Series/1

Event Driven Executive
Operator Commands and
Utilities Reference

Version 6.0

SC34-0940-0

Library Guide and

Common Index

r Installation and

System Generation
Guide

Operator Commands
and
Utilities Reference

SC34-0938 SC34-0936 SC34-0940

Language Communications Messages and

Reference Guide Codes

SC34-0937 SC34-0935 SC34-0939

Operation Event Driven APPC

Guide Language Programming Guide
Programming Guide and Reference

SC34-0944 SC34-0943 SC34-0960

Problem Customization Internal

Determination Guide Design

Guide

SC34-0941 SC34-0942 LY34-0364

Series/1

Event Driven Executive
Operator Commands and
Utilities Reference

Version 6.0

T
SC34-0940-0

Library Guide and
Common ndex

Instaliation and
System Genaration
Guide

Operator Commands
and
Utilities Reference

SC34-0538 BL34-0836 SC34-0940
Language Communications Messages and
Feference Guide Codeas
50240837 8C34-0935 SC34-0839

4
Operation Event Driven APPC
Guidse Language Programming Guide

Programming Guide and Reference

SC34-0944 §C34-0843 SC34-0860

™
Problem Customization internal
Determination Guide Design
Guide
SO34-0841 S$C34-0842 LY34-0364

/’_\

Y
s

First Edition (September 1987)
Use this publication only for the purposes stated in the section entitled “About This Book.”

Changes are made periodically to the information herein; any such changes will be reported in subsequent
revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not
be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below. Requests for copies of IBM publications should be
made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for readers’ comments

is provided at the back of this publication. If the form has been removed, address your comments to IBM

Corporation, Information Development, Department 28B, Internal Zip 5414, P. O. Box 1328, Boca Raton,

Florida 33429-1328. IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue to use the information

you supply.

© Copyright International Business Machines Corporation 1987

Summary of Changes for Version 6.0

This document contains the following changes.
3151 Display Terminal

* This book has been updated to include the 3151 display everywhere a reference
to the 3161 display appears.

Asynchronous Line Sharing

¢ The STERMUT]1 utility can be used to change the characteristics of the 4201
and 4202 printer.

Extended Address Mode Support

¢ The SDUMP utility has been modified to print out all 32 banks of CPU
segmentation and the 32 banks of I/O segmentation registers.

¢ The $STGUT1 utility has been modified to display all the segmentation registers
‘and monitors the status of the I/O registers.

$COPYUT1 Utility
¢ The $COPYUTI parameter information has been added in this book.

¢ The LOG and READDS commands have been added to the SCOPYUT!1 utility.
The LOG command sends messages to the specified log device; the READDS
command submits $COPYUT1 commands from a command data set.

$DISKUT? Utility

O

e The search command has been added to the $SDISKUT?2 utility. This command
enables you to search a data set for EBCDIC or hexadecimal character strings.

SINSTAL Utility
¢ The SINSTAL utility has been added to make the installation and maintenance

of most EDX system products easier and adds the ability to check for current
levels of any program products installed by SINSTAL.

SMEMDISK Utility

¢ The SMEMDISK parameter information has been added in this book. and
deleted from the Customization Guide.

$STGUT1 Utility

e The list storage configuration (LC) command has been added the the $STGUT1
utility. This command lists the processor type and the amount of mapped and
unmapped storage on the current system. The MX and UN commands have
been modified to reflect this enhancement.

STRAP Utility
¢ The $STRAP utility has been modified to include the following:

— Dynamic Dump — the system continues to process after a dump
— Software IPL — the system will automatically IPL after a dump
) — Allows $TRAP to be loaded out of partition 1 through the LOAD statement
or using $SJOBUTIL.

Summary of Changes for Version 6.0 iii

iv SC34-0940

— Allows $STRAP to dump additional segmentation registers.
— Allows $TRAP to dump either all storage or only mapped storage.

¢ The $STRAP parameter information has been included in this book.

~ N
& ~

O

Cp Contents

Chapter 1. Introduction 1-1
Operator Commands 1-1
Session Manager 1-1

System Ultilities 1-1

Job Cross-Reference Chart 1-2

Chapter 2. Operator Commands 2-1
Entering Commands 2-1
Prompt-Reply Format 2-2
Single-Line Format 2-2
Operator Command Descriptions 2-2
Syntax Conventions 2-2
$A — List Partitions and Active Programs 2-3
$B — Blank Display Screen 2-3
$C — Cancel Program 2-4
$CP — Change Display Terminal’s Partition Assignment 2-4
$D — Dump Storage 2-5
$E — Eject Printer Page 2-5
"$L — Load a Program or Utility 2-6
$P — Patch Storage 2-7
$S — Control Spooled Program Output 2-7
$T — Set Date and Time 2-22
, $U — Load Your Own Operator Command 2-22
O $VARYOFF — Set Device Offline 2-23
$VARYON — Set Device Online 2-24
$W — Display Date and Time 2-25
ERAP — Print Error Log Data Set on the System Printer 2-25

Chapter 3. Session Manager 3-1

Loading the Session Manager 3-1

Menus 3-1
Logon/Logoff Menu = 3-2
Primary Option Menu 3-2
Secondary Option Menu 3-3
Parameter Input Menu 3-4
The Background Option 3-5
Custom Menus 3-5

Data Sets 3-6

Program Function Keys 3-7

Supported Utilities 3-7

Chapter 4. Utilities 4-1

Loading the Utilities 4-1
Entering Utility Commands 4-2

Cancelling a Utility 4-2

$BSCTRCE — Trace I/O Activity on a BSC Line 4-3
Loading $BSCTRCE 4-3

$BSCUT1 — Format BSC Trace Files 4-5
Loading $BSCUT1 4-5

$BSCUT2 — Communications I/O Exerciser 4-8
Loading $BSCUT2 4-9
$BSCUT2 Commands 4-9

Contents V

vi

SC34-0940

SCHANUT1 — Channel Attach Utility 4-17
Loading SCHANUT! 4-17
$CHANUTI1 Commands 4-17
$COMPRES — Compress Disk, Diskette, or Volume 4-20
Specifying Dynamic Storage 4-21
Loading SCOMPRES 4-21
$COMPRES Commands 4-22
$COPY — Copy Data Set 4-27
Copying Programs or Data Members 4-27
Specifying Dynamic Storage = 4-28
Loading $COPY 4-29
$COPY Commands 4-29
$COPYUTI1 — Copy Data Set with Allocation 4-35
Specifying Dynamic Storage 4-35
Loading $COPYUT1 4-36
Loading $SCOPYUT1 From a Program 4-36
Loading SCOPYUT1 Using $JOBUTIL 4-37
Command Data Set Format 4-38
$COPYUT1 Commands 4-39
$CPUMON — Monitor CPU Utilization 4-48
$CPUMON Requirements 4-48
Loading SCPUMON 4-48
$SCPUMON Attention Commands 4-50
ENDMON — End the $CPUMON Utility 4-50
NOPRINT — Stop Printing the Summary Log 4-50
PRINT — Resume Printing the Summary Log 4-50
$CPUPRT — Print a CPU Utilization Report 4-51
Loading $SCPUPRT- 4-51
$DASDI — Format Disk or Diskette 4-53
Loading $DASDI 4-53

o

Primary Option 0 — Create a Stand-Alone Dump/$TRAP Diskette 4-53

Primary Option 1 — Diskette Initialization 4-56
Primary Option 2 — 4962 Disk Initialization 4-63
Primary Option 3 — 4963 Disk Initialization 4-67
Primary Option 4 — 4967 Disk Initialization 4-70
Primary Option 5 — DDSK: Disk Initialization = 4-78
Primary Option 6 — IDSK Disk Initialization = 4-85
Primary Option 9 — Exit Initialization = 4-89

$SDEBUG — Debugging Tool 4-90
Major Features of SDEBUG 4-90
Necessary Data for Debugging 4-91
Loading $SDEBUG 4-91
$DEBUG Commands 4-93

$DICOMP — Display/Modify Profiles 4-106
Loading $DICOMP 4-106
$DICOMP Commands 4-106
Composer Subcommands 4-109

$DIINTR — Graphics Interpreter Utility 4-124
Loading $DIINTR 4-124

SDIRECT — Directory Organization Sort 4-131
Loading $SDIRECT 4-131
$DIRECT Commands 4-132

$DISKUTI1 — Allocate/Delete/List Directory Data 4-139
Loading $DISKUT1 4-139
$DISKUT1 Commands 4-140

$DISKUT2 — Patch/Dump/List/Search Data Set or Program

4-161

Program and Data Set Member Dumps and Patches 4-161
Absolute Record Numbers 4-162
@ Loading $DISKUT2 4-162
$DISKUT2 Commands 4-163
$DIUTIL — Maintain Partitioned Data Base 4-186
Loading $DIUTIL 4-186
$DIUTIL Commands 4-187
$DSKMON — Monitor Disk I/O Activity 4-194
$DSKMON Requirements 4-194
Loading SDSKMON 4-194
$DSKMON Attention Commands 4-196
ENDMON — End the $DSKMON Utility 4-196
NOPRINT — Stop Printing the Summary Log 4-196
PRINT — Start Printing the Summary Log 4-196
$DSKPRT1 — Print a Log for all Disk Activity 4-197
Loading $SDSKPRT1 4-197
$DSKPRT?2 — Print a Disk Activity Report 4-203
Loading $SDSKPRT2 4-203
$DUMP — Format and Display Saved Environment 4-206
Loading $SDUMP 4-206
SEDIT1 and EDITIN — Line Editors 4-213
Data Set Requirements 4-213
Loading $SEDIT1 or $SEDITIN 4-213
Sequence of Operations 4-214
Special Control Keys 4-216
Editor Commands 4-216.
Edit Mode Subcommands 4-222
CD Line Editing Commands ~ 4-235
$EDXASM — Event Driven Language Compiler ~ 4-236
Required Data Sets 4-236
Loading SEDXASM 4-237
Data Sets Used in Examples ~ 4-238
Output of the Compiler 4-240
Obtaining Extra Compilation Listings 4-241
Loading SEDXLIST with $JOBUTIL 4-242
SEDXLINK — Linkage Editor 4-243
Required Data Sets 4-243
SEDXLINK Control Statements 4-244
Specifying Dynamic Storage 4-253
Loading SEDXLINK 4-254
Operator Termination of SEDXLINK 4-258
SEDXLINK Output 4-259
AUTOCALL Option 4-261
Using SEDXLINK Control Statement Data Sets ~ 4-262
$FONT — Process Character Image Tables 4-263
$FSEDIT — Full Screen Editor 4-279
Loading $SFSEDIT 4-279
Work Data Set 4-282
Scrolling 4-282
Program Function Keys 4-283
3101 Display Terminal Switch Settings 4-284
Directory Data Set List Commands 4-284
Primary Options and Commands 4-289
Primary Commands 4-295
Edit Line Commands 4-305
$GPIBUTI1 Utility 4-313

Contents

viii

SC34-0940

Loading $GPIBUT1 4-313
$GPIBUT1 Commands 4-313
$GPIBUT1 Example 4-321 O
SHCFUTI1 — Interact with Host Communications Facility 4-326 —
Loading SHCFUT1 4-326
$HCFUT1 Commands 4-326
Return Codes 4-329
$SHXUT1 — H-Exchange Utility 4-330
Loading $SHXUT1 4-330
$HXUTI Commands 4-331
Using the H-exchange utility 4-332
$IMAGE — Define Formatted Screen Image 4-343
Considerations for Using $SIMAGE 4-343
Considerations when Creating Colored Screens = 4-344
Additional Considerations 4-344
Formatting Screens with SIMAGE 4-344
Loading $SIMAGE 4-350
$IMAGE Commands 4-350
Entering Edit Verification Mode 4-363
Considerations for Entering Edit Verification Mode 4-364
SINITDSK — Initialize Direct Access Device, Volume Control = 4-367
Loading SINITDSK 4-367
S$INITDSK Commands 4-368
SINSTAL — Program Product Installation Utility 4-386
Loading $INSTAL Using the $L Command 4-386
Loading $INSTAL Using the LOAD Statement 4-386
$INSTAL Commands. 4-388
LISTP — Direct Listing to a Printer ~ 4-396 (
LISTT — Direct Listing to Terminal ~ 4-397 e
$IOTEST — Test Sensor I/O; List Configuration 4-398
Loading $IOTEST. 4-398
SIOTEST Commands 4-398
$JOBQUT — Controlling Job Queue Processing 4-405
Loading $JOBQUT 4-405
$JOBQUT Commands 4-406
$JOBUTIL — Job Stream Processor 4-412
Loading $JOBUTIL 4-412
$JOBUTIL Commands 4-413
SLCCTRCE — Trace I/O Activity on an LCC Attachment 4-427
Loading SLCCTRCE 4-427
Controlling SLCCTRCE Execution 4-427
$LCCUTI1 — Format LCC Trace Files 4-430
Loading SLCCUT! 4-430
SLCCUT1 Commands 4-430
SLINTRC — Communication Line Trace Capture Utility = 4-439
Loading SLINTRC 4-439
SLINTRC Prompts - 4-440
Loading SLINTRC with an EDL Program 4-442
Loading SLINTRC Using $JOBUTIL 4-442
Controlling SLINTRC Execution 4-443
SLINUT1 — Communication Line Trace Display Utility = 4-449
Loading SLINUT1 4-450

SLINUT! Commands 4-452
Trace Record Templates 4-455 \

$LOG — Log Errors into Data Set 4-457
Loading $SLOG 4-457

O

$LOG Commands 4-459
SMEMDISK — Allocate Unmapped Storage as a Disk 4-461
Loading SMEMDISK 4-461
$MEMDISK Commands 4-467
$MOVEVOL — Disk Volume Dump/Restore ~ 4-472
Loading SMOVEVOL 4-472
Dump Procedure 4-473
Restoration Procedure 4-476
$MSGUTI1 — Message Utility 4-478
Loading SMSGUT1 4-478
$MSGUT1 Commands 4-478
$PCUTIL — Copy to and from EDX and Personal Computer Diskettes 4-483
Loading SPCUTIL 4-483
$PCUTIL Commands 4-484
SPFMAP — Identify 3101(Block Mode)/4978/4979/4980 Program Function
Keys 4-488
Loading SPFMAP 4-488
$PREFIND — Prefinding Data Sets and EDL Overlays 4-489
Program Load Process Overview 4-489
Loading SPREFIND 4-489
$PREFIND Commands 4-490
$PRT2780 and $PRT3780 4-494
Loading $PRT2780 and $PRT3780 4-494
Sample $RJE Session 4-495
$RIE2780 and $RJE3780 4-497
Interface to Host RJE Subsystems 4-497
Loading SRJE2780 or $RJE3780 4-498
Attention Commands 4-499
$SDLCST — Display Shared SDLC Device Statistics 4-502
Loading $SSDLCST 4-502
$SPLUT1 — Spool Utility 4-507
Loading $SPLUT1 4-507
$SPLUTI1 Commands 4-509
$STGUT! — Free Up Nonprogram Areas of Storage 4-517
Loading $STGUT1 4-517
$STGUT! Commands 4-517
$SUBMIT — Submit/Control Jobs in Job Queue Processor 4-525
Loading SSUBMIT 4-525
$SUBMIT Commands 4-526
$S1IASM — Series/1 Assembler 4-531
Required Data Sets 4-531
Loading $S1ASM 4-531
Assembler Options 4-532
Data Sets Used in Examples 4-533
Assembling a Program Using the $L Operator Command 4-533
Assembling a Program Using the Session Manager 4-537
Assembling a Program Using $JOBUTIL 4-538
$S1IASM Output 4-538
$S1IPPRG — Analyze Program Performance 4-539
Loading $SIPPRG 4-539
$S1PPRG Commands 4-540
Controlling $S1PPRG Execution 4-543
$SIPSYS — Analyze System Performance 4-544
$S1PSYS Requirements 4-544
Loading $SIPSYS 4-544
$SIPSYS Commands 4-545

Contents

ix

X SC34-0940

$SIPSYSR — Generate a System Performance Report 4-548
$SIPSYSR Commands =~ 4-549 m
$S1S1UT1 — Series/1-to-Series/1 4-560 M
Loading $S1S1UT1 4-560
$S1S1UT1 Commands 4-560
STAPEUT! — Tape Management 4-565
Loading STAPEUT1 4-565
$TAPEUT] Commands 4-566
STERMUT! — Change Terminal Parameters 4-590
Loading STERMUT1 4-590
$TERMUTI1 Commands 4-590
STERMUT?2 — Change Image/Control Store 4-601
4974 Support 4-601
4978 and 4980 Support 4-602
Loading STERMUT2 4-603
$TERMUT2 Commands 4-603
$STERMUTS3 — Send Message to a Terminal = 4-617
Loading STERMUT3 4-617
$TRACEIO — ACCA/EXIO Trace Facility = 4-620
Loading STRACEIO 4-620
$TRACEIO Commands 4-620
$TRANS — Transmit Data Sets Across a Bisync Line 4-625
Loading STRANS 4-625
$TRANS Commands 4-626
S$TRAP — Save Storage on Error Condition 4-631
Loading $TRAP in a Program 4-633
Loading $STRAP using $JOBUTIL 4-633 -
Selecting The Conditions for the Dump 4-635 C{)
Encountering Errors - 4-637 -
SUPDATE — Converting Series/1 Programs' 4-645
Required Data Sets 4-645
Loading SUPDATE 4-645
Updating a Program Using the $L. Operator Command 4-645
$UPDATE Commands 4-646
Updating a Program Using the Session Manager 4-649
Updating a Program Using $JOBUTIL 4-650
SUPDATE Output 4-651
Considerations When Creating a Supervisor - 4-651
SUPDATEH — Converting Host System Programs 4-652
Loading SUPDATEH 4-652
Updating a Hosting Program Using the $L Operator Command 4-652
SUPDATEH Commands 4-653
Updating a Host Program Using $JOBUTIL or Session Manager 4-655

Index X-1

O

About This Book

This book is a reference book containing detailed descriptions of the Event Driven
Executive operator commands, session manager, and system utilities. The
commands and applicable syntax for each operator command and system utility are
shown, along with usage examples.

Audience

This book is intended for anyone who has to operate the IBM Series/1 with the
Event Driven Executive. Readers should have a basic understanding of computer
terminology before using this book.

How This Book Is Organized

The book is divided into the following 4 chapters:

¢ “Chapter 1, Introduction” contains an overview of the contents of the book.

¢ “Chapter 2, Operator Commands” contains a description and the syntax of the
operator commands.

¢ “Chapter 3, Session Manager” contains a description of the session manager
facility.

e “Chapter 4, Utilities” contains a description of each system utility used to
operate your Event Driven Executive system. The utilities are presented in
alphabetical order.

Aids in Using This Book

This book contains the following aids to using the information it presents:

* A chart of the main jobs that are done on the Series/1 with EDX. The chart is
found under “Job Cross-Reference Chart” on page 1-2. It lists the operator
command or system utility that is used for the job, the session manager option
numbers to help you access the utility with the session manager, and the prefix
of the guide in the EDX library that contains instructions for doing the job.

¢ A table of contents that lists the major headings in this book.

* An index of the topics covered in this book.

Illustrations in this book are enclosed in boxes. Many illustrations display output
formats printed while using the Event Driven Executive. In those cases where the
actual printer output exceeds the size of the box, the information is shown in a
modified format.

Examples of display screens are also enclosed in a box representing the outline of a

screen. A partial screen is indicated by the top or bottom of the screen. In
examples where a response is required, the sample response is shown in red.

About This Book Xi

A Guide to the Library

Refer to the Library Guide and Common Index for information on the design and @
structure of the Event Driven Executive Library, for a bibliography of related
publications, for a glossary of terms and abbreviations, and for an index to the

" entire library.

Contacting IBM about Problems

You can inform IBM of any inaccuracies or problems you find when using this book
by completing and mailing the Reader’s Comment Form provided in the back of the
book.

If you have a problem with the IBM Series/1 Event Driven Executive, refer to the
IBM Series/1 Software Service Guide, GC34-0099.

O

xil SC34-0940

w Chapter 1. Introduction

Operating your IBM Series/1 Event Driven Executive (EDX) system involves many
different tasks:

e Installing the starter system

¢ Generating a tailored operating system

¢ Developing application programs

e Operating your system

¢ Determining hardware and/or software problems

¢ Customizing your system.

To perform these tasks, you use the operator commands and system utilities.

Operator Commands

Operator commands are instructions that represent a request for action by your
EDX system. When you enter an operator command, your EDX system performs
the action specified by the operator command.

Chapter 2, “Operator Commands” contains a description and the syntax of each
0 operator command, along with examples of its usage.

Session Manager

The session manager is a collection of predefined screens called “menus” that you
can use to access system utilities and application programs from a display station.

Chapter 3, “Session Manager” contains an introduction to the session manager and
a description of the facility.

System Utilities

The sYstem utilities are a set of programs that do everyday jobs on your Series/1.
The system utilities are independent programs that can be run concurrently with
other application programs or utilities.

Chapter 4, “Utilities” contains a description of each system utility. The utilities are
presented in alphabetical order.

Chapter 1. Introduction 1-1

Job Cross-Reference Chart

The following chart directs you to the operator command or system utility that will
help you do a particular job. There are four columns within the chart.

JOB This column lists specific jobs you may want to perform.

OPERATOR COMMAND/UTILITY
This column lists the name of the operator command or utility used to
perform the job.

SESSION MANAGER OPTION
If a utility can be accessed through the session manager, the session
manager option number is listed.

GUIDE INFORMATION
If instructions for doing a specific job are included in the Operation
Guide, Language Programming Guide, Communications Guide, Problem
‘Determination Guide, or Installation and System Generation Guide, the
page prefix of the guide is listed.

The prefix for each guide within the EDX library follows:

PG Event Driven Language Programming Guide

CO Communications Guide

CU Customization Guide

IS Installation and System Generation Guide

OP Operations Guide

PD Problem Determination Guide.

