IBM OS/VS COBOL
Compiler and Library
Programmer’s Guide

SC28-6483-2
File No. S370-24

IBM OS/VS COBOL
Compiler and Library
Program Product Programmer’s Guide

Program Number 5740-CB1
5740-LM1

First Edition (June 1984)

Changes are made periodically to the information herein; these changes will be
incorporated in new editions of this publication.

Products are not stocked at the address given below. Requests for copies of this
product and for technical information about this product should be directed to
your IBM marketing representative.

A Program Comment Form (for your comments about the PROFS/PC? product) and a
Reader’s Comment Form (for your comments about this book) are provided at the back of
this publication. If the Program Comment Form has been removed, address comments to:
IPS Product Support Center, IBM Corporation, P.O. Box 152560, Irving, Texas 75015-2560.
If the Reader’s Comment Form has been removed, address comments to: IBM Corporation,
Department 6DD, 220 Las Colinas Boulevard, Irving, Texas 75062.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984

Who Should Read this Book?

If you are a business professional who has a need for the
decision-making tools available on the IBM Personal
Computer as well as the principal support functions
available on the IBM Professional Office System (PROFS),
or if you want to know how to use the PROFS Personal
Computer Connection (PROFS/PC2), you should read this
book.

What this Book Will Tell You

This book, Using the PROFS Personal Computer
Connection, tells you how to install PROFS/PC2?, what you
need to know and do before you use the product, how to
use PROFS/PC2, how to tailor the main menu to suit your
needs, and how to respond to the messages you may get
from time to time while you are using PROFS/PC2,

You should read the “Introduction” to get an orientation
to the whole system and to perform the tasks, especially

the one-time tasks, necessary for you to use PROFS/PC2,
The “Introduction” tells you how to:

@ Install PROFS/PC2

® Log on to the VM host where you’re running PROFS.
(A host system is the data processing system to which

To the Reader

vii

The COBOL communications user must write
a message control program {MCP) to handle
messages transmitted between remote
stations and the central computer before
they can be processed by a COBOL programe.
General telecommunications access method
{TCAM) irnformation, as well as specific
guidelines for creating an KCP, can be
found in the publications:

IBM_0S/VS_Telecommunications Access

i
Method (TCAM) cConcepts and Facilities,
order No. GC30-2042

IBM 0S/¥VS_TCAM_Programmer's_Guide, Order
No. GC30-2041

The list of publications that follows
contains the title and IBM form number of
each IBM publication referred to in this
publication:

IBM VS_COBOL for 0S/VS, order No.
GC26-3857

VM/370_CHS_Dser's Guide _for COBOL, Order
No. SC28-6469

Order No. GC20-1807

0S/VS_Linkage_ Editor and Loader, Order
No. 6C26-3813

0S/Vs1_Planning_and Use Guide, order
No. GC24-5090

0S/Vs2 Planning Guide for Release 2,
order No. GC28-0667

0S/V¥S2 Release 2 Guide, Order
No. GC28-0671

0S/VS JCL Reference publications:

05/¥s1_JCL Reference, Order
No. GC24-5099

0S/Vs1 _JCL Services, Order No. GC24~-
5100

0S/Vs2_JCi, Order No. 6C28-0692

0S/VS Checkpoint/Restart, Order
No. GT00-0304

0S/VS1_Storage_Estimates, Order
No. GC24-~-5094

0S/V¥s2_storage Estimates, Order
No. GC28-0604

IBM_OS_{TSO)_ COBOL Prompter Terminal
User's Guide and Reference, Order
No. SC28-6433

05/VS Data Management publications:

0S/¥S1_Data_Management for System
Programmers, Order No. GC26-3837

No. GC26-3840

Qs/vVsS2_Access. Method. Servigces, Order
No. GC26-3841

- 0S/VS2 Independent Component: Access

Method Services, Order No. GT26-3843

0S/V¥S_Tape Llabels, Order No. GC26-3795

0S/V¥S Virtual Storage_ Access_Method
{VSAM) Programmer's _guide, Order
No. 6C26-3838

0S/VS Data Management Services Guide,
Order No. GT00-0303

0S/VS Data Management Macro
Instructions, Order No. GT00-0305

0S/VS_Messagde Library: _Linkage Editor

No. GC38~1007

IBM_0OS COBOL_Interactive Debug Terminal
User's Guide and Reference, Order

No. SC28~6465

0S/¥s1 Debugging Guide, oOrder
No. GC24-5093

0S/VS2_System_Programming Library:

Debugging_Handbogk, Order Nos. GC28-0708

and GC28-0709

0S/VS1 Utilities, Order No. GC26-3901

0S/VS2 Utilities, Order No. GC26-3902

oS Sortzngrge Programmer's_Guide, Order
No. SC33-4007

03/¥S_Sort/Merde Programmer's Guide,
Order No. SC33-4035

0S_Sort/Merge Installation Reference
Material, order No. SC33-4004

0s/VS_sort/sMerge Installation Reference
Material, Order No. SC33-4034

S -a22

The 0S/VS COBOL Compiler and Library,
Release 2, is designed according to the
specifications of the following industry
standards (as understood and interpreted by
IBM as of April, 1976):

» The highest level of American National
Standard COBOL, X3.23-1974 {excepting
the Report Writer Module). ANS COBOL
X3.23-1974 is compatible with and
identical to International Organization
for standardization/Draft International
Standard (ISO/DIS) 1989-COBOL.

e The highest level of American National
Standard COBOL, X3.23-1968 (including
the Report Writer module). ANS COBROL
X3.23-1968 is compatible with and
identical to ISO/R 1989-1972
Programming Language-COBOL.

Quick Reference to PROF'S is a handy reference card to
PROFS tasks. Use it as a quick memory jogger. (Order
no. GX20-2408)

IBM Personal Computer Publications

For more information about the PC, you may want to
refer to the following books:

Disk Operating System, Version 2.0 or 2.1 tells you how
to use DOS on the PC. (Order no. 6024001)

IBM Personal Computer 3278/79 Emulation Control
Program User’s Guide explains how to use your IBM
PC or IBM PC XT with the IBM PC 3278/79 Emulation
Control Program, that is, the program that lets you
emulate, or imitate, the functions of an IBM 3278
typewriter keyboard and either the IBM 3278 Model 2
Display Station or the IBM 3279 Model 2A Color
Display Station. (Order no. 1502422)

IBM 3270 Personal Computer Control Program User’s
Guide and Reference explains keys, functions, and
procedures that are used to perform tasks on the IBM
3270 Personal Computer. The IBM 3270 Personal
Computer Control Program is designed to operate on
the IBM 3270 Personal Computer machine
configuration 5271 standard models 2, 4, and 6, when
installed with IBM Personal Computer Disk Operating
System, Version 2.0 or 2.1. (Order no. 1837434)

x PROFS/PC2

The PROFS Personal Computer Connection (PROFS/PC?2) lets
you work with selected PROFS tasks on the IBM Personal
Computer. By using the 3278/79 adapter, the PC 3270, or the
IBM Asynchronous Communications Adapter, you can transfer
DOS files from the PC to the host system and you can transfer
files from the host system to the PC. (Throughout this book,
the PC 3270, both hardware and software, and a PC with the
3278/79 adapter card and the 3278/79 Control Program are
referred to as the “PC 327x.”) Then you can work with these
files either on the PC in a stand-alone mode or on the host
system. You can move your incoming mail from PROFS to
PROFS/PC2 to open and respond to at a more convenient time
or place. PROFS/PC2 lets you look at, reply to, forward, erase,
file, and resend notes. You can also create new notes.

Actions you take during note processing can be transferred to
the PROFS host system for processing or distribution to other
PROFS users. If you have an optional printer attached to
your Personal Computer, PROFS/PC2 lets you print PROFS
documents that you’ve transferred from the host system.

What You Need to Use PROFS/P(C2

Hardware

You can perform both host-attached and stand-alone tasks by
means of any one of the following products:

@® IBM Personal Computer or IBM Personal Computer XT
with the following:

Introduction 1-1

CONTENTS -

INTRODUCTION . . « « « «

Executing a COBOL Program
Compilation
Linkage Editing
Loading . . . « « o &« . .
Execution

Operating System Environments .
0S/¥ST v v @ o o o « o o o o o
OS/VS2 v 4 o o o o o o o o «
Conversational Monitor system

« o & o
e & &+ 8 2 o

¢« s ¢ a0

S s ¢ & s ¢ & & 0
¢ o a4 o 8 8 & & & @
P8 4 8 2 s s s

JOB CONTROL PROCEDURES . . ¢ « « o+ &«
Control Statements.
Job Management « e e e . .
Preparing Control statements .
Name Field
Operation Field . . .
Operand Field
Comments Field « . . .
Conventions for Character Dellmlters
Rules for Continuing Control
Statements . « . ¢ ¢ o . 0 e e . .
Notation for Describing Job Control
Statements . <« ¢ ¢ o« ¢ e o e o .
JOB Statement . . .
Identifying the Job (jobname)
JOb Parameters o« o« o o o o ¢« o o
Supplying Job Accounting
Information . . . <« . . 4 ¢ o -
Identifying the Programmer
Displaying All Control Statements,
Allocation, and Termination
Messages (MSGLEVEL) . . . “ o
3pe01fy1ng Conditions for Job
Termination (COND)
Requesting Restart for a Job (PD)
Resubmitting a Job for Restart
(RESTART) . . . e e e e
Priority Schedullng Job Parameters
Setting Job Time Limits (TIME) .
Assigning a Job Class (CLASS) .
Assigning Job Priority (PRTY) .
Requesting a Message Class
(MSGCLASS) &« o o o o ¢ o o o o o =«
Specifying Main Storage
Requirements for a Job (REGION) .
Holding a Job for Later Execution
Specifying Address Space (ADDRSPC)
EXEC Statement . . « « v o« « o « o «
Identifying the Step (stepname) .
Positional Parameters . . « . . .
Identifying the Program (PGM) or
Procedure (PROC) . o o o o o o o« =«
Keyword Parameters « « « « « = « o =
Specifying Job Step Accounting
Information (ACCT) « . « o « + o« =
Specifying Conditions for
Bypassing or Executlng the Job
Step (COND) . ¢ o 'e o o « o o o

. s s .

s & & 0

I R S B)

e« o & o

a8 e a2 s

o o 8 e &

24

25
25
25
26

26
27

PREOC Statement
PEND Statement
Command Statement . .
Delimiter Statement .
Null Statement
Comment Statement . .
BATCH Compilation . .
Data Set Requirements

Passing Information to the
Processing Program (PARM) « e e =
Options for the Compiler
options for the Lister Feature .
Options for Use Under TSO Only .
options for the Linkage Fditor . .
Options for the Loader
options for Execution
Requesting Restart for a Job Step
(RD) « « « o . . e e e e e
Priority Schedullnq EXPC Parameters
Establishing a Dispatching

Priority (DPRTY) « « « o « « o o « =
Setting Job Step Time Limits (TIME)
Specifying Main Storage

Requirements for a Job Step

(REGION) . . o o o o o 4 o o o .
Specifying Address Space (ADDRSPC) .

.
& s s o s &

DD Statement ¢ . ¢ 4 ¢ ¢ e e o .
Additional DD Statement Facilities . . .

JOBLIB and STEPLIB DD Statements . . .
SYSABEND and SYSUDUMP DD Statements .
SYSCHK DD statement
JOBCAT AND STEPCAT DD statements . . .

. o e e
. * ®

e o o .

.« .

.
e s s s
* 8 s 0
* .
LS Y
L T
O T
o o s g

Compiler . . « . « . .
SYsSuT1, SysuT2, SYSUT3,
SYSUT5, SYSUT6 . .
SYSIN e o s e e
SYSPRINT
SYSTERM
SYSPUNCH
SYSLIN . . - . s % e e« a =
SYSLIB and/or Other COPY Libraries .

Linkage EGitor « + ¢ o ¢ ¢ o o o o o
SYSLIN o o« o o & o o o o o o o o o =
SYSPRINT ¢ o ¢ « o o o o o o o o o« o
SYSTERM . . .
sysLMop . . .
SYSUT?
SYSLIB . . .

User- Spec1f1ed

SYSUTH4,

.
-

- « e
* = e « s e

- . « e s s .

loader
SYSLIN . . .

I - IR TP

.
« a2 s e s 0
.
.
.
.

SYSLIB . . « . . .
sysLouT
Execution Time Data Sets . .
DISPLAY Statement o o o =
ACCEPT Statement
EXHIBIT or TRACE Statement
COBOL Debugging Aids
Abnormal Termination Dump .
COUNT Option
COBOL Subroutine Library

ata Sets

.
¢ 3 4 e e
.

37
38
)
45
47
u7
48

<142
- 143
. 143
. 143

Additional File Processing Information
Data Control Block « . .
overriding DCB Fields
Identifying DCB Information . . .
Error Processing for Non-VSAM COBOL
FileS ¢ o ¢ o o « o o o o o« o o o @
Volume Labeling
Standard Label Format . . . « . . .
Standard User lLabels
User Label Totaling
Nonstandard Label Format
Nonstandard lLabel Processing
User Label Procedure . . . « « « o«
ASCII File Labels
ASCII Standard Label Proce551ng .
ASCII User Label Processing . .
User Label Exits « ¢« & & &

143
. 154
.155
. 155
. 156
. 156
- 157
. 157
.158
.159
. 159
.159

.

.

.

NON-VSAM RECORD FORMATS . . . « « « o
Fixed-lLength (Format F) Records . . .
Unspecified (Format U) Records
Variable Length (Format V) Records . .
APPLY WRITE-ONLY Clause . . « . .
Spanned (Format S) Records
S-Mode Capabilities . . .« . .
Sequential S-Mode Files (QSAM) f01
Tape or Mass Storage Devices
Source Language Considerations . .
Processing Sequential S-Mode Files
(QSAM) - « « + . . . e e e e e
Directly Organized S- Mode Files
(BDAM and BSAM) .
Source lLanguage Considerations . .
Processing Directly Organized
S-Mode Files (BDAM and BSAM) . . .
OCCURS Clause with the DEPENDING ON
OPtioN ¢ v o« ¢ 4 4o o o o o o o o o o o

. 160
-160
<161
. 161
.164
. 164
. 165

. 165
. 166

. 166

.168
.168

-169
.170

VSAM FILE PROCESSING « ¢ o « o o o o o
Types of VSAM pata Sets
Entry-Sequenced Data Sets
Key-Sequenced Data Sets
Relative Record Data Sets
Access Method Services . . .« + + « o .
The DEFINE Command« .

173
.173
.173
.173
<174
174

Functions of the DEFINE Command .
specification of the DEFINE Command 175
Defining a Master Catalog: DEFINE
MASTERCATALOG <« .« ¢ o o o o o o =«
Defining a User Catalog: DEFINE

USERCATALOG . ¢ ¢ ¢ & o o o o o« =
Defining a VSAM Data Space: DEFINE

. 175

.176

USER NON-VSAM FILE PROCESSING 82
User-Defined Files « . . . 82
File Names and Data Set Names 82
Specifying Information about A File . 83
File Processing Techniques 83
Data Set Organization . . e« <« « « o 83
Accessing a Physical Sequentlal File . 85
Specifying ASCII File Processing . . . 90
Processing ASCII Files 91
Block Prefix e e e o < 9
Handling Numeric Data Items from
ASCIT Files . ¢ v o o o o o o « =« « 92
Direct File Processing . . . « « . . . 92
Dummy and Capacity Records 94
Sequential Creation of Direct Data
SEL e i 4 e e e e e e e e e e o « o 95
Random Creation of a Direct Data
SELt i h e e e e e e e e e e e o & & 97
Sequential Reading of Direct Data
Sets . . . « e o e + e e o o « . 98
Random Readlng, Updating, and
Adding to Direct Data Sets 98
Multivolume Data Sets . . . + . . . 99
File Organization Field of the
System-Name« « . . . <« 2100
Randomizing Technigues101
Relative File Processing110
Sequential Creation « . . .111
Sequential Reading . . . « « . . « 112
Random Access . . . e e e o« 2112
Indexed Sequential Flle Proce551ng . <119
Indexes e a4« e . = 2120
Indexed Sequential F11e Areas . . .122
Creating Indexed Sequential Files .123
Reading or Updating Indexed
Sequential Files Sequentially . . .127
Accessing an Indexed Sequential
File Randomly129
Using the DD Statement131
Creating a Non-VSAM Data Set131
Creating Unit Record Data Sets . . .133
Creating Data Sets on Magnetic Tape 133
Creating Sequential (BSAM or QSAM)
Data Sets on Mass Storage Devices . 133
Creating Direct (BDAM) Data Sets . .13t
Creating Indexed (BISAM and QISAM)
Data Sets 134
Creating Data Sets 1n the output
Stream . . . « e e . « o . . 134
Examples of DD Statements Used To
Create Data Sets135
Retrieving Previously Created
Non-VSAM Data Sets - . .138
Retrieving Cataloged Data Sets < . 138
Retrieving Noncataloged (KTEP)
Data Sets . « « ¢« ¢, ¢ ¢ o « o ¢ o <139
Retrieving Passed Data Sets139
Retrieving Data through an Input
Stream . . . e e o o = o o « o « 2139
Examples of DD Statements Used to
Retrieve Data Sets 140
DD Statements that Specify Unit
Record Devices+ « « « « . o 141
Cataloging a Data Set 141
Generation Data Groups« . . 141
Naming Data Sets S 1 ¥
Extending Non-VSAM Data Sets e e . . 142

SPACE &« & & o o o o o o o o o =«
Defining a KSDS
Defining an BRDS . « « « « « « &
Defining an ESDS . « « « « « o o &
Reusable Data Sets
Miscellaneous DEFINE Cluster
Considerations . . .« . . .+ « . . .
COBOL File Processing Considerations .
File Processing Techniques
ESDS Processing .« « « o o « o o o
KSDS and RRDS Processing
Password Usage . « « « o o o o o o @
current Record Pointer
Use of the START Verb « . .
Error Processing Options .
The Importance of Status

-176
177
179
.179
-179

. 180
. 180
. 180
.180
.181
. 181
. 181
.183
.183
.183

Invalig Key . . o« e o e
EXCEPTION/ERROR Procedure « e .
Error Handling Considerations .
Opening a VSAM File
Opening an Unloaded File
Oopening an Empty File

Opening a File Containing Records

OPEN Status Key Values

Dynamic Invocation of Access Method

Services for KSDS and RRDS Data
SEES ¢ v ¢ e e 6 e 4 e e e e e
Initial Loading of Records into a
File o o ¢ 4 o« « « o« o & D
Writing Records into a VSAM File .
ESDS Considerations
KSDS Considerations - (ACCESS IS
" SEQUENTIAL) e 4 e w e e« s o e @
KSDS Considerations - (ACCESS IS
RANDOM/DYNAMNIC) e o e o s o =
RRDS Considerations« .
Rewriting Records On a VSAM File .
ESDS Considerations
KSDS Considerations
Reading Records on a VSAM File . .
ESDS Considerations
KSDS Considerations - (ACCESS IS
SEQUENTIAL) e o e e o e« o o =
KSDS Considerations - (ACCESS IS
RANDOM) & & « o o o = o o o « =
KSDS Considerations - (ACCESS IS
DYNAMIC) v v v v o o o o « o o
RRDS Considerations
Deleting Records on a File
Status Key Settings for Action
RequestsS v« v « ¢ o o o o o o o o
Closing a File « o .
COBOL Language Usage with VSAM .« o .
Writing a VSAM Data Set
Retrieving Records From A VSAM
Set« . e e o o o
Updating A VSAM Data Set e e 4 e
Job Control Language For VSAM File
Processing . . « o+ .+« .
DD Statement for a User Catalog .
DD Parameters Used with VSAM . . .
VSAM-Only JCL Parameters . .

Data

.183
. 183
. 184
. 185
. 185
. 185
. 186
. 186

.186

. 188
.188
. 189

.189

.189
. 189
. 189
.189
. 189
. 189
. 183

. 190
.190

. 190
.190
. 190

. 190
. 191
.193
.193

. 195
. 198

.201
.201
.201
. 201

Converting Non-VSAM Files to VSAM Flles 201

Using COBOL ISAM Programs With VsaM
Files

VSAM Features Not Avallable Through
COBOL & v v & o o o o o o o o « o =

LISTER FEATURE « « « ¢ o« ¢ o o o o «
Operation of the Lister Feature . .
Programming Considerations
The Listing <« « ¢ ¢« « . .
The Output Deck &
Reformatting of Identification
Environment Divisions
Data Division Reformatting
Procedure Division Reformatting .
Summary Listing
The Source Listing .
Format Conventions
Type Indicators .

The Summary Listing
General Appearance . . « « o o«

The Output Deck

s & e o

-202
-202

.203
.203
.203
.203
-204

.204
.204
.207
- 209
.210
. 210
211
.211
<211
.211

Specifying the Lister

SYMBOLIC DEBUGGING FEATURES . . . «
Use of the Symbolic Debugging
FEatUrLeS v v o o « ¢ o o « o o o o =

STATE Option « « o« & « o & o o o &
FLOW Option .« ¢ & ¢ ¢ v o o« v « =
SYMDMP Option .+ <« . ¢ « ¢ .« o o .
Object-Time Control Cards

DEFAULT SYSDBG DATA SET « .« .

Symbolic Debugging under Information

Management System (PP5734-XX6,

57U0-XX2) ¢ @« ¢« @« o« e« e o e e 4 e e

Sample Program -- TESTRUN

Debugging TESTRUN « . .

OUTPUT & o o ¢ o ¢ o o o o o o o o s =
Compiler Output . « « « ¢ o o & o o .
Displaying a List of Diagnostic
MeSSagesS o« v v o ¢ 2 2 e e o o e o &
Object Module . . « . . .« « . & . .
Linkage Editor Output« . . .
Comments on the Module Map
Cross Reference List
Linkage Editor Messages . . « .« .
Loader Output . .« < ¢ ¢ & ¢ & . o o .
COBOL Load Module Execution Output . .
Requests for Output

Operator Messages . . « . « « « « o
System Output . . . ¢ ¢ ¢ o . o . . .
PROGRAM CHECKOUT . o o o & & & o o o
lister feature

SYNTAX~-Checking Only Compllatlon . ..
Debugging Language . « « . « o « o .+ o
Debugging Lines
Declarative Procedures--use for
Debugging . . ¢ ¢ o ¢ ¢« 4+ e o e .
TRACE, EXHIBIT, and ON
Following the Flow of Control . .
Displaying Data Values during
Execution « . .
Testing a Progranm Selectlvely . .
Testing Changes and Additions to
Programs . « « « « « o o o o o = =

Abend DUMPS & & & o o ¢ o o o o o o @
User-Initiated Dumos e e e e e e e
Errors That Can Cause a Dump

Input/Output Errors . . .

Errors Caused by Invalid Data . .

Other EXTOTS v « v o o o o o s o &
Completion Codes . « . '« « « « « .« .

Finding Location of Progranm
Interruption in COBOL Source
Program Using the Condensed Listing
Using the Abnormal Termination Dump
Finding Data Records in an Abnormal

Termination DURMP . « + « « « « « .
Locating Data Areas for Spanned
Records . . . e e e e e e e e

Locating TCAM Data Areas
Incomplete Abnormal Termination . . .
Scratching Non-VSAM Data Sets . . .
Obtaining Execution Statistics . . .
Debugging and Testing . .
Optimization Methods
Resequencing the Program
Insight into SYMDMP Output

.212
.213

.213
.213
.214
.24
.215
.216

-217
.217
.218

. 231
.231

.238
-239
.240

.242

L242

.243
. 243
. 246
.2U6
. 246

. 247
. 247
. 247
247
.248

.2u48
.251
. 251

.251
.253

.254
.254
.254
.255
.255
.255
.256
.257

259
. 260

.268

. 274
. 275
277
.278
.278
.279
.27
.279
.279

Common Expression Elimination
Backward Movement
Unrolling . « ¢ + ¢« & .« . .
JamMing . « 4 ¢ o 4 4 . e
Unswitching
Incorporating Procedures
Tabling « «
Efficiency Guidelines . . .

PROGRAMMING TECHNIQUES
General Considerations
Spacing the Source Progran
Coding Considerations . . .
Environment Division
APPLY WRITE-ONLY Clause . .
QSAM Spanned Records
APPLY RECORD-OVERFLOW Clause
APPLY CORE-INDEX Clause . .
BDAM-W File Organization . .
bata Division
Overall Considerations
Maximum Data Division Size .
Prefixes . . .« . & ¢« & + .+ .
Level Numbers
File Section e . .
RECORD CONTAINS Clause « o e
Communication Section
CD EBntries . . 2 o ¢ ¢ o &«
Working~Storage Section . . .
Separate Modules
Locating the Working-Storage
Section in DUmpPS « «
Data Description « .
REDEFINES Clause .« « « « o
RENAMES Clause . . « « « « =
PICTURE Clause . « « o o o &
SIGN Clause . « o « &« o o =
USAGE Clause . . < o « & « =
Special Considerations for DI
and COMPUTATIONAL Fields . .
Data Formats in the Computer
Procedure Division
Modularizing the Procedure
Main-Line Routine
Processing Subroutines . . .
Input/Output Subroutines . .
Collating Sequences
Use of the UPSI Switches . . .
Intercepting I/0 Errors . . .
Errors That May Escape Detect
Intermediate Results
Intermediate Results
Data Items . . ¢« ¢« ¢ ¢ o« o« .
Intermediate Results
Library Subroutines
Intermediate Results Greater
30 Digits 4
Intermediate Results and
Floating-Point Data Items .
Intermediate Results and the
SIZE ERROR Option
VEIDS &« o o o o o o o o o o @
CALL Statement . « « « « «
CANCEL Statement
CLOSE Statement
COMPUTE Statement
IF Statement . . . « . .« . .
MOVE Statement« . . .

and COBOL

SPLAY

Division

ion

and Binary

than

- 279
. 279
.280
. 280
.280
. 281
. 281
.281

.282
. 282
.282
.282
.282
.282
-282
.283
.283
.283
.283
.283
. 283
.283
. 284
. 284
.284
. 284
.284
.285
. 285

. 285
.285
.285
. 286
-286
.287
. 288

-290
.290
. 292
.292
.292
.292
-293
.293
. 293
.293
- 294
.294

. 294
- 294
.294
.294

. 295
.295
-295
.295
.295
. 295
.295
- 296

NOTE statement ¢« . .
OPEN Statement . . . « . .+ « .
PERFORM Verb
READ INTO and WRITE FROM Option
WRITE ADVANCING with LINAGE,
FOOTING, and END-OF-PAGE . . .
RECEIVE Statement « o o = o
SEND Statement
ENABLE/DISABLE statements . .
START Statement « .« .
STRING Statement
TRANSFORM Statement
UNSTRING Statement . . e . .
Using the Report Writer Feature .
REPORT Clause in FD

Summning Technique
Use of sOM « . « . &
SUM Routines « .« .+ .+ .

Output Line Overlay
Page Breaks . . . < ¢« <« . o .
WITH CODE Clause . « « « « « &
Control Footings and
Floating First Detail Rule . .
Report Writer PRoutines
Table Handling Considerations . .
Subscripts
Index-Names . « <« ¢ « o o o &
Index Data Items
OCCURS Clause =« « 2 « o « o« =
DEPENDING ON Option
SET Statement . . .« « « ¢ o .
SEARCH Statement
Building Tables . . . « e
Queue Structure Con51deratlons . .

S

Page Format

Accessing Queue Structures through

COBOL« «« .

Specifying ddnames w1th Elementary

Sub-Queues « ¢ « . ¢ 4 e o o .
Rules for Queue Structure
Description

CALLING AND CALLED PROGRAMS . . .
Specifying Linkage

Linkage in a Calling COBOL Progranm

Linkage in a Called COBOL Program
Dynamic Subprogram Linkage . .

Correspondence of Identifiers in

Calling and Called Programs .
File-Name Arguments
Linkage in a Calling or Called
Assembler-Lanquage Program . . .

Conventions Used in a Calling

Assembler-Language Program . .

Conventions Used in a Called

Assembler- Language Program .

Communication with Other Languages

Sample CARLLING and CALLED Progranms
Link-Fditing Programs
Specifying Primary Input
Specifying Additional Input . .
INCLUDE Statement
LIBRARY Statement
ALIAS Statement
NAME Statement . . « « « . o
ENTRY Statement
ORDER Statement
PAGE Statement

.296
-296
.296
.296

. 297
.297
.297
.297
.298
.298
.298
.299
. 299
.299
. 300
-300
.300
.301
.302
.302
.303
.304
. 304
.304
-304
.305
-305
. 305
. 305
.306
.307
.309
.309

.312
.313
. 315

.316
.316
. 317
.317
.318

-322
.322

.322
.323

.325
-326
.327
.331
.332°
.332
.333
.333
.333
.333
.334
.334
. 334

Programs Compiled with the DYNAM
and/or Resident Options334
Specifying DYNAM/RESIDENT335

Specifying NODYNAM/RESIDENT335

Specifying NODYNAM/NORESIDENT . . .336
Linkage Editor Processing338

Example of Linkage Editor

Processing . « « « « « « = « « = « 4339

Overlay Structures . . « « « « « « « . 2340
Considerations for Overlay340
Linkage Editing with Preplanned
Overlay .« . o « « « « « o o o o « J340
Dynamic Overlay Technique341

Loading Programs e« « o o o o346

Specifying Primary Input « « « « o o <346
Specifying Additional Input346

LIBRARIES . o o 4 « o o o o o o « o « 2347
Kinds of Libraries . . « « o« « o « « « <347
System Libraries Used in COBOL

Applications . « o« + « « o o o o o . o347
Link LibTAary . . « ¢ « « « « « = o <347
Procedure Library «348

Sort Library e o o« o o <348
COBOL Subroutine lerary e« « - . 348
Libraries Created by the User349
Automatic Call Library349
COBOL Copy Library349
COPY Statement351
BASIS Card . . « ¢ o = o « o« » « « +351

JOB Library e o o s +353
Sharing COBOL Library Subroutlnes . « +353
Concatenating the Subroutine Library .353
Creating and Changing Libraries354

USING THE CATALOGED PROCEDURES
Calling Cataloged Procedures
Data Sets Produced by Cataloged

Procedures . . « . « « +« « o« « « « .356
Types of Cataloged Procedures357
Programmer-Written Cataloged
Procedires « o o o o o o o o o « o
Testing Programmer-Written
ProcedUres . . « o« « « + « « « « o 2357
Adding Procedures to the Procedure
Library . « o o o o o « o = . . «357
IBM-Supplied Cataloged Procedures . 358
Procedure Naming Conventions . . . 359
Step' Names in Procedures359
Unit Names in Procedures359
Data Set Names in Procedures359
COBUC Procedure « « « . -359
"COBUCL Procedure +. « « <« « .359
COBULG Procedure « « « « « 4359
COBUCLG Procedure . . . « . « « o« .361
COBUCG Procedure« . . 361
Modlfylng Existing Cataloged Procedures 362
Overriding and Adding to Cataloged
Procedures e o o o o e
Overriding and Addlng to EXEC
Statements « e e
Examples of Overriding and Addlnq
to EXEC Statements
Testing a Procedure as an In-Stream
Procedure . . . « o o o
Overriding and Addlng to DD
Statements

. 356
.356

. 357

.

.362
.362

.362

Examples of Overriding and Adding
to DD Statements364
Using the DDNAME Parameter366
Examples of Using the DDNAME
Parameter « ¢ <« + . « o . 366
USING THE SORT/MERGE FEATURE
Sort/Merge DD Statements368
Sort Input DD Statements368
Sort Output DD Statements368
Sort Work DD Statements368
SORTWKnn Data Set Considerations . .368
Input DD Statement369
Output DD Statment369
SORTWKnn DD Statements369
hdditional DD Statements370
Sharing Devices between Tape Data Sets .370
Using More Than One Sort/Merge
Statement in a Job370
SORT Program Example370
Cataloging SORT/MERGE DD Statements . .371
Linkage with the SORT/MERGE Program . .371
Completion Codes . « « « .+ .« « « . .371
Terminating the Sort Program from
the COBOL PROGRAM . . « . « « « « « 2372
Locating Sort/Merge Record Fields . . .372
Locating Last Record Released to
sort/Merge by an Input Procedure372
Sort/Merge Checkpoint/Restart372
Efficient Program Use « « . o .372
Data Set Size « < . « . .373
Main Storage Requirements373
sort/Merge Diagnostic Messages373
Defining Variable-Length Records2374
Sorting Variable-Length Records . . .374
Sort/Merge for ASCII Files . . . +. . . .375
Other Collating Sequences375

.368

0S/VSs Sort/Merge Debug Feature377

USING THE SEGMENTATION FEATURE378
Using the Perform Statement in a
Segmented Progralm . . « « « « « « « 378
Ooperation . . . « o « = + « « « o« « 2379
LANGLVL Option and Re-Initialization .379
Compiler Output«379

USING THE CHECKPOINT/RESTART FEATURE . .394
Taking a Checkpoint394
Checkpoint Methods394

DD Statement Formats394
Designing a Checkpoint . . B 1)
Messages Generated during Checkp01nt .396

Restarting a Program . . « . « « « « « .396
RD Parameter . . « « « « « o « « « 2396
Automatic Restart <« « . .397
Deferred Restart« .« . o .397

CHECKPOINT/RESTART DATA SETS398

USING THE COMMUNICATION FEATURE401
Writing a Message Control Program . . .40&4
Functions of the Message Control
Programl « « « =« o o+ o o o o o o« « « U404
User Tasks e e+ + e « . JUO4
Defining the Buffers e e+ e+« . . JU26
Activating and Deactivating the

Message Control Program U426

Defining the MCP Data Sets and
Process Control Blocks . . « . . .
Defining Terminal and Line Control
Areas . o« ¢ ¢« o @ e e e e o o o
Designing the Message Handler . .
ANS Standard MCP Requirements . . .
ENABLE/DISABLE: Operator Command
Interface« o o
ENABLE/DISABLE-—KEY Phrase « . e .
ENABLE/DISABLE INPUT TERMINAL . .
ENABLE/DISABLE INPUT (without
TERMINAL) e e e e e .
ENABLE/DISABLE OUTPUT e e e e e
Specifying Characteristics for
Symbolic Destinations . « . .
Communications Job Schedullng (CJds)
Summary of ANS Standard MCP
Requirements . . . ¢« « « ¢« .+« < . .

JCL for the MCP e e e e o e
Assembling, Link- Fdlflnq, and
Executing an MCP . . o « + o« o « « &

Assembling an MCP « . . .
Link-Fditing an MCP
Executing an MCP N

Writing a TCAM-Compatible COBOL Program
Testing a COBOL TP Prodgram . . « « «
Communicating between a COBOL
Program and the MCP

Defining the Interface
Activating the Interface
Transferring Messages between the
COBCL Program and the MCP
Deactivating the Interface
Additional Interface Considerations
Using TCAM Service Facilities

MACHINE CONSIDERATIONS . . . o ¢ o « &
Minimum Machine Requirements . . .
Compiler Size Requirements

0S/VS2 and the Region Parameter .

Intermediate Data Sets Under

0S/VS2, RPelease 1 . ¢ v u o o o «
Execution Time Considerations . . .
Sort/Merge Feature Considerations .

APPENDIX A: SAMPLE PROGRAM OUTPUT . .
APPENDIX B: COBOL LIBRARY SUBROUTINES
Subroutines for Subprogram Linkage . .
ENTER Subroutine (ILBONTRO) e e .
NORES Initialization Subroutine
(ILBOBEGO) « v v v o« o o o o o« o
Object-Time Options Subroutine
(ILBOPRMO)
STOP RUN subroutlne (ILBOSRVO) . .
STOP RUN Messages Subroutine
(ILBOMSGO) v & v & ¢ v« = o o o o« =
STOP EKUN Termination Subroutine
(ILBOSTTO) v v v v o o o « o o o
Object-Time Program Operations
COBOL Library Conversion Subroutines
Separate Sign Subroutine (ILBOSSNO)
COBOL Library Arithmetic Subroutines
COBOL Library Subroutines for Testing
Conditions at Object Time
Class Test Subroutine (ILBOCLSO) .
COMPARE Subroutine (ILBOVCOOQ) . .

. 427

Lu27
<429
432

. 432
.432
. 433

434
. 434

. 435
436

. 4a1
Y

T
445
. 445
L445
446
.uu6

- 4uo
. 449
. 455

. 455
.U55
455
.U56

. 457
. 457
. 457
LU57

. 458
.458
L1460

. 461

472
472
.472

472

. 472
U472

L4772

<472
.473
473

473
.476

. 476
476
476

Compare with Figurative Constant

Subroutine (ILBOIVLO)
COBOL Library Data Manipulation

Subroutines« . . .
MOVE Subroutine (ILBOVMOO and
ILBOVMO1) « o o .« .

MOVE Subroutine for System/370
(LLBOSMVO)« . . . -

MOVE to Rlphanumeric- Edlted Fleld

Subroutine (ILBOANEO) « o« o o
MOVE to Numeric-Edited Field
Subroutine (ILBONEDO) e e e e
MOVE Figurative Constant
(TLBLOANFO) « « ¢ « o « « .
TRANSFORM Subroutine (ILBOVTRO)
STRING Subroutine (ILBOSTGO) .
UNSTRING Subroutine (ILBCUSTO)
INSPECT Subroutine (ILBOINSO)
COBOL Library Data Management
Subroutines ¢ ¢ . o o o
DISPLAY, TRACE, and EXHIERIT
Subroutine (ILBODSPO) . .
DISPLAY Subroutine (ILBODSSO)
ACCEPT Subroutine (ILBOACPO) .
Generic Key START Subroutine
(ILBOSTRO) ¢ & o ¢ =« o « o o &

Checkpoint Subroutine (ILBOCKPO)

Wait Subroutine (ILBOVWAT) P
Error Intercept Subroutine
(TLBOERRO) + v v v o o o « « &
Error Intercept Subroutire
(ILBOSYNO) .« « & « « & « . e
Label Handling Subroutlne
(ILBOLBLO) . . .« & & ¢ o o o« .
Printer Overflow Subroutine
(ILBOPTVO) & v v o o o = o« «
Printer Spacing Subroutine
(ILBOSPAO) v v v ¢ o « o « «
BSAM WRITE/CLOSE and BDAM OPEN
Subroutine (ILBOSAMO) e . .
BSAM READ Subroutine (ILBOSPNO)
QSAM I/0 Subroutine (ILBOQIO)
DCB Exit Subroutine (ILBOEXTO)
VSAM Initialization Subroutine
(ILBOINTO) e e e .
VSAM Open and Close Subroutlne
(ILBOVOCO) v v o o o « = o « =
VSAM Action Request Subroutine
(ILBOVIOO) v v« v &« v v o o o &
RECEIVE Subroutine (ILBORECO)

RECEIVE Initialization Subroutine

(ILBORNTO) « « o & o « « « » =«
Queue RAnalyzer Object-Time
Subroutine (ILBOSQAO) « o o
Queue Structure Description
Subroutine (ILBOQSUO)

.

Message Count Subroutine (ILBOMSC)

Queue Structure Scan
(Communications) Subroutine
(ILBOQSS) e e s e e e e e e

Job Scheduler Subroutine (ILBOSCD)
ENABLE/DISABLE Subroutine (ILBONBL) 480

Communications Job Scheduler
Utility (ILBOCJS) « « « « « &
Declarative Save Area Chaining
Subroutine (ILBOCHNO) « o e e
GETCORE Subroutine (ILBOCMMO)
SEND Subroutine (ILBOSNDO) . .

-

. 476
. 476
476
476
476
476
. 477
. 477
477
. 477
- 477
. 477
. 477
477
477
.478
478
. 478
. 478
.478
.478
478
.478
.478
478
479
. 479
479
.479

. 479
479

.479
. 479
479
479

479
.479

. 480

.480
.480
.480

SEND Initialization Subroutine
(ILBOSNTO) « v o o o o o o o o« o .
COBOL Library Subroutines for Special
FeatlIeS « o ¢ o o o o o o o « « o« o U480
Sort/Merge Feature Subroutine
(ILBOSRTO0) & v« o o « o « « « « « « 2480
Merge Subroutine (ILBOMRGO)480
Sort Subroutine (ILBOSMGO)480
sort Debug Subroutine (ILBOSDBO) . .480
Alternate Collating Sequence
Compare Subroutine (ILBOACS)u481
SEARCH Subroutine (ILBOSCHO)481
Segmentation Subroutine (ILBOSGMO) .481
GO TO DEPENDING ON Subroutine
(ILBOGDOO) v « = o o o = o « « « . U481
Date-and-Time Subroutine (ILBODTEQ) 481
3886 Optical Character Reader
Interface Subroutine (ILBOOCRO) . .u481
ABEND Request Subroutine (ILBOABNO) 481
Object-Time Debugging81
Debug Control Subroutine (ILBODBGO) 481
Use-for-Debugging Subroutine
(ILBOBUG) e e e s o s e & o o « o JUB2
Flow Trace Subroutine (ILBOFLWO) . .482
Statement Number Subroutine
(TLBOSTNO) v v v v o « = o « .
Symbolic Dump Subroutine (ILBOD10
and ILBOD20) . « o & o« o« o« « - o o JU482
SYMDMP Error Message Subroutine
(ILBODBEO) .+ &« & & « = = o « « o . .U82
COUNT Initialization Subroutine

. 480

.482

(ILBOTCOO0) « v o o o o o o « w « . U482

COUNT Frequency Subroutine

(ILBOCT10) e + e + o + . JU82

COUNT Termination Subroutlne

(ILBOTC20) . « ¢ ¢ o ¢ « « & o« - . JU82

COUNT Print Subroutine (ILBOTC30) .u482
Object-Time Debugging under Information
Management System (PP5734-XX6)483

SPIE Subroutine (ILBOSPIO)483
Calling And Storage Information483

APPENDIX C: FIELDS OF THE DATA CONTROL
BLOCK . & & o o o ¢ o o o o 2 o« « « « 2490
APPENDIX D: COMPILER OPTIMIZATION . . .496
Performance ConsiderationsU96
Block Size for Compiler Data Sets . . .U96
How Buffer Space Is Allocated to

BUfferS =« ¢ o o o o « o o « o o o'« o 897

APPENDIX E: INVOCATION OF THE COBOL

COMPILER AND COBOL COMPILED PROGRAMS . .499
Invoking the COBOL CompilerU499
Invoking COBOL Compiled Programs . . .500

APPENDIX F: SOURCE PROGRAM SIZE
CONSIDERATIONS &« « o o o o s « « o « o« 501
Compiler Capacity . . « « « « . . o+ .501
Minimum Configuration SOURCE
PROGRAM Size « . « « ¢« « o « « . . .501
Effective Storage Considerations501
Linkage Editor Capacity502

APPENDIX G: INPUT/OUTPUT ERROR
CONDITIONS « o o ¢« « « o « o o « « « « 2504

APPENDIX H: CREATING AND RETRIEVING

INDEXED SEQUENTIAL DATA SETS « . <« . . .510
Creating an Indexed Data Set510
Retrieving an Indexed Data Set . . .512

APPENDIX Y: CHECKLIST FOR JOB CONTROL
PROCEDURES & v ¢ v ¢ o o o o o o o « « 514
compilation .« ¢ & ¢ ¢ ¢ 4 ¢ 2 o « .« . <514
Case 1: Compilation Only -- No
Object Module Is to Be Produced . .514
Case 2: Source Module from Input
Stred@m « « « ¢ o o o o o o o o « .
Case 3: Object Module Is to Re
Punched . . « . « ¢ &« « « « « « & 514
Case 4: Object Module Is to Be
Passed to Linkage Editor514
Case 5: Object Module Is to Be
Saved « « 4 . e b e 4 e e e e e e
Case 6: COPY Statement in COBOL
Source Module or a BASIS Card in
the Input Stream« . .
Linkage Editor . . <« .« . ¢ .+ ¢ o < o .
Case 1: Input from Previous
Compilation in Same Job
Case 2: Input from System Input
Stream « « o« & o« 4 o 4 4 e e e . .
Case 3: Input Not from Compilation
in Same Job« . .- .
Case 4: Output to Be Placed in
Link Library« .« 516
Case 5: oOutput to Be Placed 1n
Private Library « .516
Case 6: Output to Be Used Only in
this Job ¢ ¢« & ¢« « « + « .« 516
Execution Time « .« . 516

.514

.515

.515
.515

.515
.515

.515

Case 1: Load Module to Ee

Executed Is in Link Library516
Case 2: Load Module to Re

Executed Is a Member cof Private

Library . « « v « o o« « = « = « . .516
Case 3: Load Module to Be

Executed Is Created in Previous

Linkage Fditor Step in Same Job . .517

Case #4: Abnormal Termination Dump .517
Case 5: DISPLAY Is Included in
Source Module
Case 6: DISPLAY UPON SYSPUNCH Ts
Included in Source Module517
Case 7: ACCEPT Is Included in

Source Module (Except for Format 2

.517

or ACCEPT MESSAGE)517
Case 8: Debug Statements EXHIBIT

or TRACE Are Included in Source

Module « o o o « 4 ¢ o o o « o « o 517
Case 9: Object Time Symbolic

Debugging Options517

Case 10: COUNT Option517

APPENDIX J: FIELDS OF THE GLOBAL TABLE .519
Task Global Table « « <« <« « . o519

Program Global Table527

APPENDIX K: DIAGNOSTIC MESSAGES529
Compile-Time Messages . « « « « « .+ . <529
Object-Time MesSsSagesS . . « « o « « o« o« 529
Completion Codes529
Informative Messages529

Diagnostic Messages —-- MCS

Considerations . . .

COBOL Object Program Unnumbered

Messages « « « « o .
Queue Analyzer Messages

APPENDIX L: RESOLVING CCBOL COMPILER

PROBLEMS . . . '« « . « .

AFPENDIX M: 3886 OPTICAL CHARACTER

READER PROCESSING . . .
OCR COBOL Capabilities .

-

-

-

.

.

-

. 537
.538
.539

.543

L5044
.544

OCR I/0 RegquestsS v & & ¢ o v o o .
OCR STATUS KEY « « « « .
Inplementing an OCR Application .

Document Design
Document Description
COBOL File and Record Descriptions
Procedural Code
Exception Handling Hlth ILBOOCRP
Sample Program . . . e e e e .

Format Record Assembly Example .
Processing Tapes from the 3886 OCR,
Model 2 . . . « ¢+ ¢ & o 0 .

INDEX & v v ¢« o« o ¢ o o o o o o o«

.544
1545
.549
.549
.550
.552

.552

.552
.553
.553

. 560

.561

Figure 1. Job Control Procedure . .
Figure 2. Using a Cataloged Procedure
Figure 3. Control Statements « o .
Figure #. General Format of Control

Statements . . . o ¢ 4 ¢ 0 4 4 4 e . .

Figure 5. JOB Statement
Figure 6. EXEC Statement
Figure 7. Significant Characters for

Compiler Options « o . - . . .

Figure 8. Compiler, Llnkage Edltor,
and Loader PARM Options
Figqure 9. The DD Statement (Part 1

OF 3) ¢« & ¢ o v o ¢ o e o o o o e o @
Figure 9. The DD Statement (Part 2
o B
Figure 10. Device Class Names
Required for IBM-Supplied Cataloged
Procedures e o o o o o ¢ v o o o o @

Figure 11. Mass Storage Volume States
Figure 12. Data Set References . . .
Figure 13. Example of a Batch

compilation . . ¢ ¢ ¢ e o o 4 o o .
Figure 14. Creation of Four Tcad
Modules with Programs PROG1 and PROG?2
and BASIS Library Members PAYROLL and
PAYROLL2 e o e o o & o = e s e e =
Figqure 15. Data Sets Used for
compilation. . « « ¢ ¢ ¢ ¢ ¢ e o o . .
Figure 16. Data Sets Used for Linkage
BAiting « & o o o o ¢ 4 o e e e s e .
Figure 17. Determining the File
Processing Technique . . .

Figure 18. COBOL Clause for Phy51cal
Sequential File Processing c e e e .

Figure 19. DEN Values « e e o = o
Figqure 20. DD Statement Parameters
Applicable to Physical Sequential

OUTPUT FileS +v ¢ o o o o o o o o o« o« =
Figure 21. DD Statement Parameters
Applicable to Physical Sequential
INPUT and I-0 Files . . « « « « « &

Fiqure 22. Directly Organized Data as
it Appears on a Mass Storage Device .
Figure 23. Sample Format of the First

Two Tracks of a Direct File
Figure 24. Sample Space Allocation
for Sequentially Created Direct Files
Figure 25. Sample Space Allocation
for Randomly Created Direct Files . .
Figure 26. Mass Storage Device
Overhead Formulas . . « o « ¢« « o« « o
Figure 27. Mass Storage Device
Capacities e o e s o e e @ s e o o o
Figure 28. Mass Storage Device Track
Capacity e e & e o s e o e o = s =
Figqure 29. Partial List of Prime
Numbers (Part 1 o0f 2) . . . <« « .+ . &
Figure 30. Sample Program for a
Randomly Created Direct File (Part 1
of 2) e s e e s e & e e s e e o a o
Figure 31. Direct File Processing on
Mass Storage Devices
Figure 32. JCL Appllcable to Directly
Organized Files . . < <.+ o « a ¢ o =

. 21
21
. 22

. 33

. 86

. 93
. 94
. 96
. 97
.103
.103
. 104

.105

.106
.108

.109

Figure 33. Relatively Organized Data
as it Appears on a Mass Storage Device
Figure 34. Sample Format of Two
Tracks of a Relative File , .
Figure 35. Sample Program for
Relative File Processing (Part 1 of &)
Figure 36. Relative File Processing

~on Mass Storage Devices

Figure 37. JCL Applicable to
Relatively oOrganized Files .« o . -
Figure 38. Track Index
Figure 39. Cylinder Index
Figure 40. Blocked Records on an

Indexed File o o o o« o o o o o o s 4 =

Figure 41. Unblocked Records on an
Indexed File e o e 4 e e e 4 e & a0 .
Figure 42. Cylinder Overflow Area . .
Figure 43, Independent Overflow Area
Figure 44. DD Statement Parameters
Applicable to Indexed Files Opened as

Output « e e o e e o e o o + e & o =
Figure 45. Examrple of DD Statements
for New Indexed Files
Figure 46. DD Statement Parameters
Applicable Indexed Sequential Files
Opened as INPUT or I-0 . . ¢ « o« « « =
Figure 47. Indexed Sequential File
Processing on Mass Storage Devices -
Figure 48. DD Statement Parameters
Frequently Used in Creating Data Sets
Figure 49. Parameters Frequently Used
in Retrieving Previously Created Data
Sets e e e e e e e e e e = e e o o =
Figure 50. Parameters Used To Specifv
Unit Record Devices . . . e s e e e
Figure 51. Links hetwveen the SELECT
Statement, the DD Statement, the Data
Set label, and the Input/output
Statements .« ¢« « ¢ ¢ o 4 ¢ e e 2 e e
Figure 52, Flow of Control in COBOL
After Error Detected on -
BSAM/QISAM/BDAM/BISAM I/0O * * « « « « o

Figure 53. Flow of Control in COBOL

After Error Detected on QSaM I/O - - -

54,
in

Fiqure Example of Use of GIVING
Option Frror Declarative (Part 1 of
3) e e e s e e e e s e e e e e e
Figure 55. Recovery from an Invalid
Key Cenditicn or from an Input/Output
ETIOL & ¢ ¢ ¢ o ¢« ¢ o o o« o o o o
Figure 56. Input/Output Error
Processing Facilities
Figure 57. Exit List Codes
Figure 58. Parameter List Formats . .
Figure 59 Label Routine Return Codes

Figure 60. Fixed-length (Format F)
RECOLAS & v v v v 4 ¢« 4 o o o o o o+ =
Figure 61, Unspecified (Format U)
RECOTAS v & & o ¢ v o o ¢« o o o o o
Figure 62. Unblocked V-Mode Records
Figure 63. Blocked V-Mode Records .

<11
L1171

114

121
122
. 123
.123
. 126

. 127

.129
. 131

. 132

. 138

. 141

<143

145

147

. 150

. 154

. 155
. 158
.158

158

. 160
. 161

.162
.162

Figure 64. Fields in Unblocked V-Mode
RECOLAS & o o o 4 o o o o o o o o o«
Figure 65. Fields in Blocked V-Mode
RECOTAS « 4 o o o o o o o o o o o o o«
Figure 66. First Two Blocks of
VARIABLE-FILE-2 . . « .+ « . « o e

Figure 67. Control Fields of an
S-Mode Record « e e .
Figure 68. One Logical Record
Spannlng Physical Blocks . . . « . .

Tigure 69. First Four Blocks of
SPAN=FILE .« o ¢ o o o o o o o o o« o =
Figure 70. Advantage of S-Mode
Records Over V-Mode Records
Figure 71. Direct and Sequential
Spanned Files on a Mass Storage Device
Figure 72. Calculating Record lLengths
When Using the OCCURS Clause with the
DEPENDING ON Option . . « o s . .
Figure 73. Defining a VSAM Indexed
Data Set (KSDS) with Both Primary and
Rlternate Keys- .
Figure 74. Status Key Values And
Their Meanings . « « ¢ ¢ o o o o« « « &
Figure 75. Error Handling Actions
Based on COBOL Program Coding.
Figure 76. (Part 1 of 2) Status Key
Values for OPEN Requests . . « « « « =
Figure 77. (Part 1 of 2) Status Key
Values for Action Requests
Figqure 78. COBOL Statements
Frequently Used for Writing into a
VSAM Data Set . ¢ ¢ ¢ 4 o o o s 4 e .
Figure 79. COBOL Statements
Frequently Used for Retrieving Records
From a YSAM Data Set . . « « « « + «
Figure 80. COBOL Statements
Frequently Used for Updating a VSAM
Data Set « « « ¢ &« ¢ ¢ 4 4 4 e ¢ 4 e .
Figure 81. Sample Identification and
Environment Division Output Listing .
Figure 82. Sample Data Division
Output Listing . « « . & . & &« & « « .
Figure 83. Sample Procedure Division
Output Listing .« ¢« « . ¢« ¢« &« o « « .« .
Figure 84. Sample Summary Listing . .
Figure 85. Individual Type Codes Used
in SYMDMP Output o
Figure 86. Using the SYMDMP Optlon to
Debug the Program TESTRUN (Part 1 of
1
Figure 87. Examples of Compiler
Output (Part 1 of # . . . « « .+ « .« .
Figure 88. 1 Program that Produces
Compiler Diagnostics and Explanations
Figure 89. Glossary Definition and
Usage . e e e e e e e e e e e e e
Figure 90 symbols Used in the
Listing and Glossary to Define
Compiler-Generated Information . e
Figure 91. Linkage Editor Output
Showing Module Map and Cross-Reference
List o ¢ 4 @ v i e 4 h e e e e e e e
Figure 92. Module Map Format Example
Figure 93. Execution Job Step Output
Figure 94, System Message
Identification Codes e e e e e e e

.163
. 163
164
. 166
. 166
. 167
. 167

168

<171

.178
. 184
.185
- 187

. 192

. 194

. 196

- 199
.204
.206

.208
.209

.219

. 220
.232
. 239

.239

. 240

. 261
. 244
.245

Figure 95, Program with USE FOR
DEBUGGING. « &« « « o « o « o o« o« s « « 2250
Figure 96. Example of Program Flow

e e e e e e ele e e e e e e e e e s 4252
Figure 97. Selective Testing of B . . .253
Figure 98. COBOL Program That Will
Abnormally Terminate (Part 1 of 3) . . .264
Figure 99. Load List of Program That
Will Abnormally Terminate267
Figure 100. Program with Data
Interrupt (Part 1 of 5)269
Figure 101. Locating the QSAM Logical
Record ATea « v ¢ ¢ « o o« o o o o « o o274
Figure 102. Logical Record Area and
Segment Work BArea for BDAM and BSAM
Sspanned Records 275
Figure 103. Fields of the RECEIVE Queue
Block e - o« 2276
Figure 104. Fields of the SEND Queue
Block .« ¢ ¢ ¢ ¢« v 4 4« 4 4 e e e . . 2276
Figure 105. Structure of a TCAM
Record e e e e e e e e e e e e e e oe 277
FPigure 106. Codes Used in the TCAM
Control Byte e e e e s e e e e o o . 2278
Figure 107. Data Format Conversion . .289
Figure 108. Relationship of PICTURE
to Storage Allocation292
Figure 109. Treatment of Varying
Values in a Data Item of PICTURE S9 . .292
Figure 110. Using the STRING
Statement ¢ ¢ ¢ 4 . o . . .298
Figqure 111. Using the UNSTRING
Statement . « . ¢ ¢« ¢ 4 4 ¢ o o o . . 299
Figure 112. Sample Showing GROUP
INDICATE Clause and Resultant Execution
Output “ e e e e s 4 e e e e e = o - 2302
Figure 113. Format of a Report Record
When the CODE Clause is Specified . . .302
Figure 114. Storage Layout for Table
Reference Example306
Figure 115. Rules for the SET
Statement ¢ . o & . . . 307
Figure 116. A Queue Structure with
Three Levels of Sub-Queues .« .« e .« . 370
Figure 117. A Sample Queue Structure
Descripion e e e e e e e e e e e s & <311
Figure 118. Sample Message Retrieval
OPtioNS & & & 4 o o + o o o« o « o « « <313
Figure 119. Using ddnames with Queue
Structures T A
Figure 120. Format for Input to Queue
Structure Description Routine315
Figure 121. <Calling and Called
PrOgramsS « « + « « « « s « =« o« o« « » « .316
Figure 122. Sample Calling and Called
Programs Using Dynamic CALL and CANCEL
Statements (Part 1 of 3) e+ e « o = 2319
Figure 123. Linkage Registers « .« . 322
Figure 124, Effect of STOP RUN
Statement ¢ ¢ 4 ¢ .+ .+ e & - . 2325
Figure 125. Sample Linkage Coding
Used in a Calling Assembler-Language
PLOgTaM . « o « o o o « o « « « o « o 326
Figure 126. Sample Calling and Called
Programs (Part 1 of 7)327
Figure 127. Save Area Layout and
Contents e o o o s+ e o s e o e« e e = #2332

Figure 128. CALL with DYNAM apd
RESIDENT e e e s o e e s o e e o o =
Figure 129. CALL With NWODYNAM and
RESIDENT ¢ o o o o o o o o o o o o o =
Figure 130. CALL With NODYNAM and
RESIDENT With CALL Literal Option . .
Figure 131. CALL With NODYNAM and
NONRESIDENT . o & & 4 4 ¢ ¢ o o o o o
Figure 132. Sample JCL for
Called/Calling Programs Compiled with
the DYNAM and RESIDENT Options .« . .
Figure 133. Sample JCL Used for a
Calling Assembler-language Program and
a Called COBOL Program . « « « « =« s+
Figure 134. Specifying Primary and
Additional Input to the Linkage Editor
Figure 135. Overlay Tree Structure .
Figure 136. Sample Deck for
Linkage~Editor Overlay Structure . . .
Figure 137. Sample COBOL Main Progran
and Assembler-Language Subprogram
Using Dynamic Overlayv Technique (Part
1T 0f 3) 4 v 6 6 o v 4 o e v e e e e
Figure 138. Format of a Library ..
Figure 139. Entering Source
Statements into the COPY Library . . .
Figure 140. Updating Source
Statements in a COPY Library
Figure 141. COBOL Statements to
Deduct 014 Age Tax “ e e e e . .- .
Figure 142. Programmer Changes to
Source Program « « o « o o « o o .
Figure 143. Changed COBOL Statements
to Source COPY Library Statements . .
Figure 144. Concatenating the
Subroutine Library . . . « e e .
Figure 145. Example of Addlng
Procedures to the Procedure Library .
Figure 146. Statements in the COBUC
Procedure =« « o« o « o o o o o o o o
Figure 147. Statements in the COBUCL
Procedure .« « o« « o o o« o o o o o o
Figure 148. Statements in the COBULG
Procedlre .« o « o o o o o o o o o o «
Figure 149. Statements in the COBUCLG
ProcedUre .+ o o o o o o o o o o o o =
Figure 150. Statements in the COBUCG
Procedlire .« o« o o o o o o o o o o o
Figure 151. Sort Feature Control
CATAS v « o o o o o o s o o o s o o
Figure 152. Sorting Variable-Length

Records Whose File-name Description and

Sort-File-name Description Correspond
Figure 153. Segmentation of Program
SAVECORE & v & o o« o o o « o o o o o =
Figure 154. Sample Segmentation
Program (Part 1 of 14) e o o o o
Figure 155. Restarting a Job at a
Specific Checkpoint Step e e e e e .
Figure 156. Using the RD Parameter .
Figure 157. Modifying Control
Statements Before Resubmitting for
Step Restart « . « ¢ ¢ ¢« ¢ ¢ o« o o «
Figure 158. Modifying Control
Statements Before Resubmitting for
Checkpoint Restart . . « ¢« o o o« « « o«
Figure 159. Message Flow between
Remote Stations and a COBOL Program .

.335
.335
.33¢6

.336

. 337

. 338

339
. 341

.342

. 343
. 348

. 350
.350
.352
.352
. 352
. 354
.358
. 360
.360
. 360
.361
.361

. 370

. 376
.378
.380
.398
.399

. 399

.400

402

Figure 160. A Message Control Progranm
for Communication Application (Part 1

of 20) A 1141
Figure 161. MWMacros that can be coded

in a Message Handler o e e e e . . 430
Figure 162. Replacing the MCP Jobname
CSECT e e e e e o e . JU33
Figure 163. Example of Message

Formation for a Fixed Line Size

Destination Supporting Vertical

Positioning+ 4+ . & 437
Figure 164. Comnunications Job

Scheduling . . .« . . . « . + < .« . . . 439
Figure 165. Sample CJS Application

(Part 1 of 2) e e e a4 s e o e e e e 440
Figure 166. ANS Standard MCP

Requirements (part 1 of 2) L 442
Figure 167. Sample JCL for Testing a
Communication Job Without TCAM.4u47
Figure 168. Sample JCL for Running a
Communication Job in a Quasi-Terminal
Environment. .« . . < .« « « + + < . . . Jlus
Figure 169. Sample JCL for Running a
Communication Job with a Remote

Terminal « . « & & &« + o ¢« « &« « « o . JuLB
Figure 170. Creating a TCAM Data Set

for Testing without Terminals (Part 1

OFf 2) v v e e e e e e e e e e e . . JU51
Figure 171. 2 COBOL Program That

Processes TCAM Messages (Part 1 of 2) .453
Figure 172. Functions of COFOL

Library Conversion Subroutines (Part 1

of 2) e e & o & 4 e e 4 a4 e o e o o o JUT4
Figure 173. Function of COROL Library
Arithmetic Subroutines e e e e e e . JU475
Figure 174. Calling and Storage
Information for CORBOL Library

Subroutines (Part 1 of 6) e e e e e .48y
Figure 175, Data Control Block Flelds

for Physical Sequential Files (QSAM) . .491
Figure 176. Data Control Block Fields

for Direct and Relative Files Accessed
Sequentially (BSAM) U492
Figure 177. Data Control Block Flelds

for Direct and Relative Files Accessed
Randomly (BDAM) « . L4493
Figure 178. Data Control Block Flelds

for Indexed Sequential Files Accessed
Sequentially (QISAM)« . 494
Figure 179. Data Control Block Flelds

for Indexed Sequential Files Accessed
Randomly (BISAM) . o . o ¢ o « o o = . 495
Figure 180. Sample Constant Area Used

in SYNADAF Processing (Part 1 of 3) . .505
Figure 181. A Sample Job to get a

Dump of a Constant Area507
Figure 182. Creating an Indexed Data

St . i v e i i h e e e e e e e e e . 5N
Figure 183. Area Arrangement for

Indexed Data Sets <512
Figure 184. Retrieving an Indexed

Data Set « <« « ¢ . . . « « o 513
Figure 185. General Job Control

Procedure for Compilation514
Figure 186. General Job Control

Procedure for a Linkage Editor Job Step 516

Figure 187. General Job Control

Procedure for an Execution-Time Job

SteP v ¢ 6t it e e 4 e e e e e e s . <517
Fiqure 188. Fields of the Task Global
Table (Part 1 of 3) e s« « o o « 4520
Figure 189. Fields of the Progranm

Global Table e e e e s s e« e o = o & «527
Figure 190. Format of COBOL Parameter

Data ACE@ .« ¢ o o « o o o s w = o« o« « 2545
Figure 191. IBM-supplied Data

Division COPY Member (Part 1 oif 2) . . .546
Figure 192. IBM-supplied Procedure
Division COPY Member (Part 1 of 2) . . .548
Fiqgure 193. OCR STATUS KEY Values

(Part 1 of 2) @« o e e s o o e e« e s « 550
Figure 194. Requesting OCR Functions

and Information Returned553
Fiqgure 195. sSample Document555

Figure 1¢6, Format Record Assembly

Coding Example « . + o « « o =« « « + » .556
Figure 197. Sample Data . . « «557
Figure 198. Sample COBOL OCR

Processing Program (Part 1 of 3)558

An O0S/VS5 COBOL program can be processed
by the IBM Operating System. The operating
system consists of a number of processing
programs and a control progran.

The processing programs include the
COBOL compiler, service programs, and any
user~-written programs.

The control program supervises the
execution or loading of the processing
programs; controls the location, storage,
and retrieval of data; and schedules jobs
for continuous processing.

A request to the operating system for
facilities and scheduling of progranm
execution is called a job. For example, a
job could consist of compiling a program by
utilizing the COBOL compiler. A Jjob
consists of one or more job steps, each of
vhich specifies execution of a program.

The programmer can make reguests to the
operating system by using job control
statenments.

Each job is headed by a JOB statement
that identifies the job. Each job step is
headed by an EXEC statement that describes
the job step and calls for execution.
Included in each job step are data
-definition {DD) statements, which describe
data sets and request allocation of
input/output devices.

The data processed by execution of any
processing program must be in the form of a
data_set. A data set is a named, organized
collection of one or more records that are
logically related. Information in a data
set may or may not be restricted to a
specific type, purpose, or storage medium.
A data set may be, for example, a source
program, a library of subroutines, or a
group of data records that is to be
processed by a COBOL program.

A data set resides in one or more
volumes. A volume is a unit of external
storage that is accessible to an
input/output device. For exanmple, a volunme
may be a reel of tape or it may be a mass
storage device.

To facilitate retrieval of a data set,
the serial number of the volume upon which
it resides can be entered, along with the
data set name, in either the system catalog
of data sets {SYSCTLG) or in the VSAM

18

catalog, or in both (if they are not the
same)., The catalog itself is a data set
residing on one or more mass storage
devices. It is organized into irdexes that
relate each data set name to its location--
the volume in which it resides and its
position within the volume. Only the data
set name and DISP parameter need be
specified to identify a cataloged data set
to the systen.

The catalog is originally created by a
utility program. Once the catalog exists,
any non-VSAN data set residing on either a
mass storage device or a magnetic tape
volume can be cataloged automatically by
use of a catalog subparameter in a DD
statement that refers to the data set.

VSAM data sets are cataloged through Access
Method Services.

Several input/output devices grouped
together and given a single name when the
system is generated constitute a device
class. Fach device class can be referred
to by a collective name. For example, one
device class called SYSDA could consist of
all the mass storage devices in the
installation; another called SYSSQ could
consist of all the mass storage devices and
tape devices.

"EXECUTING_A_COBOL_PROGRAM

Four basic operations are performed to
execute a COBOL program:

* Compilation
» Linkage editing
* Loading

* Execution

COMPILATION

Compilation is the process of
translating a COBOL source program into a
series of instructions comprehensible to
the computer, i.e., machine language. 1In
operating system terminology, the input
{source program) to the compiler is called
the source module. The output {compiled
source program) from the compiler is called
the obiect module.

LINKAGE EDITING

The linkage editor is a service program
that prepares object modules for execution.
It can also be used to combine t%o or more
separately compiled object modules into a
format suitable for execution as a single
program. The executable output of the
linkage editor is called a load_module,
which must always be stored as a member of
a partitioned data set.

In addition to processing object
modules, the linkage editor can combine
previously edited load modules, with or
vithout multiple object modules, to form
one load module.

During the process of linkage editing,
external references between different
modules are usually resolved.

LOADING

The Loader is a service program that
processes object and load modules, resolves
any references to subprograms, and executes
the loaded module. All these functions are
performed in one step. The Loader cannot
produce load modules for a program library.

For detailed information on the Loader,
see the publication QS/VS_Linkage Editor

the Loader can be found in "Using the
Loader."

EXECUTION

Actual execution is under supervision of
the control program, which obtains a load
module from a library, loads it into main
storage, and initiates execution of the
machine language instructions contained in
the load module.

OPERATING SYSTEM ENVIRONMENTS

The IBM 0S/VS COBOL Compiler and Library
operates under control of 05/VSt or 0S/VS2
{with or without TsS0), and under the CHMS
component of VM/370. 0S/VS! and 0S/VS2 can
operate as independent systems or under
control of VM/370.

05/Vs1

The 0S/VS1 control program divides
storage into a number of discrete areas
called partitions. Job steps are directed
to these partitions using a priority
scheduling system; that is, jobs are not
executed as encountered in the job strean.
but according to a priority code. The
0S/VS1 control program provides for:

e Priority scheduling of jobs using the
class code

e Concurrent scheduling and execution of
up to 15 separately protected jobs

» Reading one or more input streams

For further information about the
various optional features of the 0S5/VS1
control program, see the publicatiom 0S/¥S1
Rlanning and Use Guide.

0S/Vs2

The 0S/VS2 control program divides
storage into areas called regions. Like
08/vSs1, the 0S/YS2 control program uses a
priority scheduling system and provides for
concurrent execution of up to 255 tasks.

In addition, the 0S/VS2 control program
provides for assignment of storage regions
on a variable basis according to a region
code. For further information about the
various optional features of the 05/VS2
control program, see the publication QS/¥S2
Planning_and_Use Guide.

CONVERSATIONAL MONITOR SYSTEH

The Conversational Monitor System {CHMS)
is a time~sharing system that depends upon
the control program component of Virtual
Machine Pacility/370 (VM/370) for real
computer management. CMS provides an
extensive range of conversational
programming capabilities at a remote
terminal. The CHMS command language
simplifies file and data handling through
the use of simple terminal commands. For a
detailed description on the use of the
0S/VS COBOL Compiler and Library under CHS,
see the publication IBM_VM/370 CMS User's
Guide for CCBOL. This guide contains a
list of restrictions and limitations for
using the 0S/VS COBOL Compiler under CHS.

Introduction 19

JOB_CONTROL PROCEDURES

Communication between the COBOL
programmer and the job scheduler is
effected through nine job control
statements (hereinafter called control
statements):

1. Job Statement

2. Execute Statement

3. Data Definition Statement
4. PROC Statement

5. PEND Statement

6. Command Statement

7. Delimiter Statement

8. Null Statement

9. Comment Statement

Parameters coded in these control
statements aid the job scheduler in
regulating the execution of jobs and job
steps, retrieving and disposing of data,
allocating input/output resources, and
communicating with the operator.

——iE il S

the JOB statement) marks the beginning of a
job and, when jobs are stacked in the input
stream, marks the end of the control
statements for the preceding job. It may
contain accounting information for use by
an installation's accounting routines, give
conditions for early termination of the
job, requlate the display of job scheduler
messages, assign job priority, request a
specific class for job scheduler messages,
specify the amount of main storage to be
allocated to the job, and hold a job for
later execution.

—t— R s

statement) marks the beginning of a job
step and identifies the program to be
executed or the cataloged procedure to be
used. It may also provide job step
accounting information, give conditions for
bypassing the job step, pass control
information to a processing prograa, assign
a time limit for the execution of the job
step and specify the amount of main storage
to be allocated.

anition statement (or DD
statement) describes a data set and

20

requests the allocation of imput/output
resources. The DD statement parameters
identify the data set, give volume and unit
information and disposition, and describe
the labels and physical attributes of the
data set.

The PRQOC_statement appears as the first
control statement in a cataloged procedure
or an ip-stream procedure and is used to
assign default values to symbolic
parameters defined in the procedure.

control statement in an in-stream procedure
and marks the end of the in-strean
procedure, For further information about
in-stream procedures, refer to the topic
"Pesting a Procedure as an In-Streanm
Procedure®” in the chapter "Using the
Cataloged Procedures."

The command_statement is used by the
operator to enter commands through the
input stream. Commands can activate or
deactivate system inpuat and outpat units,
request printouts and displays, and perform

a number of other operator functions.

The delimiter statement and the pull
statement are markers in an input strean.
The delimiter statement is used, when data
is included in the input stream, to
separate the data from subsequent control
statements, The null statement can be used
to mark the end of the control statements
for the entire job {preventing sabhsequent
statements from being associated with this
job) .

The comment_statement can be inserted
before or after any control statement and
can contain any information deemed helpful
by the person who codes the control
statements. Comments can be coded in
columas 4 through 80. The comment cannot
be continued onto another statement. If
the comment statement appears on a systenm
output listing, it can be identified by the
appearance of asterisks in columns 1
through 3.

The sequence of control statements
required to specify a job is called a job

control procedure.

For example, the Jjob control procedure
shown in Figure 1 could be placed in the
input stream to compile a COBOL source
nodule.

{//JOB1

1

JOB]

{//STEP1 EXEC PGM=IKFCBLOO,PARN=DECK {
| //SYSUT1 DD DSNAME=§6UT1,UNIT=SYSDA,SPACE= (TRK, {40))]
{//SISUT2 DD DSNAME=§60T2, UNIT=SYSSQ,SPACE= (TRK, (40)) 1
1//SYs507T3 DD DSNAME=§6UT3, UNIT=SYS5SQ,SPACE={TRK, {40)) i
| //SYSUTH DD DSNAME=§§UTH, UNIT=SYSSQ,SPACE= {(TRK, (40)) |
1//SYSPRINT DD SYSOUT=A i
{//SYSPUNCH DD SYSOUT=B !
\//SYSIN DD * |
{ (source deck) |
t/*)
1 3

Figqure 1. Job Control Procedure

In the illustration, JOB1 is the name of
the job. The JOB statement indicates the
beginning of a job.

STEP1 is the name of the single job step
in the job. The EXEC statement specifies
that the IBM 0S/VS COBOL Compiler
{IKFCBL0OO) is to execute the job. The
statement also specifies that a card deck
of the object module is to be produced
{PARM=DECK) .

The SYsSUT?1, SYSUT2, SYSUT3, SYSUT4,
SYSUT5 (if the SYMDMP or TEST option is
specified in the PARM parameter of the EXEC
card), and SYSUT6 (if the LVL option is
specified in the PARM parameter of the EXEC
card) DD statements define utility data
sets used by the compiler to process the
source module. The names of the data sets
defined by SYSUT1, SYSUT2, SYSUT3, SYSUT4,
SYSUT5 and SYSUT6 are 55UT1, £&UTZ2, §&UT3,
&60T4, &EUT5 and £EUT6, respectively.
SYSUT1 must be on a mass storage device
(UNIT=SYSDA). The system will allocate 40
tracks of space to SYSUT1
[SPACE= {TRK, {#0)) J. The other four utility
data sets are assigned either to any
available tape, in which case the SPACE
parameter is ignored, or to a mass storage
unit (UNIT=SYSSQ).

The SYSPRINT DD statement defines the
data set that is to be printed. SYSQUT=a
is the standard designation for data sets
vhose destination is the systea output
device, usually indicating that the data
set is to be listed on a printer.

The SYSPUNCH DD statement defines the
data set that is to be punched. By
convention, SYSOUT=B designates a card
punch.

The SYSIN DD statement defines the data
set {in this case, the source module) that
is to be used as input to the jodb step.
The asterisk {*) indicates that the input
data set follows in the input strean.

The delimiter (/*) statement separates
data from subsequent control statements in
the input stream.

output from this job step includes any
diagnostic messages associated with the
compilation., They are printed in the data
set specified by SYSPRINT.

Note: SYSDA, SYSSQ, A, and B are
IBM-specified device class names. If they
are to be used, they must be incorporated
at system generation time.

To avoid rewriting these statements, and
the possibility of error, the programmer
may place frequently used procedures on a
system library called the procedure
library. A procedure contained in the
procedure library is called a cataloged

ure A cataloged procedure can be
called for execution by placing in the
input stream a simple procedure that may
require only the JOB and EXEC statements.

If slightly modified, the procedure in
the previous example can be cataloged,
i.e., placed in the procedure library. For
example, if it were cataloged and given the
name CATPROC, it could be called for
execution by placing the statements shoun
in Figure 2 in the input strean.

T L]
{//30B2 JOB {
1//STEPA EXEC PROC=CATPROC i
1//STEP1.SYSIN DD * 1
1 {source deck) 1
1/% f
Pigure 2. Using a Cataloged Procedure

In Pigure 2, JOB2 is the name of the job.
STEPA is the name of the single job step.
The EXEC statement calls the cataloged
procedure containing STEP1 to execute the
job step {PROC=CATPROC).

Job Control Procedures 21

A procedure can be tested before it is
placed in the procedure library by
converting it into an in-stream procedure.
An in-stream procedure can be executed any
number of times during a job. For further
information about in-stream procedures,
refer to the topic "Testing a Procedure as
an In-Stream Procedure® in "Using the
Cataloged Procedures."”

"User File Processing" and "appendix I:
Checklist for Job Control Procedures®
explain, with numerous examples, the
preparation of job control procedures.
"Data Set Requirements" describes required
and optional data sets for compilation,
linkage editing, and execution time job
steps. The chapter "Using Cataloged
Procedures® provides information about
using and modifying cataloged procedures.

The section "Control Statements,® below,
shows the format and use of the parameters
and subparameters that can be specified for
each job control statement. Some
parameters of the statements are described
only briefly. PFor further information, see
the publication 05/¥s JCL Reference. The
syntactic format descriptions im this
chapter can be used as a reference for the
exact format and for the use of each
parameter.

CONTROL_STATEMENTS

The COBOL programmer uses the control
statements shown in Figure 3 to compile,
linkage edit, and execute programs.

JOB MANAGEMENT

Control statements are processed by a
group of operating system routines known
collectively as job management. These job
management routines interpret control
statements and commands, control the flow
of jobs, and issue messages to both the
operator and the programmer. Job
managenent comprises two major components:
a job scheduler and a master scheduler.

e S o i i i e e e S

that reads input streams, analyzes control
statements, allocates input/output
resources, issues diagnostic messages to
the programmer, and schedules job flow
throagh the systen.

22

¥ T
jStatement}

1)

Function

T

{Indjcates the beginning of a
new job and describes that
job.

;JOB
i |
' i
H 3

Ll
{EXEC

Indicates a job step and
describes that job step;
indicates the load module or
cataloged procedure to be
executed.

=]
(=]

Describes data sets, and
controls device and volunme
assignment.

¥

!

