
Program Product

8C24-5220-0
File No. 8370-39

IBM Virtual Machine/
System Product:
System Product Editor
User's Guide
Program Number 5664-167

--.~ --_ -- ----_ ... -- -- ---. ---- - - ------------ _.-

Acknowledgement

We gratefully acknowledge the permission to reprint excerpts from the
following:

The People's Almanac, by David Wallechinsky and Irving Wallace.
Copyright © 1975 by David Wallace and Irving Wallace. Reprinted by
permission of Doubleday & Company, Inc.

I Wouldn't Have Missed It, by Ogden Nash, reprinted by permission of
Curtis Brown, Ltd.

Copyright 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939; 1940, 1942, 1943,
1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954. © 1955, 1956, 1957, 1959, 1960, 1961, 1962,
1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971 by Ogden Nash. Copyright 1933,
1934, 1935, 1936, 1939, 1940, i941, 1942, 1943,1944, 1945, 1947, 1948 by the Curtis
Publishing Company. Copyright 1952 by Cowles Magazines, Inc. Copyright © 1969,
1970, 1971, 1972, 1975 by Isabel Eberstadt and Linell Smith.

Copyrights Renewed © 1957, 1958, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1968, 1970
by Ogden Nash. Renewed © 1963, 1964 by the Curtis Publishing Company. Renewed ©

by the Saturday Evening Post Company.

First Edition (July 1980)

This edition, SC24-5220-0, applies to the initial release of IBM Virtual Machine/System
Product, Program Number 5664-167, and to all subsequent versions and releases until
otherwise indicated in new editions or Technical Newsletters. Changes are continually
made to the information herein; before using this publication in connection with the
operation of IBM systems, consult the IBM System/3 70 and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for reader's commentsis provided at the back of this publication; if the form,has
been removed, comments may be addressed to IBM Corporation, Programming Publica­
tions, Dept. G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM may use or distribute any
of the information you supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1980

This book was written primarily for the individual who
has limited data processing experience. It is designed
to give you a working knowledge of the System Prod­
uct editor (also referred to as XEDIT).

The System Product editor provides a wide range of
functions for text processing and program develop­
ment. Both a full screen and a line mode editor, it can
be used on display and typewriter terminals.

Some highlights of the editor discussed in this book
are:

• Extended string search facilities for improved text
processing

• Automatic "wrapping" of lines that are longer
than a screen line

• The ability to enter selected subcommands direct­
lyon a displayed line

• The ability to tailor the full screen layout

• The ability to divide the screen in order to display
multiple views of the same or of different files

• A variety of macros for improved text processing,
such as macros to join and split lines

• A HELP facility that provides an on-line full
screen display of any XEDIT subcommand or ma­
cro (or any command in the eMS HELP facility)
during an editing session.

How To Use This Book
This book relies on "before-and-after" examples that
illustrate the text. You can also try out these examples
for practice. .

The frrst three chapters are intended for data process­
ing novices:

, Chapter 1: An XEDIT Subset: Full Screen Text
Processing is written for the inexperienced user who
has a display terminal used in full screen mode. It de­
fines a subset of XEDIT subcommands that perform
commonly-used editing functions.

Preface

Chapter 2: A Practice Exercise is designed to give you
practice in using the subcoml:nands presented in Chap­
ter 1. It is an interactive text, that is, it walks you
through an editing session, step by step.

Chapter 3: An XEDIT Subset: Text Processing on a
Typewriter Terminal is similar to Chapter I, but is writ­
ten for a new user who has a typewriter terminal.

The last four chapters are intended both for new users
who have mastered the fundamentals and for data
processing professionals. These chapters introduce
more sophisticated editing functions:

Chapter 4: Using Targets explains how to use the
editor's extended string search facilities. Targets are
used to move the line pointer and to defme the scope of
many XEDIT subcommands.

Chapter 5: Editing Multiple Files explains how to edit
multiple files and how to divide the screen into multi­
ple logical screens for multiple views of the same or of
different files.

Chapter 6: Tailoring the Screen explains how you can
alter the screen layout to suit yourself.

Chapter 7: The Macro Language explains how to write
XEDIT macros and also explains how to write a profile
macro.

The Appendix is a summary of all XEDIT subcom­
mands and their functions. These subcommands are
described in detail in the publication VM / SP: System
Product Editor Command and Macro Reference.

Related Publications
IBM Virtual Machine/System Product: System Product
Editor Command and Macro Reference, SC24-5221

IBM Virtual Machine/System Product: EXEC 2
Reference, SC24-5219

Preface iii

,.-

iv IBM VM/SP System Product Editor User's Guide

Contents

Chapter I: An XEDIT Subset: Fun Screen Text Processing ,; •...... '" " . 1-1
Editing a File ... 1-1

XEDIT Command .. 1-1
Screen Layout .. 1-2

Entering Data " ... 1-4
INPUT Subcommand .. 1-4
POWER Subcommand .. 1-6

Using Program Function (PF) Keys .. 1-7
Splitting and Joining Lines ... 1-9
Scrolling Backward and Forward ... 1-10
Redisplaying a Subcommand " 1-10
Re-executing a Subcommand .. 1-10
Inserting Words in a Line ... 1-10

Using Prefix Subcommands .. 1-11
Adding and Deleting Lines .. 1-11
Duplicating Lines ... 1-12
Moving and Copying Lines , '" '" '" , '" " 1-14
Setting the Current Line (j)•......•....••......... 1-14
Canceling Prefix Subcommands , , " 1-14

Moving Through a File '" '" 1-16
BACKWARD and FORWARD Subcommands .. 1-16
TOP and BOTTOM Subcommands ... 1-16
DOWN and UP Subcommands .. 1-16

Making Changes in a File .. 1-17
CLOCATE Subcommand , '" 1-17
CHANGE Subcommand ... 1-19
Making a Selective Change .. 1-19
Making a Global Change ... 1-20
CINSERT Subcommand ... 1-22
CFIRST Subcommand ... 1-23

Setting Tabs ... 1-24
Ending an Editing Session ... 1-24

FILE Subcommand .. 1-24
QUIT Subcommand ... 1-25
SET AUTOSA VE Subcommand ... 1-25

Inserting Data From Another File " 1-26
Inserting a Whole File .. 1-26
Inserting Part of Another File ~ 1-27

Getting Help ... 1-32
Learning More About the Editor .. 1-32
Summary of XEDIT Subset .. 1-33

Chapter 2: A Practice Exercise .. 2-1
Exercise 1. Creating a File .. .-. 2-2
Exercise 2. Using Power Typing ... 2-4
Exercise 3. Using Prefix Subcommands ... 2-6
Exercise 4. Making Changes ... 2-8
Exercise 5. Getting It All Together .. 2-10

Chapter 3: An XEDIT Subset: Text Processing on a Typewriter Terminal 3-1
Editing a File ... 3-1

XED IT Command .. 3-1
Entering Data ... 3-1

INPUT Subcommand ... 3-2
Column Pointer .. 3-3

Moving Through a File ... 3-3
Line Pointer ... 3-3
TYPE Subcommand .. ; 3-3
UP and DOWN Subcommands ... 3-4
TOP and BOTTOM Subcommands .. 3-5

Making Changes in ~ File ... 3-5
CLOCA TE Subcommand ... 3-6
CFIRST Subcommand .. 3-6

Contents v

CINSERT Subcommand .. 3-6
CDELET£ Subcommand .. 3-7
CAPPEND Subcommand : .. 3-8
CHANGE Subcommand .. 3-9

Inserting and Deleting Lines .. 3-10
Moving and Copying Lines ... 3-12

MOVE Subcommand .. 3-12
COpy Subcommand ... 3-14

Ending an Editing Session ... 3-14
FILE Subcommand .. 3-14
QUIT SubcOmmand ... 3-14
SET AUTOSAVE Subcommand ... 3-14

Inserting Data from Another File .. 3-15
Inserting a Whole File .. 3-15
Inserting Part of Another File .. 3-16

U sing Special Characters ... 3-19
Summary of XED IT Subset .. 3-22

Chapter 4: Using Targets ... 4-1
What Is a Target? , .. 4-1
Using a Target to Change Which Line is Current ... 4-2

A Target Entered By Itself ... 4-2
A Target as the Operand of a LOCATE Subcommand 4-2
A Target Preceding a Subcommand .. 4-2

Using a Target as a Subcommand Operand .. 4-4
Types of Targets ... 4-4

A Target as an Absolute Line Number , 4-4
A Target as a Relative Displacement from the Current Line : 4-7
A Target as a Line Name ... 4-7
A Target as a Simple String Expression ... 4-9
A Target as a Complex String Expression .. 4-13

Using Column-Targets .. 4-18

Chapter 5: Editing Multiple FUes ... 5-1
TheXEDITSubcommand .. 5-1
Creating a Ring of Files in Storage ... 5-1
Editing the Files in the Ring ... 5-1
Ending an Editing Session .. 5-2
Multiple Logical Screens .. 5-3

SET SCREEN Subcommand ... 5-3
Multiple Views of the Same File .. 5-3
MUltiple Views of Different Files .. 5-5

Chapter 6: Tailoring the Screen .. 6-1

Chapter 7: The Macro Language ... 7-1
What is an XED IT Macro? .. 7-1
Creating a Macro File .. 7-1
Using XEDIT Subcommands in a Macro ; 7-1

Communicating Between the Editor and EXEC 2 .. 7-2
Displaying Data on the Editor's Screen ... 7-4
Saving and Restoring Editing Variables .. 7-5
Issuing CMS and CP Commands .. 7-5
Avoiding Name Conflicts .. 7-6

Walking Through an XED IT Macro .. 7-6
A Profile Macro for Editing .. 7-10

Executing a Profile Macro , ... 7-10
Writing a Profile Macro ... 7-10
An Example of a Profile Macro•....................................... 7-11

Appendix: A Summary of XEDIT Subcommands and Macros A-I

Index ... X-I

vi IBM VM/SP System Product Editor User's Guide

Figures

Figure I-I. The Screen Layout ... 1-2
Figure 1-2. Input Mode ; 1-5
Figure 1-3. Power Typing -;" I-S
Figure 1-4. Prefix Subcommands A and D - "Before" and "After" '" 1-13
Figure 1-5. Prefix Subcommands M and F - "Before" and "After" I-IS
Figure 1-6. The DOWN Subcommand - "Before" and "After" 1-IS
Figure 1-7. Using PFS and PF6 to Make a Selective Change 1-21
Figure 1-8. Using the PF4 Key for Tabbing .. 1-2S
Figure 1-9. Inserting a Whole File : _ _ .. _ __ 1-28
Figure 1-10. Inserting Part ofa File ... 1-30
Figure 4-1. Using a Target to Move the Line Pointer 4-3
Figure 4-2. Using a Target as a Subcommand Operand 4-S
Figure 4-3. A Target as an Absolute Line Number 4-6
Figure 4-4. A Target as a Relative Displacement .. 4-8
Figure 4-S. A Target as a Line Name ... 4-10
Figure 4-6. A Target as a Simple String Expression4-14
Figure 4-7. A Target as a Complex String Expression 4-17
Figure 5-1. A Ring of Files in Storage ... S-I
Figure 5-2. Editing Files in the Ring ... 5-2
Figure 5-3. Multiple Views of the Same File .. 5-4
Figure 5-4. Multiple Views of Different Files ... 5-6
Figure 6-1. The SET PREFIX Subcommand - "Before" and "After" 6-2
Figure 6-2. The SET CMDLINE Subcommand - "Before" and "After" 6-3
Figure 6-3. The SET CURLINE Subcommand - "Before" and "After" 6-4
Figure 6-4. The SET SCALE Subcommand - "Before" and "After" 6-5
Figure 6-S. The SET TAB LINE Subcommand - "Before" and "After" 6-6
Figure 7-1. READ and the Console Stack ... _ 7-3
Figure 7-2. STACK and the Console Stack ... ___ .7-4
Figure 7-3. TRANSFER and the Console Stack ... 7-4
Figure 7-4. A Sample Macro _ , 7-7
Figure 7-5. A PROFILE XED IT Macro ... 7-11

Figures vii

viii IBM VM/SP System Product Editor User's Guide

Chapter 1: An XEDIT Subset: Full Screen Text Processing

Editing a File

XEDIT Command

This chapter is written primarily for the person who has limited data processing
experience; however, some VM/SP eMS experience is assumed. For example, you
must know how to log on to VM/SP and enter the CMS environment. You should
also be familiar with the concept of a CMS file.

When you fmish this chapter, you should have a working knowledge of the editor.
The subcommands presented here comprise a subset of XEDIT subcommands, with
which you can create a file, enter data, manipulate the screen, make changes to the
file, and transfer data between files.

The editor has many additional capabilities, which are described in the rest of this
book and in the publication VM/SP: System Product Editor Command and Macro
Reference;

This subset has been selected for text processing on a display terminal used in full
screen mode. (If you have a typewriter terminal, refer to Chapter 3.)

To edit a file means to make changes, additions, or deletions to a CMS file that is on
a disk, and to make these changes interactively: you instruct the editor to make a
change, the editor makes it, and then you request another change.

You can edit a file that does not ex.ist; when you do so, you are creating a file.

After you log on to VM/SP and enter the CMS environment, you are ready to enter
the edit environment and begin creating a file. The editor is invoked with the CMS

command XEDIT, whose format is as follows:

XEDIT filename filetype

In Figure I-I, the editor was invoked with the following command:

XEDIT INVENTOR SCRIPT

Before we see how to enter data in the file, let's look at the screen layout illustrated
in Figure I-I.

Chapter 1: An XED IT Subset: Full Screen Text Processing 1- 1

Screen Layout

CURRENT
LINE
7

V 132 TRUNC=132 SIZE=O LINE=O COLUMN=1

IlE * * *
• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••

5 ===== * * * END 0 FILE * * *
PREFIX
AREA

,..----.l ===> INPUT

Figure 1-1. The Screen Layout

.-

XED I T 1 FILE

8 SCALE STATUS AREA 4

@ File Identification Line
The first line on the screen identifies the file being edited. The following
information is displayed:

a. filename, filetype, file mode
If you do not specify a filemode, the editor assigns a filemode of "AI",

which means that the file is to become part of a file collection called your
"A-disk" .

h. record format and record length
The record format and record length (V 132) shown in the example mean .
that in this file, the length of a line can vary and the fIle will hold lines up
to 132 characters long. Therefore, a file line can be longer than a screen
line.

c. truncation column (TRUNC=)

Notice that the truncation column is the same as the record length (132).
Since a file line can be only 132 characters long, any data that is entered
beyond 132 characters (in total) is truncated.

d. current number of lines in the file (SIZE=)
(Since we have not yet entered data in the file, the number of lines is zero.)

1- 2 IBM VM/SP System Product Editor User's Guide

e. file line number of the current line (LINE=)

(See number 7, below.)

f. position of the column pointer (COLUMN=)

(See number 8, below.)

Message Line
The editor communicates with you by displaying messages on the second line
of the screen. These messages tell you if you have made an error, or they
provide information. In Figure I-I, the message line shows that you are
creating a new file.

Command Line
The large arrow (===» at the bottom of the screen points to the command
input area. One of the ways you communicate with the editor is by entering
XEDIT sub commands on this line. Subcommands can be typed in either
uppercase or lowercase, or a combination of both, and many can be abbrevi­
ated. For example, "INPUT", "Input", and "i" are all valid ways to type the
INPUT subcommand.

After typing a subcommand on the command line, you must press the ENTER

key to execute the subcommand. Figure I-I shows the subcommand "INPUT'

typed in the command line. (To move the cursor from any place on the
screen to the command line, just press the ENTER key.)

@ Status Area
The lower right comer displays the current status of your editing session, for
example, edit mode or input mode, and the number of files you are editing.
The status area in Figure I-I shows that one file is being edited.

® Prefix Area
The prefix area is the five left-most columns on the screen and displays five
equal signs (=====). Each line in the file has a prefix area associated with
it.

You can perform various editing tasks, like deleting a line, by entering
one-character commands, called "prefix subcommands", in the prefix area of
any line.

@ File Area
The rest of the screen is available to display the file.

You can make changes to the file by moving the cursor under any line and
typing over the characters, or by using special keys to insert or delete charac­
ters. You can make as many changes as you want on the displayed lines
before pressing the ENTER key. When you press the ENTER key, the corre­
sponding changes are made to the copy of the file that is kept in virtual
storage. At the end of the editing session, a FILE subcommand will perma­
nently record those changes on the copy of the file that resides on disk.

Since a file may be too long to fit on one screen, various su bcommands are
used to scroll the screen so that you can move forward and backward in a file.

® The Current Line
The current line is the file line in the middle of the screen (above the scale). It
appears brighter than the other file lines or is "highlighted".

In Figure I-I, the current line is the "TOP OF FILE" line; at this point, the file
contains no data.

The current line is an important concept, because most subcommands
perform their functions starting with the current line. Naturally, the line that
is current changes during an editing session as you scroll the screen, move up
and down, and so forth. When the current line changes, we say that the line -

Chapter I: An XEDlT Subset: Full Screen Text Processing 1 - 3

Entering Data

INPUT Subcommand

pointer (not visible on the screen) has moved. Many XEDIT subcommands
perform their functions starting with the current line, and move the line
pointer when they are finished.

® Scale
The scale appears under the current line to assist you in editing. It's like the
margin scale on a typewriter.

The vertical bar (I) that appears in column one on the scale is the column
pointer. Various subcommands perform their functions within a line starting
at the column pointer, which you can move to different positions on the scale
by using XEDIT subcommands that will be discussed later. The column under
which the column pointer is positioned is called the current column.

After you enter the XEDIT command, you are in edit mode. You must be in edit
mode to enter XED IT subcommands.

You can enter data into the file using input mode or power typing mode, which are
discussed in the following sections.

To enter input mode, type the following subcommand in the command line and
press the ENTER key:

===> INPUT

You can then type in your data in the input zone, which is the bottom half of the
screen (between the scale and the command line).

Figure 1-2 is the same file, .INVENTOR SCRIPT, that is shown in Figure I-I. Howev­
er, the INPUT subcommand has been entered and the lines of data have been typed
on the screen. Notice how the screen changes in input mode: the preflX areas
(=====) disappear; the message line and status area tell you that you are in input
mode; the command line contains the phrase "INPUT ZONE", which marks the end
of the input zone and reminds you that you cannot enter subcommands in input
mode.

In Figure 1-2 (Part 1), the entire input zone has been filled. To stay in input mode
and type more data, press the ENTER key once. The lines that you typed move to
the top half of the screen, with th~ l~t line you typed b~coming the new current
line. The input zone is available to type more data, as shown in Figure 1-2 (Part 2).

If you have no more data to type, pressing the ENTER key again takes you out of
input mode and back into edit mode.

Figure 1-2 (Part 3) shows how the data looks in the fiie, after the ENTER key has
been pressed twice. The display is restored to the edit mode screen layout de­
scribed in Figure 1-1, and the fue contains the data. ,

During an editing session, you can enter input mode at any time to insert new lines
of data in the file. As you have seen, after the INPUT subcommand is entered, the
editor makes room for you to type new lines of data after the current line. In this
example, since the file was new and the INPUT subcommand. was the frrst subcom­
mand entered, the TOP OF FILE line was the current line. Later, you will see how to
make any line current, so that you can insert lines in input mode between any two
existing lines in the fue.

1 - 4 IBM VM/SP System Product Editor User's Guide

Al V 132 TRUNC=132 SIZE=12 LINE=O COLUMN=l

* * * TOP OF FILE * * *
1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••• + ••••
THE ELECTRONIC COMPUTER (1946)
.sp
THE WORLD'S FIRST ELECTRONIC COMPUTER WAS CALLED ENIAC, ELECTRONIC
NUMERICAL INTEGRATOR AND COMPUTER.
IT WAS BUILT BY A GROUP OF RESEARCHERS LED BY AMERICAN PHYSICIST
JOHN MAUCHLY AT THE UNIVERSITY OF PENNSYLVANIA.
UNLIKE EARLIER COMPUTERS, THIS ONE RAN ON RADIO TUBES - 18,000 OF THEM
IN TOTAL.
IT FILLED A ROOM 30 FEET BY 50 FEET AND COST $400,000.
===> * * * INPUT ZONE * * *

Figure 1-2. Input Mode - Typing the Data (Part 10f3)

INPUT-MODE 1 FILE

INVENTOR SCRIPT Al V 132 TRUNC=132 SIZE=21 LINE=9 COLUMN=l

* * * TOP OF FILE * * *
THE ELECTRONIC COMPUTER (1946)
.sp
THE WORLD'S FIRST ELECTRONIC COMPUTER WAS CALLED ENIAC, ELECTRONIC
NUMERICAL INTEGRATOR AND COMPUTER.
IT WAS BUILT BY A GROUP OF RESEARCHERS LED BY AMERICAN PHYSICIST
JOHN MAUCHLY AT THE UNIVERSITY OF PENNSYLVANIA.
UNLIKE EARLIER COMPUTERS, THIS ONE RAN ON RADIO TUBES - 18,000 OF THEM
IN TOTAL.
IT FILLED A ROOM 30 FEET BY 50 FEET AND COST $400,000.
1· ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••• + ••••
USING TEN-DIGIT NUMBERS, IT COULD DO 5.000 ADDITIONS A SECOND.

===> * * * INPUT ZONE * * *
INPUT-HODE 1 FILE

Figure 1-2. Input Mode - Continue Typing (Part 2 of3)

Chapter I: An XEDIT Subset: Full Screen Text Processing I - 5

INVENTOR SCRIPT Al V 132 TRUNC=132 SIZE=10 LINE=lO COLUMN=1
XEDIT:
===== THE ELECTRONIC COMPUTER (1946)

.sp
THE WORLD'S FIRST ELECTRONIC COMPUTER WAS CALLED EHIAC, ELECTRONIC

===== NUMERICAL INTEGRATOR AND COMPUTER.
===== IT WAS BUILT BY A GROUP OF RESEARCHERS LED BY AMERICAN PHYSICIST
===== JOHN MAUCHLY AT THE UNIVERSITY OF PENNSYLVANIA.
===== UNLIKE EARLIER COMPUTERS, THIS ONE RAN ON RADIO TUBES - 18,000 OF THEM
===== IN TOTAL.
===== IT FILLED A ROOM 30 FEET BY 50 FEET AND COST $400,000.
===== USING TEN-DIGIT NUMBERS, IT COULD DO 5,000 ADDITIONS A SECOND.

I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
===== * * * END OF FILE * * *

XED I T 1 FILE

Figure 1-2. Input Mode - Data Entered in the File (Part 3 of3)

PO WER Subcommand

Causing A Break in the Data

.-

The easiest way to enter a large amount of text, like one long paragraph, is by
using "power typing". To use power typing, enter the following subcommand:

===> POWER

The advantage of using power typing is that you can enter data as if the screen
were one long line. -You do not have to be concerned with line length or word
length - you can start typing a word on one line of the screen and finish it on the
next. In fact, if you're a skilled typist, you don't even have to look at the screen.
When you reach the end of a line, the editor automatically "wraps around" to the
beginning of ~he next line. You can type continuously until the screen is filled.

If you fill up a screen and want to continue typing in power typing mode, press the
ENTER key once. The last line you typed is displayed at the top of the screen; the
rest of the screen is blank and you can continue typing.

When you are finished typing, press the ENTER key twice to exit from power typing
and re-enter edit mode. The editor automatically divides the data into appropriate
screen lines and reconstructs any split words.

During an editing session, you can use power typing at any time by entering the
POWER subcommand. The data entered using power typing is inserted after the
current line, as it is when you use the INPUT subcommand.

If you want to cause a break in the data that you type in power typing mode, that
is, you want data to start on a new line (for example, a new paragraph or
SCRIPT /VS control words, which must start in column one), you can type a line end
character before the data· that you want to start on a new line. The default line end

1 - 6 IBM VM/SP System Product Editor User's Guide

character is a pound sign (#).

For example, if the following data is typed in power typing mode:

.sp#A pound sign causes the data to start on a new line.#.sp~

The data will be entered in the file as:

===== .sp
=====
=====

A pound sign causes the data to start on a new line.
.sp

Inserting Characters

An Example of Power Typing

If you want to insert characters or spaces in a line while you are in power typing
mode, you can use the insert mode key. When characters are inserted, the entire
stream of data shifts to the right; it's like inserting a box car in a train. Remember
to press the RESET key when you are fmished inserting characters.

Figure 1-3 (Part 1) illustrates the same file, INVENTOR SCRIPT, but the data was
typed in power typing mode, after the POWER subcommand was entered. The
screen changes in several ways in power typing mode: the prefix and status areas
disappear; the line that was current when the POWER subcommand was entered
moves to the top of the screen, and the rest of the screen is available for typing
data. Notice how a word can start at the end of a line and finish on the next. The
entire screen can be fuled with data, but it doesn't have to be.

Notice the pound signs (#) in the eighth line (from the top of the screen). A pound
sign causes the data that follows it to begin on a new line when it is entered into the
file. The pound sign itself is not entered in the file.

Figure 1-3 (Part 2) shows how the screen looks after the ENTER key was pressed
twice. The screen layout is restored, and the words and lines are reconstructed.
Any data that wa~ preceded by a pound sign begins on a new line.

U sing Program Function (PF) Keys
Each PF key is set to an XEDIT subcommand, which is executed when the key is
pressed. Using the PF key saves you the time it takes to type that subcommand on
the command line and press the ENTER key.

You can use the following subcommand to display the PF key settings:

===> QUERY PF

The initial settings are as follows:
I ~ PFI HELP MENU
t '-.1- PF2 SOS LINEADD
:~ PF3 QUIT
I b PF4 TABKEY
(1 PF5 SCHANGE 6
Ji PF6 ?
d PF7 BACKWARD
-:~ P·F8 FORWARD
"'1.1 PF9
2.1 PFIO
~;) PFlI
e~ PF12

SPLIT CURSOR
JOIN CURSOR
CURSOR COLUMN

These are the subcommands that the editor assigns to the PF keys. If you would
rather have a different subcommand assigned to one (or more) of the PF keys, you
can use the SET PF ~ubcommand, whose format is as follows:

===> SET PFn subcommand

where "n" is a PF key number, and "subcommand" is any XEDIT subcommand.

Chapter 1: An XEDIT Subset: Full Screen Text Processing I - 7

INVENTOR SCRIPT Al * * * POW E R T Y PIN G * * *
* * * TOP OF FILE * * *
THE WORLD'S FIRST ELECTRONIC COMPUTER WAS CALLED ENIAC, ELECTRONIC NUMERICAL IN
TEGRATOR AND COMPUTER. IT WAS BUILT BY A GROUP OF RESEARCHERS LED BY AMERICAN
PHYSICIST JOHN MAUCHLY AT THE UNIVERSITY OF PENNSYLVANIA. UNLIKE EARLIER COMPU
TERS, IT RAN ON RADIO TUBES - 18,000 OF THEM IN TOTAL. IT FILLED A ROOM 30 FEE
T BY 50 FEET AND COST $400,000. USING TEN-DIGIT NU~1BERS, IT COULD DO 5,000 AOD
ITIONS A SECOND.I.spIA GERMAN PHYSICIST, ROENTGEN, DISCOVERED THE XRAY BY ACCID
ENT. HE WAS DOING EXPERIMENTS WITH A CROOKES TUBE, WHICH PRODUCED STREAMS OF E
LECTRONS CALLED CATHODE RAYS. ONE DAY HE LEFT AN ACTIVATED CROOKES TUBE ON A B
OOK BEFORE LEAVING THE LABORATORY. HE DID NOT REALIZE THAT A KEY AND SOME PHOT
OGRAPHIC FILM WERE SANDWICHED IN THE BOOK. LATER, WHEN HE DEVELOPED THE FILM,
HE SAW THE IMAGE OF THE KEY. THUS WAS THE FIRST XRAY ACCIDENTALLY TAKEN.