Operator Session

Command/ Manager Guide
Job Utility Option Information
Allocate a data set $DISKUTI1 3.1 OP, IS

$STAPEUT1 | 3.10
Allocate a data set with extents SDISKUT! 3.1 —
Allocate an H-exchange data set $HXUT1 3.11 OP
Allocate a member in a graphics data base $DICOMP 5.2 —
Allocate a volume SINITDSK 3.7 OP, IS
Allocate a volume under a fixed head SINITDSK 3.7 OP, IS
Analyze GPIB errors SGPIBUT1 49 CO, PD
Analyze hardware errors $DUMP 9.1 PD
Analyze program checks $DUMP 9.1 PD
Analyze program performance $SIPPRG. — —
Analyze system performance $S1PSYS — —

Figure 1-1 (Part 1 of 7). Job Cross-reference Chart

1-2 SC34-0940

Operator Session
Command/ Manager Guide
Job Utility Option Information
Analyze tape surface for defects $STAPEUT! |3.10 —
| Browse a source data set ' $FSEDIT 1 —
Cancel a program $C — oP
Change hardcopy device $TERMUT1 |4.1 OP
Change print screen PF key $STERMUTI | 4.1 oP
| Change spool job attributes $SPLUT1 | 4.7 OP
Change a tape label ’ $TAPEUT1 |3.10 OP
Change a terminal address $TERMUT1 |4.1 OP
Close job created by $SDEBUG SDEBUG —_ —
Compile an EDL program $EDXASM | 2.1 PG, OP
Compile and link edit an EDL program SEDXASM |22 PG, OP
$EDXLINK
1 Compile a program on a S/370 and execute it on a Series/1 $UPDATEH | 2.10 —
Compress one volume or all volumes on a device $COMPRES |34 (0)34
Controllingbthe job queue processor $JOBQUT 10.1 0)
Control printer spooling $SPLUTI1 4.7 OP
Convert object modules to executing code SEDXLINK | 2.7 PG
' $UPDATE 29
-1 Copy a data set from a PC diskette to an EDX disk(ette) or $PCUTIL — (0)
from an EDX disk(ette) to a PC diskette
Copy all data sets $COPYUT! |33 oP
Copy a data set with automatic allocation $COPYUT! (3.3 IS, OP
Copy all data sets with the same prefix $COPYUT1 | 3.3 oP
Copy a basic exchange data set $COPY 3.5 OP
Copy a disk/diskette data set to tape $TAPEUT! | 3.10 opP
Copy an H-exchange data set SHXUT1 3.11 OoP
Copy a tape data set to diskette $TAPEUT1 | 3.10 ()
Copy a tape data set to tape $TAPEUT1 |3.10 oP
Copy a $STRAP data set to two diskettes $COPY 3.5 (0) 4
Copy a volume or data set to an allocated volume or data set | $COPY 3.5 OP
Create an upper/lower case data set SFSEDIT 1 OP
$TERMUT2 | 4.2
Create youf own terminal keyboard characters $FONT 4.5 —

Figure 1-1 (Part 2 of 7). Job Cross-reference Chart

Chapter 1. Introduction 1-3

Operator Session

Command/ Manager Guide
Job Utility Option Information
Date and time, display sw — OP
Date and time, set $T — opP
Delete job queue $JOBQUT | 10.1 oP
Delete a data set $DISKUT! |3.1 OP
Delete all data sets with the same prefix $DISKUT1 3.1 OoP
Delete a volume SINITDSK 3.7 OP
Determine address of a data set | $DISKUTI1 3.1 —
Determine how many records a data set contains $DISKUT! 3.1 OP
Determine terminal name, address, type and partition $STERMUTI1 (4.1 OP
assignment
Determine how much free space is on a volume $DISKUT! 3.1 OoP
Determine the hardware supported by supervisor SIOTEST 9.3 OP, IS
Device, set offline $VARYOFF | — oP
Device, set online $VARYON" | — OP
Display data/volume/storage contents in decimal, EBCDIC, $DEBUG 3.2,9.2 PD, OP
or hexadecimal $DISKUT2
Display statistics gathered for a specific SDLC device $SDLCST — —
Display statistics on the dynamic data set extent table $STGUT!1 — —
Dump storage to a data set on error condition STRAP — PD, OP
Dump unmapped storage $STRAP — PD, OP

$DUMP
Estimate progress of compress $COMPRES 34 OP
Eject a page SE — oP
End job queue processing $JOBQUT 10.1 PD
Enter source statements $SFSEDIT 1 PG, OP
Erase contents of a data set $DISKUT2 |3.29.2 -
Erase display screen $B — OoP
Format and print BSC trace data sets $BSCTRCE | 8.1 CO, PD

$BSCUT1 8.2
Format and print EXIO line trace data sets SLINUT1 — CO
Format and print LCC trace data sets SLCCUT1 8.12 CO
Format and print error log information SDISKUT2 3.2,9.2 OP, PD
Generate a CPU utilization report $CPUPRTV — -

Figure 1-1 (Part 3 of 7). Job Cross-reference Chart

1-4 SC34-0940

Operator Session

Command/ Manager Guide
Job Utility Option Information
Generate a disk activity log $DSKPRT1 |— —

‘ Generate a disk activity analysis report and graph $DSKPRT2 | — —
Generate a supervisor $XPSLINK |28, 2.13 IS
Hold a job in the job queue processor $JOBQUT 10.1 OP
Identify the program function keys on a 4978 and 4980 SPFMAP 4.6 —
display station
Increase the size of a data set $SCOPY 3.5 —

$COPYUT1 |33 0) 4
Initialize a disk $DASDI 3.6 IS, OP

$SMEMDISK | —
Initialize unmapped storage as a disk SMEMDISK | — oP
Initialize a diskette to EDX format $DASDI 3.6 OP
Initialize a diskette to exchange format $DASDI 3.6 OP
Initialize a diskette for a stand-alone/STRAP dump $DASDI 3.6 OP
Initialize a tape $STAPEUT1 |3.10 0) 4
Install and maintain program products SINSTAL 3.12 IS
IPL a remote Series/1 $S1S1UT1 4.8 CO
Job queue processing controller $JOBQUT 10.1 OoP
Job queue job submission utility $SUBMIT 10.2 OP
Link edit programs SEDXLINK | 2.7 PG, OP
List all data sets $DISKUT1 }3.1 (0) 4
List data sets by type (program or data) $DISKUT1 | 3.1 OoP
List all data sets with same prefix $DISKUT!1 3.1 op
List directory information SINITDSK 3.7 OoP
List all volumes on all disk/diskette devices $DISKUTI1 3.1 OP

SINITDSK
List all volumes on a particular device SINITDSK 3.7 OP
List I/O configuration of a Series/1 | SIOTEST 9.3 3.1
List information about one data set $DISKUT1 | 3.1 OP
List messages in source message data set $MSGUTI 2.14 OP
Load and execute a program SL — OP
Load 4980 terminal $STERMUT2 | 4.2 oP

Figure 1-1 (Part 4 of 7). Job Cross-reference Chart

Chapter 1. Introduction 1-5

Operator Session
Command/ | Manager Guide
Job Utility Option Information
Loading control image STERMUT2 | 4.2 OoP
Loading control store STERMUT2 | 4.2 OP
Locate required data sets/overlays before program execution $PREFIND 1| 2.11 —
Message-source processing SMSGUT1 2.14 OP
Modify a source data set $FSEDIT 1 OP,PG-
Monitor disk I/O activity $DSKMON | — -
Monitor system’s CPU utilization $CPUMON | — —
Partition assigned to terminal, change $CP — OP
Prepare Version 1 and 2 data sets for use with Version 6 SMIGRATE | — IS
SMIGAID
SMIGCOPY
Print an error log data set ERAP — OoP
Print a formatted $TRAP dump $DUMP 9.1 OP, PD
Print a stand-alone dump k $DUMP 9.1 OP, PD
Print a program performance report $SIPPRGR | — —
Print a system performance report $SIPPRGR | — —
Print $SYSLOG messages stored in a disk data set $DISKUT2 |3.2,9.2 —
Programs, display all active SA ALL — OP
Programs, display all active in terminal’s partition SA - 0) 4
Recognizing intermittent program errors $TRAP e OP, PD
Recording hardware errors SLOG — PD
Recover a backed-up data set SMOVEVOL | 3.8 OP
Redefine terminal scrolling STERMUTI1 | 4.1 —
Rename a disk/diskette volume SINITDSK | 3.7 OoP
Rename a terminal $TERMUT!1 | 4.1 (0] 4
Restart job queue processing $JOBQUT 10.1 OoP
Retrieve a data set from a host $EDITIN — —
Running batch job streams $JOBUTIL |7 OP
$SUBMIT 10.2
Running multiple jobs $JOBUTIL 7 OP
$SUBMIT 10.2
Search for EBCDIC or hexadecimal string $DISKUT2 |3.2,9.2 —
Send a data set to a host SHCFUT1 8.8 CO

Figure 1-1 (Part S of 7). Job Cross-reference Chart

1-6 SC34-0940

&

Operator Session
Command/ = | Manager Guide
Job Utility Option Information
Send a message to a terminal $TERMUT3 | 4.3 OP
Setting PF keys $STERMUT2 | 4.2 opP
Setting a terminal offline or online $TERMUT1 4.1 OP
Sort a disk/diskette volume directory $DIRECT — —
Spooling, browse a spool job $S BROW — opP
Spooling, change forms type $S ALT - OP
Spooling, change heading id $S ALT — 0]
Spooling, change number of copies $S ALT — 10) 4
Spooling, change printer $S ALT — op
Spooling, delete a job $S DEL — 1 OP
Spooling, delete a set of jobs $S DG — OP
Spooling, display status of jobs $S DISP — OP
Spooling, display status of resources $S DISP — OP
Spooling, display status of writers $S DISP — OP
Spooling, hold jobs $S HOLD — OP
| Spooling, keep a job after printing $S KEEP — OP
Spooling, release held jobs $S REL - op
Spooling, restart a writer $S WRES - opP
Spooling, start $L $SPOOL | — OoP
Spooling, start a writer $S WSTR — 0) 3
Spooling, stop $S STOP — 0) 4
Spooling, stop a writer $S WSTP — opP
Storage, change contents (patch) P — —
‘Storage, display contents §D — (0)
Storage map, display for all partitions $A ALL — OP
Storage map, display for terminal’s partition SA — OP
Submit a job into a host batch job stream SEDITIN — —
Suspend job queue processing $JOBQUT 10.1 0]
Test the binary synchronous access method (BSCAM) $BSCUT2 8.3 CO, PD
Test tape label type to ensure I/O commands executing $TAPEUT1 |3.10 —
correctly
Test the operation of sensor I/O features $IOTEST 9.3 —

Figure 1-1 (Part 6 of 7). Job Cross-reference Chart

Chapter 1. Introduction 1-7

Operator Session

Command/ Manager Guide
Job Utility Option Information
Trace 1/O activities on a BSC line $BSCTRCE | 8.1 CO
Trace I/O activities on an EXIO line SLINTRC — CO
Trace I/O activities on an LCC line SLCCTRCE | 8.11 Cco
Transport data sets across a bisync line $TRANS — oP
Trap storage image on error condition $STRAP — PD
Trap to two diskettes $TRAP — | PD, OP
Using your own operator command $U — OP, CU
Verify BSC hardware and software assignments $BSCUT?2 8.3 CO, PD
Verify Series/1-Series/1 attachment performing correctly $S1S1UT1 4.8 CO, PD
Write a tape label $TAPEUT! |3.10 oP

Figure 1-1 (Part 7 of 7). Job Cross-reference Chart

1-8 SC34-0940

U

O

Chapter 2. Operator Commands

The system operator commands provide system control functions from your
terminal. They tell EDX to do things such as load a program and set the time and
date. The 15 operator commands and their functions are:

Command Function

$A Displays partition sizes and addresses, free space, data areas, and the
" mnames, and locations of all loaded programs

$B Blanks the display terminal screen

$C Cancels a running program

$CP Changes the partition assigned to a terminal

$D Displays the contents of storage

SE Ejects a page on the printer

SL Loads a program

sP Patches storage

$S Controls the spooling of program output

ST Enters the date and time

sU Loads a user-written routine

$VARYOFF Sets a device offline

SVARYON Sets a device online

swW Displays the date and time

ERAP Prints the error log data set on the system printer.

This chapter shows you how to enter an operator command and describes the

function and syntax of each command. Refer to the Operation Guide for procedures
that use the operator commands.

Entering Commands

You can enter operator commands in one of two ways: prompt-reply or single-line
format. With prompt-reply format you enter the command name and each
parameter as the system asks for it. With single-line format you enter the command
name and all the parameters on the same line. The following examples show you
how to use the two formats with the $L. operator command.

Chapter 2. Operator Commands 2-1

Prompt-Reply Format B

Press the attention key. After EDX responds with the greater-than sign (>), type »
the operator command and press the enter key. EDX responds with a prompt for ‘
the next parameter as each parameter is entered.

MYPROG,MYVOL, 25

Single-Line Format

Press the attention key. After EDX responds with the greater-than sign (>), type
the operator command and all parameters in the order expected by EDX, and press
the enter key.

You can enter all operator commands (except $T — set date and time) in the
single-line format.

O

Operator Command Descriptions

This section contains a description and the syntax of each operator command
arranged in alphabetical order.

Syntax Conventions
The following conventions are used in the presentation of the operator command

syntax:

Uppercase If a parameter is shown in all uppercase letters, enter it exactly as
shown.

Lowercase If a parameter is shown is all lowercase letters, substitute a variable
value.

11 ~ If two or more parameters are enclosed in brackets, chose one of
them. The parameters within the brackets are separated by the or (|)
character.

| If parameters are separated by the or (|) character, choose one of
them.

2-2 SC34-0940

$A — List Partitions and Active Programs

Use the $A operator command to list the storage partitions defined for your EDX

@ operating system. (A partition is a portion of storage in which programs run.)
When you enter the $A command, the system supplies you with the starting address
of each partition, the names and addresses of active programs in each partition, the
terminal from which each program was loaded, the locations of data areas and free
space in each partition, and whether a specific partition is static or dynamic. In
addition, the $A command shows the size of the program, data area, or free space in
a decimal number of 256-byte pages.

You can use $A to list all partitions or only the one to which your terminal is
assigned. :

Syntax:

SA ALL |blank

Required: none
Default: starting address, size, active programs, free space
and data areas of partition currently assigned to

Operands Description

ALL Displays the starting addresses, sizes, active programs, free space and
data areas for all partitions.
O , blank If you do not enter ALL, EDX displays the starting addresses of the

programs active in the partition where your terminal is running, along
with the free space and data areas in that partition.

$B — Blank Display Screen
Use the $B operator command to erase all information on your display terminal
screen.

Syntax:

$B

Required: none
Default: none

Operands Description

None None

Chapter 2. Operator Commands 2-3

$C — Cancel Program
Use the $C operator command to cancel a program running in the same partition as o
your terminal. If there is more than one program- of the same name, EDX asks @
(prompts) you for the load address of the program. The load address is the storage "~
address where the program starts. You can find this address using the $A operator
command.

Notes:

1. $C should not be used as the normal means of stopping a program.
2. $C should not be used to cancel some of the system utilities. If $C should not
be used, the utility warns you on the first screen it displays.

Syntax:

$C program

Required: program
Default: none

Operands Description

program The name of the program to cancel.

$CP — Change Display Terminal’s Partition Assignment
Some jobs require that the display terminal be running in the same partition as the AN
object of the job, such as $C to cancel a program. Use the $CP operator command (Y
to change the partition number for the terminal you are using.

Syntax:

$Cp n

Required: n
Default: none

Operands Description

n The partition to which the terminal is to be assigned.

2-4 SC34-0940

$D — Dump Stora

O

ge :
Use the $D operator command to display, or dump, the contents of an area of
storage on the screen of your display terminal. When you enter the $D command,

EDX displays the hexadecimal contents of the specified storage locations.

Syntax:

$D origin,address,count

Required: origin
Default: address defaults to 0
count defaults to 1

Operands Description

origin The hexadecimal origin address. This can be any address, but if the
address parameter is a displacement into a program, this value is the
program load point.

address The hexadecimal displacement from origin at which the dump is to start.

count The decimal number of words to dump (maximum value of 16).

$E — Eject Printer Page

C

Use the $E operator command to advance (eject) one or more pages on the specified
printer. Entering a number with $E advances the paper that number of pages.

Syntax:

SE n printername

Required: none
Default: ejects one page, SSYSPRTR

Operands Description
n The number of pages to eject.

printername
The name of the printer you wish to eject pages on.

Chapter 2. Operator Commands 2-3

$L — Load a Program or Utility

Use the $L operator command to load a program into storage and start it running.

2-6 SC34-0940

Syntax:
SL program,volume,storage data sets
Required: program
Default: volume defaults to ITPL volume; storage
defaults to the amount specified on the
PROGRAM statement of the program to be
loaded
Operands Description
program The name of the program being loaded. This is the same as the name
of the data set where the program is stored.
volume The name of the volume containing the program data set.
storage The total additional storage (in bytes) to be added to the end of the
loaded program (overrides the STORAGE = parameter specified in the
PROGRAM statement). The number of bytes that must be specified,
if any, is determined by local procedures. If you specify an asterisk
(*), the loaded program receives the maximum amount of contiguous .
free space available in that partition. '
data sets The data set and volume names of one to nine data sets being passed

to the program. This parameter is required if DS=7? is coded on the
PROGRAM statement. The data sets must be specified in the order
used by the program and entered in the format: name,volume name,...
If data set names are required and you do not enter them as part of a
single-line command, EDX prompts you for them.

G

$P — Patch Storage

Use the $P operator command to change (patch) one or more words of storage.
(Refer to the Problem Determination Guide for instructions on using $P.)

Note: Patching of main storage is only valid for the current session. When the

system 1is reinitialized (IPL) or the executing program is reloaded, the patched
data reverts to its original value.

Syntax:

sP origin,address,count

Required: origin
Default: address defaults to 0

count defaults to 1

Operands Description

origin The hexadecimal origin address (program load point). Use the $A

operator command to determine this address.

address The hexadecimal address in the program where the patch starts.

count The decimal number of words being patched. A maximum of 16 words

can be patched.

O $S — Control Spooled Program Output

Use the $S operator command to control the operation of printer spooling from
your display terminal. $S has several subcommands that do these control functions.
The syntax for these subcommands is described on the following pages under:

“$S — List Subcommands” on page 2-8

“$S ALT — Alter Spool Job Printing” on page 2-8

“$S BROW — Browse a Spool Job” on page 2-10

“$S DALL — Delete All Spool Jobs” on page 2-15

“$S DE — Delete a Spool Job” on page 2-16

“$S DG — Delete Generic Spool Jobs” on page 2-16

“$S DISP — Display Spool Status Information” on page 2-17
“$S HOLD — Hold Spool Job(s)” on page 2-17

“$S KEEP — Keep or Release a Spool Job” on page 2-18
“$S REL — Release Spool Job(s)” on page 2-18

“$S STOP — Stop Spooling Facility” on page 2-19

“$S WRES — Restart a Spool Writer” on page 2-19

“$S WSTP — Stop a Spool Writer” on page 2-21

“$S WSTR — Start a Spool Writer” on page 2-21.

Chapter 2. Operator Commands 2-7

$S — List Subcommands
Use the $S command to obtain a list of the $S subcommands. @

Syntax:

$S

Required: none
Default: none

$S ALT — Alter Spool Job Printing
Use the $S ALT command to change the parameters that control the way a spool
job is printed. You can:

e Change the number of copies printed

¢ Change the forms code for the job

* Change the job name used on the spool job separator page

¢ Redirect one spool job to a different printer

* Redirect all spool jobs from one printer to another printer

¢ Specify that forms alignment be verified before a job is printed
* Change the lines per inch setting of a job.

Syntax:

$S ALT id [COPY n|FORM code|NAME heading|WRIT name|ALIGN Y/N|LPI n}
or
$S ALT WRIT cwriter nwriter

Required: id and either COPY FORM NAME WRIT ALIGN or LPI
or
WRIT cwriter nwriter

Default: none

C

2-8 SC34-0940

Operands Description

0 id

CoPY
FORM

NAME

WRIT

ALIGN

C

Notes:

The 1—3 digit-identification assigned to a spool job by the spool facility.
This identification is included on the spool status report generated by the
$S DISP ALL operator command.

n — The number of copies to be printed (must be from 1 to 127).

code — The four-character code identifying the forms required to print the
spool job.

heading — A 1 —8 character heading printed on the spool job separator
page. It defaults to the name of the program which created the spool job.

The name of the spoolable printer or display terminal. The “WRIT
name” form of this parameter is used to assign a printer or display
terminal to a particular spool job. The “WRIT cwriter nwriter” form is
used to redirect spool jobs from one spool device to another.

name The name of the spool device for this spool job.

cwriter The name of the current spool device whose spool jobs are to
be redirected.

nwriter The name of the new spool device.

Y/N — Specifies whether forms alignment is to be verified before the spool
job is printed (Y =yes, N=no). Alignment is verified for the next
complete copy of the job. Alignment is not verified for a job that is
printing when this command is entered or for a job that has been stopped
with the $S WSTP command.

n — The lines per inch setting the system uses when printing a job.
Specify 6 or 8 (n=6 or n=3§).

1. You cannot change the lines per inch setting of a job while it is printing. The
lines per inch setting remains in effect until the job finishes.

2. If you use the LPI operand to set the lines per inch, this overrides the setting
you code in your program (TERMCTRL SET, LPI=).

Chapter 2. Operator Commands 2-9

$S BROW — Browse a Spool Job

Use $S BROW to browse a spool job. With the $S BROW command you can:

* Browse the work data set (containing the spool job) using a full screen. @
¢ Scroll the work data set (containing the spool job) forward, backward, left or

right.
¢ Use PF (program function) keys for frequently-used functions.

Notes:

1. Before you can use the $S BROW operator command, you must create a work
data set.

2. You cannot use the $S BROW operator command to browse a job spooled to a
4201, 4202, or 4224 printer.

Creating the Work Data Set

2-10 SC34-0940

You must allocate a work data set for your spool job before you can use the $S
BROW command. For a procedure on how to allocate a data set, refer to the
Operation Guide.

You must estimate the size of the work data set. To do this, issue the $S DISP
command to determine the number of lines in the spool job. In the following
example the job contains 650 lines. To estimate the size of the work data set, divide
the number of lines in the spool job by 32. In this example, divide 650 by 32. The
result is 20.31. If there is a remainder, round this number up to the next highest
number. In this case round up to 21. Then add 1 to this number. The size of the
work data set for this spool job is approximately 22 records. If the work data set }
you allocate does not contain enough records, the system issues a message telling (™
you the number of records required.

Example: Determining the Spool Job Size

You cannot browse a spool job under the following conditions:

* When someone is browsing the same job at another terminal
* When someone is printing the same job
¢ . When the spool job is in an active status.

When you are browsing a spool job, you cannot do the following:

* Print the job

Delete the job

Release the job

Browse the job at another terminal.

C

Scrolling

Syntax:

$S BROW workds,volume jobid

Required: ALL
Default: None

Operands Description

WORKDS The name of the work data set that holds the spool job. You must create
the work data set before you can browse the spool job.

VOLUME The name of the volume containing the work data set.

JOBID The internal 1—3 character identification assigned to a spool job by the
spool facility. Obtain the identification by using the $S DISP command.
In the “Example: Determining the Spool Job Size” on page 2-10, the
JOBID is indicated by a 1 under JOB.

The spool job output that is in your work data set usually exceeds the size of the

- display screen. Scrolling allows you to page up or down or to the left or right

through the information. Four PF keys are used for this purpose, one for each
direction. To change the default scroll amount, move the cursor to the command
input line, enter the number of lines or columns, and press one of the four scroll PF
keys. “Browse Functions” on page 2-12 describes the functions of each PF key.

Default Scroll Amounts

The scroll amounts are:
PAGE or P Specifies scrolling one page (21 lines).
HALF or H Specifies scrolling a half page (11 lines).
MAX or M Specifies scrolling to the top or the bottom of the data set.
n Specifies the number of lines you want to scroll.
When you scroll to the left or right and do not specify the number of lines, the
system scrolls 80 columns. If you change the scroll amount at the command input
line and press the PF key, this amount becomes the new default.
To specify PAGE or HALF do one of the following:
* Type in PAGE or HALF at the scroll input field.
e Type in P or H in the first column of the scroll input field.

To scroll to the bottom or top of the data set, do one of the following:

" ¢ Type in M or MAX at the command input line.

* Type in M in the first column of the scroll input field or type MAX in the first
three columns of the scroll input field.

Chapter 2. Operator Commands 2-11

Browse Functions

The $S BROW command has the following functions:

FIND

Find a specific character string. To find a specific character string, type
in either F or FIND with the string of characters on the command input
line. You can type the string of characters in either upper or lowercase.
The system finds strings in uppercase only. To repeat a find, press the
PF4 key. Use single quotes around a string of more than one word. An
example of this is F ‘SSPLWSR DATA’. To find the first occurrence of
a string, type in the word FIRST after the stnng to be found. An
example of this is IND PGM FIRST.

Note: When you try to find a string and the cursor comes back to the
command input line, one of two things has occurred. Either the
system cannot find the string, or you are at the bottom of the data
set and need to repeat the find.

