
Program Product

'e I .

\ .•.. ,1

5C26-3985- 2
File No. 5370-25

VS FORTRAN
Application Programming:
Guide

Program Numbers 5748-F03 (Compiler
. and· Ubrary)

5748-LM3 (Ubrary Only)

Release 1.1

-~- ----.- ---- --~-- ----- -. ---- - - ---------_ ... ----- _.-

This publication was produced using the
IBM Document Composition Facility

(program number 5748-XX9) and
the master was printed on the IBM 3800 Printing Subsystem.

or, '.. ~.

Second Ed;t;on (January 1982)

This is a major revision of, and makes obsolete, SC26-3985-l, and
its technical newsletters, SH26-0806 and SN26-0865.

This edition applies to Release 1.1 of VS FORTRAN, Program
Products 5748-F03 (Compiler and library) and 5748-lM3 (library
only), and to any subsequent releases until otherwise indicated
in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Amendments" following the preface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not
noted.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibilography, GC20-000l, for the editions that are applicable and
current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or
services in your country.

Pub1ications are not stocked at the address given below; requests
for IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
pUblication. If the form has been removed, comments may be
addressed to IBM Corporation: P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150~ IBM may use or
distribute any of the information you ~upply in any way it .
believes appropriate wit~out incurring any obligation whatever.
You may, of course, continue to use the information you supply.

~ Copyright International Business Machines Corporation 1981,
1982

-~ .

c)

c)

ABOUT THI S BOOK

MANUAL ORGANIZATION

o

~ INDUSTRY STANDARDS

This manual describes how to use VS FORTRAN, together with the
supported operating systems, to design, develoPr test, and run
programs written in VS fORTRAN at the 1978 language level. It is
designed as a guide for using VS FORTRAN at the current language
level; it is not intended to be used as a reference manual.

This manual is designed for FORTRAN application developers who
use VS FORTRAN in two different ways:

• Engi neers and sci ent i sts who use FORTRAN as a tool in
mathematical problem solving

• Application programmers who use all of the FORTRAN features
to code FORTRAN programs for their own use or for others

Because of these differences in FORTRAN usage, this manual is
organized into sections:

"Part I-Simplified FORTRAN Programming" describes how to
develop and run mathematical problem-solving FORTRAN programs
that have relatively little system interaction.

"Part 2-Advanced FORTRAN Programmi ng" descri bes all aspects
of VS FORTRAN program development, including sophisticated
use of the language and of the operating systems.

Both of these sections are organized in the same way; they
present, in chronological order, the steps you follow in
developing a FORTRAN application program:

1. Designing

2. Coding

3. Compiling

4. Fixing compile-time errors

5. link-editing

6. Executi ng (i n test mode)

7. Fixing execution-time errors

8. Executing (in production mode)

The rest of the manual describes particular self-contained VS
FORTRAN features:

"Part 3-FORTRAN Special Features" describes hOl .. to use VS
FORTRAN input/output facilities, the facilities for calling
and called programs, and VM/370-CMS with VS FORTRAN. There's
also a brief description of the execution-time library.

Appendixes give useful supplementary information: information
on the hardware devices that can be used, and considerations
for assembler language subroutines.

The VS FORTRAN Compiler and library program product is designed
according to the specifications of the following industry
standards, as understood and interpreted by IBM as of June, 1980:

About This Book iii

RELATED PUBLICATIONS

American National Standard Programming Language FORTRAN, ANSI
X3.9-1978 (also known as FORTRAN 77).

International Organization for Standardization ISO 1539-1980
Programming Languages-FORTRAN.

These two standards are technically equivalent. In this
manual, references to the current standard are references to
these two standards.

American Standard FORTRAN, X3.9-1966.

International Organization for Standardization ISO R
1539-1972 Programming Languages-FORTRAN.

These two standards are technically equivalent. In this
manual, references to the old standard are references to
these two st~ndards.

For both current and old standard language, a number of IBM
language extensions are also included in VS FORTRAN. In this book,
references to current FORTRAN or current language are references
to the current standard plus the IBM extensions valid with it;
references to old FORTRAN or old languaae are references to the
old standard plus the IBM extensions valid with it.

This manual is designed as a guide on how to use VS FORTRAN at the
current language level. It is not intended to be used as a
reference manual.

Reference documentation for VS FORTRAN is given in the following
publications:

VS FORTRAN Application Programming:

language Reference manual, GC26-3986--which describes each
syntactic element available when you're using the current
language

System Services Reference Supplement, SC26-3988--which
provides FORTRAN-specific system information on running VS
FORTRAN programs under VM/370-CMS, OS/VS, and DOS/VSE

library Reference manual, SC26-3989--which describes each
mathematical and service subprogram contained in the
execution-time library: its algorithm, accuracy, range, and
error conditions

Source-Time Reference Summary, SX26-3731--which is a
pocket-sized reference card containing formats for current
source language and brief descriptions of the compiler
options

IBM System/360 and System/370 FORTRAN IV language,
GC28-6515-whi ch descri bes the source language avai lable when
you're using the old language.

FORTRAN Coding Form, GX28-7327--useful for coding fixed-form
FORTRAN programs. "

The previously listed publications"give documentation only for
application programming.

If you need information on VS FORTRAN installation or
customization, see:

VS FORTRAN Installation andCustomization, SC26-3987--which
gives information on installation planning, on the compiler
and library installation macros, storage requirements, and

iv VS FORTRAN Application Programming: Guide

(C'. I,"
. ,~/

c

(0

administrative information about controlling input/output,
and how to create and a I ter the opt ion tabl e

The Program Directory for the system you're operating under,
shipped with the product, gives details on installing VS FORTRAN.

RELATED SYSTEMS PUBLICATIONS

Detailed system information is not included in the VS FORTRAN
publications. Therefore, in order to use this set of manuals
properly, you should be sure you have on hand one of the following
sets of manuals, depending on the system you're using.

For information on developing algorithms for direct files, see
the Introduction to IBM Direct Access Storgage Devices and
Organization Methods, GC20-1649.

V"/370-CHS Systems Publications

The following publications contain guide and reference
documentation you'll need:

IBM Virtual Machine Facility/370:

CP Command Reference for General Users, GC2D-1820

CMS User's Guide, GC20-1819

CMS Command and Macro Reference, GC20-1818

Terminal User's Guide, GC20-1810

as/vs Systems publications

OS/VS linkage Editor and Loader, GC26-3813

OS/VS Virtual Storage Access Method (VSAM) Programmer's
Guide, GC26-3838

OS/VS Tape labels, GC26-3795

HVS PUBLICATIONS: If you're using MVS, you'll need the following
additional publications:

OS/VS2 MVS Data Management Services Guide, GC26-3875

OS/VS2 Access Method Services, GC26-3841

OS/VS2 MVS JCl, GC28-0692

OS/VS2 Debugging Guide, GT28-0632

OS/VS2 TSO Terminal User's Guide, GC28-0645

OS/VS2 TSO Command language Reference, GC28-0646

TSO-3270 Structured Programming Facility (SPF) Proaram
Reference Manual, SH20-1730

as/VSl PUBLICATIONS: If you're using OS/VSl, you'll need the
following additional pUblications:

OS/VSl Data Management Services Guide, GC26-3874

OS/VSl Access Method Services, GC26-3840

OS/VSl JCl Services, GC24-5100

About This Book v

DOS/VSE publications

OS/VSl JCL Reference, GC24-5099

OS/VSl Debugging Guide, GC24-5093

The following publications contain guide and r'eference
documentation you'll need:

DOS/VSE System Management Guide, GC33-5371

DOS/VSE.Data Management Concepts, GC24-5138

DOS/VSE Serviceability Aids and Debugging Procedures,
GC33-5380

VSE/VSAM Programmer;s Reference, SC24-5i45

Using VSE/VSAM Commands and Macros, SC24-5144

Using the VSE/VSAM Space Management for SAM Feature,
SC24-5192

DOS/VSE Tape labels, GC33-5374

DOS/VSE DASD labels, GC33-5375

vi VS FORTRAN Application Programming: Guide

.11''''·1 .,1
\'l,,,pj

o SUMMARY OF AMENDMENTS

RELEASE 1.1, JANUARY 1982

FORTRAN INTERACTIVE DEBUG

SERVICE CHANGES

RELEASE I. JUNE 1981

FORTRAN Interactive Debug Release 2.2 runs with VS
FORTRAN-compiled programs.

In addition to minor corrections to examples, the following areas
have been changed:

• INCLUDE statement

• DATA statement

• Block IF statement

• Additional coding errors to avoid

• ~PROCESS statement

• OS/VS JOB and DO statements

• Optional OS/VS compile-time data sets
I

• TSO LINK command

• Command procedures for foreground processing

• MAP option

• External filename

• BACKSPACE statement

• Subprogram references in FORTRAN

• . Differences between VS FORTRAN and current implementations

• Statement number limits

Two major sections: "Using VM/370-CMS with VS FORTRAN" and "Using
OS/VS2-TSO with VS FORTRAN" have been moved from Part 3 to Part 2.

HISCELLAMEOUS CHANGES

• Page numbers have been changed in the list of figures.

• Description of the TERMINAL option 'has been added.

• Examples have been added and changed.

• A DOS/VSE load module logical units chart has been added.

• The order of·variables in the COMMON statement has been
corrected.

Summary of Amendments vii

• Two appendixes have been added:

Differences Between VS FORTRAN and Current
Implementations

Internal limits in VS FORTRAN

• The glossary and index have been corrected.

RELEASE 1. APRIL 1981

OPTIMIZE COMPILER OPTION

The compiler option, OPTIMIZE(O), is available with Release 1.0
of VS FORTRAN. Additional optimization features (OPTIMIZE
('/?/~,\ ,.,.e" •• el!!!",.1 ;II!!! ... ~ ~1 !'!'l 1~ ~,&,,.,.,. :1"' :1: ,..,"" """' • ...J""""""-'_'t'i;~ .,. "'"" • .,J "''-'I'''''''~'''I g. 'c;:;; ,.... ... g"', .. "" .V, Qyg, ... QU , \.7

at a later time.

vii i VS FORTRAN Appl; cat i on Programmi ng: Gu ide

0)

\ 0)

CONTENTS

o

{O

VS FORTRAN overview •
VS FORTRAN-Thumbnail Description
VS FORTRAN Publ i cati ons ...••.
IBM Extension Documentation

Part I-Simplified FORTRAN programming·

Designing Yourprogram--Simplified Programming

coding Your Program--simplified Programming
Before You Begi n .•....••..•....
Retri evi ng Data-The READ Statement •...•..•..

Converting Character Data-Internal READ Statement
Defi n i ng Data ...•........

VS FORTRAN Data Types ...•...
Defining Data Items .•......

Predetermined Data Type Definition
Explicit Data Type Definition

Defining Program Constants•.....••.
Using Program Constants Directly
Usi ng Names for Program Constants •..•.•.
Program Reference Points-Using Statement Numbers

Defi·ni ng Arrays and Subscri pts •..•.....•.
Defining and Referring to One-Dimensional Arrays
Defining and Referring to Multidimensional Arrays

Usi ng the Assi gnment Statemp-nt ...•...•...••
Initializing Variables-Assignment Statement ..•.
Using Arithmetic Expressions in Assignment Statements
Using Intrinsic Functions ••......••.•.••.

Controll i ng Program Flow ...•...•......•.
Programming Alternative Execution Paths-Arithmetic IF
Statement ..•..............•.

Programming Alternative Exeeution Paths-logical IF
State~ent ..•.••.......•..••...

Executing Procedures Repetitively-DO Statement .••.
Processing One-Dimensional Arrays--DO Statement
Processi ng Mul t i di mensi onal Arrays-Nested DO
Statement ~ ..••....••..•...•••.••.

Obtaining Results-Using the WRITE Statement
Endi ng Your Program--END Statement ..••....••.
Coding Errors to Avoid•..••.

Co~piling Your program--Simplified Programming
Enteri ng Your Source Program .••.•..•..
Request i ng Comp i lat ion •....•...

Requesting Compilation Only-OS/VS
Requesting Compilation Only-DOS/VSE

Comp i 1 er Output ...•.•..........

Fixing Co~pile-time Errors--Simplified programming
Usi ng the Messages ..•.••.........

,
Link-Editing Your Program--Simplified Programming
Requesting link-Editing-OS/VS •••.
Requesting link-Editing-DOS/VSE

Using the Link-Edited Program •......

Executing Your program--Simplified Programming
Executing Your Program-OS/VS ..••.

Setting Up Test Data Files--OS/VS
Compile, link-Edit, and Execute--OS/VS

Execut i ng Your Program-DOS/VSE ...•
Setting Up Test Data Files-DOS/VSE .
Compile, link-Edit, and Execute-DOS/VSE

Execution Output •••••...•....•

1
1
2
3

5

6

7
7
7
8
8
9
9
9

10
11
11
11
12
12
12
13
13
14
14
15
16

16

16
17
17

17
18
19
19

20
20
20
20
21
21

22
23

24
24
24
25

26
26
26
27
27
27
28
28

Fixing Execution-Time Errors--simplified Programming 29

Contents ix

Finding Errors ••..•.•.
Execut i on-T i me Error Messages •.•.
Endless Loops or l~ai ts '..... . •••.
Unexpected Output ..•••• . . . • • • . •

Usi ng Debuggi ng Packets .•.•
Fixing Errors .••. 0

A Sample Program--Simplified programming

Part 2--Advanced FORTRAN Progra~mtng

Designing Your Program--Advanced Programming
Top-Do~"n Desi gn and Development . • . • . ••• 0

Using Top-Down Design in VS FORTRAN •.......••
Top-Down Design with a Single Object Module--INCLUDE

Statement ,. 0 • • • • • • • • • • • • • • • • • • •

Top-Down Design with Multiple Object Modules-Using
Subprograms •...••••••.•••. . . • . .

Ceding leur Pragram--Advahced Programming
Using Fixed-Form Input-.-FORTRAN Coding Form
Usi ng Free-Form Input •.•. ;. ••••
Defi ni ng Data ••.•. 0' ••••••••

Predetermined Data Type Definition
Explicit Data Type Definition •••.••.•.

Typing Groups of Data Items-IMPLICIT Statement
Typing for Specific Data Items-Explicit Type
Statements .••.

Data Classifications ..•.•
Variables •.....••.•
Constants .•••.....•

Def in i ng Con stant s by Value ...••..••
Defining Constants by Name--PARAMETER Statement

Arrays and Subscr i pt s •.•.•• • • • .
One-Dimensional Arrays .. 0 ••••••

Multidimensional Arrays
Arrays-Impl i cit Lower Bounds .••..•..
Arrays-, -Expl i ci t Lower Bounds .•.••..••..
A rrays-S i gned Subscr i pt s, .•• .•• • .
Arrays-Programming Considerations

Substri ngs of Character Items
Using Data Efficiently .•••••.•

Initializing Data-DATA Statement •
Initializing Arrays-DATA Statement •..

Managing Data Storage-EQUIVALENCE Statement
Execution-Time Efficiency Using Equivalence

Defining and Using Expressions .••••
Arithmetic Expressions ... 0 •••••••

Character Expressions ••..•••••..
Relational Expressions ••..••••...

Relational Expressions-Character Operands
Logical Expressions " •••••.•.•••.

Assigning Values to Data-Assignment Statement
Arithmetic Assignments .•.••.•••.•
Character Assignments•.•••••
logical Assignments•....• 0

Saving Coding Effort with Statement Functions
Controlling Program Flow .•.....•..••.

Using Structured Programming-Block IF Statement
Using the CONTINUE Statement .•••••..••

Programmi ng Loops-DO Statement •.•.•• 0 •

Using Program Switches--Assigned GO TO Statement .
Using Conditional Transfers-Computed GO TO Statement
Suspending Program Execution--PAUSE and STOP Statements

Suspending Execution Temporarily--. PAUSE Statement
Stopping Programs Permanently--STOP Statement

Ending Your Program-END Statement ••••
Use Pre-Wri tten Source Code .••••••.
Avoiding Coding Errors .•••....•.••

Compiling Your program--Advanced Programming
Automatic Cross Compilation
Overall Job Control Consi derati ons •••••••

x VS FORTRAN Application Programming: Guide

29
29
29
30
30
30

31

33

'34
34
36

36

37

38
38
38
39
40
40
40

41
42
42
42
42
46
46
47
47
47
48
48
49
49
50
50
50
51
52
53
53
55
56
57
57
58
59
59
60
60
61
61
64
64
66
66
67
67
67
68
68
68

71
71
71

1 OJ

O'~·'·\ I J
I, ./

<'0

10'''; \ '

Syntax for Job Control Statements
Using the Compile-Time Options

Modifying PROC Statements--OS/VS
Modi fyi ng EXEC Statem'ents-OS/VS
Modifying DD Statements-OS/VS

Job Control Consi derat i ons-DOS/VSE •• ' ••
Using DOS/VSE Job Control Statements
Identifying a Job-DOS/VSE JOB Statement ...
Speci'fyi ng L i nkage-Edi tor Opti ons-DOS/VSE OPTIOH
Statement ..•...•..•.•••.....

Defi ni ng Fi les-DOS/VSE ASSGH Statement
Defining Files on Direct Access Devices-DOS/VSE

DLBL Statement-DOS/VSE ...•......
EXT ENT Statement-DOS/VS E ...•.•...

Requesting Execution-DOS/VSE EXEC Statement
Request i ng Compi lat i on-DOS/VSE ...••.

Compiling a Single Source Program--DOS/VSE
Batch Compilation of More Than One Source

Program--DOS/VSE
Compi Ie-Time Fi les--DOS/VSE .•..•.....

Wri t i ng and ~1odi fyi ng Cataloged Procedures--DOS/VSE
Retrieving Cataloged Procedures--DOS/VSE
Temporarily Modifying Cataloged Procedures-DOS/VSE

Compiler Output .•......••.•
Compiler Output with Default Options
Output with Explicit Compiler Options

Cataloging Your Source Program •...
Cataloging Your Source--OS/VS
Cataloging YourSource-DOS/VSE

Cataloging Your Object Module--DOS/VSE
Cataloging Your Object Module--OS/VS
Cataloging Your Object Module-DOS/VSE

Using VM/370-CMS with VS FORTRAN ••••••
The CP and CMS Commands .. ~ • . . • . •
Usi ng Your Termi nal l.Ji th Cr1S•..
Creating Your Source Program-CMS EDIT Command
Usi n9 the FORTRAN INCLUDE Statement-CMS
Compiling Your Program-Using CMS

Compi ler Output-CMS ...•••.....
The LISTING Fi le-CMS •...•....
The TEXT Fi le-CMS ..•.•.....•.

Making Libraries Available-CMS GLOBAL Command
Loading and Executing Your Program under CMS

Using the LOAD and INCLUDE Commands-CMS•...
Creating a Honrelocatable Load Module-GEHMOD Command

Defining Sequential and Direct Data Files-CMS •..•
Specifying a File Identifier-CMS .••.•••..

Using the FILEDEF COMmand-CMS•.
Defining Sequential and Direct Disk Files-CMS
Defining Tape Files-CMS •..........
Defi ni ng Termi nal Fi les-CMS .•...•...
Defining Unit Record Files-CMS ..•.......

Defining VSAM Sequential and Direct Files-CMS
Defi ni ng a VSAM Fi Ie to CMS••.
Using the DLBL Command-CMS ..•....•..
Creating a VSAM DEFINE Command-CMS EDIT Command
Mak i ng the Catalog Entr~l-AMSERV Command
Creating and Pro~essin9 VSAM Files--CMS

Using OS/VS2-TSO with VS FORTRAN ••••••
Usi ng the TSO Commands•••....
Usi ng Your Termi nal wi th TSO. •.......
Creating Your Source Program--TSO EDIT Command ...
Compiling Your Program--TSO ALLOCATE and CALL Commands

Allocating Compilation Data Sets-TSO ALLOCATE
Command .•......•..... . . • .

Requesting Compilation-CALL Command
Comp i 1 er Output-TSO

The LIST File--TSO ...••....
The OBJ Fi le-TSO••.....•..

Link-Editing and Executing Your Program under TSO
Link-Editing Your Program--TSO LINK Command

71
72
82
82
83
84
85
85

85
85
86
86
86
86
87
87

87
88
88
88
88
89
89
90
90
90
91
92
92
92

93
93
93
93
95
95
96
96
96
96
97
97
97
98
98
98
98
98
99
99
99

100
100
100
100
101

102
102
102
102
104

104
104
105
105
105
105
106

Contents xi

Linkage Editor Listings--TSO LINK Command .••• 106
Executing Your Program--TSO ••••.••••

Using the CALL Command--TSO Load Module Execution
.. 106

106
107
107

Using the Loader--TSO LOADGO Command •.•.•.•••
Fixing Execution Errors Under TSO .•••....
Requesting Command Procedure Processing Under TSO

Command Procedures For Foreground Processing
Command Procedures for Background Execution

TSO Fi Ie Nami ng Conventi ons •...••...
File Identification--TSO ALLOCATE Command

Defining VSAM Sequent.ial and Direct Files-TSO
System Consi derat ions Under OS/YS2-TSO .•••..••.•

Fixing Compile-Time Errors--Adv~nced programming
Using the Compiler Output Listing ..•..

Compilation Identification ••..••••••.
Source Program Listing--SOURCE Option
D; agno st i c Message List i ng-FL AG Opt ion • . • •

OS/VS Cataloged Procedures and Compiler Message Codes
DOS/VSE Message Code Considerations

Using the MAP and XREF Options
Source Program Map-MAP Option .••.

NAME Co I umn .•••..•••.
MODE Column ..•..•••..•••
TAG Column ..•.•....
Address Column .•........
COM~10N Block Maps-MAP opt ion . • • .
Statement Label Map-MAP Option ...•...•..

Source Program Cross-Reference Dictionary-XREF Opti.on
Data Item Dicticnary--XREF Option ••...•
Statement label Dictionary-XREF Option

End of Compilation Message .••..•.•...••.
Using the Standard Language Flagger--FIPS Option

Link-Editing Your Program--Advanced programming
Automatic Cross-System Support .•.•.•.••.
linkage Editor Input ..•...•...•.••.

Object Module as Link-Edit Data Set-DECK Option
ESD Reco rd ..•....•
TXT Record .•••........•.....
RLD Record ..••....•......•.
END Reco rd .•....••.•...

Producing a load Module-OBJECT Option
link-Editing for Immediate Execution

L i nk-Edi t i ng Your Program-OS/VS ...•
Cataloging Your. Load Module--OS/VS
Executing a Link-Edit--OS/VS •.•..•.•

Using the Linkage Editor--OS/YS ••..
Using the Loader-OS/VS

Link-Editing Your Program--DOS/VSE
Catalogl ng Your Load ftlodule-DOS/VSE
Executing a Link-Edit-DOS/VSE •••..•.

Logical Units Used for Link-Editing--DOS/YSE
Linkage Editor Output .••••..•.•.•.

Executing Your prog."am-Advanced Programming
Executing Your Program--OS/VS .••••.

Usi ng Load Module Data Sets-OS/VS •
Us; n9 Cataloged load ~'odules-OS/YS

Execut i ng the load Modu 1 e-OS/VS
Execute Only---OS/VS .•.••.•
L i nk-Edi t and Execute-OS/VS •••
Compile, Link-Edit, and Execute--OS/VS

Executing Your Program--DOS/YSE
Load Module logi cal U'n; ts-DOS/VSE'
Executing the Load Module-DOS/YSE

Execute Only--DOS/VSE • ~ . . .
Link-Edit and EXQcute-DOS/VSE .•..
Compile, Link-Edit, and Execute-DOS/VSE

Load Module Execution-Time Output
Execution without Error
Execut i on wi th Errors .•.•.

xii VS FORTRAN Application Programming: Guide

108
108
108
109
110
111
111

112
112
112
112
113
115
115
115
116
116
116
117
117
117
118
118
119
119
120
120

122
122
122
122
123
123
123
124
124
124
125
125
125
125
126
127
127
128
128
129

130
130
130
131
131
131
131
131
132
132
133
133
133
133
134
134
134

o

(0

Fixing Execution-Time Errors--Advanced Programming
Execut i on-T i me Messages .••..•••••

Library Diagnostic Messages . 0 0 0 0 ••

Usi n9 the opt i onal Traceback Map ..• 0

LIST Compiler Option and Traceback Maps
Program Interrupt Messages
Operator Messages " 0 0 0 0 0 0 • 0 • • • • • • • • 0 • 0 • 0

Using Debug Packets •••.• 0 00 •

Usi ng Extended Error Handl i ng 0 • 0 0

Extended Error Handl i ng By Defau 1 t .• 0 •• • •

Controlling Extended Error Handling-Call Statements
Extended Error Handling--DOS/VSE Considerations

Ob j e c t Mo du I eLi s tin g--L 1ST 0 p t ion 0 0 0 • 0

Requesting Dumps 00 0 0 •• 0 0 •••• 0 0

Requesting Dynamic Dumps--CALL Statement
Dynamic Dumps-DOS/VSE Considerations

Requesting an Abnormal Termination Dump . 0 ••

Requesting a Dump-OS/VS 0 0 •••••

Requesti ng a Dump-DOS/VSE .• 0 •

Part 3--FORTRAN Special Features

Progra~ming Input and output •••••
Using VS FORTRAN Input/Output Statements

Using Common Options For Input/Output
Connect i ng to a Fi Ie-OPEN Statement
Creating File Records-WRITE Statement o. 0 •

Retrieving File Records--READ Statement . 0 0 ••••

Obtaining File Information--INQUIRE Statement
Disconnecting a File-CLOSE Statement

Usi ng Unformatted and Formatted I/O . 0 •• 0 • 0 •• 0

Formatting FORTRAN Records--FORMAT Statement ..• 0 • 0

Group "FORMAT Spec i fi cat ions 0 0 0 • • • • • • • • • • •

Using Specifications Repeatedly--FORMAT Control
Using One FORMAT Statement with Variable Formats

Using Sequential Files o. 0 • 0 0 0 0 0 0 0 ••• 0 • 0 ••

Source Program Consi derat ions ..•. 0 • • •

Using the OPEN Statement--Sequential Files
Using the WRITE Statement-Sequential Files
Usi ng the READ Statement-Sequential Fi les ... 0

Using the ENDFILE Statement-Sequential Files
Using the REWIND Statement--Sequential Files
Using the BACKSPACE Statement--Sequential Fi les
Using the CLOSE Statement--Sequential Files

Us i ng "A synchronous Input/Output 0... 0
Usi n9 the Asynchronous WRITE Statement
Using the Asynchronous READ Statement
Usi n9 the Asynchronous WAIT Statement o. 0 0

Using List-Directed Input/Output . 0 ••

Input Data--List-Directed I/O
l i st-Di rected READ Statement 0 0 • 0

l i st-Di rected ~!RITE Statement 0 0 • 0 0 •• 0

Usi ng Internal Fi les•.... 0 •

Using the READ Statement--Internal Files
Using the WRITE Statement-Internal Files

System Considerations-Sequential Files
OS/VS Considerations--Sequential Files
DOS/VSE Considerations--Sequential Files

Using Direct Files 0 ••• 0 ••••• 0 0

Source Program Consi derat ions 0.. 0 • 0

Using the OPEN Statement-Direct Files
Using the WRITE Statement--Direct Files
Using the READ Statement-Direct Files
Using the CLOSE Statement--Direct Files

System Considerations-"-Direct Files
OS/VS Considerations-Direct Files
DOS/VSE Considerations-Direct Files

Usi ng VSA~1 Fi les • 0 • 0 ••••• 0 ••••

Source Language Considerations-VSAM Files
Processing VSAM Sequential Files
Processi ng VSAM D1 rect Fi les .•.••.

" ..

Processi ng VSAM-r1anaged Sequential Fi les . 0 0 ••••

Obtaining the-VSAM Return Code--IOSTAT Option

135
135
135
135
137
137
138
139
140
140
142
143
143
149
149
149
150
150
150

151

152
152
152
153
155
155
156
156
157
157
159
160
160
161
161
161
161
162
163
163
163
164
164
164
165
165
166
166
167
168
168
169
169
170
170
170
170
171
171
171
172
173
173
173
174
174
175
176
177
179
179

Contents xiii

Defining a VSAM File •.•.•......••
Defining a VSAM Sequential File .•..•....
Defining a VSAM Direct File ...•••.....
Defining a DOS/VSE VSAM-Managed Sequential File

Processing DEFINE Commands
Processi ng DEFINE Commands-OS/VS
Processing DEFINE Commands--DOS/VSE

Creating and Processing VSAM Files .
Creating and Processing VSAM Files-OS/VS
Creat i n9 and Processi ng VSAM Fi les-DOS/VSE

SystEm Considerations-Input/Output ..•.
Using Input/Output Labels ...••.

Magnet i c Tape Label s .•....
OS/VS Tape Label ConsidErations
DOS/VSE Tape Label Considerations
Di rect Access Dev ice Label s ..••
Volume Labels ..•.••...•..
Processing Direct Access Device Labels
OS/VS Direct Access Label Considerations
DOS/VSE Direct Access Label Considerations

Def in i f1g FORTRAN ReC(H'"d:s-Systt:1!iiI Cunsi dt:1!r~at i uns
Record Formats-OS/VS • . • .
Defining Records-OS/VS
Record Formats--DOS/VSE

Coding calling and Called Programs
Kinds of Called Programs . • . .

Shari n9 Data Between Programs'
Passing Arguments Between Programs ..•

Passing Arguments to a FUNCTION Subprogram
Passing Arguments to a SUBROUTINE Subprogram
General Rules for Arguments ...•
Assigning Argument Values••.

Shari ng Data Storage-COM~10N Statement ..•.
Data Item Order-CO~mON Statement••
Type and Length Considerations--COMMON Statement .
Efficient Arrangement of Variables--COMMON Statement
EQUIVALENCE Consi derati ons-Cot1t'10N Statement

Blank and Named Common •
Blank Common ...•..••..•.
Na'T'ed Common•.......••.
Using Blank Common and Named Common
Using Blank and Named ComMon--Example

Coding Main Programs-Calling Programs ...
Nami ng Your Ma i n Program-PROGR.a\~' Statement
Invoking FORTRAN-Supplied Functions

Using FORTRAN-Supplied Functions as
Arguments-INTRINSIC Statement. • . .

Comparing Character Operands-FORTRAN-Supplied
Functions•.••........

Invoking FUNCTION and SUBROUTINE Subprograms
Invoking fUNCTION Subprograms ..•..
Invoking SUBROUTINE Subprograms-CALL Statement

Codi ng Subprograms-Called Programs . •
Coding FUNCTION Subprograms ..•.......••.
Cod i ng SUBROUT IN E Subprograms ..•.....•...
Specifying Alternative Entr~' Points-ENTRY Statement

Alternative Entry Points in FUNCTION Subprograms
Alternative Entry Points in SUBROUTINE Subprograms

Specifying Alternative Return Points-RETURN ,Statement
Retai n i ng Subprogram Values--SAVE Statement .•••
Initializing Named Common-BLOCK DATA Subprograms

System Consi derati ons ...•• . •.•
Overlaying Programs in Storage

Specifying OS/VS Overlays
Specifying DOS/VSE Overlays

Using the optimization Feature ••••
Select the Higher Optimization Levels
Write Programs of Efficient Size
Use Unformatted I/Q ..••.•••••
Use Array Qperands for' I/O Transfers
Use LOGICAL Variables of Length 4

xiv VS FORTRAN Application Programming: Guide

179
180
180
181
181
181
182
182
182
182
183
183
183
184
184
184
184
185
185
185
foe
.LOJ

185
186
187

189
189
190
190
191
191
192
192
193
193
194
195
197
198
199
199
199
200
201
201
201

202

202
203
203
204
205
205
206
206
206
207
207
208
208
209
210
210
211

213
213
213
213
213
214

\ 0,)

0 ,
. .vi

o

Use INTEGER Variables of Length 4
Eliminate EQUIVALENCE Statements .••.
Initialize Large Arrays During Execution
Use COMMON Blocks Efficiently.· ..••..••
Pass Subroutine Arguments in COMMON Blocks
Don't Use' Variably Dimensioned Arrays •• _ ••
Write Critical Loops Inline .••.•••.
Ensure Recognition of Duplicate Computations
Ensure Recognition of Constant Computations
Ensure Recognition of Constant Operands
Eliminate Scaling Computations ...•.•••
Define Arrays with Identical Dimensions ..••.
Define Arrays with Identical Element Specifications
Use Critical Variables Carefully ...•••..
Avoid Unneeded Fixed/Float Conversions .•.•..
Minimize Conversions Between Single and Double Precision
Use Scalar Variables as Accumulators .••.
Use Efficient Arithmetic Constructions •• f •

Use IF Statements Effi ci ently ...•. • •.•
Use the Obj ect Program List i ng ..••..•.•

Source Considerations with OPTINIZE(3)••.
Common Express ion El i mi nat ion-OPT IMIZE(3) ..•.
Computational Reordering--OPTIMIZE(3)
Instruction Elimination--OPTIMIZE(3)

Using The Execution-Time Library ••••••••••
Mathematical and Character Functions
Service Routines••••..••.
Error-Handling Routines •.•....•.

Automatic Error Handling
Error Handling Under Your Control

Appendixes

Appendix A. Device Informltion
Minimum and Maximum Block Size Values
Direct Access Device Capacities

Appendix B. Assembler language considerations
Subprogram References in FORTRAN

The Argument List •.....••.•
The Save Area ••...... .. • •
The Ca 11 i ng Sequence ..••. . • • . •

Linkage in Assembler Subprograms .•..
Called Ass~mbler Subprograms
Called and Calling Assembler Subprograms

Ma in Programs ..•.•.....•...•.
Using FORTRAN Data in Assembler Subprograms .••.

Using COMMON Data ;n Assembler Subprograms ..
Using Blank Common Data in Assembler Programs
Using Named Common Data in Assembler Programs

Retrieving Arguments in an Assembler Program
Retrieving Variables from the Argument List
Retrieving Arrays and Array Elements from the

Argument List•.....••.
Returning to Alternative Return Points

Internal Representation of FORTRAN Data
CHARACTER Items in Internal Storage
LOGICAL Items in Internal Storage
INTEGER Items in Internal Storage
REAL Items in Internal Storage
COMPLEX Items in Internal St~rage

Appendix C. Differences Between VS FORTRAN and Current
Implementations ••••••••••••••••

Appendix D. Internal Limits in VS FORTRAN
Nested DO loops
Express i on Eva I uat ion ...••...
Nested Statement Function References
Nested INCLUDE Statements .•••...•.
Nested Block IF Statements .•.•.
Character Constants •.....••.

214
214
214
215
215
215
216
216
217
217
217
217
217
218
218
218
218
218
219
219
219
220
'220
220

222
222
222
223
223
223

225

226
226
227

228
228
228
229
229
229
229
230
230
230
230
231
231
231
231

232
232
232
232
232
233
233
234

236

238
238
238
238
238
238
238

Contents xv

Referenced Variables
Parentheses Groups
Statement labels

Glossary

Index . ,. . .

xvi VS FORTRAN Application Programming: Guide

238
238
239

240

245

FIGURES

~··o
1.
2.
3.
4.
5.
6.
7 •
8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

VS FORTRAN Application Programming Publications
IBM Extensions in Examples Bnd Figures •
T,..,o-Di mensi onal Arra\,-Phys; cal layout in Storage
Arithmetic Operators and Operations
VS FORTRAN Error Message Example ..•••.•.
Example of Top-Down Program Design .. . ••
Data Types and Val i d Lengths . . •. . .
Three-Dimensional Array--Implicit and Explicit
lower Bounds. •..• •.
Arrays-Effect of Negati ve Lower Bounds ..
Shari ng Storage Between Arrays-EQUIVALENCE Statement
Storage Efficiency and the EQUIVALENCE Statement
Arithmetic Operators and Operations
Relational Operators and their Meanings
logical Operators and their Meanings .••
Block IF Statement-Valid Forms ..••
Cataloged Procedure FORTVC, OS/VS .••.
Cataloged Procedure FORTVCl, OS/VS .. .
Cataloged Procedure FORTVCLG, OS/VS .. .
Cataloged Procedure FORTVLG, OS/VS . . .
Cataloged Procedure FORTVG, OS/VS . • •.
Cataloged Procedure FORTVCG, OS/VS
Cataloged Procedure FORTVL, OS/VS ..•.
Compi ler Output Usi ng Expl i ci t Opti ons .• ...
VM/370-CMS Commands Often Used with VS FORTRAN
OS/VS2-TSO Com~ands Often Used with VS FORTRAN
Allocating TSO Compilation Data Sets ..
Source Program listing Example-SOURCE Option
Examples of Compile-Time Messages-FLAG Option
Example of a Storage Map--MAP Option .••.
Module Identification Codes .• • ••••..•
Example of a Cross-Reference Dictionary--XREF Option
Obj ect Module Structure ..•. •..
Load Module Data Sets-OS/VS •• •••.
Load Module Logical Units-DOS/VSE ..••
Operator Message Format ..•. •.
Using Batch Symbolic Debugging Statements .• •
Library Names for DOS/VSE Error Handling and Service
Routin~s •. .•..•
Object Module Listing Example-LIST Compiler Option
SOlne Codes Used wi th the FORMAT Statement
Display for FORMAT E14.5E2 ...•.•.
FORTRAN Statements Valid with VSAM Files
DOS/VSE Logical Units and Devices Allowed
Example of Shared Data Areas-COMMON Statement
T ransm itt i ng Values Between Common Areas ..•.•
Blank and Named Common Storage Sharing ••
CAll Statement Execut ion•...• •.
VS FORTRAN Devices-Minimum and Maximum Block Sizes
Direct Access Dev ice Capac it i es •.• • .

3
3

13
15
22
36
39

48
49
52
54
55
56
57
63
78
78
79
80
80
81
81
91
94

103
104
113
114
116
118
120
124
130
132
139
141

143
145
158
159
175
187
193
194
201
204
226
227

Figures xvii

0)
/

o

o

(0

VS FORTRAN OVERVIEW

FORTRAN (FORmula TRANslator) is a programming language especially
useful for applications involving mathematical computations and
other manipulations of numeric data. It's particularly suited to
scientific and engineering applications.

FORTRAN looks and reads much like mathematical equations, so that
you can use conventional mathematical symbols and constructions
to control computer operations. FORTRAN is problem-oriented and
relatively machine-independent; this frees you from machine
restrictions and lets you concentrate on the logical aspects of
your data processing problems.

Compared with machine-oriented languages, FORTRAN gives you easy
program development, decreased debugging effort, and overall
greater data processing ,efficiency.

Source programs written in VS FORTRAN consist of statements you
write to solve your problem; the statements must conform to the VS
FORTRAN programming rules.

The VS FORTRAN compiler then analyzes your source program
statements and translates them into machine language, which is
suitable for execution on a computer system. The VS FORTRAN
compiler also produces other output to help you debug your source
and object programs.

The VS FORTRAN compiler generates object programs that use the
services of the VS FORTRAN execution-time library, and of the
supporting operating systems. It depends upon them for the
programmi ng serv ices it must use. '

The VS FORTRAN compiler operates under control of one of the
following operating systems: VM/370-CMS, OS/VS2 MVS with or
without TSO, OS/VSl, or DOS/VSE. You can compile your program
under anyone of these systems and then link-edit the program and
its subroutines to execute under any of the others.

VS FORTRAN--THUMBNAIL DESCRIPTION

VS FORTRAN is a program product that runs under VM/370-CMS, under
MVS or OS/VSI, or under DOS/VSE. It's compatible in language,
because it accepts two language levels:

Current FORTRAN-1978 Ameri ca,n Nat i onal Standard FORTRAN
(technically equivalent to ISO FORTRAN 1980), plus IBM
extensions. (The language features described in this manual
are current FORTRAN.)

Old FORTRAN--1966 American National Standard FORTRAN
(technicall~ equivalent to ISO FORTRAN 1972), plus IBM
extensions. (Old FORTRAN language is documented in IBM
System/360 and System/370: FORTRAN IV language.)

The current FORTRAN language has a number of features never before
available in System/370 FORTRAN:

Added Control Over Input/Output-through the OPEN, CLOSE, and
INQUIRE statements '

VSAM Sequential and Direct File Processing-through VSAM ESDS
and RRDS data sets.

CHARACTER data type-gives you more flexible and direct
control of character variables and arrays; thi sis useful
when you're using READ and'WRITE statements to process
internal fi les~

VS FORTRAN Overview 1

Internal File Processing--Iets you transfer data from one
internal storage area to another. The READ statement converts
the data from character to internal data types; the WRITE
statement converts the data from internal data types to
character data.

Structured Programming Aids--the block IF statement, plus the
INCLUDE and CONTINUE statements, makes structured code
sequences easy to implement.

Constant Names--let you name constants and define their
values once at the beginning of a program; later in the
program, a reference to the constant name is a reference to
that value.

In addition, VS FORTRAN lets you write your source programs in
either free or fixed format, lets you use the standard language
flagger to identify nonstandard source language elements in your
programs, and gives you diagnostics that are more informative
than ever before.

VS FORTRAN PUBLICATIONS

The VS FORTRAN publications are designed to help you develop your
programs with a minimum of wasted effort.

This book, VS FORTRAN Application Programming: Guide, gives
guidance information on designing, coding, debugging, testing,
and executing VS FORTRAN programs written at the current language
level. It is not intended to be used as a reference manual.

A series of related publications give y6u detailed reference
documentation you can use when you're actually performing the
tasks this manual describes:

VS FORTRAN Application Programming:

Language Reference manual, GC26-3986--gives you the semantic
rules for coding VS FORTRAN programs when you're using
current FORTRAN. This manual also documents the differences
between the old FORTRAN language and the current FORTRAN
language.

Library Reference manual, SC26-3989--gives you detailed
information about the execution-time library subroutines.

System Services Reference Supplement, SC26-3988--gives you
FORTRAN-specific reference documentation for the system
you're operating under.

Source-Time Reference Summary, SX26-3731--is a pocket-sized
reference card containing current language formats and brief
descriptions of the compiler options.

System/360 and System/370 FORTRAN IV Language manual,
GC28-6515--gives you the rules for writing VS FORTRAN programs
when you're using old FORTRAN. .

Figure 1 shows how these manuals should be used together.

2 VS FORTRAN Application Programming: Guide

-0

o

o

Application Programming publications

Application

I
Programming I Comp; Ie. -

Des;gn Guide link, and
and code execute

I I I I
FORTRAN IV VS FORTRAN System Services Library
Language Language Reference Reference
Reference Reference Supplement

I I
I

VS FORTRAN
Reference
Summary

Figure 1. VS FORTRAN Application Programming Publications

IBM EXTENSION DOCUMENTATION

Sections of this manual describe VS FORTRAN source language
usage, both usage of standard language and of IBM language
extensions. The IBM extensions are indicated in the following
ways:

IBM EXTENSION·----------------------~

In text, the IBM source language extensions are documented as
this paragraph is shown.

'------------------ END OF IBM EXTENSION ----------------'

In examples and fi gures, IBM extensi ons are boxed, as shown in
Figure 2.

Data Type Valid storage Lengths Default Length

Integer ~ or4 4

Figure 2. IBM Extensions in Examples and Figures

VS FORTRAN Overview 3

'~;
(I,,'

~!

0)

(c·~ , ,

PART 1-SIMPLIFIED FORTRAN PROGRAMMING

If you are a student, or a scientist, engineer, or other
professional who uses FORTRAN only as a tool for problem solving,
this part of this manual is meant for you. It gives you the
simpler ways of using current VS FORTRAN, without documenting
data processing details you don't need.

This part ;s divided into seven sections, which guide you through
the seven steps to follow when developing any VS FORTRAN program:

1. "Des i gn i ng Your P rogram-S i mpl i fi ed P rogramm i ng"

2. "Coding Your Program-Simplified Programming"

3. "Comp i ling Your Program-S i mpl if i ed Programm i ng"

4. "Fixing Compile-time Errors-Simplified Programming"

s. "link-Editing Your Program-Simplified Programming"

6. "Executing Your Program-Simplified Programming"

7. "Fixing Execution-Time Errors-Simplified Programming"

If you find errors in your program at step 4 or 7, you must repeat
the earlier steps. If you don't find ·any errors, you can of course
omit steps 4 and 7.

The sample program· at the end of this part illustrates how you can
use VS FORTRAN to program a problem solution.

Most of the examples in the text for this part are taken from this
sample program.

Part I-Simplified FORTRAN Programming S

DESIGNING YOUR PROGRAH--SIHPLIFIED PROGRAMHING

Before you begin coding any FORTRAN program, you should first
consi der "'hat you want your program to do and the best way to do
it. Everv program has a purpose, and that purpose should guide its
design.

Typically, a program reads some data, processes it, and then
wr; tes out the resul ts of the processi ng. Thus, it' 5 conveni ent to
think of your program's structure in these three blocks and, in
your logic structure, to take account of each block:

1.

2.

3.

Reading in the data--know where the data will come from and
the form it will have once you retrieve it.
D ... "",. ... ~_: "1"" _ •• _ ~ __L_ _ •• :.L ... :.L __ ..I .LL.._
• , "' , "1:1 -., Ie ,,",u .. a "I''''" r.1 ,Q '"' yu"" .""g.... '-v \..IV "II I"', Qt '-, Ie'

order in which you must do it, to get the results you're
looking for. Consider the calculations you must code and
their order, tests, loops, assignments, and so forth.

Writing out the results--decide where to print or record
them.

Once you've decided the purpose, you must consider how your
FORTRAN program can best be structured to meet the purpose you
have in mind. After you have a general idea of how your program
will be structured, it's a good idea to write a step-by-step
pictur~ of its logic: possibly through a brief outline or a flow
chart.

Now you're ready to go to the next step, "Coding Your
Program--Simplified Programming."

6 VS FORTRAN Application Programming: Guide

0)

(C·'·,
'- I

CODING YOUR PROGRAM--SIMPLIFIED PROGRAMMING

BEFORE YOU BEGIN

Once YOU'v~ drawn up an overall design for your program, you can
use VS FORTRAN to i~plement your design, statement by statement.
The result is a VS FORTRAN program, a logical solution to your
problem; this program is called the source program--because you
write it in a source language, in this case FORTRAN.

Every FORTRAN program is made up of three elements: data,"
expressions, and statements: "

Data is a collection of factual items. In FORTRAN, these data
items are represented by variables, constants, and arrays.

Expressions are written representations of data
relationships. The simplest form of an expression is the name
of a single data item; through the use of operators (for
example, arithmetic symbols), you can express more
complicated forms of data relationships.

statements use data and expressions to tell the FORTRAN
compiler what to do. There are two kinds of statements:

Nonexecutable statements specify the nature of data you
want to process or define the characteristics of your
source program.

Executable statements cause operations to be performed.

All of these FORTRAN source program elements are explained in more
detail later in this chapter.

In coding your program, you must follow the rules of the level of
VS FORTRAN you're using:

• If you're coding a new VS FORTRAN program, use the VS FORTRAN
Application Programming: language Reference manual .

• ' If you're updating' an existing FORTRAN IV program, use the IBM
Svstem/360 and System/370 FORTRAN IV language manual.

The easiest way to code FORTRAN programs is by using the
preprinted FORTRAN Coding Form; it's specially designed to help
guide you in program coding.

The rules for writing VS FORTRAN fixed-form programs are easy to
follow when you use the cdding form. "

IBM EXTENSION

In VS FORTRAN, you can also use free-form input-- which frees
you of many of the restrictions imposed by fixed form.

1...-_________ " END OF IBM EXTENSION ------------'

Programming rules for coding VS FORTRAN source language
statements are given in the VS FORTRAN Application Programming:
language Reference manual.

RETRIEVING DATA--THE READ STATEMENT

Your program probably retrieves dat~ that it needs for
processing; if it does, your program must use a READ statement.

Coding Your Program--Simplified Programming 7

In the READ statement, you tell the system the unit from which you
want the data retrieved, and the data items in which you want the
data placed. For example:

READ(UNIT=5)CHARIO

The meaning of each part of this READ statement is:

The word READ tells the compiler that you want to retrieve
some data.

UNIT=S identifies'the unit that contains the data you want to
retrieve. (The unit number 5 is only an example of a valid
unit number; check with your system administrator for unit
numbers that you can use with READ statements.)

CHARlO is a variable you've defined within your program and,
in which you want the retrieved data placed. (Variables are
data items that can change in value durin; program
execution.)

When your READ statement is executed, the next item of data on the
input device is placed in variable CHARlO.

CONVERTING CHARACTER DATA--INTERNAL READ STATEMENT

DEFINING DATA

The preceding external READ statement transfers data into your
storage without any data conversions.

If your input data comes from your terminal, or from the system
card reader, you must then convert the external data (which is in
character format--one byte per character) into an internal format
your program can use.

You can use an internal READ statement to perform the conversion.
For example:

READ (UNIT=CHARIO, FMT='(F3.1)') DElTBS

The meaning of each part of this READ statement is:

The word READ tells the compiler that you want to retrieve
some data.

UNIT=CHARIO identifies the data item CHARlO as the unit that
contains the character data you want to convert.

FMT='(F3.1)' gives the compiler the following information:

FMT= the following codes refer to formatting information.

F the input data is to be converted to real internal
format; that is, a real number in floating-point
notation, four bytes in length.

3.1 the input character data is contained in three bytes,
with one place as a decimal fraction.

DELTSS tells the comp;l~r to store the converted data in the
real data item named DELTBS in which you want the retrieved
data placed.

Programmi ng rules for codi ng the READ statement are gi ven in the
VS FORTRAN Application Programming: langu.ge Reference manual.

All the data you use in a VS FORTRAN program--' like the variables
defined in the preceding READ statement~, or program constants,
or arrays--must be defined to the program. The following
paragraphs tell you how to define all of them.

8 VS FORTRAN Application Programming: Guide

o

o

'·0

VS FORTRAN DATA TYPES

DEFINING DATA ITEMS

When you're writing a VS FORTRAN program, you must define all the
data you use-its type and its organization. Your definitions can
use default values or can be explicit.

The data types you'll most often use are:

Integer items-made up of whole numbers. They can be signed or
unsigned.

Real items-numbers that contain either a decimal point or an
exponent. They can be fractional; they can be signed or
unsigned.

Complex items--a pair of integer or real items, written
within parentheses and separated by a comma. The first item is
the real part of the complex number; the second item is the
imaginary part. Either item can be signed or unsigned.

Character items-made up of any characters in the computer's
character set.

·Use integer, real, and complex items in mathematical or
relational expressions. Use character items in character
expressi ons.

In storage, integer items are represented as binary fixed-point
numbers; real and complex items are represented as floating-point
numbers; character items are represented as one byte for each
character in the item.

Reference documentation for these data types is given in the VS
FORTRAN Application Programming: Languaae Reference manual.

You must define every data item you use in your VS FORTRAN
program, such as the variable DELTBS in the example above, either
through predetermined definitions or through explicit
definitions.

Predetermined Data Type Defin;tion

You can define data items (such as the DELTBS variable) by simply
coding them in your READ statement (or any other executable
statement) •

FORTRAN then assigns a data type, predetermined by the initial
character of the name, as follows:

• Names begi nni ng wi th characters I through N are predefi ned as
integer items of length 4.

• Names beginning with any other alphabetic character are
predefined as real items of length 4.

IBM EXTENSION

• Names beginning with the currency symbol ($) are predefined
as real items of length 4.

"----------- END 0 F I BM EXT ENS I ON ------------'

(In the preceding example, the VS FORTRAN compiler assumes you
want the variable DELTBS defined as a real item of length 4.>
These are the only data types that FORTRAN can predetermine for
you.

Coding Your Program--Simplified Programming 9

Explicit Data Type Definition

You can define data items explicitly through the IMPLICIT
statement and through explicit type statements.

USING THE IMPLICIT STATEMENT: Use the IMPLICIT statement to type
groups of items, according to the initial character of their
names. For example:

IMPLICIT CHARACTER*15 (C)

specifies that any item whose initial character is C is a
CHARACTER Jtem of length 15, with one exception. The exception i~
that explicitly typed items are not included; that is, explicit
typing overrides both IMPLICIT type definitions and predetermined
type definitions.

USINS EXPLICIT TYPE STATEMENTS~ USQ Qxplicit tVPQ statQmQnts to
define the data type for specific data items. For example:

IBM EXTENSION

REAL*8 S(50),T(SO),W(SO),CM2

This statement defines the variables as foliows:

• REAL*8 is a type definition that specifies CM2 as a real
variable of length 8, and S, T, and W as real arrays, each
element of which is of length 8~ (Arrays and array elements
are explained later in this chapter.)

'----------- END 0 F I BM EXT ENS I ON ------------'

There are several other data typesyo~ can explicitly define:

• REAL defines data items as real items of length 4 .

• INTEGER defines data items as integer variables of length 4.

• CHARACTER defines data items as character variables.

• DOUBLE PRECISION defines data items as items of length 8.

• COMPLEX defines data items as complex numbers.

If you include the preceding IMPLICIT statement and this explicit
type statement in one p~ogram, the program data items are typed as
follow~:

Names
.")

S, T, W
Other names beginning with S,T,W
Names beginning with A,B
CM2
Other names beginning with C
Names beginning with D thru H
Names beginning with I thru N
Na~es beginning with 0 thru Z

IBM EXTENSION

Names beginning with $

Data Type

REAL
REAL
REAL
REAL
CHARACTER
REAL
INTEGER
REAL

REAL

END OF IBM EXTENSION
J.

Length

8
4
4
8

IS
4
4
4

4

Programming rules for explicit type statements and the IMPLICIT
statement are' given in the VS FORTRAN Application Programming:
Language Reference manual ~ .

Note: In this manual, unless the example description explicitly
states otherwise, examples use the predetermined type definitions
for all data items.

10 VS FORTRAN Application Programming: Guide

o

o

o

DEFINING PROGRAM CONSTANTS

There are two ways to define constants in your program. You can
state their values directly, or you can define them through names.

Using Program Constants Directly

You can define program constants directly by using their values
within the program. For example, if you code:

TZ = I - 1

you've defi ned the value 1 as an integer constant of length 4.

However, if you code:

TZ = I - 1.0

you define the value 1.0 as a real constant of length 4. eBecause
your statement uses integer data, it's better if you define the
constant as an integer constant; however. it isn't necessary.)

You can also define character constants--a group of characters,
enclosed in apostrophes, that the program treats exactly as
you've specified. For example:

, TCl1 FAILED

is treated by the program as:

bTC11bFAIlEDbbb

eNote that the program does not include the apostrophes as part of
the character constant; however, it ~ include the trailing
blanks enclosed within the apostrophes. In this example the
blanks are shown as a series of 'b's--however, in actual program
output they wou I d appea r a s spaces.)

Programming rules for program constants, are given in the VS
FORTRAN Application Programming: Language Reference manua~

Us i"9 Names for Program Constants

Suppose that your program must refer frequently to a particular
constant value. In such a case, it may be more convenient to give
the value a name and then use the name to refer to the value
throughout the rest of the program.

In VS FORTRAN, you can use implicit or explicit type definitions
and the PARAMETER statement for this purpose. For example:

PARAMETEReCM2=0.0001DO)

The CM2 in this example has been previously defined as a real item
of length 8. This PARAMETER statement now defines CM2 as a
constant with the value 0.0001. The D in the constant specifies
that the value has the precision of a REAL item of length 8.

Once you've defined CM2 as the name of a constant, you can use the
name CM2 throughout the program in references to the value 0.0001;
for example:

21 IF eWeJ-l) - W(J) - CM2) 23,16,16

The compiler treats this statement as exactly equivalent to:

21 IF (WeJ-1) - W(J) - 0.0001) 23,16,16

You can use the PARAMETER statem~nt to define constants of the
following data types: INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, or CHARACTER.

Coding Your Program--Simplified Programming 11

IBM EXTENSION

You can also use the PARAMETER statement to define constants of
the following data types: REAL*8, REAL*16, COMPLEX*32,
INTEGER*2, or LOGICAl*l.

~--------- END OF IBM EXTENSION -----------

Programming rules for program constants and for the PARAMETER
statement are given in the VS FORTRAN Application Programming:
Language Reference manual.

Program Reference points--Using statement Numbers

The "21" in the previous examples is a statement number. It serves
as a reference po i nt for other statements in the program-such as
the logical IF statement described later in this chapter.

DEFINING ARRAYS AND SUBSCRIPTS

In FORTRAN, an array is a named set of data items, called array
elements. Each array element in the set is the same size and has
the same data characteristics as all the others; each element can
be referred to in your program through SUbscripts:

7 DElS = S(I) - P

The (1) is a subscript, and tells the program you're referring to
the first array element in the array named S.

You use names to identify arrays; you can implicitly or explicitly
define the data type of an array in the same way as variables or
program constants. For example:

IBM EXTENSION

REAl*8 S(SO),T(SO),W(SO),CM2

The preceding statement defines S, T, and W as REAL arrays, each
containing 50 array elements; each array element is a"REAl item
of length 8. (CM2 is the program constant previously
described.)

END OF IBM EXTENSION ---------......

Defining and Referring to One-Dimensional Arrays

A one-dimensional array has a series of elements, each contiguous
with the others and each the same size as the others. For example,
suppose that in ARRAYl there are four elements, containing the
values 5, 10, IS, and 20, respectively.

You can define this array through a DIMENSION statement:

DIMENSION ARRAYl(4)

In this DIMENSION statement, you've defined ARRAYl as a
one-dimensional array containing four elements, each implicitly
defi ned as a real item of length 4.

Your program can then refer to the elements in ARRAYl, using
subscripts (integers enclosed in parentheses), as follows:

ARRAYl (I) refers to the element wi th value 5
ARRAYI (2) refers to the element with value 10
ARRAYl (3) refers to the element with value 15
ARRAYl (4) refers to the element with value 20

(Note that if you refer to ARRAYI without specifying any
subscripts you are making a collective reference to all four

12 VS FORTRAN Application Programming: Guide

array

/

0)

o

\0

elements. For most program references, this isn't valid--see the
VS FORTRAN Application Proaramming: language Reference manual for
restrictions.)

In VS FORTRAN, you can use an integer variable as a subscript; in
this way, you can place a new value into the variable eaeh time
your program must make a reference to the array. For example, if
you place the value 2 in the variable ISUBI and then specify:

ARRAYl(ISUBl)

you're making a reference to ARRAYl(2).

In this example, you've implicitly defined subscript ISUBI as an
integer data item of length 4.

Defining and Referring to Multidimensional Arrays

1,1

In VS FORTRAN, you can define arrays of up to seven dimensions, in
whi ch case, in order to refer to a spec i fi c array element, you
must specify as many subscripts as there are dimensions. For
example, the following DIMENSION statement defines an array of
two dimensions:

DIMENSION ARRAY2(4,5)

In this statement, you've defined ARRAY2 as a two-dimenional
array containing 20 elements, each implicitly defined as a real
item of length 4.

Figure 3 shows how this array is logica~ly laid out, with values
in each sequential element increasing from 5 by 5.

4,4 1,5 2,5 3,5 4,5

5 I 10 I 15 I 20 I 25 I 30 I I 80 I 85 I 90 I 95 I 100 I

Fi gure 3. Tl,",O-Di mensi onal Array-Physi cal layout in storage

As'with one-dimensional arrays, you can use integer variables as
subscripts.

For example, if you place the value 2 in subscript ISUBI and the
value S in the subscript ISUB2, then the following reference:

ARRAY2 (ISUBl,ISUB2).

is a reference to ARRAY2(2,S)--the element containing the value
90.

When you must make sequential references to one array element
afte~ another, the value of the first subscript increases most
rapidly, and the value of the last subscript increases least
rapidly.

Programmi ng rules for arrays and subscri pts are gi ven in the fi
FORTRAN Application Programming: language Reference manual.

USING THE ASSIGNMENT STATEMENT

Once your program defines the dat~ it will access, you can use the
assignment statement to manipulate it.

Coding Your Program-Simplified Programming 13

INITIALIZING VARIABLES-ASSIGNMENT STATEMENT

Before you use any item in your program, you must place a valid
value in it. The READ statement in "Retrieving Data-The READ
Statement" does so for the variable DELTBS; the PARAMETER
statement does so for named constants. For variables, you can also
usa the assignment statement to initialize values.

For example, the following assignment statements

CHARI : , TCII FAILED
CHAR2 : , TCII COMPLETED'

initialize CHARl to the character value" lCll FAILED "and
CHAR2 to the character value" TCII COMPLETED".

Note that the blanks shown are included as part of the character
values.'

USING ARITHMETIC EXPRESSIONS IN ASSIGNMENT STATEMENTS

You can also use the assignment statement to evaluate arithmetic
expressions:

10 DELl: 0.1 * DELT

When you use the assignment statement in this manner, you're using
1 t much as you L~ould any mathemat i cal equat ion.

However, the assignment statement alw~ys tells the compiler to
evaluate the expression to the right of the equal sign and to
place the result in the item to its left.

Thus, in this example it's valid to multiply the current value of
DELl by 0.1 and to place the result back into DELl.

The preceding rule also ensures that the two following statements
are not equivalent:

DELl: 0.1 * DELl

DELl * 0.1 : DELT

(valid FORTRAN statement)

(statement in error-
cannot be compiled)

In addition, you must specify all computations explicitly. That
is, if you specify the two variables A and B, as follows:

AB

the two variables are not multiplied; instead, they're considered
one variable, with the-nime AB. To multiply A and B, you must
specify:

A * B
or
B * A

The arithmetic operators you can use in mathematical expressions,
and the order in which they're evaluated, are shown in Figure 4.

14 VS FORTRAN Application. Programming: Guide

O· J

0)

(~' Arithmetic Order of
Operation Operator Evaluation

Evaluation of Functions (none) First

Exponentiation ** Second

Multiplication * Third] Division / Third

Addition + Fourth] Subtraction Fourth

Figure 4. Arithmetic Operators and Operations

The VS FORTRAN compiler always evaluates mathematical expressions
in this order, with the following additional considerations
(important to remember because otherwise you may get results you
don't expect):

•

•

Within the exponentiation evaluation level, operations are
performed right to left; within all other evaluation levels,
operations are performed left to right.

Parentheses are evaluated as they are in mathematics; they
specify the order in which operations are to be performed.
That is, expressions within parentheses are evaluated before
the result is used. For example, the expression «A-B)+C)*E
is evaluated as follows:

1. A-B is evaluated, giving result1

2. result1+C is evaluated, giving result2

3. result2*E is evaluated, giving the final result

Don't attempt to write two arithmetic operators consecutively in
the same expression. The following expression is invalid:

A * -B

because the compiler cannot evaluate it properly. If you want to
multiply A by -B, you can write:

A * (-B)

then -B is evaluated and the result is multiplied by A.

Programmi ng rules for the assi gnment statement are 9i ven in the VS
FORTRAN Application Programming: Language Reference manual.

USING INTRINSIC FUNCTIONS

The arithmetic operators allow you to code simple arithmetic
operations easily. More complex arithmetic operations would be
difficult to code.

However, VS FORTRAN has a set of mathematical functions you can
use to perform specific operations. For example, to obtain and use
the square root of real item ALG in an equation, you can write:

Coding Your Program--Simplified Programming 15

REL = INTI + SQRTCALG)

This statement causes VS FORTRAN to obtain the square root of AlG,
add it to INTI, and place the result in REL.

Mathematical functions you can use include logarithmic,
exponential, trigono~etric, and hyb.rbolic functions, as well as
functions that determine maximum and minimum values.

The mathematical functions are fully ~escribed in the VS FORTRAN
Application Programming: Library Reference manual.

CONTROLLING PROGRAM FLOW

In a VS FORTRAN program, statements are ordinarily executed one
after another, just as they appear in the program. However, VS
FORTRAN lets you change the order of execution through FORTRAN
control statements--which include the arithm~tic ~nd logical IF
statements and the DO statement.

PROGRAt1HING ALTERNATIVE EXECUTION PATHS--ARITHMETIC IF STATEMENT

Programs you write must often decide on alternative paths of
execution, depending on the results of some previous action.

The arithmetic IF statement provides this function for your
programs. For example, the following IF statement:

IF (J - 2) 20,21,20

tells the FORTRAN compiler to:

1. Evaluate the expression (J - 2). (The expression can be any
arithmetic expression.)

2. If the result is less than zero, transfer control to statement
number 20.

3. If the result is equal to zero, transfer control to statement
number 21.

4. If the result is greater than zero, transfer control to
statement number 20.

PRO~RAM"ING ALTERNATIVE EXECUTION PATHS--LOGICAL IF STATEMENT

Another way to program alternative paths of execution, in this
case depending on the evaluation of some condition, is through the
logical IF statement. For example, the following IF statement:

IF (TZ.EQ.5.0) GO TO 25

tells the FORTRAN compiler to:

1. Evaluate the expression

(TZ.EQ.5.0)

which is a relational expression telling FORTRAN to test
whether or not the value in variable TZ is equal to 5.0. If TZ
is equal to 5.0, the expression is "true"; if TZ is not equal
to 5.0, the expression is "false."

(The expression can be any relational or logical expression.)

2. If the result of the evaluation is "true~" transfer control to
statement 25.

3. If the result of the evaluation is "false," transfer control
to the next executable statement following this IF statement.

16 VS FORTRAN Application Programming: Guide

)
~)'
\~-.'

d

o

o

Programming rules for the IF statement are given in the VS FORTRAN
Application Programming: language Reference manual.

EXECUTING PROCEDURES REPETITIVELY--DO STATEMENT

Another pOl~erful control statement--the DO statement--Iets you
repetitively execute a whole series of statements a given number
of times and then exit to continue sequential processing.

The DO statement is particularly useful when you want to
initialize all of the items in an array.

Processing One-Dimensional Arrays--DO Statement

For example, you want to read a specific set of values into
ARRAYO, depending on the current contents 9f ARRAYl. The DO
statement in the following example sets up the loop to process
each array element in turn:

DOUBLE PRECISION ARRAYO
DIMENSION ARRAYO(4), ARRAY1(4)

.
DO 40 INT=l,4,1

(code to set values in ARRAYO,
using values from ARRAY!)

40 CONTINUE

This DO statement tells FORTRAN to execute the code to set values
in ARRAYO (that is, the code intervening between the DO statement
and statement number 40) 4 times, as follows:

1. The program is to set INT to the value 1 (INT=1 tells it
this).

2. The program is to execute the code sequence until INT equals 4
~INT=1,4 tells it this).

3. Each time the code sequence is executed, the value of INT is
to be incremented by 1 (INT=1,4,1 tells it this).

Thus, the code sequence will be executed four times, and then the
next statement after statement number 40 will be executed.

processing Multidimensional Arrays--Nested DO statement

You can include DO statements completely within the range of a DO
loop--that is, among the statements within the range that the
initial DO statement controls. You can use this FORTRAN feature to
initialize multidimensional arrays. The DO statements in the
following example show how it's done:

Coding Your Program--Simplified Programming 17

DIMENSION ARRAY2 (4,5)
VALU = 0.0

DO 40 ISUB2=l,5,l
DO 40 ISUBl=1,4,1
ARRAY2(ISUBl,ISUB2)=VALU
VALU=VALU + 1.0

40 CONTINUE

The first DO statement varies the second subscript from its
minimum to its maximum value. The second DO statement varies the
first subscript from its minimum to its maximum value as the first
subscript is set to each of its specified values. When you specify
these two DO statements in this order. vour croaram clac~s
ascend; ng values in each array elemQnt -i n se-quence ..

For a four-dimensional table, you'd specify

1. A DO statement controlling references to the fourth
subscript.

2 .. Contained
statement

3. Contained
statement

4. Contained
statement

in that DO statement's range would be a second DO
controlling referen~es to the third subscript.

in that DO statement's range would be a third DO
controlling references to the second subscript.

in that DO statement's range would be a last DO
controlling references to the first subscript.

Programming rules for the DO statement are given in the VS FORTRAN
Application Programming: language Reference manual.

OBTAINING RESULTS-USING THE WRITE STATEMENT

To print or display the results of your program, use the WRITE
statement.

For example, your program develops two values, TZ and V, which it
then uses to test how the program plots a curve. At the end of
execution, you'll want to save these values. The following
example shows how you can do this:

WRITE (UNIT=8) TZ,V

The meaning of each part of this WRITE statement is:

WRITE tells FORTRAN that your program is to output some
information, in this case on an external device.

(UNIT:S) specifies that the information produced by the write
statement will be sent to the output device identified by this
unit number. (The unit number 8 is only an example; check with
your system administrator for valid unit numbers you can use
with the WRITE statement.)

TZ and V are the data items to be written to the output
device.

The WRITE statement sends the data contained in each item listed,
and in the order the items are specified.

Reference documentation for the WRITE statement is given in the VS
FORTRAN. Application Programming: Language Reference manual.

I

18 VS FORTRAN Application Programming: Guide

0)

to

(0

ENDING YOUR PROGRAM--END STATEMENT

Once your program has completed all the processing you want done,
you must tell the VS FORTRAN compiler that there are no further
statements to process.

You do this through the END statement, which is an executable
statement and which must be the last statement on the last line in
your program. For example:

27 END

The statement number (27) on this statement allows you to transfer
control to this END statement from various parts of the program.