Figure 1-3. Power Typing (Part 1 of 2)

INVENTOR SCRIPT Al V 132 TRUNC=132 SIZE=14 LINE=9 COLUMN=1

===== * * * TOP OF FILE * * *
===== THE WORLD'S FIRST ELECTRONIC COMPUTER WAS CALLED ENIAC, ELECTRONIC
===== NU~1ERICAL INTEGRATOR AND COMPUTER. IT WAS BUILT BY AMERICAN PHYSICIST
===== JOHN MAUCHLY AT THE UNIVERSITY OF PENNSYLVANIA. UNLIKE EARLIER
===== COMPUTERS, IT RAN ON RADIO TUBES - 18,000 OF THEM IN TOTAL. IT FILLED A
===== ROOM 30 FEET BY 50 FEET AND COST $400,000. USING TEN-DIGIT NUMBERS, IT
===== COULD DO 5,000 ADDITIONS A SECOND.
=;:=== .sp
===== A GERMAN PHYSICIST, ROENTGEN, DISCOVERED THE XRAY BY ACCIDENT. HE WAS
===== DOING EXPERIMENTS WITH A CROOKES TUBE, WHICH PRODUCED STREAMS OF

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
===== ELECTRONS CALLED CATHODE RAYS. ONE DAY HE LEFT AN ACTIVATED CROOKES
===== TUBE ON A BOOK BEFORE LEAVING THE LABORATORY. HE DID NOT RE.LIZE THAT
===== A KEY AND SONE PHOTOGRAPHIC FILM WERE SANOWICHED IN THE BOOK. LATER,
===== WHEN HE DEVELOPED THE FILM, HE SAW THE IMAGE OF THE KEY. THUS WAS THE
===== FIRST XRAY ACCIDENTALLY TAKEN.
===== * * * END OF FILE * * *

XED I T I FILE

Figure 1-3. Power Typing - Data Entered in the File (Part 2 of 2)

1- 8 IBM VM/SPSystem Product Editor User's Guide

F or example:

===> SET PF1 INPUT

assigns the INPUT subcommand to the PFI key. Pressing the J?F1 key would imme­
diately place you in input mode.

When you assign a subcommand to a PF key, the setting remains in effect only for
the current editing session. In the next editing session, the initial settings shown
above are in effect.

The following sections show how to use some of the PF keys (initial settings).
Others will be discussed where appropriate.

Splitting and Joining Lines
Two PF keys that are useful in text processing are PFIO and PFII, which allow you
to split and join lines, respectively, at the cursor position.

Splitting a Line (PFIO)
To split a line in two, simply move the cursor under the character where you want
the line to be split, and press the PFIO key.

In the followmg line, note the position of the cursor, under the "F" in "FOOD".

===== GILA MONSTERS HOLD RESERVE FOOD SUPPLIES IN THEIR TAILS.

Pressing the PFIO key produces the following lines:

===== GILA MONSTERS HOLD RESERVE
===== FOOD SUPPLIES IN THEIR TAILS.

The PFIO key is particularly useful if you want to add information to a line. In the
following line, the cursor is placed under the "I" in "IN":

===== BIRD SPECIES HAVE DWINDLED IN THE LAST 70 MILLION YEARS.

When the PFIO key is pressed, the line is split in two:

===== BIRD SPECIES HAVE DWINDLED
===== IN THE LAST 70 MILLION YEARS.

Now there's room to add information on the line:

===== BIRD SPECIES HAVE DWINDLED FROM 1.5 MILLION TO 10,000
===== IN THE LAST 70 MILLION YEARS.

Joining Two Lines (PFll)
Pressing the PF II key joins two lines at the cursor position.

F or example:

===== These lines are
===== too short.

Note the cursor position above. Pressing the PFll key produces the following line:

===== These lines are too short.

Keep in mind that the line that is appended, or joined, overlays any data that
follows the cursor.

For example:

===== The phrase ~Things get worse under pressure"
===== is to be deleted.

Chapter I: An XEDIT Subset: Full Screen Text Processing 1 - 9

Pressing the PFll key overlays the data that follows the cursor in the first line and
results in the following:

===== The phrase is to be deleted.

Scrolling Backward and Forward
When a fIJ.e is too long to fit on one screen, you can use the PF7 and PF8 keys to
scroll back and forth through the ftIe.

Pressing the PF7 key, which is set to the BACKWARD subcommand, scrolls the
screen backward, toward the top of the ftIe, for one screen display.

Conversely, pressing the PF8 key, which is set to the FORWARD subcommand,
scrolls the screen forward, toward the end of the file, for one screen display.

You can press either key repeatedly to scroll back or forth for as many screens as
you wish.

Redisplaying a Subcommand
After a subcommand that has been typed in the command line is executed, the
command line is cleared. If you use a PF key, the subcommand doesn't appear in
the command line at all. Sometimes, you'd like to be able to see the last subcom­
mand that was executed. Perhaps you pressed the wrong PF key, or you didn't
enter a subcommand the way you intended to.

Pressing the PF6 key (which is set to the? subcommand) displays, in the command
line, the last subcommand that was executed.

You can then re-execute the subcommand simply by pressing the ENTER key. If
the subcommand was entered incorrectly, you can correct the error by typing over
the subcommand displayed in the command line and then pressing the ENTER key.

Re-executing a Subcommand

Inserting Words in a Line

Using the PA2 Key

Use the PF9 key, which is set to the = subcommand, to re-execute the last subcom­
mand entered. The subcommand does not appear in the command line, as it does
when the PF6 key (which is set to the? subcommand) is used.

Each time the PF9 key is pressed, the subcommand is executed, thereby saving you
the time it takes to re-type the subcommand.

One way to insert letters, spaces, or words in a line is by pressing the PA2 key (or its
equivalent) and then by using the insert mode key.

The PA2 key replaces blank spaces at the end of a line with null characters; it
"makes room" for the characters in the line to be shifted over so that new ones can
be inserted.

The PA2 key operates on only one line at a time; if you move the cursor to another
line and want to use insert mode, you must press the PA2 key again.

Remember t~ press the RESET key when you are fmished using insert mode.

This method may be used in both input mode and edit mode, but not in power
typing mode. You cannot set the PA2 key to any other function.

1 - 10 IBM VM/SP System Product Editor User's Guide

Using the SET NULLS Subcommand
If you have insertions to make on many lines, you can issue the following subcom­
mand:

===> SET NULLS ON

Then, you can use the insert mode key without pressing the PA2 key for each line.
When you are fmished inserting words, issue the following subcommand:

===> SET NULLS OFF

(In power typing mode, you can use the insert mode key without issuing a SET

NULLS ON subcommand.)

U sing Prefix Subcommands
Prefi~ subcommands are one-character commands used to perform basic editing
tasks on a particular line.

The following prefiX subcommands are described in this section:

A (add)
D (delete)
II (duplicate)
M (move)
C (copy)
F (following)
P (preceding)
/ (set current line)

PrefiX subcommands are entered by typing over any position of the five-character
prefiX area on one or more lines. When the ENTER key is pressed, all of the prefix
subcommands that have been typed on the screen are executed.

Adding and Deleting Lines

A Prefix Subcommand

====A
a====
10a==
===A5

To add a line, type the single character "A" in the prefix area. When the ENTER key
is pressed, a blank line is inserted immediately following the line containing the
"A". A number may precede or follow the "A" to indicate that more than one line is
to be added. For example, "AS" causes five blank lines to be added.

The following are valid ways to type the A prefix subcommand:

Adds one blank line after this line.
Adds one blank line after this line.
Adds ten blank lines after this line.
Adds five blank lines after this line.

Information may then be typed in the added lines. If no information is typed, the
blank lines remain in the file throughout the editing session and after the file is
written to disk.

D Prefix Subcommand
To delete a line, enter the single character "D" in the prefix area of a line.

'A number may precede or follow the "D" to indicate that more than one line is to
be deleted.

To delete a group of consecutive lines, that is, a block of lines, you can enter the
double character "Diy' in the prefix area of both the first and last lines to be
deleted. This method makes it unnecessary for you to count the number of lines to
be deleted.

Chapter 1: An XEDIT Subset: Full Screen Text Processing 1- 11

==dd= This is the
===== This is the
===== This is the
===== This is the
===dd This is the

F or example:

first line I want to remove.
second.
third.
fourth.
fifth.

When the ENTER key is pressed, the above lines are deleted.

The first and last lines of the block need not be on the same screen; you may scroll
the screen before entering the second "DO". When one "DO" has been typed and
the ENTER key pressed, the status area of the screen displays "BLOCK

IN~OMPLETE". You can use the PF7 or PF8 keys to scroll the screen until you fmd
the last line of the block, and then type ''~o'' in its prefIX area. When the ENTER

key is pressed, the entire block of lines is deleted.

Figure 1-4 is a before-and-after example of the A and 0 prefix subcommands.

Lost and Found Department

·Duplicating Lines

If you delete one or more lines, you can recover them at any time during an editing
session by using the RECOVER subcommand.

The following subcommand returns lines deleted in an editing session:

===> RECOVER n

where "n" represents the number of lines you wish to recover.

The recovered line(s) is inserted immediately before the current line. If the lines
were deleted from different places in the file, you'll have to put them back where
they belong (by using the M prefIX subcommand, discussed below.)

If you want to recover all lines that were deleted during an editing session, use the
form:

===> RECOVER *

To duplicate a line, enter the character II (double quote) in the prefix area of a line.

A number may precede or follow the II to duplicate the line more than one time.

For example:

=3"== I want three more copies of this line.
===== Oh, yeah?

===== I want three
===== I want three
===== I want three
===== I want three
===== Oh, yeah?

When the ENTER key is pressed, the file looks like this:

more copies of this line.
more copies of this line.
more copies of this line.
more copies of this line.

To duplicate a block of lines either one time or a specified number of times, you
can type" II (two double quotes) in the first and last lines of the block. A number
can precede or follow the first It It (for example, 5 It ") to duplicate the block more
than one time.

When one II II has been typed and the ENTER key pressed, the status area of the
screen displays "BLOCK INCOMPLETE". This allows you to scroll the screen before
completing the block and pressing the ENTER key.

1 - 12 IBM VMjSP System Product Editor User's Guide

ANIMALS FACTS Al F eo TRUNc=eo SIZE=14 LINE=9 COLUMN=1

* * * TOP OF FILE * * *
D==== THE HIPPOPOTAMUS IS DISTANTLY RELATED TO THE PIG.
===== ELEPHANT TUSKS CAN WEIGH MORE THAN 300 POUNDS.
===== LAND CRABS FOUND IN CUBA CAN RUN FASTER THAN A DEER.
===== ELECTRIC EELS CAN DISCHARGE BURSTS OF 625 VOLTS,
=2a== 40 TIMES A SECOND.
===== THE ANCIENT ROMANS AND GREEKS BELIEVED THAT BEDBUGS HAD MEDICINAL
===== PROPERTIES WHEN TAKEN IN A DRAFT OF WATER OR WINE.
==DD= STURGEON IS THE LARGEST FRESHWATER FISH AND CAN WEIGH 2250 POUNDS.
_____ ANTS HAVE FIVE DIFFERENT NOSES. EACH ONE IS DESIGNED TO

1 ••• + •••• 1 .••• + •••• 2 .••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
=DD== ACCOMP.LISH A DIFFERENT TASK.
==A== ALL OSTRICHES ARE POLYGAMOUS.
===== SNAKES LAY EGGS WITH NONBRITTLE SHELLS.
===== THE PLATYPUS HAS A DUCK BILL, OTTER FUR, WEBBED FEET, LAYS
_____ EGGS, AND EATS ITS OWN WEIGHT IN WORMS EVERY DAY. •.
===== * * * END OF FILE * * *

XED I T 1 FILE

ANIMALS FACTS Al F eo TRUNC=80 SIZE=13 LINE=9 COLUMN=!

* * * TOP OF FILE * * *
===== ELEPHANT TUSKS CAN WEIGH MORE THAN 300 POUNDS.
===== LAND CRABS FOUND IN CUBA CAN RUN FASTER THAN A DEER.
===== ELECTRIC EELS CAN DISCHARGE BURSTS OF 625 VOLTS,
===== 40 TIMES A SECOND.

THE ANCIENT ROMANS AND GREEKS BELIEVED THAT BEDBUGS HAD MEDICINAL
PROPERTIES WHEN TAKEN IN A DRAFT OF WATER OR WINE.
ALL OSTRICHES ARE POLYGAMOUS.
1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• +.~ •• 7 •••

----- SNAKES LAY EGGS WITH NONBRITTLE SHELLS.
===== THE PLATYPUS HAS A DUCK BILL, OTTER FUR, WEBBED FEET, LAYS
----- EGGS, AND EATS ITS OWN WEIGHT IN WORMS EVERY DAY.
===== * * * END OF FILE * * *

XED 1 T ! FILE

Figure 1-4. Prefix Subcommands A and D - "Before" and "After".

Chapter 1: An XEDIT Subset: Full Screen Text Processing 1- 13

Moving and Copying Lines
To move one line, enter the single character "M" in the prefIX area of the line to be

. moved. You must indicate its destination by entering either the character "F"

(following) or "P" (preceding) in the prefIX area of another line.

When the ENTER key is pressed, the line containing the "M" is removed from its
original location and is inserted in one of the following:

• immediately following the line containing the "F"

• immediately preceding the line containing the "P"

A number may precede or follow the "M" to indicate that more than one line is to
be moved, for example, "5M" or "M5".

The line to be moved and the destination line can be on different screens. When
either an "M" or "F" (or "p") has been entered, the status area of the screen displays
"COPY /MOVE PENDING". This pending status allows you to scroll the screen before
entering the other preflX subcommand.

To move a block of lines, enter the double character "MM" in the preflX area of
both the first and last lines to be moved. The first and last lines to 'be moved, and
the destination line may all be on different screens. You can use PF keys to scroll
the screen before pressing the ENTER key.

The procedure for copying lines is the same as for moving lines, except that a "C"
or "CC" preflX subcommand is used instead of .oM" or "MM". The copy operation
leaves the originalline(s) in place, and makes a copy at the destination line, which
must be indicated by .oF" or "P".

Figure 1-5 is a before-and-after example of the M preflX subcommand.

Setting the Current Line (/)
Many sub commands begin their operations starting with the current line. For
example, the INPUT subcommand makes room for you to enter data after the
current line. You have already seen the INPUT subcommand used to insert lines
after the TOP OF FILE line.

The / (diagonal) prefix subcommand can be typed in the preflX area of any line on
the screen. When the ENTER key is pressed, that line becomes the current line.
Then, if you enter an INPUT subcommand, the new lines entered in input mode will
be inserted between the current line and the line that followed it.

Canceling Prefix Subcommands

. -

If you have entered one or more prefix subcommands that create a "BLOCK

INCOMPLETE" or a "COPY/MOVE PENDING" status, you can cancel all these preflX
subcommands by entering the following subcommand in the command line:

===> RESET

When the ENTER key is pressed, all prefix subcommands disappear from the
display and the prefIX areas are restored with equals signs (=====).

If you have typed any prefix sub commands (even those that do not cause an
incomplete or pending status) but have not yet pressed the ENTER key, you can
press the CLEAR key to remove them .

1 - 14 IBM VM/SP System Product Editor User's Guide

ANIMALS FACTS Al V 132 TRUNC=132 SIZE=22 LINE=10 COLUMN=1

_____ CHAMELEONS, REPTILES THAT LIVE IN TREES, CHANGE THEIR COLOR WHEN
----- EMOTIONALLY AROUSED.
_____ THE GUPPY IS NAMED AFTER THE REVEREND ROBERT GUPPY, WHO FOUND THE FISH
----- ON TRINIDAD IN 1866.
_____ AN AFRICAN ANTELOPE CALLED THE SITATUNGA HAS THE RARE ABILITY TO
===== SLEEP UNDER WATER.
==mm= THE KILLER WHALE EATS DOLPHINS, PORPOISES,SEALS, PENGUINS, AND
----- SQUID.
_____ ALTHOUGH PORCUPINE FISHES BLOW THEMSELVES UP AND ERECT THEIR SPINES,
_____ THEY ARE SOMETIMES EATEN BY SHARKS. NO ONE KNOWS WHAT EFFECT THIS

I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
===mm HAS ON THE SHARKS.
_____ A LIZARD OF CENTRAL AMERICA CALLED THE BASILISK CAN RUN
----- ACROSS WATER.
_____ OCTOPI HAVE LARGE BRAINS AND SHOW CONSIDERABLE CAPACITY FOR
----- LEARNING.
f==== THE LION ROARS TO ANNOUNCE POSSESSION OF A PROPERTY.
=====A FISH CALLED THE NORTHERN SEA ROBIN MAKES NOISES LIKE A WET

FINGER DRAWN ACROSS AN INFLATED BALLOON.
STINGAREES, FISH FOUND IN AUSTRALIA, CAN WEIGH UP TO 800 POUNDS.

XED I T

ANIMALS FACTS Al V 132 TRUNC=132 SIZE=22 LINE=7 COLUMN=1

===== * * * TOP OF FILE * * *
===== CHAMELEONS, REPTILES THAT LIVE IN TREES, CHANGE THEIR COLOR WHEN
===== EMOTIONALLY AROUSED.
===== THE GUPPY IS NAMED AFTER THE REVEREND ROBERT GUPPY, WHO FOUND THE FISH
===== ON TRINIDAD IN 1866.
===== AN AFRICAN ANTELOPE CALLED THE SITATUNGA HAS THE RARE ABILITY TO
----- SLEEP UNDER WATER.
===== A LIZARD OF CENTRAL AMERICA CALLED THE BASILISK CAN RUN

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
===== ACROSS WATER.
===== OCTOPI HAVE LARGE BRAINS AND SHOW CONSIDERABLE CAPACITY FOR
===== LEARNING.
===== THE LION ROARS TO ANNOUNCE POSSESSION OF A PROPERTY.
----- THE KILLER WHALE EATS DOLPHINS, PORPOISES, SEALS, PENGUINS, AND
===== SQUID.
===== ALTHOUGH PORCUPINE FISHES BLOW THEMSELVES UP AND ERECT THEIR SPINES,
===== THEY ARE SOMETIMES EATEN BY SHARKS. NO ONE KNOWS WHAT EFFECT THIS

HAS ON THE SHARKS.

XED I T 1 FILE

Figure 1-5. Prefix Subcommands M and F - "Before" and "After"

Chapter I: An XEDlT Subset: Full Screen Text Processing 1 - 15

Moving Through a File
The following subcommands are discussed in this section:

BACKWARD
FORWARD
TOP
BOn-OM
UP
DOWN

BA CKW ARD and FOR WARD Subcommands
Scrolling the screen is like turning the pages of a book. You have already seen that
the PF7 and PF8 keys are set to the BACKWARD and FORWARD subcommands,
which scroll one full screen backward or forward. The BACKWARD and FORWARD

subcommands can also be entered in the command line.

The format of these subcommands is:

===> BACKWARD n
===> FORWARD n

where "nn is the number of screen displays you want to scroll backward or for­
ward. (This is like pressing the PF7 or PF8 key "n" times.) If you omit "n", the
editor scrolls one screen backward or forward.

If you enter a BACKWARD subcommand when the current line is the ''TOP OF FILE'~

line, the editor ''wraps around" the file, making the last line of the fIle the new
current line. Similarly, if you enter a FORWARD subcommand when the current
line is the "END OF FILE" line, the editor makes the first line of the fIle the new
current line.

TOP and BOTTOM Subcommands
Suppose the fIle is many screens long, and the current screen display is somewhere
in the middle of the fIle. To go back to the beginning of the ftIe, you could enter
multiple BACKWARD subcommands - or - you could enter the TOP subcommand.
The TOP subcommand makes the ''TOP OF FILE" line the new current line. Its
format is:

===> TOP

The BOTTOM subcommand makes the last line of the ftIe the new current line. Its
format is:

===> BOTTOM

These subcommands are useful when you want to insert new lines either at the
beginning or end of a fIle. The TOP subcommand followed by an INPUT or POWER

subcommand makes room for you to add tines at the beginning of a file; use the
BOTTOM subcommand followed by INPUT or POWER to add lines to the end of a
ftIe.

DOWN and UP Subcommands

.-

Suppose that you want to move the ftIe up or down a few lines instead of a whole
screen. The DOWN subcommand advances the line pointer one or more lines
toward the end of a ftIe. The line pointed to becomes the new current line. For
example:

===> DOWN 5

makes the fifth line down from the current line the new current line. If the number
is omitted, "1" is assumed.

1- 16 IBM VM/SP System Product Editor User's Guide

The UP subcommand moves the line pointer toward the beginning of the fue. The
line pointed to becomes the new current line. For example:

===> UP 5

makes the fifth line up from the current line the new current line. If a number is
omitted, "1" is assumed.

Figure 1-6 is a before-and-after example of the DOWN subcommand.

M~king Changes in a File

CLOCA TE Subcommand

When you're looking at a screen of data that you have just entered and decide to
make some changes, it's easy to type over the information to be changed.

However, it's not always that simple. Typically, you have numerous files stored on
direct access devices and need to make changes even though you don't know
exactly where the data is located in a file.

The challenge is two-fold: fmd the data; then change it.

The following subcommands are discussed in this section:
CLOCATE
CHANGE
CINSERT
CFIRST

The CLOCATE subcommand searches a fue, beginning with the current column in
the current line, for a character string that you specify.

If the string is located, two things happen:

• The line containing the string becomes the new current line; however, if the
string is in the current line, the line pointer does not move.

• The column pointer, represented in the scale as a vertical bar (I), moves under
the first character of the string.

These changes are reflected in the fue identification area at the top of the screen
(uNE=nnn and COLuMN=nn).

One format of the CLOCATE subcommand is as follows:

===> CLOCATE/string/

The string must be enclosed in delimiters. In the examples used in this book, the
delimiter is a diagonal (/); however, you can use any character that does not
appear in the string itself (for example, CLOCATE.VM/CMS.).

In the following example, the string to be located is in the current line. Therefore,
the line pointer does not move, but look what happens to the column pointer:

===== To be or not to be - that is the question.
I ... + •••. 1 .••. + •.•• 2 .•.• + ...• 3 •••• + ...• 4 .•.• + •••. 5 •••• + •... 6 •.••

===> CLOCATE/be/

===== To be or not to be - that is the question.
< .. 1+ 1 •••• + 2 •••• + ...• 3 •••• + 4 •••• + 5 •••• + .•.. 6 ••••

Notice that the column pointer in the scale has moved under the first character (b)
in the string (be).

If you wanted to fmd all occurrences of "be" throughout the fue, you could enter
the CLOcATE/be/ subcommand repeatedly (or use the PF9 key, which is set to the
= subcommand, for repeated execution). If a string appears more than once in a

Chapter 1: An XEDIT Subset: Full Screen Text Processing 1- 17

Al V 132 TRUNC=132 SIZE=12 LINE=5 COLUMN=1

=====
* * * TOP OF FILE * * *
"THE PURIST"

----- I GIVE YOU NOW PROFESSOR TWIST.
----- A CONSCIENTIOUS SCIENTIST.
----- TRUSTEES EXCLAIMED, "HE NEVER BUNGLES!"

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
----- AND SENT HIM OFF TO DISTANT JUNGLES.
----- CAMPED ON A TROPIC RIVERSIDE,
----- ONE DAY HE MISSED HIS LOVING BRIDE.
----- SHE HAD, THE GUIDE INFORttED HIM LATER,
----- BEEN EATEN BY AN ALLIGATOR.
----- PROFESSOR TWIST COULD NOT BUT 'SMILE.
===== "YOU MEAN," HE SAID, "A CROCODILE."
===== * * * END OF FILE * * *

===> DOWN 5
XED I T

SCRIPT Al V 132 TRUNC=132 SIZE=l2 LINE=lO COLUMN=l

"THE PURIST"

I GIVE YOU NOW PROFESSOR TWIST.
A CONSCIENTIOUS SCIENTIST.
TRUSTEES EXCLAIMED, "HE NEVER BUNGLES!"
AND SENT HIM OFF TO DISTANT JUNGLES.
CAMPED ON A TROPIC RIVERSIDE,
ONE DAY HE MISSED HIS LOVING BRIDE.
SHE HAD, THE GUIDE INFORMED HIM LATER,
BEEN EATEN BY AN ALLIGATOR.
1.~.+ •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + ••• ~5 •••• + •••• 6 •••• + •••• 7 •••
PROFESSOR TWIST COULD NOT BUT SMILE.
"YOU MEAN," HE SAID, "A CROCODILE."
* * * END OF FILE * * *

.-
Figure 1-6_ The DOWN Subcommand - "Before" and "After"

1 - 18 IBM VM/SP System Product Editor User's Guide

XED I T I FILE

•
line, as in the example above, the line pointer remains the same, but the column
pointer moves under the next occurrence of the string.

For example, if the CLOcATE/be/ subcommand is entered again, the line looks like
this: -~

===== To be or not to be - that is the question.
< ... + 1 •••• +.1 .. 2 ••.. + ...• 3 •..• + 4 + ...• 5 .••. + •... 6 .••.

CHANGE Subcommand

Note the position of the column pointer, under the second "be".

Each time the CLOCATE/be/ subcommand is entered, the column pointer moves
under the next occurrence of "be"; in addition, the line pointer advances, until all
occurrences of "be" have been found.

If the string that you're searching for is in a backward direction from the current
line, toward the top of the file, you can tell the editor to search backward by typing
a minus sign (-) in front of the st~ng. For example:

===> CLOCATE -/glance/

is a backward search for "glance".

Replacing one word with another is the simplest type of change. If the string you
want to change is not in the current line, you can use the CLOCATE subcommand to
move the line pointer to the line that contains the string. Then, you can use the
following form of the CHANGE subcommand, which changes the first occurrence of
a word in the current line:

===> CHANGE/oldword/newword/

For example:

===== A rose is a rose is a rose.
I ... + 1 •••• + .•.. 2 •••• + ..•• 3 •••• + ...

===> CHANGE/rose/daisy/

(with apologies to Gertrude Stein)

===== A daisy is a rose is a rose.
I ... + 1 •••• + 2 •••• + 3 •••• + ...

Note that the editor automatically made room in the line for "daisy" even though it
is longer than "rose". Conversely, a word can be replaced by a shorter word; the
editor removes extra blanks.

You can use the CLOCATE and CHANGE subcommands to locate and change any
string in a file. If the line containing the string is the current line, you don't have to
use a CLOCATE subcommand; the CHANGE subcommand both locates and changes
it.

Making a Selective Change
Suppose you want to change one word to another only some of the time, that is,
you want to make a selective, or "safe" change. You can do this by locating
(repeatedly) the string you want to change, and by entering a CHANGE subcom­
mand only when you want to change the string. However, there's an easier way.

All you have to do is type a CHANGE subcommand (in the form
CHANGE/oldword/newword) in the command line. Then, use the PF5 key to locate
each occurrence of the old word, examine it, and then either change it (by pressing
the PF6 key), or go on to the next occurrence (by pressing the PF5 key).

Chapter I: An XEDIT Subset: Full Screen Text Processing 1- 19

Making a Global Change

-

Here's how to make a selective change:

I. Move the line pointer to (he line where you want the search to begin'~ (You
can use TOP, /, DOWN, or UP.)

2. Type a CHANGE subcommand (CHANGE/oldword/newword) in the com­
mand line, but don't press the ENTER key.

3. Press the PFS key. The cursor moves under the first occurrence of the old
word, and the line that contains it is highlighted.

4. If you want to change the word, press the PF6 key. Ifnot, press the PFS key
again, and step number 3 (above) will be repeated.

Using this sequence, you can locate all the occurrences of the old word, and press
the PF6 key to change it only when desired. When all occurrences of the old word
on one screen have been located, the editor scrolls the screen forward automatical­
ly.

Figure 1-7 is an example of using the PFS and PF6 keys to locate and change
selectively a character string throughout a file. The following subcommand was
typed in the command line but the ENTER key was not pressed:

===> CHANGE/rose/daisy/

This subcommand is executed when the PF6 key is pressed.

In the top screen, pressing the PF5 key has placed the cursor (and the column
pointer) under the first occurrence of "rose".

In the bottom screen, the PFS key was pressed successively until the last occurrence
of "rose". Then the PF6 key was pressed to execute the change specified in the
command line.

If you want to locate all occurrences of a string, but you don't want to make any
changes, you can type a CLOCATE/string/ subcommand instead ofa CHANGE
subcommand. Then, each time you press the PFS key, the cursor moves under the
next occurrence of the string and the line is highlighted. Pressing the PF6 key has
no effect.

