymorphism
about 142
drivers, insuring 142, 143

Basic polymorphic relations
about 128
selecting 132
vehicles, creating 129, 131

belongs_to 118
belongs_to, options

:index option 169
:polymorphic option 169
about 169

be_valid 245
Binary JSON (BSON)

about 21, 70, 100
data, fetching 71
data, manipulating 71
data, traversing 71

blueprint template 238
BookDetail model 121
BookDetail object 123
book model

building 48-51
writing 211

book object 92
creating 32

BSON data
fetching 71
manipulating 71
traversing 71

bsondump 28
bson_ext gem

about 204
used, for increasing Mongoid performance 204

Bundler
about 44
need for 44

C
caching objects

about 205
memcache server, using 205
Redis server, using 205

capped collections 72
CarDriver object 128
Car model 131
Category model 212
category object 93
changes, in models

managing 178
code documentation

YARD used 247, 248
code optimization

about 202
data selection, optimizing 203
indexing fields 202

collections, MongoDB
about 72
capped collections 72

common options, relations
:class_name 165
:extend 165
:inverse_class_name 165
:inverse_of 166
:name 166
:relation 166
:validate 166

Compare and Set (CAS) 75
concurrency/throughput,

server performance 201

[303]

concurrent requests 198
conditional queries

$exists, using 89
books, finding by name or publisher 88
highly ranked books, finding 89
threshold queries, writing 88
writing 87
writing, $or operator used 88

config/mongoid.yml file 149
config server

starting 285, 286
configuration parameters, find() query

fields 83
imit 83
query 83
skip 83

covered indexes
about 193
using 193-195

create method 220
criteria 113
Cross Site Request Forgery (CSRF) 218
cyclic relations

setting up 175, 176

D
data mapper 99, 100
data searching

searching by field attributes 81
searching by string value 82
searching inside arrays 90
searching inside embedded documents 93
searching inside hashes 92
searching with regular expressions 93
techniques 81

dates, MongoDB 72
describe 245
document relations

creating 37, 38
document relationships

using 36
documents

about 71
creating 32, 33, 110
creating, NoSQL way 33
creating, SQL way 33

destroying 110
fields, defining using Mongoid 111
fields, defining using MongoMapper 110
objects, creating 111
objects, updating 111, 112
updating 110

Don’t Repeat Yourself(DRY) principle 216
Driver model 125
dynamic fields

about 160
adding 160, 161

E
e-mail address

validating 96
embedded documents

about 75
searching in 93
using 34-57

embedded_in, options
about 176
:name option 177

embedded objects
adding, to book 35
creating 134
fetching 36
Mongoid, using 134-137
MongoMapper, using 134, 137
using 133

embedded polymorphic relations 177
embedded polymorphism

about 140
basic embedded polymorphism 142
Single Collection Inheritance 141

embeds_many, options
:versioned option 176
about 176

emit() 63
end-user response 202
exact matches

searching for, $all used 92
explain function

about 190
query, explaining 190-193
using 190

extend 49

[304]

F
failover 266
field attributes

searching by 81
fields

localizing 162, 163
finder methods

all method, using 113
find method 112
first and last methods, using 113
using 112

finders 112
find method 113
find() query

about 83
configuration parameters 83

following and followers relationship
configuring 172-174

functional programming 40

G
gemset 17
geo 252
geocoder

used, for updating geolocation coordinates
258, 259

geocoder gem 259
Geographical Information Systems(GIS) 252
geolocation

about 252
accuracy 253
converting, to geocoded coordinates 253
identifying 254, 255

geolocation coordinates
saving 257
updating, geocoder used 258, 259

geolocation queries
$near and $geoNear, differences 263, 264
about 260
mongoid_spacial, using 262
nearby addresses, finding 260-262
near queries, firing in Mongoid 262, 263

geolocation storage
testing 257

geospatial indexes
adding, to MongoDB 255

geospatial indexing 251
global write lock 75
GROUP BY query 64

H
has_and_belongs_to_many, options

:inverse_of option 170
about 169

hashes
searching in 92

has_many 118
has_many, options

:order option 168
about 168

has_one, options
:as option 167
:autosave option 168
:dependent option 168
:foreign_key option 168

high availability 266
highly ranked books

finding 89
Horizontal scaling 265
httperf

used, for loading server 198, 199

I
include 49
includes 219
indexing attributes

about 158
background indexing 159
geospatial indexing 159
sparse indexing 160
unique indexes 159

initiate command 274
interleaving 75
Internationalization 162
it 245

J
JavaScript

about 72, 73
and, MongoDB 72
custom functions, writing in MongoDB 73

[305]

