
7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 1/35

Comprehensive Guide to Higher-Order
RxJs Mapping Operators: switchMap,
mergeMap, concatMap (and
exhaustMap)

Some of the that we �nd on a daily

basis are the RxJs higher-order mapping operators: switchMap,

mergeMap, concatMap and exhaustMap.

For example, most of the network calls in our program are going to be

done using one of these operators, so getting familiar with them is

essential in order to write almost any reactive program.

Knowing which operator to use in a given situation (and why)

, and we often wonder how do these operators really work and

why they are named like that.

These operators might seem unrelated, but we really want to learn them

all in one go, as choosing the wrong operator which might accidentally

lead to subtle issues in our programs.

Why are the mapping operators a bit confusing?
There is a reason for that: in order to understand these operators, we

need to �rst understand the Observable combination strategy that each

one uses internally.

Instead of trying to understand switchMap on its own, we need to �rst

understand what is Observable switching; instead of diving straight into

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 2/35

concatMap, we need to �rst learn Observable concatenation, etc.

So that is what we will be doing in this post, we are going to learn in a

logical order the concat, merge, switch and exhaust strategies and their

corresponding mapping operators: concatMap, mergeMap, switchMap

and exhaustMap.

We will explain the concepts using a combination of marble diagrams

and some practical examples (including running code).

In the end, you will know exactly how each of these mapping operators

work, when to use each and why, and the reason for their names.

Table of Contents
In this post, we will cover the following topics:

The RxJs Map Operator

What is higher-order Observable Mapping

Observable Concatenation

The RxJs concatMap Operator

Observable Merging

The RxJs mergeMap Operator

Observable Switching

The RxJs switchMap Operator

The Exhaust strategy

The RxJs exhaustMap Operator

How to choose the right mapping Operator?

Running GitHub repo (with code samples)

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 3/35

Conclusions

Note that this post is part of our ongoing RxJs Series. So without further

ado, let's get started with our RxJs mapping operators deep dive!

The RxJs Map Operator
Let's start at the beginning, by covering what these mapping operators

are doing in general.

As the names of the operators imply, they are doing some sort of

mapping: but is exactly getting mapped? Let's have a look at the

marble diagram of the RxJs Map operator �rst:

How the base Map Operator works
With the map operator, we can take an input stream (with values 1, 2, 3),

and from it, we can create a derived mapped output stream (with values

10, 20, 30).

https://blog.angular-university.io/tag/rxjs/

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 4/35

The values of the output stream in the bottom are obtained by taking the

values of the input stream and applying them a function: this function

simply multiplies the values by 10.

So the map operator is all about mapping the of the input

observable. Here is an example of how we would use it to handle an

HTTP request:

1

2

3

4

5

6

7

8

9

10

11

12

In this example, we are creating one HTTP observable that makes a

backend call and we are subscribing to it. The observable is going to emit

the value of the backend HTTP response, which is a JSON object.

In this case, the HTTP response is wrapping the data in a payload

property, so in order to get to the data, we apply the RxJs map operator.

The mapping function will then map the JSON response payload and

extract the value of the payload property.

Now that we have reviewed how base mapping works, let's now talk

about higher-order mapping.

What is Higher-Order Observable Mapping?

const http$: Observable<Course[]> = this.http.get('/api/courses');

http$

 .pipe(

 tap(() => console.log('HTTP request executed')),

 map(res => Object.values(res['payload']))

)

 .subscribe(

 courses => console.log("courses", courses)

);

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 5/35

In higher-order mapping, instead of mapping a plain value like 1 to

another value like 10, we are going to map a value into an Observable!

The result is a higher-order Observable. It's just an Observable like any

other, but its values are themselves Observables as well, that we can

subscribe to separately.

This might sound far-fetched, but in reality, this type of mapping happens

all the time. Let's give a practical example of this type of mapping. Let's

say that for example, we have an Angular Reactive Form that is emitting

valid form values over time via an Observable:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

@Component({

 selector: 'course-dialog',

 templateUrl: './course-dialog.component.html'

})

export class CourseDialogComponent implements AfterViewInit {

 form: FormGroup;

 course:Course;

 @ViewChild('saveButton') saveButton: ElementRef;

 constructor(

 private fb: FormBuilder,

 private dialogRef: MatDialogRef<CourseDialogComponent>,

 @Inject(MAT_DIALOG_DATA) course:Course) {

 this.course = course;

 this.form = fb.group({

 description: [course.description, Validators.required],

 category: [course.category, Validators.required],

 releasedAt: [moment(), Validators.required],

 longDescription: [course.longDescription,Validators.required]

 });

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 6/35

26

27

28

29

The Reactive Form provides an Observable this.form.valueChanges that

emits the latest form values as the user interacts with the form. This is

going to be our source Observable.