1

i

1

i

}

1

i

i

+

delimiter]Separates data sets in the
{ 1input stream from control
{ statements; it may follow
H

1

!

|

$

i

i

i

1

i

|

1

i

s W oy Wi aia . ey B e ooy Wt D o iiiie win ol]

each data set that appears in|
the input stream, e.qg., after|
a COBOL source module punched]
deck.

contains miscellaneous remarks
and notes written by the
programmer; it may appear
anywhere in the job streanm
after the JOB statement
{except within data or
source) .

comment

P it M i Moo ik dame WK W M i N S i S e W onith S D S A il s

b iis A i it i s R e

Figure 3. Control Statements

The master scheduler is a set of
routines that accepts operator commands and
acts as the operator's agent within the
system. It relays system messages to the
operator, performs system functions at his
request, and responrds to his inquiries
regarding the status of a job or of the
system. The master scheduler also relays
all communication between a processing

program and the operator.

PREPARING CONTROL STATEMENTS

Except for the comment statement,
control statements are identified by the
initial characters // or /* in card colunms
1 and 2. The comment statement is
identified by the initial characters //* in
columns 1 through 3. Control statements
may contain four fields: name, operation,
operand, and comment, as shown in Figure 4.

{toptional.
L

¥ L] 1
{ { Columns Fields {
l % | L] L] {
i Statement } 11213 1 4 {
+ -t 4
{ Job | /1/inanmne JOB operand? comment st {
| Execute] /1/inamet EXEC operand comment st]
{ Data Definition| /j/}inamet DD operand comment st {
| Procedure { /)/inamel PROC operand commentst 1
§ Command {t /171 operation {(command) operand compents?t]
| Delimiter ALY commentst 1
{ Null) /71/1 !
{ Comment 1 /1/1% comments i
{ Pend { /i/inamet PEND {
:7 L) {

!

;)

Figure 4.

The name contains from one through eight
alphanumeric characters, the first of which
must be alphabetic. The name begins in
card column 3. It is followed by one or
more blanks. The name is used, as follows:

s« To identify the control statement to
the operating systen

e To enable other control statements in
the job to refer to information
contained in the named statement

e To relate DD statements to files naned
in a COBOL source program

operation Field

The operatior field is preceded and
followed by one or more blanks. It may
contain one of the following operation
codes:

JOB
EXEC
DD
PROC
PEND

If the statement is a delimiter statement,
there is no operation field and comments
may start after one blank.

General Pormat of Control Statements

Operand Field

The operand field is preceded and
followed by one or more blanks and may
continue through column 71 and onto one or
more continuation cards. It contains the
parameters or subparameters that give
required and optional information to the
operating system. Parameters and
subparaneters are separated by commas. A
blank in the operand field causes the
system to treat the remaining data on the
card as a comment., There are two types of
parameters: positional and keyword
{Figures 5, 6, and 9).

Positional Parameters: Positional
parameters are the first parameters in the
operand field, and they must appear in the
specified sequence. If a positional
parameter is omitted and other positional
parameters follow, the omission must be
indicated by a comma. If other positional
parameters do not follow, no comma is
needed.

Keyword Parameters: A keyword parameter
may be placed anywhere in the operand field
following the positional parameters. A
keyword parameter consists of a keyword,
followed by an equal sign, followed by a
single value or a list of subparameters.

If there is a subparameter list, it must be
enclosed in parentheses or single quotation
marks; the subparameters in the list must
be separated by commas. Keyword parameters
may appear in any sequence.

Subparameters are either positional or
keyword. Positional and keyword
subparameters for job control statements
are shown in PFigures 5, 6, and 9.
Positional subparameters appear first in
the parameter and must be in the specified
sequence., If a positional subparameter is

Job Control Procedures 23

omitted and other positional subparameters
follow, a comma must indicate the omission.

Comments Field

Optional comments must be separated from
the last parameter {or the /* in a
delimiter statement) by one or more blanks
and may appear in the remaining columns up
to and including column 71.. An optional
comment may be continued onto one or more
continuation cards. Comments can contain
blanks.

Note: Comments in the optional comments
field follow different procedures fronm
those on the comment statement.

CONVENTIONS FOR CHARACTER DELIMITERS

Commas, parentheses, and blanks are
interpreted as character delimiters. If
they are not intended by the programmer to
be used as delimiters, the fields im which
they appear must be enclosed in single
quotation marks, indicating that the
enclosed information is to be treated as a
single field. When an apostrophe {or a
single guotation mark, since the same
character is used for either) is to be
contained within such a field, it nust be
shown as two consecutive single gquotation:
marks (5-8 punch), not as a double
quotation mark {7-8 punch). For example,

¥mn. Of'Connor
should be shown as
¥m. O‘Connor!
This convention applies to three fields:
programmer's name in the JOB statement,
information in the PARM parameter of the

EXEC statement, and accounting information
in the J0B and EXEC statements.

RULES FOR CONTINUING CONTROL STATEMENTS

Except for the comment statement,
control statements are contained in colunns

24

1 through 71 of cards or card images. If
the total length of a statement exceeds 71
columns, or if a parameter is to be placed
on separate cards, the operating systenm
continuation conventions must be used. To
continue an operand field:

1. Interrupt the field at the end of a
complete parameter or subparameter,
including the comma that follows it,
at or before column 71.

2. Include any commments desired by
following the interrupted field with
at least one blank.

3. Optionally, code any nonblank
character in column 72.

4. Code the identifying characters // in
columns 1 and 2 of the following card
or card image.

5. Continue the interrupted operand
beginning in any column from 4 through
16.

Comments other than those on a comment
statement can be continued onto additiomnal
cards after the operand has been completed.
To continue a comments field:

1. Interrupt the gomment at a convenient
place.

2. Code a nonblank character in column
72.

3. Code the identifying characters // in
columns 1 and 2 of the following card
or card image.

4. Continue the comments field beginning
in any column after column 3.

Any control statements in the input
stream that the job scheduler comsiders to
contain only continued comments will print
on a system output listing with a //* in
columns 1 through 3. Comments written on a
comment statement canrnot be continued.

NOTATION FOR DESCRIBING JOB CONTROL
STATEMENTS

The notation used in this publication to
define the syntax of job control statements
is as follows:

1. The set of symbols below define
control statements, but they are never
written in an actual statement.

Purpose
Joins lower-case
letters, words, and
symbols to form a
single variable

symbol

“or® symbol |} Indicates alternatives
Indicate that the
enclosed is a group of
related items, only
one of which is
required

braces {1}

brackets [1 Indicate that the
enclosed are optional
items. Brackets are
also used with
alternatives to
indicate that a
default is assumed if
no alternative is
listed

Indicates that the
preceding itea or
group of items can be
repeated

ellipsis esw

Indicates a footnote
reference

superscript 1t 2 3

2. Stacked items, enclosed in either
brackets or braces, represent
alternative items. No more than one
of the stacked items can be written by
the prograsmmer.

3. Upper-case letters and words, numbers,
and the set of symbols listed below
are written in an actual control
statement exactly as shown in the
statement definition. {Any exceptions
to this rule are noted in the
definition of a control statement.)

Name Symbol
single gquotation mark '
asterisk *
comma v
equal sign =
parentheses {)
period -
slash /

4. An underscore indicates a default
option. If an underscored alternative
is selected, it need not be written in
the actual statenment.

Note: Many of these defaults can be
changed at system generation time.

5. Lower-case letters, words, and symbols
appearing in a control statement
definition represent variables for
which specific information is
substituted in the actual statement.

6. Blanks are used in Figures 5, 6, 8,
and 9 to improve the readability of
control statement definitioms. 1In
actual statements, blanks would be
interpreted as delimiters.

JOB STATEMENT

The JOB statement is the first statement
in the sequence of control statements that
describe a job. The JOB statement can
contain the following information:

1. Name of the job.

2. Accounting information relative to the
job.

3. Programmer's name.

4, 1Indication of whether or not the job
control statements are to be printed
on the system output listing.

5. Conditions for terminating the
execution of the job.

6. Job priority assignment, job scheduler
message class, and real or virtual
region size. '

Pigure S5 is a general format of the JOB
statement.

Identifying the Job (jobname)

The jobname identifies the job to the
job scheduler. It must satisfy the
positional, length, and content
requirements for a name field. No two jobs
being handled by a priority schedaler
should have the same jobnane.

Job Control Procedures 25

¥

{Nanme Operation Operand

F

‘ -

i Positional Parameters

1

{//jobname jJOB { {{account-nusber] [,accounting-infornation]) 1t 2 3}

[.programmer—name}+ S

Keyword Parameters

- - - — s o

I{ MSGLEVEL= {x,y)]®
J[TIME= (minutes,seconds)]
{[CLASS=jobclass]
J{COND={{code,operator) {, {code,operator) J...7)8]
|[PRTY=3ob priority)
jf¥SGCLASS=classname]
j{ REGION=valuek]
j{RD=reguest]
%k

1
{[RESTART={ § stepnane [,checkid]]
{ stepname.procstepnanme

1[NOTIFY=user id]?

1T HOLD 10

| | TYPRUE= SCAN]

br YIRT]
1 L ADDRSPC= REAL

1If the information specified {account-number and/or accounting-information) contains
blanks, parentheses, or equal signs, the information must be delimited by single
quotation marks instead of parentheses.

21f only account-number is specified, the delimiting parentheses may be omitted.

3The maximum number of characters allowed between the delimiting quotation marks is
142,

4If programmer-name contains anmny special characters other than the period, it must be
enclosed within single quotation marks.

5The maximum number of characters allowed for programmer-name is 20.

sx = 0, 1, or 2 is the JCL message.

y = 0 or 1 is the allocation message level.

Note that the value 1 may be used in place of (1,1).

7The maximum number of repetitions allowed is 7.

8If only one test is specified, the outer pair of parentheses may be omitted.

|} 9For TSO only.

J105CAN is for 0S/VS1 only.

4

R e e e o

—-—u-—mn&lﬁm&-*mu_mq-*u--—smum-“—‘unm-‘-ﬁaﬂtm
hae S i M s e D i G b S e M an it i D Nk cwile e b e Mo i A WAL il i s A S i i ke A il Ut G s, it oo, S st 44

Figure 5. JOB Statement

JOB_PARAMETERS

r 1
{ {acct#,additional accounting information) |
i 4

Replace the term "acct#" with the account
nunber to which the job is charged; replace
Supplying Job Accounting Information the term wadditional accounting
information" with other items required by
an installation®s accounting routines. The
For job accounting purposes, the JOB requirement can be established with a
statement can be used to supply informatiosn cataloged procedure for the input reader.
to an installation's accounting procedures. Otherwise, the account pumber is considered
To supply job accounting information, code optional.
the positional parameter first in the
operand field.

26

Notes:
e Subparameters of additiomal accounting
information must be separated by
commas.

s The number of characters in the account
number and additional accounting
information must not exceed a total of
142,

o If the list contains only an account
nanmber, the programmer need not code
the parentheses.

» If the list does not contain an account
number, the programmer must indicate
its absence by coding a comma preceding
the additional accounting information.

e If the account number or any
subparameter of additional accounting
information containms any special
character {except hyphens), the
prograamer must enclose the number or
subparameter in apostrophes (5-8
punch). The apostrophes are not passed
as part of the information.

Identifying the Programmer

The person responsible for a job codes
his name or identification in the JOB
statement, following the job accounting
information. This positional parameter is
also passed to an installation's routines.
As a system dgeneration option, the
programeer's name can be established as a
required parameter. The requirement casn
also be established with a cataloged
procedure for the input reader. Otherwvise,
this parameter is considered optional.

s The pnumber of characters in the name
cannot exceed 20.

» If the name contains special characters
other than periods, it must be enclosed
in apostrophes. 1If the special
characters include apostrophes, each
must be shown as two consecutive
apostrophes, e.g., 'T.OY'NEILLY'.

» If the job accounting information is
not coded, the programmer must indicate
its absence by coding a comma preceding
the programmer-name.

e If neither job accounting information
nor programmer-name is present, the
programner need not code commas to
indicate their absence.

Digplaying All Control Statements,
Allocation, and Termination Messages
JWSGLEVEL)

The MSGLEVEL parameter indicates whether
or not the programmer ¥ants control
statements and/or allocation and
termination messages to appear in his
output listing. To receive this output,
code the keyvword parameter in the operand
field of the JOB statement.

| MSGLEVEL= (X, 7)

The letter "x" represents a job control
language message code and can be assigned
the value 0, 1, or 2. ¥hen x = 0 is
specified, only the JOB statement,
incorrect control statements, and
associated diagnostic messages are
displayed. ¥#hen x = 1 is specified, input
statements, cataloged procedure statements,
and symbolic substitution of parameters are
displayed. When x = 2 is specified, only
input statements are displayed.

The letter "y® represents an allocation
message code and can be assigned the value
0 or 1. When y = 0 is specified, no
allocation, termination, or recovery
messages are displayed, unless an ABEND
occurs during problem program execution.
If an ABEND occurs, termination messages
are displayed. When y = 1 is specified,
all allocation, termination, and recovery
ressages are displayed.

Notes:

» If the value 1 is selected for both
codes, the value may be specified once
without the parentheses; i.e.,
MSGLEVEL=1 is the same as
MSGLEVEL={1,1) .

o The default values are taken from the
reader procedure.

» If an error occurs on a control
statement that is continued onto one or
more cards, only one of the
continuation cards is printed with the
diagnostic messages.

Specifying Conditions _for Job Termination
{COND}

To eliminate unnecessary use of
computing time, the programmer might want
to base the continpation of a job on the
successful completion of one or more of

Job Control Procedures 27

its job steps. At the completion of each
job step, the processing program passes a
number to the job scheduler as a return
code. The COND parameter provides the
means to test each return code as many as
eight times. If any one of the tests is
satisfied, subsequent steps are bypassed
and the job is terminated.

To specify conditions for job
termination, code the keyword parameter in
the operand field of the JOB statement.

L 1
{COND= {{code,operator),.., {code,operator)) |
1]

See the COND parameter on the EXEC
statement for a discussion of the operator
values and the codes issued by the compiler
and lipnkage editor at the end of a job
step.

Note:

—

¢ The subparameters EVEN and ONLY cannot
be specified as part of the COND
parameter on the JOB statement.

Requesting Restart for a_Job_{RD)

The restart facilities are used in order
to minimize the time lost in reprocessing a
job that abnormally terminates. These
facilities permit execution of jobs that
abnormally terminate to he automatically
restarted.

Execution of a job cam be automatically
restarted at the beginning of the job step
that abnormally terminated {step restart)
or within the step (checkpoint restart).

In order for checkpoint restart to occur,
the CHKPT macro instruction must have been
executed in the processing program prior to
abnormal termination. The CHEKPT macro
instruction is activated by the COBOL
source language RERUN clause. The BD
parameter specifies that step restart can
occur or that the action of the CHKPT macro
instruction is to be suppressed.

To request that step restart be
permitted or to request that the action of
the RERUN clause be suppressed, code the
keyword parameter in the operand field of
-the JOB statement.

-
1 RD=request
1

28

Replace the word "request®™ with:

R -~ to permit automatic step
restart
NC -~ to suppress the action of the

CHXPT macro instruction and not
to permit automatic restart or
deferred restart

NR -~ to reguest that the CHKPT macro
instruction be allowed to
establish a checkpoint, but not
to permit automatic restart.
Deferred restart is permitted
through specification of
RESTART on the resubmitted job.

RNC -- to permit step restart and to
suppress the action of the
CHKPT macro instruction

Each of these requests is described in
greater detail in the following paragraphs.

BD=R: If the processing programs used by
the job do not include any CHKPT macro
instructions, RD=R allows execution to be
resumed at the beginning of the step that
causes abnormal termination. If any of the
programs do include one or more CHKPT macro
instructions, step restart can occur if a
step abnormally terminates before execution
of a CHKPT macro instruction; thereafter,
checkpoint restart can occur.

BRD=NC_or_ RD=RNC: RD=NC or RD=RNC should be
specified to suppress the action of all
CHKPT macro instructions included in the
programs. When RD=NC is specified, neither
step restart nor checkpoint restart can
occur. When RD=RNC is specified, step
restart can occur.

BRD=NR: BRD=NR permits a CHKPT macro
instruction to establish a checkpoint, but
does not permit automatic restart.
Instead, at a later time, the job can be
resuberitted and execution can begin at a
specific checkpoint. {Resubmitting a job
for restart is discussed later.)

Before automatic step restart occurs,
all data sets in the restart step with a
status of OLD or MOD, and all data sets
being passed to steps following the restart
step, are kept., All data sets in the
restart step with a status of NEW are
deleted. Before auntomatic checkpoint
restart occurs, all data sets currently in
use by the job are kept.

If the RD parameter is omitted and no
checkpoints are taken, automatic restart
cannot occur. If the RD parameter is
omitted but one or more checkpoints are
taken, automatic checkpoint restart can
ocCCur.

Notes:

® For 0S/VS1 restart can occur only if
MSGLEVEL=1 is coded on the JOB
statement.

e If step restart is requested, each step
must be assigned a unique step name,

e If no RERUN clause is specified in the
user's program, no checkpoints are
written regardless of the disposition
of the RD parameter.

Reference:
e For detailed information on the
checkpoint/restart facilities, see the
publication 0S/VS Checkpoint/Restart.

Resubmitting a_Job _for Restart {RESTART)

The restart facilities can be used if
the job is abnormally terminated and the
programmer wants to resubmit the job for
eXecution. These facilities reduce the
time required to execute the job since
execution of the job is resumed, not
repeated.

Execution of a resubmitted job can be
restarted at the beginning of a step {step
restart) or within a step {(checkpoint
restart). In order for checkpoint restart
to occur, a program must previously have
had a checkpoint record written. The
RESTART parameter specifies where execution
is to be restarted.

If execution is to be restarted at a
particular job step, code the keyword
parameter in the operand field of the JOB
statement before resubmitting the job.

| RESTART=stepname

-

Replace the word "stepname" with the name
of the step at which execution is to be
restarted. Replace stepname with an
asterisk (*) if execution is to be
restarted at the first job step.

If execution is to be restarted at a
particular checkpoint w¥ithin a particular

job step, code the keyword parameter in the-

operand field of the JOB statement before
resubmitting the job.

«l

-
{ RESTART={stepname,checkid) i
¥ |

Replace the word stepname with the name of
the step in which execution is to be
restarted. Replace the term "checkid" with
the 1- to 16-character name that identifies
the checkpoint within the step.

If execution is to be restarted at a
checkpoint, the resubmitted job must
include an additional DD statement. This
DD statement defines the checkpoint data
set and has the ddname SYSCHK. Do not
include a SYSCHK DD statement if step
restart is to be perforned.

If the RESTART parameter is not
specified on the JOB statement of the
resubmitted job, execution is repeated.

Notes:
» If execution is to be restarted at or
within a cataloged procedure step, give
both the name of the step that invokes
the procedure and the procedure step
name, as below.

e

RESTART=stepname. procstepnanme

o

o If step restart is performed,
generation data sets that were created
and cataloged in steps preceding the
restarted step must not be referred to
in the restart step or in steps
following the restart step by means of
the same relative generation numbers
that were used to create them. For
example, a generation data set assigned
a generation number of +1, would be
referred to as 0 in the restart step or
steps following the restart step.

s Backvard references cannot be made to
steps that precede the restart step
using the following keyword parameters:
PGM, COND, SUBALLOC, and VOLUME=REF,
unless in the last case the referenced
statement includes VOLUME=SER= (ser#).

Reference:
e For detailed information on the

checkpoint/restart facilities, see the
publication Q0S/VS_Checkpoint/Restart.

i

Job Control Procedures 29

PRIORITY SCHEDULING JOB PARANETERS

Setting Job Time Limits_{TIME)

To assign a limit to the computing time
used by a job, code the keyword parameter
in the operand field.

- 1
TIME={minutes,seconds) i

- —

Such an assignment is useful in a
rualtiprogramming environment where more
than one job has access to the computing
systen. The time is coded in minutes and
seconds to represent the maximum time for
execution of a job.

otes:

» The number of minutes cannot exceed
1439 and the number of seconds cannot
exceed 59. If the job is not completed
in this time it is terminated.

» If the job requires use of the system
for more than 24 hours (1439 minutes)
specify TIME=1440. This number
suppresses job timing.

o If the time limit is given in minutes
only, the parentheses need not be
coded; e.g9., TIME=5,

o If the time limit is given in secoands,
the comma must be coded to indicate the
absence of minutes; e.9., TIME={(,45).

*» If the TIME parameter is omitted, the
default job time is assunped.

To assign a job class to a job, code the
keyword parameter in the operand field of
the JOB statement.

] CLASS=jobclass]

The meaning and use of the term "jobclass"
is pre-defined by each installation. If
the CLASS parameter is omitted, the default
job class of A is assigned to the Jjob.

Note:

» If an installation provides
time-slicing facilities in an 0S/VS1
system, the CLASS parameter can be used

30

to make the job part of the group of
jobs to be time-sliced. Time-slicing
permits the processing of tasks of
equal priority so that each is executed
for its specified period of time. At
system generation, a group of
contiguous partitions are selected to
be used for time-slicing, and each
partition is assigned at least one job
class, If the job is to be
time~sliced, specify a class that was
assigned only to the partitions
selected for time-slicing.

Assigning Job Priority_ {PRTY)

To assign a priority other than the
default job priority {as established in the
input reader procedure), code the keyword
parameter in the operand field of the JOB
statement.

—

PRTY=nn i

Replace the letters ¥Yan" with a decimal
number from 0 through 13 {the higaest
priority number is 13).

1f an installation provides time-slicing
facilities in a system with 0S/VS2, the
PRTY parameter can be used to make the job
part of a group of jobs to be time-sliced.
At system generation, the priority of the
time-sliced group is selected. If the job
priority number specified corresponds with
the priority number selected for
time-slicing, then the job will be
time-sliced.

If the PRTY parameter is omitted, the
default job priority is assigned to the
job.

Note: Whenever possible, avoid using
priority 13. This is used by the system to
expedite processing of jobs in which
certain errors were diagnosed. It is also
intended for other special uses by future
features of systems with priority
schedulers.

Requesting_a_ Message Class {MSGCLASS)

With the quantity and diversity of data
in the output stream, an installation may
want to separate different types of output
data into different classes. Each class is
directed to an output writer associated
with a specific output unit. The MSGCLASS

parameter allows routing of all messages
issued by the job scheduler to an output
class other than the normal message
class, A.

To choose such a class, code the keyword
parameter in the operand field of the JOB
statement.

| MSGCLASS=x |

Replace the letter "x" with an alphabetic
{A-Z) or numeric (0-9) character. An
output writer, which is assigned to process
this class, will transfer this data to a
specific device.

If the MSGCLASS parameter is omitted,
job scheduler messages are routed to the
standard output class, A.

+ Por a more detailed discussion of
output classes, see the appropriate
Plannjing and Use Guide.

Specifying Main Storage Requirements for a
Job_{(REGION)

For jobs that require an unusual amount
of main storage, the JOB statement provides
the REGION parameter., The REGION parameter
specifies the maximum amount of main
storage to be allocated to the job.
amount must include the size of those
components required by the usert's program
that are not resident in main storage.

This

The REGION parameter is used in
conjunction with the ADDRSPC parameter to
determine the total amount of main storage
available to a program and to either allow
or disallow paging.

Note: The REGION parameter has different
meanings for 0S/VS1 and 0S/VS2. See the
publication 0S/VS_JCL Services for detailed
information.

To specify a region size, code the
keyword parameter in the operand field of
the JOB statement.

T 3
i REGION={nnnnonxK[,nnannykK}) i

1]

To request the maximum amount of main
storage required by the job, the term
"nnnnnx" should be replaced with the number
of 1024-~byte areas allocated to the job,
e.g., REGION=52K. This number can range
from 1 to 5 digits but cannot exceed 16383.

If the REGION parameter is omitted or if
a region size smaller than the default
region size is regquested, it is assumed
that the default value is that established
by the iaput reader procedure.

The REGION parameter can be used with
either the VIRT or REAL options of the
ADDRSPC parameter.

Notes:

* Region sizes for each job step can be
coded by specifying the REGION
parameter in the EXEC statement for
each job step. However, if a REGION
paramreter is present in the JOB
statement, it overrides REGION
parameters in EXEC statements.

» For information on storage requirements
to be considered when specifying a
region size, see the appropriate

Holdipng a_Job for_ Later Execution

To temporarily prevent a job from being
selected for processing, code the keyword
parameter in the operand field of the JOB
statement. :

—
P
jast}

[e]]
]

ot

-

The job is them held until a RELEASE
command is issued by the operator. This
specification is particularly useful when
one job must be run after another job has
terminated.

HOLD specifies that the job is to be
held until the operator issues a RELEASE
command. SCAN {for 0S/VS1 only) specifies
that the JCL for a job is to be scanned for
syntax errors but that the job is not to be
executed. If SCAN is specified for 0S/Vs2,
a JCL error will occur.

Specifying Address_Space {ADDRSPC)

To take advantage of the storage
facilities offered by 0S/VS1 and 0S/VS2,
always specify ADDRSPC = VIRT or omit the
paraneter.

YIRT
ADDRSPC= |REAL

e i
e - o

Job Control Procedures 31

Note that the compiler and its object code,
including library subroutines, can run
VIRTUAL, and should be run that way unless
a non-COBOL program in the partition
requires the REAL option.

EXEC STATEMEN

The EXEC statement defines a job step
and calls for its execution. It contains
the following information:

1. The name of a load module or the nanme
of a cataloged procedure that contains
the name of a load module that is to
be executed. The load module can be
the COBOL compiler, the linkage
editor, the loader, or any COBOL
program in load module fornm.

2. Accounting information for this job
step.

3. Conditions for bypassing the execution
of this job step. '

4. Computing time for a job step or
cataloged procedure step, and main
storage region size.

5. Compiler, linkage editor, or loader
options chosen for the job step.

Figure 6 is the general format of the
EXEC statement.

Note: TIf the information specified is
normally delimited by parentheses but
contains blanks, parentheses, or equal
signs, it must be delimited by single
quotation marks instead of parentheses,

Identifying the Step {stepnanme)

The stepname identifies a job step
within a job. It must satisfy the

32

positional, length, and content
requirenents for a name field. The
programmer must specify a stepname if later
control statements refer to the step.

POSITIONAL PARAMETERS

Identifying the Proqgram {PGM) or Procedure
{PROC)

The EXEC statement identifies the
program to be executed in the job step with
the PGM parameter. To specify the COBOL
compiler, code the positional parameter in
the first position of the operand field of
the EXEC statement.

i PGM=IKFCBLOO {

It indicates that the COBOL compiler is the
processing program to be executed in the
job step.

To specify the linkage editor, code the
positional parameter in the first position
of the operand field of the EXEC statement.

1 PGM=1IEWL i

This indicates that the linkage editor is
the processing program to be executed in
the job step.

The PGM parameter depends upon the type
of library in which the program resides.
I1f the job step uses a cataloged procedure,
the EXEC statement identifies it with the
PROC parameter, in place of the PGHM
parameter.

Y —
|Oper—|

later job step.

21f this format is selected, it may be repeated in the EXEC statement once for each
step in the cataloged procedure.

3If the information specified contains any special characters except hyphens, it must
be delimited by single guotation warks instead of parentheses.

4If accounting-information contains any special characters except hyphens, it must be
delimited by single quotation marks.

SThe maximum number of characters allowed between the delimiting guotation marks or
parentheses is 142,

6The maximum number of repetitions allowed is 7.

7If only one test is specified, the outer pair of parentheses may be omitted.

8If the only special character contained in the value is a comma, the value may be
enclosed in quotation marks.

9The maximum number of characters allowed between the delimiting quotation marks or
parentheses is 100.

T 3
l 1
jName jation} Operand i
} + —t 2
i | | Positional Parameters i
{ 1 i |
1//[stepname]t |EXEC |(PGM=progname H
] 1 \PGM=*_,stepname.ddnane !

1 {{PROC=procname i

i j Jprocnane i

{ j\PGM=*_,stepname. procstep.ddnane |

| i |

} 1 Keyword Parameters]

1 - i

{ 1{Accm2 3 & S i

1]_ACCT.procstep} = {accounting-information)] |

i i~ H

| {|JCOND?2 s 7| |

} ;bCOND.procstep} = {{code,operator{,stepnamef.procstep]l}...) !

1 i 1

' | PARHZ 3 8 9 1

} {{tPARM. procstep = {option[,option]...) i

{ 1_ 1

1 1JTIME i

| 1 TIHE.procstep} = {(minutes,seconds, i

| 1. {

] {YREGION i

1 Q_REGION.procstep} = valueé} H

i I 1

i y[§D }] i

] {|\RD. procstep = request i

1 1- {

| {|IJDPRTY]

1 i DPRTY.ptOCStep} = {value 1, value 2)] 1

i 1 |

{ I{ADDRSPC VIRT {

i QLADDRSPC.procstep} = | REAL i

i 1 3

k]

1Stepname is required when information from this control statement is referred to in a]

{

i

{

{

i

1

i

i

1

|

i

1

1

i

i

4

e e e e A e e St e i S Wil b i d S e o oy i Ml WS o A L il iy i ok sk Wi o dt Lo s o ot e o it

Figure 6. EXEC Statement

Job Control Procedures 33

Temporary libraries are temporary
partitioned data sets created to store
a program until it is used in a later
job step of the same job. This type
of library is particularly useful for
storing the program output of a
linkage editor rum until it is
executed in a later job step. To
execute a program from a temporary
library, code the positional parameter
in the first position of the operand
field of the EXEC statement.

PGM=%_,stepnane.ddnane

b diisice od

The asterisk ({*) indicates the curresat
job step. Replace the terms stepnanme
and ddname with the names of the job
step and the DD statement within the
procedure step, respectively, in which
the temporary library is created.

If the temporary library is created in
a catalogued procedure step, in order
to call it in a later job step outside
the procedure, give both the name of
the job step that calls the procedure
and the procedure stepname by coding
the positional parameter in the first
position of the operand field of the
EXEC statement.

k]
PGM=*_stepname, procstepname.ddnane i

statements for several steps, each of
which executes a particular progran.
Cataloged procedures are members of a
library named SYS1.PROCLIB. To
request a cataloged procedure, code
the positional parameter in the first
position of the operand field of the
EXEC statement.

1 . PROC=procnanme

Replace the term procname With the
unqualified name of the cataloged
procedure {see "Using the DD
Statement" for a discussion of
qualified names).

Note: A procedure may be tested before it
is placed in the procedure library by
converting it into an in-stream procedure
and placing it within the job step itself.
In-stream procedures are discussed in the
section, "Testing a Procedure as an
In-Stream Procedure® in the chapter "Using
the Cataloged Procedures."

KEYWORD PARAMETERS

Specifying Job_Step Accounting Information

faccT)

When executing a multistep job, or a job

2. The system library is a partitioned that uses cataloged procedures, the
data set named SYST1.LINKLIB that programmer can use this parameter so that
contains nonresident control program jobsteps are charged to separate accounting
routines, and processor programs. To areas. To specify items of accounting
execute a program that resides in the information to the installation accounting
system library, code the positional routines for this job step, code the
parameter in the first position of the keyword parameter in the operand field of
operand field. the EXEC statement.

r 1 T 1

] PGM=progname i] ACCT={accounting information) {

4 : § 1]
Replace the term progname with the Replace the term "accounting information®
member name or alias associated with with one or more subparameters separated by
this program. This same keyword commas. If both the JOB and EXEC
parameter can be used to execute a statements contain accounting information,
program that resides in a private the installation accounting routines decide
library. Private libraries are made how the accounting information shall be
available to a job with a special DD used for the job step.
statement {see *Additional DD
Statement Facilities").

3. Instead of executing a particular To pass accdunting information to a step

34

program, a job step may use a
cataloged procedure. A cataloged
procedure can contain control

within a cataloged procedure, code the
keyword parameter in the operand field of
the EXEC statement.

Ll 1
{ ACCT. procstep={accounting information) {
2

Procstep is the name of the step in the
cataloged procedure. This specification
overrides the ACCT parameter in the named
procedure step, if one is present.

specifying Conditions for Bypassing or
Executing the Job Step {(COND)

The execution of certain job steps is
based on the success or failure of
preceding steps. The COND parameter
provides the means to:

» Make as many as eight tests on return
codes issued by preceding job steps or
cataloged procedure steps, which vere
completed normally. If any one of the
tests is satisfied, the job step is
bypassed.

o Specify that the job step is to be
executed even if one or more of the
preceding job steps abnormally
terminated or only if one or more of
the preceding job steps abnormally
terminated.

To specify conditions for bypassing a
job step, code the keyword parameter in the
operand field of the EXEC statement.

(o =

1

COND=({code,operator,[stepname]) ,ceay i
{code,operator,[stepnamrel))

]

The term "code" may be replaced by a
decimal numeral to be compared with the job
step return code. The return codes for
both the compiler and the linkage editor
are:

00 Normal conclusion

04 Warning messages have been listed,
but program is executable.

08 Error messages have been listed;
execution may fail.

12 Severe errors have occurred;
execution is impossible.

16 Terminal errors have occurred;
execution of the processor has been
terminated.

The compiler issues a return code of 1%
when any of the following are detected:

s BASIS member-name is specified and no
member of that name is found

® Required device not available

s Not enough main storage is available
for the tables required for compilation

» A table exceeded its maximum size

A permanent input/output error has bheen
encountered on an external device

The return codes have a correlation with
the severity level of the error messages.
With linkage editor messages, for exanmple,
the rightmost digit of the message number
states the severity level; this number is
multiplied by 4 to get the appropriate
return code. #With the COBOL compiler, 04,
08, 12, and 16 are equal to the severity
flags: W, C, E, and D, respectively.

The term “operator" specifies the test
to be made of the relation betwvween the
programmer-specified code and the job step
return code. Replace the term operator
with one of the following:

GT {greater than)

GE {greater than or equal to)
EQ {egqual to)

LT (less than)

LE {less than or equal to)

NE {not esgual to)

The term "stepname" identifies the
previously executed job step that issued
the return code to be tested and is
replaced by the name of that preceding job
step. If stepname is not specified, code
is compared to the return codes issued by
all preceding steps in the job.

Replace the term stepname with the nanme
of the preceding job step that issues the
return code to be tested.

If the programmer codes

COND= { {4,6T,STEP1), {8,EQ,STEP2))
the statement is interpreted as: VIf 4 is
greater than the return code issued by

STEP1, or if STEP2 issues a return code of
8, this job step bypassed.™

Job Control Procedures 35

YNotes:

e If only one test is nmade, the
progranmer need not code the outer
parentheses, e.q., COND=(12,EQ,STEPX).

s If each return code test is made om all
preceding steps, the programmer need
not code the terms stepname, €.g.,
COND= { (4,6T),{8,EQ)) .

e When the return code is issued by a
cataloged procedure step, the
programnmer may want to test it in a
later job step outside of the
procedure. In order to test it, give
both the name of the job step that
calls the procedure and the procedure
‘stepname, €.9., COND={{code,operator,
stepname, procstep) ;eee).

Abnormal termination of a job step
normally causes subsequent steps to be
bypassed and the job to be terminated. By
means of the COND parameter, however, the
programmer can specify execiation of a job
step after one or more preceding job steps
have abnormally terminated. For the COND
parameter, a job step is considered to
terminate abnormally if a failure occurs
within the user's program once it has
received control. (If a job step is
abnormally terminated during scheduling
because of failures such as job control
lanquage errors or inability to allocate
space, the remainder of the job steps are
bypassed, whether or not a condition for
executing a later job step was specified.)

To specify the condition for executing a
job step, code the keyword parameter in the
operand field of the EXEC statement.

EVEN}

,
i

! COND= {ONLY
1

e

The EVEN or ONLY subparameters are mutually
exclusive. The subparameter selected can
be coded in combination with up to seven
return code tests, and can appear before,
between, or after return code tests, e.g.,

COND=(EVEN, {4,GT,STEP3))

COND= ({8,GE,STEP1), {16,GE),ONLY)

The EVEN subparameter causes the step to
be executed even when one or more of the
preceding job steps have abnormally
terminated. However, if any return code
tests specified in this job step are
satisfied, the step is bypassed. The ONLY
subparameter causes the step to be executed

36

only when one or more of the preceding job
steps have abnormally terminated. However,
if any return code tests specified in this
job step are satisfied, the step is
bypassed.

When a job step abnormally terminates,
the COND parameter on the EYEC statement of
the pnext step is scanned for the EVEN or
ONLY subparameter, If neither is speci-
fied, the job step is bypassed and the EXEC
statement of the next step is scanned for
the EVEN or ONLY subparameter. If EVEN or
ONLY is specified, return code tests, if
any, are made on all previous steps
specified that executed and did not
abnormally terminate. If any one of these
tests is satisfied, the step is bypassed.
Otherwise, the job step is executed.

If the programmer codes
COND=EVEN

the statement is interpreted as: "Execute
this step even if one or more of the
preceding steps abnormally terminated
during execution.” If COND=ONLY is coded,
it is interpreted as: "Execute this step
only if one or more of the preceding steps
abnormally terminated during execution.®

If the COND parameter is omitted, no
retuarn code tests are made and the step
will be bypassed when any of the preceding
job steps abnormally terminate.

Notes:

» When a job step that contains the EVEN
or ONLY subparameter refers to a data
set that was to be created or cataloged
in a preceding step, the data set will
not exist if the step creating it was -
bypassed.

» When a jobstep that contains the EVEN
or ONLY subparameter refers to a data
set that was to be created or cataloged
in a preceding step, the data set may
be incomplete if the step creating it
abnormally terminated.

» When the job step uses a cataloged
procedure, the programmer can establish
return code tests and the EVEFR or ONLY
subparameter for a procedure step by
including, as part of the keyword COND,
the procedure stepnane, e.g.,
COND.procstepname. This specification
overrides the COND parameter in the
named procedure step if one is present.
The programmer can code as many
parameters of this form as there are
steps in the cataloged procedure.

To establish one set of returm code
tests and the EVEN or ONLY subparameter

for all steps in a procedure, code the
COND parameter without a procedure
stepname. This specification replaces
all COND parameters in the procedure if
any are present.

Job steps following a step that
abnormally terminates are normally
bypassed. If a job step is to be executed
even if a preceding step abnormally
terminates, specify this condition, along
with up to seven return code tests:

T

{//STEP3 EXEC PGM=CONVERT, X
1// COND={EVEN, (4,EQ,STEPD)) yeux

1

b ot e 1ol

Here, the step is executed if the return
code test is not satisfied, even if one or
more of the preceding job steps abnormally
terminated. If a job step is to execute
only when one or more of the preceding
steps abnornally terminate, replace EVEN in
the above example with ONLY.

If the EXEC statement calls a cataloged
procedure, the programmer can establish
return code tests and the EVEN or ONLY
subparameter for a procedure step by.coding
the COND parameter followed by the name of
the procedure step to which it applies:

LI L]
{//STEP4 EXEC ANALYSIS,COND. X1
\// REDUCE={{(16,EQ,STEP4.LOOKUP) ,ONLY) ,c.. |
1 3

Here, the cataloged procedure step named
REDUCE will be executed only if a preceding
job step has abnormally terminated and the
procedure step named LOOKUP does not issue
a return code of 16. The programmer can
code as many COND parameters of this type
as there are steps in the procedure.

Passing Information_

to_ the Processinag
Program {PARM) '

For processing prograas that require
control information at the time they are
executed, the EXEC statement provides the
PARM parameter. To pass information to the
program, code the keyword paraneter in the
operand field.

{ PARM={option[,option J...) {

This will pass options to the compiler,
linkage editor, loader, or object progranm
vhen any one of them is called by the PGH
parameter in the EXBC statement or to the
first step in a cataloged procedure.

To pass options to a compiler, the
linkage editor, loader, or the execution
step within the named cataloged procedure
step, code the keyword parameter in the
operand field.

-

1
PARM. procstep= (option{ ,option J...) H
]

Any PARM parameter already appearing in the
procedure step is deleted, and the PARM
parameter that is passed to the procedure
step is inserted.

A maximum of 100 characters may be
written between the parentheses or single
quotation marks that enclose the list of
options. The COBOL compiler selects the
valid options of the PARM field for
processing by looking for significanmt
characters {usually three) of each key
option word. When the keyvword is
identified, it is checked for the presence
or absence of the prefix NO, as
appropriate. The programmer can make the
most efficient use of the option field by
using the significant characters instead of
the entire option. Figure 7 lists the
significant characters for each optiom (see
ngoptions for the Conpllet" for an
explanation of each).

Job Control Procedures 37

discussion can be changed when the compiler

¥ T]
| option | Gmcicmt] s installed. mhe format of the Pamn
! . : 3 parameter is illustrated in Figure 8.
| e ' M
1 ADV 1 ADV !
{ APOST } APO 1 Notes:
| BATCH i BAT 1
{ BUF { BUF 1 * When a subparameter contains an equal
{ CDECK | CDE | sign, the entire information field of
{ CLIST i CLI i the PARM parameter must be enclosed by
{ CSYNTAX] Csy { single quotation marks instead of
] COUNT 1 couy | parentheses, e.9.,
| DECK ! DEC 1
| DmaP 1 DHA 1
i DuUMP 1 DUN i PABM='SIZE=160000,PMAP?'. This is the
{ DYNAHM 1 DYN i recomrended (that is, most efficient)
! ENDJOB i END 1 technique., Other ways of specifying
] FDECK] PDE 1 special characters in the PARHN
] FLAGE(W) | LAG, LAGW i parameter are described in QS/¥S_JCL
| FLOW l " FLO i Beference.
! LANGLYVL i LANGLVL i
{ LCOL1/LCOL2 1 OL1/0L2 1 e When an option and its default (such as
{ LIB ! LIB { XREF and NOXREF) are hoth specified,
{ LINECNT 1 CNT 1 the last encountered option is
] LOAD 1 LOA i generally the one assumed. (Exceptions
] LSTONLY/LSTCOMP | LSTO/LSTC i to this rule are cited in the option
{ LVL ! LVL } descriptions.) Accordingly, the
1 L132/L120 H L13/L12 1 programmer may change one of the many
{ NAME 1 NAM | options without repunching the entire
{ NUM i NUM 1 EXEC card.
1 OPTIMIZE 1 OPT i
{ PHMAP] PMA | SIZE=YYYyvVYYY
| PRINT | PRI { indicates the amount of main storage,
§ QUOTE | QUO i in bytes, available for compilation
{ RESIDENT] RES 1 (see "Machine Considerations®). The
4 SEQ] SED 1 COBOL default value is 131,072 bytes,
| SIZE i S1z ! or 128K.
{ SOURCE i SOoU |
{ SPACE 1 ACE] BUF=yyYyYyYy
{ STATE | STA 1 indicates the amount of main storage
{ SUPMAP 1 sup 1 to be allocated to buffers. If both
{ SXREF] SXR 1 SIZE and BUF are specified, the amount
] SYMDHMP 1 SYHM § allocated to buffers is included in
] SYNTAX { SYN | the amount of main storage available
1 S¥sx 1 SYS 1 for compilation (see "Appendix D:
1 TERM] TER i Compiler Optimization" for information
{ TEST 1 TES 1 about how buffer size is determined).
{ TRUKC ! TRUO i
{ VBsUH y VBS i Note: The SIZE and BUF compile-time
1 VBREF { VBR { parameters can be given in multiples
{ VERB } VER i of K, where K=1024 decimal bytes. For
{ XBREP 1 XRE i example, 131,072 decimal bytes can be
! ZWB 1 ZWB 1 specified as 128K.
1 4 ;]
Figure 7. Significant Characters for LANGLVL {1/2)
Compiler Options specifies whether the 1968 or the 1974

American National Standard COBOL
definition (as understood and
interpreted by IBM) is to be used when
compiling those source elements whose
meaning has changed. LANGLVL(1) tells
the compiler to use the 1968 ANS
standard (X3.23-1968) if the compiler
options for the Compiler encounters any of those source
elements whose definition has changed;
this interpretation would be the one
The IBM-supplied default options that was used by Release 1 of the
indicated by an underscore in the following compiler. LANGLVL(2) tells the

Note: The compiler recognizes the
significant characters to set the proper
options. If an option is incorrectly
spelled, the compiler default option is
used.

38

compiler to use the 1974 ANS
standard (X3.23-1974) when

encountering any of those redefined
elements. LANGLVL(2) is the default.

Generally speaking, the language

level supported by the Release 2
compiler includes all of that
supported by Release 1. The Release 2
compiler will accept not only source
programs written in the new (1974)
language, but also source programs
that were or are written in the older
(1968) language. However, the
superset relationship between the new
and the older languages is not
absolute; there are a few exceptions--
elements whose meaning has changed
because of ANS redefinition. It is

only these few elements that are
controlled by the LANGLVL option.

(These elements are identified in
Section III of Appendix A of IBM

VS COBOL for 0S/VS.) Language
elements whose meanings did not
change from 1968 ANS to 1974 ANS

(the vast majority of the language)
are unaffected by the LANGLVL option,
as are all IBM extensions and those
language elements new in the 1974

ANS definition. The compiler accepts
all such elements regardless of the
LANGLVL specification. LANGLVL
affects only that small percentage of
elements whose definition changed from
1968 to 1974.

Job Control Procedures

2],

The LANGLVL specification does affect
the operation of the riPS flagger.
¥When the FIPS LVL option has been
specified, selecting the 1968 ANS
standard will cause FIPS flagging to
be done to those corresponding
specifications; selecting the 1974 ANS
standard causes FIPS flagging to be
done according to the newer
specifications.

SOURCE

NOSOURCE
indicates whether or not the source
module is to be listed.

CLIST
indicates whether or not a condensed
listing is to be produced. 1If
specified, the procedure portion of
the listing will contain generated
card numbers {unless the NOM option is
in effect), verb references, and the
location of the first instruction
generated for each verb. Global
tables, literal pools, register
assignments, and information about the
Working-Storage Section are also
provided. CLIST and PMAP are mutually
exclusive options. (If both are
specified, COBOL rejects the one
specified first.)

Note: 1In nonsegmented programs, verbs are
listed in source order. In segmented
programs, the root segment is first,
followed by the individual segments in
order of ascending priority.

DMAP

NODMAP
indicates whether or not a glossary is
to be listed. Global tables, literal
pools, register assignments, and
information about the Working-Storage
Section are also provided.

indicates whether or not register
assignments, global tables, literal
pools, information about the
Working-Storage Section, and an
assembler-language expansion of the
source modules are to be listed.
CLIST and PMAP are mutually exclusive
options. {If both are specified,
COBOL rejects the one specified
first.)

Note: If any one of the options CLIST,
DMAP, and PMAP is specified, the compiler
will produce a message giving the
hexadecimal length and starting address of
the Working Storage Section. For an

illustration of the use of these options,
see the "Qutput" section.

VERB

NOVERB
indicates whether procedure-names and
verb-names are to be listed with the
associated code on the object-progran
listing. VERB has meaning only if
PMAP or CLIST is in effect. VERB is
automatically in effect if SYMDMP,
STATE, or TEST is in effect. NOVERB
yields more efficient compilation.

Note: TIf READY TRACE debugging
statements are used in the progran,
VERB will cause paragraph-names rather
than card numbers to be displayed at
execution time.

LOAD

NOLOAD
indicates whether or not the object
module is to be placed on a mass
storage device or a tape volume so
that the module can be used as input
to the linkage editor. If the LOAD
option is used, a SYSLIN DD statement
must be specified.

DECK

NODECK
indicates whether or not the object
module is to be punched. If the DECK
option is used, a SYSPUNCH DD
statement must be specified.

SEQ

NOSEQ
indicates whether or not the compiler
is to check the sequence of the source
nodule statements., If the statements
are not in sequence, a message is
printed.

Note: PFor examples of what the SOURCE,
DMAP, PMAP, and SEQ options produce, see
"output.”

LINECNT=nn
indicates the number of lines to be
printed on each page of the
compilation source card listing. The
number specified by rn must be a
2-digit integer from 01 to 99. 1If the
LINECNT option is omitted, 60 lines
are printed on each page of the output
listing. ~ g

Job Control Procedures 39

Z¥B

Note: The compiler requires three
lines of what the user has specified
for its headings. ({For example, if
an=55 is specified, then 52 lines are
printed on each page of the output
listing.)

NOZW3B

indicates whether or not the compiler
generates code to strip the sign fronm
a signed external decimal field when
comparing this field to an
alphanumeric field. TIf 2ZWB is
specified, the signed external decimal
field is moved to an intermediate
field, in which its sign is removed,
before it is compared to the
alphanumeric field. ZWB complies with
the ANS standard; NOZWB should be used
when, for example, input numeric
fields are to be compared with SPACES.

LVL=A/B/C/D

40

specifies what level of FIPS (Federal
Information Processing Standard)
flagging is to be used. A, B, C, and
D correspond to the levels Low,
Low-Intermediate, High-Intermediate,
and Full, respectively. If flagging
is specified, source clauses and
statements that do not conform to the
specified level of FIPS are
identified. See the publication IBM
VS _COBOL for 0S/VS for a complete list
of the statements flagged at each
level.

LVL is the SYSGEN default, its
assigned value can be overridden
at compile time with any level
except NOLVL. If NQOLVL is the
SYSGEN default, it can be
overridden at compile time with
any level.

2. If the LVL
the SYSUT6
specified.

option is in effect,
data set must be

3. If both LVL=A/B/C/D and TERM are
specified, the compiler listing
output to SYSPRINT for optioans
such as SOURCE, PMAP, and XREF are
not produced.

4, The option SOURCE is automatically
turned on if LVL is specified. If
TERM is off, a listing is produced.
If TERM is on, there is no listing.
(See note 3.)

5. If both LVL and BATCH are
specified, LVL is rejected.

6. The LANGLVL option controls the

ELAGN
FLAGE

SUPMA

version of FIPS that will be used.
Reguesting LANGLVL{1)-—the 1968
ANS standard--causes flagging to
be done according to the 1972 FIPS
specifications. Requesting
LANGLVL {2)--the 1974 ANS
standard--causes flagging to be
done according to the 1975 FIPS
specifications.

7. Generally, FIPS flagging will not
be done if the compiler has
detected any source errors {that
is, if the return code is not
zero). The orly exceptions
concern a few W-level messages
{such as IKF1100-¥) that are
purely informational; detecting
these will not prevent FIPS
flagging. The FLAGE option should
not be used, since W-level messages
will not be listed and results are
unpredictable.

8. If the compiler detects a
D-level error, FIPS will not
execute, nor will any of the
compiler's usual messages or
listings be produced. A
return code of 16 will be the
only indication that this has
occurred. To overcome this
difficulty, recompile with a
specification of NOLVL, then
remove the source errors as
indicated by the compiler, and
finally recompile again with LVL.

indicates the type of messages that
are to be listed for the compilation.
FLAGW indicates that all warning and
diagnostic messages are to be listed.
FLAGE indicates that all error
messages are to be listed, but that
the warning messages are not to be
listed. Note. With the use of
FLAGE, and only W-level errors, the
return code will be zero.

P

NOSUPMAP

indicates whether or not the object

code listing, and object module and

link edit decks are to be suppressed
if an E-level or D-level message is

generated by the compiler.

SPACE2

SPACE

3

indicates the type of spacing that is
0 be used on the source card listing
generated when SOURCE is specified.
SPACE1 specifies single spacing,
SPACB2 specifies double spacing, and
SPACE3 specifies triple spacing.

NOTRUNC

applies to movement of COMPUTATIONAL
arithmetic fields. If TRUNC (standard
truncation) is specified and the
numpber of digits in the sending field
is greater than the number of digits
in the receiving field, the arithmetic
item is truncated to the number of
ligits specified in the PICTURE clause
of the receiving field when moved. If
NOTRUNC is specified, movement of the
item is dependent on-the sizZe of the
field (halfword, fullword).

QUOIE
APOST

indicates to the compiler that either

the double quote (M) or the apostrophe

{') is acceptable as the character to
delineate literals and to use that
character in the generation ot
fiqurative constants.

STATE
NOSTATE

indicates whether or not the number of
the COBOL statement being executed at
the time of an abnormal termination is
desired. STATE identifies the number
of the statement and the number of the
verb being executed. If the STATE
option is used, a SYSDBOUT DD
statement must be specified at
execution time for the output data set
on which the statement number message
can be written. For more information,
see "Debugging Facilities"™ in the
chapter "Program Checkout.%

FLOW[=nn]
NOFLOW

indicates whether or not a formatted
trace is desired for a variable number
of procedures executed before an
abnormal termination. The number of
procedures traced is specified by nn,
where nn may be any integer value fronm
one to 99. FLOW[=nn] must be
specified at compile time to generate
the necessary trace linkage; however,
specifying nn may be deferred until
execution time. 1If nn is omitted, the
default value is employed. This value
is either 99 or that specified at
program product installation.
Specifying NOFLOW at compile time
precludes specification of the Flow
Trace option at execation time. A
SYSDBOUT DD statement must be includad
for the output data set on which the
trace can be written. See "Options
for Execution® for more information.

SYMDMP

NOSYMDHP
requests a formatted dump of the data
area of the object program at abnormal
termination. With this option, the
programmer may also reguest dynamic
dumps of specified data-names at
strategic points during progranm
execution. See “Symbolic Debugging
Features" for more information.

Notes:

1. If the SYMDMP option is in effect,
the SYSUTS data set must be
specified, and the NULLFILE or
DUMMY parameter should not be
specified on its DD statement.

2. TIf the BATCH option is requested,
SYMDMP is rejected.

3. If WITH DEBUGGING MQODE is
specified and one or more USE FOR
DEBUGGING statements are in the
program, the SYMDMP option is
rejected.

4. Specification of the SYMDMP option
automatically yields the OPTIMIZE
feature, discussed below, and
rejects the STATE option because
SYMDMP output includes STATE
output at abnormal termination.

For a discussion of the FLOW, STATE, and
SYMDMP options, and their value to the
COBOL programmer, see the chapter entitled
nsymbolic Debugging Features." A SYSDBOUT,
SYSDRG, and débug file DD codes are
required at execution time.

OPTIMIZE

NOQOPTINIZE
causes optimized object code to be
generated by the compiler,
considerably reducing the use of
object program main storage. In
general, the greater the number of
COBOL Procedare Division source
statements, the greater the percentage
of reduction in the amount of main
storage required.

Note: The optimizer feature is

automatically in effect when the
SYMDMP or TEST feature is specified.

Job Control Procedures

41

SYﬁTAX

a DMAP), depending on how much work

CSYNTAX the compiler had completed before
NOSYNTAX the error was discovered.
NOCSYNTAX :)

indicates whether object code
generation is to be suppressed--that
is, whether the compiler will only
scan the source text for syntaX errors
{¥ith appropriate error messages being
produced) .

SYNTAX causes syntax checking only,

~with absolute suppression of object

code generation.

CSYNTAX causes syntax checking with
conditional object code generation: a
full compilation is produced as long
as no errors exceed the W or C level;

5. * When CSYNTAX has been specified
" and an E-level or higher error is
" detected, the final parts of the

compilation procedure execution of
phases 60, 62, 63, or 64 (which deal
vith code generatioan) are not
executed. Because of this, any
existing syntax errors that could
only be detected by these latter
phases of compilation will mot be
discovered and made known to the
user during the CSYNTAX run; they
will only come to light during a
later full compilation-

if one or more E-level or higher. NuH
severity errors are discovered, the NoNUM
compiler-does not generate the object indicates whether or not line numbers
_code. , have been recorded in the input and,
i . rather than compiler-generated source
NOSYNTAX causes normal compilation, numbers, should be used in error
with both syntax checking and object ‘messages, as well as in PMAP, CLIST,
code generation. STATE, XREF, SXREF, and FLOW. NONUN
indicates that the compiler-generated
numbers should be used in error
Notes: messages as well as in PMAP, CLIST,
‘‘‘‘ STATE, XREF, SXREF, and FLOW.
1. When the SYNTAX option is in
effect, all of the following Note: 1If when the NUM optiom is in
compile-time options are effect thg compiler discovers a
suppressed: non-numeric character in a line nuaber
) or if ascending numeric sequence is
LOAD DECK NAME broken, the compiler invalidates the
XREF SYMDMP COUNT number. The compiler then takes the
SXREF TRUNC VBSUH last valid card number in sequence,
CLIST OPTINIZE VBREF adds a 1 to that number and begins
NOSUPMAP FLOW DMAP generating card numbers from that
PMAP STATE point. The increment is 1. Six
digits is the maximum sequence number.
2. Unconditional syntax checking is The card that follows 999999 will be
assumed if all of the following flagged and NUM, SYMDMP, and TEST
compile-time options are canceled. STATE and FLOW will not be
specified: canceled.
If LSTCOMP is in effect, the statement
NOLOAD NOCLIST SUPMAP number generated by the lister feature
NOXREF NOPMAP NODECK is used regardless of KUM or NONUN
NOSXREF specification.
3. CSYNTAX and SYNTAX are mutually
exclusive. CSYNTAX will override
SYNTAX. XREF
NOXREF

4. If CSYNTAX is specified and an E
or D-level diagnostic message is
encountered before or during the
operation of phase 21 or during
the operation of phases 30, 40,
45, 50, or 51, the SYNTAX option
replaces CSYNTAX, and the options
listed in Note 1 above are sup-
pressed. However, certain types of
output may be produced (for example,

indicates whether or not a
cross-reference listing is produced.
If XREF is specified, an unsorted
listing is produced with data-names
and procedure-names appearing in two
parts in source order.

42

SXREF
NOSXR

EF
indicates whether or not a sorted
cross-reference listing is produced.
If SXREF is specified, a sorted
listing is produced with data-names
and procedure-names in alphanumeric
order.

Notes:

XREF and SYREF are mutually
exclusive. 1If both are specified,
COBOL rejects the one specified
first.

e Some data names used in STRING,
UNSTRING, SEARCH, and USE FOR
DEBUGGING statements are not part of
the compiler-generated code, and
therefore will not appear in an XREF
or SXREF listing.

Group names in a MOVE CORRESPONDING
statement will not be listed in an
XREF or SXREF listing; however, the
elementary names within those groups
will be listed.

e Because most of the Report Writer
code is generated before the com-
piler creates the dictionary, most
of the Report Writer data names do
not appear in an XREF or SXREF
listing.

LIB

NOLIB
indicates whether or not a COPY and/or
a BASIS request will be part of the
COBOL source input stream. If no
library facilities are to be used, the
speci fication of NOLIB will save
compilation tine. i

BATCH

NOBATCH

indicates vhether or not multiple
programs and/or subprograms are to be
compiled with a single invocation of
the compiler. In the BATCH
environment all compiler optioms
specified on the EXEC card, plus all
default options, will apply to every
program in the batch unless specific
options are overridden on the CBL
card, which must be included for each
program. See "Batch Compilation" for
more information on batch compilations
and the CBL card.

When BATCH is specified, the LVL and
SYMDNP options will be rejected. 1In
addition, the BUP, L120/L132, and SIZE
options are precluded from use on a

Job Control Procedures U42.1

NANME

CBL card and will be rejected if
specified.

NONAME

indicates whether or not programs in a
batch compilation environment will be
link-edited into one or more load
modules. If NAME is specified, each
succeeding program in the batch will
be link-edited into a separate load
module. This option will remain in
effect for the entire compilation
unless NONAME is specified on the CBL
card for an individual program. If
NONAME is specified on the CBL card,
no name will be generated for this
compilation. WNames for the load
modules will be formed according to
the rules for forming module names
from the PROGRAM-ID. See "Batch
Compilation” for more details on batch
compilation and the CBL card.

Note: If the BATCH optiom is not
specified, NONAME will be in effect.

RESIDENT
NORESIDENT

requests the COBOL Library Management
feature. When one program in a given

" region/partition requests the RESIDENT

option, the main program and all
subprograms in that region/partition
should also request it.

Note: The RESIDENT option is
automatically in effect when the DYNAM
option is invoked.

DYNAM

SYST
SYSx

causes subprograms invoked through the
CALL literal statement to be
dynamically loaded and through the
CANCEL statement to be dynamically
deleted at object time {instead of
link-edited with the calling program
into a single load module).

Note: When both NORESIDENT and
NODYNAM are either specified or
implied by default, and a CALL
identifier statement occurs in the
source statement being compiled, the
COBOL Library Management Pacility
option (RESIDENT) is automatically in
effect. A printed statement of this
is given in the compiler outpaut. (For
a discussion of the COBOL Library
Management Facility, see the section
“Sharing COBOL Library Subroutines" in
the "Libraries" chapter.)

indicates whether SYSOUT or SYSOUx,

where x must be alphanumeric (that is,
0-9 or A-7Z except for T), is the
ddname of the file to be used for
debug output (READY TRACE, EXHIBIT) or
DISPLAY statement. The specification
in the program that is first to access
the file is chosen.

ENDJOB
NOENDJOB

indicates whether or not, at the end
of each run-unit (which is assumed to
begin with the highest-level COBOL
program called), the COBOL library
subroutine ILBOSTTO is to be called to
delete modules and free main storage
acquired through GETMAINs issued by
COBOL library subroutines. ENDJOB
takes effect either at a STOP RUN in
any program, or at a GOBACX statement
in a main program only. Violation of
the restriction against mixing RES and
NORES modules within a run-unit may
cause an unpredictable execution-time
apend when ENDJOB is in effect, even
in programs which ran successfully
without ENDJOB.

Note: When a non-COBOL program, such
as IMS or an installation-defined
assembler program, links to COBOL load
modules many times within a job step,
the resulting accumulation of
GETMAIN-acquired areas and loaded
modules may result in execution-time
abends. 1In order to prevent
fragmentation and overload of storage
in such an enviroanment, the ENDJOB
compiler option must be specified.
This will cause ILBOSTTO to be loaded
at the normal termination of the
run-unit to free all GETMAIN areas
and, in a RES environment, to delete
any loaded subroutines and
dynamically-invoked subprograms. The
only GETMAIN areas not freed by
ILBOSTTO are those obtained when
opening a random indexed BISAM file
for which the options APPLY CORE-INDEX
and/or TRACK-AREA IS integer
CHARACTERS have been specified; before
terminating, the user should close
such files within the COBOL program.

since ILBOSTTO is always loaded, it
must be made available at execution
time (by placing it in the link pack
area or by specifying the COBOL
library on a STEPLIB DD statement for
the GO step). If ILBOSTTO is not
placed in the link pack area, it
should be explicitly deleted by the
invoker of the COBOL run-unit;
otherwise, one copy of this subroutine
will remain in the user region after
the run-unit has completed.

Job Control Procedures 43

ADY

NOADYV
indicates whether or not records for
files with WRITE...ADVANCING need
reserve the first byte for the control
character. ADV specifies that the
first byte need not be reserved, but
that the compiler will add one byte
to the LRECL for the control
character.

COUNT

NOCOUNT
generated to produce verb execution
summaries at the end of problenm
program execution. Each verb is
identified by procedure-name and by
statement number, and the number of
times it was used is indicated. 1In
addition, the percentage of verb
execution for each verb with respect
to the execution of all verbs is
given. A summary of all executable
verbs used in a program and the number
of times they are executed is
provided. COUNT implies VERB. COUNT
requires both SYSDBOUT and SYSCOUNT
DD statements at execution time. For
a more detailed discussion on the use
of the COUNT option, see the chapter
"Program Checkout."

DUMP

NODUMP:
specifies whether the compiler should
produce a dump or an informative
message in the event it encounters a
D-level ("disaster") error condition
during its processing. The compiler
will abnormally terminate after pro-
ducing the dump/message.

DUMP specifies that a dump (but no
message) is to be produced. This dump
will contain a four-digit user
completion code. See Appendix K for
more information on these codes.
(Note: The most frequent cause of
compiler abend is insufficient SIZE
value--a user completion code of 0003.
In this case, rerun the program spec-
ifying a larger value.)

NODUMP specifies that the compiler is
to produce an informative message
(but no dump) .

If analysis of the message or dump
does not solve the problem, see
Appendix L for the procedure to follow
in calling IBM for assistance.

VBSUM
NOVBSUM

provides a brief summary of verbs
used in the source program and a

44

count of how often each verb appeared.
This option provides the user with a
quick search for specific types of
statements. VBSUM implies VERB.

VBREF
NOVBREF

provides a cross-reference of all
verbs used in the program. This
option provides the programmer with
a quick index to any verb used .in
the program. VBREF implies VERB
and VBSUM.

Options for the Lister Feature

There are five compiler options for using
the lister feature of the compiler. Note
that either LSTONLY or LSTCOMP must be
selected for the other four options to have
meaning unless the BATCH option is
specified. 1In a batch compilation, if sonme
or all of the programs are to be compiled
using the lister feature, L120 or L132 must
be specified in the PARM field of the EXEC
card, even if LSTCOMP or LSTONLY are to be
specified on the CBL card.

For detailed information on the use of the
lister, see the chapter "The Lister
Feature." The options are listed in Figure
6, where:

LSTONLY

LSTCOMP

NOLST
indicates whether the lister feature
is to be used. LSTONLY specifies that
a reformatted listing is to be
produced but that no compilation is to
occur. LSTCOMP specifies that both a
reformatted listing is to be produced
and compilation is to occur in the
sare job step.

FDECK

NOFDECK
indicates whether a copy of the
reformatted source program is to be
uritten on the SYSPUNCH data set.
Since FDECK has meaning only with
either LSTONLY or LSTCOMP, the lister
output will be both a reformatted
listing and a reformatted deck.

CDECK

NOCDECK
indicates whether or not COPY
statements are to be expanded into
COPY members in the SYSPUNCH output.

The COPY members are to be expanded in LCOL1
the reformatted deck requested through LCOL2

FDECK. If CDECK is specified with indicates whether the Procedure
NOFDECK, only the expanded COPY Division part of the listing is to be
statements are produced. in single or double column format.

Job Control Procedures 44.1

" indicates whether the length of each
line of the reformatted listing is to
be 120 or 132 characters long.

Options for Use Under TSO Only

In addition to the preceding compiler
options, the following options are designed
for use with the Time Sharing Option (TSO).

Time Sharing provides the COBOL programmer
with facilities for entering, conmpiling,
and testing programs at his terminal. (For
further information on the Time Sharing
Option, see the Program Product publication
IBM OS_(TS0): COBOL Prompter Terminal
These options

are listed in Pigure 8, where:

Job Control Procedures 45

¥
{Compiler:

i

i {pnsn } SOURCE DHAP
H PARM. procstep ={[S1IZE=yyyyyyY ¥ .BUF=yyyyyyY}{ ,LANGLVL{1/2) } |,NOSOURCE| |,NODMAP
i — _

i ,PMAP ,SUPMAP [, LoAD ,DECK .SEQ

1 +NOPMAP +NOSUPMAP +« NOLOAD |» NODECK ¢ NOSEQ

1 - - -

] , TRUNC ,CLIST LFLAGW + QUOTE

i [,LINECNT=nn] |, NOTRUNC +NOCLIST +FLAGE . APOST

! - - -

{ [»SPACE1 +STATE . XREF o SXREF +NAME

I +SPACE2 | NOSTATE | NOXREE NOSXREF | |,NONANE
i |, SPACE3

! _ - _ _

' ,BATCH JFLOW[=nn]| [, TERM JPRINT {x)s)
i |/ NOBATCH |+ NOFLOW .EQEEQN |/ NOPRINT \{dsnane)

{ - -

1 ,SYMDMP [, OPTIMIZE ,SYNTAX {,LVL=A/B/C/D]

i \NOSYHDHP | NOOPTIMIZE| |, NOSYNTAX

| - - -

1 ,TEST ¢ ,ENDJOB ,CSYNTAX L L, NUN

{ +NOTEST | NOENDJOB JNoCSYNTAX| [, N OLIB , NONUN

| - - - _

1 ,RESIDENT .DYNAM . YERB <ZEB +SYST

1 +NORESIDENT| |,NODYNAM +NOVERB ,NOZ¥B |/ SYSX

1 - - - _

i +ADV » COONT »DUMNP LSTONLY $]|,1LCOL1 6
1 [NOADYV |+ NOCQUNT ,NODUHP stconp |+LCOL2

i - [, NOLST

i _ — _

i ,FDECK ® ,CDECK & EL_;g . YBSUN .VBREF |) 123
{ «NOF DECK + NOCDECK 1120 ,NO0VBSUM| |, NOVBREF
1 - ~- - oy

F

{Linkage Editor:

i .

1 {paau }\ MAP

1 PARM. procstep = { |1xrEP [,LIST]} [,OVLYY)

4

LD

i

Loader:

,AIXBLD
. NOAIXBLD [,QUEUE(value-list)]) 123

i

1 PARM HAP +RES +CALL +LET »SIZE=100K
{ \PARM.procstep = (|nomap NORES ,NOCALL , NOLET ,SIZE=size
i

i +PRINT

1 { ,EP=name] |,NOPRINT) 12

1

r

jExecution:

i

1 {paan FLOW[=nn] . DEBUG

1 PARM.procstepf ={[user parameters]/ | BQFLOW , NOoDEBRUG | [, UPSI (nnnnnnnn)]
i

{

i

1

v

{1If the information specified contains any special characters, it must be delimited by
{ single guotation marks instead of parentheses.

12If the only special character contained in the value is a comma, the value may be

| enclosed in parentheses or quotation marks.

{3The maximum number of characters allowed between the delimiting gquotation marks or

{ parentheses is . 100.

j*These options should be used in the Time Sharing environment only.

§37TS0~only format.

!SThese options are used to request the lister feature.

e e mma NI s S A G S S ADoKl e s Ui i wms woon ki Wk s S W T — — L o Bl g s W T, ks S S O il bt N s ok s ot s At sria,

Figure 8. Compiler, Linkage Editor, and Loader PARM Optioas

4%

* }
PRINT
{dsname)

NOPRINT
indicates whether or not the program
listing is to be suppressed, placed on
the output data set specified by
dsname, or displayed at the terminal.
If PRINT is specified, the listing
will include page headings, line
numbers of the statements in error,
message identification nunmbers,
severity levels, and message texts {as
well as any other output requested by
SOURCE, CLIST, DMAP, PMAP, XREF, or
SXREF). If {*) is specified instead
of data-set name, the printed outpat
is sent to the terminal. If PRINT
alone is specified, a listing data set
is created on secondary storage and
named according to standard data set
naming conventions., NOPRINT specifies
that no listing is to be printed. If
neither PRINT nor NOPRINT is
specifiedand any one or more of the
options SOURCE, CLIST, DMAP, XREF, or
PMAP are specified, PRINT is the
default. Otherwise, NOPRINT is the
default. If PRINT is specified in a
non-TSO environment, it is ignored.

TERM

NOTERH
indicates whether or not progress and
diagnostic messages are to be printed
on the SYSTERM terminal data set. The
severity level of the messages may be
controlled by the FLAG option. If
PRINT {*) is specified, then NOTERA is
the default, to ensure that messages
appear only once. If TERN is
specified in a non~-TSO environment,
the output that normally goes to the
SYSTERM DD data set is written on the
SYSTERM file if a SYSTERM DD card has
been included. 1If there is no SYSTERHM
DD card, a warning message is issued.

TEST

NOTEST
indicates whether or not the program
can be debugged at the terminal using
the program product IBM OS COBOL
Interactive Debuyg (Program Number
5734-CB4). A program that is compiled
without the TEST option is
unacceptable to the Interactive Debug
cormand processor. Complete
information on COBOL Interactive Debug
is contained in IBM OS_COBCL
Interactive Debug Termipal User's
Guide apd Reference.

When TEST is in effect, the COBOL

compiler produces optimized object code.

When you specify TEST, you cannot also

specify FLOW, STATE, COUNT, SYMDMP, or
BATCH.

If the TEST option is im effect, the
SYSUT5 data set must be specified.

The TEST option is rejected if both
WITH DEBUGGING MODE is specified and
one or more USE FOR DEBUGGING
statements are in the progranm.

Options for the Linkage Editor

MAP
indicates that a map of the load
module is to be listed. If MAP is
specified, XREF cannot be specified,
but both can be omitted.

XREF
indicates that a cross-reference list
and a module map are to be listed. If
XREF is specified, MAP cannot be
specified.

LIST
indicates that any linkage editor
control statements associated with the
job step are to be listed.

OVLiY :
indicates that the load module is to
be in the format of an overlay
structure. This option is required
when the COBOL Segmentation feature is
used.

The format of the PARM parameter is
illustrated in Figqure 8. For examples of
what the MAP, XREF, and LIST options
produce, see "Output." Linkage editor
control statements and overlay structures
are explained in #Calling and Called
Programs.” There are other PARM options
for linkage editor processing that describe
additional processing options anpd special
attributes of the load module {see the
publication 05/VS_Linkage Editor and
Loader) .

options for the Loader

MAP

NOMAP
indicates whether or not a map of the
loaded module is to be produced that
lists external names and their
absolute addresses on the SYSLOUT data
set. If the SYSLOUT DD statement is
not used in the input deck, this
option is ignored. An example of a
module map is shown in "oQutput.®

Job Control Procedures 47

RES

NOBES
indicates whether or not an automatic
search of the link pack area queue is
to be made. This search is always
made after processing the primary
input (SYSLIN), and before searching
the SYLIB data set. When the RES
option is specified, the CALL option
is automatically set.

CALL

NOCALL (NCAL)
indicates whether or not an automatic
search of the SYSLIB data set is to be
made., If the SYSLIB DD statement is
not used in the input deck, this
option is ignored. The NOCALL option
causes an automatic NORES.

LET

NOLET
indicates whether or not the loader
will try to execute the object program
when a severity level 2 error
condition is found.

SIZE=100K

SIZE=size
specifies the size, in bytes, of
dynamic main storage that can be used
by the loader. This storage must be
large enough to accommodate the object
programe.

EP=nanme
specifies the external name to be
assigned as the entry point of the
loaded progran.

PRINT

NOPRINT

indicates whether or not diagnostic
messages are to be produced on the
SYSLOUT data set.

The format of the PARM parameter is
illustrated in Figure 8. The default
options, indicated by an underscore, can be
changed at system generation with the
LOADER macro imstruction.

Ooptions for Execution

These options are specified through the
PARM parameter, as illustrated in Figure 8.
Note that a slash must immediately precede
the first COBOL-defined option coded. (If
user parameters themselves are to include
a slash or slashes, then an additional,
trailing slash must be added to demark the
user parameters' end. All data following
the last slash is considered to be COBOL
system parameter information, and will
not be passed to the program.)

48

If an execution-time parameter field
is passed to a program, a load of the
library subroutine ILBOPRM will be issued.
If this subroutine is not available to the
loader, an 806 abend may occur. One way
to circumvent this problem is to place
an INCLUDE SYSLIB(ILBOPRM) statement in
the link edit SYSLIN data stream, which
would link this subroutine into the load
data set.

User Parameters
The programmer can code any parameters
he vishes to pass to a main COBOL
program. For information on how to
access such parameters, see the ®USING
option® as described in IBM_VS_ COBOL
for 0OS/¥S.

FLOW[=nn]

NOFLOW
If the FLOW option is specified at
corpile time for a trace of procedure
names, at execution time a value for
nn may be specified that overrides any
value set at compile time. If PLOW is
requested at coampile time with no
value for pr, a value should be
specified at execution time. A
default of 99 is assumed for pn if it
is not specified at either step and
FLOW is in effect; otherwise, nn is as
previously specified.

The FLOW trace may be suppressed at
execution time by specifying NOFLOR.
FLOW cannot be specified as an option
for execution if it is not specified
at compile time or if NOFLOW is in
effect by default. See the sections
"Debugging Facilities" and "Options
for the Compiler" for additional
information.

DEBUG

NODEBUG
DEBUG indicates that USE FOR DEBUGGING
declarative procedures are in the
program and should in fact be
activated during this execution.
NODEBUG indicates that even though
such declarative procedures were
included in the program, they are not
desired and their execution is to be
suppressed. {(Note that this DEBUG
switch has meaning only if the source
program was compiled with the WITH
DEBUGGING MODE clause.)

UPSI {nnnnnnnn)] :
assigns values (either zero or one) to
the eight switches UPSI-0, ¥PSI-1,
UpPsSi-2, ... UOPSI-T. {The default
values are zeros.) These values are
then available in the COBOL progran
through the condition names associated
with them in the SPECIAI-NAMES
paragraph.

AIXBLD In general, better performance is

NOAIXBLD obtained if the user provides such
for VSAM KSDS and RRDS data sets, definitions himself (NOAIXBLD). If
AIXBLD indicates that COBOL should AIXBLD is specified, substantial
invoke Access Method Services to amounts of additional storage are
complete the file and index definition required for COBOL execution {the
procedures. NOAIXBLD indicates that exact amount depending on specific

the user has already performed such
definitions himself ahead of time, and
has no need for this service.

Job Control Procedures 48.1

system configuration). Also, a
SYSPRINT DD card is necessary for any
Access Method Services messages that
nay be produced.

For more detail, see "Dynamic
Invocation of Access Method Services
for KSDS and RRDS Output Data Sets" in
the section "VSAM File Processing."

QUEUE{value-list)
specifies a queue-name structure (in
value-list) which is the structure
that will cause this program to be
scheduled for execution. For more
detail, see "Communications Job
Scheduling™ in the section "Using the
Communications Feature."

Requesting Restart for a_Job_Step (RD)

The restart facilities can be used in
order to minimize the time lost in
reprocessing a job that abnormally
terminates. These facilities permit the
automatic restart of jobs that were
abnormally terminated during execution.

The programmer uses this parameter to
tell the operating systemn: (1) whether or
not to take checkpoints dauring execution of
a program, and (2) whether or not to
restart a program that has been
interrupted.)

3 checkpoint is taken by periodically
recording the contents of storage and
registers during execution of a progran.
The RERUN clause in the COBOL language
facilitates taking checkpoint readings.
Checkpoints are recorded onto a checkpoint
data set.

Execution of a job can be automatically
restarted at the beginning of a job step
that abnormally terminated (step restart)
or within the step (checkpoint restart).

In order for checkpoint restart to occur, a
checkpoint must have been takem in the
processing program prior to abnormal
termination. The RD parameter specifies
that step restart can occur or that the
action of the CHKPT macro ianstruction is to
be suppressed.

To request that step restart be
permitted or to request that the action of
the CHEKPT macro instruction be suppressed
in a particular step, code the keyword
parameter in the operand field of the EXEC
statement.

i RD=request i

Replace the word “regquest¥ with:

R -- to permit automatic step restart.
The programazer must specify at
least one RERUN clause in order
to take checkpoints.

NC -~ to suppress the action of the
CHKPT macro instruction and to
prevent automatic restart. ©Wo
checkpoints are taken; no RERUN
clause in the COBOL program is
necessary.

¥R -- to request that the CHKPT macro
instruction be allowed to
establish a checkpoint, but to
prevent automatic restart. The
programmer must speeify at least
one RERUN clause in order to take
checkpoints.