JavaScript Object Notation. See JSON
JSON 21

L
Lease and Purchase models

embedding 58, 59
Lease model

writing 213
Localization 162
local.slaves collection 270
location 252

M
many 118
many-to-many relation

about 56, 118
accessing, with Mongoid 120, 121
accessing, with MongoMapper 120
books, categorizing 118
configuring 171, 172
Mongoid, using 119
MongoMapper, using 118, 119

map function
about 40, 292
building 40
writing, for calculating ratings 63
writing, for calculating vote statistics 41

Map/Reduce
about 40
using 64
working with 60-63
working with, Ruby used 65

mapReduce function 292
Map/Reduce functionality

implementing 289
Map/Reduce functionalityplanning 290

Map/Reduce via mongo console 291, 292
Map/Reduce via Ruby 293, 294
Marine 125
Marine object 128
master/slave replication

setting up 266-271
memcache server

setting up 205
memory-mapped storage engine

performance 203

using 74
Metal 150
model relationships

about 116
many-to-many relation 118
one to many relation 116
one-to-one relation 121
polymorphic relations 124

model, Ruby
book model, building 48
building 48
object schema, planning 48
remaining models, building 51, 52

Model-View-Controller (MVC) architecture 215
module mixin 49
mongo 22
Mongo::Connection class 103
MongoDB

and, JavaScript 72
backup, managing using mongodump 25
code, optimizing 202
collections 72
comparing, with SQL syntax 38, 39
configuring 19
connecting, mongo used 22
covered indexes 193
data, importing using mongoimport 25
data searching 81
dates 72
document relations, creating 37, 38
document relationships, using 36
documents 71
documents, creating 32, 33
embedded documents, using 34
embedded objects, adding to book 35
embedded objects, fetching 36
explain function 190
files, saving using mongofiles 26
functional programming 40
geolocation queries, firing 260
geospatial indexes, adding 255
geospatial indexing 251
global write lock 74
information, deleting 24
information, exporting using mongoexport 24
information, retrieving 23
information, saving 22

[306]

installing 18
limitations 77
many-to-many relationships 56
map function, buidling 40
Map/Reduce, using 40
master/slave replication, implementing 266
memory-mapped storage engine, using 74
performance tuning techniques 196
profiling 188
profiling, enabling 188, 189
reduce function, buidling 41
replica sets 271
replication schemes 266
restore, managing using mongorestore 25
reviews and votes, embedding 35
Ruby DataMappers 103
starting 19, 20
stopping 21
storing coordinates 255
transactional support 75
web application performance 197
web application stack, optimizing 203
web application stack, tuning 203
write-ahead journaling 74
write consistency, ensuring 73

MongoDB CLI
about 21
bsondump 28
JSON 21
mongo client utility 22
mongodump 25
mongoexport 24
mongofiles 26
mongoimport 25
mongorestore 25

MongoDB criteria
conditional queries, executing using where 113
limit 115
offset 115
results, fetching with where criteria 114
skip 115
using 113
where criteria, using for fetching results 114

Mongo::Db object 103
Mongo driver

configuration 102
mongodump

used, for managing backup 25
mongoexport

used, for exporting information 24
mongofiles

used, for saving files 26
mongo gem

installing 100
using 100

Mongoid
about 46, 104
arrays and hashes, using 164
attributes, defining 157
changes, managing 178
configuring 47, 107, 109, 110
relations, defining 165
reverse embedded relations 137
setting up 46
web application, developing 147