What we want to do is to save at least some of these values as they get

emitted over time, to implement a form draft pre-save feature. This way

the data gets progressively saved as the user �lls in the form, which

avoids losing the whole form data due to an accidental reload.

Why Higher-Order Observables?
In order to implement the form draft save functionality, we need to take

the form value, and then create a second HTTP observable that performs

a backend save, and then subscribe to it.

We could try to do all of this manually, but then we would fall in the

:

1

2

3

4

5

6

7

8

9

10

11

12

13

 }

}

this.form.valueChanges

 .subscribe(

 formValue => {

 const httpPost$ = this.http.put(`/api/course/${courseId}`, formValue);

 httpPost$.subscribe(

 res => ... handle successful save ...

 err => ... handle save error ...

);

 }

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 7/35

As we can see, this would cause our code to nest at multiple levels quite

quickly, which was one of the problems that we were trying to avoid while

using RxJs in the �rst place.

httpPost$

Avoiding nested subscriptions
We would like to do all this process in a much more convenient way: we

would like to take the form value, and it into a save Observable. And

this would effectively create a higher-order Observable, where each value

corresponds to a save request.

We want to then transparently subscribe to each of these network

Observables, and directly receive the network response all in one go, to

avoid any nesting.

And we could do all this if we would have available some sort of a higher

order RxJs mapping operator! Why do we need four different operators

then?

To understand that, imagine what happens if multiple form values are

emitted by the valueChanges observable in quick succession and the

save operation takes some time to complete:

should we wait for one save request to complete before doing

another save?

14

15

);

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 8/35

should we do multiple saves in parallel?

should we cancel an ongoing save and start a new one?

should we ignore new save attempts while one is already

ongoing?

Before exploring each one of these use cases, let's go back to the nested

subscribes code above.

In the nested subscribes example, we are actually triggering the save

operations in parallel, which is not what we want because there is no

strong guarantee that the backend will handle the saves sequentially and

that the last valid form value is indeed the one stored on the backend.

Let's see what it would take to ensure that a save request is done only

after the previous save is completed.

Understanding Observable Concatenation
In order to implement sequential saves, we are going to introduce the

new notion of Observable concatenation. In this code example, we are

concatenating two example observables using the concat() RxJs

function:

1

2

3

4

5

6

7

8

9

const series1$ = of('a', 'b');

const series2$ = of('x', 'y');

const result$ = concat(series1$, series2$);

result$.subscribe(console.log);

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 9/35

After creating two Observables series1$ and series2$ using the of

creation function, we have then created a third result$ Observable,

which is the result of concatenating series1$ and series2$.

Here is the console output of this program, showing the values emitted

by the result Observable:

a

b

x

y

As we can see, the values are the result of concatenating the values of

series1$ with series2$ together. But here is the catch: this only works

because these Observables are completing!!

The of() function will create Observables that emit values passed to

of() and then it will complete the Observables after all values are

emitted.

Observable Concatenation Marble Diagram
To really understand what is going on, we need to look at the Observable

concatenation marble diagram:

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 10/35

Do you notice the vertical bar after the value b on the �rst Observable?

That marks the point in time when the �rst Observable with values a and

b (series1$) is completed.

Let's break down what is going on here by following step-by-step the

timeline:

the two Observables series1$ and series2$ are passed to the

concat() function

concat() will then subscribe to the �rst Observable series1$,

but not to the second Observable series2$ (this is critical to

understand concatenation)

source1$ emits the value a, which gets immediately re�ected in

the output result$ Observable

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 11/35

note that the source2$ Observable is not yet emitting values,

because it has not yet been subscribed to

source1$ will then emit the b value, which gets re�ected in the

output

source1$ will then complete, and only after that will concat()

now subscribe to source2$

the source2$ values will then start getting re�ected in the

output, until source2$ completes

when source2$ completes, then the result$ Observable will

also complete

note that we can pass to concat() as many Observables as we

want, and not only two like in this example

The key point about Observable Concatenation
As we can see, Observable concatenation is all about Observable

completion! We take the �rst Observable and use its values, wait for it to

complete and then we use the next Observable, etc. until all Observables

complete.