RNC -- to permit step restart and to
suppress the action of the CHKPT
macro imnstruction. No
checkpoints are taken; no RERUN
clause in the COBOL program is
necessary.

Bach request is described in greater detail
in the following paragraphs.

BRD=R: If the processing programs used by
this step do not include a RERUN statement,
RD=R allows execution to be resumed at the
beginning of this step if it abnormally
terminates. If any of these programs do
include one or more CHKPT macro
instructions (through the use of the RERUN
clause), step restart can occur if this
step abnormally terminates before execution
of a CHXPT macro instruction; thereafter,
checkpoint restart can occur.

RD=NC or BD=RNC: RD=NC or RD=RNC should be
specified to suppress the action of all
CHKPT macro instructions included in the
programs used by this step. When RD=NC is
specified, neither step restart nor
checkpoint restart can occur. When RD=RNC
is specified, step restart can occur.

RD=NR: RD=NR permits a CHKPT macro
instruction to establish a checkpoint, but
does not permit automatic restarts.
However, a resubmitted job could have
execution start at a specific checkpoint.

Before automatic step restart occurs,
all data sets in the restart step with a
status of OLD or MOD, and all data sets
being passed to steps following the restart
step, are kept. All data sets in the
restart step with a status of NEW are

Job Control Procedures 49

deleted. Before automatic checkpoint
restart occurs, all data sets currently in
use by the job are kept.

If the RD parameter is omitted and no
CHKPT macro instructions are executed,
automatic restart cannot occur., If the RD
parameter is omitted but one or more CHKPT
macro instructions are executed, automatic
checkpoint restart can occur.

Notes:

o If the RD parameter is specified on the
JOB statement, RD parameters on the
job's EXEC statements are ignored,

» Restart can occur only if MSGLEVEL=1 is
coded on the JOB statement.

» If step restart is regquested for this
step, assign the step a unique step
name.

* When this job step uses a cataloged
procedure, make restart request for a
single procedure step by including, as
part of the RD parameter, the procedure
stepname, i.e., RD.procstepname. This
specification overrides the RD
parameter in the named procedure step
if one is present. Code as many
parameters of this form as there are
steps in the cataloged procedure.

e To specify a restart request for an
entire cataloged procedure, code the RD
parameter without a procedure stepname,
This specification overrides all RD
parameters in the procedure if any are
present.

e If no RERUN clause is specified in the
user's program, no checkpoints are
written, regardless of the disposition
of the RD parameter.

Reference:
s For detailed information on the
checkpoint/restart facilities, see the
publication 05/VS_Checkpoint/Restart.

Priority Scheduling EXEC Parameters

Establishing a Dispatching Priority {(DPRTY)
{0S/VS2 only)

The DPRTY parameter allows the
programmer to assign to a job step, a
dispatching priority different from the
priority of the job. The dispatching
priority determines in what sequence tasks
use main storage and computing time., TO
assign a dispatching priority to a job

50

step, code the keyword parameter in the
operand field of the EXEC statement.

o mun oy

DPRTY={value 1,value 2) 1

Both *"value 1* and "value 2% should be
replaced with a number from 0 through 15.
%VJalue 1" represents an internal priority
value. ®"Value 2" added to "value 17
represents the dispatching priority. The
higher numbers represent higher priorities.
A default value of 0 is assumed if no
number is assigned to "value 1." A default
value of 11 is assumed if no number is
assigned to "value 2.,%

Notes:
o Whenever possible, avoid assigning a
nunber of 15 to "value 1." This number
is used for certain system tasks.

» If "yalue 1" is omitted, the comma must
be coded bhefore "value 2" to indicate
the absence of "value 1," e.g.,
DPRTY={, 14).

e If "yalue 2" is omitted, the
parentheses need not be coded, e.g.,
DPRTY=12.

» When the step uses a cataloged
procedure, a dispatching priority can
be assigned to a single procedure step
by including the procedure step name in
the DPRTY parameter, i.e.,

DPRTY. procstepname= {(value 1, value 2).
This parameter may be used for each
step in the cataloged procedure.

s To assign a single dispatching priority
to an entire cataloged procedure, code
the DPRTY parameter without a procedure
step name. This specification
overrides all DPRTY parameters in the
procedure if there are any.

Setting Job Step Time Limits {TIME)

To assign a limit to the computing time
used by a single job step, a cataloged
procedure, or a cataloged procedure step,
code the keyword parameter in the operand
field of the EXEC statement.

| TIME={(minutes,seconds) 1

Such an assignment is useful in a
mrultiprogramming environment where more
than one job has access to the computing

system. HNinutes and seconds represent the
maximum nunber of minutes and seconds
allotted for execution of the job step.

Notes:

» If the job step requires use of the
system for 24 hours {1440 minutes) or
longer, the programmer should specify.
TIME=1440. Using this number
suppresses timing., The number of
seconds cannot exceed 59. ’

o If the time limit is givenm in minutes
only, the parentheses need not be
coded; e.g., TIME=S.

e« If the time limit is given in seconds,
the comma must be coded to indicate the
absence of minutes; e.qg., TINME=(,45).

o When the job step uses a cataloged
procedure, a time limit for a single
procedure step can be set by qualifying
the keyword TINE with the procedure
step name; i.e., TIME.procstep=
{minutes,seconds). This specification
overrides the TIME parameter in the
named procedure step if one is present.
As many parameters of this form can be
coded as there are steps in the
cataloged procedure.

e To set a time limit for an entire
procedure, the TIME keyword is left
upqualified. This specification
overrides all TIME parameters in the
procedure if any are present.

» If this parameter is omitted, the
standard job step time limit is
assigned.

Specifying Main Storage Reguirements for a
Job_Step (REGION)

The REGION parameter permits the
programmer to specify the size of the main
storage region to be allocated to the
associated job step. The REGION parameter
specifies the maximum amount of main
storage to be allocated to the job.
amount must include the size of those
components required by the user's progranm
that are not resident in main storage.

This

The REGION parameter is used in
conjunction with the ADDRSPC parameter to
determine the total amount of main storage
available to a program and to either allow
or disallow paging.

Note: The REGION parameter has different
meanings for 0S/VS1 and 0S/VS2. See the
publication QS/VS_JCL Services for detailed
information.

To specify a region size, code the
keyvord parameter in the operand field of
the EXEC statement.

.
! REGION= (nnnnnK)

To request the maximu®m amount of main
storage required by the job, replace the
term "nnnnn" with the maximum number of
contiguous 1024-byte areas allocated to the
job step, e.g., REGION=52K. This number
can range from 1 to 5 digits but must not
exceed 16383,

If the REGION parameter is omitted or if
a region size smaller than the default
region size is requested, it is assumed
that the default value is that established
by the input reader procedure.

Notes:

» Region sizes for each job step can be
coded by specifying the BEGION
parameter in the EXEC statement for
each job step. However, if a REGION
parameter is present in the JOB
statement, it overrides REGION
parameters in EXEC statements.

e For information on storage requirements
to be considered when specifying a
region size, see the appropriate
Storage Estimates publication.

Specifying Address_Space_ (ADDRSPC)

To take advantage of the storage
facilities offered by 0S5/VS1 and 0S5/VS2,
always specify ADDRSPC=VIRT.

VIRT
REAL

Note that the compiler and its object code,
including library subroutines, can run
VIRTUAL, and should be run that way unless
a non-COBOL program in the partition
requires the REAL option.

ADDRSPC=

o o e
b s s 10

The data definition (DD) statement
identifies each data set that is to be used
in a job step, anmd it furnishes information
about the data set. The DD statement
specifies input/output facilities required

Job Control Procedures 51

for using the data set; it also establishes
a logical relationship between the data set
and input/output references in ‘the program
named in the EXEC statement for the job
step. ! SR

Figure 9 is a general format of the DD
statement.

52 eie

Parameters used most frequently for
COBOL programs are discussed in detail.
The other parameters {(e.g., SEP and AFP)
are mentioned briefly. For further

Reference. :)

-
=
o
=
®

Operation

™

Operand

-+

DD

e v coe e o e
R N

ddname !
V4
procstep.ddname

(o e . -

=

see below and next page QL;EE:>

(page) =
. ==

Operand?2

Positional Parameters?
il
DATAf [,DLM=xx)

Keyword Parameters S 6
[DDNAME=ddname]

[DUMMY)

DSN&HE}
DSN

o

dsnanme
dsname{element)
*,ddname
*,stepname,ddnane

&Ename
t&name(element)
NULLFILE

[QNAME=processname]14
DCB={list of attributes)

dsname

*,ddname

*.stepnanme, ddname
1*.stepnare, procstep.ddnane

DCB= {

AFF=ddname
{ COPIES=nan]
[OUTLIM=number)

SEP= (subparanmeter list){] 11
T
[TERMAT Sf]

UNIT= {AFF=ddnanme)
WCS=(character set code »FOLD

’.

[DYNAM]®

*_stepname.procstep.ddname(

[ysubparaneter-list]))

Positiopnal subparameters ~Keyword Subparameters
ENIT=(nane[,[n/P][,DE?ER]]{,SEP=(1ist of up to 8 ddnanes)])’] 11 13
[,VERIFY]))

12

]

(o S g e e G S i A S M W Sl e e N e M i Bt s ol St ok b e i i, i, M W e o ot o

See notes at end of figure.

A s ol ame M e W e s N i . - — - O Dty A B S iy P ks . e, Dt o W ot T Wity b A s s an v o

Figure 9. The DD Statement (Part 1 of 3)

Job Control Procedures 53

Operand?

Positional Subparameters

TRK
SPACE=(<CYL ¢ {primary-guantity{ ,secondary-quantity],
average-record-length
. MXLG
[directory~ or index-quantity}))[,RLSE] JALX - [+ ROUKDY])
_ ,CONTIG

SPACE= (ABSTR, {(quantity,beginning-address[,directory- or index-guantity}))

CYL

SPLIT={(n, o {primary-quantity{,secondary-quantity}))
average-record-length
TRK

SUBALLOC={ CYL s {(primary-quantity[,secondary-quantity])
laverage-record-length

ddnanme
[,directory-quantity)), < stepname.ddnanme :)
stepname. procstep.ddnan

- N N W G M e S SR AL S ML s T e A M e i W NN S e e O)

VOLUME

KVOL } =<PRIVATE],[RETAIN],[volume sequence number),[volume count}{,]
SER= (volume-serial-number{ volume-serial-number J10,...)

*,ddname

*, stepname.ddname
*, stepname.procstep.ddnanme

dsname >

- -
=}
]
o
it

| See notes at end of figure
i

Mo ccom S s S aaas G . i e e R e e eI s W M M et e G M Nl S i G et e WS g W i whan ot ooy s

Figure 9. The DD Statement (Part 2 of 3)

54

ade e o

Keyvword Subparameters

vz)
LABEL= ([data-set-sequence-number], |SL +» PASSHORD o IN +EXPDT=yydad
NSL + NOPWREAD » 00T [;RETPD=xxxx

Jsul

LTH

BLP

AUL

(AL)

NEW ,DELETE ,DELETE
oLD ,KEEP ,KEEP

DISP={ |SHR .PASS . CATLG)
MOD ,CATLG ,UNCATLG|

»UNCATLG

g

i
|
1
1
1
i
t
1
|
{
i
!
|
{
|
|
i
{ BYSOUT=(classname[,program-name][,form-no.}ﬂ
|
]
i
H
L
!
{
1
L
§
1
!
1
1
i
1
i
{
1

[FCB={image-id JALIGNT])
VERIFY

[AMP= (subparameters) 5]

1The name field must be blank when concatemating data sets.

2A11 parameters are optional to allow a programmer flexibility im the use of the DD
statement; however, a DD statement with a blank operand field is meaningless.

31f the positional parameter is specified, keyword parameters other than DCB cannot be
specified.

4For 0S/VS2 only.

s1f subparameter-list consists of only ope subparameter and no leading comma
{indicating the omission of a positional subparameter) is required, the delimiting
parentheses may be omitted.

61 f subparameter-list is omitted, the entire parameter must be omitted.

7See "User-Defined Files" for the applicable subparameters.

8See the publication QS/VS_JCL_Reference. ‘

91f only name is specified, the delimiting parentheses may be omitted.

1197f only one volume-serial-number is specified, the delimiting parentheses may be

| omitted.

111The SEP and AFF parameters should not be confused with the SEP and AFF subparameters

i of the UNIT parameter. :

112The value specified may contain special characters if the value is enclosed in

{ apostrophes, If the only special character used is the hyphem, the value need not be

i

1

|

|

enclosed in apostrophes. If DSNAME is a qualified name, it may contain periods
without being enclosed in apostrophes.

13T7he unit address may contain a slash, and the unit type number may contain a hyphen,
without being enclosed in apostrophes, e.qg., UNIT=293/5,UNIT=2400~2.

{1%The QNAME= parameter is used in COBOL teleprocessing and must be the name of a TCAM

1 destination gueue.

{15This parameter is for use with VSAM only. The subparameters are described in the

§ chapter "VSAM File Processing.”
i

b it e ch M s e L e B e s SeNS D i G adan G e G AR e Nl R s e G i W GG e A S SN WA S A NS S A A R A A s B N G S ek S e

Figure 9. The DD Statement {Part 3 of 3)

Job Control Procedures 55

Name Field
ddname {(Identifying the DD Statement)
is used:

e To identify data sets defined by
this DD statement to the compiler or
linkage editor (see "Compiler Data
Set Requirements" and "Linkage
Fditor Data Set Requirements").

e To relate the data sets defined in
this DD statement to a file
described in a COBOL source program
{see "User-Defined Files%).

» To identify this DD statement to
other control statements in the
input stream.

procstep.ddname
is used to alter or add DD statements
in cataloged procedures. The step in
the cataloged procedure is identified
by procstep. The ddname identifies
either one of the following:

* A DD statement in the cataloged
procedure that is to be modified by
the DD statement in the inmpst
stream.

e A DD statement that is to be added
to the DD statement in the procedure
step.

*_Pparameter {Defining Data ipn an_Jnput

Strean)
indicates that data immediately
follows this DD statement in the input
stream. This parameter is used to
specify a source deck or data in the
input stream. The data cannot contain
// or /* in the first two character
positions of any record unless the DLA
parameter is used. If (while scanning
JCL) the system encounters a card that
does not begin with //, it logically
inserts a //SYSIN DD * card before it.
The SYSIN data set thus created is
delimited by the next /* or // job
control card encountered.

DATA Parameter_ {Defining Data ip_an IXnput

Strean)
also indicates a JCL deck or data in
the input stream. The end of the data
set must be indicated by a delimiter
statement. The data cannot contain /%
in the first two characters of any
recprd unless the DLM parameter is
used. The DD DATA statement must be
the last DD statement of the job step.
// may appear in the first and second
positions in the record, for example,
when the data consists of control
statements of a procedure that is to
be cataloged.

56

DLM Parameter {Changing Data Delimiter for
Input Strean)
specifies the delimiter to be used
instead of /* or // to terminate data
defined in the input streanm.
Assigning a different delimiter allows
the standard delimiter {(/* or //) to
be used as data in the input strean.
The DLM parameter has meaning only on
DD* and DD DATA statements., The data
must be terminated with the characters
assigned in the DLM parameter.

DUMMY Parameter {Bypassing Device
Allocation_and_Input Operations _on_the Data
set)

allows a program to attempt I/0
operations on a data set during
execution without the operating
system's performing actual operations
on the data set. (Programs compiled
with the LANGLVL{2) option can specify
the COBOL source statement SELECT
OPTIONAL to obtain this ability and
thus avoid supplying a dummy DD
statement.) The DUMMY parameter is
valid only for COBOL input sequential
data sets. No device allocation,
external storage allocation, or
cataloging takes place for dummy data
sets. When the DUMMY parameter is
specified, a read reguest to an
vopened® file results in an end of
data set exit.

For a VSAM data set, if DUMAMY is
specified, an attempt to read results
in an end-of-data condition.
AMP=YAMORG*' must be specified if DUMNY
is specified; see “VSAM-only JCL
Parameter" in the chapter "VSaAM File
processing.”

Note: Compiler work files {including
SYSUTS and SYSUT6) cannot be described
as DD DUMMY.

Data in the input stream is temporarily
transferred to a direct-access device for
later high-speed retrieval. VNormally, the
system stores it in a format that is not
under control of the programmer. However,
in some situations the programmer may be
able to assign his own values through use
of the BLKSIZE subparameter of the DCB
parameter. He may also indicate the number
of buffers to be assigned to transmitting
the data, through use of the BUFNO
parameter. For example, he may assign the

.followings:

DCB=(BLKSIZE=800,BUFNO=2)

In Y¥S?1 and VS2 Release 2 and later, maximun
performance is obtained for SYSIN and
SYSOUT data sets when BLKSIZE=80 and
BUFNO=1 are used. If not supplied by the

problem program, it cam be supplied by the
DCB parameter on the DD statement. If
omitted from both sources, the defaults are
BLKSIZE=80 and BUFNO=2.

DYNAM Parapeter {Reserving Space_under

0S/VS2_with TSO)
specifies that space is to be reserved
in internal tables so that data set
requirements that arise during a TSO
terminal session can be satisfied.
This allows deferred definition of a
data set until it is required. During
LOGON processing for TSO, no devices
or external storage are allocated to a
data set defined by a DD DYNAM
statement. When a data set is
required, the actual device and
external storage for the data set is
then allocated. See the publication
0S/VS2 TS0 _Guide, Order No. GC28-06u44,
for further information.

Note: VNo other parameter can be
specified on a DD statement where
DYNAM is specified.

DDNAME Parameter {Postponing the Definition

of a_Data_Set)
defines a pseudo data set that will
assume the characteristics of a real
data set if a subsequent DD statement
of the step is labeled with the
specified ddname. When the DDNAME
parameter is specified, it must be the
first parameter in the operand. all
other parameters, except the DCB
subparameters BLKSIZE, BUFNO, and
DIAGNS, are ignored and should be
omitted when the DDNAME parameter
appears {see "Using the Cataloged
Procedures").

The ddname specifies a DD statement
that, if present, supplies the
attributes of the data set. 1If it is
not present, the statement is ignored.

DSNAME Parameter_ {Identifying the Data Set)
allous the programmer to specify the
name of the data set to be created or
to refer to a previously created data
set. Various types of names can be
specified (see "Using the DD
Statement® for a discussion of the
various names) as follows:

o Pully gualified names; PFor data
sets to be retrieved from or stored
in the system catalog.

e Geperation data_group nampes: For an
entire generation data group, or any
single generation thereof.

o Simple npames: For data sets that
are not cataloged.

» Reference names: For data sets
whose names are given in the DSNAME
paraneter of another DD statement in

the same job.

e Temporary names; For temporary data
sets that are to be named for the
duration of one job only.

If the DSNAME parameter is omitted,
the operating system assigns a unique
name to the data set. {This parameter
should be supplied for all except
tepporary data sets to allow future
referencing of the data set.) DSNAME
may be coded DSN.

DSNAME Subparameters

dsname
specifies the fully qualified
name of a data set. This is the
name under which the data set can
be cataloged or othervise
identified on the volume.

dsname {element)

specifies a particular generation of a
generated data group, a member of a
partitioned data set, or an area of an
indexed data set. To indicate a
generation of a generated data group,
the element is a zero or a signed
integer. To indicate a member of a
partitioned data set, the element is a
name. To indicate an area of an
indexed data set, the element is
PRIME, OVFLOW, or INDEX {see "Using
the DD Statement" for information
about generation data groups and
examples of partitioned data sets).

*,ddname

indicates that the DSNAME parameter
{only) is to be copied from a
preceding DD statement in the current
job step.

*,stepname.ddname

indicates that the DSNAME parameter
{only) is to be copied from the DD
statement, ddpname, that occurred in a
previous step, stepname, in the
current job. If this form of the
subparameter appears in a DD statement
of a cataloged procedure, stepname
refers to a previous step of the
procedure, or, if no such step is
found, to a previous step of the
current job.

*.stepname,procstep.ddname

indicates that the DSNAME parameter
{only) is to be copied from a DD
statement ia a cataloged procedure.
The EXEC statement that called for

Job Control Procedures 57

execution of the procedure, as well as
the step and DD statement of the
procedure, nmust be identified.

t&name

allows the programmer to supply a
teaporary name for a data set that is
to be deleted at the end of the job.
The operating system substitutes a
unique symbol for this subparameter.
The programmer can use the temporary
name in other steps to refer to the
data set., The same symbol is
substituted for each recurrence of
this name within the job. Upon
completion of the job, the name is
dissociated from the data set. The
sane temporary name can be used in
other jobs without ambiquity.

&&name {element)

allows the programmer to supply a name
for a member of a temporary
partitioned data set that ¥ill be
deleted at the end of the step.

NULLFPILE

serves the same function as the DUMMY
parameter {described above).

QNAME Parameter {Defining the Data to be
Accessed by ICAM)

DCB_Parameter {Describing the Attributes of

specifies the name of a TPROCESS macro
that defines a destination queue for
messages that are to be processed by
an application program and creates a
process entry for the queue in the
Terminal Table (see the section
"pefining Terminal and Line Control
Areas" in the chapter entitled "“Using
the Teleprocessing Feature®),

Note: The DCB parameter is the only
parameter that can be coded on a DD
statement with the QNAME paranmeter.
The only operands that may be
specified as subparameters are
BLKSIZE, BUFL, LRECL, OPTCD, and
RECFHM.

the Data_ Set)

58

allows the programmer to specify at
execution time, rather than at
compilation time, information for
completing the data control block
associated with the data set (see
WExecution Time Data Set Requirements"
and "Additional Pile Processing
Information® for further information
about the data control block and DCB
subparameters).

The first subparawmeter of this
parameter may be used to copy DCB
attributes from the data set label of

a cataloged data set or from a
preceding DD statement {see the
publication Q5/VS_JCL Reference for
detailed information about the DCB
subparameter).

SEP and AFF Parameters_(Optimizing Channel
U;

allow the programmer to optimize the
use of channels among groups of data
sets. SEP indicates channel
separation and APF indicates channel
affinity. SEP and AFPF are ignored for
any data sets that have been allocated
devices by the automatic volume
recognition (AVR) option.

If neither parameter is supplied, any
available channel, consistent with the
UNIT parameter requirement, is
assigned. The affinity parameter
groups two or more data sets so that
they can be separated from another
data set requesting channel
separation., For indexed sequential
data sets these parameters are written
in the same vay as those for any data
set. For VSAM data sets, these
parameters should not be used if the
data and its index reside on unlike
devices. They can be used in
succeeding DD statements to refer to
the first DD statement defining an
indexed sequential data set. However,
the second and third DD statements
canhot request separation from or
affinity to one another because they
are unnamed. Thus, to establish
channel separation and affinity for
all of the areas, the name
subparameter of the UNIT parameter
must be used to request specific
devices on specific channels.

UNIT Parameter {Reguesting a_ Unit)

specifies the quantity and types of
input/output devices to be allocated
for use by the data set.

If the UNIT parameter is not specified
in the current DD statement, there are
several ways in which the unit
information may be inferred by the
systems

s« If the current data set has already
been created and it is either being
passed to the current step, or if it
has been cataloged, any unit name
specified in this DD statement is
igaored.

» If the REF subparameter of the
VOLUME parameter is specified, the
current data set is given affinity
with the data set referred to; that

data set's defining DD statement
provides the unit information.

» If the current data set is to
operate in the split cylinder mode
with a previously defined data set,
it will reside on the unit specified
in the DD statement for the previous
data set.

o If the current data set is to use
space suballocated from that
assigned to a previously defined
data set, it will reside on the sanme
unit as the data set from which the
space is obtained.

e If the current data set is assigned
to the standard output class {SYSOUT
is gpecified), it is written on the
unit specified by the operator for
class A.

If the current data set is in the input
stream {defined by a DD * or DD DATA
statement), the DD statement defining the
data set should not contain a UNIT
parameter.

If this parameter specifies a mass
storage device for a data set being
created, it is also necessary to reserve
the space the data set will occupy, using
another parameter of the DD statement. For
VSAM data sets, the AFF and SEP
subparameters should not be used if the
data and its index reside on unlike
devices, Depending on the way in which the
space will be used, the SPACE, SPLIT, or
SUBALLOC parameter can be specified. These
parameters are discussed under individual
headings.

If the ONIT parameter specifies a tape
device, no SPACE, SPLIT, or SUBALLOC
parameters are required.

The UNIT parameter must be specified if
VOLUME=SER is specified in the DD
statement,

UNIT Subparameters:

nanme
specifies the name of an input/output
device, a device class name, Or any
meaningful combination of input/output
devices specified by an installation,
{(Mass storage devices and magnetic
tape devices can be combined. V¥No
other device type combination is
allowed.) Names and device classes
are defined at system generation tinme.
The device class names that are
reguired for IBM cataloged procedures
and are normally used by most
installatioas are shown in Figure 10.
These names can be specified by the

installation at system generation
time.

The block size specified in the source
program {(in the BLOCK CONTAINS clause
or in the record description) must not
exceed the maximum block size
permitted for the device. For
example, the maximum block size for
the IBM 2314 is 7294 characters, and
the maximum block size for the IBM
2400 series is 32,760 characters.

Note: when device-independence is
specified by use of UT as the device
class in the ASSIGN statement in the
Environment Division, the device
chosen by the system will be dependent
on the DD statement. Therefore, if
the user's installation has both an
IBM 2314 and an IBM 3330 that may be
used as utility devices, the user
should write

BLOCK CONTAINS 7294 CHARACTERS
{or any number smaller than 7294) to

ensure that the block can be contained
on one track.

n .
specifies the number of devices to be
allocated to the data set. 1If this
parameter is onmitted, 1 is assumed.

P
specifies parallel mount.

DEFER

indicates deferred mounting. Deferred
nounting cannot be specified for a new
output data set on a mass storage
device or for an ISAM data set.

For VSAM data sets, it indicates that
the volumes are not to be mounted
until access method services requires
thenr. .

SEP={list of up to eight ddnames)
specifies unit separation.

AFF=ddname
specifies unit affinity.

¥] Ll
{Class Name}Class Functions{Device Type

L]

|

T 1 1 ':
15YSSQ fwriting {mass storage |
) {reading {magnetic tape |
+ } 1
§SYSDA juriting frass storage |
i {reading 1 i
4 | '3 3
Figure 10. Device Class Names Required for

IBM~-Supplied Cataloged
Procedures '

Job Control Procedures 59

COPIES Parameter (Requesting 2Additional

Data

Set Copies)

is specified when more than one copy
of the output data sets is desired.
It can be specified only with the
SYSOUT parameter on the same DD
statement. The maxinum number of
copies that can be requested is 255.
for further information on the use of
the COPIES parameter, see the
publication 0S/VS_JCL_Services.

OUTLIM Parameter {Specifying_ OQutput Record

Limit)

is specified, for 0S/VS1 only, to
limit the number of logical records to
be included in the output data set
being routed through the output
stream. For 0S/VsS2, OUTLIM is
ignored. When the limit is reached,
an exit provided by the Systen
Management Facilities option is taken
to a user-supplied routine that
determines whether to cancel the job
or increase the limit. If the exit
routine is not supplied, the job is
canceled. The largest number that can
be specified is 16777215.

The OUTLIM parameter has meaning only
if the System Management Facilities
option is in use in the system and
job, and step data collection was
selected at system generatior. OUTLIN
is ignored unless SYSQUT is coded in
the operand field of the same DD
statement. If OUTLIM is not
specified, the system default will be
used unless SYSUDUMP or SYSABEND is
being processed; in this case no
output limiting is done.

TERM_Parameter (Notify System of a Special
Device)

TERM

specifies different information for
0S/vs1 and 0S/Vs2. For VS1, the TERM
parameter notifies the system to the
presence of an RTAM {Remote Terminal
Access Method) device used with RES
(Remote Entry Services). For VS2 with
TS0, the TERM parameter notifies the
system that a data set is coming from
or going to a time sharing terminal.

See the publication 0S/VS1 RES_System

Programmer's Guide, Order

No. GC28-6878, for detailed

information on Remote Entry Services.
/

Subparameter:

RT

60

indicates that a remote unit record
device is in use for RTAM and that the
usual allocation processing is to be
bypassed. RT can only be specified on

TS

a DD statement for a job that is a
system task. RT should not be
specified on DD*, DD DATA and SYSOUT
DD statements.

indicates to the system that the input
or output data being defined is coming
from or going to a time sharing
terminal. If TSO is not in use,
DD statement containing the TERM
parameter is treated as a DD DUMMY
statement. Only the DCB parameter can
be specified with TERM=TS; any other
parameters specified on the same DD
statement are ignored.

the

UCS _Parameter (Specifying Character_Set for
a_1403 or 3211 Prinpter)

describes the character set to be used
for printing an output data set on a
1403 or 3211 printer. 1In order to use
a particular special character set, an
image of the character set nust be
contained in SYS1.IMAGELIB, and the
chain or train corresponding to the
character set must be available for
use. The UCS parameter, the DDNAME
parameter, and the DCB subparameters
RKP, CYLOPL, and INTVL, are mutually
exclusive. PFor further information on
the GCS parameter, see the publication
0S/¥S_system Programming Librarys;
Data Management.

UCS Subparameters:

character set code

FOLD

identifies the special character set
to be used for printing the data set.

specifies that the chain or train
corresponding to the desired character
set is to be loaded in the fold mode.
The fold mode is described in the
publication IBM 2821 Control Umit,
order No. GA24#-3112.

VERIFY

specifies that the operator is to
verify that the correct chain or train
is mounted before the data set is
printed. If the VERIFY subparameter
is specified and the FOLD subparameter
is not, a comma must precede VERIFY
since FOLD is a positional
subparameter and its absence must be
indicated.

SPACE Parameter {Allocating Mass_Storage

Space}

specifies space to be allocated in a
mass storage volume. Although SPACE
has no meaning for tape volumes, if a
data set is assigned to a device class
that contains both mass storage
devices and tape devices, SPACE should
be specified. For VSAM data sets,
space is allocated through access
method services.

Two forms of the SPACE parameter may
be used, with or without absolute
track address (ABSTR). The ABSTR
parareter requests that allocation
begin at a specific address.

to write a record. The directory
quantity is used when initially
creating a partitioned data set (PDS),
and it specifies the number of
256~-byte records to be reserved for
the directory of the PDS. It can also
specify the number of cylinders to be
allocated for am index area embedded
within the prime area when a new ISANM
data set is being defined (see the
publication 0S/¥S_JCL_Reference).

Note: <The directory contains the name
and the relative position, within the
data set, for each member of a
partitioned data set. The name
requires eight bytes, the location
four bytes. Up to 62 additional bytes
can be used for additional

SPACE Subparameters: inforwmation. Por a directory of a
ABSTR partitioned data set that contains
TRK load modules, the minimum directory
CYL requirement for each member is 34
average-record-length bytes.

specifies the unit of measurement in
which storage is to be assigned. The RLSE

units may be tracks {ABSTR or TRK),
cylinders (CYl), or records
{average-record-length, expressed as a
decimal number). In addition, the
ABSTR subparameter indicates that the

indicates that all unused external
storage assigned to this data set is
to be released when processing of the
data set is completed.

allocated space is to begin at a MXIG
specific track address. If the ALX
specified tracks are already allocated CONTIG

to another data set, they will not be
reallocated to this data set.

Note: For ISAM data sets, only the
CYL or ABSTR subparameter is
permitted. When an ISAM data set is
defined by more than one DD statement,
all must specify either CYL or ABSTR;
if some statements contain CYL and
others ABSTR, the job will be
abnormally terminated.

{primary-quantity[,secondary-quantity]}
[,directory- or index-quantity])

specifies the amount of space to be
allocated for the data set. The
primary quantity indicates the number
of records, tracks, or cylinders to be
allocated when the job step begins,
For ISAM data sets, this subparameter
specifies the number of cylinders for
the prime, overflow, or index area
{see "Execution Time Data Set
Requirements"). The secondary
quantity indicates how much additional
space is to be allocated each time
previously allocated space is
exhausted. This subparameter must pot
be specified when defining an ISAM
data set. If a secondary quantity is
specified for a sequential data set,
the program may receive control shen
additional space cannot be allocated

qualifies the request for the space to
be allocated to the data set. MNXIG
requests the largest single block of
storage that is greater than or equal
to the space requested in the primary
quantity. ALX requests the allocation
of additional tracks in the volume.
The operating system will allocate
tracks in up to five blocks of
storage, each block equal to or
greater than the primary guantity.
CONTIG reguests that the space
indicated in the primary quantity be
contiguous. .

If this subparameter is not
specified, or if any option cannot be
fulfilled, the operating system
attempts to assign contiguous space.
If there is not enough contiguous
space, up to five noncontiguous areas
are allocated.

ROUND

indicates that allocation of space for
the specified number of records is to
begin and end on a cylinder boundary.
It can be used only when average
record length is specified as the
first subparameter.

quantity

specifies the number of tracks to be
allocated. For an ISAM data set, this

Job Control Procedures 61.

quantity must be equivalent to an
integral number of cylinders; it
specifies the space for the prime,
overflow, or index area (see
"Execution Time Data Set
Requirements").

beginning address

specifies the relative number of the
track desired, where the first track
of a volume is defined as 0. {Track 0
cannot be requested.) The number is
automatically converted to an address
based on the particular device
assigned. For an ISAM data set this
nunber must indicate the beginning of
a cylinder.

directory quantity

defines the number of 256-byte records
to be allocated for the directory of a
new partitioned data set. It also
specifies the number of tracks to be
allocated for an index area embedded
within the prime area when a new
indexed data set is being defined. 1In
the latter case, the number of tracks
must be equivalent to an integral
nupnber of cylinders {see the
publication 0S/¥S_JCL_Reference).

SPLIT Parameter {Allocating Mass Storage

Space)

is specified when other data sets in
the job step require space in the sanme
mass storage volume, and the user
wishes to minimize access-arm movement
by sharing cylinders with the other

length in bytes is specified as a
decimal number not exceeding 65,535).
If the average record length is given,
and the data set is defined to have a
key, the key length must be given in
the DCB parameter of this DD
statement.

primary-quantity

defines the number of cylinders or
space for records to be allocated to
the entire group of data sets.

secondary-quantity

defines the number of cylinders or
space for records to be allocated each
time the space allocated to any of the
data sets in the group has been
exhausted and more data is to be
written. This quantity will not be
split.

A group of data sets that share
cylinders in the same device is
defined by a sequence of DD
statements. The first statement in
the sequence rust specify all
parameters except secondary quantity,
wvhich is optional. Each of the
statements that follow the first
statement must specify only n, the
amount of space required.

data sets. The device is then said to SUBALLOC Parameter {Allocating Mass_Storage
be operating in a split cylinder mode. Space)

In this mode, two or more data sets
are stored so that portions of each
occupy tracks within every allocated
cylinder.

Note: SPLIT should not be used a)
when one of the data sets is an ISAM
data set, or b) under VS2 Release 2 or
later.

n

indicates the number of tracks per
cylinder to be used for this data set
if CYL is specified. TIf the average
record length is specified, n is the
percentage of the tracks per cylinder
to be used for this data set.

permits space to be obtained fronm
another data set for which contiguous
space wWas previously allocated. This
enables data sets to be stored in a
single volume. Space obtained through
suballocation is removed from the
original data set, and may not be
further suballocated. The SUBALLOC
parameter should not be used to obtain
space for an ISAM data set, nor should
it be used under VS2 Release 2 or
later.

Except for the subparameters
described below, the subparameters in
the SUBALLOC parameter have the sane
meaning as those described in the
SPACE parameter.

cYL }
{average—record-length
indicates the units in which the space
requirements are expressed in the next
subparameter. The units may be
cylinders {CYL) or physical records
(in which case the average record

SUBALLOC Subparameters:

ddname
indicates that space is to be
suballocated from the data set defined
by the DD statement, ddname, that
appears in the current step.

62

stepname.ddnane

indicates that space is to be
suballocated from the data set defined
by the DD statement, ddname, occurring
in a previous step, stepname. If this
form of the subparameter appears in a
DD statement in a cataloged procedure,
stepname refers to a previous step of
the procedure, or if no such step is
tound, to a previous step of the
current job.

stepname. procstep.ddnanme

indicates that space is to be
suballocated from a data set defined
in a cataloged procedure. The first
term identifies the step that called
for execution of the procedure, the
second identifies the procedure step,
and the third identifies the DD
statement that originally requested
space.

VOLUME_(VOL) Parameter {Specifying Volume

Information)

specifies information about the
volume{s) on which an input data set
resides, or on which an output data
set will reside. B volume can be a
tape reel, or a mass storage device.
Vvolumes can be used most efficiently
if the programmer is familiar with the
states a volume can assume. Volunme
states involve two criteria: the type
of data set the programmer is defining
and the manner in which the programmer
requests a volume.

Data sets can be classified as one
of two types, temporary or
nontemporary. A temporary data set
exists only for the duration of the
step that creates it. A nontemporary
data set can exist after the job is
completed. The programmer indicates
that a data set is temporary by
coding:

e DSNAME=&6name
* No DSNAME parameter

e DISP={NEW,DELETE), either explicitly
or implied, e.g., DISP={,DELETE)

e DSNAME=reference, referring to a DD
statement that defines a temporary
data set.

All other data sets are considered
nontemporary. If the programnmer
attempts to keep or catalog a passed
data set that was declared temporary,
the systenm changes the disposition to
PASS unless DEFER was specified in

theUNIT parameter. Such a data set is
deleted at the end of the job.

The manner in which the programmer
requests a volume can be considered
specific or nonspecific. A specific
reference is implied whenever a volume
with a specific serial number is
requested. Any one of the following
conditions denotes a specific volume
reference:

e The data set is cataloged or passed
from an earlier job step.

e VOLUME=SER is coded in the DD
statement.

e VOLUME=REF is coded in the DD
statement, referring to an earlier
specific volume reference.

All other types of volume references
are nonspecific. {Nonspecific
references can be made only for new
data sets, in which case the systenm
assigns a suitable volume.)

The state of a volume determines
when the volume will be demounted and
what kinds of data sets can be
assigned to it

Mass Storage Volumes: Mass storage
volumes differ from tape volumes in
that they can be shared by two or more
data sets processed concurrently by
more than one job. Because of this
difference, mass storage volumes can
assume different volume states than
tape volumes. The volume state is
determined by one characteristic from
each of the following groups:

Mount Allocation
Characteristics Characteristics
Permanently Public

Resident
Reserved Private
Removable Storage

Permanently resident volumes are
always mounted. The permanently
resident characteristic applies
automatically to:

» All physically permanent volumes,
such as 2305 Fixed Head Storage.

e The volume from which the systenm is
loaded {the IPL volume).

s The volume containing the systen
data sets SYS1.LINKLIB,
SYS1.PROCLIB, and job scheduler
queue.

Job Control Procedures 63

64

* Other volumes can he designated as
permanently resident in a special
member of SYS1.PROCLIB named
PRESRES.

Permanently resident volumes are
always public. The reserved
characteristic applies to volumes that
remain mounted until the operator
issues an UNLOAD command. They are
reserved by a MOUNT command referring
to the unit on which they are mounted
or by a system parameter library
entry. The removable characteristic
applies to all volumes that are
neither permanently resident nor
reserved. Removable volumes do not
have an allocation characteristic when
they are not mounted., A reserved
volume becomes removable after an
UNLOAD command is issued for the unit
on which it resides.

The allocation characteristics,
public, private, and storage, indicate
the availability status of a volume
for assignment by the systenm to
temporary data sets, and, if the
volume is removable, when it is to be
demounted. A public volume is used
primarily for temporary data sets and,
if it is permanently resident, for
frequently used data sets. It must be
requested by a specific volune
reference if a data set is to be kept
or cataloged on it. If a public
volume is removable, it is demounted
only when its unit is required by
another volume. The prograammer can
change a public volume to private
status by specifying VOLUME=PRIVATE.

A private volume must be requested by
a specific volume reference. A new
data set can be assigned to a private
volume by specifying VOLUME=PRIVATE.
If the volume is reserved, it remains
mounted until the operator issues an
UNLOAD command for the unit on which
it resides. If it is removable, it
will be demounted after it is used,
unless the programmer specifically
requested that it be retained
{VOLUME=,RETAIN) or passed
(DISP=,PASS). Once a removable volume
has been made private, it will
ultimately be demounted. To use it as
a public volume, it must be remounted.
A storage volume is used as an
extension of main storage, to keep or
catalog nontemporary data sets having
nonspecific volume reguests. The
programmer can assign the PRIVATE
option to storage volumes.

Figure 11 shows how mass storage
volumes are assigned their mount and
allocation characteristics.

na = Not applicable

r ¥ M
| 1 . Allocation 1
i 1 Characteristic }
1 Mount 2 T ¥ {
jCharacteristic jPublic {Private jStoragej
1 1 4 i ']
L L] L] k] A
jPermanently]system {system |system {
| Resident jparm. {parnm. {parm. |
| flibrary f{library ilibrary{
1 jor i 1 |
{ {Default | ! i
} } } + ~4
{Reserved {system {system |system |
i iparm. {parn. fparm. |}
{ flibrary flibrary Jlibrary]
! { or 1 or] or |
| | MOUNT | MOUNT {MOUNT
i jcommand jcommand j{command]
1 i 1 i]
| J E ¥ 1 T
{Removable {Default JVOLUME= } na 1
] 1 {PRIVATE | !
} 1 i 1 ;
1 i
1 i

Figure 11.

Mass Storage Volume States

Magpnetic_ Tape_Volumes: The volunme
state of a reel of magnetic tape is
also determined by a combination of
mount and allocation characteristics:

Mount Allocation
Characteristics Characteristics
Reserved Private
Removable Scratch

The reserved-scratch combination is
not a valid volume state. rved
tape volumes assume their state when
the operator issues a MOUNT command
for the unit on which they reside.
They remain mounted until the operator
issues a corresponding UNLOAD command.
Reserved tapes must be requested by a
specific volume reference.

A removable tape volume is assigned
the private characteristic when one of
the following occurs:

e It is requested with a specific
volure reference.

s It is requested for allocation to a
nontemporary data set.

» The VOLUME parameter is coded with
the PRIVATE option.

A removable-private volume is
demounted after its last use in the
job step, unless the progranmmer

‘requests that it be retained.

All other tape volumes are assigned
the removable-scratch state. The tape

volumes remain mounted until their
unit is required by another volune.

Volume Parameter Facilities: The
facilities of the VOLUME parameter
allow the programmer to:

» Bequest private volumes {PRIVATE)

e Request that private volumes remain
mounted until the end of the job
(RETAIN)

¢ Select volumes when the data set
resides on more than one volume
{volume-sequence-nunber)

» Regquest more than one nonspecific
volume (volume-count)

» Identify specific volumes (SER and
REF)

These facilities are all optional.
The programmer can omit the VOLUME
parameter when defiming a new data
set, in which case the system assigns
a suitable public or scratch volume.

VOLUME Subparameters:

PRIVATE

indicates that the volume on which
space is being allocated to the data
set is to be made private. If the
PRIVATE, SER, and REF subparameters
are omritted for a new output data set,
the system assigns the data set to any
suitable public or scratch volume that
is available.

RETAIN

indicates that this volume is to
remain mounted after the job step is
completed., Volumes are retained so
that data may be transmitted to or
from the data set, or so that other
data sets may reside in the volume.
If the data set requires more than one
volume, only the last volume is
retained; the other volumes are
previously dismounted. Another job
step indicates when to dismount the
volume by omitting RETAIN., TIf each
job step issues a RETAIN for the
volume, the retained status lapses
when execution of the job is
completed.

volume-sequence-number

is a 1- to 4-digit number that
specifies the sequence number of the
first volume of the data set that is

LAB

read or written. The volume sequence
number is meaningful only if the data
set is cataloged and earlier volumes
are omitted.

volume-count

SER

REF

specifies the number of volumes
required by the data set. Unless the
SER or REF subparameter is used this
subparameter is required for every
rultivolume ontput data set.

specifies one or more serial numbers
for the volumes required by the data
sets. A volume serial number consists
of one to six alphanumeric characters.
If it contains fewer than six
characters, the serial number is left
justified and padded with blanks. 1If
SER is not specified and DISP is not
specified as NEW, the data set is
assumed to be cataloged, and serial
numbers are retrieved from the
catalog. A volume serial number is
not required for new output data sets.
Two volumes should not have the sanme
serial number. When the SER parameter
is included, the volume is treated as
PRIVATE commencing with allocation for
the current job step. If this
subparameter is specified, the UNIT
parareter must also be specified.

indicates that the data set is to
occupy the same volume{s) as the data
set identified by dsname *,ddname,
*,stepname.ddname, or *.stepname.
procstep.ddname. Figure 12 shows the
data set references.

If SER or REF is not specified, the
control program will allocate any
nonprivate volume that is available.

specifies information about the label
or labels associated with the data
set. If a data set is passed from a
previous job step, label information
is retained from the DD statement that
specified DISP={,PASS). A LABEL
parameter, if specified in the DD
statement receiving the passed data
set, is ignored., If the LABEL
parameter is onitted and the data set
is not being passed, standard labeling
is assumed. The operating system
verifies mounting when the label
parameter specifies standard labels
{SL) or standard and user labels
{sul) . Nonstandard labels can be
specified only when installation-

Job Control Procedures 65

k]
Option L Refers to

|
+

REF=dsnane {2 data set named dsnane
A
;)

REF=*_,ddnane 1A data set indicated by DD statement ddname in the

jcurrent job step
4

REF=*_.,stephname.ddnane

*

1A data set indicated by DD statement ddnameé in the job
|step stepname :

]

po Wi S o e N M T S S W

L]
REF=% _,stepname, procstep.ddnamejA data set indicated by DD statement ddname in the
jcataloged procedure step procstep called in the job step
jstepname {see "Using the Cataloged Procedures")

b e e s b s in odn e it ol W i e

Figure 12.

pata Set References

written routines to write and process
nonstandard labels have been
incorporated into the operating systenm
{see "User Label Processing™ and the
publication 0S/V¥S _Tape Labels for
information about writing these
routines).

LABEL Subparameters:
data-set-sequence-number

(" AL

AULT
BLP
LTH

NL

SL
NSL

\.SUL/

66

is a 4-digit number that identifies
the relative location of the data set
with respect to the first data set in
a tape volume. (For example, if there
are three data sets in a magnetic tape
volume, the third data set is
identified by data set sequence number
0003.) If the data set sequence
number is not specified, the operating
system assumes that it is 0001. (This
option should not be confused with the
volume seguence number, which
represents a particular volume for a
data set.)

specifies the kind of label used for
the data set. AL indicates American
National Standard labels. AUL
indicates American National Standard
user labels. BLP indicates that the
system is not to perform label
processing for the tape data set.
indicates that the data set has a
leading tapemark. A , indicates that
the data set has standard labels and
another subparameter follows. NL
indicates no labels. SL indicates IBH
standard labels. NSL indicates

LTH

nonstandard label. SUL indicates IBM
standard and user labels.

EXPDT=yyddd
RETPD=xxXXx

data set shall
date,

specifies how long the
exist. The expiration
EXPDT=yyddd, indicates the year {yy)
and the day (ddd) that the data set
can be deleted. The period of
retention, RETPD=xxxXx, indicates the
period of time, in days, that the data
set is to be retained. TIf neither is
specified, the retention period is
assumed to be zero.

PASSWORD

indicates that the data set is to be
made accessible only when the correct
passWword is issued by the operator.
The operating system assigns security
protection to the data set. In order
to retrieve the data set, the operator
must issue the password on the
console.

NOPWREAD

IN

ouT

indicates that the data set can be
read without the password, but the
correct password must be issued by the
operator before the data set can be
changed, extended, or deleted.

indicates that the data set is to be
processed for input only.

indicates that the data set is to be
processed for output only.

DISP Parameter {Specifying Data_Set Status

and Disposition)

describes the status of a data set and
indicates what is to be done with it
after its last use, or at the end of
the job. The job scheduler executes

the requested disposition functioans at
the completion of the associated Fjob
step. 1If the step is not executed
because of an error found by the
system before trying to initiate the
step (e.g., an error in a job control
lanquage statement) , the remaining
statements are read and interpreted;
hovever, none of the succeeding steps
are executed, and the requested
dispositions are not performed. This
parameter can be omitted for data sets
created and deleted during a single
job step. Additional information
about the relationship between the
DISP parameter and the volume table of
contents is contained in "Additional
File Processing Information.”

indicates that the data set is being
generated in this step. 1If the status
is omitted, the NEW subparameter is

indicates that the data set specified
in the DSNAME parameter already

has meaning only in a multiprogramming
environment for existing data sets
that reside on mass storage volumes.
This subparameter indicates that the
data set is part of a job in which
operations do not prevent simultaneoas
use of the data set by another job.
For a non-VSAM data set that is to be
the DD statement DISP
parameter should be specified as
DISP=SHR for every reference to the
Unless this is
done, the data set cannot be used by a
concurrently operating job, and the
job will have to wait until the
particular file is free.

For VSAM data sets, this
subparameter alone does not guarantee
that sharing will take place. For
more information see the chapter "Data
Security and Integrity" in the
publication 0S/VS Virtual storage
Access Method {VSAM) Programmer's

DISP_Subparameters:
NER
assumed.
OLD
exists.
SHR
shared,
data set in a job.
Note:
Guide.
MoD

causes logical positioning after the
last record in the data set. It
indicates that the data set already
exists and that it is to be added to,
rather than read. ¥hen MOD is
specified and neither the volume
serial number is given nor the data
set cataloged or passed from an
earlier job step, MOD is ignored and

NEW is assumed. If the volume serial
nunber is given, it is assumed that
the data set is on the specified
volume.

DELETE

KEEP

PASS

CATLG

causes the space occupied by the data
set to be released for other purposes
at the end of the current step. 1If
the data set is cataloged, and the
catalog is used to locate it,
reference to the data set is removed
from the catalog. If it is on a mass
storage device, all references are
removed from the wvolume table of
contents, and the device space is made
available for use by other data sets.
If the data set is om tape, the volunme
in which the data set resides is then
available for use by other data sets.

ensures that the data set remains
intact until a DELETE parameter is
exercised in either the current job
orsome subseguent job., If the data
set is on a mass storage device, it
remains tabulated in the volume table
of contents after completion of the
job. When the volume containing the
data set is to be dismounted, the
operator is advised of the
disposition.

indicates that the data set is
referred to in a later step of
current job, at which time its
disposition may be determined. When a
subsequent reference to this data set
is encountered, its PASS status lapses
urless another PASS is issued. The
final disposition of the data set
should be specified in the last DD
statement referring to the data set
within the carrent job.

to be
the

While a data set is in PASS status,
the volume{s) on which it resides are,
in effect, retained; that is, the
system will attempt to avoid
demounting thenm. If demounting is
necessary, the system will ensure
proper remounting, through operator
messages. The unit name specified on
the DD statement in the receiving step
must be consistent with the unit name
in the passing step.

causes the creation, at the end of the
job step, of an index entry in the
system catalog pointing to the data
set, The data set can be referred to
by name in subsequent jobs, without
the need for volume serial number or
device type information from the

Job Control Procedures 67

programmer.
KEEP.

Cataloging also implies

UNCATLG

causes the index entry that points to
this data set to be removed from the
index structure at the end of this
step. The data set is not deleted.
If it is on a mass storage volume,
reference to it remains in the volume
table of contents.

Note: The absence of DELETE, KEEP,
PASS, CATLG, and UNCATLG indicates
that no special action is to be taken
to alter the permanent or temporary
status of this data set. 1If the data
set was created in this job, it will
be deleted at the end of the current
step. If the data set existed before
this job, it will be kept.

The third subparameter indicates the
disposition of the data set in the event
the job step terminates abnormally. This
is the conditional disposition
subparameter. Explanations for DELETE,
KEEP, CATLG, and UNCATLG are the same as
those for normal termination. The
following points should be noted when using
the third subparameter.

» If a conditional disposition is not
specified and the job step abnormally
terminates, the requested disposition
{the second subparameter) is performed.

» Data sets that were passed but not
received by subsequent steps because of
abnormal termination will assume the
conditional disposition specified the
last time they were passed. If a
conditional dispositionr was not
specified at that time, all new data
sets are deleted and all other data
sets are kept.

e A conditional disposition other than
DELETE for a temporary data set is
invalid and the system assumes that it
is DELETE.

- SYSOUT Parameter f{Routing Data Set through
the Output Stream)
schedules a printing or punching
operation for the data set described
by the DD statement.

SYSOUT_Subparameters:

classnane
specifies the system output class on
which the data set is to be written.
A classname is an instaillation
specified 1-character name designating
the output class to which the data set
is to be written. Each classnanme is

68

related to a particular output unit.
Valid values for the SYSOUT parameter
are A through 2 and 0 through 9. A is
the standard output class.

Note: Classes 0 through 9 should not
be used except in cases where the
other classes are not sufficient.
These classes are intended for future
features of systems.

{classname[,program-nane [,form-nol)
classname specifies the class
associated with the output device to
which the output data s€t is to be
written., oOutput writers route data
from the output classes to systenm
output devices. The DD statement for
this data set can also include a unit
specification describing the
intermediate mass storage device and
an estimate of the space required. TIf
there is a special installation
program to handle output operations,
its program-name should be specified.
Program-name is the member name of the
program, which must reside in the
system library. If the output data
set is to be printed or punched on a
specific type of output form, a
4-3digit form number should be
specified. Form-no. is used to
instruct the operator of the form to
be used in a message issued at the
time the data set is to be printed.

Notes:

If both the program-name and form-no.
are omitted, the delimiting parentheses
can be omitted.

» If the Direct SYSOUT Writer is used to
write a data set, both the form-no.
and program-name are ignored. All
parameters on the DD statement, i.e.,
UNIT or SPACE, are also ignored.

FPCB_Parameter_ {Specifying output for a 3211

Printer or_a_3525 Card_ Punch)
is used to select the forms control
image to be used to print an output
data set on a 3211 printer, or a 3525
card punch with the read feature. The
FCB parameter will be ignored if the
data set is not written to either one
of these devices. The FCB parameter,
the DDNAMRE parameter and the DCB
subparameters RKP, CYLOFL, and INTVL,
are mutually exclusive.

PCB Subparameters:

image-id
identifies the image to be loaded into
the forms control buffer. For further
information on the forms control

buffer, see the publication 0S/VS_Data
Management_ for System_ Programmers.

ALIGN

VERIFY
requests the operator to check the
alignment of the printer forms before
the data set is printed or to verify
that the image displayed on the
printer is the desired one.

AMP_Parameter {specifying Information for
YSAM Processing)
specifies information to be used for
processing by VSAM. The AMP parameter
and its subparameters are described
under "VSAM-only JCL Parameter" im the
chapter "VSAM File Processing".

ADDITIONAL DD STATEMENT FACILITIES

By specifying certain ddonames, the
programmer can request the operating systen
to perform additional functions. The
cperating system recognizes these
special-purpose ddnames:

e JOBLIB and STEPLIB to identify private
user libraries

» SYSABEND and SYSUDUMP to identify data
sets on which a dump may be written

SYSCHK to identify the checkpoint data
set written during the original
execution of a processing program.

® JOBCAT and STEPCAT to identify VSAN
user catalogs.

JOBLIB AND STEPLIB DD STATEMENTS

The JOBLIB and STEPLIB DD statements are
used to concatenate a user's private
library with the system library
(SYS1.LINKLIB). Use of JOBLIB results in
the system library being combined with the
private library for the duration of a job;
use of STEPLIB, for the duratiorn of a job
step. During execution, the library
indicated in these statements is scanned
for a module before the system library is
searched.

The JOBLIB DD statement must appear
immediately after the JOB statement and its
operand field must contain at least the
DSNAME and DISP parameters. The DISP
parameter must contain PASS as the second
subparameter if the library is to be made

available to later job steps. Only one
JOBLIB statement may be specified for a job
but more than one library may be specified
on a JOBLIB statement., The JOBLIB
statement is meant to concatenate existing
private libraries with the system library.
It need not be specified for load modules
created in the job or for permanent members
of the system library {see “Checklist for
Job Control Statements" and "Libraries" for
exanmples).

The STEPLIB DD statement may appear in
any position among the DD statements for
the job step. The library should be
defined as OLD. If the library is to be
passed to other job steps, the second
subparameter of the DISP parameter should
be coded PASS. A later job step may then
refer to the library by coding its STEPLIB
DD statement as follows:

//STEPLIB DD DSNAME=*.stepname.STEPLIB, X
7/ DISP={OLD,PASS)

The STEPLIB statement overrides the
JOBLIB statement if both are present in a
job step.

SYSABEND AND SYSUDUMP DD STATEMENTS

The ddnames SYSABEND or SYSODUMP
identify a data set on which an abnormal
termination dump may be written. The duamp
is provided for job steps subject to
abnormal termination.

The SYSABEND DD statement is used when
the programmer wishes to include in his
dump the problem program storage area, the
syster nucleus, and the trace table if the
trace table option had been requested at
system generation time.

The SYSUDUMP DD statement is used when
the programmer wishes to include only the
problenm prograr storage area.

The programmer may rout the dump
directly to an output writer by specifying
the SYSOUT parameter on the DD statement.
In a multiprogramming environment, the
programnmer may also define the intermediate
direct-access device by specifying the UNIT
and SPACE parameters.

SYSCHK DD STATEMENT

The SYSCHK DD statement is regquired when
a job is being submitted for deferred
checkpoint /restart. It defines a

Job Control Procedures 69

checkpoint data set written during the
original execution of a processing progranm.
For detailed information about the
checkpoint/restart facilities, see the
publication 0S/VS_Checkpoint/Restart.

The SYSCHK DD statement must immediately
precede the first EXEC statement of the
resubmitted job when restart is to begin at
a checkpoint. The RESTART parameter nmust
be included on the JOB statement; otherwise
the SYSCHRK DD statement will be ignored.

Different SYSCHK DD statement parameter
specification rules apply depending on
whether the checkpoint data set is
cataloged or not. These rules are
discussed in detail in the publication
0S/VS _JCL_Reference.

JOBCAT AND STEPCAT DD STATEMENTS

The JOBCAT DD statement specifies the
VSAM user catalog that is to be available
throughout a VSAM processing job, while the
STEPCAT DD statement specifies the VSAM
user catalog that is to be available for a
single job step in a VSAM processing job.
For more detailed information on the
facilities provided by the JOBCAT and
STEPCAT DD statements, as well as the
specification rules, see the publication
QS/VS_Virtual Storage Access_Method (VSAKM)

term PEND in the operation field.
statement is not used for cataloged
procedures, For further information about
in-stream procedures, see "Testing a
Procedure as an In-Stream Procedure" in
"Jsing the Cataloged Procedures.”

The PEND

COMMAND _STATEMENT

The operator issues commands to the
system via the console or a command
statement in the input stream. Conmmands
can also be issued to the system via a
command statement in the input strean.
Hovwever, this should be avoided since
compands are executed as they are read and
may not be synchronized with execution of
job steps. Command statements must appear
immediately before a JOB statement, an EXEC
statement, a null statement, or another
command statement.

The command statement contains
identifying characters {//) in columns 1
and 2, a blank name field, a command, and,
in most cases, an operand field. The
operand field specifies the job name, unit
name, or other information being
considered.

Note: A command statement cannot be

Programmer's gGuide.

PROC _STATEMENT

The PROC statement may appear as the
first control statement in a cataloged
procedure and must appear as the first
control statement in an in-strean
procedure. The PROC statement must contain
the term PROC in its operation field. For
a cataloged procedure, the PROC statement
assigns default values to symbolic
parameters defined in the procedure; its
operand field must contain symbolic
parameters and their default values. The
PROC statement marks the beginning of an
in-stream procedure; its operand may
contain symbolic parameters and their
default values.

The PEND statement must appear as the
last control statement in an in-stream
procedure and marks the end of the
in-stream procedure. It must contain the

70

continued, it nmust be coded on one card or
card image.

DELIMITER_STATEMENT

The delimiter statement marks the end of
a data set in the input stream. The
identifying characters /* must be coded
into columas 1 and 2, the other fields are
left blank. Comments are coded as
necessary.

Note: The end of a data set need not be
marked in an input stream that is defined
by a DD * statement.

NULL_STATEMENT

The null statement is used to mark the
end of a job ir an input stream. It causes
the card reader file to be effectively
closed. The identifying characters // are
coded into columns 1 and 2, and all

remaining columans are left blank.

COMMENT STATEMENT

The comment statement is used to enter
any information considered helpful by the
programmer. It may be inserted anywhere in
the job control statement stream after the
JOB Statement. {The comment statement
contains a slash in columns 1 and 2, and an
asterisk in column 3. The remainder of the
card contains comments.) Comments are
coded in columns 4 through 80, but a
comment may not be continued onto another
statement.

Wher the comment statement is printed on
an output listing, it is identified by the
appearance of asterisks in columns 1
through 3.

BATCH COMPILATION

The batch compile feature is used to
compile multiple programs or subprogranms
with one invocation of the compiler. The
object programs produced from the batch
compilation may be link-edited into either
one load module or separate load modules.

This feature must be requested at
compile time by specification of BATCH in
the PARM field or, if a cataloged procedure
is used, in the PARM.COB field of the EXEC
card. In the BATCH mode, all options
specified on the EXEC card, as well as all
default options, apply to every progranm in
the batch unless specific options are
overridden, via the CBL card, for an
individual compilation.

The CBL card must be the first card in
each program within a batch mode. The CBL
card, in addition to separating logical
program units, may be used to change
existing options (as they were specified
or defaulted to on the EXEC card) for that
individual program, and has the following
format: -

.
|
JCBL [option 1][,option 2]...[,0ption’'n]
]

(%

IR

The letters CBL may appear in any three
consecutive columns 1 through 72, and the
option{s) specified may be any PARM
compiler option(s) except SIZE, BUF, BATCH,
L120, 1132, SYMDMP, and LVL, which are
ignored if indicated.

Notes:

» A sequence number may appear in columas
1 through 6 of the CBL card.

¢ In most cases, an option specified on
the CBL card overrides the correspond-
ing EXEC card option for compilation
of that one program only. However,
this is not true in the case of options
that require use of a file that will
be used in a subsequent compilation
in the batch, or in a subsequent job
step. Generally speaking, it is unwise
to use the CBL card to specify any such
option, because use of that file in
compilation may cause an abend. Options
in this category are LOAD, LIB, DECK,
FDECK, and CDECK.

If some programs in a batch compilation
require the use of one of these options
and the other programs do not, specify
the option on the EXEC card, and then
specify the NO... form of the option

on those CBL cards where the option is
not wanted. For example, if programs
2, 3, and 5 in a batch compilation
require FDECK and programs 1 and 4
require NOFDECK, then FDECK should

be specified (or defaulted to) on the
EXEC card, and NOFDECK specified on

the CBL cards for programs 1 and 4,

(It would not be possible to specify

or default to NOFDECK on the EXEC

card and then override it with FDECK
on a CBL card.)

» If a CBL card is present and BATCH is
not specified on the EXEC card, the CBL
card is regarded as an invalid
statement.

e If the compiler NAME option is
specified on the CBL card, a linkage
editor NAME control card is generated
for this compilation, facilitating the
link-editing of the program into a
separate load module.

* The output of a batch compilation may
be executed only if the member name
specified at compile time is the name
specified at execution time.

e The batch option may be used in
conjunction with BASIS. This facility
provides the COBOL programmer with the
ability to combine a (multiple) BASIS
library member {s) and/or a {(multiple)
COBOL souarce prograr{s) with one
invocation of the compiler.

» The BATCH option and the SYNMDMP option
are mutually exclusive.

Job Control Procedures 71

When the batch option is used in 1.
combination with BASIS, the following rules
apply:

1. All the BASIS library members to be
compiled must be members of the
partitioned data set(s) referred to by
the SYSLIB DD data set name({s).

Bach BASIS library member must contain
only one source progran.

Figure 13 shows that with one invocation
of the COBUCL cataloged procedure ({see the
chapter "Using the Cataloged Procedures"),
the programs COMPILE1, COMPILE2, and
COMPILE3 are compiled and twvwo load modales
created as follows:

COMPILE? and COMPILE2 are link-edited
together to form one load module with
the member name of COMPILE2, a typical
called/calling situation. (For
further discussion of articulation
between COBOL programs, see the
chapter "Called and Calling
Programs™.) In this case, the entry
point of the load module is still the
first program, COMPILE1l.

COMPILE3 is link-edited to create the
load module with the member name of
COMPILES3,

Fiqure 14 shows that with one invocation

of the COBUCL procedure the programs PROG1
and PROG2 and BASIS library members PAYROLL
and PAYROLL2 are compiled and four load

modules are created.

{An example of how to

execute load modules created with the BATCH
feature using the procedure COBUCL is given
in Figure 13.)

T
{//jobnane

o

T
“438In the compile step, no special JCL is needed for SYSLIN because the COBUCL cataloged
{ procedure is used {(see the chapter "Using The Cataloged Procedures").

1

JOB 1,BATCH, MSGLEVEL=1 {

{//COMPILE EXEC! COBUCL,PARM.COB="BATCH,NANE' {
1//COB.SYSIN DD * |
I CBL NONKAME 1
i ID DIVISION. i
] PROGRAM-ID. COMPILE1l. 1
i . |
i . i
{CBL NAME {
i ID DIVISION.]
[} PROGRAM-ID. COMPILE2. {
i - |
§ - 1
{CBL NAME]
1 ID DIVISION. i
i PROGRAM-ID., - COMPILE3. J
i - {
} - |
1/*]
{//LKED,SYSLMOD DD DSN=BATCHRUN ,SPACE={TRK, {10,5,2)) gece=]
L W }
{//COMPILE2 EXEC PGM=COMPILE2]
{//STEPLIB2 DD DSN=BATCHRUNZ2 ,DISP=SHR,eue=® i
{// {Cards needed to execute COMPILE1 and COMPILE2) i
1/*) H
1//COMPILE3 EXEC PGM=COMPILE3 y
1//STEPLIB DD DSN=BATCHRUN,DISP=SHR,eu.e. i
{//7 (Cards needed to execute COMPILE3) 1
i

1

}

|

1

3

12In the link-edit step, a partitioned data set is created with the DSN of BATCHRUN.
4

bFigure 13.

72

Example of a Batch Compilation

¥

|//jobname JOB 1,BATBASIS,MSGLEVEL=1
{//COMP EXEC COBUCL,PARM. COB=*BATCH,NAME,LIB"
1//COB.SYSLIB DD DSN=LIBPOS,...!
{//COB.SYSIN DD *

| CBL NAME, NOLIB

] IDENTIFICATION DIVISION.

1 PROGRAN-ID. PRO61.

{ .

} -

{ CBL NAME

{BASIS PAYROLL

| CBL NAME

{BASIS PAYROLL2

{ CBL NAME, NOLIB

| IDENTIFICATION DIVISION

i PROGRAM-ID. PROG2.

1 .

] .

1/%*

{//LRKED.SYSLMODZ DD DSN=BATCHBAS ,SPACE=(TRK, {10,5,2)) se--

1/7*

¥
{1 This partitioned data set contains as separate members PAYROLL and PAYROLLZ.
{2The load modules of these four COBOL programs exist as separate members of a

| partitioned data set named BATCHBAS.

i

b e . e VD s W N e - G A s S s i it sitate e

Figure 14.

Creation of Four Load Modules with Programs PROG1 and PROG2 and BASIS

Library Members PAYROLL and PAYROLL2

DATA_SET_REQUIREMENTS

COMPILER

A nunber of data sets may be defined for
a compilation job step; six of these
{sysur1, syYsuT2, Ssysur3, SyYsuT4, SYSIN, and
SYSPRINT) are always required. SYSUTS5 is
required if the SYMDMP or TEST option is
invoked. SYSUT6 is required if FIPS
flagging is requested. Additional data
sets {SYSLIN, SYSPUNCH, SYSTERM, and SYSLIB
and/or other COPY libraries) are optional.

For compiler data sets other than
utility data sets, a logical record size
can be specified by using the LRECL and
BLKSIZE subparameters of the DCB parameter.
The values specified must be permissible
for the device on which the data set
resides. LRECL equals the logical record
size, and BLKSIZE equals LRECL multiplied
by n, where np is equal to the blocking
factor. If this information is not
specified in the DD statement, it is
assumed that the logical record sizes for
the unblocked data sets have the following
default values:

Unblocked Default
Data Set Yalue_ (bytes)
SYSIN 80
SYSLIN 80
SYSPUNCH 80
SYSLIB or other
COPY libraries 80
SYSPRINT 121 or 133
SYSTERM 121
Note: The default for SYSPRINT has a value

of 133 if 132 is selected with LSTCOMP or
LSTONLY.

The ddname that must be used in the DD
statement describing the data set appears
as the heading for each description that
follows. PFigure 15 lists the function,
device requirements, and allowable device
classes for each data set. {See "Appendix
D: Compiler Optimization" for further
information on blocked compiler data sets
other than utility data sets.)

SYSUT1, SYsur2, SYSUT3, SYSUTH4, SYSUTS5,

The DD statements using these ddnames
define utility data sets that are used by
the compiler when processing the source
module. The data set defined by the SYSUT1
DD statement must be on a mass storage
device. Except for SYSUTS5, which is needed
at execution time, these data sets are

Job Control Procedures 73

temporary and have no connection with any
other job step. For example, the DD
statement

//SYSUT1 DD UNIT=SYSDA,SPACE={TRK, {(40,10))

specifies that the data set is to be
written on any available mass storage
device, with a primary allocation of 40
tracks. Additional tracks, if required,
are to be allocated in groups of 10. The
data set is to be deleted at the end of the
job step (by default).

Note: The NULLFILE or DUMMY parameter or
the RLSE subparameter of the SPACE
parameter should never be specified for any
of these data sets. 1In addition, the data
sets must be single voluwme, since the
compiler uses the TCLOSE facility
extensively and TCLOSE will not reposition
multivolume data sets.

SYSIN

The data set defined by the SYSIN DD
statement contains the input for the
compiler, i.e., the source module
statements that are to be processed. The
data set assigned to this DD statement is a
sequential data set, or a member of a
partitioned data set. It may be part of
the input strear. 1If so, it is commonly
referred to as a SYSIN data set. For
example,

//SYSIN DD *

specifies that the input data set follows
in the input strean.

SYSPRINT

This data set is used by the compiler to
produce a listing. Output may be directed
to a printer, a mass storage device, or a
magnetic~tape device. The listing will

74

include the results of the default or
specified options of the PARM parameter
{i.e., diagnostic messages, the object code
listing). For example, in the DD statement
//SYSPRINT DD SYSOUT=A

SYSOUT is the disposition for printer data
sets, and A is the standard output class
for printer data sets.

SYSTERM

The data set defined by the SYSTERM DD
statement is used for certain compiler
output for a TSO terminal user when the
TERM option is specified. The compiler
output consists of diagnostic and progress
messages and compiler statistics. For
examnple:

//SYSTERM DD TERM=TS

TERM=TS indicates that the SYSTERM data
set is to be directed to the TSO terminal.

SYSPUNCH

The data set defined by the SYSPUNCH DD
statement is used to punch an object module
deck or, if FDECK or CDECK is specified, to
punch a source deck. This data set can be
directed to a card punch, mass storage
device, or magnetic tape. For exaaple, in
the DD statement
//SYSPUNCH DD SYSOUT=B
SYSOUT is the disposition for punch data
sets, and B is the standard output class
for punch data sets.

Note: The SYSPUNCH DD statement is not
required if NODECK is in effect. SYSPUNCH
may be either a sequential data set or a
member of a PDS.

T

|Hote: Once created, a SYSUT5 data set can be moved only to a device of the same type.
fThat is, if the SYSUT5 data set is put on tape at compile time, that data set cannot be
{moved to a disk at execution time. The SYSUTS data set must be unblocked.

Ll k] T L) L] 3
1 1 1] Device 1 Allowvable 1
| ddname | Ty pe 1 Function | Requirements | Device Classes |
t 4 + + 4 {
ISYSIN] Input/output{Reading the source jCard reader 1SYSSQ0, SYSDA, or the]
1 {required) i iprogranm]Intermediate storagelinput stream device |}
1 1 H | { (specified by DD * |
i i i i for DD DATA) 1
ey I 1 t 1
ISYSPRIRT | j¥iriting the storage |Printer 15Y5S5Q, SYSDA, stand-{
| (required) | imap, listings, and {Intermediate storagejard output class A |
1 1 jand messages { i |
- t } + 4
JSYSTERNM i {¥riting diagnostic {Output device 1 1
{ {optional)] tand progress messages|TSO terminal 1 i
- t -+ + L]
{SYSPUNCH 1} {Punching the object (Card punch {SYSCP, SYSSQ, SYSDA,|
{ {optional) | jmodule deck fMass storage jstandard output 1
1 i 1 {Magnetic tape jclass B i
+ + } 4

{SYSLIN] {Creating an object {Mass storage 1SYSSQ, SYSDA {
1 (optional) i fmodule data set as jMagnetic tape] 1
|] joutput from the com- | 1 |
1 i jpiler and input to i] 1
{ { fthe linkage editor] 1 |
H t + + 1 1
1SYSUT1 jUtility {Work data set needed {Mass storage §SYSDA]
] {required)] {by the compiler { i {
| 1 jduring compilation i]]
v o + $ 1
{1SYSUT2 i jWork data set needed |Mass storage 15Y550Q, SYSDA]
{ {required) | |by the compiler {Magnetic tape 1 i
i 1 jduring compilation i ' 1 1
- - % } . 4
{SYSOT3 i JWork data set needed |Mass storage {SYSSQ, SYSDA }
{ {(required) { {by the compiler {Magnetic tape | 1
i [] jduring compilation 1 { {
R | | o + ¢ i
{SYSUTY i {Work data set needed |Mass storage §SYSSQ, SYSDA]
j {(required) {by the compiler jMagnetic tape 1 1
1 jduring compilation { i i
A | i 4 } 4
}SYSUTS 1 j¥ork data set needed |Mass storage }1SYSSQ, SYSDA]
1 1 |vhen SYMDMP or TEST |Magnetic tape 1 i
i i joption is in effect | i i
t t + + 4 4
1SYSUTH 10tility jWork data set needed |Mass storage 1SYSSQ, SYSDA i
i i {when LVL option is injMagnetic tape] i
1 { jeffect | 1 !
b + + $ +]
§SYSLIB jLlibrary jOptional user source jMass storage |SYSDA 1
jand/or i {program libraries] L]]
jother COPY|] } i {
flibraries | 1 1]]
{ {(optional)| { ! i !
1 A L A A “’
1

{

H

3

Figure 15. Data Sets Used for Compilation

SYSLIN an object module. It may be on a mass
storage or magnetic tape device. For
example:

The device defined by the SYSLIN DD
statement is used by the compiler to store

Job Control Procedures 75

//SYSLIN DD DSNAME=£&GOFILE, X
/7 : DISP= (MOD,PASS), X
/7 UNIT=SYSDA, X
/7 SPACE= (TRK, {30, 10})

The temporary name of the data set is
GOFILE, the parameter DISP={MOD,PASS)
indicates that the data is to be created or
added to in this job step and is to be
passed to another job step, which may be
the linkage editor step. The device to be
assigned for storage is a mass storage
device on which 30 tracks are initially
allocated to the data set. If more space is
needed, tracks are allocated 10 at a time.

Note: The SYSLIN DD statement is not
required if NOLOAD is in effect. SYSLIN
may be either a data set or a member of a
PDS.

SYSLIB_and/or Other CQOPY Libraries

These DD statements define the libraries
{PDS's) that contain the data reguested by
COPY statements {(in the source module) or
by a BASIS card im the input stream. The
DD statement must be SYSLIB if a BASIS
library is to be included, or if the COPY
statement does not specify a library name
{by qualifying the text name). Libraries
must always be on mass storage devices.
Note that more tham one partitioned data
set may be used for the library function by
concatenating them with SYSLIB (see
"Libraries" for an example). Although only
one SYSLIB statement may be used in a
compilation job step, multiple user-defined
COPY libraries may be used. For exanple,
in the DD statements

//SYSLIB DD DSNAME=USERLIB,DISP=0LD
//BCUSELIB DD DSNAME=COPYX,DISP=0OLD
//PRIVLIB DD DSNAME=COPYZ,DISP=OLD

the names of the source libraries are
USERLIB, COPYX, and COPYZ. DISP=0LD
indicates that the libraries have been
created in a previous job and are
cataloged, or have been created in a
previous step in this job, No other
information need be given if the specified
libraries have been cataloged.

z

library is 16K (there is no such
restriction for BASIS).

tes:. Maximum blocksize for any COPY

When concatenating SYSLIB, the library
with the largest blocksize must be
specified in the first DD statement.

76

The SYSLIB and other COPY library DD
statements are not required if NOLIB is in
effect.

LINKAGE EDITOR

Pive data sets are required for linkage
editor processing. Others may be necessary
if secondary input is specified. 1In the
following discussions, the ddname that must
be used in the DD statement describing the
data set appears as the heading for each
description of the particular data set.

For any user-defined data set, the ddname
is defined by the programmer. Figure 16
lists the function, device requirements,
and allowable device classes for each data
set.

SYSLIN

The SYSLIN DD statement defines the data
set that is primary input to linkage editor
processing. Normally this data set
consists of the output from a previous
compilation job step. The primary input
may also be linkage editor control
statements, such as the INCLUDE, LIBRARY,
Or OVERLAY statements (see "Calling and
Called Programs®”). The input device
assigned to this data set is either the
device transmitting the input stream, if
the input is an object module deck, or a
device designated by the programmer.
However, the data set may simply be passed
from the previous compilation job step.

For example, in the DD statement

//SYSLIN DD DSNAME=*.STEPNAME.SYSLIN, X
4 DISP={OLD,DELETR)

the data set is defined in the SYSLIN DD
statement contained in the compiler job
step, STEPNAME. DISP={(OLD,DELETE)
indicates that the data set was created in
a previous job step and is to be deleted at
the end of this job step.