PS XXXXXXXX

END
PF2

PF3

PF4
PFS

PF6

2-12 SC34-0940

Print the screen on the printer you specify (XXXXXXXX). $SYSPRTR
is the default.

End the BROW subcommand.

Scroll up. You can specify a half page, a full page, or maximum by
typing HALF, FULL, or MAX in the scroll amount field.

Scroll down. You can specify a half page, a full page, or maximum by
typing HALF, FULL, or MAX in the scroll amount field.

Repeat a find. To repeat a find you specified previously, press PF4.

Scroll to the left. To specify the number of columns you want to scroll,
type the number in the command input line and press PF5. To scroll the
maximum number of lines, type in MAX on the command input line and
press PFS.

Scroll to the right. To specify the number of columns you want to scroll,
type the number in the command input line and press PF6. To scroll the

maximum number of lines, type in MAX on the command input line and

press PF6.

®

The following examples show you some of the ways to browse a spool job.

Example 1: Scrolling Down 13 Lines. To scroll down 13 lines, type 13 on the
command input line and press PF3.

~ N
BROWSE - $DISKUT1-=cmcmmmemcmm e s e e s e e e e e ol COLUMNS 001 080
COMMAND INPUT ===> 13 SCROLL ==> PAGE
Khkkk khkkkk TOP OF DATA ok e e e dode de Kk de B K ke e o e o e Kk e o e ok ok e ok ok ok ok ok ok e e ok e ok e ke ok e e e ke e ek ek R ok

TIME: 008:00:12 DATE :MM/DD/YY '
USING VOLUME EDX002 o ; :
TYPE FIRST RECORD SIZE EOD/PGMSZ NAME TYPE

88 PGM ‘ 27 5 5 SPLDSP DATA
"$SPLNTL - PGM 82 7 6 $SPLNT2 PGM
EXPRIN13 PGM 324 17 15 $SPLREL DATA
$SPLSTP PGM 109 3 NA ~ $SPLOV6 PGM

‘$SPLUT1 PGM 129 20 17 e PGM
: 159 12 9 ! TR ~ PGM
464 12 12 s $SPO0L PGM

231 23 ; 23 ‘$SPLOVS PGM

341 17 17 $SPLDEL DATA

PLOVA 9 B $SPLHLD DATA
SPLOVZ‘ “PGM- 15 15 SPLOV5 DATA
$SPLKEP ~ PGM " 3 3 . SPLOV4 DATA
$SPLALT - DATA

- §sPLov2
A3 DATA

The results are as follows. Note that the number 13 appears on the scroll input line.
This is now the default until you change it.

Chapter 2. Operator Commands 2-13

2-14 SC34-0940

Example 2: Scrolling 11 Columns to the Right.

The results are as follows. The columns line indicates that you are viewing column

12 through 91. If you press PF6 again, the system scrolls over another 11 columns.

This is now the default until you change it.

Example 3: Printing a Spool Job Using the PS Command.: To print a spool job,
type in PS and the name of the printer you are using on the command input line.

To print a spool job on the system printer ($SYSPRTR), type in PS on the
command input line and press enter. You do not have to specify $SYSPRTR since
it is the default.

In this example, the system prints the spool job on MYPRINTR. (If you do not
specify a printer, the spool job is sent to $SYSPRTR.)

Notes:

1. Each time you use the PS command and specify a printer name, the printer you
specify becomes the system default for that session.

2. If the printer name you specify is a spool device, the system creates a spool job
called $SPLBRS.

$S DALL — Delete All Spool Jobs
Use $S DALL to delete all ready or printing spool jobs.

Syntax:

$S DALL

Required: None
Default: None

Operands Description

None None

Chapter 2. Operator Commands 2-15

$S DE — Delete a Spool Job
Use $S DE

Syntax:

to delete one spool job that is either ready or printing.

$S DE

Required:
Default:

id

id
None

Operands
id

Description

The 13 digit identification assigned to a spool job by the spool facility.
This identification is included on the spool status report generated by the
$S DISP ALL operator command.

$S DG — Delete Generic Spool Jobs :

Use the $S

DG command to delete all ready or printing spool jobs that have a name

starting with a specified prefix.

Syntax:

$S DG

Required:
Default:

string

string
None

Operands

string

2-16 SC34-0940

Description

A 1—8 character prefix that specifies the spool jobs to be deleted. All
spool jobs with this prefix are deleted.

$S DISP — Display Spool Status Information
m Use $S DISP to display information about spool jobs, spool resources, and spool
writers.

Syntax:

$S DISP IdJALL|STAT

Required: None
Default: ALL

Operands Description

id The internal 1 —3 character identification assigned to a spool job by the
spool facility. This identification is obtained by using the $S DISP ALL
command.

ALL Displays the status of all spool jobs, all spool writers, and all spool
resources.

STAT Displays the status of the spool resources.

$S HOLD — Hold Spool Job(s)
Use the $S HOLD command to hold a specific spool job, or all spool jobs, from
being printed. Only active and ready spool jobs can be held.

0 Syntax:

$S HOLD id|ALL

Required: None
Default: ALL

Operands Description

id The 1 -3 character identification assigned to a spool job by the spool
facility. This identification is included on the spool status report
generated by the $S DISP ALL operator command.

ALL Holds all active and ready spool jobs and all future spool jobs.

Chapter 2. Operator Commands 2-17

$S KEEP — Keep or Release a Spool Job

Use $S KEEP to keep a specific spool job from being deleted or to delete a job that
has been kept. When a kept job is released, SSPOOL prints one additional copy
before deleting the job.

Syntax:

$S KEEP id Y|N

Required: id and either Y or N
Default: None

Operands Description

id The 1 —3 character identification assigned to a spool job by the spool
facility. This identification is included on the spool status report
generated by the $S DISP ALL operator command.

Y Keeps the spool job available after it is printed. The spool job is both
held and kept after printing, with the number of copies set to one.
Therefore, when released by using the $S REL command, it is printed
(even if printed once already).

N Deletes the spool job from the system after it is printed. When released
by use of this operand, the number of copies of the spool job to be
printed is set to one, even if more than one copy was requested before
the job was kept.

$S REL — Release Spool Job(s)

2-18 SC34-0940

Use $S REL to release one, or all, held jobs for printing. A releéased job resumes its
place in the ready queue; that is, its print order is still determined by the order in
which it originally became ready.

- Syntax:

$S REL idJALL

Required: None
Default: ALL

Operands Description

id The 1—3 character identification assigned to a spool job by the spool
facility. This identification is included on the spool status report
generated by the §S DISP ALL operator command.

ALL Releases all currently held spool jobs. This resets the effect of the $S
HOLD ALL command.

U

U

$S STOP — Stop Spooling Facility

Use $S STOP to stop the spooling facility. Spooling stops when any jobs in active
0 or printing status finish.

Syntax:

$S STOP

Required: None
Default: None

Operands Description

None None

$S WRES — Restart a Spool Writer

Use $S WRES to restart a temporarily stopped spool writer. You can restart a
writer:

e At the beginning of the interrupted job
* At the line following the last line printed
e At a specified number of lines or pages before or after the last line printed.

Syntax:

O

$S WRES npame [IMM|JOB|B non L/P|{F nnn L/P] code

Required: name
mnn and L or P if B or F specified
Default: MM

code defaults to blanks

Chapter 2. Operator Commands 2-19

2-20

SC34-0940

Operands
name
IMM
JOB

nnn

code

Description

The name of the writer to be restarted.

Resume printing at the next line of the interrupted spool job. C(J
Resume printing at the start of the interrupted spool job.

Resume printing »nn lines (L) or pages (P) before the line where the job
was stopped.

Resume printing nnn lines (L) or pages (P) after the line where the job
was stopped.

The number of lines or pages backward (B) or forward (F) from the
point of interruption. Specify this parameter if you specified B or F.

If the writer scrolls to the start of the spool job, the complete job is
printed. If the writer scrolls to the end of the spool job, the job is not
printed.

Specifies that nnn is in lines.
Specifies that znnn is in pages.

The four-character forms code for the forms to be used for jobs printed
by this writer. A new forms code specification takes effect when the
writer processes the next job or the next copy of the current job.
Defaults to blanks.

$S WSTP — Stop a Spool Writer
O Use $S WSTP to stop a spool writer. You can stop a spool writer:

e Immediately at the start of the next line of the spool job or at the end of the
current job

¢ Temporarily, to be restarted with the $S WRES command, or permanently. A
spool job that is permanently stopped must be started again with the $S WSTR
command.

Syntax:

$S WSTP name [IMM|JOB] [TERM|NOTERM]

Required: name
Default: IMM NOTERM

Operands Description

name The name of the writer to be stopped.

IMM Stop printing at the next line of the spool job.

JOB Stop printing at the end of the current job.

TERM Stop permanently. (The dedicated printer is released and writer task is
ended.)
Note:' A permanently stopped writer task must be started with the $S

0 WSTR command.
NOTERM

Stop temporarily. The writer can be restarted with the $S WRES
command. (The writer maintains control of the printer device.)

$S WSTR — Start a Spool Writer
Use $S WSTR to start a spool writer and specify a forms code.

Syntax:

$S WSTR name code

Required: name
Default: code - defaults to blanks

Operands Description

name The name of the printer for which the writer is to be started. This is also
the name of the writer.

code The four-character forms code for the printer forms used with the jobs
printed by this writer. Defaults to blanks.

Chapter 2. Operator Commands 2-21

ST — Set Date and Time

Use the $T operator command to set the date and time in the EDX operating
system.

You can only enter $T from a display terminal named $SYSLOG or $SYSLOGA
(the system logging display terminal or its alternate). If you enter it from a terminal
with another name, the system displays the date and time as if you had entered a §W
command. The $T command must be entered in prompt-reply format.

Syntax:

$T date,time

Required: date,time
Default: date defaults to 00/00/00
time defaults to 00:00:00

Operands Description

date The current date. Can be entered as MM/DD/YY, MM.DD.YY. or
MM DD YY.
time The current time. Can be entered as hh:mm:ss, hh.mm, or hh mm.

$U — Load Your Own Operator Command

2-22 SC34-0940

Use the $U operator command to enter an operator command function that is
unique to your system. Refer to the Customization Guide for information on how to
write a program for the $U operator command.

If $U is entered and your system does not have a program to support it, EDX
displays the message “FUNCTION NOT DEFINED.”

.

O

SVARYOFF — Set Device Offline

Use the sVARYOFF command to set a diskette or tape drive offline. When a
diskette or tape drive is offline, the computer does not control it. When you vary a
tape drive offline, the system rewinds the tape to the beginning. When you remove a
diskette from a diskette unit, issue the SVARYOFF command to vary the slot used
offline. Otherwise, EDX will continue to use that diskette.

/

Syntax:

SVARYOFF ioda slot

Required: ioda
Default: none

Operands Description

ioda The hexadecimal device address of the diskette or tape device being
varied offline.

slot The number of the 4966 diskettes being varied offline. This parameter is
valid only for the 4966 diskette unit. The valid slot numbers for the 4966
magazine unit are:

All diskettes (1,2,3,A,B)
Slot 1

Slot 2

Slot 3

Magazine 1

Magazine 2.

W PN =D

Chapter 2. Operator Commands 2-23

SVARYON — Set Device Online

2-24 SC34-0940

Use the SVARYON operator command to set a diskette or tape drive online. When
using a 4966 diskette unit or a tape unit, you must use the $VARYON command to
vary the unit online. Then the system knows the unit is there.

Note: To vary the 4966 online, code the slot parameter.

You do not have to enter SVARYON when you put a new diskette into a 4964 or
4965 diskette unit. The system automatically varies the device online when you shut
the door of the diskette unit.

Note: When you are using a 4966 diskette unit or an IDSK diskette unit, you must
vary on the diskette after it is inserted in the drive. (For the 4966, insert the
diskette in slot 1.) To vary on the diskette, press the ATTN key and enter the
$VARYON command.

Syntax:

$SVARYON ioda slot|file EX

Required: ioda
Default: file defaults to 1
maximum value of file is 255

Operands Description

ioda The hexadecimal device address of the diskette or tape device being
varied online.

slot The number of the 4966 slot containing the diskette being varied online.
This parameter is valid only for the 4966 diskette unit. The valid slot
numbers for the 4966 magazine unit are:

All diskettes (1, 2, 3, A, B)
Slot 1

Slot 2

Slot 3

Magazine 1

Magazine 2.

e WN -

file The decimal file number on the tape being accessed.

EX Override the tape expiration date. If a tape data set is initialized with an
expiration date, EX must be used to be able to write to that tape data
set. The file number must also be specified.

The “file” and “EX” parameters are valid only for tape devices.

O

$W — Display Date and Time
Use the $W operator command to display the date and time, according to your
EDX system, on your display terminal.

Syntax:

W

Required: none
Default: none

Operands Description

None None

ERAP — Print Error Log Data Set on the System Printer
Use the ERAP operator command to print a default error log data set
(EDXLOGDS) on the system printer (SSYSPRTR). To use the ERAP operator
command, press the attention key, type ERAP, and press the enter key. After you
enter the ERAP command, the system directs a listing of the error log data set to
$SYSPRTR. The system prints the entire error log data set and issues the message
“ERAP ENDED.”

If you do not want to print the entire log, use the $C command to cancel
SERAPUTI. See “$C — Cancel Program” on page 2-4 for information on how to
use this command.

Notes:

1. If your system does not have a SSYSPRTR or the $SYSPRTR is busy, the
system lists the error log data set on the terminal where you entered the
command.

2. When you use the $C command to cancel a program, the program must be
assigned to the same partition as your terminal. The system automatically loads
SERAPUTI into a partition where storage is available. Use the $A command to
find out where SERAPUT!1 resides. If your terminal is not assigned to the same
partition as SERAPUT], use the $CP command to change your terminal’s -
partition. Then you can cancel SERAPUT]I.

3. The system automatically allocates an error log data set (EDXLOGDS), 200
records in size, on the IPL volume. For more information on error logging,
refer to the Problem Determination Guide.

4. $ERAPUT! and SLOGUTO00 must be on the IPL volume (usually EDX002).

Chapter 2. Operator Commands 2-25

2-26 SC34-0940

Syntax:

ERAP

Required: none
Default: none

Operands Description

None None

o

'S

Chapter 3. Session Manager

The session manager provides access to system utilities and application programs
from a display terminal. It uses a series of menu screens to direct you to the system
utility you need and/or prompts you for parameters, such as data set names, needed
by the option you chose.

This chapter explains the session manager screens and options. It also contains a
table that cross references the system utilities supported by the session manager to
the appropriate menu option.

Loading the Session Manager

The session manager must be active at your display terminal before you can use it.
This can be accomplished by either loading it for that specific terminal, or having it
loaded automatically during initial program load (IPL) of the EDX system. When
the session manager is loaded during IPL, EDX loads a copy for each display
terminal recognized by the operating system.

The session manager is loaded for a specific terminal using the $L operator
command as follows:

> $L SSMMAIN

To load the session manager automatically, you must rename the session manager
initialization program from $SMINIT to $SINITIAL. This is done using the
$DISKUT1! RE command as follows:"

RE $SMINIT $INITIAL

When the session manager is loaded, it displays the logon menu shown in Figure 3-1
on page 3-2.

Menus

The session manager menus, or display screens, list system facilities available
through the session manager. They also display prompts for required parameters.

The session manager has the following menus:

¢ Logon/logoff

¢ Primary option

¢ Secondary option
¢ Parameter input
e Custom.

Chapter 3. Session Manager 3-1

Logon/Logoff Menu

The logon menu prompts you for a user ID and an optional alternate session menu
if you are logging on to the session manager, or for the word LOGOFF if you are
ending your session (logging off).

Your user ID must be 1 —4 unique characters, such as your initials. The session
manager uses your ID as part of the data set names of work data sets that it
allocates for your session. It does not use your ID as a password to verify that you
are authorized to use the system.

The alternate session menu is an alternate menu that you want displayed instead of
the primary option menu. An alternate session menu is available only if your copy
of the session manager has been customized. (Refer to the Customization Guide for
instructions on adding menus to the session manager.)

Figure 3-1. Session Manager Logon/Logoff Menu

Primary Option Menu

3-2 sC34-0940

The primary option menu lists all of the primary options provided with the session
manager. If your session manager has been customized, you may have additional
options, or the options may be different from the ones listed below. To select an
option, enter the number of the option on the SELECT OPTION prompt line. After
you select a primary option, the session manager displays a secondary option or
parameter input menu. (See Figure 3-2 on page 3-3 for an example of the primary
option menu.)

The basic options are:

1. TEXT EDITING: Accesses the SFSEDIT text editor.

2. PROGRAM PREPARATION: Accesses the program preparation utilities.

3. DATA MANAGEMENT: Accesses the utilities for managing data on disk,

diskette, or tape.

. TERMINAL UTILITIES: Accesses the terminal support utilities.

5. GRAPHICS UTILITIES: Accesses the utilities that generate, maintain, and
display two- and three-dimensional fixed graphic backgrounds, and store them in
data sets.

6. EXEC PROGRAM/UTILITY: Allows you to load any program. The program
can be an EDX system program, an EDX utility, or an application program.

7. EXEC $JOBUTIL PROC: Allows you to load a previously built $JOBUTIL
procedure.

8. COMMUNICATION UTILITIES: Accesses the utilities that support
communications.

9. DIAGNOSTIC AIDS: Accesses the utilities that help with problem
determination. '

=N

10. BACKGROUND JOB CONTROL UTILITIES: Accesses the job queue

0 processing utilities.
p

$SMMPRIM: SESSION MANAGER PRIMARY OPTION MENU
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT
SELECT OPTION ==>
1 - TEXT EDITING
- PROGRAM PREPARATION
- DATA MANAGEMENT
- TERMINAL UTILITIES
- GRAPHICS UTILITIES
EXEC PROGRAM/UTILITY
- EXEC $JOBUTIL PROC
- COMMUNICATION: UTILITIES
- DIAGNOSTIC AIDS -

L - BACKGROUND Jo0B CONTROL UTILITIES ,)

QWO NOOCEDE WN
1

[y

Figure 3-2. Session Manager Primary Option Menu

Secondary Option Menu
A secondary option menu lists the utilities that are available under the related
primary option. Primary options 2, 3, 4, 5, 8, 9, and 10 have secondary option
menus. Figure 3-3 shows an example of the secondary option menu for primary
option 2 — Program Preparation.

OPTION prompt line. After you select a secondary option, the session manager

0 To select a secondary option, enter the number of the option on the SELECT
A
either displays a parameter input menu or loads the requested utility.

1- $EDXASM COMPILER
2 $EDXASM/$EDX’LINK

Figure 3-3. Example Session Manager Secondary Option Menu

Chapter 3. Session Manager 3-3

Parameter Input Menu
The parameter input menus prompt you for parameters, such as a data set and
volume name, that are required by the requested utility. O

Primary options 1, 6, and 7 have a parameter input menu but no secondary option
menu. Figure 5 contains an example of the parameter input menu for the

SEDXASM utility (primary option 2, secondary option 1).

Enter the requested parameters in the format expected by the requested utility.

MYSRC,MYVOL

MYOBJ,MYVOL

Figure 3-4. Example Session Manager Parameter Input Menu

3-4 SC34-0940

O

The Background Option

Custom Menus

Figure S shows that you can specify either the background or foreground option.
This choice is offered with options 2.1, 2.2, 2.7, 2.8, 2.13, 6, and 7. If you run a job
in foreground, you cannot use your terminal until the job has completed.
Foreground is adequate for small jobs. However, if you do not want to tie up your
terminal waiting for a large job to complete, run in background and the job will run
on another terminal. Then you can continue to use your terminal for another job.

If you try to code anything except an “F” or a blank for foreground or a “B” for
background, you will receive an “INVALID PARAMETER INPUT” message.

To submit a job through the background options of 10.1 or 10.2, the system must
load the batch control manager, $JOBQ. For a job to execute in background, 8K
bytes of storage must be available.

P

S PF3 TO RETURN

, 177~$JQBQUT~$JQBQ}PROCESSING,CONIR0”
2 - SSUBMIT $J0BQ JOB SUBMISSION UTILITY

Figure 3-5. Example Secondary Option Menu for Primary Option 10.
Note: See the $JOBQUT and $SUBMIT utilities for the screen examples.

The session manager allocates one additional work data set ($SMBJOBQ) for the
entire system to use for background processing. When you log onto the system, the
session manager checks to see if this work data set exists already. If it does not, the
session manager allocates 400 records for the data set. If the data set already exists,
the session manager continues as usual. Every job submitted in background that
needs a work data set will use this preallocated data set. Since only one job can run
background at a time, there is no problem. If you delete this data set, the session
manager will reallocate it when the next user logs on.

Note: If you never intend to run background jobs, your system manager can move
this entry ($SMBJOBQ) after the end statement in the data set $SSMALLOC,
EDX002 with SFSEDIT.

You can add your own custom menus which give you access to your application
programs with the session manager. Refer to the Customization Guide for
instructions on customizing the session manager.

Chapter 3. Session Manager 3-5

Data Sets

3-6 SC34-0940

The session manager uses six work data sets for each person that is logged on. They

are $SMEuser, $SMPuser, $SMWuser, $SM1user, $SM2user, and $SM3user. (If
your session manager has been tailored as described in the Customization Guide,

additional data sets may be used.) The data sets are allocated after you enter your
user ID on the logon menu, unless they were saved at the end of a previous session.

The session manager uses your user ID as part of the data set name, creating a
unique set of data sets for each user.

When you log off, the session manager gives you an opportunity to erase all work

data sets except $SMPuser. If you chose to save the data sets, the information they

contain will be available the next time you sign on with the same user ID.

Figure 3-6 lists the basic session-manager data sets, their sizes, and their purposes.

Size in

Data Set 256-byte

Name Records Purpose

$SMEuser 400 Used by the full-screen text editor (SFSEDIT) as
a work data set.

$SMPuser 30 Used by the session manger to save your input
parameters. This data set is not deleted at the
end of a session, making your parameters
available for the next session.

$SMWuser 30 Used by the session manger to submit procedures
through the job procedure utility ($JOBUTIL).

$SM1user! 400 Used by $S1ASM, SEDXASM, $COBOL, $PL/I,
SPASCAL and $FORT as a work data set.

$SM2user! 400 Used by SEDXLINK, $S1ASM, $EDXASM,
$XPSLINK, $COBOL, $PL/I, and $FORT as a
work data set.

$SM3user! 250 Used by the Series/1 Macro Assembler
($S1ASM), SCOBOL, $PASCAL, and $PL/I as a
work data set.

Figure 3-6. Session Manager Data Sets

Note: If you use option 2.8 or 2.13, the session manager expands $SM2user to 600

records and then resets it to 400 records.

1 These data sets must be deleted and reallocated to new sizes when using the session
manger to load compilers and assemblers. Recommended sizes for most programs are
2000 records for $SMluser and $SM2user and 800 records for $SM3user.

O

C

O Program Function Keys

The session manager has four program function (PF) keys defined for special use:
PF1, PF2, PF3, and PF4. They perform the following functions:

PF1 Suspends the session manager, allowing you to enter operator commands.
Suspending the session manger is quicker than logging off and back on. To
restart the session manager, press the attention key, and enter $SM. The
session manager returns to the menu you were using when you pressed the PF1
key.

When you press the PF1 key, the session manager displays the following
messages:

ENTERING SYSTEM-COMMAND MODE - -
TO REENTER THE SESSION MANAGER,
DEPRESS THE ATTN KEY AND ENTER "$SM"

PF2 Restores the current menu screen to its appearance when first displayed. Use
this key to erase incorrect entries.

PF3 Returns to the previous menu.

PF4 Return directly to the primary option menu.