When the END statement is executed, program execution ;s ended,
and control is returned to the system.

Programming rules for the END statement are given in the VS
FORTRAN Application Programming: Language Reference manual.

CODING ERRORS TO AVOID

While you're coding your program, be careful not to make these
common programming errors:

1. Misspelling FORTRAN words and data names.

2. Omitting required punctuation.

3. Not observing FORTRAN formatting rules.

4. Forgetti ng to ass; gn values to vari abIes and arrays before
you use them.

5. Moving data into an item that's too small for it. (This causes
truncation.)

6. Branching into DO loops from other areas in the program.

Errors like these can either prevent your program from executing
at all or may cause your program to produce ~rroneous output. For
many of these errors, you'll get compilation messages explaining
what's wrong; for others, you may not get any error messages,
because the error won't become evident until you actually execute
the program.

You can quite often detect misspellings and uninitialized items
by examining the source program map and the cross-reference
listing.

Once your program is coded, you use the VS FORTRAN compiler to
compile it, that is, to translate it into machine code. This is
explained in "Compiling Your Program-Simplified Programming."

Coding Your Program--Simplified Programming 19

COMPILING YOUR PROGRAM--SIMPLIFIED PROGRAMMING

Your VS FORTRAN source program 1s meaningful to you, but it means
nothing to the computer, which understands only a language known
as machi ne code.

For this reason, you must compile your program. That is, you must
request the VS FORTRAN compiler program 'to translate your FORTRAN
source statements into an "object module"-a machi ne code
translation of your source program.

ENTERING YOUR SOURCE PROGRAM

Your fir5t step is to enter your source program into the 5Y5t~ffi.
You can, for example, enter the program from a terminal as a CMS
or T50 file, or you can key it onto a diskette, or into a punched
card decl(.

For the method your organization uses, see your system
administrator.

Whatever method your organization uses, you must submit the
source program as a file with 80-character records; each record
must follow VS FORTRAN formatting rules.

REqUESTING COMPILATION

Once you've entered your source program into the system, you can
ask the VS FORTRAN compiler to process it. When you request
compilation, the V5 FORTRAN compiler reads and analyzes your
source program and translates it into machine code.

You can request compilation along with the other steps needed for
program development--link-editing and execution.

For early debugging, however, it's usually better to request a
compile-only run. That way, the compiler can find syntax errors in
your program that would prevent a successful execution, and you
don't waste machine time and computer printout paper.

See "Using VM/370-CMS with VS FORTRAN" for information on
compiling programs under CMS.

S~e "Using OS/VS2-TSO with VS FORTRAN" for information on
compiling programs under TSO.

REQUESTING COMPILATION ONLY-OS/VS

The easiest way to request compilation under OS/VS is to use the
VS FORTRAN cataloged procedure for compilation only.

Use the following job control statements to execute the
compile-only procedure:

//jobname JOB
// EXEC FORTVC
//FORT.SYSIN DD *
(source program)
/*
//

where:

jobname
is the name you're giving this compilation-only job.

20 VS FORTRAN Application Programming: Guide

f'\)
\ '
~

o

o

o

See the VS FORTRAN Application Programming: System Services
Reference Supplement for more information on these job control
statements.

REQUESTING COMPILATION ONLY--DOS/VSE

COMPILER OUTPUT

The easiest way to request compilation under DOS/VSE is to use the
following job control statements:

II
1/

1*
1&

JOB jobname
EXEC VFORTRAN
(source program)

where the source program is on SYSIPT, and:

jobname
is the name you're gi Vi"9 to thi s compi lat ion-only job.

See the VS FORTRAN Application Programming: System Services
Reference Supplement for more information on the DOS/VSE JOB
statement.

The VS FORTRAN compiler gives you some or all of the following
output, depending on the options in effect for your organization:

• The Source Program Listing-as you entered it, but with
compiler-generated internal sequence numbers prefixed at the
left; the sequence numbers identify the line-numbers referred
to in compiler messages.

• An object module--a translation of your program in machine
code.

• Messages about the results of the compilation.

• Other listings helpful in debugging.

These listings are described fully in "Fixing Compile-Ti~e
Errors-Advanced Programming" and "Fixing Execution-Time
Errors-Advanced Programmi ng" in Part 2; examples of output for
each feature are also given there.

If your compilation was completed without error messages, you can
proceed to "L i nk-Edi t i ng Your Program--Si mpl i fi ed Programmi ng."

If your compilation caused error messages, you may have to fix up
your errors, as described in "Fixing Compile-time
Errors-Simplified Programming."

Compiling Your Program--Simplified Programming 21

FIXING COMPILE-TIME ERRORS--SIMPLIFIED PROGRAMMING

For each error it finds in your source program, the compiler gives
you a self-explanatory error message; an example of these
messages is shown in Figure 5.

*** VS FORTRAN ERROR MESSAGES ***
IFXI0271 RPlC 12(S) 27 HON-SUBSCRIPTED ARRAY NAME APPEARS AS lEFT-OF-EQUAl

SIGN VARIABLE. SPECIFY A SUBSCRIPTED ARRAY NAME OR
A VARIABLE NAME.

Figure 5. VS FORTRAN Error Message Exampl~

The way the messages are printed is fixed. Each message begins
with an S-character identifier and a 4-character pointer,
followed b~' a level code, follol·Jed by the internal sequence
number, followed by the message text. Each part is explained in
the following paragraphs.

MESSAGE IDENTIFIER: Each message begi ns wi th an 8-character
identifier:

IFX

nnnnI

i dent i fi es the message as one from the VS FORTRAN compi ler.
(If the message has some other prefix, it was sent by some
other part of the system; in this case, see your system
administrator.)

uniquely identifies this message.

4-CHARACTER POINTER: The message identifier is followed by a
4-character pointer, which is sometimes needed by system
programmers for detailed error diagnosis.

LEVEL CODE: The 4-character pointer is followed by a code, which
tells you the severity level of the message:

16(U)

12(S)

8(E)

4un

O(I)

for unrecoverable error. The compilation was stopped before
it was complete.

for severe error. The compiler cannot guarantee a
compilation that will execute correctly. The statement in
error LoJas not processed. (Errors after thi s one in thi s same
statement couldn't be found in this compilation.)

for error. The compiler found an error and attempted to
correct it; the program mayor may not execute correctly.

for warning. The compiler detected a possible error in your
program.

for informational. A note glvlng you information about
compiler-detected conditions during compilation.

You must always correct U-level, S-level, or E-Ievel errors
before attempting another compilation.

22 VS FORTRAN Application Programming: Guide

O,}
"_ f·

Using the Messages

·0

You should review W-Ievel messages to see if they'll let your
program execute correctly; if they won't, you must correct them.

I-level messages do not necessarily indicate an error in your
program. Therefore, you may not need to make any corrections
because of them.

INTERNAL SEQUENCE NUMBER (ISH): This is a compiler-generated
number showing the statement at which the error occurred. It isn't
printed if the error isri't connected with one particular
statement. (This is the sequence number prefixed to each
statement in the source program listing.)

Logical IF statements consist of two parts (heading and
trailing). Normally, an ISN is assigned is assigned to each part
of the statement. However, if the trailer is an unconditional
GOTO, it will not be assigned an ISH, because the effect of this
statement is contained in the evaluation of the header.

MESSAGE TEXT: The self-explanatory text of the message.

With the information the compiler messages give you, you can go
back, correct your source program as indicated, and then
recompile your program.

When your program compiles correctly (without any message levels
higher than I) you can go on to the next step, and link-edit it,
as described in "Link-Editing Your Program-Simplified
Programming."

Fixing Compile-time Errors--Simplified Programming 23

-------.

LINK-EDITING YOUR PROGqAM--SIHPLIFIED PROGRAMMING

Before you can execute your program, you must link-edit it--even
if you have only one program and want to "link" it only with the
system.

During program development when you're testing one version after
another, or if your program is one you're expecting to execute
only a few times, you can combine the link-editing step with the
execution step; see "Executing Your Program--Simplified
Programming" on how to do this.

However, if you will be executing this program many times, you
should compile and link-edit it, and then file it in a library for
future reference.

For information on link-editing under CMS, see "Using VM/370-CMS
with VS FORTRAN."

For information on link-editing under TSO, see "Using OS/VS2-TSO
with VS FORTRAN."

REQUESTING LIt~K-EDITING-OS/VS

The simplest way to link-edit your program under OS/VS is to use
the cataloged procedure, which compiles and link-edits your
program all in one step. The job control statements you use are:

Iljobname JOB
II EXEC FORTVCl
IIFORT.SYSIN DD *
(source program)
1*
II

where:

jobnarre
is the name you're giving this compile-and-link-edit job.

See the VS FORTRAN Application Pr09ram~ing: System Services
Reference Supplement for more information on these job control
statements.

REqUESTING LINK-EDITING--DOS/VSE

The easiest way to request link-editing under DOS/VSE is to use
the following job control statements:

II JOB jobname
II OPTION CATAl

PHASE FIRST,*
II EXEC VFORTRAN,SIZE=800K

(source program)
1*
II EXEC lINKEDT
1&

where the source program is on SYSIPT, and:

jobnctme

/
I

is the name you're giving to this compile-and-link-edit job.

OPTION CATAL
causes the system to catalog the relocatable phase (object
module) in the core image library.

24 VS FORTRAN Application Programming: Guide

0)

C~'l
/'

o

o

PHASE FIRST, *
gives the cataloged phase the name FIRST.

See the VS FORTRAN Application Programming: System Services
Reference Supplement for more information on the DOS/VSE JOB
statement.

USING THE LINK-EDITED PROGRAM

You can catalog the output of your link-edit job and then execute
the link-edited module any time you want.

How you execute your program is described in "Executing Your
Program-Simplified Programming."

Link-Editing Your Program-Simplified Programming 25

EXECUTING YOUR PROGRAM-SIttPLIFIED PROGRAtfMING

Once you've compiled your program correctly and link-edited it,
you can execute it.

The easiest way to execute it is to combine all three steps into
one: compilation, link~editing, and execution.

During testing, if your program doesn't change existing files of
data, you may want to execute it as it stands, right away.
However, if it alters valuable data files, you should develop
alternative data files for testing, and then tryout program
execution, using the alternative test data files. In this way, if
there are execution errors, you won't introduce bad data into the
real files.

See "Using VM/370-CMS with VS FORTRAN" for information on
executing your program under CMS.

See "Using OS/VS2-TSO with VS FORTRAN" for information on
executing your program under TSO.

EXECUTING YOUR PROGRAtt--OS/VS

The simplest way to execute your program under OS/VS is to use one
of the cataloged procedures:

• Set up any test data fi 1 es that you'll need, and then

• Compile, link-edit and execute your source program all in one
job

The following sections outline the job control statements to use.

SETTING UP TEST DATA FILES--QS/VS

The easiest way to set up data files for test execution is to use
standard system files for them. The standard system files, such as
SYSIN, SYSOUT, and SYSPRINT, are predefined, so that the job
control statements are very simple.

Under OS/VS, the simplest way to prepare test data files is to
develop them as aO-character records and then include them in the
input stre~m. You use the following job control statements:

IIFTxxFOOl DO *

where

xx

(your data records)

is the FORTRAN uni t number for your test data fi Ie.

Note that this is not a standard system file; the standard
system files for input are named either FT05FOOl or SYSIN.

26 V~ FORTRAN Application Programming: Guide

0)

o

o

o

COMPILE, LINK-EDIT, AND EXECUTE--OS/VS

The job control statements you use are:

//jobname JOB
EXEC FORTVCLG

//FORT.SYSIN DD *
(VS FORTRAN source program)

/*
(compilation and link-edit steps executed)

//GO.SYSIH DO *
(data)

/*
(program execution step executed)

//

where:

jobna~s
is the name you're giving this compile, link-edit, and
execute job.

In this example, both your source program and your test data are
on the system input device (SYSIN).

For reference documentation on these job control statements, see
the VS FORTRAN Application Programming: System Services Reference
Supplement.

EXECUTING YOUR PROGRAM--DOS/VSE

Under DOS/VSE, the simplest way to execute your program is to
re~uest compilation, link-editing, and execution outlined in the
following section:

• Set up your test data files, and then

• Compile, link-edit and execute your source program all in one
job

The following sections outline the job control statements to use.

SETTING UP TEST DATA FILES--DOS/VSE

The easiest way to set up data files for test execution ;s to use
standard system files for them.

Under DOS/VSE, the simplest way to prepare test data files is to
develop them in card image form, and then include them in the
input stream, following the EXEC statement. See the OOS/VSE
example in the next section.

Executing Your Program--Simplified Programming 27

COMPILE, LINK-EDIT, AND EXECUTE-DOS/VSE

EXECUTION OUTPUT

To request compilation, link-editing, and execution under
DOS/VSE, you use the following job control statements:

// JOB jobname
// OPTION LINK

or
(to execute without saving the phase)

// OPTION CATAL (to execute and save the phase)
// EXEC VFORTRAH,SIZE=SOOK

(source program)

(compilation step executed)
// EXEC LINKEDT

(link-edit step executed)
// EXEC

(data)
/*

(program execution step executed)

where the source program and the test data are on the system input
device (SYSIPT), and

jobname
is the name you're giving to this job.

For reference documentation on these job control statements, see
the VS FORTRAN Application Programming: System Services Reference
Supplement.

When your program executes without errors and with the results you
expect, you've completed your job of program development.

If you find errors in your program output, and you may, you'll
have to go on to the next step and fix up your errors, as
described in "Fixing Execution-Time Errors-Simplified
Programming."

28 VS FORTRAN Application Programming: Guide

~ 0/

0)

o

o

FIXING EXECUTIOPf-TIME ERRORS-SIMPLIFIED PROGRAMMING

FINDING ERRORS

Your program may run the first time without any errors at all, in
which case, you've completed your job of program development.
However, you'll often discover that it contains errors, which you
must correct. The following sections outline what you must do.

If your program has errors, you'll find it out in one of three
wa~/s :

• Your program ends prematurely, and you receive an error
message.

• Your program keeps running but never finishes execution.

• The output you're getting is not what you expect.

EXECUTION-TIME ERROR MESSAGES

The messages you get at execution time may be from VS FORTRAN or
from some other part of the system.

Execution-time messages from the VS FORTRAN library have message
identifiers beginning with IFY; they're presented in a format
similar to that of the compiler nessages (see "Fixing
Compile-time Errors-Simplified Programming").

The text of the message usually explains what the problem is; if
you need suppleme"tarY information, you can find it in the VS
FORTRAN Application Progr~mming: library Reference manual,lWhich
lists all the execution-time messages.

If the message has some other prefix~ it comes from another part
of the system. In this case, ask your system administrator for
assistance.

ENDLESS LOOPS OR WAITS

If your program runs on and on and never finishes, it's caught
either in a closed loop or a wait:

• A closed loop is a series of statements that repeat themselves
endlessly.

• A wait is a suspension of execution while the program waits
for an action to occur (which may never happen).

When either result occurs, check the logic of your program:

• For Endless loops-check for any unintentional loops; check
to make sure that every intentional leop has an exit-that it
either has a finite number of repetitions or a feasible
condition that causes execution to branch out of it.

•

You can also recompile and run the program again, inserting
WRITE statements to indicate when your program is entering a
specific loop, and when it is exiting from that loop.

For Endless lJai ts-check that a PAUSE statement is recei vi n9
the expected operator response, or that the operator has
provided the system resources your program expects, for
example, that a tape was mounted properly.

Fixing Execution-Time Errors-Simplified Programming 29

UNEXPECTED OUTPUT

If you can't find the cause, even after checking these
possibilities, ask your system administrator for assistance.

If you're getting unexpected output, you may have one or more of
the following problems in your program:

• Your input or output statements (READ or WRITE) are in error.

• Your logic flow is incorrect. For example, a WRITE statement
may not be executed or may be executed at the wrong time, or a
calculation is being skipped over or executed too often.

• Your mathematical calculations themselves are in error, so
that the data is wrong when you write it.

• The input you expect is itself incorrect, so that the program
itself is executing cOrrEctly, but appears to be in error.

• Your program constants may inadvertently be changed during
execution.

Sometimes the nature of the erroneous output tells you what is
wrong. If it doesn't, double check your source program, looking
for the kinds of errors outlined above.

Sometimes, by inspecting the source program map and the
cross-reference listing, you can find inconsistencies in the way
your program uses variables.

If you can't find the cause, even after checking these
possibilities, ask your system administrator for assistance.

USING DEBUGGING PACKETS

FIXING ERRORS

VS FORTRAN also has a number of source statements that let you
define debugging packets at the beginning of your source program;
a debugging packet lets you obtain information about the
conditions existing during program execution and may help you
pinpoint where your errors are. See "Fixing Execution-Time
Errors-Advanced Programming" for further information.

If, even after using a debugging packet, you still can't find
what's wrong, ask your system administrator for assistance.

If you find errors in your program, you must go back and.recode
the erroneous statements. Before you try to execute it to obtain
the desired results, you must then. recompile and relink-edit it.

30 VS FORTRAN Application Programming: Guide

0)

o

o

· A SAMPLE PROGRAM--SIMPLIFIED PROGRAMMING

The following sample program illustrates most of-the programming
capabilities discussed in the previous chapters.

PROGRAM SAMPLE
C GENERALIZED TEST CASE
C TESTS NESTED DO, GO TO AND IF WITHIN DO, VARIABLE SUBSCRIPTS,
C MULTIPLE IFS IN SUCCESSION, PARAMETER AND IMPLICIT STATEMENTS.
C THE ROUTINE ITSELF GENERATES VARIOUS SLOPES. THE TEST
C CASE IS SELF CHECKING. SLOPE IS CALCULATED AT THE 5 POINTS ON THE
C CURVE, 1.,2.,3.,4., AND 5. .

IMPLICIT CHARACTER*14 (C)
REAl*8 S(SO),T(50),W(50),CM2
PARAMETER(CM2=0.000lDO)
CHARIO='O.l '
CHARI = , TC11 FAILED
CHAR2 = , TCll COMPLETED'
READ(UNIT=5) CHARlO
READ(UNIT=CHARIO,FMT='(F3.1)') DELTBS

1 DO 25 1=1,6
2 TZ = I - 1
3 P = (TZ + 1.0) * eTZ *TZ)
4 DELT = DELTBS
5 T (1) = TZ + DELT
6 S (1) = (T(l) + 1.0)*(Tel)*T(1»
7 DELS = S(l) - P
8 Well = DElS/DElT
9 DO 16 J =2,50

10 DElT= 0.1 * DELT
11 T(J) = TZ + DElT
12 seJ) = (T(J) +1.0)*eT(J)*TeJ»
13 DElS = S(J) - P
14 W(J) = DElS/DELT
19 IF (J - 2) 20,21,20
20 A = WeJ-l) - W(J)

B = WeJ-2) - W(J-I)
IF (A - B) 21,22,22

21 IF (W(J-l) - W(J) - CM2) 23,16,16
16 CONTINUE
22 V = W(J-l)

GO TO 24
23 Y = W(J)
24 IF (TZ.EQ.0.O.AND.Y-0.O.GT.O.1) GO TO 26

IF CTZ.EQ.O.O) GO TO 25
IF (TZ.EQ.1.0.AND.V-5.0.GT.O.1) GO TO 26
IF (TZ.EQ.l.0) GO TO 25
IF (TZ.EQ.2.0.AND.V-16.0.GT.0.l) GO TO 26
IF CTZ.EQ.2.0) GO TO 25
IF (TZ.EQ.3.0.AND.V-33.0.GT.0.1) GO TO 26
IF eTZ.EQ.3.0) GO TO 25
IF (TZ.EQ.4.0.AND.V-56.0.GT.O.2) GO TO 26
IF (TZ.EQ.4.0) GO TO 25
IF eTZ.EQ.5.0.AND.V-85 .. GT .. 2) GO TO 26
IF eTZ.EQ.5.0) GO TO 25
GO TO 25

26 WRITE eFMT=100,UNIT=6) CHAR1,TZ,V
C WRITE DATA TO DISK FILE, UNFORMATTED

WRITE (UNIT=8) TZ,V
25 CONTINUE

WRITE (6,101) CHAR2
100 FORMAT (A15,' WITH TZ AND V =, RESPECTIVELY,',F4.1,F12.4)
101 FORMAT (A15)

STOP
27 END

A Sample P.rogram--Simplified Programming 31

0)

(0

(0

PART 2--ADVANCED FORTRAN PROGRAMMING

If you are a programmer who uses the entire range of FORTRAN
language capabilities in coding your programs, this part of this
manual is meant for you. It tells you how to take advantage of the
current VS FORTRAN language and processing capabilities in order
to create efficient VS FORTRAN programs.

This part is divided into seven sections, to guide you through the
seven steps you follow when developing any VS FORTRAN program:

1. "Desi gn i ng Your Program-Advanced Programmi ng"

2. "Coding Your Program-Advanced Programming"

3. "Compi ling Your Program-Advanced Programmi ng"

4. "Fixing Compile-Time Errors-Advanced Programming"

5. "L i nk-Edi ti ng Your Program-Advanced Programmi ng"

6. "Execut i ng Your Program-Advanced Programmi ng"

7. "Fixing Execution-Time Errors-Advanced Programming"

If you find ~rrors in your program at step 4 or 7, you must repeat
the earlier steps. If you don't find any errors, you can of course
omi t steps 4 and 7.

Program development considerations for VS FORTRAN mainline
process; ng are documented in thi s part.

Programming considerations for input and output, for calling and
called programs, for the optimization feature, for the
execution-time library, for VM-370/CMS,. and for OS/VS2-TSO are
given in Part 3.

Part 2--Advanced FORTRAN Programming 33

DESIGNING YOUR PROGRAM--ADVANCED PROGRAMMING

Program design is your first step in application
development-when vou design your program, you're setting up the
framework for a proper solution.

In your thinking, of course, you must take into account the
hardware and software available to you; for example, the
processing unit, disk drives, diskettes, tape drives, and
terminals you can use, plus the system you operate under, the
program products available, other application programs your
program can use, and sequences of code you can use in common with
other applications.

Typically, a program reads data, processes it, and then writes out
the results in one form or another. Thus, it's usually convenient
if you think of your program structure in these three blocks:

1. Reading the data. Understand where the data will come from,
and what it will look like.

2. Process the data. Know that you want to do ",i th i t-' hat
results you are looking for. Consider the manipulations and
repetitions to achieve them: mathematical calculations,
tests"loops, moves, and so forth.

3. Write the results. Decide where to print or record them, and
how they should look (if they're for general use, possibly add
explanatory text).

Almost every program is made up of these three basic read,
process, and write elements. However, if the application you're
developing is large and complex, you may find it desir~ble to
split up one or more of these basic elements into smaller, more
manageable units of processing logic.

If you begin your program design with these most inclusive program
elements, and then develop the logic of each successively more
detailed level of the program design, you're actuallY using
top-dolm desi gn-one of the more powerful desi gn tools ava; lable
to you--to solve your application problem.

TOP-DOWN DESIGN AND DF.VELOP~ENT

When you're using top-down design and development, you can make
your program desi gn-t.oJhi ch usually maps out the larger
relat i onshi ps between program elements-go hand in hand wi th the
coding effort. Used as a conscious strategy, it can make your
program development faster and more efficient. You'll do less
backtracking to fill in missing code and remove redundancies in
the program logic.

When you use top-down design and development, you code the most
inclusive logic portions of your program first, and test and debug
them. Then, you code the next successively lower logic portions
and add them to the portions that are already up and running. At
each level, you can code in stubs to represent the next lower
logi c level.

A stub is a place holder for an um ri tten sequence of code-for
example, something as simple as a comment stating what the code
will do, or something as elaborate as a complete description of
its processing logic together with portions of completed code.

In this way, when you add new modules of code, you're adding them
to code that you've already tested and debugged. You'll usually
find errors only within the new code itself or in lhe
interconnections between the new and the already existing code.

34 VS FORTRAN Application Programming: Guide

o

0

1··0"" \, .,

You'll find a number of advantages in using this development
strategy:

• You'll detect design logic errors very early. This is because
you're integrating the program's functions as you develop it.

-
• You'll detect and locate coding errors easily. Any error that

appears in a newly developed sequence of code is usually
within the newly developed sequente itself, orin the
interconnections between the new sequence and the old ones.

• Your program testing begins earlier in the development cycle,
since you test each new module as you add it.

• You don't need temporary drivers to test uncompleted code. (A
driver is a temporary control module not used in the completed
program.) Your control modules are at the highest logic
level, and they are the first modules you'll complete and
test.

By breaking up a large program into smaller logic modules, you get
other added advantages. You make the overall logic of the program
more apparent, so that it's easier to read, easier to understand,
easier to implement, and easier to change.

Figure 6 illustrates the top-down design and development
strategy. In the figure, the following points apply:

1.

2.

3.

4.

5.

Module A is the highest-level module of all. It controls
modules B, C, and D.

Modules A, B, C, E, and G have be~n developed and tested'.

Module B is related to lower-level modules E
(fully-developed) and F (which is an undeveloped stub).

Module C is related to lower-level module G
(fully-developed).

Stub module D is related to stub proposed submodules H and I.
Stub module D has been written as a stub; stub modules H and I
are provided for in the program design but haven't yet been
written, even as stubs.

6. Even though it's functionally incomplete, this program will
execute to its logical end.

Designing Your Program--Advanced Programming 35

Figure 6. Example of Top-Down Program Design

Once you have a design and program devQlopment strategy worked
out, you're ready to proceed to the next task in application
development: writing your source program.

USING TOP-DOWN DESIGN IN VS FORTRAN

To help you use top-down design and development, VS FORTRAN
provides:

IBM EXTENSION

• The nested INCLUDE statement

END OF IBM EXTENSION -----------'

• SUBROUTINE and FUNCTION Subprograms

IBM EXTENSION

TOP-DOWN DESIGN WITH A SIt~GLE OBJECT MODULE-INCLUDE STATEMENT

In VS FORTRAN, you can nest INCLUDE statements to as many as
16. This lets you take advantage of top-down design in a
program that you want to compile as one object module. This is
how you do it:

Write the highest-level sequences of code in your program
first; these sequences contain INCLUDE statements for the
lower-level code sequences.

During early program development, these INCLUDE statements
can point to undeveloped stubs that stand in for the
lower-level code.

Later in program development, these same INCLUDE
statements can point to the completed code sequence.

Because INCLUDE statements can be nested, you can code
INCLUDe statements at every code sequence level in your

36 VS FORTRAN Application Programming! Guide

n··)
~

0)

program. For example, in the program shown 'in Figure 6, you
could code the following INCLUDE statements:

1. Code Sequence A could contain:

INCLUDE (B) (B contains tested and debugged code)

INCLUDE (C) (C contains tested and debugged code)

INCLUDE (D) (D is a stub, to be replaced later)

2. Code Sequence B could contain:

INCLUDE (E) (E contains tested and debugged code)

INCLUDE (F) (F is a stub, to be replaced later)

3. Code Sequence C could contain:

INCLUDE (G) (G contains tested and debugged code)

4. Code Sequence D is a stub; later it could contain:

INCLUDE (H) (H 15 not yet written, even as a stub)

INCLUDE (I) (I is not yet written, even as a stub)

You get two advantages when you use the INCLUDE statement in
this way:

• You can produce a program structure that's syntacticallY
correct and that you can compile correctly, even before
you've completed all the coding.

• You avoid the execution overhead that CALL statement
linkages entail (although there is some extra compile-time
overhead) .

'------------ END OF IBM EXTENSION ---------~

TOP-DOWt~ DESIGN WITH HUL TIPLE OBJECT MODULES-USING SUBPROGRAMS

For large or complex programs, you can use SUBROUTINE or FUNCTION
subprograms to separately code logically distinct portions of
your program. Each subprogram is a complete program within
itself, each subprogram communicating with the others through
the parameters they pass and through COMMON data areas.

During program development, you'd develop and code the highest
level control modules first. In the control modules you can code
statements that invoke the next lower level subprograms. During
early development, these subprograms could be stubs; later, they
could be completed subprograms.

Using this method, you can produce a program structure that's
syntactically correct and that you can compile and link-edit
correctly, even at the earliest stages of program development.

Once you've developed all the programs, you can link-edit them
together into one load module.

Designing Your Program--Advanced Programming 37

CODING YOUR PROGRAtt-ADVANCED PROGRAMMING

Once you've completed your program design, you can use the VS
FORTRAN language to create a source program, a logical solution
to your problem that follows your program design.

Every FORTRAN program is made up of three elements: data,
expressions, and statements:

Data is a collection of factual items. In FORTRAN, these data
items are represented by variables, constants, and arrays.

Expressions are written representations of data
relationships. The simplest form of an expression is the
name of a single data item; through the use of operators (for _ .. ___ , _ _ _ ~ ~L. __ ~: __ •• _,-_, _, ____ •• ________ _

.:"c:UIla..:' Cli 1\011111':\01"" ;::'YIIIUV.&.;:;''', yv,", ""all ":"""'IO:~~ IIIVI":

complicated forms of data relationships.

Stat~ments use data and expressions to tell the FORTRAN
compiler what the object program must do. There are two kinds
of statements:

Nonexecutable Statements specify the nature of data you
want to process or define the characteristics of your
source program or define the way in which data is to be
read or written.

Executable Statements cause operations to be performed.

All of these FORTRAN source program elements are explained in
more detail later in this chapter.

In coding your program, you must follow the rules of the level of
VS FORTRAN you're using:

• If you're coding a new VS FORTRAN program, use the VS FORTRAN
Aeelication Programming: Language Reference manual.

• If you're updating an existing FORTRAN IV program, use the
IBM System/360 and System/370 FORTRAN IV language manual.

USING FIXED-FORM ItfPUT-FORTRAN CODING FORM

Fixed-form input is the traditional way to code FORTRAN
programs; the FORTRAN Coding Form is designed to help guide you
in fixed-form program preparation.

For reference documentation about VS FORTRAN fixed-form input,
see the VS FORTRAN Aeelication ProgramminQ: language Reference
manual.

IBM EXTENSION

USING FREE-FORM INPUT

In VS FORTRAN, you can also use free-form i nput- whi ch gets
rid of many restrictions imposed by fixed-format input.

Free-form input is particularly useful if you're coding your
programs at a terminal; there's no artifical dependence on
80-character card image format. Although all your source
program records are 80 characters in length, you can break each
statement (and line of your program) at any convenient logical
point.

38 VS FORTRAN Application Programming: Guide

PEFINING DATA

(0

Reference documentation for VS FORTRAN free-form input ;5 'given
in the VS FORTRAN Application Programming: language Reference
manual.

END OF IBM EXTENSION - ________ ----1

When you're writing a VS FORTRAN program, you must define all the
data you use--its type and its organization. Your definitions
can depend upon predetermined definitions or they can be
explicit.

The data type can be integer, real, complex, logical, or
character. In your source program, you code them as described in
the following paragraphs.

Integer items are made up of whole numbers. They can be si gned or
unsigned.

Real items are numbers that must contain either a decimal point
or an exponent. They can be fractional; they can be signed or
unsigned.

Comple~ items are represented by a pair of items (either of which
can be real or integer) written within ,parentheses and separated
by a comma. The first item is the real part of the complex
number; the second item is the imaginary part. Either item can be
signed or unsigned. A complex item is converted to a pair of real
items of the appropriate length.

You use integer, real, and complex items in mathematical or
relational expressions.

logi cal items have a value of ei ther "true" or "false." You use
logical items only in logical expressions.

Character items can be made up of any characters in the
computer's character set. You use character items in character
and relational expressions.

Figure 7 shows the lengths valid for each data type.

Reference documentation for these data types is given in the VS
FORTRAN Application Programming: lanQuage Reference manual.

Valid storage Default
Data Type lengths Length

Integer ~ 4 4

Real 4, 8 U 4

Complex 8, 16 or 32 8

Character 1 through 500 1

logical ~ 4 4

Figure 7. Data T\'pes and Val i d lengths

You define the data type of an item either through implicit
naming conventions or through explicit definitions.

Coding Your Program--Advanced Programming 39

PREDETERMINED DATA TYPE DEFINITION

In VS FORTRAN, if you don't otherwise define a named item, it's
given a data type, depending on the initial letter of its name:

Items whose names begin with I through N are integer items of
length 4.

Items whose names begin with any other letter are real items
of length 4.

IBM EXTENSION

Items whose names begin with the currency symbol ($) are
~eal items of length 4.

END OF IBM EXTENSION ----------'

No other data types have a predetermined definition.

EXPLICIT DATA TYPE DEFINITION

There are two ways you can define data items explicitly--using
the IMPLICIT statement or using explicit type statements.

Typing Groups of Data Items--IMPLICIT statement

Using the IMPLICIT statement, you can explicitly specify the
data types for items whose names begin with specific letters. For
example, if you specify:

IMPLICIT DOUBLE PRECISION (A-C, F),
LOGICAL (E,L),CH~RACTER(D,G,H)

your program will treat data items as shown below.

Names Beginning with Have Data Type Have Length

A through C, and F DOUBLE PRECISION 8

E and L LOGICAL 4

D, G, and H CHARACTER 1

I

0

through K, M, N INTEGER 4 (default)

through z.~ REAL 4 (default)

IBM EXTENSION

If you specify an IMPLICIT statement with the following
initial letters:

(Y - B)

The compiler performs a "wraparound" scan to find the
beginning initial (Y), and the ending .. initial (B)--which is
lower in the FORTRAN collating sequence than Y. That is, you
are implicitly typing all items with names beginning with Y, Z,
$, A, and B. You'll get a warning message when this situation
Gccurs; however, your program ~ill compile and execute.

"---------- END OF IBM EXTENSION ------------'

Reference documentation for the IMPLICIT statement is given in
the VS FORTRAN Application Programming: language Reference
manual.

40 VS FORTRAN Application Programming: Guide

o

0'·"
"

\

Typing for specific Data Items--Explicit Type statements

Explicit type statements define the data type for specific data
items that you name in your program. For such items you can
specify the data type and the length, and, optionally, initial
values for data items and dimension information for arrays.

For example, you can specify:

DOUBLE PRECISION
CHARACTER *80

INTEGER *2
REAl*16

MEDNUM
INREC

IBM EXTENSION

COUNTR
BIGNUM, ARRAY2*4(5,5)

As an alternative for MEDNUM, you can specify:

REAL *8 MEDNUM

END OF IBM EXTENSION

These statements specify that:

IBM EXTENSION

COUNTR is an integer item of length 2.

BIGNUM is a real item of length 16.

END OF IBM EXTENSION -----------'

ARRAY2 is a two-dimensional array, with elements of length
4 (specified by *4). There are five elements in each
dimension (specified by (5,5». (Arrays are explained in
"Arrays and Subscripts".)

INREC is a character item of length 80.

MEDNUM is a real item of length 8.

If you specify the preceding IMPLICIT statement in the same
program as these explicit type statements, the explicit type
statements override the IMPLICIT statement specifications, and
in your program:

INREC is a character item of length 80.

MEDNUM is a real item of length 8.

All other items with names beginning with I or M are integer
items of length 4.

IBM EXTENSION

BIGNUM is a real item of length 16.

ARRAY2 is a two-dimensional array, with elements of length
4 (specified by *4). There are five elements in each
dimension (specified by (5,5».

COUNTR is an integer item of length 2.

1...-_________ END OF IBM EXTENSION -----------'

All other data items whose names begin with B or C are real
items of length 8.

Reference documentation for explicit type statements is given
in the VS FORTRAN Application Programming: language Reference
manual.

Coding Your Program--Advanced Programming 41

DATA CLASSIFICATIONS

VARIABLES

CONSTANTS

All the data you usa in your program-whether it's data you've
retrieved from an external device or data your program develops
internally-must be constants, orbe contained in var; abIes or
arrays. Data·in any of these classifications can b~ any of the
data types previously described. Data classifications are
discussed in the following sections.

A variable is a named unit of data, occupying a storage area.
The value of a variable can change during program execution.

The name of a variable can determine its data type, as described
in "Predetermined Data Type Definition," or you can define its
data type explicitly, as described in "Explicit Data Type
Definition."

The value contained in a variable is always the current value
stored there. Before you've assigned a value to a variable, its
contents are undefined. You can initialize values using the
DATA statement; alternatively, your first executable statement
referring to it--for example, a READ statement or an assignment
statement-can assign a value to it.

Reference documentation for variables is given in the VS
FORTRAN Application Programming: language Reference manual.

A constant is a data item in a program that has a fixed,
unvarying value. You can refer to a constant by its value, or
you can name the constant and use the name in all program
references.

The constants you can use are:

Arithmetic (integer, real, or complex)-use arithmetic
constants for arithmetic operations, and to initialize
integer, real, or complex variables, and as arguments for
subroutines, and so forth.

Logical-use logical constants in logical expressions, and
to initialize logical variables, and as arguments for
subroutines, and'so forth.

Character--use character constants in character and
relational expressions, and to initialize character
variables, and as arguments for subroutines, and so forth.

Hollerith-use Hollerith constants to initialize data items
in a FORMAT statement.

IBM EXTENSION

L t teral (old FORTRAN only)-si mi lar in usage to character
constants.

Hexadecimal-use hexadecimal constants to initialize
items.

'-------------- END OF IBM EXTENSION _________ --...1

Defining Constants by Value

You can use constants in your program by simply specifying their
values. Fo~ example:

CIRC =2*PI*RAD

42 Va FORTRAN Application Programming: Guide

l
0'

(\"J
'~'

o

or

where the value 2 represents an integer constant of that value,
and where the value 2.0 represents a real constant of that
value.

You can specify all types of constants in this way:

Arithmetic constantS--integer, real, or complex.

• Integer Constant--written as an optional sign followed
by a string of digits. For example:

-12345
12345

• Real Constant--can take three forms:

1. Basic Real Constani--written as an optional sign,
followed by an integer part (made up of digits),
followed by a decimal point, followed by a fraction
part (made up of digits). Either the integer or
fraction part can be omitted. For example:

+123.45
·0.12345

2. Integer Constant With Real Exeonent--written as an
integer constant followed by a real exponent in the
form of a letter, followed by a 1- or 2-digit
integer constant. Optionally, the exponent can be

-signed. For example:

+12345E+2

-12300D-03

E exponent (which occupies four
storage positions and has the value
+1,234,500; the precision is
approximately 7.2 decimal digits)

D exponent (which occupies eight
storage positions and has the
value -12.3; the precision is
approximately 16.8 decimal digits)

IBM EXTENSION

12345Q03 Q exponent (which occupies 16
storage positions and has the
value +12,345,000; the precision
is approximately 35 decimal
digits)

ENO OF IBM EXTENSION

3. Basic Real Constant With Real Exponent--written as
a basic real constant followed by a real exponent;
the real exponent is written as one of the letters
0, E, or Q, followed by a 1- or 2-digit integer
constant. Optionally, the exponent can be signed.
For example:

0.12345E+2

0.123450-03

E exponent (which occupies four
storage positions and has the
value +12.345; the precision is
approximately 7.2 decimal digits)

D exponent (which occupies eight
storage positions and has the value

Coding Your Program--Advanced Programming 43

+0.00012345; the preC1Slon is
approximately 16.8 decimal digits)

IBM EXTENSION

-1234.5Q03 Q exponent (which occupies 16
storage positions and has the
value -1,234,500; the precision
is approximately 35 decimal
digits)

END OF IBM EXTENSION

• Co~plex Constant--written as a left parenthesis,
followed by a pair of integer constants or real
constants separated by a comma, followed by a right
parenthesis.

The first integer or real constant represents the real
part of the complex number; the second integer or real
constant represents the imaginary part of the complex
number. The real and imaginary parts need not be of the
same size; the smaller part is made the same size as the
larger part. For example:

(123.45,-123.45E2) (has the value +123.45, -12345i;
both the real and imaginary parts
have a length of 4)

IBM EXTENSION

(123.45,-123.4502) (has the value +123.45, -12345i;
the real part has a length of 4,
the imaginary part a length of 8)

(The real part (a real constant) is converted to
a real constant of length 8.)

(12345,-123.45Q2) (has the value +12345, -12345i;
the real part has a length of 4,
the imaginary part a length of 16)

(The real part (an integer constant) is converted to
a real constant of length 16.)

END OF IBM EXTENSION

Note: In these examples, the character i has the
value of the square root of -1.

Logical- Constant--written as .TRUE. or .FALSE. in
expressions. (In input/output statements you can use T
or F as abbreviations.>

IBM EXTENSION

(In the DATA initialization statement, you can also
use T or F as abbrev lat ions.)

~-------- END OF IBM EXTENSION ----------'

For a logical item named COMP, you can specify, for
example:

LOGICAL COMP
COMP=.FAlSE.

This sets the logical item COMP to the value "false."

44 VS FORTRAK Application Programming: Guide

0)

C!
II

10

10"'" " ,

Character Constant-l""ri tten as an apostrophe, followed by a
string of characters, followed by an apostrophe. The
character string can contain any characters in the
computer's character set. For example:

'PARAMETER = ,
'THE ANS~JER IS:'

"'TWAS BRILLIG AND THE SLITHY TOVES'

Note: If you want to include an apostrophe within the
character constant, you code two adjacent apostrophes, as
shown in the last example, which is displayed as:

'TWAS BRIllIG AND THE SlITHY TOVES

Hollerith Constant-valid only in a FORMAT statement. It is
written as an integer constant followed by the letter H,
followed by a string of characters. The character string
can contain any characters in the computer's character set.
For example:

FORMATCI3,11H = THE NORM)

FORMATC2D8.6, 1SH ARE THE 2 ANSWERS)

IBM EXTENSION

In old FORTRAN, the literal constant performs functions
similar to the current FORTRAN character constant, and the
current Hollerith constant. (Reference documentatiori is
given in the IBM System/360 and System/370 FORTRAN IV
language manual.)

Hexadecimal Constant--written as the character Z, followed
by a hexadecimal number, made up of the digits 0 through 9
and the letters A through F. You write a hexadecimal
constant as 2 hexadecimal digits for each byte.

You can use hexadecimal constants only in a DATA statement
to initialize data items of all types except character.

REAL *4 TEMP
DATA TEMP/ZCIC2C3C4/

END OF J:BM EXTENSION _________ -J

Reference documentation for program constants is given in
the VS FORTRAN Application Programming: language Reference
manual.

Coding Your Program--Advanced Programming 45

Deftning constants by Name--PARAHETER statement

If you~ p~og~am uses one constant f~aquently, you can use the
PARAMETER statement to neme the constant and assign it a value.
You can do this once, before your program first uses the
constant, and then refer to the constant, wherever it's used, by
its name.

There are two advantages in handling constants this way!

• The name for the constant can be a meaningful name--which
makes the logic of the program easier to understand when the
time comes for maintenance updates.

• If for some reason the value of the constant must be
changed, you can change it once, in the PARAMETER
statement, and all references throughout the program are
updated.

You use the PARAMETER statement to assi gn names and values to
constants. For example!

CHARACTER *5 Cl,C2
PARAMETER (Cl='DATE ',C2='TIME ',RATE=2*1.414)

The CHARACTER explicit type statement defines items Cl and C2 as
character items of length 5. The PARAMETER statement then
defines these items as named program constants:

Cl has the value "DATE ". The constant is five characters
long; the blank following the word DATE is part of the
constant. -

C2 has the value "TIME ". The constant 1 s fi ve characters
long; the blank following the word TIME is part of the
constant.

RATE is defined implicitly as a REAL *4 item. Therefore,
it's a real constant, four storage positions long, with a
value of 2 times 1.414 or 2.828.

You'll note that RATE is defined through"the expression
2*1.414; when you define a constant using an expression in
this way, the expression you specify must be a constant
expression.

In the PARAMETER statement, the value you assign to the constant
must be consistent with its data type; that is, Cl and C2 must
contain character data, and RATE must.c-ontain real data. If any
data conversions must be performed, they are made according to
the rules for the assignment statement. (See "Assigning Values
to Data-Assignment Statement.")

The value you assign through a PARAMETER statement to a
character constant must contain no more than 255 characters.

Reference documentation for the PARAMETER statement is giv~n in
the VS FORTRAN Application Programming: language Reference
manual.

ARRAYS AND SUBSCRIPTS

A VS FORTRAN array is a set of consecutive data items, each of
which is the same data type and length as the other items in the
set.

In FORTRAN, ~/ou can gi ve a name to the ent ire array and then
refer to each of the individual items. The individual items are
called arra~ elements, and you can refer to any individual
element by specifying its position within the array through one
or more subscripts, depending upon the number of dimensions in
the array.

46 VS FORTRAN Application Programming: Guide

) o

d

C
'\"
,.)

o

You can define an array by using the DIMENSION statement, the
explicit type statement, or the COMMON statement.

One-Dimensional Arrays

To define a one-dimensional array, you specify only one
dimension declarator. For example, you want to d9fine a
one-dimensional array, named ARRAYl, that contains five array
elements. You can do so through the following DIMENSION
declaration:

DIMENSION ARRAYl(5)

In this case, you've defined ARRAYl as an array containing five
elements, each implicitly defined as a REAL item of length 4.

SUBSCRIPT REFERENCES: Program references to ARRAY! take the
form of subscripts:

• As integer constants:

ARRAYl(2)

In this example, the subscript epecifiesa reference to the
second array element.

• As integer variables:

ARRA YI (NUf'1)

where (NUM) represents the integer variable subscript, into
whi ch you can place the values 1 through 5. (For ARRAYl, any
other values produce invalid array references.)

IBM EXTENSION

You can also specify subscript references as real constants,
variables, or expressions; the compiler converts the real
value to an integer value.

"----------- END OF IBM EXTENSION ------------..1
Reference documentation for the DIMEHSION statement and for
subscript references is given in the VS FORTRAN Application
Programming: Language Reference manual.

Multidimensional Arrays

In VS FORTRAN, arrays can have up to seven dimensions; that is,
you may need to specify up to seven dimension declarators to
define the array, and up to seven subscripts to identify a
specific array element. (The nUMber of SUbscripts you specify
must always equal~he number of dimensions in the array.)

Multidimensional arrays are stored in column-major order. That
is, the first subscript always varies most rapidly, and the last
subscript alwDYs varies least rapidly.

For example, if you define the 3-dimensional array ARR3(2,2,2),
it's placed in storage in the order shown in Figure 8. In this
example, the lower bounds of the subscripts are 1; therefore, the
first array elewent is (1,1,1); you'd refer to the second array
element as ARR3(2,1,1), and you'd refer to the seventh array
element as ARR3(1,2,2).

ArrayS-Implicit LONer Bounds

In the preceding.examples, the sub5cripts are shown as having a
range from 1 through the upper bound for each dimension of the
array; that is, in ARRAY3 the implicit lower bound for each

Coding Your Program--Advanced Programming 47

dimension is 1, and the explicit upper bound for eac'., dimension
is 2.

Al'rays-ExP 1 i ci t LONeI' Bounds

In VS FORTRAN, you can also explicitly state both the lower and
upper bounds for any array. For example, for ARR3A you could
specify:

DIMENSION ARR3A(4:5,2:3,1:2)

The la~'out in storage-as sho,,,n in Fi gure 8-i s exactly the same
as for ARR3; however, valid array references would range from
ARR3A(4,2,1) through ARR3A(5,3,2).

ARR3--Implicit lower Bounds

I 1,1,1 I 2,1,1 I 1,2,1 I 2,2,1 I 1,1,2 I 2,1,2 I 1,2,2 I 2,2,2 I

ARR3A-Expliclt lower Bounds
------------------------.---------------------------------- .. -----
I 4,2,1 I 5,2,1 I 4,3,1 I 5,3,1 I 4,2,t I 5,2,2 I 4,3,2 I 5,3,2 I

Figure 8. Three-Dimensional Array-Implicit and Explicit lowel' Bounds

Al'rays--S;gned Subscl'ipts

In VS FORTRAN, your array declaration can specify positive or
negative signed declarators for eithar the lower or the upper
bounds. Thi s can make a di fference in the number of array
elements the array contains.

For example, if you define ARR2 and ARR2S as follows:

DIMENSION ARR2(4,2), ARR2S (-2:2,2)

the boJo arrays are la i d out in storage as sho,,,n in Fi gure 9:

Valid array references for ARR2 range from ARR2(1,1) through
ARR2(4,2), and there are eight array elements.

Valid array references for ARR2S range from ARR2S(-2,1)
through ARR2S(2,2) (with ARR2S(O,1) and ARR2S(O,2)
included), and there are t~n array elements.

Because a zero subscript is valid for ARR2S, there are two more
array elements in ARR2S than in ARR2.

48 VS FORTRAN Appl i cat ion Programm i ng·: Gu i de

(
")

, \/
~;

(..

~o

o

ARR2(4,2)--;s arranged in storage like this:

I 1,1 I 2,1 I 3,1 I 4,1 I 1,2 I 2,2 I 3,2 I 4,2 I . --
ARR2S(-2:2,2)--is arranged in storage like this:

I -2,1 I -1,1 I 0,1 I 1,1 I 2,1 I -2,2 , -1,2 I 0,2 , 1,2 I 2,2 ,

Figure 9. Arrays--Effect of Negative Lower Bounds

Arrays--programming Considerations

Wherever possible, you should ~pecify arrays as one-dimensional
ratheF than as multidimensional. The fewer the dimensions in an
array, the faster your array references execute.

Always make sure that subscript values refer to elements within
the bounds of the array; if they don't, you can possibly destroy
data or instructions.

SUBSTRINGS OF CHARACTER ITEMS

For character arrays and character variables, you can make
substring references (that is, reference~ to only a portion of
the item) using substring notation.

You specify substring references by naming the array element or
variable and then adding the substring reference--a left
parenthesis, the lower bound, a colon, the upper bound, and a
right parenthesis, in that order.

For example:

VAR1(2:4) means that the substring consists of the second
through fourth characters in the character variable VAR1;

ARRl(2)(1:4) specifies that the substring consists of the
first through fourth characters in the second array element
of the character array ARR1.

You can omit the lower bound of the substring reference if it is
eQual to 1; that is, ARR(2)(:4) is exactly equivalent to
ARR(2)(1:4).

You can use character substrings in program references and in
assignment statements. For example~ if you define a variable and
an array as follows:

CHARACTER*10 SUVAR,SUARR(3)
SUVAR='ABCDEFGHIJ'

and you specify the following assignment:

SUARR(2)(:5)=SUVAR(6:10)

then, when the assignment statement is executed, the last five
characters of SUVAR (that is, FGHIJ) are placed in the first five
characters of the second array element of SUARR; the last five
characters of that array element are unchanged.

Reference'docume~tation for character substrings is given in the
VS FORTRAN Application Programming: Language Reference manual.

Coding Your Program--Advanced Programming 49

USING DATA EFFICIENTLY

How efficiently your 'program uses the system depends, in part. on
how you define and use the data in your program. Tn. choices you
make also depend upon the results you want to achieve.

This section discusses how to initialize data and how to reuse
storage for different data items in the same program.

INITIALIZING DATA-DATA STATEf1ENT

You can use the DATA statement to initialize variables and
arrays. You must place it after any specification statement or
IMPLICIT statement that refers to the items you're initializing.
For example, your program could contain the following
statements:

CHARACTER *4 CARL,CELS*2
DATA DEG,CElS,CARl/IO.2,'DG','SURD'/,AVCH/.1515/

and the data items would be initialized to the following values:

DEG
CElS
CARL
AVCH

(real constant)
(character constant)
(character constant)
(real constant)

initialized to
initialized to
initialized to
initialized to

10.2
DG
SURD

.1515

You can also use named constants to initialize data items:

PARAMETER (DEGI=10.2)
DATA DEG/DEGI/

which initializes the real variable DEG to the value 10.2.

0'
..

Reference documentation for the DATA statement is given in the VS
FORTRAN Appl i cat ion P,..ogrammi ng: Language Reference manua 1. ~;

Initializing Arrays--DATA statement

There are special considerations when you initiali.e arrays with
the DATA statement, as follows:

INITIALIZING ARRAY ELEMEHTS: You can initialize any element of
an array by subscripting the array name. Only one element is
initialized. The following example shows how to initialize
individual array elements:

DIMENSION ACID)
DATA A(1),A(2),A(4),A(5)/1.0,2.0,4.0,5.0/

the array elements are initialized as fo!"lows:

ACt) initialized to 1.0
A(2) initialized to 2.0
A(3) is not initialized
A(4) initialized to 4.0
A(5) initialized to 5.0
A(6) through ACID) are not initialized.

INITIALIZING CHARACTER ARRAY ELEMENTS: In a character array, it
isn't necessary to specify the constant as the same length as the
character array element:

If the character constant is shorter than the character
array element, the array element is padded at the right with
blanks.

If'the character constant is longer than the character array
element, the constant is truncated at the right.

50 VS FORTRAN Application Programming: Guide

~

o

o

o

o

.For ~xample, if you specify the following statements:

CHARACTER *4 CARRAY(4)
DATA CARRAY(1),CARRAYC4)/'ABC','EFGHI'/

the CARRAY array is initialized as follows:

CARRAYCl) initialized to ABC (fourth character is blank)
CARRAY(2) and CARRAY(3) are not initialized
CARRAY(4) initialized to EFGH (I is truncated)

INITIALIZING ARRAYS-IrtPLIED DO LISTS: You can use i mpl i ed DO
lists to initialize parts or all of an array. You use the implied
DO list to specify the values the subscripts should assume.

Initializing an Entire Array-Implied DO List: You can
initialize an entire array to the value 0.0, as follows:

DIMENSION ARRAYECIO,lO)
DATA C(ARRAYE(I,J),I=1,10),J=1,10)/100*0.0/

This DATA statement tells the compiler to:

1. Vary the subscript I from 1 to 10 each time the subscript J
is incremented, and vary the subscript J from 1 to 10; the
implied increment for both I and J is 1.

2. Place 100 repetitions of the value 0.0 in the 100 array
elements; the repetition factor is specified by the 100*.

Initializing an Identity Matrix-Implied DO Lists: You're
allowed to nest implied DO lists in a DATA statement. In this way
you can initialize an identity matrix, using one DATA statement:

DIMENSION ARRAYI(lO,lO)
DATA (CARRAYICI,J),I=1,J-l),J=2,10)/45*0.0/,

C(ARRAYICI,J),J=1,I-l),I=2,10)/45*0.0/,
CARRAYIC!,I),!=l,lO)/lO*l.O/

This DATA statement tells the compiler to:

1. Vary the subscript,! from 1 to 1 less than the value of J,
each time the subscript J is incremented; subscript J is
incremented from 2 to 10. This fills the upper right 45 array
elements with 0.0.

2. Vary the subscript J from 1 to one less than the value of I
each time the subscript I is incremented; subscript I is
incremented from 2 to 10. This fills the lower left 45 array
elements with 0.0.

3. Use the value of I for both subscripts (1,1), and vary I from
1 to 10. This fills the principal diagonal with the value
1.0.

You can also use the DATA statement to initialize the entire
array to zeros, and then specify a DO statement and an assignment
statement to initialize the principal diagonal. For example:

DIMENSION ARRAYD(lO,lO)
DATA (CARRAYOCI,J),I=l,lO),J=l,lO) /100*0.0/
00 30 1=1,10,1
ARRAYOCI,I)=l.O

30 CONTINUE

HAtfAGING DATA STORAGE-EQUIVALENCE STATEMENT

You can control storage allocation within your program by using
the EQUIVALENCE statement.

When your program's logic permits it, you can use this statement
to specify that one storage area is to be shared by two or more

Coding Your Program--Advanced Programming 51

data items. These items can be variables or arrays, and they can
be of the same or of differing data types. Thera's one
restriction: CHARACTER items cannot be equivalenced with other
data types.

Note that only the storage itself is equivalent (shared);. .
mathematical equivalence is implied only when the sharing items
are of the same type, when they share exactly the same storage,
and when the value assi gned to the shared area is of that type.

The EQUIVALENCE statement is particularly useful when you use it
with the COMMON statement; this kind of usage is described in
"EQUIVALENCE Considerations-COf-1MON Statement" in Part 3.

When you use the EQUIVALENCE statement with array elements, you
can implicitly specify the storage sharing of other array
elements L-Ji thi n the same array; thi sis because arrays are stored
in a pr~determined order. For example, if you write an
EQUIVALENCE statement referring to ARR3 (illustrated in
Figure 8), as follows: -

DIMENSION ARR3(2,2,2)
INTEGER *4 ARR3B(4)
EQUIVALENCE (ARR3(2,2,1),ARR3B(1»

then the array elements of ARR3 and ARR3B share storage as shown
in Figure 10, with the displacement for the array elements shown
in the right-hand column.

ARRl storage ARRlB storage Displacement

------------- ------------- 0
ARR3(1,1,1)

------------- ------------- 4
ARR3(2,1,1)

------------- ------------- 8
ARR3(1,2,1)

------------- ------------- 12
ARR3(2,2,1) ARR3B(1)

------------- ------------- 16
ARR3(1,1,2) ARR3B(2)

------------- ------------- 20
ARR3(2,1,2) ARR3B(3)

------------- ------------- 24
ARR3(1,2,2) ARR3B(4)

------------- ------r------- 28
ARR3(2,2,2)

------------- ------------- 32

Figure 10. Sharing Storage Between Arrays--EQUIVALENCE Statement

Reference documentation for the EQUIVALENCE statement is given
in the VS FORTRAN Application Programming: Language Reference
manual.

Execution-Time Efficiency Using Equivalence

When you make items equivalent, you can specify them in any order
in your EQUIVALENCE statement. However, unless you ensure that
all the arithmetic items in the group have the proper boundary
alignment, you can lose object-time efficiency.

When all the items in an equivalence group are defined as
beginning at the same storage address, there is no problem.

There can be problems, however, when some items begin at a
displacement from the beginning address. In this case, you can

52 VS FORTRAN Application Programming: Guide

o

ensure proper boundary alignment by defining each equivalent
arithmetic item as starting at a displacement from the beginning
of the group that can be evenly divided by its length, or, if
it's COMPLEX, half its length. The two examples in Figure 11
illustrate this concept.

DEFINING AND USING EX~RESSIONS

Expressi ons are combi nat ions of data i terns and operators that
represent a value. You can use them for arithmetic operations,
character operations, logical operations, or in relational
operations.

The simplest form of an expression is simply the name of a data
item, or the value or named value of a constant. You can specify
more complicated expressions by using operators to combine data
items. The kind of operators you can use depends upon the type of
expression you're specifying:

Arithmetic operators--for arithmetic expressions

Character op·erators--for character express; ons

Relational operators--for relational expressions

logical operators--for logical expressions

The precedence of one type of operator over another is in the
order given above.

ARITHMETIC EXPRESSIONS

You can use arithmetic expressions to specify mathematical
rei a t ion s hip s 0 f va r; 0 us kin d s. The val; dar i t hm e tic
express;ons, and how you can combine them, are shown in
Figure 12.

Specify all desired computations explicitly, and make certain
that no two arithmetic operators appear consecutively.

In addition, be aware that the compiler evaluates arithmetic
expressions as follows:

• Operands are evaluated in their order of precedence from
highest to lowest.

• -Within the exponentiation precedence leve~, operations are
performed right to left. For example, A**B**C is evaluated
as (A**(B**C».

• Within all other precedence levels, operations are performed
left to right. For example, A+B+C is evaluated as «A+B)+C).

• Parentheses are evaluated as they are in mathematics; they
specify the order in which operations are to be performed.
That is, expressions within parentheses are evaluated before
the result is used. For example, the expression (CA-B)+C)*E
is evaluated as follows:

•

1. A-B is evaluated, giving resultl

2. resultl+C is evaluated, giving result2

3. result2*E is evaluated, giving the final result

You can use the + and - operators as si gns for an item; when
you use them this way, they're evaluated as if they were
addition or subtraction operators. That is, A=-B+C is
evaluated as"though written A=-CB)+C.

Coding Your Program--Advanced Programming 53

The following EQUIVALENCE statement (where A 1S REAL*4, I is INTEGER*4, and A2 1S
DOUBLE PRECISION):

DIMENSION A(10),I(16),A2(5)
EQUIVALENCE (A(1),I(7),A2(1»

causes the items to be laid out in storage 8S follows:

Displacement:
o ~ 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 1

I array 1(7)
1---1---1---1---1---1---1---1---1---1---1---1---1---1---1---1---1

A (, 1

A array I~~:i---I---I---I---I---I---I---I---I---I
A2(1)

A2 array 1-------1-------1-------1-------1-------1
(Efficiently laid out--A and A2 begin at a displacement of 24 storage positions from
the beginning of the equivalence group)

The following EQUIVALENCE statement (using the same items):

DIMENSION A(10),I(16),A2(5)
EQUIVALENCE (A(I),I(6),A2(1»

causes the items to be laid out in storage as follows:

Displacement:
o 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
1 I I I 1 I I I 1 I I I I I I 1 1

I array 1(6)
1---1---1---1---1---1---1---1---1---1---1---1---1---1---1---1---1

A array

A2array

A(l)
1---1---1---1---1---1---1---1---1---1---1
A2(l)

1-------1-------1-------1-------1-------1
(Inefficiently laid out--A2 begins at a displacement of 20--not divisible by 8--from
the beginning of the equivalence group)

Figure 11. Storage Efficiency and the EQUIVALENCE Statement

54 VS FORTRAN Application Programming: Guide

0)

/'

"·c:'

(,0

(0

Arithtr.et;c
Operation Operator Precedence

Function Evaluation (none) Highest

Exponentiation ** Second
Highest

Multiplication * Third] Highest
Division /

Addition +] Lowest
Subtraction

Figure 12. Arithmetic Operators and Operations

In arithmetic expressions, you can specify the operands as any
mix of integer, real, or complex items.

However, you should be careful, when you're specifying
arithmetic expressions, that you define the operands so that you
get the precision you want in the result. For example, if you
specify:

DOUBLE PRECISION RESULT
RESULT = AR3*AR1

AR3 and AR1 (both REAL *4 numbers) are multiplied together, the
REAL *4 result is padded with zeros and placed in RESULT. Thus,
whi Ie the RESUL Tis the length of a DOUBLE PRECISION item, it has
only the precision obtainable using REAL*4 operands
(approximately 7.2 decimal digits).

If you're dividing one operand by another, you should define the
operands and the result as REAL items.

If you divide one integer by another, any remainder is ignored,
and you get an integer quotient:

DATA 11/10/,12/15/
RESULT=I2/I1

In this case, the expression on the right of the equal sign is
evaluated to the integer 1; then the result is converted to a
floating point number and stored in RESULT.

You can also perform more complex mathematical operations by
using the intrinsic functions that VS FORTRAN provides; see
"Saving Coding Effort with statenlit~nt Functions" for details.

Reference documentation for arithmetic expressions is given in
the VS FORTRAN Application Programming: Language Reference
manual.

CHARACTER EXPRESSIONS

You specify character expressions by combinations of character
items, the character concatenation operator, and optional
parentheses.

Coding Your Program--Advanced Programming 55

The simplest form of character expression is simply a character
item itself.

You can combine character operands by using the concatenation
operator (II) to join one operand to the next. For example:

CHARACTER *12 CHAR
CHARACTER *6 CHAR1,CHAR2
DATA CHAR1/'ABCDEF'I,CHAR2/'GHIJKl'l
CHAR = CHARIIICHAR2

The concatenation operator (II) specifies that the contents of
CHAR2 are to be joined to those of CHAR1 to form the character
string:

ABCDEFGHIJKl

which is then assigned to the character variable CHAR.

Reference documentation for charact~r expressions is given in
the VS FORTRAN Application Programming: language Reference
manual.

RELATIONAL EXPRESSIONS

You can form relational expressions by combining two arithmetic
expressions with a relational operator,' or by combining two
character expressions with a relational operator.

The relational operators you can use are listed in Figure 13.

Relational
operator Heaning

.GT.
• L r .
.GE.
.lE.
.EQ.
.NE.

greater than
less than
greater than or equal to
less than or equal to
equal to
not equal to

Figure 13. Relational Operators and their Meanings

You can combine expressions as shown in the following examples:

A.GE.B

If A is greater than or equal to B, this relational expression is
evaluated as "true"; otherwise, it is evaluated as "false."

(A+B).lT.(C-B)

If the result of A+B is less than the result of C-B, this
relational expression is evaluated as "true"; otherwise, it is
evaluated as "false."

COMPLEX CMPlXl,CMPlX2
(CMPlXl-2).EQ.(CMPlX2+2)

If the result of CMPlXl-l is equal to the result of CMPlX2+2,
this relational expression is evaluated as "true"; otherwise, it
is evaluated as "false." (The only relational operators you can
use with complex arithmetic operands are .EQ. and .NE.)

CHARACTER *5 CHAR4, CHAR5, CHAR6*8
(CHAR41ICHAR5).GT.CHAR6

56 VS FORTRAN Application Programming: Guide

o

o

In this Qxpression, CHAR6 is extended 2 characters to the right
with blank characters; CHAR6 is then compared with the
concatenation of CHAR4 and CHARS, according to the EBCDIC
collating sequence. If the concatenation of CHAR4 and CHARS
evaluates as greater than CHAR6, this relational expression is
evaluated as "true"; otherw i se, it i s eva luated as "fal se."

Relational Expressions--Character operands

LOGICAL EXPRESSIONS

When you use a relational expression to compare character
operands, the comparison is made using the EBCDIC collating
sequence.

For example, if character items C1 (containing '3AB') and C2
(containing 'XYZ') are compared, as follows:

L = C1.GT.C2

C1.GT.C2 evaluates as "true."

However, if you use the intrinsic functions (LLT, LGT, LlE, and
lGE) to compare character operands, the compari.son is made using
the ASCII collating sequence. See "Comparing Character
Operands-FORTRAN-Suppl i ed Funct ions" in Part 3 for addi t i onal
information.

Reference documentation for relational expressions and for the
EBCDIC and ASCII collating sequences is given in the VS FORTRAN
Application Programming: Language Reference manual.

You use logical expressions to combine logical operands--a
logical constant, logical variable or array element, logical
function references, and logical or relational
expressions-optionally enclosed in parentheses.

The logical operators you can use are shown in Figure 14.

Logical Operator Meaning

.HOT. logical negation

.AND.

.OR.

.EQV.

.HEQV.

If both operands are "true," the
expression is "true"; otherwise
the expression is "false"

If either operand is "true," the
expression is "true"; otherwise
the expression is "false"

If both operands are "true" or if
both operands are "false," the
expression is "true"; otherwise
the expression is "false"

If both operands are "true" or if
both operands are "false," the
expression is "false"; otherwise
the expression is "true"

Figure 14. logical Operators and their Meanings

Precedence

Highest

Lowest

Coding Your Program--Advanced Programming 57

The following examples show some of the ways you can use logical
expressions:

1. A.GT.B.OR.A.EQ.C

This logical expression is "true" if one of the following is
"true":

A is greater than B, or

A i s equal to C

otherwise, it is "false."

2. A.GT.B.AND.A.EQ.C

Thi s logi cal expressi on is "true" only if both the followi ng
are "true":

A is greater than B, and also

A is equal to C

otherwise, it is "false."

3. A.GT.B.AND .. NOT.A.EQ.C

This logical expression is "true" only if both the following
are "true":

A is greater than B, and also

A is not equal to C

otherwise, it is "false."

4. A.GT.B.OR.A.EQ.C.AND.B.LT.D

This logical expression is evaluated in the following order:

a. A.GT.B is evaluated, giving a truth value~.

b. A.EQ.C is evaluated, giving a truth value H.

c. B.LT.D is evaluated, giving a truth value~.

d. ~.AND.~ is evaluated, giving a truth value~.

e. y.OR.~ is evaluated, giving the final truth value ~.

The expression is "true" if either ~ or ~ eval~ates as
"true."

Reference documentation for logical expressions is given in the
VS FORTRAN Application Programming: language Reference manual.

ASSIGNING VALUES TO DATA-ASSIGNt1ENT STATEMENT

In a VS FORTRAN program, the assignment statement lets you assign
values to data.

The assignment statement closely resembles a" conventional
algebraic equation, except that the value to the right of the
equal sign replaces (is assigned to) the value to the left.

You can use the assignment statement to assign one constant, "
variable, or array element to another variable or array element.

You can specify arithmetic, character, and logical operands and
expressions to the right of the equal sign.

58 VS FORTRAK Application Programming: Guide

o

0 1

"

o

ARITHMETIC ASSIGNMENTS

You can assign arithmetic operands and expressions to other
arithmetic operands; the item(s) to the right of the equal sign
don't have to be the same type or length as the item to the left
of the equal sign.

For example (assuming default naming conventions), if you make
the following assignments, you'll get the indicated results:

PI=3.141S9
assigns the real constant 3.14159 to the REAL variable of
length 4 named PI.

ARRAY3(NUM} = DIFF
assigns the value currently contained in the REAL variable
of length 4 to the REAL array element ARRAY3(NUM) of
length 4

INTR = DIFF
the value of DIFF is converted to an INTEGER value of length
4 (that is, the largest integer in the real item is used,
without rounding) and placed in INTR.

DIFF = INTR
the value of INTR is converted to a REAL value of length 4
and placed in the variable DIFF.