Mongoid::Criteria object 114
Mongoid::Document

field method 157
ptional arguments 157

Mongoid modules
about 179
Paranoia module 180
versioning 182

mongoid_spacial
using 262

mongoimport
used, for importing information 25

MongoMapper
about 104
configuring 104, 105
used, for creating models 106

MongoMapper::Document
about 106
modules 109
plugins 108

mongorestore
used, for managing restore 25

mongo-ruby-driver
about 100
mongo gem, using 101, 102

mongos process
routing service, setting up 286
setting up 286-288

mongostat 197

[307]

Mongrel 204
MRI Ruby 12

N
nested_form method 238
network latency 202
NoSQL scores

over, SQL databases 33
NoSQL way 33

O
Object Document Mapper (ODM) tool 46
ObjectId 71
Occurrence 95
one to many relation

about 116
models, relating 116
Mongoid, using 117, 118
MongoMapper, using 116

one-to-one relation
about 121
book details, adding 123
models, creating 124
Mongoid, using 122
MongoMapper, using 122

optimistic locking
implementing 75, 76

optional arguments, Mongoid::Document
:as 157
:default 157
:identity 157
:localize 157
:type 157

Order model
writing 212

P
Paranoia module

about 180, 181
including 180, 181

Pattern 95
people criterion 115
performance benchmarking

about 295
Ruby objects, iterating 295, 296

performance tuning techniques
about 196
mongostat 197

Pilot object 128
Polymorphic 124
polymorphic relations

about 124
implementing, correct way 124
implementing, wrong way 124

polymorphic relations, implementing
Basic polymorphic relations 128
Single Collection Inheritance (SCI) 124

PRIMARY node 274
profiling

about 188
enabling, for MongoDB 188, 189

protect_from_forgery 218
Purchase model

writing 213

R
Rack 156
Rails

about 44, 208
Author class, modeling 210
Authors listing page, designing 231
basics 44
components 208
Controllers, coding 217
project, setting up 208, 209
Rails architecture 215
Rails request, processing 216, 217
Rails routes 213
RESTful interface 214
Sodibee, modeling 210
Views, coding 217
web application layout, designing 223

Rails 3
about 28, 148
installing 28

Rails application
setting up 148, 149

Rails architecture 215, 216
Rails asset pipeline 230
Rails ORM 48

[308]

Rails project
creating 43
setting up 43, 208, 209
testing 52-55

Rails request
processing 216, 217

Rails/Sinatra
installing 28

railtie 148
rake routes command 216
rbenv

about 17
used, for installation Ruby 17

reactor pattern 198
Redis server 205
reduce function

about 41, 64, 292
building 41
writing, for processing emitted information 42,

43
writing, for processing emitted results 64

regular expressions
Occurrence 95
Pattern 95
searching 93
searching with 93

regular expression searches
using 94

relations, in models
:embeds_one, options 175
belongs_to, options 169
common options 165
defining 165
embedded_in, options 176
embeds_many, options 176
has_and_belongs_to_many, options 169
has_many, options 168
has_one, options 167
relation-specific options 166

relation-specific options
:as 167
:autosave 167
:cascaded_callbacks 167
:cyclic 167
:dependent 167
:foreign_key 167
:index 167

:order 167
:polymorphic 167
:versioned 167

replica sets
about 271
configuring, for Sodibee 278-281
implementing 272-277
implementing, for Sodibee 278
members, adding 277

replication 266
resource_id field 131
resource_type field 131
REST 213
RESTful interface

about 214
routes, configuring 214, 215

reverse embedded relations
about 137
embeds_many, using 139, 140
embeds_one relationship, using 138, 139

review_count field 34
reviews

adding, to books 57, 58
embedding 35
searching in 90

routing service
setting up 286, 287

RSpec
about 244
basics 245
be_valid 245
describe 245
installing 244, 245
it 245
should 245
should_not 245
spork, installing 246
used, for automation 243
used, for testing 243

rs.slaveOk() 277
rs.status() command 275
Ruby

about 12
Bundler, using 44
installing 12
installing, RVM used 12
models, building 48