SYSPRINT

The data set defined by the SYSPRINT DD
statement is used by the linkage editor to-
produce a llstlng. For exanmple:

//SYSPRINT DD SYSOUT=A

Output may be directed to a printer or to
an intermediate data set. The listing may
include any options specified by the PARM
parameter of the EXEC statement {a module
map or cross reference list, diagnostic or
informative messages, etc.).

modules

r Y Y E) v M
{ 1] 1 Device 1 Allowable |
} ddname] Type | Function ! Requirements | Device Classes i
1 L] i i 3
v ¥ L} L) T 9
{SYSLIN JInput/ |Primary input data,]Mass storage |{S5YSSQ, SYSDA, or the input}
| {required) {output | normally the output |Magnetic tape | stream device (specified|
i 1 { of the compiler {Card reader { by DD * or DD DATA) }
| { + + 4
§ SYSPRINT { | Diagnostic messages {Printer 15Y550, standard output |
1 {required) i {Informative messages JIntermediate | class A i
{ i { Module map 1 storage] i
] 1 jCross-reference list | 1 |
t { 1 + % 4
§SYSLMOD i jOoutput data set for jMass storage |JSYSDA {
1 (required)] the load module { i]
F $ { + +— 1
1SYSOT1 jutility| vork data set lBass storage {SYSDA 1
]} {required) | i | : i {
+ t + + 4
{SYSLIB fLibraryj Automatic call library|Mass storage |SYSDA H
{ (required) | { (SYS1.COBLIB is the { 1
{ for COBOL i | name of the COBOL i 1 {
{ Library | ! subroutine library) | 1 |
{ subroutines | 1 1 i i
t + + } { 4
ISYSTERN 1 {Numbered error/warningjPrinter i 1
H {required 1 { messages {TSO terminal | 1
I if TERM op- | | i i i
{1 tion is 1] | ! 1
| specified) | i } i i
| + 4 } {
|User-specified}] -- {Additional object {Mass storage JSYSDA, SYSSQ i
1 {optional) |} § modules and load lMagnetic tape | i
| 1 i | 1

i A i |

i
FPigure 16.

SYSTERN

The SYSTERM DD statement is optiomal; it
describes a data set that is used only for
nuebered error/warning messages. Although
intended to define the terminal data set
vhen the linkage editor is being used uader
TS0, the SYSTERM DD statement can be used
in any environment to define a data set
consisting of numbered error/warning
messages that supplements the SYSPRINT data
set.

SYSTERM output is defined by including a
SYSTERM DD statement and specifying TERM in
the PARM field of the EXEC statemeat. When
SYSTERM output is defined, numbered
messages are then written to both the
SYSTERM and SYSPRINT data sets.

The SYSTERM DD statement is specified as
followus:

//SYSTERN DD SYSOUT=A

Data Sets Used for Linkage Editing

SYSLN0D

The SYSLMOD DD statement defines the
output data set, in this case the load
module. The load module must be placed in
a library as a named member. The library
can be the Link Library {SYS1.LINKLIB) or a
private user-defined library. Such
libraries must always reside on a mass
storage device, aad space for the library
is allocated when the library is created.
For example, in the DD statement

//SYSLMOD DD DSNAME=SYS1.LINKLIB(MEMBER),X
7/ DISP=0LD :

the load module, MEMBER, is stored as a
memrber of the link library. DISP=0LD
indicates that the library is already
created and additions are to be made to it.

//SISLMOD DD DSNAME=LIB1{BALANCE), X
/7 DISP={NEW,CATLG), X
7/ VOLUME=SER=111111, X
/7 SPACE= {TRK, {40,10,1)), X
7/ UNIT=SYSDA

Job Control Procedures 77

The load module, BALANCE, is to be a member
of a library, LIB1, which is to be created
in this job step, with BALANCE as its
firstmember. The mass storage volume to
which it is directed is identified by the
serial number, 111111, A primary quantity
of 40 tracks is allocated to the library
with an additional allocation for one
256-byte record to be used for the
directory. If more space is needed for the
library, tracks are added, 10 at a time.
{However, no additional space can be
allocated for the directory.)

Note: If the load module is placed in a
private library, the JOBLIB or STEPLID DD
statements must be specified in subsequent
jobs that execute load modules from the
library.

SYsUIl

The SYSUT1 DD statement defines a
utility data set used by the linkage editor
when processing object modules and load
modules. The data set must be on a mass
storage device. It is a temporary data set
and has no connection with any other job
step. For example:

//S3YSUT1 DD UNIT=SYSDA,SPACE={TRK, {40,10))

The data set is initially allocated 40
tracks on any available mass storage
device, If more space is needed, tracks
are added, 10 at a time. A temporary name
is assigned to the data set for the job
step.

SYSLIB

The SYSLIB DD statement assigns the
named partitioned data set to the automatic
call library from which modules may be
automatically obtained by the linkage
editor to resolve external references.

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR

This statement assigns the COBOL subroutine
library to the automatic call library.

When there is a possibility that the
compiler may have generated calls to any
COBOL library subroutines, the SYSLIB
statement must be specified (see "Appendix
B: COBOL Library Subroutines" for a list
of library subroutines, their functions,
and entry points).

78

Uger-sSpecified Data_ Sets

Additional data sets may be defined for
linkage editor processing. These data sets
may be used as additional input sources of
object modules or load modules. They may
also be concatenated with the primary inpat
data set or the automatic call library (see
niLibraries®).

LOADER

One data set {(SYSLIN) is required for
loader processing. Three are optional
(SYS1LIB, SYSLOUT and SYSTERNM). (These
ddnames can be changed during systenm
generation with the LOADER macro
instruction.) In addition, any DD
statements and data required by the loaded
program must be included in the input deck.

In the following discussions, the
default ddname for the DD statement
describing the data set appears as the
heading for each description of the
particular data set.

SYSLIN

The SYSLIN DD statement defines the data
set that is primary input to the loader.
This input can be either object modules
produced by the COBOL compiler or load
modules produced by the linkage editor, or
both. The loader allows both object module
and load module concatenation on SYSLIN.
The data sets defined by the SYSLIN DD
statements can be either sequential data
sets or members of a partitioned data set,
or both.

SYSLIB

The SYSLIB DD statement defines the data
set containing IBM or user-written library
routines to be included in the loaded
program. The SYSLIB data set is searched
when unresolved references remain after
processing SYSLIN and, optionally,
searching the 1iank pack area of 0S/VS2 or
the resident reenterable modules feature of
0S/VS1. The library may contain either
object modules or load modules but not
both. The data set defined by the SYSLIB
DD statement must be a partitioned data
set.

SYSLOUT

The SYSLOUT DD statement defines the
data set used for error and warning
messages and for an optional map of
external references. The data set must be
a sequential data set. The record format
of SYSLOUT is always assumed to be FBSA.

EXECUTION TIME DATA SETS

Any number of data sets may be used for
execution time processing. These data
sets, or files, are identified in the
source program, and each must be described
by a DD statement. The ddname is used to
link the DD statement to the COBOL ASSIGN
clause in the source program that specifies
the ddname. DD statement requirements for
the DISPLAY, ACCEPT, EXHIBIT, and TRACE
statements are discussed in the following
text. DD statements that specify COBOL
debugging aids and an abnormal termination
dump are also discussed. Use of either the
Sort or the RERUN feature requires
additional DD statements., For information
about these statements, see "Using the Sort
Feature” and "Using the Checkpoint/Restart
Feature.®

DISPLAY Statement

The DISPLAY statement reguires an
associated DD statement unless the data is
to be displayed on the console. The DD
statements needed for each form of the
DISPLAY statement are as follows:

Example 1:

jdentifier
DISPLAY ee« UPON SYSPUNCH

literal
//SYSPUNCH DD applicable parameters

It is assumed that SYSPUNCH is an
unblocked data set that has a logical
record length of 80 characters. For
example:

//SYSPUNCH DD SYSOUT=B
However, the programmer can specify a
blocked data set by using the subparameters

of the DCB parameter as follows:

RECFM=FB, BLKSIZE=n*80

where:

n is the blocking factor

SYSPUNCH must be on a device where blocking
is permitted. For example:

//SYSPUNCH DD UNIT=SYSSQ, X
// DCB= (RECFM=FB, X
7/ BLKSIZE=160), X
/7 LABEL= (, NL)

Example 2:

When the UPON option is omitted, SYSOUT is
the default option.

identifier
DISPLAY aee
literal

//SY500T DD applicable parameters

It is assumed that SYSQUT is an
unblocked data set that has a line width of
121 characters {1-byte for the control
character).

For example:
//SY¥S0UT DD SYSOUT=A

Hovever, the programmer can specify an
alternate line width, recording mode,
and/or a blocked data set by using the DCB
parameter. To specify an altermnate line
width, the subparameters of the DCB
parameter are used as follows:

LRECL=line width+1,BLKSIZE=LRECL value

To specify a blocked data set, the
subparameters are used as follows:

RECFM=FBA,LRECL=1line width+1,
BLKSIZE=n* {LRECL value),

where:
n is a blocking factor

SYSOUT must be on a device where blocking
is permitted. The extra character in LRECL
allows for the carriage control character.
For example, to specify an alternate line
width, the following SYSOUT statement can
be used.

//SYSouUT DD SYSOUT=A,DCB= {LRECL=133, X
7/ BLKSTZE=133)

Job Control Procedures 79

To specify a blocked data set, the
following SYSOUT statement can be used.

//3YS0UT bDp DSNAME=PRINTOUT, X
7/ UNIT=SYSDA,c-a, X
/7 DCB={RECFM=FBA, X
/7 LBECL=121, X
7/ BLKSIZE=605), X
4 VOLUME=SER=111111

Note:

If the problem uses the Sort/Merge
feature, remember that SYSOUT is the
default error message data set, and a
conflict can arise. See "Additional DD
Statements” in the chapter "Using the
Sort/Merge Feature" for suggested
solutions.

Example 3:

The DISPLAY statement can use a
mnemonic-name rather than a system-name.

identifier
DISPLAY »e+JPON mnemonic-nane

literal

where mnemonic-name is associated with the
word SYSPUNCH or SYSOQUT in the Environment
Division.

"SYSPUNCH
: DD applicable parameters

ACCEPT Statement

The ACCEPT statement requires an
associated DD statement unless the data is
being accepted from the console, format 2
of the ACCEPT statement is used, or ACCEPT
MESSAGE is used {making possible use of the
options DATE, DAY, and TIME). The DD
statements for each form of the ACCEPT
statement are as follows:

Example 1:

ACCEPT identifier

when the FROM option is omitted, SYSIN is
the default option.

//SYSIN DD applicable parameters

Example 2:
ACCEPT identifier FROM mnemonic-name

vhere mnemonic-name is associated with the
word SYSIN in the Environment Division.

//SYSIN DD applicable parameters
It is assumed that SYSIN is an unblocked

data set that has a logical record length
of 80 characters.

80

For exaample:
//SYSIN DD *

{data)
Ve

However, the programmer can specify a
blocked data set by using the subparameters
of the DCB parameter as follows:
RECFM=FB,BLKSIZE=n*80

where:

n is the blocking factor

SYSIN must be on a device where blocking is

permitted. For example:

//SYSIN DD UNIT=2400,..., X
7/ DCB= (RECFM=FB, X
/7 BLKSIZE=160), X
V4 LABEL= (, NL)

If a logical record length of other than 80
characters is desired, it must be specified
in the LRECL field of the DCB parameter.

EXHIBIT or TRACE Statement

The EXHIBIT or TRACE statement regquires
a SYSOUT DD statement as discussed for
DISPLAY.

Note: If the job step already includes a
SYSOUT DD statement for some other use,
another may not be inserted since all
SYSOUT output from any source in the job
step will be merged onto the one SYSOUT
data set defined for that job step.

CQBOL_Debugging Aids

1f one or more of the options FLOW,
STATE, and SYMDMP is in effect, the
following DD statement must be used:
//SYSDBOUT DD applicable parameters
If the output is routed through the output
stream and written on a system output
device, the following may be usead:
//SISDBOUT DD 'SYSOUT=A

The recording mode is FBA. The user
can, however, specify a blocked data set
and alternate recording mode by using the
DCB sabparameters.

Note: It is assumed that SYSDBOUT is an
unblocked data set that has a line width of
121 bytes (one byte for a control
character) .

See the chapter "Symbolic Debugging
Features" in this manual.

The following DD statement must be used
to make the COBOL library module ILBODBEO
available at execution tinme:

//STEPLIB DD DSN=SYS1.COBLIB,DISP=SHR

If an error message is printed by the
debugging modules, the COBOL library module
ILBODBEO is loaded dynamically from
SYS1.COBLIB. This module is not link
edited into the COBOL object progranm.

SRRss s Al

To obtain an operating systenm
hexadecimal dump in case the job is
abnorpally terminated by the system, or by
executing the COBOL statement CALL
*ILBOABNO' USING identifier, one of the
following DD statements must be used:

//SYSABEND DD applicable parameters.
//SYSUDUMP DD applicable parameters.

The dump provided when the SYSABEND DD
statement is used includes the systen
nucleus, the program storage area, and a
.trace table, if the trace table option was
requested at system genmeration. The
SYSUDUMP DD statement provides a dump of
the program storage area. The applicable
parameters are those for a physical
sequential data set. If the dump is rouated
through the output stream and written on a
system output device, the following DD
statement may be used:

//SYSUDUMP DD SYSOUT=A
Note: 1If a COBOL program abnormally

terminates, then a formatted dump is
provided for all COBOL programs compiled

with the SYMDMP option which could include
the abnormally terminating program and its
callers, up to and including the main
program, The //SYSABEND or //SYSUDUMP DD
card need not be included. For a
discussion of the symbolic dumping option,
as well as of other COBOL symbolic
debugging options, see the chapter entitled
®"symbolic Debugging Features."

COUNT Option

If the COUNT option is in effect, the
follovwing DD statement must be used:

//SISDBOUT DD applicable parameters

Por example, if the output is routed
through the output stream and written on a
systea output device, the following may be
used:

//SYSDBOUT DD SYSOUT=A

In addition to the SYSDBOUT DD
statement, the SYSCOUNT DD statement must
also be used:

//SYSCOUNT DD SYSOUT=A

The user may concatenate a library of
selected COBOL object-time subroutines with
the 1ink library. (For information on how
this can be accomplished, see the section
#Sharing COBOL Library Subroutines® in the
chapter entitled "Libraries").

Job Control Procedures 81

USER_NON-VSAM PILE PROCESSING

This section describes the processing of
non~-VSAM files. A description of VSAM file
processing is in the section "VSAM File
Processing.”

USER-DEFINED FILES

Files that are processed in a COBOL
program must be described as data sets to
the operating system. Whenever a file is
specified in a program by the following
statement:

SELECT [OPTIONAL) file-name
ASSIGN TO assignment-name

this file must be described in aa FD
file-name entry and in a DD statement in
the execution-time job step, The ddname in
the DD statement is a portion of the
assignment-name {sometimes also known as
#system—-name") specified in the ASSIGN TO
clause. In the assignment—-nane

UT-2400~S-TAXRATE

TAXRATE is the ddname portion of the
assignment-name,

Note: The device-number specified in the
assignment-name is ignored by the compiler.
Actual device allocation is a function of
the DD statement.

FILE NAMES AND DATA SET NAMES

The terms "file" (COBOL usage) and "data
set" (operating system usage) have
essentially the same meaning. There may,
however, be a difference between the
file~-name and the data set name. The data
set name always represents a specific data
set. The file-name can, at different
times, represent different data sets. The
DD statement allows a programmer to select,
at the time his program is executed, the
specific data set that is to be associated
with a particular file-name. This facility
can be especially powerful when applied to
‘input data sets.

The file-name is a name known within the
COBOL program., Changing a file-nanme

82

requires changing input/output statements
and recompiling the program. Changing a DD
statement when a program is executed is a
simple procedure.

As an example, comnsider a COBOL progran
that might be used in exactly the same way
for several different master files. Tt
might contain the clause

SELECT MASTER ASSIGN TO
DA-3330-D-MASTERA... .

In that case, the following DD statements,
used at different times, would assign the

D e i

different named data sets to the program:

//MASTERA DD
//MASTERA DD
//MASTERA DD

DSNAME=MASTER1,...
DSNAME=MASTER2,...
DSNAME=MASTER3,...

If the first DD statement appears in the

job step that calls for execution of the

program, any reference within the program
to MASTER is a reference to the data set

named MASTER1; if the second DD statenment
appears, the reference is to MASTER2; if

the third, the reference is to MASTER3.

However, if a file-name within a program
is always to be applicable to only a single
data set, the names might be written as
follows:

SELECT TAXRATE ASSIGN TO
UT-2400-S-TAXRATE...

The applicable DD statement might be:

//TAXRATE DD DSNAME=TAXRATE,...

Of the names, the ddname portion of the
assignment-name that appears in the ASSIGN
clause and the ddname of the DD statement
must always be the same. The file-name and
the data set name may be the same, or they
may be different. {Of course, the
file-name in the SELECT sentence must be
the same as the FD name.)

If two or more files on direct-access
devices have the same ddname and are open
at the same time {i.e., the output from the
files is being merged into one data set),
the files must have no conflicting
attributes. The foregoing also applies to
SYSOUT data sets if they are written on an
intermnediate direct-access device.

The use of the DISPLAY, EXHIBIT, or
READY TRACE verbs causes the library to
open the target ddname ({SYSOUT, SYSPUNCH,
etc.) If the programmer has also assigned
one of his output files to the same ddname,
he must ensure that he has opened, written,
and closed his file before the first
execution of any of the previously
mentioned verbs.

Additional considerations when using the
sort feature are described under
npAdditional DD Statements® in the chapter
"gsing the Sort Feature."

SPECIFYING INFORMATION ABOUT A FILE

Some of the information about the file
must always be specified in the FD entry,
SELECT sentence, APPLY, and other COBOL
clauses., Other information must be
specified in the DD statement. For
example, the amount of space allocated for
a mass storage output file must be
specified in the DD statement by the SPACE,
SPLIT, or SUBALLOC parameters. Certain
characteristics of files cannot be
expressed in the COBOL language, and may be
specified on the DD statement for the file
by the DCB parameter. This parameter
allows the programmer to specify
information for completing the data control
block associated with the file ({(see
®Additional File Processing Information™
for a discussion of the data control block,
and "Appendix C: Fields of the Data
Control Block").

Each file used in the program must be
referred to by a particular file processing
technique. Four processing techniques are
discussed in this publication. They are
physical sequential (QSAM), direct (BSAAM,
BDAM), relative (BSAM, BDAM), and indexed
(QISAM, BISAM).

A fifth processing technique, called
partitioned data organization {BPAM), is
discussed throughout the publication, when
it is used for program storage.

A partitioned data set (PDS) is composed
of named, independent groups of sequential
data, each of which is called a member.
Each member has a simple name stored in a
directory that is part of the data set and
that contains the location of each member's
starting point. Partitioned data sets are
used to store programs, and are often
referred to as libraries.

The full range of facilities available
in BPAM are not available to the COBOL
programmer. A partitioned data set may be
referred to in COBOL only by treating its

members as physical sequential data sets.

EILE PROCESSING TECHNIQUES

DATA SET ORGANIZATION

A non-VSAM data set used by a COBOL
program can have one of four types of
organization: physical sequential, direct,
relative, and indexed. The first type
(sequential) may be on any input/output
device that is supported. All other types
rust be on mass storage devices (see Figure
17 for information in determining the file
processing technigue to be used, according
to data set organization).

1. A physical_sequential data set is one
in which records are organized solely
on the basis of their successive
physical positions.

2. A direct data set is one in which

s records are referred to by use of
relative track addressing. An ACTUAL
KEY specifies the track relative to
the first track allocated to the data
set and identifies the record on the
track.

3. 2a relative data set is one in which
records are referred to by use of
relative record addressing. A KOMINAL
KEY identifies the record location
relative to the first record in the
data set.

4. An indexed data set is one in which
records are arranged on the tracks of
a mass storage device so as to pernmit
access in logical sequence {according
to a key that is part of every
record). A separate index or set of
indexes maintained by the system
indicates the location of each record.
This permits random, as well as
sequential, access to any record.

User Non-VSAM File Processing 83

T T
i i Permissible
{ACCESS Clause and | Record Formats

L] k]

1 t

e

r 1 4
1 |
1 iFile | i
i File Processing ;organlzatlon Field}— Device {ProcessingjOrganization |
1 Requirenents I(N) in System—nane|Blocked1Unblocked|Requ1rements lTechnlque ;Clause H
3 1
L] ‘ I 1]
{Write, read, and iACCESS SEQUENTIAL IF,V,S {F,v,0U ;uass Storage]QSAH {Sequential H
| update standard } or ACCESS clausej} H]Magnetic Tapel | {default) i
] sequential file | is omitted] 1 {Unit Record |] 1
L] 1§=58 1 i | 1 f 1
JWrite and read a JACCESS SEQUENTIAL } 1F {Mass Storage {BSAM {Should not be}
{ mass storage file | or omitted 1] i 1 {specified 1
{ with relative] N=R L} i | { 1 |
{ record addressing { 1 1 i 1 i |
+ + + } + + 4 |
jRead and update QACCFSS RANDOM H iF { Mass Storage |BDAM] |
{ a mass storage IN i 1 i i i B
| file with relative |{] { ! | i i
| record addressing | i 1 | { { |
= + + } + + 1 |
{Create and read a {ACCESS SEQUENTIAL | {¥,V,U0,S {Mass Storage]BSAM 1 1
{ mass storage file | or omitted 1 i 1 1 i i
| with relative }¥=D H {] 1 i 1
{ track addressing i i 1 1 !] !
F) % 1 + + .| i
{Create, read, update,aACCESS RANDOM } jf,v,0,S |Mass Storage |EBDAN { i
{ and insert into a }N=D or W(REWRITE) | 1 i 1 { J
| mass storage file -} 1 i i 1 {]
{ with relative] 1 i i 1 i 1
1 track addressing i] 1 1 i 1 |
F + + t 1 $ | i
{Create a mass {ACCESS SEQUENTIAL P (B4 | Mass Storage JQISAH [} {
{ storage file with | or omitted 1 i i i } i
{ indexed sequential {|N=I 1 i i i { 1
{ organization 1 1 i 1 i 1 |
F 1 + t + 1 1 i
{Read and update JACCESS SEQUENTIAL |F {F {Mass Storage {QISAN 1 1
§ a mass storage { or omitted i 1 H 1 { 1
{ file with indexed ({N=I 1 { | 1 1 1
| organization i i 1 i { i 1
t { + 4 % + 4 |
{Read, update, and JACCESS RANDOM iF ir {Mass Storage {BISAHA { 1
| insert into | N=I | 1 1 i | i
{ a mass storage 1 i i t i i |
{ file with indexed) i 1 | | i i
! randonm | i i i i { 1
{ organization { 1 { | 1 i i
4 i 4 1 A A.. A i]

FPigure 17. Determining the File Processing Technique

84

ACCESSING A PHYSICAL SEQUBNT&AL FILE

A physical sequential file may only be
accessed sequentially, i.e.,

records are

read or written in the order in which they

appear on the file.

The file processing

technique used to create and retrieve a
physical sequential file is QSAN (Queued

Sequential Access Method).

Figure 18 shows

the COBOL clauses that may be used with

these files.

Special considerations for

these clauses are as follous:

1.

The RESERVE clause can be used to
specify more buffer areas, allowing
overlap of input/output operations
with the processing of data. If this
clause is not used, additional buffers
may be specified by using the BUFNO
option in the DD statement. If no
additional buffer areas are specified,
two buffers are reserved by the
system. When the SAME AREA clause is
specified for the file, the number of
buffers used is determined from the
RESERVE clause or if the RESERVE
clause is not present, it is given a
default of two. The BUFNO option in 3.
the DD statement is ignored if the
SAME AREA clause is specified.

If a WRITE AFTER POSITIONING statement
is used, the record size specified
in the FD entry must allow for the
carriage control or stacker select

character, even though the character 4. .

is not to be printed or punched.

For example, if the record size
specified in the FD entry is 121,
the actual record is 121 characters;
however, only 120 characters are
printed or punched.

If the NOADV compiler is specified

and a WRITE BEFORE/AFTER ADVANCING

statement is used, the situation is 5.
the same as above; the record size

specified in the FD entry must allow

for the control character, even though

the character is not to be printed.

When the ADV compiler option is
specified and a WRITE BEFORE/AFTER
ADVANCING statement is used, the
record size specified in the FD
entry should be the same as the
record to be printed. (The compiler
adds one to the length specified in
the FD when it sets the logical
record length in the DCB.)

Notes:

o If the impediate destination of the
record is a device that does not
recognize a carriage control or
stacker select character, the systen 6.
assumes that the control character

is the first character of the data.
If the WRITE BEFORE/AFTER ADVANCING
statement or the WRITE AFTER
POSITIONING statement is not used,
the first byte of the record is
treated as data by the punch or
printer.

The compiler may direct extra
records, containing the appropriate
control characters, to the file to
effect printer spacing as specified
in the WRITE BEFORE/AFTER ADVANCING
statement. These extra records are
for spacing purposes only and will
not appear externally if the file is
assigned to an online printer.
However, if the file is assigned to
a device that does not recognize the
control characters {for example, a
tape or a direct-access device), the
extra records are written onto the
file. These extra records are
produced only if ADVANCING more than
three lines is specified or if both
the BEFORE and AFTER options are
specified for a file.

If the input device is the card
reader, RECORDING MODE IS F should be
specified. If RECORDING MODE IS V or
S is specified, the first 8 bytes of
the record will be interpreted as the
control bytes required for files with
format Vv or S records.

If physical sequential files are on
magnetic tape, the record block size
should be at least 18 bytes. Records
less than 18 bytes in length will be
read with no problems, unless a parity
check occurs. If a parity check
occurs while reading a record less
than 18 bytes, it will be treated as a
noise record and skipped over.

The S {standard) option can be
specified in the DCB RECFM
subparameter for a fixed/blocked
record data set with only standard
blocks {(i.e., having no truncated
blocks or unfilled tracks within the
data set, except for the last block of
the last track). If a fixed/blocked
data set is created through the use of
an American Natiomal Standard COBOL
prograam, a truncated physical block
may be written only by the executions
of the CLOSE or CLOSE UNIT (or REEL)
statement, Use of the standard block
option {particularly for direct-access
devices having the Rotational
Positional Sensing feature) results in
significant I/0 performance
improvements.

The T ({TRACK OVERFLOW) option can be

- specified for the DCB RECFPM

User Non-VSAM File Processing 85

Data Management | Device Access KEY OPEN

Access CLOSE
Techniques Type Method Clauses Statement Verbs Statement
QSAM TAPE SEQUENTIAL NOT INPUT READ [INTO] [REEL]
ALLOWED REVERSED AT END LOCK
| NO REWIND] NO REWIND
[LEAVE POSITIONING
REREAD] DISP
| DISP
F —_————— F————— — —— —— —
OUTPUT WRITE [FROM]
["NO REWIND BEFORE
LEAVE [‘AFTER] ADVANC‘NG]
REREAD
| pisp [AFTER POSITIONING]
EXTEND
QSAM MASS SEQUENTIAL NOT INPUT READ [INTO] [UNIT
STORAGE ALLOWED AT END [LOCK]
——————— b o m—— —— — — — —
OUTPUT WRITE [FROM]
INVALID KEY
________ 1 WRITE (FROM]
BEFORE
EXTEND I:{ AFTER , ADVANC‘NG]
[AFTER POSITIONING}
___________________)_ —— ——
1-0 READ [INTO] [LOCK]
AT END
WRITE [FROM]
INVALID KEY

REWRITE [FROM]

Figure 18. COBOL Clause for Physical Sequential File Processing

subparameter of the DD statement for
OSAM files with RECORDING MODE V, Se
or F. Specification of the T option
is equivalent to including the APPLY
RECORD-OVERFLGW option in the source
program, bat use of the T option in
the DD statement allows the user to
make his selection at object time.

Figures 20 and 21 show the parameters in
the DD statement that may be used with
physical seguential files. All paranmeters

DCB=[DEN={011{213]4})
[,TRTCH={C] E|T) ET} }
[+PRTSP={0]111213})
[(MODE={C|E}]
[,STACK={1]2}]
[,09TCD={N!C|WC]T|Q!Z}}
[yBLKSIZE=integer]
[,BUFNO=integer]
{ +EROPT= {ACC{SKP|ABE}]
[RECFM={F|VIUID[B|S|T] [A|M]}]
[\DIAGNS=TRACE]
[JFUNC={IIRJPIWIO|X]T}]

except the DCB are described in "Job DEN={0]11]213}

Control Procedures." Additional DCB
subparameters not shown in the illustration
are required for use with the Sort/Merge
feature (see the chapter "Using the
Sort/Merge Feature" for information on
these parameters).

The DCB subparameters that cam bhe

specified in the DD statement for physical
sequential files are as follows:

86

can be used with magnetic tape, and
specifies a value for the tape
recording density in bits per inch as
listed in Fiqure 19. If no value is
specified, 800 bits-per-inch is
assumed for 7-track tape, 800
bits-per-inch for 9-track tape without
dual density and 1600 bits-per-inch
for 9-track tape with dual density,
depending on the installation's
generic definitions for unit names.

Tape Recording Density
{Bits per inch)

L2 hJ k]
{] i
} 1 1
1 F ~ 1
IDEN Valuel} 7 Track i 9 Track H
& +-— 4 |
{ 0 1 200 i - i
i 1 { 556 i - i
} 2 1 800 i 800 [}
| 3 1 - | 1600 |
1 4 1 - [6250 1
1 A, 1]

Figure 19. DEN Values

TRTCH= {C{E|T |ET}
is used with 7-track tape to specify
the tape recordimg technique, as
follovws:

C - Specifies that the data-conversion
feature is to be used; if data
conversion is not available, only
format ? and format § records are
supported by the control program.

E - Specifies that even parity is to
be used; if omitted, odd parity is
assumed.

T - Specifies that BCD to EBCDIC
conversion is required.

ET- Specifies that even parity is to
be used and BCD to EBCDIC
conversion is required,

PRTSP={011]1213}
specifies the line spacing om a
printer as 0, 1, 2, or 3. 1If PRTSP is
not specified, 1 is assumed.

The PRTSP subparameter is valid only
if the unit specified for the file is
a printer. It is not valid if the
file is a report file, nor is it valid
if the WRITE statement with the
BEFORE/AFTER ADVANCING option or WRITE
AFTER POSITIONING is specified in the
COBOL source program. Single spacing
always is assumed for a printer unless
other information is supplied.

MODE= {C| E}
can be used with a card reader, a card
punch or a card-read punch
and specifies the mode of operation
as follows:

C - Specifies card image (column
binary) mode.

E - Specifies EBCDIC code.

If this information is not supplied
by any source, E is assumed.

STACK= {112}

can be used with a card reader, a card
punch, or a card-read punch, and it
specifies which stacker bin is to
receive the card. FEither 1 or 2 is
specified. If this information is not
supplied by any source, 1 is assumed.

STACK should not be used when the
WRITE statement with the AFTER
ADVANCING or POSITIONING optiom is
used to specify pocket selection.

OPTCD= {WiCiT|Q12}

requests an optional service provided
by the system as follows:

- To perform a ¥write validity check
{on mass storage devices only).

C - To process using the chained
scheduling method {(see the
publication Q9S/VS_Data Mapnagement
Services Guide).-

T - To request user totaling facility.

Q - To translate to or from ASCII on
tape

Z - To reguest the search direct
option (see the publication 0S/VS
Data_Management Services Guide).

Note: 1If the validity check is
specified, the system verifies that
each record transferred from main
storage to mass storage is written
correctly. Standard recovery
procedures are initiated if an error
is detected.

BLKSIZE=integer

is used to specify the block size.
This clause is used only when BLOCK
CONTAINS O RECORDS was specified at
compile time.

BOFNO=number of buffers

is used to specify the number of
buffers to be assigned to the file
when neither the RESERVE nor the SAME
AREA clause is specified for the file
in the source program. The maximpunm
aumber is 255.

EROPT= {ACC{SKP{ ABE}

specifies the options to be executed
if an error occurs in writing or
reading a record as followus:

ACC - To accept the error block for
processing.

User Non-VSAM File Processing 87

SKP - To skip the error block.
ABE - To terminate the job.

There are two cases when the
subparameter can be specified:

o If no error processing declarative
{USE sentence) is specified, the
option is taken immediately.

e If an error processing declarative
is specified, the option is taken
after the error declarative returns
control via a norpal exit {and only
if that is the case).

If no option is specified, ABE is
assumed.

RECFM={F|VIUID[BISIT] [AIM]}

88

specifies the format of the
records on the data set

(see the JCL manual for the
ways in which these individual
subparameters can be combined).
Only the S and T subparameters
have meaning for COBOL; COBOL
ignores all others.

F - records are of fixed length.

- records are of variable length.

\%

U - records are of undefined length.
D - ASCII records of variable length.
B

~ records are blocked.

S - to expect the data set to consist
of standard blocks.

T - to use the TRACK OVERFLOW option
(this specification has the same
effect as including the APPLY "
RECORD~-OVERFLOW option in the
source program) .

A - records contain ANS device control
characters.

M - records contain machine code
control characters.

DIAGNS=TRACE

specifies the Open/Close/EQV trace
option which gives a module-by-module
trace of Open/Close/EOV's work area
and the DCB. The Generalized Trace
Facility with the proper options
specified must be active in the systen
while the job that reguested the trace
is running; the options are MODE=EXT
and TRACE=USR.

PONC={I|RIPIWIO{XIT}

specifies the type of data set to be
opened for the 3525
Card-Read-Punch-Print as follows:

- interpret-punch data set.

- read

punch

- print

- data protection for a punch data
set .

printer

~ two~line printer.

(-2 L
i

R
t

Por the valid combinations of these
values see the publication Q3/¥S _JCL
Reference.

r 1
l Device Tyge |
¥

r T T H
| Parameter | Mass Stcrage | Magnetic Tagpe | Unit Record
i 4 i N 1 4
i T 1
| DSNAME] as |
b mm-- 1
] UNIT] as |
L 4 ¥
T T T 1
| VOLUME | as] na [
| t v H 1
| LABEL] sL | sL BLP] NL |
| | suL | NL LM | |
1] | NSI AL 1 |
]] | suL AVL] |
t 1 --—4 e 4
| SPACE | as | na]
} { } {
| SUBALLOC] as I na |
i } 1 — 1
| SPLIT | as | na |
1 3 - - -4 4
[} T T h]
| DIsP | NEW ,KEEP] SYSOUT=A,B... |
|] MCL « PASS] |
|] +CATLG] |
] 1 +CELETE | |
; i T + !
] DCB Device Dependent] OPTCD=W, WC | TRICH, DEN | PRTSP, NCDE, STACK |
L 1 4 1 J
T k) [] Rl
| DCB General] CPICC=C/T, BUFNO, BLKSIZE, EROPT=ABE | EROFT=ACC |
] } RECFM=as | (crintexr cnly) |
|] | EROPT=AEE |
L 4 L 4
[) 1
| as = Arplicable sukparameters |
| na = Not agglicable |
L : _— J
Fiqure 20. DD Statement Parameters Applicable to Physical Sequential OUTPUT Files

User Non-VSAM File Processing 89

]
Device Tyge }
r T N =TT 4
Parameter | Mass Storage | Magnetic Tape | Unit Record |
4 4 4
4
DSNAME as |
. T . R {
UNIT] Not required | Not required |
] if cataloged | if cataloged } as
+ + + 1
VOLUME | Not required | Not required)|
| if cataloged | if catalcged] na
1 4 1 - ‘{
T v T
LABEL | sL] sL BLP] na
| suL | NL LTM™] |
]] NsL AL] |
1 | suL AUL] |
1 —_— 4 - AL _.'
T
SPACE] na I
} -~
T
SUBALLCC] na |
1 -- -4
T
SPLIT } na |
} {
DISP ! CLD +KEEP]
] SHR . PASS |
| »CATLG I
1 « UNCATLG |
i +DELETE I
3 o 1
K T s
DCB Device Dependent| - | TRTCH, CEN | MCDE, STACK |
‘ 4 1 i -
K
DCE General] opPICC=C/T, BLKSIZE, BUFNC, ERCET=ACC, SKP, AFE, RECFM=as |
i 1
as = Applicable subparameters
na = Nct applicable |
- J

s St s S s s S e P R P

Figure 21. DD Statement Parameters Applicable to Physical Sequential INPUT and I-O Files

SPECIFYING ASCII FILE PROCESSING buffer offset
a two-character field that indicates
the length of the block prefix for

If a program will process an ASCII that file. This entry is required if
(American National Standard Code for a non-zero block prefix exists; it
Information Interchange) QSAM file, the must, however, be omitted when an
user must identify it as such in one of two ASCII-collated sort is regquested.

ways. One technique is to use the CODE-SET
phrase of the COBOL FD statement to
reference an alphabet-name that was defined name

as STANDARD-1 ({which is equivalent to a field of 1 to 8 characters that
ASCII). The other technigque is to use the specifies the system-recognized name
COBOL ASSIGN clause, with assignment-name of the file. It is this external nane

having the following format:
comment-C~(buffer offset)-name

where:

C
an organization code which specifies
that an ASCII-encoded sequential file
is to be processed, or that an ’
ASCII-collated 'sort is to be
pexrformed.

90

that appears in the name field of the
DD card for the file.

If this ASSIGN technique is used,
LANGLVL(1) must be specified.

PROCESSING ASCII FILES

Record format allowed for ASCII files
are the following: mode F (fixed length),
mode U (undefined), and mode D (variable
length. D-mode records are of variable
length with a four-byte record descriptor
field for each record. The COBOL
programmer processing variable-length
records specifies V-mode records. Then the
format information generated from the DCB
parameter is internally converted to D
mode. Format-D records cannot be
explicitly specified by the user in a COBOL
program.

Block Prefix

An ASCII file may have a variable-length
field, called a block prefix, preceding the
first logical record in a physical record.
If this prefix exists on an ASCII file, its
length must be indicated at compile time in
the buffer offset field of the ASSIGN
clause. The compiler places this length in
the DCB parameter at compile time.

Whether the optional block prefix
contains the block length or simply user
information depends on the type of file
specified (input or output) and the
internal record mode (i.e., F, U, or D).
These distinctions are made in the
discussion that follows.

Files Opened as Input: Input files with
either blocked or unblocked records have an
optional block prefix of 0 to 99 bytes that
does not contain the block length but may
contain user information. For D-mode
records, however, a block prefix of length
four may contain the block length.
Regardless of the record format, file
processing is identical to that for files
coded in EBCDIC.

Files Opened as Output: The block prefix
for output files applies only to D-mode
records and, when specified, must have a
length of 4, The prefix must contain the
length of the block, which length includes
the buffer offset.

For any ASCII output file the ASSIGN
clause may include a buffer offset of four.
Alternatively, the programmer may omit this

specification from the ASSIGN clause,
instead making use of the phrase BLOCK
CONTAINS 0 RECORDS. The offset can then be
specified at execution time in the JCL.
However, if BLOCK CONTAINS 0 RECORDS is
used, the following options must be
included in the JCL:

BUFOFF=(n)
must be included in the DCB parameter
of the DD card, where n is the length
of the block prefix from 0 to 99
characters on input, and either 0 or 4
on output.

BLKSIZE=(n)
nmust be included on the DD card, where
n is the size of the block, including
the length of the block prefix.

Notes:

« If a block prefix exists on an ASCII
file and the BLOCK CONTAINS clause with
the CHARACTERS option is used, the
length of the block prefix must be
included in the BLOCK CONTAINS clause.

« If either the RECORDS option is
specified or the BLOCK CONTAINS clause
is omitted, the compiler compensates
for the block prefix (if specified).

Additional JCL considerationa for ASCII
data sets follow.

AL
LABEL= AUL
NL

where AL specifies American National
Standard labels, AUL specifies American
National Standard and user labels, and NL
indicates no labels.

The subparameters below are specified in
the DCB parameter of the DD statement:

OPTCD=Q, where Q specifies an ASCII-encoded
data set.

RECFM=D, where D represents a
variable-length record, is an optional
parameter., Whether or not this
parameter is specified at execution
time, the programmer must specify an
ASCII file in the ASSIGN clause as
well as a mode-V record. The compiler
converts from mode V to mode D, or to
the internal representation for a
variable-length record.

BUFOFF=(L) , where L indicates a four-byte

block prefix that contains the block
length including the block prefix.

User Non-VSAM File Processing 91

Items from ASCII

It is highly recommended that the

programmer take advantage of the separately. ..

signed numeric data type. The SIGN clause
{see "SIGN Clause" in the chapter
"prograrmer Considerations") can be used to
specify the position and the mode of
representation of the operational sign of
numeric data items.

DIRECT FILE PROCESSING

The direct file processing technique is
characterized by the use of the relative
track addressing scheme. When this
addressing scheme is used, the tracks of
mass storage devices are consecutively
numbered from 0 to n {where 0 egquals the
first track of the file, and n equals the
last track). The positioning of logical
records in a file is determined by the
ACTUAL KEY supplied by the user in the
Environment Division. The first part of
the key, called the track identifier,
specifies either the track on which space

for the record is first sought or the track

at which the search for a record is to
begin. The second part, called the record
identifier, serves as a unique identifier
for the record., Files with direct data
organization must be aSSLgaed to mass
storage devices.

Format

=
1

TUAL KEY IS data-nanme

(o o o e e S

.

Data-name may be any fixed item from S
through 259 bytes in length and must be
defined in the File Section, Working-
Storage Section, or lLinkage Section. The
following comsiderations apply when
defining the ACTUAL KEY:

e Track Identifier
The first four bytes of data—-name are
the track identifier. The identifier
is used to specify the relative track
address for the record and must be

defined as a S-integer binary data item

whose maximum value does not exceed
65,535.

92

(O - Gs cote S it M St S S e e .

. Note:
" appear more than once in the same file when
“using COBOL.
- record identifier is not recommended for
“the following reasons:

o ae e o el o o

./ must be unblocked and may be V-, U-,
:"'s-mode records.
“those parts of a directly organized file

s Record Identifier
The -remainder of data-name, which is 1
through 255 bytes in length, is the
record identifier. It represents the
symbolic portion of the key field used
to identify a particular record on a
track.

The folloulng example illustrates the

',fuse of the ACTUAL KEY clause:

ENVIRONHENT DIVISION.

- ACTUAL KEY IS THE-ACTUAL-KEY.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 THE-ACTUAL-KEY. S
05 TRACK-IDENT PIC S9{5) COMP SYNC.
05 RECORD-IDENT PIC X{25).

e e o . i i o - s &)

The same record identifier may

However, using the same

1. If they appear on the same track, only
the first occurrence can be retrieved
(051nq BDAM) .

2, If an extended search is used in
either creating or updating a file,
the position of records containing
duplicate record identifiers may be
unpredictable.

With direct file processing, records
F=-, or
~Figure 22 illustrates

that are of importance to a COBOL

.programmer,

INDEX
POINT GAP

| RO R R2
! N r i s - ~
1 1 | [o E] r ¥ R gl f T Y x|
vV {TRACK | JCAPACITY | 1] 1 { 1 | i]
G |A |

i 1

DDRESS] G JRECORD | G |COUNT|KEY|DATA| G {COUNTIKEY|{DATA] G
4 y] 4. 4 4 A 3

i A

o s o d - -)
- ——

M o B e st v o e s v o

Figure 22. Directly Organized Data as it Appears on a Mass Storage Device

Each track contains the following:

Index Point
There is one index point to indicate
the physical beginning of each track.

G_{Gaps)
Gaps separate the different areas on
the track. Certain equipment
functions take place as the gap is
rotating past the read/write head.
The length of the gap varies with the
device, the location of the gap, and
the length of the preceding area. For
instance, the gap that follows the
index point is a different length than
the gap that follows the track
address. .

Track Address
This field defines the physical
location of the track. It indicates
the cylinder in vhich the track is
located and the read/write head that

services the track.

RO_{Capacity Record)
This field indicates the amount of
unused space available for additional
records on the track.

glz-ﬁ&.&w.ﬁ.ﬂ .
These are physical records that
contain the following:

count_area —-- control information

key area -- the-record identifier

{1-255 bytes) as
specified by the

programmer in the ACTUAL

KEY clause.

data area -- the-data moved into the

FD before a WRITE

statement was executed.

The following example illustrates the
relationship betveen the ACTUAL KEY and the
positioning of records on a mass storage
device during the creation of a direct

file.

ENVIRONMENT DIVISION.

-

ACTUAL KEY IS THE~-ACTUAL-KEY.

- - -t)

{DATA DIVISION.

{FILE SECTION.

{FD DIRECT-FILE

1 LABEL RECORDS ARE STANDARD.
101 REC-1 PIC X {200).
1 .

i -

1 .

{ WORKING-STORAGE SECTION.

101 THE-ACTUAL-KEY.

i 05 TRACK-IDENT PIC S9(5) CONP
1 05 RECORD-IDENT PIC X(3).

4

SYKC.

ho s M A s T . W - s - o - oy o o

User Non-VSAM File Processing 93

count Key Data

Count Key Data

Count Key Data

L 1
i {
‘ ¥ L L] 1 ¥ k] R 3 t L] L) i ’
{ TRACK 0 G | jARAJREC-1}] G ¢ {CCC{REC-1| i {BBB{ REC~1}{]
' - - - i A A] f - - A] 4 4 A '} - - - '
i |
' . LE KA k] L} ¥ L] L 1 LR k4 1 R ‘
] TRACK 1 G | IDDD{REC-1} G } {FFF]REC-1} G | {EEEJREC-1} H
' o = o L 4 4] 1 4 e 4 i i A 3 4 e '
i {
1 3
Figure 23. Sample Format of the First Two Tracks of a Direct File

Consider REC-1 being written six times; the
contents of THE~-ACTUAL-XEY varying with
each WRITE instruction:

THE-ACTUAL-XEY

TRACK| RECORD
IDERT| IDENT

WRITE 1 1 0 | aaaj
———
WRITE 2 { 0 1 cccy
WRITE 3 j 0O | BBBj)
——t—
WRITE 4 | 1 {1 DDD}
—t—y
WRITE S i 1 | FFF)
1
WRITE 6 { 1 | EEE)
| RS — |

Relative track 0 and relative track 1 of
the mass storage device will appear as
shown in Fiqure 23.

When the WRITE statement is executed,
the system seeks the track that corresponds
to the number contained in TRACK-IDENT. It
then searches for the next available
position into which a record may be placed.
The system writes a count area, wWrites the
contents of RECORD-IDENT in the key area,
and writes the information contained in
REC-1 in the data area.

Note: The record identifier is not
included in the level-01 record description
{REC-1). It will, however, be moved into
the output buffer before heing written on
the mass storage device. Buffer areas,
therefore, will be large enough to
accommodate both the contents of REC-1 and
the record identifier.

94

Dumpy and _Capacity Records

once a direct file has been created,
records can be added randomly on tracks
formatted sequentially. UOnless a track is
already filled with data records, it is
formatted by the compiler via the writing
of dummy records {mode F) or of one
capacity record (mode U, V, or S).

In order to format tracks, a COBOL
subroutine executes instructions to write
dummy records for F-mode files or write
capacity records for V-, U-, or S—-mode
files. Dummy records are identified by the
presence of the figurative constant
HIGH-VALUE in the first byte of the record
identifier portion of the ACTUAL KEY
{unless changed by the program collating
seguence, in which case the byte contains
X'FF') . This indicates to the system that
a record can be added to the file in the
space assigned to the dummy record. (The
user should not attempt to retrieve a dunmnmy
record by moving this configuration to the
record identifier because it is comnsidered
an iavalid key.) A capacity record is a
single record at the physical begianning of
each track that indicates the amount of
space available for additional records. As
V-, U-, or S—-mode records are added to a
track, the capacity record is written
accordingly. Capacity records are never
made available to the user.

When a file is created, it should
contain enough dummy records, or
appropriately written capacity records, to
allow for future expansion. Once the file
is closed, more space cannot be allocated
and the extent of the file cannot be
increased.

Note: Tracks that have been assigned to a
file but are not formatted, are considered
"gllocated." The user should not attempt
to write on tracks that have been allocated
but not formatted.

Sequential crgatiog_og Direct Data Set

The file processing technique used to
create a direct file sequentially is BSAM
{Basic Sequential Access Method).

s The associated COBOL statements are
summarized in Figure 31,

* The associated JCL parameters are
summarized in Figure 32.

The ACTUAL KEY is required. It
specifies the relative track number on
which the record is to be written., Since
access is sequential, all records will be
written serially in the sequence in which
they are moved into the output buffer. It
is, therefore, necessary that all records
to be written on the first track {track
identifier = 0) be processed before records
to be written on the 2nd, 3rd, ..., nth
track {(track identifier = 1, 2, ..., n-1)
are processed.

When records are written sequentially,
the user need not update the contents of
the track identifier portion of the ACTUAL
KEY. A COBOL subroutine will update it as
followvs:

» Records will be written on the first
available track until space is no
longer available. At such time, the
COBOL subroutine will increment the
track identifier by 1, and continue
writing on the next track.

s The value of track identifier used by
the systemr is made available to the
user in the track identifier portion of
the ACTUAL KEY after the record is
vritten.

» After a CLOSE or CLOSE UNIT statement
has been executed, the COBOL subroutine
places the relative track number of the
last track writtem on ({for a data,
dummy, or capacity record) in the track
identifier of the ACTUAL KEY.

» If the user updates the contents of
track identifier and attempts to write
on track 2 when tracks 0 through 4 are
already full, the system will
automatically adjust the track
identifier to 5 {the next track with
available space).

If the user wishes to skip tracks, the
numsber of tracks, equal to the number of
tracks to be advanced, must be added to the
track identifier. The COBOL subroutine
will then add dummy records {(F-mode) or
write capacity records {V-, U-, or S-mode)

to complete the intervening track(s) (see
"puymmy and Capacity Records®). If the
value of track identifier for the initial
WRITE is not 0, the subroutine will
complete the preceding tracks with dummy or
capacity records.

SPACE ALLOCATION FOR SINGLE VOLUME FILES:

When a file is created sequentially, the
nunber of primary tracks specified on the
DD card must be available on the primary
volume. If this guantity is not available,
the job will not begin execution. Once
execution begias however, the final
allocation of space will not be made until
the file is closed.

The following discussion illustrates the
space allocated to a direct file created
using BSAM. Figure 24 is an example of a
user program that:

» Writes 350-1/2 tracks and then closes
the file.

s specifies SPACE={TRK, {200,100)) on the
associated DD card.

TRACK-LIMIT Clause Specified:
1. 1If the TRACK-LIMIT clause specifies
TRACK-LINIT = 499 and the file is
closed after writing only 350-1/2
tracks:

Note: A COBOL subroutine will format
all remaining tracks up to and
including the 500th track. This
represents 150 extra tracks on which
records may be added.

2. If the TRACK-LIMIT clause specifies
TRACK-LINIT = 300 and the program
continues writing all 350-1/2 tracks:

Note: The TRACK-LIMIT clause is
ignored and the system allocates and
formats as if no TRACK-LIMIT clause
had been specified.

______ If the
TRACK-LINMIT clause is not specified, the
syster will allocate the primary extent
{i.e., 200 tracks) and up to 16 secondary
extents (i.e., 100 tracks each), as
required. In Figure 24, the system
allocates the first 200 tracks, all of
which are completed. The second
allocation, of 100 tracks, is also
completed, The next 100-track allocation
is, hovwever, only partially used. The file
is closed after writing on 350-1/2 tracks.
At this time:

User Non-VSAM File Processing 95

e A COBOL subroutine %will format the rest Note: 1In some of the foregoing cases, the

of the 351st track. {Note that 351 number of tracks allocated to the file
tracks are actually relative tracks 0 exceeds the number of tracks formatted by
through 350) the COBOL subroutine., If the excess space
was requested in track or block units, it
» The balance of 49 tracks will remain should be released by specifying the RLSE
allocated but will not be formatted. option of the SPACE parameter.

Specified as TRACK-LIMIT=499 TRACK-LIMIT Clause Not Specified

1. SPACE=(TRK, {200,100)) on a single volume.
2. The user program writes 350-1/2 tracks before closing the file.

¥ ¥ 1
i § i
+ 4 4
i f i
| : '
{ S | 1 | I | ‘

i ri i | r! i i
i i] i ! | {
i] 200 1 (1st allocation | 1 200 1 1st allocation]
i 1 1y { written on 1 i 1
{ written on 3 i and/or | S S——— | [
i formatted < 1 i] i | i
{ i 1 | formatted i | i
1 1 100] [2nd allocation | 1 100 1| 2nd allocation}
B | S 1 — |
i | 51 1 | Lt 51 | i
{ }————————9 ¥3rd allocation | $—~————————9) 3rd allocationj
1 i 49 | ! unformatted (| 49 | i
i — } b {
] formatted | 100] l4th allocation 1 | i 1
{ l i I { unused | I
i 1 1 i i] i
i - | 1
1 i { 1 i
{ { unused |] {
i i ! { !
] NNk | i
i { }
[o > 1
| Notes: !
1 i
1 i

Figure 24. Sample Space Allocation for Sequentially Created Direct Files

96

SPACE={TRK, {300,100)) on Volumes A,

and C

igure 25.

Random_ Creation of a_Direct Data_gSet

The file processing technique used to
create a direct file randomly is BDAM
{Basic Direct Access Method).

e The associated COBOL statements are
summarized in Figure 31.

» The associated JCL parameters are
summarized in Fiqure 32.

Figure 30 (sample program) illustrates
the random creation of a direct data set.

The ACTUAL KEY is required. ¥hen a
direct file is created randomly, records
need not be written in any particular
sequence. The system seeks the track

¥]
i i
{ |
1 r— 1 B |
H i ﬂ —) i
{ !] ! i {
i] 300 { 100 {
i { i | e | C b
1 i 1 H | —— |
| Specified as | i § 100 | 50 1) formatted |
| TRACK-LIMIT=949}———14 > formatted e | $ formatted Pt]
i 1 1 1 | i 50 1) allocated |
i { 100 | § 100 it |
{ t 4 - | 1 i
{ 1 | i | junusedi 1
1 100 J 1 100§ i i I
i L bt 4 e~ |
1 i
k 1
{ i
1 A {
I r] i
1] i |
i 1 1 {
i] 300 i formatted B C |
i | | — ——— |
i | | | :} 1 -3} |
1 1 | § 100 formatted 1} 100 §{ formatted |
{ TRACK-LIMIT 1 ——a i 1
! clause not i] 1 i i 1 1
{ specified junused | junused} junused|]
i |] i i i i |
i i i i { 1 | i
| i] i
! WV L W |
1 ;|
1 i
F

Sample Space Allocation for Randomly Created Direct Files

specified in the track identifier portion
of the ACTUAL KEY and writes the record in
the next available position on that track.

When a file is created using BDAM, the
purber of tracks specified in the primary
extent must be available on the primary
volume., 1If there are secondary volumes,
one secondary extent must be available on
each of the secondary volumes. 1If these
extents are not available, the job will not
begin execution. Once execution begins,
the final allocation of space is determined
by the TRACK~LIMIT clause and the SPACE and
volume-count parameters of the DD card when
the file is opened as an output file.
Figure 25 illustrates the allocation and
formatting of space wvhen the TRACK-LIMIT
clause is specified as well as when it is
not specified (see “Dummy and Capacity
Becords® for a definition of allocate and
format).

User Non-VSAM File Procéssing 97

1. When a TRACK-LIMIT clause is specifed
(Figure 25), the system will do the
followings:

a. Allocate tracks, by blocks, until
the quantity specified by the
TRACK-LIMIT clause has been
equaled or just exceeded.

b. Format only the space specified in
the TRACK-LIMIT clause, even if
the space formatted is less than
the space allocated.

2. When a TRACK-LIMIT clause is not
specified (Figure 25), the first
volume will be allocated and formatted
according to the primary allocation
gquantity, and any succeeding volumes
will be allocated and formatted from
the secondary quaatity, one gquantity
per volune.

Records cannot be written on those
tracks that were allocated but unformatted.
-Any attempt to do so will have
anpredictable results, OUnformatted tracks
can be released by specifying the BLSE
option in the SPACE parameter on the
corresponding DD statement. 0Only space
requested in track or block units can be
released. If the CYL subparameter was
specified, the unformatted tracks cannot be
released.

Unlike direct files created with BSAM,
the BDAM processing technigue allocates and
formats tracks when the file is opened.
This is significant because the system will
not allocate secondary extents if the user
attempts to write on more tracks than the
quantity initially formatted,

Note: The extended search option may be
used during random creation. See "Random
Reading, Updating, and Adding to Direct
Data Sets" for a .detailed description.

Sequential Reading of Direct_ Data_ Sets

The file processing technique used to
read a direct file sequentially is BSAM
{Basic Sequential Access Method).

» The associated COBOL statements are
summarized in Figure 31.

¢ The associated JCL parameters are

summarized in Figure 32.

fhen a direct file is being read
sequentially, records are retrieved in
logical sequence. This logical seguence

98

corresponds exactly to the physical
sequence of the records on the mass storage
device. Dummy records, if present, are
also made available.

For reading a file sequentially, the
ACTUAL KEY clause need not be specified;
hovever:

o If the key is not specified, the user
will have no way of distinguishing
between real and dummy records (F-mode
only). Dummy records can be recognized
by testing for the presence of the
figurative constant "HIGH VALUEY in the
first position of the record
jdentifier.

» If the ACTUAL KEY clause is specified,
the record's key will be placed in the
record identifier portion of the ACTUAL
KEY during the execution of a READ
statement. The track identifier,
however, remains unchanged.

Random Reading, Updating, and Adding to
Dipect Data Sets

The file processing technique used to
read, update, and add to a direct file
randomly is BDAM (Basic Direct Access
Method) .

» The associated COBOL statements are
summarized in Figure 31.

e The associated JCL parameters are
summarized in Figure 32.

When records are being retrieved from a
direct file randomly, the ACTUAL KEY is
required to determine the track and to
locate a particular record on that track.
When a match is found, the data portion of
the record is read. For an add operation,
after locating the track, the system
searches for the next available position on
the track, and writes the new record. For
an update operation, after locating the
track, the system searches for the record
specified in the record identifier portion
of the ACTUAL KEY. (Note. A record in
variable length BDAM files can be updated
only with a record of the same length.)

In all of the foregoing cases, the
specified track is the only one searched.
If the desired record cannot be found, or
room for an additional record cannot be
found, the search terminates with an
INVALID KEY condition. If the user wishes
to extend the search to a specific number
of tracks or to the entire file, the DCB
OPTCD and LIMCT subparameters should be
specified on the corresponding DD card.
{Figure 30 illustrates the use of extended
search.) :

Multivolume data sets, like
single-volume data sets, may be created
either randomly or sequentially.

Seguential Creation: When a file is
created sequentially, the number of tracks
specified in the primary extent must be
available on the primary volume and the
number of tracks specified in the secondary
extent must be available on each of the
secondary volumes. 1If extents are not
available, execution of the job will not
begin. Once execution begins, the primary,
and as many secondary allocations as
possible, are given to the first volume {up
to 16 extents per volume). Subsequent
volumes are allocated from the secondary
specification.

If the CLOSE UNIT statement is executed,
the current extent is formatted, volume
switching procedures are executed, and the
contents of ACTUAL KEY are updated to
reflect the relative track number of the
last track on the old volume. This is
illustrated in the following example.

Consider the creation of a multivolume
file whose space is allocated by:

SPACE={TRK, (300, 100))

1. When execution begins, the systesn
allocates 300 tracks on the first
volume. When the 300 tracks are used
up, the system allocates 100 tracks
more. Up to 16 allocations of 100
tracks each are possible.

2. If, after writing on 450 tracks, a
CLOSE UNIT statement is executed, a
COBOL subroutine will format the
remaining 50 tracks of the current
allocation before making the next unit
available,

3. After the CLOSE UNIT statement is
executed, a COBOL subroutine places
the relative track number of the last
track written on {for a data, dummy,
or capacity record) in the track
identifier of the ACTUAL KEY.

Note: A CLOSE UNIT statement always
formats the tracks remaining on that unit
from the current allocation. The
formatting of tracks on the last unit, when
a CLOSE file-name statement is executed,
depends on the presence or absence of a
TRACK-LIMIT clause, just as it did for
single-volume files (see ¥"Space Allocated
for Single- Volume Files"). The RLSE
option of the SPACE parameter applies only
to the unformatted tracks at the end of the
last unit.

Automatic Volume Switching: The user may
choose to permit volume switching to occur
automatically. This can be accomplished by
writing on all allocated tracks until no
more are available, or may be made
available. This procedure, however, does
not guarantee a specific distribution of
records over the volumes, the placement of
a particular record on a particular volume,
or whether the data set is, in fact,
multivolume.

Note: If the user permits systen
controlled volume switching, but specifies
the file be created on more than one volume
[e.g., VOL=SER=(V1,V2,V3)]J; the system may
write the entire file on the primary volume
if there is enough room. The next time an
attempt is made to open that file, since
the system expects it to reside om three
volumes, an ABEND will occur. This can be
avoided by specifying:

VOL={,,,3,SER=({V1,V2,V3))

This specifies the file be contained on one
or_more volumes.

To create a file vith records
distributed as evenly as posible over
several volumes, the programmer nmust
calculate the amount of space his file will
require {see "Determination of File Space")
and divide by the number of volumes. The
result of this calculation {rounded) should
be specified as both the primary and
secondary allocation of the SPACE parameter
of the associated DD statement. The
programmer should execute CLOSE UNIT before
the end of the initially allocated space on
the first volume ({that is, execute the
CLOSE UNIT before writing the record that
is to be first on the second volume).

Por example, to distribute 2232 132-byte
records as evenly as possible on two 2314
volumes, 37 tracks per volume are required
and the SPACE parameter should specify
{(37,37). After vwriting the 1116th record
the programmer should execute CLOSE UNIT
and continue writing.

If the required space is overestimated
and the records do not fill the last
track(s), the compiler will write dumny
records to complete them. These records
are included in the record count and should
be taken into account when trying to
address records on subsequent volumes.

If the space required is underestimated,
automatic volume switching may occur before
the CLOSE UNIT is executed since space on
the first volume is filled., If this has
happened, the CLOSE UNIT starts a third
volunme,

User Non-VSAM File Processing 99

If no secondary allocation has been
specified and the program issues a CLCOSE
UNIT statement, the job will terminate
abnormally, since the allocation of
subsequent volumes is taken from the
secondary allocation field of the SPACE
parameter.

In the creation of an output file,
performance is improved by specifying the
CONTIG subparameter of the SPACE parameter
in the DD statement. However, space
allocation is more efficient if CONTIG is
not specified.

Random_Creation: Wwhen a file is created
randomly, space allocation and formatting
is done as described in "Random Creation of
a Direct Data Set" {Figure 25). It is
important to note that a CLOSE UNIT
statement is not permitted vwhen creating a
file randomly.

The following description pertains to
Figure 25:

1. When the TRACK-LIMIT clause is
specified, the total extent of the
file is 950 tracks. The only valid
track identifiers are 0 through 949:

» Tracks 000 through 499 are contained
on volume A,

o Tracks 500 through 899 are contained
on volume B.

e Tracks 900 through 949 are contained
on volume C.

2. When the TRACK-LIMIT clause is not
specified, the total extent of the
file is 500 tracks. The only valid
track identifiers are 0 through 499:

* Tracks 000 through 299 are contained
on volume A.

» Tracks 300 through 399 are contained
on volume B,

» Tracks 400 through 499 are contained
on volume C.)

100

File Organigzation Field of the System-Name

The single character %“DW or "N,
specifying the file organization, must be
coded as part of the system-name. The user
should be aware of the following
differences:

* Sequentially accessed files must specify
organization “D".

» Randomly accessed files may specify "p®
or "w%, When opened input or output “p"
and "¥" function identically.

1. Opened output (“D" and "WY):

WRITE adds a new record. 1If a
record containing the same key
already exists, the system will add
the record anyway. The result will
be records with duplicate keys.

2. Opened I-0 ("W"):

a. REWRITE automatically searches
for a record with a matching
record identifier, and updates
it.

b. H#WRITE adds a new record to the
file whether or not a duplicate
key already exists.

3. Opened I-0 ("D"):

a. REWRITE updates the file only if
the preceding input/output
statement was a READ of the same
record.

b. HWRITE adds a new record to the
file, whether or not a duplicate
key already exists, if the
preceding input/output statement
vas anything other tham a READ
of the same record.

Note: When a file is opened I-O {BDAM
"p%) the contents of ACTUAL KEY are
moved to a save area during the
execution of a READ statement. During
the execution of a WRITE statement, the
contents of ACTUAL KEY are compared to
the contents of the save area to
determine whether the system should add
or update a record. A check is also
made to assure that the preceding
input/output statement was a READ. 1If
it was a WBITE of any record, a new
record is added to the file. oOpening a
file I-0 (BDAM "W") omits the save and
compare steps entirely. The system adds
a record when a WRITE statement is
executed and updates a record when a
REWRITE statement is executed. It is,
therefore, more efficient to use BDAM
""" than it is to use BDAM "D¥ if it is
known in advance whether the record
should be added or updated.

Determipation of File Space: To determine
the amount of space a data set requires,
the following variables should be
considered:

Device Type

Track Capacity

Tracks per Volune
Cylinders per Volume
Data length (block size)
Key Length

Device Overhead

Device overhead refers to the space
required on each track for hardware data,
i.e., address markers, count areas,
inter-record gaps, Record 0, etc. Device
overhead varies with each device and also
depends on whether the blocks are written
with keys. The formulas in Figure 26 may
be used to compute the actual space
required for each block, including device
overhead.

Pigure 27 lists device storage capacity,
and Figure 28 lists capacity in records per
track for several mass storage devices.

Programmers who require more detailed
information on mass storage devices may

refer to the IBM_System/370 System Summary,
order No. GAa22-7001.

Note: Specification of the ¥“S" option in
the DCB subparameter RECFM can increase
3330 performance (see the description of
RECFM earlier in this chapter).

Randomizing Techmniques

Oone method of determining the value of
the track identifier portion of the ACTUAL
KEY is called indirect addressing.
Indirect addressing generally is used when
the range of keys for a file includes a
high percentage of unused values. For
example, employee numbers may range from
000001 to 009999, but only 3000 of the
possible 9999 numbers are currently
assigned. Indirect addressing can also be
used vith nonnumeric keys. A nonnumeric
field (e.g., alphanumeric), when moved to a
computational field, will be packed and
then converted to binary notation. Since
packing eliminates the zone fields, the
final binary item will be numeric.

Indirect addressing means that the key
is converted to a value for the track
identifier by use of some algorithnm
intended to limit the range of addresses.
Such an algorithm is called a randomizing
technigue. Randorizing teckniques need not
produce a usique address for every record;
in fact, such techniques usually produce
synoanyms. Synonyms are records whose keys
randomize to the same address.

Two objectives must be considered in
selecting a randomizing technique:

1. Every possible key in the file must
randomize to an address within the
designated range.

2. The addresses should be distributed
evenly across the range so that there
are as few synonyms as possible.

Note that one way to minimize synonyms
is to allocate more space for the file than
is actually required to hold all the
records. For example, the percentage of
locations actually used might comprise only
80 to 85 percent of the allotted space.

User Non-VSAM File Processing 101

Division/Remainder Method: One of the
simplest ways to address a directly
organized file indirectly is to use the
division/remainder method.

1. Determine the amount of locations
required to contain the data file.
Include a packing factor for
additional space to eliminate
synonyms. The packing factor should
be approximately 20 percent of the
total space allotted to contain the
data file.

2. Select the nearest prime number that
is less than the total of step 1. A
prime number is a number divisible
only by itself and the integer 1.
Figure 29 is a partial list of prirme
numbers.

3. Clear any zones from the key that is
to be used to calculate the track
identifier of actual key. This can be
accomplished by moving the key to a
field described as COMPUTATIONAL.

4, Divide the key by the prime number
selected.

5« Ignore the quotient; utilize the
remainder as the relative location
vwithin the data file.

For example, assume that a company is
plarning to create an inventory file on a
2314 disk storage device. There are 8,000
different inventory parts, each identified
by an 8-character part number. Using a 20
percent packing factor, 10,000 record
positions are allocated to store the data
file.

Method A: The closest prime number to
10,000, but under 10,000, is 9973. Using
one inventory part number as an example, in
this case #25DF3514, and clearing the
zones, vwe have 25463514, Dividing by 9973
a gquotient of 2553 results in a remainder
of 2445. Thus, 2445 is the relative
location of the record within the data file

102

corresponding to part number 25DF3514. The
record address can be determined from the
relative location as follows:

1. Determine the number of records that
can be stored on a track (e.g., 13 per
track on a 2314, assuming each
inventory record is 200-bytes long).

Note: Because each data record has
nondata components, such as a count
area and inter-record gaps, track
capacity for data storage will vary
with record length. As the number of
separate records on a track increases,
inter-record gaps occupy additional
byte positions so that data capacity
is reduced. Track capacity formalas
provide the means to determine total
byte requirements for records of
various sizes on a track {see Figures
26-28) .

2. Divide the relative number (2445) by
the number of records to be stored on
each track.

3. The result, quotient = 188, now
becomes the track identifier of the
actual key.

Method B: Utilizing the same example,
another approach will also provide the
relative track address. Method B is
illustrated in Figure 30:

1. The number of records that may be
contained om one track is 13.
Therefore, if 10,000 record locations
are to be provided, 770 tracks must be
reserved.

2. The prime number nearest, but less

than 770, is 691.

3. Divide the zone~stripped key by the
prime value. {In the example,
25463514 divided by 691 provides a
quotient of 36850 and a remainder of
164, The remainder is the track
identifier.)

el

Bytes Required by Each Data Block

Ll L]
1 i
| + 1
{ Device Blocks With Keys [} Blocks Without Keys [}
| Type ¥ + T 1
| Bi i Bn] Bi] Bn 1
o t $ + + 4
| 2314{2319) | 146+1.043 (KL+DL)] U45+KL+DL { 101+ 1. 043 (DL) { DL |
{ 2305-1 1 6344KL+DL { 634+KL+DL | 432+DL i 432+DL {
{ 2305-2] 2893 ¢KL+DL § 289#KL+DL | 198+DL i 1984DL []
I 3330-1.-2.}1 | i | i
1 3330-11] 191+KL+DL] 191+KL4DL | 135+DL i 135+DL]
{ 3340 | 2482+¢KL+DL | 242+KL+DL |} 167+DL } 167+DL |
{ 3350 { 267+KL+DL { 2674+KL+DL | 185+DL] 185+D1L i
) F A4 4L 1 F]
| g R
} Bi is any block but the last on the track. !
i Bn is the last block on the track. 1
{ DL is data length. {
1 KL is key length.]
1]
Figure 26. Mass Storage Device Overhead Pormulas
R} RS g k) q L]
Device { Volume 1 Track i { Number of |} Total 1
Type i Ty pe { Capacity {Tracks per Cylinder | Cylinders | Capacity i
i e i 4 E | 2
LE 1 Bl L] R k]
2314{2319) 4 Disk | 7294] 20 | 200 1 29,176,000 |§
2305-1 1 Disk] 146136] 8 1] 5,428,224
2305-2 { Disk | 14660 1 8 1 ¢ i 11,258,880 }
3330-1,-2) Disk i 13030 | 19] 404 1 101,751,270 |
3330-11 i Disk { 13030 1 19 i 808 1 203,502,340
3340] Disk i 8535] 12 1 348 1 34,944,768 |
3350 i Disk] 19069 1 30 1 555 | 317,498,850 4
L i 4 A = | ¥ |
i
Notes: H
1
i
{

p—.—'-“-qp_—.“m*—“j-m“?

Capacity is indicated in bytes.
disk devices, total capacity is the
numpber of bytes per demountable pack.

For

Figure 27.

Mass Storage Device Capacities

User Non-VSANM File Processing

103

Maximum Bytes per Record Records Maximum Bytes per Record
Formatted Without Keys per Formatted With Keys
Track
2305-1 | 2305-2 2314 3330-1 3340 3350 2305-1 | 2305-2 2314 3330-1 3340 3350
) (2319) | (3330~11) (2319) (3330~11)

14136 14660 7294 13030 8368 19069 1 13934 14569 7249 12974 8273 | 18987
6852 7231 3520 6447 4100 9442 2 6650 7140 3476 6391 4005 9360
4u2y 4754 2298 4253 2678 6233 3 4222 4663 2254 4197 2583 6151
3210 3516 1693 3156 1966 4628 4 3008 3425 1649 3100 1871 4546
2480 2773 1332 2498 1540 3665 5 2278 2682 1288 2442 1445 3583
1996 2278 1092 2059 1255 3024 6 1794 2187 1049 2003 1160 2942
1648 1924 921 1745 1052 2565 7 1446 1833 877 1639 957 2483
1388 1659 793 1510 899 2221 8 1186 1568 750 1454 804 2139
1186 1452 694 1327 781 1954 9 984 1361 650 1271 686 1872
1024 1287 615 1181 686 1740 10 822 1196 571 1125 591 1658

892 1152 550 1061 €08 1565 11 690 1061 506 1005 513 1483
782 1040 496 962 544 1419 12 580 49 452 906 449 1337
688 944 450 877 489 1296 13 486 853 407 821 394 1214
608 863 411 805 442 1190 14 406 772 368 749 347 1108
538 792 377 742 402 1098 15 336 701 333 686 307 1016
478 730 347 687 366 1018 16 276 639 304 631 271 936
424 676 321 639 335 947 17 222 585 277 583 240 865 |
376 627 298 596 307 884 18 174 536 254 540 212 802
334 584 276 557 282 828 19 132 493 233 501 187 746
296 sS4 258 523 259 777 20 94 453 215 ue7 164 695
260 509 241 491 239 731 21 58 418 198 435 144 649
230 477 226 463 220 690 22 386 183 uo7 125 608
200 448 211 437 204 652 23 357 168 381 109 570
174 421 199 413 188 617 24 330 156 357 23 535
150 396 187 391 174 585 25 305 144 335 79 503
128 373 176 371 161 555 26 282 133 315 66 473
106 352 166 352 149 528 27 261 123 296 54 446
88 332 157 335 137 502 28 241 114 279 42 420
70 314 148 318 127 478 29 223 105 262 32 396 |-
52 297 139 303 117 456 30 206 96 247 22 374 |
Figure 28. Mass Storage Device Track Capacity

104

Nearest Prinme

Number Less than

Nearest Prime
Number Less than

o o M G - R - i o MV N A Gl A S A S A M A dn R i s M MR MO et SO G W e AN G N e s it B o e s

¥ L k] B ¥ A S

i | 1 i i

i | 1 i i

| Number] Number { i Number 1 Number
2 + 1 F +

i 500] 499 [I | 6000 1 5987
{ 600 1 539 IR | 6100 1 6091
! 700 | 691 19 6200] 6199
$ 800 1 797 1 6300 i 6299
1 900] 887 | I 6400 i 6397
H 1000 1 997 [6500 | 6491
{ 1100 | 1097 1 6600 { 6599
1 1200 1 1193 11 6700 1 6691
{ 1300 1 1297 | 6800 { 6793
1 1400 i 1399 15 6900 g 6899
1 1500 1 1499 1.1 7000 1 6997
1 1600 1 1597 i] 7100 1 7079
i 1700] 1699 { { 7200 i 7193
1 1800 | 1789 NP | 7300 i 7297
| 1900] 1889 1 | 7400 { 7393
1 2000] 1999 R 7500 1 7499
i 2100 1 2099 1 1 7600 . 1 7591
1 2200 | 2179 P 7700 i 7699
i 2300 | 2297 I | 7800 1 7793
) 2400 i 2399 § } 7900 } 7883
| 2500 { 2477 1 1 8000 H 7993
| 2600 1 2593 § 8100 i 8093
1 2700 i 2699 1.1 8200] 8191
i 2800 i 2797 B | 8300 1 8297
{ 2900 | 2897 P | 8400 1 8389
] 3000 i 2999 1) 8500] 8467
| 3100] 3089 { 1 8600 { 8599
[3200] 3191] 8700 } 8699
] 3300 i 3299 | 1 8800 { 8793
{ 3400 i 3391 IR | 8900 1 8893
| 3500 { 3499 S | 9000 1 8999
] 3600 1 3593 b1 9100 i 9091
i 3700 i 3697 i 1 9200] 9199
{ 3800 1 3797 1 1 9300 i 9293
A 3900 { 3889 IR | 9400 1 9397
1 4000 i 3989 [IR | 9500 1 9497
] 4100 { 4099 {] 9600 H 9587
{ 4200 [4177 1. 1 9700 i 9697
1 4300 'y 4297 { { 9800 i 9791
{ 4300 i 4397 | i 93900 i 9887
] 4500 f 4493 {] 10,000 1 9973
1 4600 { 4597 [} i 10,100 i 10,099
] 4700 1 4691 i i 10,200 1 10,193
] 4800 | 4799 1 i 10,300 { 10,289
{ 4900 i 4889 1 i 10,400 [] 10,399
i 5000 i 4999 1.1 10,500 i 10,499
1 5100 | 5099 i 1 10,600 i 10,597
1 5200 1 5197 IR 3

{ 5300 1 5297 { : Figure 29. Partial List of Prime Numbers
i 5400] 5399 1. {Part 2 of 2)

i 5500 1 5483 {

i 5600] 5591 f

1 5700 1 5693 1.

1 5800 1 5791]

1 5900 } 5897 1.

1 i ¥}

F .

jgure 29. Partial List of Prime Numbers

{Part 1 of 2)

User Non-VSAH File Processing

105

00001 00101
00002 00102
00003 00103
00004 00104
€0005 00105
00006 00106
00007 00107
00008 00108
00009 00109
00010 00110
00011 00112
00012 = 00113
00013 00114
00014 00115
00015 00116
00016 00117
00017 00118
00018 00119
00019 00120
00020 00121
00021 00122
00022 00201
00023 00202
00024 00203
00025 00204
00026 00205
00027 00206
00028

00029 00207
00030 00209
00031 00210
00032 00211
00033 00212
00034 00213
00035 00214
00036

00037 00303
00038 00304
00039 00305
00040 00306
00041 00307
00042 00308
00043 00309
00044 00310
00045 00311
00046 00312
00047 00313
ooous 00314
00049 00315
00050 00316
Figure 30.

106

IDENTIFICATION DIVISION.
PROGRAM~-ID. METHOD B.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT D-FILE ASSIGN DA~2314-D-MASTER
ACCESS IS RANDOM ACTUAL KEY IS ACT-KEY
TRACK-LIMIT IS 691. ‘<§)
SELECT C-FILE ASSIGN UT-S-CARDS.
DATA DIVISION.
FILE SECTION.
FD D-FILE
LABEL RECORDS ARE STANDARD.
01 D-REC.
02 PART-NUM PIC X(8).
02 NUM-ON-HAND PIC 9(4).
02 PRICE PIC 9(5)V99.
02 FILLER PIC X(181).
FD C-FILE
LABEL RECORDS ARE OMITTED.
01 C-REC.
02 PART-NUM PIC X(8).
02 NUM-ON-HAND PIC 9(4).
02 PRICE PIC 9(5)V99.
02 FILLER PIC X(61).
WORKING-STORAGE SECTION.
77 SAVE PIC S9(8) COMP SYNC.
77 QUOTIENT PIC S9(5) COMP SYNC.
01 ACT-KEY.
02 TRACK-ID PIC S9(5) COMP SYNC.
02 REC-ID PIC X(8).
PROCEDURE DIVISION.
OPEN INPUT C-FILE OUTPUT D-FILE.

READS.

READ C-FILE AT END GO TO EOJ.

MOVE CORRESPONDING C~REC TO D-REC.

MOVE PART-NUM OF C-REC TO REC-ID SAVE.
DIVIDE SAVE BY 691 GIVING QUOTIENT REMAINDER TRACK-ID.<———-———<:)
WRITES.

