1st December 2004
Munkres §26

Ex. 26.1 (Morten Poulsen).

(a). Let 7 and 7’ be two topologies on the set X. Suppose 7/ D 7.

If (X,7") is compact then (X,7) is compact: Clear, since every open covering if (X,7) is an
open covering in (X, 7).

If (X,7) is compact then (X,7) is in general not compact: Consider [0,1] in the standard
topology and the discrete topology.

(b).

Lemma 1. If (X,7) and (X,7") are compact Hausdorff spaces then either T and T' are equal
or not comparable.

Proof. If (X,7T) compact and 7' D 7 then the identity map (X,7') — (X,7) is a bijective
continuous map, hence a homeomorphism, by theorem 26.6. This proves the result. O

Finally note that the set of topologies on the set X is partially ordered, c.f. ex. 11.2, under
inclusion. From the lemma we conclude that the compact Hausdorff topologies on X are minimal
elements in the set of all Hausdorff topologies on X.

Ex. 26.2 (Morten Poulsen).

(a). The result follows from the following lemma.

Lemma 2. If the set X is equipped with the finite complement topology then every subspace of X
18 compact.

Proof. Suppose A C X and let A be an open covering of A. Then any set Ay € A will covering all
but a finite number of points. Now choose a finite number of sets from A covering A — Ag. These
sets and Ay is a finite subcovering, hence A compact. O

(b). Lets prove a more general result: Let X be an uncountable set. Let
T.={AC X|X — A countable or equal X }.

It is straightforward to check that 7. is a topology on X. This topology is called the countable
complement topology.

Lemma 3. The compact subspaces of X are exactly the finite subspaces.
Proof. Suppose A is infinite. Let B = {b1,ba,...} be a countable subset of A. Set
A, =(X —=B)U{by,...,bn}.
Note that {A,,} is an open covering of A with no finite subcovering. O

The lemma shows that [0,1] C R in the countable complement topology is not compact.

Finally note that (X, 7.) is not Hausdorff, since no two nonempty open subsets A and B of X
are disjoint: If ANB = () then X — (ANB) = (X — A)U(X — B), hence X countable, contradicting
that X uncountable.

Ex. 26.3 (Morten Poulsen).
Theorem 4. A finite union of compact subspaces of X is compact.

Proof. Let Ay, ..., A, be compact subspaces of X. Let A be an open covering of |J_, A;. Since
A; C U:Ll A; is compact, 1 < j < n, there is a finite subcovering A; of A covering A;. Thus
U;-Lzl A; is a finite subcovering of A, hence J"_; A; is compact. O
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Ex. 26.5. For each a € A, choose [Lemma 26.4] disjoint open sets U, € a and V, D B. Since A
is compact, A is contained in a finite union U = Uy U --- U U, of the Ugs. Let V.=V, N---V,, be
the intersection of the corresponding V,s. Then U is an open set containing A, V' is an open set
containing B, and U and V are disjoint as UNV =JU; NV Cc JU; NV, = 0.

Ex. 26.6. Since any closed subset A of the compact space X is compact [Thm 26.2], the image
f(A) is a compact [Thm 26.5], hence closed [Thm 26.3], subspace of the Hausdorff space Y.

Ex. 26.7. This is just reformulation of The tube lemma [Lemma 26.8]: Let C be a closed subset
of X xY and z € X a point such that the slice {z} x Y is disjoint from C. Then, since Y is
compact, there is a neighborhood W of x such that the whole tube W x Y is disjoint from C.

In other words, if « & 71 (C) then there is a neighborhood W of z which is disjoint from 7 (C').
Thus The tube lemma says that m1: X x Y — X is closed when Y is compact (so that m; is an
example of a perfect map [Ex 26.12]). On the other hand, projection maps are always open [Ex
16.4].

Ex. 26.8. Let G C X x Y be the graph of a function f: X — Y where Y is compact Hausdorff.
Then

G is closed in X X Y & f is continuous

«: (For this it suffices that ¥ be Hausdorff.) Let (z,y) € X x Y be a point that is not in the
graph of f. Then y # f(z) so by the Hausdorff axiom there will be disjoint neighborhoods V' 3 y
and W 3 f(z). By continuity of f, f(U) C W C Y — V. This means that (U x V)N G = 0.

=: Let V be a neighborhood of f(z) for some € X. Then GN (X x (Y —V)) is closed in X x Y
so [Ex 26.7] the projection 71 (G N (X x (Y —V))) is closed in X and does not contain x. Let U
be a neighborhood of X such that U x Y does not intersect G N (X x (Y —V)). Then f(U) does
not intersect Y — V, or f(U) C V. This shows that f is continuous at the arbitrary point € X.

Ex. 26.12. (Any perfect map is proper; see the January 2003 exam for more on proper maps.)
Let p: X — Y be closed continuous surjective map such that p~1(y) is compact for each y € Y.
Then p~1(C) is compact for any compact subspace C' C Y.

For this exercise we shall use the following lemma.

Lemma 5. Let p: X — Y be a closed map.
(1) Ifp~Y(y) C U where U is an open subspace of X, then p~t(W) C U for some neighborhood
W CY ofy.
(2) If p~Y(B) C U for some subspace B of Y and some open subspace U of X, then p~ (W) C
U for some neighborhood W C'Y of B.

Proof. Note that
p T W)CcUs pla)eW=zeU|le[z2¢U=pl)¢W]epX-U)CY-W
SpX-U)Nnw=>0
(1) The point y does not belong to the closed set p(X — U). Therefore a whole neighborhood
W C Y of y is disjoint from p(X — U), i.e. p~1(W) C U.

(2) Each point y € B has a neighborhood W, such that p~!(W,) C U. The union W = |JW,, is
then a neighborhood of B with p~}(W) cC U. O

We shall not need point (2) here.

Let C C Y be compact. Consider a collection {U,}aecs of open sets covering of p~1(C).
For each y € C, the compact space p~1(y) is contained in a the union of a finite subcollection
{Ua}aesy)- There is neighborhood Wy, of y such that p~!(W,,) is contained in this finite union. By
compactness of C, finitely many Wy, , ..., Wy, cover Y. Then the finite collection Ule{Ua}aeJ(yi)
cover p~1(C). This shows that p~!(C) is compact.

Ex. 26.13. Let G be a topological group and A and B subspaces of G.



(a). A closed and B compact = AB closed
Assume ¢ ¢ AB = |J,.5 Ab. The regularity axiom for G' [Suppl Ex 22.7] implies that there are
disjoint open sets W, > ¢ and U, D Ab separating ¢ and Ab for each point b € B. Then A~'U, is
an open neighborhood of b. Since B is compact, it can be covered by finitely many of these open
sets A~1U,, say

BCA'ZU---UAT' U, =AU
where U = Uy U- - -UUy. The corresponding open set W = Wi N---NW} is an open neighborhood
of ¢ that is disjoint from AB since WNABC W nNnU; cUW;NnU; = 0.

(b). H compact subgroup of G = p: G — G/H is a closed map
The saturation AH of any closed subset A C G is closed by (a).

(¢). H compact subgroup of G and G/H compact = G compact
The quotient map p: G — G/H is a perfect map because it is a closed map by (b) and has compact
fibres p~1(gH) = gH. Now apply [Ex 26.12].

REFERENCES



	Ex. 26.1 (Morten Poulsen)
	Ex. 26.2 (Morten Poulsen)
	Ex. 26.3 (Morten Poulsen)
	Ex. 26.5
	Ex. 26.6
	Ex. 26.7
	Ex. 26.8
	Ex. 26.12
	Ex. 26.13
	References