Going back to our higher-order Observable mapping example, let's see

how the notion of concatenation can help us.

Using Observable Concatenation to
implement sequential saves
As we have seen, in order to make sure that our form values are saved

sequentially, we need to take each form value and map it to an httpPost$

Observable.

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 12/35

We then need to subscribe to it, but we want the save to complete before

subscribing to the next httpPost$ Observable.

httpPost$

We will then subscribe to each httpPost$ and handle the result of each

request sequentially. In the end, what we need is an operator that does a

mixture of:

a higher-order mapping operation (taking the form value and

turning it into an httpPost$ Observable)

with a concat() operation, concatenating the multiple

httpPost$ Observables together to ensure that an HTTP save is

not made before the previous ongoing save completes �rst

What we need is the aptly named , which does

this mixture of higher order mapping with Observable concatenation.

The RxJs concatMap Operator
Here is what our code looks like if we now use the concatMap Operator:

1

2

3

4

5

6

7

8

9

10

this.form.valueChanges

 .pipe(

 concatMap(formValue => this.http.put(`/api/course/${courseId}`, formValue)

)

 .subscribe(

 saveResult => ... handle successful save ...,

 err => ... handle save error ...

);

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 13/35

As we can see, the �rst bene�t of using a higher-order mapping operator

like concatMap is that now we no longer have nested subscribes.

By using concatMap, now all form values are going to be sent to the

backend sequentially, as shown here in the Chrome DevTools Network

tab:

Breaking down the concatMap network log diagram
As we can see, one save HTTP request starts only after the previous save

has completed. Here is how the concatMap operator is ensuring that the

requests always happen in sequence:

concatMap is taking each form value and transforming it into a

save HTTP Observable, called an inner Observable

concatMap then subscribes to the inner Observable and sends

its output to the result Observable

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 14/35

a second form value might come faster than what it takes to

save the previous form value in the backend

If that happens, that new form value will not be immediately

mapped to an HTTP request

instead, concatMap will wait for previous HTTP Observable to

complete before mapping the new value to an HTTP

Observable, subscribing to it and therefore triggering the next

save

Notice that the code here is just the basis of an implementation to save

draft form values. You can combine this with other operators to for

example save only valid form values, and throttle the saves to make sure

that they don't occur too frequently.

Observable Merging
Applying Observable concatenation to a series of HTTP save operations

seems like a good way to ensure that the saves happen in the intended

order.

But there are other situations where we would like to instead run things in

parallel, without waiting for the previous inner Observable to complete.

And for that, we have the merge Observable combination strategy! Merge,

unlike concat, will not wait for an Observable to complete before

subscribing to the next Observable.

Instead, merge subscribes to every merged Observable at the same time,

and then it outputs the values of each source Observable to the

combined result Observable as the multiple values arrive over time.

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 15/35

Practical Merge Example
To make it clear that merging does not rely on completion, let's merge

two Observables that complete, as these are interval Observables:

1

2

3

4

5

6

7

8

9

The Observables created with interval() will emit the values 0, 1, 2, etc.

at a one second interval and will never complete.

Notice that we are applying a couple of map operator to these interval

Observables, just to make it easier to distinguish them in the console

output.

Here are the �rst few values visible in the console:

0

0

10

100

20

200

30

300

const series1$ = interval(1000).pipe(map(val => val*10));

const series2$ = interval(1000).pipe(map(val => val*100));

const result$ = merge(series1$, series2$);

result$.subscribe(console.log);

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 16/35

Merging and Observable Completion
As we can see, the values of the merged source Observables show up in

the result Observable immediately as they are emitted. If one of the

merged Observables completes, merge will continue to emit the values of

the other Observables as they arrive over time.

Notice that if the source Observables do complete, merge will still work

in the same way.

The Merge Marble Diagram
Let's take another merge example, depicted in the following marble

diagram:

As we can see, the values of the merged source Observables show up

immediately in the output. The result Observable will not be completed

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 17/35

until the merged Observables are completed.

Now that we understand the merge strategy, let's see how it how it can be

used in the context of higher-order Observable mapping.