If you want to make a global change, that is, change every occurrence of a word
throughout the file, first make sure that the first line of the ftIe is the current line
(via the TOP subcommand) and use the following form of the CHANGE subcom­
mand:

===> CHANGE/oldword/newword/ * *,.
For example:

===== * * * TOP OF FILE * * * ----- A rose is a rose is a rose-. --~--

===== A rose is a rose is a rose.
===== A rose is a rose is a rose.
===== A rose is a rose is a rose.
===== * * * END OF FILE * * *
===> CHANGE/rose/daisy/ * *
===== * * * TOP OF FILE * * * ===== A daisy is a daisy is a daisy.
===== A daisy is a daisy is a daisy.
===== A daisy is a daisy is a daisy.
===== A daisy is a daisy is a daisy.
===== * * * END OF FILE * * *

1- 20 IBM VM/SP System Product Editor User's Guide

ROSE PETALS Al F 80 TRUNC=80 SIZE=11 LINE=1 COLUHN=3
STR ING IROSEI FOUt~D. --- PF 6 SET FOR SE LECTIVE CHANGE.

* * * TOP OF FILE * * *
A ROSE IS A ROSE IS A ROSE.
<.1.+ •••• 1 •••. + •••• 2 •••. + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
A ROSE IS A ROSE IS A ROSE.
A ROSE IS A ROSE IS A ROSE.
A ROSE IS A ROSE IS A ROSE.
A ROSE IS A ROSE IS A ROSE.
A ROSE IS A ROSE IS A ROSE.
A ROSE IS A ROSE IS A ROSE.
A ROSE IS A ROSE IS A ROSE.
A ROSE IS A ROSE IS A ROSE.
A ROSE IS A ROSE IS A ROSE.

MACRO-READ 1 FILE

ROSE PETALS Al F 80 TRUHC=80 SIZE=ll lINE=10 COLUHH=23
STRING IROSEI CHANGED TO IDAISYI

----- * * * TOP OF FILE * * *
----- A ROSE IS A ROSE IS A ROSE.

< ••• + •••• 1 •••• + •••• 2 •• 1.+ •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
----- A ROSE IS A ROSE IS A ROSE.
----- A ROSE IS A ROSE IS A ROSE.
----- A ROSE IS A ROSE IS A ROSE.
----- A ROSE IS A ROSE IS A ROSE.
----- A ROSE IS A ROSE IS A ROSE.
----- A ROSE IS A ROSE IS A ROSE.
----- A ROSE IS A ROSE IS A ROSE.

A ROSE IS A ROSE IS A ROSE.
A ROSE IS A ROSE IS A DAISY.

Figure 1-7. Using PF5 and PF6 to Make a Selective Change

MACRO-READ 1 FILE

Chapter 1: An XEDIT Subset: Full Screen Text Processing 1- 21

CINSERTSubcommand

This form of the CHANGE subcommand can also be used to make a global change
starting in the middle of a file. Since the change starts with the current line, you
would just make current (via /y that line where you want the change to begin.

Another variation of the CHANGE subcommand can be used if you want to change
a word throughout the file, but you want to change only the first occurrence in
each line:

===> CHANGE/oldword/newword/ *

Often, you need to insert words in a line. You have already seen how to use the
PA2 and insert mode keys and the SET NULLS subcommand. Another way to insert
words is by using the CINSERT subcommand, which allows you to insert characters
in the current line immediately before the column pointer.

You can use a CLOCATE/string/ subcommand to move the column pointer to the
desired position. You can also use another form of the CLOCATE subcommand to
move the column pointer:

===> CLOCATE :n

where ":n" represents an absolute column number, easily determined by looking at
the scale.

For example:

===== To be or not to be - that is the question.
I ... + .••• 1 •••• + ••.. 2 •••• + •.•• 3 •..• + •••• 4 •••• + •••. s + •••• 6 ••••

===> CLOCATE :4

===== To be or not to be - that is the question.
< .. 1+ •..• 1 •••• + •••• 2 .•.• + •••• 3 •..• + .••• 4 ••.. + •••. S •..• + ••.. 6 .•••

The column pointer has moved to column four.

In the following example, the CLOCATE subcommand is used to move the column
pointer; then the CINSERT sUQcommand is used to insert characters immediately
before the column pointer position.

===== If anything can go, it will.
I ... + •••. 1 •••• + •.•. 2 •.•• + •..• 3 •••. + 4 + ••.• S •••• + •••• 6 .••.

===> CLOCATE/,/ or ===> CLOCATE :19

(move the column pointer)

===== If anything can go, it will.
< ... + •••. 1 •••• + •.. 12 .•.. + ..•. 3 ••.• + 4 .•.• + S ...• + 6 •.••

===> CINSERT wrong

(insert "wrong" before the column pointer)

===== If anything can go wrong, it will.
< ... + •••• 1 •••• + ••• 12 •••• + 3 ...• + ••.• 4 ...• + S .•.• + 6 ••••

(In the CINSERT subcommand above, note that there are two spaces between
"CINSERT" and "wrong": one is the required space between the subcommand name
and the operand; one is the blank space needed between "go" and "wrong".)

If only one blank space were used, the result would be the following:

===== If anything can gowrong, it will.

I - 22 IBM VM/SP System Product Editor User's Guide

The editor allows you to insert blanks with the CINSERT subcommand - simply
type the required number of blanks (by pressing the space bar) in the operand. For
example:

===== If anything can go wrong, it wili.

===> CLOCATE/can/
===> CINSERT

(Press the space bar six times.)

===== If anything can go wrong, it ,will.

If the inserted characters make the line longer than the screen line, the editor
automatically ''wraps around" to the next line. Characters can be inserted up to
the truncation column, as shown in the following example:

----- It takes less time to do a thing than to explain why you did it.
I ••• + •.•• 1 •••• + 2 •••• + .•.• 3 •••• + ••.• 4 •••• + •••• 5 •••• + 6 •••• + •... 7 •••

===> CLOCATE/than/

(move the column pointer)

----- It takes less time to do a thing than to explain why you did it.
< ... + .•.. 1 •••• + ...• 2 •••• + .•.. 3 ••• 1+ ..•• 4 •••• + .•.. 5 •••• + ..•. 6 •••• + 7 •••

===> CINSERT right

(insert the first word)

----- It takes less time to do a thing right than to explain why you did it.
< ... + .••• 1 •••• + 2 .••• + ..•. 3 .•• 1+ 4 ••.• + .•.. 5 •••• + •... 6 .••. + •..• 7 ..•

===> CLOCATE/./

(move the column pointer again)

----- It takes less time to do a thing right than to explain why you did it.
< ... + ..•. 1 •.•. + •... 2 .••• + 3 .••• + •... 4 ...• + 5 .•.• + 6 .•.. + 1 ...

===> CINSERT wrong

(insert the second word)

----- It takes less time to do a thing right than to explain why you did it wron
g.

CFIRSTSubcommand

Even though the resulting line is longer than a screen line, it is considered to be one
logical line.

Notice that the line has one prefix area associated with it. Any prefix subcom­
mands entered in the prefix area affect the entire logical line. For example, if aD
preflX subcommand is entered, the whole sentence is deleted.

After using subcommands that move the column pointer, it's a good idea to reset
the column pointer to column one by issuing the CFIRST subcommand.

F or example:

Chapter I: An XEDIT Subset: Full Screen Text Processing 1 - 23

===== If anything can go wrong, it will.
< ... + 1 ••.• + 2 ••• 1+ 3 ..•. + 4 ..•. + 5 + 6 ..••

===> CFIRST

===== If anything can go wrong, it will.
I ... + 1 •••• + 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 ••••

Setting Tabs
Sometimes you may want to place information in specific columns. The PF4 key
functions like a tab key on a typewriter. Each time the PF4 key is pressed, the
cursor is positioned under the next tab column, whe!e you can enter data.

Initial tab settings are defined by the editor according to filetype; they may be
displayed by using the following subcommand:

===> QUERY TABS

You can change these settings one or more times during an editing session with the
SET TABS subcommand. For example:

===> SET TABS 10 20 30

The first time the PF4 key is pressed, the cursor moves to column lOon the screen.
The second time, it moves to column 20, and so forth.

The PF4 key may be used for tabbing in input mode, but not in power typing mode.

You can change the tab settings by issuing another SET TABS subcommand, or, if
you'd like to see the current tab settings before changing them, you can use the
following subcommand:

===> MODIFY TABS

The current SET TABS subcommand is then displayed in the command line; you can
type over the numbers and press the ENTER key to define new tabs.

Figure 1-8 is an example of data that was entered using the PF4 key as a tab key.
The following subcommand was used to define the tab columns:

===> SET TABS 5 35 45

Ending an Editing Session

FILE Subcommand

The following subcommands aTe discussed in this section:

FILE
QUIT
SET AUTOSAVE

When you use the XED IT command to create a new file, the file is created in virtual -
storage. When you make changes to an existing file, those changes are made to a
copy of the file that is brought into virtual storage (when the XEDIT command is
entered). However, virtual storage is temporary. To write a new or modified fue on
disk, which is permanent storage, you must enter the following subcommand:

===> FILE

When the FILE subcommand is executed, the file is written on disk and control is
returned to eMS.

1 - 24 IBM VM/SP System Product Editor User's Guide

EXAMPLE Al F 80 TRUNC=60 SIZE=l3 LINE=9 COLUMN=1

===== * * * TOP OF FILE * * *
----- TEN COLDEST CITIES

AVERAGE TEMPERATURE
(F) (C)

1. ULAN-BATOR, MONGOLIA 24.8 -4.0
2. CHITA, U.S.S.R 27.1 -2.7
3. BRATSK, U.S.S.R 28.0 -2.2
4. ULAN-UDE, U.S.S.R 26.9 -1.7
5. ANGARSK, U.S.S.R 29.7 -1.3
6. IRKUTSK, U.S.S.R 30.7 -1.1

I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
----- 7. KOMSOMOLSK, U.S.S.R 30.7 -0.7
----- 8. TOMSK, U.S.S.R 30.9 -0.6
----- 9. KEMEROVO, U.S.S.R 31.3 -0.4
----- 10.NOVOSIBIRSK, U.S.S.R 31.8 -0.1
===== * * * END OF FILE * * *

XED I T 1 FILE

Figure 1-8. Using the PF4 Key for Tabbing

QUIT Subcommand
Use the QUIT subcommand to end an editing session and leave the permanent copy
of the file intact on the disk. If the file is new, it is not written on disk.

You can execute the QUIT subcommand either by pressing the PF3 key or by
entering it on the command line, like this:

===> QUIT

You would use the QUIT subcomm~nd instead of the FILE subcommand when you
edit a file merely to examine, but not to change, its contents, or if you discover you
have made errors in changing a file and do not want them to be recorded.

If a fue is new or has been changed, the editor gives you a warning message to
prevent the inadvertent use of a QUIT instead of a FILE. The message is as follows:

FILE HAS BEEN CHANGED. USE QQUIT TO QUIT ANYWAY.

If you really don't want to save the file, enter "QQUIT' (abbreviated as "QQ"). If
you wish to save the changes, enter "FILE".

SET A UTOSA VE Subcommand
Files on disk are not affected if the system malfunctions, or "goes down." Howev­
er, a new fue that you're creating or the changes you're making to an existing file
might be lost if the system fails. You can minimize this danger by using the SET

AUTOSAVE subcominand, whose format is as follows:

===> SET AUTOSAVE n

Chapter 1: An XEDIT Subset: Full Screen Text Processing 1 - 25

The SET AUTOSAVE subcommand causes your file to be written to disk automati­
cally, after you've typed in or changed a certain number of lines. You specifj what
that number will be with the "n" operand of the SET AUTOSAVE subcommand. If
you want the ftIe written to disk, or "saved", every time you've changed ten lines,
enter the following subcommand:

===> SET AUTOSAVE 10

The SET AUTOSAVE subcommand can be issued at any time during an editing
session. It's a good idea, however, to issue the subcommand right after you issue an
XED IT command to create a new ftIe or to call an existing file from disk.

If you have issued a SET AUTOS A VE subcommand and the system goes down, your
file is written to disk with a new fileid. The filename is a number, and the filetype
is AUTOS A VE. You can change the fileid back to its original filename and ftIetype
by issuing the CMS command ERASE to erase the original file and then by issuing
the CMS command RENAME.

For example, if your A UTOSA VE ftIe is labeled" I A UTOSA VE A I" and the original
file is "INVENTOR SCRIPT AI", use the following CMS commands to rename it:

ERASE INVENTOR SCRIPT
RENAME 1 AUTOSAVE A1 INVENTOR SCRIPT A1

Then you'll be back in business and can use the XEDIT command to start editing
the file again.

A QUIT subcommand cancels a SET AUTOS A VE subcommand. If you issue a SET

AUTOS A VE subcommand while you're creating a new file, and then issue a QUIT

subcommand, the file is not saved. However, the AUTOSAVE file is available on
disk. If you issue a SET AUTOSAVE subcommand while you're revising an existing
ftIe and then you issue a QUIT subcommand, no revisions are saved.

Inserting Data From Another File

Inserting a Whole File

To insert all or part of one file into another file, you can use the GET subcommand.
The chapters in this book were created as separate files and then combined into
one file by using the GET subcommand.

The GET subcommand inserts another file after the current line in the file you are
editing. Therefore, you must move the line pointer to the desired line of the file.
F or example, if you want to insert another file at the end of a file, you can use the
BOTTOM subcommand. If you want to insert another file in the middle of a file, you
can use the / prefIX subcommand to make the desired line current.

Suppose you were writing a cookbook, and you created a separate file for each
recipe. To combine two of the recipes into one file, you would use the following
form of the GET subcommand:

===> GET filename filetype

Figure 1-9 shows how the GET subcommand is used to insert one whole file at the
end of another file:

The top screen shows a file (DESSERT COOKBOOK) that contains a recipe for cream
.- puffs. A recipe for almond cookies is contained in another file, COOKIES

COOKBOOK.

The following subcommand was entered:

===> GET COOKIES COOKBOOK

1-26 IBM VM/SP System Product Editor User's Guide

In the bottom screen, the message "EOF REACHED" indicates that the entire file has
been inserted. Notice that the last line inserted becomes the new current line. The
ftIe DESSERT COOKBOOK now contains two recipes. The ftIe COOKIES COOKBOOK is
left intact. ::

Inserting Part of Another File
To insert part of another file, you can specify in the GET subcommand the line
number of the first line and the number of lines you want to insert. The following
GET subcommand inserts the first ten lines of a second file:

===> GET FILE2 1 10
If you don't know the line numbers, you can: call out a second ftIe without ending
your current editing session; put the lines you want to insert into a temporary file; .
and insert them into your current file.

This might sound complicated, but all you need to learn is one more subcommand
-PUT.

First, lees identify and explain the steps you would take to insert part of another·
file and then illustrate them with an example.

1. While editing the first file, enter an XEDIT subcommand to call out the second
file. (You do not have to end your current editing session, because the editor
allows you to edit multiple files simultaneously.) The second file will appear·
on the screen.

2. Use the PUT subcommand to indicate which lines are to be inserted in the
first file. The PUT subcommand stores lines in a temporary holding area,
starting with the current line, up to an ending, or target, line. Its format is as
follows:

===> PUT target

where "target" identifies the end of the group of lines to be inserted. It is a
signal to the editor to stop "putting" lines.

A target operand may be specified in various ways, which are described in
detail in "Chapter 4. Using Targets". A brief description of three ways to
specify a target follows. They are all equivalent; you can choose whichever
type you prefer.

One way to specify the target is to count the number of lines you want to
insert, starting with the current line. For example, if a ftIe contains:

=====

=====

a loaf of bread
a jug of wine
thou
a portable television

and the line containing "a loaf of bread" is current, the following subcom­
mand stores all the above lines:

===> PUT 4

Another way to specify the target is with a character string; the editor will
"put" all the lines, beginning with the current line, up to, but not including,
the line containing the string.

For example, the following subcommand will "put" the first three lines, but it
will not "put" the line containing "a portable television".

===> PUT/television/

Chapter I: An XEDIT Subset: Full Screen Text Processing 1 - 27

COOKBOOK Al F 80 TRUNC=80 SIZE=8 LINE=9 COLUMN=l

* * * TOP OF FILE * * *
CREAM PUFFS WITH CHOCOLATE SAUCE

2 OUNCES BUTTER
1/2 TEASPOON SUGAR
1/2 CUP FLOUR

PINCH OF SALT
2 EGGS
2 CUPS HEAVY CREAM, WHIPPED

* * * END OF FILE * * *
I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••

===> GET COOKIES COOKBOOK
XED I T 1 FILE

DESSERT COOKBOOK Al F 80 TRUNC=80 SIZE=IS LINE=lS COLUMN=l
EOF REACHED

1 PINCH OF SALT
2 EGGS

----- 2 CUPS HEAVY CREAM, WHIPPED
----- ALMOND COOKIES

----- 6 TABLESPOONS SOFT BUTTER
----- 1/2 CUP SUGAR
----- 2 EGG WIUTES
----- 1 PINCH SALT
----- 1 CUP ALMONDS. SLICED

I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
----- * * * END OF FILE * * *

XED I T 1 FILE

.. -
Figure 1-9. Inserting a Whole File

1 - 28 fdM VM/SP System Product Editor User's Guiue

A third way to specify a target is the file line number. To display the line
numbers in the preflX area, you must issue the following subcommand:

===> SET NUMBER ON

Here's how the above lines might look:

00010 a loaf of bread
00011 a jug of wine
00012 thou
00013 a portable television

To specify a target as a line number, type a colon (:) followed by the line
number.

The following subcommand puts lines up to, but not including, line 13.

===> PUT :13

3. Enter a QUIT subcommand. The first rue reappears on the screen.

4. Make sure that the current line is the line after which you want the lines from
the second file to be inserted. Then enter the following subcommand:

===> GET

No operands are required. The lines that were stored by the PUT subcom­
mand are inserted; the last line inserted becomes the new current line.

Figure I-10 shows how the PUT and GET subcommands are used to insert part of a
rue into another file:

The ftIe DESSERT COOKBOOK promises a recipe for cream puffs with chocolate
sauce. The cream puffs recipe is there, but the chocolate sauce is missing. All the
sauces are contained in another file called SAUCES COOKBOOK. To insert the recipe
for chocolate sauce after the recipe for cream puffs, first make the desired line
current (via /) in the file DESSERT COOKBOOK. Since the sauce recipe must follow
the cream puffs recipe, the current line is the last line of the cream puffs recipe
(Figure I-10, Part I). Then enter the following subcommand:

===> XEDIT SAUCES COOKBOOK
This ftIe appears on the screen. The status area (lower right comer) indicates
that two ftIes are being edited. Move the line pointer to the beginning of the
lines to be inserted, via UP or /. The beginning line contains "CHOCOLATE

SAUCE" (Figure I-10, Part.2). Now enter the subcommand to store the
chocolate sauce recipe:

===> PUT/VINAIGRETTE!
The lines that are stored begin with "CHOCOLATE SAUCE" and end with the
line preceding "VINAIGRETTE". The PUT subcommand could also have been
entered as PUT :15 or PUT 7. In this screen, line numbers are displayed in the
preflX area, which means that a SET NUMBER ON subcommand was issued.
After the PUT subcommand is executed, you can quit this ftIe by entering:

===> QUIT
The original ftIe comes back on the screen (Figure I-10, Part 3). Now enter
the following subcommand to insert the lines that were "put":

===> GET
The sauce recipe is inserted, as shown in Figure I-10, Part 4. The last line
inserted is the new current line.

Chapter 1: An XEDIT Subset: Full Screen Text Processing 1 - 29

DESSERT COOKBOOK A1 F 80 TRUNC=80 SIZE=15 LINE=8 COLUMN=l

* * * TOP OF FILE * * *
CREAM PUFFS WITH CHOCOLATE SAUCE

2 OUNCES BUTTER
1/2 TEASPOON SUGAR
1/2 CUP FLOUR
1 PINCH OF SALT
2 EGGS
2 CUPS HEAVY CREAM, WHIPPED

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
ALMOND COOKIES

===== 6 TABLESPOONS SOFT BUTTER
1/2 CUP SUGAR
2 EGG WHITES
1 PINCH SALT
1 CUP ALMONDS, SLICED

* * * END OF FILE * * *
===> XEDIT SAUCES COOKBOOK

XED I T 1 FILE

Figure 1-10. Inserting Part of a File - Call out the Second File (Part 1 of 4)

COOKBOOK Al F 80 TRUNC=80 SIZE=20 LINE=8 COLUMN=l

00000 * * * TOP OF FILE * * *
00001
00002 APRICOT GLAZE
00003
00004 1 JAR APRICOT PRESERVES (1 POUND)
00005 2 TABLESPOONS KIRSCH
00006
00007
00008 CHOCOLATE SAUCE

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
00009
00010
00011
00012
00013
00014

12
2
1
2

OUNCES SEMI-SWEET CHOCOLATE
OUNCES UNSWEETENED CHOCOLATE
CUP HEAVY CREAM
OUNCES COGNAC

00015 VINAIGRETTE SAUCE
00016
00017 1/2 CUP OLIVE OIL
===> PUT/VINAIGRETTE/

.-

Figure 1-10. Inserting Part of a File - Put Lines to be Inserted, then QUIT (Part 2 of 4)

1 - 30 IBM VM/SP System Product Editor User's Guide

XED I T 2 FILES

COOKBOOK Al F 80 TRUNC=80 SIZE=IS LINE=8 COLUMN=1

* * * TOP OF FILE * * *
CREAM PUFFS WITH CHOCOLATE SAUCE

2 OUNCES BUTTER
1/2 TEASPOON SUGAR
1/2 CUP FLOUR
1 PINCH OF SALT
2 EGGS
2 CUPS HEAVY CREAM, WHIPPED

I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
ALMOND COOKIES

6 TABLESPOONS SOFT BUTTER
1/2 CUP SUGAR
2 EGG WHITES
1 PINCH SALT
1 CUP ALt10NDS, SLICED

* * * END OF FILE * * *

Figure 1-10. Inserting Part of a File - GET (Part 3 of 4)

XED I T

COOKBOOK Al F 80 TRUNC=80 SIZE=21 LINE=14 COLUMN=1

1 PINCH OF SALT
----- 2 EGGS
----- 2 CUPS HEAVY CREAM, WHIPPED
----- CHOCOLATE SAUCE

12
2
1
2

OUNCES SEMI-SWEET CHOCOLATE
OUNCES UNSWEETENED CHOCOLATE
CUP HEAVY CREAM
OUNCES COGNAC

I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
----- ALMOND COOKIES

----- 6 TABLESPOONS SOFT BUTTER
----- 1/2 CUP SUGAR
----- 2 EGG WHITES
----- 1 PINCH SALT
----- 1 CUP ALt10NDS, SLICED

* * * END OF FILE * * *

XED I T 1 FILE

Figure 1-10. Inserting Part of a File - The Lines are Inserted (Part 4 of 4)

Chapter I: An XEDIT Subset: Full Screen Text Processing 1 - 31

Getting Help
If you forget how to use a subcommand or would like to see information about
subcommands not covered in this subset, you can press the PFI key, which is set to
the HELP MENU subcommand.

When the PFI key is pressed, a list of all subcommands and macros available with
the editor appears on the screen. You then move the cursor to the desired subcom­
mand and press the appropriate PF key (which is defined on the screen). The
subcommand description appears on the screen, replacing the file display. Pressing
the PF12 key takes you out of the Help display and restores your file on the screen.

Learning More About the Editor
The following is a list of additional XEDIT subcommands that are useful in text
processing. You can l~am how to use them by using the Help facility (described
above) or by referring to the publication VM / SP: System Product Editor Command
and Macro Reference.

ALTER

Allows you to change a character to one that is not available on your key­
board, like a backspace character.

COMPRESS, EXPAND

Allow you to reposition data in new tab columns without retyping it.

LEFT,RIGHT

Allow you to view columns of data that extend to the left or right of the
screen display.

LOWERCAS, UPPER CAS

Allow you to translate alphabetic characters to all lowercase or all uppercase.

SETARBCHAR

Allows you to specify only the beginning and end of a long string that is to be
located or changed.

SET CASE

Allows you to choose whether data that is typed on the terminal is to be
entered in the file the same way you type it or translated into uppercase.

SET POINT

Allows you to assign a name to any line; you can reference the name in XEDIT

subcommands.

SET SCREEN
Allows you to view multiple files or multiple views of the same fue on one
screen.

SET VERIFY

SORT

Allows you to view only specified columns of data, in character or hexadeci­
mal or both.

Allows you to arrange the file lines in alphabetical order.

I - 32 IBM VM/SP System Product Editor User's Guide

Summary of XEDIT Subset
The following table summarizes the subcommands that have been presented in this
chapter. When a subcommand can be abbreviated, its minimum abbreviation is
shown in uppercase letters. "~.

Function Subcommand/PF Key

To create or edit a file XEDIT (CMS command)

To enter data Input
POWerinp

To scroll the screen BAckward
FOrward
TOP
Bottom

To move the line pointer Down
Up

To move the column pointer CLocate
CFirst

To make changes to the file Change
Clnsert

To locate data CLocate

To recover deleted data RECover

To set tabs SET TABS·
MODify TABS

To display current tab settings Query TABS

To display line numbers in the prefix area SET NUMber ON

To end an editing session without saving the QUIT
changes

To save automatically after changing a speci- SET AUtosave
fied number of lines

To save the changed file when you have fin- FILE
ished working on it

To store lines to be inserted in another file by PUT
a subsequent GET

To imbed a complete or a partial copy of one GET
file in another

To cancel pending prefix subcommands RESet

Prefix subcommands:

To add lines A

To delete lines D

To duplicate lines ..
To move lines M and For P

To copy lines C and For P

To set the current line /

Chapter 1: An XEDIT Subset: Full Screen Text Processing 1- 33

PF keys, initial settings: .
To get a Help display PF1
To add a line PF2
To end a session without saving PF3
To use a tab key PF4
To locate and change selectively PF5,PF6
To redisplay a subcommand PF6
To scroll one screen backward PF7
To scroll one screen forward PF8
To repeat previous subcommand PF9
To split a line at the cursor PF10
To join two lines at the cursor PF11
To move cursor to current column PF12

1 - 34 IBM VM/SP System Product Editor User's Guide

Chapter 2: A Practice Exerc'ise

This chapter is designed to give you practice in using some of the XEDIT subcom­
mands discussed in Chapter 1.

The exercise is divided into five parts. You do not have to do all of them at one
time, but you should do them in sequence.

Some of the data you will be asked to type contains errors, so that you can use
subcommands to correct them.

Remember to press the ENTER key each time you type a subcommand in the
command line. However, when you press a PF key, do not press the ENTER key.

Chapter 2: A Practice Exercise 2 - 1

Exercise 1. Creating a File

This part of the exercise covers the following subcommands: SET AUTOSAVE, INPUT,

QUERY TABS, SET TABS, FILE, and the PF4 key.

Your frrst ftIe will contain a list of famous inventions. The ftIename is INVENTOR;
the ftIetype is SCRIPT.

Type the following command in the CMS command line:

Ixedit inventor script

Now press the ENTER key. The ftIe identification line appears on the first line of
the screen. The message, CREATING NEW FILE:, appears on the second line (the
message line). Take a moment to review the screen layout described in Figure 1-1.
Notice that the cursor is positioned on the command line, after the large arrow
(===».

To cause your ftIe to be written to disk at periodic intervals, enter the following
subcommand:

1===> set autosave 20

You will enter data in the ftIe using the PF4 key for tabbing. To display the editor's
initial tab settings for this filetype, enter:

The tab settings for a SCRIPT ftIetype are displayed in the message line. You are
going to use different tab settings, so enter:

1===> set tabs 10 30

Now you're ready to begin entering data. Enter:

1===> input

The cursor is positioned on the frrst line of the input zone. Press the PF4 key, and
the cursor moves to the column (10) you specified in the SET TABS subcommand.
Type:

Telescope

.-

2 - 2 IBM VM/SP System Product Editor User's Guide

Press the PF4 key again. The cursor moves to column 30. Type:

1608

Press the PF4 key. The cursor moves to column 10 on the next line of the input
zone. Type:

Hot air balloon

Press the PF4 key and then type:

1783

Using the PF4 key to move the cursor, type the following:

Margarine
Tranquilizer

1869
1952

Now press the ENTER key. The status area (lower right comer) shows that you are
still in input mode. The data you entered has moved up on the screen, with the last
line you typed becoming the new current line. If you had more data to type, you
could start typing at the cursor position. For now, press the ENTER key to return to
edit mode.

Checkpoint:
If you have done everything correctly, your screen should look like this:

===== * * * TOP OF FILE * * *
===== Telescope 1608
===== Hot air balloon 1783
===== Margarine 1869
===== Tranquilizer 1952

Enter:

1===> file

Chapter 2: A Practice Exercise 2 - 3

Exercise 2. Using Power Typing

This part of the exercise covers the following sub commands: POWER, TOP, BOTTOM,

UP, DOWN, I, the PFIO key, and the PA2 and insert mode keys.