Supported Utilities

The following table lists the EDX system utilities that are supported by the session
manager and the primary and secondary option numbers for each. (See Figure 1-1
on page 1-2 for a table which includes a list of the jobs that can be done with the
session manager, including the appropriate primary and secondary option numbers
for each.)

Note: The session manager menus are independent of the EDX supervisor installed
on your EDX system. Therefore, all the utilities listed on the menu screens
may not be a part of your system.

Utility Description Options
SARIJE Advanced RJE program and utilities 8.10
$BSCTRCE Trace I/O activity on a BSC line 8.1
$BSCUT!1 Format BSC trace files 8.2
$BSCUT2 Communications I/O exerciser 8.3
$CHANUTI1 Channel attach utility 8.9
$COBOL COBOL language compiler 2.4
$COMPRES Compress disk, diskette, or volume 3.4
$Cory Copy data set or volume 3.5

Figure 3-7 (Part 1 of 3). Session Manager Options by Ultility

Chapter 3. Session Manager 3-7

3-8

SC34-0940

Utility Description Options

$COPYUT1 Copy data set with allocation 3.3

$DASDI Format disk or diskette 3.6

$DICOMP Display and change graphics profiles 5.2

$DIINTR Graphics interpreter 5.3

$DISKUT1 Allocate, delete, list data set directory 3.1
data

$DISKUT2 Patch, dump, or list a data set or 3.2,9.2
program

$SDISKUT2 Search for EBCDIC or hexadecimal 3.2,9.2
string

SDIUTIL Maintain partitioned data base 5.1

$DUMP Format and list saved environment 9.1

$SEDXASM Event Driven Language Compiler 2.1

SEDXASM/ Compile and link 2.2

SEDXLINK

SEDXASM/ Compile and link a supervisor program 2.13

$XPSLINK

$SEDXLINK Linkage editor 2.7

SFONT Process 4974, 4978, and 4980 character 4.5
image tables

SFORT FORTRAN language compiler 2.5

SFSEDIT Full-screen editor 1

$GPIBUT1 General purpose interface bus utility 4.9

SHCFUT!1 Interact with Host Communications 8.8
Facility

$SHXUTI1 H-exchange diskette utility 3.11

$SIAMUTI Indexed Access Method Utility 39

SIMAGE Define 4978, 4979, 4980, 3101, 3151, 4.4
3161, 3163, or 3164 screen image

$INITDSK Initialize disk or diskette, and volume 3.7
control »

SINSTAL Install and maintain program products 3.12

SIOTEST Test sensor I/0; list hardware 9.3
configuration

1 $JOBUTIL Job stream processor 7
$JOBQUT Job queue processing controller 10.1

Figure 3-7 (Part 2 of 3). Session Manager Options by Utility

O

c

Utility Description Options
SLCCTRCE Trace I/O activity on an LCC 8.11
attachment
SLCCUT1 Format LCC Trace Files 8.12
SLINTRC Communication line trace 8.13
SLINUT1 Display communication line trace file 8.14
$MOVEVOL Disk volume dump and restore 3.8
SMSGUT!1 Message-source processing 2.14
.| SPASCAL/ Pascal language compile and link 2.12
$SEDXLINK
SPFMAP Display 4978 and 4980 PF key codes 4.6
SPLI/SEDXLINK | PLI ldnguage compile and link 2.6
$PREFIND Prefind data sets and EDL overlays 2.11
$PRT2780 2780 spooled RJE file printer 8.6
' SPRT3780 3780 spooled RIJE file printer 8.7
$RIJE2780 2780 remote job entry to host 8.4
SRJIE3780 3780 remote job entry to host 8.5
$SPLUT1 Spool utility 4.7
SSUBMIT Job queue job submission utility 10.2
$S1ASM Series/1 assembler 23
$S1S1UTI Series/1 to Series/1 4.8
$TAPEUTI1 Tape management 3.10
STERMUT! Change terminal parameters 4.1
STERMUT2 Change 4974, 4978, and 4980 image or 4.2
control store
$STERMUT3 Send message to a terminal 43
SUPDATE Converting Series/1 programs 2.9
$UPDATEH Convert host system programs 2.10
$VERIFY Verify Indexed Access Method Files 9.4
$XPSLINK Link a supervisor program 2.8

Figure 3-7 (Part 3 of 3). Session Manager Options by Utility

Chapter 3. Session Manager

39

3-10 sC34-0940

O

Chapter 4. Utilities

The system utilities are a set of programs supplied with the Event Driven Executive.
They allow you to interactively communicate with the system and perform tasks
necessary for Series/1 application program development and system maintenance.

This chapter provides detailed descriptions (in alphabetical order) of the EDX
system utility programs.

Loading the Utilities

The Event Driven Executive provides three ways to load the utility programs from a
terminal:

Session manager You choose the desired utility program from a predefined option
menu. This is the easiest to use for interactive utilities because
you only enter option numbers (not program names) to access
the function needed.

$JOBUTIL The job stream processor utility is used to load a predefined
sequence of utility programs and to pass parameters to those
programs. $JOBUTIL can be.loaded by the $L operator
command or the session manager.

$SL command Enter the operator command $L (load program), followed by the
utility name. All utilities described in this chapter can be loaded
using $L.

Any utility loaded results in a loading message being displayed. The following
example is for illustrative purposes only.

| wnone urrr

Here, UTILITY is the name of the utility being loaded. xP indicates the size of the
utility in pages (256 bytes equals one page). 00.00.00 is the time in hours, minutes,
and seconds. LP= 0000 indicates that the load point of the utility is at location
X'0000', and PART = number indicates the partition in which the utility is loaded.
If timer support is not included in your supervisor, the time is not printed.

Most utility programs are used interactively from a terminal. If you are not familiar
with the commands available under a specific utility, you can enter a question mark
in response to the COMMAND (?): prompt and press the enter key. A list of the
available commands for that utility is displayed.

Chapter 4. Utilities 4-1

Entering Utility Commands

You can enter utility commands in one of two ways — prompt-reply or single-line
format. With prompt-reply format, you enter the command name and each
parameter as the system asks for it. With single-line format, you enter the command
name and all the parameters on the same line. The following examples show you
how to use the two formats.

Prompt/Repiy Format

Type the utility command following the COMMAND (?): prompt and press the
enter key. EDX responds with a prompt for the next parameter as each parameter is
entered.

Single Reply Eniry

ARE ALL PARAMETERS CORRECT?: Y
- copY COMPLETE ,

Type the command name and all the required parameters (information) needed by
the command to perform its function following the COMMAND (?): prompt and
press the enter key. When using the single reply entry, the parameters must be
entered in the order that EDX expects them.

_ CV IBMEDX EDX002 DATAL Y

Cancelling a Utility

4-2 SC34-0940

Use the $C operator command to cancel a utility program running in the same
partition as your terminal. If $C should not be used to cancel a utility, the utility
warns you on the first screen it displays.

To cancel a utility with the $C operator command:

1. Press the attention key

2. EDX responds with the greater-than sign (>)
3. Enter the $C operator command

4. Press the enter key.

O

o

O

$BSCTRCE

$BSCTRCE — Trace /O Activity on a BSC Line

The $BSCTRCE utility traces the I/O activities on a given binary synchronous
communication (BSC) line. You must load $BSCTRCE in the same partition as the
application program that is controlling the traced line. If you load it in any other
partition, you will get unpredictable results.

Loading $BSCTRCE

Load $BSCTRCE with the L command or option 8.1 of the session manager.

After you load $BSCTRCE, it prompts you for the disk or diskette file in which to
place the trace output. $SBSCTRCE then prompts you for the line number you want
traced. Use the attention command STOP to end the trace action.

) I
TRACES
TRCE ~ 6P,11:03:22, LP=6500, PART=2
UMBER (HEX): 9 o
> STOP :
 LAST TRACE RECORD EQUALS 19
\:$BSCTRCE ENDED AT 11:13:31)

When the system reaches the end of the output file, it reuses it from the beginning,
since $BSCTRCE displays the relative record number of the last trace record it
wrote before it ended. You can display or list the trace file by using the $BSCUT1
utility.

$BSCTRCE writes trace file records at the completion of a BSC operation.
Therefore, for a conversational BSCWRITE, if you specify the same buffer address
for both input and output, the trace file does not show the data that the system
transmitted; it shows only the data that it received.

Multiple BSC lines may be traced concurrently with multiple loads of $SBSCTRCE
using different trace files. Each copy of SBSCTRCE must use a different trace data

set. We recommend that each trace data set name reflect a unique line number.

When $BSCTRCE ends, it displays the relative record number of the last trace
record it wrote.

Chapter 4. Utilities 4-3

$BSCTRCE

Record Format

4-4 SC34-0940

The format of the records produced by $BSCTRCE is shown below.

CC | ISW STATUS DCB | LGTH | DATA | LAST4

0 +2 +4 +10 +26 +28 +252

BG1183

CC Interrupt condition code on completion of the I/O.
ISw Interrupt status word on completion of the I/O.

STATUS The three status words of the BSC adapter (produced when bit 0 of the
ISW is on).

DCB The device control block for the I/O.

LGTH The length of the data sent/received.

DATA The data in main storage following the I/O. ‘

LAST4 The last 4 bytes of data if the data is longer than 227 bytes.

Note: The CC, ISW, and STATUS fields are zero when the DCB has been chained

from the previous record’s DCB.

Refer to the IBM Series/1 Binary Synchronous Communications Feature Description,
GA34-0244 for descriptions of the interrupt condition code, interrupt status word,
the three cycle steal status words, and the device control block.

U

$BSCUT1

O $BSCUT1 — Format BSC Trace Files

The $BSCUT! utility formats BSC trace files (see SBSCTRCE utility) for printing to
either SSYSPRTR or a terminal. You can select the record for the trace file to

dump. The system will prompt you as necessary for information that the functions
of $BSCUT!1 require.

Loading $BSCUT1
Load $BSCUT! with the $L command or option 8.2 of the session manager.

$BSCUT1 Commands

To display the $BSCUT1 commands at your terminal, enter a question mark in
response to the prompting message COMMAND (?):

> $L $BSCUTL

21P,00:04:21, LP= 9200, PART=1

coMMAND(?): ?

After $8BSCUT! displays the commands, it prompts you with COMMAND (7).
Then you can respond with the command of your choice (for example, CV).

Chapter 4. Utilities 4-5

$BSCUT1

Example: Figure 4-1 shows loading and using $BSCUT]1 to display specified trace
data records.

U TRACE9,EDX003
32
3

Figure 4-1. Dumping BSC Trace Records to a Terminal

4-6 SC34-0940

$BSCUT1

The command for printing the selected records is DP; the command for
dumping records to a terminal is DU. This example uses DU. You can
change the volume on the command line. In the example, the volume changes
from EDX002 to EDX003.

You can select a specific range of records for $BSCUT]1 to display. Enter the
first and last record numbers as the utility requests them. Figure 4-1 on

page 4-3 shows that when $BSCTRCE ends, it displays the last trace record
number. This information provides you with the range of record numbers that
are available in the $BSCTRCE data set.

The system displays the record number along with the type of BSC operation it
represents.

This line provides 3 items of diagnostic information:

CC This is the interrupt condition code. In this example the 2 is the
condition code returned and indicates an exception condition.

ISW The interrupt status word represents the interrupt status byte in the
leftmost byte.

STATUS The 3 words of status are the values stored in the cycle steal status
words (CSSW) for the BSC adapter. The CSSWs contain valid
diagnostic information when the ISW bit 0 is set to 1.

The detailed descriptions of these codes are contained in the IBM Series/I
Binary Synchronous Communications Feature Description, GA34-0244.

When analyzing the trace records, you must remember that the system writes
the trace records after the BSC operation completes. Therefore, the error
indications may not relate directly to the record with which they are formatted
and printed but will relate to the operation as a whole.

This line provides a brief interpretation of the condition code field and the
interrupt status byte.

These eight words represent the values stored in the device control block
(DCB). Their meanings are described in detail in the IBM Series/1 Binary
Synchronous Communications Feature Description, GA34-0244.

This line provides a brief interpretation of what operation was performed by
the device control block whose values are represented on the previous line.

This is the number of bytes of data that the current operation receives.

This is the first byte of data in the record the system is displaying. Notice that
in record number 33 of the example, the DATA LENGTH = 485 (bytes).
Also, the leftmost column of the record’s data that the system is displaying
shows the first byte position of each line in decimal values. When the DATA
LENGTH of a trace record exceeds 227 bytes, the system displays only the
first 224 bytes of data followed by “LAST 4” and the last 4 bytes of the data
record.

This is the beginning of the display for LAST RECORD selected in the
example, record number 33.

Chapter 4. Utilities 4-7

$BSCUT2

$BSCUT2 — Communications I/0 Exerciser

The $BSCUT?2 utility is primarily an I/O exerciser and is used to verify the
following:

¢ Binary synchronous communications access method (BSCAM)
¢ BSCLINE definitions generated in the executing supervisor
¢ Customized jumper assignments in the BSC hardware features, such as:

— device address
— type of connection
— tributary station address.

You can use $BSCTRCE to trace the exercising activities of SBSCUT2. You can
format and print the records with $BSCUT1.

For each function you select in $BSCUT2, the system prompts you for the device
(line) address, tributary station address (if multipoint), record length, and other
related information. If any discrepancies exist between the function you are
performing and the hardware assignments, the system prints error messages.

$BSCUT2 checks out binary synchronous operations if at least two binary
synchronous adapters are available on Series/1 processors and if you make the
connection between the two adapters. If you use a switched manual connection,
$BSCUT?2 does not prompt you to make the connection. This must be done after
you issue the $BSCUT2 command and answer all prompts.

The BSCAM capabilities that $BSCUT?2 can test are:
* Read and write of both transparent and nontransparent data

* Operation in limited conversational mode with both transparent and
- nontransparent data

¢ Operation as a control station on a multipoint line to both poll and select
tributaries (text written only for transparent data)

* Operation as a tributary station on a multipoint line to be polled and selected
(text written only for transparent mode).

Test Pattern Messages

4-8 SC34-0940

$BSCUT?2 issues a test pattern message for every record it read or wrote in a test.

The first line of a test pattern message gives the task name, record number, and
record length.

The second line shows the alphabet repeated to fill up the number of characters
specified for record length.

$BSCUT2

The meanings of the task names are as follows:
* READ — read of standard or transparent data in standard mode
e RXV1 — read of transparent data in conversational mode
¢ RNV1 — read of standard data in conversational mode
¢ WRTN — write of standard data in standard mode
¢ WRIT — write of transparent data in standard mode
¢ WXVI1 — write of transparent data in conversational mode
¢ WNYVI1 — write of standard data in conversation mode
¢ MTXI1 — read of transparent data by a tributary station

¢ MCX1 — write of transparent data by a control station.

The system repeats the output message in the previous example for the number of
records transmitted.

Loading $BSCUT2
Load $BSCUT?2 with the $L. command or option 8.3 of the session manager.

> $L $BSCUT2
* LOADING $BSCUT2

$BSCUT2 Commands

To display the $BSCUT?2 commands at your terminal, enter a question mark in
response to the prompting message COMMAND (?):

| commanD (2):

After $BSCUT2 displays the commands, it prompts you with COMMAND (?).
Then you can respond with the command of your choice (for example, RI).

- Most of the commands and their explanations are presented in alphabetical order on
the following pages.

Chapter 4. Utilities 4-9

$BSCUT2

CH — Change Hard-copy Device
Use the CH command to reassign the hard-copy device for the terminal or printer
output.

Example:

Note: If the hard-copy device you specified is not defined, the system directs the
output to the terminal where you loaded $BSCUT?2.

EN — End $BSCUT2 Program
Use the EN command to end the $BSCUT?2 utility.

Example:

Rl — Read Transparent/Nontransparent
The read task does not require NUMBER OF RECORDS since it will read either

transparent or nontransparent data until the system receives EOT. This makes the

read task useful for monitoring any BSC line sending data to the processor. For
example, RI can receive data from the SRJE2780 or $RJE3780 utility operating in
the same Series/1 or in another Series/1.

Note: The RI, WI, and WIX commands individually activate the tasks composing
RWI and RWIX.

Example:

4-10 SC34-0940

>

$BSCUT2

RWI — Read/Write Nontransparent Data

Use the RWI command to read and write nontransparent messages on a line. The
system numbers each message. The record length for write includes the control
characters. The read task receives the messages, analyzes them, and prints them on
a hard-copy device. The analysis includes whether they are transparent or
nontransparent and record length received.

Example:

(fCOMMAND (2): RWI
RWI ---- READ/WRITE - NONTRANSPARENT

* READ ADDRESS? 5A - :
WRITE ADDRESS? 5B
READ RECL? 80
WRITE RECL? 80
NUMBER OF RECORDS? 16
READ MONITOR? Y =

READ ADDRESS and WRITE ADDRESS refer to the device address of the BSC
hardware feature. If you are going to run the test between two processors (one to
read and one to write), load $BSCUT?2 on both processors and enter the correct
address for read on one processor and the correct address for write on the other
processor. One of the addresses can be invalid and the task for the invalid address
on each processor will fail due to an undefined line. However, the read/write task
will function properly. This is true for all $BSCUT2 commands.

The RECL prompts refer to the buffer size the system will use; therefore, the number
of bytes the system will transfer in one transmission over the BSC line. The
maximum buffer size the system permits is 512 bytes. READ (RECL) should always
be equal to or greater than WRITE (RECL) or errors will occur.

NUMBER OF RECORDS determines the number of transmissions the system will
make before the test ends.

The MONITOR function causes each task to report its progress to the terminal. If

you enable the monitor function, the system writes messages such as TASK
ENTERED and TASK EXITED to the terminal.

Chapter 4. Utilities 4-11

$BSCUT2

RWIV — Read/Write Nontransparent Conversational

4-12 SC34-0940

Use the RWIV to test limited conversational operation in nontransparent mode.
BUFFER LENGTH is equivalent to RECL.

Example:

READ ADDRESS and WRITE ADDRESS refer to the device address of the BSC
hardware feature. If you are going to run the test between two processors (one to
read and one to write), load $SBSCUT2 on both processors and enter the correct
address for read on one processor and the correct address for write on the other
processor. One of the addresses can be invalid and the task for the invalid address
on each processor will fail due to an undefined line. However, the read/write task
will function properly. This is true for all $BSCUT2 commands.

The RECL prompts refer to the buffer size the system will use; therefore, the number

of bytes the system transfers in one transmission over the BSC line. The maximum

buffer size the system permits is 512 bytes. READ (RECL) should always be equal

to or greater than WRITE (RECL) or errors will occur. NUMBER OF RECORDS @
determines the number of transmissions the system will make before the test ends. -
The MONITOR function causes each task to report its progress to the terminal. If

the system enables the monitor function, it writes messages such as TASK

ENTERED and TASK EXITED to the terminal.

The following is a description of the binary synchronous line transactions:

WRITE TASK READ TASK
BSCWRITE IV(X) ~===-ENQ--=-mm e > BSCREAD I

<---ACKO (Response)-

-~=-Text------=--o-= >

<---Text (Response)-- BSCWRITE CV(X)
BSCREAD C ----ACK1 (Response)->

ST, PN S — BSCWRITE CV(X)
BSCWRITE CV(X) ----Text (Response)->

<---ACKO (Response)-- BSCREAD C
BSCWRITE CV(X) cem-TeXtmmmmmmmmeem > _

DI e — BSCWRITE CV(X)
BSCREAD C S Y, P — >

This sequence continues until the NUMBER OF RECORDS count is satisfied.

4::39

O

$BSCUT2

RWIVX — Read/Write Transparent Conversational

Use the RWIVX command to test limited conversational operation in transparent
mode. Each message is numbered. The record length for write includes the control
characters. The read task receives the messages, analyzes them, and prints them on
a hard-copy device. The analysis includes whether they are transparent or
nontransparent and record length received. BUFFER LENGTH is equivalent to
RECL.

Example:

- ~
 COMMAND (2):+ - RWIVX
“RWIVX -- READ/WRITI
READ ADDRESS? 5A
" WRITE ADDRESS? 5B
BUFFER LENGTH? 5
NUMBER OF RECORDS? 10
READ MONITOR? Y -
WRITE MONITOR? Y

RANSPARENT CONVERSATIONAL

READ ADDRESS and WRITE ADDRESS refer to the device address of the BSC
hardware feature. If the test is to be run between two processors (one to read and
one to write), load $BSCUT?2 on both processors and enter the correct address for
read on one processor and the correct address for write on the other processor. One
of the addresses can be invalid and the task for the invalid address on each processor
will fail due to an undefined line. However, the read/write task will function
properly. This is true for all $BSCUT2 commands.

The RECL prompts refer to the buffer size to be used and, therefore, the number of
bytes transferred in one transmission over the BSC line. The maximum buffer size
permitted is 512 bytes. READ (RECL) should always be equal to or greater than
WRITE (RECL) or errors will occur.

NUMBER OF RECORDS determines the number of transmissions to be made

‘before the test ends.

The MONITOR function causes each task to report its progress to the terminal. If
the monitor function is enabled, messages such as TASK ENTERED and TASK
EXITED are written to the terminal.

Chapter 4. Utilities 4-13

$BSCUT2

The following is a description of the binary synchronous line transactions:

WRITE TASK ' READ TASK @

BSCWRITE IV(X) -==-ENQ----=mmmm e > BSCREAD I

<---ACKO (Response)-

DR [-) ¢ ST R >

<---Text (Response)-- BSCWRITE CV(X)
BSCREAD C ~---ACK1 (Response)->

<---Text==---—m=mamu-o BSCWRITE CV(X)
BSCWRITE CV(X) ----Text (Response)->

<---ACKO (Response)-- BSCREAD C
BSCWRITE CV(X) ———-Text---eemeemeee >

<me-Texte-—mmmmmee o BSCWRITE CV(X)
BSCREAD C ~=m=ACKl-mmmmm e >

This sequence continues until the NUMBER OF RECORDS count is satisfied.

RWIX — Read/Write Transparent Data

4-14 SC34-0940

Use the RWIX command to read and write transparent messages on a line. Each
message is numbered. The record length for write includes the control characters.
The read task receives the messages, analyzes them, and prints them on a hard-copy
device. The analysis includes whether they are transparent or nontransparent and
record length received.

Example:

READ ADDRESS and WRITE ADDRESS refer to the device address of the BSC
hardware feature. If you are going to run the test between two processors (one to
read and one to write), load $BSCUT2 on both processors and enter the correct
address for read on one processor and the correct address for write on the other
processor. One of the addresses can be invalid and the task for the invalid address
on each processor will fail due to an undefined line. However, the read/write task
will function properly. This is true for all $BSCUT2 commands.

The RECL prompts refer to the buffer size the system will use; therefore, the number
of bytes transferred in one transmission over the BSC line. The maximum buffer
size the system permits is 512 bytes. READ (RECL) should always be equal to or
greater than WRITE (RECL) or errors will occur.

NUMBER OF RECORDS determines the number of transmissions the system will
make before the test ends.

$BSCUT2

The MONITOR function causes each task to report its progress to the terminal. If
the system enables the monitor function, it writes messages such as TASK
O ENTERED and TASK EXITED to the terminal.

RWIXMP — Read/Write Transparent, Multidrop Line
Use the RWIXmp command to read and write transparent messages on a multidrop
line. Each message is numbered. The record length for write includes the control
characters. The read task receives the messages, analyzes them, and prints them on
a hard-copy device. The analysis includes whether they are transparent or
nontransparent and record length received.

READ ADDRESS and WRITE ADDRESS refer to the device address of the BSC
hardware feature. If the test is to be run between two processors (one to read and
one to write), load $SBSCUT?2 on both processors and enter the correct address for
read on one processor and the correct address for write on the other processor. One
of the addresses can be invalid and the task for the invalid address on each processor
will fail due to an undefined line. However, the read/write task will function
properly. This is true for all $SBSCUT2 commands.