EXHIBIT NAMED TRACK-ID C-REC.

WRITE D-REC INVALID KEY GO TO INVALID-KEY.

GO TO READS.

INVALID-KEY.

DISPLAY *INVALID KEY * TRACK-ID REC-ID.
EOJ.

CLOSE C-FILE D-FILE.

STOP RUN.

Sample Program for a Randomly Created Direct File

{part 1 of 2)

000010 IKF8003I-W
000010 IKF8003I-W
000011 IKFB002I-W -
000039 IKF8003I~W
000040 IKF8003I-W
€00041 IKF8003I-W
000043 IKFB002I-W
C00047 IKF8002I-W
C00049 IKF8003I-W

RANDOM OPTION OF ACCESS MODE IS CLAUSE IS AN EXTENSION TO LEVEL A.

ACTUAL KEY IS CLAUSE IS AN EXTENSION TO LEVEL A.

TRACK-LIMIT CLAUSE IN SELECT SENTENCE IS AN EXTENSION TO ALL LEVELS.
CORRESPONDING OPTION IS AN EXTENSION TO LEVEL A.

QUALIFICATION OF DATA-NAMES AND PARAGRAPH-NAMES IS AN EXTENSION TO LEVEL A.
REMAINDER IN DIVIDE STATEMENT IS AN EXTENSION TO LEVEL A.

EXHIBIT STATEMENT IS AN EXTENSION TO ALL LEVELS.

APOSTROPHE USED AS QUOTE IS AN EXTENSION TO ALL LEVELS.

USE OF MULTIPLE FILE-NAMES IN CLOSE STATEMENT IS AN EXTENSION TO LEVEL A.

FIPS messages
for LVL=A

Figure 30.

XXGO EXEC PGM=+*.LKED.SYSLMOD,COND=((5,LT,COB), (5,LT,LKED)) 00800270
XXSTEPLIB DD DSN=VSCBL1.LIB,DISP=SHR,UNIT=2314,VOL=SER=DB143 00800280
XXDD1 DD DSN=§SYMDBG,DISP=(OLD, DELETE) 00800290
XXSYSDBOUT DD SYSOUT=A 00800300
//G0O.SYSUDUMP DD SYSOUT=G

X/SYSUDUMP DD SYSOUT=A 00800310
//G0.SYSOUT DD SYSOUT=G

X/SYSOUT DD SYSOUT=A 00800320
XXSYSPUNCH DD SYSOUT=E 00800330
//GO.MASTER DD SPACE=(TRK, (500,100) ,RLSE), X

77 DCB=(OPTCD=E,LIMCT=5) ,UNIT=2314

//GO.CARDS DD *

/7

IEF2361 ALLOC. FOR FIG18 GO STEP1

IEF2371 230 ALLOCATED TO PGM=*.DD

IEF2371 234 ALLOCATED TO STEPLIB

TIEF2371 250 ALLOCATED TO DD1

IEF2371I 230 ALLOCATED TO SYSDBOUT

IEF2371 250 ALLOCATED TO SYSUDUMP

IEF2371I 230 ALLOCATED TO SYSOUT

IEF2371 250 ALLOCATED TO SYSPUNCH

IEF2371 235 ALLOCATED TO MASTER

IEF2371 230 ALLOCATED TO CARDS

TRACK-ID = 00149 C-REC = 82900801CD1

TRACK-ID = 00149 C-REC = 82900801CD2

TRACK-ID = 00149 C-REC = 82900801CD3

TRACK-ID = 00149 C-REC = 82900801CD4

TRACK-ID = 00070 C-REC = 82900031

TRACK-ID = 00149 C-REC = 82900801CD5

TRACK-ID = 00149 C-REC = 82900801CD6

TRACK-ID = 00149 C-REC = 82900801CD7

TRACK-ID = 00149 C-REC = 82900801CDS8

TRACK-ID = 00149 C-REC = 82900801CD9

TRACK-ID = 00149 C-REC = 82900801CD10

TRACK-ID = 00149 C-REC = 82900801CD11

TRACK-ID = 00149 C-REC = 82900801CD12

TRACK-ID = 00149 C-REC = 82900801CD13

TRACK-ID = 00149 C-REC = 82900801CD14

TRACK-ID = 00149 C-REC = 82900801CD15

TRACK-ID = 00149 C-REC = 82900801CD16

TRACK-ID = 00039 C-REC = 829000003

TRACK-ID = 00149 C-REC = 82900801CD17

TRACK-ID = 00149 C-REC = 82900801CD18

TRACK-ID = 00149 C-REC = 82900801CD19

TRACK-ID = 00149 C-REC = 82900801CD20

TRACK-ID = 00157 C-REC = 82900809

“TRACK-ID = 00149 C-REC = 82900801CD21

TRACK-ID = 00149 C-REC = 82900801CD22

TRACK-ID = 00149 C-REC = 82900801CD223

TRACK-ID = 00149 C-REC = 82900801CD24

TRACK-ID = 00149 C-REC = 82900801CD25

TRACK-ID = 00149 C-REC = 82900801CD26

sample Program for a Randomly Created Direct File {(Part 2 of 2)

User Non-VSAM File Processing

107

Figure 30 is a sample COBOL program that 3. The DCB subparameter C) LIMCT=5 is
creates a direct file using method B {see specified. This limits the extended
“rRandomizing Technique%) and provides for search to five tracks. If no room is
the possibility of synonym overflow. found within this limit, an invalid
Synonym overflow will occur if a record key condition results. A value should
randomizes to a track that is already full. alvways be specified for the LIMCT
The following discussion highlights sonme subparameter when OPTCD=E is
basic features., Circled numbers in the indicated. Otherwise, the default
program example refer to corresponding value of LIMCT, which is zero, will
numbers in the text that follows. result in an error that will be

treated as an exceptional input/output
condition.
1. Since this randomizing technigue @ :
employs the prime number 691 as its Note: The randomizing techmique chosen
divisor, the largest possible should minimize the number of synonym
remainder is 690. By the interaction overflows for two reasons:
betvweern the TRACK-LIMIT clause and
the SPACE parameter C@ , the program 1. The more extended search is employed
formats 692 tracks {i.e., relative during file creation, the more it will
tracks 000-691). This establishes be required during record retrieval.
track 691 as the only track that can Extended searches increase access time
‘contain synonym overflow from track proportionately.
690.
2. When an extended search is employed,
2. The DCB subparameter C) OPTCD=E is the adjusted value of the track
specified. If a synonym overflow identifier is not made available to
condition arises, an extended search the user after the execution of a
will be employed, and the additional WRITE statement. The user, therefore,
record will be written in the first has no way of knowing the track on
available position on the following which an overflow record is actually
track{(s). written.
File Data Management Access KEY OPEN Access 'CLOSE
Organization Techniques Method Clauses Statement Verbs Statement
D BSAM SEQUENTIAL ACTUAL INPUT READ[INTO) [UNIT]
. AT END [WITH LOCK]
OUTPUT WRITE[FROM]
INVALID KEY
D BDAM RANDOM ACTUAL INPUT SEEK [WITH LOCK]
READ[INTO]
INVALID KEY'
OUTPUT SEEK
WRITE[FROM]
INVALID KEY
-0 SEEK
READI[INTO]
INVALID KEY
WRITE[FROM]
INVALID KEY
w BDAM RANDOM ACTUAL 1-0 SEEK [WITH LOCK]
READ[INTO]
INVALID KEY
WRITE[FROM]
INVALID KEY
REWRITE[FROM]
INVALID KEY
Fiqgqure 31. Direct File Processing on Mass Storage Devices

108

DD Statement Parameters Applicable to BSAM Input Files

P ———n

1

|

|

i
T Ll . v k] | k] ¥ R) T ;
{DSNAME|Device |UNIT VOLUME |LABEL |SPACE{SUBALLOC|SPLIT| DISP 1 DCB 1
t+ + 1 4 } + 4 $ + 4
las jMass jnot required|f{SL ori i i | OLD} +PASS i na |
i }Storage |if cataloged|SUL] {as [} na jna { |SHR +KEEP | 1
{ jrequired} i | 1 i i +CATLG i i
i | | | 1 | { 1 +DELETE] i
i | 1 i i i i 1 ¢+ UNCATLG) | i
} L A A i A 31 A i =
t ?
i {
i DD Statement Parameters Applicable to BSAM Output Files {
! !
T] R L R Rl k) Rl L 1
{DSNANE{Device |JUNIT VOLUME |LABEL |SPACE|SUBALLOC|SPLIT] DISP | DCB {
1. 1 1 4 - L 1 1 bR 1
L £] 1 L} L § L} T k| E] 1
jas {Mass [} as {{SL orlas {as I na | NEW + KEEP {{DSORG=DA] |
] {Storage | {SUL] JRLSE | i { + CATLG {OPTCD=[¥,T] |
| irequired|]] 1 | | /PASS i |
i i 1 i i i | { +DELETE i 1
i 1 } i { | i 1 !Q&gf MOD not | H
i 1 { i | | i § meaningful 1 1
:_ A i i 4. 4 A i 1 = %
F 4
i . i
i DD Statement Parameters Applicable to BDAM Input and I-O0 Files 1
! !
v | j B k| 1 k| k | R } k] R
{DSNAMEjDevice JUNIT VOLUME |LABEL {SPACE|SUBALLOC{SPLIT| DISP] DCB]
L bl 1 1 3 1. kR L 4 ¥]
¥ . L] E 3 L 8 T E | 1] L]
jas { Mass {not required{[SL or¢ 1] {JOLD +PASS fas specifiedl
i {Storage {if cataloged(SuL] |na i na lna {1 SHR +KEEP {at file 1
1 jrequired) 1 1 i i 1 +CATLG fcreation i
| 1 ! | i i i i +UNCATLGY | i
1 | | i i 1 | i +DELETE | i
l': i - i i i E | A E %
2 1
i . i
i DD Statement Parameters Applicable to BDAM Output Files i
H !
1 4 Rl . 1 v RS R L] h i 3]
{DSNAME}Device |ONIT VOLUME |LABEL JSPACE{SUBALLOC{SPLIT| DIsP { DCB i
. i 1 1 4 4 i 1 4 J
¥ L) T L] 1 k] ¥] T k|
las | Mass i as 1ISL orijas {as Ina { NEW + KEEP {[DSORG=DA} |
] {Storage |{ {SUB] {RLSE | i 1 »CATLG JOPTCD={W,E] 1|
i {required} 1 i 1 1 1 «PASS {LINCT=n]
i 1 i | i i i i +»DELETE i !
i | i i { i] { Note: MOD not | i
i { | ! i 1 i | meaningful | i
} A bk - i A A A i 4 {
jas = Applicable subparameters [
fna = Not applicable i

]

" Figure 32. JCL Applicable to Directly Organized Files

User Non-VSAM File Processing 109

RELATIVE FILE PROCESSING

Relative file processing is
characterized by the use of the relative
record addressing scheme. When this
addressing schemne is used, the position of
the logical records in a file is determined
relative to the first record of the file
starting with the initial value of zero. A
NOMINAL KEY is used to identify randomly
accessed records. Files with relative data
organization must be assigned to mass
storage devices. :

Format

NOMINAL KEY IS data-name

(o e e s -y
he e o i ah o

Data-name must be defined as an

8-integer binary item whose value must not -

exceed 16,777,215. NOMINAL KEY nmust be
defined in the Working-Storage Section.

The following example illustrates use of
the NOMINAL KEY clause:

ENVIRONMENT DIVISION.

NOMINAL KEY IS THE~-NOMINAL-KEY.

DATA DIVISION.

L e e e s

{WORKING~STORAGE SECTION.
177 THE-NOMINAL-KEY PIC S9(8) COMP SYNC.
1

he e e S B s - W s

The relative file processing technique
supports only unblocked fixed-length
records.

Figure 33 illastrates those parts of a
relatively organized file that are of
importance to a COBOL programmer. The
track format is similar to the format
described for directly organized files (see
section "Direct File Processing"). The
following is a list of significant
differences:

110

1. The records (R!, R2, ..., Rn) are
formatted without a key area.

2. The COUNT area contains a record ID:

a. 2 bytes containing the cylinder
number.

b. 2 bytes containing the read/write
head.

c. 1 byte containing a record number
from 1 through 255.

Records on mass storage devices will
alvays appear sequentially ranging from 0
to np, where n equals the highest key
contained in the file.

The following example illustrates the
relationship between the NOMINAL KEY and
the positioning of records on a mass
storage device.

A

ted

NVIRONMENT DIVISION.

NOMINAL KEY IS THE-NOMINAL-KEY.

i
I
|
1
i
] -

| .

I .

IDATA DIVISION.

|FILE SECTION.

|FD RELATIVE-FILE

1 LABEL RECORDS ARE STANDARD.
101 REC-1 PIC X({80).
| .

l -

' -

|WORKING-STORAGE SECTION.

1 .

| .

| .
177 THE-NOMINAL-KEY PIC S9(8) COMP SYNC. |
L

J

Consider REC-1 being written 200 times.
With each execution of the WRITE statement,
the content of THE-NOMINAL-KEY is
incremented by 1, from O through 199.
Since a 2314 mass storage device has roon
for only thirty nine 80-character records
on each track {see "Determination of File
space" in "Direct File Processing") REC-1
will be uwritten as follows:

e Relative records 0 through 38 will be
on the first track.

s Relative records 39 through 199 will be
on the second through sixth tracks.

INDEX

|ADDRESS} G |RECORD
1 } i

POINT GAP
| 1 RO R1 R2
i | — P, Sy e cat—
‘]l k] T L L k] T ¥ L)
v i ITRACK '} iCAPACITY|) H } | |
G

{ G {COUNT{DATA| G |COUNT|DATA] &
'] . A] 4 L 4

. A G G AN . O

e S . k a St cae win

Figure 33. Relatively Organized Data as it Appears on a Mass Storage Device

r R}
1 i
] Count Data Count Data Count Data Count Data |
' T 1 1 L e hJ 1 ¥ ki L] ¥ Rl 3]
{ G 101,00,1}REC-%{ G 101,00,2{REC-1} G }J01,00,3]REC-146G G{01,00,254REC-1} |
{1st TRACK { 1 (0 | { (M 1 { P (2) 1 1 1(38) 1 |
' ew ® i ¥} i b & 3 i 1 y) PR 1 i F] !
1 {
i T T 2] T] 1] T T 1 7 T 1
i G §01,01,11REC-1{ G 101,01,2JREC~-1] G 101,01,34REC-1)6 G{01,01,25)REC-1} |
12nd TRACK i 139 1 i | {40) | i 1 (41 i 177y ¢ |
! ew ® 1 A ' 1 i J 1 i ¥ - . 1 i] i
i i
'l 3
Figure 34. Sample Format of Two Tracks of a Relative File

If the two tracks assigned to RELATIVE FILE
are "cyliander 01 track 00" and "cylinder 01
track 01, they would appear as show#n in
Figure 33.

It is important to note that information
about the length of each record, the
capacity of each track and the relative
record number, as indicated by the NOMINAL
KEY is used by the system to determine the
exact location of each record. As
indicated in FPigure 34, the system converts
each relative record number into a unigque
cylinder number, head number, and record
number, which are sritten in the count area
of each physical record.

Note: Since count areas do not appear in
I-0 buffers and there are no key areas,
buffer size need be only large enough to
accormodate data in REC-1.

Sequential Creation

Relative files must be created
sequentially using the file processing
techniqgue BSAM (Basic Sequential Access
Method) .

e The associated COBOL statements are
summarized in FPigure 36.

s The associated JCL statements are
summarized in Figure 37.

Figure 35 illustrates the creation of a
relative data set.

Records in relative files, are arranged
sequentially in the order in which they
were vritten. The first record vwritten is
relative record 0, the second record is
relative record 1, the nth record written
is relative record n~-1. A file containing
1000 records will thus contain relative
records 0 through 999. The clause that
allows the user to specify the relative
record needed is the NOMINAL KEY clause.

When a relative file is being created,
the NOMINAL KEY clause may be specified.

e If the NOMINAL KEBY is specified and the
value in the NOMINAL KEY {(when a WRITE
statement is executed) is greater than
the next sequential relative number,
the necessary number of dummy records

v is written by the compiler so that the
actual record is written in the
specified relative position. 1If the
NOMINAL KEY for a WRITE statement is

User Non-VSAM Pile Processing 111

less than the next sequential relative
record number, the key is ignored and
the record is written in the next
available position.

s If the NOMINAL KEY is not specified,
the system begins w#riting at relative
record 0 and increments the relative
record number by 1 for each additional
WRITE statement. When the key is not
specified, the user is responsible for
insertion of dummy records. The only
time the compiler will add dummy
records is during the execution of a

- CLOSE or CLOSE UNIT statement.

Note: Dummy records are identified by

the presence of the figurative constant
HIGH-VALUE in the first position of the
record.

The relative block number of the last
record written is placed in the NOMINAL KEY
after a WRITE, CLOSE, or CLOSE UNIT
statement, if the key is specified.

Once a file is created, more space
cannot be allocated and the extent of the
file cannot be increased. The only way to
add records to an already existing file is
to replace dummy records. Therefore, to
allow for future additions, the user should
create the file with as many excess dummy
records as desired.

The allocation of space to a relative
file {both single~-volume and multivolume)
is similar to the allocation of space
described for a sequentially created direct
file. Highlights and essential differences
are discussed below:

e The relative file processing technique
does not include a TRACK-LIMIT clause.
Space allocation and formatting will,
therefore, be determined by an
interaction between the SPACE parameter
of the DD card and the number of
records written,

e The total number of tracks formatted
vill be determined when the file is
closed. Dummy records will be added to
complete the current track, if
pecessary.

» Tracks that are allocated but
unformatted, and have been regquested in
track or block units, can be released
by specifying the RLSE subparameter on
the DD statement.

o When a unit of a multivolume file is
closed, all tracks that have been !
allocated on the current unit are
formatted (initialized with dummy
records) before the next unit is made

112

available. = The BRLSE subparameter of
the DD statement applies only to the
allocated tracks at the end of a data
%t'.

Note: 1In order to determine the amount of
space a data set requires, see Figures
26-28.

Seguential Reading

The file processing technique used to
read a relative file sequentially is BSAM
(Basic Sequential Access Method).

» The associated COBOL statements are
summarized in Figure 36.

» The associated JCL parameters are
sunmarized in Figure 37.

When a relative file is being read
sequentially, the records are made
available in the sequence in which the
records were written. Dummy records are
also made available. The NOMINAL KEY, if
specified, will be ignored.

Random_Access

The file processing technique used to
read or update a relative file randomly is
BDAM {Basic Direct Access Method).

» The associated COBOL statements are
summarized in Figure 36.

s The associated JCL statements are
summarized in Figure 37.

Since a relative file cannot be created
randomly, the following restrictions exist:

1. The file cannot be opened as an output
file.

2. The WRITE verb is not permitted.

A relative file with BDAM can be opened
as input or I-0. Records are made
available according to the contents of
NOMINAL KEY. 1If the user wishes to update
a file, it must be opened as I-0. Records
can then be read into a single buffer,
updated in that buffer, and rewritten from
that buffer. If the user wishes to add
records to a file, the file must have been
created with excess dummy records. If
dumny records are present, the file can be

opened as I-0 and dummy records can be
replaced by the additions. If dummy
records are not present, additioas cannot

be made.
Bote: Records cannot be deleted, but can
be replaced by dummy records.

Figure 35 illustrates several basic
characteristics of the relative file
processing technique. It creates a
relative file (R-FILE) using a card file
(C-FILE) as input. C-FILE consists of 11 2.
cards in the following sequence:

Card
Nupber Card Contents

1 0610 NAMEO1

2 020 NAMEO2

3 030 NAMEO3

4 040 NAMEO4

5 050 NANMEOS

6 060 NAMEO® 3.

7 000 THIS CARD IS OUT OF SEQUENCE

8 070 NAMEO?

9 080 NAMEOS

10 090 NAMEOY

1 100 * NAME1D 4,

The program, during creation, exhibits
the contents of NOMINAL KEY after the
execution of each WRITE statement., After
creation, the relative file is closed,
reopened as an input file, and written out
on the printer. The following discussion 5.
highlights some basic features. Circled
numbers in the program example refer to
corresponding numbers in the text.

1. The nominal keys, () , that have been
exhibited contain the relative record
numbers of real records on the file.
Relative records 10, 20, 30, 40, 50,
60, 61, 70, 80, 90, and 100 are real;
all others are dummy records formatted

by a COBCIL subroutine. Note the
nominal key N-KEY = 61. The initial
value taken from C-PILE, card 7, was
000. This value, however, was not in
logical sequence since relative
records 0600 through 060 had already
been written. Therefore, a COBOL
subroutine ignored the value 000 and
adjusted it to the next appropriate
relative record number {i.e., 61).

The contents of N-KEY for the first
WRITE, , was 10. This means that
a COBOL subroutine formatted relative
records 0 through 9, placing the
constand HIGH-VALUE in the first
position of each record.

Note: The constant HIGH-VALUE is
exhibited as a blank since FF is not a
printable character.

The contents of N-KEY for the second
wRITE, (@ , vas 20. Therefore, the
COBOL subroutine formatted relative
records 11 through 19,

The contents of N-KEY for the seventh
WRITE, C) , was initially 000. As
explained in step 1 , N-KEY was
adjusted to 61 and the record was
written in the next available
position.

Since this file was created on a 2314
mass-storage device, the track
capacity for R-FILE is 39 records per
track. Relative record 100 is,
therefore, on the third track.
the file is closed after writing
relative record 100, the COBOL
subroutine formats the rest of the
third track. In this case, it means
the addition of 17 dummy records, (),

Since

User Non-VSAM File Processing 113

€0001 00101
€C002 00102

€0003 00103

ccoou 00104

06005 00105

€C006 00106

€C007 00107

00008 00108

€0009 00109
€0010 00110

€0011 00111

0012 00112

€0013 001125
€0014 001126
€0015 001127
€0016 00113
€0017 00114

00018 00115

€0019 00116

€0020 00117

€0021 00118

€0022 001184
€0023 001185
€0024 001186
€0025 00201

60026 00202

€0027 00203

€0028 00204

C0029 002041
€0030 002042
€C031 002043
€0032 002044
€0033 002045
€0034 002046
€0035 00205

€0036 00206

€C037 00207

€0038 00208

€0039 00209

C0040 00210

co041 00211

co042 00212

€0043 00213

coous 00214

€0045 00215

00046 00216

C0047 00217

€0048 00218

cCo49 00219

€0050 00220

€0051 00230
Figure 35.

114

IDENTIFICATION DIVISION.
PROGRAM-ID. CREATER.
REMARKS. ILLUSTRATE CREATION OF A RELATIVE FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IEM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT R-FILE ASSIGN DA-2314-R-MASTER
ACCESS IS SEQUENTIAL .
NOMINAL KEY IS N-KEY.
SELECT C-FILE ASSIGN UR-S~CARDS.
SELECT R-FILE2 ASSIGN DA-2314-R-MASTER.
. SELECT PRTFILE ASSIGN UR-S-PRTCUT.
DATA DIVISION.
FILE SECTION.
FD R-FILE
LABEL RECORDS ARE STANDARD
RECORDING MODE IS F
DATA RECORD IS DISK.
01 DISK PIC X(80).
FD R-FILE2 LABEL RECCRDS ARE STANCARD.
01 DISK2 PIC X(80).
FD C~FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD.
01 CARD.
02 C-KEY PIC 9(3).
02 FILLER PIC X(77).
FD PRIFILE LABEL RECCRDS ARE OMITTED.
01 PRT.
02 FILLER PIC X.
02 FIELD1 PIC X(132).
WORKING~STORAGE SECTICN.
77 N-KEY PIC S9(8) COMP SYNC.
PROCEDURE DIVISION.
OPEN INPUT C~-FILE
OUTPUT R-FILE.
Rl. READ C-FILE AT END GO TO EOJ1.
MOVE C-KEY TO N-KEY.
WRITE DISK FROM CARD.
EXHIBIT NAMED N-KEY. GO TO Rl.
EOJ1.
CLOSE C-FILE R-FIILE.
OPEN INPUT R~FILE2 OUTPUT PRTFILE.
R2. READ R-FILE2 AT END GO TC EOJ2.
MOVE DISK2 TO FIELL1.
WRITE PRT AFTER 1 LINES GO TC R2.
EOJ2.
CLOSE R~FILL2 PRTFILE. STOP RUN.

sample Program for Relative File Processing (Part

of

4)

FE4~LEVEL LINKAGE EDITOR OPTIUNS SPECIFIED LIST,XREF,LET
SIZE=(196608, 65536)

DEFAULT OPTION(S) UScD -

CCNTROL SECTION

NAME
CREATER

1LB0COMO*

LLRQDSP
TLBUEXT
1LBOQI0
1LBOSAM
lLBOSPA
ILBOSRYV

1LBUBEG
ILBUCMN
1LBOCVB
ILBUNSG

*

*

00
8CO

030
1720
1770
1CE0
21A8

2818

2CA8
2000
3160

‘3578

OnIGIN LENGTH

BBA
169

9F0

50
56€
4C8
670
48E

128
388
412

F2

LGCATION RcFERS TO SYMBOL

788
7C0
7Cc8
700

720"

«B68
2870
2B78

ENTRY ADORES>

TCTAL LENGTH

*%$3G0

N-KEY
N~KEY
N-KEY
N~KEY
N~KEY
N-KEY
N-KEY
N-KEY
N-REY
N~KEY
N~KEY

LI I R I I TR

Figure

35, sSample Program for Relative File Processing {Part 2 of #)

ILBOSRVO
ILBOEXTO
1LBOSAMO
ILBOSPAO
1LBOCOMO
1LBOCOM
ILBOBEGO
ILBOSND2
00

3670

CROSS REFERENCE TABLE

LOCATION

D32

1726

21AE

2822
2826

2D06
3166

REFERS TOD

ENTRY
NAME LOCATION NAME

1LBOCOM BCO

1LBODS PO 032 ILBODSSO

ILBOEXTO 1722 ILBOEXTL

ILBOQIOO 1772

1LBOSAMO 1CE2

ILBOSPAO 21AA ILBOSPAL

ILBOSRVOD 2822 ILBOSRS

ILBOSRVL 2826 1LBOSTPL

ILBOBEGO 2CAA

1LBOCMMO 2002 ILBOCMML

iL8OCvVBO 3162 ILBOCVB1L

1LBOMSGO 357A

4N CONTROL SECTION LOCAT ION
ILBOSRY 78C
TLBOEXT 7C4
ILBOSAM TCcC
1LBOSPA 104
1LBOCOMO 2TFC
1LBOCOMO 286C
1LBOBEG 2B74
$UNRESOLVED(NW)

DOES NOT EXIST BUT HAS BEEN ADDED TO DATA
AUTHCRIZATION CODE IS

00000010
00000020
00000030
00000040
00000050
00000060 (:)
00000061
00000070
00000080
00000090
00000100

Ve

SET

NAME LOCATIDN

ILBOSPA2

TLBOSR3
ILBOST

SYMBOL

ILBOSRS

ILB0OQI GO
ILBODSPO
ILBOSRV1
ILBOCVEO
ILBGCMMO
ILBOMSGO

2182

2822
282A

NAME

ILBOSR
1LBaSTPO

IN CONTROL SECTION

ILBOSRY
ILBOQIO
iLsoose
ILBOSRY
ILeocve
ILBOCMY
TLBOMSG

LOCATIDON

2822
2824

User Non-VSAM File Processing 115

10 NAMEO1

10 NAMEOQ1
10 NAMEO1
10 NAMEO1
10 NAMEOQ1
10 NAMEO1 (:)
10 NAMEO1
10 NAMEO1
10 NAMEO1
10 KNAMEO1

010 NAMEO1
20 NAMEOQ2
20 NAMEO2
20 NAMEOQ2
20 NAMEO2
20 NAMEOQ2 (:)
20 NAMEO2
20 NAMEQ2
23 NAMEQZ
20 NAMEOQ2

c20 NAMEO2

30 NAMEO3
30 NAMEO3
30 NAMEO3
30 NAMEO3
30 NAMEO3
30 NAMEO3
30 NAMEO3
30 NAMEO3
30 NAMEO3

630 NAMEO3
4c NAMEOY4
40 NAMEOQU4
40 NAMEO4
490 NAMEOU4
40 NAMEOU4
40 NAMEOUY
40 NAMEOUY
40 NAMEOY
40 NAMEOQUY

cuo0 NAMEO4

50 NAMFO05
50 NAMEOS
50 NAMEOS
50 NAMEOS
50 NAMEOS
50 NAMEOS
50 NAMEOGS
50 NAMEOS
50 NAMEOS

€50 NANEOS
6C NAMEO6
60 NAMEO6
60 NAMEO6
60 NAMEO6
60 NAMEOG
60 NAMEO6
60 NAMEO6
60 NAMEO6
60 NAMEO6
060 NAMEO6
CCO THIS CARD IS OUT OF SEQUENCE (:)

Figure 35. sSample Program for Relative File Processing {Part 3 of 4)

70 NAMEQ7
70 NAMEO7

70 NAMEOT7
70 NAMEO7
70 NAMEO7

70 NAMEO7
70 NAMEO7
70 NAMEQ7
070 NAMEO7
80 NAMEOS
80 NAMEOS
80 NAMEOS
80 NAMEOS
80 NAMEOS
80 NAMEOS
80 NAMEOS
80 NAMNEOS
80 NAMEOS
080 NAMEOS
9C NAMEO9
90 NAMEO9
90 NAMEO9
90 NAMEO9Y
90 NAMEO9
90 NAMEO9Y
90 NAMEO9
90 NAMEO9
90 NAMEOY
090 NAMEO9
C0 NAME10
00 NAME1O
G0 NAMELO
00 NAME1O
00 NARME1O
00 NAME10
00 NAME10
C0 NAME1O
00 NAME10
100 NAMELO
C0 NAME10
€0 NAME10
00 NAME10
G0 NAME10
00 NAME10
00 NAME10
00 NAME10O
00 NAME10
00 NAME10
00 NAME10 (:)
00 NAME10
00 NAME10
00 NAME10
00 NAME10
CO NAME10
00 NAME1O
C0 NAME10
00 NAME10
00 NAMEL0

Pigure 35. Sample Program for Relative File Processing (Part 4 of 4)

User Non-VSAM File Processing 117

8it

*9¢ 21nbTa

so0TAa(q 9bvi103S sSSeH uo bHurssednold 114 2aTIRILY

Data Management Access KEY OPEN Access CLOSE
Techniques Method Clauses Statement Verbs Statement
BSAM SEQUENTIAL [NOMINAL] INPUT READI[INTO] [UNIT]
AT END [WITH LOCK]
b ——— — e e b e]
NOMINAL OUTPUT WRITE[FROM]
INVALID KEY
BDAM RANDOM NOMINAL INPUT READ[INTO] [WITH LOCK]
INVALID KEY
b — e o — e —_
READ[INTO]
INVALID KEY
i-0 REWRITE[FROM}
INVALID KEY

INDEXED SEQUENTIAL FILE PROCESSING

The indexed sequential file processing
technique arranges records on the tracks of
a mass-storage device in a sequence
determined by keys. The key is a control
field that is a physical part of the record
{defined in the FD) and is specified by the
RECORD KEY clause in the Enviromment
Division. The RECORD KEY clause identifies
for the compiler the location and length of
that item within the data record that will
contain the key. It must always be
specified.

Format

RECORD KEY IS data-name

e s
b i sn e aabie e

Data-nampe may be any fixed-length iten
from 1 through 255 bytes in length.

When two or more record descriptions are
associated with a file, a similar field
must appear in each description, and must
be in the same relative position from the
beginning of the record, although the same
data-name need not be used for both files.

Data-name must be defined to exclude the
first byte of the record in the foliowing
cases:

1« Files with unblocked records.

2. Files from which records are to be
deleted.

3. Files whose keys might start with a
delete-code character (HIGH-VALUE).

For further information, see
0S/VS Data Management Services Guide.

The position of each logical record in a
file is determined by indexes created with
the file and rmaintained by the system. The
indexes are based on the RECORD KEYS and
provide the following capabilities:

» Write and later read or update logical
records in a sequential, ascending
order {using QISAM) based on the
collating sequence of the keys. This
is done in a manner similar to that for
sequential orgarization.

» Read or update individual logical
records in a random manner {(using
BISAM). This method is somewhat slower
per record than reading according to a
collating sequence, since a search for
pointers in indexes is required for the
retrieval -of each record.

» Insert new logical records at any point
within the file {using BISAM). Using
the indexes, the systenr locates the
proper position for the new record and
makes all necessary adjustments so that
the sequence of the records, according
to the keys, is maintained.

User Non-VSAM File Processing 119

DD Statement Parameters Aprplicable to BSAM Input Files

Ll h) T k) T Ll T
LCSNAME |Cevice |UNIT|VCLUME |IABEL |SPACE,SUBALILOC,SPLIT] DISP | DCB
$ poee b e g (R $ }
as | Mass |not required|I[SL or|]{OLD} o, PASS | na

] Storage |if cataloged]SUL]] na] {SHR «KEEP]

|required) | | +CATIG |

|] | | +DELETE |

| | | |] «UNCATLG/ |

4 1 1 L 1 1

DD Statement Parameters Arplicakle to BSAM Outrut Files

T) T T T T T T T T
DSNAME|Device |UNIT|VCLUME |LABEL |SPACE]SUBALLOC|SPLIT] DISFE] ~ DCB

31 3 1 4 1__-___+__ 4 4 4

T T T T T T T

| Mass | as | (SL orjas las |na | NEW +KEEP]CPICD={W,T}

| storage |]SUL1 |RLSE |] | »CATLG | [DSORG=DA]

]required]] |]] | « PASS |

1] | [] [| ,DELETE) |

]] !] |] | |

] } |] |] | Note: MOL not |

]] |] |] | weaningful]

1 i 4 L i 1 A i

DD Statement PARAMETERS Applicakle to BDAM Input and I-C Files

[e e e e S e e oy e e S Sy M A e e St e — e o S ™ A i i SR S G ot S s s Sy St Sy s s ey
) .
]

e T Uy S Ty U UV S NS S S SH R SR WA S R SH U S 1

T L2 T T v T T
DSNAME|Cevice |UNIT|VOLUME |LABEL |SPACE,SUBALLOC,SFLIT| DISP | DCB
$ foomt et $ $ 1
as | Mass]not required|[SL or}| I{OLD} » PASS |as has been
| Storage |if cataloged}sull |] {SHR +KEEP | specified
| required| | | na | « CATLG |
] |] | | ,UNCATLG\ |
|]]] I #»DELETE I
X1 4 i 4 4 4
as = Arrlicable sukparameters
na = Not aprlicable
Figure 37. JCL Applicable to Relatively Organized Files
Indexes cylinder that it indexes. FEach entry in

the track index contains the identification
of a specific track in the cylinder and the
There are two basic types of indexes: highest key on that track (Figure 38).
track indexes and cylinder indexes. There
is one track index for each cylinder in the
prime area {see "Indexed File Areas" for a Figure 38 is the representation of a
description of prime area). The track track index with the following areas:
index is written on the first track of the

r . 1
| RO Normal Overflcw Normal Cverflow |
1 - =TT r T b} f T 1 r T 1 r T 1 l
] 0100} JCCCR}]]00010j0001} 100010§0001] }00025J0002|]]00025]0002}] |
I L P L 4 L 1 J t 4 d L 1 4 L 4 =d I
| Home Key Data Key Cata Key Data Key Data I
] address |
L . 3.

Figure 38. Track Index

120

Home Address -- This field defines the
physical location of the track in
which the index appears. It
indicates the cylinder in which the
track is located and the read/write
head that services the track.

COCR [Cylinder Overflow Control Record)
-- When a cylinder overflow area is
specified {(see "Indexed Sequential
File Areas" for a description of
overflow areas), RO of each track
index is used to keep track of
overflow records and space available
in the cylinder overflov area.

Normal Entry -- There is one normal and
one overflow entry for each usable
track in the cylinder. The Normal
Entry contains tvo areas:

e Key -- the key of the highest
record on the track specified in
the Data area

e Data -- the home address of one of
the prime tracks in the cylinder

Fiqure 38 shows that the highest key
on track 1 is 10 and the highest key
on track 2 is 25.

Qverflow_ Entry -- The overflow entry is
originally the same as the normal
entry. It is changed when an
attempt is made to add a record to a
prime track on which space is no
longer available. 1In this case, the
overflow entry keeps track of the
logical sequence of records aithough
physically the record may be added
to an overflow area.

There is one cylinder index for each
file in which prime area data occupies more
than one cylinder. The cylinder index
contains one entry for each cylinder in the
prime area; each entry pointing to the
track index for a particular cylinder
{(Figure 39).

-

R 3
0050010000}
A

E]

T R 1 { L] hl
10094510001} |01550(0002]...
4 A]

3 1. i

Data

/

Key Data Key Data Key

cylinder address

o e s N e NSt e s e
ha v e e - — s e

Figure 39. Cylinder Index

The cylinder index is formatted in the
same fashion as the track index. Figure 39
shows that the highest key on cylinder 0 is
500, the highest key on cylinder 01 is 945,
the highest key in cylinder 02 is 1550,
etc.

Note: 1If an indexed sequential file is
being read randomly, the system locates the
given record by its key after a search of
the cylinder index and the track index
within the indicated cylinder. 1If the file
is being read sequentially, starting, with
the first record, no index search is
performed.

Records, in indexed sequential files,
may be either blocked or unblocked; but
must be F-mode records. Fiqures 40 and 41
illustrate blocked and unblocked records as
they appear om prime tracks of mass storage
devices.

BLOCKED RECORDS
contains control information

Count:

Key: contains the key of highest record in
the block

Data{l, 2, ..., 6)2 each contains the
information defined in the FD; including
its oun record key.

r h}
I r T T h] T 1 r T] T T 1 I
| | COUNT | KEY | DATA1 | DATA2 | DATA3] | CCUNT | KEY |CATA4 | DATAS | CATA6 | |
l [} L 1 L 1_ J L 4 4 1 4 4 |
| |
] |
| 1st Block 2nd Elcck

L —_— J
Figure #0. Blocked Records on an Indexed File

User Non-VSAM File Processing 121

r 1
I , I
I r T T 1 r T ¥ 1]
|]|COUNT|KEY|DATA1] JCOUNT | KEY|DATA2] |
] | 8 4 1 3 L 1 4 d l
o ———— N ———— T T ——
| I
| 1st Block 2nd Block 1
L J
Figure 4#1. Unblocked Records on an Indexed
File
UNBLOCKED RECORDS
Count: contains control information
Key contains the key of the record that

is in the block.

Data_(1), {2), etc.: each contains the
information defined in the FD; including
its own record key.

Indexed Sequential File Areas

The programmer specifies the structure
of an indexed sequential file and space to
be allocated for it in the DD statement for
the file when the file is created. 1In some
instances, more than one DD statement is
required. {These DD statements are
described in "Using the DD Statements —-
single Volume Files.") The space being
allocated must be divided into one, two, or
three areas, depending on the needs of the
programmer. These areas are: prime area,
index area, and overflow area. The
overflow area is optional.

Prime Area: The prime area is the area in
which data records are written when the
file is created or reorganized. These
records are in a seguence determined by the
record keys. The track indexes also use a
portion of the reserved prime area. To
reserve prime area space so that new
logical records may be inserted without
forcing records into an overflow area
{(described below), dummy records (records
containing the figurative constant
HIGH-VALUE in the first character position)
may be written when the file is being
created. The prime area may span multiple
volumes and may consist of several
noncontiguous areas.

Index Area: The index area contains the
cylinder indexes and, if requested, master
indexes {described later) for the file.
This area exists for any file that has a

122

prime area on more than one cylinder.
Space for this area will be allocated
separately from the prime area if
specifically requested., The index area
must be contained within one volume, but
that volume need not be the same device
type as the prime area volume. If not
specifically requested, the index area will
automatically be constructed in the
independent overflow area, or, if there is
no independent overflow area, it is
constructed in the prime area.

Qverflow Area: The overflow area is the

area in which space is allocated for
records forced from their original ({prime)
tracks by the insertion of new records.
The fact that some records are stored in
these areas, physically out of sequence,
does not change the ability of QISAM to
read the file in a logical sequence. An
overflow area need not be specified if
records are either not going to be added to
the file, or sufficient space was
originally reserved by writing dumay
records in the prime area.

There are three ways in which space for
an overflow area may be allocated:

1. Cylinder Overflow (Pigure 42), Tracks
on each cylinder can be reserved to
hold the overflow of that cylinder
{cylinder overflow option).

2. 1Independent Overflow (Figure 43).
Space may be regquested for an
independent overflow area, using the
dsname {OVFLOW) DD statement, either
on the same volume or on a separate
volume of the same device type as that
of the prime area.

3. If the prime area is not filled when
the file is created, the space
remaining on the last cylinder on
which data has been written will be
designated as an independent overflow
area {even though it is not regquested
directly). If a separate independent
overflow area is requested, the
remainder of the prime area is
available for resuming a load
operation.

Additional ianformation about indexed
file structure is contained in the
publication Q0S/VS _Data Management Services
Guide.

1 i i | 1
CYLO {CYLT|CYL2|CYL3|CYLU4{CYL5{CYL6
' A » | i

¥

{Track Indexes
k]

i

|
Area

- ke — ke
— g

o

[

=

(]
[PPSR g
s Al e

1
1
|
1
)

- - i
ot e e o e
.

[T —

flow Area
! i

L.

Ove

I
=
(=7
®

e 2 R sttt el

N
)
TP Sy SRR S e k)

S o s

-
P-

o ek e e et WD NS DG st et ks Gt iy San e M S Wee smun oy
s r e s i
e s oo i A s G Wl i B o e RS A e W ots s &

Pigure #42. Cylinder Overflow Area

An advantage of having a cylinder overflow
area is that additional seek operations are
not required to locate overflow records. A
disadvantage is that there will be unnused
space if additions are unevenly distributed
throughout the file.

1 i 1
| 1 i
i

i
| 4 E
] CYLX {CYLY }
i

T 1
I | I
i | {
{ JCYLO|CYL1{CYL2}CYL3} 1
Pt - {4 bt |
! | Track 1Indexes { i i 1 1
i+ 4 i { i1
| B 1 1 i
' | Prime Area] jIndependent] |
T 1] } i | Ooverflow | |
1 i | 1 1 { i Area I |
| | i i | | | .
l 4 A A 4. 3 Fl b 1]]
i 1
k! 3
Figure #3. Independent Overflow Area

An advantage of having amn independent
overflov area is that less space need be
reserved for overflows. A disadvantage is
that accessing overflow records requires
additional seek operations.

A suggested approach is to have cylinder
overflow areas large enough to contain the
average npumber of overflows caused by
additions and an independent overflow area
to be used as the cylinder overflow areas
are filled.

Creating Indexed Seguential Files

Indexed files must be created
sequentially using QISAM {(Queued Indexed
Sequential Access Method). Records must be
arranged and written in ascending order
according to the contents of RECORD KEY.

If a WRITE statement is executed and the
current contents of RECORD KEY is less than
or equal to the previous contents of RECORD
KEY, an INVALID KEY condition will result.

The structure of an indexed seguential
file, and the space to be allocated to it,
is specified in a DD statement(s). The
space, which can be allocated in several
different ways, must be sutfficient for all
areas of the file.

DD_STATEMENT REQUIREMENTS FOR_INDEXED
FILES: The special parameter requirements
for DD statements that define new indexed
sequential files are discussed below. The
discussion is oriented to indexed
sequential files on one volumre.
the parameters used for creating
pultivolume files are not discussed here.
For more detailed information about
parameters for both single-volume and
multivolume files, see either of the
publications Q0S/¥S_JCL Reference or QS/VS
JCL_Services.

Many of

ddname {name field)
The name field of the first or only DD
statement defining the indexed
sequential file can contain the
symbolic identification ddname or
procstep.ddname. Succeeding DD
statements for the file must not be
named.

DSNAME (DSN)
This parameter must be specified and
is coded as follows:

DSNAME dsname
= [{element)]
DSN

& name
The first subparameter, dsname, or
&§&pname must be the same in all the DD
statements defining one data set. The
element subparameter, INDEX, PRIME, or
OVPLOW, indicates the type of area
defined by the DD statement. If more
than one DD statement is used to
define a file, the order in which the
statements should be placed in the
input stream is as follows:

DD DSNAME=dsname {INDEX)

DD DSNAME=dsname {PRINE)
DD DSNAME=dsname {CVFLOW)

User Non-VSAM File Processing 123

Deviation from this sequence results
in abnormal termination of the job.

If the element subparameter is omitted
PRIME is assumed. Note that an
indexed sequential file cannot be
specified by statements containing
only index and overflow elements.

SPACE

This parameter specifies the space to
be allocated for each of the separate
areas on the device and must be
included. Only cylinder {(CYL) or
absolute track {ABSTR) requests are
permitted, and with ABSTR the
designated tracks must encompass an
integral number of cylinders. All the
DD statements defining one indexed
sequential file must specify the same
subparameter, either CYL or ABSTR.
when all the DD statements specify
CYL, all must also specify or onit
CONTIG, depending on whether the space
allocated is to be contiguous or
noncontiguous. The directory or index
quantity subparameter of the SPACE
parameter is used to request the
nunber of cylinders to be allocated
for an index area embedded within the
prime area {see "Space Parameter® in
"Job Control Procedures®"). An
embedded index resides in the middle
of a track and saves searching time by
first determining which half of the
track contains the requested record.

SPLIT

DISP

DCB

124

This parameter should never be
specified for an indexed sequential
file, either for sharing a cylinder
with indexed sequential files or for
sharing it with an indexed sequential
file and another type of file.

This parameter is written as it would
be for amy new file that cannot be
cataloged. The CATLG subparameter
must not be specified unless only one
DD statement is used to allocate the
file space {see "Cataloging Files" for
additional information about
cataloging indexed sequential files).

This parameter must be specified for
each DD statement and is coded as
follows:

DCB= (DSORG=IS
[,BUFNO=integer]
[,OPTCD=(Y{I|R} W] L} MU, NTM=integer}]
[,BLKSIZE=integer])

The DSORG=IS subparameter is required
and indicates that the organization of
the file is sequential. The DCB
subparameters of all the DD statements

defining one file must not conflict.
For example, if the OPTCD=Y
subparameter appears in the first DD
statement, the subsequent DD
statements should also contain
0PTCD=Y. .To avoid any errors, code
all the DCB subparameters on the first
DD statement. Code DCB=*.ddname on
the remaining statements; ddname is

the name of the DD statement that

contains the DCB subparameters. The
subparameters are discussed below.

BUFNO=number of buffers

This subparameter is used to specify
the number of buffers to be assigned
to the file if no RESERVE or SAME AREA
clause is specified for the file in
the source program. The maximum
number is 255; however, the maximum
number allowed for an installation may
differ and is established at systenm
generation time. :

OPTCD=0options

This subparameter is used to tell the
system that certain additional
facilities are to be provided for this
file. Any combination of the
following options can be specified for
the OPTCD subparameter. If more than
one option is specified, the options
are written as a character string

"{i.e., without intervening commas or

blanks). Note that if certain of
these options are used, an additional
subparameter must also be specified as
indicated. 1In addition to the
information supplied, the COBOL
compiler will supply OPTCD=L.

e OPTCD=L: This option requests
that the control program delete
marked records. Marked records
will be deleted when space for
new records is required.

* OPTCD=Y: This option requests
that a cylinder overflow area be
created. It specifies that a
certain number of tracks on each
cylinder are to be reserved to
.contain any overflow records
from other tracks on that
cylinder. Another DCB -
subparameter, CYLOFL=xx, nust
also be written. The xx
specifies the number of tracks
on the cylinder to be reserved
for the overflow area. The
maximum number is 99.

e OPTCD=I: This option regquests
that an independent overflow
area be reserved., It is used in
conjunction with DSNAME=dsname
(OVFLOW) parameter in the DD

statement used to allocate the
independent area.

e OPTCD=M: This option requests
that a master index be created
{see "Master Index" for a
discussion of master indexes).
Another DCB subparameter,
NTM=xx, must also be written.
It specifies the maximum number
of tracks to be contained in the
cylinder index before a higher
level index is created. The
maximum value that can be
specified is 99.

e OPTCD=R: This option requests
reorganization criteria
feedback, as described in
YReorganizing Files."

» OPPTCD=W: This option reguests
the system to perform a write-
validity check.

e OPTCD=U: This option requests
that track index entries be
accumulated in main storage
until there are enough entries
to fill a track. When the track
is full all the entries will be
written out. If enough main
storage cannot be obtained
entries will be vwritten two at a
time.,

The following is an example of how
the OPTCD subparameter can be used:

DCB=(DSORG=1IS,0PTCD=M,NTHN=20)

The foregoing example requests that a
master index be created when the
cylinder index exceeds 20 tracks.

BLKSIZE=integer
specifies the blocksize. This clause
is used only if BLOCK CONTAINS 0
RECORDS was specified at compile time.

Note: PFigure 44 shows the parameters that
may be used in a DD statement when
processing indexed sequential files opened
as output. Additional informatiomn about
indexed sequential file structure is
contained in the publication QS/¥S_Data
Management Services Guide.

Using_the DD _Statements --_ Single-Volume
Piles The following examples refer to
files that can be contained on one volume.
Additional information about DD statements,
including details on multivolume file
allocation, can be found in the publication
0s/Vs JCL _Reference.

All three areas for an indexed
sequential file can be contained on a
single volume if they are small enough. TIf
such is the case and the programmer elects
to allow the system to subdivide storage
into the prime ard index areas when the
file is created, he need only code the
following DD statement:

//ddname DD DSNAME=dsranme{PRINE), X
// SPACE= (CYL, {no. of X
// cylinders)),UNIT=unit, X
V4 DCB= {DSORG=IS,...)

The DD statement given will produce a prinme
area with the index area occupying the last
cylinder {s) of the space in the prime area.
If any track{s) remain on the last cylinder
after the index area, they are used as an
independent overflow area; if no track {s)
remain, an overflow area does not exist.

If the programmper definitely wants an
independent overflow area, he must provide
a second DD statement as follows:

//ddname DD DSNAME=dsname {(PRINME), X
Y4 SPACE= {(CYL, {no. of X
Y44 cylinders)),UNIT?=unit, X
// VOLUME=SER=222222, X
/7 DCB={DSORG=IS,0PTCD=I,...)

// DD DSNAME=dsname {OVFLOW), X
// SPACE={CYL, {(no. of X
/7 cylinders)) ,UNIT=unit, X
// VOLUME=SER=222222, X
/7 DCB=%_,ddnanre

These DD statements will produce a prinme
area and a separate overflow area with the
index area at the end of the overflow area.
All three areas reside on the same volunme.

Note: When more than on DD statement is
used, only the first can be named. The
others must -not have a data definition name
{ddname) but all must have the same data
set name (dsname).

User Non-VSAM File Processing 125

Device Mass storage reguired

=]
=
[
=]

DEFER not permitted

¥ L
jddname | ddname used only for first DD
| statement of each file
1
k)
DSNAME | {dsname} {INDEX)
(DSN)] £Ename {PRIME)
| {OVFLOW)
{Note: If more than one DD
|statement is used, elements
jmust be in this order.
+
i
+
|
<4

j |
SEP, AFF}jRestricted, see "Job Control
{ Procedures"

1
E

VOLUME]Volume sequence number subparam-
| eter not applicable
1
1

{LABEL {SL

i
R}

SPACE ! CYL ¢see [++CONTIG]
} ABSTR

4

L)
SUBALLOC|Not applicable

+
|Not applicable

[ROUSR ST S T o O T . U “Ir gt i S e T T

SPLIT
3
L]

DISP H +KEEP
| NEwW1 s PASS
] +«DELETE
+

DCB2 jRequired: DSORG=IS
jOptional: BUFNO=xxx BLKSIZE=XXXX]|
i
4L

OPTCD= (W IM{YIT|RIL|U} |
]

.
1M0D not meaningful. CATLG allowed omly |
if all areas are allocated with a singlej

B e Mot s s dit wie s et ieetie o

DD statement |
{2The DCB parameter should be the same for|
| each DD statement |
4 ']
Figure 44. DD Statement Parameters

Applicable to Indexed Files
Opened as Output

If the programmer desires more control
in the placement of the index area, he can
subdivide storage before the data set is
created by providing another DD statement
as follows: ‘

//ddname DD DSNAME=dsname{INDEX), X
/7 SPACE= {CYL, {no. of X
// cylinders)),UNIT=unit, X
// VOLUME=SER=333333, X
7/ DCB= {DSORG=IS,...)

7/ DD DSNAME=dsname{PRIME), X
7/ SPACE= (CYL, {no. of X
// cylinders)).UNIT=unit, X
7/ VOLUME=SER=333333, X
Va4 DISP={disp),DCB=*,ddnane

126

These DD statements will produce tvwo
separate areas: index and prime. Each
area is on the same volunme.,

If, along with more control of his
index, the programmer wishes an independent
overflow area, a third DD statement
{OVFLOW) can be specified, as detailed
earlier. The sequence will be:

//ddname DD DSNAME=dsname (INDEX) ,ee.
7/ DD DSNAME=dsname (PRIME),...
/7 DD DSNAME=dsname {(OVFLOW) ;...

These DD statements will produce three
separate areas: 1index, prime, and
overflow.

Note that the OPTCD subparameter of the
DCB parameter in each of the DD statements
must specify an independent overflow area
{OPTCh=1I). All three areas reside on the
same volume if so specified in the VOLUME
parameter.

Note: The sequence of the DSNAME parameter
elements in all of the foregoing examples
mnust be followed when placing the DD
statements into the input stream, or an
abnormal termination of the job will
result.

The example in Figure 45 defines a new
indexed sequential file that consists of
three separate areas, All three areas
reside on the same volume. The volume is
on an IBM 2314 Disk Storage Drive.

Cataloging Files: An indexed file can be

cataloged if:

e A1l the areas of the file are allocated
with a single DD statement. Such a
file is cataloged in the usual manner
by specifying the DISP parameter in the
DD statement:

DISP= {NEW,CATLG)

» The areas are allocated with more than
one DD statement, but all volumes are
on the same type of device. Such a
file is cataloged using the IEHPROGH
utility program {see the publication
0S5/VS Dtilities).

An indexed sequential file that is being
created cannot be cataloged if its areas
are on different device types. An existing
indexed sequential file cannot be cataloged
through the specification of the CATLG
subparameter of the DISP parameter in the
DD statement.

//FILE DD

DSNAME=ISM (INDEX) ,UNIT=2314,S5PACE= (CYL, (1)), X

e 3
i i
' VOLUME=SER=111111, DCB= {DSORG=IS,0PTCD=1,...) q
24 DD DSNAME=ISM (PRIME),UNIT=2314,SPACE=(CYL, {5)), X 1
7 VOLUME=SER=111111, DISP={,KEEP) , DCB=*.FILE i
' DD DSNAME=ISM (OVFLOW) ,UNIT=2314,SPACE=(CYL, (1)), X i
/4 VOLUME=SER=111111, DISP={,KEEP) , DCB=*.FILE |
1 3

Figure 45.

Note: The DD statement(s) defining a new
or existing indexed sequential file can
appear in cataloged procedures.

Calculating Space Regquirements: To
determine the number of cylinders required
for an indexed sequential file, the
programnmner must consider the nunmber of
records that will fit on a cylinder, the
nunber of records that will be processed,
and the amount of space required for
indexes and overflow areas. In making the
computations, additional space is also
required for device overhead.

Note: The allocation of space to the
different areas of an indexed sequential
file is permanent. New allocations can be
achieved only by recreating the file. It
is, therefore, important to remenmber:

» Onused space on the last cylinder on
which data was written, in the prime
area, is converted to an independent
overflov area. Space allocated in
excess of this cannot be released and
will be wasted.

» Excess space allocated to overflow or
index areas cannot be released.

Detailed information on space allocation
can be found in the publication QS/VS Data
Management Services_guide.

______ QISAM provides a master
index facility to avoid inefficient serial
searches of large cylinder indexes. The
master index provides an index to the
cylinder index. The programmer can specify
with the DCB parameter in his DD
statement (s) (see "DD Statement
Requirements for Indexed Sequential Files"™
in "Creating Indexed Segquential Files")
that a master index be built if the size of
a cylinder index exceeds a certain number
of tracks. Each entry in the master index
points to a track of the cylinder index.

If the size of the master index exceeds the
number of tracks specified in the NTHM
parameter of the DD statement, the master
index is automatically indexed by a higher
level master index. Three such higher
level master indexes can be constructed.

Bxample of DD Statements for New Indexed Files

COBOL _Considerations: When creating
indexed sequential files, the QISAM file
processing technique is used. The
following COBOL programming considerations
should be noted:

e RECORD KEY Clause. The RECORD XEY
clause in the SELECT sentence of the
Environment Division is required. It
is used to specify the location of the
key within the record itself. 1If the
RECORD KEY clause has a PICTURE clause
that specifies that the item is binary
(COMPUTATIONAL), zero is the lowest
number acceptable as the first record.
A negative key is considered to be
larger than a positive key; therefore,
if a record is inserted into the file,
a negative key would place the record
after those records with positive keys.

» Dummy Records. To reserve space for
records to be added at a later time,
when creating indexed segquential files,
dummy records can be written with the
delete code ([the figurative constant
HIGH-VALUE) in the first byte. Dunmy
records and their deletion are
described in "Using the WRITE
Statement."

e Required and optional CORQOL statements
are summarized in Pigure 47.

Reading or_Updating Indexed Segquential
Files Segquentially

QISAM can be used to read or update an
existing indexed sequential file. Adding a
record to an already existing file,
however, can be done only with BISAN {sece
"Accessing an Indexed File Randomly").

When QISAM is used to read an input
file, the READ statement makes available
one logical record at a time in an
ascending sequence determined by the record
keys. Dummy records are not made
available., 1If there are records in the
overflovw area, this seguence will not
correspond exactly to the physical sequence
of the records in the file., The file must
have been created using QISAHM.

User Non-VSAM File Processing 127

When QISAM is used to update an I-0
file, the RFEAD and REWRITE statements
permit updating-in-place or deletion of a
logical record. Logical records are read
sequentially and may be either updated and
rewritten, or rewritten unpaltered, from the
same area. Alteration of record length or
insertion of new records is not permitted.
A logical record is marked for deletion by
moving the figurative constant HIGH-VALUE
into the first character position of the
record and then using the REWRITE
statement. BRecords in the file that
contain this deletion code are not made
available on input.

The discussion that follows is primarily
concerned with indexed sequential files
that can be contained on a single volunme.
Additional information about processing
existing indexed sequential files accessed
sequentially, including multivolume files,
can be found in the publication 0S/VS_JCL
Reference.

Parapeter Regyirements: In the DD
statement {s) indicating an existing indexed
file, the following differences and
requirements should be noted:

DCB
The DSORG=IS subparameter must be
specified, whereas the BUFNO
subparameter is optional. The OPTCD
field must not be specified again.
Any OPTCD subparameter facilities that
were specified when the file was
created are in effect as long as the
data set exists. For example, if the
programmer specified the
write-validity check optiomn (OPTCD=R)
when he created the file, the optiocn
is still in effect.at the time of any
subsequent WRITE statement. The
BLKSIZE and LRECL subparameters must
not be specified.

DSNAME (DSN)
This parameter is written
DSNAME=dsname. The element
subparameters (INDEX, PRIME, OVFLOW),
must not be written.

DISP
The first subparameter must be OLD.
The second subparameter cannot be
CATLG or UNCATLG (see "Cataloging
Files" above for more information on
cataloging indexed seguential files).

Note: For further information about

Indexed Sequential parameters, see "DD
Statement Requirements for Indexed

128

Sequential Files" in "Creating Indexed
Segquential FPiles.®

Oonly one DD statement is needed to
specify an existing file if all of the
areas are on one volume. The following is
an example of a DD statement that can be
used when processing a single-volume QISAM
file.

//ddname DD DSNAME=dsnanme, X
// DCB= (DSORG=IS,...), X
// UNIT=unit,DISP=0LD

Purther details about DD statements for
existing single-volume and multivolunme
indexed seguential files can be found in
the publication 0S/¥VS_JCL_ Reference.
Reference.

Note: Figure 46 shows the parameters that
may be used in a DD statement when
processing indexed sequential files opened
as INPUT or I-0. Additional information
about indexed file structure is contained
in the publication QS/V¥S Data Management
Services Guide.

Reorganizing Files: As new records are
added to an indexed sequential file, chains
of records may be created in the overflow
area if one exists. The access time for
retrieving records in an overflow area is
greater than that required for retrieving
records in the prime area. Input/output
performance is, therefore, sharply reduced
when many overflow records develop. For
this reason, an indexed sequential file can
be reorganized as soonr as the need becomes
evident. The system maintains a set of
statistics to assist the programmer when
reorganization is desired. These
statistics are maintained as fields of the
file's data control block. They are nrade
available when APPLY REORG-CRITERIA is
specified. If these statistics are
desired, the OPTCD subparameter of the DCB
parameter must have included the OPTCD=R
parameter in each of the DD statements when
the file was created. Additional
information about reorganizing files is
contained in the publication QS/VS_Data
Management Services Guide.

Sequential Retrieval Osing the START
Statement: For indexed sequential INPUT
and I-0 files, retrieval starts with the
first nondummy record in the file. 1If the
programnrer wishes to begin processing at a
point other than the beginning of the file,
he can do so through the use of the START
verb. ¥When the START statement is used,
the retrieval starts seguentially from the
record specified in the NOMINAL KEY.

Tr R

jddname | ddname used only for first DD
| statement of each file
i
k]

DSNAME | dsname
|
{Note: Element subparameter must
{jnot be used.
1
+

Device |Mass storage required
L}
+

ONIT fApplicable subparameter
i
|Note: Not needed if file is
jcataloged.

: 1

1

SEP, AFF]Restricted; see "Jobh Control
| Procedures"
"
1

VOLUME |Applicable subparameters
+

LABEL }SL
r'
T

SPACE {Not applicable

Ll
SUBALLOC{Not applicable
]

+
SPLIT {Not applicable
4
1
DISP] +KEEP
{ oLD? ,PASS
i +DELETE
1
El
DCB] Required: DSORG=1IS
i
joptional: BUPNO=xxx {not allowed
{ for BISAM)
1 LRECL=xxxXx
i

e et Hels s et Hts s s s a: sl nd

1CATLG UNCATLG not permitted.

R N R N R I I I R e S i i P

constant HIGH-VALUE into the first
character position of the record {unless it
has been changed by the program collating
sequence—-in which case a X'FF' pust be
moved) . The record is not physically
deleted unless it is forced off its prinme
track by the insertion of a new record {see
"Using the WRITE Statement™ in "Accessing
an Indexed File Randomly"), or if the file
is reorganized. Records marked for
deletion may be replaced (using BISAM) by
new records containing equivalent keys.
Execution of the READ statement in QISAN
does not make available a record marked for
deletion, whether the record has been
physically deleted or not. Dummy records
and deletion are discussed further in
“Accessing an Indexed Sequential File
Randomly."

Accessing_an Indexed Sequential File
Randomly

The file processing technigque used for
random retrieval of a logical record, the
random updating of a logical record, and/or
the random insertion of a record is BISAM
(Bagsic Indexed Sequential Access Method).
When accessing an indexed sequential file
randomly, both NOMINAL KEY and RECORD KEY
must be specified. The format of the
NOMINAL KEY is described briefly below:

DD Statement Parameters
Applicable Indexed Sequential
Files Opened as INPUT or I-O

Figure #46.

COBOL Considerations: ¥hen processing an
already existing file with QISAM, the
following COBOL programming consideratioas
should be noted:

e RECORD KEY Clause. The RECORD KEY
always in the SELECT sentence of the
Environment Division is required, just
as it is when creating the file. Note
other record key considerations under
"Accessing an Indexed Sequential File
Randomly.®

» Delete Option. In order to keep the
number of records in the overflow area
to a minimum, and to eliminate
unnecessary records, an existing record
ray be marked for deletion. This is
done by moving the figurative

Format

NOMINAL XKEY IS data-nanme

o s — "
O .

Data-name may be any fixed-leagth
¥orking Storage item fromr 1 through 255
bytes in length. If it is part of a
logical record, it must be at a fixed
displacement from the beginning of that

‘record description {see the publication IBM

¥S_COBOL for 0S/¥s for additiornal
information).

since a RECORD KBY is used to identify a
record to the system, the record keys
associated with the logical records of the
file may be thought of as a table of
argquments. When a record is read or
written, the contents of NOMINAL KEY is
used as a search argument that is compared
to the record keys of the file.

User Non-VSAM File Processing 129

The following example illustrates the
use of the NOMINAL KEY clause.

ENVIRONMENT DIVISION.

NOMINAL KEY IS NOM-KEY
RECORD KEY IS REC-KEY.

DATA DIVISION.
FILE SECTION.
FD INDEXED-FILE
LABEL RECORDS ARE STANDARD.
01 BREC-1.
02 DELETE-CODE
02 REC-KEY

PIC X.
PIC 91{5).

-

WORKING-STORAGE SECTION.
77 NOM-KEY PIC 9(5).

Because of their complementary use of
the indexed file organization, much of the
information discussed above for QISAM also
applies to BISAM. Differences are noted
below.

Using _the WRITE Statement: The programmer
can use the WRITE statement to add a new
record into an indexed file. The record is
added on the basis of the value specified
in the NOMINAL KEY. The contents of the
NOMINAL KEY are used to locate the two
records in the file between which the new
record is to be inserted. The records
sought are those that have values less than
and greater than the values in the nominal
key field. Two methods can be used to add
records.

In the first method, the key to be added
is a new key value. The record is inserted
in place so that the sequence of the keys
is maintained. If an overflow area exists,
the insertion may cause records to be
forced off the prime track into the
overflow area. Dummy records forced off
the track in this way are physically
deleted and are not written in the overflow
area.

In the second method, the key of the
record to be added has the same value as
that of a known dummy record. If the dummy
record has not been physically deleted, it
is replaced by the new record. If it has
been physically deleted, the record is
inserted as though it had a new key value.
If the key of the record to be added has
the same value as a record other then a
dummy record, an INVALID KEY condition will
result.

130

Notes:

e Records with a key higher (or lower)
than the current highest (or lovest)
key of the file may be added.

» Whenever a WRITE statement is execuated
the contents of RECORD KFY and NOMINAL
KEY must be identical. Except in the
case of dummy records, this value must
be' unique in the file.

Using the REWRITE Statement: If a record
is to be updated, the indexed file should
be opened as I-0 and the REWRITE statement
should be used. All REWRITE statements
must be preceded by a READ statement.
However, a READ statement can be followed
by either a WRITE, REWRITE, or another
READ.

Note: Whenever a REWRITE statement is
executed the value contained in NOMINAL KEY
and RECORD KEY must be identical.

_____ Records are
retrieved on the basis of the value
specified in the NOMINAL KEY. If the key
of a record marked for deletion is
specified and the record has not been
physically deleted, it will be produced.
If the record has been physically deleted,
the READ statement will cause an INVALID
KEY condition and control will go to the
INVALID KEY routine if specified.

Note: Although the RECORD KEY clause must
be specified, no value need be moved to the
record key field before the execution of
the READ statement. The search for the
desired record is based on the contents of
NOMINAL KEY.

COBOL _considerations: When processing an
indexed file randomly, the following COBOL
programeing considerations should be noted:

e RBECORD KEY Clause and NOMINAL KEY
Clause. The RECORD KEY and NOMINAL KEY
clauses in the SELECT sentence of the
Environment Division are reguired. The
RECORD KEY clause is used to specify
the location of the key within the
record itself. The NOMINAL KEY is used
as a search argument to locate the
proper record, and must not be defined
within the file being processed. Note
that since a RECORD KEY is defined
within a record, the contents of RECORD
KEY are not available after a WRITE
statement has been executed for that
record.

Data Management Access KEY
Techniques Method Clauses

OPEN Access CLOSE
Statement Verbs Statement

QISAM SEQUENTIAL RECORD

NOMINAL

e — e — ——— s — — — — —

INPUT READ {INTO} [WITH LOCK]}

INVALID
KEY

WRITE (FROM]
INVALID KEY

1o READ [INTO)
AT END
START
INVALID

KEY
REWRITE [FROM]

BISAM RANDOM RECORD

NOMINAL

INPUT READ {INTO]
INVALID KEY

[WITH LOCK]

10 READ [INTO)
INVALIDKEY
WRITE {FROM]
INVALID KEY
REWRITE [FROM]
-INVALID KEY

Fiqgure 47.

e TRACK-AREXA Clause. Specifying the
clause results in a considerable
improvement in efficiency when a record
is added to the file. If a record is
added and the TRACK-AREA clause was not
specified for the file, the contents of
the NOMINAL KEY field are unpredictable
after the WRITE statement is executed.
In this case, the key must be
reinitialized before the next WRITE
statement is executed.

Even if TRACK-AREA is specified, if the
addition of a record causes another
record to be bumped off the track and
into the overflow area, the contents of
the NOMINAL KPFY are unpredictable after
a WRITE,

» APPLY REORG-CRITERIA Clause. If the
OPTCD=R parameter was specified on the
DD card for an indexed sequential file
when it was created, the APPLY
REORG-CRITERIA clause can be used to
obtain the reorganization statistics
when the file is closed. These
statistics are moved from the data
control block to the identifier

- specified in the clause when a CLOSE
statement is executed for the file.

» APPLY CORE-INDEX Clause. This clause
specifies that the highest level index
will reside in core storage during
input/output operations., Otherwise,
the index will be searched on the
volume, and processing time will be
longer.

» Required and optional COBOL statements
are summarized in Figure 47.

Indexed Sequential File Processing on Mass Storage Devices

USING _ZTHE _DD_STATEMENT

Fach data set that is defined by a DD
statement is either to be created, or has
been previously.created and is to be
retrieved. 1In either case, the data set
must have a disposition; for exanple, if
the data set is being created, the
disposition must indicate whether the data
set is to be cataloged, kept, or deleted.
Other DD parameters may simply indicate
that the data set is in the input stream or
that ultimately the data set is to be
printed or punched.

The following sections summparize the DD
statement parameters and show examples for
various uses of the DD statement. These
sections include information about
cataloging data sets and creating or
referring to generation data groups;
examples of cataloged data sets and
partitioned data sets are included. For
additional information about partitioned
data sets see "Libraries." Also see
wappendix I: Checklist for Job Control
Procedures" for additional examples of the
DD statement used in job control
procedures.

CREATING A NON-VSAM DATA SET

When creating a non-VSAM data set, the
programmer ordinarily will be concerned
with the following parameters:

1. The data set name {(DSNAME) parameter,

wvhich assigns a -name to the data set
being created.

User Nomn-VSAM File Processing 131

2. The unit {UNIT) parameter, which
allows the programmer to state the
type and quantity of input/output
devices to be allocated for the data
set.

3. The volume (VOLUME) parameter, which
allows specification of the volume in
which the data set is to reside. This
parameter also gives instructions to
the system about volume mounting.

4., The space {(SPACE), split cylinder
{SPLIT), and suballocation {SUBALLOC)
parameters, for mass storage devices
only, which permit the specification
of the type and amount of space
required to accommodate the data set,

5. The label {LABEL) parameter, which
specifies the type and some of the
contents of the label associated with
the data set.

6. The disposition (DISP) parameter,
which indicates what is to be done
with the data set by the system when
the job step is completed.

7. The DCB parameter, which allows the
programmer to specify additional
information to complete the DCB
associated with the data set (see
ngser-Defined Files"). This allows
additional information to be specified
at execution time to complete the DCB
constructed by the compiler for a data
set defined in the source progranm.

Figure 48 shows the subparameters that
are frequently used in creating data sets.
Additional subparameters are discussed in
"Job Control Procedures."

DCB=(subrarareter-1list)

} =([PRIVATE] [,RETAIN] [, volume-sequence-number] [, volume-count]

} s {primary-quantity[,seccndary-quantity]l

} {, (primary-quantity, [secondary-quantityl)]

EXPDT=yyddd

| y\RETPD=XXXX

r
| (DSNAME dsname

| = Jdsname(element)

| (DSN & &name

| §éname(element)

]

| UNIT=(namel,unit countl)

]

] VCLUME

|

| VoL

|

| »SER=(volume-serial-number [,volume-serial-hurberl...)
|

} dsnare

| *,ddname

] + REF= *,stepnare.ddname

] *,stepnare.procstep.ddname
|

] TRK

] SPACE=(CYL

| average~-record-length

|

| [,directory-quantityl))

!

] CYL

] SPLIT=(n,

| average-record-length

I

| NL
| L1LABEL={([data-set sequence-numkerl, SL
| NSL
] SUL
|

| NEW +CELFTE +DELETE

| DISP=(» KEEP + KEEP)
] MCD »PASS ,CATLG

| 4 CATLG

|

|

]

L

-

)

e o e e e . — — s . . — ——— S —— —— — ——— —— — e . ot o St S s ot S . e S s . e Gt S S

Fiqure UB8. DD Statement Parameters Frequently Used in Creating Data Sets

132

Data sets whose destination is a printer
or card punch are created with the DD
statement parameters UNIT and DCB.

UNIT: Required. <Code unit inforemation
using the 3-digit address (e.g., UNIT=00E),
the type {(e.g., UNIT=1403), or the
system-generated group name ({e.g.,
UNIT=PRINTER).

DCB: Reguired only if the data control
block is not completed in the processing
program. Valid DCB subparameters are
listed in "Appendix C: Pields of the Data
Control Block."

Creating pata Sets_on_ Magnetic Tape

Tape data sets are created using
combinations of the DD statement parameters
UNIT, LABEL, DSNAME, DCB, VOLUME, and DISP.

UONIT: Required, except when volumes are
requested using VOLUME=REF. A unit can be
assigned by specifying its address, type,
or group name, or by requesting unit
affinity with an earlier data set.
Multiple output units and defer volunme
mounting can also be requested with this
parameter.

LABEL: Required when the tape has user
labels or does not have standard labels,
and vhen the data set does not reside first
on the reel. It is also used to assign a
retention period and password protection.

DSNAME: BRequired for data sets that are to
be cataloged or used by a later job.

DCB: Required only when data control block
information cannot be specified in COBOL.
Usually, such attributes as the logical
record length (LRECL) and buffering
technique (BFTEK) will have been specified
in the processing program. Other
attributes, such as the OPTCD field and the
tape recording technique {(TRTCH), are more
appropriately specified in the DD
statement, Valid DCB subparameters are
listed in "Appendix C: Fields of the Data
Control Block."

YOLUME: Optional, this parameter is used
to request specific volumes. If VOLUME=REF
is specified, and the existing data sets on
the specified volume(s) are to be saved,
indicate the data set segquence number in
the LABEL parameter.

DISP: Required for data sets that are to
be cataloged, passed, or kept. The
programmer can specify conditional
disposition as the third term in the DISP
parameter to indicate how the data set is
to be treated if the job step abnormally
terminates.

Creating Segquential (BSAM or QSAM) Data
Sets_on_Mass_Storage Devices

Sequential data sets are created using
combinations of the DD statements

-parameters UNIT, DSNAME, VOLUME, LABEL,

DIsP, DCB, and one of the space allocation
parameters SPACE, SPLIT, or SUBALLOC.

UNIT: Required, except when volumes are
requested using VOLUME=REF or space is
allocated using SPLIT or SUBALLOC. Assign
a unit by specifying its address, type, or
group name, or by requesting unit affinity.

DSNAME: Required for all but temporary

data sets.

Label: Required to specify label type and
to assign a retention period or password
protection.

DCB: Required only when data control block
information is not completely specified in
the processing program. Usually, such
attributes as the logical record length
{LRECL) and buffering technique (BFTEK)
will have been specified in the processing
program. Other attributes, such as the
OPTCD field are more appropriately
specified in the DD statement. Valid DCB
subparameters are listed in "Appendix C:
Fields of the Data Control Block.”

VOLUME: oOptional. This parameter requests
specific volumes ({SER and REF), specific
volumes when the data set resides on more
than one volume (seq #), multiple
ronspecific volumes {volcount), private
volumes {(PRIVATE), or private volumes that
are to remain mounted until the end of the
job {RETAIN).

DISP: Required for data sets that are to
be cataloged, passed, or kept. The
programmer can specify conditional
disposition as the third term in the DISP
parameter to indicate hov the data set is
to be treated if the job step abnormally
terminates.

SPACE, SPLIT, SUBALLCC: One of these is
required for all new mass storage data
sets.

User Non-VSAM File Processing 133

Creating_Direct {BDAM) Data_Sets

Direct ({BDAM) data sets are created
using the same subset of DD statement
parameters as sequential data sets, with
the exception of the SPLIT parameter.
Valid DCB subparameters for BDAM data sets
are listed in "Appendix C: Fields of the
Data Control Block."

Indexed {(ISAM) data sets are created
using combinations of the DD statement
parameters UNIT, DSNAME, VOLUME, LABEL,
DISP, DCB, and SPACE. The ISAM data sets
occupy three areas of storage: an index
area that contains master and cylinder
indexes, a prime_area that contains the
data records and track indexes, and an
optional overflow area to hold additional
records when the prime area is exhausted.
Detailed information on creating and
retrieving indexed sequential data sets is
presented in "Appendix H: Creating and
Retrieving Indexed Sequential Data Sets.®

Creating Data Sets in the Dutput Streanm

New data sets can be written on a systenm
output device in much the same way as
messages. A data set is directed to the
output stream with the SYSOUT and DCB
parameters.

SYSOUT: Regquired. The output class
through which the data set is routed must
be specified. Output classes are
identified by a single alphanumeric
character.

DCB: Required only if complete data

control block information has not been
specified in the processing program.

134

When using a priority scheduler, data
sets are not routed directly to a systenm
output device. They are stored by the
processing program on an intermediate mass
storage device and later written on a
system output device. 1In addition to the
SYSOUT and DCB parameters, DD statements
defining a data set of this type can also
contain UNIT and SPACE parameters. All
other parameters must be absent.

SYSOUT: Required. The output class
through which the data set is routed must
be specified. Output classes are
identified by a single alphanumeric
character.

DCB: Required only if complete data
control block information has not been
specified in the processing program. Data
control block information is used when the
data set is written on an intermediate mass
storage volume and read by the output
writer. However, the output writer's own
DCB attributes are used when the data set
is written on the system output device.
Valid DCB parameters are listed in
"Appendix C: Fields of the Data Control
Block."

ONIT: oOptional. An intermediate mass
storage device is assigned if UNIT is
specified., A default device is assigned if
this parameter is omitted.

SPACE: oOptional. Estimate the amount of
mass storage space required. A default
estimate is assumed if this parameter is
omitted.