DIFF=INTR+DIFF
the value of INTR ;s converted to a REAL value of length 4
and added to the current value of DIFF; the result is the
new value of DIFF.

You can use and combine all the arithmetic operators, as shown in
Figure 12.

Reference documentation for arithmetic assignments is given in
the VS FORTRAN Application Programming: Language Reference
manual.

CHARACTER ASSIGNMENTS

You can~use character assignments to initialize character items.
For example:

CHARACTER*10 SUVAR
SUVAR='ABCDEFGHIJ'

which assigns the value ABCDEFGHIJ to the character variable
SUVAR.

When the operands are character items or expressions, you can
specify the item to the left and the item(s) to the right of the
equal sign with differing lengths. When you execute the
assignment, the item to the left is either padded at the right
with blanks or the data is truncated to fit into the item at the
left:

CHARACTER *5 A,B,C,E *13
DATA A/'WHICH'/,B/' DOG '/,C/'BITES'/
E=A//B//C

In the assignment statement, the concatenation symbols (//)
place the contents of A, B, and C one after another into E.

After the assignment statement is executed, the character
variable E contains:

WHICH DOG BIT

(Note that the characters ES are truncated.)

Coding Your Program--Advanced Programming 59

LOGICAL ASSIGNMENTS

You can also define character items on either side of the equal
sign as substrings, in which case only the substring portion of
the item is acted upon:

After this assignment statement is executed, A contains the
characters "WHITE".

There's one restriction upon character assignment statements:
the item to the left of the equal sign, and those to the right
must not overlap in any way; that is, they must not refer to the
same character positions, completely or in part. If they do, you
can get unpredictable results, but you won't get an error
message.

Reference documentation for character assignments is given in
the VS FORTRAN Application Programming: language Reference
manual.

When the operand to the left of the equal sign is a logical item,
the operands or expressions to the right must evaluate to a
logical value of either "true" or "false."

In a logical assignment, the righthand operands and expressions
can be logical items, and logical or relational expressions.
Within the relational expressions, you can use arithmetic or
character operands.

For example, you can use arithmetic operands, as follows:

LOGICAL *4 LOGOP
DOUBLE PRECISION ARl/!.l/,AR2/2.2/,AR3/3.3/,AR4
LOGOP = (AR4.GT.AR1).OR.(AR2.EQ.AR3)

"true" is placed in LOGOP when AR4 is greater than ARl; otherwise
AR2 and AR3 must be tested. Then if AR2 is equal to AR3, "true"
is placed in LOGOP; otherwise "false" is placed in LOGOP.

For example, you can use character operands, as follows:

LOGICAL *4 LOGOP
CHARACTER *6 CHAR!, CHAR2, CHAR3
DATA CHARl/'ABCOEF'/ CHAR2/'GHIJKL'/
LOGOP = (CHAR2.EQ.CHAR3).ANO.(CHAR1.LT.CHAR2)

"true" is placed in LOGOP when CHAR2 and CHAR3 are equal and
CHARl is less than CHAR2; otherwise, "false" is placed in lOGOP.
(Unless their values change during execution, CHAR! always
evaluates as less than CHAR2.)

Reference documentation for logical assignments is given in the
VS FORTRAN Application Proqramming: language Reference manual.

SAVING CODING EFFORT WITH STATEMENT FUNCTIONS

If your program makes the same complex calculation a number of
times, you can define a statement function and then, whenever the
program must make the given calculation,_refer to that function.

For example,

WORKeA,B,C,D,E)·: 3.274*A + 7.477*B - C/D + eX+Y+Z)/E

defines the statement function WORK, where WORK is the function
name and A, B, C, 0, and E are the dummy arguments.

60 VS FORTRAN Applicat)on Programming: Guide

o)

((I"'-i
J

(0

The expression to the right of the equal sign defines the
operations to be performed when the function reference appears
in an arithmetic statement.

All statement function definitions must precede the first
executable statement of the program.

The function reference might appear in a statement as follows:

W = WORKCGAS,OIL,TIRES,BRAKES,PLUGS) - V

This is equivalent to:

W = 3.274*GAS + 7.477*OIL - TIRES/BRAKES + (X+Y+Z)/PLUGS - V

Note the correspondence between the dummy arguments A, B, C, 0,
and E in the function definition and the actual arguments GAS,
OIL, TIRES, BRAKES, and PLUGS in the function reference.

For reference documentation about statement functions, see the
VS FORTRAN Application Programming: Language Reference manual.

CONTROLLING PROGP.AM FLOW

Unless you explicitly change the flow of control, VS FORTRAN
programs execute one statement after another sequentially. In VS
FORTRAN, you can alter the sequence of control, using the ASSIGN,
DO, GO TO, IF, PAUSE, STOP, and END statements.

In VS FORTRAN, the arithmetic and logical IF statements and the
unconditional GO TO statement work in the same way they've done
in older IBM FORTRAN implementations.

However, there are new VS FORTRAN programming options
avai lable-such as the block IF statement-end changed
programming rules for the DO statement, assigned and computed GO
TO statements, and the PAUSE, STOP, and END statements.
Programming considerations for these new language features are
reviewed in the following sections.

USING STRUCTURED PROGRAMMING-BLOCK IF STATEt1ENT

The VS FORTRAN structured programming statements-the block IF
statement and its associated ELSE IF, ELSE, and END IF
statements-help you create programs that conform to structured
programming rules:

1. Write all code in control structures.

2. Construct each control structure so that it has only one
entrance and only one exit.

3. Make each control structure nestable.

4. Control program flow along paths that define the structure
itself.

5. Indent the source code to reflect the logic flow between
control structures.

These rules make programs simpler and easier to understand; each
structure is small and self-contained, and the structure of the
program reflects its logic.

The block IF statement-together with its subsidiary ELSE IF,
ELSE, and END IF statements-helps you wri te VS FORTRAN programs
that conform to these structured programming rules. They let you
nest IF procedures in a simple straightforward way.

Coding Your Program-Advanced Programming 61

Two terms are needed to explain the concepts of the block IF
statement, IF-level and IF-block:

IF-level The number of IF-levels; n a program un; t -; s
determined by the number of sets of block-IF
statements (IF THEN and END IF statements).

The IF-level of a particular statement is determined
with the formula:

nl - n2

wher-e:

nl

"2

is the number of block IF statements from
the beginning of the program unit up to and
including this statement.

is the numb~r of END IF 5tat~ment5 in the
program unit up to, but not including, this
statement.

Thus, in the following example:

10 IF (A . EQ. 5) THEN
11

20 IF (C+D .EQ. 0) THEN
21

29
30 END IF

39
40 END IF-

The block IF at number 10 is at IF levell,
and the block IF statement at statement 20
is at IF level 2.

IF-block An IF-block begins with the first statement after the
block IF statement (IF THEN), and ends with the
statement preceding the next ELSE IF, ELSE, or END IF
statement at the same IF-level as the block IF
statement. The IF-block includes all the executable
statements in between.

Thus, in th~ preceding e~ample, the IF blocks are:

• Statements 11-39 inclusive.

• Statements 21-29 inclusive.

In Figure 15, the IF blocks for each example are:

Example 1: The IF block ends with the s~atement
preceding END IF.

Example 2: The IF block ends with the statemen~
preceding ELSE.

Example 3: The IF block ends with the statement
preceding ELSE IF.

You can code an empty IF-block; that is, you can code
an IF-block that has no executable statements in it.

You must not transfer control into an IF-block from
outside the IF-block.

62 VS FORTRAN Application Programming: Guide

/(_ .. "'\

\'<IL~p,'

((

'0

'\ 1'0

There are three forms a block IF statement can take, as shown ;n
Figure 15 ..

Example 1 : IF (expression) THEN
(code executed if ex~ress;on is "true")

END IF

Example 2: IF (expression) THEN
(code executed if ex~ress;on ; s "true")

ELSE
(code executed if ex~ression is "false")

END IF

Example 3: IF (expression1) THEN
(code executed ;f ex~ressionl ;5 "true")

ELSE IF (expression2) THEN
(code executed if ex~ressionl is
"false" and ex~ression2 is "true")

ELSE

END IF

(code executed if both ex~ression 1
and ex~ression2 are "false")

Note: In thi s thi rd form, you can repeat ELSE IF blocks as your
program's logic requires; for example:

IF (expression!) THEN
(code executed if expression! is "true")

ELSE IF (expression2) THEN
(code executed if ex~ression2
is "true")

ELSE IF (expression3) THEN'
(code executed if express;on3
is "true")

ELSE IF (expression4) THEN
(code executed if expression4
is "true")

ELSE

END IF

(code executed if all expressions
listed above are "false")

Figure 15. Block IF Statement--Valid Forms

Anyone of these forms can be nested to any depth within any of
the others, as the following example shows:

90

IF (A.EQ.B) THEN
(code sequence executed if A.EQ.B is "true")

ELSE IF (A.GT.B) THEN
(code sequence executed if A.GT.B is "true")

ELSE
(code sequence executed
are both "false")

IF (C.LT.D) THEN
(code sequence
ELSE
(code sequence

DO

CONTINUE
END IF

END IF

executed

executed

if A.EQ.B and A.GT.B

if C.LT.D is "true")

if C.LT.D is "false")

Here's how the statement executes:

Coding Your Program--Advanced Programming 63

1. The first block IF statement has an IF block that includes
the range of statements to the ELSE IF statement.

2. The ELSE IF THEN statement has as its ELSE IF block the range
to the ELSE statement at the same level (the first ELSE
statement).

After your program executes an ELSE IF block, control is
transferred to the END IF statement at the same level.

3. The first ELSE statement is the alternative condition for
the ELSE IF THEN statement.

4. The second IF THEN statement is subordinate to the first ELSE
statement. This IF block continues to the first END IF
statement.

5. The second ELSE statement is the alternative condition for
the second IF THEN statement. Its ELSE block is the range of
code to the first END IF statement.

6. The CONTINUE statement provides a convenient reference point
for the DO-loop code executed in the current nested ELSE
block. (The nested DO loop must be completely contained
within the current block; in this example, the current
nested ELSE block.)

7. The first END IF statement corresponds to the nested block IF
statement.

8. The second END IF statement corresponds to the first block IF
statement (the one that begins the entire code sequence).

Reference documentation for the block IF statement is given in
the VS FORTRAN Application Programming: language Reference
manual.

Using the CONTINUE statement

In the previous example, there's a CONTINUE statement which
provides a convenient ending point for procedures within the
current ELSE block. You'll find the COHTIHUE statement
particularly useful in this way within DO loops.

However, there's one limitation you must observe. When you use
the CONTINUE statement within a block IF statement sequence, you
must use the CONTINUE only for control transfers wi thi n the local
code block (in this example, the local ELSE-block). If you branch
into the block (with GO TO statements, for example), the results
are unpredictable, even though you won't get an error message.

PROGRAMMING LOOPS-DO STATEMENT

In VS FORTRAN, you can use the DO statement to execute a range of
statements a specific number of times. The ways you can do it are
much more flexible than in previous FORTRAN implementations:

• You can nest DO statements; if you nest one DO statement
within another, you must include the range of the inner DO
statement entirely within the range of the outer DO
statement.

•

You can use the same terminal statement for both the inner
and the outer DO statement ranges. (CONTINUE is handy for
this.)

If you code DO statements within a block IF, ELSE IF, or ELSE
block, make sure that the range of the DO statement is
completely contained within that block.

64 VS FORTRAN Application Programming: Guide

0)
"'._ ,I

n)
"-'

0,)

o

• If you code a block IF statement within a DO loop, ensure
that the entire range of the block IF statement, including
END IF, is within the range of the DO loop. (You can't use
the END IF as the terminal statement for the loop.)

• Don't use any of the following as terminal-statements:

An unconditional or assigned GO TO statement

An arithmetic IF, ELSE IF, ELSE, or END IF statement

Another DO statement

A RETURN, STOP, or END statement

An INCLUDE statement

• When you execute a DO statement, the DO loop becomes active.
It remains active until one of the following occurs:

The loop executes completely.

The program executes a RETURN statement within its
range.

A transfer is made out of its range.

Any STOP statement is executed anywhere in the program.

Execution is terminatad for any other reason.

In VS FORTRAN, you can specify the DO variable as an integer or
real variable, and you can specify the initial value, the test
value, and the increment as integer or real expressions,
positive or negative. These rules give your DO loop processing
much more flexibility than before~

For example, if you code the following DO statement:

DO 20 VAR=START,END,INC

.
20 CONTINUE

how the loop executes depends upon the values you place in START,
END, and INC.

You can specify them all as positive ~uantities:

START=1.0
END=11.0
INC=2

The starting value (START) for VAR is 1.0, and the ending value
(END) is 11.0. Each time the loop is executed, VAR is incremented
by 2.0 (INC). (Note that because VAR is a real item, that the
integer value in INC is converted to a real value.) After the
loop has been executed six times, VAR contains the value 13.0,
and DO statement processing is completed.

You can specify a decrementing INC value, with a START value
higher than the END value:

START=11.0
END=1.0
INC=-2

Again the loop is executed six times, after which VAR contains
the value -1.0.

You can specify values that cause the DO loop not to be executed:

Coding Your Program--Advanced Programming 65

START=10.0
END=l.;O
INC=2

or

START=1.0
END=10.0
INC=-l

The STARr value is higher
than the END value and INC
the increment is positive.
After execution, VAR
contains the value 10.0.

The START value is lower
than the END value and INC
the increment is negative.
After execution, VAR
contains the value 1.0.

In either case the loop is not executed at all.

Note: Be careful when you're processing DO loops using real
values for the starting or ending values, or for the incre~ent;
because real numbers are an approximation of inteaer values.
there can be times when the loop is not executed exactly as you
expect. In general, numbers that cannot be represented exactly
in the computer may give unexpected results.

Reference documentation for the DO statement is given in the VS
FORTRAN Application Proaramming: language Reference manual. --

USING PROGRA~ SWITCHES--ASSIGNED GO TO STATEMENT

You can make one GO· TO statement transfer control to different
statements, depending upon a control variable (which contains
statement numbe~ to be used). You set the control variable by
means of an ASSIGN statement:

30

ASSIGN 20 TO lVAR
GO TO LVAR
(next executable statement)

When this GO TO statement is executed, control is transferred to
statement number 20.

You can optionally include a list of statement numbers in the
assigned GO TO statement:

ASSIGN 20 TO LVAR
GO TO LVAR(10, 20, 50, 100)

30 (next executable statement)

When this GO TO statement is executed, control is transferred to
statement number 20.

When your program executes either of these assigned GO TO
statements, LVAR must be assigned a valid number for an
executable statement.

Reference documentation for the assigned GO TO statement is
given in the VS FORTRAN ~pplication Programming: Language
Reference manual.

USING CONDITIONAL TRAt~SFERS-COt1PUTED GO TO STATEt1Et~T

You can transfer control c~nditionally to one of a number of
statements, depending on the value co~tained i·n a control item:

INT1=2
GO TO (10,20,30,50,100) INT1

When this statement is executed, the value in INT! (2) specifies
that the second statement number is to be used for the transfer,
and control is transferred to statement number 20.

You can use an integer expression as the control item:

66 VS FORTRAN Application Programming: Gui~e

;fC'\j
(I
~

0)

o

o

INT1=20
INT2=18
GO TO (10,20,30,50,100) INTI-INT2

When this statement is executed, the expression INTI-INT2 is
evaluated, and the resulting value (2) specifies that the second
statement number in the list is to be used for the transfer.
Control is transferred to statement number 20.

You can also transfer control to the next executable statement,
by ensuring that the value in the control item is either less
than one or greater than the number of labels listed. That is, in
the prev;ous examples, if the value in INTI or of INTI-INT2 is
less than one or greater than five, control is transferred to the
next executable statement.

Reference documentation for the computed GO TO statement is
given in the VS FORTRAN Application Programming: Language
Reference manual.

SUSPENDING PROGRAM EXECUTION--PAUSE AND STOP STATEMENTS

You can use the PAUSE and STOP statements to suspend program
execution: the PAUSE statement temporarily, the STOP statement
permanently.

Suspendi ng Execut ion Temporari ly--PAUSE Statement

You can use the PAUSE statement to halt program execution,
pending operator response:

PAUSE 20200

or

PAUSE 'MOUNT TEMPORARY TAPE. TO RESUME ENTER 9'

When the program executes either of these PAUSE statements, the
message is displayed at" the operator console:

01 IFYOOIA PAUSE 20200

or

01 IFYOOIA PAUSE MOUNT TEMPORARY TAPE. TO RESUME ENTER 9

The format of the operator's response to the message depends upon
the operating system being used.

Stopping Programs Permanently--STOP statement

When you end execution of your program, you can communicate a
message to the system operator through the STOP statement.

The message can be a numeric string of 5 digits or less:

STOP 21212

where 21212 can have any meaning you want to assign it.

The message can also be a character constant:

STOP 'PROGRAM BACGAM EXECUTION COMPLETED'

The character constant you specify must contain no more than 72
characters.

When the program executes either of th~se STOP statements, the
message is displa~ed at the operator console.

Coding Your Program--"'Advanced Programming 67

You can also usa the STOP statement to stop the program
permanently without sending a message to the operator:

STOP

Reference documentation for the PAUSE and STOP statements is
given in the VS FORTRAN Application Programming: Language
Reference manual.

ENDING YOUR PROGRAJ1-EtID STATEMEtn

In VS FORTRAN, the last statement in your progra~ must be an END
statement, and (unless your program executes a RETURN or STOP
statement first) it must be the last statement executed.

For this reason, you can label the END statement. This lets you
ensure that it is executed (if that's what you want), no matter
which branch of the program is executed last:

110 END

(For the END statement in subprograms, see "Coding Calling and
Called Programs.")

Reference documentation for the END statement is given in the VS
FORTRAN Application Programming: Language Reference manual.

USE PRE-WRITTEN SOURCE CODE

If your program uses frequently-used code sequences--sequences
such as blocks of common data items, or often-used error routines
or input/output routines--you can write the code sequences once,
place them in a system catalog, and then retrieve them for your
program with the INCLUDE statement.

For example, to retrieve an error routine you cataloged under the
name ERRTN, you can specify:

INCLUDE (ERRTN)

in your source program. During compilation, the ERRTN source
statements are inserted at this point in the program.

For i nformati on on catalogi ng the source code, see "Catalogi ng
Your Source Program."

AVOIDING CODING ERRORS

Many coding errors can cause problems in your compilation.

While you're coding your program, be careful not to make these
common programming errors:

1. Misspelling FORTRAN words.

2. Omitting required punctuation, or inserting unneeded
punctuation.

3. Not observing FORTRAN formatting rules.

4. Forgetting to assign values to variables and arrays before
you use them.

5. Moving data into an item that's too small for it. (This
causes truncation.)

In particular, don't initialize more array elements than the
array contains; you can inadvertently destroy subsequent
data and instructions.

68 VS FORTRAN Application Programming: Guide

\

(i',\.}
\ J

~.

0)

0 ,I

rc.~\ , I

1·0· \,

6.

7 •

8.

9.

10.

Specifying subscript values that are not within the bounds
of an array ~

Inadvertently changing types defined in an IMPLICIT
statement by explicit type statements.

Making invalid data references to equivalenced items of
differing types (for example, integer and real).

Transferring control from outside a DO loop into an
intermediate point in a DO loop.

Using arithmetic items for intermediate calculations that
are too small to give the precision you need in the result.
For example: If your final result is in the order of seven
decimal digits, you may need to perform the intermediate
calculat i,ons in DOUBLE PRECISION.

11. Failing to inspect code movements in programs compiled with
the OPTIMIZE(3) option. For example: if an IF statement
controls execution of a computation within a loop, the
computation may be moved outside the loop and give you
results you don't expect. See "Using the Optimization
Feature."

12. Attempting to process input records after a file has been
used for output. See "Programming Input and Output."

13. Writing main programs or subprograms that directly or
indirectly invoke themselves (see "Coding Calling and Called
Programs").

14. Writing a series of subprograms without a required main
program.

15. Defining dummy arguments and actual arguments that do not
agree in type and/or length. For example: arrays that do not
have the same dimensions, integer actual arguments with real
dummy arguments or vice versa.

16. In a subprogram, assigning new values to arguments
associated with variables in common.

17. Failing to initialize VSCOM when your main program is not a
FORTRAN program. (See "Appendix B. Assembler Language
Considerations.")

18. Referring to a statement function with other than the
defined number of arguments.

19. When using carriage control characters, not overriding all
applicable default values for FORTRAN units.

20. If you recompile programs originally written for the OS
FORTRAN GI, H Extended, or DOS FORTRAN F compilers, you may
experience VS FORTRAN internal table overflows. If this
happens, you must restructure the source code to reduce the
number of unique parameter lists and/or the number of
branches specified in computed GO TO statements and
alternate returns.

21. The VS FORTRAN compiler uses the OS FORTRAN H extended
architecture for rounding infinite binary expansions. The OS
FORTRAN Gl compiler also rounds, but the DOS FORTRAN F
compiler truncates. If you recompile programs originally
written for the DOS FORTRAN F compiler, you may experience a
difference in expected execution output.

22. If your VS FORTRAN Internal tables overflow, you must
restructure the source code to reduce the number of unique
parameter lists and/or the number of branches specified in
computed GO TO statements and alternate returns.

Coding Your Program--Advanced Programming 69

Additional parameter lists are created when you recompile OS
FORTRAN H Extended programs that have many arrays with
adjustable dimensions. (These parameter lists are created
because a library routine (IFYDSPAN) is used to perform the
calculations for adjustable dimensions.) Also, in
lANGlVl(77) parameter lists, character parameters generate
two entries each.

70 VS FORTRAN Application Programming: Guida

/--"\)
",,'

"'c/

. '\

())

(C

conPILING YOUR PROGRAM-ADVANCED PROGRAMMING

-
Once your source program is written, you must have it translated
into machine language--that is, compile it. What you get as
output from the translation depends upon the job control options
and compiler options you specify.

AUTOMATIC CROSS COMPILATION

Cross compilation of VS FORTRAN programs is automatic. That is,
you can compile your source program under any system; you can
then link-edit the resulting object module to execute under any
of the supported systems.

OVERALL JOB CONTROL CONSIDERATIONS

The job control statements you use, when processing VS FORTRAN
programs, are dependent upon the system you're running under.
Your VS FORTRAN jobs can be any of the following:

• Compile-only

• Compile, link-edit

• Compile, link-edit, execute

• link-edit only

• link-edit, execute

• Execute only

Ho matter which of these you're doing, there are certain job
control statements you use for any job. These are explained in
the following sections.

Syntax for Job Control Statements

In the following sections, the job control statements are shown
using a formal syntax notation. The following paragraphs define
how to interpret this syntax.

• UPPERCASE LETTERS, WORDS, AND NUMBERS: must be coded in the
statement exactly as shown.

For example, the word JOB in a format is to be coded as JOB.

• LOWERCASE LETTERS AND WORDS: represent variables, for which
programmer-supplied information is substituted.

For example, the word "option" in a format can be coded as
NODECK.

• SYMBOLS in the following list must be coded exactly as shown:

apostrophe
asterisk * comma
equal sign =
parentheses)
period .
slash /

Compiling Your Program--Advanced Programming 71

• HYPHENS (-): join lowercase letters and words and symbols to
form a single variable'name.

For example, the word "program-name" in a format could be
. coded as MYPROG1.

• SQUARE BRACKETS ([1): group optional related items (such as
alternative choices from which one choice can be made). For
example, the sequence "option [,option]" in a format could
be coded as NODECK or as NODECK,XREF as needed.

• ELLIPSES (...): specify that the preceding syntactical
unit can, optionally, be repeated. (A syntactical unit is a
single syntactical item, or a group of syntactical items
enclosed in braces or brackets.) For example, the sequence
"option [,option] •.. " in a format could be coded as NO DECK
or as NODECK,XREF or as NODECK,XREF,MAP,DUMP as needed.

~ OR SIGNSC;): specify that only one of the units they separate
can be coded.

• BLANKS: are used to improve the readability of the control
statement definitions. They must not appear in an operand
field, unless a definition explicitly states otherwise.

See "Using VM/370-CMS with VS FORTRAN" for information on
compiling, link-editing, and executing programs under
VM/370-CMS.

USING THE COMPILE-TIME OPTIONS

The VS FORTRAN compile-time options let you specify details
about the input source program and request specific forms of
compilation output.

Each option has a default value for your organization, and was
set when the compiler was installed. Ask your system
administrator for the default options in force.

How you specify the compiler options depends upon the system
you're using:

• In VM/370-CMS, specify them as options of the FORTVS command
(see "Using VM/370-CMS with VS FORTRAN").

• In OS/VS, specify them as options in the PARM subparameter of
the EXEC job control statement (see "Requesting
Execution-OS/VS EXEC Statement").

• In DOS/VSE, specify them as options in the PARM parameter of
the EXEC job control statement (see "Requesting
Execution-DOS/VSE EXEC Statement").

For abbreviations of compiler options, see VS FORTRAN
Application Programming: System Services Reference Supplement.

In the following paragraphs, each of the compile-time options is
briefly explained:

DECKINODECK
Specifies whether or not the object module in card image
format is to be produced.

FIPS (SIFl I tlOFIPS
Specifies whether or not standard language flagging is to
be performed, and, if it is, the standard language flagging
level: subset or full.

Items not defined in the current American National Standard
are flagged.

72 VS FORTRAN Application Programming: Guide

0)

\0

o

(0

If you specify lANGLVL(66) and FIPS flagging at either
level, the FIPS option is ignored.

FLAG (II WI E 1 S)
Specifies the level of diapnostic messages to be written: I
(information) or higher, W (warning) or higher, E (error)
or higher, or S (severe) or higher.

FREEIFIXED
Indicates whether the input source program is in free
format or in fixed format.

GOSTI1TINOGOSTf1T
Specifies whether or not internal sequence numbers (for
traceback purposes) are to be generated for a calling
sequence to a subprogram.

LANGLVL (66177)
Specifies the language level in which the input ~ource
program is written! the old FORTRAN language level, or the
current FORTRAN language level.

LIHECOUNT (number)
Specifies the maximum number of lines on each page of the
printed source listing. The number may be in the range 5 to
32765.

LISTIHOLIST
Specifies whether or not the object module listing is to be
written.

HAP I NOI1AP
Specifies whether or not a table of source program names and
statement labels is to be written.

NAME(name)
For old FORTRAN programs only, specifies the name to be
given to a main program.

When NAME is omitted, the main program is named MAINI.

OBJECTINOOBJECT
Specifies whether or not the object module is to be
produced.

OPTIMIZE (0111213) I HOOPTIMIZE
Specifies the optimizing level to be used during
compilation:

OPTIMIZE (0) OR HOOPTIMIZE specifies no optimization.

OPTIMIZE (1) specifies register and branch
optimization.

OPTIMIZE (2) specifies partial code-movement
optimization. OPTIMIZE(2) will not ~elocate any code
when it has been determined that relocating the code
under consideration would cause unplanned or unexpected
interrupts.

OPTIMIZE (3) specifies full code-movement optimization.

SC(name1,na~e2, •••)
Specifies the names of subroutines for which only the
locat ions of character arguments are to be passed. (An
entry for the length of the character string is not made in
the parameter list.> This option can be repeated; the lists
will be combined. On an ~PROCESS statement, multiple names
can be supplied as parameters to the SC opti~n. However,
only one parameter for each SC option can be supplied on
invocation of the compiler (EXECUTE options).

Compiling Your Program--Advanced Programming 73

SOURCE I NOSOURCE
Specifies whether or not the source listing is to be
produced.

TERMINAllNOTERHINAl
Speci fi es whether or not error messages and compi ler
diagnostics are to be written on the output data set and
whether or not a summary of error messages is to be printed.

XREFINOXREF
Specifies whether or not a cross-reference listing is to be
produced.

MODIFYING BATCH COMPILATION OPTIONS--aPROCESS STATEMENT

In a batch compilation for either OS/VS or DOS/VS, the options
specified when the compiler is invoked remain in force for all
eA ,...'",..A ~ _ "' •• , .. .--. ,.,.: 1 :........ • 1 _ ... ___ : -1_ .&.1-. ___ •• ':.LI-.
... n"",.,.' va ,.,. '"'~. ~".~ 7""'''"' • c: """'",,.,, ... , "W1 ,"," ... C:.;:J.;J yuu UVCI , ,\.AU '-'IC::III "'1 ... ,'

the GlPROCESS statement.

To cnange the compiler options, place the ~PROCESS statement
just before the first statement in the source program. The
following rules apply:

• ~PROCESS must appear in columns 1 through 8 of the statement.

• The ~PROCESS statement can be f~llowed by compiler options
in columns 9 through 72 of the statement. The options must be
separated by commas or blanks,

• The ~PROCESS statement cannot be continued to multiple
lines. However, multiple process statements can be supplied
for a program unit. Columns 9 through 72 of a following
PROCESS statement are appended to the previous ~PROCESS
statement.

All compiler options except OBJECT and DECK are permissible.

• All options aot to be given default values must be specified,
including the overriding options in the EXEC statement.
(~PROCESS overrides all options specified in the EXEC
statement.)

JOS CONTROL CONSIDERATIONS--OS/VS

The simplest way to execute your program under OS/VS is to use
one of the cataloged procedures described in "Using and
Modifying Cataloged Procedures-OS/VS."

However, the cataloged procedures may not give you the
programming flexibility you need for your more complex data
processing jobs, and you may need to specify your own job control
statements.

The job control statements you can use for any OS/VS job are
outlined below. Reference documentation for them is given in the
VS FORTRAN Application Programming: System Services Reference
Supplement.

IDENTIFYING A JOB--OS/VS JOB STATEMENT

The JOB statement begins each OS/VS Job you enter into the
system:

//jobname JOB [parameters]

The jobname identifies this job, to the system. The jobname must
conform to the standards defined in OS/VS2 MVS Jel.

The parameters let you request the following:

1'4 V5 FORTRAN Appl i cati on Programmi ng: Guide '

0,)

'0

o

(0

, .. Accounting information for this job

• Your name

• The type of system messages to be written

• Condi t i o'ns for terminating job execution

• Assignment of input and output classes

• Job priority

• Main storage requirements

• Time limit for the job

REQUESTIt~G EXECUTION-QS/VS EXEC STATEt'ENT

You use the EXEC job control statement to request~hat execution
of a program or procedure is to begin.

II[stepname) EXEC [PROC=]procname
[PARM=option[,option] ...
[other-parameters]

The stepname identifies this job step.

The procname is the name of a cataloged procedure you want
executed.

To request a FORTRAN compi lation, you s·pecify PROC=FORTVS.

The PARM parametgr lets you specify any options that differ from
the defaults.

(See "Using the Compile-Time Options" and "Link-Editing Your
Progral1'l-_ -Advanced Programmi n9.")

The other parameters let you request other information:

• A job step name (when its necessary for a later job step to
refer to information from this job step)

• Conditions for bypassing execution of'this job step

• Accounting information for this job step

• Time limit for this step

• Main storage requirements

DEFINING FILES--QS/YS DD STATEMENT

To define files you may need, you specify the DD statement:

II[ddnamelprocstep.ddnamel DD [data-set-name)[other-parameters]

The ddname identifies the data sets defined by this DD statement
to the compiler, linkage editor, loader, or to your program. The
ddnames you can use for VS FORTRAN are shown in Figure 16.

The procstep identifies the procedure step.

The data-set-name is the qualified name you've given the data set
that contains your dat~~iles; for example, the-name of the
library containing the files you use in your INCLUDE statements.

The other parameters let you request additional information:

• The location of this data set in the system configuration

Compiling Your Program--Advanced Programming 75

•

•

The status of th; s data set at thea beg; nn; ng and end of the
job step

label information for this data set's volume

• Optimization of input/output channel usage

• Dev i ce type

• Space allocation (for data sets on direct access devices)

• Characteristics of the data set records

Reference documentation on these job control statements is given
in the VS FORTRAN Application Programming: System Services
Reference Supplement.

REOUI!'STINt; COHPXLATION-O$/VS

In one job step under OS/VS, you can request compilation for a
single source program or for a series of source programs.

COMPILING A SINGLE SOURCE PROGRAM-OS/VS

For compiling a single source program under OS/VS, the sequence
of job control statements is:

//JOB Statement
//EXEC Statement (to execute the VS FORTRAN compiler)
//OD Statements for Compilation (as required)

(Source program to be compiled)
/*Data Delimiter Statement (only if source program is on cards)
//End-of-Job Statement

These job control statements are decribed in the VS FORTRAN
Application Programming: Syst~m Services Reference Supplement.

BATCH COMPILATION OF MORE THAN ONE SOURCE PROGRAM--OS/VS

In OS/VS, you can compile more than one source program during the
execution of one job. The sequence of job control statements you
use is:

//JOB Statement
//EXEC Statement (to execute the VS FORTRAN compiler)
//DD Statements (as required)
~PROCESS Statement (if needed to modify compiler options)

(First source program to be compiled)
~PROCESS Statement (if needed to modify compiler options)

(Second source program to be compiled)
~PROCESS Statement (if needed to modify compiler options)

(Third source program to be compiled)
/*Data Delimiter Statement (only if source program is on cards)
//End-of-Job Statement

These job control statements are decribed in the VS FORTRAN
Application Programming: System Services Reference Supplement.

The ~PROCESS statement is described in "Modifying Batch
Camp i lat i on Opt i ons-41PROCESS Statement" on page 74.

COMPILATION DATA SETS-OS/VS

For compilation under OS/VS, there are two required data sets and
several optional ones.

76 VS FORTRAN Application Programming: Guide

oj

(,
'C: ~~/

(C"" " I

('0"', . ~j

REQUIRED OS/VS COMPILE-TIME DATA SETS

You must ensure that the following ddnames are available during
compilation. They may be available through the cataloged
procedure you're using for compilation (check with your system
adMinistrato~). If they aren't, you must specify them through a
DO statement:

SYSIN--to define the source input data set

SYSPRINT--to define the printed output data set

OPTIONAL OS/VS COMPILE-TIME DATA SETS

You specify the following data sets, through a DD statement, only
if you're requesting specific compilation features:

SYSLIH--if you're requesting that an object module be
produced (through the OBJECT compiler option); it defines
the object module data set.

SYSPUHCH-if you're requesting an object module punched on
cards (through the DECK compiler option); it defines the
card image data set on which the object module is punched.

SYSTERM--when the TERMINAL compile-time option is in effect,
you specify SYSTERM as the data set that will contain printed
compiler output (that is, error messages, source statements
in error, and compiler statistics).

SYSLIB-i f your source program uses the INCLUDE statement,
this ddname defines the library input data set. For INCLUDE
statements, the data set records must be unblocked, fixed
length, SO-character records with DSORG=PO.

USING AND MODIFYING CATALOGED PROCEDURES--OS/VS

When you're operat i ng under OS/VS, there are a number of
cataloged procedures you can use to compile, link-edit (or
load), and execute your VS FORTRAN programs:

1. Compile only--FORTVC, shown in Figure 16

2: Compile and Link-edit--FORTVCL, shown in Figure 17

3. Compile, Link-edit, and Execute-FORTVCLG, shown in
Figure 1S

4. Link-edit and Execute--FORTVLG, shown in Figure 19

5. Execute only--FORTVG, sholoJn in Fi gure 20

6. Compile and Load--FORTVCG, shown in Figure 21

7. Load only--FORTVL, shown in Figure 22

As the figures show, many of the JCL parameters in these
procedures are coded as symbolic parameters (the parameter name
is preceded by an ampersand). The IBM-supplied default value for
each symbolic parameter is defined in the PROe statement that
begins each procedure.

This means that you can execute the procedures without making any
changes to them, or you can modify them for any particular run.
(The use of symbolic parameters is explained in the job control
language publications for the system you're operating under.)

Compiling Your Program-Advanced Programming 77

IIFORTVC
II
II

PROC FVPGM=FORTVS,FVREGN=SOOK,FVPDECK=HODECK,
FVPOLST=NOLIST,FVPOPT=O,FVTERM='SYSOUT=A',
FVLHSPC='3200,(25,6)'

11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
II FORT
II

EXEC

//SYSPRIHT
IISYSTERM
IISYSPUNCH
IISYSLIN
II

PARAMETER

FVPGM
FVREGN
FVPDECK
FVPOLST
FVPOPT
FVTERM
FVLNSPC

DEFAULT-VALUE

FORTVS
256K
HODECK
HOLIST
o
SYSOUT=A
3200,(25,6)

USAGE

COMPILER NAME
FORT-STEP REGION
COMPILER DECK OPTION
COMPILER LIST OPTION
COMPILER OPTIMIZATION
FORT.SYSTERM OPERAHD
FORT.SYSLIN SPACE

PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT),
PARM='&FVPDECK,&FVPOLST,OPT(&FVPOPT)'
nn c:.vc:.nIlT~A n"'D~Dlvc:.T7r:~~r..?Q uu ~1~vv.-n'UVU-U~~~A~~-~~~'

DO &FVTERM
DO SYSOUT=B,DCB=BLKSIZE=3440
DD DSN=&&LOADSET,DISP=(MOO,PASS),UNIT=SYSDA,
SPACE=(&FVLHSPC),OCB=BLKSIZE=3200

Figure 16. Cataloged Procedure FORTVC, OS/VS

IIFORTVCL PROC FVPGM=FORTVS,FVREGN=SOOK,FVPDECK=NODECK,
II FVPOLST=NOLIST,FVPOPT=O,FVTERM='SYSOUT=A',
II FVPNAME=MAIN,PGMLIB='&&GOSET'
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
II FORT EXEC
II
IISYSPRINT
IISYSTERM
IISYSPUNCH
IISYSLIN
II
IILKED EXEC
II
IISYSPRINT
IISYSLIB
IISYSUT1
IISYSLMOD
II
IISYSLIN
II

PARAMETER

FVPGM
FVREGN
FVPDECK
FVPOLST
FVPNAME
FVPOPT
FVTERM
PGMLIB

DEFAULT-VALUE

FORTVS
256K
HODECK
HOLIST
MAIN
o
SYSOUT=A
&&GOSET

USAGE

COMPILER NAME
FORT-STEP REGION
COMPILER DECK OPTION
COMPILER LIST OPTION
COMPILER NAME OPTION
COMPILER OPTIMIZATION
FORT.SYSTERM OPERAND
LKED.SYSLMOD OSNAME

PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT),
PARM='&FVPDECK,&FVPOLST,OPT(&FVPOPT),NAME(&FVPNAME)'
DO SYSOUT=A,DCB=BLKSIZE=3429
DO &FVTERM
DD SYSOUT=B,DCB=BLKSIZE=3440
DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(3200,(25,6»,DCB=BLKSIZE=3200
PGM=IEWL,REGION=200K,COND=(4,LT),
PARM='LET,LIST,MAP,XREF'
DD SYSOUT=A
DD DSN=SYS1.VFORTLIB,DISP=SHR
DO UNIT=SYSOA,SPACE=(1024,(200,20»
DD DSN=&PGMLIB.(&FVPNAME),DISP=(,PASS),UNIT=SYSDA,
SPACE=(TRK,(10,10,1),RLSE)
DD DSN=&&lOADSET,DISP=(OLD,DELETE)
DD DDNA~lE=SYSIN

Figure 17. Cataloged Procedure FORTVCL, OS/VS

78 .,~ FORTRAN Application Programming: Guide

(? ,·,0

10·,,, , ,

IIFORTVCLG
II
II
II
11*
11*
11*
11*
11*
11*
11*
1/*
11*
11*
11*
11*
11*
II*-

PROC FVPGM=FORTVS,FVREGN=SOOK,FVPDECK=NODECK,
FVPOLST=HOLIST,FVPOPT=O,FVTERM='SYSOUT=A',GOREGH=IOOK,
GOF5DD='DDNAME=SYSIH',GOF6DO='SYSOUT=A',
GOF70D='SYSOUT=B'

PARAMETER

FVPGM
FVREGN
FVPDECK
FVPOLST
FVPOPT
FVTERM
GOREGN
GOF5DD
GOF6DD
GOF7DD

DEFAULT-VALUE

FORTVS
SOOK
HODECK
HOLIST
o
SYSQUT=A
lOOK
DDNAME=SYSIN
SYSOUT=A
SYSOUT=B

US'AGE

COMPILER NAME
FORT-STEP REGION
COMPILER DECK OPTION
COMPILER LIST OPTION
COMPILER OPTIMIZATION
FORT.SYSTERM OPERAND
GO-STEP REGION
GO.FT05FOOl OPERAND
GO.FT06FOOl OPERAND
GO.FT07FOOl OPERAND

II FORT EXEC PGM=&FVPGM,REGION=&FVREGH,COND=(4,LT),
PARM='&FVPDECK,&FVPOLST,OPT(&FVPOPT)'
DO SYSOUT=A,DCB=BLKSIZE=3429

II
IISYSPRINT
IISYSTERM
IISYSPUNCH
IISYSLIH
II
IILKED EXEC
II
IISYSPRINT
IISYSLIB
IISYSUTI
IISYSLMOD
II
IISYSLIH
II

DD &FVTERM
DD SYSOUT=B,DCB=BLKSIZE=3440
DO DSN=&&LOADSET,DISP=CMOD,PASS),UNIT=SYSDA,
SPACE=(3200,(25,6»,DCB=BLKSIZE=3200
PGM=IEWL,REGIOH=200K,COHD=C4,LT),
PARM='LET,LIST,MAP,XREF'
DO SYSOUT=A
DD DSH=SYSI.VFORTLIB,DISP=SHR
DD UNIT=SYSDA,SPACE=CI024,(200,20»
DD DSN=&&GOSETCMAIN),DISP=(,PASS),UNIT=SYSDA,
SPACE=CTRK,(lO,10,1),RLSE)
DD DSN=&&LOADSET,DISP=(OLD,DELETE)

IIGO EXEC
DD DDNAME=SYSIN
PGM=*-.LKED.SYSLMOD,REGION=&GOREGH,COND=(4,LT)
DD &GOF5DD IIFT05FOOI

IIFT06FOOI
IIFT07FOOl

DD &GOF6DD
DD &GOF7DD

Figure 18. Cataloged Procedure FORTVClG, OS/VS

Compiling Your Program--Advanced Programming 79

IIFORTVlG
II

PROC LKLNDD='DDNAME=SYSIN',GOPGM=MAIH,GOREGN=lOOK,
GOF5DD='DONAME=SYSIN',

II
II
II'*.
II'*.
II'*.
II'*.
II'*.
II'*.
II*.
II*.
II*.
II*.
II'*.
I/*.
//lKED EXEC
II
IISYSPRINT
/ISYSlIB
I/SYSUTI
I/SYSL~10D
1/
//SYSlIH
I/GO EXEC
II
I/FT05FOOl
//FT06FOOl
IIFT07FOOI

GOF6DD='SYSOUT=A',
GOF7DO='SYSOUT=B'

PARAMETER
LKLNDD
GOPGM
GOREGH
GOF5DD
GOF6DD
GOF7DD

DEFAULT-VALUE
ODNAME=SYSIN
MAIN
lOOK
DDNAME=SYSIN
SYSOUT=A
SYSOUT=B

PGM=!EWl;REG!ON=200K.
PARM='lET,LIST,MAP,XREF'
DO SYS.OUT=A

USAGE
LKED.SYSlIH OPERAND
OBJECT PROGRAM NAME
GO-STEP REGION
GO.FT05FOOl OPERAND
GO.FT06FOOl OPERAND
GO.FT07FOOI OPERAND

DO OSN=SYS1.VFORTlIB,DISP=SHR
DO UNIT=SYSDA,SPACE=(CYl,(l,I»
DO OSH=&&GOSET(IGOPGM),OISP=(,PASS),UNIT=SYSDA,
SPACE=CTRK,(lO,IO,l),RlSE)
DO &lKlNDD
PGM=*.lKED.SYSLMOD,REGION=&GOREGH,
COND=(4,LT,lKED)
DO IGOF5DD
DO &GOF6DO
DO &GOF7DD

Figure 19. Cataloged Procedure FORTVlG, OS/VS

/IFORTVG PROC
II
//
//
/I*.
II*.
/I*.
II'*.
/I'*.
//'*.
//*.
/I'*.
/I*.
I/'*.
I/*.
/IGO EXEC
//FT05FOOI
IIFT06FOOI
//FT07FOOl

GOPGM=MAIN,GOREGN=IOOK,
GOF5DD='DDNAME=SYSIN',
GOF6DO='SYSOUT=A',
GOF7DO='SYSOUT=B'

PARA~lETER

GOPGM
GOREGN
GOF500
GOF600
GOF7DD

DEFAULT-VALUE

MAIN
lOOK
DDNAME=SYSIN
SYSOUT=A
SYSOUT=B

PGM=&GOPGM,REGION=&GOREGN
DO &GOF50D
DO &GOF6DO
DO IGOF700

Figure 20. Cataloged Procedure FORTVG, OS/VS

USAGE

PROGRAM NAME
GO-STEP REGION
GO.FT05FOOl 00 OPERAND
GO.FT06FOOl DO OPERAND
GO.FT07FOOI 00 OPERAND

80 VS FORTRAN Application Programming: Guida

0'

o

'0

\0

IIFORTVCG
II
II
II
II
II
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*

PROC FVPGM=FORTVS,FVREGN=800K,FVPDECK=NODECK,
FVFOLST=NOLIST,FVPOPT=O,FVTERM='SYSOUT=A',
FVLNSPC='3200,C25,6)',
GOFSDD='DDNAME=SYSIN',
GOF6DD='SYSOUT=A',
GOF7DD='SYSOUT=B',GOREGN=100K

PARAMETER

FVPGM
FVREGN
FVPDECK
FVPOLST
FVPOPT
FVTERM
FVLNSPC
GOF5DD
GOF6DD
GOF7DD
GOREGN

DEFAULT-VALUE

FORTVS
256K
NODECK
NOlIST
o
SYSOUT=A
3200,(25,6)
DDNAME=SYSIN
SYSOUT=A
SYSOUT=B
lOOK

USAGE

COMPILER NAME
FORT-STEP REGION
COMPILER ,DECK OPTION
COMPILER LIST OPTION
COMPILER OPTIMIZATIO"
FORT.SYSTERM OPERAND
FORT.SYSLIH SPACE
GO.FT05FOOl OPERAND
GO.FT06F001 OPERAND
GO.FT07F001 OPERAND
GO-STEP REGION

II FORT EXEC PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT),
PARM='&FVPDECK,fFVPOLST,OPTC&FVPOPT)'
DO SYSOUT=A,DCB=BLKSIZE=3429

II
IISYSPRINT
IISYSTERM
IISYSFUNCH
IISYSLIN
II

DO &FVTERM
DD SYSOUT=B,DCB=BLKSIZE=3440

IIGO EXEC

DD DSH=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(&FVLNSPC),DCB=BLKSIZE=320D
PGM=LOADER,REGION=&GOREGH,
PARM='LET,NORES,EP=MAIN' II

IISYSLIN
IISYSLOUT
IISYSLIB
IIFTOSFOOI
IIFT06FOOl
/IFT07F001

DO DSN=&&LOADSET,DISP=(OLD,DELETE)
DO SYSOUT=A
DO DSN=SYSl.VFORTLIB,DISP=SHR
DO &GOF5DD
DO &GOF6DO
DO &GOF7DD

Figure 21. Cataloged Procedure FORTVCG, OS/VS

IIFORTVL
II
II
11*
11*
II*.
11*
II*'
II*'
/I*.
11*
11*
II*'

PROC GOF5DD='DDNAME=SYSIN',
GOF6DD='SYSOUT=A',
GOF7DD='SYSOUT=B',GOREGH=100K

PARAMETER

GOF5DO
GOF6DD
GOF7DD
GOREGN

DEFAULT-VALUE

DDHAME=SYSIN
SYSOUT=A
SYSOUT=B
lOOK

USAGE

GO.FT05FOOl OPERAND
GO.FT06FOOl OPERAND
GO.FT07FOOl OPERAND
GO-STEP REGION

IIGO EXEC PGM=LOADER,REGION=&GOREGH,
PARM='LET,NORES,EP=MAIN'
DD SYSOUT=A

II
IISYSLOUT
IISYSLIB
IIFTOSFOOI
IIFT06FOOl
IIFT07FOOl

DO DSN=SYSl.VFORTLIB,DISP=SHR
DO &GOF5DD
DD &GOF6DD
DD &GOF7DD

Figure 22. Cataloged Procedure FORTVL, OS/VS

The following s~ctions describe how you can temporarily modify
the OS/VS cataloged procedures.

Compiling Your Program--Advanced Programming 81

Modifying PROC statements-os/VS-

You can modify PROe statement parameters by specifying changes
in the EXEC statement that calls the procedure. When you change a
PROe statement parameter, you're assigning a temporary value to
a symbolic parameter; when the ~ataloged procedure is executed,
this value is transferred to the appropriate parameter in the
EXEC or DD statement. .

For example, to change the region size of the compiler from 256K
to 200K bytes and the card punch output in the load module from
output class B to output class e, you can use the followi ng
statement:

II EXEC FORTVelG,FVREGN=200K,
II GOF7DD='SYSOUT=C'

Note that you don't code the ampersand preceding a symbolic
parameter; and that you u~g apostrophes to enclose a value
containing a special character, as in SYSOUT=C.

Before you exec~te the call, the appropriate statements in
FORTVClG appear as folloL"'s:

IIFORT EXEC PGM=&FVPGM,REGION=&FVREGN, •..

IIFT07FOOl DD ,&GOF7DD

When the cataloged procedure is called, the statements appear as
though they were coded:

IIFORT EXEC PGM=FORTVS,REGIOH=200K, ...

IIFT07FOOl DO SYSOUT=e

Note that a symbolic parameter not changed (PGM=&FVPGM) retains
its default value.

Another method you can use to change a parameter value is to
assign the new value directly to the parameter itself, not the
symbolic parameter associated with it. For example, you can
change the region size by specifying REGION=200K in place of
FVREGN=200K. (In this example, you'd be changing the region size
for all job steps; to change the region size for the compile job
step only, you must code the appropriate job step name, FORT, in
the parameter; for example, REGION.FORT=200K.)

Hod;fying EXEC Statemants--OS/VS

To modify EXEC statement parameters, you must change the EXEC
statement that calls the procedure. .

The following rules apply to EXEC statement modifications:

• Parameters are overridde.n in their entirety. If you want to
retain some options while changing others, you must specify
those options to be retained. (However~ if you don't
override them, default options remain in effect.)

• To specify parameters for individual job steps, use the
form:

keyword.stepname=value

82 VS FORTRAN Application Programming: 9uida

)
0'

(, ,0

(·0

keyword
indicates the parameter name

stepname
indicates the procedure name, for example,

REGION.FORT=value

Paramet~rs not specifying stepname a~e assumed to apply to all
steps in the procedure; for example, REGION=value applies to the
Qntire cataloged procedure.

• To make changes to more than one step, you must specify all
changes for an earlier step before those for later steps.

• You can combine changes to symbolic parameters and EXEC
statement parameters on the same card.

You're allowed to make the following modifications:

1. Override existing parameters! For example, to modify the
LKED step by raising the condition code from 4 to 8, use the
statement:

IISOMENAME EXEC FORTVClG,
II COND.lKED=(8,lT)

2. Add new Darameters: For example, to modify FORT by
specifying the TIME parameter, use the statement:

IIANYNAME EXEC FORTVClG,TIME.FORT=5

3. Change more than one parameter: For example, to modify FORT
by changing the region from 256K to 200K bytes and the PARM
option NOlIST to LIST, use the statement:

IISOME EXEC FORTVCLG,
II REGION.FORT=200K,
II PARM.FORT=LIST

4. Change more than one step: For example, to modify FORT by
specifying TIME and to modify LKED by raising the condition
code from 4 to 8, use the statement:

IIANY EXEC FORTVCLG,TIME.FORT=S,
II COND.LKED=C8,LT)

Hote that you can add a parameter while revising an existing
one.

5. Combine changes to symbolic parameters and EXEC statement
esrameters: For example, to modify the symbolic parameter
FVREGN, and to add the TIME parameter to the FORT EXEC
statement, use the statement:

IIANYEXEC FORTVCLG,FXREGN=200K,
II TIME.FORT=5

Modifying DD Statements--OS/VS

You modify the DD statement by submitting new DD statements after
the EXEC statement that calls the procedure. As with
modifications to EXEC statements, you can override or add
parameters to DD statements in one or many steps. In addition,·
you can add entirely new DD statements to any step (whenever you
supply a SYSIN DD statement, you're adding a new DO statement.)

The following rules apply to DO statement modifications:

• Parameters are overridden in their entirety except for the
DCB parameter, in which individual subparameters can be
overridden.

Compiling Your Program--Advanced Programming 83

•

•

Parameters are nullified by specifying a co~ma after the
equal sign in the parameter; for example, UNIT=,.

Parameters are overridden when mutually exclusive parameters
are specified in their place; for example, SPLIT overrides
SPACE.

• DO statements must indicate the related procedure step,
using the form //procstep.ddname; for example, I/FORT.SYSIN.

• To make changes in more than one step, you must specify all
changes for an earlier step before those for later steps.

• To modify more than one DD statement in a job step, you must
specify the applicable DD statements in the same sequence as
they appear in the cataloged procedure.

You can make the following modifications:

1. Qverride existing parameters. For example, to modify
SYSLMOD so that the load module is stored in a private
library rather than in the system library, you can specify
the statement:

/ILKED.SYSLMOO DD DSHAME=PRIV(PROG),
II OISP=(MOD,PASS)

In this example, the library PRIV is assumed to be an old
library and is cataloged (that is, VOLUME and UNIT
parameters need not be specified). Hote that in subsequent
uses of the library you must submit a JOBLIB DD statement
defining the private library, to make the library available
to the system.

2. Add new parameters. For example, to store the load module in
a new, uncataloged library, you must specify the VOLUME,
UNIT, and SPACE parameters. For example:

/ILKED.SYSLMOD DD DSNAME=MYLIBCFIRST),
II DISP=(NEW,PASS),
/1 VOLUME=SER=11234,
II UNIT=SYSDA,
II SPACE=(TRK,(50,10,2»

3. Add new DD statements. For example, to add new data sets
having data set reference numbers 10 and 15 for processing in
the GO step, you can specify the statements:

IIGO.FTIOFOOI
//
II
II
IIGO.FTI5FOOl
II
II
II
II

DD DSNAME=DSETl,
DISP=(NEW,DELETE),
VOLUME=SER=Tl132,
UNIT=TAPE

DD DSHAME=DSET2,
OISP=(,OELETE),
VOLUME=SER=OA45,
UNIT=3350,
SPACE=(TRK,CIO,lO»

Note that you can explicitly define a data set as new (OISP
parameter for FTI0FOOl), or, alternatively, permit the
system to assume a new data set by default (OISP in
FT15FOOl).

JOB CONTROL CONSIDERATIONS--DOS/VSE

Under DOS/VSE, the simplest way to execute your program is to use
one of the procedures outl i ned in "Request i ng Compi lat ion
Only-DOS/VSE."

However, these procedures may not give you the programming
flexibility you need for your more complex data processing jobs,

84 VS FORTRAN Application Programming: Guide

to

\0

and you may need to specify your own job control statements, or
write your own cataloged procedures.

USING DOS/VSE JOB CONTROL STATEMENTS

The job control statements you can use for any DOS/VSE job are
outlined below. Reference documentation for them is given in the
VS FORTRAN Application Programming: System Services Reference
Supplement.

IDENTIFYIt~G A JOB-DOS/VSE JOB STATEMENT

The JOB statement begins each DOS/VSE job you enter into the
system:

// JOB jobname

The j obname is the name you're gi vi ng to thi s job.

You can also code comments in the JOB statement, including job
accounting information.

SPECIFYING LINKAGE-EDITOR OPTIONS-DOS/VSE OPTION STATEMENT

Under DOS/VSE, you use the OPTIOH statement to request the
linkage editor, and linkage-editor options.

// OPTION option[,option] ...

In the compilation step, you can use the OPTIOH statement to
specify that the object module is to be link-edited:

•
•

Specify OPTIOH LINK for link-editing only.

Specify OPTION CATAl for link-editing and cataloging in the
core image library.

DEFINING FILES--DOS/VSE ASSGN STATEMENT

You use the ASSGH statement to assign a logical input/output unit
to a physical device. (You need do this only if the logical unit
is different from that defined during system generation.)

// ASSGH SYSxxx[,device-addresslsymbolic-unit][,other-entries]

SYSxxx is a valid system'logical unit or programmer logical unit.
The units valid for VS FORTRAN are shown in Figure 23.

(See the VS FORTRAN Application Programming: System Services
Reference Supplement.)

The device-address specifies the channel and unit number for the
specific device.

The symbolic-unit specifies a valid system or programmer logical
unit.
You can also optionally sp~cify other entries:

• That the logical unit ;s to remain unassigned, and that any
program references to it are to cause immediate job
cancellation

• That the logical unit is to remain unassigned and that all
program references to it are to be ignored, without
canceling the job

• That this assigned unit is to be used as an alternate unit
when the capacity of the original device is reached

Compiling Your Program--Advanced Programming 85

(See the VS FORTRAN Application Programming: System Services
Reference Supplement.)

DEFINING FILES ON DIRECT ACCESS DEVICES--DOS/VSE

For files on direct access devices, you must specify a DLBL
statement and an EXTENT statement, in addition to the ASSGH
statement.

DLBL Statement--DOS/VSE

You use the DLBl statement to supply label information for both
file creation and file retrieval.

// DLBL filename [data-~et-icl][,ddtQ][,code]

The filename is the filename that corresponds to the logical
unit. See Figure 23 for a list of valid system filenames.

The data-set-id specifies the name associated with this data set
on the volume. If you omi t thi s fi eld, the fi lename is used.

The date specifies the retention period or expiration date of the
data set.

The code specifies the type of data set label to be used:
sequential, direct or VSAM.

Other fields can also be specified.

For reference documentation about the DlBL statement, see the VS
FORTRAN Application Programming: System Services Reference -
Supplement.

EXTENT Statement--DOS/VSE

You use the EXTENT statement to assign a data area on a direct
access device to a file in your program.

// EXTENT SYSxxx",,[relative-track],[no-of-tracks]

SYSxxx is a valid system logical unit or programmer logical unit.
See Figure 23 for units valid for VS FORTRAN.

For' reference documentation, see the VS FORTRAN Application
Programming: System Services Reference Supplement.

The relative-track specifies the position of the track (relative
to zero) where the extent begins.

The no-af-tracks specifies the number of the tracks to be
allocated to the extent.

You can also specify other optional entries:

• Whether the extent is split cylinder or no split cylinder

• The number of spl it cyl, nder tracks (i f thi s ; s a spl it
cylinder extent)

REQUESTING EXECUTION-DOS/VSE EXEC STATEMEt~T

You use the EXEC job control statement to request that execution
is to beg in.

86 VS FORTRAN Application Programming: Guide

\
~l
\',[,
~p'

(0'· ' ,

II EXEC[[PGM=]program-nameJ,SIZE=AUTOlnumber,
[PARM='option'[,'option'l ..• l

II EXEC[PROC=program-name][,SIZE=AUTOlnumber]

The program-name identifies either:

• When you specify PGM=, a phase in the core-image library.

For example, the VS FORTRAN compiler, the linkage editor, or
a phase (problem program object module).

To request a FORTRAN compilation, you specify PGM=VFORTRAN.

You can omit the program-name if the phase to be executed has
just been processed by the linkage editor.

When you're requesting a VS FORTRAN compilation, you should
specify the SIZE parameter as 800K.

Use the PARM parameter to request compiler options that
differ from those set for your organization. The options can
be any of those described in "Using the Compile-Time
Options."

• When you specify PROC=, a procedure in the procedure
library.

For reference dccumentation about these job control statements,
see the VS FORTRAN Application Programming: System Services
Reference Supplem~nt.

REQUESTING COMPILATION--DOS/VSE

Under DOS/VSE, in one job you can request compilation for a
single source program or for a series of source programs.

COMPILING A SINGLE SOURCE PRO~RAH--DOS/VSE

For a single source program, the sequence of job control
statements you use is:

II JOB Statement
II OPTION Statement (as required)
II ASSGH Statements for Compilation (as required)
II DlBL Statements for Compilation (as required)
II EXTENT Statements for Compilation (as required)
II EXEC Statement (to execute the VS FORTRAN compiler)

(Source program to be compiled)
1* Data Delimiter Statement (only if source program is on cards)
1& End-Of-Job Statement

BATCH COMPILATION OF HORE THAN ONE SOURCE PROGRAM--DOS/VSE

For a series of programs, the sequence of job control statements
you use is:

II JOB Statement
II OPTION Statement (as required)
II ASSGN Statements for Compilation (as required)
II DlBL Statements for Compilation (as required)
II EXTENT Statements for Compilation (as required)
II EXEC Statement (to execute the VS FORTRAN compiler)

(First source program to be compiled)
~PROCESS Statement (if needed to modify compiler options)

(Second source program to be compiled)
~PROCESS Statement (if needed to modify compiler options)

(Third source program to be compiled)
1* Data Delimiter Statement (only if source program is on cards)
1& End-Of-Job Statement

Compiling Your Program--Advanced Programming 87.

These job control statements are described in the VS FORTRAN
Application Programming: System Services Reference Supplement.

The ~PROCESS statement is described iri "Modif~ing Batch
Compi lati on Opti ons-G)PROCESS Statement" on page 74.

COMPILE-TIME FILES--DOS/VSE

When you're compiling under DOS/VSE, most of the the system files
the compiler uses--SYSIPT, SYSLST, SYSPCH, SYSLNK, and
SYSLOG--are predefined and always available; therefore, you
never have to specify them.

However, if your source program uses the INCLUDE statement, you
must specify SYSSLB (for the system or a private source statement
library) in an ASSGN statement. The file records representing
the source statements to be included must be unblocked,
fixed-length, SO-character records. The file to be included must
be catalogad in thQ G sublibrary.

WRITING AND MODIFYING CATALOGED PROCEDURES--DOS/VSE

To catalog a procedure in the procedure library, you submit a
CATALP statement specifying the procedure name; Rules for naming
the procedures are given in DOS/VSE System Control Statements.

The control statements to be cataloged follow the CATALP
statement; they can be job control or linkage editor control
statements or both. The end of the control statements to be
cataloged must be indicated by an end-of-procedure delimiter,
usually a /+ delimiter.

Each control statement cataloged in the procedure library should
have a unique identity. This identity is required if you want to
be able to modify the job stream at execution time. Therefore,
when cataloging, identify each control statement in columns 73
through 79 (blanks may be embedded).

RETRIEVING CATALOGED PROCEDURES--DOS/VSE

To retrieve a cataloged procedure from the procedure library,
you use the PROC parameter in the EXEC job control statement,
specifying the name of the cataloged procedure.

When the job control program starts reading the job control
statements in the input stream on SYSRDR and finds the EXEC
statement, it knows by the operand PROC that a cataloged
procedure is to be inserted. It takes the name of the procedure
to be used and retrieves the procedure with that name fro~ the
procedure library. At this point, SYSRDR is temporarily assigned
to the procedure library. Job control reads and processes the job
control statements as usual. The statement,

/IEXEC MYPROGM

causes the program MYPROGM to be loaded and given control. When
execution of MYPROGM is complete, the job control program reads
the next statement or statements from the procedure library and
then finds the end-of-procedureindicator (/+). The
end-of-procedure indicator returns th~ SYSRDR assignment to its
permanent device, where the job control program finds the /&
statement and performs end-of-job processing as usual.

TEt1PORARIL Y t1ODIFY.lNG CATALOGED PROCEDURES-DOS/VSE

You can request temporary modification of statements in a
cataloged procedure by supplying the corresponding modifier
statements in the input stream .

. S8 VS FORTRAN Appl i cat ion Programmi ng: Gu ide

COMPILER OUTPUT

Normally not all statements need to be modified; therefore, YOU
must establish an exact correspondence between the statement to
be modified and the modifier statement by giving them the same
symbolic name. This symbolic name may have frnm one to seven
characters, and must be specified in columns 73 through 79 of
both statements.

A single character in column 80 of the modifier statement
specifies which function is to be performed.

A

B

D

indicates that the statement is to be inserted after
the statement in the cataloged procedure that has the
same name.

indicates that the statement is to be inserted before
the statement in the cataloged procedure that has the
same name.

indicates that the statement in the cataloged
procedure that has the same name is to be deleted.

Any other character or a blank in column 80 of the modifier
statement indicates that the statement is to replace (override)
the statement in the cataloged procedure that has the same name.

In addition to naming the statements and indicating the function
to be performed, you must inform the job control program that it
has to carry out a procedure modification. This is done as
follows:

1. By specifying an additional parameter (OV for overriding) in
the EXEC statement that calls the procedure, and

2. By using the statement // OVEHD to indicate the end of the
modifier statements.

Placement of the // OVEND statement is as follows:

• Directly behind the last modifier statement or,

• If the last modifier statement overwrites a // EXEC
statement and is followed by data input, between the /* and
/1 delimiters.

The output the compiler gives you depends upon whether you've
accepted the default compiler options in force for your
organization, or whether you've modified the defaults using
explicit compiler options.

COMPILER OUTPUT WITH DEFAULT OPTIONS

If you accept the compiler default options, you'll usually get
the following output, printed in the following order (depending
on the default options in force for your organization):

• The date of the compilation--plu.s information about the
compiler and this compilation

• A listing of your source program

• Diagnostic messages telling you of errors in the source
program

• Informative messages telling you the status of the
compilation

(You'll also get a machine language object module.)

Note that these defaults may be modified for your organization.

Compiling Your Program--Advanced Programming 89

OUTPUT WITH EXPLICIT COMPILER OPTIONS

In addi ti on to the output l-i sted above, you can request each
compilation to produce the following additional output:

• A listing of the object module (LIST option), in
pseudo-assembler language (that is, the assembler
instructions that would have been generated for the object
module, if the compiler translated into assembler before
producing the machine code)

• A copy of the object module (DECK option), in card image
format

• A table of names and statement labels (MAP option) defined in
the source program

• A cross-reference listing (XREF option) of variables and
labels used in the source program

• Messages flagging statements that do not conform to the
language standard level you've chosen

Depending on the options you've chosen, the output you'll get is
shown in Figure 23 (Options that produce printed output are
shown in the order in which they are printed in the output
listing.)

For information on how to use the SOURCE~ FLAG, MAP, XREF, and
FIPS options, see "Fixing Compile-Time Errors-Advanced
P rog.ramm; ng."

For information on how to use the DECK and OBJECT options, see
"L; nk-Edi t i ng Your Program-Advanced Programmi ng."

For information on how to use the LIST option, see "Fixing
Execution-Time Errors-Advanced Programming."

CATALOGING YOUR SOURCE PROGRAM

If you wish, you can catalog your source program so that it's
available for future updating or correction.

How you do it depends upon the system you're using.

For VM/370-CMS considerations, see "Using VM/370-CMS with VS
FORTRAN."

For OS/VS2-TSO considerations, see "Using OS/VS2-TSO with VS
FORTRAN."

CAT ALOGIt~G YOUR SOURCE-OS/VS

You can create partitioned data sets for use in your SYSlIB data
set.

You can then catalog your source program, and source statement
sequences you'll use in INCLUDE statements, as members in that
library.

The library in which you catalog the source programs or statement
sequences is SYSLIB.

Then when you compile a program using the INCLUDE statement, you
must specify SYSLIB in a DD statement.

(See the VS FORTRAN Application Programming: System Services
Reference Supplement for additional detail.)

90 VS FORTRAN Application Programming: Guide

o

(.
'0 Campi ler opt fan' Produces the Following output

SOURCE

XREF

LIST

MAP

FLAG

OBJECT

TERMINAL

DECK

Compilation Headings: Compiler Hame and Release level, Source
Program Name, Compilation Date, Listing Page Numb~r

A listing of the source program

Cross reference i nformat fon, showi ng each name and its type and
usage; as well as where each name and statement is defined and used
in the program

A listing of the object module--containing the relative location of
each generated constant or statement, the name of the source item
used in the instruction, plus section headings for: constants and
data addresses, common areas, equivalenced variables, address
constants, external references, parameter lists, the save area, and
generated instructions

A map of the source program, showing: the program name and sizQ, name
usage and type, COMMON block information, and statement label usage
and location

A listing of error messages at the FLAG level you've chosen:

I requests ali st i ng of all messages produced

W requests a listing of warning, error, severe error, and abnormal
termination messages (return code 4 or higher)

E requests a listing of error, severe error, and abnormal
termination messages (return code 8 or higher)

S requests a listing of severe error and abnormal termination
messages (return code 12 or higher)

For an explanation of these message c6des, see "Diagnosti~ Message
List i ng--FLAG Opt ion"

The object module in machine language form, produced f~r linkage
edi tor input

Statistics and messages directed to the SYSTERM data set; also
produces an indexed summary of statistics and messages for each
compilation at the end of all compilations

The object module in machine language form to be produced as an
output data set for punching or for cataloging

Compilation statistics: source program name, number of statements
compiled, generated object module size (in bytes), the number and
severity of error messages produced

Figure 23. Compiler Output Using Explicit Options

CATALOGING YOUR SOURCE--DOS/VSE

You can catalog source programs and source statement sequences
you'll use in INCLUDE statements as books in the source statement
library, using the CATALS function.