Your second fIle will contain a description of the invention of the telescope. Enter:

Ixedit telescop script

In this file, you will enter the data in power typing mode. Enter:

1===> power

In power typing mode, you type continuously, without regard to the length of the
screen line. If you come to the end of a line and you're in the middle of a word,
just keep on typing. The cursor will move to the beginning of the next line. Two of
the words that you type will start on one line and end on the next - "accidentally"
and "mounted,1. Now type the following data (with errors):

One day in 1608 held a lens in each hand and peered through both at once, accide
ntally discovering that two lenses placed in line would magnify an image. #He mo
unted lens at each end of a tube and invented the telescope.

Press the ENTER key twice.

Checkpoint:
Your file should look like this:

One day in 1608 held a lens in each hand and peered through both at
once, accidentally discovering that two lenses placed in line would
magnify an image.
He mounted lens at each end of a tube and invented the telescope.

The two words that began on one line and fmished on the next ("accidentally" and
"mounted") are put back together. The second sentence starts on a new line,
because you typed a pound sign (#) before it. (Remember that a pound sign, the
line end character, causes the data that follows it to start on a new line.)

Obviously, the first sentence is missing some words. One way to insert a long
phrase in a line is to split the line in two. Move the cursor under the "h" in "held".
Press the PF 10 key, and the line is split. Now type:

a Dutch spectacle maker named Lippershey

In the second sentence, the word "a" is missing before the word ~~lens". Move the
cursor under the "1" in "lens". Press the PA2 key, and press the insert mode key.
Type the word "a" and press the space bar once. The sentence has moved over to
accomodate the added word. Now press the RESET key, to take you out of insert
mode. .

2 - 4 IBM VM/SP System Product Editor User's Guide

Checkpoint:
Your m.e should look like this:

One day in 1608 a Dutch spectacle maker named Lippershey
held a lens in each hand and peered through both at
once, accidentally discovering that two lenses placed in line would
magnify an image.
He mounted a lens at each end of a tube and invented the telescope.

The rest of this exercise will give you practice in moving the line pointer. Enter:

I=~=> top

The new current line is the TOP OF FILE line. If you wanted to add data at the
beginning of the fIle in either input mode or power typing mode, you would enter
TOP, followed by either INPUT or POWER.

Enter:

1===> bottom

The new current line is the last line of the fIle. Enter:

I=~~> up 2

The new current line is two lines up, toward the top of fIle.

Enter:

1===> down 2

The new current line is two lines down, toward the end of fIle.

Now type a / (diagonal) in the prefIX area of any line, like this:

f----/ ---- or this: ==/== or this: /====

When you press the ENTER key, that line becomes the new current line.

When your fIle is too big to fit on one screen, you can use the PF7 and PF8 keys (the
BACKWARD and FORWARD subcommands) to scroll the screen.

Enter the following subcommand to write this file on disk:

I=~=> file

Chapter 2: A Practice Exercise 2 - 5

Exercise 3. Using Prefix Subcommands

This part covers the RECOVER subcommand and the following prefIX subcom­
mands: a, d, m, and p.

To create this ftIe, enter:

Ixedit balloon script

Enter:

1===> input

Type:

The heat inflated the petticoat and caused it to rise.
The Montgolfier brothers were paper manufacturers.
Hot air from a fire lifted the first balloon.

Press the ENTER key twice to re-enter edit mode.

Let's rearrange these sentences. Type an "M" in the prefIX area of the second
sentence, and a "P" in the prefIX area of the frrst sentence, like this:

====p The heat inflated the petticoat and caused it to rise.
===m= The Montgolfier brot'hers were paper manufacturers.

Now press the ENTER key. The sentences have been reversed.

Type an "a" in the prefIX area of the first sentence in the ftIe and press the ENTER

key. Type the following in the blank line you just added:

They realized hot air's ability to float a balloon by accident.

The cursor is at the end of the line you just typed. Without moving the cursor,
press the PF2 key, which adds a new blank line and moves the cursor to the begin­
ning of it.

.-

2 - 6 IBM VM/SP System Product Editor User's Guide

Now type:

Jacques' wife washed a petticoat and hung it over a fire to dry.

Type "5a" in the prefIX area of the last line, and press the ENTER key. Type in
anything you want. Now, type "DO" in both the first and last lines you added, like
this:

"=dd== This is your first line .
•
•

=dd== This is your fifth line.

Press the ENTER key.

Do you really want to keep those lines? If you do, enter:

1===> recover -

Checkpoint:
Your ftle should look like this:

The Montgolfier brothers were paper manufacturers.
They realized hot air's ability to float a balloon by accident.
Jacques' wife washed a petticoat and hung it over a fire to dry.
The heat inflated the petticoat and caused it to rise.
Hot air from a fire lifted the first balloon.

Enter:

1===> file

Chapter 2: A Practice Exercise 2 - 7

Exercise 4. Making Changes

This part of the exercise covers the following subcommands: CHANGE, PF5, and PF6

keys for a selective change.

Enter:

Ixedit margarin script

Enter:

/===> input

Type these lines:

Bitter was expensive and in short supply.
Napoleon sought a substitute for butter that wasn't bitter.
He needed something like bitter that would store well on ships.
He held a contest and offered a prize for the best bitter substitute.

Press the ENTER key twice to re-enter edit mode.

Move the line pointer to the first line of the file by entering:

1===> up 3

Enter:

1===> change/Bitter/Butter

Now you're going to practice using the PF5 and PF6 keys to make a selective
change. You want to change "bitter" to "butter", but not all of the time.

Type the following subcommand in the command line, but do not press the ENTER
key.

1===> c/bitter/butter

Now press the PF5 key. The cursor moves under "bitter" in the second sentence,
and the line is highlighted. The message line tells you that if you want to make the
change, press the PF6 key. This "bitter" is fme, so press the PF5 key again.

In the third sentence, you want to make the change, so press the PF6 key. The
message line tells you that the change has been made.

Press the PF5 key.
Press the PF6 key.

.-

2 - 8 IBM VM/SP System Product Editor User's Guide

Checkpoint:
Your ftIe should look like this:

Butter was expensive and in short supply.
Napoleon sought a substitute for butter that wasn't bitter.
He needed something like butter that would store well on ships.
He held a contest and offered a prize for the best butter substitute.

Enter:

1===> file

Chapter 2: A Practice Exercise 2 - 9

Exercise 5. Getting It All Together

This part covers the following subcommands: GET and PUT.

You now have the following fIles:

inventor script
telescop script
balloon script
margarin script

The following exercise will give you practice in transferring data between files.
Enter:

Ixedit inventor script

You are going to insert the entire fue named TELESCOP SCRIPT at the end of this
fue.

To make the last line of this fue current, enter:

1===> bottom

Now enter:

1===> get telescop

You do not have to specify a fuetype when you GET a fIle if the filetype of the file
you are "getting" is the same as the fue you're currently editing.

The message, "EOF REACHED" tells you that the entire file has been inserted. The
new current line is the last line that was inserted. The fue TELESCOP is still on disk;
only a copy of it has been inserted.

Now you're going to insert part of a fde into this one.

Enter:

1===> xedit balloon

This fue now appears on the screen. Notice that the status area indicates that you
are editing two fues, that is, two fues are in virtual storage.

You're going to insert lines two and three into the INVENTOR fue. Enter:

1===> down 2

Enter:

1===> put 2

.. -

2 - lO IBM VM/SP System Product Editor User's Guide

Enter:

1===> quit

The INVENTOR fue now appears on the screen. Enter:

1===> get

Lines two and three from the BALLOON fue are inserted; the new current line is the
last line that was inserted.

Now you're going to insert the entire MARGARIN fue. Enter:

1===> get margarin

The entire fue is inserted.

Checkpoint:
Your fue should look like this:

Telescope 1608
Hot air balloon 1783
Margarine 1869
Tranquilizer 1952

One day in 1608 a Dutch spectacle maker named Lippershey
held a lens in each hand and peered through both at
once, accidentally discovering that two lenses placed in line would
magnify an image.
He mounted a lens at each end of a tube and invented the telescope.
They realized hot air's ability to float a balloon by accident.
Jacques'wife washed a petticoat and hung it over a fire to dry.
Butter was expensive and in short supply.
Napoleon sought a substitute for butter that wasn't bitter.
He needed something like butter that would store well on ships.
He held a contest and offered a prize for the best butter substitute.

You have inserted two whole fues and one partial fue into another fue. This is a
good place to practice prefIX subcommands. Using the "A" prefIX subcommand,
add lines between the different inventions, and then type headings in those lines.
You can also rearrange the inventions by using the "M" and "P" (or "F") prefIX

\ subcommands. When you are fInished, enter:

1===> quit

A warning message tells you to issue a FILE subcommand if you want to save the
changes you have made during this part of the exercise. If you don't, enter:

1===> qquit

Chapter 2: A Practice Exercise 2 - 11

.-

2 - 12 IBM VM/SP System Product Editor User's Guide

Chapter 3: An XEDIT Subset: Text Processing on a Typewriter
Terminal

Editing a ,i1e

XEDIT Command

Entering Data

This chapter is written primarily for the person who has limited data processing
experience; however, some VM/SP CMS experience is assumed. For example, you
must know how to log on to VM/SP and enter the CMS environment. You should
also be familiar with the concept of a CMS file.

When you finish this chapter, you should have a working"knowledge of the editor.
The subcommands presented here comprise a subset of XEDIT subcommands, with
which you can create a file, enter data, make changes to the file, and transfer data
between files. The editor has many additional capabilities, which are described in
the rest of this book and in the publication VM / SP: System Product Editor Com­
mand and Macro Reference.

This subset has been selected for text processing on a typewriter terminal.

To edit a file means to make changes, additions, or deletions to a CMS file that is on
a disk, and to make these changes interactively: you instruct the editor to make a
change, the editor makes it, and then you request another change.

You can edit a file that does not exist; when you do so, you are creating a file.

After you log on to VM/SP and enter the CMS environment, you are ready to enter
the edit environment.

The editor is invoked with the CMS command XEDIT, whose format is as follows:

XEDIT filename filetype

If the file already exists on your A-disk, a copy.ofthat file is brought into virtual
storage; then you can use XEDIT subcommands to make changes or c.orrections to
lines in that file. You enter an XEDIT subcommand by typing the subcommand and
then pressing the RETURN key. (XEDIT subcommands, like CMS commands, can be
typed in either uppercase or lowercase, or a combination of both.)

If the file is not found on disk, the editor creates it in virtual storage.

When a subcommand changes a line, the editor displays, or ''verifies'', the changed
line. The editor also communicates with you by displaying error or information
messages. For purposes of illustration in this chapter, anything displayed by the
editor is enclosed in a box. Subcommands or data that you would enter are not.

Now let's create a simple file. Its filename and filetype will be POEM 1 SCRIPT. The
following command is entered to begin creating the file:

XEDIT POEM1 SCRIPT

Because the file is new, the editor responds with the following message:

ICREATING NEW FILE :

The following subcommands are discussed in this section:

INPUT
QUERY LRECL
SET CASE

Chapter 3: An XEDIT Subset: Text Processing on a Typewriter Terminal 3 - 1

INPUT Subcommand
After you enter the XEDIT com!lland, you are in edit mode. You must be in edit
mode to enter XED IT subcommands.

However, to enter data in the fue, you must be in input mode. Type the following
subcommand and press the RETURN key to enter input mode:

INPUT

The editor displays the following message:

I INPUT MODE :

You can then type in the data. Each line that you enter while in input mode is
considered to be a data line and will be written in the file. To end a line, press the
RETURN key; the line will then be inserted into the copy of the file in virtual
storage.

No line may be longer than the logical record length of the file, which varies
according to filetype. To find out the logical record length of any file;, you can
enter the following subcommand (in edit mode):

QUERY LRECL

In the examples used here, the filetype is SCRIPT, which has a logical record length
of 132. If you type more than 132 characters in a line before pressing the RETURN

key, the editor truncates the extra characters.

Now let's start typing lines to be entered in the file:

"THE OCTOPUS", by Ogden Nash
Tell me, 0 Octopus, I begs,
Is those things arms, or is they legs?
I marvel at thee, Octopus;
If I were thou, I'd call me Us.

When you are fmished typing data and want to return to edit mode (either to make
changes to the file or to end the editing session), press the RETURN key on a null
line.

During an editing session, you can enter input mode at any time to insert new lines
of data in the file. After the INPUT subcommand is entered, the editor inserts the
lines you type after the current line. In this example, since the file is new, the lines
are inserted at the beginning of the file. Later, you will see how to make any line
the current line, so that you can insert lines between any two existing lines in a file.

This is how the data looks in the file. The following two subcommands, which will
be discussed later, are used to display the data that was entered in input mode:

TOP

ITOF:

.- TYPE *

3 - 2 IBM VM/SP System Product Editor User's Guide

Column Pointer

TOF:
"THE OCTOPUS", by Ogden Nash
Tell me, 0 Octopus, I begs,
Is those things arms, or is they legs7
I marvel at thee, Octopus;
If I were thou, I'd call me Us.
EOF:

Notice that the first letter in each line is underscored. This underscore character
U is not contained in the rue, and it will not appear on a printed copy of the file.
It represents the column pointer.

Various subcommands perform their editing functions within a line starting at the
column pointer, which you can move to different column positions by using XED IT
subcommands that will be discussed later. The column under which the column
pointer is positioned is called the current column. In the example above, the current
column is column one.

Moving Through a File

Line Pointer

TYPE Subcommand

The following subcommands are discussed in this section:
TYPE
UP
DOWN
TOP
BOTTOM

When you use the XEDIT command to create a new file, the file is created in virtual
storage. When the XEDIT command is used to call out an existing file, a copy is
brought into virtual storage. In either case, you can picture the file as a series of
records, or lines; these lines are available for you to change or delete. You can dlso
insert new lines following any line that is already in the file.

The line that you are currently editing is called the current line.

Naturally, the line that is current changes as you move up and down in the file to
edit various lines. When the line that is current changes, we say that the line
pointer has moved. Many XEDIT subcommands perform their functions starting
with the current line and move the line pointer when they are finished.

You can change which line is current, that is, you can move the line pointer, by
using the subcommands discussed in this section.

What you do during an editing session is: •

• Position the line pointer at the line you want to edit.

• Edit the line (change characters in it, delete it, or insert new lines following
it).

• Position the line pointer at the next line you want to edit.

Many XEDIT subcommands operate either on, or starting with, the current line.
For example, the INPUT subcommand inserts new lines of data after the current
line. Therefore, you often need to determine which line is current so that you can
move the line pomter, ifnecessary.

To display the current line, enter the TYPE subcommand, whose format is:

Chapter 3: An XEDIT Subset: Text Processing on a Typewriter Terminal 3 - 3

TYPE

To display more than one line, enter the TYPE subcommand with the number of
lines you want to see. For example, the following subcommand displays Slines,
beginning with the current line:

TYPE 5

To display the entire file, you must first position the line pointer at the top of the
file. The following subcommands move the line pointer to the top of the file and
then display the entire file:

TOP

(moves the line pointer to the top of the file and displays "TOF:")

TYPE *
(displays all the lines in the file)

After the TYPE subcommand is executed, the line pointer is positioned at the last
line that was displayed. For example, if you type the entire file, the null "EOF" line
will become the new current line. Of course, if you type only one (the current) line,
the line pointer will not move.

UP and DOWN Subcommands
You can move the line pointer up or down one or more lines.

The UP subcommand moves the line pointer toward the beginning of the file and
displays the new current line. Its format is:

UP n

where "n" is the number of lines you want to move the line pointer. If the
number is omitted, "I" is assumed.

The DOWN subcommand moves the line pointer toward the end of the file and
displays the new current line. Its format is:

DOWN n

where "n" is the number of lines you want to move the line pointer. If the
number is omitted, "I" is assumed.

Let's look at the poem file again:

TOP

(move the line pointer to the top of the file)

TYPE *
(display the whole file)

TOF:
"THE OCTOPUS", by Ogden Nash
Tell me, 0 Octopus, I begs,
Is those things arms, or is they legs?
I marvel at thee, Octopus;
If I were thou, I'd call me Us ..
EOF:

3 - 4 IBM VM/SP System Product Editor User's Guide

The TYPE * subcommand was used to display the entire file; since the last line
displayed by a TYPE subcommand is the new current line, the "EOF" line is now the
current line.

The following subcommands show how the UP and DOWN iubcommands are used
to move the line pointer up and down in the file. Each time the line pointer is
moved, the editor displays the new current line.

UP 2

(move the line pointer up two lines from the EOF line)

I! marvel at thee, Octopus;

DOWN

(move the line pointer down one line)

I!f I were thou, I'd call me Us.

To insert new lines of data after any existing file line, you can do the following:

• Issue the UP or DOWN subcommand to move the line pointer to the line after
which you want the data to be inserted.

• Then enter the INPUT subcommand.

TOP and BOTTOM Subcommands
You can also move the line pointer to the the beginning or end of the file.

To move the line pointer to the null "TOF" line that precedes the first line of the
file, issue the following subcommand:

TOP

To move the line pointer to the last file line, issue the following subcommand:

BOTTOM

To begin entering new lines either at the beginning or the end of a file, you can use
the following sequence of subcornmands:

TOP (or BOTTOM)
INPUT

Then you enter new data lines.

Making Changes in a File
The following subcornrnands are discussed in this section:

CLOCATE
CFIRST
CINSERT
CDELETE
CAPPEND
CHANGE

Often, you need to insert or delete charact rs in a line or change one word to
another. The subcomrnands discussed in this section enable you to insert, delete, or
change characters based on the position of the column pointer, which is represent­
ed as an underscore character L) when a line is displayed.

Chapter 3: An XEDlT Subset: Text Processing on a Typewriter Terminal 3 - 5

CLOCATE Subcommand

CFIRST Subcommand

CINSERT Subcommand

The CLOCATE subcommand is \}sed to move the column pointer to the column
where you want to insert, delete, or change characters.

The CLOCA TE subcommand searches a file, beginning with the current line, for a
character string that you specify. Its format is as follows:

CLOCATE/string/

The character string must be enclosed in delimiters. The diagonal (/) is the delimi­
ter used in these examples, but it may be any character that does not also appear in
the character string (for example, CLOCA TE. VM/CMS.)

If the string is found, two things happen: the line that contains the string becomes
the new current line (and is displayed); and the column pointer moves under the
first character of the string.

For example, in the file shown above, the subcommands:

TOP

(move the line pointer to the top of the file)

CLOCATE/legs/

(locate the string)

cause the following line to be displayed:

lIS those things arms, or is they legs?

Notice that the line pointer moved to the line containing the string "legs", and the
column pointer moved under the first character of the string ..

After using sub commands that move the column pointer, it's a good idea to reset
the column pointer to the beginning of the line. The following subcommand moves
the column pointer to the beginning of the line:

CFIRST

For example, in the line shown above, where the column pointer is under the "1" in
"legs", issuing a CFIRST subcommmand results in:

lIS those things arms, or is they legs?

The CINSERT subcommand is used to insert characters immediately before the
column pointer.

For example, a file contains the following line:

I~t. Everest is high.

Note the position of the column pointer, in column one. To insert the phrase
"exactly 29,000 feet" before the word "high", first move the c~lumn pointer to the

1-

.- first character in "high", by using the following subcommand:

CLOCATE/high/

The editor moves the column pointer and displays the line:

3 - 6 IBM VM/SP System Product Editor User's Guide

CDELETE Subcommand

IMt. Everest is nigh.

Now you can insert the phrase:

CINSERT exactly 29,000 feet

The editor inserts whatever you type in the operand of the CINSERT subcommand.
In the subcommand above, the space bar was pressed once after the word "feet" so
that a blank would separate "feet" and "high".

The resulting line is displayed:

IMt. Everest is ~xactly 29,000 feet high.

Let's look at another example. The CLOCATE subcommand is used to move the
column pointer; then the CINSERT subcommand is used to insert characters imme­
diately before the column pointer position.

A file contains the following line:

IIf anything can go, it will.

CLOCATE/,/

(move the column pointer)

IIf anything can gOL it will.

CINSERT wrong

(insert ''wrong'' before the column pointer)

IIf anything can go_wrong, it will.

(In the CINSERT subcommand above, note that there are two spaces between
"CINSERT" and ''wrong'': one is the required space between the subcommand name
and the operand; one is the blank space needed between "go~~ and "wrong".)

If only one blank space were used, the result would be the following:

IIf anything can go~rong, it will.

The editor allows you to insert blanks with the CINSERT subcommand - simply
type the required number of blanks (by pressing the space bar) in the operand. For
example:

IIf anything can go~rong, it will.

CINSERT

(Press the space bar twice: once to separate the subcommand name and
operand; once for the operand.)

IIf anything can go_wrong, it will.

The CDELETE subcommand is used to delete one or more characters from the
current line, starting at the column pointer.

A file contains the following line:

Chapter 3: An XEDIT Subset: Text Processing on a Typewriter Terminal 3-7

To be or not to be or not to be - that is the question.

The line contains one too many "or not to be". Since deletion starts at the column
pointer, first move the column pointer with the following subcommand:

CLOCATE/or/

To be or not to be or not to be - that is the question.

CAPPEND Subcommand

."

Then, you can use the CDELETE subcommand to specify the number of characters
to be deleted. Count the number of characters to be deleted, starting with the
current column:

CDELETE 13

The resulting line looks like this:

ITO be Qr not to be - that is the question.

The CDELETE subcommand issued above specified a "13" as the operand; it means,
"delete 13 characters, starting at the column pointer."

If you did not want to count the number of characters, you could have specified the
operand of the CDELETE subcommand as a character string. For example:

CDELETE/or/

When this form of the CDELETE subcommand is used, it means, "delete characters
from the column pointer to the first character of the string specified in the oper­
and." The result would be the same as the line shown above; the extra "or not to
be" would be removed.

In summary, the CDELETE subcommand removes characters from a line, from the
column pointer to the column position specified in the operand. The operand may
be specified as the number of characters to be removed, or it may be specified as a
character string. After the CDELETE subcommand is executed, the editor displays
the changed line.

Use the CAPPEND subcommand to append words to the end of the current line.

The format of the CAPPEND subcommand is:

CAP PEND text

where "text" represents the data you want to add to the end of the line.

F or example, a file contains the following line:

lIt is an ancient mariner,

However, the line should read:

It is an ancient mariner, and he stoppeth one of three.

The following subcommand adds the desired text:

CAPPEND and he stoppeth one of three.

(Two blanks separate the subcommand name and the operand.)

The resulting line looks like this:

3 - 8 IBM VM/SP System Product Editor User's Guide

It is an ancient mariner,_and he stoppeth one of three.

Notice that the column pointer has moved to the first chara:,cter of the appended
text, which was a blank. -0

CHANGE Subcommand

Changing One Word to Another

Making a Global Change

Replacing one word with another is the simplest type of change. Use the following
form of the CHANGE subcommand to change the first occurrence ofa word in the
current line:

CHANGE/oldword/newword/

F or example, the current line in a file contains the following:

I~ rose is a rose is a rose.

CHANGE/rose/daisy/

The resulting line looks like this:

I~ daisy is a rose is a rose.

Note that the editor automatically makes room in the line for "daisy", even though
it is longer than "rose". Conversely, a word can be replaced by a shorter word; the
editor removes extra blanks.

You can use the CLOCATE and CHANGE subcommands to locate and change any
string in a file. If the line containing the string is the current line, you don't have to
use a CLOCATE subcommand; the CHANGE subcommand both locates the string
and changes it.

If you want to make a global change, that is, change every occurrence of a word,
first move the line pointer to the line where you want the change to begin, and use
the following form:

CHANGE/oldword/newword/ * *
In the following example, the word "rose" is changed to "daisy" every time it
appears. (The line pointer is already positioned at the first line shown.)

A rose is a rose is a rose.
A rose is a rose is a rose.
A rose is a rose is a rose.
A rose is a rose is a rose.

CHANGE/rose/daisy/ * *
produces the following changes in the file (the editor displays only those lines that
have been changed):

A daisy is a daisy is a daisy. -
A daisy is C3: daisy is a daisy.
A daisy is a daisy is a daisy.
A daisy is a daisy is a daisy.

Chapter 3: An XEDIT Subset: Text Processing on a Typewriter Terminal 3 - 9

Making a Selective Change

Another variation of the CHANGE subcommand can be used when you want to
change a word throughout the rtIe, but you want to change only the first occur­
rence in each line:

CHANGE/oldword/newword/ *

Suppose that you want to change one word to another only some of the time. You
can use repeated executions of the CLOCA TE subcommand to scan the rtIe, issuing a
CHANGE subcommand only when you want to make the change.

Instead of typing the same CLOCATE subcommand over and over, you can use the
= subcommand, which repeats the last subcommand you entered. Using the =
subcommand saves you the time it takes to retype the subcommand. To enter the
= subcommand, simply type an equal sign (=) and press the RETURN key.

Inserting and Deleting Lines

Inserting A Line

The following subcommands are discussed in this section:

INPUT line
DELETE
RECOVER
REPLACE

You can insert a single line of data between existing lines by using the INPUT

subcommand followed by the line of data you want inserted. One blank must
separate the subcommand name and the data line.

For example:

INPUT this is the line I want to insert

inserts a single line following the current line, without leaving edit mode. (If you
want to insert more than one line, you would issue the INPUT subcommand with no
operand to enter input mode.)

To insert a blank line in the file, enter the INPUT subcommand and press the space
bar at least twice before pressing the RETURN key. A blank line will be inserted
after the current line.

F or example, if a rtIe contains the following lines:

TOF:
§ome primal termite knocked on wood
~nd tasted it, and found it good,
~nd that is why your Cousin May,
Kell through the parlor flo.or today.

The current line is the last line displayed above. To insert a title line, issue the
following subcommand:

INPUT "The Termite", by Ogden Nash

Now the file looks like this (TOP and TYPE 6 are used to display the whole file):

3 - lO IBM VM/SP System Product Editor User's Guide

Deleting Lines

TOF:
~ome primal termite knocked on wood
~nd tasted it, and found it good,
And that is why your Cousin May,
[ell through the parlor floor today_
':The Termite", by Ogden Nash

To insert a blank line between the poem and the title line, you could issue the
following subcommands:

UP

(move the line pointer up one line)

INPUT

(press the space bar twice before pressing the RETURN key)

N ow the file looks like this:

TOF:
Some primal termite knocked on wood
~nd tasted it, and found it good,
~nd that is why your Cousin May,
rell through the parlor floor today_

"The Termite", by Ogden Nash

Use the DELETE subcommand to dele,te one or more lines from a file, beginnjng
with the current line.

To delete only the current line, use the form:

DELETE

To delete more than one line, specify the number of lines in the operand:

DELETE 5

deletes five lines, including the current line.

To delete the rest of the file, use the form:

DELETE *
If you want to delete a number of lines, and you don't want to bother counting how
many; you can use the form:

DELETE/string/

Lines will be deleted, starting with the current line, up to (but not including) the
line containing the specified string.

For example, if a fue contains the following lines, and the first line shown is the
current line:

Chapter 3: An XEDIT Subset: Text Processing on a Typewriter Terminal 3 - II

Lost and Found Department

Replacing a Line

a portable televisio~
a transistor radio
a frisbee
a loaf of bread
~ jug of wine
thou

The following subcommand:

DELETE/bread/

deletes all lines from the current line up to, but not including, the line containing
"bread". Therefore, all that's left are the lines containing "a loaf of bread", "a jug
of wine", and "thou".

If you delete one or more lines and change your mind, all is not lost. You can
recover the lines at any time during an editing session with the RECOVER subcom­
mand.

The following subcommand returns lines deleted in an editing session:

RECOVER n

where n represents the number of lines you wish to recover.

The recovered line(s) is inserted immediately before the current line. If the lines
were deleted from different places in the file, you have to put them back where
they belong by using the MOVE subcommand, discussed below.

If you want to recover all lines that have been deleted during an editing session,
use the form:

RECOVER *

You've seen how to insert a new line and delete a line, using INPUT line and
DELETE. The REPLACE subcommand does both; it deletes the current line and
replaces it with a line you specify_

The format of the REPLACE subcommand is:

REPLACE line

However, if you enter the REPLACE subcommand with no line, the editor deletes
the current line and automatically places you in input mode.