Note: When a Direct SYSOUT ¥Writer is used
{0S/VS1 only), the scheduler functions as a
sequential scheduler. The SYSOUT data sets
of the particular output class from any of
the elegible job classes are not stored on
an intermediate storage device, but are
written directly to the system output
device. When Direct SYSOUT Writer is used,
all the parameters on the DD card are
ignored. For detailed information on
Direct SYSOUT Writer, see the publication
0S/Vs1_planning _and _Use Guide.

Examples_of DD Statements Used To Create_ Data Sets

The following examples show various ways of specifying DD statements
for data sets that are to be created, 1In general, the number of
parameters and subparameters that are specified depend on the
disposition of the data set at the end of the job step. If a data set
is used only in the job step in which it is created and is deleted at
the end of the job step, a minimum number of parameters are required.
However, if the data set is to be cataloged, more parameters should be
specified.

Example 1: Creating a data set for the current job step only.

//SYSUTH DD UNIT=SYSDA,SPACE=(TRK, {50,10))

This example shows the basic reguired DD statement for creating and
storing a data set on a mass storage device, The UNIT paraneter is
required unless the unit information is available from another source.
If the data set were to be stored on a unit record or a tape device, the
SPACE parameter would not be needed. The operating system assigns a
temporary data set name and assumes a disposition of (NEW, DELETE).

Example _2: Creating a data set that is used only for the current job.

//SYSLIN DD DSNAME=§&TEMP,DISP={MOD,PASS) ,UNIT=SYSSO, X
7/ SPACE= (TRK, (50))

This example shows a DD statement that creates a data set for use in
more than one step of a job. The system assigns a unique symbol for the
name, and this same symbol is substituted for each recurrence of the
&6 TEMP name within the job. The data set is allocated space on any
available mass storage or tape device. If a tape device is selected,
the SPACE parameter is ignored. The disposition specifies that the data
set is either new or is to be added to (MOD), and is to be passed to the
next job step (PASS). This DD statement can be used for specifying the
data set that is created as output from the compiler and that is to be
used as input to the linkage editor. By specifying MOD, separately
compiled object modules can be placed in sequence in the same data set.

Note: If MOD is specified for a data set that does not already exist,
the job may be abnormally terminated when a volume reference nawme, a
volume serial number, or the disposition CATLG is specified or when the
dsname is indicated by a backwards reference.

User Non-VSAM File Processing 135

Example 3: <Creating a data set that is to be kept but not cataloged.

//TEMPFILE DD DSN=FILEA,DISP=(,KEEP),SPACE= (TRK, (30, 10)), X
7/ UNIT=DIRECT,VOL={,RETAIN,SER=AA70)

The example shows a DD statement that creates a data set that is kept
but not cataloged. The data set name is FILEA., The disposition (,KEEP)
specifies that the data set is being created in this job step and is to
be kept. It is kept until a disposition of DELETE is specified on
another DD statement. The KEEP parameter implies that the volume is to
be treated as private. Private implies that the volume is unloaded at
the end of the job step but because RETAIN is specified, the volume is
to remain mounted until the end of the job unless another reference to
it is encountered. The DIRECT parameter is a hypothetical device class,
containing only mass storage devices. The volume with serial number
AA70, mounted on a device in this class, is assigned to the data set.
Space for the data set is allocated as specified in the SPACE parameter.
The data set has standard labels since it is on a mass storage volume.

If the volume serial number were not specified in the foregoing
example, the system would allocate space in an available nonprivate
volume., Because KEEP is specified, the volume becomes private.

(Another data set cannot be stored on a private volume unless its volune
serial number is specified or affinity with a data set on the volume is
stated.) The volume serial number of the volume assigned, if
applicable, is included in the disposition message for the data set.
Disposition messages are messages from the job scheduler, generated at
the end of the job step.

Example "4: <Creating a data set and cataloging it.

//DDNAMEA DD DSNAME=INVENT.PARTS,DISP={(NEW,CATLG), X
/7 LABEL=(,, EXPDT=77031) ,UNIT=DACLASS, X
7/ VOLUME={, REF=*.STEP1.DD1), X
7/ SPACE= (CYL, {5, 1), ,CONTIG)

This example shows a DD statement that creates a data set named
INVENT.PARTS and catalogs it in the previously created system catalog.
The data set is to occupy the same volume as the data set referred to in
the DD statement named DD1 occurring in the job step named STEP1. The
UNIT parameter is ignored since REF is specified. Five cylinders are
allocated to the data set, and if this space is exhausted, more space is
allocated, one cylinder at a time. The five cylinders are to be
contiguous. The disposition (CATLG), implies that the volume is to be
private. The INVENT.PARTS is to have standard labels., The expiration
date is the 31st day of 1977.

Example 5: Adding a member to a previously created library.
//SYSLMOD DD DSNAME=SYS1.LINKLIB{INVENT),DISP=0LD
This DD statement adds a member named INVENT to the link library

{SYS1.LINKLIB). When a member is added to a previously created data
set, OLD should be specified.

136

Example 6: <Creating a library and its first member.

//SYSLMOD DD DSNAME=USERLIB(MYPROG),DISP=(,CATLG), X
7/ SPACE= {TRK, (50,30,3)) ,UNIT=3330,VOLUME=SER=111111

This DD statement creates a library, USERLIB, and places a menmber,
MYPROG, in it. The disposition {(,CATLG) indicates that the data set is
being created in this job step (NEW is the default condition for the
DISP parameter and is indicated by the comma) and is to be cataloged.
The data set is to have standard labels. Space is allocated for tke
data set in a volume on a mass storage device that is an IBM 3330 unit.
Initially, 50 tracks are allocated to the data set, but when this space
is exhausted, more tracks are added, 30 at a time. The SPACE parameter
must be specified when the library is created, and it must include
allocation of space for the directory. SPACE cannot be specified when
nevw members are added. 1If additional space is required when nev members
are added, the secondary allocation, if specified, will be used. Three
256-byte records are to be used for the directory. The volume serial
number of the volume on which the library is to reside, is 111111,

Example 7: Replacing a member of an existing library.

//SYSLMOD DD DSNAME=MYLIB ({CASE3) ,DISP=0LD

This DD statement replaces the member named CASE3 with a new member
vith the same name. If the named member does not exist in the library,
the member is added as a new member. 1In the foregoing example, the
library is cataloged.

Example 8: <Creating and adding a member to a library used only for the
current job.

//SYSLMOD DD DSNAME=§SUSERLIB(MYPROG),DISP=(,PASS) ,UNIT=SYSDA, X
/7 SPACE=({TRK, (50,,1))

This DD statement creates and adds a member to a temporary library.
It is similar to the DD statement shown in Example 6, except that a
temporary name is used and the data set is not cataloged nor kept but is
simply passed to the next job step. Since the data set is to be used
only for this one job, it is not necessary to specify VOLUME and LABEL
information. This statement can be used for a linkage edit job step in
which the module is to be passed to the next step.

Note: If DISP={(,DELETE) is specified for a library, the entire library
will be deleted.

User Non-V3AM File Processing 137

RETRIEVING PREVIOUSLY CREATED NON-VSAM DATA
SETS

The parameters that must be specified in
a DD statement to retrieve a previously
created data set depend on the information
that is available to the system about the
data set. For example,

1. If a data set on a magnetic-tape or
mass storage volume was created and
cataloged in a previous job or job
step, all information for the data
set, such as volume, space, etc., is
stored in the catalog and data set
label. This information need not be
repeated. Only the dsname and
disposition parameters need be
specified.

2. If the data set was created and kept
in a previous job but has not been
cataloged, information concerning the
data set, such as space, record
format, etc., is stored in the data
set label. However, the unit and
volume information must be specified
unless available elsewhere,

3. 1If the data set was created in the
current job step, or in a previous job
step in the current job, the
information in the previous DD
statement is available to the systenm
and is accessible by referring to the
previous DD statement. Only the
dsname and disposition parameters need
be specified.

Note: A programmer may wish to change the
previous disposition of a data set. For
example, if KEEP vwas specified when the
data set was created, the DD statement that
retrieves the data set may change the
disposition by specifying CATLG.

Figure 49 shows the parameters that are

used to retrieve previously created data
sets,

Retrieving Cataloged Data_ Sets

Input data sets, assigned a disposition
of CATLG or cataloged by the IEHPROGH
utility program, are retrieved using the DD
statement parameters DSNAME, DISP, LABEL,
and DCB. The device type, volume serial
number, and data set seguence number {if
tape) are stored in the catalog.

138

r - === 1
| |
| i dsname |
| (DSNAME dsname (element) |
} { } = *,ddnare |
| (DSN *.stepname.ddnamre |
| & §name |
] §&name (element) |
| |
| I
| UNIT=(narmel,nl) |
| I
| |
{ DCEB=(sukparameter-list) |
] |
| |
1 ,CELETE DELETE |
1 {CLD] LKEEP +KEEP |
| DISP=(SHR +PASS +CATIG) |
i MOD ,CATLIG UNCATLG |
| UNCATLG |
] |
| |
| LABEI=(sukparameter-list) |
I |
]]
| (VOLUME |
| { } =(sukparameter-list) |
| (vor |
| |
L 4
Figure 49. Parameters Frequently Used in
Retrieving Previously Created
Data Sets
DSNAME: Required. The data set must be

identified by its cataloged name. If the
catalog contains more than one index level,
the data set name must be fully gualified.

DISP: Required. The status (OLD or SHR)
of the data set must be given and an
indication made as to how it is to be
treated after its use, unless it is to
remain cataloged. The programmer can
specify as the third term in the DISP
parameter a conditional disposition to
indicate hovw the data set is to be treated
if the job step abnormally termipates.

LABEL: Regquired only if the data set does
not have a standard label.

DCB: Reguired only if complete data
control block information is not specified
by the processing program and the data set
label. To save recoding time, DCB
attributes can be copied from an existing
DCB parameter and modified if necessary.
Valid DCB subparameters are listed in
wappendix C: Fields of the Data Control
Block.®

Note: 1In addition to the disposition
UNCATLG, a cataloged data set can be passed
to a later step {PASS) or deleted ({(DELETE).

Retrieving Noncataloged (KEEP) Data Sets

Input data sets that were assigned a
disposition of KEEP are retrieved by their
tabulated name and location, using the DD
statement parameters DSNAME, UNIT, VOLUME,
DISP, LABEL, and DCB.

DSNAME: Required. The data set must be
identified by the name assigned to it when
it was created.

ONIT: Required, unless VOLUME=REF is used.
The unit must be identified by its address,
type, or group name, If the data set
requires more than one unit, give the
number of units. Deferred volume mounting
and unit separation can be requested with
this parameter,

VOLUME: Required. The volume{s) must be
identified with serial numbers or, if the
data set was retrieved earlier in the same
job, with VOLUME=REF. If the volume is to
be PRIVATE, it must be so designated. 1If a
private volume is to remain mounted until a
later job step uses it, RETAIN should be
designated.

DISP: BRequired. The status (OLD or SHR)
of the data set must be given and an
indication made as to how it is to be
treated after its use. The programmer can
specify conditiocnal disposition as the
third term in the DISP parameter to
indicate how the data set is to be treated
if the job step abnormally terminates.

_____ Required if the data set does not
have a standard label. If the data set
resides vwith others on tape, its seguence
number must be given.

DCB: PReguired for all indexed sequential
data sets. Otherwise, required only if
complete data control. block information is
not supplied by the processing program and
the data set label. To save recoding time,
copy DCB attributes from an existing DCB
parameter, and modify them if necessary.
Valid DCB subparameters are listed in
Appendix C.

Retrieving Passed Data Sets

Input data sets used in a previous job
step and passed are retrieved using the DD
statement parameters DSNAME, DISP, and
UNIT. The data set's unit type, volume

location, and label information remain
available to the system from the original
DD statement.

DSNAME: Required. The original data set
nust be identified by either its name or
the DD statement reference tern
*_.stepname.ddname., If the original DD
statement occurs in a cataloged procedure,
the procedure stepname must ke included in
the reference tern.

DISP: Reguired. The data set nust be
identified as OLD, and an indication made
as to how it is to be treated after its
use. The programmer can specify
conditional disposition as the third term
in the DISP parameter to indicate how the
data set is to be treated if the job step
abnormally terminates.

UNIT: Reguired only if more than one unit
is allocated to the data set.

Retrieving pata_through_an_JInput Strean

Data sets in the form of decks of cards
or groups of card images can be introduced
to the system through an input stream by
interspersing them with control statements.
To define a data set in the input strean,
mark the beginning of the data set with a
DD statement and the end with a delimiter
statement. The DD statement must contain
one of the parameters * or DATA. Use DATA
if the data set contains job control
statements and an * if it does not. Two
DCB subparameters can also be coded when
defining a data set in the input stream:
BLKSIZE and BUFNO. Coding the DLM
parameter permits termination of data with
a delimiter other than /*.

Notes:

» The input stream can be onrn any device
supported by QSAM.

e Each job step and procedure step can be
associated with several data sets in an
input stream. All such data sets
except the first in the job must be
preceded by DD * or DD DATA statements.

» The characters in the records must be
cod=2d in BCD or EBCDIC.

e If the data is preceded with a DD *

statement, a /* delimiter following the
data is optional.

User Non-VSAM File Processing 139

Exanmples of DD Statements Used to Retrieve Data Sets

Example 1: Retrieving a cataloged data set.
//CALC DD DSNAME=PROCESS,DISP={0OLD,PASS,KEEP)

This DD statement retrieves a cataloged data set named PROCESS. No
UNIT or VOLUME information is needed. Since PASS is specified, the
volume - in which the data set is written is retained at the end of the
job step. PASS implies that a later job step will refer to the data
set. The last step in the job referring to the data set should specify
the final disposition. If no other DD statement refers to the data set,
it is assumed that the status of the data set is as it existed before
this job. 1In the event of an abnormal termination, the KEEP disposition
explicitly states the disposition of the data set.

Example 2: Retrieving a data set that was kept but not cataloged.

//TEMPFILE DD DSNAME=FILEA,UNIT=DIRECT,VOLUME=SER=AA70,DISP=0LD

This DD statement retrieves a kept data set named FILEA. (This data
set is created by the DD statement shown in Example 3 for creating data
sets.) The data set resides on a device in a hypothetical device class,
DIRECT. The volume serial number is AA70.

Example 3: Referring to a data set in a previous job step.

//SAMPLE JOB
//STEP1 EXEC PGM=TKFCBLOO,PARM=DZCK

//SYSLIN DD DSNAME=ALPHA,DISP={NEW,PASS),UNIT=SYSSQ
//STEP2 EXEC PGM=IEWL
//SYSLIN DD *.STEP1.SYSLIN,DISP={OLD,DZLETE)

The DD statement SYSLIN in STEP2 refers to the data set defined in
the DD statement SYSLIN in STEP1.

Example U4: Retrieving a member of a library.
//BANKING DD DSNAME=PAYROLL (HOURLY) ,DISP=0OLD

The DD statement retrieves a member, HOURLY, from a cataloged
library, PAYROLL.

140

DD STATEMENTS THAT SPECIFY UNIT RECORD
DEVICES

A DD statement may simply indicate that
data follows in the input stream or that
the data set is to be punched or printed.
Figqure 50 shows the parameters of special
interest for these purposes.

{sama}

S5YSOUT=A
UNIT=name

DCB= (subparameters)

Note: The DCB parameter can be
specified, where permissible, for data
sets on unit record devices. For
example, it can be specified for
compiler data sets {other thanm SYSUT1,
SYSUT2, SYSUT3, and SYSUT4) and data
sets specified by the DD statements
required for the ACCEPT and DISPLAY
statements, when any of these data sets
are assigned to unit-record devices.

R L R T R
R e e I I A e

Figure 50. Parameters Used To Specify

Unit Record Devices

Exapple 1:
reader.

specifying data in the card

//SYSIN DD *

The asterisk indicates that data follows
in the input stream. The data must be
followed by a delimiter statement if it
contains // or /* in columns 1 and 2.

Example 2: Specifying a printer data set.

//SYSPRINT DD SYSOUT=A

SYSOUT is the system output parameter; A
is the standard device class for printer
data sets.

Bxample_3: Specifying a card punch.

//SYSPUNCH DD SYSOUT=B
B is the standard device class for punch
devices.

CATALOGING A DATA SET

A data set is cataloged whenever CATLG
is specified in the DISP parameter of the
DD statement that creates or uses it. This
means that the name and volume
identification for the data set are placed
in a system index called the catalog. {See
"processing with QISAM" in the section
YExecution Time Data Set Requirements" for
information about cataloging indexed
sequential data sets.) The information
stored in the catalog is always available
to the system; consequently, only the data
set name and disposition need be specified
in subsequent DD statements that retrieve
the data set., See Example 4 in "Creating
Non-VSAM Data Sets," and Example 1 in
“Retrieving Non-VSAM Data Sets."

If DELETE is specified for a cataloged
data set, any reference to the data set in
the catalog is deleted unless the DD
statement containing DELETE retrieves the
data set in some way other than by using
the catalog. If UNCATLG is specified for a
cataloged data set, only the reference in
the catalog is deleted; the data set itself
is not deleted.

Note: A "cataloged data set® should not be
confused with a "cataloged procedure” (see
"gsing the Cataloged Procedures®).

GENERATION DATA GROUPS

It is sometimes convenient to save data
sets as elements or generations of a
generation data group {(DSNAME=dsnanme
{element)). A generation data group is a
collection of successive, historically
related data sets. Identification of data
sets that are elements of a generation data
group is based upon the time the data set
is added as an element. That is, a
generation number is attached to the
generation data group name to refer to a
particular element. The name of each
element is the same, but the generation
number changes as elements are added or
deleted. The most recent element is 0, the
element added previous to 0 is -1, the
element added previous to -1 is -2, etc. A
generation data group must always be
cataloged.

Bser Non-VSA¥M File Processing 141

For example, a data group named PAYROLL
might be used for a weekly payroll. The
elements of the group are:

PAYROLL{0)
PAYROLL (- 1)
PAYROLL (~2)

where PAYROLL{0) is the data set that
contains the information for the most
current weekly payroll, and is the most
recent addition to the group.

When a new element is added, it is
called element{+n), where n is an integer
greater than 0. For example, when adding a
nev element to the weekly payroll, the DD
statement defines the data set to be added
as PAYROLL{+1); at the end of the job the
system changes its name to PAYROLL{0). The
element that was PAYROLL (0) at the
beginning of the job becomes PAYROLL(-1) at
the end of the job, and so on.

If more than one element is being'added
in the same job, the first is given the
number {+1), the next (+2) and so on.

NAMING DATA SETS

Each data set must be given a pame. The
name can consist of alphanumeric characters
and the special characters, hyphen and the
+0 {12-0 multipunch). The first character
of the name must be alphabetic. The name
can be assigned by the system, it can be
given a temporary name, or it can be given
a user-assigned name. If no name is
specified on the DD statement that creates
the data set, the system assigns to the
data set a unique name for the job step.

If a data set is used only for the duration
of one job, it can be given a temporary
name (DSNAME=f&éname). If a data set is to
be kept but not cataloged, it can be given
a simple name. If the data set is to be
cataloged it should be given a fully
gualified data set name. The fully
qualified data set name is a series of one
or more simple names joined together so
that each represents a level of
qualification, For example, the data set
name DEPT999.SMITH.DATA3 is composed of
three simple names that are separated by
periods to indicate a hierarchy of names.
Starting from the left, each simple name
indicates an index or directory within
vhich the next simple name is a unique
entry. The rightmost name identifies the
actual location of the data set.

BEach simple name consists of one to
eight characters, the first of which must
be alphabetic, The special character
period - .{.) separates simple mnames from

142

each other. Including all simple names and
periods, the length of a data set name nust
not exceed 44 characters. Thus, a maxiamum

of 21 qualification levels is possible for

a data set name,

Programmers should not use fully
qualified data set names that begin with
the letters SYS and that also have a P as
the nineteenth character of the nane.
Under certain conditions, data sets with
the above characteristics will be deleted.

EXTENDING NON-VSAM DATA SETS

A processing program can extend an
existing data set by adding records to it.
If the EXTEND phrase of the OPEN statement
is specified (QSAM data sets only), COBOL
positions the data set immediately
following the last logical record.
Subsequent WRITE statements then add
records as though the data set had been
opened with the OUTPUT phrase. {If LINAGE
was specified, the initial position at the
time of the OPEN EXTEND is assumed to be at
the beginning of a page.) The DD statement
for the data set to be extended need be no
different than for a normal COBOL output
file. Although the user need not specify
DISP=MOD on the DD statement, the systenm
implements the EXTEND request as if it had
been; consequently, any system restrictions
for DISP=MOD also apply to the EXTEND file.

Wwhen OPEN EXTEND is not specified in the
COBOL program, a sequential data set (QSANM
or other) can still be extended by
including DISP=MOD on the DD statement for
the data set's retrieval. When MOD is
specified, the system positions the
appropriate read/s’rite head after the last
record in the data set.

If a disposition of CATLG for an
extended data set that is already cataloged
is indicated, the system updates the
catalog to reflect any new volumes caused
by the extension. ¥When extending a
multivolume data set where number of
volumes might exceed the number of units
used, the programmer should either specify
a volume count or deferred mounting as part
of the volume information. This ensures
data set extension to new volumes.

ADDITIONAL FILE PROCESSING INFORMATION

The following topics are discussed in
this section: the data control block,
error processing for COBOL files, and
volume and data set labels.

More information about input/output
processing is contained in the publication

0S/Vs_Data Management Services Gujde.

DATA CONTROL BLOCK

Bach non-VSAM data set is described to
the operating syster by a data control
block {DCB). A data control block comsists
of a group of contiguous fields that
provide information about the data set to
the system for scheduling and executing
input/output operations. The fields
describe the characteristics of the data
set (e.g., data set organization) and its
processing requirements ({e.g., whether the
data set is to be read or written). The
COBOL compiler creates a skeleton DCB for
each data set and inserts pertinent
information specified in the Environment
Division, PD entry, and input/output
statements in the source program. The DCB
for each file is part of the object module
that is generated. Subsequently, other
sources can be used to enter information
into the data control block fields. The
process of f£illing in the data control
block is completed at execution time.,

Additional information that completes
the DCB at execution time may come from the
DD statement for the data set and, in
certain instances, from the data set label
vhen the file is opened.

Overriding DCB Fields

Once a field in the DCB is filled in by
the COBOL compiler, it cannot be
overriddenby a DD statement or a data set
label. For example, if the buffering
factor for a data set is specified in the
COBOL source program by the RESERVE clause,
it cannot be overridden by a DD statement.
In the same way, information from the DD
statement cannot be overridden by
information included in the data set label.

Identifying DCB_Information

The links between the DCB, DD statement,
data set label, and input/output statements
are the filename, the system name in the
ASSIGN clause of the SELECT statement, the
ddname of the system-name, and the dsname
{Figure 51). ' ‘

1. The filename specified in the SELECT
statement and in the FD entry of the
COBOL source program is the name
associated with the DCB,

2. Part of the system-name specified in
the ASSIGN clause of the source
program is the ddname link to the DD
statement. This name is placed in the
DCB.

3. The dsnanme specified in the DD
statement is the link to the physical
data set.

The fields of the data control block are
described in the tables in Appendix C.
They identify those fields for which
information must be supplied by the source
program, by a DD statement, or by the data
set lahel. Por further information about
the data contral block, see the discussion
of the DCB macro instruction for the
appropriate file processing technique in
the publication QS/¥S_Data_Management
Services Guide.

T 1 r
] SELECT : | 1
i Statement] |

Data Set
Lakel

e e e e

13

|

| —_——

|} Other 1 | |
| Input/Cutput | { LD |
] Statements |] Statement |
[J L)

Figure 51. Links between the SELECT Statement, the DD Statement, the Data Set Label, and

the Input/Output Statements

User Non-VSAM File Processing 143

ERBOR PROCESSING FOR NON-VSAM COBOL FILES

The actions taken after an I/0 error depend
on a number of things:

o What access method is being used
* What type of error it is

+ What sort of error handling
statements the program contains
(if any)

» For certain error types on a
QsAaM file, what DCB EROPT
svbparameter was specified

If an error declarative, a file status
clause, or an invalid key clause is
specified for a particular file, the
DCBSYNAD field of the data control block
for that file contains the address of an
entry point in ILBOSYNO (COBOL's error
intercept library subroutine). ILBOSYNO
has 5 entry points (ILBOSYN1, 2, 3, 4,
and 5) corresponding to each of the five
access methods supported (other than
VSAM) ; they are QSAM, BSAM, BDAM,

QIsAaM, and BISAM. If no error declarative,
file status clause, or invalid key clause
is specified, no SYNAD routine is
activated and the appropriate system
action is taken.

In general, error handling for BSAM,
QISAM, BDAM, and BISAM is identical.
Figure 52 shows what happens when the
access method has detected an error and
given control to the COBOL SYNAD

routine. The program will either continue
at the next statement following the

I/0 statement that caused the error, or

144

abend -- depending on the type of error
and the error handling language in the
program.

Error handling for QSAM files, however, is
different and more complex, because of these
additional factors:

1. The choice of EROPT subparameter (whether
ACC, SKP, or ABE) affects some conditions

2. The presence or absence of a FILE STATUS
clause affects most conditions

3. COBOL itself does some error checking,
and handles conditions it finds
differently

Figure 53 shows this logic flow. Note that
there are three general possibilities,
depending on whether the error is a
QSAM-detected space problem, some other

type of QSAM-detected problem, or a
COBOL-detected problem. Errors in the

last category are such things as OPEN and
CLOSE failures, attempts to read/write/rewrite
on an unopened file, attempts to read past
end-of-file, and the like. (These are errors

‘that would fall into the FILE STATUS

classifications of 90 or higher.) A program
encountering an error on a QSAM file will
continue, abend, or terminate the job step
with a return code of 12,

BSAM

1-0 ERROR
ILBO SYN2

QISAM BDAM
1-O ERROR 1-0 ERROR
ILBO SYN3 ILBO SYN4

BISAM
I-O ERROR
ILBO SYN5

\4

INVALID
KEY ROUTINE
SPECIFIED

EXITTO
ERROR
DECLARATIVE*

DECLARATIVE
SPECIFIED?,

RETURN TO
SYSTEM*

ISSUE

SYNADADF

AND FORMULATE
ERROR MESSAGE

WRITE
ERROR
MESSAGE ON
CONSOLE
AND SYSOUT

TERMINATE
RUN UNIT

EXITTO

INVALID KEY
ROUTINE*

*EXECUTION OF COBOL PROGRAM THEN CONTINUES FOLLOWING THE 1/0 STATEMENT THAT RAISED THE ERROR.

Figure 52.

Flow of Control in COBOL After Error Detected on BSAM/QISAM/BDAM/BISAM I/O

User Non-VSAM File Processing’

145

SPACE NOT FOUND BY QSAM FOR
WRITE OR.CLOSE REEL/UNIT
(INVALID KEY CONDITION — FILE
STATUS KEY OF 34; EQUIVALENT
TO x37 ABEND CODE) ** -

ILBOSYN1

EXITTO
INVALID KEY
PHRASE*

INVALID
KEY PHRASE
SPECIFIED

ERROR
DECLARATIVE
SPECIFIED

EXITTO
ERROR
DECLARATIVE*

RETURN TO
QSAM*

ERROR DETECTED BY COBOL ITSELF
(CONDITION EQUIVALENT TO FILE
STATUS KEY OF 90 OR HIGHER)

iLBoQio

ERROR
DECLARATIVE
SPECIFIED

EXITTO
ERROR
DECLARATIVE*

FILE
STATUS

CONTINUE
PROGRAM
EXECUTION

OTHER ERRORS
DETECTED BY QSAM

ILBOSYN1

ON EXIT FROM DECLARATIVE,
RETURN TO QSAM. IF EROPT=
ACC/SKP, COBOL PROGRAM WILL
THEN CONTINUE; IF EROPT=ABE,
PROGRAM WILL BE ABENDED.

ERROR
DECLARATIVE
SPECIFIED

EXITTO
ERROR
DECLARATIVE

RETURN TO
QSAM FOR
‘ACCEPT/SKIP"™*

NO
(=ABE)

ISSUE SYNADAF
AND MESSAGE
IKF1111

FILE
STATUS

CONTINUE
PROGRAM
EXECUTION

REWRITE
REQUEST,

ETURN TO QSAM
WHICH ABENDS
COBOL PROGRA

ISSUE MESSAGE
IKF1151, DO STOP
RUN PROCESSING

RETURN TO SYSTEM

WITH RETURN CODE
OF 12

Figﬁre 53.

146

*EXECUTION OF THE COBOL PROGRAM THEN CONTINUES FOLLOWING THE 1/0
STATEMENT THAT RAISED THE ERROR.

**FILE STATUS KEY 34 IS NOT ISSUED FOR A SORT-GIVING FILE.

Flow of Control in COBOL After Error Detected on QSAM I/0

COBOL_lLangyage_Features_for Input/Output
Error Processing

The COBOL programmer has at his disposal
several language features which enable hinm
to be notified of an input/output error and
its exact nature -- information he can
utilize to attempt a retry if possible.

These language features are: the FILE
STATUS clause, the INVALID KEY clause, and
the USE AFTER ERROR declarative. See IBN
YS_COBOL for 0S/YS for complete details on
the proper use of these features.

User Non-VSAM File Processing 147

FILE STATUS Key

The FILE STATUS clause may be specified for
QSAM files in order to provide a means. of
testing the success of individual I/0
operations and determining more closely the
specific nature of an error condition when
it arises. QSAM FILE STATUS may be used
alone, or in conjunction with the error
declarative procedure (described below) .

In the latter case, the FILE STATUS key is
set by COBOL before the error declarative
is given control.

QSAM status key values are explained
in the table below.

INVALID KEY Option

The INVALID KEY option, when specified,
applies only for the specific input/output
operation requested; when the operation is
terminated successfully, the INVALID KEY
clause is nullified. This means that the
‘file has no constant INVALID KEY routine
associated with it, but that the active
INVALID KEY routine is the one specified on
the current input/output verb. For files
accessed randomly and for output files
accessed sequentially, an INVALID KEY
clause may be specified with the verbs
READ, WRITE, and START.

Note: The INVALID KEY routine is given
control only for input/output errors
specifically attributed to an INVALID KEY
condition; no return is made to the system
from such a routine. Hence, this option
merely informs the programmer that one of
these conditions arose —-- this may be all
he needs to know -- and no direct return to
the system is possible, nor .is any further
information on the nature of the error
available at the COBOL source level.

148

INVALID KEY conditions (those which pass
control to INVALID KEY clauses), as
interpreted by COBCL, vary with the access
method used, but may be generally described
as follows: record not found, duplicate
record, and sometimes space for output not
found.

The_ Error_Declarative

A single USE AFTER STANDARD ERROR
declarative defines, for a certain subset
of the files within a COBOL program, a
series of operations to be performed for
the express purpose of determining the
exact nature of an input/output error and
attempting to recover from that error.
This series of operations may cover as
broad or restrictive a subset of the files
as the programmer wishes. A single
declarative may be applied to all OoDTPUT,
all INPUT, or all I-0 files, a single file,
or any number of files; it is the »
programmer's responsibility to ensure no
conflict of applicability arises.

For example, within the same program, a
single file may be opened as OUTPUT, INPUT,
and I-0 at different states of processing.
Three separate error declaratives may be
coded for this file, since the proper
declarative will be activated just before
the file is opened. For additional
information on declaratives, see IBM_VS
COBOL_for 0S/VS.

The declarative also offers a very
potent and flexible tool for determining
the nature of input/output errors; it is
the GIVING option which may be specified
for any of the subsets of files mentioned
earlier, #Within the GIVING clause,
data-name-1 is specified and will contain a
136-hyte descriptive error message after an
input/output error on a READ, WRITE,
REWRITE, or START verb. This field must
reside in working storage. It will contain
spaces for logic errors on QSAM files.

STATUS KEY 1

STATUS KEY 2

Value Meaning Value Meaning
0 Successful completion 0 No further information
1 At end (no next logical record, 0 No further information
or an OPTIONAL file not available
at OPEN time)
3 Permanent error (data check, 0 No further information
parity check, transmission error)

4 Space not found to add requested
output record; for example, file's
extents could be exhausted

9 Other errors 0 OPEN or CLOSE failed (OPEN
failure could result from missing
DD card)
2 Logic error; for example, attempt

to open a file already open,
attempt to open a file previously
closed with a lock, attempt to
close a file already closed or
never successfully opened,
attempt to read/write/rewrite on
an unopened file or a file opened
in the wrong mode (e.g., WRITE on
file opened INPUT), attempt to
read after end-of-file has been
reached

Data-name-2 can be specified optionally
and will contain the block in error if data
transfer actually took place; this
restricts its applicability to input
operations -- specifically, READs.
Data-name-2 may be defined in the
#Working-Storage Section or in the Linkage
Section. Defining it in the
Working-Storage Section requires that
enough storage be reserved within the
program's data area to contain the block in
question. The block will be moved into
data-name-1 from the buffer if the systenm
indicates data transfer did take place;
otherwise, no move will be executed.
Defining data-name-2 in the lLinkage Section
results in space being reserved within the
object program only for 4 bytes per 4K
bytes of the block ; the block is
referenced in the buffer by means of these
cells.

. Besides storage and performance
considerations, one reason for defining
data-name-2 in the Linkage Section is that
data-name-1 should be examined thoroughly

before any reference to data-name-2 is
made. For example, if a declarative
specified for a single file, which is
opened INPUT and OUTPUT, within the program
is entered because an input/output error
occurred on a WRITE verb for that file, an
attempt to access data-name-2 will result
in an abnormal termination. Data-name-1
should be checked for input/output
operation, access method, block address,
and so on, before data-name-2 is referenced
at all. Figure 54 shows an example of this
type of checking.

Figure 54 shows a single error
declarative which has been specified for
two files, one QSAM assigned to tape and
one BISAM. For simplicity, processing of
each file is kept separate in the
declarative, even though some common
processing could have been done. Fach file
has the same logical record length; if they
had different lengths, a problem might
arise when the eatry coding of the
declarative attempts to move the offending
block into data-name-2.

User Non-VSAM File Processing 149

00001 IDENTIFICATION DIVISION.

0002 REMARKS .
€0003 THIS PROGRAM CAUSES I-O ERRORS FOR A QSAM AND ISAM FILE AND
0004 WILL DEMONSTRATE THE USE OF THE ERROR DECLARATIVE.
00005 ENVIRONMENT DIVISION.

00006 INPUT-OUTPUT SECTION.

00007 FILE~-CONTROL.

00008 SELECT QSAM-FILE,

00009 ASSIGN TO UT-S-QSAMFILE.

00010 SELECT BISAM-FILE,

00011 ASSIGN TO DA-I-BISMFILE,

00012 ACCESS IS RANDOM,

00013 NOMINAL KEY IS NOMINAL-KEY,

00014 RECORD KEY IS RECORD-KEY.

00015 DATA DIVISION.

00016 FILE SECTION.

00017 FD QSAM-FILE,

00018 RECORDING MODE IS F,

00019 LABEL RECORDS ARE OMITTED,

00020 RECORD CONTAINS 100 CHARACTERS,

00021 DATA RECORD IS QSAM-RECORD.

00022 01 QSAM-RECORD PIC X(100).

00023 FD BISAM-FILE,

00024 RECORDING MODE IS F,

00025 LABEL RECORDS ARE STANDARD,

00026 RECORD CONTAINS 80 CHARACTERS,

00027 DATA RECORD IS BISAM-RECORD.

00028 01 BISAM-RECORD.

00029 05 FILLER PIC X.

00030 05 RECORD-KEY PIC X(5).

00031 05 FILLER PIC X(74).

00032 WORKING-STORAGE SECTION.

00033 01 SYNAD-RECORD COPY ERRSRCD1.

00034 01 SYNAD-RECORD.

00035 *

00036 * THIS RECORD IS FORMATTED TO SHOW ALL FIELDS IN DATA-NAME-1
00037 * (THE SYNADAF MESSAGE). NOT ALL FIELDS WILL BE REFERENCED
00038 * IN A PARTICULAR PROGRAM.

00039 *

00040 05 FILLER PIC X(8).

00041 05 INPUT-BUFFER-ADDRESS PIC X(4).

ooou2 05 NUMBER-OF-BYTES-READ PIC 9(4) USAGE COMP.
ooou3 05 FILLER PIC X(36).

00044 05 JOBNAME PIC X(8).

00045 05 FILLER PIC X.

00046 05 STEPNAME PIC X(8).

00047 05 FILLER PIC X.

ooou8 05 UNIT-ADDRESS PIC X(3).

00049 05 FILLER PIC X.

00050 05 DEVICE-TYPE PIC XX.

00051 88 MASS-STORAGE-DEVICE VALUE 'DA'.
00052 88 MAGNETIC-TAPE-DEVICE VALUE "TA®.
00053 88 UNIT-RECORD-DEVICE VALUE *UR'.
00054 05 FILLER PIC X.

00055 05 DDNAME PIC X(8).

00056 05 FILLER PIC X.

00057 05 OPERATION-ATTEMPTED PIC X(6).

Figure 54, Example of Use of GIVING Option in Error Declarative (Part 1 of

150

3)

00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
€0075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103

* * ® ®

05 FILLER PIC X.
05 ERROR-DESCRIPTION PIC X(15).
88 WLR-ERROR VALUE °®WRNG.LEN.RECORD®.
88 INVLD-REQ VALUE °®INVALID REQUEST".
05 FILLER PIC X.
05 ACCESS-METHOD-DATA.
10 UNIT-RECORD.
15 FILLER PIC X(15).
15 UR-ACCESS-METHOD PIC X(6).
10 MAGNETIC-TAPE REDEFINES UNIT-RECORD.
15 RELATIVE-BLOCK-NUMBER PIC 9(7).
15 FILLER PIC X.
15 TA-ACCESS-METHOD PIC X(5).
15 FILLER PIC X(8).
10 MASS-STORAGE REDEFINES UNIT-RECORD.
15 LAST-ACTUAL-ADDRESS PIC X (14).
15 FILLER PIC X.
15 DA-ACCESS-METHOD PIC X(6).
05 SYSTEM-USE PIC X(8).
01 NOMINAL-KEY PIC 9(5).
LINKAGE SECTION.
01 ERROR-DATA PIC X(100).
PROCEDURE DIVISION.
DECLARATIVES.
ERROR-EXAMPLE SECTION.
USE AFTER STANDARD ERROR PROCEDURE
ON QSAM-FILE, BISAM~FILE,
GIVING SYNAD-RECORD, ERROR-DATA.
DISPLAY ®** ERROR DECLARATIVE ENTERED FOR®
OPERATION-ATTEMPTED * OPERATION *#*,
DISPLAY SYNAD-RECORD.
IF ERROR-DESCRIPTION IS NOT EQUAL TO 'UNKNOWN COND'
AND

OPERATION-ATTEMPTED IS NOT EQUAL TO "UNKNOWN"
GO TO DECLARATIVE-1.

IF OPERATION OR ERROR TYPE IS UNKNOWN, CALL ASSEMBLY
LANGUAGE ROUTINE TO CHECK MORE DEEPLY.

IF DA-ACCESS-METHOD IS EQUAL TO "QSAM *,
CALL °*ERRANAL®,
USING SYSTEM-USE, QSAM-FILE, ACCESS-METHOD-DATA;
ELSE
CALL 'ERRANAL®,
USING SYSTEM-USE, BISAM~FILE, ACCESS-METHOD-DATA.
GO TO DECLARATIVE-EXIT.

Figure 54. Example of Use of GIVING Option in Error claratve {Part 2 of 3)

User Non-VSAM File Processing

151

00105 DECLARATIVE-1.

00106 *

00107 * CHECK EXPECTED QSAM OR BISAM ERROR CONDITION.
00108 *

00109 IF WLR-ERROR,

00110 DISPLAY ®** WRONG LENGTH RECORD ERROR AS EXPECTED **°,
00111 GO TO DECLARATIVE-EXIT.

00112 *

00113 * CHECK ONE PARTICULAR ERROR POSSIBILITY, THEN DISPLAY BLOCK
00114 * IN ERROR IF POSSIBLE, THEN EXIT.

00115 *

00116 IF DA-ACCESS-METHOD IS NOT EQUAL TO "BISAM',
00117 GO TO DECLARATIVE-2.

00118 IF NOT INVLD-REQ,

00119 GO TO DECLARATIVE~EXIT.

00120 *

00121 * BISAM INVALID REQUEST. EXIT DECLARATIVE VIA 'GO TO'.
00122 *

00123 CLOSE BISAM-FILE.

00124 GO TO PROCESS~-NEXT-FILE.

00125 DECLARATIVE-2.

00126 IF INPUT~-BUFFER-ADDRESS IS EQUAL TO SPACES,
00127 CLOSE QSAM-FILE,

00128 GO TO PROCESS-BISAM-FILE.

00129 DISPLAY ERROR-DATA.

00130 DECLARATIVE-EXIT.

00131 EXIT.

00132 END DECLARATIVES.

00133 OPEN INPUT QSAM-FILE.

00134 READ QSAM-FILE,

00135 AT END

00136 CLOSE QSAM-FILE,

00137 STOP RUN.

00138 PROCESS-BISAM-FILE.

00139 OPEN I-O BISAM-FILE.

00140 MOVE 100 TO NOMINAL-KEY.

00141 REWRITE BISAM-RECORD.

00142 CLOSE BISAM-FILE.

00143 PROCESS-NEXT-FILE.

00144 STOP RUN.

Figure 54. Example of Use of GIVING Option in Error Declarative (Part 3 of 3)

152

Since it is the receiving field, the length
of data-name-2 1is taken as the length of
the move. Therefore, when using the same
error declarative for files, ensure the
files do not have differing attributes.

SYNAD-RECORD, a 136-byte area set aside
to receive the error message provided by
the system, is compatible across all access
methods. An area of some variation is
ACCESS—-MFETHOD-DATA, which is device
dependent. SYNAD-RECORD is shown in great
detail for the purpose of showing how each
field might be coded. Such exhaustive
detail, however, is not necessary in many
applications, and only the fields to be
referenced need be explicitly described at
all., This detailed map of the area would
be a good skeleton for a COPY library
member, once it is standardized for anm
installation.

When data has been transferred,
INPUT-BUFFER-ADDRESS will contain the
address of such data and is the source of
data-name-2. Likewise,
NUMBEFR-OF-BYTES-READ contains the actual
length of the offending block. DEVICE-TYPE
is a key to the actual layout of
ACCESS—-METHOD-DATA, vwhich is device
dependent. The possible content of
OPERATION-ATTEMPTED, ERROR-DESCRIPTION, and
ACCESS-METHOD-DATA are shown in some detail
in Appendix G. SYSTEM-USE is an 8-byte
field which is not useful to a COBOL source
program but which in most cases reflects
the contents of registers 0 and 1 upon
entry to the SYNAD routine and are passed
as arguments (shown at line 100 in Figure
54) to the assembly language program
ERRANAL for further study. The user will
find additional information about the
contents of this field in 0S/VS_Data
Management Macro_Instructions.

Note: Data-name-2, ERROR-DATA in the
example, is specified in the Linkage
Section; the generated code within the
declarative will do nothing but move the
address of INPUT-BUFFER-ADDRESS into a base
locator cell assigned to ERROR-DATA.

Immediately upon entry to the declarative,
a signal message is displayed as well as
the SYNAD-RECORD. Then if an unknown
operation or error is indicated in the
message, the system calls ERRANAL passing
SYSTEM-USE, the appropriate DCB or DECB,
and ACCESS-METHOD-DATA, exiting from the
declarative upon return.

If both fields are known, the systenm
does further checking. For the purpose of
this example, it is assumed that a
wrong-length record is expected and this
causes a message to be printed and an exit
from the declarative. Finally, for the
BISAM file, the coding checks the imvalid

request condition. TIf invalid, the file is
closed and the declarative is exited via a
GO TO statement {not a normal exit). If it
is a QS5AM file, the field containing the
address of the data represented by
data-name-2 is checked for blanks before
displaying it. For a QISAM file,
data-name-2 can never be referenced.

This example of error declarative
technique points out some basic tools: the
use of fields within data-name-1 to decide
processing; the checking of the address
used for data-name-2 before referring to
it; the use of data-name-1 as a group item:
the normal and GO TO exits from the
declarative; the calling of an assembly
language subroutine to perform detailed
analysis of system information; forcing use
of a declarative for INVALID KEY conditions
by not coding an INVALID KEY clause;
closing of the offending file if the nature
of the error suggests such an action. A
course of action not described here {(but
often possible) is a retry of the
input/output operation that caused the
error.

The INVALID KEY clause and/or the error
declarative may be specified for a file,
and for any given input/output error, the
error intercept subroutine decides which is
to be given control. Figure 55 is a
generalized summary of the means available
for recovery from an invalid key condition
or an input/output error.

It is most important that the programmer
make certain of the validity of data-name-2
before referencing it. In the event that a
complete message could not be formatted by
the system, the entry coding in the error
declarative takes steps to avoid moving the
block in error imrto data-name-2 if it is in
the Working-Storage Section or setting up
the base locator address if it is in the
Linkage Section.

Hosever, it is up to the user to avoid
an invalid reference. Note also that for
certain conditions, the contents of
data-name-1 will be invalid {blanks or
asterisks). The user may find information
on this under SYNADAF macro in QS/VS_Data
Mapagement Macro_Instructions.

Note: The programmer should also consider
the following when a relatively large
number of INVALID KEY exits or declarative
sequences {with G0 TO exits) are to be
executed:

1. The distinction bet¥een error
processing via an error declarative
and the the INVALID KEY clause. When
an input/output operation is
requested, a storage area of about 40
to 100 bytes (called an input/output

User Non-V¥SAM File Processing 153

block or I0OB) is allocated until the
request is satisfied {or, in the event
of an error, until return from the
user-provided error-handling routine).
If the error declarative is used, a
normal exit from the declarative
returns control the system and frees
the I0OB. #hen the INVALID KEY routine
is used, however, the system does not
regain control and the IOB is not
freed.

Note: 1If an I/0 error oOCcuUrs on a
WRITE or REWRITE, and a FILE STATUS
clause was specified but an error
declarative or INVALID KEY clause was
not, then the system does not regain
control and the I0OB is not freed.

2. The error declarative inter face
dynamically allocates storage for a
register save area upon entry, roughly
200 bytes. This is necessary to make
the declarative serially reusable in
the event of another input/output
error occurring within the
declarative, and for which it is
specified (for example, an I/0 request
to another file may be done within the
declarative, and this second attenmpt
may also cause an error). If a GO TO
statement is used to exit from the
declarative, neither this save area
nor the IOB is freed.

To make maximum efficient use of one's
address space and to make the maximunm
space available to other users, the
programmer should rely on the error
declarative as much as possible,
taking a normal exit from it.

VOLUME LABELING

various groups of labels may be used in
secondary storage to identify magnetic-tape
and mass storage volumes, as well as the
data sets they contain. The labels are

‘used to locate the data sets and are

identified and verified by label processing
routines of the operating systenm.

There are two different kinds of labels,
standard and nonstandard. Magnetic tape '
volumes can have standard or nonstandard
labels, or they can be unlabeled. The
type(s) of label processing for tape
volumes to be supported by ap installation
is selected during the system generation
process. Mass storage volumes are
supported with standard labels only.

standard labels consist of volume labels
and groups of data set labels. The volume
label group precedes or follows data on the
volume; it identifies and describes the
volume, The data set label groups precede
and follow each data set on the volume, and
identify and describe the data set.

set labels
are called

o The data
data set

that precede the
header labels.

» The data set labels that follow the
data set are called trailer labels.
They are almost identical to the header
labels.

» The data set label groups can
optionally include standard user labels
except for ISAM files.

Otherwise, it is recommended that the » The volume label groups can optionally
programmer specify a larger address include standard user labels for QSAM
space. files.

L) k) R T 1
| Specified| | | |
| in COBOL] | |
| Program]] |
|] only | only . : Lo
| | INVALID KEY | USE AFTER | Neither on Nglther in |
|Exror] option | STANDARD ERROR Both |This Statement |Entire Programj
L L 4 N ¥ | 4

Ll T 3 T . . T . B 1
fInvalid key |Go to invalid|Go to user's |Go to invalid|Error ignored; ABEND |
|]key routine |declarative | key routine return to sys- l
]	routine	tem; next		
1		sequential in-		
1		struction exe-		
/			cuted	
k $ + 1 + + {
IAll other |Return to |Go to user's |Go to user's |Return to | i
ltypes of]system | routine | routine | systen | ABEND |
JI/0 exrors 1 1 i 1 L i
Figure 55. Recovery from an Invalid Key Condition or other Input/Output Error (Non-QSAM)

154

| Notes:
{1. Holds only for WRITE.

}2. Error cannot be caused by an invalid key.
L X

be s . i s S e oy o e e e caien. by B . . et i E—

Figure 56.

Nonstandard labels can have any format
and are processed by routines provided by
the programmer. Unlabeled volumes contain
only data sets and tapemarks. In the job
control statements, a DD statement must be
provided for each data set to be processed.
The LABEL parameter of the DD statement is
used to describe the data set?'s labels.

specific information about the contents
and physical location of 1labels is
contained in the publications QS/VS Data
Management Services Guide and 05/VS_Tape
Labels.

STANDARD LABEL FORMAT

Standard labels are 80-character records
that are recorded in EBCDIC and odd parity
on 9-track tape; or in BCD and even parity
on 7-track tape. The first four characters
are alvays used to identify the labels.
These identifiers are:

VOoL1 —
HDR1 and HDR2 -~

volume label

data set header

labels

data set trailer

labels {end-of-volunme)
data set trailer labels
{end-of-data set)

user header labels

user trailer labels

EoV! and EOV2 -—-
EOF1 and EOF2 ~--

UHL1 to UHLS -
UTL1 to UTLS -

Input/Output Error Processing Facilities (Non-QSAM)

The format of the mass storage volume
label group is the same as the format of
the tape volume label group, except one of
the data set labels of the initial volume
label consists of the data set control
block {DSCB). The DSCB appears in the
volume table of conteants {VTOC) and
contains the equivalent of the tape data
set header and trailer information, in
addition to space allocation and other
control information.

STANDARD USER LABELS

standard user labels contain
user-specified information about the
associated data set. User labels are
optional within the standard label groups.
The format used for user header labels ‘
{UHL1-8) and user trailer labels {UTL1-8)
consists of a label 80 characters in length
recorded in EBCDIC on 9-track tape units,
or in BCD on 7-track tape units. The first
three bytes consist of the characters that
identify the label: UHL for a user header
label {at the beginning of a data set) or
UTL for a user trailer label (at the
end-of-volume or end-of-data set). The
next byte contains the relative position of
this label within a set of labels of the
same type and can be any number from 1
through 8. The remaining 76 bytes consist
of user-specified information.

OUser Non-VSAM File Processing 155

User labels are gemnerally created,
examined, or updated when the beginning or
end of a data set or volume (reel) is
reached. User labels are applicable for
sequential, direct, and relative data sets.
For sequentially processed data sets, end
or beginning of volume exits are allowed
{i.e., "intermediate" trailers and headers
may be created or examined). For direct or
relative data sets, user label routines
will be given control only during QPEN or
CLOSE condition for a file opened as INPUT,
0OUTPUT, or I-0. Trailer labels for files
opened as INPUT or I-O are processed when a
CLOSE statement is executed for the file
that has reached an AT END condition.

Thus, for physical sequential data sets,
the user may create, examine, or update up
to eight header labels and eight trailer
labels on each volume of the data set,
whereas for direct or relative data sets
the user may create, examine, or update up
to eight header labels during OPEN and ‘up
to eight trailer labels during CLOSE.
(OSAM EXTEND functions in a manner
identical to OUTPUT, except that the
beginning of a file label is not
processed.) Note that these labels reside
on the initial volume of a multi-volume
data set. This volume must be mounted at
CLOSE if trailer labels are to be created,
examined, or updated.

When standard user label processing is
desired, the user must specify the label
type of the standard and user labels {(SUL)
on the DD statement that describes the
dataset. For mass storage volumes,
specification of a LABEL. subparameter of
SUL results in a separate track being
allocated for use as a user-label track
when the data set is created. This
additional track is allocated at initial
allocation and for sequential data sets at
end-of-volume (volume switch) time. The
user-label track {one per volume of a
sequential data set) will contain both user
header and user trailer labels.

User Label Totaling
{BSAM and 0OSANM only)

When creating or processing a data set
with user labels on a segunential file, the
programnmer may develop control totals to
obtain exact information about each volume
of the data set. This information can be
stored in his user labels. For example, a
control total accumulated as the data set
is created, can be stored in a user label
and later compared with a total accumulated
while processing a volume. The user
totaling facility enaples the programmer to
synchronize the control data that he has
created while processing a data set with
records physically written on a volume. 1In

156

this way, he can tell exactly what records
were written, This information can also be
used for accurately labeling tape reels
{i.e., assigning physical adhesive labels).

To request this option, specify OPTCD=T
in the DCB parameter of the DD statement.
The user's TOTALING area, where control
data is accumulated, is provided by the
user. In this area, the user can store
information on each record he writes. When
an input/output operation is scheduled, the
control program sets up a user TOTALED save
area that preserves an image of the
information in the user's TOTALING area.
When the output USE LABEL declarative is
entered, the values accumulated in the
user's TOTALING area corresponding to the
last record actually written on the volunme
are stored in the TOTALED area. These
values can be included in user labels.

When using this facility for an output
data set (i.e., when creating the data
set), the programmer must update his
control data in the TOTALING area prior to
issuing a WRITE instruction. When
subsequently using this data set for input,
the programmer can accunulate the same
information as each record is read. These
values can be compared with the ones
previously stored in the user label when
the records were created.

Variable length records with APPLY
WRITE-ONLY or records with SAME RECORD AREA
specified require special considerations
when using the TOTALING option. Since the
control program determines whether a
variable-length record will fit in a buffer
after a WRITE instruction has been issued,
the values accumulated may include one more
record than is actually written on the
volume. 1In this case, the programmer must
update his TOTALING area after issuing a
WRITE instruction.

User label totaling is not available
with S-mode records.

NONSTANDARD LABEL FORMAT

Nonstandard labels do not conform to the
standard label formats. They are designed
by programmers and are written and
processed by programmers. Nonstandard
labels can be any length less than 4096
bytes. There are no requirements as to the
length, format, contents, and number of
nonstandard labels, except that the first
record on the volume cannot be a standard
volume label. 1In other words, the first
record cannot be 80 characters in length
with the identifier VOL1 as its first four
characters.

NONSTANDARD LABEL PROCESSING

To use nonstandard labels (NSL), the
system programmer must first:

e Create nonstandard label processing
routines for input header labels, input
trailer labels, output header labels,
and output trailer labels,

e Insert these routines into the
operating systen.

Then the COBOL programmer must code NSL in
the LABEL parameter of the DD statement at
execution time.

The system verifies that the tape has a
nonstandard label. Then if N¥SL is
specified in the LABEL parameter, it loads
the appropriate NSL routines. These NSL
routines are entered at OPEN, CLOSE, and
END~OF-VOLUME conditions by the respective
executors.

For a data set opened as output, the NSL
routines entered include:

s At OPEN time, a header routine to check
the 0ld header and/or create the new
header;

e At CLOSE time, a trailer—-creation
routine;

s At EOV time, a trailer-creation routine
and a header routine.

For a data set opened as input essentially
the same types of routines are required.

Note: The NSL routines must observe the

following conventions:

1. Follow Type-IV SVC routine
conventions.

2. Use GETMAIN and FREEMAIN for wmork
areas.

3. Be reentrant load modules.

4. Use EXCP for 1I/0 operations and XCTL
for passing control among load modules
and then returning to the I/O-support
routines.

5. Begin with the letters NSL if the
system branches to them directly.
{Other user-written modules having to
do with nonstandard labels pust begin
with the letters IGC.)

6. Have as their entry points the first
byte in each load module.

In addition, the NSL routines must write
their own tapemarks, do all I/0 operations
necessary (via EXCP), deterrine when all
labels have been processed, and take care
of data set positioning. These routines
may communicate at the LABEL source level
with USE BEFORE LABEL PROCEDURE
declaratives by means of linkage described
under "User Label Procedure."”

USER LABEL PROCEDURE

The USE...LABEL PROCEDURE statement
provides the user with label handling
procedures at the COBOL source level to
handle nonstandard or user labels. The
BEFORE optionr indicates processing of
nonstandard labels. The AFTER op;ion
indicates processing of standard user
labels. The labels must be listed as
data-names in the LABEL RECORDS clause in
the File Description entry for the file.
When the file is opened as inmput, the label
is read in and control is passed to the USE
declarative if a USE...LABEL PROCEDURE is
specified for the OPEN option or for the
file., TIf the file is opened as output, a
buffer area for the label is provided and
control is passed to the USE declarative if
a USE...LABEL PROCEDURE is specified for
the OPEN optiom or for the file. For files
opened as INPUT or I-0, control is passed
to the USE declarative to process trailer
labels when a CLOSE statement is executed
for the file that has reached the AT END
condition.

One of the concerns of the programmer is
linkage between the nonstandard label SVC
routine and the USE BEFORE LABEL PROCEDURE
section. Other problems related to writing
nonstandard label SVC routines are
discussed in the publication QS/VS_Tape
Labels.

When the nonstandard label SVC routine
has determined that a particular DCB has
nonstandard labels, the nonstandard label
routine must inspect the DCB exit list for
an active entry to ensure that there is a
USE BEFORE...LABEL section for this DCB and
for that type of label processing. The DCB
field EXLST contains a pointer to this exit
list. An active entry is defined as a
1-byte code other than X'00' or X'80°
folloved by a 3-byte address of the
appropriate label section {Figure 57).

User Non-VSAM File Processing 157

Q
]
u
®

Exit List

-

{USE section for header labels)

2

LR
!
‘}7
1
[
{ {USE section for trailer labels)
i
|
i
1
s

. Code 1 is set to X*'01' indicating
INPUT, or X'02' indicating OUTPUT.
2. Code 2 is set to *X'0D' indicating
INPUT, or X'04* indicating OUTPUT.

Note
1

k. e e
o o i s i e ok ame e i mo b awne ks e W

Figure 57. Exit List Codes

once the nonstandard label SVC routine
tests that the exit list confirms an
appropriate active entry, it must pass the
address of a parameter list in register 1,

The parameter list {(Figure 58) must have
the following format.

T] 1

i 1 byte | 3 bytes 1
T + 4 —4
] Byte 0 | 0 ! A{label buffer)]
1 Byte 4 | Flag byte 1 3 {DCB) |
{ Byte 8 | Error flag 1 1
L = 8 4 F
Figure 58. Parameter List Formats

The A(label buffer) is the address of
the label record on input and the address
where the label will be created on output.

The A{DCB) is the address of the DCB.
The DCB contains a pointer to the DEB. The
nonstandard label SVC routine must test the
ECF bit in the OPLGS field of the DEB (data
extent block) to determine whether to
return control to the EOV or CLOSE module.
Control is given to the CLOSE module only
at EOF.

The error flag byte will have bit 0 set
to 1 if an input/output error occurs when
reading or writing a label.

When the USE BEFORE LABEL PROCEDURE
section returns control to the nonstandard
label SVC routine, it will pass a return
code that will indicate whether or not more
labels are to be processed {Figure 59).
This return code is set by assigning a
value to the special register LABEL-RETURN.

The maximum size of the label record is

stored on a halfword boundary at the
EXITLIST address +46.

158

The user's noanstandard label routines
are responsible for all tape positioning.
For multifile volumes, the user may specify
a file sequence number in the LABEL
parameter on the DD card. The nonstandard
label routines can inspect this information
in the JFCB and position the files
accordingly. For additional information,
see the publication 3S/VS_Tape_Labels.

¥ Rl R v
{Routine Type]JReturn CodefApplicable Note|
& 3 d

LN 1 ¥ E |
{Input header |{ 0 i 1 1
jand/or { 4 | 2 {
|trailer | 16 i 3 |
+ +) -4
|Output header| y i 1
{and/or i 8 i 2
{trailer | }
+ + +
jupdate header} 8 1 1
fand/or i 12 i 2
Jtrailer] 16 { 3

i i

Notes:

1. PFor output mode, the label is
written or rewritten. For input
mode, normal processing is resumed;
any additional user labels are
ignored.

2. Another label is read (for input
mode) and control is returned to the
USE BEFORE LABEL PROCEDURE section.
For output mode, the labels should
be written and control should be
returned to the USE BEFORE LABEL
PROCEDURE section. When control is
returned to the nondeclarative
portion, either normal processing
will continue or the label section
will be re-entered, depending on
whether the retura code is 4 or 8.

3. A return code of 16 indicates that
the USE BEFORE LABEL PROCEDUORE
section has determined that an
incorrect volume was mounted. When
LABEL-BRETURN is set to a nonzero
value, the return code is set to 16.{

]

- s TN s i AP G S e aums NS e man Mt S S s s o sais it M it oo ol s s e

(o sa G S G S aine Ss B MSe Gss e deas SME adie seae Gun WA Sams Men eam WIEe wame M G g

Figure 59. Label Routine Return Codes

ASCII File Labels

ASCII files on magnetic tape may have
American National Standard labels or
American National Standard and user labels,
or they may have no label. Any labels on
an ASCII tape must be in ASCII code. Tapes
containing a combination of ASCII and
EBCDIC labels are not read. All the record
formats supported (i.e., fixed, undefined,
and variable) are allowed on ASCII files,

regardless of whether or not the files are
labeled. Spanned records are not supported
under ASCII.

When American National Standard labels
are being processed, the label type must be
specified in the DD statement that
describes the data set. The parameter for
American National Sstandard labels is
LABEL=AL. The parameter for American
National Standard and user labels is
LABEL=AUL. Nonstandard labels are not
permitted for ASCII files. The user may
indicate no labels as LABELS=NL.

ASCII Standard Label Progessing

Standard label processing for ASCII
files is identical to standard label
processing for files coded im EBCDIC,
ASCII code is translated into EBCDIC code
prior to processing.

==l g2 P -)

All American National Standard user
labels (LABEL=AUL) are optional. ASCII

files may have user header labels (UHLn)
and user trailer labels (UTLn), which are
processed very much like the standard user
labels on EBCDIC files. However, there is
no limit to the nusmber of user labels
possible at the beginning and the end of a
file. No check is made on the number of
labels written, It is left to the user to
determine how many labels he wants written.

All user labels must be 80 bytes in
length, but they may contain any user
information desired.

Note: USE BEFORE STANDARD LABEL procedures
are not allowed, because they are
noanstandard.

User Label Exits

To create or verify user labels, the
programmer must code for the file a USE
AFTER STANDARD LABFL procedure,

User Non-VSAM File Processing 159

NON-VSAM RECORD FORMATS

Logical records may be in one of four
formats for a non-vVSAM file: fixed-length
{format F), variable-length (format V),
unspecified (format U), or spanned (format
S). F-mode files must contain records of
equal lengths. Files containing records of
unequal lengths must be V-mode, U~-mode, or
s-mode. Files containing logical records
that are longer than physical records must
be S-mode.

The record format is specified in the
RECORDING MODE clause in the Data Division.
If this clause is omitted, the compiler
determines the record format from the
record descriptions associated with the
file. If the file is to be blocked, the
BLOCK CONTAINS clause mrust be specified in
the Data Division.

The prime consideration in the selection
of a record format is the nature of the
file itself, The programmer knows the type
of input his program will receive and the
type of output it will produce. The
selection of a record format is based on
this knowledge as well as an understanding
of the type of input/output devices on
which the file is written and of the access
method used to read or write the file.

FIXED-LENGTH {FORMAT _F)_ RECORDS

Format F records are fixed-length
records. The programmer specifies format F
records by including RECORDING MODE IS F in
the file description entry in the Data
Division. If this clause is omitted and
both of the following are true:

e 211 records in the file are the same
size

¢ BLOCK CONTAINS [integer-1 TO}
integer-2... does not specify
integer-2 less than the length of the
maximum level-01 record

the compiler determines the recording mode
to be F. All records in the file are the
same size if there is only one record
description associated with the file and it
contains no OCCURS clause with the
DEPENDING ON option; or if multiple record
descriptions are all the same length.

The number of logical records withia a
block {(blocking factor) is normally
constant for every block in the file.
fixed-length Tecords are blocked, the
programmer specifies the BLOCK CONTAINS
clause in the file description {FD) entry
in the Data Division.

#hen

160

In unblocked format F, the logical
record constitutes the block. The BLOCK
CONTAINS clause is unnecessary for
unblocked records.

Format F records are shown in Figure 60.
The optional control character, represented
by the letter C in Figure 60 is used for
stacker selection and carriaqge control.
When carriage control or stacker selection
is desired, the WRITE statement with the
ADVANCING or POSITIONING option is used to
write records on the output file. In this
case, one character position must be
included as the first character of the
record (if NOADV is specified). This
position will be filled in with the
carriage control or stacker select
character. The type of carriage
control character to be used is
determined by the compiler. When only
AFTER is specified, ASA control
characters are used. Machine control
characters are used when only BEFORE or
both BEFORE and AFTER are specified.

The carriage control character never
appears when the file is written on
the printer or punched on the card punch.

Note: 1Illustrations of unblocked Format F
records do not take into account either the
key field required when direct organization
is used or ASCII block prefix
considerations. See "Processing ASCII
Files® for more information.

Logical Record

L 1
i |
| |
’ r kB R '
I] C 1 Data 1 1
l i 1] l
i i
i Blocked Records H
i t e T T k !
{ | 1logical | Logical { logical | |
{] Record | Record { Record 1 1
! 1 A i 3 i
1 < Fixed Length——mm————-> |
1 i
i 1
| Unblocked Record i
i — - |
1 1 Logical Record LI |
’ 1 k] ‘ .
i <— Fixed Length—————————> |
] i
i 3
Figure 60. Fixed-length (Format F) Records

UNSPECIFIED {FORMAT U) RECORDS

Pormat U is provided to permit the
processing of any blocks that do not
conform to F, V, or S formats., Format U
records are shown in Figure 61. The
optional control character C, as discussed
under "Fixed-Length ({Forrat F) Records,"
may be used in each logical record.

The programmer specifies format U
records by including RECORDING MODE IS U in
the file description {FD) entry in the Data
Division. U-mode records may be specified
only for direct or physical sequential
files.

If the RECORDING MODE clause is omitted,
and BLOCK CONTAINS {integer-1 TO)
integer-2... does not specify integer-2
less than the maximum level-01 record, the
compiler determines the recording mode to
be U if the file is direct and one of the
following conditions exist:

e The FD entry contains two or more
level-01 descriptions of different
lengths.

e A record description contains an OCCURS
clause with the DEPENDING ON option.

* A RECORD CONTAINS clause specifies a
range of record lengths.

Each block on the external storage media
is treated as a logical record. There are
no record-length or block-length fields.

When a READ INTO statement is used for a
U-mode file, the size of the longest record
for that file is used in the NOVE
statepent. All other rules of the MOVE
statement apply.

Note: 1Illustrations of Format U records do
not take into account either the key field
required when direct organization is used
or ASCII block prefixes. See “Processing
ASCIX Files" for more information.

Logical Record

Data

-
(2]
e
-

Format U Record

—d

Logical Record

N S G s M SN W RGN W IS e Y
e e de e i B A e e s i

Figure 61. Unspecified {(Format U) Records

VARIABLE LENGTH {(FORMAT_ V) RECORDS

The programmer specifies format V
records by including RECORDING MODE IS V in
the file description entry in the Data
Division. V-mode records may be specified
only for direct or physical sequential
files. TIf the RECORDING MODE clause is
omitted and BLOCK CONTAINS [integer-1 TO]}
integer-2... does not specify inteqger-2
less than the maximum level-01 record, the
compiler determines the recording mode to
be format V if the file is physical
sequential and one of the following
conditions exist:

e The FD éntry contains two or more
level-01 descriptions of different
lengths.

e) record description contains an OCCURS
clause with the DEPENDING ON option.

* The RECORD CONTAINS clause specifies a
range of record lengths.

v-mode records, unlike U-mode or F-mode
records, are preceded by fields containing
control information. These control fields
are illustrated in Figures 62 and 63.

The first four bytes of each block
contair control information {CC):

LL -~ represents two bytes designating
the length of the block {including
the 'CCY field).

BB -- represents two bytes reserved for
system use.

The first four bytes of each logical
record contain control information (cc):

11 -- represents two bytes designating
the logical record length
{including the tcc' field).

bb -- represents two bytes reserved for
system use.

For unblocked V-mode records (Figure
62), the Data portion ¢+ CC + cc constitute
the block.

For blocked V-mode records {(Figure 63),

the pData portion of each record +#+ the cc of
each record + CC constitute the block.

Non/VSAM Record Formats 161

r 1
!]
l I
] 4 4 variakle]
| <~--bytes-><--bytes--><——wwe-kytes——————- >
|r T T T T 1]
|| LL | BB | 11 | kk | Data 11
Il 4 L 1 1 J]
= = - T]
l et L Tol l
! !
Figure 62. Unblocked V-Mode Records

variable-length record descriptions, for
input and output files, must not define
space for the control bytes. Control bytes
are automatically provided when a record is
written and are not communicated to the
user when a file is read. Although they do
not appear in the descriptions of logical
records, control bytes do appear in the
buffer areas of main storage. The compiler
automatically allocates input and output
buffers that are large enough to contain
the required control bytes.

When variable-length records are written
on unit record devices, control bytes are
neither printed nor punched. They do
appear, however, on other external storage
devices. V-mode records moved from an
input buffer to a working storage area will
be moved without the control bytes.

Note: When a READ INTO statement is used
for a V-mode file, the size of the current
record for that file is used in the MOVE

. statement. All other rules of the MOVE
statement apply. For considerations when
using OCCURS DEPENDING ON, see the section
"Programming Technigues."

Example 1:

Consider the following physical
sequential file consisting of unblocked
V-mode records:

bey
-~

VARIABLE-FILE-1

RECORDING MODE IS V

BLOCK CONTAINS 35 TO 80 CHARACTERS
RECORD CONTAINS 27 TO 72 CHARACTERS
DATA RECORD IS VARIABLE-RECOED-1
LABEL RECORDS ARE STANDARD.

<
-

VARIABLE-RECORD~ 1.

LOGICAL RECORD

05 FIFLD-A PIC X (20).

05 FIELD-B PIC 99.

05 FIELD-C OCCURS 1 TO 10 TIMES
DEPENDING ON
FIELD-B PIC 9(5).

The LABEL RECORDS clause is always
required. The DATA RECORD (S) clause is
never required. If the RECORDING MODE
clause is omitted, the compiler determines
the mode as V since the record associated
with VARIABLE-FILE-1 varies in length
depending on the contents of FIELD-B. The
RECORD CONTAINS clause is never required.
The compiler determines record sizes from
the record description entries. The BLOCK
CONTAINS clause is also not required, since
the compiler assumes unblocked records if
the clause is omitted. Note: Record
length calculations are affected by the
following:

» When the BLOCK CONTAINS clause #ith the
RECORDS option is used, the compiler
adds four bytes to the logical record
length and four more bytes to the block
length.

e When the BLOCK CONTAINS clause with the
CHARACTERS option is used, the user
must include each cc +# CC in the length
calculation. In the definition of
VARIABLE-FILE-1, the BLOCK CONTAINS
clause specifies eight more bytes than
does the RECORD CONTAINS clause. Four
of these bytes are the logical record
control bytes and the other four are
the block control bytes.

r 1
| 1st 2nd 3rd |
1 Logical Record Logical Record Logical Reccrd]
l .. e P e I
' T T T T T L) T T T T R 1 '
]] LL | BB | 11 | kk | DATA-1 | 11 kk | DaTA-2 | 11 | kb | DATA-3 | |
l L 4L 4 4 4 4 1 1 i AL J i
I el e S e Nt~ .~ N~ '
l vccT \ *cct / I
] {block control (record control |
| bytes) bytes) |
L 1
Figure 63. Blocked V-Mode Records

162

In Example 1, assume that FIELD-B
contains the value 02 for the first record
of a file and FIELD-B contains the value 03
for the second record of the file. The
first two records will appear on an
external storage device and in buffer areas
of main storage as shown in Figure 64.

If the file described in Example 1 had a
blocking factor of 2, the first two records
would appear on an external storage medium
as shown in Figure 65.

Example 2:

If VARIABLE-FILE-2 is blocked, with
space allocated for three records of
maximum size per block, the following FD
entry could be used when the file is
created:

FD VARIABLE-FILE~-2
RECORDING MODE IS V
BLOCK CONTAINS 3 RECORDS
RECORD CONTAINS 20 TO 100 CHARACTERS
DATA RECORDS ARE VARIABLE-RECORD-1,
VARIABLE-RECORD-2
LABEL RECORDS ARE STANDARD.

01 VARIABLE-RECORD-1.
05 FIELD-A PIC X{20).
05 FIELD-B PIC X(80).

01 VARIABLE-RECORD-2.

As mentioned previously, the RECORDING
MODE, RECORD CONTAINS, and DATA RECORDS
clauses are unnecessary. By specifying
that each block contains three records, the
programmer allows the compiler to provide
space for three records of maximum size
plus additional space for the required
control bytes. Hence, 316 character
positions are reserved by the compiler for
each output buffer. If this size is other
than that required, the BLOCK CONTAINS
clause with the CHARACTERS option should be
specified. 1If the block size is to be
specified at execution time by use of the
BLKSIZE subparameter on an associated DD
card, BLOCK CONTAINS 0 CHARACTERS must be
specified.

Note: Blocked variable-length records are
permitted only when the file processing
technique is physical sequential.

In Example 2, assume that the first six
records written are five 100-character
records followed by one 20-character
record. The first two blocks of
VARIABLE-FILE-2 will appear on the external
storage device as shown in Figure 66.

05 FIELD-X PIC X{20).
r v
| ist Block 2nd Block |
| |
| r T--T T T--T T " T T=-T -7 T-T T - T 1|
| 10040 |BB| 0036 |bb| FIELD-A|02|FIELD-C|FIELD-C|0045|RB|0041|bb|FIELD-A|03|FIELD-C|FIELD-C|FIELD~-C| |
I L 4 R L] 1 4 1 i i L 4L L L 1 L L J |
i |
| Note: Lengths appear in decimal notation for illustrative purposes.
! !
Figure 64, Fields in Unblocked V-Mode Records
r === - - 1
| 1st Reccrd 2nd Record
I — —
l r T ki hl T T T T T A} T - T T 1 I
||0081|BB]0036|bk|FIELD-A|02|FIELD-C|FIFLD-C|0041|kL|{FIELD-A]03|FIELD-C|FIELD-C|FIELD-C| |
Il 4 i i 1 1 i 4 ——— ER —_—d i L 4 Jl
| |
| Note: Lengths appear in decimal notation for illustrative purposes. |
| |
L]
Figure 65. Fields in Blocked V-Mode Records

Non/VSAM Record Formats '163

1st Block

——

2nd Block

—

T T T T T T T T T T T ?
{316|BB|104|bb|Data|104|bb|Data|104|bb|Data
L L i 4 L 4 1 L 1 L A J 2ok

T="7T T=-7 T T="7 T T L D |
36|BB|104|bb|Data|104 |bb|Data|24|bb|Dataj|
4 L i L i’ i 4 N 1 J

Note:

——— e ——

Lengths appear in decimal notation for illustrative purposes.

b e et — — e o

Figure 66.

The buffer for the second block is
truncated after the sixth WRITE statement
is executed since there is not enough space
left for a maximum size record. Hence,
even if the seventh WRITE to
VARIABLE-FILE-2 is a 20-character record,
it will appear as the first record in the
third block. This condition can be
eliminated by using the APPLY WRITE-ONLY
clause when creating files of
variable-length blocked records.

Note: Tllustrations of unblocked Format ¥
records do not take into account either the
key field required when direct organization
is used or ASCII block prefixes. See the
description of format D records under
"pProcessing ASCII Files".

APPLY WRITE~ONLY Clause

The APPLY WRITE-ONLY clause is used to
make optimum use of buffer space when
creating a physical sequential file with
blocked V-mode records,

Suppose VARIABLE-FILE-2 is being created
with the following file description entry:

FD VARIABLE-FILE-2
RECORDING MODE IS V
BLOCK CONTAINS 316 CHARACTERS
DATA RECORDS ARE VARIABLE-RECORD-1,
VARIABLE-RECORD-2
LABEL RECORDS ARE STANDARD.

01 VARIABLE-RECORD-1.
05 FIELD-A PIC X{20).
05 FIELD-B PIC X {80).

01 VARIABLE-RECORD-2.
05 FIELD-X PIC X{20).

The first three WRITE statements to the
file create one 20~-character record
followed by two 100-character records.
Without the APPLY WRITE-ONLY clause, the
buffer is truncated after the third WRITE
statement is executed since the maximum
size record no longer fits. The block is
written as shown below:

164

Pirst Two Blocks of VARIABLE-FILE-2

T 7 T T T T T 7T 1
12361bb{241bbfData]104ibbiDatal104)bbiDatal
i 1

A 1 i 4 A b 1 i 4 1 ¥

Using the APPLY WRITE-ONLY clause causes
a buffer to be truncated only when the next
record does not fit in the buffer. That
is, if the next three WRITE statements to
the file specify VARIABLE-RECORD-2, the
block is created containing six logical
records, as shown below:

f L | T T T Y T Y >
[308ibb]2u|bbloata;103]bb10ata]10u1bb|Dataji;>

L A k1 A 1 k| A 1 i A 4

7 L] ™7 T v Y 1
{;rfrZQ]bblDatai24)bbgnata;2u1bb|Data!
1 1

1 1 i 4 . | i 3

Note: When using the APPLY WRITE-ONLY
clause, records must not be constructed in
buffer areas. An intermediate work area
must be used with a WRITE FROM statement.

SPANNED_ {(FORMAT S) RECORDS

A spanned record is a logical record
that may be contained in one or more
pkysical blocks. Format S records may be
specified for direct {BDAM, BSAM) files and
for physical sequential (QSAM) files
assigned to magnetic tape or to mass
storage devices.

When creating files with S-mode records,
if a record is larger than the remaining
space in a block, a segment of the record
is written to £ill the block. The
remainder of the record is stored in the
next block or blocks, as required.

When retrieving a file with S-mode
records, only complete records are made
available to the user.

Spanned records are preceded by fields
containing control information. Pigure 67
illustrates the control fields.

BDF (Block Descriptor Field):

LL -- represents two bytes designating
the length of the physical block
{including the block descriptor
field itself).

BB -~ represents two bytes reserved for
system use.

SDF (Segment Descriptor Field):

11 -- represents two bytes designating
the length of the record segment
{including the segment descriptor
field itself).

bb —- represents two bytes reserved for
system use.

Note: There is only ome block descriptor
field at the beginning of each physical
block. There is, however, one segment
descriptor field for each record segment
within the block.

Each segment of a record in a block,
even if it is the entire record, is
preceded by a segment descriptor field.