Then, when you compile a program using the INCLUDE statement, you
must specify SYSSLB in an ASSGN statement.

(See the VS FORTRAN Application Programming: System Services
Reference Supplement for additional detail.)

Compiling Your Program--Advanced Programming 91

CATALOGING YOUR OBJECT MODULE--POS/VSE

You request an object module data set by specifying the DECK
compiler option.

You can use the object data set as input to the linkage editor or
loader in a later job step, or you can catalog it for later
reference.

The data set is a copy of the object module, in card image
format, which consists of dictionaries, text, and an
end-of-module indicator. (See "Object Module as Link-Edit Data
Set-DECK Opt i on" for addi t i onal deta; 1.)

Once you've created the object module data set, you can catalog
it in a ~ystem or private library for future reference.

How you do it depends upon the system you're using.

For VM/370-CMS con5iderations,
FORTRAN."

sea ""_:_
\,1;:111'':::1 VM/370-CMS w~th VS

For OS/VS2-TSO considerations, see "Using OS/YS2-TSO with VS
FORTRAN."

CATALOGING YOUR OBJECT MODULE--OS/VS

You can create partitioned data sets for use in your SYSLIB data
set. You can then catalog your object module as a member in that
library.

The library in which you catalog your object module is SYSLIB ..

Then, when you link-edit and execute, you must specify SYSlIB in
a DO statement.

(See the VS FORTRAN Application Proqramming: System Services
Reference Supolement for additional detail.)

CATALOGING YOUR OBJECT MODULE--DQS/VSE

You can catalog your object module in the relocatable library,
using the CATAlR function.

Then, when you link-edit and execute, you must specify SYSRlB in
an ASSGN statement. (See the VS FORTRAN Appli~ation Programming:
System Services Reference Supplement for additional detail.)

92 YS FORTRAN Appli~ation Programming: Guida

) 0/

0)

(

\,·0

o

o

USING VM/370-CHS WITH VS FORTRAN

You can use the facilities of VM/370-CMS. taking advantage of
quick terminal turnaround time, to develop VS FORTRAN program~.

You can compile your programs under VM/370-CMS and link-edit
them to run under MVS, OS/VS1, or DOS/VSE; or you can compile,
link-edit, and execute them under VM/370-CMS. However, the
DOS/VSE version of the VS FORTRAN compiler end library is not
supported under CMS/DOS.

THE CP AND CMS COMMANDS

There are CMS and CP commands that help you create and edit your
source programs, link-edit your object modules, and execute your
load modules. The VM/370-CMS commands you'll use most frequently
are shown in Figure 25. Reference documentation for these
commands is given in the VS FORTRAN Application Programming:
System Services Reference Supplement.

USING YOUR TERMINAL WITH C"S

You must log on your terminal, using the procedures your
organization has set up.

You can then use all the CP and CMS commands to develop, test,
and run your VS FORTRAN programs.

When you finish a terminal session, you log off in the usual way.

See the IBM Virtual Machine Facility/370: Terminal User's Guide
for documentation on terminal usage.

CREATING YOUR SOURCE PROGRAM-CMS EDIT COMMAND

To create a source program file, you use the EDIT command. (Use
the EDIT command whenever you want to create a new file and also
whenever you want to edit an existing one.)

The EDIT subcommands (such as FILE, INPUT, GETFILE, etc.) help
you enter and edit the lines of source code.

To create a source program file, you specify the file type of
your source program file as FORTRAN.

For example, to create a source program file named MYPROG, you
specify:

edit myprog fortran

This creates an empty file for you, with the filename MYPROG, and
the filetype FORTRAN. (If MYPROG already exists, the EDIT
command retrieves it for you and makes it available for editing.)

You can now enter your source program into the file, line by
line, according to the rules for fixed or free form source
programs.

Fixed format FORTRAN files contain SO-character records; you 'use
the first 72 characters for FORTRAN statements and continuation
lines.

Using VM/370-CMS with VS FORTRAN 93

CMS Command usage

ACCESS

EDIT

EXEC

FILEDEF

FORTVS

GLOBAL

INCLUDE

LIST FILE

LOAD

PRINT

PUNCH

RENAME

RUN

START

TYPE

Activates a virtual disk for your use.
.'

Puts you in EDIT mode to create and edit source
program and data files, and lets you use the
following EDIT subcommands:

FILE

FMODE

FNAHE

GETFILE

INPUT

QUIT

Places a file on your disk; takes you out
of EDIT mode.

Changes a file's filemode.

Changes a file's filename.

Includes an existing file in the file you're
creating or ed~ting.

Enters INPUT mode and accepts lines as part
of the file you're creating or editing.

Lets you stop editor processing without making
any permanent changes to the file.

Executes a file that consists of one or more
CMS commands.

Defines a file and its input/output devices.

Invokes the VS FORTRAN compiler.

Specifies text libraries to be searched to
resolve external references in a program
being loaded.

Specifies additional TEXT files for use
during program execution.

Displays a list of your files.

Places a TEXT file in storage and
establishes the linkages for execution.

Prints a file on the off-line printer.

Punche~ a card file on the off-line card punch.

Changes the filetype, filename, and/or filemode
of a file.

Causes compilation, link-editing, and execution
of a source program file.

Begins execution of a previously loaded and
link-edited file.

Types all or part~of a file.

Figure 24. VM/370-CMS Commands Often Used with VS FORTRAN

94 .VS FORTRAN Application Programming: Guide

' l O'.:~,

IBM EXTENSION

If you're using free form input, you can enter your source
program into the file, line by line, according to the rules for
free form source programs.

The maximum line length you can enter is 81 characters;
however, your source statements (excluding statement numbers
and statement break characters) can be up to 1320 characters
long.

You must ensure that sequence numbers do not appear in your
free form source <columns 73-80). The use of the filetype
FORTRAN (which is nscessary for both fixed and free form
source) may automatically generate sequence numbers.

END OF IBM EXTENSION

(Reference documentation for creating source programs is given
in the VS FORTRAN Application Pro~ramming: languagQ Reference
manual.)

USING THE FORTRAN INCLUDE STATEMENT-CMS

If your source programs use the INCLUDE statement, you must
specify a FILEDEF command for SYSLIB, to make the library
containing the INCLUDE source code available. For INCLUDE
statements, the data set records must be unblocked,
fixed-length, SO-character records.

1.

2.

Create one or more members wi th a fi letype of COPY.

edit member! copy a
INPUT

file

common/com!/al,a2,a3,a4
common/com2/bl,b2,b3,b4

Create a FORTRAN source program.

edit myprog fortran a
input

file

include (memberl)
z = al * bl

end

3. Create a CMS macro library.

mac gQn tQstOl memberl

COMPILING YOUR PRO&RAM-USING ens

If you have used an INCLUDE statement in your source program, you
need to define SYSLIB for use by the compiler:

filedef syslib disk testOI maclib a(perm

If you want to compile MYPROG with the defaults your organization
uses, you specify:

fortvs myprog

If, however, you want to compile MYPROG using nondefault
compiler options,. specify, for example:

Using VM/370-CMS with VS FORTRAN 95

COMPILER OUTPUT-CMS

fortvs myprog (free flag(e) deck map)

which tells the compiler that your source program is in free
form, and which gives you a compilation with only E level
messages or higher flagged (FLAG(E», a copy of the object deck
(DECK), and a map of names and labels (MAP); a 11 the opt ions you
don't 5pecify are the default options.

Reference documentation for the FORTVS command is given in the ~
FORTRAN Application Programmjng: System Servjces Reference
Supplement.

Depending on your organization's compile-time defaults and/or
the options you select in your FORTVS command, you may get a
LISTING file and/or a TEXT file as output, placed in your disk
storage for easy reference.

The LISTING Fi le--Ct'S

The TEXT File-CMS

The LISTING file contains the compiler output listing; see
"Fixing Compile-Time Errors-Advanced Programming" in Part 2 for
an explanation of what the compiler output listing contains and
how to use it. It has the filename of your source program, and
the filetype LISTING. For example, the file for MYPROG is MYPROG
LISTING.

You can display the lISTING file, using the TYPE command:

type myprog listing

and the 1 i st i ng is di splayed at your termi nal.

You can get a printed copy of the LISTING file, using the PRINT
command:

print myprog listing

and the listing is printed on the system printer.

The TEXT file contains the object code the compiler created from
your source program. The TEXT file contents are explained in
"L i nk-Edi t i ng Your Program-Advanced Programmi ng" in Part 2.

It is placed in your storage with the filename of your source
program and a filetype of TEXT. For example, the file for MYPROG
is MYPROG TEXT.

This file remains in your disk storage until you erase it.

You can link-edit the TEXT file under any of the systems that VS
FORTRAN supports to get a load module (or phase).

MAKING LIBRARIES AVAILABLE--CMS GLOBAL COMMAND

Before you link-edit and execute your VS FORTRAN programs, you
must make the VS FORTRAN libraries accessible to your disk
storage. (Ask your system administrator for the name(s) of the
1 i brary fi les you can use.)

For example, if the names of the Ii brari as avai labia are FORTlIB
and CMSlIB, you specify:

global txtlib fortlib cmslib

96 VS FORTRAN Application Programming: Guide

~)
~~/

/'~--'\ }
(I'"

\"-_)l/

,(-~. \,
'JI

o

',,0

TXTLIB tells CMS that both FORTLIB and CMSLIB are text libraries
available to your programs.

It's a good idea to include a GLOBAL command in your profile
EXEC, so that the VS FORTRAN execution-time library modules are
always automaticallY available to you.

LOADING AND EXECUTING YOUR PROGRAM UNDER CMS

To load and execute your program under CMS, use the LOAD and
INCLUDE commands to create a load module from one or more object
modules (plus any needed VS FORTRAN library modules).

The input object modules must be TEXT files.

US ING THE LOAD AND It~CLUDE COMHAUDS-CMS

You use the LOAD command to create and execute a load module.
Input you use consists of your object module, VS FORTRAN library
routines, and any other secondary input (such as TEXT files of
called subprograms).

For example, if you want to load and execute the TEXT files for
MYPROG, and its subprogram SUBPROG, you specify:

load myprog (start)

Because you've made the TXTLIB available (through the GLOBAL
command), CMS link-edits the TEXT files for MYPROG and SUBPROG
into a load module and then execution begins (because you
specified START in the load command).

If you don't specify the START option in the LOAD command,
execution doesn't begin until you issue a START command:

start myprog

If you don't make the TEXT library available, you must define
secondary input, using the INCLUDE command:

load myprog
include subprog
start myprog

The INCLUDE command tells CMS that SUBPROG is needed as secondary
input during execution of MYPROG.

creating a Nonrelocatable Load Module-GEtmOn Command

You can also create a nonrelocatable load module and save it for
future reference, using the LOAD, INCLUDE, and GENMOD commands:

load myprog
include subprog
genmod myproga

This creates a a nonrelocatable load module named MYPROGA on your
CMS disk.

You can now invoke MYPROGA, by entering:

myproga

at the terminal, and your program is executed.

Using VM/370-CMS with VS FORTRAN 97

DEFINING SEQUENTIAL AND DIRECT DATA FILES--CMS

When you execute your program, you must make any files it uses
available for processing, through a FIlEOEF command. The FIlEOEF
command uses a file identifier for each file.

Before you can process a direct file, you must preformat it.
"OS/VS Consi derati ons-O; rect Fi les" tells how to do thi s.

specifying a File Identifter--CMS

You must identify every file yuu use in the following form:

filename filetype [filemode]

where the filename is the name that identifies the file to the
system; the filetype defines the kind of file this is. The
filetypes you'll most often use are:

DATA

FORTRAN

for your data files

for all your FORTRAN source programs

The filemode is optional, and can be any valid eMS filemode; you
need to specify it only when you want to store the file on disk
storage other than your own.

USING THE FILEDEF COt1ttAND-CMS

The form of the FIlEOEF command you use varies, depending on the
type of file you're processing: sequential or direct disk, tape,
or unit record.

Defining Sequential and Direct Disk Files-eMS

To define sequential and direct disk files, you specify the
FIlEOEF command as follows:

filedef FTxxFyyy DISK filename filetype [filemodel [options]

You specify the FTxxFyyy field to agree with the FORTRAN
reference numbers in the source program.

For the ~ field, see Figure 29 in Part 2 for reference
numbers you should specify.

For the ~ field, specify 001 if you're not using multiple
files. if you're using multiple files, you can specify 001
through 999.

The options are any FILEOEF options valid for disk files.

See the VS FORTRAN Application Programming: System Services
Reference Supplement for additional information.

Defining Tape Fi las-Ct1S

To define tape files, you specify the FIlEOEF command as follows:

filedef FTxxFyyy TAPn [options]

You specify the FTxxFyyy field to agree with the FORTRAN
reference numbers in the source program:

For the ~ field, see Figure 29 in Part 2 for reference
numbers you should specify.

98 VS FORTRAN Application Programming: Guide

~))
\'
~

0)

to

For the ~ field, specify 001 if you're not using multiple
files. if you're using multiple files, you can specify 001
through 999.

For the n field, you specify ~ny valid tape unit (1 through 4).

The opt i ons ~re any FI l EDEF opt ions vall d for tape fi les.

See the VS FORTRAN Application Programming: System Services
Reference Supplement for additional information.

Defining Terminal Files--CMS

To define terminal files, you specify the FIlEDEF command as
follows:

filedef FTxxFOOl TERMINAL [options]

You specify the FTxxFOOl field to agree with the FORTRAN
reference numbers in the source program.

For the ~ field, see Figure 29 in Part 2 for reference
numbers you should spec;fy.

You always specify -001 for the:~ field.

The options are any FIlEDEF options valid for terminal files.

For input terminal files, your program should always notify you
when to enter data; if it doesn't, you may inadvertently cause
long system waits.

See the VS FORTRAN Application Programming! System Services
Reference Supplement for additional information.

Defining unit Record Files--CI1S

To define unit record files, you specify the FllEDEF command as
follolols:

For Card Reader Files:

filedef FTxxFOOl READER [options]

For Card Punch Files:

filedef FTxxFOOl PUNCH [options]

For Printer Files:

filedef FTxxFOOl PRINTER [options]

You specify the FTxxFOOl field to agree with the FORTRAN
reference numbers in the source program:

For the ~ field, see Figure 29 in Part 2 for reference
numbers you should specify.

You always specify 001 for the ~ field.

The opt ions are any FI l EDEF opt ions val i d for the type of un it
record file you're processing.

See the VS FORTRAN Application Programming! System Services
Reference Supplement for additional information.

DEFINING VSAM SEQUENTIAL AND DIRECT FILES--CNS

VS FORTRAN allows you to process VSAM sequential files (using
ESDS data sets) and VSAM direct files (using RRDS data sets).

Using VM/370-CMS with VS FORTRAN 99

To define and use such VSAM files under CMS, you must first
define the file to CMS, then you define a catalog entry for the
file. When you want to access the file (to write or read it), you
must use job control commands.

Defining a VSAH File to CMS

To define a VSAM file to CMS, you must specify the following
commands in the following order:

The DLBL command to define the VSAM cluster.

The EDIT command, to create a file containing the DEFINE
CLUSTER command you'll use to create the catalog entry for
your fi Ie.

Tha AMSERV command, to execute the DEFINE CLUSTER command,
in the file you've created; this creates the VSAM catalog
entry.

Using the DLBL Command--CMS

You must execute the DLBL command to name the VSAM cluster and to
define the VSAM files you'll use for program input/output. For
example, to identify the FILE name used in your DEFINE CLUSTER
command, you specify:

dlbl myfile data DSN mastcat (vsam

which identifies MYFILE to the system as a VSAM file named MYFILE
contained in the catalog MASTCAT.

Creating a VSAH DEFINE Command--CMS EDIT Command

To create a catalog entry, you must issue the EDIT command,
gi vi ng the name of the entr~/; the fi letype is AMSERV:

edit catfile amserv

This puts you in edit mode, and you can then enter the Access
Method Services DEFINE CLUSTER command as data into the file; for
example:

DEFINE CLUSTER (NAME(MASTCAT)
FILE(MYFILE)
VOLUME(123456)
HOHIHDEXED
RECORDS(20)

which defines a catalog entry in MASTCAT, for a VSAM sequential
file (HONINDEXED) named MYFILE, on volume 123456, with 20 tracks
of space allocated.

t1ak i ng the Cata log Entry-At1SERV Command

Once you've entered the DEFINE CLUSTER command in an AMSERV file,
you can request Access Method Services to process the command for
you, using the AMSERV command:

amserv catfile

This co~mand sends the DEFINE CLUSTER command to Access Method
Services for processing, and entry into MASTCAT.

See the VS FORTRAN Application Programming: System Services
Reference Supplement for additional information.

100 VS FORTRAN Application Programming: Guide

,0'"
.• .I~/

o

o

cra.ttng and processtng VSAH Files--CMS

When you execute a FORTRAN program to create or process a VSAM
file, you define the file in a DLBL command: For example, to
process MYFILE in a FORTRAN program called MYPROG, you specify:

dlbl myfile data DSN mastcat (vsam
. start myprog text

When MYPROG is executed, the DLBL statement makes MYFILE
available to the program.

Using VM/370-CMS with VS FORTRAN 101

~SING OS/VS2-TSO WITH VS FORTRAN

You can use the facilities of OS/VS2-TSO, taking advantage of
quick terminal turnaround time, to develop VS FORTRAN programs.

You can compile your programs under OS/VS2-TSO and link-edit
them to run under MVS, or you can compile, link-edit, and execute
them under OS/VS2-T50.

USING THE TSO COMMANDS

The T50 commands help you create and edi t your source programs,
link-edit your object modules, and execute your load modules.
The TSO commands you'll use most frequently are shown in
Figure 25. Reference documentation for these commands is given
in the VS FORTRAN Application Programming: System Services
Reference Supplement.

USING YOUR TERMINAL WITH 1S0

You must log on your terminal, using the procedures your
organization has set up.

You can then use all of the TSO commands to develop, test, and
run your V5 FORTRAN programs.

When you finish a terminal session, you log off in the usual way.

See the OS/VS2 TSO Terminal User's Guide for documentation on
terminal usage.

CREATING YOUR SOURCE PROGRAM--TSO EDIT COMMAND

To create a source program file, you use the EDIT command. Use
the EDIT command whenever you want to create a new file and also
whenever you want to edit an existing one.,

(You can also use the Structured Programming Facility (SPF)
editor to create source program files. You can use SPF to
allocate sequential files or partitioned data sets, although
this isn't necessary, since the ALLOCATE and ATTRIB commands are
also available.)

The EDIT subcommands (such as COpy, INPUT, INSERT, etc.) help you
enter and edit the lines of source code.

To create a source program file, you can specify the descriptive
qualifier of your source program file as FORT. Alternatively,
you can specify the descriptive qualifier as DATA.

For example, to create a source program file named MYPROG, you
specify:

edit myprog.fort

or

edit myprog.data

This creates an empty data set for you, with the name MYPROG, and
the descriptive qualifier FORTRAN or DATA. (If MYPROG.FORT
already exists, the EDIT command retrieves it for you and makes
it available for editing.)

102 VS FORTRAN Application Programming: Guide

(~\)
,,<\;-/'.-

(t ',0

(0

(0

•

T50 Command Usage

ALLOCATE

ATTRIB

CALL

DELETE .

EDIT

FREE

HELP

LINK

LOADGO

STATUS

SUBMIT

TEST

Figure 25.

Allocates data sets needed for compilation,
link-editing, ~r execution.

Builds a list of data sets you intend
to allocate dynamically.

Invokes compiler, linkage-editor, or load
module for execution.

Deletes one or more data set entries or one
or more members of a partitioned"data set.

Puts you in EDIT mode to create and edit
source program and data files, and lets you
use the following EDIT subcommands:

COpy

END

HELP

IUrUT

Copies records within the data set you
are editing.

Ends edit mode with or without saving
the data set.

Gives information about EDIT subcommands.

Enters INPUT mode and accepts lines as
part of the data set you're creating
or editing.

INSERT Inserts one or more lines of data into
the data set that you're creating or
editing.

LIST Displays one or more lines of your data
set at the terminal.

t10VE

SAVE

Move one or more records in your data
set to another position in the same
data set.

Ends EDIT mode and places the current
data set on disk storage.

Dea110cates files allocated for a job.

Gives information about commands other
than EDIT subcommands.

Converts one or more object modules into
a load module.

Loads one or more object modules into
storage and executes them.

Checks execution status of a submitted
batch job.

Submits a JCL file to MVS to run as a
batch (background) job (requires SUBMIT
logon capabilities).

Tests an object program for proper
execution and locates programming errors.

OS/VS2-TSO Commands Often Used with VS FORTRAN

Using OS/VS2-TSO with VS FORTRAN 103

You can now enter your source program into the file, line by
line, according to the rules for fixed or free form source
programs.

Fixed format FORTRAN files contain SO-character records; you use
the first 72 characters for FORTRAN statements and continuation
lines.

IBM EXTENSION

If you're using free form input, you can enter your source
program into the file, line by line, according to the rules for
free format source programs.

The maximum line length you can enter is SO characters;
however, your source statements (excluding statement numbers
and statement break characters) can be up to 1320 characters
long.

This is particularly handy ... Jhen you're using a terminal-you
don't have to pay attention to card image restrictions.

END OF IBM EXTENSION ---------.....

CReference documentation for fixed-form and free-fo~m source
program input is given in the V5 FORTRAN Application
Programming: Language Reference manual.)

COMPILING YOUR PROGRAH--TSO ALLOCATE AND CALL COMMANDS

To compile your program, use the ALLOCATE and CALL commands.

Allocating compilation Data Sets--TSO ALLOCATE Command

allocate
READY
allocate
READY
allocate
READY
allocate
READY

First, you allocate the data sets you'll need for compi-lation as
shown in Figure 26.

datasetCmyprog.fort) file(sysin) old

dataset(myprog.list) file(sysprint) new block(120) space(60,10)

datasetCmyprog.obj) fileCsyslin) new block(SO) space(100,10)

datasetC*) file(systerm) •

Figure 26. Allocating T50 Compilation Data Sets

For any compilation, you must allocate the SYSIN AND SYSPRINT
data sets.

Allocate the SYSLIN data set only if you wish to produce an
object module Cyou've specified the OBJECT compiler option).

Allocate the SYSTERM data set only if you wish to receive
diagnostics at the terminal (you've specified the TERMINAL
option).

You can enter these ALLOCATE commands in any order. However, you
must enter all of them before you invoke the FORTRAN compiler.

Requesttng Comptlatton--CALL Command

Once -you've allocated the data sets you'll need, you can issue a 0.-:
CALL command, requesting compilation.

104 VS FORTRAN Application Programming: Guide

o

o

(0

COMPILER OUTPUT--TSO

The LIST File--TSO

The OBJ File--TSO

You can request compilation, using the default compiler options:

call 'sysl.linklib(vsfort)'

or you can request one or more compiler options explicitly:

call 'sysl.linklibevsfort)' 'free,term,source,map,list,object'

which tells the compiler that:

• FREE--your source program is in free form.

• TERM-di agnost i c messages ara to be di rected to your
terminal.

• SOURCE-the source program is to be printed in the output
listing.

• MAP--a storage map is to be printed in the output listing.

• LIST--the object program is to be printed in the output
listing.

• OBJECT-an object module is to be produced.

Reference documentation for the CALL command is given in the VS
FORTRAN Application Programming: System Services Reference
Supplement.

Depending on your organization's compile-time defaults and/or
the options you select in your CALL command, you may get a LIST
file and/or an OBJ file as output, placed in your disk storage
for easy reference, under the name(s) you specified in the
ALLOCATE command.

The LIST file contains the compiler output listing; see "Fixing
Compi le-T i me Errors--Advanced Programm; ng" in Part 2 for an
explanation of what the compiler output listing contains and how
to use it.

It has the name of your source program, and the qualifier LIST.
For example, the qualified name for MYPROG is MYPROG.LIST.

The OBJ file contains the object code the compiler created from
your source program. The OBJ file contents are explained in
"link-Editing Your Program-Advanced Programming" in Part 2.

It is placed in your storage with the name of your source program
and the qualifier OBJ. For example, the qualified name for MYPROG
is MYPROG. OBJ.

This file remains in your disk storage until you erase it, using
the DELETE command.

You can link-edit the OBJ file under any of the systems that VS
FORTRAN supports to get a load module.

LINK-EDITING AND EXECUTING YOUR PROGRAM UNDER T50

To link-edit and execute your program under TSO, use the LINK
command to create a load module from one or more object modules
(plus any needed"VS FORTRAN library modules), and then use the
CALL command to execute the load module.

Using OS/VS2-TSO with VS FORTRAN 105

The input object module must be OBJ files, for example:

userid.name.OBJ

LINK-EDITING YOUR PROGRAM--TSO LINK COHHAND

You use the LINK command to create and execute a load module.
Input you use consists of your object module, VS FORTRAN library
routines, and any other secondary input Csuch as OBJ files of
called subprograms).

For example, if you want to load and execute the OBJ files for
MYPROG, and its subprogram SUBPROG, you specify:

link Cmyprog,subprog) 10adCmyprog) lib('vfortlib')

When the commands are executed, the OBJ fi les for MYPROG and
e:IIDDDn~ _ 1: _ _ ; '" '" .. ft '"'~ ; ... "' Oft 1 ... "" ... _ 1 "" h""'
w\JUt "'-IV ... , C .. , II" .: """'w """'}f ,~v "'~~ ".w""~ .. ~, "~ ~ ••
execution begins.

You must request the linkage editor to search the library to
resolve external references. In the last example, you are
therefore requesting a search of SYSl.FORTLIB.

Linkage Editor ListingS--TSO LINK Command

You can also use the LINK command to specify linkage editor
options. In the last example, you can request the listings to be
printed, either on the system printer or at your terminal:

On the system printer:

link Cmyprog,subprog) libC'vfortlib') 10adCmyprog) print

The qualified name of the file to be sent to the system printer
is MYPROG.LINKLIST. To print the file, you m~st use a PRINT
command, or the SPF HARDCOPY command.

At Your Terminal:

link Cmyprog,subprog) libC'vfortlib') loadCmyprog) print(*)

When you specify PRINTC*), the linkage editor listings are
displayed at your terminal.

EXECUTING YOUR PROGRAH--TSO

To execute your program, use the CALL command.

USING THE CALL COMMAND-" TSD LOAD MODULE EXECUTION

For example, to execute MYPROG.LOAD, you specify the ALLOCATE
commands needed to allocate the input and output data sets it
uses, as well as any work data sets.

Then you issue the CALL command, as follows:

allocate datasetCmyprog.indata) fileCF05FTOOl) (as needed)
READY
allocate datasetCmyprog.outdata) fileCF06FTOOl) Cas needed)
READY
allocate datasetCmyprog.workfil) fileCFlOFTOOl) (as needed)
READY
call myprog

and program TEMPNAME from file MYPROG.LOAD is executed.

Onc~ program execution is complete, and if you n~ longer need
them, you should issue the DELETE command to free the disk space

106 VS FORTRAN A~plic~tionProgramming: Guide

l 0,/

. ':~

(---"\)
\~'

oj

C\
. '/

o

used by the data sets you've named in the ALLOCATE commands and
in the CALL command:

delete (myprog.indata myprog.outdata myprog.workfil)
READY

If you do need them, don't issue the DELETE co~mand; you can then
reuse the data sets as necessary.

Using the Loader--TSO lOADGO Command

Using the LOADGO command, you can invoke the loader program to
link-edit and execute your program all in one step. This is
efficient when you have several object modules you want combined
into one load module for a quick test. When you use the LOADGO
command, the load module created is automaticallY deleted when
program execution ends.

First, you must allocate any needed data sets, as outlined under.
"Allocating Compilation Data Sets-TSO ALLOCATE Command."

Then you issue the LOADGO command. In this example, you're
linking and executing the MYPROG object module:

loadgo (myprog) lib('vfortlib')

The VFORTLIB operand makes the SYSl.FORTLIB data set available
to the loader program. The loader program can then resolve any
external references in MYPROG, and load the needed object
modules.

You can also use the LOADGO command to execute a link-edited load
module, for example, one named MYPROG:

loadgo myprog tempname '

You can also use the LOADGO command to specify loader options. In
the last example, you can request a load module map and the
listings to be printed, either on the system printer or at your
terminal:

On the Printer File:

loadgo (myprog) map print

The qualified name of the file sent to the system printer is
MYPROG.LOADLIST.

At Your Terminal:

loadgo (myprog) map print(*)

When you specify PRINT(~), the loader listings are di~played at
your termi nal.

FIXING EXECUTION ERRORS UNDER TSO

When you're developing programs using TSO, you can make use of
all the FORTRAN debugging aids described in "Fixing
Execution-Time Errors-Advanced Programming."

You can't use the TEST command to debug your source programs.

However, you can use the TSO TEST command, together with its
associated subcommands, to debug your ~bject program.

The easiest way to use 'TEST is to establish the point in your
program where an abnormal termination occurred.

For best results; you should be familiar with the basic assembler
language and addressing conventions.

Using OS/VS2-TSO with VS FORTRAN 107

Reference documentation on using the TEST command is givp.n in the
VS FORTRAN Application Progra~m;ng: System Services Reference
Supplement.

REQUESTING COMMAND PROCEDURE PROCESSING UNDE~

You can create a command procedure (CLIST) for a number of
different processing options under TSO. This is useful, because
you can preallocate all the options you need once, when you
create the command procedure. Then, every time you execute the
command procedure, there's no need to respecify the options.

You can create command procedures to process your jobs either in
the foreground or in the background.

COMMAND PROCEDURES FOR FOREGROUND PROCESSING

To create a command procedure to link-edit and run a FORTRAN
program in the foreground, do the following:

1. Edit a file named LINK.MYPROG.CLIST, which contains:

LINK MYPROG LIB('VFORTLIB') LOAD(MYPROGCMYNAME) TEST
LIST LET XREF PRINT(MYPROG)

These options will allow you to use the TEST command (TEST),
list the link-edit control statements (LIST), allow the
procedure to complete execution even if there are errors
(LET), produce a cross-reference table (XREF), and produce a
linkage-editor listing on the MYPROG.LIST data set (PRINT).

2. Use the SAVE subcommand to save the command procedure.

3. To execute the link and run command procedure, enter:

ex link.myprog

and press ENTER.

This tells TSO to create a load module, MYNAME, in file
userid.MVPROG.LOAD

To run a prevously link-edited program, do the following:

1. Edit a file name RUH.MYPROG.CLIST which contains:

ALLOC FILE(FTxxFyyy)

.
CALL MYPROG(MYNAME)

(work and data files
as needed)

2. Use the SAVE subcommand to save the command procedure.

3. Use the END subcommand to exit from the EDIT command.

4. To execute the run command procedure, enter:

ex run.myprog

and press ENTER.

This tells TSO to execute MYNAME in file userid.MYPROG.LOAD
~n the foreground.

COMMAND PROCEDURES FOR BACKGROUND EXECUTION

If your source programs are small, foreground execution ca~ be
quite convenient. However, if your programs will take some time
to compile and/or to execute, you may prefer to batch process

108 VS FORTRAN Application Programming: Guide

(~'\ }
\,--~/

them in the background. This frees your terminal for other work
while the batch job is running.

To create a command procedure for background compilation, do the
following:

-
1. Edit a file named COMPILE.MYPROG.CNTL, placing in it the

following job control statements:

//userid JOB (acct. ;nformation),'yourname', other information
//COMPILE EXEC VSFORTC
//VSFORT.SYSIN DD DSH=userid.MYPROG.FORT,DISP=SHR

2. Use the SAVE subcommand to save the command procedure.

3. To execute the run command procedure, enter:

submit compile.myprog

and press ENTER.

This tells TSO to compile MYPROG in file userid.MYPROG.FORT
in the background.

To create a command procedure for background compilation,
link-editing, and execution, do the following:

1. Edit a file named RUN.MVPROG.CNTL, placing in it the
following job control statements:

2.

3.

4.

//userid JOB (acct. information),'yourname', other information
//RUN EXEC FORTCLG
//GO.FTnnFxxx DO OSN=userid.MYPROG.FORT,

OISP=5HR
/*.
//GO.FTxxFyyy DO DSN=userid.MYPROG.DATA,

DISP=SHR (other files as needed)

Use the SAVE subcommarid to save the command procedure.

Use the END subcommand to exit from the EDIT command.

To execute the compile-link-execute command procedure,
enter:

submit run.myprog

and press ENTER.

This tells T50 to compile, link-edit, and execute MYPROG in
file userid.MYPROG.FORT in the background.

ISO FILE NAMING CONVENTIONS

When you're creating or processing files under TSO, you must use
the TSO naming conventions, as follows:

[identification.lname.qualifier

[identification.]

name.

is the identification you supply in your LOGON command, or
that you assign with the PROFILE command.

If you omit the· identification, your LOGON identification
is assumed.

is the name you gi ve the fi Ie.

qualifier .
identifies the contents of the file. Qualifiers useful for
FORTRAN are:

Using OS/VS2-TSO with VS FORTRAN 109

Qualifier Has File contents

ClIST TSO commands and subcommands

DATA Data fi las you're creat i ng or processi ng

FORT FORTRAN source programs--in either fixed or free
form

LIST FORTRAN compiler output listings

LOAD FORTRAN load modules

LOADLIST Loader output listings

OBJ FORTRAN object modules·

If the file you're referring to is a sequential or direct file,
you can use the name and the qualifier alone to identify thQ data
set. For example:

myfile1.data

If the file you're referring to is a member of a partitioned data
set, you can add the member-name in parentheses after the
qualifier. For example, to refer to member-name COMMON1 in data
set IHelIB1, you ~pecify:

inclibl.dataCcommonl)

FILE IDENTIFICATION-ISO ALLOCATE COMHAUD

Before compiling, link-editing, or executing your program, you
must allocate the data sets you'll need, using the ALLOCATE
command. For example, you could allocate the following files
when processing a source program named MYPROG:

For the Source Program as compiler Input:

allocate datasetCmyprog.fort) fileCsysin) old

This ALLOCATE command tells TSO that the file named MYPROG.FORT
is an existing file COLD), available on the SYSIN data set.

For compiler output Listings:

allocate datasetCmyprog.list) fileCsy~print) new
block(120) space(60,10)

This ALLOCATE command tells TSO that the file named MYPROG.LIST
is a new file (NEW), to be produced on the SYSPRINT data set. The
line length is 120 characters; the primary space allocation is 60
lines.

To print the listing, use the PRIHT command.

For an Object Deck:

allocate datasetCmyprog.obj) file(syspunch) new
blockCSO) space (120,20)

This ALLOCATE command tells TSO that the file named MYPROG.OBJ is
a new file (HEW), to be produced on the SYSPUNCH data set. Th~
record length is SO characters. .-

- For the Object l1odule:

allocate dataset(myprog.obj) file(syslin)
ne.'1.block(SO) space(100,10)

This ALLOCATE command tells TSO that the f'le named MYPROG.OBJ is
a new file (NEW)i to be produced on the SYSLIN data set. The

110 VS FORTRAN Appl!~tion Programming: Guide

'0

-0

o

record size (and block size) must be 80 characters. The space you
can specify as any size you need.

For Terminal Input/output:

allocate dataset(~) file(systerm)

This ALLOCATE command tells TSO that the file identified by the
asterisk (*) is available on the SYSTERM data set. You can then
use the terminal to receive error mesage output.

(The listing output is on the SYSPRINT data set.)

For Program Data sets:

allocate dataset(identifier.name.data) file(FnnFTxxx)

This ALLOCATE command tells ISO that the file identified by the
qualified name is available on the FnnFTxxx data set. Valid
values for un and ~ are documented in Fi gure 29.

Reference documentation for the ALLOCATE command is given in the
VS FORTRAN Ae,E.lication Programming! Svstem Services R~ference
Supplerl'1ent. For valid values for FnnFTxxx, see "Defining
Fi les-OS/VS DO Statement" in Part 2.

Before you can load a direct file, you must preformat it. "OS/VS
Considerations-Direct Files" tells how to do this.

DEFINING VSAH SEQUEUTIAL At~D DIRECT FILES-TSO

VS FORTRAN allows you to process VSAM sequential files (ESDS data
sets) and VSAM direct files (RRDS data sets).

To define and use VSAM files under TSO, you can enter and execute
the Access Method Services commands (such as DEFINE CLUSTER)
directly from your terminal. See your system administrator for
further information about catalogs and volumes.

When \'ou want to access the f i 1 e (to l.Jr i te 0 r read it), you must
use the ALLOCATE command, if you're referencing the VSAM file
using FnnFTyyy. If you aren't, you don't need an ALLOCATE
command, because you are accessing the file directly.

SYSTEM CONSIDERATIONS UNDER OS/VS2-TSO

When you're developing programs using the TSO facilities, your
FORTRAN programs must not require system actions for which you
are not authorized (for example, protected data set access or
volume mounting).

In addition, 1f your FORTRAN programs make use of assembler
subroutines, there are a few system considerations you-must take
into account, when coding the ass~mler routines, as follows:

1. Your assembler subprograms must execute as nonauthorized
proble~ programs.

2. Your assembler subprograms must use standard MVS system
service interfaces.

3. Your ~ssembler subprogram must not use TSO-specific storage
subpools.

4. The address spaces your assembler subprograms use must not
be sensitive to MVS control block structures.

5. Your assembler subprogram must use only the data set
characteristics available through the ALLOCATE command.

Using OS/VS2-TSO with VS FORTRAN 111

FIXING COMPILE-TIME ERRORS-ADVAUCED PROGRAMMING

VS FORTRAN gives you a good deal of assistance in finding and
correcting errors it det~cts during compilation. The compiler
output listing gives you much useful information to aid you in
debugging.

In addition, if you're creating programs that must conform to
1978 Standard FORTRAN rules, you can use the Standard language
Flagger to tell you when you've used program elements that don't
conform.

USING THE COMPILER OUTPUT LISTING

The compiler output listing is designed to help you pinpoint any
erro r s you've made in your sou rce program. The list i ng ; s
described in the following sections, together with hints on how
to use it.

COMPILATION IDENTIFICATION

This portion of the listing helps you identify each run you make,
even separate runs on the same day.

The heading on each page of the output listing gives the name of
the compiler and its release level, tha name of the source
program, and the date and time of the run in the format:

DATE: month day, year TIME: hour.minute.second

That is, for example:

DATE: MAY 1, 1981 TIME: 14.31.01

The TIME given is the time the job was completed. The TIME is
shown on a 24-hour clock; that is, 14.31.01 is the equivalent of
2.31.01 PM.

The fi rst page of the 1 i sti ng also shows the compi ler opti ons
(default and explicit) in effect for this compilation.

Note: Your organization may show the date as:

year month day

instead of the format shown above.

SOURCE PROGRAM LISTING-SOURCE OPTION

Use the source list i ng for desk check i ng to mal<e sure that your
source statements conform to VS FORTRAN syntax. The internal
sequence numbers (which the compiler provides for you) help you
identify the statements causing diagnostic messages.

The statements printed in the source program listing are
identical to the FORTRAN statements you submitted in the source
program, except for the addition of internal sequence numbers
(ISH) as a prefix. Figure 27 shows an example of the source
program listing.

Note: When this program is executed, the diagnostic messages
shown in Figure 28 are produced.

112 VS FORTRAN Application Programming: Guide

0)

-0

-0

o

REQUESTED OPTIONS (EXECUTE): MAP
REQUESTED OPTIONS (PROCESS): LIST XREF MAP
OPTIONS IN EFFECT: LIST MAP XREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRACE

OPTIMIZE(O) LANGLVL(77) NOFIPS FLAGCI) NAME(MAIN) LINECOUHT(60)

ISN
ISN
ISH
ISH
ISH
ISH
ISH

ISH
ISN

ISH

ISH
ISH

ISH

ISH
ISN

ISH

ISH

ISH

ISH

ISH
ISH

ISH

ISH

ISN

ISN

ISH

ISN
ISH

1
2
3
4
5
6
7

8
9

10

11
12

13

14
15

16

17

18

19

20
21

23

24

25

26

27

28
29

* * ... 1 2 3 4 5 6 7.* S

C SAMPLE PROGRAM TO DEMONSTRATE THE NEW VS FORTRAN
REAL*S PI
PARAMETER (PI = .314159265Dl)
COMPlEX*8 C8V, C8A, C8B
COMPlEX*32 C32
LOGICAL*1 Ll
REAL*8 R8A, RSV, R8VHU
CHARACTER*14 CHAR14

EQUIVALENCE (R4AC4), R8A(2), C32Cl,1»
EQUIVALEHCE (12(3), Ll)

DIMEHSIOH RSA(7), C32C4,5), R4A(11), I2(3)

COMMON /COM1/ R4A, C8A
COMMON /COM2/ Ll, CSB

111 FORMATC'lOUTPUT FOR " A14, 14FIO.7, E15.7, 2CF20.16»

DATA A2/3.14159/
DATA CHAR14/'SHARE PROGRAM '/

ASSIGN 111 TO J

Al = (A2 + RSA(2»*3

IF (Al .EQ. 0) GOTO 200

IF (A2 .EQ. 0) GOTO 200

DO 100 I = 1,7
IF (ll)

1 R8V = Rav + R8ACI) + (.0007, .0021) + FlOATCI)
100 CONTINUE

CALL CXSUBC*300,R8V,Al,PI)

R8A = 1.0002 + RSA(1)

200 WRITE(6,J) CHAR14, R8A, Ai, C32

DATA C8V/(2.540005, 2.78182S)/

300 PAUSE 'THE END'
END

Figure 27. Source Program Listing Example-SOURCE Option

DIAGNOSTIC HESSAGE LISTING--FLAG OPTION

If the level of the message is greater than or equal to that
you've specified in the FLAG option and there are syntax errors
in your VS FORTRAN source program, the compiler detects them and
gives you a message. The messages are self explanatory, making it
easy to correct your syntax errors before recompiling your
program.

Examples of VS FORTRAN messages are shown in Figure 2S.

Fixing Compile-Time Errors--Advanced Programming 113

*** VS FORTRAN ERROR MESSAGES ***
IFXI027I RPLC 12(S)

IFX2323I COMN 4(W)

IFX2323I COMN 4(W)

IFX2332I COMN 12(5)

IFX2323I COMN 4(W)

27 NON-SUBSCRIPTED ARRAY NAME APPEARS AS LEFT-OR-EQUAL
SIGN VARIABLE. SPECIFY A SUBSCRIPTED ARRAY NAME
OR A VARIABLE NAME.

VARIABLE "RSA" IN COMMON "COMl" IS INEFFICIENTLY
ALIGNED. VARIABLES SHOULD BE ALIGNED ON
APPROPRIATE BYTE BOUNDARIES.

VARIABLE "C32" IN COMMON "COMl" IS INEFFICIENTLY
ALIGNED. VARIABLES SHOULD BE ALIGNED ON
APPROPRIATE BYTE BOUNDARIES.

THE VARIABLE "LI" WILL CAUSE COMMON "COM2" TO EXTEND
TO THE LEFT BECAUSE OF ITS POSITION IN EQUIVALENCE
STATEMENT AT ISN "9". CHECK VARIABLE PLACEMENT ..

VARIABLE "CSB" IN COMMON "COM2" IS INEFFICIENTLY
ALIGNED. VARIABLES SHOULD BE ALIGNED ON
APPROPRIATE BYTE BOUNDARIES.

Figure 28. Examples of Compile-Time Messages--FLAG Option

Messages you'll get are all in the following format:

IFXnnnnI mmmm level [isn] 'message text'

where each one of the areas has the following meaning:

IFX

nnnnI

m!nrrm

level

The message prefix identifying all VS FORTRAN compiler
messages

The unique number identifying this message

The identifier for the compiler module issuing the
message

The severity level of the error diagnosed. Compiler
diagnostic mess~ges are assigned severity levels as
follot ... s:

-0(1) Indicates an informational message; messages at
the I level merely give you information about the
sou rce program and how' it wa s comp i led.

The severity code is 0 (zero).

4nn Is a warning message; it usually tells you that a
minor error~ which does not violate the VS FORTRAN
syntax, was detected.

The severity code is 4.

If no messages produced exceed this level, you can
link-edit and execute the compiled object module.

8(E) Is an error message; usually, a VS FORTRAN syntax
error was detected. The campi ler makes a
corrective assumption, and completes the
compilation.

The severity code is 8.

It's possible that the program will execute
correctly.

114 VS FORTRAN Applieation Programming: Guide

;T~\l
'~

0,

lO

12(S) Is a serious error message; an error was detected
which violates VS FORTRAN syntax, and for which
the compiler could make no corrective assumption.

The severity code is 12.

You shouldn't attempt execution, except possibly
for debugging purposes.

16(U) Is an abnormal termination message; an error was
detected which stopped the compilation before it
could be completed.

The severity code is 16.

tisn] gives the internal sequence number of the statement in
which the error occurred, if the internal sequence
number can be determined.

'message-text' explains the source program error that was
detected.

OS/VS cataloged Procedures and compiler Message Codes

Unless you increase the permissible condition code in the COND
parameter of the compilation EXEC statement, severity levels
higher than level 4 prevent link-edit processing.

DOS/VSE Message Cede Considerations

Severity levels higher than level 4 prevent link-edit
processing.

USING THE MAP AND XREF OPTIONS

The MAP and XREF compiler options, described in the following
sections, are a big aid in debugging your programs--both for
fixing compile-time errors and also for fixing execution-time
errors. You can use them to cross check for the fellowing common
source program problems:

• Are all variables defined as you expected?

• Are variables misspelled?

If you've declared all variables, then the following are
suspect:

1. Un referenced variables

2. Variables referenced in only one place

• Are all referenced variables set before they're used?
(Except for variables in COMMON, parameters, initialized
variables, etc.)

• -Are one or more variables unexpectedly equivalenced with
some other variable?

• Are there unreferenced labels? CIf there are, you may at some
point have miskeyed a label.)

• Have you acc~dentally redefined one of the standard library
functions? (For example, through a statement function
definition.)

• Are the type~ and lengths of arguments correct across
subroutine calls? (You'll need both listings for this.)

Fixing Compile-Time Errors--Advanced Programming 115

• For a variable passed ~o the main entry of a subroutine, have
you inadvertently altered it at a subordinate entry point!

These questions and more about your source program syntax and
logic can be answered through the information supplied you by the
Source Program Map and the Cross Reference Dictionary.

SOURCE PROGRAM HAP--HAP OPTION

STORAGE MAP

If you've specified the MAP option, the storage map shows you how
you've used each item you've defined in your program; this can
help you figure out obscure syntax or logic errors that aren't
immediately apparent from the source listing.

A storage map shows the use made of each variable, statement
function, subprogram, or intrinsic function within a program. An
example of a storage map is given in Figur~ 29.

TAG: SET(S), REF'D(F), USED AS ARG(A), COMN(C), EQUV(E), STMT.FUNCT. (T), SUBPROG(X), NAMED CONSTANT(K), INITIAL VALUE (I)

PROGRAM NAME: MAIN . SIZE OF PROGRAM: 350 HEX BYTES.

-~~- t!Q~; -!~~- -~QQ~!.
Al R·4 SFA 000140
C32 C·32 FCE OOOOOC
FLOAT R·4 X UNREFD
Ll L*l FCE 000000
RSV R*S SFA 000130

COMMON INFORMATION

NAME: COM1. SIZE: 2SC

-~?!~- ~QQ~ Q!'§~!::!.
RSA(E) R*S 000004

NAME: COM2. SIZE: 9

~~ . NODE Q!~~!::!.
I2(E) 1*4 FFFFFS

HEX

HEX

-~~~- t!QQ; -!~~- -~QQ~!.
A2 R*4 FI 000144
CSA C*S C UNREFD
I 1*4 FA 00013S
PI R*S FK 000054
RSVNl: R*S r.;NREFD

BYTES. (E) - EQUIVALENCED

_~~L !:!QQ~ Q!'~~!::!.
C32 (E) C*32 OOOOOC

BYTES. (E) - EQl:IVALENCED

NAME ~QQ~ Q!~~~:..
Ll (E) L*l 000000

-~~~- ~QQ; _!~~L _~QQ~!. -~~;- ~QI2~ _!:~~ __ ~QI2~:..
CHAR14 CHAR FI 00014S CXSUB F)(000000
CSB C·S C UNREFD CSV C·S I UNREFD
12 1·4 CE UNREFD J 1*4 F 00013C
R4A R·4 CE UNREFD RSA R·S FCE 000004
VSCOM* FX 000000 VSERHI F)(000000

-~~~- ~Q2~ !?!~~!::!. -~~- t!QI2~ !?!~~~:..
R4A(E) R*4 000000 CSA C·S 00002C

-~~~- MODE Q!~~~:.. NAME ~QI2~ Q!~~!:::..
CSB C*S 000001

LABEL INFORMATION.

----!::?!~~!::--- !?~~!~;Q

(NN NNN NNNNN IS A GENERATED LABEL)

_?!QI2~:.. ----~~;!::--- !?~~g:!~Q -~QQ~:.. ----!::~!!;!::--- Q~~!~;~ _~QI2~:.. ----!::~~~!::--- Q~~!~~~ -~QQ~:..
100 23 000292 111 13 000030 200 26 0002CE 300 2S 000312

01 000 00001 1 0001CC 01 000 00019 19 0001FE 01 000 00020 20 00020C 01 000 00022 22 00022S
01 000 00025 25 0002C4 26 001 00020 20 000214 02 002 00020 23 0002A8

Figure 29. Example of a Storage Map--MAP Option

NAME Column

NODE Column

The following paragraphs describe each area of a storage map,
such as that shown in Figure 29.

The fi rst line of a storage map g1 ves the name and si ze of the
source program; the size is given in hexadecimal format.

The fi rst column is headed NAME. It shows the name of each
variable, statement function, subprogram, or implicit function
in the program.

The second column is headed MODE--it gives the type and (except
for character items) length of each name, in the format:

116 VS FORTRAN Application Program~ing: Guida

/r---'·.)
\ /

'~

(",)
I '0 oj /

', ... JV

o

o

TAG column

Address Column

type*length

where the ~ can be:

C for complex

CHAR for character (length not displayed)

I for integer

L for logical

R for real or double precision

The third column is headed TAG. It displays use codes for each
name and vari able. The use codes are:

A for a vari able used as an actual argument ina parameter
list

C for a variable in a COMMON block

E for a vari able in an equi valenced block

F for a variable whose value was referred to during some
operation

I for a vari able speci fi ed wi th an i ni t i al value

K for a constant

S

T

for a variable whose value was set during some operation

for a stat~ment function

X for an external funct ion

The fourth column is headed ADDR--it gives the relative address
assigned to a name. (External functions, statement functions,
and COMMON block references have a relative address of 00000.)

For unreferenced variables, this column contains the letters
UNREFD instead of a relative address.

COt1MON Block Haps-MAP opt i on

If your source progr~m contains COMMON statements, you'll also
get a storage map for each COMMON block.

The map for a COMMON block conts; ns much the same kind of
information as for the main program. The DISPl column shows the
displacement from the beginning of the COMMON block.

Any equivalenced COMMON variable is listed with its name
followed by (E); its displacement (offset) from the beginning of
the block is also given.

Fixing Compile-Time Errors--Advanced Programming 117

Stltement Label Hap--HAP option

The MAP option also gives you a statement label map, a table of
statement numbers used in the program. The label map shows the
following forms of statement numbers:

• Source statement labels--as entered

• Compiler-generated statement labels, in the form:

aa bbb ccccc

where

sa

bbb

ccccc

is the identification code that indicates which
compiler module caused the label to be generated. The
codes are shown in Figure 30.

is the sequence number within internal sequence number
(ISH) ccccc, starting with 000.

is the ISH of the statement at which the label is
generated.

• FORMAT statement label s-as entered

It also gives you the internal sequence number (ISH) for the
statement in which the label is defined and the address assigned
to the label.

Code Module

01 IFXICHTl

02 IFXIOOOO IFXIENDO

03 lFXll0Gl

04 lFXllFTH

05 IFXIElSF

06 lFXIElSE

07 lFXlPRHS

08 IFXIIMPD

OB lFXlRElS

OC IFXIIOST

00 IFXl lOt-IN

21 lFXlFORM

Figure 30. Module Identification Codes

SOURCE PROGRAM CROSS-REFERENCE DICTIONARY--XREF OPTION

If you've specified the XREF option, the cross-reference
dictionary shows you where in your program you used each item you
defi ned. Th is gi ves you a record of what interact ions between 0
items you can expect; it also shot.-.ls up conflicting usages of_ ..
items.

118 VS FORTRAN Application Pr~gramming: Guide

'0

o

During the later debugging stages, when you're debugging
execution errors, it can also be of great assistance in detecting
logic errors.

Figure 31 shows an example of a cross reference listing.

A cross-reference dictionary shows the names and statement
labels in the source program, together with the internal
statement numbers in which they appear.

Data Item Dictionary--xREF Option

The first line of the data item cross-reference dictionary
defines the codes used in the TAG column.

From left to right, the subsequent columns give you the following
information:

NAME COLUMN: Names are listed in alphabetic order.

HODE COLUMN: Each name is followed in the second column, the
column headed MODE, by its type, in the same format as for the
MAP option.

TAG COLUMN: The type for each name is followed in the third
column, the column headed TAG, by its status, which can be:

A an array

C an item in COMMON

D a dummy argument

E an equivalenced item

F a statement function

I an intrinsic function

K a named constant

T an item defined in an explicit type statement

X an external function

DECLARED COLUMN: The DECLARED column gives the internal sequence
number where the data item is defined.

REFERENCES COLUt1N: The REFERENCES column gi ves the internal
sequence number of each statement in the source program where the
data item is referred to.

If there are no references within the program, this column
contains UNREFERENCED.

St3tement Label Dictionary--XREF Option

In the statement label dictionary, the following columns are
defined:

LABEL COLUMN: Statement labels, including compiler-generated
labels, are listed in ascending order.

TAG COLUMN: The LABEL column is followed in the second column,
the column headed TAG, by its status, which can be:

A used as an argument

B an object of a branch

F label for a FORMAT statement

Fixing-Compile-Time Errors--Advanced Programming 119

CROSS REFERENCE DICTIONARY

TAG: ARRAYCA). COMMONCe). EQUIVCE). DUMMY ARGCD), NAMED CONSTANTCK), STMT.FUNCTCF), EXT.FUHCTCX), INTR.FUHCTCI), EXPL.TYPECT'

.It!l1L ~lAL- DECLARED REFERENCEl

A1 RII4 17 11 24
A2 RII4 14 17 19
CHAR14 CHAR T 7 15 26

26

CXSUB X 24
C32 CII32 AET 4 a 10 26
CSA clla CT 3 11
CaB clla CT 3 12
C8V clla T 3 27
FLOAT Rlt4 1 22
I 1114 20 22 22
12 1114 AE 9 10
J 1)14 16 26
11 Llll CET 5 9 12 21
PI Rlla KT 1 2 24
R4A RII4 ACE a 10 11
Ra4 Rlla AET 6 a 10 17
RaV Rlla T 6 22 22 24

22 25 26
RISVHU RillS T 6 UHREFERENCED
vo;cnMI y ! V5ERHI X 1

TAG: FORMATCF), HOH-EXECUTABLECH), USED AS ARGUMENTCA). OBJECT OF BRAHCHCB). USED IN ASSIGH STATEMEHTCS)

----L.ll.ll..-
100
111
200
300

01 000 00001
01 000 00019
01 000 00020
01 000 00022
01 000 00025
02 001 00020
02 002 00020

IAg ~ REFERENCES

HFS
B
B

B
B

23
13
26
2a

1
19
20
22
25
20
23

20
16
lIS 19
24
UHREFEREHCED
UHREFEREHCED
UHREFERENCED
UHREFEREHCED
UHREFEREHCED
20
20

Figure 31. Example of a Cross-Reference Dictionary--XREF Option

N label for a nonexecutable statement

S label used in an ASSIGN statement

If a label is used in more than one way, all tags that apply are
printed.

DEFINED COLUMN: This column displays the internal sequence
number (ISN) of the statement in which the label is defined.

REFERENCES COLUMN: This column displays the internal sequence
number (ISN) of all statements in which there are references to
the label.

If there are no program references to the label, the word
UNREFERENCED is printed.

END OF COMPILATION MESSAGE

The last entry of the compiler output listing is the informative
message:

********************END OF COMPILATION II ************************

Where n is the number identifying this program's position in a
batch compilation.

USING THE STANDARD LANGUAGE FLAGGER--FIPS OPTION

Through the FIPS option, you can help ensure that your program
conforms to the current FORTRAN standard--American National
Standard Programming Language FORTRAN, ANSI X3.9-1978.

You can specify standard language flagging either at the full
language level or at the subset language level:

120 VS FORTRAN Application Programming: Guida

0-

'0

FIPS=S

NOFIPS

requests the compi ler to issue a message for any
language element not included in full American
National Standard FORTRAN.

requests the compiler to issue a message for any
language element not included in subset American
National Standard FORTRAN.

requests no flagging for nonstandard language
elements.

The messages tall you which language items are not included in
the current American National Standard. They're all in the same
format as the other diagnostic messages, and they're all at the
0(1) (information) level.

For the formats of diagnostic messages, see "Diagnostic Message
Listing-FLAG Option."

Fixing Compile-Time Errors--Advanced Programming 121

LINK-EDITING YOUR PROGRA"--ADVANCED PROGRA"MING

You must link-edit any object module before you can execute your
program, combining this object module with others to construct
an executable load module.

For VM/370-CMS considerations on loading and executing your
programs, see "Using VM/370-CMS with VS FORTRAN."

For TSO considerations on loading and executing your program,
see "Using OS/VS2-TSO with VS FORTRAN."

AUTOMATIC CROSS-SYSTEM SUPPORT

LiNKAGE EDITOR INPUT

In VS FORTRAN, you can compilQ YOUr suurce prugr6m unoar any
supported operating system. You can then link-edit the resulting
object module under the same system, or under any other supported
system.

For eXQmple, you could request compilation under VM/370-CMS and
then link-edit the resulting object module for execution under
DOS/VSE.

You don't have to request anything special during compilation to
do this; VS FORTRAN uses the execution-time library for all
system interfaces, so the operating system under which you
link-edit determines the system under which you execute.

Your input to the linkage editor can be the object module in
machine-language format (which you request through the OBJECT
compile-time option), or as a machine-language input data set
(which you request through the DECK compile-time option).

You request the DECK option when you want to catalog the object
module and save it for future link-edit runs.

Request the OBJECT option when you want to combine the link-edit
task with the compilation task. You can then catalog and/or
execute the load module produced.

OBJECT MODULE AS LINK-EDIT DATA SET--DECK OPTION

You use the DECK compile-time option to request an object module
punched into a card deck. The deck produced is in 80-character
fi xed format.

The deck is a copy of the object module-toJhi ch consi sts of
dictionaries, text, and an end-of-module indicator. (Object
modules are described in greater detail in the appropriate
linkage editor and loader publications, as listed in the
Preface.)

The object deck consists of four types of records, identified by
the characters ESD, RLD, TXT, or END in columns 2 through 4.
Column 1 of each card contains a 12-2-9 punch. Columns 73 through
80 contain the first four characters of the program name followed
by a four-digit sequence number. The remainder of the card
contains program information.

122 VS FORTRAN Application Programming: Guide

)

0".'./ , ,

C'
,:;.;l

ESD Record

C',," , ,)

TXT Record

RLD Record

ESD records describe the entries of the External Symbol
Dictionary, which contains one entry for each external symbol
defined or referred to within a module. For example, if program
MAIN calls subprogram SUBA, the symbol SUBA will appear as an
entry in the External Symbol Dictionaries of both the program
MAIN and the subprogram SUBA. .

The Ii nkage edi tor matches the entri es in the di ct i onari es of
other included subprograms and, when necessary, to the automatic
call library.

ESD records are divided into four types, identified by the digits
0, 1, 2, or 5 in column 25 of the first entry, and column 57 of a
third entry (there can be 1, 2, or 3 external-symbol entries in a
record) .

The contents of each type of ESD record are:

ESD Type contents

o Name of the program or subprogram and indicates the
beginning of the module.

1 Entry point name appearing in an ENTRY statement of a
subprogram.

2 Name of a subprogram referred to by the source module
through CALL statements, EXTERNAL statements, and
explicit and implicit function references. (Some VS
FORTRAN intrinsic functions are so complex that a
function subprogram is called in place of iri-line
coding. Such calls are defined as implicit function
references).

5 Information about a COMMON block.

TXT records contain the constants and variables your source
program uses, any constants and variables generated by the
compiler, coded information for FORMAT statements, and the
machine instructions generated by the compiler from the source
module.

RlD records describe entries in the Relocation Dictionary, which
contains one entry for each address that the linkage editor or
loader must resolve before the module can be executed.

The Relocation Dictionary contains information that enabl~s
absolute storage addresses to be established when the module is
loaded into main storage for execution. These addresses cannot
be determined earlier because the absolute starting address of a
module cannot be known until the module is loaded.

The linkage editor or loader consolidates RLD entries in the
input modules into a single relocation dictionary when it
creates a load module.

RLD records contain the storage addresses of subprograms called
through ESD type 2 records.

Link-Editing Your Program--Advanced Programming 123

END Record

The END record indicates:

• The end of the object module to the 1 i nkege edi tor

• The relative location· of the main entry point

• The length (in bytes) of the object module.

The structural order of a typical VS FORTRAN object module is
shown in Figure 32.

Record Type

ESD (Type 0)

ESD ' T •• ", 1) "'YI"'''"

TXT

TXT

ESD (Type 5)

ESD (Type 2)

RlD

TXT

ESD (Type 2)

RlD

TXT

TXT

RlD

END

Usage

Names object module

U!!'ll. , ; '-e 1.& a::UTDV ,1gll.'C_ ~I'~'" """"'I"'~ ,. II "'III """'"

statements)

For FORMAT statements

For compiler-generated constants

For COMMON areas

For external references in CAll
and EXTERNAL statements, and
statements using subprograms

For external references in CAll
and EXTERNAL statements, and
statements using subprograms

For source program constants

For compiler-generated external
references

For compiler-generated external
references

For object module instructions

For the branch list

For the branch list

End of object module

Figure 32. Object Module Structure

PRODUCING A LOAD HODULE--OBJECT OPTION

Specify the OBJECT option when you want either to link-edit and
execute your program immediately, or to link-edit the program
and catalog the load module for execution at some later time.

LINK-EDITING FOR IMMEDIATE EXECUTION

The simplest way to link-edit for immediate execution is to use a
link-edit-execute cataloged procedure. See "Executing Your
Program-Advanced.Programming" for details.

You can al so execute thg program i mmedi atelv after 1 i nk-edi t i ng
by including the execution step immediately after the link-edit

124 VS FORTRAN Application Programming: Guide

I~}
\~)

o

o

step. Sea "Executi ng Your Program-Advanced Programmi ng" for
details on the execution step.

LINK-EDITING YOUR PROGRAM--OS/VS

The following sections show how to catal~g you~object module or
load module under OS/VS, and how to use the OS/VS linkage editor
or loader.

CATALOGInG YOUR LOAD "ODULE--OS/VS

You can catalog the data set containing the l~ad module by
defining it in a SYSLMOD DD statement during link-edit
processing.

See the VS FORTRAN Application Development: System Servic~s
Reference Supplement for details.

EXECUTING A LINK-EOIT--OS/VS

Under OS/VS, there are two different programs you can use to
perform the link-edit: the linkage editor or the loader. Which
one you use depends upon the output you want produced.

THE lINKAGE EDITOR: Use the linkage editor when you want to
reduce storage requirements through overlays, or to use
additional libraries as input, or to define the structural
segments of the program.

THE lOADER: Use the loader when your input is a small object
module that doesn't require overlay, that doesn't require
additional linkage editor control statements, and that you'll be
executing immediately.

VS FORTRAN supplies you with cataloged procedures that let you
Ii nk-ed; tor load your programs eas i I ~/. See "U sing and Modi fy i ng
Cataloged Procedures-OS/VS" for detai Is.

Using the Linkage Editor--OS/VS

When you use the linkage editor, rather than the loader, you have
many processing options ~nd optional data sets you can use,
depending on the link-edit processing you want done.

LINXAGE EDITOR PROCESSING OPTIONS--OS/VS: Through the FARM
option of the EXEC statement, you can request additional
optional output and processing capabilities:

MAP-specifies that a map of the load module is to be
produced on SYSPRINT, giving the length and location of the
main program and all subprograms.

XREF-spec if i es that a cross reference 1 i st i ng of the load
module; s to be produced on SYSPRItH, for the ma in program
and all subprograms.

LET--specifies that the linkage editor is to allow load
module execution, even when abnormal conditions have been
detected that could cause execution to fail.

NeAL-specifies that the linkage editor is not to attempt to
resolve external references.

If your program attempts to call external routines, you'll
get an abnormal termination.

LIST-specifies that the linkage editor control statements
are to be listed in the SYSPRINT data set.

link-Editing Your Program-Advanced Programming 125

OVLY--specifies that the load module is to be in overlay
format. That is, that segments of the program will share the
same storage at different times during processing. (For more
details, see "Codi ng Call i ng and Called Programs. ")

SIZE-speci fi es the amount of virtual storagg to be used for
this link-edit job.

REQUIRED LINKAGE EDITOR DATA SETS--OS/VS: For any link-edit job,
you must make certain that at least the following data sets are
available:

SYSlIN--used for compiler output and linkage editor input.

SYSLr10D-used for linkage edi tor output.

SYSPRItn-makes the system pri nt data set avai lable, used
for writing listings and messages. This data set can be a
diract access; magnetic tape; or printer date set.

SYSUT1-direct access work data set needed by the link-edit
pr'ocess.

OPTIONAL LItlKAGE EDITOR DATA SETS-OS/VS: In addition, depending
on what you want the linkage editor to do for you, you can
optionally specify the following data sets:

SYSL'IB-direct access data set that makes the automatic call
library (SYS1.FORTLIB) available. (Required for execution.)

S YSTERM-used for wr it i ng error messages and the comp i ler
statistics listing. This data set can be on a direct access,
magnetic tape, or printer device.

For reference information on these linkage editor data sets, see
the VS FORTRAN Application Programming: System Services
Reference Supplement.

USING LIUKAGE EDITOR CONTROL STATENENTS-OS/VS: Under OS/VS, you
can use the INCLUDE and LIBRARY linkage editor control
statements.

INCLUDE state~ent: Use the INCLUDE statement to sp~cify
additional object modules you want included in the output load
module.

LIBRARY statem~nt: Use the LIBRARY statement to specify
additional libraries to be searched for object modules to be
included in the load module.

For reference informaton on these statements, see the VS FORTRAN
Application Programming: System Services Reference Supplement.

Using the Loader--OS/VS

You choose the loader when you want to combine link-editing into
one job step with load module execution. The loader combines your
object module with other modules into one load module, and then
places the load module into main storage and executes it.

The loader options you can use, and the loader data sets are
described in the following paragraphs.

LOADER OPTIONS--OS/VS: When you execute the loader, you can
specify the following options through the PARM parameter of the·
EXEC statement:

t1API.~0t1AP-specifies whether a map of the load module is to
be produced on SYSPRINT, giving the length and location of
the main program and all subprograms.

126 VS FORTRAN Application Programming: Guide

.\

O}

'-0

o

o

lET INOlET-speci f1 es whether the 1; nkage edt tor is to allow
load module execution, even when abnormal conditions that
could cause execution to fail have been detected.

CALL INeAl-spec; f; es whether or not the loader is to call
attempt to resolve external references. I~you specify NCAL
and your program attempts to call external routines, you'll
get an abnormal termination.

SIZE--Iets you specify the amount of storage to be allocated
for loader processing.

EP-Iets you specify the name of the entry point of the
program being loaded.

PRINT JtmPRINT-spec i fi es whether or not loader messages are
to be listed in the data set defined by the SYSLOUT DD
statement.

RESINORES-specifies whether or not the link pack area is to
be searched to resolve external references.

SIZE--specifies the amount of storage to be allocated for
loader processing; this size includes the size of your load
module.

lOADER DATA SETS--OS/VS: For ary loader job, you must make
certain that at least the SYSLIN data set (used for compiler
output) and the SYSPRINT data set (used for printed output) are
availabln.

In addition, depending on what you want the loader to do for you,
you can optionally specify the following data sets:

SYSLIB--direct access data set that makes the automatic call
library (SYS1.FORTLIB) available. This is the library used
for FORTRAN library subroutines.

SYSLOUT-makes the system output data set available, used
for writing listings. This data set can be a direct access,
magnetic tape, or printer data set.

FTnnFnnn--data sets for user-defi ned fi les-can be uni t
record, magnetic tape, or direct access data sets.

lINK-EDITING YOUR PROGRAM--DOS/VSE

The following sections show how to catalog your object module or
load module under DOS/VSE, and how to use the DOS/VSE linkage
editor.

CATALOGING YOUR LOAD MODULE--DOS/VSE

You can catalog the load module (phase) in the core image
library; this can be either the system core image library or your
own private core image library.