The RECL prompts refer to the buffer size to be used; therefore, the number of
bytes transferred in one transmission over the BSC line. The maximum buffer size
permitted is 512 bytes. READ (RECL) should always be equal to or greater than
WRITE (RECL) or errors will occur.

NUMBER OF RECORDS determines the number of transmissions to be made
before the test ends.

‘) The MONITOR function causes each task to report its progress to the terminal. If
the monitor function is enabled, messages such as TASK ENTERED and TASK
EXITED are written to the terminal.

In the following example, the control station (MC) at device address 50 polls and
selects all tributary stations (MT) and sends and receives messages to them. Since
each task both transmits and receives, successful operation requires the control
station length to equal all tributary station buffer lengths. Values other than this
can be entered to test access method error detection. Received messages are logged
to the hard-copy device.

Example:

Chapter 4. Utilities 4-15

$BSCUT2

DEVICE ADDRESS for this command refers to the device address of the BSC

hardware feature. TRIBUTARY ADDRESS refers to the jumpered tributary .
address on each hardware feature card. LOOP COUNT refers to the number of U
times $BSCUT?2 sends the messages that you have specified.

Note: The adapter must be jumpered in tributary mode for this test to function
properly.
If this test is to be performed between two $BSCUT2 programs then:
¢ Program 1 would use a valid MC device address and dummy tributaries (MT).
¢ Program 2 would use a dummy MC device address and valid tributaries (MT).
e NUMBER OF TRIBUTARIES must be equal in both programs:
¢ LOOP COUNT must be equal in both programs.

WI — Write Nontransparent

Note: The RI, WI, and WIX commands indi{ridually activate the tasks composing
RWI and RWIX.

Example:

WIX — Write Transparent
Note: The RI, WI, and WIX commands individually activate the tasks composing
RWI and RWIX.

Example:

4-16 SC34-0940

SCHANUT1

$CHANUT1 — Channel Attach Utility

The SCHANUT]1 utility starts or stops a channel attach device, enables or disables
I/O tracing, and prints the trace area. SCHANUT! issues prompts to the terminal
where you loaded it; in response to a prompt, you must enter a command.

Loading $CHANUT1
Load $CHANUT!1 with the $L. command or option 8.9 of the session manager.
When you load SCHANUT], it prompts you for the address of the channel attach
device.

> $L $CHANUTL - ‘ ‘ ' PR
LOADING ‘$CHANUTL = . 37P ,08:00:00, LP = 5B00 , PART = 01
ENTER DEVICE ADDRESS (Hex) 10 IR
COMMAND('/’) i

You can load the channel attach utility into any partition. The SCHANUT1
commands interface with the channel attach program in the same manner as the
channel attach instructions. The error codes for the SCHANUT1 commands are the
same as those for the corresponding instructions. Refer to Messages and Codes for
more information.

$CHANUT1 Commands

To display the SCHANUT! commands at your terminal, enter a question mark in
response to the prompting message COMMAND (7).

After SCHANUT! displays the commands, the system prompts you again with
COMMAND (7). Then you can respond with the command of your choice (for
example, PR). Each command and its explanation is presented in alphabetical order
on the following pages.

CA — Change Device Address

Use the CA command to change the device address.

Chapter 4. Utilities 4-17

SCHANUT1

EN — End $CHANUT1 utility
Use the EN command to end the SCHANUT!1 utility.

PR — Print the Trace Area
Use the PR command to print the trace buffer, with the title you enter, on a
terminal. .

SP — Stop a Channel Attach Device
Use the SP command to stop the channel attach device you have specified.

ST — Start a Channel Attach Device
Use the ST command to start the channel attach device you have specified.

TR — Enable/Disable Trace
Use the TR command to enable (E) or disable (D) the trace function.

4-18 SC34-0940

SCHANUT1

The following is an example of starting a trace using the session manager.

- '$SMMO8 SESSION MANAGER COMMUNICATION UTILITIES OPTION MENU h
ENTER/SELECT PARAMETERS:
SELECT OPTION ==
1 - $BSCTRCE (TRACE BSCAM LINES)
2 - $BSCUT1 (PRINT TRACE FILE)
3 - $BSCUT2 (BSC EXERCISER)
4 - $RJIE2780 (2780 RJIE TO HOST)
5 - $RIE3780 (3780 RJE TO HOST)
6 - $PRT2780 (2786 SPOOLED RJE FILE PRINTER)
7 - $PRT3780 (3780 SPOOLED RJE FILE PRINTER)
8 - $HCFUT1 (HOST COMMUNICATION FACILITY)
9 - $CHANUT1 ~ (CHANNEL ATTACH UTILITY)
10 - $ARJE {ADVANCED RJE PROGRAM AND UTILITIES)
11 - $LCCTRCE (TRACE LCC ATTACHMENT) '
12 - $LCCUTL (PRINT LCC TRACE FILE)
- WHEN ENTERING THESE UTILITIES, THE USER IS EXPECTED TO
'ENTER A COMMAND. IF A QUESTION MARK (?) IS ENTERED
INSTEAD OF A COMMAND, THE USER WILL BE PRESENTED WITH
L_ A LIST OF AVAILABLE COMMANDS)

The following shows what happens when you select option 9 (from the previous
screen), request and start device 10, and enable trace.

Chapter 4. Utilities 4-19

SCOMPRES

$COMPRES — Compress Disk, Diskette, or Volume .»
R I £

4-20 SC34-0940

$COMPRES compresses a disk/diskette volume or the entire contents of a device.
Use it to allocate new data sets and volumes when a volume or device is fragmented
(due to deletion of data sets and volumes).

Notes:

1. Do not compress a volume or device while it is being accessed. Use the $A ALL

command to determine if programs are active in the partition you are currently
assigned to or in other partitions. However, if you are executing under the
session manager, the $SMU user program will be in the system but not active
until SCOMPRES ends.

. You must initialize the IPL text after using SCOMPRES if the device or the IPL

volume you are compressing contains the supervisor (SEDXNUCX) and if the
nucleus has moved.

. Before compressing the IPL volume, you should create an IPLable diskette as

follows:
a. Use $DASDI to format a diskette.

b. Use SINITDSK (ID command) to initialize the diskette. Do not allocate a
nucleus if your customized nucleus EDXNUCx is larger than 600 records.

c. Copy (using SCOPYUT!) SEDXNUCx, SLOADER and $INITDSK to a
backup IPL diskette. If a 4978 or 4980 terminal is your $SYSLOG device,
you need to do a “copy generic” (CG) for $4978 and $4980. You will need
to use the “copy member” command (CM) for SMFARAM, $FPCARAM, ¢
or SACCARAM if you are using a 3101 (or equivalent) or an ACCA device @
as $SYSLOG.

d. Use the SINITDSK II command to initialize IPL text on the backup IPL
diskette.

e. Verify that you can IPL the diskette and load SINITDSK to initialize IPL
text on the IPL volume on disk before starting the SCOMPRES.

. If the compress moves the nucleus (as indicated by the message SEDXNUCx

COPIED):
a. IPL from the backup diskette.

b. Initialize (write IPL text) the nucleus on disk using the II command of
SINITDSK.

c. IPL from the disk.

. If you have not copied SEDXNUCx, SLOADER, and SINITDSK to a backup

diskette and the compress does move the nucleus, you can use the starter system
to load SINITDSK to initialize the IPL text with the Il command. This assumes
that one of the attached terminals will be recognized by the starter system as
$SYSLOG.

$COMPRES

6. Compressing a volume may relocate EDL overlay programs and data sets which
you have defined previously to SPREFIND. If this is the case, you must reissue
O SPREFIND.

7. Compressing a disk may relocate volumes which you defined as “performance
volumes.” If this is the case, you must IPL.

Specifying Dynamic Storage)
To increase program performance you can change the dynamic storage used by
$COMPRES. $COMPRES is shipped with a dynamic storage of 512 bytes. Using
the $L command, you can specify the number of bytes of additional storage the
system should allocate when SCOMPRES is loaded for execution.

The following example shows how to change a 512 byte dynamic storage allocation
temporarily to 10K.

L $LSCOMPRES, ,1024

You can use $DISKUT?2 to modify the default load time storage allocation. See “SS
— Set Program Storage Parameter” on page 4-185 for an example.

Loading $COMPRES
Load SCOMPRES with the $L. command or option 3.4 of the session manager.

C“ 4 5L $COMPRES .

0AD 0

Chapter 4. Utilities 4-21

$SCOMPRES

$COMPRES Commands

Each command and its explanation is presented in alphabetical order on the -
following pages. O

? — Help

Use the ? command if you want to see the command menu again.

Example: Help command.

D — Device Compress
Use the D command to compress the entire contents of a device. Use $A ALL to
determine if any programs are active before you compress the library.

Example: Compress a device with fixed-head volumes.

4-22 SC34-0940

o

$COMPRES

EN — End $COMPRES

Use the EN command to end the SCOMPRES utility.

Example: End SCOMPRES utility

COMMAND (?): EN

$COMPRES ENDED AT 08:03:59 .

HF — Estimate Compress Progress

Use >HF during a volume or device compress to get the percent of completion, the
total number of records to be compressed, and the number already copied up to that
point. To use this command, press the attention key and type in “HF.”

Example 1: Estimate progress of volume directory compress.

Vo T ; , T
" NOW AT: 70 PERCENT OF DIRECTORY LEFT TO BE SORTED

'TOTAL NUMBER OF: RECORDS ’ 162
e 49

DIRECTORY’HAS’BEEN SORTED BY LOCATION IN
- $ASM000P ALREADY IN. PLACE AND NOT COPI

COPIED: 5

RRCB ~ COPIED
HEADER ~ COPIED

TOBEQU 7 COPLIED (5 oii oSy s 7 e L T

Example 2: Estimate progress of volume compress.

Chapter 4. Utilities 4-23

SCOMPRES

ROLLOFF — Restore Starting Characteristics
Use the ROLLOFF command to restore a terminal to its original mode. With
ROLLOFF you must press enter each time the screen fills up. O

Example: Restore starting characteristics.

ROLLON — Set Screen = > No Pause
Use the ROLLON command if you do not want to have to press the enter key each
time the screen fills up. When you specify this command, the output “rolls” off the
top of the screen as new terminal output appears at the bottom of the screen.

Example: Set screen to roll mode.

@

4-24 SC34-0940

$SCOMPRES

V — Volume Compress
Use the V command to compress a disk or diskette volume. Use $SA ALL to
0 determine if any programs are active before you compress the library.

Example 1: Determine if another program is running.

(
> $A ALL

“PROGRAMS :
IN PARTITION #1 (STATIC)
FREE 6DOO 147.
PART. ADDR: 6D0O HEX; SIZE: 37632 DEC. BYTES

PROGRAMS L
IN PARTITION #2 (STATIC)
$COMPRES 6000 49 $SYSLOG
FREE 9100 111 '
PART. ADDR: 6000 HEX; SIZE: 40960 DEC. BYTES

' PROGRAMS il
IN PARTITION #16 (DYNAMIC) NONE
‘ PART.ADDR: 0000 HEX; SIZE: 45056 DEC.BYTES

.

Example 2: Compress a volume.

Chapter 4. Utilities 4-25

SCOMPRES

4-26 5C34-0940

Example 3: Compress the IPL volume.

ABOUT TO'COMPRESS THE IPL VOLUME.
IS MOVED THEN THIS VOLUME WILL NOT IPL AGAIN,
COMMAND OF

O

C

$COPY

$COPY — Copy Data Set

$COPY copies a disk or diskette data set, in part or in its entirety, to another disk
or diskette data set.

Copying Programs or Data Members

When copying volume members, the target member must already exist (allocate
using $DISKUT1) and must be of the same organization as the source member.
Two types of organization are available:

DATA Data sets used as work files, user source modules, and application
data set.

When you copy data members, you may copy an entire member or
only a selected number of records (partial copy). If you are copying
the entire member, the target data member must be equal to or
larger than the source. If you are doing a partial copy, the target
member need not be as large as the source but must have enough
space following the starting target record number to accommodate
the number of records you are copying from the source member.

PROGRAM Data sets that will contain executable (loadable) EDX programs.

When you copy program members, the target member must be
equal to or greater than the source member.

Copying Disk/Diskette Volumes to Another Diskette/Disk

When you copy a single volume diskette to disk, the target data set size must be
equal to or greater than the diskette size in records. When you copy a disk volume
or a multivolume diskette volume to another disk volume or a multivolume diskette,
both volumes should be equal in size. If the source volume is larger than the target,
you are prompted for the name of the source data set you wish copied to the target.
The system copies the source data set to the target volume starting at the absolute
beginning ($$EDXVOL). If the source volume is smaller than the target, you are
prompted for the name of the target data set into which you want the source volume
copied. :

Note: For information on copying H-exchange volumes see “SHXUT1 —
H-Exchange Utility” on page 4-330.

Chapter 4. Utilities 4-27

$COPY

Absolute Record Copy

names $$, SSEDXLIB, and $3EDXVOL. This allows you to copy a record relative
to the beginning of a device ($$EDXVOL) or relative to the beginning of a volume
($$SEDXLIB). You can use this capability when you copy one single-volume diskette
volume to another. The CV command of $COPY does not copy the first cylinder on
diskette. If the source diskette were an IPL volume (has IPL text and SEDXNUC),
the system would not copy the IPL text, contained in the first record of the first
cylinder, to the target diskette. Therefore, the target diskette volume, although
containing a supervisor in SEDXNUC, would not be able to load that supervisor
when you pressed the IPL key.

$COPY provides an absolute record capability using the special system data set O

To copy the IPL text to the target diskette, use the CD command with $$EDXVOL
specified as the data set name and record 1 specified as the first and last record you
want copied.

Note: $3, SSEDXVOL, and $$EDXLIB are special system data set names and you
must use them with care. $$ is a reserved system name, SSEDXVOL points
to the beginning of the device volume, and $$EDXLIB points to the
beginning of the data set directory within a volume.

Specifying Dynamic Storage

4-28 $C34-0940

To increase program performance you can change the dynamic storage used by
$COPY. $COPY is shipped with a dynamic storage of 2K. Using the $L command,
you can specify the number of bytes of additional storage the system should allocate
when $COPY is loaded for execution. The maximum available storage is obtained
when an * is entered instead of the number of bytes. /ﬁ/)

The following example shows how to change a 2K dynamic storage allocation
temporarily to 20K.

SL $COPY, 20480

$DISKUT?2 can also modify the default load time storage allocation associated with
a program using the SS command. See “$SDISKUT2 — Patch/Dump/List/Search
Data Set or Program” on page 4-161 for an example.

O

$COPY

Loading $COPY

Load $COPY with the $L operator command or option 3.5 of the session manager.

> $L $COPY ,

LOADING $COPY 40P,00:12:04, LP= 9200, PART=1
PY - COPY‘UTILITYV

COMMAND (2): 2

N J
$COPY Commands

To display the $SCOPY commands at your terminal, enter a question mark in

response to the prompting message COMMAND (?):

~

AND (2): 2

~CD - COPY DATA SET = -
cv - COPY VOLUME ~ =
“RE -~ COPY_FROM BASIC EXCHANGE -

After $COPY displays the commands, it prompts you again with COMMAND: (?).
Then you can respond with the command of your choice (for example, CV). Each
command and its explanation is presented in alphabetical order on the following

pages.

CD — Copy Data Set

Use the'CD command to copy disk or diskette data sets to a preallocated disk or
diskette target data set. When you copy data sets, you may copy an entire data set
or only a select number of records. If you are copying the entire data set, the target
data set must be equal to or larger than the source. If you do a partial copy, the
target data set need not be as large as the source but should have enough space
following the starting record number to accommodate the number of records you are
copying from the source data set.

Chapter 4. Utilities 4-29

$Cory

4-30 SC34-0940

Example 1: Copy entire data set.

DATAFIL2,EDXeQ

Notes:

1. You cannot copy data sets allocated as program organization to a data set that
you allocated as data organization.

2. When you copy program members, the target and source data sets must be equal
in size.

Example 2: Partial cbpy of a data set.

If the target data set is too small to accommodate the amount of data you are
copying from the source data set, the utility issues the following message:

When the output data set is on disk or diskette, the system updates the end-of-data
pointers.

O

CV — Copy Volume

$Cory

Use the CV command to copy entire volumes. This provides a volume backup
capability. You can copy a disk volume to a disk or diskette volume, a diskette
volume to a diskette volume, or a diskette volume to a preallocated disk data set of
appropriate size in records. The number of records for the various types of diskettes
are:

128 Bytes/ 256 Bytes/ 1024 Bytes/
Type Sector Sector Sector
Diskette 1 (8”) 949 1110 —
Diskette 2 (8”) 1924 2220 —
Diskette 2-D (8”) — 3848 4736
Double-sided - - 1248 -
Diskette (5.25")
High-capacity — 4128 —
Diskette (5.25")

Volume copy operations do not add the members in a source volume to the target
volume. The system replaces the original contents of the target volume, including
the directory.

If you have two or more diskette units, you may perform diskette volume copies
between diskette devices. If you have a single diskette drive and a disk, you can
perform copies using the following procedure:

1. Allocate a target data set on a disk of appropriate size.

2. Using the CV command, copy the diskette volume to the disk data set.

3. Mount the target diskette on the diskette device and vary the device online.

4. Using the CV command, copy the contents of the disk data set to the target
diskette.

If you have a single 4966 Diskette Magazine Unit and a disk, the above procedure is
also recommended.

Example: Copy a diskette to a backup data set on a 4962 disk.

Chapter 4. Utilities 4-31

$COPY

The CV command copies the entire single volume diskette volume. Therefore, the

target data set should be equal to or greater than the volume size in records. If the .
target data set is not large enough, you may choose to do a partial copy or allocate {J
(using $DISKUT]1) a target data set large enough to accommodate the source.

Note: You can perform CV on an entire multivolume diskette.

If the target data set is not large enough, you are prompted as follows:

If you respond Y, the system copies the source to the target data set until the target
is full. If you respond N, the CV command ends and you are prompted for another
command, COMMAND (?).

Note: Once you have copied a volume to a target disk volume, the system replaces
the original contents of the target volume, including the directory. Asa
result, you can no longer access the original contents of the target disk
volume.

EN — End $COPY Utility
Use the EN command to end the SCOPY utility.

4-32 SC34-0940

C

$COPY

RE — Copy from Basic Exchange

Use the RE command to copy a basic-exchange data set from a diskette to a disk
0) data set. A basic-exchange data set is contained on a diskette that you formatted for

Standard for Information Interchange. You can use only one-sided, 128-byte

diskettes as EDX recognizes only one volume on a basic-exchange diskette. You

must allocate the target disk data set using SDISKUT1 before you use the RE
command.

RE prompts you for the source diskette data set name and volume, the target disk
data set name and volume, the number of the first record you want written to the
target data set, and the basic-exchange data set name.

Example 1: Copy entire basic-exchange diskette data set to disk.

COMMAND (?): -RE

* SOURCE ($$EDXVOL,VOLUME): $$EDXVOL,IBMEDX
TARGET (NAME,VOLUME): DATAFIL1,EDX062

TEND (N7 N

ET NAME: DATA

ENTER BASIC-EXCHANGE DATA S
52

- NUMBER OF RECORDS COPIED

O Note: If you enter the wrong data set name, the system issues a read/write error
message.

Example 2: Copy basic-exchange data set to disk. The record number where the
copy is to start on target disk is specified.

Chapter 4. Utilities 4-33

$COPY

WE — Copy to Basic Exchange
Use the WE command to copy a disk data set to a basic-exchange data set on
diskette. You must allocate the diskette data set before you use the WE command. ())
Use $DASDI to format the diskette for Standard for Information Interchange.
Under this format, $DASDI formats a volume called IBMEDX, initializes the
basic-exchange header on the diskette, and automatically allocates a data set named
DATA. DATA consists of all the data tracks on the diskette.

WE prompts you for the source disk data set name and volume, the starting or
ending records, the target diskette data set name and volume, and the basic-exchange
data set name.

Example 1: Copy a disk data set to a basic-exchange diskette.

Example 2: Copy a disk data set to a basic-exchange diskette. The beginning and @
ending record numbers on the disk to be copied to the target diskette are specified.

DATAFILL,EDX002

$EDXVOL, IBMEDX

Notes:

1. Errors may occur if you have not initialized the diskette. The system reads and
writes data on the diskette two sectors per I/O operation.
2. The diskette data set you access must start on an odd sector boundary.

4-34 SC34-0940

O

C

$COPYUT1

$COPYUT1 — Copy Data Set with Allocation

$COPYUT]1 performs several related copy functions. These functions determine the
size and organization of the source data set(s) that SCOPYUT1 copies, allocate
members on the target volume, and then copy the source member(s) to the target
member(s). With SCOPYUT]1, you can copy one member using the CM command
or you can use the multiple copy commands to copy all members from source to
target volumes.

Notes:

1. Do not specify the dynamic storage option (for example, $L. $COPYUT]1,,48000)
when loading $COPYUT1 to make copies of the same volume from two or more
terminals at the same time. This will cause formatting errors in your table of
contents.

2. If a member already exists on the target volume, it is first deleted, then
reallocated when the new source is copied to the target volume. This occurs
only if enough contiguous space is available for reallocation of the member.
There are no prompting messages asking if you wish to replace the existing
member.

For any copying related to tape, see “STAPEUT! — Tape Management” on
page 4-565. ‘

Specifying Dynamic Storage

To increase program performance you can change the dynamic storage used by
$COPYUT1. IBM ships $COPYUT]1 with a dynamic storage of 2K. You can
specify the number of bytes of additional storage the system should allocate when
you load $SCOPYUT1 using the $L command. The maximum available storage is
obtained when an * is entered instead of the number of bytes.

The following example shows how to change a 2K dynamic storage allocation to
20K temporarily.

SL $COPYUT1,,20480

You can use $DISKUT?2 to modify the default load-time storage allocation. See “SS
— Set Program Storage Parameter” on page 4-185 for an example.

Chapter 4. Utilities 4-35

$COPYUT1

Loading $COPYUT1
Load $SCOPYUT]1 with the $L command, option 3.3 of the session manager, through
the $JOBUTIL utility, or EDL LOAD instruction. O

When you load $COPYUT1, the system assumes the source and target volumes are
on the IPL volume. You have the option of specifying the source and target
volumes. Once you specify the correct volumes, the commands copy members from
the source volume to the target volume until you change the volume using the CV
command.

Loading $COPYUT1 From a Program @
You can load $COPYUT1 from a program using the LOAD statement.

The command data set name and volume must be passed as parameters to
$COPYUTI.

4-36 SC34-0940

SCOPYUT1

Loading $COPYUT1 Using $JOBUTIL
To enter the command data set as a parameter using the $JOBUTIL utility, create a
m procedure data set.

PROGRAM $COPYUTL,EDXG02
PARM COMMAND, EDX002
EXEC 5
EOP

Note: If you use the command data set when in interactive mode, see “READDS —
Read Command Data Set” on page 4-47.

In the above example, COMMAND is the name of a command data set residing in a
volume called EDX002. The following commands are supported for use in a
command data set:

CM Copy member from source to target
CG Copy all members starting with text from source to target
CNG Copy all members not starting with text from source to target
CALL Copy all members from source to target
CAD Copy all data members from source to target
CAP Copy all programs from source to target
Ccv Change source and target volumes
Q EN End $COPYUT1

ROLLON Set screen = = > no pause
ROLLOFF Restore pause characteristics

LOG Send messages to log device
READDS Chain to the next command data set

Note: READDS command can be used in a command data set only if it is the last
command in the data set. If it is not the last command, any commands
following READDS are ignored.