Moving and Copying Lines

MOVE Subcommand

.-

The following subcommands are discussed in this section:
MOVE
COPY

Suppose you want to remove some lines from their current location and insert them
in another part of the fIle. You can use the MOVE subcommand to move one or
more lines, beginning with the current line, to a different location in the fIle. The
format of the MOVE subcommand is as follows:

MOVE from to

3 - 12 IBM VM/SP System Product Editor User's Guide

The first operand represents the number of lines to be moved, starting with the
current line. The second operand represents the destination; the line(s) is inserted
after the destination line and is deleted from its original location.

For example, to move the current line three lines down iIi the file, you can use the
following subcommand:

MOVE 1 3

To move the current line and the two lines following it three lines down in the file,
you can use the following subcommand:

MOVE 3 3

To move a line backward in the file, you can specify a minus (-) sign in front of the
"to" operand. For example:

MOVE 1 -3

moves the current line up two lines in the file. Remember, the "to" operand
represents the line after which a line is to be moved; therefore, if the destination is
-3, the line is inserted after that line, or two lines up.

To eliminate the need for counting lines, you can specify the ''to'' operand as a
character string. The editor searches the file for a line that contains the string and
moves the "from" line(s) after that line.

For example:

MOVE 1 /string/

moves the current line after the line containing the string.

Similarly, you can move a line backward in the file by specifying a minus (-) sign
before the string. For example:

MOVE 1 -/string/

moves the current line backward in the file after the line that contains the string.

Let's look at an example:

filberts
almonds
cashews
chestnuts
Eecans
walnuts

The following subcommands would each move the line containing "filberts" (the
current line) after the line containing "chestnuts".

MOVE 1 3 or MOVE 1 /chestnuts/

almonds
cashews
chestnuts
filberts
Eecans
walnuts

Chapter 3: An XEDIT Subset: Text Processing on a Typewriter Terminal 3 - 13

COpy Subcommand
The procedure for copying lines is the same as for moving lines. The COpy sub­
command leaves the originalline(s) in place and makes a duplicate at the indicated
destination.

The format of the COpy subcommand is:

COpy from to

One or more lines, beginning with the current line, are copied after the destination
line.

Ending an Editing Session

FILE Subcommand

QUIT Subcommand

The following subcommands are discussed in this section:
FILE
QUIT
SET AUTOSA VE

When you use the XEDIT command to create a new file, the file is created in virtual
storage. When you make changes to an existing file, those changes are made to a
copy of the file that is brought into virtual storage (when the XEDIT command is
entered). However, virtual storage is temporary. To write a new or modified file on
disk, which is permanent storage, you must enter the following subcommand:

FILE

When the FILE subcommand is executed, the file is written on disk and control is
returned to CMS.

Use the QUIT subcommand to end an editing session and leave the permanent copy
of the file intact on the disk. If the file is new, it is not written on disk.

The format of the QUIT subcommand is as follows:

QUIT

You would use the QUIT subcommand instead of the FILE subcommand when you
edit a file merely to examine, but not to change, its contents, or if you discover you
have made errors in changing a file and do not want them to be recorded.

When a file is new or has been changed, the editor gives you a warning message to
prevent the inadvertent use of a QUIT instead of a FILE. The message is as follows:

IFILE HAS BEEN CHANGED. USE QQUIT TO QUIT ANYWAY.

If you really don't want to save the file, enter "QQUIT" (abbreviated as "QQ"). If
you wish to save the changes, enter "FILE".

SET A UTOSA VE Subcommand
Files on disk are not affected if the system malfunctions, or "goes down." Howev­
er, a new file that you're creating or the changes you're making to an existing file
might be lost if the system fails. You can minimize this danger by using the SET

AUTOSA VE subcommand, whose format is as follows:

SET AUTOSAVE n

The SET AUTOSAVE subcommand causes your file to be written to disk automati­
cally, after you've typed in or changed a certain number of lines. You specify what

3 - 14 IBM VM/SP System Product Editor User's Guide

that number will be with the "n" operand of the SET AUTOSAVE subcommand. If
you want the file written to disk, or "saved", every time you've changed ten lines,
the subcommand would be:

SET AUTOSAVE 10

The SET AUTOS A VE subcommand can be issued at any time during an editing
session. It's a good idea, however, to issue the subcommand right after you issue an
XEDIT command to create a new file or to call an existing ftle from disk.

If you have issued a SET AUTOSAVE subcommand and the system goes down, your
file is written to disk with a new fileid. The ftlename is a number from I to 8, and
the filetype is A UTOSA VE.

You can change the fileid back to its original filename and filetype by issuing the
CMS command ERASE ·~o erase the original file and then by issuing the CMS com­
mand RENAME.

F or example, if your A UTOSA VE file is labeled" I A UTOSA VE A I" and the original
file is "POEM! SCRIPT AI", use the following CMS commands to rename it:

ERASE POEM1 SCRIPT
RENAME 1 AUTOSAVE A1 POEM1 SCRIPT A1

Then you'll be back in business and can use the XEDIT command to start editing
the file again.

A QUIT subcommand cancels a SET AUTOSAVE subcommand. If you issue a SET

AUTOS AVE subcommand while you're creating a new file, and then issue a QUIT

subcommand, the file is not saved. If you issue a SET AUTOSAVE subcommand
while you're revising an existing file and then you issue a QUIT subcommand, no
revisions are saved.

Inserting Data from Another File

1 nsert;ng a Whole File

To insert all or part of one file into another, you can use the GET subcommand.
The chapters in this book were created as separate files and then combined into
one file by using the GET subcommand. (A ftle that you "get" is not destroyed; a
copy of that file is inserted.)

The GET subcommand inserts a file after the current line. Therefore, you must
move the line pointer to the line after which you want to insert a file. If you want
to insert another file at the end of your file, you can use the BOTTOM subcommand
to make the last line current. If you want to insert another file somewhere in the
middle of your file, you can use the UP or DOWN subcommands to make the desired
line current.

Suppose you were writing a book of poetry, and you created a separate ftle for each
poem. To combine two of the poems into one file, you would use the following
form of the GET subcommand:

GET filename filetype

When the entire second file has been inserted, the editor displays the following
message:

IEOF REACHED

For example, if you were editing a file called POEMI SCRIPT and wanted to insert
another ftle called POEM2 SCRIPT, you would enter the following subcommands:

Chapter 3: An XEDIT Subset: Text Processing on a Typewriter Terminal 3 - 15

BOTTOM

(move the line pointer to'the end of the file)

GET POEM2 SCRIPT

(insert the whole file)

Inserting Part of Another File

.. '

To insert part of another file, you can specify in the GET subcommand the line
number of the first line and the number of lines you want to insert. The following
GET subcommand inserts the first ten lines of a second file:

GET FILE2 1 10

If you don't know the line numbers, you can: call out a second file without ending
your current editing session; put the lines you want to insert into a temporary file;
and insert them into your current file.

This might sound complicated, but all you need to learn is one more subcommand
- PUT.

First, let's identify the steps you would take to insert part of another file and then
illustrate them with an example.

I. While editing the first file, enter an XEDIT subcommand to call out the second
file. You do not have to end your current editing session, because the editor
allows you to edit multiple files simultaneously.

2. Use the PUT subcommand to indicate which lines are to be inserted in the
first file. The PUT subcommand stores lines in a temporary holding area,
starting with the current line, up to an ending, or target, line. Its format is as
follows:

PUT target

where "target" identifies the end of a group of lines to be inserted. It is a
signal to the editor to stop "putting" lines.

A target operand may be specified in various ways, which are described in
detail in "Chapter 4: Using Targets". A brief description of two ways to
specify a target follows. They are equivalent; you can choose whichever type
you prefer.

One way to specify the target is to count the number of lines you want to
insert, starting with the current line. For example, if a file contains:

a loaf of bread
?t jug of wine
thou
a portable television

and the line containing "a loaf of bread" is current, the following subcom­
mand stores all the above lines:

PUT 4

Another way to specify the target is with a character string; the editor will
"put" all the lines, beginning with the current line, up to, but not including,
the line containing the string.

For example, the following subcommand will "put" the first three lines, but it
will not "put" the line containing "a portable television".

3 - 16 IBM VM/SP System Product Editor User's Guide

PUT/television/

3. Enter a QUIT subcommand to return to your original file.

4. Make sure that the current line is the line after whicll you want to insert lines
from the second file. Then enter the following subcommand:

GET

No operands are required. The lines that were stored by the PUT subcom­
mand are inserted; the last line inserted becomes the new current line.

The following example illustrates'how the PUT and GET subcommands are used to
insert part of a file into another file:

A rue, DESSERT COOKBOOK, is being compiled. It contains many recipes, among
which is a recipe for cream puffs with chocolate sauce. The author of the cookbook
keeps a separate file, called SAUCES COOKBOOK, which contains recipes for sauces.
Whenever a recipe requires an accompanying sauce, the author can select a sauce
recipe from the second file and insert it in the first. In this example, the recipe for
chocolate sauce will be inserted after the recipe for cream puffs.

XEDIT DESSERT COOKBOOK

(Call out the first file.)

CLOCATE/CREAM PUFFS/

(Locate the recipe.)

TYPE 10

(Display the recipe. You could have displayed the whole file by using TYPE *,
but it's not necessary.)

CREAM PUFFS WITH CHOCOLATE SAUCE

2 OUNCES BUTTER
1/2 TEASPOON SUGAR
1/2 CUP FLOUR
1 PINCH OF SALT
2 EGGS
2 CUPS HEAVY CREAM, WHIPPED

ALMOND COOKIES

UP

(Move the line pointer to the line after which you want to insert the sauce
recipe. The editor displays the new current line, which is the blank line
between "HEAVY CREAM" and "ALMOND COOKIES".)

XEDIT SAUCES COOKBOOK

(Edit the second file.)

CLOCATE/CHOCOLATE SAUCE/

(Locate the sauce recipe.)

Chapter 3: An XEDIT Subset: Text Processing on a Typewriter Terminal 3 - 17

TYPE 10

(Display 10 lines.)

CHOCOLATE SAUCE

12 OUNCES SEMI-SWEET CHOCOLATE
2 OUNCES UNSWEETENED CHOCOLATE
1 CUP HEAVY CREAM
2 OUNCES COGNAC

VINAIGRETTE SAUCE

1/2 CUP OLIVE OIL

UP 10

(Move the line pointer to the beginning of the recipe)

PUT/VINAIGRETTE/

Lines are stored, beginning with the line containing "CHOCOLATE SAUCE" and
ending with the line preceding the one containing "VINAIGRETTE". The PUT

subcommand could also be entered as PUT 7.

QUIT

The original file is now being edited.

GET

_ The sauce recipe is inserted.

The resulting file looks like this:

CREAM PUFFS WITH CHOCOLATE SAUCE

2 OUNCES BUTTER
1/2 TEASPOON SUGAR
1/2 CUP FLOUR
1 PINCH OF SALT
2 EGGS
2 CUPS HEAVY CREAM, WHIPPED

CHOCOLATE SAUCE

12 OUNCES SEMI-SWEET CHOCOLATE
2 OUNCES UNSWEETENED CHOCOLATE
1 CUP HEAVY CREAM
2 OUNCES COGNAC

ALMOND COOKIES

3 - 18 IBM VM/SP System Product Editor User's Guide

Using Special Characters

Tab Characters

The following subcommands are discussed in this section:

SET IMAGE
SET TABS
QUERY TABS

The SET IMAGE subcommand controls how special characters, once entered on an
input line, are going to be represented in a file. The special characters affected by
the SETJMAGE subcommand are:

• tab characters (X'05')

• backspace characters (X'16')

The format of the SET IMAGE subcommand is:

SET IMAGE ON
OFF
CANON

The important thing to remember about tab settings is that there are two kinds:
physical and logical.

Physical tab settings are set manually on the typewriter; each time you press the
TAB key, the type ball moves to the column you set up as the physical tab stop.

Logical tab settings indicate the column positions where fields within a record
begin. They are defined by the SET TABS subcommand, whose format is:

SET TABS n1 n2 n3 ...

where n1. .. represents the column numbers for the logical tab settings.

These logical tab settings do not necessarily correspond to the physical tab settings.

How the data is entered in the file when you press the TAB key depends on whether
the SET IMAGE subcommand has been issued with ON or OFF as the operand. (SET

IMAGE ON is the initial setting for all ftletypes except SCRIPT.)

If SET IMAG E ON is in effect when you press the TAB key, the logical tab settings
determine how the data will be entered in the file. The editor replaces the tab
characters with an appropriate number of blanks, starting at the column where you
pressed the TAB key, and ending at the last column before the next logical tab
setting. The next character entered after the tab becomes the first character of the
next field.

For example, if you enter:

SET TABS 1 15

and then enter a line that begins with a tab character, the first data character
following the tab is written into the file in column 15, regardless of the physical tab
stop on the terminal.

If SET IMAGE OFF is in effect, a tab character is inserted in the record, just as any
other data character is inserted. No blanks are inserted.

If you want to insert a tab character (X'05') into a record and SET IMAGE ON is in
effect, you can issue a SET IMAGE OFF subcommand before entering the line, and
then use the TAB key as a character key. Pressing the TAB key causes a tab charac­
ter to be inserted in a line.

Chapter 3: An XEDIT Sub~et: Text Processing on a Typewriter Terminal 3 - 19

Setting Tabs

Backspace Characters

When you create a file, default logical tab settings are in effect; therefore, you do
not need to set them. To determine the default tab settings for a particular filetype,
you can use the following subcommand:

QUERY TABS

If you want to change the default tab settings, you can use the SET TABS subcom­
mand. Then, regardless of what physical tab stops have been set up on your
terminal, when you press the TAB key with SET IMAGE ON in effect, the data you
enter is spaced to the columns you defmed.

Note: When the INPUT subcommand is used to enter one line, the specified line is placed in the file
starting in the first tab column defined by the SET TABS subcommand. For example, if you enter:

SET TABS 5 10 15 20

and then enter an input line:

INPUT This is the input line

columns 1,2,3, and 4 contain blanks; the text begins in column 5.

Therefore, make sure that the first number specified in the SET TABS subcommand is the column in
which you want the data to begin.

If you use backspaces and underscores in your file, you should issue SET IMAGE

OFF or SET IMAGE CANON. SET IMAGE CANON is the initial setting for SCRIPT files.

SET IMAGE OFF means that backspace characters (as well as tab characters) are left
as they are entered.

SET IMAGE CANON means that regardless of how the characters are typed in
(characters, backspaces, underscores), the editor orders the characters in the ftle as:
character - backspace - underscore, character - backspace - underscore, and so
forth. If, for example, you want an input line to look like this:

ABC

You could enter it as:

ABC, 3 backspaces, 3 underscores

- or -

3 underscores, 3 backspaces, ABC

A typewriter types out the line in the following order:

A, backspace, underscore
B, backspace, underscore
C, backspace, underscore

which results in:

ABC

3 - 20 IBM VM/SP System Product Editor User's Guide

If you need to modify a line that has backspaces, and you do not want to rek,ey all
of the characters, you can use the ALTER subcommand to alter all of the backspac­
es to some other character. The following sequence shows how you can delete all
of the backspace characters in a line:

AAAAA

ALTER 16 + 1 *
(alter all X'16's to +'s in this line)

+A +A +A +A +A - - -
CHANGE/_+// 1 *

(change all occurrences of "_ +" to null in this line)

AAAAA

Chapter 3: An XEDIT Subset: Text Processing on a Typewriter Terminal 3 - 21

Summary of XED IT Subset
This table summarizes the subcommands that have been presented in this chapter.
When a subcommand can be abbreviated, its minimum abbreviation is shown in
uppercase letters.

Function Subcommand

To create or edit a file XEDIT (eMs command)

To enter data Input

To control case setting SET CASE

To display file lines Type

To move the line pointer Down
Up
TOP
Bottom

To move the column pointer CLocate
CFirst

To locate data CLocate

To make changes to the file Change
Clnsert
CDelete
CAppend

To recover deleted data RECover

To insert one line Input line

To delete lines ~ DELete

To replace a line Replace

To move lines MOve

To copy lines COpy

To repeat a subcommand =
To control special characters SET IMage

To define logical tabs SET TABS

To display tab settings Query TABS

To display the logical record length Query LRec/

To alter special character ALter

To end an editing session without saving QUIT
the changes

To save automatically after changing a SET AUtosave
specified number of lines

To save the changed file when you have 'FILE
finished working on it

To store lines in temporary file for PUT
subsequent imbed in another

To imbed a complete or a partial copy of GET
one file in another

3 - 22 IBM VM/SP System Product Editor User's Guide

What Is a Target?

Chapter 4: Using Targets

The ability to locate a line from a target is one of the editor's most versatile func­
tions.

Very simply, a target is a way that you identify a line to the editor. Targets are
used to identify lines for two basic reasons:

1. to change which line is the current line

2. to derme the scope of a subcommand's execution.

A target may be entered in the following ways:

• by itself

• as the operand of the LOCATE subcommand

• before any XEDIT subcommand

• as the operand(s) in many other XEDIT subcommands.

When a target is entered either by itself or as the operand of a LOCATE subcom­
mand, the editor makes the target line the new current line. Entered before a
subcommand, a target causes the editor to make the target line the new current line
before it executes the subcommand.

When a target is entered as the operand of various other XEDIT subcoDl1llands, it
dermes the scope of that subcommand's execution. Most XEDIT subcommands
begin their operation with the current line; the target operand is used to specify
where the ~peration is to end.

The following XEDIT subcommands have target operands:
ALTER
CHANGE
COMPRESS
COpy
COUNT
DELETE

DUPLICAT
EXPAND
HEXTYPE
LOWERCAS
MOVE
PUT/PUTD

REPEAT
SHIFT
SORT
STACK
TYPE
UPPERCAS

Refer to the publication VM / SP: System Product Editor Command and Macro
Reference for a complete description of the subcommand formats.

There are various ways to specify any given target; all achieve the same result.
How fancy you want to be depends on you. If you are a new user, you can specify
targets in a simple way. As you become more experienced, you can take advantage
of the flexibility that targets offer.

A target can be expressed in the following ways:

• an absolute line number

• a relative displacement from the current line

• a line name

• a simple string expression

• a complex string expression.

You can use one or all of the above kinds of targets during an editing session; you
can even use different kinds of target operands in the same subcommand.

Chapter4: Using Targets 4 - 1

U sing a T'arget to Change Which Line is Current

A Target Entered By Itself
Look at Figure 4-1. When entered on the command line, any of the targets listed
below would change the current line to the one shown in the bottom screen. (The
current line is the line above the scale.) All the targets shown below are equivalent;
which kind you use depends only on personal preference. How to use each kind of
target is discussed throughout this chapter; the purpose of Figure 4-1 is to show
you that there are various ways to identify any given line to the editor.

===> :11

(absolute line number)

===> +6

(relative displacement from the current line)

===> .CLAUDE

(line name previously assigned by SET POINT)

===> /egg/

(string)

The editor begins searching for the target with the line following the current line; if
the target line is located, it becomes the new current line.

Notice that in the file identification line at the top of the screen, the "LINE="

indicator shows that the current line has changed from line 5 (top screen) to line II
(bottom screen).

A Target as the Operand of a LOCA TE Subcommand
The targets listed above could have been specified as operands of the LOCATE

subcommand, like this:

===> LOCATE : 11
===> LOCATE +5
===> LOCATE . CLAUDE
===> LOCATE /egg/

You do not need to type "LOCATE" unless you want to. A target specified by itself
implies the LOCATE subcommand; the name "LOCATE" is optional.

A Target Preceding a Subcommand

.-

A target can be entered in the command line before any XEDIT subcommand. The
editor first makes the target line the new current line, and then executes the
subcommand. For example:

===> :10 ADD 5

The editor makes line 10 the new current line and then adds five lines to the fIle.

This method is equivalent to entering a target, pressing the ENTER key, entering the
subcommand, and pressing the ENTER key. Typing both ,the target and the sub­
command in the command line and pressing the ENTER key only once saves you
time.

4 - 2 IBM VM/SP System Product Editor User's Guide

Al V 132 TRUHC=132 SIZE=14 LINE=5 COLUMN=1

00000 * * * TOP OF FILE * * *
00001 THE PHOENIX
00002
00003 Deep in the study
00004 Of eugenics
00005 We find that fabled

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
00006 Fowl, the Phoenix.
00007 The wisest bird
00008 As ever was,
00009 Rejecting other
00010 Mas and Pas,
00011 It lays one egg,
00012 Not "ten or twelve,
00013 And when it's hatched,
00014 Out pops itselve.
===> /egg/

XED I T 1 FILE

SCRIPT Al V 132 TRUNC=132 SIZE=14 LINE=I! COLUMN=1

00002
00003 Deep in the study
00004 Of eugenics
00005 We find that fabled
00006 Fowl, the Phoenix.
00007 The wisest bird
00008 As ever was,
00009 Rejecting other
00010 Mas and Pas,
00011 It lays one egg,

I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
00012 Not ten or twelve,
00013 And when it's hatched,
00014 Out pops itselve.
00015 * * * END OF FILE * * *

Figure 4-1. Using a Target to Move the Line Pointer

XED I T 1 FILE

Chapter 4: Using Targets 4 - 3

Using a Target as a Subcommand Operand

Types of Targets

When a subcommand format s~ows that an operand may be specified as a target,
the target is usually used to tell the editor how many lines the subcommand is to
execute upon; in other words, it defmes the scope of that subcommand's operation.
For example, a format of the UPPERCAS subcommand is:

===> UPPERCAS target

This format means, "starting with the current line, translate all lowercase charac­
ters to uppercase, up to, but not including, the target line." The translation is not
executed on the target line itself. After execution, the last line translated becomes
the new current line.

Figure 4-2 is a before-and-after example of an UPPERCAS subcommand. When
entered on the command line, any of the following sub commands would effect the
translation shown in the bottom screen:

===> UPPERCAS :14

(absolute line number)

===> UPPERCAS +4

(relative displacement from current line)

===> UPPERCAS . STOP

(line name previously assigned)

===> UPPERCAS /son/

(string)

Let's take a closer look at each of the ways to specify targets.

A Target as an Absolute Line Number
You can display line numbers in the prefix area by issuing the following subcom­
mand:

===> SET NUMBER ON

An absolute line number is represented as a colon (:) followed by the line number,
for example, : 10.

The following examples illustrate targets specified as absolute line numbers:

===> :50

Make file line number 50 the new current line.

===> CHANGE /A/B/ :20

Beginning with the current line, change "A" to "B" in every line up to, but not
including, line 20.

Figure 4-3 is a before-and-after example of a COUNT subcommand whose target
operand is specified as an absolute line number. The COUNT subcommand (top
screen) means, "beginning with the current line, count how many times the string
'cone' appears in all lines up to but not including line 14." The string is counted
only if it appears in the fue exactly the way it is specified in the subcommand (in

.. - lowercase).

When the ENTER key is presse4 (bottom screen), notice that the last line searched
(line 13) becomes the new current line, and the editor displays the message, "2

OCCURRENCES", in the message line.

4 - 4 IBM VM/SP System Product Editor User's Guide

TARGET2 SCRIPT Al V 132 TRUNC=132 SIZE=17 LINE=10 COLUMN=l

00001 WINTER COMPLAINT
00002 Now when I have a cold
00003 I am eareful with mv cold,
00004 I consult my physician
00005 And I do as I am told.
00006 I muffle up my torso
00007 In woolly woolly garb,
00008 And I quaff great flagons
00009 Of sodium bicarb.
00010 I ,munch on aspirin,

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
00011 I lunch on water,
00012 And I wouldn't dream of osculating
00013 Anybody's daughter,
00014 And to anybody's son
00015 I wouldn't say howdy,
00016 For I am a sufferer
00017 Magna cum laude.
00018 * * * END OF FILE * * *

===> UPPERCASE/son/
XED I T 1 FILE

TARGET2 SCRIPT Al V 132 TRUNC=132 SIZE=17 LINE=13 COLUMN=l

00004 I consult my physician
00005 And I do as I am told.
00006 I muffle up my torso
00007 In woolly woolly garb,
00008 And I quaff great flagons
00009 Of sodium bicarb.
00010 I MUNCH ON ASPIRIN,
00011 I LUNCH ON WATER,
00012 AND I WOULDN'T DREAM OF OSCULATING
00013 ANYBODY'S DAUGHTER,

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
00014 And to anybody's son
00015 I wouldn't say howdy,
00016 For I am a sufferer
00017 Magna cum laude.
00018 * * * END OF FILE * * *

Figure 4-2. Using a Target as a Subcommand Operand

XED I T 1 FILE

Chapter 4: Using Targets 4 - 5

TARGET3 SCRIPT Al V 132 TRUNC=132 SIZE=16 LINE=8 COLUMN=1

.
00000* * * TOP OF FILE * * *
00001 TABLEAU AT TWILIGHT
00002 .
00003 I sit in the dusk, I am all alone.
00004 Enter a child and an ice cream cone.
00005 A parent is easily beguiled
00006 By sight of this coniferous child.
00007 The friendly embers warmer gleam,
00008 The cone begins to drip iee cream.

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
00009 Cones are composed of many a vitamin.
00010 My lap is not the place to bitamin.
00011 Although my raiment is not chinchilla,
00012 I flinch to see it become vanilla •••
00013 Exit child with remains of cone.
00014 I sit in the dusk. I am all alone,
00015 Muttering spells like an angry Druid,
00016 Alone, in the dusk, with the cleaning fluid.
00017 * * * END OF FILE * * *
===> COUNT /cone/ :14

XED I T 1 FILE

TARGET3 SCRIPT Al V 132 TRUNC=132 SIZE=16 LINE=13 COLUMN=l .
2 OCCURRENCES
00004 Enter a child and an iee eream cone.
00005 A parent is easily beguiled
00006 By sight of this coniferous child.
00007 The friendly embers warmer gleam,
00008 The eone begins to drip ice cream.
00009 Cones are composed of many a vitamin.
00010 My lap is not the place to bitamin.
00011 Although my raiment is not chinchilla,
00012 I flinch to see it become vanilla •••
00013 Exit child with remains of cone.

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
00014 I sit in the dusk. I am all alone,
00015 Muttering spells like ~n angry Druid,
00016 Alone, in the dusk, with the cleaning fluid.
00017 * * * END OF FILE * * *

.. "
Figure 4-3. A Target as an Absolute Line Number

4 - 6 IBM VM/SP System Product Editor User's Guide

XED I T 1 FILE

A Target as a Relative Displacement from the Current Line

A Target as a Line Name

A relative displacement from the current line is an integer that means the target is a
number of lines, either forward or backward, from the current line. The number
may be preceded by a plus or minus sign, which indicates.-.a forward (+) or back­
ward (-) displacement from the current line. If the sign is omitted, a plus (+) is
assumed.

A relative displacement may also be specified as an asterisk (*), which means the
TOP OF FILE (-*) or END OF FILE (+* or *) line. When an asterisk is specified as the
target operand of a subcommand, the subcommand executes to the end (or top) of
the ftIe.

Examples:

===> +3

The target is three logical lines down (toward the end of the ftIe) from the
current line.

===> -5

The target is five logical lines up (toward the top of the ftIe) from the current
line.

===> +*

The target is the null END OF FILE (or END OF RANGE) line.

===> -*
The target is the null TOP OF FILE (or TOP OF RANGE) line.

===> copy +3 :25

Copy three lines, starting with the current line, after line number 25.

In this example, two targets are specified. The first (+3) is a relative displace­
ment from the current line; the second is an absolute line number.

===> DELETE *
Delete all lines from the current line to the end of the ftIe.

Figure 4-4 is a before-and-after example of a target specified as a relative displace­
ment. The target typed in the command line, +9, means, "move the current line
nine logical lines forward, toward the end of the ftIe." Notice that line numbers do
not have to be displayed in the prefIX area to use this kind of target. However, the
"LINE=" indicator in the file identification area shows the old (LINE=lO) and new
(LINE=19) numbers of the current line.

Any line in a ftIe can be assigned a name of one to eight characters preceded by a
period (.), for example, .PART2.

You can use either the SET POINT subcommand or the .xxxx prefIX subcommand to
defme a name for a line. The SET POINT subcommand is used to defme a name of
one to eight characters, preceded by a period, to the current line. Using the.xxxx
prefIX subcommand allows you to define a name for any line in whose prefIX area
the name is entered; the name is one to four characters, preceded by a period.

Assigning a name to a line makes it unnecessary for you to look up its line number
or determine its relative displacement. Although the absolute line number of any
given line can change during an editing session as lines are added or deleted from
the file, a name stays with a line for the entire editing session.