[309]

Rails project, setting up 43
requisites 11
Sodibee, setting up 45

Ruby application server
Mongrel 204
passenger 204
selecting 204
Thin 204
Unicorn 204

Ruby DataMappers
about 103
embedded objects, using 133
features 99
finder methods, using 112
Mongoid 103
Mongoid, configuring 107
MongoMapper 103
MongoMapper, configuring 104
need for 99
setting up 104

Ruby installation
about 12
rbenv, used 17
RVM games 16
RVM, installing 12
RVM packages, configuring 15
RVM, using on Linux or Mac OS 12, 14, 16
Windows saga 17

Ruby Version Manager. See RVM
RVM

about 12
using,on Linux or Mac OS 12, 15

RVM games 16

S
searching by field attributes, data searching

about 81, 82
conditional queries, writing 87
document results, paginating 87
documents, skipping 86, 87
fields, excluding 86
fields, including 86
searching by string value 82, 83
search results, limiting 86, 87
skip and limit, using 86
specific fields, querying for 84, 85

searching inside arrays, data searching
$in and $nin, used 91
about 90
exact matches, searching for 92
searching inside reviews 90, 91

searching inside embedded documents, data
searching 93

searching inside hashes, data searching 92
searching with regular expressions,

data searching
about 93-95
e-mail address, validating 96

sharding
about 283
implementing 283

shards
configuring, with config server 285, 286
creating 284
setting up 284, 285

shared replication
shared replicationtesting 288, 289

shelf collection 32
shims 17
ShipDriver object 128
Ship model 129
should 245
should_not 245
simple_form method 237
Sinatra

about 240
installing 28
setting up 149, 150, 240-243
using, professionally 151-156

Single Collection Inheritance,
embedded polymorphism

about 141
licenses, adding to drivers 141

Single Collection Inheritance (SCI)
about 125
driver entities, managing 125-128
hierarchy 125
selecting 132

Sodibee
replica sets, implementing 278-280

Sodibee project
Address model, writing 212
Author class, modeling 210

[310]

Book model, writing 211
Category model, writing 212
modeling 210
Mongoid, configuring 47
Mongoid, setting up 46
Order model, modeling 212, 213
revisiting 208
setting up 45

SpaceShuttle model 130
specific fields

querying for 84, 85
spork

installing 246
SQL way 33
storing coordinates

about 255
Address model, geocoding 255, 256
geolocation storage, testing 257

Submarine model 130

T
Terrestrial 125
Thin 204
threshold queries

writing 88
throughput

about 198
server, loading using httperf 198, 199
server performance, monitoring 199, 200

time to live(TTL) 205
to_sentence method 233
transactional support, MongoDB

atomic updates 75
embedded documents 75
optimistic locking, implementing 75

U
Unicorn 204

V
Vehicle model 129
Versioning module

about 182, 183
including 182, 183

Vertical scaling 265

vote_count field 34
votes

embedding 35
votes array 66

W
web application

developing, with Mongoid 147
web application layout

designing 223
layout, designing 223-230
Rails asset pipeline 230

web application performance
about 197
end-user response 202
network latency 202
standard parameters 197
throughput 198
web server response time 197

web application stack optimization
caching objects 205
memory-mapped storage engine

performance 203
Mongoid performance, increasing 204
optimizing 203
Ruby application server, selecting 204

web server
loading, httperf used 198, 199

web server performance
Apdex Score 201
average response time 200
concurrency/throughput 201
monitoring 199, 200

web server response time 197
Windows saga 17
write-ahead journaling

about 74
advantages 74

write consistency
ensuring 73

Y
YARD

about 247
installing 247, 248

Thank you for buying
Ruby and MongoDB Web Development Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Python 3 Web Development Beginner's Guide
ISBN: 978-1-84951-374-6 Paperback: 336 pages

Use Python to create, theme, and deploy unigue
web applications

1. Build your own Python web applications from
scratch

2. Follow the examples to create a number of different
Python-based web applications, including a task list,
book database, and wiki application