The segment descriptor field also indicates
whether the segment is the first, the last,
or an intermediate segment. Each block
includes a block descriptor field. These
fields are not described in the Data
Division; provision is automatically made
for them. These fields are not available
to the user.

A spanned blocked file may be described
as a file composed of physical blocks of
fixed length established by the programmer.
The logical records may be either fixed or
variable in length and that size may be
smaller, equal to, or larger than the
physical block size. There are no required
relationships between logical records and
physical block sizes. Records of a spanned
file may only be blocked when organization
is sequential {QSAHM).

A spanned unblocked file may be
described as a file composed of physical
blocks each containing one logical record
or one segment of a logical record. The
logical records may be either fixed or
variable in length. When the physical
block contains one logical record, the
length of the block is determined by the
logical record size. When a logical record
has to be segmented, the system always
writes the largest physical block possible.
The system segments the logical record when
the entire logical record cannot fit on the
track.

Figure 68 is an illustration of blocked
spanned records of SFILE. SFILE is

described in the Data Division with the
following file description entry:

PD SFILE
RECORD CONTAINS 250 CHAKACTERS
BLOCK CONTAINS 100 CHARACTERS

Figure 68 also illustrates the concept
of record segments. Note that the third
block contains the last 50 bytes of REC-1
and the first 50 bytes of REC-2. Such
portions of logical records are called
record segments., It is therefore correct
to say that the third block contains the
last segment of REC-1 and the first segment
of REC-2. The first block contains the
first segment of REC-1 and the second block
contains an intermediate segment of REC-1.

S—MODE CAPABILITIES

Formatting a file in the S-mode allows
the user to make the most efficient use of
external storage while organizing data
files with logical record lengths most
suited to his needs.

1. Physical record lengths can be
designated in such a manner as to make
the most efficient use of track
capacities on mass storage devices.

2. The user is not required to adjust
logical record lengths to maxinmum
physical record lengths and their
device-dependent variants when
designing his data files.

3. The user has greater flexibility in
transferring logical records across
DASD types.

spanned record processing will not be
supported on unit record devices.

SEQUENTIAL S~-MODE FILES {(QSAM) FOR TAPE OR
MASS STORAGE DEVICES

When the spanned format is used for QSAM
files, the logical records may be either
fixed or variable in length and are
completely independent of physical record
length. & logical record may span physical
records. A physical record may contain one
or more logical records and/or segments of
logical records.

Non/YSAM Record Formats 165

<--4 bytes---> <--4§ bytes--> <

Variable Lkytes

| L] R T

T
IL | BB | 11 | kb |

Data Record or Segment

b e ok \/

-~

e e ———————

Figure 67. Control Fields of an S-Mode Record

¥]
! |
I i 100 byteg=====~=- > e 100 bytes-=-=-=--> <-50 bytes-> <~50 bytes-> !
l ¥ 1 L 1 1 1 1 '
I 1 REC~-1 {1 G | REC-1 1 G | REC-1] REC-2 i i
! i] i) | L A] ’
] 1st Block 2nd Block 3rd Block |
3 !
Fiqure £8. One Logical Record Spanning Physical Blocks

source Lanquage Considerations

The user specifies S-mode by describing
the file with the following clauses in the
file description (FD) entry of his COBOL
program:

» BLOCK CONTAINS integer-2 CHARACTERS

* RECORD CONTAINS [integer-1 TO]
integer-2 CHARACTERS

¢ RECORDING MODE IS S

The size of the physical record must be
specified using the BLOCK CONTAINS clause
with the CHARACTERS option. Any block size
may be specified. Block size is
independent of logical record size.

The size of the logical record may be
specified by the RECORD CONTAINS clause.
If this clause is omitted, the compiler
will determine the maximum record size from
the record descriptions under the FD.

Format S may be specified by the
RECORDING MODE IS S clause. If this clause
is omitted, the compiler will set the
recording mode to S if the BLOCK CONTAINS
inteter—-2 CHARACTERS clause was specified
and either of the following conditions
exist:

» Integer-2 is less than the largest
fixed-length level-01 FD entry.

166

e Integer-2 is less than the maximum
length of a variable level-01 FD entry
{i.e., an entry containing one or more
OCCURS clauses with the DEPENDING ON
option).

Except for the APPLY WRITE-ONLY, APPLY
RECORD-OVERFLOW, WRITE BEFORE ADVANCING,
WRITE AFTER ADVANCING, or WRITE AFTER
POSITIONING clauses, all the options for a
variable file apply to a spanned file.

Processing Sequential S-Mode Files (QSAM)

suppose a file has the following file
description entry:

FD SPAF-FILE
BLOCK CONTAINS 100 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS DATAREC.

01 DATAREC.
05 FIELD-A PIC X {100).
05 FIELD-B PIC X (50).

Figure 69 illustrates the first four
blocks of SPAN-FILE as they would appear on
external storage devices (i.e., tape or
mass storage) or in buffer areas of main
storage.

Notes:
1. The RECORDING MODE clause is not

specified. The compiler determines
the recording mode to be S since the

block size is less than the record
size.

The length of each physical block is
100 bytes, as specified in the BLOCK
CONTAINS clause. All required control
fields, as well as data, must be
contained within these 100 bytes.

No provision is made for the control
fields within the level-01 entry
DATAREC.

The preceding discussion dealt with
S-mode records which were larger than the
physical blocks that contained them. It is
also possible to have S-mode records which
are equal to or smaller than the physical
blocks that contain them. 1In such cases,
the RECORDING MODE clause must specify S
{if so desired) since the compiler cannot
determine this by comparing block size and
record size.

One advangage of S-mode records over
V-mode records is illustrated by a file
with the following characteristics:

1. RECORD CONTAINS 50 TO 150 CHARACTERS
2. BLOCK CONTAINS 350 CHARACTERS
3. The first five records written are

150, 150,
in length.

150, 100, and 150 characters

For V-rode records, buffers are
truncated if the next logical record is too
large to be completely contained in the
block (Figure 70). This results in more
physical blocks and more inter-record gaps
on the external storage device.

Note: For V-mode records, buffer
truncation occurs:

When the maximum level-01 record is
too large.

1‘

{' - - 1
|

| 4 n 92 4 4 58 4 36 |
| <-bytes-><-bytes->< bytes --> <-bytes-><-bytes-><---bytes---><-pytes-><--pytes---> |
I r T T T T 1T T T T D Sttt T T----T 1
| ILL |BB |11 | bb | DATAREC (1) | |LL |BB {11 | bb | DATAREC (1) |11 | bb |DATAREC (2)]{
I L 4 Al BN [4 i 4 4 L PN 4 4L N =d '
| |
| 1st Block 2nd Block |
| |
: |
| 4 4 92 4 4 28 4 60 |
| <-bytes-><-bytes->< bytes > <-bytes-><-bytes-><--bytes---><-bytes-><---pytes---->|
l r T T T T Al r T T T T T-—7T" T - hl |
| ILL |BB |11 | bb | DATAREC (2) | |LL |BB |11 | bb |DATAREC (2)|11 | bb | DATAKEC (3) |
l L L 4 i 1 4 L L 1 L 1 L L L _——— '
| |
| 3rd Block 4th Block }
L _ - j
Figure 69. First Four Blocks of SPAN-FILE
r - T 1
| RECORDING MODE IS V | RECCRDING MOLE IS S |
t + ’|
| | [
I] I
| r T) r T 1 r 1 1 |
] | 150) 150] G} 150 | 100 | G | 150 | |} 150] 150 | 50]} ¢ | 100 | 100 | 150 | |
| L 1 J L R 3 L 4] 4 4 J L 1 1 I
| R1 R2 R3 R4 RS] R1 R2 R3 R4 R5 |
|] |
| | I
b S L -- -1
| Note: The enclosed diagrams are for illustrative purposes only. Neither takes into |
|account the space required for control fields. |
L — 1
Piqure 70. Advantage of S-Mode Records Over V-Mode Records

Non/VSAM Record Formats 167

2. If APPLY WRITE-ONLY or SAME RECORD
AREA is specified and the actual
logical record is too large to fit
into the remainder of the buffer.

For S-mode records, all blocks are 350
bytes in length and records that are too
large to fit entirely into a block will be
segmented. This results in more efficient
use of external storage devices since the
number of inter-record gaps are minimized
(Figure 70).

A second advangage of S-mode processing
over that of V-mode is that the user is no
longer limited to a record length that does
not exceed the track of the mass storage
device selected. Records may span tracks,
cylirnders, extents, and volunmes.

Q0SAM spanned records differ from other
QSAM record formats because of an
allocation of an area of main storage known
as the "Logical Record Area." 1If logical
records span physical blocks, COBOL will
use this Logical Record Area to assemble
complete logical records. If logical
records do not span blocks {i.e., they are
contained within a single physical block)
the Logical Record Area is not used.
Regardless, only complete logical records
are made available to the user. Both READ
and WRITE statements should be thought of
as manipulating complete logical records
not record segments.

The allocation of a Logical Record Area
may be a disadvantage to the COBOL user.
Additional main storage, consisting of 36
bytes + the maximum record length, will
always be required. The Logical Record
Area is discussed in detail in "Finding

Data Records in an Abnormal Termination
Dump."

DIRECTLY ORGANIZED S-MODE FILES (BDAM AND
BSAM)

When S-mode is used for directly
organized files, only unblocked records are
permitted. Logical records may be either
fixed or variable in length. A logical
record will span physical records if, and
only if, it spans tracks. A physical
record will contain only one logical record
or a segment of a logical record. A track
may contain a segment of a logical record,
or segments of two logical records and/or
whole logical records. Records may span
tracks, cylinders, and extents, but not
volumes.

Source Language_Considerations

The user specifies S-mode by describing
the file with the following clauses in the
file description {FD) entry of his COBOL
programs

® BLOCK CONTAINS integer-2 CHARACTERS

e RECORD CONTAINS [integer-1 T0])
integer-2 CHARACTERS

» RECORDING MODE IS S

The size of a logical record may be

specified by the RECORD CONTAINS clause.
If this clause is omitted, the compiler

Sequential File 3

Direct File

T 1
! {
| i
| i
' R] IR L] T 3 T 3 L] 1 ‘
H 1 B H R2] R3 | «.el1st track... | R1 | 6 | R2 {1 G 1 R3 H {
i 1 L. 3 L J 1 J L. 3 ,
| |
i T k) L e i '
i i R3] +e.2nd trackea. { R3 { i
i i J e 3 ‘
i |
1 T ¥ 1 r 1 L 3 Y l
| H R3] R4) i »ae3rd track... | R3 i G 1 R4 { i
' 1 A] i 4 4 3 l
i |
H — -3 !
i essldth trackes.. | R4 !
! e —3]
i i
1 3
Figure 71. Direct and Sequential Spanned Files on a Mass Storage Device

168

will determine the maximum record size fronm
the record descriptions under the FD.

The spanned format may be specified by
the RECORDING MODE IS S clause. If this
clause is omitted, the compiler will set
the recording mode to S if the BLOCK
CONTAINS integer-2 CHARACTERS clause was
specified and integer-2 is less than the
greatest logical record size. This is the
only use of the BLOCK CONTAINS clause. It
is otherwise treated as comments.

The physical block size is determined by
either:

1« The logical record length.

2. The track capacity of the device being
used.

I1f, for example, the track capacity of a
mass storage device is 7294 characters, any
record smaller than 7294 characters may be
written as a single physical block. 1If a
logical record is greater than 7294
characters, the record is segmented. The
first segment may be contained in a
physical block of up to 7294 bytes, and the
remaining segments must be contained in
succeeding blocks. 1In other words, a
logical record will span physical blocks
if, and only if, it spans tracks.

Figure 71 illustrates four
variable-length records (R1, R2, R3, and
B4) as they would appear in direct and
sequential files on a mass storage device.
In both cases, control fields have been
omitted for illustrative purposes. For
both files, assune:

1. BLOCK CONTAINS 7294 CHABACTERS {track
capacity = 7294)

2. RECORD CONTAINS 500 TO 8000 CHARACTERS

In the sequential file, each physical
block is 7294 bytes in length and is
completely filled with logical records.

The file consists of three physical blocks,
occupies three tracks, and contains no
inter-record gaps.

In the direct file, the physical blocks
vary in length. Each block contains only
one logical record or one record segment.
Logical record R3 spans physical blocks
only because it spans tracks. The file
consists of seven physical blocks, occupies
more than three tracks, and contains three
inter-record gaps.

Processing Directly Organized S-Mode Files

{BDAM and BSAM)

When processing directly organized
files, there are two advantages spanned
format has over the other record formats:

1. Logical record lengths may exceed the
length restriction of the track
capacity of the mass storage device.
If, for example, the track capacity of
a mass storage device is 2000 bytes,
this does not represent the maximum
length of the logical record that can
be specified (even when the device
does not have a Track Overflow
feature).

Note: ©Even when the spanned format is
used, the COBOL restriction on the
length of logical records must be
adhered to {i.e., a maximum length of
32,767 characters).

2. S-mode records give the user the same
facility as the Track Overflow
feature., If neither RECORDING MODE IS
S nor APPLY RECORD-OVERFLOW is
specified, only complete logical
records can be written on any single
track. This means that when a track
has only 900 unoccupied bytes and a
record of 1000 bytes is to be added,
it will be written on the next
available track. This is inefficient,
since a 900 byte segment could be
added to the current track by means of
either APPLY RECORD-OVERFLOW or
RECORDING MODE IS S.

Note: If a choice exists between
Track Overflow and S-mode records,
neither has any particular advantage
over the other with regard to the
efficient use of storage space.

The disadvantage of BSAM and BDANM
spanned records is similar to that
mentioned for QSAM. A segment work area is
always allocated which occupies additional
main storage. :

Like QSAM, the processing of BSAM and
BDAM spanned records relies on an
interaction between buffers, segment work
areas, and Logical Record Areas. For QSAM,
input-output buffers are used as the
segment work area and complete logical
records are assembled in a Logical Record
Area before being made available to the
user if the record is segmented. If the
record is not segmented, the logical
recordis made available to the user within
the buffer unless the SAME AREA clause is
specified. For BSAM and BDAK, input-output
buffers are used as a Logical Record Area
and a separate segment work area must be

Non/VSAM Record Formats 169

allocated. Segment work areas and Logical
Record Areas are described fully in
"Finding Data Records in an Abnormal
Termination Dump.™

OCCURS_CLAUSE _WITH THE DEPENDING ON OPTION

If a record description contains an
OCCURS clause with the DEPENDING ONWN
option,the record length is variable. This
is true for records described imn an FD as
well as in the Working-Storage section.

The previous sections discussed four
different record formats. Three of thenm,
V-mode, U-mode, and S-mode, may contain one
or more OCCUORS clauses with the DEPENDING
ON option.

The following section discusses sone
factors that affect the manipulation of
records containing OCCURS clauses with the
DEPENDING ON option. The text indicates
whether the factors apply to the File {FD)
or Working-Storage sections, or both.

The compiler calculates the length of
records containing an OCCURS clause with
the DEPENDING ON option at two different
times, as follows ({the first applies to FD
entries only, the second to both FD and
¥orking-Storage entries) :

1. When a file is read and the object of
a DEPENDING ON option is within the
record.

2. Wwhen the object of the DEPENDING ON
option is changed as a result of a
move to it or to a group that contains
it. {The length is not calculated
when a move is done to an item which
redefines or renames it.)

Consider the following example:

WORKING~-STORAGE SECTION.

77 CONTROL-1
77 WORKAREA-1

PIC 99.
PIC 9(6)V99.

01 SALARY-HISTORY.
05 SALARY OCCURS 1 TO 10 TIMES
DEPENDING

ON CONTROL~-1 PIC 9(6)V99.

The Procedure Division statement MOVE 5
TO CONTROL-1 will cause a recalculation of
the length of SALABRY-HISTORY. MOVE SALARY
{(5) TO WORKAREA-1 will not cause the length
to be recalculated.

The compiler permits the occurrence of
more than one level-01 record, containing
the OCCURS clause with the DEPENDING ON
option, in the same FD entry (Pigure 72).
If the BLOCK CONTAINS clause is omitted,

170

the buffer size is calculated from the
longest level-01 record description entry.
In Figure 72, the buffer size is determined
by the description of RECORD-1 (RECORD-1
need not be the first record description
under the FD).

During the execution of a READ
statement, the length of ecach level-01
record description entry in the FD will be
calculated {Figure 72). The length of the
variable portions of each record will be
the product of the numeric value contained
in the object of the DEPENDING ON option
and the length of the subject of the OCCURS
clause. In Figure 72, the length of
FIELD-1 is calculated by nultiplying the
contents of CONTROL-1 by the length of
FIELD-1; the length of FIELD-2, by the
product of the contents of CONTROL-2 and
the length of FIELD-2; the length of
FIELD-3 by the contents of CONTROL-3 and
the length of FIELD-3.

Since the execution of a READ statement
makes available only one record type {i.e.,
RECORD-1 type, RECORD-2 type, or RECORD-3
type), two of the three record descriptions
in Pigure 72 will be inappropriate., 1In
such cases, if the contents of the object
of the DEPENDING ON option does not conform
to its picture, the length of the
corresponding record will not be
calculated. For the contents of an item to
conform to its picture:

e An item described as USAGE DISPLAY must
contain decimal data.

e An item described as USAGE
COMPUTATIONAL-3 must contain internal
decimal data.

® An item described as USAGE
COMPUTATIONAL must contain binary data.

e An item described as USAGE DISPLAY
‘or USAGE COMPUTATIONAL-3 must conform
to the rules for the numeric class
test condition:

- If the PICTURE for the item does
not contain an operational sign,
the item being tested conforms
only if the contents are unsigned
numeric.

- If the PICTURE clause for the
item does contain an operational
sign, the identifier being
tested conforms only if the item
is elementary signed numeric.

In the EBCDIC collating sequence for
signed items, valid embedded opera-
tional signs are hexadecimal C, D,
and E; for items described with the
SIGN IS SEPARATE clause, valid
operational signs are + (hexadecimal
4E) and - (hexadecimal 60).

FD INPUT-FILE

01 RECORD~1.

02 CONTROL-1 PIC 99.

01 RECORD-2.

02 CONTROL-2 PIC 99.

01 RECORD-3.
02 FILLER
02 CONTROL-3

PIC XX.
PIC 99.

(o A e S - - —

02 FIELD-1 OCCURS 1 TO 10 TIMES DEPENDING ON CONTROL-1

02 FIELD-2 OCCURS 1 TO 5 TIMES DEPENDING ON CONTROL-2

02 FIELD-3 OCCURS 1 TO 10 TIMES DEPENDING ON CONTROL-3

DATA RECORDS ARE RECORD-1 RECORD-2 RECORD-3.

PIC 9(5).

PIC 9(4).

PIC X {4).

b s G S — - —— Ty, D e D s i N o Svn s

Figure 72.
Ooption

The following example illustrates the

length calculations made by the system when

a READ statement is executed:

FD

01 RECORD-1.
05 A PIC 99.
05 B PIC 99.
05 C PIC 99 OCCURS 1 TO 5 TIMES
DEPENDING ON A.

01 RECORD-2.
05 D PIC XX.
05 E PIC 99,
05 F PIC 99.
05 6 PIC 99 OCCURS 1 TO 5 TIMES
DEPENDING ON F.

WORKING-STORAGE SECTION.

-

01 TABLE-3.
05 H OCCURS 1 TO 10 TIMES DEPENDING
ON B.

01 TABLE-4.
05 I OCCURS 1 TO 10 TIMES DEPENDING
ON E.

When a record is read, lengths are
determined as follows:

1. The length of RECORD-1 is calculated
using the contents of field a.

2. The length of RECORD-2 is calculated
using the contents of field F.

Calculating Record Lengths When Using the OCCURS Clause with

3. The length of TABLE-3 is calculated
using the contents of field B.

4., The length of TABLE-U4 is calculated
using the contents of field E.

The user should be aware of several
additional factors that affect the

successful manipulation of variable-length
The following example illustrates

records,

a group item {i.e., BREC-1) whose

subordinate items contain an OCCURS clause

the DEPENDING ON

with the DEPENDING ON option and the object

of that DEPENDING ON option.

WORKING-STORAGE SECTION.
01 REC-1.
05 FIELD-1 PIC S9.
05 FIELD-2 OCCURS 1 TO 5 TIMES

DEPENDING ON FIELD-1 PIC X(5).
01 REC-2.
05 REC-2-DATA PIC X (50) .

The results of executing a MOVE to the
group item REC-1 will be affected by the
follovwing:

s The length of REC-1 may have been
calculated at some time prior to the

execution of this MOVE statement. The

user should be sure that the current
length of REC-1 is the desired one,

» The length of REC-1 may never have heen

calculated at all. In this case, the
result of the move will be
unpredictable,

e After the move, since the contents of
FPIELD-1 have been changed, an attempt

Non/VSAM Record PFormats 171

will be made to recalculate the length
of REC-1. This recalculation, however,
will be made only if the new contents
of FIELD-1 conform to its picture. 1In
other words, if FIELD-1 does not
contain an external decimal item, the
length of REC-1 will aot be
recalculated.

Note: According to the COBOL descriptioa,
FIELD-2 can occur a maximum of five times.
If, however, FIELD-1 contains an external
decimal item whose value exceeds five, the
length of REC-1 will still be calculated.
One possible consequence of this invalid
calculation will be encountered if the user
attempts to initialize REC-1 by moving
zeros or spaces to it. This initialization
would inadvertently delete part of the

ad jacent data stored in REC-2.

The following example applies to
updating a record containing an OCCURS
clause with the DEPENDING ON option and at
least one other subseguent entry. In this
case, the subsequent entry is another
OCCURS clause with the DEPENDING ON option.

WORKING-STORAGE SECTION.
01 VARIABLE-REC.

05 FIELD-A PIC X{10).
05 CONTROL-1 PIC 599.
05 CONTROL-2 PIC S99.

05 VARY-FIELD-1 OCCURS 1 TO 10 TIMES
DEPENDING ON CONTROL-1 PIC X(5).
05 GROUP-ITEM-1.
10 VARY-FIELD-2 OCCURS 1 TO 10
TIMES DEPENDING ON CONTROL-2
PIC X(9).
01 STORE-VARY~FIELD-2.
03 GROUP-ITEM-2.
05 VARY-FLD-2 OCCURS 1 TO 10
TIMES DEPENDING ON CONTROL-2
PIC X(9).

172

Assume that CONTROL-1 contains the value
5 and VARY-PIELD-1 contains 5 entries.

In order to add a sixth field to
YARY-FIELD-1, the following steps are
required:

MOVE GROUP-ITEM-~1 TO GROUP-ITEM-2,

ADD 1 TO CONTROL-1.

MOVE %additional field®' TO
VARY-FIELD-1 (CONTROL-1).

MOVE GROUP-ITEM-2 TO GROUP-ITEM-1.

Note: When an FD contains multiple
01-level entries, the following restriction
applies: The object of an OCCURS
DEPENDING ON clause must be in the

fixed portion of all the records within
that FD (not just in the fixed portion of
the record it is described in). Stated
another way, the minimum size of each
01-level record must exceed the highest
position of the object of an OCCURS
DEPENDING ON clause appearing in any
01-level record in that FD. Thus, the
following coding would be wrong, and could
cause an abend:

FD
01 RECORD-1.
02 FIELDA PIC X(200).
02 FIELDB PIC 99.
02 FIELDC PIC XX OCCURS 1 TO 25 TIMES
DEPENDING ON FIELDB.
01 RECORD-2.
02 FIELDD PIC X(100).

FPor a discussion of the use of the
OCCURS DEPENDING ON clause in a sort
program, see "Sorting variable-Length
Records. "

VSAM is a high-performance access method
of 0S/Vs for use with direct—-access
storage. VSAM provides high-speed
retrieval and storage of data, ease of use
{including simplified JCL statements), data
protection against unauthorized access,
central control of data management
functions, cross-system compatibility, and
device independence. VSAM data sets car be
processed by the COBOL programmer after
they have been defined through use of the
VSAM multifunction utility program known as
Access Method Services., This utility
{described in the publications QS/VS1
Access_Method Services and 0S/VS2 Accgess
Method Services) will describe data sets,
load records into them if desired, and
perform numerous other tasks--such as
converting existing ISAM and SAM data sets
to VSAM format,

TYPES OF VSAM DATA SETS

COBOL allows access to the three major
types of VSAM data sets: entry-sequenced
{ESDS), key-sequenced (KSDS) and relative
record {(RRDS). The primary difference
between the three is the order in which
their data records are stored and
retrieved.

Records are stored in an entry-sequence
data set without respect to the contents of
the records. The sequence is determined by
the order in which the records are
presented for inclusion in the data set:
that is, their entry sequence. New records
are stored at the end of the data set.
Records can be retrieved sequentially only,
that is, in the order they were stored in
the data set.

Records are stored in a key sequenced
data set in key sequence: that is, in the
order defined by the collating sequence of
the primary key field in each record. Each
record has a unigue value in the primary
key field, such as employee number or
invoice number. VSAM uses the key
associated with each record to insert or
retrieve a record in the data set. The
order can be random or sequential.

Records are stored in a relative record
data set in relative record number
sequence. The data set may be described as
a string of fixed-length slots, each of
vhich is identified by a number which gives
its position relative to the first such

VSAM_FILE PROCESSING

slot. new records are inserted either
sequentially in the next available slot,
where they assume that relative record
number, or according to a relative record
number that the programmer specifies.
Records may be retrieved either
sequentially or by specific relative record
number.

ENTRY-SEQUENCED DATA SETS

An entry-sequenced data set has no index
associated with it., Records are added at
the end of the data set. The data set can
be accessed sequentially only; the access
is similar to QSAM except that tape storage
or unit record devices cannot be used with
VSAM.

KEY-SEQUENCED DATA SETS

The index and distributed free space are
the most distinctive features of a
key-seguenced data set.

The index relates key values to the data
records in the data set. A record's key
field and position are the same for every

record in the data set; its value cannot be

altered. VSAM uses the index to locate a
record for retrieval and to locate the
collating position for insertion.

Multiple indexing is also available.

"?his means that a record may have both a

primary key and up to 254 alternate, or
secondary, keys. An alternate key may be
any field in the data record that has a
fixed length and position. {In spanned
records, the alternate key must be in the
first control interval.) Alternate keys
serve the same function in accessing data,
but allow the user additional flexibility
in his processing. In contrast to the
primary key, values of these alternate keys
need not be unique.

When a key-segquenced data set is defined
{through Access Method Services), free
space can be distributed in two ways: by
leaving some space at the end of all the

VSAM File Processing 173

used control intervals! and by leaving some
control intervals completely empty. Space”
becomes available within a control interval
when a record is shortened or deleted.

This space can then be used by VSAM when a
record is lengthened in place or inserted
into the control interval.

RELATIVE RECORD DATA SETS

A relative record data set has no index.
In its string of fixed-length slots, only
the relative record number--a number from 1
to n, where n is the maximum number of
records that can be stored in the data
set--identifies the record. Each record
occupies one slot, and is stored and
retrieved according to the relative record
number of that slot. The record's contents
and entry sequence are unimportant.

Records in a relative record data set
are grouped together in control intervals,
just as they are in a entry-sequenced or
key-seguenced data set. Each control
interval contains the same number of slots.
The size of each slot is the record length
specified by the user when he defined the
data set.

ACCESS _METHOD_SERVICES

Access Method Services is a utility
program that must be used before any COBOL
program can process VSAM files. A number
of user-entered commands initiate the
Access Method Services programs. There are
tvo types of commands: functional and
modal. The functional commands invoke the
desired Access Method Services function,
while the modal commands control the
sequence of execution of the functional
commands. For more information on modal
cormands as #ell as for complete details on
the specification and uses of Access Method
Services, see the publication Q0S/VS_ Access
Method_Services.

There are a number of important
functional commands: DEFINE, ALTER,
DELETE, LISTCAT, REPRO, PRINT, IMPORT,
EXPORT, BLDINDEX, and VERIFY. The commands
DEFINE, ALTRR, DELETE, and LISTCAT are used
to create, modify, remove and list entries
in the VSAM catalog. The REPRO and PRINT
comkands reproduce data sets either as new
data sets or as printed output. The IMPORT

—— - " o i -

1A control interval is the unit of
information that VSAM transfers between
virtual and auxiliary storage.

174

and EXPORT commands provide a way to
transfer data sets from one system to
another. The BLDINDEX command builds
alternate indexes for VSAM KSDS data sets.
The VERIFY command provides a data set
recovery service for VSAM data sets by
verifying that the end of the data set
indicated in the catalog is the same as the
real data set end.

THE DEFINE COMMANWND
The DEFINE command must be used to
define:

1. HMaster catalog: catalog in which all
VSAM data sets must be entered.

2. User catalog: optional catalog in
which VSAM data sets may be entered.

3. Data space:
by VSAM.

space which is to be used

4, VsAM data set{s): data sets that are
to be processed by VSAM.

5. Any alternate indexes and alternate
paths.

In order to process a VSAM data set, the
above must be done in the order indicated.
Therefore it is necessary to fully
understand the DEFINE command, its
functions, and its specification.

Functions of the DEFINE Command

An object, in VSAM terminology, is:

® A VSAM catalog

e A VSAM data set (KSDS, RRDS, or ESDS)
e A VSAM data space

® A VSAM KSDS alternate index and path

Data sets must be introduced to the
system and defined as entries in either the
master or user catalog. Non-YSAM data sets
may also be cataloged in a VSAM catalog.
All vSAM and non-VSAM data sets are
introduced to the system with the DEFINE
compand.

There are two steps in the creation of
an object: (1) defining the object to the
system and (2) generating its contents.
The DEFINE command does not generate the
contents of any object except for the
entries in the master and user catalogs.

The process of defining a VSAM object
includes allocation of storage space,
initialization of catalog entry contents,
and, in the case of defining catalogs,
possible initialization of the object's
storage space.

Specification of the DEFINE Command

The DEFINE command has the following
format:

DEFINE object parameters
The definable objects are as follows:

e MASTERCATALOG: specifies that the
VSAM master catalog is to be defined.

e USERCATALOG: specifies that a VSAM
user catalog is to be defined.

e SPACE: specifies that a VSAM data
space is to be defined.

» CLUSTER: specifies that a data set is
to be defined.

» ALTERNATEINDEX: specifies that an
alternate index for a KSDS is to be
defined and have space allocated.

® PATH: establishes the relationship
between an alternate index and its
data set (base cluster).

e NONVSAM: specifies that a data set
not having the VSAM data set
organization is to be cataloged ia a
VSAM catalog.

For each data set there is an associated
valid parameter list. See the publication
05/VS Access_Method Services for the
specification rules for DEFINE and its
associated objects and parameters.

Defining _a Master Catalog:
BMASTERCATALOG

DEFINE

- The DEFINE MASTERCATALOG command is used
in ¥S1 to set up the master catalog. {In
vS2, this command only creates a user
catalog. The VS2 master catalog is created
at system-generation time.) It is the first
Access Method Services command ever used
since without a master catalog other
objects cannot be defimed. Defining a
mraster catalog automatically creates the
data space necessary to contain the
catalog. Entries for both the master
catalog itself and the volume containing

the data space antomatically created are
placed in the master catalog.

The following is an example of defining
a VSAM master catalog:

//8YJOB1 JOB eeeecoeen
//STEP EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=2
//V0L DD DISP=0LD,UNIT=2314,
VOL=SER=MYVOL
//SYSIN DD *
DEFINE MASTERCATALOG (NAME +
(MASTCATL) FILE(VOL) 4
VOLUME (myvol) RECORDS +
(300 10) +
MASTERPW (111111) 4
UPDATEPW (222222) +
READPW (333333))
/+

Note the following concerning the JCL
used.

» PGM=IDCAMS is required to invoke Access
Method Services.

® MYVOL is the volume serial number of
the volume on which the master catalog
is to reside. //VOL is the DD
statement identifying that volunme.

In this example the following parameters
were used:

® NANE {(objectname). This is a required
parameter. The objectname is cataloged
and is the name that must be used in
all future references to the master
catalog.

e FILE (dmname). This is a required
parameter identifying the JCL statement
that specifies the device and volume
which are to contain the master
catalog. The associated JCL statement
should specify DISP=0LD. For dname,
the name of the JCL statement that
specifies the device and volume to
contain the master catalog is
substituted.

s VOLUME {volser). This is a required
parameter that specifies the volume to
contain the master catalog.

e RECORDS {primary[seconmndary]). This is
a required parameter that specifies the
anmount of space to be allocated in
terns of the number of records the
space is to hold. The capacity of the
allocated space is device independent.
The size of the primary extent is
specified by primary. Once the primary
extent is filled, the data space can
expand to include a maximum of 15
secondary extents if the size of

VSAM File Processing 175

secondary exteants is specified through
secondary.

For primary and secondary, the number
of records the master catalog is to be
able to hold is substituted. Note that
every KSDS regquires three catalog
entries: one each for the cluster,
data component, and index component.
Every ESDS requires two catalog
entries: one for the cluster and one
for the data component.

e MASTERPW (password). This optional
parameter specifies a master level
password for the master catalog being
defined. The master level password is
the highest level that can be
specified; it allows all operations.

If a master level password is not
supplied but other levels are, the
highest level supplied password becomes
the password for all higher levels
including the master level. The master
catalog must be password protected if
any VSAM clusters are to be protected.

» UPDATEPW (password). This optional
parameter specifies an update level
password. The password permits read
and write operations against the master
catalog. The master catalog must be
password protected if any VSAM clusters
are to be protected.

s READPW {password). This optional
parameter specifies a read level
password for the master catalog being
defined. The read level password
permits read operations against the
master catalog. The master catalog
must be password protected if any VSAHM
clusters are to be protected.

Defining a User Catalog:
USERCATALOG

DEFINE

The DEFINE USERCATALOG command is used
to set up user catalogs. When a user
catalog is defined, a data space to
containthe catalog is automatically
created. An entry for the volunme
containing the data space is placed in the
user catalog being defined. Entries for
the user catalog being defined are placed
in the master catalog and in the user
catalog itself.

The parameters that may be used with
DEFINE USERCATALOG are the same as those
described for DEFINE MASTERCATALOG with one
exception. There is an additional
parameter that may be used with DEFINE
USERCATALOG as follows:

176

o CATALOG (mastercathame/password).
parame ter specifies the name and
password of the master catalog that
contains the entry for the user catalog
being defined. This parameter is
required only when the master catalog
is passwvord protected.

This

For mastercatname, the name of the
master catalog is substituted. Por
password, the update or higher level
password is substituted.

Defining a_ VSAM Data Space;_ _DEFINE SPACE

The DEFINE SPACE command is used to
define VSAM data spaces or to reserve
volunes for future use by VSAM. A VSAM
data space is space on a direct access
volume that is owned and managed by VSaAn.
Clusters cannot be defined without the
UNIQUE attribute unless a VSAM data space
is defined to contain them. A VSAM data
space may include several extents on the
same volume but it cannot span volumes.
The volume containing the data space is
owned by the catalog containing the entry
for the space. Data spaces on several
volumes can be defined at one time.

The following is an example of defining
a VSAM data space:

//8YJ0B2 Jos ceseee
//STEP EXEC PGM=IDCAMS
//S5ISPRINT DD SYSouT=2
//SPACDD DD DISP=OLD,UNIT=2314,
VOL=SER=MYVOL
//SYSIN pD *
DEFINE SPACE{VOLUME (MYVOL) FILE+

{SPACDD) +
CYLINDERS (30 5) CATALOG+
{MASTCATL/222222)

In this example the following parameters
were used:

» VOLUMES{volser[...}). This required
parameter specifies the volumes to
contain the data spaces. If more than
one volume is specified, each volume
vill contain a data space of the sanme
size.

‘e PILE{dname). This regquired parameter
identifies the JCL statement that
specifies the devices and volumes to be
used for space allocatior. [PFor dnanme,
substitute the name of the JCL
statement that specifies the devices
and volumes to be used for space
allocation.] All volumes must be of the
same device type.

* CYLINDERS{primary[secondary}).

This
parameter specifies the amount of space
to be allocated in terms of cylinders.
The capacity of the allocated space is
device dependent. Either this
parameter or the TRACKS or RECORDS
parameter must be specified. The size
of the primary extent is specified by
primary. Once the primary extent is
filled, the data space can expand to
include a maximum of 15 secondary
extents if the size of secondary
extents is specified through secondary.
For primary and secondary, the number
of cylinders to be allocated to the
data space is substituted.

CATALOG (catnamef /password][dnamel).
This parameter specifies the name and
password of the catalog in which the
data space is to be defined. ([For
catname, substitute the name of the
catalog that is to contain the entry
for the data space.] This parameter is
specified if the desired catalog is not
the default catalog {see Defaults

below). TIf the catalog is password
protected, the password nmust be
specified.

If the desired catalog is neither the
master catalog nor a catalog identified
by a JOBCAT or STEPCAT DD statement,
the name of the DD statement
identifying the catalog must be
specified. For dname, the name of the
DD statement that identifies the
desired catalog is substituted.

Defaults: The data space is defined in
the catalog identified as STEPCAT. If
STEPCAT is not provided, the data space
is defined in the catalog identified as
JOBCAT. TIf JOBCAT is not provided, the
data space is defined in the master
catalog.

Defining a_KSDS

Figure 73 is an example of defining an
indexed VSAM data set. DEFINE CLUSTER is
used to define the attributes of all VSAM
data sets and to catalog the data sets in a
YSAM catalog. This command does not put
any records into the VSAM data set. COBOL
permits reference only to a KSDS cluster;
in other words, the KSDS's data and index
components cannot be defined separately.

The DEFINE CLUSTER command establishes
the primary keys for the records. If only
primary keys are to be used, then only this
DEFINE CLUSTER command is needed. If
alternate keys are also to be used {as in
this example), they are established with
the DEFINE ALTERNATEINDEX and DEFINE PATH
commands. 1In addition {after the base
cluster is filled with records), a
follov-on job must be run to specify the
BLDINDEX command {see the Access Method
Services manual).

In this example the following parameters
were used:

e NAME{objectname). This is a required
parameter. It must be specified at the
cluster level.

e FILE identifies the DD statement
specifying the device and volume that
are to contain the VSAM object being
defined.

o VOLUME {(volser [...]. This is a
required parameter that specifies the
volumes to contain the object. More
than one volume can be specified; the
volumes actually allocated are listed.

» BECORDS (primary [secondary]) specifies
the amount of space to be allocated in
terms of the number of records the
space is to hold.

VSAM File Processing 177

rh«-)--—s-u..u_--_«.-—-ma-

//MYJOB3
//STEP
//SYSPRINT DD
//%YDD DD
//SYSIN DD *
CLUSTER (NAME (SAMPLE) FILE (MYDD) VOLUME (MYVOL) +
RECORDS (500 50) RECORDSIZE (45 80) +
FREESPACE {25 10) SUBALLOCATION INDEXED +

KEYS {8 2) UPDATEPW (RDANDWRT) READPW (READONLY) +
ATTEMPTS {0)) , CATALOG {MASTCATL/222 222)
ALTERNATEINDEX {NAME (AL TX)
VOLUME (MY VOL)

*

JOB
EXEC

semsosse

PGN=IDCAMS
SYSoUT=A

DEFINE

DEFINE
FILE (MYDD1)
KEYS {6 15) UNIQUEKEY
AT TEMPTS {0))
PATH (NAME (PATHY)
CATALOG (MASTCATL /222

DEFINE

VOL=SER=MYVOL,UNIT=SYSDA,DISP=0LD

RELATE (SAMPLE) +

UPDATEPW (RDANDWRT)
CATALOG{MASTCATL/222
PATHENTRY {ALTX)

RECORDS {500 50) ¢

READPW (READONLY) 4
222) UPGRADE

UPDATE +

e oo s DA e e Mo ke A e S e S A o e s e g

Figure

73.

e RECORDSIZE (average maximum) specifies

178

the average and maxinim lengths of the
records in the data component of the
cluster. This is a required parameter.
The size specified can bhe from 1 to
32,761,

The pumber substituted for average
should be the number of bytes that is
the average length of all logical
records. The number substituted for
maximum should be the maximum length of
the largest logical record.

FREESPACE{cipercent][capercent])
specifies the amount of space that is
to be left free after any allocation
and after any split of control
intervals and control areas. The
amount is specified as a percentage.

For cipercent, the percentage of unused
space desired in each control interval
is specified. For capercent, the
percentage of unused space desired in
each control area is specified.

SUBALLOCATION specifies that a portion
of an already defined VSAM data space
is to be suballocated to the object.
Objects with the SUBALLOCATION
attribute do not appear in the VTOC.
Only the name of the data space that
contains the object appears there,

INDEXED specifies that the cluster
being defined is for a KSDS.

KEYS{length position) specifies the
length of the keys in a KSDS and their
position within the records. The
length of the keys is specified by
length; the displacement of the keys
within the record is specified by

Defining a VSAM Indexed Data Set (KSDS) with Both Primary and Alternate Keys

position. The first character in a
record is at displacement 0.

UPDATEPW (password) specifies an update
level password for the data set being
defined. The update level password
permits input and update (READ, START,
DELETE, WRITE, REWRITE) operations
against the logical records of the data
set.

READPW {password) specifies a read level
password for the object being defined.
The read level password permits input
{READ, START) operations against the
logical records of the data set.

ATTEMPTS {number) specifies the maximunm
number of times the operator can try to
enter a correct password in response to
a prompting message. This parameter
should always specify 0 as the number.

CATALOG (catname[/password][dnamel)
specifies the name of the catalog into
which the cluster is to be defined.
The name of the catalog is substituted
for catname. 1If the catalog is
password protected, the password must
also be supplied.

The name of the DD statement
identifying the catalog must be
specified if the catalog is neither the
master catalog nor a catalog identified
by a JOBCAT or STEPCAT DD statement or
if the catalog obtained through the
default is not the desired catalog.

For dname, substitute the name of the
DD statement that identifies the
catalog.

RELATE specifies the name of the base
cluster, as given in the ({NAME (name))
field of the DEFINE CLUSTER for this

data set.
parameter.

This is a required

» UNIQUEKEY/NONUNIQUEKEY specifies
whether each alternate key points to
only one data record or to more than
one. If to more than one, then
NONUNIQUEKEY must be specified and the
"COBOL program must contain the WITH
DUPLICATES phrase in the associated
ALTERNATE RECORD KEBY. A specification
of UNIQUEKEY requires that the COBOL
program not have such a WITH DUPLICATES
phrase.

s UPGRADE specifies that this alternate
index is to be kept up to date when its
base cluster is modified. This is a
required parameter.

e PATHENTRY specifies the name of the
alternate index, as given im the
{(NAME (name)) field for the related
DEFINE ALTERNATEINDEX. This is a
required parameter.

e UPDATE specifies that the base
cluster's upgrade set is to be
allocated when the path is opened.
This allows updating of alternate

indexes (see UPGRADE above), and is a
required parameter.
ADDITIONAL PARAMETERS: Additional

parameters are valid for DEFINE CLUSTER,
ALTERNATEINDEX, and PATH. Conplete details
on the use of these parameters are in the
publication DS/VS Access Method Services.

Defining an RRDS

Defining an RRDS is quite similar to
defining a KSDS. With the following

modifications, the DEFINE CLUSTER portion
of Figure 73 could be used to define an
RRDS:

1. Change INDEXED to NUMBERED.

2. Remove the KEYS parameter.

3. Remove the FREESPACE parameter.

4. Change the RECORDSIZE parameter so

that the average and maximum value
specifications are the sare.

Defining ap ESDS

Defining an ESDS is quite similar to
defining a KSDS. With the following
modifications, the DEFINE CLUSTER portion
of Figure 73 could be used to define an
ESDS:

1. Change INDEXED to NONINDEXED.
2. Remove the KEYS parameter.

3. PRemove the FREESPACE parameter.

Reusable Data_Sets

If a COBOL program wishes to use a VSAN
data set for a workfile {that is, use the
data set again and again during the course
of processing), the REUSE parameter must be
included in the DEFINE CLUSTER
specification, and the data set mast be
opened OUTPUT. {Its status is then
“ynloaded.") ESDS and RRDS data sets and
KSDS data sets without alternate indexes
can be reused in this manner.

VSAM File Processing 179

Miscellaneous NE_Cluster_Copsjderatiogns

The control interval is the unit of
transmission of data to and from main
storage. VSAM determines the size of the
control interval based upon the amount of
BUFFERSPACE specified and the size of the
RECORDSIZE specified. If BUFFERSPACE is
not specified and if the size of the
records permits, VSAM uses the optimum
size for the data component control
intervals and 512 as the size of the index
component control intervals.

COBOL_FILE PROCESSING CONSIDERATIONS

The file processing considerations of
importance to the COBOL programmer ares
the file processing techniques available,
the current record pointer, the START
statement, and the error processing options
available.

180

FILE PROCESSING TECHNIQUES

The COBOL user has three different file
processing techniques available to hinm:
sequential, random, and dynamic {(a
combination of sequential and random). The
technique to be used is specified through
the ACCESS clause of the SELECT statement.

An ESDS can only be processed
sequentially. Therefore, the ACCESS clause
need not be specified since the default is

sequential.

KSDS_and_ RRDS_Processing

A KSDS or an RRDS can be processed
sequentially, randomly, or both
sequentially and randomly. To process
sequentially, ACCESS IS SEQUENTIAL is
specified. To process randomly, ACCESS IS
RANDOM is specified. To process both
segquentially and randomly, ACCESS IS
DYNAMIC is specified.

ACCESS IS DYNAMIC provides the greatest
flexibility since most of the capabilities
of both seguential and random processing
are available. Subsequent to an OPEN
statement processing can be switched from
sequential to random and vice-versa, as
many times as desired.

PASSWORD USAGE

The following procedures must be used
when password support is employed with the
VSAM data sets:

» Through Access Method Services {at
DEFINE time), the programmer must
password—-protect the base cluster {as
opposed to the data and its index
separately). This is the password
specified with the RECORD or RELATIVE
KEY. 1If the data set is a KSDS with
alternate keys, then the programmer
must also password-protect either the
path to the base cluster via an
alternate index, or the alternate index
itself. This is the password specified
with the ALTERNATE RECORD KEY.

« In the COBOL program, the user must
specify the correct level of the
password: read-only, update, and so
on. Failure to do so will cause a
rejection of the action request which
violates the protection.

e In the COBOL program, the password (if
present for the data set) must be
specified for every ALTERNATE RECORD
KEY defined in the program--regardless
of whether any accessing will ever
actually be done using them. (This
requirement does not apply if the file
is opened only for OUTPUT and the user
does not request a dynamic invocation
of Access Method Services via the
AIXBLD option.)

* All required passwords must be
correctly specified for the file before
the COBOL OPEN will succeed.

CURRENT BRECORD POINTER

The current record pointer {CRP), a
conceptual pointer, is applicable only to
sequential requests for ESDS, RRDS, and
KSDS. Basically, the current record
pointer indicates the next record to be
accessed by a sequential request; the CRP
has no meaning for random processing or
output operations. The CRP is affected
only by the OPEN, START and READ
statements; it is not used or affected by
the WRITE, REWRITE, or DELETE statements,

In general, the last request on a file
that establishes the CRP {(OPEN, READ, or
START) must have been successful in order
for the sequential READ to be successful.

Example 1:
1f the sequence of I/0 operations on a

file with ACCESS IS DYNAMIC and opened I-0
is:

READ {After setting record key to 10)
WRITE {After setting record key to Uu#4)
READ NEXT

the BREAD NEXT will get record 11 if the
previous READ was successful. Tf the
previous READ was not successful, the
STATUS KEY will be set to 94 (No Current
Record Pointer) when the READ NEXT is
attempted. This occurs independently of
the success of the intervening WRITE.

Generally, a READ NEXT must be preceded
by a request that establishes the CRP
{OPEN, START, READ, READ NEXT). If the
request that establishes the CRP is
unsuccessful, the READ NEXT causes the
STATUS KEY to be set to 94.

Example 2:

In this example, ACCESS IS SEQUENTIAL is
specified for a KSDS; therefore, records
are retrieved in ascending key sequence
starting at the position indicated by the
CRP.

OPEN INPUT {CRP at record with
lowest key in file)
{Sset record key to 10)

START {CRP at record 10)
READ {Read record 10)
{(Set record key to 5)
START {CRP at record 5)
READ {Read record 5; CRP
set to record 6)
READ. {Read record 6; CRP
set to record 7)
READ {Read record 7:CRP

set to record 8)

VSAM File Processing 181

Note that the CRP can be moved around
randomly through the use of the START
statement but all reading is done
sequentially from that point,

If the START request for record key 5
had failed with no record found, the
subsequent READ requests would have failed
because there would have been no current
record pointer.

Exanple 3:

In this example ACCESS IS DYNAMIC is
specified. Therefore, records are accessed
randomly if a READ is specified and
sequentially if READ NEXT is specified.

The highest key is 44.
OPEN INPUT {CRP is set to
lowest key on file)
{set record key to 5)

READ {Read record 5; set
CRP to record 6)

READ NEXT {Read record 6; set
CRP to record 7)

READ NEXT {Read record 7; set

{CRP to record 8
{set record key to 43)

START (Position CRP to
record 43)

BEAD NEXT {Read record 43; set
CRP to 44)

{Set record Key to 47)

START

READ NEXT (Fails - no CRP)

The last READ NEXT failed because the
preceding START was unsuccessful; in this
data set there is no record 47.

Example 4:

In this updating example, ACCESS IS
DYNAMIC is specified; the REWRITE statement
does not affect the CRP.

OPEN I-0 {CRP is set to
first record on
file)

{(Set record Key to 10)

READ {Read record 10; set
CRP to record 11)

REWRITE {Updates record 10;
CRP remains at
record 11)

READ NEXT {Read record 11;

set CRP to record
12)
{Set record key to 74)

REWRITE {Fails - record not
found in this data
set

READ NEXT {Read record 12; set

CRP to record 13)

Note that although the last REWRITE failed,
the following READ NEXT was successful.

182

The REWRITE failed because record 74 was
not read before the BREWRITE was attempted.

Example 5:

In this example, ACCESS IS DYNAMIC is
specified for a KSDS with an alternate
record key, AIXXEY, defined. Assume that
the file contains eight records whose
primary and alternate key values are as
follo¥s:

Record Primary Key Alternate Key
1st 5 100
2nd 10 70
3rd 15 80
4th 20 85
5th 25 75
6th 30 50
7th 35 95
8th 40 55
OPEN I-O {CRP is set to the

first record of file
and the key of
reference is the
primary key)
{set record key to 10)
READ {(without KEY clause)
Read second tecord;
set CRP to third
record)
{set alternate key to 50)
READ KEY IS AIXKEY {the key of
reference is the
alternate key; read
sikxth record; set
CRP to eighth
record)
{the key of
reference remains
the alternate key;
read eighth record;
set CRP to second
record)

READ NEXT

{set primary key to 45

and alternate key to 90)

WRITE {(write ninth record;
CRP remains at
second record; the
key of reference
also remains the
alternate key)

{read second record;
CRP is set to fifth
record)

{set alternate key to 100)

START KEY = AIXKEY (CRP is set to first
record; the key of
reference is the
alternate key)

{read first record;
CRP is set so that
the next sequential
read results in the
AT END condition)
{The AT END

READ NEXT

READ NEXT

BREAD NEXT

condition is raised;
CRP is undefined)

USE OF THE START VERB

In some of the preceding examples, the
START verb was used to position the CRP.
Then the READ {for ACCESS IS SEQUENTIAL)
and READ NEXT {for sequential processing
when ACCESS IS DYNAMIC) retrieves the
record pointed to by the CRP as established
by the START.

Example:
05 RECORD-KEY.
10 GEN11t.
15 GEN12 PIC 99.
15 GEN13 PIC 99,
10 GEN14 PIC 9.

In this example, GEN12, GEN11, or
RECORD-KEY could be used as the data-name
in the "KEY IS relational data-name" option
of the STAR? statement. The lengths would
be 2, 4, and 5 respectively., GEN13 and
GEN14 could not be used as they are not in
the leftmost part of RECORD-KEY.

Assume that the value of RECORD-KEY is
01472

s START file-name KEY=GEN11 would
position the CRP to the first record on
the file whose key has 0147 in the
first 4 bytes.

® START filename KEY > GEN12 would
position the CRP to the first record in
the file whose key has the first two
bytes greater than 01.

ERROR PROCESSING OPTIONS

The error processing options available
to the COBOL programmer are INVALID KEY,
EXCEPTION/ERROR procedure, and STATUS KEY.
These options can be used in combination
with each other.

The Importance of Status Key

All errors in processing a VSAM file,
vhether a logic error on the part of the
COBOL programmer or an I/0 error on the
external storage media, return control to
the COBOL program. Upon return to the
COBOL program, the Status Key will indicate
the status of the last request on the file.
Figure 74 indicates the possible value of
the Status Key and their associated general
meanings.

Harning: It is essential that all VSAM
files have a Status Key associated with
them and that the programmer always check
the contents of the Status Key after each
I/0 request., If Status Key is not used
{(and an EXCEPTION/ERROR procedure is not
present), serious errors will go
undiscovered by the program--which does pnot
abend. The continued processing in such a
situation may produce results that are not
only destructive but difficult to detect.

Invalid Key

If the INVALID KEY option is specified
in the statement causing an invalid key
condition, control is transferred to the
INVALID KEY imperative-statement. Any
EXCEPTION/ERROR declarative procedure
specified for this data set is not
executed. If the FILE-STATUS clause is
specified, a value is placed into the
Status Key to indicate INVALID KEY
condition.

EXCEPTION/ERROR Procedure

The EXCEPTION/ERROR procedure is invoked
only vhen a file is in the open status.

VSAM File Processing 183

L 1
Status Key 1] Status Key 2]

) ¥ 1
L} ! {
| Value i Meaning jvalue 1 Meaning 1
f. 3 i F F]
L} T £] k) T
] 0 JSuccessful Completion | 0 {No Further Information |
3 1 + } {
H i | 2 | Duplicate Key Found, And |
| I } i Program Specified the 1
|] ! | DUPLICATES Option |
+ + + + {
i 1 {2t End {no next logical record,| 0 {No Further Information |
1 jor an OPTIONAL file not avail- |} { {
3 }Jable at OPEN time)] ! |
i + t + 4
| {] 0 !No Further Information

i -1

L T ~=1
5 2 jInvalid Key | 1 {Sequence Error |
1 H F % 4
i i i 2 jDuplicate Key Found, But 1
| | | {Duplicate Keys Not Allowed |
| | (2 + 4
1 1 i 3 | No Record Found J
{ | t + 1
i 1 1 4 { Boundary Violation on WRITE}
i ! | | to VSAM indexed or relative)
i | | | file (space not found to l
H ; é sadd requested record) ;
] 3 |Permanent Error {data check, H 0 {No Further Information 1
i }parity check, transmission t +]
1 jerror)] 4 {Boundary Violation on WRITEj
|) i {to sequential VSAM file {
| ' I (space not found to add i
| i { | requested record) '
o 1 + 1 2 |
i 9 jOther Errors { 0 jNo Further Information 1
i i + + 1
} i] 1 {Password Failure {
{ | I + 4
1] | 2 j{Logic Error 1
{ 1 F i ?
1 |] 3 {Resource Not Available]
{ i b ' 3 4
{ 1 1 4 {No Current Record Pointer |}
i] | {For Sequential Request 1
1 { F + 4
{ ! | 5 }Invalid Or Incomplete File |
{] 1 {Information 1
1 i [t 4
i]] 6 |No DD cCard H
i { t + 1
| 1 i 7 { The data set was not pro- |
1 | | | perly closed; an implicit |
1 | i { VERIFY has therefore been !}
H i i } issued, and the file then |
| f | | successfully opened. [
L i i i - J
Pigure 74. Status Key Values And Their Meanings
Error Handling Considerations the next sentence unless the request that

caused the error contained on AT END or
INVALID KEY clause. Note also that the
Figure 75 is a table of actions taken EXCEPTION/ERROR Procedure is executed only
for all the combinations of AT END, INVALID if the file is in the open status.
KEY and EXCEPTION/ERROR Procedure based on
the first character of the Status Key
return. Note that the return is always to

184

| END/INVALID KEY{sentence.

k] hJ
First pigit | No EXCEPTION/ERROR Procedure 1 ¥With EXCEPTION/ERROR Procedure
of n + Al
Status Key |JAT END {No AT END {AT END {No AT END
for INVALID KEY jor INVALID KEY jor INVALID KEY }or INVALID KEY
1 3] i
k § 1 E] T
0 jReturn to next jReturn to next fReturn to next |(Return to next
|sentence, |sentence, j sentence. {sentence,
F 3 i 1
¥ k] T 1
1 {Return to AT J]Return to next {Return to AT JReturn to next sen-
IEND/INVALID KEY]sentence. {END/INVALID KEY|tence after execution
jaddress. | Jaddress. {of EXCEPTION/ERROR
]] | {Procedure.
1 1 J 1 i
R | EJ) § 1
2 jReturn to AT]Return to next {Return to AT J|Return to next sen-

{END/INVALID KEY]tence after execution

-.-.-..---‘-..--.-mTP—uuu-}Pua_m-q._—.pm:—m_.

{address. l jaddress. jof EXCEPTION/ERROR
] 1] |Procedure.
i] d 1
1 1 e K3
3 {Return to next {Return to next {Return to next jreturn to next sen-
1sentence, {sentence. {sentence after jtence after execution
| i Jexecution of jof EXCEPTION/ERROR
i § { EXCEPTION/ERROR| Procedure.
i ! jProcedure. !
+ ¢ t +
9 jReturn to next {Return to next JReturn to next |Return to next sen-
| sentence, }sentence,]sentence after |tence after execution
| i {execution of jof EXCEPTION/ERROR
i i {EXCEPTION/ERROR| Procedure.
] i {Procedure. i
A 4. i i

b i e o e ok s e bt s s o et D e S e e o e e i e -l e o

Figure 75. Error Handling Actions Based on COBOL Program Coding.

OPENING A VSAM FILE

VSAM files can be opened INPUT, OUTPUT,
EXTEND, or I-O.

Opening_an_Unloaded File

An unloaded file is a file that has
never contained records. It is normally
opened OUTPUT or EXTEND.

While certain types of unloaded files
may also be successfully opened INPUT or
I-0, the following conditions will occur if
attempts are then made to access it.

If unloaded file is opened INPUT and
operation is:

¢ READ sequential--will fail, with status
key set to 10

e READ random--will fail, with status key
set to 23

e START~-will fail, with status key set
to 23

ope

Any other request--will fail, with
status key set to 92

If unloaded file is opened I-u -and first

ration is:

WRITE~--will succeed, if a valid request,

and any subsequent request will be
treated as if made to a loaded file.

NOTE: A WRITE to a sequentially-
accessed file is not a valid request
when opened I-O.

READ sequential (if first
request)--will fail, with status key
set to 10

READ random (if first request)--will
fail, with status key set to 23

START {if first request)--will fail,
with status key set to 23

REWRITE/DELETE sequential (if first
request)--will fail, vith status key
set to 92

REWRITE/DELETE random or dynamic (if
first request)--will fail with status
kxey set to 23

VSAM File Processing 185

Opening _an_Empty File

An empty file is a previously created
file from which all records have been
deleted.- It can be opened EXTEND, INPUT or
I-0. After opening, the first READ request
will cause an AT END condition {Status Key
= 10) or an INVALID KEY condition (Status
Key = 23), depending on the access mode of
the file. An empty file cannot be opened
OUTPUT.

Opening_a_File Containing Records

A file containing records can be opened
INPUT, EXTEND or I-0. If a KSDS is opened
EXTEND, the first record to be added mast
have its record key higher than the highest
record key on the file when it was opened.
If the record key is not higher the status
key will be set to 92, For an ESDS, the
records are added after the last record on
the file, An BRDS cannot be opened EXTEND.

QREN Status Key Values

If any of the OPEN rules are violated
the file is not opened and the Status Key
is set to the appropriate value. See
Figure 76 for the OPEN Status Key values
and their meanings.

Dynamic Invocation of Access Method

Services _for_ KSDS and RRDS_Data_Sets
{Note: The following feature is

provided only to assure compliance with the
1974 ANS COBOL standard X3.23-1974. Use of
the feature will necessarily adversely
affect execution-time performance.)

186

As described earlier, the user must
employ Access Method Services to define all
VsaM files and their indexes ahead of
time--outside of the COBOL program.
Normally at this time, the user specifies
the size of the file's records, and (for
KSDS) the lengths and offsets of primary
and any alternate keys. He also builds the
actual alternate indexes.

However, if he wishes, the user may
choose to omit these elements of the
definition procedure and have COBOL
automatically perform them later when the
file is opened for QUTPUT processing.
COBOL does this by obtaining the correct
record and key specifications from the
program's source statements, and then
issuing the Access Method Services ALTER
and BLDINDEX commands.

If this is the user's choice, he must
make it known to COBOL by including the
object-time {GO-step) option BRIXBLD. (He
rust also ensure that the Access Method
Services program is available for his COBOL
program to invoke.)

For an RRDS, COBOL will then £ill in the
record size information. For a KSDS, COBOL
¥ill £ill in record size, and length and
displacement for primary keys. If the KSDS
has alternate keys, COBOL also fills in
their length and displacement, and issues
the BLDINDEX command. {Because the
BLDINDEX command can be issued only after a
base cluster is loaded, COBOL first fills
it with dummy records, then issues the
BLDINDEX command, and then erases them.)

Because the large Access Method Services
program must be present when the COBOL
program is run with this feature,
substantial extra main storage is reguired.
Use of the AIXBLD feature also rtequires the
user to provide a SYSPRINT DD card for
Access Method Services messages. If this
card is missing, OPEN failure will result
{Status Key = 95).

If the Status Key

either COBOL itself detected one of these

...0r VSAM found

given to the user | conditioms... an error and returned
was... one of the following
VSAM error codes¥
00 None 100 (if AIXBLD was
specified)
128 (if file is
optional)
160 (if file was
to be opened
for input)
30 None 132,144,164,176,
184
90 Failure of an attempt to write a dummy 96,108,116,192,
record to or delete a dummy record from the| 196,200,204,208,
file. Such a failure may occur in the 212,216,220,224,
following cases: 236,240,244 (plus any
other VSAM codes not
-- an indexed file is opened for OUTPUT and|{ appearing elsewhere in
the access mode is either RANDOM or this table)
DYNAMIC.
-- a file to be opened I-O has just been
created.
-- the object-time option AIXBLD was
specified and the file has at least one
alternate record key.
Failure of attempt to use a CBMM macro.
Failure of attempt to use a BLDL system
macro; this macro is used when the
programmer has specified the object-time
option AIXBLD.
91 None 152
92 The file to be opened is already open. 4

*¥ COBOL's VSAM-processing subroutines retrieve the VSAM return code from the
ACBERFLG field of the Access Control Block (ACB) by issuing a SHOWCB macro,
translate it into one of the status key values above (as prescribed by the
ANS standard), and move that value into the STATUS KEY field where it
becomes accessible in the user's program. An explanation of the meanings
of the VSAM return codes can be found in the VSAM Programmer's Guide.

Figure 76.

{(Part 1 of 2) Statuas Key Values for OPEN Requests

VSAM File Processing

187

If the Status Key | either COBOL itself detected one of these ...0r VSAM found
given to the user | conditions... an error and returned
was... one of the following
VSAM error codes*
93 COBOL cannot obtain sufficient virtual 136
storage for: 168
-- the general work area used by the COBOL
VSAM-interface modules.
-- the Access Control Block (ACB) address
list area during the OPEN process.
-- the work area required for the
invocation of Access Method Services.
-- processing of the user declarative.
95 The ENDRBA of a file to be opened OUTPUT 100 (if AIXBLD was
is not zero. not specified)
104,108,148,
The length and/or offset of the key of 160 (if a file
each cluster do not match those in the is not to
catalog. be opened
for INPUT)
A KSDS cluster is to be opened as a COBOL 180,188,232
sequential (ESDS) file.
An attempt was made to either alter the
record size and/or key information of a
cluster or build alternate indexes, and
Access Method Services returned a non-zero
return code.
96 No DD card is present for a path to be 128 (if a file
opened. is not
optional)
97 OPEN is successful for a data set with 118
alternate keys opened I-0O, EXTEND, or
OUTPUT, and an implicit VERIFY has
occurred.
* COBOL's VSAM-processing subroutines retrieve the VSAM return code from the
ACBERFLG field of the Access Control Block (ACB) by issuing a SHOWCB macro,
translate it into one of the status key values above (as prescribed by the
ANS standard), and move that value into the STATUS KEY field where it
becomes accessible in the user's program. An explanation of the meanings
of the VSAM return codes can be found in the VSAM Programmer's Guide.

Figure 76.

INITIAL LOADING OF RECORDS INTO A FILE

Initial loading refers to writing
records into a file after it is opened for
the first time; this is distinctly
different than writing records into an
empty file {a previously created file from
which all records have been deleted).

When the file is unloaded and is opened
EXTEND, it is processed exactly the same as
it would be had it been opened OUTPUT.

1t is recommended that initial loading
of records into a KSDS always be done
seguentially., This assists in optimizing
performance for the initial loading process
as well as for any subsequent processing on
the file. Loading records randomly does

188

{Part 2 of 2) Status Key Values for OPEN Requests

not conserve any free space in the file
and, as a result, any future inserts
require the file to be dynamically
reorganized.

WRITING RECORDS INTO A VSAM FILE

The COBOL WRITE statement adds a record
to a file; it does not replace an existing
record on the file. The record to be
¥ritten must not be larger than the maximum
record size specified when the file was
defined.

ESDS considerations

Records are written sequentially.

S_Considerations - {ACCESS_1S

The records must be written in ascending
key sequence. 1If the file is opened
EXTEND, the record keys of the records to
be added must be higher than the highest
record key on the file when the file was
opened.

For example, a file containing records
wvhose records keys are 2, 4, 6, 8 and 10 is
opened EXTEND; the following actions take
place for the sequence of operations shown:

WRITE (record key = 8) SK = 92
WRITE (record key = 9) SK = 92
WRITE ({record key = 12) SK = 00
WRITE (record key = 11) SK = 21

If many records are to be added to the
end of a file, it is recommended that
sequential processing be used. It assists
in optimizing processing for both the
addition of records as well as later
retrieval of them.

KSDS_copsiderations - (ACCESS_IS
RANDOM/DYNAMIC)

¥hen a file has alternate keys, the
records must be written using their primary
keys.

RRDS_Considerations

e e S e e i e i S i . S

For a sequential request, the first
record written will have relative record
number one, the second two, the thirad
three, and so on. If a RELATIVE KEY data
item was included by the user in the file
control entry statement, the relative
record number of the record just written
will be placed in the data iten.

REWRITING RECORDS ON A VSAM FILE

The COBOL BEWRITE statement is used to
replace an existing record in the file.

ESDS Considerations

The file must be opened I-0; if not, the
rtecord is not rewritten and the Status Key
is set to 92. The record to be rewritten
must first be read by the COBOL program;
the record may then be rewritten. TIf there
was no preceding READ, or if the preceding
READ was not successful, the record is not
revritten and the Status Key is set to 92.
If an attempt is made to change the length
of the record to be rewritten, the Status
Key is set to 92,

KSDS Considerations

The file must be opened I-0; if not, the
record is not rewritten and the Status Key
is set to 92. The length of the record can
be changed; the value of the record key
cannot be changed.

For ACCESS IS SEQUENTIAL, or files
containing spanned records, the record to
be rewritten must first be read by the
COBOL program. The REWRITE then updates
the record that was read. TIf the REWRITE
is not preceded by a successful READ of the
record to be rewritten, the rewrite is not
done and the Status Key is set to 92.

For ACCESS IS RANDOM/DYNAMIC, and for
records that are not spanned, the record
to be rewritten need not be read by the
COBOL program. To npdate a record, the key
of the record to be updated is moved to the
RECORD KEY data-name and then the REWRITE
is issued.

Rewiting must always be done by the
primary key. COBOL does, however, allow a
user to change the alternate key contents
while rewriting the record.

READING RECORDS ON A VSAM FILE

The COBOL READ statement is used to
access records on a file. The file must be
opened INPOT or I-0; if not, the record is
not read and the Status Key is set to 92.

ESDS_Considerations

The records are read in the sequence in
which they were written.

VSAM File Processing 189

KSDS_considerations - {(ACCESS 1S

SEQUENTIAL)

Records are read sequentially beginning
at the position of the Current Record
Pointer. 1If the Current Record Pointer is
not defined at the time the READ is issued,
the READ fails and the Status Key is set to
94,

The Current Record Pointer is undefined
if a START is unsuccessful, For example:
OPEN I-0 filenane CRP set to first
record on file.
First record is
read.

READ

{Set Record Key to 10)

START Fails--no record
found. SK=23.

READ Fails~--no CRP.
SK = 94,

{(Set BRecord Key to 20)

START successful.

READ Record 20 is read.

READ EOF encountered;
SK = 10.

READ Logic error;SK=92

{Set Record Key to 8)

START Successful.

READ Record 8 is read.

KSDS_Considerations - (ACCESS_IS RANDOM)

Records are read in the order specified
in the COBOL program. For example, to
readthe record whose Record Key is 10, the
RECORD KEY field must be set to 10 and then
a READ is issued.

KSDS_Considerations - (ACCESS IS _DYNAMIC)

Records can be read sequentially or
randomly. The READ NEXT statement is used
for sequential accessing while the READ
statement is used for random accessing.
Within any given program, both segquential
and random processing may be performed.

SEQUENTIAL PROCESSING: Records are read
sequentially beginning at the position of
the Current Record Pointer. If the Current
Record Pointer is undefined when the READ
NEXT is issued, the record is not read and
the Status Key is set to 94. The Current
Record Pointer is undefined if the previous
START or READ was unsuccessful. See the
discussion of Current Record Pointer for
more details and examples of the effect of
different COBOL statements on the
positioning of the Current Record Pointer.

190

RANDOM_PROCESSING: Records are read
randomly according to the value placed in
the record key field.

RRDS_cConsiderations

If a RELATIVE KEY data item was

.specified for a sequential READ, the

relative record number of the record just
read will be placed in the data item.

DELETING RECORDS ON A FILE

The COBOL DELETE statement is used to
remove an existing record on a KSDS.
DELETE cannot be used with am ESDS.

The file must be opened I-0; if not, the
record is not deleted and the Status Key is
set to 92.

For ACCESS IS SEQUENTIAL, or files
containing spanned records, the record
to be deleted must first be read by the
COBOL program. The DELETE then removes
the record that was read. If the DELETE
is not preceded by a successful READ of
the record to be deleted, the deletion
is not done and the Status Key is set to
92.

For ACCESS IS RANDOM/DYNAMIC, and for
records that are not spanned, the record
to be deleted need not be read by the
COBOL program. To delete a record, the
key of the record to be deleted is moved
to the RECORD KEY data-name and the
DELETE is issued.

STATUS KEY SETTINGS FOR ACTION REQUESTS

Figure 77 is a sumpary of the Status Key
values that can occur for action regquests.
Status Key 92 has numerous possible causes
as described below.

Status Key 92 can be caused by:

s Any request against a file that is not
open.

e Any request that is not allowved for the
option that was specified with the OPEN
statement. For example, an attempt is
made to read a file that was opened as
OUTPUT or an attempt is made to rewrite
on a file opened as INPUT.

* Any attempt to write or rewrite a
record longer than the maximum record
size specified when the file was
defined.

* Any attempted action on a file after READ Random READ to reset

the end-of-file condition has occurred. CRP
This is applicable to ESDS, BRDS, and READ NEXT Successful
KSDS; however, on an RRDS or KSDS a
START or READ can be issued to set the e An attempt to rewrite, when access is
Current Record Pointer to another point sequential, after an unsuccessful READ.
in the file so that processing may ’
continve., For example: e An attempt to delete, when access is
seguential, after an unsuccessful READ.
1. ACCESS IS SEQUENTIAL This applies to KSDS and RRDS only,
since DELETE is not legal for ESDS.
OPEN
READ successful
READ EOF encountered
READ Logic error CLOSING A FILE
START To reset Current Record
Pointer
READ Suaccessful If the user attempts to close a file
which has already been closed, COBOL
2. ACCESS IS DYNAMIC returns a status key value of 92. When
performing a CLOSE request, VSAM itself may
OPEN detect an error and return one of the
READ NEXT Successful following codes to COBOL: 132, 144, 164,
BREAD NEXT EOF encountered 176, or 184, COBOL will translate this
READ NEXT Logic error VSAM code into a STATUS KEY of 30.

VSAM File Processing 191

If the Status
Key given to

WaS.. .

either COBOL itself discovered one of these
conditions...

or VSAM found an
error and returned
one of the following
VSAM error codes#*

02 Permissible duplicate key follows for READ, or None
permissible duplicate key is created on one or
more alternate indexes for WRITE or REWRITE.

(This is the case when the feedback field of the
RPL contains 8 but the LERAD exit is not taken.)

10 READ is issued for the first time to an optional 4 (if the request
file. was not START)
Sequential READ is issued to an empty file
opened for INPUT.

21 None 12,96

22 None 8

23 Random READ or START issued to an empty file 4 (if the request
opened for INPUT. was START)

16
Relational operator GREATER THAN was specified 192
in a START and the key contains HIGH-VALUE.
Current record pointer failed for sequential
READ because key used in the previous READ
contained HIGH-VALUE,

24 Relative record key contains a value larger 28 (if the file
than allowed. is not ESDS)

148

30 SYNAD exit taken due to an I/O error. 140

34 None 28 (if the file

is ESDS)

920 Failure of attempt to use a CBMM macro. 32,64,68,72,76,
80,84,104,112,
116,132,136,144,
196,200
(plus any VSAM

codes not

appearing else-
where in this
table)

the user's program.

* (COBOL's VSAM-processing subroutines retrieve the VSAM return code from the
RPLFDBK field of the Request Parameter List (RPL), translate it into one
of the status key values above (as prescribed by the ANS standard), and
move that value into the STATUS KEY field where it becomes accessible in

An explanation of the meanings of the VSAM return

codes can be found in the VSAM Programmer's Guide.

Figure 77.

192

(Part 1 of 2)

Status Key Values for Action Requests

If the Status|either COBOL itself discovered one of these
Key given to |conditions...
WasS...

or VSAM found an
error and returned
one of the following
VSAM error codes*

36,44,92,100,
108,152,204

92 Impermissible request (action does not match
file's open mode).

|
'File is not open.

End-of-file condition had been raised by the
previous operation, and a sequential READ is
issued, or a REWRITE is issued when access mode
is sequential, or a DELETE is issued and the
access mode is sequential.

Access mode is sequential, and the last I/0
request for the file (prior to a REWRITE or
DELETE) was not a successful READ.

READ issued to an optional file is not the first
READ request.

The key value of a record to be added to an
indexed file opened EXTEND is not the highest
among record key values in the file.

93 Insufficient virtual storage for the user
declarative processing.

20,24,40

o4 The current record pointer (maintained by 88
ILBOVIO) is undefined for this sequential READ.

*¥ COBOL's VSAM-processing subroutines retrieve the VSAM return code from the
RPLFDBK field of the Request Parameter List (RPL), translate it into one of
the status key values above (as prescribed by the ANS standard), and move
that value into the STATUS KEY field where it becomes accessible in the
user's program. An explanation of the meanings of the VSAM return codes
can be found in the VSAM Programmer's Guide.

Figure 77. (Part 2 of 2) Status Key Values for Action Requests

COBOL LANGUAGE_USAGE WITH VSAN functions are performed., Most significant
to the COBOL programmer is whether the data

set is defined as ESDS, KSDS or RRDS.

The COBOL language statements which are
directly related to VSAM processing are in
the publication IBM V¥S COBOL for 0S/VS.
The following paragraphs are intended only
to highlight and summarize the basic
language statements used in writing a

VSAM-file-processing COBOL program.

The COBOL programmer can use VSAM in
three basic ways: +to srite, to retrieve,
and to update records in a data set.
However, prior to processing a VSAM data
set, it is an absolute necessity that the
previously discussed Access Method Services

WRITING A VSAM DATA SET

The COBOL language statements frequently
used to fill in a VSAM data set are
sumparized in Figure 78. Examples 1 and 2
illustrate the creation of an ESDS and a
KSDS respectively.

VSAM File Processing 193

ESDS KSDS RRDS
1 1 k] ¥ 1
jEnvironment | SELECT { SELECT { SBLECT }
| Division | ASSIGN } ASSIGN | ASSIGN 1
i { FILE STATUS { ORGANIZATION | ORGANIZATION |
1 | PASSWORD ! IS INDEXED | IS RELATIVE]
i { ACCESS MODE § RECORD KEY } RELATIVE KEY |
] } i ALTERNATE } FILE STATUS |
1 | { RECORD KEY | . }
1 1 { FILE STATUS | PASSWORD {
i 1 { PASSWORD | ACCESS MODE |
1 | } ACCESS MODE 1 1
t + 4 % 1
iData | FD entry { FD entry 1 FD entry |
{ Division |} LABEL RECORDS | LABEL RECORDS | LABEL RECORDS]
L. 1 4 3. ’ |
¥ T] L3 b
{Procedure] OPEN OUTPUT | OPEN OUTPUT { OPEN OUTPUT |
{ Diwvision | OPEN EXTEND 1 OPEN EXTEND | WRITE]
1] WRITE | WRITE { CLOSE 1
| | CLOSE | CLOSE i |
1 4 . A F]
Figure 78. COBOL Statements Fregquently Used for Writing into a VSAM Data Set

PARA3.
WRITE OUTMASTER.
IF CHK IS NOT =
GO TO PARA2.

Example 1:

This example shows the creation of a 00 GO TO CHKRTN.

COBOL ESDS. The FILE STATUS facility is

used to monitor all I/O operations in the PARAU.
program. CLOSE INREC OUTREC.
IF CHK IS NOT = 00 GO TO CHKRTN.

IDENTIFICATION DIVISION. FINIT.

- i STOP RUN.

- CHKRTN.

- DISPLAY 'I/0O ERROR. STATUS KEY VALUE
ENVIRONMENT DIVISION. IS' CHK.

- GO TO FINIT,

Note that im this example any Status Key
return other tham 00 causes transfer of
control to paragraph CHKRTN. This user-
created routine can determine the exact
cause of the error by checking the Status
Key. Once the cause is determined,
ASSIGN TO AS-OUTFILE instructions can be issuyed according to the
FILE STATUS IS CHK. user'!s desired response to each type of

. error.

. Exanmnple 2:

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INREC
ASSIGN TO UR-2540R-S-INFILE.
SELECT OUTREC

DATA DIVISION.
PILE SECTION.

This example shows the creation of a
COBOL KSDS; this program performs the same

FD INREC LABEL RECORDS ARE OMITTED function as Example 1 except that now a
DATA RECORD IS INMASTER. KSDS is being created.