Chapter 4. Utilities 4-37

$COPYUT1

Command Data Set Format
Following is the format for coding the commands in the command data set.

command fromds tods

Note: Enter one command per line, starting in column ! with 1 space separating
each entry on the line.

Example: Following is an example for coding a command data set.

LOG $SYSLOG $SYSLOG receives the printed messages with the

screen set to "no pause"

CV EDXO02 MEMV1 - Source volume is now EDX002 and target volume is

MEMV1
CG $XPS - Copies all $XPS modules from EDX002 to MEMV1
CM $LOADER * - Copies $LOADER from EDX002 to $LOADER on MEMV1
CALL or - If a member name is not specified after the command,
CAD or all the members in the data set will be copied.
CAP If a beginning data set is specified and not an

ending data set, copy will be made to the end

Note: If you switch log devices in a command data set, use the “ROLLOFF”
command to reset the first log device back to its original state.

* LOG $SYSLOG
cM X

* ROLLOFF
LOG S$SYSLOGA
CM Y

4-38 SC34-0940

O

$COPYUT1

$COPYUT1 Commands
To display the $COPYUTI1 commands at your terminal, enter a question mark in
O response to the prompting message COMMAND (?):

-
COMMAND (?): ?

====== MODE COMMANDS ======

Wv -- VERIFY.COPY USING WRITE VERIFY
RDBK -- VERIFY COPY USING READBACK CHECK
SQ -~ SET PROMPT MODE FOR COPY COMMANDS
NQ -~ RESET PROMPT MODE FOR COPY COMMANDS
cv -- CHANGE SOURCE AND TARGET VOLUMES

ROLLON -- SET SCREEN => NO PAUSE

ROLLOFF -- RESTORE PAUSE CHARACTERISTICS

READDS -~ READ COMMANDS FROM A COMMAND DATA SET
====== COPY COMMANDS ======

CM -~ COPY MEMBER FROM SOURCE TO TARGET

== COPY ALL MEMBERS FROM SOURCE TO TARGET
“COPY ALL DATA MEMBERS FROM SOURCE TO TARGET

CAP - COPY ALL PROGRAMS FROM SOURCE TO TARGET
G -~ COPY ALL MEMBERS STARTING WITH TEXT FROM .

CNG -- COPY ALL MEMBERS NOT STARTING WITH TEXT FRON ...

A -~ CANCEL MULTIPLE COPY COMMANDS e

COMMAND (?):
o .

After $COPYUT!1 displays the commands, it prompts you with COMMAND (?):
again. Then you can respond with the command of your choice (for example, CM).

The Mode Commands
The following mode commands, presented in alphabetical order, modify the way the
multiple copy commands (CALL, CAD, CAP, CG, CNG) work.

CvV Changes the source and target volumes.

NQ Copies all members. If you do not specify SQ, the multiple copy
command defaults to NQ.

RDBK Does not use the hardware feature but actually reads the data back into
storage to verify that it is valid. If you do not specify RDBK, the
multiple copy command you are using defaults to WV.

READDS Reads SCOPYUT! commands from a data set. See “READDS — Read
Command Data Set” on page 4-47 for an example of READDS.

ROLLOFF Turns off roll-screen mode. Then you must press the enter key each
time the screen fills up.

ROLLON Turns on roll-screen mode. In roll-screen mode, you do not need to
press the enter key each time the screen fills up. Output “rolls” off the
top of the screen as new terminal output appears at the bottom of the

0 screen
SQ Copies one member at a time. If you only want to copy some of the
members, SCOPYUT1 asks you to verify each member before copying
it.

Chapter 4. Utilities 4-39

$COPYUT1

Note: If you do not want the system to delete and reallocate the target
data set automatically, issue the SQ command before you issue
the CM command. See “Copying Without Automatic O
Allocation” on page 4-45 for more information.

WV Forces a write verify of the target member by using the hardware
feature available for validating the data written. WYV is the defauit.

The Copy Commands

With the copy commands you can copy:

¢ All or selected members in a volume

¢ All or selected data-type members in a volume

¢ All or selected program-type members in a volume

o All or selected members beginning with a generic text prefix

e All or selected members that do not begin with a generic text prefix.

If a copy command stops because the target volume on diskette is full, SCOPYUT1
issues the following message:

If you wish to continue, enter a Y; SCOPYUT! issues the following message:

In this manner, you can create a disk backup using several diskettes. Although the
copy may take longer using SCOPYUT! instead of SMOVEVOL, you may use fewer
diskettes as only members are copied. In addition, you can mix single- and
double-sided diskettes. If you are creating a new volume, use SINITDSK (IV
command) to start with an empty target volume.

The copy commands will not copy the supervisor (SEDXNUC). This prevents the
inadvertent loss of a tailored supervisor. Furthermore, since the system allocates the
supervisor during disk initialization, the CM command will not allocate SEDXNUC
on the target volume. It will copy SEDXNUC from source to target but only if you
have allocated the target already and it is the same size as SEDXNUC on the source.

4-40 SC34-0940

$COPYUT1

The system does not allow absolute record copy from disk or diskette. Therefore,
you cannot use the special names $$, SSEDXLIB, $SEDXVOL. The $COPY utility
provides an absolute copy by record number.

To cancel a multiple copy command, press the attention key and enter CA. As soon
as the system copies the current member, the command (CALL, CAD, CAP, CG,
CNG) ends.

Note: When using the CAP, CAD, or CALL commands, you can specify the
members you want to copy. If the starting member occurs later in the
directory list than the ending member, the copy function wraps around and
copies all members except those members that occur between the ranges
specified.

Each copy command and its explanation is presented in alphabetical order on the
following pages.

CAD — Copy All Data Members from Source to Target

Use CAD to copy data sets designated as D (data) from the source volume to the
target volumes. When you allocated data sets using $DISKUTI, you specified one
of two organization types: D for data organization or P for program organization.
Use data organization to specify data sets used as work files, user source modules,
and application data sets. If you use the CAD command, SCOPYUT1 only copies
those data sets you designated as D (data organization).

You can copy all the data sets or specify a subset of data sets. If you reply Y to the
COPY FROM BEGINNING? prompt, SCOPYUT1 copies all the data sets. If you
respond N to the COPY FROM BEGINNING? prompt, SCOPYUT! prompts you

for the first (starting) member and the last (ending) member you want copied.

Example: Copy only data sets designated as D from one volume to another.

Chapter 4. Utilities 4-41

$COPYUT1

CALL — Copy All Data Sets from Source to Target

4-42 SC34-0940

Use CALL to copy data sets from the source volume to the target volume. You can
copy all the data sets or specify a subset of data sets. If you reply Y to the COPY
FROM BEGINNING? prompt, SCOPYUT]1 copies all the data sets. If you respond
N to the COPY FROM BEGINNING? prompt, SCOPYUT1 prompts you for the
first (starting) member and the last (ending) member you want copied.

When performing a CALL (copy all) function, SCOPYUT]1 prints the names of the
data sets it is copying. When the screen fills up, press the enter key to continue. By
specifying the ROLLON command, you turn on roll-screen mode. In roll-screen
mode, you do not need to press the enter key after the screen is full. Output “rolls”
off the top of the screen as new terminal output appears at the bottom of the screen.
You can turn off the roll-screen function by specifying the ROLLOFF command.

Example 1: Copy all data sets from one volume to another, starting with DATA1
and ending with LASTONE.

$COPYUT1

Example 2: Copy all data sets. The SQ command prompts for copy of each data
set.

COMMAND(?): sQ
COMMAND(?): CALL

COPY FROM BEGINNING (Yy/myz v

COPY TEMP (Y/N)? Y : .
TEMP COPY COMPLETE 40 RECORDS COPIED
COPY EDITWORK (Y/N)? N

COPY DATAFILE (Y/N)? Y

“DATAFILE COPY COMPLETE- ~ 110 RECORDS COPIED
COMMAND (?):

CAP — Copy All Programs from Source to Target
Use CAP to copy programs from the source volume to the target volume. When
N you allocated data sets using $DISKUT1, you specified one of two organization
types: D for data organization or P for program organization. Use program
organization to specify data sets that contain executable (loadable) Event Driven
Executive Language programs. If you use the CAP command, $COPYUT1 only
copies those data sets you designated as P (program organization).

You can copy all the data sets or specify a subset of data sets. If you reply Y to the
COPY FROM BEGINNING? prompt, SCOPYUTT! copies all the data sets. If you
reply N to the COPY FROM BEGINNING? prompt, SCOPYUT! prompts you for
the first (starting) member and the last (ending) member to be copied.

Example: Copy only programs from one volume to another.

Chapter 4. Utilities 4-43

$COPYUT1

CG — Copy All Members Starting with a Prefix
Use the CG (copy generic) command to copy only those members beginning with
generic text (prefix). $COPYUT1 prompts you for the prefix. SCOPYUT! then
searches the source volume directory for names beginning with this prefix and copies
only these members to the target volume.

Example: Copy members with prefix of DATA.

4-44 SC34-0940

O

O

CM — Copy Member from Source to Target
Use CM to copy one member from a source volume to a target volume.

$COPYUT1

Copying With Automatic Allocation: When you issue the CM command,
$COPYUT]1 determines if a receiving member exists on the target volume. If the
target data set does not exist, SCOPYUTT1 allocates it. If the target data set does

exist, SCOPYUT1 automatically deletes it and reallocates it to the required size.
Any data in the original target data set is lost.

Copying Without Automatic Allocation: If you do not want the system to delete and
reallocate the target data set automatically, you must issue the SQ command before
you issue the CM command. Then the system prompts you as to whether you want
to copy the source data set to the target data set without changing characteristics or
to delete the target data set and reallocate it with the source data set characteristics.

Use the SQ and CM commands when you want to copy a source data set with

extents to a target data set without extents. (For more information on allocating a
data set with extents, see “$SDISKUT1 — Allocate/Delete/List Directory Data” on

page 4-139.)

Example 1: Copy a data set (MYPROG) from EDX002 to ASMLIB and rename

the data set S1.

, -
~ > $L $COPYUTL

- LOADING $COPYUTL

%% WARNING. ** - :
GET VOLUME WILL BE DELETED

“$COPYUTL - DATA SET COPY UTILITY

 55P,11:16:57, LP= 6900, PART=1

Chapter 4. Utilities

4-45

$COPYUT1

Example 2: In the following example, the system deletes the existing target data set.
The system allocates a new data set with the source characteristics. O

Example 3: In the following example, the system copies the source data set to the
existing target data set. The characteristics of the target data set do not change.

CNG — Copy All Data Sets Not Starting with a Prefix
Use CNG to copy only those data sets that do not begin with the prefix.
$COPYUT1 prompts you for a generic text prefix. $SCOPYUT!1 then searches the
source volume directory for names that do not begin with the prefix and copies only
those data sets to the target volume.

Example: Copy data sets without a prefix of DATA.

4-46 SC34-0940

$SCOPYUT1

CA — Cancel Multiple Copy Commands
To end a copy command while the system is copying modules, press the ATTN key
and type CA.

> CA
$TEMP3 ~ COPY COMPLETE XXX RECORDS COPIED

COMMAND(?) :

EN — End $COPYUT1
Use EN to end the SCOPYUT]1 utility.

Example: End SCOPYUTI.

COMMAND (?): EN

$COPYUTL ENDED AT 11:18:30

LOG — Log Messages on a Logging Device
The LOG command can only be used within a command data set. (See “Loading
$COPYUTI1 Using $JOBUTIL” on page 4-37 for the example of the command data
set format.) This command sends messages to the specified logging device. To log
messages, you must use the $JOBUTIL utility or the EDL LOAD instruction.

Example: Following is an example of the LOG command format sending messages
to $SYSLOG. ‘

LOG $SYSLOG

READDS — Read Command Data Set
Use the READDS command to read $COPYUT1 commands from a data set.
Create the data set containing the SCOPYUT1 commands. See “Loading
$COPYUT1 Using $3JOBUTIL” on page 4-37 to set up the command data set.

Example: The following example shows how to use the READDS command.

READDS COMMAND, EDX002

Chapter 4. Utilities 4-47

$SCPUMON

$CPUMON — Monitor CPU Utilization

Use the SCPUMON utility to monitor the system’s CPU utilization. With the
$CPUMON utility, you can determine the processor’s peak periods and when the
processor is idle.

$CPUMON tracks disk I/O, how many programs the system loads, the number of
times you load SCPUMON and how the system utilizes the processor. SCPUMON
records this data and stores it on disk in a data set. Use the SCPUPRT utility to
print the data that SCPUMON records. See “SCPUPRT — Print a CPU Utilization
Report” on page 4-51 for an explanation of how the SCPUPRT utility works.

Once you load this utility, SCPUMON logs the average CPU utilization percentage
at intervals you specify.

$CPUMON Requirements

You must allocate a data set before you can use SCPUMON. The system uses this
data set to store all the statistics SCPUMON collects. See “$SDISKUT1 —
Allocate/Delete/List Directory Data” on page 4-139 for information on allocating a
data set. This data set cannot contain extents and must be 50 records in size. This
is usually enough space to record data for one year. You can name the data set
anything you like and it can reside on any volume.

In order to use SCPUMON, you must set the time and date each time you IPL the
system. You must also include timer support when generating the system. For more
information on generating your system, refer to the Installation and System
Generation Guide.

Note: If you attempt to load SCPUMON when $DSKMON or $S1PSYS is active,
the system issues the message “SCPUMON LOAD FAILED - $DSKMON
OR $SIPSYS ACTIVE.” You must end $DSKMON or $S1PSYS and then
load SCPUMON.

Loading $SCPUMON

4-48 SC34-0940

Load $SCPUMON with the $L operator command or through an EDL LOAD
instruction.

If you want to monitor your CPU continuously, we recommend that you load
$CPUMON through a $INITIAL program. For information on how to create a
$INITIAL program, refer to the Customization Guide.

When you load SCPUMON with the $L command, $SCPUMON prompts for the
name of the printer or terminal where you want the CPU utilization percentages
displayed. SCPUMON then prompts you to put the terminal in roll mode. In
roll-screen mode, you do not need to press the enter key each time the screen fills

up.

O

$CPUMON

You are asked if you want to print the summary log. If you reply Y, you are
prompted for the interval at which to print a summary of the CPU utilization
percentage. The time interval can range from every second to once every eight
hours. If you reply N, you do not receive the summary log. When you reply Y or N
to the prompt, SCPUMON stores the monitored data in the data set you allocated
previously. If you decide later that you want to display the summary log you can
use the > PRINT command. See “SCPUMON Attention Commands™” on

page 4-50 for more information on this command.

In the following example, SCPUMON prints the CPU utilization percentage at 1
minute intervals for 7 minutes. Then SCPUMON is cancelled. From the time
$CPUMON was activated until 11:49:35, the CPU was in use 23% of the time.

Example:

(

> $L $CPUMON ; , i
DSNAME (NAME,VOLUME): CPUDATA,USRVOL
LOADING $CPUMON :33 LP=

* WARNING - CPU
EXISTING DATA

NIT

OR:‘****

~ ATTN NOPRI : ou
~ATTN PRINT - START LOG PRINTOUT
~ ATTN ENDMON - TERMI) :

*

Chapter 4. Utilities 4-49

$SCPUMON

$SCPUMON Attention Commands
$CPUMON has three attention commands: ENDMON, NOPRINT, and PRINT. ™
An explanation of these commands follows. . ,)’\'

ENDMON — End the SCPUMON Utility
To end the SCPUMON utility, press the attention key, type in ENDMON, and press
the enter key.

Example:

> ENDMON

| ENDED AT 11:56:29

NOPRINT — Stop Printing the Summary Log

To stop the system from printing the summary log, press the attention key, type in
NOPRINT, and press enter. @

Example:

. NOPRINT

PRINT — Resume Printing the Summary Log
To resume printing, press the attention key, type in PRINT, and press the enter key.
$CPUMON prompts you for the interval at which to print a summary log of the
CPU utilization. The time interval can range from every second to once every eight
hours.

Example:

@

4-50 sSC34-0940

O

SCPUPRT

$CPUPRT — Print a CPU Utilization Report

Use the SCPUPRT utility to print a report containing information about how the
system utilizes the CPU.

$CPUPRT formats and prints the data that SCPUMON records. This data is stored
in a data set you allocate before loading SCPUMON.

Loading SCPUPRT

Load SCPUPRT with the $L operator command. After the system loads
SCPUPRT, it prompts you for the terminal or printer where you want the output
sent. $SCPUPRT prompts for the month you want to start printing data. The range
for months runs consecutively from 1—12, with 1 being January and 12 being
December. Then you are prompted for the ending month. This month can be
greater than or equal to the starting month. The month cannot go beyond
December. For example, if your starting month is September, you can print data
until the end of December (12).

CPUDATA,USRVOL
- 8P,12:10:11

Chapter 4. Utilities 4-51

SCPUPRT

4-52 SC34-0940

The following is an example of a CPU utilization report. This report pertains to the
month of October and November and is printed on $SYSPRTR. An explanation of
the report follows the example.

Report Field Description

Date Monitored
The month, day and year that SCPUMON collected this information.

Elapsed Time Minutes
The total amount of time, in minutes, the monitor is active on a
specific day.

CPU Run Time Minutes
The total amount of time in minutes, seconds, and milliseconds, the
CPU is busy on a specific day.

Average % CPU Util.
The average CPU utilization percentage on a specific day.

Disk I/O Count
The total number of EDL initiated disk I/Os that occurred on a
specific day.

Pgm Load Count
The total number of times the system loads programs on a specific day
excluding programs you load with $L operator command.

IPL Count The total number of times you perform an IPL on the system in one
day. This is also the total number of times SCPUMON was loaded on
a specific day.

Note: If you load (with $L) and cancel SCPUMON, the IPL count is
not accurate. It is accurate if you load SCPUMON through a
SINITIAL program.

G

$DASDI

0 $DASDI — Format Disk or Diskette

$DASDI initializes your disks and formats your diskettes.

Loading $DASDI
Load $DASDI with the $L command or option 3.6 of the session manager.

When you load $DASDI, it prompts you for one of the following primary
initialization options:

¢ Primary Option 0 — Create a Stand-Alone Dump/$TRAP Diskette
¢ Primary Option 1 — Diskette Initialization

¢ Primary Option 2 — 4962 Disk Initialization

e Primary Option 3 — 4963 Disk Initialization

¢ Primary Option 4 — 4967 Disk Initialization

¢ Primary Option 5 — DDSK Disk Initialization

¢ Primary Option 6 — IDSK Disk Initialization

¢ Primary Option 9 — Exit Initialization.

Notes:

1. You can load $DASDI into any partition. $DASDI then loads the initialization
routines, $14962, $14963, $14967, $IDDSK30, and $IIDSK into partition 1, and
SIDSKETT or $SABUILD into any available partition. $DASDI also reads in
the SSADUMP data set. SDASDI returns an error if partition 1 does not have
) the space for the initialization routines.
C) 2. When primary options 2, 3, 4, 5, and 6 are executing, do not run a program that
" ‘ accesses the disk being initialized.
3. You can run diskette initialization concurrently with other programs.

Primary Option 0 — Create a Stand-Alone Dump/$TRAP Diskette
Primary option 0 uses a 4964, 4965, 4966, or IDSK diskette unit to initialize a
two-sided, single-density, 256-byte sector diskette used for stand-alone dumps or the
$TRAP utility. $DASDI loads a program that places IPL text and the stand-alone
dump utility on the front of the diskette. Once you create the diskette, it is ready for
use.

If you want to dump more than 512K bytes, you need a stand-alone dump diskette
for every 512K bytes. Once you create them, these two diskettes are identical, and
the order in which you use them is not important.

The diskettes you have created are reusable and you do not have to re-create them
after you have used them to take a stand-alone dump.

Once you have obtained a stand-alone dump, you can list the contents of the

diskette using SDUMP. To dump the contents of the diskette, use data set
$SEDXLIB and volume name IBMEDX.

Chapter 4. Utilities 4-53

$DASDI

Figure 4-2 (Part 1 of 2). Creating Two Diskettes for a Stand-Alone Dump > 512K.

4-54 SC34-0940

$DASDI

-
*#% REMOVE THE FIRST DISKETTE AND INSERT THE SECOND DISKETTE ***
PRESS "ENTER" TO CONTINUE OR "PF3" TO EXIT OPTION
DISKETTE TO BE FORMATTED FOR USE WITH STAND-ALONE DUMP
IS DISKETTE A 2-SIDED DISKETTE (Y/N)? Y
FORMATTING COMPLETE
DUMP DISKETTE BUILT
DIRECT ACCESS DEVICE INITIALIZATION
DISK INITIALIZATION OPTIONS:
0 = CREATE STAND-ALONE DUMP/$TRAP DISKETTE
1 = DISKETTE INITIALIZATION
2 = 4962 DISK INITIALIZATION
3 = 4963 DISK INITIALIZATION
4 = 4967 DISK INITIALIZATION
5 = DDSK DISK INITIALIZATION
6 = IDSK DISK INITIALIZATION
9 = EXIT DISK INITIALIZATION
ENTER DISK INITIALIZATION OPTION: /
Figure 4-2 (Part 2 of 2). Creating Two Diskettes for a Stand-Alone Dump > 512K.
Chapter 4. Utilities 4-55

$DASDI

Primary Option 1 — Diskette Initialization
The $DASDI utility initializes single- and double-sided diskettes. Three formats are)
available:

¢ Format for use with the Series/1 Event Driven Executive
¢ Format to the IBM Standard for Information Interchange

e Format entire diskette to sector size: 128-, 256-, 512-, or 1024-byte records.

Notes:

1. Double-density is available on the 4965 and 4966 8-inch diskette units at 256,
512, or 1024 bytes per sector. Only double-density at 256 and 1024 bytes per
sector is recognized on the Event Driven Executive.

2. 5.25-inch diskettes are available in 256 bytes per sector only.

3. 128 bytes per sector are available only at single density on the 8-inch diskette.

4. 1024 bytes per sector are available only at double density on the 8-inch diskette.

The following matrix shows the configurations available by format for density and
sector size when initializing your diskettes.

128 Bytes/ | 256 Bytes/ | 512 Bytes/ | 1024 Bytes/

Sector Sector Sector Sector
Formats S D S D S D S D
Event Driven | Y N/A Y Y N/A | N/A N/A | Y @
Executive /
Standard for
Information Y N/A Y Y Y Y N/A Y
Interchange
Sector size Y N/A Y Y Y Y N/A Y

BG1184

Figure 4-3. Density and Sector Sizes Available According to Format

Note: For basic exchange copying under the Standard for Information Interchange
format, use a single-sided diskette, formatted as single density, 128 bytes per
sector. For H-level exchange, use a double-sided diskette, formatted as
double-density, 256 bytes per sector.

Event Driven Executive Format
If you select the Event Driven Executive format, cylinder 0 is formatted according to

the IBM Standard for Information Interchange. The remaining cylinders are
formatted at 128 or 256 bytes per sector. On a 4965 and a 4966, a diskette may be
formatted as double-density at 256 or 1024 bytes per sector.

O

4-56 SC34-0940

C

Sector Size Format

$DASDI

After surface analysis is complete, $DASDI writes the volume label, IBMEDX, on
the diskette. The next step after preparing a diskette surface usually is to create a
volume for use with the Event Driven Executive. You create volumes (establish
directories) with the SINITDSK utility. $DASDI gives you the option of going
directly into $INITDSK execution without having to end $DASDI and issue the §L
command for SINITDSK yourself.