Chapter 4: Using Targets 4 - 7

TARGET4 SCRIPT Al V 132 TRUNC=132 SIZE=28 LINE=lO COLUMN=1

=====
=====

THE PANTHER

THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T ~EEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DON'T ANTHER.

THE CANARY
1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •.•• 5 •••• + •••• 6 •••• + •••• 7 •••

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I BEG YOU, CHILDREN, DO NOT LAUGH
===> +9

XED I T 1 FILE

TARGET4 SCRIPT Al V 132 TRUNC=132 SIZE=28 LINE=19 COLUMN=1

THE CANARY

----- THE SONG OF CANARIES
----- NEVER VARIES.
----- AND WHEN' THEY'RE MOULTING
----- THEY'RE PRETTY REVOLTING.

----- THE GIRAFFE

I BEG YOU, CHILDREN, 00 NOT LAUGH
1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CANNOT ANSWER BACK.
HE HAS A TRUMPET FOR A THROAT t

AND CANNOT BLOW A SINGLE NOTE.
IT ISN'T THAT HIS VOICE HE HOARDS;
HE HASN'T ANY VOCAL CORDS.
I WISU FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.

.-
Figure 4-4. A Target as a Relative Displacement

4 - 8 IBM VM/SP System Product Editor User's Guide

XED I T 1 FILE

A line name is particularly useful if you plan to refer to a line many times during
an editing session. You need assign the name only once; the line can then be
referenced by its name at any time. It remains in effect only for the current editing
session.

Examples:

1. Using the SET POINT subcommand to name a line:

===> SET POINT .PART2

Assign the name ",PART2" to the current line.

===> TOP

Move the line pointer to the TOP OF FILE line.

===> CHANGE /A/B/ .PART2

Change "A" to "B" in every line, starting with the current line (in this
case, the TOP OF FILE line) up to the line named ".PART2".

2. Using the .xxxx prefIX subcommand to name a line:

To use the .xxxx prefIX subcommand, type a name preceded by a period in
the prefIX area of any line on the screen, as illustrated below:

===== data
===== data
===== data
.STOP This is the line I want to name.
===== data

You can name any line on the screen with the.xxxx prefIX subcommand; the
line does not have to be the current line, as it does with the SET POINT sub­
command. After the ENTER key is pressed the assigned name disappears from
the prefIX area and is replaced by equals signs or line numbers (depending on
whether SET NUMBER ON or SET NUMBER OFF is in effect). Then, you can
refer to the line by using its assigned name.

Examples of using lines that have been already named:

===> .STOP

Make the line named ".STOP" the new current line.

===> MOVE 1 .STOP

Move the current line after the line named ".STOP".

Note: After a name is assigned toa line, you must keep track of it. You can issue the subcommand
QUERY POINT to display the name of the current line, or you can use QUERY POINT • to display
all names that have been dermed during the editing session.

Figure 4-5 is a before-and-after example of a DELETE subcommand that has its
target operand specified as a line name. The line that contains "THE PARSNIP" was
previously named ".STOP". The subcommand typed in the command line means,
"beginning with the current line, delete lines up to but not including the line that
has been assigned the name ',STOP'." .

A Target as a Simple String Expression
A target can be specified as one or more characters, that is, a string, contained in a
ftle line. The editor looks for the string, making the frrst line that contains it the
target line.

Chapter 4: Using Targets 4 - 9

TARGETS SCRIPT Al V 132 TRUNC=132 SIZE=13 LINE=1 COLUMN=!

=====
* * * TOP OF FILE * * *
CELERY
1 ••• + •••• 1 •••• + •••• 2 •••• + ••• ~3 •••• + •••• 4 •••• + •••• S •••• + •••• 6 •••• + •••• 7 •••

=====
CELERY, RAW,
DEVELOPS THE JAW,
BUT CELERY, STEWED,
IS MORE QUIETLY CHEWED.

THE PARSNIP

THE PARSNIP, CHILDREN, I REPEAT,
===> DELETE .STOP

XED I T 1 FILE

TARGETS SCRIPT Al V 132 TRUNC=132 SIZE=6 LINE=1 COLUMN=1
7 LINES DELETED

----- * * * TOP OF FILE * * *
----- THE PARSNIP

1 ••• + •••. 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••

----- THE PARSNIP, CHILDREN, I REPEAT,
----- IS SIMPLY AN ANEMIC BEET.
----- SOME PEOPLE CALL THE PARSNIP EDIBLE;
----- MYSELF, I FIND THIS CLAIM INCREDIBLE.
----- * * * END OF FILE * * *

XED I T 1 FILE

.-
Figure 4-5. A Target as a Line N-ame

4 - 10 IBM VM/SP System Product Editor User's Guide

Specifying a Search Direction

If the string target is specified alone or as the operand of a LOCATE subcommand,
the line containing the string becomes the new current line. If the string target is an
operand of one of the other XEDIT subcommands, the line that contains the string
determines the scope of the subcommand's execution. _

The string must be enclosed in delimiters, which can be any character that does not
appear in the string itself.

For example, the following is a string target, entered alone on the command line:

===> /whatever/

This means, "beginning with the line following the current line, search for the
string 'whatever' and make the line that contains it the new current line."

The following is an example of a string target used as the operand of a subcom­
mand:

===> DELETE /whatever/

This means, "delete all lines from the current line up to, but not including, the line
that contains 'whatever' ".

The simplest way to specify a string target, as shown above, is one or more charac­
ters surrounded by delimiters. You can also:

• determine the direction of the search
• search for a line that does not contain a given string
• search for any of several strings.

By typing a plus (+) or minus (-) sign before a string target, you can tell the editor
to search for a string in either a forward or backward direction from the current
line.

A plus sign in front of a string target means that the search for the string starts at
the line following the current line in a forward direction, toward the end of the ftle.
If the string is found, the line that contains it becomes the new current line. If a
sign is omitted, a plus is assumed. The following targets are equivalent:

===> /whatever/ and ===> +/whatever/

You can also specify that the search occur backward in the ftle by typing a minus
sign before the string target.

F or example:

===> -/whatever/

means, "search backward in the file, starting with the line preceding the current
line, and make the line containing the string the new current line."

Let's look at some more examples:

===> DELETE /rosebudl

Delete lines beginning with the current line, up to but not including the line
containing "rosebud".

===> COpy /daisy/ -/petunia/

Copy lines starting with the current line, up to the line containing "daisy",
and insert them after the line containing ~~petunia", which is located in a
backward direction from the current line.

===> PUT /Chapter2/

Put lines from the current line, up to the line that contains "Chapter2".

Chapter 4: Using Targets 4 - 11

Using a "NOT" Symbol (.,)

Using an "OR" Symbol (I>

You can precede any string target with a NOT symbol (.,), which means that the
. target is a line that does not contain the specified string. For example:

===> .,/Part Number/

Beginning with the line following the current line, locate a line that does not
contain "Part Number" and make it the new current line.

===> MOVE 1 .,/Part Number/

Move the current line after the frrst line that does not contain "Part
Number".

A string target can comprise up to four strings, separated by an "OR" symbol, each
enclosed in delimiters. The editor searches the file one line at a time. The frrst line
that contains one of the specified strings becomes the current line. For example:

If a fue contains the following lines:

=====
=====
=====
=====

=====

apples
peaches
plums
pears
oranges

The following subcommand:

===> Locate /oranges/I/pears/I/peaches/

will make the following line current:

===== peaches

A Summary of Simple String Targets

.-

You've seen how to specify a target as a single string, enclosed in delimiters.
You've also seen how a plus or minus sign, a NOT symbol, and an OR symbol can
be used to further defme a string.

In addition, all of these features can be combined to defme a single target, that is, a
single string, enclosed in delimiters, can be preceded by a plus or minus sign and a
NOT symbol, and up to four strings, separated by OR symbols, can be specified!

Furthermore, if the subcommand SET HEX ON is in effect, a string may be specified
in hexadecimal notation, for example, /X'C3D4E2' /.

The following ·chart summarizes the format of a simple string expression:

[+1-] [.]/string1[/1 [.]/string2/] ...
1 2 345

The search direction is toward the end of the file (+) or toward the top of the
file (-). If the sign is omitted, a plus (+) is assumed.

2 "NOT" symbol (locate something that is not the specified string)

3 Character (or hexadecimal) string, enclosed in delimiters

4 - 12 IBM VM/SP System Product Editor User's Guide

4 "OR" symbol (vertical oar) (locate one string or another)

5 Up to four strings may be specified.

Examples:

===> /horse/

searches downward in the file, beginning with the current line, for the fust
line that contains "horse" and makes it the current line.

===> ..,/house/

searches downward in the rtIe for the fust line that does net contain "hou~~"
and makes it the current line.

===> /horse/I..,/house/

searches downward in the file for the fust line that contains "horse" and/or
does not contain "house."

===> -/X'C1'/I/X'C2'/

searches upward for the first line containing either or both of the strings
specified here in hexadecimal (if SET HEX ON has been issued).

If SET HEX ON is in effect, the editor locates a line containing "A" or "B". If
SET HEX OFF is in effect, the editor locates a line containing "X'CI'" or "X'C2",.

Figure 4-6 is a before-and-after example of a target specified as a simple string
expression. The target typed in the (lDIDland line means, "beginning with the line
following the current line, search for a line that either does not contain
'Experience' or for a line that does contain 'experience', and make it the new
current line."

A Target as a Complex String Expression
A complex string expression has the same format as a simple string expression (see
above), but any string can be expressed as a "complex string", which is a string
associated with one or more of the following SET subcommand options:

SET ARBCHAR
allows you to specify only the beginning and end of a string, -lsmg an arbi­
trary character to represent all characters in the middle.

SET CASE

allows you to specify whether or not the difference between uppercase and
lowercase is to be significant in locating a string target.

SET SPAN

allows you to specify if a string target must be included in one ftIe line or if it
may span a specified number of lines.

SET VARBLANK

allows you to control whether or not the number of blank characters between
two words is significant in a target search.

You can use one or more of these options to suit your individual text processing
needs. Each of the options is assigned an initial setting by the editor. You can alter
the setting one or more times during an editing session by issuing the appropriate
SET subcommand. (See the publication VM / SP: System Product Editor Command
and Macro Reference for a complete description of these SET subcommand op­
tions.)

Chapter 4: Using Targets 4 - 13

Al V 132 TRUNC=132 SIZE=8 LINE=O COLUMN=1

===== * * * TOP OF FILE * * *
1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •.•• + •••• 6 •••• + •••• 7 •••

----- Experience is a futile teacher,
----- Experience is a prosy preacher,
----- Experience is a fruit tree fruitless,
----- Experience is a shoe-tree bootless •••
----- For sterile wearience and drearience,
----- Depend, my boy, upon experience.
----- I'd trade my lake of experience
----- For just one drop of common sense.

* * * END OF FILE * * *
===> ~/Experience/l/experiencel

XED I T 1 FILE

Al V 132 TRUNC=132 SIZE=8 LINE=5 COLUMN=1

----- * * * TOP OF FILE * * *
----- Experience is a futile teacher,
----- Experience is a prosy preacher.
----- Experience is a fruit tree fruitless.
----- Experience is a shoe-tree bootless •••
----- For sterile wearience and drearience.

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
----- Depend, my boy. upon experience.
----- I'd trade my lake of experience
----- For just one drop of common sense.
===== * * * END OF FILE * * *

XED I T 1 FILE

..
Figure 4-6. A Target as a Simple String Expression

4 - 14 IBM VM/SP System Product Editor User's Guide

Using a Target with SET ARBCHAR
When SET ARB CHAR ON is in effect, you can use a dollar sign ($), which is the
default arbitrary character, to represent all characters between the beginning and
end of a string target.

-

Examples:

===> /air$plane/

The beginning of the string is "air"; the end of the string is "plane". The dollar
sign is the arbitrary character and represents any characters between "air" and
"plane". This string target causes the editor to locate either of the following ftIe
lines, and makes current whichever line comes first:

===== The airplane landed.
===== Cold air surrounded the plane.

Using a Target with SET CASE
You can specify whether the editor is to respect or ignore the difference between
uppercase and lowercase representations of alphabetic letters by using the SET

CASE subcommand.

The following subcommand tells the editor that uppercase and lowercase represen­
tations of the same letter do not match:

===> SET CASE MIXED RESPECT

F or example, if the file contains the following line:

===== The Text Editor

The following string target will not locate that line:

===> /the text editor/

On the other hand, the following subcommand tells the editor to ignore the differ­
ence between uppercase and lowercase:

===> SET CASE MIXED IGNORE

With this setup, in the example above, the line would be located.

Using a Target with SET SPAN
Usually, a string must be included in a single file line in order to be located. You
can use the SET SPAN subcommand to specify that a string target may span a
specified number of lines and still be located. The line that contains the beginning
of the string becomes the new current line.

In a text file, like a SCRIPT ftIe, a blank separates each ftIe line. The following
subcommand tells the editor that a string target may span two lines, separated from
each other by a blank:

===> SET SPAN ON BLANK 2

The string target

===> /twigs to probe/

would locate in the file:

===== Woodpecker finches of the Galapagos Islands use twigs
===== to probe holes in tree trunks for edible insects.

The string "twigs to probe" begins on one line and ends on the next.

Chapter 4: Using Targets 4 - 15

Using a Target with SET VARBLANK

Combining the SET Options

. -

The SET VARBLANK subcommand can be used to control whether or not the
number of blank characters between two words is significant in a target search.

SET v ARB LANK ON means that the number of blanks between two words can vary;
the number of intervening blanks specified in a string target does not have to be
equal to the number in the rtIe.

For example:

===> /the house/

would locate either of the following lines in the rtIe:

---------- the house
===== the house

If SET VARBLANK OFF is in effect (the initial setting), the number of blanks between
two words is significant in a target search. In the above example, only the second
line would be located.

You can tailor the SET options, ARBCHAR, CASE, SPAN, and VARBLANK to meet
your particular text processing needs. For example, with SET ARBCHAR ON, SET

CASE MIXED IGNORE, SET SPAN ON BLANK 2, and SET VARBLANK ON, you can:

• specify only the beginning and end of a string target

• locate a string whether it is in uppercase or lowercase

• allow the string target to locate a string that starts on one line and ends on
another

• disregard the number of intervening of blanks between two words.

Figure 4-7 is a before-and-after example of using a target specified as a complex
string expression.

The following subcommands were issued:

===> SET ARBCHAR ON $
===> SET CASE MIXED IGNORE
===> SET SPAN ON BLANK 2

The string target typed in the command line locates the line shown in the bottom
screen. The ARBCHAR option allows the beginning and end to be specified; the
CASE option allows the string to be specified in lowercase even though it appears in
the file in both uppercase and lowercase; the SPAN option allows the beginning and
end of the string to be located on two consecutive lines .

4 - 16 IBM VM/SP, System Product Editor User's Guide

TARGET7 SCRIPT Al V 132 TRUNC=132 SIZE=19 LINE=10 COLUMN=l

HORE ABOUT PEOPLE

----- When people aren't asking Cfuestions
----- They're making suggestions
----- And when they're not doing one of those
----- They're either looking over your shoulder or stepping on your toes
----- And then as if that weren't enough to annoy you
----- They employ you.
----- Anybody at leisure
----- Incurs everybody's displeasure.

I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
----- It seems to be very irking
----- To people at work to see other people not working.
----- So they tell you that work is wonderful medicine,
----- Just look at Firestone and Ford and Edison,
----- And they lecture you till they're out of breath or something
----- And then if you don't succumb they starve you to death or something.
----- All of which results in a nasty quirk:

That if you don't want to work you have to work to earn enough money
so that you won't have to work.

===> +/fire$breathl
XED I T 1 FILE

TARGET7 SCRIPT A1 V 132 TRUNC=132 SIZE=19 LINE=14 COLUMN=1

And when they're not doing one of those
They're either looking over your shoulder or stepping on your toes

----- And then as if that weren't enough to annoy you
----- They employ you.
----- Anybody at leisure
----- Incurs everybody's displeasure.
----- It seems to be very irking
----- To people at work to see other people not working.
----- So they tell you that work is wonderful medicine,
----- Just look at Firestone and Ford and Edison,

1 ••• + •••• 1 •.•• + •••• 2 .••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •.•• + •••• 7 •••
----- And they lecture you till they're out of ,breath or something
----- And then if you don't succumb they starve you to death or something.
----- All of which results in a nasty quirk:
----- That if you don't want to work you have to work to earn enough.money
----- so that you won't have to work.
----- * * * END OF FILE * * *

XED I T 1 FILE

Figure 4-7. A Target as a Complex String Expression

Chapter 4: Using Targets 4- 17

Using Column-Targets
The targets discussed so far effect line pointer movement, that is, if the editor
locates the target, the line pointer is moved. However, the column pointer is not
moved. Furthermore, if a target is expressed as a string, only the fust occurrence of
the string is located in a line.

The CLOCATE subcommand operates on a specialized operand called a column­
target. This subcommand is used to locate all occurrences of a string throughout a
ftIe and to move the column pointer. The format of the CLOCATE subcommand is
as follows:

===> CLOCATE column-target

where the column-target can be expressed as an absolute column number, a
relative displacement from the current column, or a string expression.

The following examples show the various ways to express a column-target. Notice
how the column pointer moves after each subcommand is executed.

===== John Keats studied medicine and practiced as an apothecary.
I ... + •.•• 1 •••• + •••. 2 •••• + •••. 3 •.•. + •••• 4 •••• + •••• 5 •••• + •••• 6 ••••

===> CLOCATE :6

(absolute column number)

===== John Keats studied medicine and practiced as an apothecary.
< ... +1 .•• 1 •••• + ..•. 2 •••• + ..•. 3 •••• + •••• 4 •••• + .••• 5 •••• + 6 ••••

===== James Joyce was a school teacher in Dublin.
I ... + •.•• 1 •••• + .••. 2 •••. + .••• 3 .••. + •••• 4 •••• + •••• 5 •••• + •••• 6 ••••

===> CLOCATE +6

(relative column number)

===== James Joyce was a school teacher in Dublin.
< ... +.1 •• 1 •••• + .•.. 2 ••.. + 3 •..• + •••• 4 .••• + •••• 5 •••• + •••• 6 ••••

===== Herman Melville worked as a customs inspector in N.Y.C.
I ... t 1 •••• + .••. 2 ..•• + .•.. 3 •••• + ••.• 4 .••• + •••• 5 •.•• + 6 •••.

===> CLOCATE /customs/

===== Herman Melville worked as a customs inspector in N.Y.C.
< ... + •••• 1 •••• + •••. 2 .••• + ••. 13 •••• + •••• 4 .••• + •••• 5 •••• + •••• 6 •••.

===== Charles Dickens served as a law clerk and was a reporter.
I . . . +. • • • 1 ',;:.' • • +. • • . 2 • • • • +. • • • 3 • • • . +. • . . 4. • • • +. • • • 5 • • • • +. • • • 6. • • •

===> CLOCATE /r~porter/I/clerk/
---------- Charles Dickens served as a law clerk and was a reporter.

< ... + •••• 1 •••• + •••. 2 •••• + •••• 3 •••• + •••• 4 •••• + ••• 15 •••• + •••• 6 ••••

4-18 IBM VM/SP System Product Editor Users Guide

The CLOCA TE subcommand scans the fue, starting with the column pointer in the
current line, for the specified column target, and moves the column pointer to the
target, ifit is located. In addition, the line pointer is moved (if necessary), so that
CLOCA TE can be used successively to locate all occurrence~.:"of a string in a fue.

CLOCA TE is also necessary because various subcommands perform their operations
based on the position of the column pointer. The CLOCATE subcommand is frrst
used to position the column pointer; then one of the following subcommands can
be used:

CAPPEND

Appends text to the end of the current line, and moves the column pointer
under the appended text.

CDELETE

Deletes one or more characters from the current line, starting at the column
pointer, up to a column-target.

CFIRST
Moves the column pointer to the beginning of the line.

CINSERT

Inserts character(s) in a line, starting at the column pointer.

CLAST

Moves the column pointer to the end of the line.

CLOCATE

Moves the column pointer to a specified column-target.

COVERLAY

Replaces characters in the current line, starting at the column pointer; blanks
in the operand do not overlay characters in the fue line.

CREPLACE

Replaces characters in the current line, starting at the column pointer;
characters can be replaced with blanks.

These subcommands are discussed in detail in the publication VM /SP: System
Product Editor Command and Macro Reference. Column-targets are discussed in
that book in the "Usage Notes" section of the CLOCATE subcommand.

The following examples illustrate how to use the CLOCATE and CDELETE subcom­
mands to delete a word:

===== If anything can go wrong, it will.
I ... + .•.. 1 •••• + ..•. 2 •••• + 3 •••• + 4 •••• + 5 •••• + 6 ••••

===> CLOCATE I wrongl

(Move column pointer under first character of string to be deleted.)

===== If anything can go wrong, it will.
< ... + .•.. 1 .••• + ... 12 •••• + 3 ..•. + 4 ..•. + 5 .•.. + 6 ..•.

===> CDELETE 1,1

(Delete from column pointer up to the comma.)

===== If anything can go, it will.
< ... + 1 •••• + •.. 12 •••• + 3 .••. + 4 •.•• + 5 ••.• + 6 .•.•

Chapter 4: Using Targets 4 - 19

4 - 20 IBM VM/SP System Product Editor User's Guide

Chapter 5: Editing Multiple Files

The XEDIT Subcommand
When you issue the CMS command XEDIT, a copy of the specified fue is brought
into virtual storage, where it remains until you issue a FILE or QUIT subcommand.
In other words, the XEDIT command brings one fue at a time into storage. By
entering the XEDIT subcommand during an editing session, you can bring more
than one fue into virtual storage at a time.

The format of the XEDIT subcommand is identical to that of the XEDIT command
and is as follows:

===> Xedit [fn[ft[fm]]][(options ... [)]]

For a complete description of the XEDIT subcommand operands, refer to the
publication VM/SP: System Product Editor Command and Macro Reference.

Creating a Ring of Files in Storage
Multiple fues are kept in virtual storage in a "ring." Each time you issue an XEDIT

subcommand with a new fueid, a fue is added to the ring and becomes the current
fue, which is the fue that is displayed.

A fue remains in the ring until a FILE or QUIT subcommand is issued for that fue;
then the preceding fue in the ring is displayed. The number of fues you can edit
simultaneously is limited only by your virtual storage size.

Figure 5-1 illustrates a ring of fues in storage.

Figure 5-1. A Ring of Files in Storage

By issuing the following subcommand, you can display the number of files in the
ring and the fue identification line of each fue:

===> QUERY RING

Editing the Files in the Ring
The order in which you can edit the fues in the ring depends on how you specify
the XEDIT subcommand:

• If you issue the XEDIT subcommand without operands, the next fue in the
ring appears on the screen. (See Figure 5-2, Part 1.) Therefore, a series of
XEDIT subcommands issued without operands allows you to switch from the
first fue to the second, the second to the third, and so forth, all the way
around the rillg and back to the fust fue.

• You can alter this sequence by issuing the XEDIT subcommand with the fueid
of a file in the ring. The specified fue becomes the current fue and appears on

Chapter 5: Editing Multiple Files 5 - 1

the screen, regardless of its relative position in the ring. (See Figure 5-2, Part
2.)

• If you issue an XEDIT subcommand with a ftleid of a ftle that is not already in
the ring, that ftle is added to the ring just after the current ftle and is dis­
played. (See Figure 5-2, Part 3.)

• If the XEDIT subcommand is issued with a ftleid and the ftle does not exist,
that ftle is created, added to the ring, and displayed.

Current File (*) XEDIT Subcommand New Current File (*)

===> XEDIT

===> XEDIT FILES

===> XEDIT FILED

Figure 5-2. Editing Files in the Ring

Ending an Editing Session
When you are fInished editing a particular ftle, you can issue a FILE or QUIT

subcommand for that ftle. The ftle is removed from the ring, and the previous ftle
in the ring is displayed.

To end the editing session for all of the ftles and return control to CMS, use the
CANCEL· macro, whose format is as follows:

===> CANCEL

Issuing the CANCEL macro is equivalent to issuing a QUIT subcommand for each
ftle in the ring. If any of the ftles were modified, the usual warning message is
displayed for each of those flIes:

FILE HAS BEEN CHANGED. USE QQUIT TO QUIT ANYWAY.

5 - 2 IBM VM/SP System Product Editor User's Guide

You can then issue either QQUIT or FILE.

If none of the files being canceled were modified, control is immediately returned
toCMS.

Multiple Logical Screens
Up until now, we have been discussing editing multiple fIles with one fue, the
current fue in the ring, displayed at a time. By using the SET SCREEN subcommand,
you can divide the physical screen into multiple logical screens. You can display a
different fue from the ring in each logical screen, or you can display multiple views
of the same fue.

Each logical screen looks and functions like the physical screen. Each one be­
comes, in effect, an independent terminal with its own fue identification line,
command line, message line, and status area.

SET SCREEN Subcommand
The format of the SET SCREEN subcommand is:

I

[SET] ISCReen n
. . Sizen1 [n2] ...

where:
o

specifies the number of logical screens that the physical screen is to be divided
into. The logical screens are equal in size but must be at least five lines long.

(Remember that the editor uses four lines (if the scale is displayed), so that it is
possible to have a logical screen with only one data line. Therefore, certain
subcommands will have no effect. For example, the INPUT subcommand puts
you in input mode, but the input zone contains no lines. The FORWARD and
BACKWARD subcommands have no effect.)

0102 ...
specifies the number of lines for each logical screen, thus making it possible to
have logical screens of different sizes.

The initial setting of the SCREEN option is SCREEN SIZE n, where n is the physical
screen size.

To return to the initial setting, issue the following subcommand:

===> SET SCREEN 1

Multiple Views of the Same File
If only one fue is in virtual storage and you issue a SET SCREEN subcommand,
identical views of the fue appear on the screen.

Figure 5-3 is a before-and-after example of a SET SCREEN subcommand that
creates two views of the same file.

Chapter 5: Editing Multiple Files 5 - 3

Al V 132 TRUNC=132 SIZE=6 LINE=6 COLUMN=1

=====
=====

* * * TOP OF FILE * * *
THE OCTOPUS

TELL ME, 0 OCTOPUS, I BEGS,
IS THOSE THINGS ARMS, OR IS THEY LEGS?
I MARVEL AT THEE, OCTOPUS:
IF I WERE THOU, I'D CALL ME US.
I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
* * * END OF FILE * * *

===> SET SCREEN 2
XED I T 1 FILE

•

SCRIPT Al V 132 TRUNC=132 SIZE=6 LINE=6 COLUMN=l

TELL ME, 0 OCTOPUS, I BEGS,
----- IS THOSE THINGS ARMS, OR IS THEY LEGS?
----- I MARVEL AT THEE, OCTOPUS:
----- IF I WERE THOU, I'D CALL ME US.

I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
----- * * * END OF FILE * * *

===>
XED I T 1 FILE

NASH SCRIPT Al V 132 TRUNC=132 SIZE=6 LINE=6 COLUMN=l

----- TELL ME, 0 OCTOPUS, I BEGS,
===== IS THOSE THINGS ARMS, OR IS THEY LEGS?
----- I MARVEL AT THEE, OCTOPUS:
----- IF I WERE THOU, I'D CALL ME US.

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
* * * END OF FILE * * *

XED I T 1 FILE

Figure 5-3. Multiple Views of the Same File

5 - 4 IBM VM/SP System Product Editor User's Guide

Making Changes From Multiple Views of the Same File

Order of Processing

You can edit a file by typing over the data in any of the views, and by entering
subcommands in any of the command lines and prefIX areas. Changes made to the
fIle from one logical screen are reflected immediately in aU screens.

However, subcommands that control the screen display, for example, FORWARD,

affect only that screen from which t~ey were issued. Therefore, you can see
different parts of a file at the same time.

Similarly, PF keys assigned to screen movement subcommands are executed only
on the view that contains the cursor when the PF key is pressed.

You can type over the data, type subcommands on the command line, and type
prefIX subcommands in the prefIX area of all views of a fIle before pressing the
ENTER key.

The editor processes requests typed on different screens in the following order:

1. Changes typed over the data in all the views are made first, starting at the top
view.

2. PrefIX subcommands are executed in all views, starting at the top view.

You can type related prefIX subcommands in different logical screens, even
when they display different parts of the fIle. For example, you can type a "C"
(copy) prefIX subcommand in one view, and a "P" (preceding) prefIX subcom­
mand in the next.