When you catalog the load module in the core image library, your
link-edit step must include the following statement:

// OPTION CATAt.

which invokes the linkage editor and places the phase output into
a core image library.

Place the statement before the first link-edit control card, and
before the PHASE statement for the program you want cataloged.

See the VS FORTRAN Apelication Development: System Services
Reference Supplement for details.

Link-Editing Your Program-Advanced Programming 127

EXECUTING A LINK-EDIT--DOS/VSE

Under DOS/VSE, the only control statement you need to link-edit
your program is the EXEC LINKEDT statement. DOS/VSE has the
autolink feature which, unless you suppress it, always resolves
all object module references to external-names, after all the
input modules have been read from SYSLNK, SYSIPT, and/or the
relocatable library. Ordinarily, you shouldn't suppress it.
However, if you use service routines or extended error handling
routines, you will need INCLUDE statements, as shown in
Figure 37 on page 143.

In addition to the EXEC LINKEDT statement and the autolink
feature, there are other linkage editor statements you can use to
control linkage editor functions:

ACTION specifies linkage editor options, as follows!

CANCEL requests immediate cancellation if errors
occur.

CLEAR initializes the temporary portion of the core
image library to binary zeros.

BG/FI-F6 specifies how input is to be processed:

BG background exe~ution

FI-F~ E~ecution in one of the foreground
partitions, F1 through F6

HAP spec; fi es that: a storage map and messages are
to be pri nted.

NOI1AP

NOAUTO

suppresses the MAP option; messages are to be
printed.

suppresses the autolink feature for this run.

INCLUDE specifies that a module from the relocatable library or
from SYSIPT (if the compile-time DECK option w~s
specified) is to be included; a number of modules may be
specified.

PHASE specifies a name for the phase (load module) to be
produced; the starting address and a relocation factor
can also be specified.

You can also specify control statements to control overlay
requirements; for details, see "Coding Calling and Called
Programs."

lOgical Untts Used for link-Editing--noS/VSE

The following logical units are used during link-editing:

SYSlNK used for linkage editor input

SYSRES used for input in form of relocatable object modules

SYSRLB used for linkage editor input from the system
relocatable library; this is the library used for
FORTRAN library subroutines.

SYSLST used for input from relocatable object modules in a
private library .

SYSCLB used for output placed in a private core image library

SYSOOI used as a linkage-editor work file

128 VS FORTRAN Application Programming: Guide

c

LINKAGE EDITOR OUTPUT

Output from the linkage editor is in the form of load modules (or
phases) in executable form. The exact form of the output depends
upon the options in effect when you requested the link-edit, as
described in the previous sections.

l·ink-Editing.Your Program--Advanced Programming 129

EXECUTING YOUR PROGRAM--ADVANCED PROGRAMMING

When you execute the load module (or phase), you can either
execute it directly as output from the link-edit (or loader)
step, or specify that it be called from a library of load
modules.

When you execute a load module, you may need many different
files, as outlined in the following sections.

For VM/370-CMS considerations on program execution, see "Using
VM/370-CMS with VS FORTRAN."

EXECUTING YOUR PROGRAM--OS/VS

The following sections describe the data sets you may need, and
outline the job control language you must use to execute your
programs under OS/VS.

USING LOAD MODULE DATA SETS--OS/VS

FORTRAN ddname
Ref.
Number

S SYSIN

5 FT05F001

6 FT06FOOl

7 FT07FOO1

0-4 FTnnFnnn
8-99

0-4 FTnnFnnn
8-99

0-4 FTnnFnnn
8-99

If you're using cataloged procedures, or if you're using the
device assignments as shipped by IBM, you must use the DO names
shown in Figure 33.

Function Device Type Usage

Input data set Card Reader, load Module
to load module Magnetic Tape, Input Data

Direct Access

Input data set Card Reader, Load Module
to load module Magnetic Tape, Input Data

Direct Access

Printed output Printer, Load Module
data Magnetic Tape, Output Data

Direct Access

Punched output Card Punch, Load Module
data Magnetic Tape, Output Data

Direct Access

Sequential Unit Record, Program
Data Set Magnetic Tape, Data

Direct Access

Direct Access Direct Access Program
bata Set Data

Partitioned Direct Access Load Module
Data Set Member Input Data
Using Sequential
Access

Figure 33. Load Module Data Sets--OS/VS

130 VS FORTRAN Application Programming: Guide

j

o

Using cataloged Load Hodules--OS/VS

You can execute cataloged load modules using either a STEPlIB DD
or a JOBlIB DO statement.

USING JOBLIB DD :If you specify a JOBlIB OD statement for the
load module, the JOBlIB library is available through all job

. steps of the job.

To ensure that the library remains available, you must specify
the JOBtlB OD statement immediately after the JOB statement.

USING STEPLIB DD :If you specify a STEPlIB DO statement for the
load module, the STEPlIB library is available for only this one
step of the job.

You can place the STEPtlB DO statement anywhere among the DO
statements for this job step.

EXECUTING THE LOAD MODULE--OS/VS

Execute Only--OS/VS

How you execute the load module depends on the kind of job you're
running: execute only, link-edit and execute, or compile
link-edit and execute.

VS FORTRAN supplies you with cataloged procedures that let you
compile, link-edit or load, and/or exe~ute easily. See "Using
and Modi fying Cataloged Procedures-OS/VS" for detai Is.

The job control statements you use are:

I/JOB Statement
I/EXEC statement (load module)
//00 Statements (as required for execution)

(Input Data to be processed)
/*End-of-Data Statement (if input data is on cards)
I/End-of-Job Statement

Link-Edit and Execute--OS/Vs

The job control statements you use are:

IIJOB Statement
IIEXEC Statement (linkage editor)
1/00 Statements (as required for linkage editing)

(link-edit is performed)
I/EXEC Statement (load module)
lIDO Statements (as required for execution)

(Input data to be processed)
I*Statement (if input data is on cards)
//End-of-Job Statement

Compile, Link-Edit, and Execute--os/vs

The job control statements you use are:

IIJOB Statement
IIEXEC Statement (VS FORTRAN Compiler)
lIDO Statements (as required for compilation)

(Source program to be compiled)
I*End-of-Data Statement (if source pr~gram is on cards)
IIEXEC Statement (linkage editor)
lIDO Statements (as required for link-editing)

(link-edit is performed)
/IEXEC Statement (load module)
/100 Statements (as required for load module execution)

(Input data to be processed)

Executing Your Program-Advanced Programming 131

/MEnd-of-Data Statement (if input data is on cards)
//End-of-Job Statement

Reference documentation for these job control statements 1S
given in the VS FORTRAN Application Programming: System Services
Reference Supplement.

EXECUTING YOUR PROGRAH--DOS/VSE

The following sections describe the logical units you may need,
and outline the job control statements you must use to execute
your programs under DOS/VSE.

LO~D MODULE LOGICAL UNITS--DOS/VSE

FORTRAN Logical unit
Ref.
Number

0 SYSOOO

1 SYSOOI

2 SYSOO2

3 SYSOO3

4 SYSOO4

5 SYSIPT
or

SYSIN

6 SYSLST

7 SYSPCH

8 SYSOO5
thru thru

99 SYS096

If you're using cataloged procedures, or if you're using the
logical units as shipped by IBM, you must specify them as shown
1n Figure 34.

DOS File Name Function Device
(primary) Type

IJSYSOO Program Unit record
data set Magnetic tape

Direct access

IJSYSOI Program Unit record
data set Magnetic tape

Direct access

IJSYS02 Program Unit record
data set Magnetic tape

Direct access

IJSYS03 Program Unit record
data set Magnetic tape

Direct access

IJSYS04 Program Magnetic tape
data set Direct access

IJSYSIP Input data set Unit record
to load module Magnetic tape

Direct access

IJYSYLS Punched output Unit record
data Magnetic tape

Direct access

IJSYSPC Printed output Printer
data Magnetic tape

D'i rect access

IJSYS05 Program Unit record
thru data set Nagnetic tape

IJSYS96 Direct access

Note: Units 9 through 99 may be added by reassembling the unit assignment table module
(IFYUATBl). See "Using the VSFORTL Macro" in VS FORTRAN InstallatioQ and
CustomizatioQ.

Figura 34. Load Module Logical Units-DOS/VSE

132 VS FORTRAN Application Programming: Guide

~~
' /

~-

'C

0

EXECUTING THE LOAD MODULE--DOS/VSE

How you execute the load module (or phase) depends on the kind of
job you're running: execute only, link-edit and execute, or
compile link~edit and execute.

Execute Only--DOS/VSE

The job control statements you use are:

1/ JOB Statement

--

II ASSGN Statements (as required for execution)
II EXTENT Statements (as required for execution)
1/ DLBL/TlBL Statements (as required for execution)
II EXEC Statement (load module (or phase»

(Input data to be processed)
1* End-of-Data statement Cif input data ;s on cards)
1& End-of-Job Statement

Link-Edit and Execute--DOS/VSE

The job control statements you use are:

II JOB Statement
II OPTION LINK (sets link option)

II

II
II
II

1/
II
II
II

1*
1&

or
OPTION CATAL (sets link option and catalogs phase)

INCLUDE Statements (as required for linkage editing)
ASSGN Statements (as required for linkage editing)
DlBL/TLBL Statements (as required for linkage editing)
EXEC Statement (linkage editor)
(Linkage editor execution)
ASSGN statements (as required for execution)
DlBL/TLBL Statements (as required for execution)
EXTENT Statements (as required for execution)
EXEC Statement (load module)
(Input data to be processed)
End-of-Data Statement (if input data is on cards)
End-of-Job Statement

Note: Unless you specify OPTION CATAt, the phase ;s deleted from
the core image library after execution is completed.

Compile, Link-Edit, and Execute--DOS/VSE

The job control statements you use are:

II JOB statement
II OPTION LINK (sets link option)

or
II OPTION CATAt (sets link option and catalogs phase)
II EXEC Statement (VS FORTRAN Compiler)

(VS FORTRAN source program)
1* statement (if source program is on cards)
II ASSGN Statements (as required for linkage editing)
II DLBl/TLBl Statements (as required for linkage editing)
II EXEC Statement (linkage editor)

(Linkage Editor execution)
II ASSGN Statements (as required for execution)
II DlBl/TlBL Statements (as required for execution)
II EXTENT Statements (as required for execution)
II EXEC Statement (load module)

(Input Data to be processed)
1* End-of-Data statement Cif input data is on cards)
1& End-of-Job Statement

Note: Unless you specify OPTION CATAl, the phase is deleted from
the core image library after execution is completed.

Executing Your Program--Advanced Programming 133

Reference documentation for these job control statements is
given in the VS FORTRAN Agplication Programming: System Services
Reference Supplement.

LOAD MODULE EXECUTION-TIME OUTPUT

The output that execution of your load module gives you depends
upon whether or not there are errors in your program.

EXECUTION WITHOUT ERROR

If your program executes without error, and gives the results you
expect, your task of program development is completed.

EXECUTION WITH ERRORS

When your program has errors in it, your execution-time output
may be incorrect, or nonexistent.

You mayor may not get error messages as well. Any VS FORTRAN
e~ecution-time error messages you get come from the VS FORTRAN
Library. These messages are in a format similar to the compile~
message format (see "library Diagnostic Messages").

If you get output from the program itself, it may be exactly what
you expected, or Cif there are logic errors in the program) it
may be output you didn't expect at all.

When this happens, you must proceed to the next step in program
development, described in "Fixing Execution-Time
Errors-Advanced Programming."

134 VS FORTRAN Application Programming: Guide

o

i ' 10 \ ' '"

FIXING EXECUTION-TIHE ERRORS--ADVANCED PROGRAMMIttG

You can begin to fix execution-time errors by scanning the source
pr~gram for the kinds of errors described in "Fixing
Execution-Time Errors--Simplified Programming" in Part 1.

However, some execution-time errors are difficult to find and a
simple scan of the source program isn't always very helpful. VS
FORTRAN has a number of features to help you find errors. The
major ones are described in the following sections.

EXECUTION-TIME MESSAGES

Execution-time messages are issued by the execution-time
library. There are three types of messages issued:

Library Diagnostic Hessages--which give information about
errors occurring when the library subroutines are
executed--for example, input/output or mathematical
subroutine errors

Program Interrupt Hessages--which give information about
errors that occur when system rules are violated

operator Messages--which communicate with the operator when
program execution makes it necessary (for example, when a
PAUSE statement is executed)

LIBRARY DIAGNOSTIC MESSAGES

The library diagnostic messages have a format similar to that of
the compiler messages. The library messages give you information
on execution of input/output routines, mathematical subroutines,
and the utility routines.

The messages all have the prefix IFYi they are in the following
format:

IFYnnnnI origin 'message text'

where each of the areas has the following meaning:

IFY is the message prefix identifying all VS FORTRAN
library messages

nnnnI is the unique number identifying this message

origin is the abbreviated name for the library module
that originated the message.

'message-text' explains the execution-time error that was
detected.

The action the program takes after a message is issued depends
upon your extended error handling routines. For further
information, see "Using Extended Error Handling."

The execution-time messages are documented in the VS FORTRAN
Application Programming: library Reference manual.

Using the optional Traceback Hap

Whenever you get a library diagnostic message, you can also,
optionally, get a traceback map.

Fixing Execution-Time Errors--Advanced Programming 135

Your organization may have set this as the default you get
whenever a library message.is generated.

If this is not the default for your organization, you can request
a traceback map, using the CAll ERRTRA routine. See "Using the
Optional Traceback Map" for a further discussion.

The traceback map gi ves you gu i dance ; n det erm in i ng where the
error occurred.

The traceback map lists the names of called routines, internal
sequence numbers within routfnes, and contents of registers as
follows:

ROUTINE
lists the names of all routines entered in the current
calling sequence.

Names are shown with the latest routine called at the top
and the earliest routine called at the bottom of the listing
except when the earliest name shown is VSCOM.

CALLED FRON ISN
lists the FORTRAN program's internal sequence number (ISN)
that called the routine, except when calls were made to
VSCOM.

Internal statement numbers are available to the traceback
routine only if you specified the GOSTMT compiler option.

REG. 14
lists the absolute storage location of the instruction that
call s ROUT INE.

REG. 15
lists the absolute location of the entry point to ROUTINE.

REG. 0
lists the results of function subprogram operations, when
applicable.

REG. 1
lists the address of any argument list passed to ROUTINE.

ENTRY POIHT=address
shows the entry point of the earliest routine entered.

The control program executes its own routine to recover from the
error, and displays the following message:

STANDARD FIXUP TAKEN, EXECUTION CONTINUING

If your organization uses its own error recovery routine, the
word USER replaces STANDARD in this message.

After the error recovery, execution continues.

The summary of errors printed at the end of the listing can help
you determine how many times an error was encountered. If your
source program contains many input/output statements, locating
an error can become a formidable task. By pinpointing the exact
FORTRAH statement involved, the traceback map makes it much
easier for you to locate execution errors.

If you specify the GOSTMT compiler option, the traceback map
lists the internal sequence number (ISN) calling each routine.
Using the ISN, you can locate the source statement and module
called. .

136 VS FORTRAN Application Programming: Guide

.,

/', !
(\. ."

V'

o

Ie ... \ ;

(0

LIST Compiler Option and Traceback Haps

If you specify the LIST compiler option, you can use the
traceback map to locate the last assembler language instruction
executed. See Figure 33 for an example of the object program
listing. The steps to take are:' -

1. For the topmost routine listed under the heading REG.14,
subtract the 6 low-order hexadecimal digits in the number
shown under ENTRY POINT. This produces the relative location
of the instruction in the listing.

2. Find this location in the object code listing.

3. Using this location as a beginning point, scan upward in the
column that identifies statement numbers to locate the
nearest number occurring before the instruction; this is the
statement number of the FORTRAN statement involved in the
error.

4. Investigate the FORTRAN statement in the source module
listing.

S. If the source statement is correctly specified, investigate
the corresponding job control statement for accuracy.

PROGRAM INTERRUPT HESSAGES

During program execution, you'll get messages whenever the
program is interrupted because of the following exceptions:
operation, fixed-point division, decimal division,
floating-point division, exponent overflow, or exponent
underflow.

Program interrupt messages are written in the output data set.
Such an interrupt message gives you guidance in determining the
cause of the error; it indicates what system rule was violated.

Exception codes themselves appear in the eighth digit of the PSW
and indicate the reason for the interruption. Their meanings are
as follows: .

Code

1

ct

5

6

7

9

C

Meaning

is an operation exception, that' is, the operation is not
one that is defined to the operating system.

is a protection exception, that is, an illegal reference
is made to an area of storage protected by a key.

is an addressing exception, that is, a reference is made to
a storage location outside the range of storage available
to the job.

is a specification exception, for example, a unit of
information does not begin on its proper boundary.

is a data exception, that is, the arithmetic sign or the
digits in a number are incorrect for the operation being
performed.

is a fixed-point-divide exception that is, an attempt is
made to divide by zero.

is an expone~t-overflow exception, that is, a
floating-point arithmetic operation produces a positive
number mathematicallY too large to be contained in a
register (the mathematically largest numb~r that can be
contained is 16 63 or approximately 7.2 x 10 75).
Exponent-overflow generates the additional message:

Fixing Execution-Time Errors-Advanced Programming 137

OPERATOR MESSAGES

REGISTER CONTAINE~ number

where number is the floating-point number in .hexadecimal
format. (When extended-pre~ision is in use, the message
prints out the contents of two registers.) A standard
corrective action is taken and execution continues.

D indicates an exponent-underflow exception, that is, a
floating-point arithmetic operation generates a number
with a negative ex~onent mathematically too small to be
contained in a register (mathematically smaller than 16-65

or approximately 5.4 x 10-79). Exponent-underflow also
generates the message:

REGISTER CONTAINED number

where number is the number generated.

(When extended-precision is in use, the message prints out
the contents of two registers.) A standard corrective
action is taken and execution continues.

F is a floating-point-divide exception, that is, an attempt
is being made to divide by zero in a floating-point
operation. Floating-point divide also generates the
message:

REGISTER CONTAINED number

(When extended-precision is In use, the message prints out
the contents of two registers.) A standard corrective
action is taken and execution continues.

The standard corrective action for each type of interrupt is
descr i bed in the "Program Interrupt Messages" sect i on of the VS
FORTRAN Application Programming: library Reference manual.

Notes:

1. Operation, protection, addressing, and data exceptions
(codes I, 4, 5,'and 7) ordinarily cause abnormal termination
without any corresponding message.

2. Protection and addressing exceptions (codes 4 and 5)
generate a message only if a specification exception (code
6) or an operation exception (code 1) has also been detected.

3. A data exception (code 7) generates a message only if a
specification exception has also been detected. When a
message is generated for codes 4, 5, or 7, thej ob wi 11
terminate.

The completion code in the dump indicates that job
termination is due to a specification or operation
exception; however, the error message indicates the true
exception that caused the termlnation.

Operator messages are generated when your program executes a
PAUSE or STOP n statement. Operator messages are written on the
system device specified for operator communication, usually the
console. The message can guide y~u in determining how far your
FORTRAN program has executed~

Figura 35 shows the,form that the operator message may take.

138 VS fORTRAN Application Programmin~:Guid&

(... o

o

o

yy n I 'message'

Figure 35. Operator Message Format

USING DEBUG PACKETS

The meaning of the lowercase characters in the figure is as
follows:

Character Meaning

yy

n

message identification number assigned by the system.

string of 1 through 5 decimal digits you specified in
the PAUSE or STOP statement. For the STOP statement,
this number is placed in register 15.

'message' character constant you specified in the PAUSE or STOP
statement.

o printed when a PAUSE statement containing no
characters ;s executed. (Nothing is printed for a
similar STOP statement.)

A PAUSE message causes program execution to halt, pending
operator response. To resume program execution, the operator
issues the command:

REP L Y yy, 'z'.
where yy ;s the message identification number and z ;s any letter
Qr number.

A STOP message causes program termination.

IBM EXTENSION

A debug packet helps you locate obscure sources of error in
your source program. It consists of the DEBUG statement, a set
of FORTRAN statements, and an END DEBUG statement. The DEBUG
statement and debug packets, when used, must be the first
statements in your program.

In debugging packets you can use the following statements:

DEBUG

AT

specifies the debugging options you want performed, which
can be:

• Check the valid~ty of array subscripts.

• Trace the order of execut i on of all or part of the
program.

• Display array or variable values each time they
change during program execution.

specifies the ~tatement number before which the debugging
packet ;s to be executed.

The AT statement begins each new debugging packet in the
program and ends the prev i ous one.

Fixing Execution-Time Errors-Advanced Programming 139

TRACE ON I TRACE OFF c

begin or end program execution tracing.

DISPLAY
writes a list of variable or array values that you
specify.

END DEBUG
ends the last debugging packet specified.

In addition to these specific debugging statements (valid only
in a debugging packet) you can also use most FORTRAN procedural
statements to gather information about what's happening during
execution.

When you specify a debugging packet, you'll get information
about program execution in a form that's easy to understand and
easy to use. Figure 36 shows how you can use VS FORTRAN
debugging statements. C

If you use a debugging packet in your source program and
compile it using OPTIMIZE(1), OPTIMIZE(2), or OPTIMIZE(3), the
compiler changes the optimization parameter to NOOPTIMIZE.

---------- END OF IBM EXTENSION ---------....

USING EXTENDED ERROR HANDLING

Extended error handling can be either by default or you can
control it, using predefined CAll statements.

EXTENDED ERROR HANDLING BY DEFAULT

Your organization has a default value for the following
execution-time conditions:

• The number of times an error can occur before the program i s
terminated.

• The maximum number of times an execution-time message is
printed.

• Whether or not a traceback map is to be printed with the
message.

• Whether or not your organiation's error-exit routine is to
be called.

These are the extended error handling facilities that may be
available to you.

When extended error handling by default is in effect for your
organization, the following actions take place when an error
occurs.

The FORTRAN errorCmonitor (ERRMON) receives control.

The error monitor prints the necessary diagnostic and
informative messages:

• A short message, along with an error identification number.

•

The data in error (or some other associated information) is
printed as part of the message text.

For a complete listing of execution-time messages, see the
VS FORTRAN Application Programming: library Reference
manual.

A summary error count, printed when the job is completed.

140 VS FORTRAN Application Programming: Guide

) 0/

c)

o

o

o

•

The error count, telling you how many times each error
occurred.

A traceback map, tracing the subroutine flow back to the main
program, after each error occurrence.

Then the error monitor takes one of the following actions:

• Terminates the job.

• Returns control to the calling routine, which takes a
standard corrective action and then continues execution.

• Calls a user-written closed subroutine to correct the data
in error and then returns to the routine that detected the
error, which then continues execution.

Program Code with A Debugging Packet:

A DEBUG SUBCHK(ARRAY1), TRACE, INITCARRAY1)
B AT 10
C TRACE ON
D (procedural code for debugging)
E AT 40
F TRACE OFF
G DISPLAY I, J, K, L, M, N, ARRAY1
H END DEBUG

10

30
40

DO ...

CONTINUE

(program tracing begins here; procedural debugging
code executed)

WRITE •.. (program tracing ends here; values of I, J, K, l,
M, N, and ARRAY1 are displayed)

How Each Debugging statement is Used:

A The DEBUG statement begins the first debugging packet and specifies the following:

• SUBCHKCARRAY1) requests validity checking for the values of ARRAY1 subscripts

• TRACE specifies that tracing will be allowed within the debugging packet

• INITCARRAY1) specifies that ARRAY1 will be displayed when values within it
change

B AT 10 begins the first debugging packet.

C TRACE ON turns on program tracing at statement number 10.

D (Procedural debugging code contains valid FORTRAN statements to aid in debugging;
for example, to initialize variables.>

E AT 40 ends the first debugging packet and begins the second.

F TRACE OFF turns off program tracing at statement number 40.

G The DISPLAY statement writes the values of I, J, K, l, M, N, and ARRAY1.

H END DEBUG ends the second (and last) debugging packet.

Figure 36. Using Batch Symbolic Debugging Statements

The actions of tne error monitor are controlled by settings in
the option table. IBM provides a standard set of option table

Fixing Execution-Time Errors--Advanced Programming 141

entries; your system administrator may have provided additional
~ntries for your organization.

By altering the option table at execution-time, through ERRSET,
you can specify the user exit to be taken.

If no corrective action, either standard or user-written, is to
be taken, make sure the table entry specifies that only one error
is to be allowed before an abnormal termination.

To make changes to the option table dynamically at load module
execution-time, you can use the predefined CAll subroutines,
summarized in the next section.

CONTROLLING EXTENDED ERROR HAtmLING-CALL STATEMENTS

For each error condition detected, you have both dynamic and
default control over:

• The number of times the error is allowed to occur before
program termination

• The maximum number of times each message may be printed

• Whether or not the traceback map is to be pr i nted wi th the
message

• Whether or not a user-written error-exit routine is to be
called

The action that takes place is governed by information stored in
the option table, which is present in main storage. (A permanent
copy of the option table ;s maintained in the FORTRAN library.)

Reference documentation for using the option table is given in
the VS FORTRAN Application Programming: language Reference
manual.

The predefined CAll routines let you request extended error
handling, so that you get greater control over load module
errors:

• CALL ERRMON--causes execution of the error control monitor.

• CALL ERRTRA--causes execution of the traceback routines.
(See "Using the Optional Traceback Map.")

• CALL ERRSAV--copies an option table entry into an area
accessible to your program.

• CALL ERRSTR--stores an entry into the option table from your
program.

• CALL ERRSET-changes up to 5 values associated wi th an entry
in the option table.

When you're using these routines, specify them as follows:

1. Issue CAll ERRMON to make the error handling facilities
available.

2. Issue CAll ERRSAV to make an entry accessible to your
program.

3. Issue CAll ERRSET to change the options in the entry (for
example, to change the number of errors allowed before
termination).

4. Issue CALL ERRSTR to store the ~hanged entry back into th~
option table.

142 VS FORTRAN Application Programming: Guide

o

When you're planning to use these routines, be sure to consult
your system administrator for options and values you can
specify.

When you're setting option table entries, don't allow more than
255 occurrences of any error; infinite program looping can
result. -

The changes you make through these CAL L rout i nes are in effect
only during your own program's execution.

These routines are described in "Using The Execution-Time
Library."

For reference documentation about these predefined CALL
routines, see the VS FORTRAN Application Programming: Language
Reference manual.

Extended Error Handling--DOS/VSE considerations

Under DOS/VSE, when you're using any of the extended error
handling routines, or any of the service routines, you must
identify the routine by its library module name through a linkage
editor INCLUDE statement. Names you can use are shown in
Figure 37.

VS FORTRAN
Source t~ame

ERRMON
ERRSAV
ERRSET
ERRSTR
ERRTRA

DVCHK
DU~lP/PDUMP
CDUMP /CPDU~lP
EXIT
OPSYS
OVERFL

VS FORTRAN
L; braryt~ame

IFYVMOPT
I FYVr·l0PT
IFYVMOPT
IFYVMOPT
IFYVMOPT

IFYDVCHK
IFYVDUMP
IFYVDUMP
IFYVEXIT
IFYOPSYS
IFYVOVER

Figure 37. Library Names for DOS/VSE Error Handling and Service
Routines

p-BJECT MODULE LISTING--LIST OPTION

The object module listing is useful when you can't discover any
syntax errors in your VS FORTRAN source statements, and yet they
aren't doing what you expected. The object module listing shows
you (in pseudo-assembler format) the machine code the compiler
generated from your source statements. A careful examination of
this can often give,You an idea of L·,hat's wrong with your source.

The object module listing is especially useful when you're
compi ling and execut i ng usi ng one of the OPTIMIZE compi ler
options. Further details are given in "Using the Optimization
Feature."

~ou request an object module listing by spec~fying the LIST
option.

The object module listing is in pseudo-assembler language format
showing each assembler language instruction and data item, as
shown in Figure 38.

Fixing Execution-Time Errors--Advanced Programming 143

Each line of the listing is formatted (from left to right) as
follows: .

• A 6-d i gi t number shows the relat i ve address of the
instruction or data item, in hexadecimal format.

• The next area gi ves the storage representati on of the
instruction or initialized data item, in hexadecimal format.

• The next area (not always present) gi ves names and statement
labels, which may be either those appearing in the source
program or those generated by the compiler
(compiler-generated labels are in the form nn nnn nnnnnnn).

• The next area gives the pseudo-assembler language format for
each statement.

• The last area gives the source program items referred to by
the instruction, such as entry points of subprograms,
variabie names, or other statement labels.

The object module listing contains sections in the following
order:

1. Entry code

2. Format statements

3. Temporary storage for fix/float

4. Constants

5. Variables in COMMON areas

6. Other variables

7. Address constants for ASSIGNED FORMAT statements, COMMON
areas, and external references

8. NAMElIST dictionaries

9. Program code

10. Prolog and epi log code

11. Address constants for prologs, the save area, epilogs, and
parameter lists

12. Temporary storage areas and generated constants

13. Address constants for block labels

At the end of the listing, you'll find compiler statistics:

• The name of the source program

• The number of statements compi led

• The size of the generated object module (in bytes)

• The number 0 ferro r /messages, listed by sever i ty, produced
during this compilation

144 VS FORTRAN Application Programming: Guide

(0

\0

ENTRY CODE
000000
000004
000005
OOOOOC
000012
000016
OOOOlA
OOOOlE
000022

47FO F012
- 06

D4CIC9D5404040
F8F14BFIFIF2
90EC DOOC-
9823 F028
5030 D008
50DO 3004
07F2

FORMAT STATEMENTS
000030 021AOCFID6E4E3D7
000038 E4E340C6D6D94030
000040 000E060EOAOA070C
000048 OF0704020A14101C
000050 22

MAIN

111

BC
DC
DC
DC
STM
LM
ST
ST
BCR

DC
DC
DC
DC
DC

15,18(0,15)
XL1'06'
CL7'MAIN
CL6' 81.112-'
14,12,12(13)
2,3,40(15)
3,8(13)
13,4(0,3)
15,2

CL8' lOUTP'
CL8'UT FOR '
CL8'
CL8'
CLl' ,

Flgure 38 (Part 1 of 4). Object Module Listing Example--LIST Compiler Option

Fixing Execution-Time Errors--Advanced Programming 145

TEMPORARY FOR FIX/FLOAT
0)

OOOOCO 0000000000000000 DC XL8'00000OOOOOOOOOOO'
OOOOCS 4EOOOOOOOOOOOOOO DC XlS'4EOOOOOOOOOOOOOO'

CONSTANTS
-OOOODO 4F08000000000000 DC XL8'4F0800000000000~'
0000D8 4EOOOOO080000000 DC Xl8'4EOOOOOO80000000'
OOOOEO 413243F6A791A9El PI DC XL8'413243F6A791A9EI'
0000E8 4130000000000000 DC XL8'4130000000000000'
OOOOFO 00000000 DC XL4'000OOOOO'
OOOOFO 00000000 DC XL4'OOOOOOOO'
0000F4 00000000 DC XL4'000000OO'
0000F8 00000001 DC XL4'000OOOOl'
OOOOFC OOOOOOOE DC XL4'000000OE'
000100 00000004 DC XL4'00000004'
000104 00000007 DC XL4'00000007'
000108 00000008 DC XL4'00OOOO08'
00010C 00000020 DC XL4'00000020'
000110 00000080 DC XL4'00000080'
000114 OOOOOOAO DC XL4'000000AO'
000118 00000000 DC XL4'OOOOOOOO'
00011C 3E2DEOOD DC XL4'3E2DEOOD' (REAL)
000120 3E89A027 DC Xl4'3E89A027' (IMAG)
000124 00000019 DC Xl4'OOOOOO19'
000128 00000006 DC Xl4'00000006'

VARIABLES IN 'COMI ' COMMON.
000000 NO INITIAL DATA R4A DS 11F (ARRAY)
000004 NO INITIAL DATA R8A DS 70 (ARRAY)
OOOOOC NO INITIAL DATA C32 OS 80D (ARRAY)
00002C NO INITIAL DATA C8A OS F (REAL)
000030 NO INITIAL DATA OS F (IMAG)

VARIABLES IN 'COM2 ' CONMON. 0) FFFFF8 NO INITIAL DATA 12 OS 3F (ARRAY)
000000 NO INITIAL DATA Ll DS X
000001 NO INITIAL DATA C8B DS F (REAL)
000005 NO INITIAL DATA OS F (IMAG)

VARIABLES
000130 NO INITIAL DATA R8V DS D
000138 NO INITIAL DATA I DS F
00013C NO INITIAL DATA J DS F
000140 NO INITIAL DATA Al DS F
000144 413243F4 A2 DC XL4'413243F4'
000148 E2C8C1D9C540D7D9 CHAR14 DC Cl8'SHARE PR'
000150 D6C7D9CID440 DC Cl6'OGRAM '

ADCONS FOR ASSIGNED FORMAT STATEMENTS
000158 00000030 DC Al4'00000030'

ADCONS FOR COMMONS
00015C 00000000 DC AL4'00OOOOOO' COMI
000160 FFFFFFFC DC Al4'FFFFFFFC' COM1
000164 FFFFFF6C DC Al4'FFFFFF6C' COM!
000168 00000000 DC AL4'00000000' COM2
00016C FFFFFFF4 DC Al4'FFFFFFF4' COf12

ADCONS FOR EXTERNAL REFERENCES
000170 00000000 DC AL4'00000000' CXSUB (SUBR)
000174 00000000 DC AL4'00000000' VSCOMI (SUBR)
000178 00000000 DC AL4'00000000' VSERHI (SUBR)

Figure 38 (Part 2 of 4). Object Module Listing Example--LIST Compiler Option

0)

146 VS FORTRAN Applicati'on Programming: Guide·

(

\0
PROGRAM CODE

OOOlCC 5800 0104 01 000 00001 L 0,260(0,13) 111
000100 5000 DOE8 ST 0,232(0,13) J
0001D4 5870 DI0C L 7,268(0,13-)
000108 6800 7010 LD 0,16(0,7) R8A
0001DC 6000 D12C STD 0,300(0,13) .501
0001EO 6800 D07C LD 0,124(0,13) 4F080000

00000000
0001E4 7800 DOFO LE 0,240(0,13) A2
000lE8 6AOO D12C AD 0,300(0,13) .SOl
0001EC 6COO D094 MD 0,148(0,13) 4130 ... 0
0001FO 7000 DOEC STE 0,236(0,13) Al
0001F4 7900 DOC4 CE 0,196(0,13) 0
000lF8 5850 D170 L 5,368(0,13) 200
OOOlFC 0785 BCR 8,5
0001FE 7800 DOFO 01 000 00019 LE 0,240(0,13) A2
000202 7900 DOC4 CE 0,196(0,13) 0
000206 5850 D170 L 5,368(0,13) 200
00020A 0785 BCR 8,5
00020C 5800 DOA4 01 000 00020 L 0,164(0,13) 1
000210 5000 DOE4 ST 0,228(0,13) I
000214 5870 D114 02 001 00020 L 7,276(0,13)
000218 1BOO SR 0,0
00021A 4300 7000 IC 0,0(0,7) Ll
00021E 1B55 SR 5,5
000220 5860 0164 L 6,356(0,13) 100
000224 8705 6000 BXLE 0,5,0(6)
000228 5860 DOE4 01 000 00022 L 6,228(0,13) I
00022C 8960 0003 SLL 6,3
000230 6800 DODC LD 0,220(0,13) R8V
000234 5870 DI0C L 7,268(0,13)
000238 6A06 7000 AD 0,0(6,7) R8A

,0 00023C 6000 D12C STD 0,200(0,13) .501
000240 2BOO SDR 0,0
000242 6000 Di34 STD 0.308(0,13) .503

0002D2 45EO F004 BAL 14,4(0,15)
0002D6 20000000 DC XL4'20000000'
0002DA 00000128 DC XL4'OOOOO128'
0002DE 0000013C DC XL4'OOOOO13C'
0002E2 45EO F008 BAL 14,8(0,15)
0002E6 OAOODOF4 DC AL4'OAOODOF4' CHAR14
0002EA OOOOOOFC DC AL4'000000FC' 14
0002EE 45EO FOOC BAL 14,12(0,15)
0002F2 00000004 DC AL4'00000004' R8A
P-002F6 06000007 DC XL4'06000007'
0002FA 45EO F008 BAL 14,8(0,15)
0002FE 0700DOEC DC AL4'0700DOEC' Al
000302 45EO FOOC BAC' 14,12(0,15)
000306 OOOOOOOC DC AL4'0000000C' C32
00030A OEOO()014 DC XL4'OEOOOOI4'
00030E 4SEO F010 BAL 14,16(0,15)
000312 58FO D120 30() L 15,288(0,13) VSCOMI
000316 45EO F038 BAL 14,56(0,15)
00031A 07 DC XL1'07'
00031B E3C8C540C5D5C4 DC XL7'E3C8C540C5D5C4'
000322 58FO D120 L 15,288(0,13) V5COM#
000326 45EO F034 BAL 14,52(0,15)
00032A 05 DC XL1'05'
00032B 40404040FO DC XL5'40404040FO'

Figure 38 (Part 3 of 4). Object Module Listing Example--lIST Compiler Option

Fixing Execution-Time Errors--Advanced Programming 147

)

EPILOGUE CODE
0/

000330 58FO D120 L 15,288(0,13) VSCOMI
000334 45EO F034 BAl 14,52(0,15)
000328 05 DC ClI' ,
000339 40404040FO DC CL5' 0'

PROLOGUE CODE
000340 58FO 3120 L 15,288(0,3) VSCOM.
000344 45EO F040 BAL 14,64(0,15)
000348 1803 lR 13,3
00034A 58FO 0150 L 15,336(0,13)
00034E 07FF BCR 15,15

ADCON FOR PROLOGUE
000028 00000340 DC Xl4'00OO0340'

ADCON FOR SAVE AREA
00002C 00000054 DC XL4'00OOO054'

ADCON FOR EPILOGUE
000054 00000330 DC Xl4'00OO0330'

ADCONS FOR BRANCH TABLES
OOOOAO 000002C4 DC XL4'000002C4'
0000A4 00000312 DC Xl4'00000312'

ADCONS FOR PARAMETER LISTS
OOOOAC 00000130 DC AL4'00000130' RaV
OOOOBO 00000140 DC AL4'00000140' At
0000B4 800000EO DC AL4'800000EO' 413243F6

A791A9EI
0000B8 80000124 DC AL4'80000124' 25)

TEMPORARIES AND GENERATED CONSTANTS . (''1.;
00017C 00000000 DC XL4'00OOOOOO'

~.

000180 00000000 DC XL4'00000000'
000184 00000000 DC XL4'00OOOOOO'
000188 00000000 DC XL4'00000000'
00018C 00000000 DC XL4'00OOOOOO'
000190 00000000 DC XL4'00000000'
000194 00000000 DC XL4'00000000'
000198 00000000 DC XL4'00000000'
00019C 00000000 DC XL4'00000000'
OOOIAO 00000000 DC XL4'00000000'

ADCONS FOR 8 BLOCK LABELS
000lA4 OOOOOICC DC Xl4'000001CC'
OOOlA8 OOOOOlFE DC XL4'00OOOlFE'
OOOlAC 0000020C DC XL4'0000020C'
000180 00000214 DC XL4'00000214'
000184 00000228 DC XL4'0000022S'
0001B8 00000292 DC Xl4'00000292'
OOOIBC 000002AS DC Xl4'OOOO02AS'
OOOICO 000002C4 DC Xl4'000002C4'
0001C4 000002CE DC Xl4'000002CE'
0001CS 00000312 DC XL4'00000312'

Figure 3S (Part 4 of 4). Object Module listing Example--lIST Compiler Option

0)

148 VS FORTRAN Application Programming: Guide

o

o

lO

REQUESTING DUMPS

You can request dynamic dumps of specific a~eas of storage during
program execution, using the FORTRAN dump subprograms.

REQUESTING DYNAMIC DUI1PS-CALL STATEMENT

Four VS FORTRAN predefined CALL routines let you request a
dynamic dump of selected areas of storage during program
execution:

• CAll PDUMP-dumps the requested areas and allONS processi ng
to continue

• CALL DUMP--dumps the requested areas and terminates
processing

• CALL CPDUMP--dumps the requested character storage areas and
allows processing to continue

• CALL CDUMP--dumps the requested character storage areas and
terminates processing

When you use the DUMP and PDUMP subprograms, you specify as
parameters:

• The variables delimiting the area to be dumped

• A code specifying the format in which the items are to be
dumped

For example, if you wanted to dump one item and continue
processing, you could specify:

CALL PDUMP CA,A,S)

which would dump the variable A in real format (the code 5
specifies real format).

You can also dump an entire range of items in storage:

CALL DUMP (A,M,O)

which would dump every item in storage, beginning with variable A
and continuing through variable M, in hexadecimal format (the
code 0 specifies hexadecimal format). Processing would then be
terminated.

When you're using CDUMP ~nd CPDUMP, the output is always in
character format. Therefore, you speci fy only the del i mi ti ng
variables in the CALL statement. For example, to dump a range of
character variables from character variable Cl to character
variable C19, specify:

CALL CDUMP (Cl,C19) (and execution terminates)

or

CAll CPDUMP (Cl,C19) (and execution continues)

For reference documentation about these routines, see the VS
FORTRAN Application Programming: language Reference manual.

Dynamic Dumps--DOS/VSE Considerations

Under DOS/VSE, when you're requesting a dynamic dump, you must
also specify its library name with a FORTRAN or a linkage editor
INCLUDE statement. Figure 37 gives the names to specify.

Fixing Execution-Time Errors--Advanced Programming 149

REQUESTING AN ABNORMAL TERHINATION DUMP

How you request an abnormal termination dump depends on the
system you're using.

Information on interpreting dumps is found in the appropriate
debugging guide, as listed in the Preface.

Requesting a DU~P--OS/VS

Under OS/VSl, 'program interrupts causi ng abnormal termi nat ion
produce a dump, called an indicative dump, which displays the
completion code and the contents of registers and system control
fields.

To display the contents of main storage as well, you must request
an abnormal termination (ABEND) dump by including a SYSUDUMP DD
c;.+-~+-on,on+- ; n +-ho ~nn,..nn,..; ~ +-0 ;nh c;.+-on Tho ofn 1 1 nr.r; nn ov~mn 10
~h~~;"'h~'~ the -~'tat~~~~t' ~;yb;~;p;~ifi ed' 'fo~ -iBM:'~~'ppi'i;d"'--
cataloged procedures:

//GO.SYSUDUMP DD SYSOUT=A

To specify a dump under MVS, you should include a SYSUDUMP DO
statement.

Requesting a Du~p--DOS/VSE

Under DOS/VSE, to request a dump you can specify:

// OPTION PARTDUMP

This provides a dump of the partition storage, the registers, and
the areas of the supervisor control blocks that relate to this
partition.

150 VS FORTRAN Application Programming: Guida

0)

0)

o

(.. 0' , ,

PART 3--FORTRAN SPECIAL FEATURES

This part gives you guidance information on using the following
VS FORTRAN special features:

• "Programming Input and Output"

• "Coding Calling and Called Programs"

• "Using the Optimization Feature"

• "Using The Execution-Time library"

• "Using VM/370-CMS with VS FORTRAN"

• "Using OS/VS2-TSO with VS FORTRAN"

PROGRAMMING INPUT AND OUTPUT

This chapter describes how you use VS FORTRAN to create and
process the following types of files:

• Sequential files on unit record, magnetic tape, and direct
access dev ices

• Direct files on direct access devices

• VSAM files on direct access devices

• Internal files for data conversions to and from the
CHARACTER type

IBM EXTEHSIOH

• Sequential files using list-directed input/output
statements

• Asynchronous files for high-speed sequential input/output

'----------- END OF IBM EXTENSION ------------'

USING VS FORTRAN INPUT/OUTPUT STATEMENTS

For each of these forms of· input/output you can use the VS
FORTRAN input/output statements:

FORMAT statement--specifies the structure of FORTRAN
records.

OPEN statement--connects a file to a FORTAN program.

WRITE statement--transmits a record to an external or
internal unit.

READ statement--retrieves a record from an external or
internal unit.

ENDFIlE statement--l"r; tes an end-of-fi Ie record on an
external sequential file.

BACKSPACE statement--backspaces a sequential file one
record.

REtHND statement--posi ti ons the fi Ie 50 that the next READ
or WRITE statement processes the first record in the file.

CLOSE statement--disconnects a file from a FORTRAN program.

INQUIRE statement--requests information about a file.

IBM EXTENSION

WAIT statement--completes an asynchronous input/output
transmission.

END OF IBM EXTENSION ----------....

USING COMMON OPTIONS FOR INPUT/OUTPUT

For the OPEN, WRITE, READ, EHDFllE, BACKSPACE, and REWIND
statements, there are common options you can specify:

152 VS FORTRAN Application Programming: Guide

co The UNIT Humber
which specifies the I/O unit number of the file to be
processed, which you code as an integer or as a variable
expression.

When you specify the UNIT number as a var~able expression,
you can use one input/output statement to process more than
one file; that is, between one execution of the statement
and the next, you can change the value of the unit number
and thus change the external unit that the statement refers
to.

The I/O status
which, after the input/operation is completed, gives you
the result:

Zero, if no error was detected

Positive, if an error was detected

Negative, at sequential end-of-file

If this is a VSAM file, the VSAM return and reason codes

An Error Routine
which you can use to specify special processing after an
error occurs during execution of the I/O statement.

This lets you code a special routine that's executed when an
error occurs. The routine can obtain information about the
last record processed.

For example, the routine could close any other open files,
and display information useful in debugging, such as
accumulated totals or current values in selected data
items.

Other options are available with specific input/output
statements and with specific file processing techniques.

CONNECTING TO A FILE--OPEN STATEMENT

The OPEN statement connects your program to an external file.
It's required for direct files and VSAM files; for other files,
it's optional. When you specify it, it must be the first
input/output statement executed for the file.

The OPEN statement lets you specify special processing options
for the file.

In addition to the common processing options previously listed,
you can also optionally specify:

The File Status
which lets you specify the file status of this file, as
follows:

HEW for a file that you're creating fo~ the first
time

OLD for a file that already exists

Programming Input and Output 153

SCRATCH for a temporary file to ba ba used during this job
and then erased at the end of the job

U"KNO~JN for a file whose status is not currently known to
the program; it mayor may not currently exist

The External Ftlename
lets you specify the name of the fila you're connecting.

Depending upon the file's status, this option mayor may not
be required. If the STATUS is:

NEW the filename is optional

OLD the filename is optional

SCRATCH the fi lename must not be specified

ur~KHO!4t~ the filename is optional

For CMS, MVS, and VS1, the filename specified in the OPEN
statement is the DO name.

Examp Ie (eMS):

FIlEDEF MYFIlE1 DISK SAMPLE DATA A

OPEN (UNIT=15, FIlE='MYFIlEl', ...)

Example (MVS,VSI):

//MYFIlEl DO DSN=SAMPlE, •..

OPEN (UNIT=15, FIlE='MYFIlEl', ...)

For DOS/VSE, the filename specified is contained in the
DlBl statement.

Examp Ie (DOS):

//DLBl MYFllEl

.
OPEN (UHIT=15, FIlE='MYFIlEl', ...)

The Access M9thod
which lets you specify the access method'for this file:
SEQUENTIAL or DIRECT.

SEQUENTIAL files are always assumed; therefore for these
types of files, spacifying the access option is not
required. However, specifying it is useful for
documentation.

For DIRECT files, you must specify the access method. A
direct file must always exist before it is opened. The OPEN
itself neither allocate~ the file nor initializes it with
skeleton records if the file is new.

How Blanks are Treated
lets you specify how blanks in numeric fields of an input
record are to be treated:

NULL blanks are ignored

ZERO any blanks that aren't leadi ng blanks are treated
as zeros

154 VS FORTRAN Application Programming! Guide

o

o

The Formatting
lets you specify whether this file is connected for
FORMATTED or for UNFORMATTED input/output.

The Record Length
lets you specify the logical record lengt~ of a direct file.

If you ~pecify FORMATTED I/O, this length is the number of
characters (bytes) in the record~

If you specify UNFORMATTED I/O, the length is the number of
bytes in the record.

For example, if the record contains two character items,
each 10 characters long, and 2 double precision items, the
length of the record is 36 bytes:

10 bytes each (20 bytes total) for the two character
items

8 bytes each (16 bytes total) for the two double
precision items

Reference documentation for the OPEN statement is given in VS
FORTRAN Application Programming: language Reference.

CREATING FILE RECORDS--WRITE STATEMENT

You can use the WRITE statement for two different purposes:

1. To transfer data items from internal storage to a record in
an external file

2. For internal files, to transfer a number of data items (each
of which may have a different data type) into one character
item

The form of WRITE statement you specify depends upon the access
you're using. See the descriptions, later in this chapter, of
each type of access.

With the WRITE statement, you can specify any of the common
processing options previously described.

Reference documentation for the WRITE statement is given in the
VS FORTRAN Application Programming: Language Reference manual.

RETRIEVING FILE RECORDS--READ STATEMENT

You use the READ statement in two different ways:

1. To transfer a record from an external file to data items in
internal storage

2. For internal files, to transfer one character item into a
number of data items, each of which may have a different data
type

The form of READ statement you specify depends upon the access
you're using. See the descriptions, later in this chapter, of
each type of access. .

With the READ statement, you can specify any of the common
processing options previously described.

Reference documentation for the READ statement is given in the VS
FORTRAN Application Programming: Language Reference manual.

Programming Input and Output 155

OBTAINING FILE INFORMATJON--INQUIRE STATEMENT

You use the INQUIRE statement to gather information about an
external sequential or direct file, or about a particular
external unit. Your program can then take alternative actions,
depending upon the information provided.

The INQUIRE statement is never required in a program, and you can
execute it whether or not the file or unit is currently connected
with your program.

You can ask for information about either a file or a unit number;
and you can specify the I/O Status and Error Routine options,
previously described.

In addition, you can request the following information:

• Whether or not the fi Ie or uni t exi sts.

• Whether or not the fi Ie or uni tis connected.

• Get the uni t number of the fi Ie or uni t.

• Whether or not the file has a name.

• The access to this file--sequential or direct.

• If the file can be connected for sequential I/O.

• If the fi Ie can be connected for di rect I/O.

• Whether the file is connected for formatted or for
unformatted 1/0.

• If you can connect the file for formatted I/O.

• If you can connect the file for unformatted I/O.

• The record length, ifthisisa direct access file.

• The number of the next record in the fi Ie, if this is a
direct.access file.

• Whether input blanks are treated as zeros or as null s.

Reference documentation for the INQUIRE statement is given in
the VS FORTRAN Apelication Programming: language Reference
manual.

DISCONNECTING A FILE-CLOSE STATEMENT

You use the CLOSE statement to break the connection between an
external file and a FORTRAN unit.

The CLOSE statement is never required, but it lets you specify
special processing when the connection is broken off.

In addition to the common processing options previously
described, you can also specify whether or not the file still
exists (internally to the FORTRAN program) after the CLOSE
statement is executed.

If you don't explicitly specify that the file is to be deleted,
the file still exists after you've closed it. In this case, you
can subsequently open the file. for updating or retrieval.

If you specify that the file is to be deleted, you can
subsequently open the file only for file creation.

Note: The CLOSE statement does not override what you specify in
the job control statements for the file.

156 VS FORTRAN Application Programming: Guide

0)

r--'\)
~

ell)
'~

o

Reference documentation for the CLOSE statement is given in the
VS FORTRAN Appljcation Programming: language Reference manual.

USING UNFORMATTED AND FORMATTED I/O

For sequential and direct files, you can specffy either of two
forms of READ and WRITE statements: unformatted or formatted.

Unformatted I/O--lets you use a list of FORTRAN data items to
control the transfer of data; the length of the FORTRAN items in
storage controls the amount of data transferred.

Each unformatted READ or WRITE statement processes a record at a
time, transferring the data items without conversion. (This
means the transfer is quicker than when the program must convert
each item as it is processed.)

Formatted I/O--Iets you control input/output by specifying the
format of the FORTRAN records and the form of data fields within
the records.

This form of I/O also lets you convert items from one type to
another during the data transfer. (The conversions cause the
data transfer to be slower than with unformatted input/output.)

In this form of input/output, you specify a FORMAT statement to
be used in conjunction with the READ and WRITE statements. The
FORMAT statement specifies the format of the FORTRAN
records-the recei vi ng fi eid ina WRITE statement and the
sending field in a READ statement.

FORMATTING FORTRAN RECORDS-FORHAT STATEtlENT

'When you're using formatted I/O, the FORMAT statement lets you
specify the format of the FORTRAN records in READ or WRITE
statements. You can place FORMAT statements anywhere between the
first and last statements in your program unit; you must specify
a statement label.

You can use the FORMAT statement with both external and internal
files.

When you use it for external files, you must ensure that the size
of the FORMAT record doesn't exceed the size of the input/output
medium; for example, if you're sending the record to a printer,
it must not be longer than the printer line length. See "Appendix
A. Device Information" for details on external devices.

Each field in the FORTRAN record is described with a FORMAT code
specifying the data type for the field. The order in which you
specify the codes is their order in the record. Some of the codes
available with VS FORTRAN are shown in Figure 39.

Programming Input and Output 157

FORMAT Code Me~nfng

Aw

aAw

paEw.dEe

alw.m

aGu.dEe

/

BN

BZ

S

5P

5S

TLr

TRr

Data Field codes

Character data field (optional length specification)

Character data field (optional repeat count)

Real data field (optional exponent (Ee»

Integer data field (with minimum number of digits to
be displayed (.m»

IBM EXTENSION

IntogQr; rga!; or logical data field (optional
exponent (Ee»

END OF IBM EXTENSION ---------....

Edi t Codes:

End of format control, but only if I/O list is
completely processed

End of record

Nonleading blanks in a numeric field are ignored on
input

Blanks treated as zeros on input

Specifies display of an optionai plus sign

Specifies plus sign must be produced on output

Specifies plus sign is not to be produced on output

Data transfer starts r characters to left

Data transfer starts r characters to right

The lower case letters have the following meanings:

d

e

m

p

r

w

an optional repeat count

number of dec i rna 1 places to be carr i ed .

number of digits in the exponent field

minimum number of digits to be displayed

the number of digits for the scale factor

a character displacement in a record

the total number of characters in a field

Figure 39. Some Codes Used with the FORMAT Statement

158 VS FORTRAN Application Programming: Guide

O
·)

~ _.I .,'

,

o
. .

o

o

For example, if you want to define the format of an output
record, you could specify your FORMAT statement as follows:

200 FORMAT (SP,2AI0,I6.4,2EI4.5E2)

which specifies that the output line is to be f~rmatted as
follows:

SP

2A10

I6.4

specifies that if the value of any of the numeric
fields is positive a plus sign is to be displayed. (If
the value ;s negative, a minus sign is always
displayed.)

specifies that the first and second items are
character items of length 10

specifies that the third item is an integer item of
total length 6, and that when the line is produced the
display is:

(blank)(+ or -)(4 digits)

2E14.SE2 specifies that the fourth and fifth items are real
items of total length 14; the display for each is shown
in Figure 40.

In this example, the minimum total width you can
specify for this field is 12: one character for a
leading blank, seven characters for the numeric field
(including the leading sign and the decimal point),
and four characters for the exponent (including the E
and the sign).

In this example, the length of the record you've defined is 54
characters (bytes).

(3 blanks)(sign)(decimal point)(5 digits)(E)(sign)(2 digits)
I II}

Numeric Field Exponent

(The sign is displayed as a + or a -)

Figure 40. Display for FORMAT E14.5E2

A formatted WRITE statement uses the statement label for this
FORMAT statement and writes a record in this format.

When you execute a formatted READ statement, your program
expects the external data to be in this format.

Reference documentation for the FORMAT statement is given in the
VS FORTRAN Apelication Programming: lanauage Reference manual.

Group FORMAT Specifications

VS FORTRAN lets you specify group specifications nested within
the overall FORMAT specification, by specifying the group within
parentheses. The group can contain a combination of format codes
and groups, each separated by commas, slashes, or colons.

For example, you could specify an input record as follows:

100 FORMAT (BZ,A4,(A8,(I4,E8.4,(E4,E8.21»)

which specifies that the input receiving fields are structured
as follows:

Programming Input and Output 159

BZ specifies that blanks in the input are treated as zeros.

The first field in the'record:

A4

is a character fi eld of length 4.

It is followed by a group field

(A8,(I4,E8.4,(E4,E8.2),),)--

consisting of a character field eight characters long

A8

followed by a group field

(I4,E8.4,(E4,E8.2),)

This nested group field contains yet another nested group
field:

(E4,E8.2)

In the VS FORTRAN FORMAT statement, the limit of two for nesting
group fields has been removed.

Using Specifications Repeatedly--FORMAT Control

Your FORMAT statements need not contain a format specification
for each field in the READ or WRITE I/O list. If the end of the
FORMAT specification list is reached before the last item in the
I/O list is processed, control is returned to the rightmost left
parenthesis in the format list; if there aren't any embedded
parentheses, then control is returned to the first item in the
format list:

10 FORMAT (A4,2(I2,I4),3(I4,14),E4.2)

(Control returns to 3(14,14)

You can take advantage of this VS FORTRAN feature to reduce your
coding effort, but be careful to ensure that the items repeated
are the items you want repeated.

Using One FORHAT Statement with Variable Formats

You can specify variable FORMAT statements, by placing a format
specification into an array during execution. You could read the
specification in from external storage, or you could initialize
the array using a DATA statement or an explicit specification
statement. You can then use the array as the format specification
in READ or WRITE statements.

Using this feature, you can refer to a different array element
each time you execute the READ or WRITE statement, and thus
change the format.

This is an efficient way to use one READ or WRITE statement to
process a file that contains records in many different formats.

This feature (together with a variable unit number) lets you use
a single READ or WRITE stateme~t to process more than one fila.

160 VS FORTRAN Application Programming: Guide

.) o

0)

o

(0

USING SEQUENTIAL FILES

Sequent h'l fi les sre those in whi ch the records are arrsnged and
processed in a serial order. The records sre arranged in the file
in the same order they were created. They csn be retrieved only
in that same order.

You can store sequential files on unit record, magnetic tape, or
di rect access devi ces.

If you concatenate sequential files with differing record
lengths, make certain that the first file is the one with the
longer record length. If you don't, the record lengths of the
files are not compatible.

SO~RCE PROGRAM CONSIDERATIONS

The FORTR~N statements you can use with sequential file
processing are the OPEN, WRITE, READ, ENDFILE, BACKSPACE,
REWIND, and CLOSE statements.

Using the OPEN statement--sequential Files

It's never necessary to specify an OPEN statement with
sequential files, unless the file is a VSAM sequential file.
However, the OPEN statement lets you take advantage of the
special processing it makes available. You can, for example,
speci fy the status of the fi Ie-NEW, OLD, SCRATCH, or UNKHOl.JN
as well as specifying special processing to be performed if the
OPEN statement fails.

If your OPEN statement doesn't specify the formatting, FORMATTED
is assumed.

If you don't specify an OPEN statement, the first READ statement
for the file establishes the file connection.

See "Usi ng Common Opt ions For Input/Output" and "Connect i ng to
a Fi Ie-OPEN Statement" for descri pti ons.f the opti ons you can
use.

Using the WRITE stateme~t--sequentfal Files

You can use either an unformatted or formatted WRITE statement
with a sequential file; for example:

Unformatted:

WRITE (UNIT=10,ERR=300,IOSTAT=INT)A,E,I,O,U
or

WRITE (10,ERR=300,IOSTAT=INT) A,E,I,O,U

Formatted:

WRITE (UNIT=10,FMT=40,ERR=300,IOSTAT=INT) A,E,I,O,U
or

WRITE (10,40,ERR=300,IOSTAT=INT)A,E,I,O,U

where, in this example:

10

40

300

is the unit number of the external file.

is the statem2nt label of the FORMAT statement (used
only with the formatted WRITE statement).

is the statement label of the FORTRAN statement to
which.control ;s to be transferred if an error
occurs.

Programming Input and Output 161

INT i 5 the name of an integer vari able or an array element
into which is placed a positive or zero value
i ndi cat i ng fa i I ure or success of the l~RITE operat ion.

A,E,I,O,U are the names of variables, arrays, array elements,
character substrings, or implied DO lists to be
;ncluded in the output record.

Within main storage, these items need not be
contiguous.

See "Usi ng Common Opti ons For Input/Output" for a descr i pti on of
the options you can use.

Using the READ Statement--Sequential Files

You can use either an unformatted or a formatted READ statement
•• : _ ~;,,' "&.1~. ~"' ... "",,:\""""" !
W, '-II g ~1:""1'-4_"~.g. ... lAC, • .., ... "'W .. ,,.., -

Unformatted:

READ (UHIT=11,ERR=300,IOSTAT=IHT,EHD=200) A,E,I,O,U

or

READ (11,ERR=300,IOSTAT=IHT,EHD=200) A,E,I,O,U

Formatted:

READ (11,FMT=40,ERR=300,IOSTAT=INT,EHD=200) A,E,I,O,U

or

READ (11,40,ERR=300,IOSTAT=IHT,EHD=200) A,E,I,O,U

where, in this example:

11 is the un it number of the externa I f i 1 e.

40 is the statement label of the FORMAT statement (used
only with the formatted READ statement)

300 is the statement label of the FORTRAN statement to
which control is to be transferred if an error occurs

INT i 5 the name of an integer vari able or array element
into which is placed a positive or zero value,
indicating failure or success of the READ operation

200 is the statement label of the FORTRAN statement to
which control is transferred when end-of-file ;s
reached.

A,E,I,O,U are the names of variables, arrays, array elements,
character substrings, or implied DO lists into which
the input record is transferred.

Within main storage, these items need not be
contiguous.

See "Us;ng Common Options For Input/Output" for a description of
the options you can use.

For an unformatted READ statement:

If an external record contains more data than the items in
the list, the excess external data is skipped.

If an external record contains less data than the items in
the list, an error occurs and processing continues.

162 ~s FORTRAN Application Programming: Guide

o j

:.0 \

Usfng the ENDFILE'statement-sequential Files

You can use the ENDFIlE statement to write an end-of-file record
o~ ari eKternal 1ile. The file must be connected when you issue
the statement.

You can use the ENDFIlE statement when you need to write an
end-of-file record for an output file. For example, the
following ENDFIlE statement:

EHDFIlE (UHIT=10,IOSTAT=INT,ERR=300)

or

EHDFIlE (10,IOSTAT=IHT,ERR=300)

performs the following actions:

• Writes an end-of-file record on unit number 10.

• Returns a positive or zero value in INT to indicate failure
or success.

• Transfers control to statement label 300 if an error occurs.

Using the REWIND statement--Sequential Files

You use the REWIND statement to reposition a sequentially
accessed file at its beginning point. The file must be connected
when you execute the statement.

For ~xample, the following REWIND statement:

REWIND (UNIT=11,IOSTAT=INT,ERR=300)

or

REWIND (11,IOSTAT=INT,ERR=300)

performs the following actions:

• Positions the file on unit number 11 to its beginning point.

• Returns a positive or zero value in INT to indicate failure
or success.

• Transfers control to statement label 300 if an error occurs.

Using the BACKSPACE Statement--sequential Files

You use the BACKSPACE statement to reposition a sequentiallY
accessed file to the beginning of the record last processed. The
fi Ie must be connected when you execute the'-statement.

Before your program issues a BACKSPACE statement, it must issue a
READ, WRITE, or REWIND statement, or the BACKSPACE statement is
ignored.

You can use the BACKSPACE statement to check the accuracy of
records your program writes on a magnetic tape file or sequential
direct access file: .

WRITE ..•
BACKSPACE

READ ...

(writes the record to the file)
(positions the file at the beginning
of the record just written)
(retrieves the record for checking)

You tan use the BACKSPAC~ statement to replace a record in a
magnetic tape file or a sequential direct access file:

Programming Input and Output 163

READ •.•
BACKSPACE

WRITE •• ~

(retrieves the record to be replaced)
(positions the file at the beginning
of the record just retrieved)
(writes the new record)

After execution of this WRITE, no records exist in the file
following this record. Any records that did exist are lost.

You can use the I/O common processing options with the BACKSPACE
statement. For example, the following BACKSPACE statement:

BACKSPACE (UNIT=10,IOSTAT=INT,ERR=300)

or

BACKSPACE (10,IOSTAT=INT,ERR=300)

performs the following actions:

• Positions the file on unit number 10 at the beginning of the
record last read or written.

• Returns a positive or zero value in INT to indicate failure
or success.

• Transfers control to statement label 300 if an error occurs.

Using the CLOSE Statement-Sequential Files

You use the CLOSE statement to terminate the connection between
the external file and the unit.

For sequential files, the CLOSE statement is optional; however,
you can use it to specify specific processing actions when you
disconnect from the external file.

See the previous description of the CLOSE statement, in "Using VS
FORTRAN Input/Output Statements," for a description of the
options you can specify.

IBM EXTENSION

USING ASYNCHRONOUS INPUT/OUTPUT

Asynchronous input/output statements let you transfer
unformatted data quickly between external sequential files and
arrays in your FORTRAN program, and, while the data transfer i5
taking place, continue other processing within your FORTRAN
program.

Because the processing overlaps, you must have a method to
ensure that your program doesn't make references to the data
until the data transfer is complete.

The asynchronous input/output statements have special features
to achieve this:

• The WAIT' statem~nt-to ensure that data transmi ss; on is
complete before your program begins processing the data

• A unique identifier to identify a particular READ, WRITE,
or WAIT statement--and to connect it with other related
asynchronous statements

Using the Asynchronous WRITE Statement

To create an asynchronous input/output file, you use a special
form of the WRITE statement:

164 VS FORTRAN Appl i cat ion Programmi ng:
1

G.,.i de

o

·0

TO Transfer an Enttra Array:

WRITE (10,10=6) ARAYl

To Transfer Part of an Array:

WRITE (10,10=6) ARAY1(2,2) .•. ARAY1(S,6)

WRITE (10,10=6) ARAY1(2,2) ..•

where, in this example:

10

ID=6

ARAYI

is the unit number for the asynchronous file.

is a unique identifier for this WRITE statement,
used in the WAIT statement.

is an array whose contents are to be transferred.

In the first WRITE statement, the contents of the
entire array are transferred.

In the second WRITE statement, the contents of
ARAY1(2,2) through ARAY1(S,6) are transferred.

In the third WRITE statement, the contents of
ARAY1(2,2) through the end of ARAYl are transferred.

Using the Asynchronous READ statement

To retrieve an asynchronous input/output file, you use a
special form of the READ statement:

To Transfer an Entire Array:

READ (10,10=6) ARAY1

To Transfer Part of an Array:

READ (10,10=6) ARAY1(2,2) ... ARAY1(S,6)

READ (10,ID=6) ARAY1(2,2) .. .

where, in this example:

10

ID=6

ARAYI

is the unit number for the asynchronous file.

is a unique identifier for this REAO statement, used
in the WAIT statement.

is an array whose contents are to be transferred.

In the first READ statement, the contents of the
entire array are transferred.

In the second READ statement, the contents of
ARAY1(2,2) through ARAY1(5,6) are transferred.

In the third READ statement, the contents of
ARAY1(2,2) through the end of ARAYI are transferred.

Using the Asynchronous WAIT statement

After you've executed an asynchronous WRITE or READ statement,
you must ensure that the I/O operation ;s complete before you
make any further program references to the array being
processed. The WAIT statement tells the program to suspend
operations until the data transfer is complete; that is, it
synchronizes the WRITE or READ statement with the rest of the
program. .

Programming Input and Output 16S

For example, you can use the following WAIT statement with the
previously described READ or WRITE statements: .

WAIT (10,10=6) ARAYl

or

WAIT (10,10=6) ARAY1(2,2) ... ARAY1(S,6)

where, in this example:

10

ID=6

is the uni t number for the asynchronous f1 Ie.

is a unique identifier for this WAIT statement; it
ties this WAIT statement to the READ or WRITE
statement with the same identifier (the operation
the program is marking time for).

ARAYl lS en array.

In the first WAIT statement, the data transfer for
the entire array is being synchronized.

In the second WAIT statement, the data transfer for
array elements ARAY1(2,2) through ARAY1(S,6) is
being synchronized.

END OF IBM EXTENSION ------------'

USING LIST-DIRECTED INPUT/OUTPUT

List-directed input/output statements-READ and WRITE-simplify
your data entry for sequ9ntial files. They let you use formatted
input/output-that is, input/output statements that perform data
conversions as the data is transferred between internal and
external storage-wi thout the restri ct; ons of a FORNAT
statement. You can enter the data to be transferred without
regard for column, line, or card boundaries.

In addition, there's no need for you to define the file through
job control statements or CMS FILEDEF commands, because
list-directed input/output uses the standard system data sets or
logical units.

This makes list-directed READ and WRITE statements particularly
useful for terminal input and output, and for developing program
test data.

For VM/370-CMS considerations, see "Using VM/370-CMS with VS
FORTRAN."

For OS/VS2-TSO considerations, see "Using OS/VS2-TSO with VS
FORTRAN."