Standard for Information Interchange Format

If you select the IBM Standard for Information Interchange, format cylinder 0
according to that standard, and format the remaining cylinders for 128-, 256-, 512-,
or 1024-byte records. $DASDI prompts you for the density (single or double) and
the sector size (single: 1-128, 2-256, 3-512; or double: 1-256, 2-512, 3-1024). If you
are going to use the diskette for basic-exchange copy under $COPY, use a
single-sided diskette formatted as single density, 128 bytes per sector. If you are
going to use the diskette for H-exchange copy using SHXUT1, use a double-sided
diskette formatted as double-density at 256 bytes per sector. After surface analysis,
$DASDI writes the volume label, IBMEDX, on the diskette and assigns a data set
name, DATA. DATA consists of all the tracks on the diskette. Under this format,
you do not need to initialize diskettes.

If you select the sector size format, SDASDI formats all cylinders to the density
(single or double) and sector size you select (128, 256, 512, or 1024 bytes). After
surface analysis, SDASDI does not write a volume label, header, or record in
cylinder 0, and you are not given the option of going directly into SINITDSK
execution.

Note: A diskette initialized according to sector size cannot be used on an Event
Driven system except for reformatting:

Operating Characteristics

After you load $DASDI and choose primary option 1, $DASDI prompts you for the
device address of the diskette drive where the diskette to be formatted is inserted.
Enter this address in hexadecimal.

Note: The 4966 has a capacity of 23 diskettes: 2 magazines of 10 diskettes each plus
3 slots for individual diskettes. The three individual slots are the first 3 slots
in the device. $§DASDI operates on diskettes in slot 1 only; you must insert in
slot 1 any diskette on which you want to run surface preparation.

After you choose a format, SDASDI prompts you (as constrained by format and
device choice) for density (single or double) and sector size (128, 256, 512, or 1024
bytes). $DASDI varies the selected diskette device offline, displays the selected
format, and issues the following warning message:

Chapter 4. Utilities 4-57

$DASDI

4-58 SC34-0940

If you respond Y, the following occurs for each of the three formats:

1. Event Driven Executive—$DASDI formats the diskette, writes a volume label
(IBMEDX) on the diskette, and issues the message:

You then have the option of going directly to SINITDSK as follows:

If you want to create a logical volume or establish a directory, respond Y and
the system loads SINITDSK. After you initialize your diskette under
SINITDSK, end the SINITDSK utility.

2. Standard for Information Interchange—$DASDI formats the diskette and writes a
volume label IBMEDX) on the diskette, allocates a data set called DATA, and
issues the following message:

DATA consists of all the data tracks on the diskette.

3. Sector Size Format—$DASDI formats the diskette but does not write a volume
label or header on the diskette; it issues the following message:

$DASDI prompts you as follows:

If you respond Y, you have the following choices (you should insert another diskette
as required):

Choice 1

U

$DASDI

Or

Choice 2

'SAME DEVICE ADDRESS AND FORMAT (Y/N)? N
'ENTER DISKETTE ADDRESS IN HEX: B

If you respond N to “ANOTHER DISKETTE,” the system displays the $SDASDI
primary option menu again.

Notes:

1. Do not use $C to cancel a formatting operation. Enter ATTN $DASDI to force
termination.

2. After you create the volume label and data set header, the rest of cylinder 0
consists of deleted records. Any attempt to read them results in an error
condition.

Chapter 4. Utilities 4-59

$DASDI

4-60 SC34-0940

Example 1: Format a double;density diskette on a 4966 for Event Driven Executive.

$SDASDI

Example 2: Format a 5.25-inch double-density diskette in a IDSK diskette unit for
Event Driven Executive. ‘

f)
> $L $DASDI
LOADING $DASDI 7P,00:28:55, LP= 7E00, PART=1

DIRECT ACCESS DEVICE INITIALIZATION
K INITIALIZATION OPTIONS:
CREATE STAND-ALONE DUM
DISKETTE INITIALIZATION
4962 DISK INITIALIZATION
4963 DISK INITIALIZATION
4967 DISK INITIALIZATION

DDSK DISK INITIALIZATION

IDSK DISK INITIALIZATION ;
= EXIT DISK INITIALIZATION =~
ENTER DISK INITIALIZATION OPTION: 1

TTE

o onon

WO WN

***************%*** hkkkdhekkkhkk

DISKETTE FORMATTING PROGRAM *
IF FORMATTING IS IN PROGRESS, DO NOT *
CANCEL ($C) THIS PROGRAM. INSTEAD, PRESS *
ATTN:AND ENTER $DASDI TO TERMINATE. '

kr***

* % % *

" ENTER DISKETTE ADDRESS IN HEX: 61
DEVICE VARIED OFFLINE

DEVICE ADDRESS 61 EDX FORMAT, DOUB

'WARNING : FORMATTING WILL DEST
- CONTINVE (Y/N)? Y
fIBMEDX VARIED. ONLINE

RMATTING COMPLETE'
“LOAD $INITDSK (Y/

INITIALIZATION

Chapter 4. Utilities 4-61

$SDASDI

Example 3: Format diskette on a 4964 to IBM Standard for Information
Interchange.

Example 4: Format diskette on a 4966 to 256-byte records (double-density). (W

4-62 SC34-0940

O

‘ i}
\
s

J

$DASDI

Primary Option 2 — 4962 Disk Initialization

The disk initialization utility for the 4962 initializes your disk, writes sector addresses
on the entire volume, analyzes and locates defective sectors, and assigns alternate
sectors. After you initialize the disk, it is ready for use with EDX. For a new disk
device, you should perform initialization before you install the EDX on it.

When using this primary option, you must select one of two initialization types:

¢ PI (primary) — initialize a disk for the first time or completely reinitialize the
disk.

Note: This type rewrites the complete disk surface and destroys all data that
may have been on the disk.

e AS (alternate sector assignment) — assign alternate sectors without destroying
the data currently on the disk.

Using Pl Initialization

Use PI to verify and correct sector IDs and to analyze the disk surface to find
defective sectors. If the programmer’s console is active, the data buffer displays the
number of the cylinder $DASDI is initializing currently. If the system finds a
defective sector, either on a movable or a fixed head, it assigns an alternate sector
from cylinder 1 and $DASDI issues a message. When the system assigns an
alternate sector, the sector ID of the defective sector refers to the location of its
alternate on cylinder 1. The system marks defective sectors. If a defective sector
exists on cylinder 0, the system assigns to the defective sector an alternate sector
under the same head on cylinder 0.

Using AS Initialization

Use AS to force the assignment of alternate sectors without destruction of data on
the disk. $DASDI tries to move data from the defective sector to its assigned
alternate. If data recovery fails, $DASDI issues a message and flags the alternate
data field with all one-bits (hexadecimal FFFF). If the system finds an assigned
alternate is defective, it marks the alternate as defective and .assigns a new alternate.
The system attempts data recovery in this case, also.

Note: Use AS only when necessary. Cylinder 1 has a limited number of available
alternate sectors. Once the system assigns an alternate sector, you can recover
the sector only by writing all sector IDs during a primary initialization.

Chapter 4. Utilities 4~63

$DASDI

4-64 SC34-0940

The storage capacity and number of alternate sectors available on cylinder 1 depends
on the 4962 model.

Storage Capacity

(in bytes) Alternate

Model | Moveable Heads Fixed Heads Sectors

1 9,308,160 — 120

IF 9,308,160 122,880 120

2 9,308,160 — 120

2F 9,308,160 122,880 120
13,962,240 — 180

4 13,962,240 — 180

Example 1: Primary initialization of a 4962 disk.

@

$DASDI

In the previous example, $DASDI prompts for the following:
m ¢ Disk or diskette primary initialization option: 1 through 6
¢ Initialization type: PI for primary or AS for alternate sector
¢ Initialization mode:
— N — Retain defective flag byte of each sector ID.

— Y — Rewrite sector flag IDs and reinitialize the flag byte where possible.
Allows you to initialize a disk with invalid sector flags.

Note: Respond Y only if you want to rewrite all sector IDs. This causes the loss of
any IBM factory-assigned defective sector flags. If you respond Y, the
following verify operation occurs:

FACTORY-MARKED DEFECTIVES MAY BE LOST
IS CHANGE OF REPLY DESIRED (Y/N)? N

N Operation will continue with flags considered invalid.

Y A reprompt of the previous message results, allowing you to change the status
of the defective flags.

The system repeats the following message for each alternate sector assignment:

O | ALTERATE SECTOR ASSIGNED FOR ccch

Note: ccchss=the address of the alternate sector assigned.

Chapter 4. Utilities 4-65

$SDASDI

4-66 SC34-0940

Example 2: Alternate sector assignment on a 4962 disk.

o

Cylinder/Head/Sector (cochss): The address of the sector presumed to be defective.
$DASDI assigns an alternate sector on cylinder 1 then tries to move the data from
the defective sector to the alternate sector. Alternates on cylinder 0 are located on
the same track and head as the defects on cylinder 0. This process may reveal that
the sector IDs on cylinder O are in an inconsistent condition. Processing continues if

possible. You cannot assign an alternate to a defective sector on cylinder 1.

Note: The system always refers to the fixed-head area as cylinder 303. You should
consider that this cylinder contains eight heads (zero through seven). To refer
to sector five under fixed-head four, specify 303405.

The system displays the following message at your terminal indicating completion of
the disk initialization.

$DASDI

Primary Option 3 — 4963 Disk Initialization
0 The $DASDI utility identifies and restores defective sectors on a 4963 disk device.
The 4963 comes from the factory already formatted with all logical sector addresses
assigned and tested and with alternates assigned to any defective sectors; you do not
have to initialize a newly installed 4963.

With this primary option, you can:

e Identify a specific sector as being defective and cause the utility to assign an
alternate to it.

¢ Restore a previously identified defective sector and cause the utility to free its
alternate.

e Print a map of all defective sectors and indicate if the defective sector were
factory- or user-identified.

The system assigns alternate sectors as follows:

¢ If the primary alternate (the extra sector on the same track) is available, the
system uses it as the alternate for the defective sector.

e If the primary alternate is not available (either it is defective or already
assigned), the system assigns a secondary alternate from the nearest track under
the movable heads having an available primary alternate.

Note: The system assigns the primary alternate under a fixed head to a sector that is
under the same fixed head. ‘

Q ;l;lifoisgrage capacity and the number of alternate sectors for each 4963 model
Storage Capacity Alternate

Model (in bytes) Sectors
Moveable head:
23A.B 23,592,960 358
29A,B 29,491,200 358
58A.B 58,982,400 358
64A,B 64,880,640 358
Fixed-head:
23A, 23B
S8A, 58B only 131,072 358

Chapter 4. Utilities 4-67

$SDASDI

4-68 SC34-0940

When restoring sectors from defective status, SDASDI physically moves the sectors
within the track to minimize the processing time between consecutive logical sectors.

You cannot restore: M
I

* A factory-assigned defective sector

e A primary defect (one that causes the system to assign the primary alternate for
the track)

¢ A sector whose ID has been extended (caused by a defect in the ID field of the
original sector). (See example 2 on the following page.)

Example 1: Loading 4963 disk initialization.

O

Your option entry must be one of the four secondary options listed in the command
menu. You can choose to identify, restore, or map defective sectors. $DASDI ends
when you enter primary option 9.

$DASDI

Example 2: Obtaining a map of defective 4963 sectors.

" ENTER OPTION: 3

DEFECT = ALTERNATE EXTENDED
0000101 ~
0020114 ,
0340401 3580400

This map shows three defective sectors, one of which is a secondary defect (indicated
by the alternate address). If the system finds a defective ID and is able to extend
that sector to an alternate one, the map displays an asterisk (*) in the EXTENDED
field for that sector.

Example 3: Assigning an alternate sector.

p—
ENTER OPTION: 1

ENTER CCCHH

| SS OF SECTOR TO BE MARKED DEFECTIVE OR END
0010205 e ‘

ENTER CCCHHSS OF SECTOR TO BE MARKED DEFECTIVE OR END:

" ENTER OPTION:

Notes:

1. In the preceding example, enter the disk address for a 4963 as a seven-digit
number (0010205): the cylinder is 1 (001), the head is 2 (02), and the sector is 5
(05).

2. $DASDI uses the following range of values for the ccchhss of a 4963:

cylinder 0 — 357
head 0 -4 (5,10,11)*
sector 0 - 63

* depending on model

3. $DASDI may appear to assign an alternate for a ccchhss that is not the one you
specified. This occurs because the 4963 is arranged as follows:

records 0,32 are Tocated in physical sector 0
records 1,33 are Tocated in physical sector 1

.
.

records 31,63 are located in physical sector 31

Chapter 4. Utilities 4-69

$DASDI

Example 4: Restoring a previously assigned alternate sector.

Note: The system always refers to the fixed-head area on the 4963 as cylinder 511.
This cylinder contains eight heads (16 —23) and 64 sectors (0 —63).

Primary Option 4 — 4967 Disk Initialization
The $DASDI utility identifies and restores defective sectors on a 4967 disk device.
However, unlike the 4962 and 4963 disks, the system identifies the sector addresses
on the 4967 by relative block address (RBA) rather than by cylinder, track, and
sector.

With primary option 4, you can:

¢ Verify all data fields and associated IDs on the entire disk or a selected cylinder
and identify any defective RBAs @
* Refresh data associated with a specified RBA =
s Assign an alternate sector for a specified RBA
¢ List the assigned alternate sectors
¢ Remove an alternate sector assignment
¢ Write one sector ID.

The accessible storage capacity and the number of alternate sectors for each 4967
model follows:

Sterage Capacity Alternate
Model | (in bytes) Sectors
2CA 200,202,240 7,980
2CB 200,202,240 7,980
3CA 358,959,104 14,336
3CB 358,959,104 14,336

4-70 SC34-0940

SDASDI

Example 1: Loading 4967 disk initialization.

ST s
"> $L $DASDI - o
LOADING $DASDI 7P,00:28:55, LP=7E00, PART=1

DIRECT ACCESS DEVICE INITIALIZATION
DISK INITIALIZATION OPTIONS: - -

CREATE STAND-ALONE DUM
DISKETTE INITIALIZATION
4962 DISK INITIALIZATION
4963 DISK INITIALIZATION
4967 DISK INITIALIZATION

= DISKETTE
= DDSK DISK INITIALIZATION
D

IDSK DISK INITIALIZATION
EXIT DISK INITIALIZATION
ISK INITIALIZATION OPTION: 4

DO OO WN O

ENTE

4967 DISK INITIALIZATION

***‘ o
N0 USER PROGRAM SHOULD BE RUMNING i
WHILE PERFORMING DIS IN"IALIZATION G

Your option entry must be one of the eight secondary options listed in the command
menu. Primary option 4 ends when you enter secondary option 7. Once you return
to the primary menu, $DASDI ends when you enter primary option 9.

Chapter 4. Utilities 4-71

$DASDI

Secondary Option 0 — Verify Entire Disk

Use secondary option 0 to identify any defective RBAs on the entire 4967 disk. The
system reads and verifies all data fields and associated sector IDs on the disk. If it
finds no errors, $DASDI issues the following message:

4-72 SC34-0940

When you use secondary option 0, no errors are expected to occur. However, if the
system detects errors, you should correct them.

If the system detects errors, SDASDI displays a table showing the relative block
address, the sector ID of the RBA, the head and cylinder, and a comment describing
the error. Following the table, $DASDI displays the recommended ways to correct
the errors.

This table shows flagged or bad sectors that exist on the disk.

Note: Use of secondary option 0 causes all system processing to stop until secondary
option 0 completes. This option takes approximately 6 minutes to complete
for models 2CA and 2CB and 11 minutes for models 3CA and 3CB, since it is
reading and writing every sector on the entire disk.

If you suspect you have a defective RBA (as indicated by disk error messages), you
may want to look at your $SYSLOG (cycle steal status) to find which RBA is
causing the disk errors. If you do this, then use secondary option 1 to verify that
particular RBA.

O

$DASDI

Secondary Option 1 — Verify a Cylinder by Selected RBA
Use secondary option 1 to identify defective RBAs on a particular cylinder. The
0 system reads and verifies all data fields and associated IDs on the selected cylinder.
If it finds no errors, $DASDI issues the following message:

SELECT ONE OPTION: 1

ENTER RELATIVE BLOCK ADDRESS ‘(RBA)= (HEX) 12345
CYL BEING VERIFIED, ID'S AND DATA
NO SECTOR OR-DATA ERRORS

If $DASDI finds an error, it displays a table showing the relative block address, the
sector ID of the RBA, the head and cylinder, and a comment describing the error.
Following the table, SDASDI displays the recommended ways to correct the errors.

f N
RBA 1D-FG/SEC HD/CYL PHY/BSD
000000 1000 0400 O3FF NRF- ID NOT VALID

0002AE 1000 - 0400 f[:esFF‘NRF ID NOT VALID

ERR-ECC CORRECT '

This table shows flagged or bad sectors that exist on a selected cylinder.

Chapter 4. Utilities 4-73

$SDASDI

Secondary Option 2 — Refresh Data

4-74 SC34-0940

Use secondary option 2 to refresh the data contained in the sector to ensure that it is
valid or correct. You are able to patch data in the suspected RBA and write the
new data back out to the RBA. If the error no longer appears, you can use the
RBA asis. If the error still appears, then you must assign an alternate sector
(secondary option 3).

Notes:

1. For inverted ECC errors, if you write back the RBA without correcting it, the
inverted ECC error disappears. However, the data could still be bad. Be sure to
verify the data.

2. For ECC corrected errors, you need not verify the data before writing it back to
disk.

Example:

At this point, $DASDI reads the selected RBA and displays the 256 bytes, in
eight-words-per-line format, contained in the RBA.

$DASDI then prompts you as follows:

If you enter Y, $DASDI issues a prompt for the starting address and number of
words (count) of the patch:

O

O

$DASDI

SDASDI then displays the address of the area you want to patch and the data
currently appearing at that location. Enter the new data.

00F0: 0000
DATA: 5

$DASDI displays the selected RBA showing the selected address and changed data.

r ~ , —
0000: 0000 0000 0000 0000 0000 H0O 0080 0000
0010: 0000 0000 6000 0000 0000 0G0 0000 0000
0020: 0000 0000 0000 600 0000 0600 0000 0600
'0030: 0000 0000 00A0 0060 B0 HBOO 0000 00O
0040: 0000 0000 0000 0000 BOGO 0000 0000 6000
00 0000 6600 0000 0000 0600 6000
)0 0000 0000 6008 0600 0000 0000
0 0000 0000 0000 0000 0000

0 0000 0000 0000 6000

(:006) 0000 0000

$DASDI then prompts if you want to patch another location in the same RBA.

If you respond Y, $DASDI prompts for another address and count. If you respond
N, $DASDI issues a prompt asking if you want to write the changed RBA to disk.
If you respond Y to this prompt, $DASDI writes the changed RBA back to the disk.

Once you have written the RBA to disk, $DASDI issues a prompt asking if you
want to patch another area.

If you respond Y, $DASDI again prompts for the selected RBA and displays the 256
bytes contained in that RBA in eight-word-per-line format. If you respond N,
$DASDI returns to the 4967 Disk Initialization secondary menu.

Chapter 4. Utilities 4-75

SDASDI

Secondary Option 3 — Assign Alternate Sector
Use secondary option 3 to assign an alternate sector for a selected RBA.

Example:

Secondary Option 4 — Remove Alternate Sector Assignment
Use secondary option 4 to remove an alternate sector assignment that you assigned

using secondary option 3.

Example:

If the RBA you specified is not assigned to an alternate sector, $DASDI issues the
following prompt:

Secondary Option 5 — List All User-Assigned Sectors
Use secondary option 5 to display a list of alternate sectors you assigned.

Example:

4-76 SC34-0940

O

$SDASDI

Secondary Option 6 — Write One Sector ID
' Use secondary option 6 to convert the selected RBA to a head, cylinder, and logical
number. The system writes the sector ID for that logical number using the factory
defect data (if any exist) from the surface analysis cylinder. The system recovers and
writes data with the sector ID.

Example:

SELECT ONE OPTION: 6 -
ENTER RELATIVE BLOCK ADDRESS (RBA) (HEX): 12345
ID/ID'S WRITTEN

If the system has already assigned the selected RBA as a user-defined alternate, then
$DASDI displays the following message:

ID/ID ‘S NOT WRITTEN

If the system detects an error while recovering data, it displays the following
message:

In response to this message, refresh the data using secondary option 2.
Secondary Option 7 — Exit

Use secondary option 7 to end 4967 initialization (primary option 4) and to return to
the primary option menu of $DASDI. Primary option 9 ends the $SDASDI utility.

Chapter 4. Utilities 4-77

$DASDI

Primary Option 5 — DDSK Disk Initialization
The $DASDI utility identifies and restores defective sectors on the 30-megabyte disk
device (DDSK-30) and the 60-megabyte disk (DDSK-60). For these devices, the
system identifies disk sector addresses by relative block address (RBA) rather than
by cylinder, track, and sector.

With this option, you can:

¢ Verify all data fields and associated IDs on the entire disk or a selected cylinder
¢ Identify any defective RBAs

¢ Refresh data associated with a specific RBA

¢ Assign an alternate sector for a specified RBA

¢ List the assigned alternate sectors

* Remove an alternate sector assignment.

The initialization routines for the DDSK-30 and DDSK-60 disks appear as primary
option 5 under the $DASDI utility. When you load $DASDI, it displays the
following menu:

The storage capacity and the number of alternate sectors for DDSK-30 and
DDSK-60 disks follows:

Storage Capacity Alternate
Model | (in bytes) Sectors
30D 30,821,888 3,544
60D 61,668,864 7,088

4-78 SC34-0940

$DASDI

Enter a 5 in response to the ENTER DISK INITIALIZATION OPTION prompt.
$DASDI then prompts you for the address of the disk. Once you have entered the
disk address, $DASDI displays the secondary options available under option 5.

s

DDSK DISK INITIALIZATION

’*”

: : WARNING o o
% NO USER PROGRAM SHOULD BE RUNNING *
* WHILE PERFORMING DISK INITIALIZATION *

Fhkkkkkkkhkkhkhkhkhhkhkhhkhhikkhkkkkkhhhkkhrdhkkhkhkhkhxk

ENTER DEVICE -ADDRESS OF DISK (HEX):. 44
DDSK UTILITY PROGRAM
OPTION MENU

0- VERIFY ENTIRE DISK
VE LI ER BY SELECTED RBA ~

1

2 f i

3 ATE SECTOR

4 UNASSIGN SECONDARY ALTERNATE SECTOR
5

6

E

LIST ALL USER ASSIGNED ALTERNATE SECTORS
EXIT .

\S uxTONEOFHPNZT.qug; R T B e f“T/

Select one of the secondary options listed above. A description of each secondary
option follows.

Secondary Option 0 — Verify Entire Disk
Use secondary option 0 to identify any defective RBAs on the entire DDSK-30 or
DDSK-60 disks. The system reads and verifies all data fields and associated sector
IDs on the disk. If $DASDI finds no errors, it issues the following message:

When using secondary option 0, no errors are expected to occur. However, if the
system detects errors, you should correct them. $DASDI displays the relative block
address, the sector ID of the RBA, the head and cylinder, and a comment describing
each error.

Chapter 4. Utilities 4-79

$DASDI

Following the error description, $DASDI displays the recommended way to correct
each error.

Note: Use of secondary option 0 causes all system processing to stop until secondary
option 0 completes. This option takes approximately 6 minutes to complete .
since it is reading and writing every sector on the disk. (R ..)

If you suspect that there is a defective RBA (as indicated by a disk error message),
use secondary option 1 to verify that particular RBA.