The RxJs mergeMap Operator
If we combine the merge strategy with the notion of higher-order

Observable mapping, we get the RxJs mergeMap Operator. Let's have a

look at the marble diagram for this operator:

Here is how the mergeMap operator works:

each value of the source Observable is still being mapped into

an inner Observable, just like the case of concatMap

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 18/35

Like concatMap, that inner Observable is also subscribed to by

mergeMap

as the inner Observables emit new values, they are

immediately re�ected in the output Observable

but unlike concatMap, in the case of mergeMap we don't have

to wait for the previous inner Observable to complete before

triggering the next innner Observable

this means that with mergeMap (unlike concatMap) we can

have multiple inner Observables overlapping over time,

emitting values in parallel like we see highlighted in red in the

picture

Checking the mergeMap Network Log
Going back to our previous form draft save example, its clear that what

we need concatMap in that case and not mergeMap, because we

want the saves to happen in parallel.

Let's see what happens if we would accidentally choose mergeMap

instead:

1

2

3

4

5

6

7

8

9

10

this.form.valueChanges

 .pipe(

 mergeMap(formValue => this.http.put(`/api/course/${courseId}`, formValue))

)

 .subscribe(

 saveResult => ... handle successful save ...,

 err => ... handle save error ...

);

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 19/35

Let's now say that the user interacts with the form and starts inputting

data rather quickly. In that case, we would now see multiple save

requests running in parallel in the network log:

As we can see, the requests are happening in parallel, which in this case

is an error! Under heavy load, it's possible that these requests would be

processed out of order.

Observable Switching
Let's now talk about another Observable combination strategy: switching.

The notion of switching is closer to merging than to concatenation, in the

sense that we don't wait for any Observable to terminate.

But in switching, unlike merging, if a new Observable starts emitting

values we are then going to unsubscribe from the previous Observable,

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 20/35

before subscribing to the new Observable.

Switch Marble Diagram
Let's have a look at the marble diagram for switching:

Notice the diagonal lines, these are not accidental! In the case of the

switch strategy, it was important to represent the higher-order

Observable in the diagram, which is the top line of the image.

This higher-order Observable emits values which are themselves

Observables.

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 21/35

Breaking down the switch Marble Diagram
Here is what is going on in this diagram:

the higher-order Observable emits its �rst inner Observable

(a-b-c-d), that gets subscribed to (by the switch strategy

implementation)

the �rst inner Observable (a-b-c-d) emits values a and b, that

get immediately re�ected in the output

but then the second inner Observable (e-f-g) gets emitted,

which triggers the unsubscription from the �rst inner Observable

(a-b-c-d), and this is the key part of switching

the second inner Observable (e-f-g) then starts emitting new

values, that get re�ected in the output

but notice that the �rst inner Observable (a-b-c-d) is

meanwhile still emitting the new values c and d

these later values, however, are not re�ected in the output,

and that is because we had meanwhile unsubscribed from the

�rst inner Observable (a-b-c-d)

We can now understand why the diagram had to be drawn in this unusual

way, with diagonal lines: its because we need to represent visually when

each inner Observable gets subscribed (or unsubscribed) from, which

happens at the points the diagonal lines fork from the source higher-

order Observable.

The RxJs switchMap Operator

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 22/35

Let's then take the switch strategy and apply it to higher order mapping.

Let's say that we have a plain input stream that is emitting the values 1, 3

and 5.

We are then going to map each value to an Observable, just like we did in

the cases of concatMap and mergeMap and obtain a higher-order

Observable.

If we now switch between the emitted inner Observables, instead of

concatenating them or merging them, we end up with the switchMap

Operator:

Breaking down the switchMap Marble Diagram
Here is how this operator works:

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 23/35

the source observable emits values 1, 3 and 5

these values are then turned into Observables by applying a

mapping function

the mapped inner Observables get subscribed to by switchMap

when the inner Observables emit a value, the value gets

immediately re�ected in the output

but if a new value like 5 gets emitted before the previous

Observable got a chance to complete, the previous inner

Observable (30-30-30) will be unsubscribed from, and its

values will no longer be re�ected in the output

notice the 30-30-30 inner Observable in red in the diagram

above: the last 30 value was not emitted because the 30-30-30

inner Observable got unsubscribed from

So as we can see, Observable switching is all about making sure that we

trigger that unsubscription logic from unused Observables. Let's now see

switchMap in action!