3. Have the freedom to make your site your own
without having to learn another framework

4. Part of Packt's Beginner's Guide Series: practical
examples will make it easier for you to get going
quickly

Ext JS 4 Web Application Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 450 pages

Over 130 easy to follow recipes backed up with real
life examples, walking you through the basic Ext JS
features to advanced application design using Sencha
Ext JS

1. Learn how to build Rich Internet Applications with
the latest version of the Ext JS framework in a
cookbook style

2. From creating forms to theming your interface, you
will learn the building blocks for developing the
perfect web application

3. Easy to follow recipes step through practical and
detailed examples which are all fully backed up with
code, illustrations, and tips

Please check www.PacktPub.com for information on our titles

Joomla! 1.5: Beginner's Guide
ISBN: 978-1-847199-90-4 Paperback: 380 pages

Build and maintain impressive user-friendly web sites
the fast and easy way with Joomla! 1.5

1. Create a web site that meets real-life requirements
by following the creation of an example site
with the help of easy-to-follow steps and ample
screenshots

2. Practice all the Joomla! skills from organizing your
content to completely changing the site's looks
and feel

3. Go beyond a typical Joomla! site to make the site
meet your specific needs

PHP and MongoDB Web Development
Beginner's Guide
ISBN: 978-1-84951-362-3 Paperback: 292 pages

Combine the power of PHP MongoDB to build
dynamic web 2.0 applications

1. Learn to build PHP-powered dynamic web
applications using MongoDB as the data backend

2. Handle user sessions, store real-time site analytics,
build location-aware web apps, and much more, all
using MongoDB and PHP

3. Full of step-by-step instructions and practical
examples, along with challenges to test and
improve your knowledge

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing MongoDB and Ruby
	Installing Ruby
	Using RVM on Linux or Mac OS
	The RVM games
	The Windows saga

	Using rbenv for installing Ruby

	Installing MongoDB
	Configuring the MongoDB server
	Starting MongoDB
	Stopping MongoDB
	The MongoDB CLI
	Understanding JavaScript Object Notation (JSON)
	Connecting to MongoDB using Mongo
	Saving information
	Retrieving information
	Deleting information

	Exporting information using mongoexport
	Importing data using mongoimport
	Managing backup and restore using mongodump and mongorestore
	Saving large files using mongofiles
	bsondump

	Installing Rails/Sinatra
	Summary

	Chapter 2: Diving Deep into MongoDB
	Creating documents
	Time for action – creating our first document
	NoSQL scores over SQL databases

	Using MongoDB embedded documents
	Time for action – embedding reviews and votes
	Fetching embedded objects

	Using MongoDB document relationships
	Time for action – creating document relations
	Comparing MongoDB versus SQL syntax
	Using Map/Reduce instead of join
	Understanding functional programming
	Building the map function

	Time for action – writing the map function for calculating vote statistics
	Building the reduce function

	Time for action – writing the reduce function to process emitted information
	Understanding the Ruby perspective
	Setting up Rails and MongoDB

	Time for action – creating the project
	Understanding the Rails basics
	Using Bundler
	Why do we need the Bundler

	Setting up Sodibee

	Time for action – start your engines
	Setting up Mongoid

	Time for action – configuring Mongoid
	Building the models

	Time for action – planning the object schema
	Testing from the Rails console

	Time for action – putting it all together
	Understanding many-to-many relationships in MongoDB
	Using embedded documents

	Time for action – adding reviews to books
	Choosing whether to embed or not to embed

	Time for action – embedding Lease and Purchase models
	Working with Map/Reduce

	Time for action – writing the map function to calculate ratings
	Time for action – writing the reduce function to process the
emitted results
	Using Map/Reduce together

	Time for action – working with Map/Reduce using Ruby
	Summary

	Chapter 3: MongoDB Internals
	Understanding Binary JSON
	Fetching and traversing data
	Manipulating data

	What is ObjectId?
	Documents and collections
	Capped collections
	Dates in MongoDB