3. Subcommands typed on the command lines are executed, starting at the top
view.

Multiple Views of Different Files
When multiple files are being edited and you issue a SET SCREEN subcommand
that increases the number of logical screens, the additional screens are immediately
filled with files selected from the ring.

Figure 5-4 illustrates how additional logical screens are filled with fIles from the
ring. The ring of fIles contains flIes named FILEt, FILE2, and FILE3; the current fIle
is FILEl. The SET SCREEN subcommand shown in the top screen causes the rest of
the fIles to be displayed.

If a SET SCREEN subcommand decreases the number of logical screens, fIles are
displayed as long as logical screens are available, starting at the top of the screen.
Those fIles for which logical screens are not available are removed from the
display.

Issuing an XEDIT subcommand from one of multiple screens is just like issuing it
when there is only one screen. It does not affect the other logical screens.

Issued without a fIlename, the XEDIT subcommand selects the next fIle in the ring;
issued with a fIleid, it creates a fIle, adds a fIle to the ring, or selects a fIle that is
already in the ring. In all cases, the fIle is displayed only on the screen from which
the XEDIT subcommand was issued.

The status area of all the screens displays the number of fIles in virtual storage, not
the number of screens.

Chapter 5: Editing Multiple Files 5 - 5

Al V 132 TRUNC=132 SIZE=7 LINE=O COLUMN=l

* * * TOP OF FILE * * *
1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 ••••••••• 7 •••
THE PANTHER
THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DON'T ANTHER.
* * * END OF FILE * * *

===> SET SCREEN 3
XED I T

SCRIPT Al V 132 TRUNC=132 SIZE=7 LINE=O COLUMN=1

* * * TOP OF FILE * * *
I ... + •••• 1 •••• + •••• ~ •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••

----- THE PANTHER
===>

FILE2
XED I T 3 FILES

SCRIPT Al V 132 TRUNC=132 SIZE=5 LINE=O COLUMN=l

----- * * * TOP OF FILE * * *
1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••

----- THE CANARY
===>

FILE3
XED I T 3 FILES

SCRIPT Al V 132 TRUNC=132 SIZE=11 LINE=O COLUMN=1

----- * * * TOP OF FILE * * *
1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
THE GIRAFFE

XED I T

Figure 5-4. Multiple Views of Different Files

5 - 6 IBM VM/SP System Product Editor User's Guide

Prefix Area

Command Line

Current Line

Scale

Tab Line

Chapter 6: Tailoring the Screen

By using the following SET subcommand options, you call tailor the full screen
layout to suit your preferences:

SET PREFIX
SETCMDLINE
SETCURLINE
SET SCALE
SET TAB LINE

For a complete description of these options, refer to the SET subcommand descrip­
tion in the publication VM/SP: System Product Editor Command and Macro
Reference.

The areas of the screen that can be changed are discussed below.

Use the SET PREFIX subcommand to control the display of the prefIX area. You can
display the prefIX area on the left or the right side of the screen, or you can remove
the prefIX area from the display. Initially, the prefIX area is displayed on the left.

Use the SET CMDLINE subcommand to move the command line to the same line as
the message line (the second line of the screen) or to the last line of the screen.
Initially, the command line is the last two lines of the screen. If you move the
command line to the message line or the last line, the status area is not displayed.

Use the SET CURLINE subcommand to defme a specified line of the screen as the
current line. Initially, the current line is in the middle of the screen.

Remember that the editor uses the fIrst two lines of the screen, for the fde identifi­
cation line and the message line. Therefore, if you want the current line to be the
first available screen line, use the subcommand SET CURLINE ON 3.

One reason you might want to change the position of the current line is to vary the
size of the input zone. When you issue an INPUT subcommand, the editor provides
an input zone between the current line and the command line. To get a larger
input zone, move the current line higher on the screen; to get a smaller input zone,
move it lower on the screen.

Use the SET SCALE subcommand to move the scale to a specified line, or to remove
the scale from the display. Initially, the scale is positioned under the current line.
If you move the current line, you probably also will want to move the scale.

Use the SETTABLINE subcommand to display, on a specified line, a "T" in every
tab column, according to the current tab settings (as defmed by the SET TABS

subcommand). Initially, a tab line is not displayed. If you change the tab settings
during an editing session, the tab line will reflect that change, that is, the "T"s will
be placed in the new tab columns.

Figures 6-1 through 6-5 illustrate how the subcomrnands discussed above are used
to tailor the screen. Notice how the screen changes when the subcommand shown
in the command line of each screen is executed.

Chapter 6: Tailoring the Screen 6 - I

SCRIPT Al V 132 TRUNC=132 SIZE=28 lINE=9 COLUMN=1

* * * TOP OF FILE * * *
THE PANTHER

===== THE PANTHER IS LIKE A LEOPARD,
===== EXCEPT IT HASN'T B~~N PEPPERED.
----- SHOULD YOU BEHOLD .\ L:lANTHER CROUCH,
----- PREPARE TO SAY OUCH.
----- BETTER YET, IF CALLED BY A PANTHER,
----- DON'T ANTHER.

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
----- THE CANARY'

----- THE SONG OF CANARIES
----- NEVER VARIES.
----- AND WHEN THEY'RE MOULTING
----- THEY'RE PRETTY REVOLTING.

THE GIRAFFE

===> SET PREFIX ON RIGHT
XED I T 1 FILE

Al V 132 TRUNC=132 SIZE=28 LINE=9 COLUMN=1

* * *

THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DON'T ANTHER.

J ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
THE CANARY -----

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

Figure 6-1. The SET PREFIX·Subcommand- "Before" and "Mter"

6 - 2 IBM VM/SP System Product Editor User's Guide

XED I T 1 FILE

SCRIPT Al V 132 TRUNC=132 SIZE=28 LINE=9 COLUMN=1

* * * TOP OF FILE * * *
THE PANTHER

THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DON'T ANTHER.

1 ••• + •••• 1 .••• + •••• 2 ..•• + •••• 3 .••. + •••• 4 .••• + •••• 5 ..•• + •••• 6 •••• + •••• 7 •••
THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

===> SET CMDLINE TOP

=====
=====
=====
=====
:====

=====
=====
=====
==:==
=====
====="
=====
=====
=====
=====

XED I T 1 FILE

SCRIPT Al 'V 132 TRUNC=132 SIZE=28 LINE=9 COLUMN=1
===>
* * * TOP OF FILE * * *
THE PANTHER

THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DON'T ANTHER.

=====

=====

=====
=====
=====

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
THE CANARY =====

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.

Figure 6-2. The SET CMDLINE Subcommand - "Before" and "After"

=====
=====
=====
=====
=====

Chapter 6: Tailorin& the Screen 6 - 3

•

TAILOR SCRIPT Al V 132 TRUNC=132 SIZE=28 LINE=9 COLUMN=l
===> SET CUR LINE ON 3
* * * TOP OF FILE * * *
THE PANTHER

THE PANTHER IS LIKE A LEOPARD,
EXCEPT IT HASN'T BEEN PEPPERED.
SHOULD YOU BEHOLD A PANTHER CROUCH,
PREPARE TO SAY OUCH.
BETTER YET, IF CALLED BY A PANTHER,
DON'T ANTHER.

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
THE CANARY -----

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.

SCRIPT Al V 132 TRUNC=132 SIZE=28 LINE=9 COLUMN=l

THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
~ND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CANHuT ANSWER BACK.
HE HAS A TRUt1PET FOR A THROAT,
AND CANNOT BLOW A SINGLE NOTE.
l'r ISN'T THAT HIS VOICE HE HOARDS;
HE HASN'T ANY VOCAL CORDS.
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.
* * * END OF FILE * * *

Figure 6-3. The SET CURLIm Subcommand - "Before" and "After"

6 - 4 IBM VM/SP System Product Editor User's Guide

TAILOR SCRIPT A1 V 132 TRUNC=132 SIZE=28LINE=9 COLUMN=l
===> SET SCALE OFF

THE CANARY -----

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

=====

1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••
I BEG YOU, CHILDREN, DO NOT LAUGH -----
WHEN YOU SURVEY THE TALL GIRAFFE. -----
IT'S HARDLY SPORTING TO ATTACK -----
A BEAST THAT CANNOT ANSWER BACK. -----
HE HAS A TRUMPET FOR A THROAT, -----
AND CANNOT BLOW A SINGLE NOTE. -----
IT ISN'T THAT HIS VOICE HE HOARDS; -----
HE HASN'T ANY. VOCAL CORDS. -----
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.
* * * END OF FILE * * *

SCRIPT Al V 132 TRUNC=132 SIZE=28 LINE=9 COLUMN=l

THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CAHNOT ANSWER BACK.
HE HAS A TRUMPET FOR A THROAT,
AND CANNOT BLOW A SINGLE NOTE.
IT ISN'T THAT HIS VOICE HE HOARDS;
HE HASN'T ANY VOCAL CORDS.
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.
* * * END OF FILE * * *

Figure 6-4. The SET SCALE Subcommand - "Before" and "After"

Chapter 6: Tailoring the Screen 6 - 5

TAILOR SCRIPT Al V 132 TRUNC=132 SIZE=28 LINE=9 COLUMN=1
===> SET TAB LINE ON 4

THE CANARY

THE SONG OF CANARIES
NEVER VARIES.
AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

I BEG YOU, CHILDREN, DO NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CANNOT ANSWER BACK.
HE HAS A TRUMPET FOR A THROAT,
AND CANNOT BLOW A SINGLE NOTE.
IT ISN'T THAT HIS VOICE HE HOARDSJ
HE HASN'T ANY VOCAL CORDS.
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.
* * * END OF FILE * * *

SCRIPT Al V 132 TRUNC=132 SIZE=28 LINE=9 COLUMN=l

T T
CANARY

T T

THE SONG OF CANARIES
NEVER VARIES.

T

AND WHEN THEY'RE MOULTING
THEY'RE PRETTY REVOLTING.

THE GIRAFFE

T

I BEG YOU, CHILDREN, 00 NOT LAUGH
WHEN YOU SURVEY THE TALL GIRAFFE.
IT'S HARDLY SPORTING TO ATTACK
A BEAST THAT CANNOT ANSWER BACK.
HE HAS A TRUMPET FOR A THROAT,
AND CANNOT BLOW A SINGLE NOTE.
IT ISN'T THAT HIS VOICE HE HOARDS;
HE HASN'T ANY VOCAL CORDS.
I WISH FOR HIM, AND FOR HIS WIFE,
A VOLUBLE GIRAFTER LIFE.
* * * END OF FILE * * *

T T T

Figure 6-5. The SET TABLIN~ Subcommand - "Before" and "After"

6 - 6 IBM VM/SP System Product Editor User's Guide

T T T

Chapter 7: The Macro Language

The macro language is one of the most powerful facilities:~hat the editor provides.
By writing macros, you can:

• expand the basic subcommand language

• tailor the language to your own application

• eliminate repetitive tasks.

This chapter explains how to write an XEDIT macro, discusses those XEDIT subcom­
mands designed for use in macros, describes an XEDIT macro written for a text
processing application, and explains a profile macro. You should be familiar with
the EXEC 2 interpreter, which is described in the publication VM / SP: EXEC 2
Reference, before you read this section.

What is an XEDIT Macro?

Creating a Macro File

An XEDIT macro is an EXEC 2 file that is invoked from the XEDIT environment.

You execute a macro the same way you execute XEDIT subcommands: type the
macro name on the command line and press the ENTER key. A macro may be
executed by entering only its name, or its execution may also depend on arguments
you enter when the macro is invoked.

A macro file can contain:

• XEDIT sub commands

• EXEC 2 control statements

• CMS and CP commands

Because an XEDIT macro is a normal CMS file, it may be created in any of the ways
that CMS provides for file creation. It can even be created dynamically, by using
the XED IT multiple fue editing capability (see "Chapter 5: Editing Multiple Files").
As soon as a FILE subcommand is executed for the macro fue, the macro can be
used.

Like any CMS file, a macro file is identified by filename, fuetype, and filemode.
The file identifier for a macro file must follow certain rules:

• The filename is a string of one to eight alphameric- characters. This name is
used to invoke the macro. For example, if the filename is SEND, entering
"SEND" during an editing session causes the macro to be executed.

• The fuetype must be XEDIT.

• The filemode can specify any of your accessed disks, for example, AI.

Using XEDIT Subcommands in a Macro
A macro can contain any XEDIT subcommand. However, some subcommands
perform functions that are meaningful only in the context of a macro, for example,
one that passes information to the EXEC 2 interpreter.

The following list summarizes these subcommands; they are then discussed accord­
ing to function. For detailed information on these subcommands, refer to the
publication VM/SP: System Product Editor Command and Macro Reference.

Chapter 7: The Macro Language 7 - 1

CMS
CMSG
CP
CURSOR
EMSG
MACRO
MSG

PRESERVE
READ
RESTORE
SET MSGMODE
SET RESERVED
STACK
TRANSFER

Communicating Between the Editor and EXEC 2

READ Subcommand

.-

The following subcommands are discussed in this section:

READ
STACK
TRANSFER

These subcommands all place information in the console stack. Once something is
in the console stack, it cannot be used by the macro until it has been taken out of
the console stack. The EXEC 2 &READ statement takes information out of the
console stack and assigns it to EXEC 2 variables, which can then be examined by the
macro.

The main difference between READ, STACK, and TRANSFER is that they get the data
to be placed in the console stack from different place~:

READ

puts data that you enter on the command line in the console stack.

STACK
puts the contents of the current line of the file being edited in the console
stack. .

TRANSFER

puts one or more of the editor's variables in the console stack, that is, it gets
data from the editor's work areas.

Data placed in the console stack is then read by an EXEC 2 &READ statement.

The following sections provide examples of using READ, STACK, and TRANSFER.

When a READ subcommand is issued from a macro, the editor displays
"MACRO-READ" in the status area of your screen and waits for you to enter data on
the command line. (Your rue image remains on the screen.) After you type the
data on the command line and press the ENTER key, the data is placed in the
console stack. A subsequent EXEC 2 &READ statement assigns the data to an EXEC 2

variable, and the macro continues executing. This sequence is illustrated in Figure
7-1.

Normally, a macro displays a message requesting that you enter data on the
command line before it issues the READ.

For example:

MSG ENTER FILE ID
("ENTER FILE ID" is displayed in the message line.)

READ
(U ser enters MYFILE SCRIPT A in the command line and READ puts it in the
console stack.)

&READ ARGS
(Takes the fileid out of the stack and assigns MYFILE, SCRIPT, and A to &1,
&2, and &3, respectively.)

7 - 2 IBM VM/SP System Product Editor User's Guide

ST ACK Subcommand

TRANSFER Subcommand

MACRO

TERMINAL

Figure 7-1. READ and the Console Stack

READ is issued. Editor waits for you to
enter data on command line.

2 Data you enter is put in the console stack.

3 &R EAD takes it out of the console stack
and assigns it to &INPUT.

The READ subcommand can also be used to place more than one line in the console
stack; this is described in the READ. subcommand description in the publication
VM/SP: System Product Editor Command and Macro Reference.

The STACK subcommand places the current line of the file from which the macro
was invoked in the console stack. An EXEC 2 &READ statement takes it out of the
console stack and assigns it to an EXEC 2 variable. This sequence is illustrated in
Figure 7-2.

The STACK subcommand can also be used to put more than one line in the cO.nsole
stack; this is described in the STACK subcommand description in the publication
VM / SP: System Product Editor Command and Macro Reference.

The current setting of all editing options, that is, those options that are defmed by
the SET subcommand, are available to the macro through the use of the TRANSFER

subcommand. In addition, the values of other editing variables that are not
explicitly "set" are available.

The TRANSFER subcommand places one or more of the editor's variables in the
console stack. An EXEC 2 &READ statement assigns them to EXEC 2 variables. This
is illustrated in Figure 7-3.

(For a complete list of the variables that can be "transferred", refer to the
TRANSFER subcommand description in the publication VM / SP: System Product
Editor Command and Macro Reference.)

Chapter 7: The Macro Language 7 - 3

FILE MACRO

<D STACK puts current I ine in the conso.e
stack.

® &READ takes it out of the console stack.
The variable &CURLINE contains the
current line (up to the truncation column).

Figure 7-2. STACK and the Console Stack

MACRO

<D TRANSFER puts the filename, filetype, and
. filemode in the console stack.

&REAO VARS: &FN &FT &FM : ® &READ takes them out of the console stack
: and assigns them to &FN, &FT, and &FM.

Figure 7-3. TRANSFER and the Console Stack

Displaying Data on the Editor's Screen
The following subcommands are discussed in this section:

MSG
EMSG
CMSG
SET MSGMODE
SET RESERVED
CURSOR

MSG, EMSG, and CMSG Subcommands

..

A macro can communicate with the user by displaying messages in the message
line of the screen. Messages are used for various reasons, for example, requesting
the user to enter data, telling a user that an error has occurred during processing,
and so forth.

The following two subcommands display a message in the message line of the
screen:

MSG

Displays a message in the message line.

EMSG

Displays a message in the message line and sounds the alarm.

F or example:

MSG ENTER FILE NAME
Displays "ENTER FILE NAME" in the message line.

EMSG MISSING OPERANDS

Displays "MISSING OPERANDS" in the message line and sounds the alarm.

7·4 IBM VM/SP System Product Editor User's Guide

The following subcommand displays a message in the command line of the screen:

CMSG
When issued from a macro, the CMSG subcommand ca~ be used to re-display
input that the user has entered incorrectly, so that it carf'he corrected and
re-entered.

Note: EXEC 2 also provides a control statement, &TYPE, that displays one line of data at the terminal.
However, the &TYPE statement causes the screen to be cleared before the data is displayed. The
XEDIT subcommands MSG and EMSG keep the file image on the screen and display the data in the
message line. Therefore, you should use them instead of &TYPE in a macro.

SET MSGMODE Subcommand
The SET MSGMODE subcommand is used to control whether or not messages are
displayed:

SET MSGMODE ON
All messages are displayed.

SET MSGMODE OFF
No messages are displayed.

By turning the message mode on and off during a macro, you can select when you
want messages to be displayed.

SET RESERVED Subcommand

CURSOR Subcommand

When issued from a macro, the SET RESERVED subcommand reserves a specified
line on the screen for use by the macro, thereby preventing the editor from using
that line. The line can be used for displaying blank or specified information, which
can optionally be highlighted.

For example, the following subcommand:

SET RESERVED 10 HIGH YOU CAN'T USE THIS LINE.
displays, on the tenth line of the screen, "YOU CAN'T USE THIS LINE". The line is
highlighted.

The CURSOR subcommand can be used to move the cursor to a specified position
on the screen. For example, the editor has a macro called SCHANGE, which looks
for a string and moves the cursor under the string if it is found.

Saving and Restoring Editing Variables
The PRESERVE subcommand is used to save the settings of various editing variables
until a subsequent RESTORE subcommand is issued. For a complete list of the
variables affected, refer to the PRESERVE subcommand description in the publica­
tion VM/SP: System Product Editor Command and Macro Reference.

Issuing CMS and CP Commands
As you have seen, an XEDIT macro can contain XEDIT subcommands, EXEC 2
control statements, and CMS and CP commands. CMS and CP commands can be
issued as operands oftheXEDIT subcommands CMS and CP, respectively.

F or example:

eMS ERASE FILEA SCRIPT
(CMS and CP commands can also be issued by using the EXEC 2 control statement,
&COMMAND.)

Chapter 7: The Macro Language 7 • 5

A voiding Name Conflicts'
Use the MACRO subcommand to cause the editor to execute a specified macro
without first checking to see if a subcommand of the same name or a synonym
exists.

When a subcommand has a number as its operand, a blank is not required between
the subcommand name and the operand. For example, both "NEXT8" and "N8" are
interpreted by the editor as being the subcommand "NEXT 8". Therefore, if a macro
name were also "N8", the macro would not be executed; the subcommand "NEXT 8"

would be executed instead. To execute the macro, you could enter the following:

MACRO N8
The macro whose name is "NS" would then be executed.

The SET MACRO subcommand can be used to control the order in which the editor
searches for subcommands and macros:

SET MACRO ON tells the editor to look for macros'before it looks for subcommands;
SET MACRO OFF reverses the order.

Walking Through an XEDIT Macro
The following XEDIT macro is an example of the type of macro you might write to
make life a little easier. The application is typical of a text processing file arrange­
ment, where many SCRIPT files are imbedded in a master file, via the SCRIPT

control word ".im".

The problem with this type of setup is that if you have to make a global change
throughout all the files, you have to edit each file, make the change, and then ftIe
each file.

When issued from the master file, this macro edits each file, performs a global
change, and files it.

The macro is invoked by entering the macro name, GLOBCHG; the arguments
passed to the macro are the old data and the new data, enclosed in delimiters:

GLOBCHG /string1/string2/
For example, if a file called MASTER SCRIPT contains:

.im FILE1

.im FILE2
•
•
•

.im FILE100

and the following commands are issued:

XEDIT MASTER SCRIPT
GLOBCHG/WAR AND PEACE/SENSE AND NONSENSE/
"W AR AND PEACE" is changed to "SENSE AND NONSENSE" each time it occurs in
every ftIe. (In this macro, no attempt is made to execute the change on ftIes that
may be imbedded at the next level.)

The GLOBCHG macro can also be used to delete data throughout the files, by
changing a string to a null string. For example:

GLOBCHG /bad data//
The following is a listing of the macro, whose fileid is GLOBCHG XEDIT AI. After
the listing, each line in the macro is explained. For more information on the EXEC 2

statements used in the macro, see the publication VM / SP: EXEC 2 Reference.

7 - 6 IBM VM/SP System Product Editor User's Guide

00001 &IF &N = a &GOTO ~MISSINGOPERANDS
00002 &OPERAND = &ARGSTRING
00003 PRESERVE
00004 SET MSGMODE OFF
00005 TOP
00006 FIND .im
00007 &IF &RC ~= a &GOTO -NOIMBED
00008 -LOOP
00009 STACK 1
00010 &READ ARGS
00011 &COMMAND STATE &2 SCRIPT *
00012 &IF &RC = a &SKIP 4
00013 SET MSGMODE ON
00014 EMSG IMBEDDED FILE ' &2 SCRIPT ' DOES NOT EXIST; BYPASSED.
00015 SET MSGMODE OFF
00016&GOTO -ENDLOOP
00017 XEDIT &2 SCRIPT (NOPROFILE
00018 TRANSFER FNAME FTYPE FMODE
00019 &READ STRING &FILEID
00020-MSG PROCESSING FILE' &FILEID '
00021 CHANGE &OPERAND * *
00022 FILE
00023 -ENDLOOP FIND .im
00024 &IF &RC = a &GOTO -LOOP
00025 RESTORE
00026 MSG GLOBAL CHANGE COMPLETED.
00027 &EXIT
00028 -NOIMBED
00029 RESTORE
00030 EMSG NO IMBED FOUND.
00031 &EXIT
00032 -MISSINGOPERANDS
00033 CMSG &0

EMSG EXE545E MISSING OPERAND(S)

00034 &EXIT

Figure 7-4. A Sample Macro

Now, let's walk through the macro, a line at a time.

00001 &IF &N = 0 &GOTO -MISSINGOPERANDS

If the number of arguments you passed to the macro (&:N) is zero, go to the state­
ment labelled "-MISSINGOPERANDS", where an error message is issued. Obviously,
this macro cannot work unless you tell it what to change.

00002 &OPERAND = &ARGSTRING

The user-defmed variable (&OPERAND) is assigned the value of the arguments
passed to the macro. (The arguments are the old and new strings of data to be
changed.).

The next four statements in the macro are XEDIT subcommands:

00003 PRESERVE

This subcommand saves the editor settings until a subsequent RESTORE subcom­
mand is issued (statement 29).

Chapter 7: The Macro Language 7 - 7

00004 SET MSGMODE OFF
No messages will be displayed. By turning the message mode on and off, you can
select which messages you want displayed. Message mode is set OFF here to
prevent messages from the FIND subcommand (statement 6) from being displayed,
because the macro issues its own message (statement 30) if no imbedded files are
found.

00005 TOP
Move the line pointer to the top of the master file, which is the file from which the
macro was invoked.

00006 FIND .im
Search forward in the master file for the first line that contains '~.im" in column 1,
that is, locate the first line that imbeds a file.

00007 &IF &RC ~= a &GOTO -NOIMBED
If there is a non-zero return code from the FIND subcommand (statement 6), go to
the statement labelled "-NOIMBED". This situation occurs ifno ".im" statements are
found in the master file.

Statements 8 through 23 are the major loop in the macro, in which the global
change is made on each imbedded fue:

00008 -LOOP
This is the statement label that begins the loop.

00009 STACK 1
When the FIND subcommand (statement~) locates a ".im filename" statement in
the master file, it makes that line the current line. This STACK subcommand places
the current line in the console stack, so that its contents can be read by the follow­
ing statement.

00010 &READ ARGS
This statement reads a line from the console stack.

00011 &COMMAND STATE &2 SCRIPT *
The STATE command is a CMS command that verifies the existence of a file. This
statement checks to see if the file named in the ".im filename" statement exists.
(EXEC 2 transmits the STATE command directly to eMs.)

00012&IF &RC = a &SKIP 4
If the return code from the STATE command is zero, the file exists, so skip down to
statement 17. If it is not zero, execute the next four statements (13-16), which
comprise "file not found" processing:

00013 SET MSGMODE ON
Since a message will be issued by the next statement, turn message mode back on
so that it will be displayed.

Statements 14, 15, and 16, issue the message, turn message mode off, and branch to
the statement label which begins the "FIND" loop again.

00014
00015
00016

EMSG IMBEDDED FILE ' &2 SCRIPT ' DOES NOT EXIST; BYPASSED.
SET MSGMOI)E OFF
&GOTO -ENDLOOP

00017 XEDIT &2 SCRIPT (NOPROFILE
The XEDIT subcommand brings the imbedded file into virtual storage.

7 - 8 IBM VM/SP System Product Editor User's Guide

00018 TRANSFER FNAME FTYPE FMODE

Place the ftIeid of the imbedded ftIe in the console stack, so that it can be accessed
by the following EXEC 2 statement.

00019 &READ STRING &FILEID

Read the line from the console stack, and assign its contents to the variable
"&FILEID".

'00020 MSG PROCESSING FILE • &FILEID •

Display a message in the message line of the terminal (without sounding the
alarm). Even though SET MSGMODE OFF was executed (statement 4), this message
will be displayed, because the subcommand XEDIT was subsequently issued
(statement 17); this causes the editor's initial setting (MSGMODE ON) to be in effect.

00021 CHANGE &OPERAND * *
The global change is executed. (The arguments you entered when the macro was
invoked were assigned to the "&OPERAND" variable in statement 2.)

Messages issued by the CHANGE subcommand are displayed, for example, "nn
OCCURRENCES CHANGED ON nn LINES".

00022 FILE

The changed file is written to disk.

00023 -ENDLOOP FIND .im

Then, the editor resumes editing the master ftIe, searching for the next ".im
fl1ename" statement.

00024 &IF &RC = 0 &GOTO -LOOP

If the "FIND" (statement 23) is successful, go through the loop again.

00025 RESTORE

If the "FIND" (statement 23) is not successful, restore the settings of XEDIT variables
to the values they had when the PRESERVE subcommand was issued (statement 3).

00026 MSG GLOBAL CHANGE COMPLETED.

Display the message.

00027 &EXIT

Return control to the editor; you can then issue a QUIT subcommand for the master
file.

Statements 28 through 31 are executed if no ".im" statements were found in the
master file:

00028 -NOIMBED
00029 RESTORE
00030 EMSG NO IMBED FOUND.
00031 &EXIT

00032 -MISSINGOPERANDS ;EMSG EXE545E MISSING OPERAND(S)

This message is displayed in the message line if no arguments, which are required,
were entered when the macro was invoked. .

Chapter 7: The Macro Language 7 - 9

00033 CMSG &0

In addition, the macro name (GLOBCHG) is displayed in the command line, so that
you can type the arguments (/stringl/string2/) and press the ENTER key to invoke
the macro again.

00034 &EXIT

The end.

A Profile Macro for Editing

Executing a Profile Macro

As a CMS user, you are familiar with a PROFILE EXEC macro, which contains the
CMS and CP commands you normally issue at the start of a terminal session and is
executed automatically after you issue the IPL CMS command.

The editor offers a ~imilar profile capability with a PROFILE XEDIT macro, which
contains XED IT subcommands that tailor each editing session to suit your needs
and is executed automatically after you issue an XEDIl command (or subcom-
mand). .