Input Data--list-Dtrected I/O

You enter list-directed input data as a series of FORTRAN
constants and separators:

• Each constant can be any valid FORTRAN constant. (Enter
character constants within apostrophes.)

•

Each constant you specify must agree with its corresponding
item in the data list.

You can s;9n numeric constants, but the sign must
immediately precede the first digit of the data (no
intervening blanks).

You can specify a repetition factor for any constant or null
item. For example:

166 VS FORTRAN Application Programming: Guide

•

3*2.6

specifies that the real constant 2.6 15 to appear three times
in the data input stream.

Each separator can be:

one or more blanks
a comma
a line advance (for terminal input)
an end of card (on card devices)
a slash (/) (See the following paragraph)

A combination of more than one separator, except for the
comma, represents one separator.

A slash (/) separator indicates that no more data ;s to be
transferred during this READ operation:

Any items following the slash are not retrieved during
this READ operation.

If all the items in the list have been filled, the slash
is not needed.

If there are fewer items in the record than in the data
list, and you haven't ended the list with a slash
separator, an error is detected.

If there are more items in the record than in the data
list, the excess items are ignored.

• A null item is represented by two successive commas.

o L i st-Di rected READ statctr.ent

o

The list-directed READ statement retrieves a record from an
input file, with conver~ions to internal forms of data:

READ (FMT=*,UNIT=5,IOSTAT=INTl) A,E,I,O,U

This READ statement specifies:

FHT=*
specifies that this is a list-directed READ statement.

UNIT=S
6' spec i fi es that 5 is the un it from whi ch the data is to be

retrieved.

IOSTAT=INTl
defines INT! as the FORTRAN integer variable into which
information about the last operation is placed; by testing
INTl you can specify special programming actions for
special conditions.

INTl contains a positive value when an error occurs.

INTl contains a negative value at end-of-file.

INTl contains a zero value when neither condition occurs.

A,E,I,O,U
are the data items in which you want the data placed.

When the READ statement is executed, the-data placed in A,
E, 0, and U is converted to REAL data of length 4; the data
placed in I is converted to INTEGER data of length 4.

Programming Input ~nd Output 167

Ltst-Di~ected WRITE statement

USING INTERNAL FILES

The list-directed WRITE statement writes a record on an output
file, with conversions from internal forms of data:

WRITE (UHIT=6,IOSTAT=INTl,FMT=*) A,E,I,O,U

This WRITE statement specifies:

UNIT=6
specifies that 6 is the unit on which the data is to be
written.

IOSTAT=INTI

FHT=M

defines INTI as the FORTRAN integer variable into which
information about the last operation is placed; by testing
INT1 you can specify special programming actions for
special conditions •.

INTI contains a positive value when an error occurs.

INT1 contains a negative value at end-of-file.

INTI contains a zero value when neither condition occurs.

specifies that this is a list-directed WRITE statement

A,E,I,O,U
are the source data items for the data transfer.

When the WRITE statement is executed, the data is converted from
the internal formats to external EBCDIC format.

Internal files let you move data from one internal storage area
to another while converting it from one format to another. This
gives you a convenient and standard method of making suc~
conversions.

If your external file is coded in EBCDIC character dat~, you can
execute an unformatted READ statement to bring it into a
character item (VAR1) in storage:

Fo~ Sequential Files:

READ (UNIT=11,ERR=300,IOSTAT=INT,END=200) VAR1

or

For Di~ect Files:

READ (UNIT=11,REC=KEY,ERR=300,IOSTAT=INT,[ND=200) VARI

You can now execute a formatted internal READ statement to
convert individual items in the record from EBCDIC to their
internal formats.

For internal READ and WRITE statements, you spocify the UNIT
i denti fi er as an internal data i tem-a character vari able or
substring, or as a character array or array element.

For reference documentation about the intern~l READ and WRITE
statements, sea the VS FORTRAN Appl; cat; on p,"oorammi no: Language
Reference manual.

168 VS FORTRAN Application Programming: Guide

0)

0)

o

(0

using the READ statement--Internal Files

A READ statement referring to an internal unit converts the data
from character format to the internal format(s) of the receiving
itemes):

READ (UHIT=VAR1,FMT=40,ERR=300,IOSTAT=IHT,EHD=200) A,E,I,O,U

or

READ (VAR1,40,ERR=300,IOSTAT=INT,END=200) A,E,I,O,U

where, in this example:

VARl

40

300

INT

200

is a character variable in this program unit. (It
could also be a character array or array element, or a
character substring.)

is the statement label of the FORMAT statement.

is the statement label of the FORTRAN statement to
which control is to be transferred if an error occurs.

is the name of an integer variable or array element
into which is placed a positive or zero value,
indicating failure or success of the READ operation.

is the statement label of the FORTRAN statement to
which control is transferred when the end of the
storage area is reached.

A,E,I,O,U are the names of variables, arrays, array elements,
character substrings, or implied DO lists into which
the input record is transferred.

Within main storage, these items need not be
contiguous.

using the WRITEstatement--Internal Files

A WRITE statement referring to an internal unit converts the data
transferred from internal format to character format:

WRITE (UHIT=VAR1,FMT=40,ERR=300,IOSTAT=IHT) A,E,I,O,U

or

WRITE (VAR1,40,ERR=300,IOSTAT=INT)A,E,I,0,U

where, in this example:

VARl

40

300

INT

is a character variable in this program unit. (It
could also be a character array or array element, or
character substring.)

is the statement label of the FORMAT statement.

is the statement label of the FORTRAN statement to
which control is to be transferred if an error occurs.

is the name of an integer variable or array element
into which is placed a positive or zero value
indicating failure or success of the WRITE operation.

A,E,I,O,U are the names of variables, arrays, array elements,
character substrings, or implied DO lists to be
included in VAR1.

Programming Input and Output 169

Within main storage, these items need nQt be~
contiguous.

SYSTEM CONSIDERATIOHS--SEQUENTIAL FILES

Each sequential file you use must be defined to the system,
through job control statements. The statements you use vary,
depending upon the system you're executing under--OS/VS,
DOS/VSE, or VM/370-CMS.

For VM/310-CMS considerations, see'"Using VM/310-CMS with VS
FORTRAN."

For OS/VS2-TSO considerations, see "Using OS/VS2-TSO with VS
FORTRAN."

For reference documentation about job control statements, see
the VS FORTRAN Application Programming: System Services
Reference Suppiement.

OS/VS considerations--Sequenttal Files

To define each file to the system, you specify a DO statement;
see "Defining Files-OS/VS DD Statement" in Part 2 for details.

The data sets you can specify and the ddnames you ean use for
them are shown in Figure 29 in Part 2.

DOS/VSE considerations--sequential Files

USING DIRECT FILES

To define each file to the system, you optionally specify an
ASSGN statement; if it is a file on a direct access device, you
must also specify a DLBL and an EXTENT statement. See "Defining
Fi les-DOS/VSE ASSGN Statement" ; n Part 2 for deta i 15.

The logical units you can specify and the names you can use for
them are shown in Figure 30 in Part 2.

Direct files are those in which all the records are arranged in
the file according to the relative addresses of their keys. Each
record is the same size, and each occupies a predefined position
in the file, depending upon its relative record number.

In a direct file, the first record has relative record number 1,
the tenth record has relative record number 10, the fiftieth
record has relative record number 50. You can think of the file
as a seri es of slots, each of whi ch mayor may not actually
contain a record. That is, record 50 may hold an actual record,
and be i dent i fi ed as record number 50, even""though records 24,
38, and 42 are v~cant slots.

You can process the records by supplying the relative record
number of the record you want with each READ or WRITE statement.
In order to do this, you'd ordinarily develop an algorithm that
lets you identify each record uniquely and that converts to a
relative record number for record creation and retrieval.

For a discussion of randomizing techniques useful in developing
such algorithms, see the Introduction to IBM Direct Access
Storage Devices and Organization Methods.

You can store direct files only upon direct access devices.

110 VS FORTRAN Application Programming: Guide

0)

",(,,::,
~)

(0

SOURCE PROGRAM CONSIDERATIONS

The FORTRAN statements you can use to process direct files are
the OPEN, WRITE, READ, and CLOSE statements.

Using the OPEN statem2nt--Direct Files

You must specify an OPEN statement with a direct file; you must
specify the following options:

ACCESS--to specify the file as direct

RECL-- to specify record length

The record length you specify when you create the file is the
record length you must specify when you·retrieve records from the
file.

If you don't specify the formatting, UNFORMATTED is assumed.

See "Using Common Options For Input/Output" and "Connecting to a
Fi Ie-OPEN Statement" for descr i pt ions of other opt 1 ons you can
use.

Using the WRITE Statement--Direct Files

You can use either an unformatted or formatted WRITE statement
with a direct file; for example:

Unformatted:

WRITE (UNIT=15,REC=KEY,ERR=300,IOSTAT=INT)A,E,I,O,U

or

WRITE (15,REC=KEY,ERR=300,IOSTAT=INT) A,E,I,O,U

Formatted:.

WRITE (UNIT=15,FMT=40,REC=KEY,ERR=300,IOSTAT=INT) A,E,I,O,U

or

WRITE (15,40,REC=KEY,ERR=300,IOSTAT=iNT)A,E,I,O,U

where, in this example:

15 is the unit number of the external file. It must
identify a direct file.

40 is the statement label of the FORMAT statement (used
only with the formatted WRITE statement).

KEY I s an integer vari able into whi ch you place the
relative record number for the record you're writing.

300

You can specify the variable as an integer item of
length 4.

IBM EXTENSION

You can also specify the variable as an integer item
of length 2.

END OF IBM EXTENSION --:-----------'

is the statement label of the FORTRAN statement to
which control is to be transferred if an error occurs.

Programming Input and Output 171

•

INT is tha name of an i ntager variable or array element
into which is placed a positive or a zaro value
indicating fail~re or success of the WRITE operation.

A,E,I,O,U are the names of variables, arrays, array elements,
character substrings, or implied DO lists to be
included in the output record.

Within main storage, these items need not be
contiguous.

ustng the READ statement--Dtrect Files

You can use either an unformatted or a formatted READ statement
with a d;rect file, for example:

Unformatted:

or

READ (11,REC=KEY,ERR=300,IOSTAT=INT) A,E,I,O,U

Formatted:

READ (UNIT=11,FMT=40,REC=KEY,ERR=300,IOSTAT=INT) A,E,I,O,U

or

READ (11,40,REC=KEY,ERR=300,IOSTAT=INT) A,E,I,O,U

where, in this example:

11 is the unit number of the external file. It must
identify a direct file.

40 is the statement label of the FORMAT statement (used
only with the formatted READ statement).

KEY is an integer variable into which you place the
relative record number of the record you want to
retrieve.

You can specify the variable as an integer item of
length 4.

IBM EXTENSION

You can also specify the variable as an integer item
of length 2.

'---------- END OF IBM EXTENSION ----------

300 is the statement label of the FORTRAN statement to
which control is to be transferred if an error occurs.

INT is the name of an integer vari able or array element
into which is placed a positive or a zero value,
indicating failure or success of the READ operation.

A,E,I,O,U are the names of variables, arrays, array elements,
character substrings, or implied DO lists into which
the input record is transferred.

Within main storage, these items need not be
contiguous •

172 VS FORTRAN Application Programming: Guide

0 •.)
~"

o

o

For Bn unformatted READ statement:

If an external record contains more data than the items in
the list, the excess external data is skipped.

If an external record contains less data than the items in
the list. an error occurs and processing c6ntinues.

Using the CLOSE Statement--Dlrect Files

You use the CLOSE statement to terminate the connection between
the external file and the unit. The CLOSE statement is never
required for direct files; however, you can use it to specify
special processing to occur when you disconnect from the
external file.

See the previous description of the CLOSE statement, in "Using VS
FORTRAN Input/Output Statements," for a description of the
options you can specify.

SYSTEM CONSIDERATIONS--DIRECT FILES

You must define each direct file to the system, through job
control statements.

The job cQntrol statements differ, depending upon the system
you're operating under--OS/VS, DOS/VSE, or VM/370-CMS.

For VM/370-CMS considerations, see "Using VM/370-CMS with VS
FORTRAN."

For OS/VS2-TSO considerations, see "Using OS/VS2-TSO with VS
FORTRAN."

For reference documentation about job control statements, see
the VS FORTRAN Application Programming: System Services
Reference Supplement.

OS/VS Conslderatfons--Direct Files

Before you can write records into the file, it must be
initialized with empty records. Your organization should have a
utility program to do this; check with your system
administrator.

To define each file to the system, you specify a DD statement; in
the DCB parameter, for a direct file, you must specify:

RECF",=F

BLKSIZE=rl where £! is the record length.

For example, if the record length is 80, you must
specify BLKSIZE=80.

The OPEN statement provides the default block size for the file,
unless you override it through the BLKSIZE parameter.

For other DD statement options you can specify, see "Defining
F i les-OS/VS DD Statement" in Part 2.

The data sets you can specify and the ddnames you can use for
them are shown in Figure 29 in Part 2.

Programming Input and Output 173

DOS/VSE Consfderations--Dfrect Files

USING VSAH FILES

Before you can write records into the file, you must preformat it
using the CLEAR disk utility. For documentation, see the DOS/VSE
System Utilities manual.

To define each file to the system, you optionally specify an
ASSGN statement.

You must specify a DlBl statement, using:

BLKSIZE to specify the block size.

The BlKSIZE,yoU specify must be the same size as the
record length you specify in the FORTRAN OPEN
statement.

You must also specify an EXTENT statement, which defines each
area the file occupies on the direct access device. See "Defining
Files-DOS/VSE ASSGN Statement" in Part 2 for detai Is.

The logical units you can specify and the names you can use for
them are shown in Figure 30 in Part 2.

VS FORTRAN lets you use VSAM to process three kinds of files:

• VSAM sequential files, using Entry Sequenced Data Sets
(ESDS), which can be processed only sequentially

• VSAM direct files, using Relative Record Data Sets (RRDS),
which can be processed either sequentially or directly

• Under DOS/VSE-yoll can also process VSAM-managed sequent i al
files (using the VSAM Space Management for SAM feature);
such files can be processed only sequentially

For documentation explaining VSAM Entry Sequenced Data Sets
(ESDS), Relative Record Data Sets (RRDS), and DOS/VSE
VSAM-Managed SAM files, see the VSAM documentation for the
system you're running under. (VSAM pUblications titles are given
in the "Related Publications" section at the beginning of this
manual.)

Generally speaking, VSAM files are best used as permanent files,
that is, as fi les that are processed aga in and aga in by one or
more application programs. You shouldn't try to use VSAM files as
"scratch" files, because VSAMfiles are more difficult to
allocate and erase than other files. (For this reason, FORTRAN
doesn't let you use the NEW or SCRATCH options of the OPEN
statement, or the DELETE option of the CLOSE statement.)

The following general programming considerations apply to VSAM
files:

• Use VSAM sequential files (using ESDS) for applications in
which you create a complete file, one in which you'll never
update any records but to which you may add records in the
future.

• Use VSAM direct files (using RRDS) for work files, or for
fi les in whi ch records must be created and later updated in
place.

• Under DOS/VSE, use VSAM-Managed SAM files to reduce the
amount of manual control needed to organize and maintain
your non-VSAM sequential files.

The next section, on Source language, gives programming
considerations for each type of VSAM file.

174 VS FORTRAN Application Programming: Guide

~ '.~
(\
~'

0)

o SOURCE LANGUAGE CONSIDERATIOU5-VSAtt FILES

File Type

Access

V
A
l
I
D

F
0
R
T
R
A
N

S
T
A
T
E
M
E
N
T
S

While a VSAM sequential file (ESDS) is similar to other
sequential files and a VSAM direct file (RRDS) is similar to
other direct:files, their organizations are actually different
from other sequential and direct files, and the same source
language can give different results. You must take these
differences into account to get the results you expect.

When you're processing VSAM files, you can use all the VS FORTRAN
input/output statements.

However, the ENDFIlE statement has no meaning for a VSAM file and
is treated as documentation. If your program contains ~n ENDFILE
statement and processes a VSAM file, you'll get a warning message
to inform you of this.

Figure 41 summarizes the FORTRAN input/output statements you can
use with each form of access.

VSAM VSAM-
Sequential VSAM Direct (RRDS) Managed

(ESDS) Sequential

Sequential Sequential Direct Sequential

Empty Nonempty
File: File:

OPEN OPEN OPEN OPEN

(sequential) (sequential) (sequential) (direct)

WRITE WRITE WRITE WRITE
(update or
replace)

READ READ READ READ

BACKSPACE BACKSPACE BACKSPACE BACKSPACE
(has effect
of CLOSE)

REWIND REWIND REWIND REWIND
(has effect
of CLOSE)

ENDFILE

CLOSE CLOSE CLOSE CLOSE CLOSE

Figure 41. FORTRAN Statements Valid with VSAM Files

....

Programming Input and Output 175

In some instances, the VSAM input/output statements have a
different effect than they have for other file processing
techniques. The differences are documented in the following
sections.

processing VSAM Sequential Files

VSAM sequential files use VSAM Entry Sequenced Data Sets (ESDS)j
processing of such files can only be sequential.

When you're processing VSAM sequential files, there are special
considerations for the OPEN, CLOSE, READ, WRITE, BACKSPACE, and
R~WIND statements, as described in the following paragraphs.

OPEN AND CLOSE STATEMENTS--VSAM SEQUENTIAL FILES: When your
program processes a VSAM sequential file, you must specify the
OPEN statement. For VSAM sequential files, specify:

ACCESS='SEQUENTIAl'

For VSAM files, the STATUS specifier of an OPEN statement may not
be NEW or SCRATCH, and the STATUS specifier of a CLOSE statement
may not be DELETE.

USING THE: READ STATEt1ENT-V'3AM SEQUENTIAL FILES: The READ
statement for a VSAM sequential file has the same effect it has
for other sequential files; records are retrieved in the order
they are placed in the fi L~. Therefore, you must use the
sequential forms of the READ statement.

USING THE URITE STATE~tENT-VSAH SEQUEtUIAL FILES: For VSAM
sequential files, the WRITE statement places the records into
the file in the order that the program writes them. If a VSAM
sequential file is nonempty when your program opens it, a WRITE
statement always adds a record at the end of the existing records
in the file; thus you can extend the file without first reading
all the existing records in the file.

Once you~ve written a record into a VSAM sequential file, you can
only retrieve it; you cannot update it. Thus, IiJhen processing a
VSAM sequential file, you can't update records in place. That is,
if you code the following statements:

READ ...
BACKSPACE ...
WRITE ...

the WRITE statement does not update the record you have just
retrieved. Instead, it places the updated record at the end of
the file. (If you want to update records, you should define the
VSAM file as direct. See the following section on "Processing
VSAM Direct Files".)

USING THE BACK~PACE STATEMENT--VSAM SEQUENTIAL FILES: For VSAM
sequential files, you can use the BACKSPACE statement to make the
last record processed the current record:

• For a READ statement followed by a BACKSPACE statement, the
current record is the record you've just retrieved. You can
then retrieve the same record again.

• For a WRITE statement followed by a BACKSPACE statement, the
current record is the record you've just written, that is,
the last record' in the file. You can then retrieve the record
at this position.

USING THE REWIND STATENENT--VSAH SEQUENTIAL FILES: The REWIND
statement for VSAM sequentially accessed files has the same
effect it has for other sequential files: the first record in the
file becomes the current record.

176 VS FORTRAN Application Programming: Guide

o}

~1)
~

\ 0,/ , ,

t('~ . .JI

o

(0

'For YSAM sequential files, this means that you can rewind the
file and then process records for retrieval only. If you attempt
to update the records, you'll simply add records at the end of
the fi Ie.

After a BACKSPACE or REWIHD statement is executed, you cannot
update the current record. If you attempt it, ~ou'll simply add
another record at the end of the fi Ie.

Processing VSAH Direct Files

VSAM direct files use VSAM Relative Record Data Sets (RRDS). You
can process VSAM direct files using either direct or sequential
access.

Using direct access, you supply the relative record number of the
record you want to process. You should use direct access when
there are gaps in the relative record sequence for the file, or
when you want to update records in place.

Using sequential access, you access each record in turn, one
after another, and you have no control over the relative record
number. For this reason, if you use sequential access to load the
file, there should be no gaps in the relative record number
sequence.

When you're processing YSAM direct files, there are special
considerations for the OPEN and CLOSE statements, and for
sequential and direct access, as described in the following
paragraphs.

USING OPEN AND CLOSE STATEMEtnS-VSAI1 DIRECT FILES: When your
program processes a VSAM direct file, you must specify the OPEN
statement. The options you can use are:

• ACCESS='SEQUENTIAl' for sequential access

• ACCESS='DIRECT' for direct access

For VSAM files, the STATUS specifier of an OPEN statement may not
be HEW or SCRATCH, and the STATUS specifier of a CLOSE statement
may not be DELETE.

USING SEQUENTIAL ACCESS--VSAI1 DIRECT FILES: You can use
sequential access to load (place records into) an empty VSAM
direct file using the WRITE statement, or to retrieve records
from a VSAM direct file using the READ statement. The records are
processed sequentially, one after the other, exactly as a
sequential file is processed, and the relative record numbers of
the records are ignored. In other words, when you're loading the
file, there should not be any gaps in the relative record number
sequence, because space for any missing records will not be
reserved in the file.

For a direct file opened in the sequential access mode, you can
use the WRITE statement only to load (place records into) a file
that is empty when the file is opened. During loading~ if you
specify a BACKSPACE or REWIND statement, you cannot specify any
more WRITE statements.

If the sequentiallY accessed VSAM direct file already contains
one or more records when it is opened and you issue a WRITE
statement, your program is terminated. In other words, for a VSAM
direct file opened in the sequential access mode, once the file
is loaded, you can't add or_update records with FORTRAN programs.
(For updating and adding records, you must use direct access.)

The READ statement for a sequentially accessed VSAM direct file,
retrieves the records in the order they are placed in the file.
The VS FORTRAN program gives you no way of determining the
relative record number of any particular record you retrieve.

Programming Input and Output 177

(If you need to use the relative record number, you must use
di rect access.)

Except during file loading, the REWIND statement for a
sequentially accessed VSAM direct file has the same effect it has
for VSAM sequential files: the first record in the file becomes
the current record, which is then available for retrieval.
During file loading, the REWIND statement has the same effect as
a CLOSE statement followed by an OPEN statement; the first record
in the file is then available for retrieval.

Except during file loading, the BACKSPACE statement for a
sequentially accessed VSAM file has the same effect it has for
VSAM sequential files; the last record processed becomes the
current record, which is then available for retrieval. During
file loading, the BACKSPACE statement has the same effect as a
CLOSE statement, followed by an OPEN statement, followed by file
positioning to the last record written; the last record in the
file is then available for r~tri~v~l;

USING DIRECT ACCESS--VSAN DIRECT FILES: You can use direct
access to place records into a VSAM direct file using the WRITE
statement, or to retrieve records from a VSAM direct file using
the READ statement.

For VSAM direct files, if the relative record numbers for the
file are not strictly sequential--that is, if there are.gaps in
the key sequence, for example:

1, 2, 3, 10, 12, 15, 16, 17, 20

--you must load (create records in) the file, using direct access
WRITE statements to provide the relative record number for each
record you write.

Otherwise (if the relative record numbers for the file are
strictly sequential--no gaps), you should sort the records
according to the ascending order of their record numbers and then
load them into the file using sequential access. This is because
sequential access is faster than direct access.

For a VSAM direct file opened in the direct access mode, a WRITE
statement uses the relative record number you supply to place a
new record into the file, or to update an existing record.

The method you follow, either for record insertion or record
update, is as follows:

1. In the OPEN statement, specify ACCESS='DIRECT' for the file.

2. Set the REC variable to the relative record number of the
record to be inserted or updated.

3. Then code the WRITE statement, using the preset REC
variable.

4. Repeat steps 2 and 3 until you've processed all the records
you need to process.

When you are loading (initially placing records into) a file, you
must not use duplicate record numbers during processing. In
other words, you are not allowed to update records while you are
loadi ng the fi Ie.

To retrieve records from a directly accessed VSAM direct file,
use the direct access forms of the READ statement. You cannot
open the same file in the same programming·unit for both
sequential and direct access processing.

Don't execute the BACKSPACE or REWIND statements with a directly
accessed VSAM direct file; if you do, your program is terminated.

178 VS FORTRAN Application Programming: Guide

o

o

(0

Processing VSAM-Managed Sequential Files

You cannot use an OPEN statement with a VSAM-managed sequential
file.

For VSAM-managed sequential files, you can use all other
input/output statements valid for other non-VSAM sequential
files.

See the section "Using Sequential Files" on page 161.

Obtaining the V5AM Return code--. IOSTAT option

DEFINING A V5AM FILE

VS FORTRAN uses the VSAM program to process all VSAM requests.

If you specify the IOSTAT option for VSAM input/output
statements, and an error occurs while VSAM is processing it,
you'll get the VSAM return code for the operation attempted in
the IOSTAT data item.

(If the error·occurrs while FORTRAN is processing it, you'll get
an IOSTAT code of +1.)

The VSAM return code is formatted in the lOST AT data item as
follo~..Js:

1. The VSAM return code is placed in the first two bytes.

2. The VSAM reason code is placed in the second two bytes.

IBM EXTENSION

To inspect the codes, you can equivalence the IOSTAT variable
with two integer items, each of length 2. After a VSAM
input/output operation, you can then write out the two integer
items, which contain the pair of VSAM codes.

END OF IBM EXTENSION ---------~

The VSAM documentation for the system you're operating under
gives the meaning of these return and reason codes. See the list
of "Related Publications" at the beginning of this manual for
VSAM publications titles.

To define and use a VSAM file, you must first define a catalog
entry for the file, using Access Method Services commands. When
you execute the commands, you create a VSAM catalog entry for the
file.

You use Access Method Services to create a catalog entry for your
fi Ie. The form of the entry depends upon theldnd of fi Ie you'll
be creating: a VSAM sequential file (ESDS), VSAM direct file
(RRDS), or a VSAM-managed sequential file.

For VSAM sequential and direct files, the following examples
assume that the data space your file is using has already been
defined as VSAM space by the system administrator.

For reference documentation about the DEFINE commands, see the
VS FORTRAN Application Programming: System Services Reference
Supplement.

Programming Input and Output 179

Defining a VSAH Sequential File

To define a VSAM sequential file (ESDS), you can specify:

DEFINE CLUSTER
(NAME(MYFILE)
FILECMYFILE1)
VOLUMES(666666)
NONINDEXED
RECORDS(lS0)
RECORDSIZE(SO 200)
CATALOG(USERCAT»

which defines a file named MYFILEI as a VSAM file~

NONINDEXED specifies that this is a VSAM sequential file (ESDS).

VOLUMES(666666) specifies that the file is contained on volume
666666.

RECORDS(180) specifies that there can be a maximum of 180 records
in the space.

RECORDSIZE(SO 200) specifies that the average length of the
records in the file is SO bytes, and the maximum length of any
record is 200 bytes.

CATALOG(USERCAT) specifies the catalog in which this file is
entered.

To actually create the entry in the catalog, you must then use
job control statements to execute the DEFINE CLUSTER command.

Defining a VSAH Direct File

To define a VSAM direct file (RRDS), you can specify:

DEFINE CLUSTER
CNAME(MYFILE2)
FILE(MYFILE3)
VOLUMES(666666)
NUMBERED
RECORDS(200)
RECORDSIZE(80 SO)
CATALOGCUSERCAT»

whi ch defi nes a f1 Ie named MYFILE3 as a VSAM fi Ie.

NUMBERED specifies that the file is a VSAM direct file (RRDS).

VOLUMES(666666) specifies that the file is contained on volume
666666.

RECORDS(200) specifies that there can be a maximum of 200 .records
allowed in the space.

RECORDSIZE(SO 80) specifies that all the records in the file are
80 bytes long.

CATALOG(USERCAT) specifies the catalog in which this file is
entered. .

To actually create the entry in the catalog, you must then use
job control statements to execute the DEFINE CLUSTER command.

180 VS FORTRAN Application Programming: Guide

0)

0)

o

o

\0

•

Defining a DOS/VSE VSAM-Managed sequential File

To define a DOS/VSE VSAM-managed sequential file (using the
DOS/VSE VSAM Space Management for SAM feature), you can specify:

DEFINE CLUSTER
(HAMECMYFILE3)

HONINDEXED
RECORDFORMAT(VB120)
RECORDSIZE(SOO)
RECORDS(200)
VOLUMES(666666»

which defines a sequential file named MYFILE3, suballocated in
VSAM space.

RECORDFORMAT(VB120) specifies that the file has variable blocked
form~t with average logical records 120 bytes long.

RECORDSIZE(SOO) specifies that there are four logical records in
each block; 120 bytes for each logical record, plus 4 bytes for
each record descriptor, plus 4 bytes for the block descriptor.

RECORDS(200) specifies that there can be a maximum of 200 records
in the space.

VOLUMES(666666) specifies that the file is contained on volume
666666.

To actually create the entry in the catalog, you must then use
job control statements to execute the DEFINE CLUSTER command.

PROCESSING DEFINE COMMANDS

Once you've created your DEFINE command, you must execute it,
using Access Method Services, to create an entry ;n a VSAM
catalog. The job control statements you use depend upon the
system you're operating under: VM/370-CMS, OS/VS, or DOS/VSE.

For VM/370-CMS considerations, see "Using VM/370-CMS with VS
FORTRAN."

For OS/VS2-TSO considerations, see "Using OS/VS2-TSO with VS
FORTRAN."

Processing DEFINE Com~ands-OS/VS

Under OS/VS, you specify the following job control statements to
catalog your VSAM DEFINE CLUSTER commands:

//VSAMJOB . JOB
//STEP EXEC
//SYSPRIHT DO
//MYFILEl DD
//SYSIH DO

PGM=IDCAMS
SYSOUT=A
VOl=SER=MYVOL,UHIT=SYSDA,DISP=OLD

*
(The DEFINE CLUSTER command as data)

/*
//

If the DEFINE command FILE name is MYFILE1, then this is the DD
name you specify in the DO control statement.

Programming Input and Output 181

•

processing DEFINE Com~ands--DOS/VSE

Under DOS/VSE, you specify the following job control statements
to execute your DEFINE ~ommand5, both DEFINE CLUSTER and DEFINE
NONVSAM:

// JOB DEFINE
// DLBL MYFILE2
// EXTENT (as required)
// EXEC IDCAMS,SIZE=AUTO

(The DEFINE command as data)

/*
/&

If the DEFINE command FILE name is MYFIlE2, then this is the file
name you specify in the DLBL control statement.

CREATING AND PROCESSING VSAM FILES

Once you've created a catalog entry for the file, you can
actually load the file (place records in it for the first time).
You can load and process the file using VS FORTRAN statements.

When you execute the FORTRAN program, you must define the file
using job control statements for the system you're using.

For reference documentation about job control statements, see
the VS FORTRAN Application Programming: System Services
Reference Supple~ent.

Creat i ng and Process i n9 VSAJ1 Fi les-OS/VS

Under OS/VS, when you execute a FORTRAN program to create or
process a VSAM file, you define the file in a DO statement.

For example, to process MYFIlE1 in a FORTRAN load module called
MYPROG, you specify:

//VSAMI JOB
// EXEC PGM=MYPROG
//MYFILEI 00 DSN=MYFILE,OISP=SHR
//

When MYPROG is executed, the DO statement makes MYFILEI (and the
information in it~catalog entry) available to the program. In
the FORTRAN OPEN statement, MYFILEl is the name you ~se for the
FILE option.

creating and processing VSAM Files--DOS/VSE

Under DOS/VSE, when you execute a FORTRAN program to create or
retrieve records in a VSAM file, you define the file in DLBl and
EXTEHT statements.

For example, to process MYFllEl in a FORTRAN load module (phase)
called MYPROG, you specify:

// JOB VSAM1
// DLBL MYFILE1
// EXTENT SYS015,VSAMVOl
// EXEC MYPROG,SIZE=xxK

- //

When MYPROG is executed, the DlBl and EXTENT statements make
MYFILEI (and the information in its catalog entry) available to
the program.

182 VS FORTRAN Application Programming: Guide

.')

0/

o

(0"" I,

In the ,EXTENT statement, you need specify only the logical unit
(SYS015) and the volume 10 (VSAMVOL), which is the volume
containing the VSAM catalog.

In the FORTRAN OPEN statement, the unit you specify must be
equivalent to that specified in the EXTENT statement. Your
system adtninistrator can tell you the units valid for your
organization.

For VSAM files, you must specify the SIZE parameter in the EXEC
statement. Do not specify a size larger than the size of the
partition the program will run in.

SYSTEM CONSIDERATIONS--INPUT/OUTPUT

For every file your program uses, you may need labels. Record
formats the system uses are also of importance. Both are
described in the following· sections.

USING INPUT/OUTPUT LABELS

Magnetic Tape Labels

Files stored on magnetic tape devices can be labeled or
unlabeled. Files stored on direct access devices must have
labels. The labels are identifiers that help the system keep
track of the files current at anyone time.

The tape and direct access files you create can have volume
labels, standard file labels, or US9r standard labels. The
format and use of magnet; c tape and di rect access labels are
different; therefore, the following sections discuss each
separately.

Magnet;c tape labels can be volume labels, standard file labels,
or user standard labels.

VOLUME LA,BElS-TAPE FILES: Whenever you spec; fy standard or user
labels in your program, the system also creates volume labels.
The first four characters identify the volume label.

Volume labels precede standard labels on the tape.

STANDARD FILE LABELS-TAPE FILES: When you spec; fy standard
labels, the system creates standard file labels. The first three
characters specify if this is a header, end-of-volume, or
end-of-file label.

Standard file labels follow volume labels and precede user
standard labels (if any) on the tape.

USER STANDARD LABELS-TAPE FILES: The system uses the flrst four
characters to identify the label as a user header or trailer
label; you supply the contents of the remaining 16 characters.

Your user standard labels follow the standard file labels on the
tape.

When you specify user standard labels, you should also create an
assembler routine to process them.

PROCESSING "A,G'~ETIC TAPE LABELS: Whenever you process a labeled
tape file, the system processes the labels:

When you're creating the file, the system" creates labels for
it.

When you're retrieving the file, the system checks the
labels.

Programming Input and Output 183

The system processes volume and standard header labels when you
open the fi Ie.

The system processes trailer labels when you close the fila, or
when the physical end of a reel is reached.

The system processes end-of-volume labels when an end-of-reel
indicator is reached.

The system processes and-of-fila trailer labels when you close
the fi Ie.

OS/VS Tape Label Considerations

You specify magnetic tape labels through the LABEL paramater of
the DO statement; through this parameter, you can specify the
position of the fila on the tape, the type of label, if the data
set is password pr.otected, and the type of file processing
allowed.

Reference documentation for the DO statement is given in the ~
FORTRAN Application Programming: System Services Reference
Supplement.

For additional detail on magnetic tape label processing, sea the
OS/VS Tape labels manual.

DOS/VSE Tape Label considerations

You specify magnetic tape labels through the TLBL statement;
through this statement, you can specify the position of the file
on the tape, the generation and version number for this file, and
the expiration date.

Using the lBlTYP statement, when you're processing labeled tape
files, you must also tell the linkage editor to reserve storage
for label processing.

Reference documentation for the TlBl and LBLTYP statements is
given in the VS FORTRAN Application Programming: System Services
Reference Supplement.

For additional detail on magnetic tape label processing, see the
DOS/VSE Tape Labels manual.

Direct Access Device Labels

Volume Labels

The system uses direct access device labels to identify and
protect files stored on such devices. Files on direct access
devices must be labeled.

For each volume on a direct access device, there's always a
volume label. For each file on that volume, there's always a
standard file label. For each file, you can also specify and
process user standard labels.

Volume labels are preceded by a 4-byte key field. The key field
and the first four bytes of the data field each contain the
volume identification.

STANDARD FILE LABELS: Standard file labels can be in one of the
following three formats:

•
•

Sequential file format

Direct file format

184 VS FORTRAN Application Programming: Guide

(-\,')

~"

• DOS/VSE format for files using more than three extents on one
volume

USER STANDARD LABELS: User standard labels have the same format
as user standard labels for magnetic tape files.

If you specify user standard labels, you should provide an
assembler language subroutine to process them.

processing Direct Access Device Labels

The system processes the volume and standard file labels when you
open and close the fi Ie.

OS/VS Direct Access Label Considerations

You specify direct access labels through the LABEL parameter of
the DD statement; through this parameter, you can specify the
position of the file on the volume, the type of label, if the
data set is password protected, and the type of file processing
allowed.

Reference documentation for the DO statement is given in the VS
FORTRAN Appl i cati on Program-mi ng: System Servi ces Reference -
Supplement.

For additional detail on direct access label processing, see the
OS/VS Data Management Services Guide.

DOS/VSE Direct Access Label Considerations

You specify direct access labels through the DLBL statement;
through this statement, you can specify the identification of
the file on the volume, the type of data set label to be used
(sequential or direct), and the expiration date.

Reference documentation for the DlBL statement is given in the VS
FORTRAN Application Programming: System Services Reference
Supplement.

For additional detail on direct access label processing, see
DOS/VSE DASD labels.

DEFINING FORTRAN RECORDS--SYSTEH CONSIDERATIONS

Your FORTRAN programs must define the characteristics of the
data records it will process: their formats, their record
length, their blocking, and the type of device upon which they
reside.

For CMS considerations about record formats, see "Using
VM/370-CMS with VS FORTRAN."

Record Formats--OS/VS

Under VS FORTRAN, you can specify the format of the data records
as:

Fixed-Length Records
All the records in the file are the same size and each is
wholly contained within one block. Blocks can contain more
than one record, and there is usually a fixed number of
records in each block.

Variable-Length Records
The records can be either fixed or variable in length. Each
record must'be wholly contained within one block. Blocks
can contain more than one record.

Programming Input and Output 185

Each record contains a record-descriptor field, and each
block contains a block-descriptor field. These fields are
used by the system; they are not available to FORTRAN
programs.

spanned Records
The records can be either fixed or variable in length and
each record can be larger than a block. If a record is
larger than the remaining space in a block, a segment of the
record is written to fill the block. The remainder of the
record is stored in the next block (or blocks, if required).
Only complete records are made available to FORTRAN
programs.

Each segment in a block, even if it is the entire record,
includes a segment-descriptor field, and each block
includes a block-descriptor field. These fields are used by
the system; they are not available to FORTRAN programs.

Undefined-Length Records
The records may be fixed or variable in length. There is
only one record per block. There are no record-length,
block-descriptor, or segment-descriptor fields.

SEQUENTIAL EBCDIC DATA SETS: You can define FORTRAN records in an
EBCDIC data set as formatted or unformatted, that is, they mayor
may not be defined in a FORMAT statement. List-directed I/O
statements are considered formatted.

You can specify formatted records as fixed length, variable
length, or undefined length. , .

You can specify unformatted records only as variable length.

If you're processing records using asynchronous input/output,
the records must not be blocked.

Unformatted Records: Unformatted records are those not described
by a FORMAT statement. The size of each record is determined by
the input/output list of READ and WRITE statements.

Always specify unformatted records as variable and spanned.

In addition, they may be blocked or unblocked.

Use blocked records wherever possible; blocked records reduce
processing time substantially.

SEQUENTIAL ASCII DATA SETS: ASCII data sets may have sequential
organization only. For system considerations, see the
documentation for the system you're using.

FORTRAN records in an ASCII data set must be formatted and
unspanned and may be fixed length, undefined length, or variable
length records.

DIRECT-ACCESS DATA SETS: FORTRAN records may be formatted or
unformatted, but must be fixed in length and unblocked only.

The OPEN statement specifies the record length and buffer length
for a direct-access file. This provides the default value for the
block size.

Defining Records--OS/VS

Under OS/VS, you define data record characteristics through the
DCB parameter of the 00 statement.

Through the DCB parameter, you can specify:

• Record format--fixed length, variable length, or undefined

186 VS FORTRAN Application Programming: Guide

0,'; {, 'i

\

0

o

o

•

•
•
•

•
•
•

Record length--either the exact length (fixed or undefined),
or the length of the longest record (variable)

Blocking information--such as the block size

Buffer information--the number of buffers-to be assigned

Whether the data set is encoded in the EBCDIC or the ASCII
character set

Special information for tape files

Special information for direct access files

Information to be used from another data set

For reference documentation on the DCB parameter, see the VS
FORTRAN Application Programming: System Services Reference
Supplement.

Record Formats--DOS/VSE

DOS/VSE Logical
Unit Name

SYSIPT
SYSIN

SYSPCH

SYSLST

SYSLOG

The DOS/VSE system keeps control information about your data
files in an internal DTF table. There is a DTF table for each
iogical unit, including the system logical units, that your
program uses--except for SYSLOG.

~he system builds the DTF tables dynamically as each logical unit
is opened for the first time, using information it obtains from
your program. Guidance information on the DTF tables is included
in DOS/VSE Data Management Concepts and DOS/VSE Macro User's
Guide; reference information on the DTF tables is included in
DOS/VSE Macro Reference.

DOS/VSE FORTRAN produces and accepts records that have a
particular for~at depending on logical unit class, device type,
and the type of FORTRAN input/output operations applying to that
record.

The maximum length of a formatted record depends on the logical
unit or device, as shown in Figure 42.

Device
Permitted

Card reader, tape
unit, or disk
storage unit

Punch card device,
tape unit, or disk
storage unit

Printer, tape, or
disk storage unit

Console typwriter
or printer

Type Of
Operation

Input

Output

Output

Output

ttax i mum Record
Length

80 bytes

80 bytes

145 bytes for
tape and printer
121 bytes for
disk.

256 bytes for
console typewriter.
Printer--the
number of print
positions-plus one
for carriage control.

Figure 42. DOS/VSE Logical Units and Devices Allowed

Programming Input and Output 187

By device, the maximum size permitted for each record follows:

Device

Card Reader

Card Punch

Printer

Tape

Disk (sequential
access)

Direct access

Maximum Bytes

80

80

Number of print
position, plus
one byte for
carriage control

260

Device Dependent
(see Appendix A.)

As specified in an
OPEN statement.

For unformatted input/output, a single WRITE or READ may cause
the transfer of more bytes than are contained in a single rocord.
The system organizes such data into two or more records.

The system provides eight bytes of control information at the
beginning of each record block. This information indicates the
size of the record and whether it is part of a record that is
continued in one or more other blocks. There ;s never more than
one record for each block.

When this control information is needed it is provided and
maintained by the system. There's no need to consider it in
writing your input/output instructions.

The first four bytes of control information for unformatted
records constitute a block descriptor word; the next four bytes
constitute a segment-descriptor word.

188 VS FORTRAN Application Programming: Guide

0)

o

to

CODING CALLING AND CALLED PROGRAMS

You may need:to write programs which require a-specific operation
to be performed again and again, with different data for each
repetition; for example, a complex mathematical operation.

You can simplify the writing of such programs if you write the
statements in a separate subprogram that performs the repetitive
operation once; you can then simply refer to the subprogram
throughout the program, as if the operation itself were inserted
at the points you need to use it.

For example, you can write a general routine to take the cube
root of any number; you can then link-edit that routine, as an
external reference, with any program in which cube root
calculations are required.

The program that requires the services of the generalized
routine is the calling program.

The generalized routine itself (for example, the cube root
routine) is the called program. .

Calling and called programs make up a hierarchy of programs. The
first program unit to call others is the main program, which is
required in every program unit. The main program invokes
subprograms; however, subprograms cannot invoke the main
program.

Subprograms can invoke other subprograms to any depth. However,
a subprogram cannot invoke itself, and it cannot invoke any
subprogram in the hierarchy that invoked it. For example:

A

B

C

invokes

invokes

invokes

Band E

C and F

D

Program D cannot invoke program A, B, or C; it can, however,
invoke program E or F.

Kinds of Called Programs

Called programs in VS FORTRAN can be of three kinds:

• Subrout i ne Subprograms-wh i ch are invoked ; n the ca 11 i ng
program through the CALL statement. For example:

•

CALL CROOT (INTR)

This CALL statemant makes the value in IHTR available to
subprogram CROOT and transfers control to the first
executable statement in subprogram CROOT. When CROOT has
completed execution, control is transferred back to the main
program.

The point at which execution resumes depends upon the
process; ng wi thi n the subprogram.

Depending upon the logic of the program, CROOT mayor may not
return a value in INTR ..

Function Subpro9ra~s--which are invoked in the calling
progr~m through function references. For example:

ANS = lNGTH * CROOT1(INTR)

Coding Calling and Called Programs 189

When this statement is executed, the main program makes the
value in INTR available to function subprogram CROOT! and
transfers control to the first executable statement in it.

As soon as CROaT! finishes processing, control is returned
to the main program together with a value that is multiplied
by lNGTH to give ANS.

• FORTRAN-SUpplied Intrinsic Functions--which are a special
form of function subprograms with fixed names, available in
the execution-time library. The intrinsic functions perform
often-used mathematical and character functions, such as
obtaining logarithms of numbers, exponentiation,
trigonometric and hyperbolic evaluations, and character
manipulations.

For example, to obtain the square root of INTR, you can use
the SQRT function:

ANS = lNGTH * SQRTCINTR)

which executes the SQRT intrinsic function using the value
of INTR; the function then returns a value to the calling
program, which then uses the returned value in executing the
assignment statement, multiplying lNGTH by the value
returned by SQRT and placing the result in ANS.

The names ARSIH, ARCOS, DARSIN, and DARCOS are intrinsic
function names when using the option LANGLVL(66). The
corresponding names for LANGlVl(77) are ASIN, ACOS, DASIN,
and DACOS. The extended precision names for LANGLVL(66) and
LANGlVL(77) are QARSIN and QARCOS.

If you use the names ARSIN, ARCOS, OARSIN, or DARCOS under
LANGLVL(77), the corresponding functions are considered to
be external; that is, it is assumed you are supplying these
functions in your library or as one of your subprograms.
However, if you fail to supply your own and are using the MVS
or CMS system, the corresponding FORTRAN functions supplied
for the LANGLVL(66) names will be obtained from the library
and used.

However, if your are using DOS, this resolution is not made
and you must supply your own function. In this case, no
indication is given to the non-DOS user that the resolution
was made to the FORTRAN library routine instead of to your
own routine.

SHARING DATA BETWEEN PROGRAttS

Calling and called programs can share data between them, as we
have seen in the previous examples.

In FORTRAN, there are two ways to share data: by passing
arguments (data names identifying data items) between the
programs, or by using common data areas (areas that can be shared
by more than one program).

PASSING ARGUMENTS BETWEEN PROGRAMS

You can pass data values between a calling program and a
subprogram through the use of paired lists of actual and dummy
arguments. The paired lists must contain the same number of
items, and be in the same order; in addition, items paired with
each other must be of the same type and length. You can use such
paired lists in both SUBROUTINE and FUNCTION subprograms.

190 VS FORTRAN Application Programming: Guide

0)

'. ~)
~

o

o

to

passing Arguments to a FUNCTION Subprogram

You can use actual and dummy arguments when you're invoking a
function subprogram. If your main program contains the following
function reference:

G = B * ZCAlCCINUM,X,Y)

the actual arguments in function ZCAlC are INUM, X, and Y; they
contain the actual values you want to make available to the
function subprogram.

In the ZCAlC function subprogram, you define the dummy
arguments:

FUNCTION ZCAlCCM~X,ZZ)

The dummy arguments of function subprogram ZCAlC are M, X, and
ZZ.

When the calling program executes the statement containing the
function reference, the values in the actual arguments are made
available to the dummy arguments:

The Value of:

INUM
X
Y

Is Hade Available in:

M
X
ZZ

again, according to their positions in the argument lists.

M, X, and ZZ can then be used in operations within the function
subprogram.

When control returns to the calling program, a value is returned
to the calling program; then the assignment statement is
executed, using the value returned.

passing Arguments to a SUBROUTINE Subprogram

You can use actual and dummy arguments to pass data between a
calling program and a SUBROUTINE subprogram. For example, if the
calling program contains the statement:

CALL MAXNUMCPI,FOURV,XYZ,BIGM,HH)

PI, FOURV, XYZ, BIGM, and HH are actual arguments; they contain
values you want to make available to the SUBROUTINE subprogram.

The MAXNUM subprogram, in order to make the values available,
must contain a matching list of dummy arguments:

SUBROUTINE MAXNUMCA,B,C,D,E)

The dummy arguments of SUBROUTINE subprogram MAXNUM are A, B, C,
D, and E.

When the CAll statement is executed, the addresses of the actual
arguments are used as the addresses of the matching dummy
arguments:

The Address of:

PI
FOURV
XYZ
BIGM
HH

Becomes the Address of:

A
B
C
D
E

When MAXNUM is executed, the newly assigned values of A, B, C, D
and E can be used in operations.

Coding Calling and Called Programs 191

When control returns to the calling program, the current values
in A, a, c, 0, and E are also the current values of PI, FOURV,
XYZ, BIGMt and HH in the calling program.

General Rules for Arguments

You must define dummy arguments to correspond in number, order,
and type with the actual arguments. For example, if you define an
actual argument as an integer constant of length 4, you must
define the corresponding dummy argument as an integer of length
4.

Actual arguments are passed by name; if you alter the value of an
argument in the subroutine or function subprogram, you're
altering the value in the calling program as well.

If you define an actual argument as an array, then the size of
your paired dummy array must not exceed the size of the actual
array.

If you define a dummy argument as an array, you must define the
corresponding actual argument as an array or an array element.

If you define the actual argument as an array element, your
paired dummy array must not be larger than the part of the actual
array which follows and includes the actual array element you
specify.

Assigning Argument Values

If your subprogram assigns a value to a dummy argument, you must
ensure that its paired actual argument is a variable, an array
element, or an array. Never specify a constant or expression as
an actual argument, unless you are certain that the
corresponding dummy argument is not assigned a value in the
subprogram.

Your subprograms should not assign new values to dummy arguments
that are associated with other dummy arguments in the
subprogram, or with variables in COMMON. You may get unexpected
results, but the compiler cannot give you a warning message.

For example, if you define the subprogram DERIV as:

SUBROUTINE DERIV (X,Y,Z>
COMf10H W

and if you include the following elements in the calling program:

COMMON B

.
CALL DERIV (A, B, A)

the DERIV subprogram should not assign new values to X, Y, Z, and
W:

X and Z because they are both associ ated wi th the same
argument, A.

Y because it is associated with argument B, which is in
CmmON.

W because it also is associated with B.

For reference documentation about dummy arguments and actual
arguments, see the VS FORTRAN Application Programming: Language
Reference manual.

192 VS FORTRAN Application Programming: Guide

0)

o

~ .. o

SHARING DATA STORAGE-COt1t10N STATEHENT

You can use the COMMON statement to share data storage areas
between two or more program units, and to specify the names of
vari abIes and arrays occupy; ng the shared area.

There are two reasons why you might want to share data storage:

1. To conserve storage, by using only one storage allocation
for vari abies and arrays used by several program un its

2. To implicitly transfer arguments between program units

Arguments passed in a common area are subject to the same rules
as arguments passed in a SUBROUTINE subprogram argument list
(see "General Rules for Arguments").

For reference documentation about the COMMON statement, see the
VS·FORTRAN Application Programming: language Reference manual.

Data Item Order--COMMON Statement

Entries in a common area share storage locations; therefore, the
order in which you specify them is significant when you use the
common area to transmit arguments. For example, you specify the
following COMMON statements in the calling program:

COMMON A, B, C, R(100)
REAL A, B, C
INTEGER R

and you specify the following COMMON statement in your
subprogram:

COMMON X, Y, Z, S(100)
REAL X, Y, Z
INTEGER S

Fi gure 43 shows the order in whi ch these vari abIes and arrays are
placed in the common area, and how they share common storage.
Each column of variables starts at the beginning of the common
area. Variables on the same line share the same storage location.

Calling Program Shares Called Program Displacement Bytes From
Item with Item Beginning of COt1MON

0
A X

4
B Y

8
C Z

12
R(l) S(l)

16
R(2) S(2)

20

408
R(100) S(100)

412

Figure 43. Example of Shared Data Areas--COMMON Statement

Coding Calling and Called Programs 193

The calling program can assign values to A, 8, C, and R, and
those values are available to X, Y, Z, and 5 of the subprogram.

Conversely, the subprogram can assign values to X, Y, Z, and 5,
and those values are available to A, 8, C, and R of·the calling
program.

Using the COMMON statement in this way, you can share the values
in a number of data items without transmitting them in the
argument list of a CALL statement.

Type and Length Consfderations--COMMON statement

Mafn
Program

A <--->

8 <--->

C <--->

In order to pass arguments using the COMMON statement, you must
define the items that are to share common storage with the same
type and length.

For examplQ, if YQU define a common area 1n a
three subprograms, as follows:

Main Program:

Subprogram 1:

Subprogram 2:

Subprogram 3:

COMMON A,8,C (A and 8 are 8 storage locations,
C is 4 storage locations)

COMMON D,E,F (0 and E are 8 storage locations,
F is 4 storage locations>

COMMON Q,R,S,T,U (4 storage locations each)

COMMON V,W,X,Y,Z (4 storage locations each)·

How these variables are arranged within common storage is shown
in Figure 44.

Displacement
Subprogram 1 Subprogram 2 subprogram 3 (Bytes)

0
Q <---> V

D 4
R <---> W

8
5 <---> X

E 12
T <---> Y

16
F <---> U <---> Z

20

Figure 44. Transmitting Values 8etween Common Areas

The main program can transmit values for A, 8, and C to
subprogram 1, prov i ded that .. A is of the same type as O.

• 8 is of the same type as E.

• C is of the same type as F.

However, the main program and subprogram 1 cannot, by assigning
values to the variables A and 8, or D and E, respectively,
transmit values to the variables Q, R, 5, and T in subprogram 2,
or V, W, X, and Y in subprogram 3, because the lengths of their
common variables differ.

In the same way, subprogram 2 and subprogram 3 cannot transmit
values to variables A and 8, or to D and E.

194 V5 FORTRAN Application Programming: Guide

(0" ,,:'
~'" .

o

(0

Values can be transmitted between variables C, F, U, and Z if
each is the same data type as the others.

Also, if each is the same data type, values can be transmitted
between A and D, between Band E, and between Q and V, Rand W, S
and X, and T and Y.

However, any assignment of values to A or D destroys any values
assigned to Q, R, V, and W (and vice versa)i and any assignment
to B or E destroys the values of S, T, X, and Y (and vi ce versa).

Efficient Arrangement of Variables-COMMON statement

Your programs lose some object-time efficiency unless you ensure
that all of the common variables have proper boundary alignment.
(However, it isn't necessary for you to align COMPLEX, INTEGER,
LOGICAL, or REAL variablesi your programs will still execute
correctly.)

You can ensure proper alignment either by arranging the
non-CHARACTER type variables in a fixed descending order
according to length, or by defining the block so that dummy
variables force proper alignment.

FIXED ORDER OF VARIABLES-COlIn-JON STATEt1ENT: If you use the fi xed
order, non-CHARACTER type variables must appear in the following
order:

Length Type

IBM EXTENSION

COMPLEX 32
16

8
CONPlEX or REAL
REAL

END OF IBM EXTENSION

8 COMPLEX or DOUBLE PRECISION
4 REAL, INTEGER, or LOGICAL

IBM EXTENSION

2 INTEGER
1 LOGICAL

END OF IBM EXTENSION

USING DUMMY VARIABLES-' COMMON STATEMENT: If you don't use the
fixed order, you can ensure proper alignment by constructing the
block so that the displacement of each variable can be evenly
divided by the reference length associated with the variable.
(Displacement is the number of storage locations, or bytes, from
the beginning of the block to the first storage location of the
variable.) The reference length in bytes for each type of
variable is as follows:

Coding Calling and Called Programs 195

Type
Specification

LOGICAL
INTEGER
REAL
DOUBLE PRECISION
COMPLEX

LOGICAL
INTEGER
REAL
REAL
COMPLEX
COMPLEX

Length
specification

4
4
4
8
8

IBM EXTENSION

1
2
8
16
16
32

END OF

Reference·
Length (Bytes)

4
4
4
8
8

1
2
8
8
8
8

........ 1

The first variable in every common block is positioned as though
its length specification were 8. Therefore, you can assign a
variable of any length as the the first in a COMMON block.

To obtain the proper alignment for the other variables in the
same block~ you may find it necessary to add a dummy variable to
the block. .

For example, your program uses the variables A, K, and CMPlX
(defined as REAL*4, INTEGER*4, and COMPlEX*8, respectively) in a
COMMON block defined as:

COMMON A, K, CMPlX

The displacement of these variables within the block is:

variable

A

K

CMPlX

Displacement (Bytes)
in cormON

o

4

8

16

The displacements of K and CMPL~ are evenly divisible by their
ref~rence numbers.

IBM EXTENSION

However, if you define K as an integer of length 2, then CMPLX
is no longer properly aligne~ (its displacement of 6 is not
evenly divisible by its reference length of8). In this case,
you can ensure proper alignment by inserting a dummy variable
(DV) ~f length 2 either between A and K or between K and CMPLX.

196 VS FORTRAN Application Programming: Guide

0

o

(0

variable Displacement (Bytes)
t n CO~1t10N

0
A

2
DV

4

K

8

CMPLX

16

END OF IBM EXTENSION

EQUI VALEtlCE Cons f derat f ons-COt1ttON statement

When you use the EQUIVALENCE statement togeth~r with the COMMON
statement, there are additional complications resulting from
storage allocations. The following examples illustrate
programming considerations you must take into account.

Your program contains the following items:

REAL R4A, R4B, R4M(3,S), R4N(7)
DOUBLE PRECISION R8A, R8B, R8M(2)

IBM EXTENSION ------------

LOGICAUEl L1A

END OF IBM EXTENSION

LOGICAL L4A

which are defined in COMMON as follows:

COMMON R4A, R8M'~' R8A, L4A, R4M

and which results in the following inefficient displacements:

Name Displacement Boundary

R4A 0 Doubleword
R8M 4 Word (should be doubleword)

IBM EXTENSION·

L1A 20 Word

END OF IBM EXTENSION

R8A 21 Byte (should be doubleword)
L4A 29 Byte (should be word)
R4N 33 Byte (should be word)

Now add an EQUIVALENCE statement to this inefficient COMMON
statement:

1. First Example (valid but inefficient):

EQUIVAlENCE (R4M(1,1), R4B)
EQUIVALENCE (R4B, R8B)

Coding Calling and Called Programs 197

This results in the following additional inefficiencies:

Name

R4B
R8B

Displacement

33
33

Boundary

Byte (same as R4M(l,l»
Byte (same as R4M(1,1) and R4B)

which means that now both R4B and R8B are now also
inefficiently aligned.

2. Second Example (illegal):

EQUIVALENCE (R8A, R4N(7»

This is illegal, because the seventh element of R4N has the
same displacement as R8A, or 21.

This means that the first element of R4N is located 24 bytes
(4*6) before this, at displacement -3. It 1S ,llegal to
extend a COMMON area to the left in this way.

3. Third Example (valid but inefficient):

EQUIVALENCE (R8A, R4N(2»
EQUIVALENCE (R4M, R4N(S»

This has the following results:

Name

R4N(2)
R4N(3)
R4N(4)
R4N(5)
R4~1

Displacement

21
25
29
33
33

Boundary

Byte
Byte
Byte
Byte
Byte (same position as R4N(S)

This is valid because the EQUIVALENCE statement places R4M
at displacement 33, the same displacement as that specified
in the COMMON statement. However, it is inefficient because
both R4N and R4M begin at a byte boundary.

4. Fourth Example (illegal):

BLANK AND NAMED COMMON

EQUIVALENCE (R8A, R4N(2»
EQUIVALENCE (R4M, R4N(4»

This has the following illegal results:

Name

R4N(2)
R4N(3)
R4N(4)
R4tH 5)
R4M

Displacement

21
25
29
33
29

Boundary

Byte
Byte
Byte
Byte
Byte (same position as R4N(4)

This is illegal, because the EQUIVALENCE statement (which
places R4M at displacement 29) contradicts the COMMON
statement (which places R4M at displacement 33). The COMMON
statement controls the d;splacement of R4M, not the
EQUIVALENCE statement.

There are two forms of common storage.you can specify: blank
common and named common.

198 VS FORTRAN Application Programming: Guide

0)

. '\

~}
~7

o

.0

Blank Common

Named Common

In the preceding example, the common storage area (common block)
is a blank common area, since you gave no name to the storage
area. The variables you specified in the COMMON statements were
assigned locations relative to the beginning of this blank
common area.

When you specify items in blank common, you can't use a BLOCK
DATA program to initialize them.

You can name common storage areas (or blocks of storage)--known
as named common. Blocks given the same name occupy the same
space.

You can place variables and arrays in separate common areas

This lets you specify that a calling program is to share one
common block with one subprogram, and to share another common
block with another subprogram. It also gives you better program
documentation.

Using Blank Com~on and Nam~d Common

There are different FORTRAN rules for blank and named common
areas, which may cause you to choose one type over the other,
depending on what you want your program to do.

The differences are:

• You can define only one blank common block in an executable
program, although you can specify more than one COMMON
statement defining items in blank common; you cannot assign
blank common a name. You can define many named common blocks,
each with its own name.

• You can define blank common as having different lengths in
different program units. You must define a given named
common block with the same length in every program unit that
uses it.

• You can't assign initial values to variables and array
elements in blank common.

• In named common. you can assign initial values to variables
and array elements, through a BLOCK DATA subprogram that
contains DATA statements or explicit specification
statements.

In a COMMON statement, you specify a common block name by
enclosing it in slashes. The following example defines a named
common block, PAYROL, that contains the variables FICA, MANHRS,
SICKDA:

COMMON/PAYROL/FICA,MANHRS,SICKDA

You can define blank common in a COMMON statement by omitting a
name, and defining the blank common area first:

COMMON A,C,G/PAYROL/FICA,MANHRS,SICKDA

and the variables A, C, and G are placed in bl~nk common.

You can also specify blank common items after named common items,
by placing two consecutive slashes before the list of blank
common variables:

For example, in the following statement:

Coding Calling and Called Programs 199

COMMON A, C, G /PAY~OL/FICA,MANHRS,SICKOA// JJ, VMH, LP7

you've defined the variables A, C, G, JJ, VMN, and LP7 in blank
common, and in that order. You've defined PAYROL as named common,
containing FICA, MAHHRS, and SICKDA, in that order.

If you specify more than one COMMON statement in a program, the
definitions are cumulative through the program. For example, if
you specify the following two COMMON statements:

COMMON A, B, C /R/ D, E /S/ F
COMMON G, H /S/ I, J IRIP // W

they have the same effect as if you specified the single
statement:

COMMON A,B,C,G,H,W /RI D, E, P IS/ F, I, J

Using Blank and Named Common--Example

The differences in usage between blank and named common are
illustrated in the following example.

Your programs specify that A, B, C, K, X, and Y each occupy four
locations of storage, Hand G each occupy eight locations, and 0,
E, and F each occupy two locations.

Calling Program

COMMON H, A IR/ X, D, E /1 B

Subprogram

SUBROUTINE MAPMYC •.•)
COMMON G, V, C IRI K, E, F

In the calling program, the statement:

COMMON H, A IRI X, D, E II B

reserves the following storage:

16 locations in blank common (eight locations for H, and four
each for A and B)

Eight locations in named common R Cfour for X, and two each
for 0 and E).

The following statement in the subprogram MAPMV:

COMMON G,V,C/R/K,E,F

causes the following common storage sharing:

In blank common, the variables G, V, and C share the same
storage as H, A, and B, respectively.

In named common, the variables K, E, and F share the same
storage as X, 0, and E respectively.

The common storage is laid out as shown in Figure 45.

200 VS FORTRAN Application Programming: Guide

C-.~··) . 1/

,I 'C'

'()

f",O·:1 \ ,',

Calling Called Displacement (Bytes)
Program Program in COMt10N

Blank Common 0 B lank Common
H <--> G

8
A <--> y

12
B (--> C

16

Named Common R 0 Hamed Common R
X <--> K

4
D/E <--> E/F

8

Figure 45. Blank and Named Common Storage Sharing

CODING MAIN PROGRAMS-CALlltm PROGRAMS

When you're writing a series of program units that communicate
with each other, the first program in the calling chain must be a
main program.

The main program can invoke subprogram units, which in turn can
invoke other subprogram units; however, none of the subprogram
units can invoke. the main program, and no program can invoke
itself.

NAMING YOUR HAIN PROGRAH--PROGRAM STATEMENT

To give your main program a name, use the PROGRAM statement as
the first statement in the progr~m, as shown below.

PROGRAM CUBES
DO 10 1=12,26
J = VBE3

.
10 CONTINUE

END

The PROGRAM statement names your main program CUBES. (The name is
appropriate, since the program cubes the numbers from 12 to 26
and then manipulates those values, perhaps printing both I and J
each time the program goes through the loop.)

If you don't use the PROGRAM statement, your main program is
named MAIN.

For reference documentation about the PROGRAM statement, see the
VS FORTRAN Application Programming: language Reference manual.

INVOKING FORTRAN-SUPPLIED FUNCTIONS

There are a number of FORTRAN-supplied functions (intrinsic
functions) you'll find useful, including mathematic functions to
derive trigonometric values, logarithms, exponential values,
maximum and minimum values, sign conversions, absolute values,
error functions, and functions to manipulate character operands.

Coding Calling and Called Programs 201

Invoke a FORTRAN-supplied function by referring to the function
name within an arithmetic ,statement; the function name is
replaced by the value returned from the invoked function, after
the invoked function has completed its calculations.

For instance, you can invoke the FORTRAN-supplied function
subprogram that returns the square root of a number, with
statements in your program such as: .

Y = SQRT(X+Z) * 3.1

If the sum of X and Z is 9.0, then the square root ofX+Y is 3.0,
and the value assigned to Y would be 3.0 times 3.1, or 9.3.

In VS FORTRAN, you can use the generic function name, and the
compiler will select the function your program actually should
use,

DOUBLE PRECISION X. Z. Y
Y = SQRT(X+Z) * 3.1

In this case, you've specified SQRT, the generic function name;
however, during compilation the compiler selects the DSQRT
function, which gives a double precision result.

When you are using the current language level and specify an
intrinsic function name in an explicit type statement, the
intrinsic function is not removed from its status as an intrinsic
function; this is true whether you specify the predefined
functi on type or whether you respeci fy it as another type. When
the intrinsic function is executed, the mode used is the mode
predefined to the compiler.

However, when you are using the old language level and specify an
intrinsic function name in an explicit but conflicting type
statement, you remove it from its intrinsic status and it becomes
the name of a user-supplied external function.

Using FORTRAN-Suppl ted Functions as Arguments-INTRINSIC Statement

If you want to pass FORTRAN-supplied function names as
arguments, you must specify an INTRINSIC statement in the
invoking program:

INTRINSIC CSIN,CCOS,TAN,SINH,COSH

This lets you use the FORTRAN-supplied CSIN, CCOS, TAN, SINH, and
COSH mathematical subroutines as arguments in your own functions
or subroutine programs.

In the INTRINSIC statement, you can specify a given function name
only once. That is, in the preceding example, it would be invalid
to repeat CSIN at the end of the list of function names.

When you specify an INTRINSIC statement, it must precede all the
statement function definitions and executable statements in the
program un it.

For reference documentation about FORTRAN-supplied functions,
see the VS FORTRAN Application Programming: library Reference
manual.

For reference documentation about the INTRINSIC statement, see
the VS FORTRAN Application Programming: language Reference
manual.

Comparing Character Operands--FORTRAN-Supplied Functions

When your programs compare character operands using the
following intrinsic functions:

202 VS FORTRAN Application Programming: Guide

(.. 0.1.1 ,

o

llT--logically less than

lGT--logically greater than

llE--Iogically less than or equal to

lGE--logically greater than or equal to

the character operands are compared using the ASCII collating
sequence.

For example, if C1 contains "3AB" and C2 contains "XYZ", the
following comparison:

l = lGT(C1,C2)

will evaluate as "false."

(However, if the same operands are compared, using a relational
operator:

l = C1.GT.C2

the EBCDIC collating sequence is used for the comparison, and the
statement evaluates as "true.")

The EBCDIC and ASCII collating sequences are listed in the VS
FORTRAN Application Programming: language Reference manual-.-

INVOKING FUNCTION AND SUBROUTINE SUBPROGRAMS

FUNCTION and SUBROUTINE subprograms are useful for performing
often-repeated routines that might be shared by many
programs--such as error recovery routines for input/output
statements, or often-repeated mathematical calculations.

Both types of subprograms are discussed in the following
sections.

Invoking FUNCTION Subprograms

Invoke a function subprogram of your own in the same way you
invoke an IBN-supplied function--through a program reference.
The function name is replaced by the value returned from the
invoked function, after the invoked function has completed its
calculations.

For instance, you can invoke a function subprogram you've named
BCAlC, with the following statement in your invoking'program:

R = BCAlCCA+B) * 3.1

Your program calculates the sum of A and B and passes that value
to the function subprogram BCAlC; when BCAlC completes
executing, it returns the value to the invoking program, which
then multiplies it by 3.1 to give the value of R.