Search TypeAhead - switchMap Operator
Example
A very common use case for switchMap is a search Typeahead. First let's

de�ne our source Observable, whose values are themselves going to

trigger search requests.

This source Observable is going to emit values which are the search text

that the user types in an input:

1

2

3

const searchText$: Observable<string> = fromEvent<any>(this.input.nativeElement, 'k

 .pipe(

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 24/35

This source Observable is linked to an input text �eld where the user

types its search. As the user types the words "Hello World" as a search,

these are the values emitted by searchText$:

H

H

He

Hel

Hell

Hello

Hello

Hello W

Hello W

Hello Wo

Hello Wor

Hello Worl

Hello World

Debouncing and removing duplicates from a
Typeahead
Notice the duplicate values, either caused by the use of the space

between the two words, or the use of the Shift key for capitalizing the

letters H and W.

4

5

6

7

8

9

 map(event => event.target.value),

 startWith('')

)

 .subscribe(console.log);

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 25/35

In order to avoid sending all these values as separate search requests to

the backend, let's wait for the user input to stabilize by using the

debounceTime operator:

With the use of this operator, if the user types at a normal speed, we now

have only one value in the output of searchText$:

Hello World

This is already much better than what we had before, now a value will

only be emitted if its stable for at least 400ms!

But if the user types slowly as he is thinking about the search, to the

point that it takes more than 400 ms between two values, then the search

stream could look like this:

He

Hell

Hello World

1

2

3

4

5

6

7

8

9

10

const searchText$: Observable<string> = fromEvent<any>(this.input.nativeElement, '

 .pipe(

 map(event => event.target.value),

 startWith(''),

 debounceTime(400)

)

 .subscribe(console.log);

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 26/35

Also, the user could type a value, hit backspace and type it again, which

might lead to duplicate search values. We can prevent the occurrence of

duplicate searches by adding the distinctUntilChanged operator.

Cancelling obsolete searches in a Typeahead
But more than that, we would need a way to cancel previous searches, as

a new search get's started.

What we want to do here is to transform each search string into a

backend search request and subscribe to it, and apply the switch strategy

between two consecutive search requests, causing the previous search

to be canceled if a new search gets triggered.

And that is exactly what the switchMap operator will do! Here is the �nal

implementation of our Typeahead logic that uses it:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

const searchText$: Observable<string> = fromEvent<any>(this.input.nativeElement, '

 .pipe(

 map(event => event.target.value),

 startWith(''),

 debounceTime(400),

 distinctUntilChanged()

);

const lessons$: Observable<Lesson[]> = searchText$

 .pipe(

 switchMap(search => this.loadLessons(search))

)

 .subscribe();

function loadLessons(search:string): Observable<Lesson[]> {

 const params = new HttpParams().set('search', search);

 return this.http.get(`/api/lessons/${coursesId}`, {params});

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 27/35

switchMap Demo with a Typeahead
Let's now see the switchMap operator in action! If the user types on the

search bar, and then hesitates and types something else, here is what we

can typically see in the network log:

As we can see, several of the previous searches have been canceled as

they where ongoing, which is awesome because that will release server

resources that can then be used for other things.

The Exhaust Strategy
The switchMap operator is ideal for the typeahead scenario, but there are

other situations where what we want to do is to new values in the

source Observable until the previous value is completely processed.

21

22

}

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 28/35

For example, let's say that we are triggering a backend save request in

response to a click in a save button. We might try �rst to implement this

using the concatMap operator, in order to ensure that the save operations

happen in sequence:

1

2

3

4

5

6

7

This ensures the saves are done in sequence, but what happens now if

the user clicks the save button multiple times? Here is what we will see in

the network log:

As we can see, each click triggers its own save: if we click 20 times, we

get 20 saves! In this case, we would like something more than just

ensuring that the saves happen in sequence.

We want also to be able to ignore a click, but only a save is already

ongoing. The exhaust Observable combination strategy will allow us to

do just that.

Exhaust Marble Diagram

fromEvent(this.saveButton.nativeElement, 'click')

 .pipe(

 concatMap(() => this.saveCourse(this.form.value))

)

 .subscribe();

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 29/35

To understand how exhaust works, let's have a look at this marble

diagram:

Just like before, we have here a higher-order Observable on the �rst line,

whose values are themselves Observables, forking from that top line.