01 INMASTER PIC X{80).

FD OUTREC LABEL RECORDS ARE STANDARD IDENTIFICATION DIVISION.
DATA RECORD IS OUTMASTER. .

01 OUTMASTER PIC X (80). .

WORKING-STORAGE SECTION.

77 CHK PIC 99 VALUE ZEROS. ENVIRONMENT DIVISION.

PROCEDURE DIVISION.

PARA1,

OPEN INPUT INREC OUTPUT OUTREC.
IF CHK IS NOT = 00 GO TG CHKRTN.

PARAZ2.

READ INREC INTO OUTMASTER
AT END GO TO PARA4.

194

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INREC
ASSIGN TO UR-25430R-S—-INFILE.

SELECT OUTREC
ASSIGN TO DA~2319-OUTFILE
ORGANIZATION IS INDEXED
RECORD KEY IS ARG-1
FILE STATUS 1S CHK.

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECORDS ARE OMITTED
DATA RFECORD IS INMASTER.
01 INMASTER PIC X(80).
FD OUTREC LABEL RECORDS ARE STANDARD
DATA RECORD IS OUTMASTER.
01 OUTMASTER.
05 FILLER PIC X.
05 ARG-1 PIC XXX.
05 REM PIC X{76).
WORKING-STORAGE SECT ION
77 CHK PIC 99 VALUE ZERO.
PROCEDURE DIVISION.
PARA1.
OPEN INPUT INREC OUTPUT OUTREC.
IF CHK IS NOT = 00 GO TO CHKRTN.
PARA2.
READ INREC INTO OUTMASTER.
AT END GO TO PARA4.
PARA3.
WRITE OUTMASTER.
IF CHK IS NOT = 00 GO TO CHKRTN.
GO TO PARA2.
PARAUY.
CLOSE INREC OUTREC.
IF CHK IS NOT = 00 GO TO CHERTN.
FINIT.
STOP RUN.
CHKRTN.
DISPLAY 'I/0 ERROR. STATUS KEY VALUE
IS' CHK.
GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This user-
created routine can determine the exact
cause of the I/0 error by checking the

Status Key. Once the cause is determined,
instructions can be issued according to the

user's desired response to each type of
error.

Example 3:

This example also shows the creation of
a COBOL KSDS, but with the addition of an
alternate key; this program serves the same

function as Example 2.
IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT INREC
ASSIGN TO UR-2540R-S-INFILE.

SELECT OUTREC
ASSIGN TO DA-2319-OUTFILE
ORGANIZATICON IS INDEXED
RECORD KEY IS ARG-1
ALTERNATE RECORD KREY IS ARG-2
FILE STATUS IS CHK.

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECORDS ARE OMITTED
DATA RECORD IS INMASTER.
01 INMASTER PIC X{80).
FD OUTREC LABEL RECORDS ARE STANDARD
DATA RECORD IS OUTMASTER.
01 OUTMASTER.
05 FILLER PIC X.
05 ARG-1 PIC XXX.
05 ARG-2 PIC XXXXX.
05 REM PIC X(71).
WORKING-STORAGE SECTION
77 CHK PIC 99 VALUE ZERO.
PROCEDURE DIVISION.
PARA1.
OPEN INPUT INREC OUTPUT OUTREC.
IF CHK IS NOT = 00 GO TO CHKRTHN.
PARA2.
READ INREC INTO OUTMASTER.
AT END GO TO PARAY4.
PARA3.
WRITE OUTMASTER.
IF CHEK IS NOT = 00 GO TO CHKRTN.
GO TO PARA2.
PARAU.
CLOSE INREC OUTREC.
IF CHK IS NOT = 00 GO TO CHKRTN.
FINIT.
STOP RUN.
CHKRTN.
DISPLAY 'I/0 ERROR. STATUS KEY VALUE
IS' CHK.
GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This
user-created routine can determine the
exact cause of the error by checking the
Status Key. Once the cause is determined,
instructions can be issued according to the
user's desired response to each type of
error.

RETRIEVING RECORDS FROM A VSAM DATA SET

The COBOL language statements frequently
used to retrieve records from a VSAM data
set are summarized in Fiqure 79. Examples
3 and 4 illustrate the retrieval of records
from an ESDS and KSDS, respectively.

VSAM File Processing 195

ESDS KSDS RRDS
] il] BE Al
| Environment | SELECT | SELECT { SELECT |
i Division | ASSIGN | ASSIGN | ASSIGN |
| | { ORGANIZATION IS INDEXED | ORGANIZATION IS INDEXED |
| | | RECORD KEY | RELATIVE KEY |
i i | ALTERNATE RECORD KEY { ALTERNATE RECORD KEY
{ | FILE STATUS { FILE STATUS | FILE STATUS 1
| | PASSWORD { PASSWORD | PASSWORD]
{ | RCCESS MODE { ACCESS MODE { ACCESS MODE |
i A4 i 'l]
L] L] L) L} 1
{ Data | FD entry | FD entry | FD entry |
| Division | LABEL RECORDS | LABEL RECORDS | LABEL RECORDS {
L } L L 1
T 1) Ll 1
| Procedure | OPEN INPUT j OPEN INPUT | OPEN INPUT
| Division | READ...AT END | READ | READ {
i | CLOSE { CLOSE { CLOSE |
L K] 1 4 }
Figure 79. COBOL Statements Frequently Used for Retrieving Records From a VSAM Data Set

Example 4.

This example shows the retrieval of
records from the ESDS created in example 1.
The records are then printed.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

.

INPUT-OUTPUT SECTION.
FILF~-CONTROL.

SELECT INREC

ASSIGN TO AS-OUTFILE

FILE STATUS IS CHK.

SELECT PREC

ASSIGN TO UR-1403-S-PFILE.

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECORDS ARE STANDARD
DATA RECORD IS INMASTER.
01 INMASTER PIC X (80).
FD PREC LABEL RECORDS ARE OMITTED
DATA RECORD IS POUT.
01 POUT PIC X (80).
WORKING-STORAGE SECTION.
77 CHK PIC 99 VALUE ZERO.
PROCEDURE DIVISION.
PARA1.
OPEN INPUT INREC OUTPUT PREC.
IF CHK IS NOT = 00 GO TO CHKRTN.
PARA2.
READ INREC INTO POUT AT END GO TO PARAL.
IF CHK IS NOT = 00 GO TO CHKRTN.
PARA3.
WRITE POUT.
GO TO PARA2.
PARAL.

CLOSE OUTREC PREC.

196

IF CHK IS NOT = 00 GO TO CHKRTN.
FINIT.
STOP RUN.
CHKRTN.
DISPLAY 'I/O ERROR. STATUS KEY VALUE IS'
CHK.
GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This user-
created routine can determine the exact
cause of the error by checking the Status
Key. Once the cause is determined,
instructions can be issued according to the
user's desired response to each type of
error.

Example 5:

This example shows the retrieval of
records from the KSDS created in example 2.
Note that in the Procedure Division there
is a switch from sequential processing to
random processing; this is permitted since
ACCESS IS DYNAMIC is specified in the
Environment Division.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE~CONTROL.
SELECT INKREC
ASSIGN TO OUTFILE
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS ARG-1
FILE STATUS IS CHK.
SELECT PREC
ASSIGN TO UR-1403-S-PFILE.

DATA DIVISION.

FILE SECTION.

FD INREC LABEL RECOPDS ARE STANDARD
DATA RECORD IS INMASTER.

01 INMASTER.

05 FILLER PIC X.
05 ARG-1 PIC XXX.
05 ARG-2 PIC XX.
05 ARG-3 PIC XX.
05 FILLER PIC X(72).

FD PREC LABEL RECORDS ARE OMITTED
i DATA RECORD IS POUT.
01 POUT PIC X (80).
WORKING-STORAGE SECTION.
77 CHK PIC 99 VALUE ZERO.
PROCEDURE DIVISION.
PARA1.
OPEN INPUT INREC OUTPUT PREC.
IF CHK IS NOT = 00 GO TO CHKRTN.
PARA2.
MOVE 003 TO ARG-1.
START INREC.
PARA3.
READ INREC NEXT AT END GO TC PARAUL.
IF CHK IS NOT = 00 GO TO CHKRTN.
IF ARG-2 IS = 02 GO TO PARAG4.
IF ARG-3 IS NOT = 73 GO TO PARA3.
WRITE POUT FROM INMASTER.
GO TO PARA3.
PARAY.
MOVE 101 TO ARG-1.
READ INREC INVALID KEY GO TO CHKRTN.
WRITE POUT FROM INMASTER.
MOVE 103 TO ARG-1.
READ INREC INVALID KEY GO TO CHKRTN.
WRITE POUT FROM INMASTER.
PARAS.
CLOSE INREC PREC.
IF CHK IS NOT = 00 GO TO CHKRTN.
FINIT.
STOP RUN.
CHKRTN.
DISPLAY 'I/0 ERROR.
IS ' CHK.
GO TO FINIT.

STATUS KEY VALUE

Note that in this example any Status Key
return other than 00 causes 'transfer of
control to paragraph CHKRTN. This user
created routine can determine the exact
cause of the I/0 error by checking the
Status Key. Once the cause is determined,
instructions can be issued according to the
users desired response to each type of
error.

Example 6:

This example shows the retrieval of
records from the KSDS created in example 3.
Since ACCESS IS RANDOM is specified in the
Environment Division, random processing of
the file is done in the Procedure Division.

IDENTIFICATION DIVISION.

.

ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT INREC
ASSIGN TO OUTFILE
ORGANIZATION IS INDEXED
ACCESS IS RANDOM
RECORD KEY IS ARG-1
ALTERNATE RECORD KEY IS ARG-2
FILE STATUS IS CHK.

SELECT PREC
ASSIGN TO UR-1403-S-PFILE.

.

DATA DIVISION.

FILE SECTION.

FD INREC LABEL RECORDS ARE STANDARD
DATA RECORD IS INMASTER.

01 INMASTER.

05 FILLER PIC X.

05 ARG1 PIC XXX.

05 ARG-2 PIC XXXXX.
05 ARG-3 PIC XX.

05 ARG-4 PIC XX.

05 FILLER PIC X (67).

FD PREC LABEL RECORDS ARE OMITTED
DATA RECORD IS POUT.
01 POUT PIC X(80).
WORKING-STORAGE SECTION.
77 CHK PIC 99 VALUE ZERO.
PROCEDURE DIVISION.
PARA1.
OPEN INPUT INREC OUTPUT PREC.
IF CHK IS NOT = 00 GO TO CHKRTN.
PARA2.
MOVE 003 TO ARG-1.

PARA3.
READ INREC INVALID KEY GO TO CHKRTN.
IF CHK IS NOT = 00 GO TO CHKRTN.
IF ARG-3 IS = 02 GO TO PARAS.
IF ARG-4 IS NOT = 73 GO TO PARAU4.
WRITE POUT FROM INMASTER.
ADD 010 TO ARG-1.
GO TO PARA3.
PARAY,
SUBTRACT 001 FROM ARG-1.
GO TO PARA3.
PARAS.
MOVE 101 TO ARG-2.
READ INREC KEY IS ARG-2 INVALID KEY
GO TO CHKRTN.
WRITE POUT FROM INMASTER.
MOVE 103 TO ARG-2.
READ INREC KEY IS ARG-2 INVALID KEY
GO TO CHKRTN.
WRITE POUT FROM INMASTER.
PARAG.
CLOSE INREC PREC.
IF CHK IS NOT = 00 GO TO CHKRTN.
FINIT.

VSAM File Processing 197

STOP RUN.
CHKRTN.
DISPLAY 'I/O
Is ' CHK.
GO TO FINIT.

ERROR. STATUS KEY VALUE

Note that in this example any Status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This user
created routine can determine the exact
cause of the I/0 error by checking the
Status Key. Once the cause is determined,
instructions can be issued according to the

198

user's desired response to each type of
error.

UPDATING A VSAM DATA SET

The COBOL language statements frequently
used to update a VSAM data set are
summarized in Figure 80. Examples 7 and 8
illustrate the updating of an ESDS and KSDS
respectively.

ESDS KSDs RRDS
r kS L L
{Environment |SELECT | SELECT {SELECT
| Division {ASSIGN { ASSIGN {ASSIGN
i {FILE STATUS {ORGANIZATION IS INDEXED {ORGANIZATION IS RELATIVE
{PASSWORD | RECORD KEY {RELATIVE KEY

| ACCESS MODE
i

{ ALTERNATE RECORD KEY
{PILE STATUS

| PASSWORD

{ ACCESS MODE

i

{FILE STATUS
{PASSWORD
|ACCESS MODE
|

<4

{PD entry
{ Division { LABEL RECORDS
i

T
{FD entry

"I1LABEL RECORDS
1

1
IFD entry
{LABEL RECORDS

L

JOPEN EXTEND
|WHRITE
J|CLOSE

{

{ or

i

{OPEN I-O
{READ ...
{REWRITE

{Procedure
{ Division

[
JCLOSE

L e e e G e Mok WO L G A N s B wn G e D SR g WS o G S e VO . e W S s W St G W0 G-

e ot s G e G i e M s G s T i W e e S B N SR W e W i SO GG s s

AT END

-

OPEN EXTEND
WRITE
CLOSE

or

OPEN I-O
READ ...
REWRITE
DELETE
CLOSE

AT END

+
For ACCESS IS SEQUENTIAL: {For ACCESS IS SEQUENTIAL:

OPEN I-0O
READ ..
REWRITE
DELETE
CLOSE

AT END

ACCESS IS RANDOM:
OPEN I-0O

READ

WRITE

REWRITE

DELETE

CLOSE

JFor ACCESS IS RANDOM:
OPEN I-0

READ

WRITE

REWRITE

DELETE

CLOSE

e Mo s S s > ik i afn - e S — i Niias s

Sequential Processing

\J
For ACCESS IS DYNAMIC with{For ACCESS IS DYNAMIC with

Random_ Processing

o o e B i e e M i B s S e it S M MR i M i s M M e e W s - S s B i

OPEN I-0 { OPEN I-O
READ NEXT ... AT END | READ NEXT ... AT END
WRITE { WRITE
REWRITE { BEWRITE
START { START
DELRTE { DELETE
CLOSE { CLOSE
1
1

For ACCESS IS DYNAMIC with{For ACCESS IS DYNAMIC with

{random_Processing

OPEN I-0 1] OPEN I-O
READ { READ
WRITE { WRITE
REWRITE { REWRITE
DELETE { DELETE *
CLOSE i CLOSE
i

b i i e e S i e o el e s M ke o e e o B s e S ot G it e s amm ek i S S e, e aais ot e ok s o ol S e o ey i o

Figure 80.

COBOL Statements Frequently Used for Updating a VSAM Data Set

VSAM File Processing

199

Example 7:

This example shows the updating of
records from the ESDS data set created in
Example 1.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INREC
ASSIGN TO AS-OUTFILE
FILE STATUS IS CHK.

DATA DIVISION.

FILE SECTION.

FD INREC LABEL RECORDS ARE STANDARD
DATA RECORD IS INMASTER.

01 TINMASTER.

05 FLD1 PCI X{3)
05 FLD2 PIC X(3).
05 FLD3 PIC X({74).

WORKING-STORAGE SECTION.
77 CHK PIC 99 VALUE ZERO.
PROCEDURE DIVISION.
PARA1,
OPEN I-0O OUTREC.
IF CHK IS NOT = 00 GO TO CHKRTN.
PARAZ.
READ INREC AT END GO TO PARA4.
IF CHK IS NOT = 00 GO TO CHKRTN.
PARA3.
IF FLD2 IS NOT = 373 GO TO PARA2.
MOVE 374 TO FLD2.
REWRITE INMASTER.
IF CHK IS NOT = 00 GO TO CHKRTN.
GO TO PARAZ.
PARAG,
CLOSE INREC.
IF CHK IS NOT = 00 GO TO CHKRTN.
FINIT.

STOP RUN.
CHKRTN.
DISPLAY 'I-0O ERROR. STATUS KBEY
VALUE IS* <CHK.

GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This user-
created routine can determine the exact
cause of the I/0 error by checking the
Statias Key. Once the cause is determined,
instructions can be issued according to the
users desired response to each type of
error.

200

Example 8:

This example shows the updating of
selected records in the KSDS created in
Example 2; the records to be updated by the
contents of CARDFILE. Note the use of the
DELETE statement; this could not be used
with an ESDS.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPOUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARDFILE
ASSIGN TO UR-2540R-S~INREC.
SELECT INREC
ASSIGN TO INFILE
ORGANIZATION IS INDEXED
ACCESS IS RANDOH
RECORD KEY IS ARG-1
FILE STATUS IS CHK

DATA DIVISION.

FILE SECTION.

FD CARDFILE LABEL RECORD IS OMITTED
DATA BRECORD IS INCARD.

01 INCARD
05 CARDKEY PIC XXX.
05 FILLER PIC X{77).

FD INREC LABEL RECORDS ARE STANDARD
DATA RECORD IS INMASTER.
01 INMASTER.

05 FILLER PIC X.

05 ARG-1 PIC XXX.

05 ARG-2 PIC XX.

05 ARG-3 PIC XX.

05 FILLER PIC X({(72).

WOBRKING-STORAGE SECTION.
77 CHK PIC XX VALUE ZEROS.

PROCEDURE DIVISION.

PARA1.

OPEN INPUT CARDFILE I-O INREC,

IF CHK IS NOT == 00 GO TO CHRKRTN.
PARA2.

READ CARDFILE AT END GO TO PARA3.
MOVE CARDKEY TO ARG-1.
READ INREC.
IF CHK IS NOT = 00 GO TO CHKRTN.
IF ARG-2 = 01 DELETE INREC RECORD
GO TO PARA2.
IF ARG-3 = 75 MOVE 74 TO ARG-3
REWRITE INMASTER.
GO TO PARA2

PARA3.
CLOSE CARDFILE INREC.
IF CHK IS NOT = 00 GO TO CHKRTN.

INIT.
STOP RUN.

HKRTN.
DISPLAY 'I/0O ERROR. STATUS KEY
VALUE Is' CHK

'LAST RECORD CARDKEY.

G0 TO FINIT.

PROCESSED IS?

lote that in this example any Status Key
'eturn other than 00 causes transfer of
rontrol to paragraph CHKRTN. This user-
:reated routine can determine the exact
;ause of the I/0 error by checking the
jtatus Key. Once the cause is determined,
.nstructions can be issued according to the
iIsers desired response to each type of
)CLOT.

JOB_CONTRBOL LANGUAGE_FOR_VSAM FILE

PR A e

JCL is greatly simplified for VSAM since
111l VsaM data sets must be cataloged
through Access Method Services. In most
cases, specification of the following DD
statement will suffice:

//ddname DD DSNAME=dsname,DISP={OLD]SHR}

The dsname must be the same as the one
specified for this data set through Access
Method Services. :

If the user specifies the COBOL option
AIXBLD, then the DD statement must also
include the parameter AMP='AHORG'.

DD STATEMENTS FOR ALTERNATE INDEXES

When alternate indexes are used in
the COBOL program, the user must specify
not only a DD statement for the base
cluster, but also one DD statement for each
alternate path. The ddname for the base
cluster is the one declared in the COBOL
program., However, no language mechanism
exists to explicitly declare ddnames for
alternate paths in the program. Therefore,
the following convention has been estab-
lished and must be adhered to by the user.

The ddname for each alternate path is to
be formed by concatenating its base cluster
ddname with an integer--beginning with 1 for
the path associated with the first alternate
record defined for that file in the COBOL
program, and being incremented by 1 for
each path associated with each successive
alternate record definition for that file.
For example, if a base cluster's: ddname were
ABCD, then the ddname for the alternate path

of the first alternate record key defined
would have to be ABCD1. The ddname for the
alternate path of the second alternate record
key defined would have to be ABCD2, and so on.

If the combination of base cluster ddname
and sequence number exceeds eight characters,
the base cluster portion of the ddname must be
truncated at the right to reduce the concatenated
result to eight characters. For example, if a
base cluster's ddname is ABCDEFGH, then the first
alternate path's ddname should be ABCDEFG1, the
tenth should be ABCDEF10, and so forth.

The following example shows the connection
between a program using two alternate indexes
and the required DD statements. The base
cluster is named XYZ, and the first alternate
index' pathname is PATHONE and the other's
PATHTWO.

//ABCD DD DSN=XYZ,DISP=0LD
//ABCD1 DD DSN=PATHONE,DISP=0LD
//ABCD2 DD DSN=PATHTWO,DISP=0LD

FILE-CONTROL.
SELECT filename ASSIGN TO ABCD
RECORD KEY IS whatever
ALTERNATE RECORD KEY IS CITY
ALTERNATE RECORD KEY IS PRICE

The key CITY relates to the alternate index
whose pathname is PATHONE, and the key PRICE
relates to the alternate index whose pathname
is PATHTWO.

DD STATEMENT FOR A USER CATALOG

If a data set in a job step is defined
in a user catalog, it is also necessary to
identify the user catalog by means of
either a JOBCAT {Example 1) or STEPCAT
{Example 2) DD statement.

Bxample 1:

//EX1 JOB ene

//J0BCAT DD DSNAME=usercatalogname,
DISP=SHR

7/ EXEC ...

Example 2:

//EX2 JoB
/7 EXEC
//STEPCAT DD

DSNAME=usercatalognare,
DISP=SHR

DD PARAMETERS USED WITH VSAN

Although the operating system does not
disallow 0S/VS DD parameters and
subparameters that 4o not apply to a VSaAM
data set, the COBOL programmer should be

VSAM File Processing 201

aware that some of the DD parameters and
subparameters have certain additional
meanings when used with VSAM. For complete
information on the meanings of the 0S/VS DD
parameters and subparameters, as well as
the potential problems which exist if care
is not taken, see QS/VS_Virtual Storage
Access Method {VSAM) Programper's Guide.

s e e S e oS o i

VSAN-ONLY JCL PARAMETERS

VSAM has one JCL parameter of its own:
AMP. AMP, and its associated
subparameters, is used mainly in
conjunction with specifications made
through Access Method Services. The AMP
parame ter takes effect when the data set
defined by the DD statement is opened. For
details on the use and specification of
AMP, see the VYSAM Prograammer!s_Guide.

CONVERTING NON-YSAM FILES TQ_VSAM FILES

Both SAM and ISAM data sets can be
converted to VSAM data sets so that they
may be processed by a COBOL program using
VSAM. The conversion is done through
Access Method Services.

Essentially, the conversion process
consists of defining a VSAM data set as the
target for the data set being converted.
Then through the appropriate JCL and the
REPRCO command, the conversion is
accomplished.

For a complete description of the
conversion process, see 0S/VS VSAM Access

——— i T e B e e

USING COBOL_ISAM PROGRAMS WITH VSAM_FILES

/

Existing COBOL programs written to
process ISAM files can be used to process
VSAM files by going through VSAM's ISAM
interface., To do this, the programmer need
only make some JCL changes in the COBOL
ISAM program.

The EXEC card should specify the desired
processing program, as usual; the DD card
should be changed to a VSAM DD card as
described above under "Job Control Language
for VSAM File Processing.”

Certain AMP subparameters might be used
for running an ISAM processing program with

202

the ISAM interface. For complete details
on the conversion process, see the YSA}
Programmer's Guide.

YSAM FEATURES NOT_ AVAILABLE_ THROUGH COBOL

Not all of VSAM's facilities can be used
directly through a COBOL program. These
unavailable features include:

® Alternate indexing for ESDS

* Multiple string processing

e Skip-seguential processing (key-ordered
sequential/direct)

e Addressed-direct processing
* Control-interval (low-level) processing
Journaling support

e Alternate index as end-use object (as
base cluster instead of path)
processing

* GET-previous processing
* Asynchronous processing

It is possible to open a VSAM data
set concurrently under two separate
FDs in a COBOL program if the assign
clauses of the SELECT statements

refer to the same DDNAME. When the
ACB is generated, COBOL takes the
GENCB default of 'DDN', which indicates
DDNAME sharing to VSAM. In such a
case, VSAM will share the same buffers
and control blocks for the two ACBs,
and data integrity is preserved.

If the user program attempts to access
records within the same control
interval by using the two separate
file definitions, lock-out may occur.
If the program contains two SELECT
statements for the file but uses
different DDNAMEs, the file can still
be opened. However, data set names
are not shared, and VSAM will use

two completely separate buffer pools
and control block structures. 1In
this case, the integrity of the data
set is not preserved, and updates

to the file may be lost.

Note. Even when the spanned format is
used, the COBOL restriction on the length
of logical records must be adhered to
(that is, a maximum length of 32,767
characters).

The lister feature of the IBM 0S/VS
COBOL Compiler can be used by the COBDL
programmer to produce a COBOL source
listing that is reformatted and
cross-referenced to increase
intelligibility and conserve space.

- Optionally, a reformatted source deck can.
be prodaced. The lister output can be
produced either with or without compilation
occurring.

OPERATION OF THE LISTER _FEATORE

The lister accepts source programs
written in 0S/VS COBOL, analyzes the source
statements, and produces the reformatted
and cross-reference source program. The
output is either in the form of a listing
or as a listing and a punched deck.

This reformatted source output follovs
indenting conventions imposed by the lister
to increase readability, and contains
cross-references between data items and
Procedure Division statements, between
PERFORN statements and paragraph names,
etc. Optionally, the lister produces a new
source deck that matches the output listing
except that cross-reference information is
omitted.

Thus the lister can be used to process
source decks for uniformity of imdenting
and for highlighting of statements such as
IF¥, GOTO, etc., or it can be used to obtain
a cross-referenced source listing as
permanent documentation of a production
program, or for use as an aid in progran
analysis and debugging. Various options
permit printing the Procedure Division
listing in two columns to conserve space
and the inclusion of BASIS and COPY
statements.

Notes: Llister ignores the carriage
control statements SKIP and EJECT. VWhen
LISTER is in effect, the NOM option has no
meaning.

PROGRAMMING CONSIDERATIONS

The lister is designed to operate most
efficiently on syntactically correct CCBOL
source, and does not have the expanded
error handling of the full compiler. It is
therefore highly recommended that the user

LISIER FEATURE

programs first be compiled using the SYNTAX
option, and syntax errors corrected before
invoking the lister feature. If the lister
function is used and there are syntactical
errors, lister processing will be
terminated. The syntax checking in the
lister feature is different from the
checking done by the standard compiler.
Syntax checking is usually more stringent
in the lister than in the compiler. Some
syntax errors that are recognized but
corrected by the standard compiler may be
flagged as errors when using the lister.

The listing produced by LISTER will be
reformatted for that portion of the
program that was syntactically correct.
If LSTCOMP was specified, the SOURCE
option will be forced on.

Further notes: Since lister reformats the
user's COBOL program, conmpilation of the
program, if LSTCOMP is in effect, will be
different from a non-lister compilation of
the same program. FPor example:

1. Lister sequence numbers may be
different.

2. SKIP/BJECT cards will have no
functional value with lister.

3. BASIS card will be dropped from the
lister listings.

4. FIPS messages will be based on the
reformatted lister listings.

5. Suppress option of COPY will have no
effect.

6. Sequence checking will not take place
for a lister sum.

7. Source statements copied from a
user-created library as a result of a
COPY statement are not reformatted.
However, statements which begin in
columns 8-11 will be indented to
column 8 in the lister output, and
those which begin in columns 12-72
will be indented to column 12.

8. Lister terminates upon detecting a
syntax error in the COBOL source
program. When such an error is
detected, lister issues an error flag
to signal that the following source
cards are to be passed on without
processing. Lister then treats the
balance of the program as comment
cards.

Lister Feature 203

In addition to the condition mentioned
above, unusual termination of lister can
occur if the source program contains:

e Too many (approximately 80 or
more) consecutive *-comments
cards.

e Too many (approximately 100 or
more) consecutive blank cards.

e Too many (approximately 100 or
more) consecutive cards for a
single data item.

If one of the above three conditions

occurs, the file written on SYSUT2 is
incomplete.

204

THE LISTING

The reformatted output listing is

divided into four parts:

1.

A one-page introduction which
summarizes briefly lister codes,
conventions, uses.

The Identification and Environment
Divisions.

Detailed, cross-referenced,
reformatted Data and Procedure
Divisions.

The Summary listing.

These (except the introduction) are
described briefly below, and in greater
detail in subsequent sections.

THE OUTPUT DECK

The deck produced optionally by the
lister may be saved either in card form or
in a COPY/BASIS library. This output
reflects the reformatted source progranm.
The output deck is described in detail
later in this chapter.

REFORMATTING OF IDENTIFICATION AND
ENVIRONMENT DIVISIONS

The lister reformats the Identification
Division statements only by imposing
indenting conventions. Statements are
indented two positions, and continuations,
if any, are indented six additional
positions.

Environment Division statements are
reformatted by imposing indenting
conventions and by appending
cross-reference information to SELECT
statements in the FILE CONTROL section.
Thus, in reading the FILE CONTROL section,
there are direct references to the file
description statements in the Data
Division.

IOENTIFiICATION DIVISION.
PROGRAM=1D. TESTRUN.

1

5

4 INSTALLATION. NEW _YORK PRO
5 DA 1

é

7

GRAMMING CENTER.
A L IE D JRu 251.5705
= - rd -
KS. THIS PROGRAM'HAS BEEN WRITTEN AS A SAMPLE P
REMAR EgB?hpg%ERs. 1T CREATES AN OUTPUT FILE AND REA
10 ENVIRONMENT DIVISICN.
11 CONFIGUKATION SECTION.
12 SOURCc-COMPUTER. IBM-370-168.
15 QBJECT-COMPUTER. IBM-370-168.
13 INPUT-OUTPUT SECTION.
R % 3 (Y
17 seLecT SiiEN TO UT=2400~5~SAMPLE.
e b
ASSIGNTO UT=2400-S-SAMPLE.
Note:

(:) Refers to FD statement numbers in the Data Division.

Figure 81.

ROGRAM F
DS IT

Figure 81 is an example of reformatted
Identification and Environment Divisions.
{The note shown is not produced by the
lister program.)

DATA DIVISION REFORMATTING

The lister reformats the Data Division
principally by imposing indenting
conventions. In addition, it aligns
PICTURE, VALUE and other clauses vertically
to improve readability and facilitate
visual checking. Such clauses as REDEFINES
and OCCURS are highlighted as a result of
the alignment. All indenting is with
respect to the left margin, which contans
the statement number.

FDs and level-77 items are indented
zero, level-01 items are indented two and
level-02 items are indented four. Level 03
and lover are each indented two from the
last higher level item, up to seven levels
of indentation. Use of this convention,
makes the overall structure of each file
and group data item immediately apparent to
the reader of the listing.

The most striking change in the
appearance for the Data Division listing is

OR
BACK

21
29 (:>

Sample Identification and Environment Division Output Listing

Lister Feature 204.1

the addition, at the right of each
statement, of cross-references that
identify the statement number of each Data
Division or Procedure Division statement
that redefines, changes, reads, tests, or
othervise refers to the data item. When
the number of such references is too great
to fit on the line, the lister prinmts as
mrany as there are room for, on the line,
and prints the remainder as a footnote at
the bottom of the page.

The eight codes used in the Data
Division are:

C Data item changed (such as by ADD or
MOVE)

B Data item referred to by Environment
Division statement ({SELECT) or by some
Procedure Division input/output
operation (OPEN, CLOSE, INITIATE, etc.)

D Data item changed by REDEFINE or RENANE
Q Queried by IF, WHEN, or UNTIL
R Referred to by a READ, ACCEPT, or

similar statement

U Data item unchanged (used as a source
field)

w Referred to by a WRITE, GENERATE,
DISPLAY, or similar statement

X Bsed as an index, subscript, or object
of a DEPENDING ON statement

Use of these codes is depicted in FPigure
82, which is an example of a reformatted
Data Division. (The notes shown in the
figqure are not produced by the lister.)

Lister Peature 205

NP
-0 0

N
[¥a1. L)

VNN nN A DD DD DA NS WL W sty
UL LR ONEOWNDLNE-OVD - O

DA
Fl
FD

ol

0l

o
-

TA DIVISION.
LE_SECTION.
Flle=1)
LABEL RECORDS ARE UMITTED
BLOCK CONTAINS 5 RcCORDS
ReCORD CONTAINS 20 CHARACTERS
RcCORDING MOCE 1S #
DATA RECORD IS RECURD-1.
01 _RcCORD-1.
FIELD-A PICTURE IS X(20).
Flte=-2
LABEL RECORDS ARE UMITTED
BLOCK CONTAINS 5 RcCOKDS
RcCORD CONTAINS 20 CHARACTERS
ReCORDING MOCE IS F
DATA RECORD IS RECURD-2.
01 CORD-2.
02 FIELD~A PICTURE IS X(20).
RKING-STORAGE SECTION. ° R 9
KOUNT YN ICTU S99 OMP o
g?Tpgﬁ SYN PIEYURE S99 oMP .
L .
02 ALPHABET PICTURE X426) VALUE “ABCDEFGHIJKLMNOPQRSTUVWXYZY,
02 ALPHA REDEFINES ALPHABET OCCURS 26 TIMES PICTURE X.
02 DuPENDENTS PIC A{26) VALUE "01234012340123401234012340",
02 DcPEND REDEFINES DcPENDENTS OCCURS 26 TIMES PICTURE X.
WORK—-RECORD,
05 NaME-FIELD PICTURE X
05 FILLER PICTURE X VALUE IS SPACE.
05 RuCORD—-NO PICTURE 9999.
05 FULLER PICTURE X VALUE IS SPACE.
05 LUCATION PICTURE AAA VALUE IS "™NYCW™.
05 FILLER PICTURE X VALUE SPACE.
05 Nu—-OF-DEPENDENTS PICTURE XX.
OSREéékbia PICTURE X(7) VALUE IS SPACES.
02 A PICTURE S9(4) VALUE 1234,
02 B REDEFINES A PICTURE $9(7) COMPUTATIONAL-3.

Notes:

@O OO

Figure 82.

206

¥D referred to by SELECT statement in Environment Division.

16E,62E, B1E

75W
17€482E9 86Ry 94E

9Xe T1 Xy TT!
1955

7710
74 75W s 86R 5 SL W
65¢
72t «—(0)

71C+89Q,90C

560D
55/70 70U

Associated SELECT statement; E denotes Environment Division reference

(or OPEN/CLOSE from Procedure Division).

Procedure Division statement; R denotes that this statement reads this file.

Procedure Division statement; C denotes that this statement changes this data item,

43/ indicates that DEPENDENTS is defined in statement 43.

The 44D following statement 43 indicates the same relationship between these two statements.

Sample Data Division Output Listing

PROCEDURE DIVISION REFOBMATTING

The lister reformats the Procedure
Division by applying indenting conventions
to nested IFs, GOTOs, etc., and by
appending cross-references to sectioans and
paragraphs to indicate that the stateaent
is arrived at from either a 60 TO or a
PERFORM. It also appends references to the
Data Division so that the data item being
acted on can be found quickly. The five
codes used in the Procedure Division are:

A ALTER

B (ALTER) to PROCEED TO
6 GO TO

P PERFORN

T (PERFORM) THRU

Use of the codes G, P, and T is depicted
in Figure 83. The A . and B in Figure 83 are
examples of lister's footnoting of
elementary 01- and 77-level data items {pot
of ALTER and PYOCEED TO). If additional
such data items were present, they would be
identified by footnotes lettered C, D, E,
and so forth.

Lister Feature 207

wwiw w

NN O

I Z il W22
QNWEZNNINO =il —Nm
QO | | | gD T W}t |
= O DWWLNO00 ZWZ E0DD
BOOWREION | | ZQFIDDD
NG | CWOmOWE=UL OOMLZNNY
1LSZ I XOULEZTZOO0L L1 L |
Al | 1) W POVOOOVD
e ZUI D Wi o b e e WZ DD DDDDD
ULIRTBRRRRRWMEBBBBBBB
@LEQUW OO0 00 D T Lk i) W uuwl
OFAX X JNNNNNLEZI0Q00000

SPECTAL-REGISTERS ~-

o
]
N
OO0 O =N T INO 0 NN OmiN MU0
PO OCO0OCOOOOO mirmd i rdrtemivmi

o <00 OND
N> » Sunng
<N -~one
Qo <OgD
xa -l -
w Qb= ~N 3
] (= ¥+ ¢
wz
o [-4=]
b
W
w Tuw
- =X
= -
w >
-t
- it .
Do] 7]
awn Zrelld -
- o -d Z
2w wE=Q w
(=13 [] Q
Z Z «=Z 2z
w =] « W
IOo - o a
-0 V= -
Wil W w Q
% Ul - I -}
Zw Wi wow
wN wT I o
Qu=t ({4 oy
Qd Xxo_0 z Qe
.4 y oz g ZQ
2~ QI~E z F4
Zp= z w =X
e QoI o =0
2Z ZXUll - &
(=11 . OZ -0
-l Ll mbdd - =)
3o | Zda> - Z
o WO oZ 2
. U SOUSd XD+
Z -y Oa Wo X0
j=} wo U wWOwn ZO0X Dk
- Tw QI = DX~
7] b i 1= Q0 #Aax
- < =] -] YZaq ZWw
> w Al O a 2 Towp
o - <o =EgQZ ~OOA o X
O TITQ DDUId MeeJdwud
- DN~ L= Z
w . - D
X _ew ~ZuWww N wa N
S Z= | Wik OQ>E>>
Q =g a.6.go aQLO0Ql
w oz woxZz WEATOEE
LW - [od
Q o v 7]
3
a
~ oe NP O DU =N
0 nn W 0V O W=

45
27445

2 THRU STeP=3 UNTIL KOUNT IS EQUAL 66573,A

T0_26.
NOTE THAT THE FOLLOWIN, CLOSES OUTPUT AND REOPENS IT AS

INPUT.

A
PERFORM STEP-

E

0

W
STEP=—4,

1
i
7
i
v
78

—on

2
2
S

FILE AND SINGLE

29445
93

INTu WORK-RECORD AT END

926
ILE=2 RECORD
O STEP-8.

b

NN
nnswo

-UF-DEPENDENTS IS EQUAL_TO "o"
Ve ®Z% TO NO-OF-DEPENUENTS.

WO N

T2V

C967C 969X+ TL X, 77Q

Cy68C

63
63

COMP,
CoMmp.

SYNC
SYnC

Notes

(:) Lister footnotes all occurrences of 77-lével and elementary 01-level data items.

(:) Statement 66 is arrived at through PERFORM in statement 77.

(:) Statement 77 contains the PERFORM of statement 66.

C) Statement 85 is arrived at through GO TO in statement 92,

Output Listing

ivaision

Sample Procedure D

Figure 83,

208

FPigure 84,

SUMMARY LISTING

The summary listing provides an overall
view of the relationship among FDs, RDs,
SDs, and SECTIONS. The entry for each of
these major parts of the program consists
of a title line showing the statement
number and the name of the file, record, or
section and a series of counts {by
reference type) for each of the categories
“from" and "to.," Intra references are also
shown for WORKING-STORAGE and PROCEDURE;

IDENTIF.CATION DIVISION.
1C ENVIRONMENT DIVISICN.

11 CONFIGURATION SECTION.
Iéﬁ lNPg}'DuTPYTEiicTION.

29 1 E-1

18 DATA DIVISIEON.

20 FILE SELTION.
FILE-1

-

21

FRCM L% 1L |®

FEEMF[LEZZ 1 E-1 "
57 - Y

37 WORKING-STORAGE SECTION.

INIGA 0 o1 823, ar2uRm1euma s w3 X2

(Pl araceoue DIULSTEN: 1 «—©(D)

1 21 3 E-24W-1

Z5IR-1
2 S G 1458 TS WRVROORVE: ST

¢¢ —— COBOL SPECIAL-REGISTERS --

L o

VRO~ —RU
»>>
~r
by
P>
©

ET

e UL
gecen: 3
RS

DT T DD
gcc

79

U

c

o

|

o et ulat

el
FY-XUFS

N
&0
POZZZEIr AMTTITOOOODODDOOD®

o

m

Z.

<

m

z

-

w

MmMMmMoM >0 [
Sﬂﬂﬁ—z? x :5 (=

G Hwod
x
1
T3TCZT
ci>
x
1
o
—
~
m

=N

OFEUEPENDENTS

BER

NI-SWITCH
-~NO

-
L UL CUCUu A NL RS
[T RSP Srdd A 2018 It

e
G0 0 CCOCOCY
& &
Y
mmn:®
0 -
l)
(™S b
i
-
c
x
2

X OW):l:mn

E-uF=DAY
WHEN-LUMPILED
WORK-RECORD

—

Notes:

C) The INPUT-OUTPUT section contains references to one data item
in FILF-1 and one data item in FILE-?,

(@ FILE-1 is referenced once from the INPUT-CUTPUT section and three

times from the Procedure Division.

C) The Procedure NDivision contains four intra references.

Sample Suammary Listing

these are references within the section,
file, or record, such as REDEFINES and
PERFORM operations. "From" are the
references from other parts of the progranm
to this part and "to%" are the references to
other parts from this part. The other
parts are identified by the numbers of
their first statements; these numbers
appear in the column just to the right of
the words INTRA, FROM, and TO.

Figure 84 is an example of a summary
listing.

Lister Feature 209

THE SOURCE LISTING

The source listing of the
Identification, Environment, and Data _
Divisions may be considered as having three
“columns." The leftmost contains a o
statement number, or is blank if the line
is either a comment or a continuation of
the preceding statement or line. The
second contains the reformatted COBOL
statements. The third {not present as an
independent colaman in the Procedure
Division) contains references to or from
other statements in the source program.
Thus, each line of the output listing
contains a numbered source statement or its
unnumbered continuation, and a reference or
series of references to all other
statements in the source program that refer
to it. If the series of referemces is too
long to fit on the line, the lister prints
as many as will fit, followed by a letter
indicating a footnote. The footnote
contains the remainder of the references.

The source listing of the Procedure
Division is normally printed in
double~colunn format, with each column
divided as described above. This format
approximately doubles the span of logic
that can be seen on one page or one
facing-page spread.

Regardless of whether the source code
follows indentation conventions, the lister
indents statements according to their type,
and according to hierarchy where
applicable. This feature of the lister
mnakes file and record structure immediately
visible and also helps to identify groups
of related statements such as IF/ELSE and
nesting of IFs.

Note: If blank lines are present in the
original source, the lister eliminates
them and renumbers the statements
accordingly.

Format Conventions

New statements are indented from the
left margin, which contains the statement
number. The lister treats the following as
new statements:

» Division and Section headers
e Paragraph names

s Level numbers or level indicators (FD,
RD, etc.)

210

» Verbs
* ELSE/OTHERWISE
e AT END (only when following SEARCH).

Indéntafion offfhe new étatement is pade
according to the following rules:

1. Data Division

e FDs and level 77 items are indented
Zero.

» Level 01 items are indented zero in
the Linkage and Working Storage
sections and two in the File anad
Report sections

» Each subsequent lower level within
an 01 item is indented two more than
the preceding higher level, up to a
maximum of 14 character positions or
7 levels.

2.” Procedure Division
e Section names are indented zero
* Paragraph names are indented two

» Unconditionally executed verbs are
indented four

» Verbs executed under a single
condition, such as IF or AT END, are
indented six

e The first IF in a nest is indented
four, subseguent nested IFs are
indented an additional two at each
level uyp to a maximum of 14 character
positions or 6 levels.

e ELSEs are indented to the sane
position as the IF to which they
correspond.

3. Continuation lines in all divisions
are indented six with respect to the
first line of the continued statement.

Word spacing within a statement and on
continuation lines is usually one space.
Within the Data Division, however, PICTURE
and VALUE are aligned as nearly as possible
into columans so that they may be found and
compared easily. Words are never split at
the end of a line unless the word to be
split is a nonnumeric literal that will not
fit on a single continuation line.

References appear to the right of the
statement or continuation line. References
follovwing paragraph or section names appear
immediately to the right of the nanme,
separated by a blank, References following
other types of statements appear as far to
the right as possible depending on the

number of blanks available on the line.
Each reference consists of a statement
number and a type indicator.

when references are in series, they are

separated by commas and are in ascending
order.

Lister Feature 210.1

Within the Data Division, a reference
series may end with an alphabetic footnote
indicator. The footnote contains the
remaining references to that data iten.

In the Procedure Division, the reference
may also be a footnote indicator, but the
footnote is different in appearance. In
the Procedure Division-, the footnote is
actually an on-page replica of the Data
Division statement referred to by the
footnoted statement. This replica is
complete with all other references to the
data item from other portions of the
program. To conserve space in the listing,
the lister does not repeat a footnote if it
appears at the bottom of either of the two
preceding pages but instead reuses the same
footnote letter in the new reference.

Iype Indicators

As mentioned above, a reference consists
of a statement number and a type indicator.
The type indicator provides immediate
information as to what is being done by the
statenent referred to.

Two sets of type indicators are used by
the lister: omne for the Data Division and
one for the Procedure Division. Within the
Data Division, the type indicators are:

o Data item changed {such as by ADD
or MOVE)

D Data item REDEFINED or RENAMED

E Data item referred to by
Environment Division statement
{SELECT) or by some Procedure
Division input/output operation
{OPEN, CLOSE, INITIATE, etc.)

Q Queried by IF, WHEN, or UNTIL

R Referred to by a READ, ACCEPT or
similar staterment

U Data item unchanged {used as a
source field)

W Referred to by a WRITE, GENERATE,
DISPLAY, or similar statement

X Used as an index, sabscript, or
object of a DEPENDING ON statement

Within the Procedure Division, the type
indicators are:

A ALTER

B (ALTER) TO PROCEED TO

E INPUT or OUTPUT PROCEDURE (SORT
Feature) :

G GO ToO
P PERFORM
T

(PERFORM) THRU

THE SUMMARY LISTING

The summary listing is useful both as an
analysis and as a troubleshooting aid.
Using the summary listing, the user can
ascertain quickly which data areas are most
referred to, vhich procedures refer to thenm
most often, and the nature of those
references. The number of references to
undefined symbols and the number of
incorrectly coded COBOL statements can also
be ascertained.

General Appearance

Pach division or section header, angd
each FD, BRD, or SD begins a new entry in
the summary listing. The entry consists of
the header line, and beginning on the next
line, the total number of each kind of
reference to that section from within
itself (INTRA), and from outside itself
{FPROM) . These are followed by similar
information for references the section
makes to others outside itself {(T0). The
type indicators used for references are the
same as those used in the source listing.

In large programs, with either no
sections or very large sections in the
Procedure Division, the lister summary may
not be very helpful. This can be remedied
by adding SECTION statements to the source
program at appropriate points. If SECTION
statements are being added to a program
that already contains some, it is very
important to make certain that both
implicit and explicit reference qualifiers
are not invalidated.

THE QUTPUT DECK

Optionally, the lister can produce a new
COBOL source deck that reflects the
reformatted source listing. This deck may
be saved in a BASIS library, used directly
as input to the compiler, or punched into
cards. As a result of reformatting, the
nev deck may contain more cards than the
original, but the difference is not great
enough to cause any appreciable increase in
compilation time., The output deck differs
from the listing as followus:

Lister Feature 211

1. References, footnotes, and blank lines
are onmitted.

2. Literals will be repositioned if
needed to assure proper continuation.

3. Statement numbers are converted to
card numbers.

a. The statement number is multiplied
by 10, and leading zeros added as
necessary to fill columns 1
through 6.

b. Comment and continuation cards are
numbered one higher than the
preceding card.

The lister feature is specified in the
PARM field of the EXEC card through five
compiler options. The combination of
options that are selected determine both
the format and contents of the lister
output. Either LSTONLY or LSTCOMP must be
specified for the other options to have
meaning, unless BATCH is specified. 1In a
batch compilation, if some or all of the
programs are to be compiled asing the
lister feature, L120 or L132 must be
specified in the PARM field of the EXEC
card--even if LSTCOMP or LSTONLY are
specified on the CBL card.

The five lister options are described
below. Note that the IBM-supplied defaults
are indicated by an underscore; they can be
changed when the compiler is installed.

The lister options are as follows:

LSTONLY
LSTCOMP
indicates whether the lister feature
is to be used., LSTONLY specifies that
a reformatted listing is to be
produced but that no compilation is to
occur. LSTCOMP specifies that both a
reformatted listing is to be produced
and compilation is to occur in the
same job step.

212

FDECK
NOFDECK
indicates whether a copy of the
reformatted source program is to be
written on the SYSPUNCH data set.
Since FDECK has meaning only with
either LSTONLY or LSTCOMP, the lister
output will be both a reformatted
" listing and a reformatted deck. COPY
statements within the sounrce progranm
will be produced as COPY statements,
or, if CDECK is in effect, the
expansion of the COPY statement will
be produced.

CDECK

NOCDECK
indicates whether or not COPY
statements are to be converted to
comment statements in the output
listing and the COPY members are to be
expanded. CDECK may be specified with
FDECK or NOFDECK. #With FDECK, the
source deck produced will contain the
expansion of COPY statements; with
NOFDECK, only the expansions of COPY
statements are produced.

Lcout

Lcor?2 :
indicates whether the Procedure
Division part of the listing is to be
in single~or double- column format.

L120

L1132
indicates whether the length of each
line of the reformatted listing is to
be 120 or 132 characters long.

A programmer using the IBM 0S/VS COBOL
Compiler under the IBM Operating Systen,
has several methods available to him for
testing and debugging his programs. Use of
the symbolic debugging features are
described in detail in this chapter.

"Appendix A: A Sample Program" contains
an example of a program run without the
symbolic debugging features. The chapter
"program Checkout" contains information
useful for finding the instruction that
causes the abnormal termination and then
correcting the problem. The chapters
"output" and "Using the Checkpoint/Restart
Feature" include a discussion of compiler
output and a description of taking
checkpoints and restarting progranms,
respectively.

Note: The program product IBM 0S5 COBOL
Interactive Debug (Program Number 5734-CBU4)
enables the user to debug his COBOL
programs from a TSO terminal. To be
acceptable for Interactive Dehug, a program
mast be compiled with the TEST compiler
option. TEST overrides FLOW, STATE, SYMDMP
and COUNT. However, note that TEST may not
be specified with BATCH, since BATCH
overrides TEST. TEST will also be
cancelled if the program contains USE POR
DEBUGGING statements. 1Interactive Debug is
described in greater detail in the "Progranm
Checkout™ part of this publication.

USE OF THE SYMBOLIC DEBUGGING FEATURES

As an aid to debugging, compiler options
can be regquested that provide additional
diagnostic information for an abnormal
termination other than one caused by
"Canceled by Operator®™ or exceeding the
system-state time slice. Three user
options are available for object-tinme
debugging -- the statement number option
{STATE), the flow trace option (FLOW), and
the symbolic dump option {SYMDMP).

The STATE option causes the number of
the card for the last verb executed bhefore
termination to be printed out. The FLOW
option causes a trace of the last
user-specified number of procedures
executed to be printed out {with a default
of 99). Both STATE and FLOW cause the
PROGRAM-ID, the completion code, and the
last problem PSW to be printed out. The
SYMDMP option enables the user to regquest a
symbolic formatted dump of the data area of

the object program for an abnormal
termination, or to request dynamic dumps of
data areas at strategic points during
execution,

Use of these features requires no source
language coding; rather the user specifies
these optionrs at compile time, through job
control language. Operation of the SYMDMP
option is dependent on execution-time
control cards. Figure 86 illustrates the
output generated for each of these
features.

When any of the debugging options is
specified, the programmer must:

» Request the option at compile time by
specifying it in the PARM field or, if
a cataloged procedure is used, in the
PARM.COB field.

e Include a //SYSDBOUT DD card for the
debug output data set at execution
time.

» Make the COBOL library available at
execution time by specifying the
following DD statement:

//STEPLIB DD DSN=subr-libname, DISP=SHR,
VOL=SER=volser,0NIT=unit

{This is necessary because certain
COBOL lidbrary subroutines are loaded
dynamically from the subroutine library
only as needed; they are not
link-edited into the COBOL object
program.)

e If the COBOL program being debugged
is to be invoked from a higher-level
non-COBOL program, the programmer must
ensure that the non-COBOL program calls
the COBOL library subroutine ILBOSTPO
before calling any COBOL program. For
further information on this point, see
the section "Calling and Called
Programs®™ in this manual.

STATE Option

If the STATE option is in effect and an
abnormal termination occurs, the printed
output includes the compiler-generated card
number or, if NUM is in effect, the card
sequence number for the last verb executed.
Violation of the rule against mixing RES
and NORES programs in a single run unit may
result in erroneous information from STATE.

Symbolic Debugging Features 213

FLOW Option

If the FLOW option is in effect, a
formatted list containing the PROGRAM-ID
and either the compiler-generated card
number or the line number (if NUM is in
effect) of the last n executed procedures
is printed on SYSDBOUT. The number of
procedures traced can vary from 1 to 99 and
is specified by the programmer.

The number of procedures to be traced may
be specified at compile time via either the
PARM parameter or, if a cataloged procedure
is used, the PARM.COB field. This number
may be overridden at execution time via the
PARM parameter or, if a cataloged procedure
is used, the PARM.GO parameter. If the
number of procedures traced is specified at
neither compile time nor execution time,
either the default value of 99 or the value
specified at program product installation
will be employed. When using FLOW or
NOFLOW at execution time, the option pust
be preceded by a slash "/". (See Figure 8
for an exanmple.)

If batch compilation is used, FLOW can
be specified at compile time and remain in
effect for every program in the batch. To
suppress a trace for a particular program
within the batch, the programmer should
specify NOFLOW at execution time as the
last parameter in the PARM field for that
program, or change the CBL card. For more
information, see the sections "Options for
the Compiler® and "Options for Execution."

Note: The FLOW option is completely

independent of the READY/RESET TRACE
feature of the debugging language.

SYMDMP Option

If the SYMDMP optiomr is in effect, a
symbolic formatted dump of the object
program's data area is produaced when the
program abnormally terminates. (The SYMDNP
option cannot be used if the source program
contains USE FOR DEBUGGING and WITH
DEBUGGING MODE.) This option also enables
the programmer to request dynamic dumps of
specified data-names at strategic points
during program execution. If two or more
COBOL programs are link-edited together and
one of them terminates abnormally, a
formatted dump is produced for all programs
in the calling segquence compiled with the
SYMDMP option, up to and including the main
program in the reverse order of their
calling sequence. ({The terminating progras
itself need not have been compiled with the
SYMDMP option.)

214

By specifying a //SYSDTERM DD card in
addition to the //SYSDBOUT DD card, dynamic
dump output will be written onto SYSDTERM
while the abend dump output will go to
SYSDBOUT. SYMDMP output will be
formatted at 55 lines to the page.

Note: The TSO programmer should assign
SYSDTERM to the terminal since dynamic dump
output is interruptable. SYSDBOUT should
be assigned to a direct access data set
which could be listed at the terminal after
the ABEND is complete.

The abnormal termination dump consists
of the following parts:

1. An abnormal termination message,
including the number of the statement
and of the verb being executed at the
time of an abnormal termination.

2. Selected areas in the Task Global
Table.

3. ‘A formatted dump of the Data Division
inclading:

{a) For an SD -- the card number, the
sort-file-name, the type, and the
sort record.

{b) For an FD -- for VSAN: OPEN/CLOSE
status, card number, organization,
access mode, last I/0 operation,
file status, and the fields of the
record. PFor non-VSAM: the card
number, the file-name, the type,
the ddname, the DECB and/or DCB
status, the contents of the DECB
and/or DCB in hexadecimal, and the
fields of the record; also, for
QSaM, the file status.

{c) For an RD -~ the card number, the
report-name, the type, the report
line, and the contents of
PAGE-COUNTER and LINE~-COUNTER if
present.

{(d) Por a CD -~ the CD itself in its
implicit format, as well as the
area containing the message data
currently being buffered.

{e) For an index name -- the name, the
type, and the contents in decimal
which represents an actual
displacement from the beginning of
the table that corresponds to an
occurrence number in the table.
The value is calculated as the
occurrence number minus one,
rultiplied by the length of the

entry that is indexed by this
index-name.

The symbolic dump option is reguested at
compile time via the SYMDMP option, through
the PARM parameter of the EXEC card.
Operation of the symbolic dump option is
dependent on object-time control cards
placed in the SYSDBG data set {see also the
"Default SYSDBG Data Set" section that
follows). This data set must consist of
unblocked 80-byte records. 1If the
object-time control cards are not present,
SYMDMP is canceled at execution time.

These cards are discussed below.

Object-Time Control cCards

The operation of the SYMDMP option is
determined by two types of control cards:

Program-control card -- required if
abnormal termination and/or dynamic
dumps are requested.

Line-control card -- required only if
dynamic dumps are requested.

syntax Rules: The fields of both the
program-control card and the line-control
card nmust conform to the following rules:

1. Control cards are essentially free
form, i.e., parameters coded on these
cards can start in any column.
However, parameters may not extend
beyond column 71.

2. PEach parameter except the last must be
immediately folloved by a comma or a
blank.

3. No commas are needed to account for
optional parameters that are not
specified.

4, All upper-case letters in IBM
documentation represent specifications
that are to appear in the actual
statement exactly as shown.

5. A1l lower-case letters represent
generic terms that are to be replaced
in the actual statement.

6. Brackets are used to indicate that a
specification is optional and is not
always required in the statement.

7. Brackets enclosing stacked items
indicate that a choice of one item
may, but need not, be made by the
programmer.

8. Braces enclosing stacked items
indicate that a choice of one item
pust be made by the programnmer.

9. All punctuation marks and special
characters shown in the statement
formats other than hyphens, brackets,
braces, and underscores, must be
punched exactly as shown. This
includes comras, parentheses, and the
equal sign.

Note: Blanks may be substituted for

CORMA S

Continuation _Cards: To continue either the
program-control card or the line-control
card, the programmer must code a nonblank
character in column 72 of the coatinued
card., Individual keywords and data-names
cannot be split between cards.

control Statement Placement: If a main
program is compiled with the SYMDMP option,
or if at least one subprograr called by the
main program is a COBOL program compiled
with the SYMDMP option, the control cards
may either follow or precede the
programmer’s data, if any, in the input
strean:

//60 EXEC PGH=
//GO0.SYSDBG DD *

{user's control cards}

/*
//G0.SYSIN DD *

fuser's data cards, if any}
Vi

For an example of the control statements
used to compile a program with the SYMDAP
option, see Figure 86.

Program-control Cards: A program-control
card must be present at execution time for
any program requesting a SYMDMP service.
Program-control cards have the following
format:

JENTRY. |[, (HEX)
program-id,ddname | ,NOENTRY ||, (NOHEX)| [,PDS]

where:

program-id

is a 1- to 8-character program-name of a

COBOL program compiled with the SYMDMP
option. This parameter is required
and must appear first on the
program-control card.

ddnagme

is the execution-time ddname of the file

that was produced at compile time on

Symbolic Debugging Features 215

SYSUTS5. This parameter is required
and must follow the program-id.
ENTRY
ROENTRY

“ENTRY is used to provide a trace of a
program-name when several programs are
link-edited together. Each time the
program whose PROGRAM-ID matches the
“proqram—ld" parameter is entered, its
name is displayed.

NOHEX
is optional and refers to the format
of the Data Division area in the
abnormal termination dump. If HEX is
specified, level-01 items are provided
in hexadecimal. TItems subordinate to
level~-01 items are printed in EBCDIC,
if possible. Level-77 items are
provided both in EBCDIC and
hexadecimal. 7If HEX is not Spe01f18d,
iters subordinate to level-01 iteams
and level-77 items are provided in
EBCDIC. If these items are
unprintable, hexadecimal notation is
provided.

PDS

~— is optional and allows the user to
specify that the debug file, which was
produced at compile time on SYSUT5 and
whose name is ddname, is a partitioned
data:set. In this case, SYMDMP
assumes that program-id is the name of
a member in that debug file. This
option is intended to reduce the
number of execution-time DD cards
required for debug files, when many
programs compiled with the SYMDMP
option are executed together in a
COBOL run-unit. Since each such
program requires a unique debug file,
each program-control card could
contain a unique program-id (member),
the same ddname, and PDS.

Note: The user should be aware that
the debug file produced at compile
time contains device~dependent
relative block addresses embedded in
the data blocks and is, therefore,
unmovable. The only way to alter a
member in an existing partitioned
debug file is through recompilation
replacement. User attempts to
compress the data set through IEBCOPY
or move the data set to another data
set through IEHMOVE will be rejected
by these utilities. Further, the user
should not create a partitioned data
set from several compiler-created
sequential debug files. SYMDMP will
produce message IKF164I and will cancel
debug output for any program whose
debug file has been moved. The only
exception is that a sequential debug,

216

file can be-moved to another sequential
data set on a device of the same type.

Line-Control Cards: Llne-control cards
have the following format: . :

line-numn{, (verb-num) J{ ,08 ol ,n{ ,k1]]

, (HEX) '
. (NOHEX)| [,ALL]

« (HEX)
,WOHEX) y,namel [THRU name2]...

line-nun
indicates’ the card number associated
with the point in the Procedure
Division at which the dynamic dump is
to be taken. The card number is
either the compiler-generated number
or, if NUM is in effect, the user's
‘number in card columas 1 through 6.
The number must be that of a card
containing a section name, procedure
name, conditional verb, or imperative
verb.

verb-num

indicates the position of the verb in
the card indicated by Yline~num"
before whose execution a dynamic dump
is taken. When "verb-num" is not
specified, the value 1 is assumed;
when specified, "verb-num" must follow
fline-num" and may not exceed 15.

ON n{,m{,k1]}
is equivalent to the COBOL statemeant
ON n AND EVERY m UNTIL k... This
option limits the requested dynamic
dumps to specified times. For
example, "ON n" would result in one
dump, given the nth time "line-num»
reached during execution. "ON n,a"
would result in a dump the first time
at the nth execution of *"line-num*" and
thereafter at every mth execution
until end-of-=job. K limits the number
of dumps to the kth occurrence of
"line-num".

is

HEX

NOHEX
refers to the format of the Data
Division areas provided in the dynamic
dump. If HEX is specified, level-01
items are provided in hexadecinmal.
Items subordinate to level-01 itenms
are printed in EBCDIC, if possible.
Level-77 items are printed in both
EBCDIC and hexadecimal. If HEX is not
specified, items subordinate to
level-01 items and level-77 iteas are
provided in EBCDIC. If the items are
unprintable, hexadecimal notation is
provided. Note that if "namel® is
specified and it represents a group
item and HEX has not been specified,

neither the group nor the elementary
items in the group will be provided in
hexadecimal.

nazel [THRU name2]

ALL

represents selected areas of the Data
Division to be dumped. With the THRU

"option, a range of data-names

appearing comsecutively in the Data
Division is dumped. "pamel®" and
“pname2" may be qualified but not
subscripted. 1If the programmer wishes
to see a subscripted item, specifying
the name of the item without the
subscript results in a dump of every
occurrence of that itenm,

results in a dump of everything that
would be dumped in the event of an
abnormal termination for the progranm

specified in the "program-ig®
parameter in the preceding

program-control card.
allovs the programmer to receive a

formatted dump at normal return from

the program. To do this, the
programmer aust ensure that the

generated statement number of the line

on which a STOP RUN, EXIT PROGRAM,

GOBACK statement appears is specified

as the ®line-num" parameter.

DEFA SDBG_DATA_ SET

If the programmer fails to define a
SYSDBG data set, the SYMDMP routines
generate a default SYSDBG data set
equivalent to the following job control
language:

Symbolic Debugging Features

one use of ALL

216.1

//SYSDBG DD *
prog-id SYSUT5
/*

vhere:

prog-id

is the name of the first progran
compiled with the SYMDMP option
encountered in the run-unit. If
the programmer has provided a
SYSUTS DD statement referring to
the file produced during the
compilation of prog-id om SYSUTS,
the effect of this default data
set is to produce normal SYMDMP
output on an abend.

If a run-unit includes one or more
programs that have been compiled with the
SYMDMP option and the programmer desires to
suppress the normal SYMDMP output on an
abend, either of the followvwing methods may
be used:

s omit the SYSUTS DD statement from the
execution step. This will cause the
following message to be produced and
SYMDMP output to be cancelled:

IKF1681 UNSUCCESSFUL OPEN OF DEBUG FILE

o define the SYSDBG data set as
//SYSDBG DD DUMMY

This will cause the following message
to be produced and SYMDMP to be

cancelled:
IKF174T SYMDMP CANCELLED., NC CONTROL
CARDS FOUND.
SYMBOLIC DEBUGGING UNDER _INFORMATION
MANAGEMENT SYSTEM {(PPS5734~-XX6, 5740-XX2)

Execution of a COBOL program compiled with
the options STATE, FLOW, SYMDMP, or COUNT
under IMS requires the COBOL programmer

to write an explicit CALL statement to
subroutine ILBOSPIO in his source progran,
i.e., CALL 'ILBOSPIO?.

» There should be one CALL statement
written at the beginning of the
Procedure Division and following each
ENTRY statement in the progran.

e There should be one CALL statement
ritten at each exit point in the
program, i.e., preceding each GOBACK,
EXIT PROGRAM or STOP RUN statement.

s These CALL statements are effective
only in a COBOL program compiled with

debugging or COUNT, i.e., FLO¥, STATE,
SYMDMP or COUNT options. They must be
executed as a logical pair only once
per COBOL run unit. If COBOL program A
calls COBOL program B, either A or B or
both can be compiled with debugging,
but only the highest level program
compiled with debugging or COUNT
options should contain CALL 'ILBOSPIO?
staterents. The first execution of
ILBOSPIO issues a SPIE macro
instruction to trap the old program PS¥
in the event of a program check before
STAE gets control at abnormal
termination. The second execution of
ILBOSPIO resets any previous SPIE at
task normal termination. At abnormal
termination, ILBODBGO will reset the
previous SPIE.

e Finally, any CALL 'ILBOSPIO!' statements
written in a COBOL program compiled
without any of the above options cause
the subroutine to return control with
po action {SPIE is not issued).

If IMS will link to a COBOL load module
many times in a job step, the ENDJOB
compiler optior should be specified. For
additional information, see the discussion
of the ENDJOB option in the section
*options for the Compiler® in this manual.

SAMPLE_PROGRAN _—-- TESTRUN

Figure 86 contains selected portions of
output from a program that utilizes the
Symbolic Debugging feature. In the
following description of the program and
its output, letters identifying the text
correspond to letters in the progranm
listing. (SYMDMP itself provides no page
headings or numberings omn its output.)

(® Because the SYMDMP option is requested
) in the PARM parameter of the EXEC
card, the logical unit SYSUTS must be
assigned at compile time.

The PARM parameter specifications on
the EXEC card indicate that an
alphabetically ordered cross-reference
dictionary, a flow trace of 10
procedures, and the SYMDMP option are
being requested along with other
options.

© An alphabetically ordered
cross-reference dictionary of
data-names and procedure-names is
produced by the compiler as a result
of the SXREF specification in the PARHM
parameter of the EXEC card.

symbolic Debugging Features 217

®

®

®

® ©

® 0O

218

The file assigned at compile time to
SYSUTS to store SYMDMP information is
assigned to SYSUT5 at execution time.

The SYMDMP control cards placed in the
input stream at execution time are
printed along with any diagnostics.

(@ The first card is the
program-control card wvhere:

{a) TESTRUN is the PROGRAM-ID.

{b) SYSUTS is the ddname of the
SYSUTS file at execution time.

(@ The second card is a line-control
card which requests a {(HEX)
formatted dynamic dump of KOUNT,
NAME-FIELD, NO-OF-DEPENDENTS, and
RECORD-NO prior to the first and
every fourth execution of
generated card number 70.

@ The third card is also a

line-control card wshich requests a
{(HEX) formatted dynamic dump of
WORK-RECORD and B prior to the
execution of generated card number
81.

The type code combinations used to
identify data-names in abnormal
termination and dynamic dumps are
defined. Individual codes are
illustrated in Figure 85.

The dynamic dumps Tequested by the
first line-control card.

The dymamic dumps requested by the
second line-control card.

Program interrupt information is
provided by the system when a progranm
terminates abnormally.

The statement number information
indicates the number of the verb and
of the statement being executed at the
time of the abnormal termination. The
name of the program containing the
statement is also provided.

A flow trace of the last 10 procedures
executed is provided because FLO¥W=10
was specified in the PARM parameter of
the EXEC card.

Selected areas of the Task Global
Table are provided as part of the
abnormal termination dump.

For each non-VSAM file-name, the
generated card number, the file type,
the file status {if QSAM), the file
organigzation, the DCB status, and the
fields of the DCB and DECB, if

applicable, "are provided in
hexadecimal. For VSAM: the card
number, OPEN/CLOSE status,
organization, access mode, last I/0
operation, and file status.

® The fields of records associated with
each FD are provided in the format
requested on the program-control card.

» Message IKF182I appears after any
record N that is part of a closed
file; the status of a file is described
in M . If the record is part of a
closed file, the contents of the record
are not printed; instead, the message
appears. Message IKF182T is described
more fully in "Appendix K: Diagnostic
Messages" in this publication.

(® The contents of the fields of the
Working-Storage Section are provided in
the format requested on the
program-control card.

The value associated with each of the
possible subscripts is provided for
each of the data items described with
an OCCURS clause.

Asterisks appearing within the EBCDIC
representation of the value of a given
field indicate that the type and the
actual content of the field conflict.

Note: When the SYMDMP optionm is used,
level numbers appear "normalized" in the
symbolic dump produced. For example, a
group of data items described as:

01 RECORDA.
05 FIFLD-A.
10 PIELD-A1 PIC X.
10 FIELD-A2 PIC X.

¥ill appear as follows in SYMDMP output:

01 RECORDA...
02 FIELD-A...
03 FIELD-Al...
03 FIELD-A2...

Debugging TESTRUN

1. Reference to the statement number
information (@) provided by the SYMDHP
option shows that the abnormal
termination occurred during the
execution of the first verb on card
81.

2. Generated card number 81 contains the
statement COMPUTE B = B + 1.

3. Through verification of the contents
of B at the time of the abnormal
termination (B, it can be seen that
the usage of B {(numeric packed)
conflicts #with the value contained in
the data area reserved for B (numeric
display).

4. The abnormal termination occurred
during an attempt to perform an
addition on a display item.

More complex errors may require the use
of dynamic dumps to isolate the problenm
area. Line-control cards are included in
TESTRUN merely to illustrate how they are
used and what output they produce.

r T N
1 Code { Meaning i
+ 4
] A] Alphabetic |
{ B 1 Binary {
} D 1 Display 1
{ E 1 Fdited 1
} * { Subscripted Item {
| ¥] Floating Point 1
i N] Numeric |
] P } Packed Decimal {
1 'S 1 Signed i
i OL] overpunch Sign Leading]
| oT | Overpunch Sign Trailing !
| SL i Separate Sign Leading |
} ST J Separate Sign Trailing 1
4 A]
Figure 85. Individual Type Codes Used in

SYMDMP Output

Symbolic Debugging Features

219

Z/TESTRUN JOB (*A=5>C40%) s 'BETHKE 1550 J63°*¢MSGLEVEL=(1,1)yCLASS=A, 11MVS037
17/

MSGCLASS=5
*XxkSETUP TAPE SCRTCH RING=YES
1/ EXEC VSCBLCLG,
/f PARM oCOB=*UMAP o PUAP SXREF ¢ FLOW=10 9y SYMDMP y QUOTE yNORES" o
124 GODMP=*SYSLUT=S"* ,
iz SYSUT5='EESYSUT5,0ISP=(,PASS) ",
// PARM.LKED=*LISToLETyXREF"
XXCVS20CLG PROC PROG=IKFCBLOO, : 00001000
XX COBDMP="'SYSOUT=A"', 00002000
XX GUODMP=DUMMY , 00003000
XX PARMCOB='LOA® yRGNLOB=128KCONDCOB='(16+LT)*, 00004000
XX PARMLKD=*LIST ¢ XREFoLET*yRGNLKED=128KCONDLKD="(5,LT+C0OB)*, 00005000
XX PARMGO=""* yRGNGO=192KsCONDGO=*((54LT+COB) +(5,4LToLKEDI) ", 00006000
XX GOSET="'&GOSET'9GO="GU*y 00007000
XX 31=CBLCOMPL V1=CBLDEVsULl=SYSDA, 00008000
XX 22=CBLCOMPL ,V2=CBLDEVU2=SYSDA, 00009000
XX 33=CBLUPM,V3=CBLOEVsJ3=SYSDA, 00010000
XX 34=CVS20L1B 4V4=CBLDEV U4=SYSDA, 00011000
XX 35=CVS20L1ByV5=CBLDEVU5=SYSDA, 00012000
XX 36=CVS20L1IBsV6=CBLDEV+U6=5SYSDA,y 00013000
XX 37=CVS20LIBsVT=CBLDEVUT=SYSDA, 00014000
XX 58=CVS20L IB,V8=CB.DEVUB=SYSDAy 00015000
XX 39=CVS20LIBsV9I=*ScR=CBLDEV*+U9=SYSDA, 00016000
XX 310='SYS1.LINKLIB®,V1i0=,U10= 00017000
XXCuB EXEC PGM=&PROGsREGION=GRGNCOByCOND=6CONDCOB,y 00027000
XX PARM=*LOAyNOLIBySiZE=128K ¢BUF=12K¢PMAsDMA+SXRyOPT 4RES ¢ EPARMCOB® 02028000
XXSTEPLIB DD DSN=8S1,VOL=SER=&V1UNIT=8&U1,DISP=SHR 00029000
XX DD DSN=6S52, VOL=SER=&V2,UNIT=6U2, DISP=SHR 00030000
XX DD DSN=8&S3,VOL=SER=8&V3,UNIT=5U3yDISP=SHR 00031000
//CuB .SYSPRINT DD JSYSOUT=S
X/SYSPRINT DD SYSOUT=A 00032000
XXSYSUDUMP DD &COBOMP 00033000
XXSYSUT1 DD UNIT=SYSwAsSPACE=(TRKy(25493)),DSN=ESYSUTL 00034000
XXSYSUT2 DD UNIT=SYSUAs SPACE=(TRKs(2593)) yDSN=ESYSUT2 00035000
XXSYSUT3 DD UNIT=SYSWA,SPACE={TRKy (2543)),DSN=ESYSUT3 00036000
XXSYSUT4 DD UNIT=SYSUAySPACE=(TRKy(25+3))DSN=ESYSUT4 00037000
(:)—a-XXSYSUT5 DD UNIT=SYSUA,SPACE=(TRKys(25¢3)) yDSN=ESYSUTS 00038000
XXSYSUT6 DD UNIT=SYSUAsSPACE=(TRKs(2543))sDSN=ESYSUTSE 00039000
XXSYSLIN DO DSNAME=&LOADSET,DESP=(MOD,PASS) yUNIT=SYSDA, 00040000
XX SPACE=(80,(500,100)) 00041000

//CuB.SYSIN 0D *

Pigure 86. Using the SYMDMP Option to Debug the Program TESTRUN {Part 1 of 11)

220

00001 100010
00002 100020
00003 100030
00004 100040
00005 100050
00006 100060
00007 100070
00008 100080
00009 100090
00010

00011 100100
00012 100110
00013 100120
00014 100130
00015 100140
00016 100150
00017 100160
00018 100170
00019

00020 100180
00021 100190
00022 100200
00023 100210
00024 100220
00025 100225
00026 100230
00027 100240
00028 100250
00029 100260
00030 100270
00031 100280
00032 100290
00033 100300
00034 100310
00035 100320
00036 100330
00037 100340
00038

00039 100350
000u0 100360
00041 100370
00042 100375
00043 100380
o004y 100395
00045 100405

00046 100410~

ooou7 100420
ooous 100440
00049 100450
00050 100460
00051 100470
00052 100480
00053 100490
00054 100500
00055 100510
00056 100520
00057 100521

Figure 86.

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTRUN.
AUTHOR. PROGRAMMER NAME.
INSTALLATION. NEW YORK PROGRAMMING CENTER.
DATE-WRITTEN. JULY 12, 1968.
DATE~-COMPILED. JUN 11,1974.

REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR
COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK AS

INPUT.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-H50.
OBJECT-COMPUTER. IBM-360-HS50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILE-1 ASSIGN TO UT-2400-S-SAMPLE.
SELECT FILE-2 ASSIGN TO UT-2400-S-SAMPLE.

DATA DIVISION.
FILE SECTION.
FD FILE-1
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 100 CHARACTERS
RECORD CONTAINS 20 CHARACTERS
RECORDING MODE 1S F
DATA RECORD IS RECORD-1.
01 RECORD-1.
02 FIELD-A PICTURE IS X(20).
FD FILE-2
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 5 RECORDS
RECORD CONTAINS 20 CHARACTERS
RECORDING MODE 1S F
DATA RECORD IS RECORD-2.
01 RECORD-2.
02 FIELD-A PICTURE IS X(20).

WORKING-STORAGE SECTION.
77 KOUNT PICTURE S99 COMP SYNC.
77 NOMBER PICTURE S99 COMP SYNC.
01 FILLER.

02 ALPHABET PICTURE X(26) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

02 ALPHA REDEFINES ALPHABET PICTURE X OCCURS 26 TIMES.

02 DEPENDENTS PICTURE X(26) VALUE "0123401234012340123401234

"o".

02 DEPEND REDEFINES DEPENDENTS PICTURE X OCCURS 26 TIMES.

01 WORK-RECORD.
02 NAME-FIELD PICTURE X.
02 FILLER PICTURE X VALUE IS SPACE.
02 RECORD-NO PICTURE 9999.
02 FILLER PICTURE X VALUE IS SPACE.
02 LOCATION PICTURE AAA VALUE 1S "NYC".
02 FILLER PICTURE X VALUE IS SPACE.
02 NO~OF-DEPENDENTS PICTURE XX.
02 FILLER PICTURE X(7) VALUE IS SPACES.
01 RECORDA.

Using the SYMDNMP Option to Debug the Program TESTRUN (Part 2 of 11)

symbolic Debugging Peatures

221

00058 100522 02 A PICTURE S9(4) VALUE 1234.

00059 100523 02 B REDEFINES A PICTURE S9(7) COMPUTATIONAL-3.
00060 100530 PROCEDURE DIVISION.

00061 100540 BEGIN.

00062 100550 NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
00063 100560 AND INITIALIZES COUNTERS.

00064 100570 STEP-1. OPEN OUTPUT FILE-1. MOVE ZERO TO KOUNT NOMBER.

00065 100580 NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE
00066 100590 CONTAINED IN THE FILE, WRITES THEM ON TAPE, AND DISPLAYS
00067 100600 THEM ON THE CONSOLE.

00068 100610 STEP-2. ADD 1 TO KOUNT, ADD 1 TO NOMBER, MOVE ALPHA (KOUNT) TO
00069 100620 NAME-FIELD.

00070 100630 MOVE DEPEND (KOUNT) TO NO-OF-DEPENDENTS.

00071 100640 MOVE NOMBER TO RECORD-NO.

00072 100650 STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. WRITE RECORD-1 FROM
00073 1006