FUNCTION SUBPROGRAMS AND THE EXTERNAL STATEMENT: You use the
EXTERNAL statement with your FUNCTION subprograms in two
different ways:

• If you name the program with an IBM-supplied function name,
you must list the name in an EXTERNAL statement.

For example, if you write you~ own square_root routine, and
you name it SQRT, you must specify it in an EXTERNAL
statement:

EXTERNAL SQRT

Coding Calling and Called Programs 203

which tells the compiler that you want any SQRT references in
your program to invoke your own SQRT routine rather than the
IBM-supplied SQRT routine.

• If you want to pass a functi on subprogram as an argument, you
must specify the name of the subprogram in an EXTERNAL
statement.

When you specify an EXTERNAL statement, it must precede all the
statement function definitions and executable statements ;n your
program. The names you specify in an EXTERNAL statement can be
names of external procedures, dummy procedures, or BLOCK DATA
subprograms.

You can't use the same name in both an EXTERNAL statement and an
INTRINSIC statement.

For reference documentation about the INTRINSIC and EXTERNAL
5t~t~m~"t~, 5~e th~ v~ FORTRAN Accl~~~tinn Pr~~r~mmi"~: l~n~u~oQ
Reference manual.

Invoking SUBROUTINE Subprograms--CALL statement

To execute a SUBROUTINE subprogram at a certain point in a
program, issue a CAll statement at that point in the invoking
program. The CAll statement can optionally pass actual arguments
to replace the dummy arguments in the called SUBROUTINE
subprogram:

CAllOUT (no actual arguments passed)
CAll SUB1(X+Y*5,ABDF(IND),SINE) (three actual arguments passed)

Wh~n it's executed, the CAll statement transfers control to the
SUBROUTINE subprogram, and associates the dummy variables in the
SUBROUTINE subprogram with the actual arguments that appear in
the CAll statement, as shown in Figure 46.

calling Program

DIMENSION X(90),Y(90)

CAll COPY (X,Y,90)

SUBROUTINE Subprogram

SUBROUTINE COPY(A,B,N)
DIMENSION ACN),BCN)
DO 10 I = 1, N .

10 BCI) = A(I)
RETURN
END

Figure 46. CAll Statement Execution

When the CAll COPY statement is executed:

The addresses of the actual arguments, array X and array Y,
. become the addresses of the dummy arguments, array A and
array B, in the subprogram.

The vari able N in the subprogram is associ ated wi th the
value 90.

Thus a call to subprogram COpy, in this instance, results in the
90 elements of array X being copied into the 90 elements of array
Y.

204 VS FORTRAN Application Programming: Guide

0)

o

,0

(0

CODING SUBPROGRAHS--CAllED PROGRAMS

There are four types of subprograms that you can use in VS
FORTRAN: FORTRAN-supplied functions, FUNCTION subprograms,
SUBROUTINE subprograms, and BLOCK DATA subprograms.

-
FORTRAN-supplied functions let you use predefined calculations
for commonly used mathematical and character manipulations.

FUNCTION and SUBROUTINE subprograms are useful when your program
must perform the same set of computations with different data at
various points in the program.

In a calling program, you invoke a FUNCTION subprogram by a
statement reference to the function name. After the function has
been executed, the function name has a value and can be used in a
calculati on just as a variable is used.

In a calling program, you invoke a SUBROUTINE subprogram by a
CALL statement that specifies the subprogram name.

Your calling program can also invoke a SUBROUTINE subprogram by a
CAll statement that specifies an ENTRY name within the
subprogram.

You code a BLOCK DATA subprogram when you want to initialize
variables in named common blocks. These subprograms are neither
called nor invoked by a reference to the subprogram name; they
initialize the variables at compile time.

CODING FUNCTION SUBPROGRAMS

The first statement in a FUNCTION subprogram (excluding
debugging statements) is a FUNCTION statement, identifying the
program. For example:

FUNCTION TRIG (DELTA, THETA, ABSVAL)

This statement identifies the subprogram named TRIG as a
FUNCTION subprogram, with dummy arguments DELTA, THETA, and
ABSVAl.

The data type of the function is real of length 4--derived from
the predefined naming conventions. (The data type of the
fUnction determines the data type of the value it returns to the
invoking prograM.)

You can also explicitly specify the data type of the function:

DOUBLE PRECISION FUNCTION TRIG (DElTA,THETA,ABSVAl)

which specifies that the data type of TRIG is real of length 8.

IBM EXTENSION

If you want TRIG to be a real function of length 8, you can
alternatively specify:

REAL FUNCTION TRIG*8(DElTA~THETA,ABSVAl)

~-------- END OF IBM EXTENSION _________ --1

You can also specify a FUNCTION subprogram as being of CHARACTER
type:

CHARACTER*lO FUNCTION TEXTl (WORD1,WORD2)

which defines TEXTl as a CHARACTER function which returns a
CHARACTER value of length 10, using dummy arguments WORDl and
WORD2.

Coding Calling and Called Programs 205

In a function subprogram, you can use any FORTRAN statements,
except PROGRAM (which would define it as a main program),
SUBROUTINE (which would define it as a SUBROUTINE subprogram),
or BLOCK DATA (which would define it as a BLOCK DATA subprogram).

You must code the last statement in a FUNCTION subprogram as an
END statement.

You can also specify any number of RETURN statements.

Both the END and RETURN statements return control to the
statement making the function reference in the calling program.

For reference documentation about the FUNCTION statement, see
the VS FORTRAN Application Programming: Language Reference
manual.

The first statement in a SUBROUTINE subprogram (excluding
debugging statements) is a SUBROUTINE statement, identifying the
program:

SUBROUTINE TRIG (DELTA, THETA, ABSVAL)

This statement identifies the subprogram named TRIG as a
SUBROUTINE subprogram, with dummy arguments DELTA, THETA, and
ABSVAL.

In a SUBROUTINE subprogram, you can use any FORTRAN statements,
except PROGRAM (which would define it as a main program),
FUNCTION (which would define it as a FUNCTION subprogram), or
BLOCK DATA (which would define it as a BLOCK DATA subprogram).

You must code the last statement in a SUBROUTINE subprogram as an
END statement. You can also specify any number of RETURN
statements. Both of these statements return control to the
statement following the CALL statement in the calling program,
except when you specify an alternate return.

For reference documentation about the SUBROUTINE statement, see
the VS FORTRAN Application Programming: language Reference
manual.

SPECIFYING ALTERNATIVE ENTRY POINTS-ENTRY STATEt1ENT

When you're developing either FUNCTION or SUBROUTINE
subprograms, you can specify alternative entry points within the
program, using the ENTRY statement.

For ex~mple, subprogram TRIG could have an alternative entry
point, depending on the data type of the values you wanted
returned.

Alternative Entry Points in FUNCTION Subprograms

If FUNCTION TRIG had an alternative entry point, the sequence of
statements would look something like this:

FUNCTION TRIG (DELTA,THETA,ABSVAL)
DOUBLE PRECISION BETA,ZETA,ABVAL1,TRIG8

RETURN
ENTRY TRIG8 (BETA,ZETA,ABVAL1)

END

206 VS FORTRAN Application Programming: Guide

C~i
,I

o

This FUNCTION subprogram can be executed in either of two ways:

1. When the calling program uses TRIG in a function reference,
the FUNCTION subprogram ;s entered at the first executable
statement, and the value returned is a real value of length
4. -

The RETURN statement returns control to the calling program . .
2. When the calling program uses TRIG8 in a function reference,

the FUNCTION subprogram is entered at the first executable
stat€ment following TRIG8, which is defined as a double
precision function; therefore, .the value returned is a real
value of length 8. .

The END statement returns control to the calling program.

Alternative Entry Points in SUBROUTINE subprograms

If SUBROUTINE TRIG had an alternative entry point, the sequence
of statements would look something like this:

, SUBROUTINE TRIG (DELTA,THETA,ABSVAL)
DOUBLE PRECISION BETA,ZETA,ABVAl1

RETURN
ENTRY TRIG8 (BETA,ZETA,ABVAL1)

END

This SUBROUTINE subprogram can be executed in either of two ways:

1. When the calling program uses TRIG in a CALL statement, the
SUBROUTINE subprogram is entered at the first executable
statement, ~nd the subprogram uses the arguments DELTA,
THETA, and ABSVAl, which are real items of length 4.

The RETURN statement returns control to the calling program.

2. When the calling program uses TRIG8 in a CALL statement, the
SUBROUTINE subprogram ;s entered at the first executable
statement following TRIG8, and the subprogram uses the
arguments BETA, ZETA, and ABVAll, which are real items of
length 8.

The END statement returns control to the calling program.

SPECIFYING ALTERNATIVE RETUR.N POINTS-RETURN STATEMENT

When you're developing SUBROUTINE subprograms, you can specify
alternative return points within the calling program, using the
RETURN statement.

The RETURN statement, with no operands, can serve as one
alternative return point, as the previous examples illustrate.

You can also code the RETURN statement with an integer variable
operand; this allows you to specify variable return points. That
is, you can return control to any labeled statement in the
calling program.

For example, SUBROUTINE subprogram TRIG could have a variable
return point, depending on the data values it develops:

Coding Calling and Called Programs 207

Callfng Program Called Program

SUBROUTINE TRIG (X,Y,Z,*,H)

.
10 CALL TRIG (A,B,C,*30,*40)
20 Y = A + B 100 IF (M) 200,300,400 . 200 RETURN
30 Y = A + C 300 RETURN 1

400 RETURN 2
40 Y= B - C END

When statement 10 of the calling program is executed, control is
transferred to the first executable statement in TRIG~ In TRIG,
wh~n statement 100 is executed, the value of M in the arithmetic
IF statement determines which RETURN statement is executed:

If M is less than zero, control is transferred to statement
200: and the RETURN statement returns control to statement
20 in the calling program. (This is the statement following
the CALL statement.)

If M is equal to zero, control is transferred to statement
300, and the RETURN 1 statement returns control to the first
statement number in the calling program's actual argument
list (*30). (Thus, control is returned to statement 30 in the
calling program.)

If M is greater than zero, control is transferred to
statement 400, and the RETURN 2 statement returns control to
the second statement number in the calling program's actual
argument list <*40). (Thus, control is returned to statement
40 in the calling program.)

Execution then continues in the calling program.

RETAINING SUBPROGRAM VALUES--SAVE STATEMENT

The current FORTRAN standard states that, when a RETURN or an END
statement in a subprogram is executed, all variables become
undefined except for those in blank common, those in the argument
list, and those specified in a SAVE statement. Thus, you use the
SAVE statement to retain such undefined values.

For program portability, you can use the SAVE statement to
ensure, if the program is recompiled on some other FORTRAN
compiler, that values in specific named common blocks,
variables, or arrays are saved when a RETURN or an END statement
i s executed.

In VS FORTRAN, these values are still available after a RETURN or
an END statement is executed; however, the compiler accepts the
SAVE statement and treats it as documentation.

For reference documentation about the SAVE statement, see the ~
FORTRAN Apelication Programming: Language Reference manual.

INITIALIZING NAMED COrtHON-BLOCK DATA SUBPROGRAtiS

BLOCK DATA subprograms let you initialize data items in named
common. (You can't initialize data items in blank common.)

The first statement you specify in a BLOCK DATA subprogram mU5~
be the BLOCK DATA statement. For example:

BLOCK DATA

or

BLOCK DATA COMDAT

208 VS FORTRAN Application Programming: Guide

i,···C'''' \)

(0

where COMDAT is the name (optional) you've given the BLOCK DATA
subprogram. If you specify a name, it must not be the same as the
name of any other program, of an alternate entry point, of a
common block, or of any data item within this BLOCK DATA
subprogram.

The only statements you can specify in a BLOCK-DATA subprogram
are:

• BLOCK DATA (first statement in program)

• IMPLICIT Cif used, must immediately follow BLOCK DATA
statement)

• PARAMETER

• SAVE

• DIMENSION

• COMMON (must specify named common areas, each defined once)

• EQUIVALENCE

• DATA (must follow data item definitions in named COMMON
statements, and must specify only data items in named
common)

• Type statements

• END (must be last statement in subprogram)

The presence of a BLOCK DATA subprogram initializes named common
data values in main programs or subprograms that refer to the
named common blocks. Therefore, your programs must not contain
CALL statements or function references to BLOCK DATA
subprograms.

The following example shows how a BLOCK DATA subprogram might be
coded:

BLOCK DATA
COMMON /ELJ/JC,A,B/DAL/Z,Y
REAL B(4)/1.0,0.9,2*1.3/,Z*8C3)/3*5.42311849DO/
INTEGER*2 JC(2)/74,77/
END

this program initializes items in two named common areas, ELJ and
DAL:

• The REAL type statement initializes item B in ELJ and item Z
in DAL.

• The INTEGER type statement initializes item JC in ELJ.

• Because they're not included in either type statement, item
A in ELJ and item Y in DAL are not initialized.

For reference documentation about BLOCK DATA subprograms, see
the VS FORTRAN Application Programming: Language Reference
manual.

SYSTEM CONSIDERATIONS

In order to use the subprograms you write, you must catalog them
in a library-so they're available to calling. programs. How you
do this depends on the system you're using.

For VM/370-CMS considerations, see "Using VM/370-CMS with VS
FORTRAN."

Coding Calling and Called Programs 209

For OS/VS and DOS/VSE considerations, see "Cataloging Your
Object Module--DOS/VSE" in Part 2.

OVERLAYING PROGRAMS IN STORAGE

When you use the overlay features of the linkage editor, you can
reduce the main storage requirements of your program by breaking
the program up into two or more segments that don't need to be in
main storage at the same time. These segments can then be
assi gned the same storage addresses and can be loaded at
different times during execution of the program.

You must specify linkage editor control statements to indicate
the relationship of segments within the overlay structure.

Keep in mind, that although overlays reduce storage, they also
can drastically increase program execution time. In other words,
you probably shouldn't use overlays unless they're absolutely
necessary.

The SAVE statement has no effect on overlaid programs. That is,
when a program is overlaid by another, variable values in the
overlaid program become undetermined.

For reference documentation about overlays, see the VS FORTRAN
Application Programming: System Services Reference Supplement.

Specifying oS/VSoverlays

In OS/VS, overlay is initiated at execution time when a
subprogram not already in main storage is referred to. The
reference to the subprogram may be either a FUNCTION name or a
CALL statement to a SUBROUTINE subprogram name. When the
subprogram reference is found, the overlay segment containing
the required subprogram is loaded--as well as any segments in its
path not currently in main storage.

When a segment is loaded, it overlays any segment in storage with
the same relative origin. It also overlays any segments that are
lower (farther from the root segment) in the path of the overlaid
segment.

Whenever a segment is loaded it contains a fresh copy of the
program units that it comprises; any data values that may have
been established or altered during previous processing are
returned to their initial values each time the segment is loaded.

For this reason, you should place subprograms whose data.values
must be retained for longer than a single load phase into the
root segment.

The linkage-editor control statements you use to process an
overlay load module in OS are:

• OVERLAY linkage-editor control statement--which indicates
the beginning of an overlay segment and gives the symbolic
name of the relative origin.

OVERLAY control statements are followed by object decks,
INSERT control statements, or INCLUDE control statements.

• INSERT 1 i nkage-edi tor control statement-. -~"hi ch posi t ions
previously compiled routines, when the object decks are not
available, within the overlay structure.

The INSERT control statement gives the names of one or more
control sections (CSECTs) that are to be inserted.

To place the control section in the root segment, position
the INSERT control statement before the first OVERLAY
control statement.

210 VS FORTRAN Application Programming: Guide

o

o

/'

o

• INCLUDE linkage-editor control stetement--which includes
control sections from libraries, if the control sections
reside in partitioned data sets or sequential data sets.

When you use an INCLUDE control statement in en overley
program, you should position it in the input stream at the
point where the control section to be included is required.

The control sections added by an INCLUDE control statement
can be manipulated ~hrough Use of the INSERT control
statement.

• ENTRY linkage-editor control statement--which specifies the
first instruction of the program to be executed, giving the
name of an instruction in the root s~gment. Usually that name
will be either MAINI or the name you've given in the PROGRAM
statement (if specified).

These control statements appear in the input stream after the
IISYSLIN DO statement (or after the IILKED.SYSLIN DO statement
if you use a cataloged procedure) •.

specifying DOS/VSE Overlays

I
,/

The linkage-editor control statements you need to create an
overlay phase in DOS are:

• PHASE linkage-editor control statement--which lets you
divide your program into a number of phases.

• INCLUDE Ii nkage-edi tor control statement--l ... hi ch lets you
specify that a module from the relocatable library is to be
included in the present phase.

OVERLAY PROCEDURE: To keep from running into difficulty when
you're using multiple phases, you should develop your overlay
programs using the following procedures:

1.

2.

3.

4.

5.

Select a program name for the root phase of the program, the
fi rst four characters of whi ch are un i que in the core image
library.

Determine the phase structure of the program and assign
phase names, the fi rst four characters of whi ch are the same
as the root phase name. .

Wr i te the root phase to serve as a mon i tor, loadi ng each of
the other phases as needed.

Determine the subroutine requirements for each phase.

If any modules used are not in the root phase but in the
relocatable library, specify NOAUTO in the PHASE statement
for each phase that refers to a module appearing in a later
phase; when the PHASE statement is executed, the relocatable
library is not searched and the later phases are not loaded.

You must explicitly specify each subsequent phase in an
INCLUDE control statement for the ro~t phase.

USING THE CALL OPSYS STATEMENT: Within the FORTRAN program, when
you want to have a phase loaded, issue a CALL to the library
routine OPSYS. Your program must do this before you invoke the
SUBROUTINE or FUNCTION that you want to execute.

Coding Calling and Called Programs 211

For example, to load and execute subprograms PHASE4 and PHASE6,
you specify:

CALL OPSYSC'LOAD','PHASE4 ')

CALL PHASE4CA,B)
CALL OPSYSC'LOAD','PHASE6 ')

CALL PHASE6(D)

These CALL OPSYS statements result in the phases named PHASE4 and
PHASE6 being loaded. (The phase name in the CALL OPSYS statement
is always eight alphameric characters, with the name
left-adjusted within the field and padded on the right with
blanks,)

The CALL PHASE4 and CALL PHASE6 statements cause the subprograms
PHASE4 and PHASE6 to be executed.

For reference documentation about the CALL OPSYS statement, see
the VS FORTRAN Application Programming: Language Reference
manual.

Note: You must explicitly identify the OPSYS service routine by
its library module name CIFYOPSYS) and supply a linkage editor
INCLUDE statement using this name to get the OPSYS module
included into the root phase.

212 VS FORTRAN Application Programming: Guide

0'

o

o

USING THE OPTIMIZATION FEATURE

When you use the OPTIMIZE(1/2/3) options, you-can get faster
program execution. However, when you use these options, you
should be aware of programming practices that can help or hinder
optimization.

Some of the suggest ions are obv i ous, some are not. However, it's
easy to forget even the obvious ones when you're developing or
revising programs over a period of time.

The following paragraphs suggest ways you can make your programs
use the OPTIMIZE features to best advantage.

SELECT THE HIGHER OPTIMIZATION LEVELS

In general, you should select the highest level of optimization.
The higher the optimization level you select, the longer the
compilation time; however, both object program storage and
execution time are reduced.

Very few iterations through most subroutines can cause
optimization savings to exceed optimized compilation cost.

You should use NOOPTIMIZE or OPTIMIZE(!) only for testing
purposes. For example, they're useful if you want to check the
syntax of the program without executing it, or to debug a
subroutine that doesn't iterate correctly.

Whenever you can, however, you should choose either OPTIMIZE(2)
or OPTIMIZE(3) for most programs.

WRITE PROGRAMS OF EFFICIENT SIZE

USE UNFORMATTED I/O

For efficient optimization, programs can be either too large or
too small.

Keep p':ograms smaller than 8,192 bytes in S1 ze. Programs larger
than this cause the compiler to remove an address from
optimization and reserve it as a program address register.

Don't write subroutines that perform a small amount of work. The
work done by a small subroutine can be lost in the cost of
calling it. Instead, you should code such subroutines directly
into the main program. This lets the compiler optimize the
operations in the subroutine together with those of the main
program.

Unformatted I/O takes less processing time and uses less storage
than formatted I/O. Unfor~atted I/O also exactly maintains the
precision of the data items you're processing.

With formatted I/O, each data element is converted between
internal and external format. This takes time and storage. In
addition, rounding errors can accumulate during conversion.

USE ARRAY OPERANDS FOR I/O TRANSFERS

In a READ or a WRITE statement, each operand is interpreted
individuallY by the data transfer routines. (This is true for
both unformatted and formatted I/O.)

Using the Optimization Feature 213

By using an array operand without subscripts~ you can read or
write an entire array with.a single operand.

You can also transfer a subset of an array by specifying an
implied DO loop. For example:

CACI),I=11,99)

which transfer elements 11 through 99 of the array A.

However, when you use implied DO loops in this way, keep the
subscript expressions simple. Don't interleave elements from
several arrays in one implied DO loop; instead, write each array
subscript in a separate implied loop. For example:

C(ACI),BCI),CCI)I=11,99)

requires one call to the I/O subroutines for each array element,
but

(A(I),I=1I,99),CBCI),I=11,99),{C(I),I=11,99)

requires only three such calls for the entire array.

USE LOGICAL VARIABLES OF LENGTH 4

LOGICAL variables of length 4 can be accessed directly without
clearing a register.

IBM EXTENSION

Every reference to a LOGICAL*l variable causes a register to be
cleared before the variable is accessed. In some situations~
the compiler allocates a register throughout an entire loop
for thi s purpose; if not, it must at least generate an extra
instruction.

1..-_________ END 0 F I BM EXT ENS I ON ------------'

USE INTEGER VARIABLES OF LENGTH 4

INTEGER variables of length 4 are optimized by strength
reduction; they're also generated into branch-on-index
instructions. You should always use INTEGER variables of length
4 for DO loop indexes.

IBM EXTENSION

INTEGER*2 variables are not optimized by strength reduction,
and they aren't generated into branch-on-index instructions.
Therefore, they're less efficient than INTEGER*4 variables.

END OF IBM EXTENSION ---------.....1

ELIMINATE EQUIVALENCE STATEMENTS

Equivalenced variables often cannot be optimized. Optimization
can't be performed for a variable equivalenced to another
variable of a different type (for example, logical to integer)~
or for a scalar variable equivalenced to an array.

INITIALIZE LARGE ARRAYS DURING EXECUTION

If you initialize large arrays using a DO loop, you get faster
execution and you use less storage than if you initialize using a
DATA statement.

For ex~mple, the following statements:

214 VS FORTRAN Application Programming: Guide

0)

o

, (.,,'\
i ~

DOUBLE PRECISION A(5000)
DATA A(5000)/5000*0.O/

generate 40,000 bytes of object module information--more than
500 TXT card~. The 40,000 zeros must be placed in the object
module by the compiler, placed in the load module by the linkage
editor, and fetched into storage when you execute the program.

USE COMMON BLOCKS EFFICIENTLY

Each reference to a variable in COMMON requires that the address
of the COMMON block be in a register. The following
recommendat ions are based on thi s fact.

1. Don't use multiple COMMON blocks. The following example
shows &.Jhy:

Three Registers
Required:

COMMON /X/ A
COMNON/Y/ B
CO~'~'ON /z/ C
A=B+C

One Register
Required:

COMMON /Q/ A,B,C
A=B+C

As the example shows, you should group concurrently
referenced variables into the same COMMON block.

2. Place scalar variables before arrays in a given COMMON
block. The folloL"ing example shows why: "~

Two Registers Required:

COMMON /Z/ X(5000),Y
X(l)=Y

One Reg;ster Required:

COMMON /Z/ Y, X(SOOO)
X(l)=Y

In the same way, you should place small arrays before large
ones. All the scalar variables and the first few arrays can
then be addressed through one address constant. The
subsequent larger arrays will probably each need a separate
address constant.

3. If a scalar variable in a COMMON block is frequently referred
to, assign it from the COMMON block into a local variable.
References to the local variable will not then require that
the COMMON block address be in a register.

If you do this, always remember that changing the local
variable does not change the CO~'~lON variable.

PASS SUBROUTINE ARGUMENTS IN COMNON BLOCKS

If you pass subroutine arguments in a COMMON block rather than as
parameters, you'll avoid the overhead of moving each argument
between the parameter list and local storage.

You must evaluate the effect of placing parameters into common
for both the calling and the called routine.

DON'T USE VARIABLY DIHENSIONED ARRAYS

Subscripting of variably dimensioned arrays requires additional
indexing computations. In addition, if you use a variably
dimensioned array as a subroutine parameter, -there are
additional calculations that must be performed on each entrance
into the subroutine.

You can lessen the amount of extra processing, however, in the
following ways: -

Using the Optimization Feature 215

1. If the location and size of the array do not change during
repeated calls to the subroutine, you can insert an
initialization call to the subroutine to define the array;
subsequent execution calls need not than refer to the array,
as the following example shows:

Dimensions Calculated
Once:

ttain Program

CALL INITCA,I,J)
DO 1 N=l,lO

1 CALL EXEC

Subprogram

Di~ens/ons Calculated
At Eacl Entrance:

Hain program

DO 1 N=1,10
1 CALL EXECCA,I,J)

Subprogram

SUBROUTINE INITCA,I,J)
REAUE8 A(I,J)

SUBROUTINE EXECCA,I,J)
REAL *8 A(I,J)

RETURN
ENTRY EXEC

2. Make the variable dimensions of an array the high-order
dimensions, if the indexing can be varied in the low-order
dimensions. This reduces the number of computations needed
for indexing the array, as the following example shows:

computation not
Required:

SUBROUTINE EXECCZ,N)
REAL *8 Z(9,N)
Z(I,S)=A

WRITE CRITICAL LOOPS INLINE

Computation (I*N)
Required:

SUBROUTINE EXECCZ,N)
REAL *8 Z(N,9)
ZCS,I)=A

If your program has a short heavily-referenced DO loop, it's
probably worth the effort to remove the loop and expand the code
1nline in the program. Each loop iteration will execute faster.

ENSURE RECOGNITION OF DUPLICATE COMPUTATIONS

If components of a computation are duplicates, make sure you code
the duplicate elements in one of the following ways:

• At the left end of the computation

• Within parentheses

The compiler must follow the left-to-right FORTRAN rules, and
this order of computations follows those rules.

The following examples illustrate this concept:

Duplicates Recognized:

A=B*CX*Y*Z)
C=X*'O~Z*D

E=F+(X+Y)
G=X+Y+H

No Duplicates Recognized:

A=B*X*Y*Z
C=X*Y*Z*D

E=F+X+Y
G=X+Y+H

In the pair of examples at the left, the compiler can recognize
- X*Y*Z and X+Y as dupl i cates because they're ei ther coded in

parentheses or coded at the left end of the computation. In the
pair of examples at the right, these rules are not followed, and
therefore the compiler cannot recognize these duplicates.

216 VS FORTRAN Application Programming: Guide

()

)

()J

o

(0

ENSURE RECOGNITION OF CONSTANT CONPUTATIONS

In a loop, when several componQnts of a computation are constant,
ensure that they can be recognized by following one of these
codi ng rules:

1. Move all the constant computations to the left end of the
computation.

2. Group constant computations within parentheses.

The compiler follows the left-to-right FORTRAN rules, and this
order of computations allows the compiler to recognize the
constant portions of the computations.

If C, D, and E are constant and V, W, and X are variable, the
following examples show the difference in evaluation:

Constant Computations
Recognized

V*W*X*(C*D*E)
C+D+E+V+L4+X

ENSURE RECOGNITION OF CONSTANT OPERANDS

Constant Computations
Not Recognized

V*W*X*C*D*E
V+W+X+C+D+E

The compiler can recognize only local variables as having a
constant value. (It must always assume that operands in common or
in a parameter list can change, and therefore cannot optimize
them.)

Therefore, for such items you should define constant operands as
local variables.

ELIMINATE SCALING COMPUTATIONS

If your program performs calculations representing physical
values of some kind, you can save computation time by using
factoring, as the following simple example shows:

Not Using Factoring

SUM=O.O
DO 1 1=1,9

1 SUM=SUM+FAC*ARR(I)

Using Factoring

SUM=O.O
DO 1 1=1,9

1 SUM=SUM+ARR(I)
SUM=SUr1*FAC

In many programs, you can use factoring much more extensively
than this simple example shows.

DEFINE ARRAYS WITH IDENTICAL DIMENSIONS

If all your arrays have the same shape, then the compiler can use
a subscript calculated for one array to subscript the'others.

In some cases, therefore, you should consider expanding some
smaller arrays to match the dimensi ons of the other arrays 1-li th
which they're involved. The compiler can then maintain only one
index for all the arrays -defined as having the same dimensions.

DEFINE ARRAYS WITH IDENTICAL ELEMENT SPECIFICATIONS

If you define arral.ls as having the same dimensions and the same
element specifications, the compiler can compute a subscript for
one array and then use it without change for the others.

In some cases, therefore, you should consider expanding smaller
arrays to match {he elements in the others. You should always do
this for arrays with integer or logical operands.

Using the Optimization Feature 217

USE CRITICAL VARIABLES CAREFULLY

Certain variables cannot be optimized in certajn circumstances:

• Control variables for direct access input/output data sets
cannot be optimized at all.

• Variables in input/output statements and in argument lists
cannot be optimized by register optimization in the loops
that contain the statements.

• Variables in CbMMOH blocks cannot be optimized across
subroutine calls.

You shouldn't use DO loop indexes for any of these purposes.

AVOID UNHEEDED FIXED/FLOAT CONVERSIONS

Avoid forcing the compiler to convert numbers between the
integer and the floating-point internal representations; each
such conversion requires several instructions, including some
double-precision floating-point arithmetic.

The following example shows one method of avoiding such
unnecessary conversions:

One Conversion Needed:

1

X=I.0
DO 1 1=1,9
ACI)=ACI)*X
X=X+l.0

Multiple Conversions Needed:

1
DO 1 1=1,9
A(I)=A(I)*I

When you can't avoid using mixed-mode arithmetic, then code the
fixed-point and floating-point arithmetic as much as possible in
separate computations.

MINIMIZE CONVERSIONS BETWEEN SINGLE AND DOUBLE PRECISION

Two, or even three, instructions are required to convert data
between single and double precision.

USE SCALAR VARIABLES AS ACCUMULATORS

When you're accumulating intermediate summations, keep the
result in a scalar variable rather than in an array. Array
accumulators require load and store instructions; scalar
variable accumulators can be maintained in a register.

USE EFFICIENT ARITHMETIC CONSTRUCTIONS

Wherever possible, change subtractions into additions and
divisions into multiplications.

In subtraction operations, if only the negative is required,
change the subtraction operations into additions, as follows:

Efficient:

1

Z=-2.0
DO 1 1=1,9
ACI)=ACI)+Z*BCI)

218 VS FORTRA~ Application P~ogramming: Guide

Inefficient:

DO 1 I=I~9 _ . -:
1 ACI)=ACI)-2.0*BCI)

o

o

:·0,·\' , '

In division operations, do the following:

• For constants, use one of the following constructions:

X*(1.0/2.0)
O.5*X

rather than the construction X/2.0.

• For a variable used as a denominator in several places, USQ
the same technique.

USE IF STATEMENTS EFFICIENTLY

In general, use the logical IF statement rather than the
arithmetic IF statement.

If you must use an arithmetic IF statement, try to make the next
succeeding statement one of the branch destinations.

For multiple branches, either use the computed GO TO statement,
or, if the branch can be initialized so that it remains
invariant, use an assigned GO TO statement.

In logical IF statements, if your tests involve a series of AND
and/or OR operators, try to do the following:

• Put the simplest conditions tested in the leftmost
positions.

• Also, put the tests most likely to be decisive in the
leftmost positions.

• Put the more complex conditions (such as tests involving
function references) in the rightmost positions.

If the fi·rst part of the expression causes the logical condition
to test as true, then the rest of the expression need not be
evaluated, saving execution time.

USE THE OBJECT PROGRAM LISTING

Use the object program listing, which you obtain through the LIST
compiler option, to find out what machine instructions the
compiler has generated for your program. You can often tell
whether the program has been well or poorly optimized.

The essential work for most FORTRAN programs is to compute
floating-point numbers (rather than subscripts or DO loop
indexes). Take a quick look at the inner loops for such programs;
if they contain essentially no fixed-point instructions, the
program is efficiently optimized.

Similarly, you can tell from a FORTRAN source program which
additions and multiplications and other operations are necessary
and which ought to disappear under optimization. You can examine
the object program to discover whether there's a reasonable
correlation between the generated program and your expectation.

Using the object code listing in this way, is the best way you
can study the efficiency of source program optimization.

Neither of these examinations requires detailed knowledge of
assembler language.

SOURCE CONSIDERATIONS WITH OPTIMIZE(])

When you're using the OPTIMIZE(3) compiler option, there are
additional coding considerations you should be aware of.

Using the Optimization Feature 219

COMMON EXPRESSION ELIHINATION--OPTIMIZE(3)

OPTIMIZE(3) evaluates expressions and eliminates those that are
common to more than one statement. That is, if an expression

. occurs more than once and the path of executi on always executes
the first expression and then the second, with no change in the
expression value, the first value is saved and used instead of
the second expression. OPTIMIZE(3) does this even for
intermediate expressions within expressions. For example, if
your program contains the following statements:

10 A=C+D

20 F=C+D+E

the common expression C+D 1S saved from its first evaluation at
10, and is used at 20 in determining the value of F.

COMPUTATIONAL REORDERING--OPTIHIZE(3)

OPTlMIZE(3) may move an expression outside of a loop when the
operands of the expression are not defined as part of the loop.
This can cause execution differences from nonoptimized code.

For example, when an IF statement controls the execution of a
computation within a loop, and the computation is moved outside
the loop, program execution results may change:

DO 11 1=1,10
DO 12 J=l,10

9 IF CB(I).LT.O) GO TO 11
12 C(J)=SQRTCBCI»
11 CONTINUE

OPTIMIZE(3) moves the library function call to precede statement
9, which causes the square root computation to be made before the
test for zero.

To avoid this unwanted code movement, use the OPTlMIZE(2)
optlon.

You can also get unexpected results when you use CALL OVRFL or
CALL DVCHK, because the computations causing overflow,
underflow, or divide check conditions could be moved out of the
loop in which the test occurs.

INSTRUCTION ELlt1INATIOt~-OPTIMIZE(3)

If your program defines nonsubscripted variables, and their
values are not used between two definitions within one block, or
have not been used before the exit from the block, the compiler
may eliminate any intermediate storing of the variables.

This can cause a change in execution logic if, for example, you
initialize the variables just before issuing a READ statement:

1=7
J=S
K=9
READ CS,*,END=1) I,J,K
WRITE C6,*) I,J,K

1 END

220 VS FORTRAN Application Programming: Guide

0)

o

o

:0' ~, '1\

OPTIMIZE(3) considers the READ statement as 8 redefinition of I,
J, and K, and the END statement delimits the block; therefore,
the instructions usually generated to store I, J, and K are
eliminated by the compiler. During execution, if the READ
statement terminates normally before reading into all three
variables, those not read into are not initialized. (If you omit
the END and/or the ERR parameters, the store instructions are not
eliminated.>

Using the Optimization Feature 221

y!ING THE EXECUTION-TIME LIBRARY

The VS FORTRAN execution-time library contains intrinsic
function routines, and subprogram routines for error handling
and service functions. There are several kinds of routines
available:

t1athematical and Character Functions-mathematical and
character routines that are either inline functions or
subroutine functions.

Serv i ce Rout i nes-these subprogr-am rout i nes test for
mathematical exceptions or terminate execution.

Error Routines-these subprograms handle errors
automatically; you can aiso control error handling direc~ly.

Each category is explained more fully in the following sections.

MATHEMATICAL AND CHARACTER FUNCTIONS

SERVICE ROUTINES

These routines provide intrinsic functions you can use in
mathematical and character operations. There are several
categories of mathematical and character functions:

• logarithmic and exponential routines

• Trigonometric routines

• Hyperbolic function routines

• Miscellaneous mathematical routines

• Character manipulation routines

When your VS FORTRAN program requests an intrinsic function, the
routine is either:

• Inserted inline into the program, or

• Included in the load module as a called subroutine during
link-editing.

You can use the generic name for a function; VS FORTRAN will then
select the particular function you need, depending upon the
precision of the data you're using.

You can, alternatively, use the name of the specific alternative
entry point you want to use. A prefix to the generic name
specifies an alternative entry point.

See the VS FORTRAN Application Programming: library Reference
manual for a description of the mathematical and character
functions, a~d for names of generic functions and their
alternative entry points.

These routines give you control over certain mathematical
exceptions and over program termination when unusual conditions
occur. Using the service routines, you can perform the following
functions:

CAll OVRFlW--Test for exponent overflow or underflow and
return a value indicating the condition that exists.

222 VS FORTRAN Application Programming: Guide

O· .) ···oi

r\)
I~

"

0,--,··1 ./

c

o

CALL DVCHK--Test for a "divide-check exception and return a
value indicating the condition that exists.

CALL EXIT--Terminate load module execution and return
control "to the operating system.

CALL DUMP/PDU~'P--Dynami cally dump a speci f-i ed area of
storage and either terminate (CALL DUMP) or continue
execution (CALL PDUMP). You can specify the format of the
output.

CALL CDUMP/CPDUMP--Dynamically dump a specified area of
storage, in character format. and either terminate (CALL
CDUMP) or continue execution (CALL CPDUMP). The output is
always in character format.

These routines are described in the VS FORTRAN Application
Programming: Library Reference manual.

Reference documentation for these routines is given in the VS
FORTRAN Application Programming: language Reference manual.

ERROR-HANDLING ROUTINES

The library supplies two kinds of error-handling support:
automatic error handling during compilation or execution, and
error handling under your control.

Automatic Error Handling

DUring compilation, if the compiler detects an S-level error, it
inserts a call for a library function instead of generating the
code for the statement; during execution, if and when this
statement in the program is reached, an error message (including
the internal statement number) is written and the program is
terminated.

During program execution, the library issues messages when the
following program interrupts occur:

• Operation

• Fixed-point divide

• Decimal divide

• Floating-point divide

• Exponent overflol-l

• Exponent underflow

Error Handling Under Your Control

In addition, the execution-time error-handling routines give you
dynamic control over:

• The number of times an error can occur before your program is
terminated

• The maximum number of times a message is printed

• I f a traceback map ; s to be pr i nted wi th the message

• If your organization's error routine is to be called

You specify dynamic error control during your program's
execution through:

• CAL L ERRMON-causes execut i on of the error mon i tor.

Using The Execution-Time Library 223

•

•

CALL ERRSAV--copies an option table entry into an area
accessible to your pr~gram.

CALL ERRSET--changes up to five values associated with an
entry in the option table (for example, the number of errors
permitted or number of messages to be printed).

• CAll ERRSTR--stores an entry into the option table from your
program.

• CAll ERRTRA--causes execution of the error trace routines.

For a description of how you use these routines, see "Fixing
Execution-Time Errors-Advanced Programming" in Part 2.

Reference documentation for these routines is given in the ~
FORTRAN Application Programmjng: language Reference manual.

224 VS FdRTRAH Application Programming: Guide

~i
, \

',-y'

o

o

o

APPENDIXES

This section contains appendixes documenting the following
auxiliary VS FORTRAN material:

• Appendix A--Device Information

• Appendix B--Assembler language Considerations

Appendixes 225

APPENDIX A. DEVICE INFORMATION

This appendix gives information regarding specific input/output
devices that can be used with a VS FORTRAN program.

"IHIMUM AND MAXIMUM BLOCK SIZE VALUES

Davica
TYP8

Card Reader

Card Punch

Printer line length
(1403, 3800, etc.)
120 characters
132 characters
144 characters
150 characters

Magnetic Tape

Direct Access
2314
3330
3340
3350

Hotes:

The minimum and maximum block sizes that can be specified for
specific devices are shown in Figure 47.

Fixed and Undefined Records variable Records
Block Size (Bytes) Block Size (Bytes)

Minimum Maximum Minimum Maximum

1 80 9 80

1 81 9 89

1 121 9 129
1 133 9 141
1 145 9 153
1 151 9 159

18 32760 18 32760

1 7294 9 7294
1 13030 9 13030
1 8368 9 8368
1 19069 9 19069

1. For DOS/VSE Fixed Block Architecture devices, see the manuals describing the
devices you're using.

2. For direct access devices with the track overflow feature, the maximum is 32760
for each dev ice.

Figure 47. VS FORTRAN ryevices--Minimum and Maximum Block Sizes

226 VS FORTRAN Application Programming: Guide

.) 0/

o

o

RIRlCT AccEss DEVICE CAPACITIES

Device Track
Typa Capacity

2314(2319) 7294

3330 13030

3330-11 13030

3340 8535

3350 19254

Hotes:

The capacities of specific direct access devices are shown in
Figure 48.

Tricks per Number of Total
cylinder cylinders Capacity

20 100 19,176,000

19 404 101,751,270

19 808 203,502,340

12 348 34,944,768

30 815 317,498,850

1. For DOS/VSE Fixed Block Architecture devices, see the manuals describing the
de~ices you're using.

z. For the 3375 and 3380 devices, device information will be provided after the
devices are available.

Figure 48. Direct Access Device Capacities

•

Appendix A. Device Information 227

APPENDIX B. ASSEMBLER LANGUAGE CONSIDERATIONS

You can use assembler language subprograms with your FORTRAN
main programs. In your FORTRAN programs, you can invoke the
assembler subprogram in either of two ways: through CALL
statements or through function references in arithmetic
expressions.

This appendix describes the linkage conventions you must use in
such assembler language subprograms to communicate with the
FORTRAN program.

For documentation about assembler language programs, see:

OS/VS, VM/370 Assembler Programmer's G~ide, GC33-4021

Guide to the DOS/VSE Assembler, GC33-4024

SUBPROGRAM REFERENCES IN FORTRAN

THE ARGUMENT LIST

For each subprogram reference, the compiler generates:

• A contiguous argument list cont~ining the addresses of the
arguments; this makes the arguments accessible to the
subprogram.

If the calling program was compiled with LANGLVL(77), and if
any arguments in the call to the sssembler language
subprogram are of character type, there will be two items in
the argument list for each character argument. The first
item is the address of the start of the character argument,
and the second is the address of the length of the character
argument contained in the full word. If the passed length is
needed in the assembler subprogram, then, when the arguments
are fetched from the parameter list, the length argument
must be received; otherwise, the length argument must be
skipped over. The generation of the length address may be
suppressed for LANGLVL(77) by using the SC compile option.
See the section "SCCnamel,name2, ...)" under "Using the
Compile-Time Options" on page 72.

• A save area in which the subprogram can place information
about the calling program.

• A calling sequence to pass control to the subprogram, using
standard linkage conventions.

The argument list contains addresses of variables, arrays, and
subprogram names used as arguments.

Each entry in the argument list is four bytes long and is aligned
on a fullword boundary. The last three bytes of each entry
contain the address of an argument. The first byte of.every entry
except the last contains zeros; in the first byte of the last
entry, the sign bit is set to binary 1.

The calling program places the address of the argument list in
general register 1.

228 VS FORTRAN Application Programming: Guide

'\ 0)

THE SAVE AREA

THE CALLIHG SEQUENCE

The calling program contains a save area in which the subprogram
places information: the entry point for this program, the
address to which the subprogram returns, general register
contents, and addresses of save areas used by programs other than
thi s subprogram. -

The calling program reserves 18 words of storage for this area.

The call; ng program places the address of the save area in
general register 13.

The FORTRAN compiler generates a calling sequence to transfer
control to the subprogram, placing the following addresses in
the following registers!

• Reg i ster 13-the addr~ss of the save a rea.

• Register I--the address of the argument·list. (If there is no
argument list, 0 (zero) is placed in general register 1.)

• Register IS--the entry address.

• Register 14--the return address.

The program then branches to the address in general register 15.

You can also use register 15 as a condition code register, and as
a RETURN and STOP code register. The values you should use for
these codes are:

16 for a terminal error detected during subprogram
execution. (A FORTRAN message is also generated.)

o when a RETURN or STOP statement is executed in the
subprogram.

4~t when a RETURN i statement fs executed in the
subprogram.

n when a STOP n statement is executed in the subprogram.

LINKAGE IN ASSEMBLER SUBPROGRA~S

You can use two types of assembler subprograms:

Called Subprograms-that is, assembler language subprograms
that don't call another subprogram.

Called and Calling Subprograms--that is, assembler language
subprograms that do call another subprogram.

The rules for coding such subprograms are somewhat different, so
they are documented in separate sections following.

CALLED ASSEMBLER SUBPROGRAMS

For assembler subprograms that don't call other subprograms, you
must include the following linkage instructions:

1. An instruction naming the entry point for_this subprogram.

2. Instructions to save any general registers this subprogram
uses in the save area reserved by the calling program. (You
don't need to save the contents of linkage registers 0 and
1.)

Appendix B. Assembler Language Considerations 229

3. Before returning control to the calling program,
instructions to restore the saved registers.

4. An instruction setting the first byte of the fourth word in
the save area to ones, to indicate return of control to the
calling program. .

5. An instruction returning control to the calling program.

In addition to these instructions, if arguments are passed, the
assembler subprogram must transfer the arguments from the
calling program and return the arguments to the calling program,
using the address passed in general register 1.

CALLED AND CALLING ASSEnBLER SUBPROGRAttS

MAIN PROGRAMS

A called and calling assembler language subprogram must contain
the same linkage instructions as a called subprogram; it must
also simulate the FORTRAN linkage conventions for calling
subprograms. Therefore, it must also include:

• A save area and instructions to place entries into its save
area

• A calling sequence and parameter list for the subprogram it
i s ca 11 i ng

• An instruction indicating an external reference to the
subprogram it is callin~

• Additional instructions in the return routine to retrieve
entries from the save area

If the main program is not a FORTRAN main program, you must
establish certain FORTRAN linkages after you've established the
save area and before you call the FORTRAN subroutine ..

The assembler instructions you must code to establish the
1 i nkages are:

lR X,13 (where X is any register 2 through 12
to SAVE register 13)

l 13,4(13)
l 15,=V(VSCOMI)
BAl 14,64(15)
lR 13,X (where X is the same as above)

The linkages you establish cause initialization of return coding
and interrupt except ions, as well as open i ng of the error message
data set.

If you don't do this and the FORTRAN subprogram terminates in
error or with a STOP statement, any open FORTRAN data sets are
not closed, and the results of the program termination are
unpredictable.

USING FORTRAN DATA IN ASSEMBLER SUBPROGRAMS

Your assembler language subprograms can use data defined in
FORTRAN subprograms, either data contained in common areas or in
argument lists.

USING COt1MON DATA IN ASSEnBLER SUBPROGRAMS

Assembler language subprograms can access data in both blank and
named common areas.

230 VS FORTRAN Application Programming: Guide

r(-- .) , ..)

o

o

o

using Blank Com~on Data in Assembler Progra~s

To refer to the blank common area, the assembler language program
must also define a blank common area, using the COM assembler
instruction. Only one blank common area is generated, and the
data it contains is available both to the FORTRAN program
containing the blank COMMON statement and to the assembler
language program containing the COM statement.

In the assembler language program, you can specify the following
linkage:

COM
name DS OF

.
L 11,=A(name)
USING name,11

using Named Common Data in Assembler Programs

To refer to named common areas, your assembler program can use a
v-type address constant:

name DC V(name of common area)

RETRIEVING ARGUMENTS IN AN ASSEMBLER PROGRAM

The argument list contains addresses of variables, arrays, and
program statement labels used as arguments.

Each entry in the argument list is four bytes long and is aligned
on a fullword boundary. The last three bytes of each entry
contain the address of an argument. The first byte of every entry
except the last contains zeros; in the first byte of the last
entry, the sign bit is set to binary 1.

The calling program places the address of the argument list in
general register 1.

Retrieving Variables from the Argu~ent List

The argument list contains the address of a variable. The
assembler program can retrieve the variable using the following
instructions:

L Q,x(l)
MVC LOC(y),z(Q)

where:

Q is any general register except o.
LOC is the lacatjon that will contain the variable.

x is the displacement of the variable from the start of
the argument list.

Y is the length of the variable itself.

Z is either 0 or the displacement to correct the value
for an array element.

For example, if a REAL*8 variable is the second item in the
argument list, you could code the following assembler
instructions to retrieve it:

L 5,4(1)
MVC lOC(8),O(S)

Appendix B. Assembler Language Considerations 231

Retrieving Arrays and Array Elements from the ArgUment List

The address of the fi rst element of an array is placed i ,. the
argument list. If you must retrieve any other elements in the
array, you must specify the displacement for that element from
the beginning of the array:

L Q,xCl)
L R,disp
L S,OCQ,R)
ST S,LOC

where:

Q and R

disp

are any general registers except O.

is the di splacement of the element wi thi n the array.

; s any

LOC is the location that will contain the array element.

Returning to Alternative Return Points

To simulate the FORTRAN subprogram RETURN stn statement,
however, the assembler program can place the value:

in general register 15, where stn is the actual argument position
to which return is to be made.

For example, to return to the second statement in the actual
argument list, the assembler language program must contain:

LA 15,8

INTERNAL REPRESENTATION OF FORTRAN DATA

If you're using FORTRAN data in your assembler language
programs, you should be aware of the formats FORTRAN uses within
the computer.

The following examples show how FORTRAN data items appear in
internal storage.

CHARACTER Items in Internal storage

CHARACTER items are treated internally as one EBCDIC character
for each character in the item.

LOGICAL Items in Internal storage

LOGICAL items are treated internally as items either 1 byte or 4
bytes in length. Their value can be "true" or "false".

Their internal representation in hexadecimal notation is:

232 VS FORTRAN Application Programming: Guide

.0

lO

IBM EXTENSION

"true"

[~~~~] "false"

1 byte

END OF IBM EXTENSION

[----1----1----1----] ---- ---- ---- ---- 00 00 00 01 "true"

[----1----1----1----] I 00 I 00 I 00 I 00 I
---- ---- ---- ---- <------4 bytes------>

"false"

INTEGER Items in Internal storage

INTEGER items are treated internally as fixed-point signed
operands, either 2 bytes or 4 bytes in length.

Their internal representation is:

IBM EXTENSION

INTEGER *2

[-----------------------] S I I
-----------------------<-------2 bytes--------->

END OF IBM EXTENSION

INTEGER *4

[5'--------,------------,------------,------------]
---<--------------------4 bytes---------------------->

S = the sign bit

REAL Items 'n Internal storage

The compiler converts REAL items into 4-byte, 8-byte, or 16-byte
floating-point numbers.

Their internal representation is:

REAL *4

[~I~~~~I~~~~I~~~~I~~~~]
<-------4 bytes------->

DOUBLE PRECISION CREAL *8)

[---] sic I F I I I I I I
----------------~------------------------<-----------------8 bytes----------------->

For REAL *4 and DOUBLE PRECISION items, the codes shown are:

Appendix B. Assembler Language Considerations 233

5 = sign bit (bit 0)
C = characteristic (or exponent), in bit positions 1 through 7
F = fraction, which occuPles bit positions. as follows:

REAL *4 positions 8 through 31
DOUBLE PRECISION positions 8 through 63

IBM EXTENSION

REAL *16 (Extended Precision)

r-------------//--------------------//------] 51 C I F I // I 151 C I F I // I L _____________ // ________ - ___________ // _____ _

o 8 64 72
<-----------------16 bytes------------------>

For Extended Precision Items, the codes are:

5 = sign bit (sign for the item in bit 0; a + sign in bit 64)
C = characteristic (or exponent), in bit positions 1 through 7

and 65 through 71 (the value in bit positions 63 through 71
is 14 less than that in bit po~itions 1 through 7)

F = fraction, in bit positions 8 through 63, and 72 through 127

END OF IBM EXTENSION

COMPLEX Items In Internal storage

The compiler converts COMPLEX items into a pair of REAL numbers.
The first number in the pair represents the real part; the second
number in the pair represents the imaginary part.

The internal representations of COMPLEX numbers are:

COMPLEX *8

(
---------------------1 51 C I F I I
---------------------1 51 C I F I I
---------------------<-------4 bytes------->

(real)

(i mag.)

For COMPLEX *8 items, the codes shown are:

5 = sign bit (bit 0)
C = characteristic (or exponent), in bit positions 1 through 7
F = fraction, which occupies bit positions 8 through 31

IBM EXTENSION ---------------------------

COMPLEX *16

COMPLEX *32

(~E~~~E~~~E~EE~~~i~EE:E~:~E~EE~~~]
o 8 64 72
<-----------------16 bytes------------------>

234 VS FORTRAN Application Programming: Guida

(real)

(imag.)

0)

o

o

o

For COMPLEX *16 items, the codes shown ara:

S = sign bit (bit 0)
C = characteristic (or exponent), in bit positions 1 through 7
F = fraction, which occupies bit positions 8 through 63

For COMPLEX *32 Items, the codes are:

S = sign bit (sign for the item in bit 0; 8 + sign in bit 64)
C = characteristic (or exponent), in bit positions 1 through 7

and 65 through 71 (the value in bit positions 63 through 71
is 14 less than that in bit positions 1 through 7)

·F = fraction, in bit positions 8 ~hrough 63, and 72 through 121

END OF IBM EXTENSION

•

Appendix B. Assembler language Considerations 235

APPENDIX C. DIFFERENCES BETWEENVS FORTRAN AND CURRENT IMPLEMENTATIONS

..

In VS FORTRAN, operands of logical type ara not permitted with
relational operators. FORTRAN H and FORTRAN H Extended permit
this nonstandard usage. Under LANGLVL(66), this nonstandard
usage is accepted and a warning message is issued.

In VS FORTRAN, operands of logical type are not permitted with
arithmetic operators. FORTRAN H and FORTRAN H Extended permit
this nonstandard usage.

The Extended Language features permitted with use of the XL
option from FORTRAN H and FORTRAN H Extended are not supported in
VS FORTRAN.

In VS FORTRAN, the DEBUG statement and the debug packets precede
the program source statements. The new END DeBUG statement
delimits the debug-related source from the program source. For
FORTRAN G1, the DEBUG statement and the debug packets are placed
at the end of the source program.

In VS FORTRAN, evaluation of arithmetic express;ons involving
constants is performed at compile time (including those
containing mixed-mode constants).

In VS FORTRAN, the number of arguments is checked in statement
function references. The mode of arguments is checked for
statement function references under LANGlVl(77) option only.

In VS FORTRAN, the form of the compiler option to name a program
is NAMECnam) under lANGLVL(66).

Arguments are received only by location (or name) in
LANGlVL(77). The default in LANGlVl(66) and for FORTRAN Hand
FORTRAN H Extended is receipt by value with the facility to allow
receipt by name by the use of slashes around the dummy argument
in the SUBROUTINE, FUNCTION, or ENTRY statements.

The appearance of an intrinsic function name in a conflicting
type statement has no effect in lANGlVl(77), but is considered
user-supplied under LANGLVL(66) and FORTRAN H and FORTRAN H
Extended.

Direct access files must be preformatted when using LANGLVL(77).
This is done by the DEFINE FILE statement under lANGLVl(66),
FORTRAN G1, FORTRAN H, and FORTRAN H Extended. (The reason for
this is that there Is no provision in the OPEN statement for the
number of records to be contained in the file as there IS in the
DEFINE FILE statement.)

The use of a scale factor with an integer format specifier is
considered a severe error by VS FORTRAN, but is accepted by
FORTRAN G1, FORTRAN H, and FORTRAN H Extended.

For an implied DO in an input/output list with a variable
incrementation value that is assigned a value of zero at
execution time:

• VS FORTRAN and FORTRAN G1 do not diagnose this invalid case
and the program loops.

•
•

FORTRAN H Extended makes its diagnoses at execution time.

In a standard DO-loop, FORTRAN G1, FORTRAN H Extended, and VS
FORTRAN under lANGLVL(66) all loop. VS FORTRAN under
LAHGLVl(77) bypasses the loop, because it does not meet the
standard requirements for execution.

236 VS FORTRAN Application Programming~ Guide'

o

o

o

In VS FORTRAN, when a variable has bean initialized with a DATA
statement, that variable cannot appear in an explicit type
statement and a severe level diagnostic is issued. FORTRAN Hand
FORTRAN H Extended allow typing following the data
initialization. This is nonstandard usage. FORTRAN Gl issues a
level 8 error diagnostic.

The record designator for direct-access I/O is required to be an
integer expression for both lANGlVl(66) and lANGlVl(77). If it
is not, VS FORTRAN diagnoses with a level 12 error message.
FORTRAN H and FORTRAN H Extended permit this designator to be of
real type. FORTRAN Gl diagnoses with a level 8 error message.

In VS FORTRAN, the use of literal and Hollerith constants to
initializ~ integer, real, or logical type variables is permitted
under option lANGlVl(66), as it is in FORTRAN Gl, and FORTRAN H
Extended. However, in VS FORTRAN under lANGlVl(77), a character
constant (that is, a quoted constant), may be used to initialize
character data type only and, in fact, is the only way to
initialize character type variables and arrays. Hexadecimal
constants may be used in the DATA statement to initialize
integer, real, or logical type variables or arrays under both
lAHGlVl(66) and lAHGlVL(77).

In VS FORTRAN, for LAHGlVL(77), character arguments are passed
to a subprogram with both a pointer to the character string and a
pointer to the length of the character string. This is required
because the receiving program may have declared the dummy
character arguments to have inherited length (that is, the
length of the dummy argument is the length of the actual
argument). The parameter list is therefore longer than fo~
LAHGLVL(66), because every character argument generates two
items in the parameter list. For lAHGlVl(66):

•

•

literal constants passed as arguments generate only one item
in the parameter list.

Hollerith constants may be passed as subroutine or function
arguments.

In lANGlVL(77), a level 8 message is received if Hollerith
constants are passed as argu!!:ants.

In both languages, only one item is generated in the parameter
list for Hollerith arguments. (See also the section
"SC(namel,name2, ...)" under "Using the Compile-Time Options" on
page 72.)

In VS FORTRAN, all calculations for adjustably dimensioned
arrays are performed by use of a library routine called at all
entry points that specify such arrays. This method was required
for LANGlVL(77), because it permits redefinition of the
adjustable dimension parameters within the subprogram but
requires that the array properties do not change from those
existing at the entry point.

Appendix C. Differences Between VS FORTRAN and Current Implementations 237

APPENDIX D. INTERNAL LIMITS IN VS FORTRAN

NESTED DO LOOPS

Nested DO loops and nested implied DO loops are limited to 25
each.

EXPRESSION EVALUATION

The maximum depth of the push-down stack for expression
evaluation ;s 150. This means that, for any given expression, the
maximum number of operator tokens that can be considered before
any intermediate text can be put out is 150. For example, if an
expression starts with 15~ left parentheses before any right
parentheses, this expression will exceed the push-down stack
limit.

NESTED STATEMENT FUNCTION REFERENCES

The total number of statement function arguments in any nested
reference is limited to 50 •

. The total number of nested statement function references is
limited to 50.

The total number of arguments in any statement function
definition is limited to 20.

NESTED INCLUDE STATEMENTS

The maximum number of nested INCLUDe statements is 16.

NESTED BLOCK IF STATEMENTS

CHARACTER CONSTANTS

REFERENCED VARIABLES

PARENTHESES GROUPS

Block If statements may be nested to a depth of 25. That is, the
number of IF .•• THEN, ELSE, and ELSEIF •.. THEN statements
occurring before the occurrence of an ENOIF statement must be no
greater than 25.

Character symbolic constants that are defined using the
PARAMETER statement are limited to a maximum length of 255.
Character constants used in PAUSE or STOP statements are limited
to 72 characters. Character data types, defined with an IMPLICIT
statement or an explicit type statement, are limited to a maximum
of 500 characters.

The maximum number of referenced variables in a program unit is
660.

The maximum number of parentheses groups in a format ;5 50.

238 VS FORTRAN Application Programming: Guida

STATEMENT LABELS

Allowance has been made for up to 2000 user source labels end
compiler-generated labels. However, if optimization level 2 or 3
causes table overflow, the problem may be alleviated by removing
all un referenced user labels.

Appendix D. Internal Limits in VS FORTRAN 239

GLOSSARY

This glossary includes definitions
developed by the American National
Standards Institute (ANSI), and the
International Organization for
Standarization (ISO). This material is
reproduced from the American National
Dictionary for Information Processing,
copyright 1977 by the Computer and
Business Equipment Manufacturers
Association, copies of which may be
purchased from the American National
Standards Institute, 1430 Broadway, New
York, New York 10018.

An asterisk (*) to the right of an item
number indicates an ANSI definition in
an entry that also includes other
definitions.

The symbol "(ISO)" at the beginning of a
definition indicates that it has been
di scussed and agreed upon at meeti ngs of
the International Organization for
Standardization Technical Committee
97/Subcommittee 1 (Data Processing
Vocabulary), and has also been approved
by ANSI and included in the American
National Dictionary for Information
Pro c e s"?...i..n.sl .

alphabetic character. A character of
the set A, B, C, ... Z. See also
"letter."

.------ IBM EXTENSION

In VS FORTRAN, the currency symbol ($)
is considered an alphabetic
character.

END OF IBM EXTENSION

alphameric. Pertaining to a character
set that contains letters, digits, and
other characters, such as punctuation
marks.

a lphamer i c character set. A character
set that conta ins both I etters and
digits and also contains control
characters, special characters, and the
space character.

ar9u~ent. A parameter passed between a
calling program and a SUBROUTINE
subprogram, a FUNCTION subprogram, or a
statement function.

arithmetic constant. A constant of type
integer, real, double-precision, or
complex.

arithmetic expression. One or more
arithmetic operators and/or arithmetic
primaries, the evaluation of which
produces a numeric value. An arithmetic
expression can be an unsigned arithmetic

constant, the name of an arithmetic
constant, or a reference to an
arithmetic variable, array element, or
function reference, or a combination of
such primaries formed by using
arithmetic operators and parentheses.

arithmetic operator. A symbol that
directs VS FORTRAN to perform an
arithmetic operation. The arithmetic
operators are:

+ addition
subtraction * multiplication

/ division
** exponentiation

array. An ordered set of data items
identified by a single name.

array declarator. The part of a
statement that describes an array used
in a program unit. It indicates the name
of the array, the number of dimensions
it contains, and the size of each
dimension. An array declarator may
appear in a DIMENSION, COMMON, or
explicit type statement.

array elem~nt. A data item in an array,
identified by the array name followed by
a subscript indicating its position in
the array.

array name. The name of an ordered set
of data items that make up an array.

assignment stateMent. A statement that
assi gns a value to a vari able or array
element. It is made up of a vari able or
array element, followed by an equal sign
(=), followed by an expression. The
variable, array element, or expression
can be ,of type character, logical, or
arithmetic. When the assignment
statement is executed, the expression to
the right of the equal sign replaces the
value of the variable or array element
to the left.

basic real constant. A string of decimal
digits containing a decimal point, and
expressing a real value.

blank co~mon. An unnamed common block.

character constant. A string of one or
more alphameric characters enclosed in
apostrophes. The delimiting apsotrophes
are not part of the constant.

character expression. An expression in
the form of a single character constant,
variable, array element, substring,
function reference, or another
expression enclosed in parentheses. A

240 VS FORTRAN Application Programming: Guide

rf~')
\lo)'

o

o

fO' 1 ':"
\

character expression is always of type
character.

character type. A data type that can
consist of any alphameric characters; in
storage, one byte is used for each
cha.'acter. .

common block. A storage area that may be
referred to by a calling program and one
or more subprograms.

complex constant. An ordered pair of
real or integer constants separated by a
co~ma and enclosed in parentheses. The
first real constant of the pair is the
~eal part of the complex number; the
second is the imaginary part.

complex type. An approximation of the
value of a complex number, consisting of
an ordered pair of real data items
separated by a comma and enclosed in
parentheses. The first itnm represents
the real part of the complex number; the
second represents the imaginary part.

connected file. A file that has been
connected to a unit and defined by a
FIlEDEF command or by job control
statements.

constant. An unvarying quantity. The
four classes of constants specify
numbers (arithmetic), truth values
(logical), character data (character),
and hexadecimal data.

control statement. Any of the
statements used to al ter the normal
sequential execution of FORTRAN
statements, or to terminate the
execution of a FORTRAN program. FORTRAN
control statements are any of the forms
of the GO TO, IF, and DO statements, or
the PAUSE, CONTINUE, and STOP
statements.

data. (1) * (ISO) A representation of
facts or instructions in a form suitable
for communication, interpretation, or
processing by human or automatic means.
(2) In FORTRAN, data includes constants,
variables, arrays, and character
substrings.

data item. A constant, variable, array
element, or character substring.

data set. The major unit of data storage
and retrieval consisting of data
collected in one of several prescribed
arrangewents and described by control
information to which the system has
access.

data s~t reference number. A constant or
variable in an input or output statement
that identifies a data set to be
processed.

data type. The properties and internal
representation that characterize data

and functions. The basic types are
integer, real, complex, logical, double
precision, and character.

* digit. (ISO) A graphic character that
represents an integer. For example, one
of the characters 0 to 9.

DO loop. A range of statements executed
repetitively by a DO statement.

double precision. The standard name for
real data of storage length 8.

DO variable. A variable, specified in a
DO statement, that is initialized or
incremented prior to each execution of
the statement or statements within a DO
range. It is used to control the number
of times the statements wi thi n the range
are executed.

dummy argu~2nt. A variable within a
subprogram or statement function
definition with which actual arguments
from the calling program or function
reference are positionally associated.
Dummy arguments are defined in a
SUBROUTINE or FUNCTION statement, or in
a statement function definition.

executable program. A program that can
be executed as a sel f-conta i ned
procedure. It consists of a main program
and, optionally, one or more subprograms
or non-FORTRAN-defined external
procedures, or both.

executable statement. A statement that
causes an action to be taken by the
program; for example, to .calculate, to
test conditions, or to alter the flow of
control. '

existing file. A file that has been
defined by a FILEDEF command or by job
control statements;

expression. A notation that represents
a val~e: a constant or a reference
appearing alone, or combinations of
constants and/or references with
operators. An expression can be
arithmetic, character, logical, or
relational.

external file. A set of related external
records treated as a unit; for example,
in stock control, an external file would
consist of a set of invoices.

external function. A function defined
outside the program unit that refers ~o
it.

external procedure. A SUBROUTINE OR
FUNCTION subprogram written in FORTRAN.

file. A set of records. If the file is
located in internal storage, it is an
internal file; if it is on an
input/output device, it is an external
file.

Glossary 241

file definition statement. A statement
that describes the characteristics of a
file to a uS9r program. For example, the
OS/VS DD statement or DOS/VSE ASSGN
statement for batch processing, or the
FILEDEF command for CMS processing.

file ref~rence. A reference within a
program to a file. It is specified by a
unit identifier.

formatted record. (1) A record,
described in a FORMAT statement, that is
transmitted, when necessary with data
conversion, between internal storage
and internal storage or to an external
record. (2) A record transmitted with
list-directed READ or WRITE statements
and an EXiERNAL statement.

FORTRAN-supplied procedure. See
"intrinsic function".

function reference. A source program
reference to an intrinsic function, to
an external function, or to a statement
function.

function subprogram. A subprogram
invoked through a function reference,
and headed by a FUNCTION statement. It
returns a value to the calling program
unit at the point of reference.

IBM EXTENSION

hexadecimal constan~. A constant that
is made up of the character Z followed
by two or more hexadecimal digits.

END OF IBM EXTENSION

hierarchy of operati~ns. The relative
priority order used to evaluate
expressions containing arithmetic,
logical, or character operations.

implied DO. An indexing specification,
similar to a DO statement, causing
repetition over a range of data
elements. (The word DO is omitted, hence
the term "implied.")

integ~r constant. A string of decimal
digits containing no decimal point and
expressing a whole number.

integer expression. An arithmetic
expression whose values are of integer
type.

integer type. An arithmetic data type,
capable of expressing the value of an
integer. It can have a positive,
negative, or zero value; it must not
include a decimal point.

internal file. A set of related internal
records treated as a unit.

intrinsic function. A function,
supplied by VS FORTRAN, that performs
mathematical or character operations.

* I/O. Pertaining to either input or
output, or ,both.

I/O list. A list of variables in an
input or output statement specifying
which data is to be read or which data
is to be written. An output list may
also contain a constant, an expression
involving operators or function
references, or an expression enclosed in
parentheses.

labeled common. See "named common".

length specification. A source language
specification of the number bytes to be
occupied by a variable or an array
element.

letter. A symbol representing a unit of
the English alphabet.

list-directed. An input/output
specification that uses a data list
instead of a FORMAT specification.

logical constant. A constant that can
have one of two values: "true" or
"false."

logical expression. A combination of
logical primaries and logical
operators. A logical operator can have
one of two values: true or false.

logical operator. Any of the set of
operators .HOT. (negation), .AND.
(connection: both), or .OR. (inclusion:
e1 ther or both), . EQV. (equal),
.HEQV.(not equal).

logical pri~ary. A primary that can have
the value "true" or "false." See also
"pri mar~'''.

logical type. A data type that can have
the value "true" or "false" for VS
FORTRAN. See also fldata type".

looping. Repetitive execution of the
same statement or statements. Usually
controlled by a DO statement.

main program. A program unit, required
for execution, that can call other
program units but cannot be called by
them.

name. A string of from one through six
alphameric characters, the first of
which must be alphabetic. Used to
identify a constant, a variable, an
array, a function, a subroutine, or a
common block.

named common. A separate common block
consisting of variables, arrays, and
array declarators, and given a name.

nested DO. A DO statement whose range of
statements is entirely contained within
the range of another DO statement.