	JavaScript and MongoDB
	Time for action – writing our own custom functions in MongoDB
	Ensuring write consistency or "read your writes"
	How does MongoDB use its memory-mapped storage engine?
	Advantages of write-ahead journaling

	Global write lock
	Transactional support in MongoDB
	Understanding embedded documents and atomic updates
	Implementing optimistic locking in MongoDB

	Time for action – implementing optimistic locking
	Choosing between ACID transactions and MongoDB transactions

	Why are there no joins in MongoDB?
	Summary

	Chapter 4: Working Out Your Way with Queries
	Searching by fields in a document
	Time for action – searching by a string value
	Querying for specific fields

	Time for action – fetching only for specific fields
	Using skip and limit

	Time for action – skipping documents and limiting our search results
	Writing conditional queries
	Using the $or operator

	Time for action – finding books by name or publisher
	Writing threshold queries with $gt, $lt, $ne, $lte, and $gte

	Time for action – finding the highly ranked books
	Checking presence using $exists

	Searching inside arrays
	Time for action – searching inside reviews
	Searching inside arrays using $in and $nin
	Searching for exact matches using $all

	Searching inside hashes
	Searching inside embedded documents
	Searching with regular expressions
	Time for action – using regular expression searches
	Summary

	Chapter 5: Ruby DataMappers: Ruby and MongoDB Go Hand in Hand
	Why do we need Ruby DataMappers
	The mongo-ruby-driver

	Time for action – using mongo gem
	The Ruby DataMappers for MongoDB
	MongoMapper
	Mongoid

	Setting up DataMappers
	Configuring MongoMapper

	Time for action – configuring MongoMapper
	Configuring Mongoid

	Time for action – setting up Mongoid
	Creating, updating, and destroying documents
	Defining fields using MongoMapper
	Defining fields using Mongoid
	Creating objects

	Time for action – creating and updating objects
	Using finder methods
	Using find method
	Using the first and last methods
	Using the all method

	Using MongoDB criteria
	Executing conditional queries using where

	Time for action – fetching using the where criterion
	Revisiting limit, skip, and offset

	Understanding model relationships
	The one to many relation

	Time for action – relating models
	Using MongoMapper
	Using Mongoid

	The many-to-many relation

	Time for action – categorizing books
	MongoMapper
	Mongoid
	Accessing many-to-many with MongoMapper
	Accessing many-to-many relations using Mongoid

	The one-to-one relation
	Using MongoMapper
	Using Mongoid

	Time for action – adding book details
	Understanding polymorphic relations
	Implementing polymorphic relations the wrong way
	Implementing polymorphic relations the correct way

	Time for action – managing the driver entities
	Time for action – creating vehicles using basic polymorphism
	Choosing SCI or basic polymorphism

	Using embedded objects
	Time for action – creating embedded objects
	Using MongoMapper
	Using Mongoid
	Using MongoMapper
	Using Mongoid

	Reverse embedded relations in Mongoid
	Time for action – using embeds_one without specifying embedded_in
	Time for action – using embeds_many without specifying embedded_in
	Understanding embedded polymorphism
	Single Collection Inheritance

	Time for action – adding licenses to drivers
	Basic embedded polymorphism

	Time for action – insuring drivers
	Choosing whether to embed or to associate documents
	Mongoid or MongoMapper – the verdict
	Summary

	Chapter 6: Modeling Ruby with Mongoid
	Developing a web application with Mongoid
	Setting up Rails

	Time for action – setting up a Rails project
	Setting up Sinatra

	Time for action – using Sinatra professionally
	Understanding Rack

	Defining attributes in models
	Accessing attributes
	Indexing attributes
	Unique indexes
	Background indexing
	Geospatial indexing
	Sparse indexing

	Dynamic fields

	Time for action – adding dynamic fields
	Localization

	Time for action – localizing fields
	Using arrays and hashes in models
	Embedded objects

	Defining relations in models
	Common options for all relations
	:class_name option
	:inverse_of option
	:name option

	Relation-specific options
	Options for has_one
	:as option
	:autosave option
	:dependent option
	:foreign_key option