The m.etype of a profile macro must be "XEDIT". If the fileid is PROFILE XEDIT, the
macro is executed automatically when an XED IT command (or subcommand) is
issued. You can write a PROFILE XEDIT macro, file it, and forget about it. It will be
executed before each file is brought into storage.

If you do not want a PROFILE XEDIT macro to be executed for a particular editing
session, you can issue the following XEDIT command:

XEDIT fn ft (NOPROFILE
The PROFILE XED IT macro is bypassed, and the file is brought into storage.

Although the filetype of a profile macro must be "XED IT" , the filename does not
have to be "PROFILE". If your profile macro has a name other than "PROFILE", you
must indicate its filename in the PROFILE option of the XEDIT command.

For example, if the m.eid is MYPROF XEDIT, you must issue the following XEDIT

command:

XEDIT fn ft (PROFILE MYPROF
The macro labelled MYPROF XEDIT is executed, even if a macro labelled PROFILE

XED IT exists.

7 - 10 IBM VM/SP System Product Editor User's Guide

The profile macro can be used to prompt the user for XEDIT command options or
to assign values to editing variables before issuing the LOAD subcommand. For
example, a SCRIPT user might program his profile to use a LOAD subcommand that
does defaulting of filetype.

The options specified in the LOAD s\lbcommand have a lo\ver priority than those
specified in an XED IT command. For example, an UPDATE option specified in the
LOAD subcommand would be overridden by a NOUPDATE option specified in the
XEDIT command.

When the LOAD subcommand is executed, the file is brought into virtual storage.

If the LOAD fails, a non-zero return code is generated. All subsequent subcom­
mands in the profile macro are rejected with a unique "6" return code.

For detailed information on the LOAD subcommand, refer to the publication
VM / SP: System Product Editor Command and Macro Reference.

An Example of a Profile Macro
An example of a profile macro is shown in Figure 7-5.

00001 *
00002 * SET DEFAULT FILETYPE TO SCRIPT
00003 *
00004 &IF &N = 0 &EXIT
00005 &IF &N = 1 &ARGS &1 SCRIPT
00006 &COMMAND STATE &1 &2
00007 &IF &RC = 0 &GOTO -LOAD
00008 & = &LOCATION OF &2 SCRIPT
00009 &IF & ~= 1 &GOTO -LOAD
00010 &ARGS &1 SCRIPT
00011 -LOAD LOAD &1 &2
00012 &IF &RC ~= 0 &EXIT &RC
00013 * SET PFKEYS
00014 *
00015 SET PF1 TOP
00016 *
00017 * SET VARIOUS OPTIONS
00018 *
00019
00020 *
00021
00022
00023
00024

SET SYNONYM / 1 CLOCATE /

SET ARBCHAR ON .
SET SPAN ON BLANK 3
SET VARBLANK ON
SET CASE MIXED IGNORE

Figure 7-5. A PROFILE XEDIT Macro

The EXEC 2 control statements (4-10) supply a SCRIPT flletype if no filetype is
specified in the XEDIT command, or accept any abbreviation of "SCRIPT". There­
fore, when the LOAD subcommand (statement II) is executed, the proper flletype is
supplied.

The XED IT statements assign a subcommand to a PF key (statement 15), defme a
synonym (statement 19), and set up editing variables (statements 21-24) that the
user wants.

Chapter 7: The Macro Language 7 - 11

.-

7 - 12 IBM VWSP System Product Editor User's Guide

Appendix: A Summary of XEDIT Subcommands and Macros

Subcommand Purpose.

Add Add n lines after current line.
ALter Change a single character to another (character or

hex).
BAckward Scroll backward n frames.
Bottom Go to last line of file.
CANCEL Terminate all files.
CAppend Add text to end of current line.
CDelete Delete characters, starting at column pointer.
CFirst Move column pointer to beginning of line (zone).
Change Change one string to another.
Clnsert Insert text in the current line.
CLAst Move the column pointer to the end of the line (zone).
CLocate Locate a string; move the column pOinter and the line

pointer.
CMS Pass a command to CMS, or enter CMS subset mode.
CMSG Display message in command line of user's screen.
COMMAND Execute a subcommand without checking for synonym

or macro.
COMPress Prepare line(s) for realignment by replacing blanks with

tab characters.
COpy Copy line(s) at specified location.
COUnt Display the number of times a string appears.
COVerlay Replace characters, starting at column pointer.
CP Pass command to VM/SP control program.
CReplace Replace characters, starting at the column pointer.
CURsor Move the cursor to specified position on the screen.
DELete Delete line(s).
Down Move line pointer n lines toward end of file (same as

NEXT).

DUPlicat Duplicate line(s).
EMSG Display a message and sound the alarm.
EXPand Reposition data according to new tab settings.

Appendix: A Summary of XEDIT Subcommands and Macr' A-I

Subcommand Purpose

FILE Write file on disk.
Find Search for line that starts with specified text.
FINDUp Search for a line that starts with specified text;

searches in a backward direction.

FOrward Scroll forward n frames.

GET Insert lines from another file.
Help Request on-line display of XED IT subcommands and

macros; invoke the eMS HELP facility.

HEXType Display line(s) in hexadecimal and EBCDIC.

Input Insert a single line, or enter input mode.

Join Join lines.
LEft View data to the left of column one.
LOAD Read file into storage; use in profile macro only.

Locate Move line pointer to specified target.

LOWercas Change uppercase letters to lowercase.
MACRO Execute macro without checking for subcommand Ot'

synonym.
MODify Display a SET subcommand current values in the com-

mand line, so it can be overtyped and reentered.
MOve Move line(s) to another place in the file.

MSG Display message in message line.

Next Move line pointer n lines toward end of file (same as
DOWN).

NFind Search for first line that does not match specified text.

NFINDUp Search backward for first line that does not match
specified text.

Overlay Replace characters in current line.
PARSE Scan a line of a macro to check the format of its oper-

ands.
POWerinp Enter an input mode for continuous typing.

PREServe Save settings of variables until RESTORE.

A - 2 IBM VM/SP System Product Editor User's Guide

Subcommand Purpose

PURge Remove macro from virtual storage.
PUT Insert lines into another file (new Qr existing), or into a

buffer (to be retrieved by GET from another file).
PUTD Same as PUT, but delete original lines.
Query Display the current value of editing options.
QUIT End ali editing session without saving changes.
READ Place information from the terminal in the console

stack.
RECover Replace deleted lines.
RENum Renumber VSBASIC or FREEFORT file.
REPEat Advance line pointer and re-execute last subcommand.
Replace Replace current line, or delete current line and enter

input mode.
RESet Remove prefix subcommands when screen is in

"pending" or "incomplete" status.
RESTore Restore settings of XEDIT variables to values they had

when PRESERVE was issued.
Right View data to the right of the last (right-most) column.
SAVE Write file on disk and remain· in edit mode.
SCHANGE Make a selective change, using PF keys .

. SET APL Inform the editor if APL keys are used.
SET ARBchar Define an arbitrary character, which allows you to spec-

ify only the beginning and the end of a character string
that is the object of a target search.

SET AUtosave Automatically issue a SAVE subcommand at specified
intervals.

SET CASE Upper or lower case control; specify if case is signifi~
cant in target searches.

SET CMDline Move the position of the command line.
SET COLPtr Specify if column pOinter is displayed (typewriter termi-

nals only).

Appendix: A Summary of XED IT Subcommands and Macros A - 3

Subcommand

SET CURLine
SET ESCape

SET Filler

SET FMode
SET FName
SET FType

SET HEX
SET IMage
SET IMPcmscp

SET LlNENd

SET LRecl
SET MACRO

SET MASK

SET MSGMode
SET NONDisp

SET NUlls

SET NUMber

SET PACK

SET PFn
SET Point
SET PREfix

SET RANge

A - 4 IBM VM/SP System Product Editor User's Guide

Purpose

Define the position of the current line on the screen.

Define a character that allows you to enter a subcom­
mand while in input mode (typewriter terminals only).

Define a character that is used when a line is expand­
ed.
Change the filemode of the current file.
Change the filename of the current file.
Change thefiletype of the current file.
Allows string targets to be specified in hexadecimal.

Control how tabs and backspaces are handled.
Control whether subcommands not recognized by the
editor are transmitted to CMS and CP.

Define a line end character.

Define a new logical record length.
Control the order in which the editor searches for sub­
commands and macros.
Define a new mask, which is the contents of added lines
and the input zone .

. Control the message display.
Define a character that is used in place of non­
displayable characters.
Specify whether trailing blanks are replaced with nulls
to allow character insertion.
Specify whether file line numbers are displayed in the
prefix area.
Specify if the file is to be written to disk in packed for­
mat.
Define a meaning for a PF key.
Define a symbolic name for the current line.
Control the display of the prefix area; define a synonym
for a prefix subcommand.
Define a new "top" and "bottom" for the file.

Subcommand

SETRECFm
SET RESERved
SET SCALe
SET SCReen

SET SERial
SET SPAN
SET STAY

SET STReam

SET SYNonym

SETTABLine
SET TABS
SET TERMinal

SET TEXT
SET TOFEOF
SETTRunc
SET VARblank

SET Verify

SET WRap

SET Zone

SET =
SHift

,",

Purpose ..

Define the record format.
Reserve a line, which cannot,pe ~ed by the editor.
Control the display of the scale line. ,.

Divide the screen into logical screens, ~~r ~ultiple views
of the same or of different files.
Control file serialization.
Allows a stri!1g target to span a number of lines.
Specify whether the line pointer moves when a string is
not located.
Specify whether the editor searches only the current
line or the whole file for a column-target.
Specify whether the editor looks for synonyms; assign a
synonym.
Control the display of the tab line.
Define the logical tab stops.
Specify whether a terminal is used in line mode or full
screen mode.
Inform the editor if TEXT keys are used.
Control the display of TOF IEOF lines.
Define the truncation column.
Specify whether the number of blanks between two
words is significant in a target search.
Control whether lines changed by subcommands are
displayed; define the columns displayed and whether
displayed in EBCDIC or hexadecimal or both.
Control whether the editor wraps around the file if EOF

is reached during a search.
Define new limits within each line for target searches.
Insert string into the' equal buffer.
Move data right or left (data loss possible).

Appendix: A Summary of XEDIT Suboommands and Macros A - 5

Subcommand Purpose

SORT Sort all or part of a file, in ascending or descending
order.

SOS Specify functions for screen operation simulation.

SPlit Split a line into two or more lines.

STAck Place line(s) from the file into the console stack.

STATus Display SET subcommand current settings; create a
macro that contains these settings.

TOP Move line pointer to null TOP OF FILE line.

TRAnsfer Place editing variable(s) in the console stack, for use by
a macro.

Type Display lines.
Up Move line pointer toward top of file.
UPPercas Translate all lowercase characters to uppercase.

Xedit Edit multiple files.
& Use before a subcommand for repeated execution.

=- Re-execute the last subcommand or macro.
? Display the last subcommand executed.

Prefix
Purpose

Subcommands

A Add line(s).
C Copy line(s).

D Delete line(s).
E Extend a line.
F Move or copy following this line.
I Insert line(s).
M Move line(s).
P Move or copy preceding this line.
" Duplicate line(s).

/ Make this line the current line.
SCALE Display the scale on this line.
TABL Display the tab line on this line.
• xxxx Assign symbolic name to this line .

.-

A - 6 IBM VM/SP System Product Editor User's Guide

.xxxx prefix subcommand 4-7, 4-9

&COMMAND 7-5
&tREAD

used after READ 7-2
used after STACK 7-3
used after TRANSFER 7-3

&TYPE 7-5

? subcommand 1-10

- subcommand 1-10,3-5

"prefIX subcommand 1-12

A prefix subcommand 2-6
absolute column number 1-22
absolute line number

target as 4-4
example of 4-6

adding lines 1-11
adding text 3-8
ALTER ·1-32, 3-21
altering a character 1-32,3-21
appending text 3-8
arbitrary character 4-15
automatic save 1-25,2-2,3-14

backspace characters 3-19. 3-20
BACKWARD 1-16
backward search 1-19
blanks

in target
significance 4-16

variable number of 4-16
block of lines

copying 1-14
deleting 1-12, 2-7
duplicating 1-12
moving 1-14

BOTTOM 1-16,2-5,3-5
bypassing profile macro 7-10

CANCEL 5-2
CAPPEND 3-5, 3-8,4-19
case

specifying 4-15
changing 1-32

CDELETE 3-7,4-19
CFIRST 1-17, 1-23,3-6,4-19
CHANGE 1-19,3-9,4-4
CINSERT 1-22,3-6,4-19
CLAST 4-19
CLOCATE 1-17,3-6,4-18
CMS 7-5
CMS commands

issued from a macro 7-5
used in macros 7-1

CMSG 7-4
column pointer

displayed on typewriter terminal 3-3
displayed in scale 1-5
indicator in file identification line 1-3
moving 4-18
resetting 1-23,3-6
subcommands based on position of 3-5, 4-19

column-target 4-18
columns

specifying for viewing 1-32
combining SET options 4-16
command line

how to move 6-1

example of 6-3
location on screen 1-3

commands
CMS 7-5
CP 7-5

complex string expression
as target 4-13

example of 4-17
COMPRESS 1-32
console stack

used by READ 7-2
used by STACK 7-3
used by TRANSFER 7-3

COPY 3-12,3-14
copying lines

using C prefix subcommand 1-14
using COPY 3-14

COVERLAY 4-19
CP 7·5
CPcommands

issued from a macro 7-5
used in macros 7-1

creating a file 1-1,2-2,3-1
CREPLACE 4-19
current column 3-3
current line

appending words to 3-8
as starting line for subcommands 1-3
changing

using / 1-14
using DOWN 1-16
using UP 1-16

indicator in file identification line 1-3
location on screen 1-3
moving position of 6-1

example of 6-4
replacing 3-12

cursor
moving 7-5

CURSOR 7-5

D prefix subcommand 2-7
data

entering on display terminal 1-4
entering on typewriter terminal 3-2
locating 1-17, 3-6

defming screen size 5-3
DELETE 3-11
deleted lines

recovering 1-12, 2-7, 3-12
deleting characters 3-7, 4-19
deleting lines

block of lines 2-7
using D prefix subcommand 1-11
using DELETE 3-11

destination line
F prefix subcommand 1-14
for copied lines 1-14
for moved lines 1-14
P prefix subcommand 1-14

display
help 1-32

displaying
data from a macro 7-4
lines on typewriter terminal 3-3
multiple files 5-5
tab settings 1-24,2-2,3-20

DOWN 1-16,2-5,3-4
example of 1-18

duplicating lines 1-12

Index

Index X-I

edit mode 1-4, 3-2
editing multiple files 5-1

illustration of 5-2
editing options

transferring 7-3
editing variables

preserving 7-5
restoring 7-5

EMSG 7-4
ending editing session 1-24,3-14,5-2
entering

data 1-4,3-1,3-5
prefIX subcommands 1-3, 1-11
subcommands 1-3

EXEC 2 control statements
used in macros 7-1

EXEC 2 file
used as XED IT macro 7-1

EXPAND 1-32

file
area on screen 1-3
inserting 1-26,3-15

FILE 1-24,3-14
file identification line 1-2
FORWARD 1-16

GET 1-26, 1-29,3-15
global change 1-20,3-9

HELP 1-32
help display 1-32

INPUT
to enter input mode 1-4, 3-2
to enter one line 3-10

INPUT line 3-10
input mode 1-4, 3-2
input zone 1-4
inserting

a whole file 1-26,3-15
blank line 3-10, 3-11
data from another file 1-26,2-10,3-15
one line 3-10
partofafile 2-10,1-27.3-16

inserting a file 1-26,3-15
inserting characters

in input mode 1-10
in power typing mode 1-7, I-II
using CINSERT 1-22,3-6
using PA2 key 1-10, 2-4
using SET NULLS I-II
using the insert mode key 1-10

inserting data
from another file 1-26,3-15

inserting file
part of 1-27,3-16

example of 1-30,3-17
whole file 1-26,3-15

example of 1-28.3-15
inserting words

using CINSERT 1-22,3-6

joining lines 1-9

LEFT 1-32
line name

target as 4-7,4-9
example of 4-10

line pointer 3-3
moved by target 4-2

LOAD 7-10

.-

X - 2 IBM VM/SP System Product Editor User's Guide

LOCATE 4-2
locating data

-using CLOCATE 1-17,3-6
logical record length

displaying 3-2
logical screens

multiple 5-3 .
LOWERCAS 1-32

M prefix subcommand 2-6
macro

creating 7-1
definition of 7-1
example of 7-6 thru 7-10
profile 7-10

MACRO 7-6
message

error 1-3
information 1-3
line on screen 1-3
warning 1-25

messages
issued from a macro 7-4

MODIFY TABS 1-24
modifying tab settings 1-24
MOVE 3-12
moving

down 3-4
up 3-4

moving lines 3-12,3-13
moving lines, using M prefix subcommand
moving through a file

using BACKWARD 1-16
using BOTTOM 1-16,3-5
using DOWN 1-16,3-4
using FORWARD 1-16
using TOP 1-16,3-5
using UP 1-16,3-4

MSG 7-2,7-4
multiple files

displaying 5-1
editing 5-1

illustration of 5-2
ending editing sessions for 5-2
on one screen

example of 5-6
multiple logical screens

defining 5-3
example of 5-4

multiple views
of different files 5-5

example of 5-6
of same file 5-3

names

example of 5-4
making changes in 5-5
order of processing in 5-5

avoiding conflicts of 7-6
naming a line 1-32,4-9
NOT symbol

used in string target 4-12

operand
target as 4-4

OR symbol
used in string target 4-12

P prefix subcommand 2-6
PA2 key 1-10
PF keys

changing settings of 1-7, 1-9
displaying settings of 1-7

1-14

.'1.

initial settings of 1-7, 1-34
POWER 1-6,2-4
power typing mode

example of 1-8
inserting characters in 1-7
typing data in 1-4, 1-6, 2-4
using line end character in 1-6

practice exercise 2-1
prefix area

changing location of 6-1
controlling display of 6-1
location on screen 1-3
moving

example of 6-2
prefix subcommands

.xxxx 4-9
/ 1-14
A I-II

example of 1-13
C 1-14
canceling 1-14
D I-II

example of 1-13
F 1-14

example of 1-14
list of 1-11, 1-34
M 1-14
P 1-14
using 2-6
where to enter 1-3

PRESERVE 7-5
preserving editing variables 7-5
priority

of options in LOAD 7-11
profile macro

defmition of 7-10
example of 7-11
used to prompt 7-11

program function keys (see PF keys)
PUT 1-27, 1-29,3-16

QQUIT 1-25,3-14
QUERY LRECL 3-2
QUERY RING 5-1
QUERY TABS 1-24,3-19
QUIT 1-25,3-14

READ 7-2
illustration of 7-3

record format
in file identification line 1-2

record length
in file identification line 1-2

RECOVER 1-12,2-7,3-12
recovering deleted lines 1-12, 2-7, 3-12
redisplaying a subcommand 1-10
reexecuting a subcommand 1-10
relative displacement

target as 4-7
example of 4-8

REPLACE 3-12
replacing a line 3-12
repositioning data 1-32
reserving

a line for the macro 7-5
RESET 1-14
RESTORE 7-5
restoring editing variables 7-5
RIGHT 1-32
ring of files

displaying 5-1 -
illustration of 5-1

save
automatic 1-25

saving
editing variables 7-5

scale
changing location of 6-1
controlling display of 6-1
location on screen 1-4
moving position of 6-1
removing

example of 6-5
screen layout 1-2

changing 6-1
screen size

defining 5-3
scrolling the screen

using BACKWARD 1-16
using FORWARD 1-16
using PF keys 1-10

search direction
specifying 4-11

search order
of macros and subcommands

specifying 7-6
selective change 1-19, 2-8, 3-10

example of 1-21
SET ARBCHAR 1-32,4-15
SET AUTOSAVE 1-25,2-2,3-14
SET CASE 1-32,3-1,4-15
SET CMDLlNE 6-1

example of 6-3
SET CURLINE 6-1

example of 6-3
SET HEX 4-13
SET IMAGE 3-19,3-20
SET MACRO 7-6
SET MSGMODE 7-5
SET NULLS 1-11
SET NUMBER 1-29,4-4
SET options

combining 4-16
SET PFn 1-7
SET POINT 1-32,4-7
SET PREFIX 6-1

example of 6-2
SET RESERVED 7-5
SET SCALE 6-1

example of 6-5
SET SCREEN 1-32, 5-3

example of 5-4, 5-6
SET SPAN 4-13,4-15
SET TAB LINE 6-1

example of 6-6
SET TABS 1-24,3-19
SET VARBLANK 4-13,4-16
SET VERIFY 1-32
setting tabs 1-24,3-19,3-20
simple string expression

as target 4-9
example of 4-14
format of 4-12

size
of current file 1-2
oflogical screen 5-3

SORT 1-32
sorting 1-32
spanning lines 4-15
special characters

altering 3-21
using 3-19

splitting lines 1-9
STACK 7-2, 7-3

illustration of 7-4

Index X- 3

status
COPY/MOVE PENDING 1-14
INCOMPLETE 1-12

status area
during macro processing 7-2
in multiple logical screens 5-5
location on screen 1-3

string
locating

using CLOCATE 1-17,3-6
string expression

complex
target as 4-13 thru 4-16

simple
target as 4-9 thru 4-13

subcommands
entering on display terminal 1-3
entering on typewriter terminal 3-1
used in macros 7-1

list of 7-2
with target operands 4-1

summary
of prefix subcommands A-6
of subset for full screen 1-33
of subset for typewriters 3-22
of XED IT subcommands and macros A-I

symbolic name
assigning 1-32

synonym
not checking for 7-6

tab characters 3-19
tab key 3-19

using PF key as 1-24
example of 1-25

tab line
displaying 6-1
example of 6-6

tab settings 1-24, 3-19
default 3-20

tabbing
using PF key 2-3

tabs
displaying 1-24,2-2,3-20
example of 1-25
setting 1-24,2-2,3-19

tailoring the screen 6-1

.-

x -4 IBM VM/SP System Product Editor User's Guide

target
as absolute line number 4-4

example of 4-6
as complex string expression 4-13

example of 4-17
as line name 4-7

example of 4-10
as operand of LOCATE 4-2
as relative displacement 4-7

example of 4-8
as simple string expression 4-9

example of 4-14
format of 4-12

as subcommand operand 4-4
example of 4-5

entered alone 4-2
entered before subcommand 4-2
types of 4-1, 4-4
used in PUT 3-16
used to move line pointer 4-2

example of 4-3
targets

definition of 4-1
how to express 4-1
used in subcommands 4-1

TOP 1-16,2-5,3-5
transferring

data between files 1-26 thru 1-31,3-15 thru 3-18
transferring editing options 7-3
TRANSFER 7-2, 7-3

illustration of 7-4
translating characters 1-32
truncation column

indicator in file identification line 1-2
TYPE 3-3

UP 1-16,2-5,3-4
UPPERCAS 1-32,4-4

example of 4-5

writing file on disk 1-24, 3-14

XEDIT command 1-1,3-1
used to bypass profile macro 7-10
used to specify profile macroname 7-10

XED IT subcommand 5-1,5-5
issued from a logical screen 5-5

SC24-5220-0

--- ------ ----- ---- ----- - ------..... ----_.-•
International Business Machi. Corporation
Data Processing Division ..
1133 Westchestltr Avenue, White Plains. N. Y. 10604

IBM World Trade Americas/Far Eat Corporation
Town of Mount PI ... nt, Route 9, North Tarrytown, N. Y., u. S. A. 10591

IBM World Trade Europe/Middle East/Africa Corpcntion
360 H,milton Avenue, White Plains. N. Y., U. S. A. 10601

65
3:
<
3:
.......
(J)

:'9
(J)
'<

~
3
-0 o
Co
c:
5l.
m
Co

s=

-!1
CD
z
?
CIJ
(..)
.....
o
I

(..)
co -
-0
:i" -Q)
Co

:i"
c
en
?>
(J)
(')
I\)
~
I

0'1
I\)
I\)

6

IBM VM/SP: System Product
Editor User's Guide
SC24-S220-0

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate
your views about this publication. They will be sent to the author's department for
whatever review and action, if any, is deemed appropriate. Comments may be written
in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information yOu supply.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your
locality.

• Does the publication meet your needs?

• Did you find the inaterial:
Easy to read and understand?
Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

• What is your occupation?

• . ·How do you use this publication:
As an introduction to the subject?

For advanced knowledge of the subject?
To learn about operating procedures?

Your comments:

Yes No

D

D
o
o
D
o

D
o
o

D

o
o
o
D
D

As an instructor in class?

As a student in class?
As a reference manual?

If you would like a reply, please supply your name and address on the reverse side of this
form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

D
D
D

READER'S
COMMENT
FORM

SC24-5220-0

Reader's Comment Form

Fold and Tape Please Do Not Staple

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO, 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

Fold

If you would like a reply) please print:

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED
INTHE

UNITED STATES

Fold

Your Name __ __

Company Name __________________ _ Department _____ _
Street Address ___________________ _
Ory __________________________________ __

State ____________ Zip Code _____ _

--- ---- IBM Branch Office serving you __________________ _ - ----- ---- - ---- - - ----------_.-
@ .-

International Business Machin.. Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N. V. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown;N. Y., U. S. A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N. V., U. S. A. 10601

n
S
~
TI
0
a:
))
0
;:,
10

r
ttl :;

• 3:
<
3:
.........
(J)

~
(J)
'< en -CD
3
""0 ..,
0
c.
c
(') -m
c.
;::::t:
0 ..,
C
en
CD ..,-
en
Ci)
c
0:
CD -:!!
CD
z
0

(J)
U)
--..J
0
I

U)
CO -
""0 ..,
5' -CD c.
5'
c
en
~
en
(')
I\.)
~
I

C1I
I\.)
I\:l
0
I

0

IBM VM/SP: System Product
Editor User's Guide
SC24-S220-0

This manual is part of a library that serves as a reference source for systems analy~ts,
programmers, and operators of IBM systems. This form may be used to communicite
your views about this publication. They will be sent to the author's department for
whatever review and action, if any, is deemed appropriate. Comments may be written
in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information yOu supply.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using
your IBM system, to your IBM representative or to the IBM branch office serving your
locality.

• Does the publication meet your needs?

• Did you find the material:

Easy to read and understand?
Organized for convenient use?

Complete?

Well illustrated?

Written for your technical level?

• What is your occupation?

• "How do you use this publication:
As an introduction to the subject?

For advanced knowledge of the subject?
To learn about operating procedures?

Your comments:

Yes No

o

o
o
o
o
o

o
o
o

o

o
D
o
o
o

As an instructor in class?

As a student in class?
As a reference manual?

If you would like a reply, please supply your name and address on the reverse side of this
form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

o
o
o

READER'S
COMMENT
FORM

SC24-5220-0

Reader's Comment Form

Fold and Tape Please 00 Not Staple

111111

BUSINESS REPLY MAIL
FIRST CL.ASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WIL.L. BE PAID BY ADDRESSEE:

Fold and Tape

NO POSTAGE
NECESSARY
IF MAIL.ED

IN THE
UNITED STATES

n
~
~ ...
o
Ci

;J>
o
~
-a

~ 05
• 3:

<
3:
.........
(J)

:"9
(J)
'<
~
CD
3
'"0 ..,
o
Co
c:
o -m
Co
=+ o ..,

-:!J
CD
z
?
(J)
U>

""" o
I

U>
CO -
'"0 ..,
:;' -CD
Co

... 1 :;'
c
en
l>

Fold Fold

If you would like a reply, please print:

YourlVame __ ~ __ ---------__

Company lVame __________________ Department _____ _
Street Address _____________________ _
Ory __________________________________ _____

State ____________ Zip Code _____ _

IBM Branch Office serving you _____________ -::--____ _ --- ------ ----- ---- ----- - - -----------,-@

International Business Machine. Corporation
Data Processing Division
1133 Westchester Avenue. White Plains. N. V.10604

IBM World Trade AmericatlFer East Corporation
Town of Mount Pleasant, Route 9. North Tarrytown. N. V •• U. S. A. 10591

IBM.Worl~~Trade Europe/Middle East/Afriel Corporation
360 Hamilton Avenue. White Plains. N. Y •• U. S. A. 10601

I

1
- I

f

(J)
()
I\)

~
I

(J1
I\)
I\)

o
I o