242 VS FORTRAN Application Programming: Guide

0)

0)

o

o

nonexecutable statement. A statement
that describes the characteristics of
the program unit, of data, of editing
information, or of stat~ment functions,
but does not cause an action to be taken
by the program.

nonexisting file. A file that has not
been defined by a FIlEDEF command or by
job control statements.

~ numeric character. (ISO) Synonym for
digit.

numeric constant. A constant that
expresses an integer, real, or complex
number.

preconnected file. A unit or file that
was defined at installation time.
However, a preconnected file does not
exist for a program if the file is not
defined by a FIlEDEF command or by job
control statements.

predefined gpecification. The implied
type and length specification of a data
item, bas~d on the initial character of
its name ; n the absence of any
specification to the contrary. The
initial characters I-N type data items
as integer; the initial characters A-H,
O-Z, and $ type data items as real. Ho
other data types are predefined. For VS
FORTRAH, the length for both types is 4
bytes.

primary. An irreducible unit of data; a
single constant, variable, array
element, function reference, or
expression enclosed in parentheses.

procedure. A sequenced set of
statements that may be used at one or
more points in one or more computer
programs, and that usually is given one
or more input parameters and returns one
or more output parameters. A procedure
consists of subroutines, function
subprograms, and intrinsic functions.

procedure subprogram. A function or
subroutine subprogram.

program unit. A sequence of statements
constituting a main program or
subprogram.

real constant. A string of decimal
digits that expresses a real number. A
real constant must contain either a
decimal point or a decimal exponent and
may contain both.

real type. An arithmetic data type,
capable of approximating the value of a
real number. It can have a positive,
negative, or zero value.

record. A collection of related items of
data treated as a unit.

relational expression. An expression
that consists of an arithmetic
expression, followed by a relational
operator, followed by another
arithmetic expression or a character
expression followed by a relational
operator, followed by another character
expression. The result is a value that
is true or false.

relational operator. Any of the set of
operators that can express a comparison
between arithmetic expressions, and
that can be either true or false:

.GT. greater than

.GE. greater than or equal to

.l T . less than

.lE. less than or equal to

.EQ. equal to

.HE. not equal to

scale factor. A specification in a
FORMAT statement that changes the
location of the decimal point in a real
number (and, if there is no exponent,
the magnitude of the number).

specification statement. One of the set
of statements that provides the compiler
with information about the data used in
the source program. In addition, the
statement supplies the information
required to allocate data storage.

specification subprogram. A subprogram
headed by a BLOCK DATA statement and
used to initialize variables in named
common blocks.

state~ent. The basic unit of a FORTRAH
program~ that specifies an action to be
performed, or the nature and
characteristics of the data to be
processed, or information about the
program itself. Statements fall into two
broad classes: executable and
nonexecutable.

st~te~~nt function. A name, followed by
a list of dummy argume~ts, that is
equated to an arithmetic, logical, or
character expression. In the remainder
of the program the name can be used as a
substitute for the expression.

statement function definition. A
statement that defines a statem~nt
function. Its form is a name, followed
by a list of dummy arguments, followed
by an equal sign (=), followed by an
arithmetic, logical, or character
expression.

statement function reference. A
reference in an arithmetic, logical, or
character expression to the name of a
previously defined statement function.

statement label. See "statement
number".

Glossary 243

statement number. A number of from one
through five decimal digits that is used
to identify a statement. Statement
numbers can be used to transfer control,
to define the range of a DO statement,
or to refer to a FORMAT statement.

subprogram. A program unit that is
invoked by another program unit in the
same program. In FORTRAN, a subprogram
has a FUNCTION, SUBROUTINE, or BLOCK
DATA statement as its first statement.

subroutine subprogram. A subprogram
whose first statement is a SUBROUTINE
statement. It optionally returns une or
more parameters to the calling program
unit.

* subscript. (1) (ISO) A symbol that is
associ ated wi th the name of a set to
identify a particular subset or element.

(2) A subscript quantity or set of
subscript quantities, enclosed in
parentheses and used wi th an array name
to identify a particular array element.

subscript quantity. A component of a
subscript: an integer constant, an
integer variable, or an expression
evaluated as an integer constant.

IBM EXTENSION

In VS FORTRAN, a subscript quantity
may also be a real constant, variable,
or express ion.

END OF IBM EXTENSION ----....

type declaration. The explicit
specification of the type of a constant,

variable, array, or function by use of
an explicit type specification
statement.

unformatted record. A record that 15
transmitted unchanged between internal
storage and an external record.

unit. A means of referring to a file in
order to use input/output statements. A
unit can be connected or not connected
to a file. If connected, it refers to a
file. The connection is symmetric: that
is, if a unit is connected to a file,
the file is connected to the unit.

unit identifier. The number that
specifies an external unit.

1. An integer expression whose value
must be zero or positive. For VS
FORTRAN, this integer value of
length 4 must correspond to a DD
name, a FIlEDEF name, or an ASSGH
name.

2. An asterisk (*> that corresponds on
input to FT05FOOl and on output to
FT06F001.

3. The name Qf a character array,
character array element, or
character substring for an internal
file.

variable. (1) * A quantity that can
assume any of a given set of values.

(2) A data item, identified by a name,
that is not a named constant, array, or
array element, and that can assume
different values at different times
during program execution.

244 VS FORTRAN Application Programming: Guide

O}

o

o

(0

special Characters

. (period), job control syntax 71
•.• (ellipses), job control syntax 72
+ as addition symbol 15, 5S
I (OR sign), job control syntax 72
$ as first character in names 9 * (aster; sk)

job control syntax 71
mUltiplication symbol 15, 55
two as exponentiation symbol 15, 55

- (hyphen), job control syntax 72
- as subtraction symbol 15, 55
/ (slash)

division symbol 15, 55
format code 158
job control syntax 71

/+ (end-of-procedure delimiter,
DOS/VSE 88

// (concatenation operator), in
character expressions 56

, (comma), job control syntax 71
[] (square brackets)

job control syntax 72
(colon)

format code 158
in array dec1arators 48
in substring notation 49

() (parentheses)
arithmetic expressions 15
in array declarators 48
in substring notation 49
job control syntax 71

~PROCESS statement 73, 74
, (apostrophe or single quote)

delimits character constants 44
job control syntax 71
within character constant 45

= (aqua lsi gn)
assignment statement 14, 58
job control syntax 71

A, format code 158
abnormal termination

exceptions causing 138
not initializing, common error 68

about this book iii-vi
ACCESS command, VM/370-CMS 94
access method opt ion, OPEN

statement 154
Access Method Sarvices, catalogs DEFINE

commands 181
ACTION, DOS/VSE linkage editor control
statement 128

actual argument
common coding errors 69
description 191
rules for use 192
statement function references 61

addition, evaluation order 15, 55

address column, in storage map 117
algebraic equation, similar to
assignment statement 58

ALLOCATE command for compilation,
OS/VS2-TSO 104

ALLOCATE command, OS/VS2-TSO 103,
110-111

alphabetic character, definition 240
alphameric character set,
definition 240

alphameric, definition 240
American National Standard FORTRAN iv

flagging for 120-121
AMSERV CMS command, processes DEFINE

commands 100
apostrophe

delimits character constants 44
job control syntax 71
within character constant 45

appendixes
A, device information 226-227
B, assembler language
considerations 228-235

overall description 225
ARCOS 190
argument

array, and assembler subprograms 232
assembler programs and. 231-232
assigning values to 192
COMMON statement and 193
cross reference dictionary lists 119
definition 240
FUNCTION subprograms and 191
general rules 192
intrinsic functions as 202
passing between programs 190~192
SUBROUTINE subprograms and 191-192
variable, and assembler

subprograms 231
arithmetic efficiency, for
optimization 218

arithmetic errors, common 69
arithmetic expression

assignment statement processes 14-15
definition 240
descri.ption 53-55
evaluationof 53
evaluation rules 14-15
in assignment statement 59
operator precedence in 15

arithmetic expression, definition 240
arithmetic IF statement

arithmetic operators in 53
simplified FORTRAN programming 16

arithmetic operator, definition 240
arithmetic operators and their

meanings 55
arithmetic results, ensuring needed

preC1Slon 55
array declarator, definition 240
array element, definition. 240
array element, internal file unit 168
array name, definition 240
arrays

as actual arguments 192
assembler subprograms and 232
character, substrings of elements 49

Index 245

cross reference dictionary lists 119
defining 12-13
definition 240
description 46-49
DO statement processes 17-18
efficient common arrangement 195-197
elements, in assignment statement 58
EQUIVALENCE statement and 51
explicit lower bounds 48
expressions and 53
implicit and explicit lower bounds,
illustration of 48

implicit lower bounds 47
implicit sharing through

EQUIVALENCE 52
initializing 50-51
initializin~ an entire 51
initializing character elements 50
;ni+;rll;,.;n~ a-f-firian+l\1 214
i~iti~ii~i~g ;i~~;~t~--§o
initializing, common error 68
input/output operations and 213
internal file unit 168
multidimensional 13, 47
multidimensional, processing 17
negative lower bounds, illustration
of 49

one-dimensional 12, 47
one-dimensional, processing 17
optimizing identically
dimensioned 217

optimizing with identical
elements 217

physical layout, illustration 13
programming considerations 49
signed subscripts and 48-49
storage sharing between,
illustration 52

stored in column-major order 47
subscript references invalid, common
error 69

variably dimensioned, recommendation
agC'dnst 215

ARSIN 190
ASCII character comparisons, in
intrinsic functions 202

ASCII collating sequence, used in
character intrinsic functions 57

ASCII encoded files, record formats 186
assembler language considerations

appendix B 228-235
common data in 230-231
FORTRAN data 230-235
FORTRAN subprogram
references 228-229

linkage considerations 229-230
lIST option listing and 143
main programs 230
retrieving arguments 231-232
subprograms 230-235

ASSGN control statement, DOS/VSE
description 85-86
sequential files 170
when required for DOS/VSE

compilation 88
ASSIGN statement.cross reference
dictionary lists 119

ASSIGN statement, sets GO TO variable 66
assigned GO TO, invalid as DO loop

terminal statement 65
assignment statement

arithmetic 59
character 59

definition 24.0
description 58-60
evaluates arithmetic
expressions 14-15

evaluation rules 14
initializes data items 14
initializing principal diagonal
using 51

intrinsic functions in 15-16
logical 60
simplified FORTRAN programming 13-16
statement functions in 60-61
substring references valid in 49

asterisk (*), job control syntax 71
asynchronous input/output

statements 164-166
AT statement, description 139-140
ATTRIB command, OS/VS2-TSO 103
audience iii
autolink feature, DOS/VSE 128
automatic cross compilation 71
automatic cross system support,
link-editing 122

avoiding coding errors 68-70

background command procedures, TSO 108
BACKSPACE statement

checking accuracy of records
with 163

invalid for directly accessed VSAM
direct files 178

replace a record 163
sequential files 163-164
sequentially atcessed VSAM direc~
files 177,178

VSAM sequential file
considerations 176

basic real constant with real exponent,
defining 43

basic real constant, definition 43, 240
BG, DOS/VSE linkage editor control
option 128

blank character (), job control
syntax 72

blank common
definition 240
description 199-201
example of use 200-201
illustration of use 201
initializing invalid 199
must be unnamed 199
only one allowed 199
rules for use 199-200

blank common, example of use 200
blanks, OPEN statement and 154
BLKSIZE parameter, for direct files 174
BlKSIZE, for direct files 173
BLOCK DATA statement

BLOCK DATA subprogram and 209
description of use 208
initializes named common 209

BLOCK DATA subprograms
coding 208-209
coding example 209
statements valid 209

block IF statement
description 61-64
execution rules 63-64

246 VS FORTRAN Application Programming: Guide

C: i nval i d as DO loop termi nal
statement 65

nested DO statements and 64
nesting 63
valid forms 63

BN, format code 158
BZ, format code 158

CAll CDUMP library routine 223
CALL command for compilation,

OS/VS2-TSO 104-105
CAll command, OS/VS2-TSO 103, 106
CALL CPDUflP library routi ne 223
CALL DUMP library routine 223
CALL DVCHK library routine 222
CALL ERRMON error-handling routine 223
CALL ERRSAV error-handling routine 224
CALL ERRSET error-handling routine 224
CALL ERRSTR error-handling routine 224
CAll ERRTRA error-handling routine 224
CALL EXIT library routine 223
CALL loader option, OS/VS 127
CALL OVRFlW library routine 222
CALL PDUMP library routine 223
CAll statement

CDUt1P 223
CP DUt'lP 223
DUf1P 223
DVCHK 222
ERRr10N 223
ERRSAV 224
ERRSET 224
ERRSTR 224
ERRTRA 224
EXIT 223
extended error handling 143
extended error handling and 143
general description 189
OPSYS, DOS/VSE 211
OVRFLW 222
PDUMP 223

call i ng and ca ll~d programs
ass~mbler considerations 228-235
called program, definition 189
calling program, definition 189
coding 201-209
common coding errors 69
detailed description 189-212
invocation example 189
main program, definition 189
shared data areas, example 193
subprogram definition 189
system considerations 209-212

CANCEL, DOS/VSE linkage editor control
option 128

capacities, direct access devices 227
card deck, for source input 20
card punch files, VM/370-CMS 99
card reader fi les, VM/370-C~'S '99
cataloged procedure

compile-only, OS/VS 20
DOS/VSE, writing and using 88-89
modifying, OS/VS 77-84
modifying, DOS/VSE 88-89
OS/VS compilation data sets and 77
retrieving, DOS/VSE 88
unique identifier, DOS/VSE 88
using for program output 134

using, OS/VS 77-84
cataloging

DOS/VSE record size 88
load module 127
object module 92
subprograms 209
VSAM DEFINE commands 181-182

CATALP, and DOS/VSE cataloged
procedures 88

CATALR DOS/VSE function, catalogs object
module 92

CATALS DOS/VSE function, catalogs source
program 91

changing program execution
sequence 16-18

character array element, internal file
unit 168

character constant
definition 240
maximum size 46
PAUSE statement and 67
STOP statement and 67

character data type
constant 42
constant, defining by value 44-45
defining 10
definition 241
description 39-41
EQUIVALENCE statement restriction 52
general description 9
internal representation 232
substrings of items 49
valid lengths 39
variables, hexadecimal constants
initialize 45

character expression
character operators in 53
definition 240
description 55-56
in assignment statement 59

character library functions 222
character substring, internal file
unit 168

CLEAR, DOS/VSE linkage editor control
option 128

CLOSE statement
description 156-157
direct files 173
sequential files 164
VSAM direct file considerations 177
VSAM sequential file
considerations 176

closed loop errors 29
CMS commands, using 93
eMS considerations

See VM/370-CMS c~nsiderations
codes

compiler messages 22
compiler messages, error severity 22

coding errors to avoid 19
coding form, FORTRAN 7,.38
coding your program

coding errors to avoid 68-70
complete FORTRAN programming 38-70
OPTIMIZE(3) considerations 219-221
sharing data 190-201
simplified FORTRAN programming 7-19

colon (:)
in array declarators 48
in substring notation 49

comma (,), job control syntax 71
command procedures, TSO 108
common block, definition 241

Index 247

COMMON blocks, storage maps and 117
com'11on errors

so'urce program 19, 68-70
c6m~on expression elimination,

OPTIMIZE(3) 220
common input/output statement
options 152

common items, in cross reference
dictionary 119

COt1MON statement
argument usage 193
assembler programs and 230
blank common 199-201
BLOCK DATA subprogram and 209
data item order in 193-194
defines arrays 47
description of use 193-201
dum'11Y variables for alignment 195
~fficient d~t~ ~rrang~ment 195-197
example of use 200-201
fixed order variable alignment 195
length considerations 194-195-
named common 199-201
passing subroutine arguments
using 215

rules for use 199-200
shared data areas, example 193
storage maps and 117
transmitting values using 194
type considerations 194-195
using efficiently 215

compilation
automatic cross compilation 71
batch, DOS/VSE 87
batch, OS/VS 76
complete FORTRAN programming 71, 92
DOS/VSE compile, link-edit, and
execute procedure 28

DOS/VSE files for 88
entering source program 20
fixing errors 22-23
link-edit and execute, DOS/VSE 133
link-edit and execute, OS/VS 131
modification of defaults 89
OS/VS compile, link-edit, and execute

procedure 27
OS/VS2-TSO 104-105
output, illustration of 91
requesting 20, 21
requesting under DOS/VSE 87-88
requesting under OS/VS 76
requesting, DOS/VSE 21
requesting, OS/VS 20-21
simplified FORTRAN programming 20-21
statistics in object listing 144
VM/370-CMS 95

compile time options
DECK 72
defaults for 72
EXEC statemgnt specifies in

DOS/VSE 87
EXEC statement spec~fie5 in OS/VS 72
FIPS 72
FIXED 73
FLAG 73
FORTVS command specifies in VM/370

CNS 72
FREE 73
GOSTMT 73
LANGLVL(66177) 73
LINECOUNT 73
LIST 73
MAP 73

NAME 73
. NO DECK 72

NOFIPS 72
NOGOSTMT 73
HOLIST 73
HOMAP 73
HOOBJECT 73
HOOPTIMIZE 73
HOSOURCE 74
NOTERMINAL 74
NOXREF 74
OBJECT 73
OPTIMIZE(0111213) 73
OPTION statement specifies in

DOS/VSE 72
SC 73
SOURCE 74
TERf'1INAL 74
XREF 74

compile-only, when to request 20
compiler messages

See diagnostic messages
comp i I er output

cross reference listing, XREF
option 115-120

default options and 89
description 89-92
end of compilation message 120
explicit options and 90
illustration of 91
LIST file, OS/VS2-TSO 105
listing 112-121
LISTING file, VM/370-CMS 96
listing, header 112
message listin9, FLAG option 113-115
OBJ file, OS/VS2-TSO 105
simplified FORTRAN programming 21
source program 90-91
source program listing 112
source program, DOS/VSE 91
source program, OS/VS 90
standard language flagging 120-121
storage map listing, MAP
option 115-120

TEXT file, VM/370-CMS 96
under OS/VS2-TSO 105
under VM/370-CMS 96

complete FORTRAN programming
coding errors to avoid 68-70
compilation 71, 92
description 33-150
executing your program 130-134
fixing compile time errors 112-121
fixing execution-time errors 135-150
general description 33
link-editing your program 122-129
OPTIMIZE(3) considerations 219-221
program coding 38-70

completion code in dumps 138
complex constant, definition 44, 241
complex data type

constant 42
constant, defining by value 44
defining 10
definition 241
description 39
general description 9
internal representation 234-235
refe.rence length in common 196
valid in arithmetic expressions 55
valid lengths 39

computational reordering~
OPT HlIZE(3) 220

248 VS FORTRAN Application Programming: Guide

o

o

computations, how compilar racognizas
duplicate 216, 217

concatenation operator (//), in
character expressions 56

conditional control transfers, GO TO
statement 66-67

connected file, definition 241
constant

arithmetic, description 42
assignment state~ent 58
character, description 42
character, STOP statement and 67
complex, description 42
cross reference dictionary lists 119
defining by name 11-12, 46
defining by value 11, 42-45
definition 241
description 42-46
expressions and 53
hexadecimal 42
Hollerith 42
integer, description 42
literal, old FORTRAN 42, 45
logical, description 42
real, description 42
restrictions as actual arguments 192
subscripts 47

constant computations, how compiler
recognizes 217

constant operands, recognition of 217
CONTINUE statement, description 64
control statement

complete FORTRAN programming 61-68
definition 241
simplified FORTRAN programming 16-18

control variable for GO TO, set by ASSIGN
state~ent 66

COpy, EDIT subcommand, OS/VS2-TSO 103
CP commands, using 93
critical variables, limitations on
optimizing 218

cross reference dictionary
compiler output 90
description 118-120
using 115-120
XREF option requests 74

cross system support, link-editing 122
current FORTRAN, definition iv
current FORTRAN, description 1
current language documented in this

book 2.
current language, definition iv
current standard, flagging for 120

DARCOS 190
DARSIN 190
data

assignment statement assigns values
to 58

classifications of 42-49
constants 11-12, 42-46
defining 8-13, 39-41
definition 7, 38, 241
dictionary, compiler output 119
efficient arrangement, common
areas 195-197

EQUIVALENCE statement, reuses stora'ge
for 51-53

explicit type statement and 10, 41
IMPLICIT statement and 10, 40-41
inco~rect input, causes errors 30
initializing 14, 50-51
items, description 13
length considerations, common
areas 194-195

order in COMMON areas 193-194
retrieval of, with READ 8
shared areas, example 193
sharing between programs 190-201
sharing storage for 193-201
truncation, common coding error 68
type considerations, common
areas 194-195

types and lengths 39
types, general description 9
typing groups of 40-41
using efficiently 50-53
variables 42
WRITE statement displays 18

data fi les
DOS/VSE test files 27
OS/VS test files 26
VM/370-CMS 98-101

data item, definition 241
data set reference number,
definition 241

data set, definition 241
DATA statement

BLOCK DATA subprogram and 209
initializes arrays 50-51
initializes data 50-51

data type
COMMON statement
considerations 194-195

constants and 42-46
cross reference dictionary and 119
definition 241
descriptions 39-41
explicit type statement and 41
general description 9
lMPLICIT statement and 40
initializing required 14
predetermined definitions 9, 40
specifying for groups of items 40-41
specifying for single items 41
valid lengths 39

DATA, VM/370-CMS filetype 98
date of compilati~n, compiler
default 89

date, in output listing header 112
DCB parameter, defines OS/VS

records 186
DO control statement, OS/VS

defining direct files using 173
description 75-76
direct access labels and 185
modifying in cataloged

procedures 83-84
sequential files 170
tape labels and 184
VSAM file processing 182

debug packets
detailed description 139-140
general description 30

DEBUG statement, description 139-140
debugging

debug packets for 139-140
dumps, requesting 149-150
extended error handling and 140-143
GOSTMT option and 136
LIST option and 137

Index 249

symbolic debugging example 141
decimal divide interrupt message 223
DECK compiler option 72
DECK option output, detailed
description 122-124

DECK option, compiler output 90
DECLARED column in cross reference
dictionary 119

defaults
data types 9
extended error handling 140

defaults, modification of 89
DEFINE command, VSAM

creates catalog entry 179-181
creating under VM/370-CMS 100
execution of 181-182
VSAM direct files 180
VSAM sequential files 180
\/ ~ A M _ ... "" ... "" ... 1... "" ,.. ,.. •• ,.. ... ~ •, 4!: 1 _ _ 1 D 1 ... _",. "'~""""'='~'"'" w __ ""1'\oot~""" g ... , C;J .LU.L

DEFINED column in cross-reference
dictionary 120

defining records 185-188
DELETE command, OS/VS2-TSO 103
designing your program

complete FORTRAN programming 34-37
resources available and 34
simplified FORTRAN programming 6
top-down development and 34-31
typical structure and 34

device information
appendix A 226-227
maximum block size values 226
minimum block size values 226
when corrections required 22

devices valid for DOS/VSE execution 132
devices valid for OS/VS execution 130
diagnostic messages

compile time, example 114
compiler default 89
compiler module identifier in 114
compiler output and 21
detailed description 113-115
DOS/VSE considerations 115
example 22
execution time 29
execution-time 135-139
format of 22-23
GOSTMT option and 136
identifier for 22
IFX compiler message prefix 114
IFY, execution error message
prefix 135

language standard flagging 90
library 135
library message number 135
library message, origin 135
library, program action after 135
LIST option and 137
message number identifies 114
operator 138-139
OS/VS consideratlons 115
prefix meanings 29
program interrupt 137-138
self explanatory 113
severity level in 114
traceback map and 135-136
using 23

digit, definition 241
DIMENSION statement

BLOCK DATA subprogram and 209
defines arrays 13, 47
severity level in 22
simplified programming examples 12

direct access device capacities 221
direct access files, control statements
for 86

direct access labels
description of use 184-185
processing 185

direct access, VSAM direct files 178
direct file processing

CMS FILEDEF command and 98
complete FORTRAN programming 170-114
direct access devices valid 170
formatted, description 151-160
internal files and 168
record formats 186
source program
considerations 111-173

unformatted, description 157
valid VSAM source statements,

_ _ •• __ 0_" _ • .., ~

::SI.lIJllIlCl r-y ~ I ::J

VM/370-CMS 98-99
VSAM considerations 174-183
VSAM direct access for 178
VSAM sequential access for 177-178
VSAM source language 117-179

diskette, as source input device 20
displacement, definition 195
DISPLAY statement, descript10n 140
displaying program results 18
division, evaluation order IS, 55
DLBL command, VM/370-CMS 100
DLBL control statement, DOS/VSE

description 86
direct access labels 185
direct files 174
sequential files 170
VSAM file processing 182

DO list, implied, in DATA statement 51
DO loop, definition 241
DO statement

batch compilation 87
block IF stat~ment and 64
branches into loops, warning 64
CONTINUE statement useful with 64
control transfers into, common coding
error 69

description 64-66
DO loop, active upon execution 65
flexibility of processing with 65
incrementing loop cOhtrols 65
invalid as DO loop terminal
state'11ent 65

multidimensional arrays 17-18
nested 17-18, 64
one-dimensional arrays 17
preventing loop execution 65
simplified FORTRAN programming 17-18
when execution completed 65
writing loops inline 216

DO variable, definition 241
DOS/VSE considerations

abnormal termination dumps 150
automatic cross compilation 71
cataloged procedures, writing and
using 88-89

cataloging load modules 127
cataloging source program 91
common input/output error 69
compilation files 88
compile, link-edit, and execute

job 133
compi ler opti ons and 72
DEFINE command 182
defining records 187-188

250 VS FORTRAN Application Programming: Guide

C· ~) ..)

OJ

o

o

:.01

' , ,

direct access labels 185
direct files 114
execute-only job 133
job control statement
descriptions 85-87

link-edit and execute job 133
link-edit, executing 128
linkage editor, using 127-128
logical units needed for
execution 132

maximum record length 188
message codes 115
object module, cataloging 92
overlay procedure 211
overlays 211-212
phase execution 133
program execution 21-28
publications vi
requesting compilation 21, 81-88
sequential files 170
tape labels 184
VSAM file creation 182-183
VSAM file processing 182-183
VSAM-managed sequential files 181

double precision data type
conversions of 218
defining 10 .
double precision, definition 241

double precision data type, reference
. length in common 196
dummy argument

common coding errors 69
cross reference dictionary lists 119
definition 241
description 191
restrictions on assigning values 192
rules for use 192
statement function definitions
and 60

dummy variables, alignment using 195
DUMP, requests dynamic dump 149
dumps

completion code in 138
requesting 149-150

duplicate computations, how compiler
recognizes 216

dynamic dumps, requesting 149

E, error code 22, 114
E, format code 158
EBCDIC collating sequence, used in
relational expressions 51

EBCDIC data sets, record formats 186
EBCDIC data, and internal files 168
EBCDIC items, hexadecimal constants
initialize 45

EDIT command, OS/VS2-TSO 103
EDIT command, OS/VS2-TSO, source program
creation 102-104

EDIT command, VM/310-CMS 94
EDIT command, VM/370-CMS, source program
creation 93-95

elimination of instructions,
OPTIMIZE(3) 220

ellipses (...), job control syntax 12
ELSE IF state~ent, description 61-64
ELSE IF, invalid as DO loop terminal

statement 65

ELSE statement, description 61-64
ELSE, invalid as DO loop terminal

statement 65
END DEBUG statement, description 140
END IF statement, description 61-64
END IF, invalid as DO loop terminal
statement 65 \

end of compilation message 120
END record, in object module 124
END statement

BLOCK DATA subprogram and 209
description 68
executable 19, 68
invalid as DO loop terminal
statement 65

simplified FORTRAN programming 19
end-of-file labels, when processed 184
end-of-procedure delimiter, DOS/VSE 88
end-of-volume labels, when

processed 184
END, EDIT subcommand, OS/VS2-TSO 103
ENDFILE statement

sequential files 163
VSAM files treat as
documentation 175

ending a program 19, 68
ENTRY control statement, OS/VS 211
entry point, traceback map lists 136
entry sequenced data set (ESDS), source

language considerations 175-179
ENTRY statement

description 41
in subprograms 206-207

EP loader option, OS/VS 127
equal sign (=)

assignment statement 14, 58
job control syntax 11

EQUIVALENCE statement
arrays and, illustration 52
BLOCK DATA subprogram and 209
COMMON statement and 197-198
description 51-53
errors using 198
execution time efficiency,
illustration 54

execution-time efficiency and 52-53
invalid references, common error 69
optimization and 214
restriction on CHARACTER items 52

equivalenced items, in cross reference
dictionary 119

ERRMON, requests extended error
control 142

error code 22
error handling library
functions 223-224

error messages
See diagnostic messages

error occurrences, warning on number
of 143

error routine option, input/output 153
error summary, in traceback map 136
errors

fixing compilation 22-23, 112-121
fixing execution 29-30, 135-150

errors to avoid 19, 68-10
ERRSAV, alters entry in option table 142
ERRSET, changes entry in option
table 142

ERRSTR, stores entry in option table 142
ERRTRA, requests traceback 142
ERRTRA, requests traceback maps 136
ESD record types 123

Index 251

ESD record, in object module 123
ESDS, under OS/VS2-TSO 111
ESDS, under VM/370-CMS 99-101
ESDS, VSAM sequential files 174
exception codes, program interrupt
messages 137

EXEC command, VM/370-CMS 94
EXEC control statement, DOS/VSE

cataloged procedures and 88
cataloged procedures use FROC
parameter 88

description 86-87
DOS/VSE compilation size 87
LINKEDT, for link-editing 128
OV (override) parameter 89
SIZE parameter required for VSAM
files 183

EXEC control statement, OS/VS
description 75
linkage editor options, OS/VS 125
loader data sets 127
loader processing options 126
modifying in cataloged

procedures 82-83
executable program, definition 241
executable statement, definition 7, 38,

241
EXECUTE option 73
executing a program, OS/VS2-TSO 106-107
execution errors, fixing

complete FORTRAN programming 135-150
simplified FORTRAH programming 29-30

execution time efficiency and
EQUIVALENCE 52-53

execution time efficiency, illustration
of EQUIVALENCE 54

execution time error messages
detailed description 135-139
interrupt 223
library 135
operator 138-139
program interrupt 137-135
traceback map with 135-136

execution-time library
automatic error handling 223
description 222-224
DOS/VSE SYSRlB used for 128
user controlled error
handling 223-224

execution, compiler
See compilation

execution, program
complete FORTRAN programming 130-134
DOS/VSE compile, link-edit, and
execute procedure 28

DOS/VSE considerations 27-28
error messages 29-
OS/VS compile, link-edit, and execute
procedure 27

OS/VS considerations 26-27
OS/VS2-TSO 106-107
output 28
simplified FORTRAN programming 26-28
test data files and 27
under OS/VS2-TSO 105
under VM/370-CMS 97

existing file, definition 241
explicit type statement

BLOCK DATA subprogram and 209
cross reference dictionary and 119
defines arrays 47
simplified FORTRAN programming 10

type changes using, common coding
. error 69

exponent overflow interrupt message 223
exponent underflow interrupt
message 223

exponentiation, evaluation order 15,
53, 55

expression
com~on, OPTIMIZE(3) eliminates 220
defining and using 53-58
definition 7, 38, 241
integer or real, in DO statement 65
integer, in computed GO TO 66
PARAMETER statement and 46
restrictions as actual arguments 192
scaling elimination 217

extended error handling
complete FORTRAN programming 140-143
control through CALL statements 143

extensions, how documented 3
EXTENT control statement, DOS/VSE

description 86
parameters required for VSAM 182
required for direct files 174
sequential files 170
VSAM fi Ie pi'ocessi ng 182

external file, definition 241
external function, definition 241
external procedure, definition 241
EXTERHAl statement, description 203-204"

factoring expressions 217
file definition statement,
definition 242

file identifier, VM/370-CMS 98
file labels, direct access 184
file labels, tape files 183
file reference, definition 242
file status option, OPEN statement 153
file, definition 241
FILE, EDIT subcommand, VM/370-CMS 94
file, INQUIRE statement and 156
FILEDEF command for data files 98-99
FILEDEF command, VM/370-CMS 94, 98-99
filemode, VM/370-CMS 98
filename option, OPEN statement 154
filename, VM/370-CMS 98
filetype, VM/370-CMS 98
finding execution errors 29-30
FIPS compiler option 72
FIPS option, output for 120-121
FIXED compiler option 73
fixed form input 38
fixed length records, description 185
fixed order variable alignment 195
fixed-point divide interrupt
message 223

fixed-point items, conversions of 218
fixing compilation errors 23
fixing compile-time errors

complete FORTRAN programming 112-121
simplified FORTRAN programming 22-23
using compiler output
listing 112-121

fixing execution-time errors
complete FORTRAN programming 135-150
simplified FORTRAN programming 29-30

FLAG compiler option 73, 113

252 VS FORTRAN Application Programming: Guide

0)

o

o

FLAG compiler option, detailed
description 115

floating-point divide interrupt
message 223

floating-point items, conversions
of 218

FMODE, EDIT subcommand, VM/370-CMS 94
FNAME, EDIT subcommand, VM/370-CMS 94
foreground command procedures, TSO 108
FORMAT statement

codes, examples 158
cross reference dictionary lists 119
description 157-160
display example 159
group specifications 159-160
nested specifications 159-160
repeated specifications ·160
variable specifications 160

formatted I/O
external 157-160
internal READ statement 169
internal WRITE statement 169

formatted record, definition 242
for.matting information, in READ

statement 8
formatting rules, common errors 68
FORTRAN

See VS FORTRAN
FORTRAN publications

current FORTRAN source programs 7
current language documented in this

book 2
old FORTRAN source programs 7
related systems publications v-vi
usage of 2-3
usage, illustration 3
VS FORTRAN Application

Programming iv
VS FORTRAN Installation and
Customization iv-v

'FORTRAN 77, definition iv
FORTRAN-supplied functions

See intrinsic functions
FORTRAN, VM/370-CMS filetype 98
FORTVC cataloged procedure, OS/VS 78
FORTVCG cataloged procedure, OS/VS 81
FORTVCL cataloged procedure, OS/VS 78
FORTVClG cataloged procedure, OS/VS 79
FORTVG cataloged procedure, OS/VS 80
FORTVl cataloged procedure, OS/VS 81
FORTVLG cataloged procedure, OS/VS 80
FORTVS command,.VM/370-CMS 94, 95-96
FREE command, OS/VS2-TSO 103
FREE compiler option 73
FREE compiler option, OS/VS2-TSO
considerations 105

FREE compiler option, VM/370-CMS
considerations 96

free form input 38, 95
FTnnFnnn, data sets for OS/VS
execution 130

FTnnFnnn, optional OS/VS loader data
set 127

full FIPS flagging 121
function reference

definition 242
evaluation order 15, 55
explicit type statement and 202
general description 189, 190

FUNCTION statement, in subprogram 205
FUNCTION subprograms

arguments in 191-192
CALL OPSYS loads, DOS/VSE 211

coding 205-206
definition 242
ENTRY statement in 206-207
general description 189
invoking 203-204
paired arguments in i90
RETURN statement in- 207-208
SAVE statement as documentation 208
top-down deielopment and 37
using 203-204

FI-F6, DOS/VSE linkage editor control
options 128

G, format code 158
general description, VS FORTRAN 1-3
general logic structure of programs 6
GENMOD command, VM/370-CMS 97
GETFILE, EDIT subcommand, VM/370-CMS 94
GLOBAL command, VM/370-CMS 94, 96-97
glossary ,

ANSI definitions 240
definitions of terms 240-244
ISO definitions 240

GO TO statement
assigned, description 66
computed, description 66-67
control transfer to next executable

statement 67
warning on branches into loops 64
when invalid as DO loop terminal

statement 65
GOSTMT compiler option 73

description 73
traceback map and 136

group format specifications 159-160

HELP command, OS/VS2-TSO 103
HELP, EDIT subcommand, OS/VS2-TSO 103
hexadecimal constant

definition 242
description 42, 45

hierarchy of operations, definition 242
Hollerith constant, description 42, 45
hyphen (-), job control syntax 72

I/O list, definition 242
I/O status option, input/output 153
I/O, definition 242
I, format code 158
I, informational code 22, 114
identity matrix, initializing 51
IF block 62
IF statement

block, repeated ELSE IF statements
in 63

block, valid forms 63
common errors using OPTIMIZE(3) 69

Index 253

logical, optimization of 219
logical, simplified FORTRAN

programming 16-17
optimization and 219
OPTIMIZE(3) and 220
simplified programming 16-17

IF-level 62
IFX, compiler message prefix 22, 114
IFY, execution error message prefix 29,

135
imaginary part of a complex constant,
defining 44

IMPLICIT statement
BLOCK DATA subprogram and 209
data initialization and 50
description 40-41
simplified FORTRAN programming 10
type changes using, common coding
error 69

~raparound scan of 40
implied DO list, in DATA statement 51
implied DO, definition 242
INCLUDE command, VM/370-CMS 94, 97
INCLUDE statement, FORTRAN

advantages in top-down
development 37

can be nested 36
CMS record size 95
OS/VS record size 77
SYSLIB required for CMS 95
SYSLIB required under OS/VS 77
SYSSLB required under DOS/VSE 88
top-down development and 36-37

INCLUDE, DOS/VSE linkage editor
control 211

INCLUDE, DOS/VSE linkage editor control
stateme.nt 128

INCLUDE, OS/VS linkage editor control
statement 126, 211

incorrect input, and errors 30
incorrect logic, and errors 30
industry standards iii-iv
information messages, compiler
default 89

informational code 22
initialization errors, common 69
initializing named common 199
input/o~tput

common errors 69
common statement options 152
data sets for OS/VS 130
detailed description 152-188
DOS/VSE logical units 132
formatted 157-160
formatted, description 157-160
optimization and 213
statement list 152
unformatted, description 157

INPUT, EDIT subcommand, OS/VS2-TSO 103
INPUT, EDIT subcommand, VM/370-CMS 94
INQUIRE statement, description 156
INSERT control statement, OS/VS 210
INSERT, EDIT subcommand, OS/VS2-TSO 103
instruction elimination,

OPTIMIZE(3) 220
integer constant with real exponent,
defining 43

integer data type -
constant 42
constant, defining by value 43
default names for 9
defining 10
definition 242

description 39-41
division gives integer results 55
general description 9
internal representation 233
optimization efficiency and 214
predetermined definition 9
reference length in common 196
valid in arithmetic expressions 55
valid lengths 39
vari able as 13
variable in DO statement 65
variable, array SUbscripts and 47

integer expression in computed GO TO 66
integer expression, definition 242
internal file

complete FORTRAN programming 168-170
definition 242

internal sequence number (ISN)
comeile-time messaaes oetionallv
contain 115 _. .

compiler messages 23
source program listing 21
source program listing prints 112
traceback map uses 136

intrinsic functions
ASCII character comparisons in 202
cross reference dictionary lists 119
definition 242
explicit type statement and 202
general d~scription 190
invoking' 201-203
simplified FORTRAN programming 15-16
storage map lists 116
TSO usage of 106

INTRINSIC statement
description of use 202

IOSTAT Option, VSAM return code placed
in 179

ISO FORTRAN iv
ISO, identifies ISO glossary
definitions 240

job control considerations
DOS/VSE 84-87
OS/VS 74-76

job control statement syntax 71-72
JOB control statement, DOS/VSE

description 85
JOB control statement, OS/VS

description 74-75
JOBLIB DO, using 131
jobname

DOS/VSE compile-only example 21
OS/VS compile-only procedure 20

LABEL column in cross reference
dictionary 119

LABEL parameter, DO statement 185
LABEL parameter, tape files 184
labels, description of use 183-185
LANGLVL(66177) compiler option 73
language extensions, how documented 3
language levels, manuals valid 38

254 VS FORTRAN Application Programming: Guide

r0,,)
'~")

o

lBLTYP control statement, tape labels
and 184

length specification, definition 242
LET linkage editor option, OS/VS 125
LET loader option, OS/VS 126
letter, definition 242
level codes

description of 114
F. (error) 114
I (information) 114
S (serious error) 114
U (abnormal termination) 115
W (warning) 114'
o (information) 114
12 (serious error) 114
16 (abnormal termination) 115
4 (warning) 114
8 (error) 114

library
See execution-time library.

library messages 135
See also diagnostic messages

library module, identified in
messages 135

LIBRARY, OS/VS linkage editor control
statement 126

LINECOUNT compiler option 73
LINK command, OS/VS2-TSO 103, 106
link-editing

complete FORTRAN programming 122-129
cross system support, automatic 122
DECK option and 122
DOS/VSE compile, link-edit, and
execute procedure 28

DOS/VSE logical units 128
execution 128
execution with load module,

OS/VS 131
execution with phase, DOS/VSE 133
for immediate execution 124
for later execution 121
input for 122
optional OS/VS linkage editor data
sets 126

OS/VS compile, link-edit, and execute
procedure 27

OS/VS linkage editor control
statements 126

output 129
required OS/VS linkage editor data
sets 126

simplified FORTRAN programming 24-25
TSO listings 106
under DOS/VSE 24-25, 128
under OS/VS 24, 125-127
under OS/VS2-TSO 105-107
under VM/370-CMS 97

linkage editor program, OS/VS 125-127
LIST compiler option 13

description of listing 143-148
example of output 148
format of listing 144-148
traceback map and 137

LIST compiler option, OS/VS2-TSO
considerations 105

list directed input/output
description 166-168
input data 166
READ statement 167
WRITE statement 168

LIST file, OS/VS2-TSO 105

LIST linkage editor option, OS/VS 125
LIST option, compiler output 90
list-directed, definition 242
LIST, EDIT subcommand, OS/VS2-TSO 103
LISTFILE command, VM/310-CMS 94
LISTING file, VM/370-GMS 96
literal constant, description 42
literal constant, old FORTRAN 45
LOAD command, VM/370-CMS 94, 91
load module

cataloging, DOS/VSE 127
DOS/VSE execution 133
DOS/VSE logical units 132
execution of 130, 134
execution output 134
OS/VS execution 131-132
OS/VS program data sets 130
producing 124
using cataloged 131

loader program under ISO 107
loader program, OS/VS 126-127
LOADGO command, OS/VS2-TSO 103
logic errors, MAP option helps find 116
logic structure of programs, general 6
logic, incorrect, and errors 30
logical constant, definition 242
logical data type

constant 42
constant, defining by value 44
data items used in logical
expressions 57

definition 242
description 39
internal representation 232
optimization efficiency and 214
rQference length in common 196
simplified FORTRAN programming 16-17
valid lengths 39

logical Qxpression
definition 242
description 57-58
in assignment statement 60
logical IF statement and 16-17
logical operators in 53

logical operator, definition 242
logical operators and their meanings 57
loglcal primary, definition 242
logical units for DOS/VSE linkage
edlting 128

logoff, OS/VS2-TSO 102
logoff, VM/310-CMS 93
logon, OS/VS2-TSO 102
logon, VM/370-CMS 93
looping, definition 242
loops, programming

block IF statemQnt and 64
branches into, warning 64
complete FORTRAN programming 64-66
CONTINUE statement useful with 64
description 64-66
errors in 29
for multidimensional arrays 11-18
for one-dimensional arrays 17
nested 17-18, 64
OPTIMIZE(3) and 220
simplified FORTRAN programming 17-18
writing inline 216

lower bound, in substring notation 49
lower bounds, in arrays 48
lower case items, job control syntax 71

Index 255

magnetic tape labels
See tape labels

ma in program
coding 201-204
common coding errors 69
definition 242
general description 189
invocation example 189
naming 201

manual organization 111
manuals, valid for language levels 38
MAP compiler option

compiler output .90
description 73, 115-118
example 116

MAP compiler option, OS/VS2-TSO
considerations 105

MAP linkage editor option, OS/VS 125
MAP loader option, OS/VS 126
MAP option, using 115
MAP, DOS/VSE linkage editor control
option 128

mathematical equivalence, when
implied 52

mathematical errors 30
mathematical functions

assignment statement uses 15-16
mathematical functions, in assignment

statement 15
mathematical library functions 222
maximum block size values 226
maximum record length, OOS/VSE 188
message format, operator 139
message number, compiler 114
message prefix, compiler 114
message text

compiler messages 23~ 115
library messages 135
programmer-specified in PAUSE

statement 139
programmer-specified in STOp·

statement 139
messages

See diagnostic messages
minimum block size values 226
misspelling words, common error 68
MODE column in cross reference
dictionary 119

MODE column, in storage map 116
modification of compiler defaults 89
modifier statements, DOS/VSE cataloged

procedures 88
module identifier, compiler

messages 114
MOVE, EDIT subcommand, OS/VS2-TSO 103
multiplication, evaluation order 15, 55
MVS considerations

abnormal termination dumps 150
automatic cross compilation 71
batch compilation 76
cataloged load modules, using 131
cataloged procedures 77-84.
cataloging load modules 125
cataloging source program 90
compilation data sets 76-77
compile-only cataloged procedure 20
compile, link-edit and execute

job 131
compiler options and 72

data sets needed for execution 130
,defining records 186-187
direct access labels 185
direct files 173
execution-only job 131
job control statements 74-76
link-edit and execute job 131
link-edit execution 125-126
linkage editor, using 125-126
load module execution 131-132
loader program under TSO 107
loader, using 126-127
message codes 115
object module, cataloging 92
overlays 210-211
program execution 26-27
publications v
requesting compilation 20-21, 76
sequential files 170
tape labels i84
VSAM DEFINE command 181
VSAM file creation 182
VSAM file processing 182

n, programmer-specified in PAUSE
statement 1.39

n, programmer-specified in STOP
statement 139

name
complete FORTRAN programming 40-49
cross reference dictionary and, 119
definition. 242
PARAMETER statement uses 46
simplified FORTRAN programming 9-13
table of, compiler output 90

name column in cross reference
dictionary 119

NAME column, in storage map 116
NAME compiler option 73
named common

definition 242
description 199-201
example of use 200-201
illustration of use 201
initializing 199
length restriction 199
naming 199
rules for use 199-200

named common, BLOCK DATA programs
initialize 208

named common, example of use 200
NCAl linkage editor option, OS/VS 125
HCAl loader option, OS/VS 127
nested DO loops 17-18
nested DO, definition 242
nested format specifications 159-160
HOAUTO, DOS/VSE linkage editor control
option 128

NODECK compiler option 72
NOFIPS compiler option 72
NOGOSTMT compiler option 73
NOLET loader option, OS/VS 126
HOLIST compiler option 73
HOMAP compiler option 73
HO~AP loader option, OS/VS 126
NOMAP, DOS/VSE linkage editor control
option 128

256 VS FORTRAN Application Programming: Guide

0)

·c

o

nonexecutable statement, definition 7,
38, 243

nonexisting file, definition 243
HOOBJECT compiler option 73
HOOPTIMIZE compiler option 73
NOPRINT loader option, OS/VS 127
NORES loader option, OS/VS 121
HOSOURCE compiler option 74
notation, substring 49
HOTERMINAL compiler option 74
HOXREF compiler option 74
number, library message 135
numeric character, definition 243
numeric constant, definition 243
numeric constant, PAUSE statement

and 67
numeric constant, STOP statement and 67

OBJ file, OS/VS2-TSO 105
OBJECT compiler option

description 73
produces load module 124

OBJECT compiler option, OS/VS2-TSO
considerations 105

object module
card image listing, compiler
output 90

cataloging 92
cataloging, DOS/VSE 92, 127
cataloging, OS/VS 92
compiler default 89
compiler output 21
DECK option and 122
END record in 124
ESD record in 123
example of listing 148
example of structure 124
link-editing 122-129
link-editor input 122
listing, compiler output 90
listing, optimization usage 219
obtaining listing of 143-148
RLD record in 123
TXT record in 123

object of a branch, cross reference
dictionary lists 119

OBJECT opti~n, produces load module 127
object time efficiency, illustration of

EQUIVALENCE 54
old FORTRAN, definition iv
old FORTRAN, description 1
old language, definition iv
OPEN statement

description 153-155
direct files 171
EXTENT statement and, DOS/VSE VSAM
files 183

invalid for VSAM-managed sequential
files (DOS/VSE) 179

sequential files 161
VSAM direct file considerations 111
VSAM sequential file
considerations 176

operands, recognition of constant 211
operation interrupt message 223
operator message format 139
operator message identification 139
operator messages 138:139

operator precedence in expressions
arithmetic 55
arithmetic operators 15
logical 51
order of 53

operator responses _
PAUSE statement 61, 139

operator, communicating with 61-68
OPSYS, using in DOS/VSE 211
OPTIMIZE compiler option

arithmetic conversions, avoiding 218
array initialization 214
array operands and 213
arrays, optimizing identically

dimensioned 217
arrays, optimizing with identical

elements 211
arrays, variably dimensioned not

recommended 215
COMMON blocks, using efficiently 215
common expressions, OPTIMIZE(3)
eliminates 220

constant operand recognition 217
description 7~
double precision conversions and 218
duplicate computation

recognition 216, 217
efficient accumulator usage 218
efficient arithmetic constructions

and 218
efficient program size 213
EQUIVALENCE statement not

recommended 214
higher levels best 213
IF statement and 219
instruction elimination,
OPTIMIZE(3) 220

integer variables and 214
logical variables and 214
loops and OPTIMIZE(3) 220
object listing and 219
object module useful with 143
OPTIMIZE(3) considerations 219-221
passing subroutine arguments in

COMMON 215
scaling elimination 211
single precision conversions and 218
source program
considerations 213-221

unformatted input/output and 213
variables, optimization

. limitations 218
writing loops inline 216

OPTIMIZE(3), common errors using 69
OPTION control statement, DOS/VSE

description 85
option table, warning on error
occurrences 143

OR sign (I), job control syntax 72
organization of this manual iii
origin of library massages 135
OS/VS1 considerations

abnormal termination dumps 150
automatic cross compilation 71
batch compilation 76
cataloged load modules, using 131
cataloged procedures 77-84
cataloging load modules 125
cataloging source program 90
compilation data sets 76-77
compile-only cataloged procedure 20
compile, link-edit and execute

job 131

Index 257

compi ler opt ions and 72
data sets needed for execution 130
defining records 186-187
direct access labels 185
direct files 173
execution-only job 131
job control statements 74-76
link-edit and execute job 131
link-edit execution 125-126
linkage editor, using 125-126
load module ex~cution 131-132
loader, using 126-127
message codes 115
object module, cataloging 92
overlays 210-211
program execution 26-27
publications v-vi
requesting compilation 20-21, 76
sequential files 170
tape labels 184
VSAM DEFINE command 181
VSAM file creation 182
VSAM file processing 182

output listing
general description 89-90
illustration of 91
simplified programming 21
using 112-120
using the object module
listing 143-148

output listing header 112
output, link-editing 129
output, program

error free 29, 134
with errors 30, 134

OVEND (end of modifiers) statement,
DOS/VSE 89

overlay 210-212
OVERLAY control statement, OS/VS 210
overview, VS FORTRAN 1-3
OVlY linkage editor option, OS/VS 126

PARAMETER statement
advantages in using 46
BLOCK DATA subprogram and 209
data initialization and 50
names constants 11-12, 46

parameter, symbolic 77-84
parentheses (), in arithme~ic
expressions 15

parentheses (), in array declarators 48
parentheses (), in substring
notation 49

parentheses (), job control syntax 71
passing arguments between

programs 190-192
PAUSE statement

description 67
operator message and 139

PDUMP, requests dynamic dump 149
period (.), job control syntax 71
PHASE control statement, DOS/VSE

linkage editor -128
overlay and 211

phase, DOS/VSE
execution of 130, 133-134
logical units needed for
execution 132

precision errors, common 69
precision in arithmetic results,
ensurlng needed 55

preconnected file, definition 243
predefined CALL statements
predefined specification,
definition 243

predetermined data type definitions 9
preface iii-vi
prefixes for messages 29
primary, definition 243
principal diagonal, initializing 51
PRINT command, VM/370-CMS 94
PRINT loader option, OS/VS 127
printer files, VM/370-CMS 99
printing program results 18
PROC statement, modifying in cataloged
procedures 82

procedure subprogram, definition 243
procedure, definition 243
PROCESS, ~, statement 76
processing options, OS/VS linkage
editor 125

program action after library
messages 135

program constants
See constant

program design
complete FORTRAN programming 34-37
resources avai lable and 34
simplified FORTRAN programming 6
top-down development and 34-37
typical structure and 34

program interrupt messages 137-138
program output

error free 29, 134
wit~ errors 30, 134

program references, substring references
val i din 49

PROGRAM statement, using 201
program stub 34
program switches, assigned GO TO
statement 66

program termination, ends DO loop
execut ion. 65

program unit
definition 243
sharing storage between 193-201

program-name
program, coding

See coding your program
program, sample 31
programming, general logic structure 6
publications

current FORTRAN source programs 7
current language documented in this

book 2
DOS/VSE publications vi
MVS publications v
old FORTRAN source programs 7
OS/VS publications v-vi
OS/VS1 pUblications v-vi
related systems pUblications v-vi
usage of 2-3
usage, illustration 3
VM/370-CMS publications v
VS FORTRAN Application

Programmi n9 i v
VS FORTRAN Installation and
Customization iv-v

PUNCH command, VM/370-CMS 94
punctuation, common errors in 68

258 VS FORTRAN Application Programming: Guide

o

\0

QUIT, EDIT subcommand, VM/370-CMS 94

READ statement
asynchronous 165
description 155
direct files 172-173
directly accessed VSAM direct
files 178

errors in 30
FORMAT statement and 157
internal files 168, 169
internal, simplified FORTRAN
programming 8

list-directed 167
sequential files 162
sequentially accessed VSAM direct
files 177

simplified FORTRAN programming 7-8
unformatted record size and 186
VSAM considerations 176

real constant with real exponent,
defining 43

real constant, definition 243
real data type

constant 42
constant, defining by value 43-44
default names for 9
defining 10
definition 243
description 39-41
general description 9
internal representation 233-234
predetermined definition 9
reference length in common 196
subscripts 47
valid in arithmetic expressions 55
valid lengths 39
variable in DO statement 65

real part of a complex constant,
defining 44

RECFM=F required for direct files 173
record formats, direct access files 186
record formats, OS/VS 185-186, 187
record formatting, OPEN statement
and 155

record length, OPEN statement and 155
record size, source program 20
record, definition 243
records, defining 185-188
recursive calls, common coding
errors 69

reference number, data set
(definition) 241

reference numbers, for DOS/VSE
execution 132

reference numbers, for OS/VS
execution 130

REFERENCES column in cross-reference
dictionary 119, 120

references, substring 49
register usage, traceback map lists 136
relational expression

character operands in 57
description 56-57

in subprograms 2~7-208
relational operators in 53

relational expression, definition 243
relational operator, definition 243
relational operators and their
meanings 56

relative record data set (RRDS), source
language considerations 175-179

relative record number, in direct
files 170

remainder, integer division
truncates 55

RENAME command, VM/370-CMS 94
repeated format specifications 160
reply to PAUSE statement, operator 67
RES loader option, OS/VS 127
RETURN statement

ends DO loop execution 65
i nval i d as DO loop termi nal
statement 65

simulated in assembler
subprograms 232

REWIND statement
invalid for directly accessed VSAM
direct files 178

sequential files 163
sequentially accessed VSAM direct
files 177,178

VSAM sequential file
considerations 176

RLD record, in object module 123
routines, listed in traceback map 136
RRDS, under OS/VS2-TSO 111
RRDS, under VM/370-CMS 99-101
RRDS, VSAM direct files 174
rules for use 192
RUN command, VM/370-CMS 94

5, 5~vere error code 22, 114
SAM data sets, VSAM-managed sequential
files 174

sample program 31
SAVE statement

BLOCK DATA subprogram and 209
in subprograms 208

SAVE, EDIT subcommand, OS/VS2-TSO 103
SC compiler option 73
scale factor, definition 243
secondary input, defining using

VM/370-CMS 97
sequential access, VSAM direct
files 177-178

sequential file processing
ASCII considerations 186
asynchronous input/output

statements 164-166
CMS FILEDEF command and 98
complete FORTRAN programming 161-170
concatenating, warning on 161
devices valid for 161
EBCDIC encoded records 186
formatted, description 157-160
internal files and 168
list-directed 166-168
READ, simplified FORTRAN

programming 7-8
source program
considerations 161-166

Index 259

unformatted, description 157
valid VSAM source statements,

summary 175
VM/370-CMS 98-99
VSAM considerations 174-183
VSAM source language 175-179
WRITE, simplified FORTRAN

programming 18
service routine library
functions 222-223

severe error code 22
severity level, compiler messages 114
sharing data between programs 190-201
simplified FORTRAN programming

coding your program 7-19
common coding errors 19
compiling your program 20-21
description 5-31
designing your program 6
executing your program 26-28
fixing compile time errors 22-23
fixing execution time errors 29-30
general description 5
link-editing your program 24-25

single precision, conversions of 218
SIZE linkage editor option, OS/VS 126
SIZE loader option, OS/VS 127
SIZE parameter, VSAM file
processing 183

slash (I), job control syntax 71
slash(/), format code 158
SOURCE compiler option 74, 112-113
SOURCE compiler option, OS/VS2-TSO
considerations 105

source program
cataloging 90-91
direct file processing 171-173
efficient size 213
input/output 152-188
internal files in 168-170
sequential file
considerations 161-168

using OS/VS2-TSO 102-104
using VM/370-CMS 93-95 ~

source program elements, definition 7
source program listing

compiler default 89
description 112-113
simplified FORTRAN programming. 21
us; ng MAP and XREF 115

source program map, using 115
source program optimization, detailed
description 213-221

source program reordering,
OPTIMIZE(3) 220

SP, format code 158
spanned records, description 186
specification statement, definition 243
specification subprogram,
definition 243

SPF (Structure Programming Facility),
using under TSO 102

square brackets ([l), job control
syntax 72

SS, format code 158
standard file labels, direct access 184
standard file labels, tape files 183
standard user labers, di rect access 185
standard user labels, tape files 183
standards

applicable for VS FORTRAN iii-iv
current FORTRAN iv
current standard, definition iv

FORTRAN 77, definition iv
old FORTRAN i v
old standard, definition iv

START command, VM/370-CMS 94
statement

definition 7, 38
specification, and data
initialization 50

statement function
common coding error 69
cross reference dictionary lists 119
definition of 60
definition, placement of in

program 61
description 60-61
references to in program 61
storage map lists 116

statement function definition,
definition 243

statement function reference,
definition 243

statement function, definition 243
statement labels 239
statement number

assembler subprograms and 232
ASSIGN statement sets 66
assigned GO TO statement list 66
cross reference dictionary lists 119
definition 243
dictionary, compiler output 119
END statement, valid in 19, 68
storage maps and 118

statement number, definition 243
statement number, description 12
statement options, input/output 152
STATUS command, OS/VS2-TSO 103
STEPLIB DO, using 131
STOP statement

causes program termination 139
description 67
ends DO loop execution 65
i nval i d as DO loop termi nal
statement 65

operator message and 139
storage map description 116-118
storage map, example 116
sto rage sha ring

See EQUIVALENCE statement
Structure Programming Facility (SPF),

using under TSO 102
structured programming, description 61
stub, program 34
SUBMIT command, OS/VS2-TSO 103
subprogram

arguments in, general rules 192
BLOCK DATA 208-209
coding 205-209
common coding errors 69
cross reference dictionary names 119
definition 189, 244
FUNCTION 205-207
function, general description 189
general description 189
intrinsic function, general
description 190

intrinsic functions, using 201-203
invocation example 189
pai red arguments in 190
storage map lists 116
SUBROUTINE 206-208
subroutine, general description 189
top-down development and 37

SUBROUTINE statement, in subprogram 206

260 VS FORTRAN Application Programming: Guide

'0" ... ~
'"

C 1
" .I

o

o

SUBROUTINE subprogram
arguments in 191-192
CALL OPSYS loads, DOS/VSE 211
coding 206-208
definition 244
ENTRY statement in 206-207
general description 189
invoking 204
paired arguments in 190
RETURN statement in 207-208
SAVE statement as documentation 208
top-down development and 37
using 203-204

subscript
complete FORTRAN programming 47
defining 12-13
definition 244
description 46-49
explicit lower bounds and 48
implicit lower bounds and 47
initializing array elements and 50
initializing character array elements
and 50

integer variable as 13
invalid values for, common coding
error 69

multidimensional arrays and 47
one-dimensional arrays and "12, 47
order of processing 47
programming considerations 49
signed 48-49

subscript quantity, definition 244
subset FIPS flagging 121
substring notation 49
substring, internal file unit 168
substrings of character items 49, 60
subtraction, evaluation order 15, 55
summary of errors, in traceback map 136
symbolic debugging example 141
symbolic parameter 77-84
syntactical unit, definition 72
syntax errors, compile-only runs
find 20

syntax errors, MAP option helps find 116
syntax, job control statements 71-72
SYSClB, DOS/VSE link-edit logical
unit 128

SYSIN, data set for OS/VS execution 130
SYSIN, logical unit for DOS/VSE
execution 132

SYSIN, required OS/VS compilation data
set 77

SYSIPT, logical unit for OS/VS
execution 132

SYSLIB required for eMS 95
SYSLIB, optional for OS/VS linkage
editor 126

SYSlIB, optional OS/VS compilation data
set 77

SYSLIB, optional OS/VS loader data
set 127

SYSLIB, OS/VS
catalogs OS/VS object module 92
catalogs source program 90

SYSLIN, optional OS/VS compilation data
set 77

SYSlIN, OS/VS loader required data
set 127

SYSlIN, required for OS/VS linkage
editor 126

SYSLMOD, cataloging load modules
and 125

SYSLMOD, required for OS/VS linkage
editor 126

SYSlNK, DOS/VSE link-edit logical
unit 128

SYSLOUT, optional OS/VS loader data
set 127

SYSLST, DOS/VSE link-edit logical
unit 128

SYSPRINT, required for OS/VS linkage
editor 126

SYSPRINT, required OS/VS compilation
data set 77

SYSPRINT, required OS/VS loader data
set 127

SYSPUHCH, optional OS/VS compilation
data set 77

SYSRES, DOS/VSE link-edit logical
unit 128

SYSRLB, DOS/VSE link-edit logical
unit 128

system considerations, direct
files 173-174

system considerations, sequential
files 170

system considerations, TSO 111
SYSTERM, optional for OS/VS linkage
editor 126

SYSTERM, optional OS/VS compilation data
set 77

SYSUTl, required for OS/VS linkage
editor 126

SYS001, DOS/VSE link-edit logical
unit 128

TAG column in cross reference
dictionary 119

TAG column, in storage map 117
tape fi les

ASCII considerations 186
CMS FIlEDEF command and 98-99

tape label s
description of use 183-184
processing 183-184

TERM compiler option, OS/VS2-TSO
considerations 105

terminal
free-form input useful with 38
source input device 20
using with OS/VS2-TSO 102
using with VM/370-CMS 93

TERMINAL compiler option 74
terminal files, VM/370-CMS FILEDEF

command and 99
TEST command, OS/VS2-TSO 103
TEXT file, VM/370-CMS 96
Time Sharing Option

See TSO (Time Sharing Option)
time, in output listing header 112
TL, format code 158
TLBL control statement, tape labels
and 184

top-down design and development
advantages of 35
description 34-37
example 36
FORTPAN considerations 36-37
INCLUDE statement and 36-37
subprograms and 37

Index 261

TR, format code 158
TRACE ONIOFF statements,
description 140

TRACE ON/OFF statements,
description 140

traceback map
description 135-136

trailer labp-Is, when processed 184
transfer of control, ends DO loop
execution 65

truncation, common coding error 68
TSO (Time Sharing Option)

ALLOCATE command 110-111
background command procedures 108
command procedures under 108
compilation 104-105
creating source programs 102-104
description of use 102-111
executing 105-107
file naming conventions 109
foreground command procedures 108
free form source and 105
linkage editor listings 106
LIST compiler option and 105
loader program and 107
loading 105-107
logoff 102
logon 102
MAP compiler option and 105
OBJECT compiler option and 105
SOURCE compiler option and 105
system considerations 111
TERM compiler option and 105
terminal usage 102
using commands 102
VSAM data files 111

TSO command procedures 108
TSO commands, using 102
TXT record, in object module 123
TYPE command, VM/370-CMS 94
type declaration, definition 244
type statement

See explicit type statement

U, unrecoverable error code 22, 115
unconditional GO TO, invalid as DO loop

terminal statement 65
undefined length records,
description 186

unformatted input/output 157
unformatted record, definition 244
unformatted records, EBCOrC encoded
files 186

unit
definition 244
external, in input/output 153
external, in READ 8
external, in WRITE 18
internal, in READ 8
internal, in READ and WRITE 168

unit identifier, definition 244
UNIT option, input/output 153
unit record files, VM/370-CMS FILEDEF

command and 99
unit, INQUIRE statement and 156
unrecoverable error code 22
upper bound, in substring notation 49
upper bounds, in arrays 48

uppercase items, job control syntax 71
u~er standard labels, direct access 185
user standard labels, tape files 183
using terminals 93, 102

variable
accumulator usage 218
and assembler subprograms 231
as actual arguments 192
assignment statement 58
character, hexadecimal constants
initialize 45

character, substrings of 49
definition 244
description 42
dummy, for alignment in common 195
efficient common arrangement 195-197
EQUIVALENCE statement and 51
example in WRITE statement 18
expressions and 53
fixed order alignment in common 195
integer or real, in DO statement 65
internal file unit 168
internal representation 232-235
optimization limitations 218
READ statement example 8
recognition when constant 217
stor~ge map lists 116
subscript 13
subscripts 47

variable format specifications 160
variable-length records,
description 185

VM/370-CMS considerations
compilation 95-96
compiler options and 72
creating source programs 93-95
description of use 93-101
executing 97
file identifier 98
FILEDEF command for data files 98-99
filemode 98
filename 98
filetype 98
free form source and 96
library availability 96-97
load module creation 97
loading 97
logoff 93
logon 93
terminal usage 93
VSAM data files 99-101
VSAM file creation 101
VSAM file definition under 100
VSAM f1le processing 101

volume labels, direct access 184
volume labels, tape files 183
VS FORTRAN

coding form 7
common coding errors 68-70
complete FORTRAN programming 33-150
current FORTRAN language level 1
current language documented in this

book 2
extensions, how documented 3
features 1-2
general description 1-3
input/output features 152-188

262 VS FORTRAN Application Programm1ng: Guide

0 1

. \

E
!

c'

o

,0

old FORTRAN language level 1
overview 1-3
reference numbers for OOS/VSE
execution 132

reference numbers for OS/VS
execution 130

simplified FORTRAN programming 5-31
source input format rules 20
source program elements 7
special features 101, 111, 151

VSAM file processing
catalog entry creation 179-181
complete FORTRAN programming 174-183
creation of files 182-183
IOSTAT option obtains return
code 179

processing of files 182-183
source language
considerations 175-179

under OS/VS2-TSO 111
under VM/370-CMS 99-101
valid source statements, summary 175
VSAM-managed sequential files

(OOS/VSE) 179
VSCOM, common errors using 69

W, warning error code 22, 114
WAIT statement, asynchronous

input/output 165-166
waits, errors in 29
warning error code 22
t~RI T E statement

asynchronous 164-165
description 155
direct files 171-172
directly accessed VSAM direct
files 178

errors in 30
FORMAT stat€ment and 157
internal files 168, 169
list-directed 168
sequential files 161-162
sequentially accessed VSAM direct
files 177

simplified FORTRAN programming 18

unformatted record size and 186
VSAM considerations 176

XREF compiler option 74, 115
XREF compiler option, detailed
description 120

XREF compiler option, output 90
XREF linkage editor option, OS/VS 125

yy, operator message identifier 139

0, in operator message 139
0, informational code 22, 114

12, severe error code 22, 114
16, abnormal termination code 22, 115

4, warning error code 22, 114

8, error code 22, 114

Index 263

SC26·3985- 2

< en
'T1
0
:lJ
-;
:lJ »
:z
»
'0
"Eo
~1'
c)"
::::I
-0 ..,
0

(Q ..,
Q)

3
~.
::::I

(Q (--'\ I
C) ',:::#' c:
0.:
(I)

'T1

;-
:z
?
en w
'-I
0
~
0'1

-0 ..,
:i"
~
:i"
c
en
~
en
(")
JI..)
0')

W
<0 --- ------ - ---- ---
co
f!1
jI..) - - ---- - - ----------_.-

~