	Options for has_many
	:order option

	Options for belongs_to
	:index option
	:polymorphic option

	Options for has_and_belongs_to_many
	:inverse_of option

	Time for action – configuring the many-to-many relation
	Time for action – setting up the following and followers relationship
	Options for :embeds_one
	:cascade_callbacks option
	:cyclic

	Time for action – setting up cyclic relations
	Options for embeds_many
	:versioned option

	Options for embedded_in
	:name option

	Managing changes in models
	Time for action – changing models
	Mixing in Mongoid modules
	The Paranoia module

	Time for action – getting paranoid
	Versioning

	Time for action – including a version
	Summary

	Chapter 7: Achieving High Performance on Your Ruby Application with MongoDB
	Profiling MongoDB
	Time for action – enabling profiling for MongoDB
	Using the explain function
	Time for action – explaining a query
	Using covered indexes
	Time for action – using covered indexes
	Other MongoDB performance tuning techniques
	Using mongostat

	Understanding web application performance
	Web server response time
	Throughput
	Load the server using httperf
	Monitoring server performance

	End-user response and latency

	Optimizing our code for performance
	Indexing fields
	Optimizing data selection

	Optimizing and tuning the web application stack
	Performance of the memory-mapped storage engine
	Choosing the Ruby application server
	Passenger
	Mongrel and Thin
	Unicorn

	Increasing performance of Mongoid using bson_ext gem
	Caching objects
	Memcache
	Redis server

	Summary

	Chapter 8: Rack, Sinatra, Rails, and MongoDB – Making Use of them All
	Revisiting Sodibee
	The Rails way
	Setting up the project
	Modeling Sodibee

	Time for action – modeling the Author class
	Time for action – writing the Book, Category and Address models
	Time for action – modeling the Order class
	Understanding Rails routes
	What is the RESTful interface?

	Time for action – configuring routes
	Understanding the Rails architecture
	Processing a Rails request
	Coding the Controllers and the Views

	Time for action – writing the AuthorsController
	Solving the N+1 query problem using the includes method
	Relating models without persisting them

	Designing the web application layout

	Time for action – designing the layout
	 Understanding the Rails asset pipeline
	Designing the Authors listing page

	Time for action – listing authors
	Adding new authors and their books

	Time for action – adding new authors and books
	The Sinatra way
	Time for action – setting up Sinatra and Rack
	Testing and automation using RSpec
	Understanding RSpec

	Time for action – installing RSpec
	Time for action – sporking it
	Documenting code using YARD
	Summary

	Chapter 9: Going Everywhere – Geospatial Indexing with MongoDB
	What is geolocation
	How accurate is a geolocation
	Converting geolocation to geocoded coordinates

	Identifying the exact geolocation
	Storing coordinates in MongoDB
	Time for action – geocoding the Address model
	Testing geolocation storage

	Time for action – saving geolocation coordinates
	Using geocoder to update coordinates

	Time for action – using geocoder for storing coordinates
	Firing geolocation queries
	Time for action – finding nearby addresses
	Using mongoid_spacial

	Time for action – firing near queries in Mongoid
	Differences between $near and $geoNear

	Summary

	Chapter 10: Scaling MongoDB
	High availability and failover via replication
	Implementing the master/slave replication

	Time for action – setting up the master/slave replication
	Using replica sets

	Time for action – implementing replica sets
	Recovering from crashes – failover
	Adding members to the replica set

	Implementing replica sets for Sodibee
	Time for action – configuring replica sets for Sodibee
	Implementing sharding
	Creating the shards

	Time for action – setting up the shards
	Configuring the shards with a config server

	Time for action – starting the config server
	Setting up the routing service – mongos

	Time for action – setting up mongos
	Testing shared replication

	Implementing Map/Reduce
	Time for action – planning the Map/Reduce functionality
	Time for action – Map/Reduce via the mongo console
	Time for action – Map/Reduce via Ruby
	Performance benchmarking

	Time for action – iterating Ruby objects
	Summary

	Pop Quiz Answers
	Index