Here is what is going on in this diagram:

Just like in the case of switch, exhaust is subscribing to the �rst

inner Observable (a-b-c)

The value a, b and c get immediately re�ected in the output, as

usual

then a second inner Observable (d-e-f) is emitted, while the

�rst Observable (a-b-c) is still ongoing

This second Observable gets discarded by the exhaust strategy,

and it will not be subscribed to (this is the key part of exhaust)

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 30/35

only after the �rst Observable (a-b-c) completes, will the

exhaust strategy subscribe to new Observables

when the third Observable (g-h-i) is emitted, the �rst

Observable (a-b-c) has already completed, and so this third

Observable will not be discarded and will be subscribed to

the values g-h-i of the third Observable will then show up in the output

of the result Observable, unlike to values d-e-f that are present in

the output

Just like the case of concat, merge and switch, we can now apply the

exhaust strategy in the context of higher-order mapping.

The RxJs exhaustMap Operator
Let's now have a look at the marble diagram of the exhaustMap operator.

Let's remember, unlike the top line of the previous diagram, the source

Observable 1-3-5 is emitting values that are Observables.

Instead, these values could for example be mouse clicks:

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 31/35

So here is what is going on in the case of the exhaustMap diagram:

the value 1 gets emitted, and a inner Observable 10-10-10 is

created

the Observable 10-10-10 emits all values and completes before

the value 3 gets emitted in the source Observable, so all 10-10-

10 values where emitted in the output

a new value 3 gets emitted in the input, that triggers a new 30-

30-30 inner Observable

but now, while 30-30-30 is still running, we get a new value 5

emitted in the source Observable

this value 5 is discarded by the exhaust strategy, meaning that

a 50-50-50 Observable was never created, and so the 50-50-

50 values never showed up in the output

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 32/35

A Practical Example for exhaustMap
Let's now apply this new exhaustMap Operator to our save button

scenario:

1

2

3

4

5

6

7

If we now click save let's say 5 times in a row, we are going to get the

following network log:

As we can see, the clicks that we made while a save request was still

ongoing where ignored, as expected!

Notice that if we would keep clicking for example 20 times in a row,

eventually the ongoing save request would �nish and a second save

request would then start.

How to choose the right mapping Operator?

fromEvent(this.saveButton.nativeElement, 'click')

 .pipe(

 exhaustMap(() => this.saveCourse(this.form.value))

)

 .subscribe();

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 33/35

The behavior of concatMap, mergeMap, switchMap and exhaustMap is

similar in the sense they are all higher order mapping operators.

But its also so different in so many subtle ways, that there isn't really one

operator that can be safely pointed to as a default.

Instead, we can simply choose the appropriate operator based on the use

case:

if we need to do things in sequence while waiting for completion, then

concatMap is the right choice

for doing things in parallel, mergeMap is the best option

in case we need cancellation logic, switchMap is the way to go

for ignoring new Observables while the current one is still ongoing,

exhaustMap does just that

Running GitHub repo (with code samples)
If you want to try out the examples in this post, here is a playground

repository containing the running code for this post.

This repository includes a small HTTP backend that will help to try out

the RxJs mapping operators in a more realistic scenario, and includes

running examples like the draft form pre-save, a typeahead, subjects and

examples of components written in Reactive style:

https://github.com/angular-university/rxjs-course/tree/1-operators-finished

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 34/35

Conclusions
As we have seen, the RxJs higher-order mapping operators are essential

for doing some very common operations in reactive programming, like

network calls.

In order to really understand these mapping operators and their names,

we need to �rst focus on understanding the underlying Observable

7/17/2018 RxJs switchMap, mergeMap, concatMap (and exhaustMap): Complete Guide

https://blog.angular-university.io/rxjs-higher-order-mapping/ 35/35

combination strategies concat, merge, switch and exhaust.

We also need to realize that there is a higher order mapping operation

taking place, where values are being transformed into separated

Observables, and those Observables are getting subscribed to in a hidden

way .

Choosing the right operator is all about choosing the right inner

Observable combination strategy. Choosing the wrong operator often

does not result in an immediatelly broken program, but it might lead to

some hard to troubleshoot issues over time.

I hope that you have enjoyed this post, if you are looking to learn more

about RxJs, you might want to check out our other RxJs posts in the

RxJs Series.

https://blog.angular-university.io/tag/rxjs/