Secondary Option 1 — Verify a Cylinder by Selected RBA
Use secondary option 1 to identify defective RBAs on a particular cylinder. The
system reads and verifies all data fields and associated IDs on the selected cylinder.
If $DASDI finds no errors, it issues the following message:

$DASDI displays the relative block address, the sector ID of the RBA, the head and
cylinder, and a comment describing any error it finds. Following the error
description, $DASDI displays the recommended way to correct the error.

4-80 SC34-0940

$DASDI

" ERROR SECTORS
RBA ID-FG/SEC HD/CYL
11111 3645 0DO2 DATA ERR-ECC INVERTED

OMMENDED WAY TO CORRECT LISTED ERRORS
RROR: INVERTED ECC
OPTION 2 TO REFRESH RECORD. I

SISTS, ASSIGN AN ALTERNATE.

Secondary Option 2 — Refresh Data
Use secondary option 2 to refresh the data contained in the sector to ensure it is
valid or correct. You are able to patch data in the suspected RBA and write the
new data back out to the RBA. If the error disappears, the RBA can be used as is.
If the error remains, then you must assign an alternate sector (secondary option 3).

Notes:

1. For inverted ECC errors, if you write the RBA back without correcting the
error, the inverted ECC error disappears. However, the data could still be bad.
Be sure to verify the data.

2. For ECC corrected errors, you do not need to verify the data before writing it
back to disk.

Example:

'SELECT ONE OPTION: 2

At this point, SDASDI reads the selected RBA and displays the 256 bytes (1 record),
in eight-words-per-line format, contained in the RBA.

Chapter 4. Utilities 4-81

$DASDI

4-82 SC34-0940

$DASDI then prompts you as follows:

If you enter Y, SDASDI issues a prompt for the starting address and number of
words (count) of the patch:

$DASDI then displays the address of the area you want to patch and the data
currently appearing at that location. Enter the new data.

3

SDASDI then prompts if you want to patch another area.

$DASDI

If you respond Y, $DASDI issues the ENTER ADDRESS,COUNT prompt. If you
respond N, $DASDI asks if you want to write the patched RBA to disk.

{ WRITE THE RBA TO DISK?

If you respond Y, $DASDI writes the changed RBA back to the disk and prompts if
you want to read another RBA.

If you respond N, $DASDI asks if you want to read another RBA. If you respond
Y, $DASDI again prompts for the selected RBA and displays the 256 bytes
contained in that RBA in eight-word-per-line format. If you respond N, $DASDI
returns to the DDSK Disk Initialization menu.

Secondary Option 3 — Assign Alternate Sector
Use secondary option 3 to assign alternate sectors for a selected RBA. When
assigning alternate sectors, you should be familiar with the layout of the disk. Each
track contains 68 sectors (RBAs) for your use plus up to two sectors for use as
alternates. The alternate sectors on the same track are called primary alternate 1
and primary alternate 2.

When an RBA requires an alternate assignment, SDASDI attempts to assign primary
alternate 1. If primary alternate 1 has already been assigned by the same RBA or
another RBA, $DASDI attempts to assign primary alternate 2. If primary alternate
2 is also unavailable, SDASDI assigns a secondary alternate sector. The secondary
alternate sector is always located on a track different than the track where primary
alternates 1 and 2 are located.

If a secondary alternate goes bad, you can assign another secondary alternate.
However, using secondary option 4, you can unassign only the last secondary
alternate that you assigned.

Example:

Chapter 4. Utilities 4-83

$DASDI

Secondary Option 4 — Unassign Secondary Alternate Sector
Use secondary option 4 to unassign the last secondary alternate sector that you
assigned with secondary option 3. You can only unassign a secondary alternate. .w

Example:

If the RBA you specified is not a secondary alternate sector, $DASDI issues the
following prompt:

Secondary Option 5 — List All User-Assigned Alternate Sectors
Use secondary option 5 to display a list of alternate sectors you assigned. $DASDI
issues a listing of all the primary and secondary alternates assigned.

Example:

4
—

The ID-FG/SEC column contains two bytes. The first byte in this column is a flag
byte which indicates the condition of the sector’s surface. The second byte is a
sector byte which is the hexadecimal representation of the alternate sector assigned.
For a description of the flag and sector bytes, refer to one of the following hardware
description manuals:

* IBM Series/1 4952 Processor Model 30D Processor Features Description,
GA34-0251

e [BM Series/1 4954 Processor Model 30D and Model 60D and Processor Features
Description, GA34-0252

o [BM Series/1 4956 Processor Model 30D and Model 60D and Processor Features
Description, GA34-0253 O

. IBM Series/1 4965 Storage and 1/O Expansion Unit Description, GA34-0254.

4-84 SC34-0940

O

C

$SDASDI

Secondary Option 6 — Exit

Use secondary option 6 to end DDSK initialization (primary option 5) and return to
the primary option menu of $DASDI. Primary option 9 ends the $DASDI utility.

Primary Option 6 — IDSK Disk Initialization

The $DASDI utility identifies and restores defective sectors on the IDSK disk. For
these devices, the system identifies disk sector addresses by relative block address
(RBA) rather than by cylinder, track, and sector. The IDSK disk has a storage
capacity of 40,552,960 bytes and contains 5,110 alternate sectors.

With primary option 6, you can verify all data fields and associated IDs on the
entire disk. You can also assign an alternate sector for a specified RBA.

Enter a 6 in response to the ENTER DISK INITIALIZATION OPTION prompt.
$DASDI then prompts you for the address of the disk. Once you have entered the
disk address, $DASDI displays the secondary options available under option 6.

Example 1: Loading IDSK disk initialization

DISKETTE INITIALIZATION‘
4962 DISK INITIALIZATION

Select one of the four secondary options. A description of each secondary option
follows.

Chapter 4. Utilities 4-85

$DASDI

Secondary Option 0 — Verify Entire Disk
Use secondary option 0 to identify any defective RBAs on the entire IDSK disk.

The system reads and verifies all data fields and associated sector IDs on the disk. If O
$DASDI finds no errors, it issues the following message:

When using secondary option 0, no errors are expected to occur. However, if the
system detects errors, you should correct them. $DASDI displays the relative block
address, the sector ID of the RBA, the head and cylinder, and a comment describing
each error. -

Following the error description, SDASDI displays the recommended way to correct
each error.

Note: Use of secondary option 0 causes all system processing to stop until secondary
option 0 completes. This option takes approximately 6 minutes to complete
since it is reading and writing every sector on the disk.

4-86 SC34-0940

$SDASDI

Secondary Option 1 — Assign Alternate Sector
Use secondary option 1 to assign alternate sectors for a selected RBA. When
0 assigning alternate sectors, you should be familiar with the layout of the disk. Each
track contains 31 sectors (RBAs) for your use plus one sector to use as an alternate.

Example:

| ENTER OPTION: 1 : , e
ENTER RELATIVE BLOCK ADDRESS (RBA)-(HEX) 5 DIGITS (RRRRR): 12345
ALTERNATE ASSIGNMENT COMPLETED

Secondary Option 2 — Refresh Data
Use secondary option 2 to refresh the data contained in the sector to ensure that it is
valid or correct. You are able to patch data in the suspected RBA and write the
new data back out to the RBA. If the error no longer appears, you can use the
RBA as is. If the error still appears, then you must assign an alternate sector
(secondary option 1).

Notes:

1. For inverted ECC errors, if you write back the RBA without correcting it, the
inverted ECC error disappears. However, the data could still be bad. Be sure to
verify the data.

2. For ECC corrected errors, you need not verify the data before writing it back to

0 disk.

Example:

At this point, $SDASDI reads the selected RBA and displays the 256 bytes, in
eight-words-per-line format, contained in the RBA.

Chapter 4. Utilities 4-87

$DASDI

4-88 SC34-0940

$DASDI then prompts you as follows:

If you enter Y, SDASDI issues a prompt for the starting address and number of
words (count) of the patch:

$DASDI then displays the address of the area you want to patch and the data
currently appearing at that location. Enter the new data.

$DASDI displays the selected RBA showing the selected address and changed data.

$DASDI then prompts if you want to patch another location in the same RBA.

If you respond Y, $DASDI prompts for another address and count. If you respond
N, $DASDI issues a prompt asking if you want to write the changed RBA to disk.
If you respond Y to this prompt, $DASDI writes the changed RBA back to the disk.

O

4
A

C

$DASDI

Once you have written the RBA to disk, $DASDI issues a prompt asking if you

0 want to patch another area.

LANOTHER PATCH (Y/N)?

If you respond Y, SDASDI again prompts for the selected RBA and displays the 256
bytes contained in that RBA in eight-word-per-line format. If you respond N,
$DASDI returns to the IDSK Disk Initialization secondary menu.

Secondary Option 7 — Exit _
Use secondary option 7 to end IDSK initialization (primary option 6) and return to
the primary option menu of SDASDI. Primary option 9 ends the $DASDI utility.

Primary Option 9 — Exit Initialization
Use primary option 9 to end the $SDASDI utility.

L $DASDI

Chapter 4. Utilities 4-89

SDEBUG

$DEBUG — Debugging Tool

Use $SDEBUG to locate errors in programs. All of your interactions are through
terminals; none require the use of the optional programmer console. By operating a
program under control of $DEBUG, you can:

Stop the program each time execution reaches an instruction address
(breakpoint) that you have specified.

Trace the flow of execution of instructions within the program by specifying one
or more ranges of instruction addresses known as trace ranges. Each time the
program executes an instruction within any of the specified trace ranges, the
terminal displays a message identifying the task name and the instruction
address just executed. You can stop program execution after the system
executes each instruction within a trace range. You can restart program
execution at other than the next instruction.

List additional registers and storage location contents while the program is
stopped at a breakpoint or at an instruction within a trace range.

Patch the contents of storage locations and registers.

Restart program execution at the breakpoint or trace range address where it is
stopped currently.

You can determine the results of computations performed by the program and the
sequence of instruction execution within the program. You can also modify data or
instructions of the program during execution.

Notes:

1.

If you use the EDL Accelerator Custom Feature, RPQ D02723, you must end
$DEBUG as soon as you are finished debugging your program. $SDEBUG
disables the Accelerator Custom Feature. As soon as you end SDEBUG, the
EDL Accelerator resumes processing.

If $DEBUG is running on a terminal, you cannot ENQT that terminal from a
program unless it is the program you are debugging.

. If the program you are going to debug has more than one task, SDEBUG

requires an additional data area in the partition where SDEBUG is loaded. The
size of the data area is 138 bytes for each task in the program (not including the
main task). If the system cannot obtain this storage in SDEBUG’s partition, it
will not load SDEBUG. When you end $DEBUG, the system releases the
storage.

Major Features of SDEBUG

A summary of the major features of the SDEBUG program follows:

4-90 sC34-0940

(]

You can establish multiple breakpoints and trace ranges.
You can debug overlay segments.

Up to five users can load separate copies of SDEBUG concurrently if the system
has sufficient storage available.

You can set breakpoints and trace ranges in the Series/l assembler language as
well as in Event Driven Language instructions.

The system automatically obtains the task names from the program you are
testing. -

O

-

C

SDEBUG

* You can display and modify task registers #1 and #2.

0 ¢ You can display and modify hardware registers RO through R7 and the IAR.
* You can display and modify the task return code words.
e The list and patch functions accept five different data formats.

¢ You can run the program you are debugging in a partition other than the one
where $DEBUG is loaded.

* You can make all address specifications as shown in the program assembly
listing without concern for the actual storage addresses where the system loads
the program into storage for testing.

e The task where you set the trace ranges is the only place that incurs processing
overhead. Even then, the system enables the hardware trace feature only for
specific tasks.

* You can activate the debug facility for a program that is experiencing problems
even if you previously loaded that program without the debug facility.

* You can debug a program by loading $DEBUG from a terminal other than the
one from which you loaded the program you are testing.

* You can debug a program that uses a 4978, 4979, 4980, or 3101 (or equivalent)
terminal in STATIC or ROLL screen mode.

¢ You can list breakpoints or trace ranges specified during a debug session.

¢ $DEBUG can control the execution of programs containing up to 20 tasks.

Q Necessary Data for Debugging

To use SDEBUG, you must include SDBUGNUC at system generation. You must
have a printed listing of the program you are debugging that shows the storage
addresses of each instruction and data area of interest. To obtain such a listing
using $S1ASM, specify PRINT GEN in the source program, after the PROGRAM
statement, at assembly time. Precede the PROGRAM statement with PRINT
NOGEN to prevent the system from printing many system EQU statements, among
others. For SEDXASM, vou can get a satisfactory listing if you specify LIST.

To debug segment overlays, you need a link map to find the overlay segment
numbers.

For an example of debugging an application program, refer to the Language
Programming Guide.

Loading SDEBUG

Load $DEBUG with the $L operator command. The session manager does not
support this utility.

Chapter 4. Utilities 4-=91

$SDEBUG

4-92 SC34-0940

SDEBUG then prompts for the name of the program you wish to debug as follows:

DBUGDEMO, EDX002

The program that you are debugging does not have to run in the same partition
where the system loaded $SDEBUG, but if thé program has more than one task,
$DEBUG requires an additional data area in the partition where you loaded
$DEBUG. After you enter the program name, the system prompts you for a
partition number. The system prompts you for a terminal name only if SDEBUG is
loading your program. (You may enter the partition number and terminal name on
the same line as the program name if you prefer.)

The system will inform you if there is not enough room for your program in the
partition you specified or if you specified an invalid partition number. You can
specify 0 as a partition number to tell SDEBUG to load your program in the first
available partition. In this case, SDEBUG will not look to see if your program is
already in storage.

Note: Do not enter the name of a printer when prompted for the name of the
terminal on which $DEBUG is to load your application program.

After you enter the partition number and the terminal name, if applicable, SDEBUG
displays the load point of the program as follows:

If you have loaded the program you are debugging into storage multiple times, the
system lists the load points of all currently active copies as follows:

You have the option of requesting a fresh copy of the program or specifying which
copy of the program you wish to debug.

SDEBUG

If you respond Y, SDEBUG loads a new copy of the program.

LLOAD'ING,‘:DBUGDEMO 4P, 09:38:02, LP= 5EGD, PART=3 J

If you respond N, $DEBUG prompts you for the load point of the copy you wish to
debug.

b‘ROGRAM LOAD POINT: 5600 ; o , -) J

$DEBUG Commands
To display the SDEBUG commands at your terminal, press the attention key and
enter the HELP command as follows:

You specify each command by pressing the attention key on your terminal and
entering the command name or the command name plus the required parameters for
the command.

Chapter 4. Utilities 4-93

$SDEBUG

Syntax Summary
The following examples show the various formats of the AT command. Example 1 0
shows interactive mode and example 2 shows single-line entry. Syntax examples for
each command capitalize the SDEBUG command keyword parameters and show the
variable parameters in lowercase. A slash (/) separates the keyword options that you
can specify.

Example 1:

Example 2: You can obtain identical results by entering the single response.
However, when using single-line entry, be sure that you enter the parameters in the
order $SDEBUG expects them.

Each command with its syntax description follows in alphabetical order.

4-94 SC34-0940

O

$SDEBUG

AT — Set Breakpoints and Trace Ranges

AT sets breakpoints and trace ranges. The system executes the LIST and STOP
options established for a breakpoint or trace range prior to executing the instruction
that satisfied the breakpoint or trace range specification. When the system satisfies
the specification for a breakpoint or trace range, it reroutes the currently active task.
Then $DEBUG performs the following actions for the subject task:

¢ Prints its status and the current value of the task code word
¢ Prints the LIST specification

¢ Optionally puts the task into a wait state.

If you requested the NOSTOP option, SDEBUG prints task status as “taskname
CHECKED AT XXXX.” The STOP option generates a “taskname STOPPED AT
XXXX” message.

You can modify the LIST and STOP options for all currently defined breakpoints
and trace ranges by entering AT ALL. Similarly, you can alter the specifications for
the most recently entered AT command with the AT * option.

If you specify LIST UNMAP after issuing the AT command, the unmapped storage
area to be listed must already be initialized at the time you set the breakpoint.

Notes:

I. You cannot set breakpoints in ATTNLIST routines.

2. If a trace range is set around a GETVALUE coded with PROMPT =COND
and a message data set prompt, the instruction will not wait for input. The
input data area will be unchanged.

Syntax:

AT ADDR address overlay# NOLIST/LIST NOSTOP/STOP

AT TASK taskname start-add end-add NOLIST/LIST NOSTOP/STOP
AT ALL NOLIST/LIST NOSTOP/STOP

AT * NOLIST/LIST NOSTOP/STOP

Operands Description

ADDR Keyword indicating this is an instruction program breakpoint
specification.
address Instruction address where you want to insert a breakpoint.

Note: Be sure that this is the address of the first word of an executable
instruction, since SDEBUG will modify this word. $DEBUG
can give unpredictable results if you specify the address of data
or the address of other than the first word generated by an
instruction.

overlay# Overlay segment number where the system sets the breakpoint when
the address you specified is within the overlay area. You can find the
overlay segment number in the link map of the program you are
debugging.

NOLIST You need no special print request at this breakpoint or trace range.

Chapter 4. Utilities 4~95

$DEBUG

LIST Complete specification for a storage or -register display; see the LIST

command for a description of all list options and parameters.
NOSTOP Processing continues after the breakpoint notification occurs. @
STOP The task stops whenever the system satisfies this breakpoint or trace

range specification.
TASK Trace range specification.

taskname Name of task you want to trace (if the program contains only one
task, omit this parameter).

start-add Trace range starting address (since your program is not actually
modified by a trace specification, you do not have to use special care
when you enter trace addresses).

end-add Trace range ending address.

ALL The system redefines all currently defined breakpoints and trace ranges
with new list and stop options.

* The system redefines the most recently defined breakpoint or trace
range specification. The system determines this specification by the
last usage of an AT, GO, or OFF commands.

BP — List Breakpoints and Trace Ranges
BP displays all breakpoints and trace ranges that you specified for the current debug
session. For each breakpoint, BP displays the task address, the instruction type, the
associated list options, and the overlay segment number, and it indicates whether
you specified a stop.

O
Syntax: - 4

BP

Required: none

Operands Description

None None

4-96 SC34-0940

O

$DEBUG

CLOSE — Close Spool Job Created by $DEBUG

CLOSE closes the spool job created by the last PRINT command you issued to a
spoolable device.

Example: CLOSE command.

> CLOSE ,
SPOOL JOB .CLOSED -

When you issue a LIST command to a specific spooling device, the system creates a
spool job. If you issue a CLOSE command, the system closes the job and prepares
to print it. Only the spool job associated with the most recent PRINT command is
closed. If $SPOOL is not active, the CLOSE command will be ignored and you will
receive the following message:

SPOOLING NOT ACTIVE .

Syntax:

CLOSE

Required: none

Operands Description

None None

END — End $DEBUG

END removes all currently-active breakpoints and trace ranges, activates all
currently-stopped tasks, and ends SDEBUG. Do not use the $C operator command
to cancel SDEBUG.

Nete: If the program you are debugging continues to execute after you ended
$DEBUG, then you can cancel the program by pressing the attention key and
entering the $C operator command and the program name.

Syntax:

END

Required: none

Operands Description

None None

Chapter 4. Utilities 4-97

SDEBUG

GO — Activate a Stopped Task

GO reactivates any task that SDEBUG has stopped. If a task stops at a breakpoint,
specify the exact breakpoint address. If a task stops as a result of a trace
specification, supply the name of the task and an address range that brackets the
addresses in the original trace request. If you are debugging only one task, you do
not need to specify any operands.

Syntax:

GO ADDR address
GO TASK taskname
GO ALL

GO *

GO

Operands Description

ADDR Keyword indicating this is a breakpoint specification.
address Instruction address where the task stops.
TASK Keyword indicating this is a trace range specification.

taskname Name of task you want activated. For programs containing only a
single task, omit this parameter.

ALL Activate all currently stopped tasks.

* Use the most recently referenced breakpoint or trace range
specification. The system determines this specification by the last
usage of an AT, GO, or OFF command.

GOTO — Change Execution Sequence

4-98 SC34-0940

GOTO reactivates, at a different instruction, any task that has stopped at an Event
Driven Language or Series/1 assembler instruction. If you used a breakpoint or
trace to stop the task, supply the current address and the address at which execution
should be resumed. $DEBUG will not change the breakpoint or trace specifications.

Syntax:

GOTO current-address new-address

Operands Description
current-address Address where the task stops.
new-address Address where you want execution restarted.

O

O

O

$SDEBUG

HELP — List $DEBUG Commands

The HELP command produces a list of SDEBUG commands and functions.

Syntax:

HELP

Required: none

Operands Description

None None

LIST — Display Storage or Registers

LIST displays the contents of storage locations, task registers, hardware registers, or
the IAR (instruction address register). You can display the LSB (level status block)
by listing the IAR with a length of 11 words. Any register data is guaranteed to be
current only if SDEBUG stops the corresponding task by a breakpoint or trace
range. Use LIST * to repeat the most recently specified LIST command or to verify
(list) a patch you have just entered. To display values within the TCB you must use
the specific keywords (for example; R7, IAR, TCODE). You will not see the correct
values if you look directly into the TCB with the keyword ADDR.

The following example shows the LIST command prompts. You can list the
unmapped as well as the mapped storage that your program acquired previously
with the GETSTG command.

Example: LIST command for unmapped storage.

Syntax:

LIST *

LIST ADDR address length mode

LIST RO...R7 taskname length mode

LIST #1...#2 taskname length mode

LIST IAR taskname length mode

LIST TCODE taskname length mode

LIST UNMAP storblkaddress swap# displacement length mode

Chapter 4. Utilities 4-99

SDEBUG

Operands

*

ADDR
RO...R7

taskname

#1/#2
IAR

TCODE

UNMAP

Description

Use the most recently specified LIST or PATCH specification. The ‘
system determines this by the last usage of a LIST or PATCH ‘
command.

Keyword indicating this is a display of a mapped storage location.

One of the Series/l hardware registers RO through R7 where you want
$DEBUG to start the list. '

Name of task where you want SDEBUG to display register data. For
programs containing only a single task, omit this parameter.

Task register #1 or #2 specification.

Keyword indicating you want SDEBUG to display the JAR
(instruction address register).

Keyword indicating you want $SDEBUG to display the task return
code words (first two words of the TCB).

Keyword indicating this is a display of an unmapped storage location.

storblk address

swap#

displacement

length

mode

Address of the storage statement that defines the unmapped storage
location you want $SDEBUG to display. (The address can be found in
the program listing as the address of the storblk statement.)

Number of the unmapped storage area instruction. If you specify 0,
you can list mapped storage.

Number of bytes (in hex) where you want to start listing an unmapped
storage area. For example, if you enter 1A, SDEBUG begins listing @
from byte 26 of the unmapped storage area indicated. The largest

possible value for displacement is X'FFFF' since the maximum size of

an unmapped storage area is 64K.

Length of display in words, doublewords, or characters depending on
mode.

Mode of data display:

X — hexadecimal word

F — decimal number(word)

D — decimal number(doubleword)
A — relocatable address

C — EBCDIC character.

OFF — Remove Breakpoints and Trace Ranges

OFF removes a breakpoint or trace range established with the AT command. To
remove a breakpoint, specify the exact breakpoint address. To remove a trace
request, specify the name of the task and an address range which brackets the
addresses in the original trace request. If a task currently is stopped at the requested
breakpoint or trace range, the system automatically reactivates the task.

4-100 SC34-0940

O

Syntax:

$DEBUG

OFF ADDR address overlay#
OFF TASK taskname start-add end-add

OFF ALL
OFF *
Operands Description
ADDR Keyword indicating this is the removal of the breakpoint specification.
address Instruction address where the system previously established a
breakpoint.
overlay# Overlay segment number from where you want SDEBUG to remove
the breakpoint when the address specified is within the overlay area.
You can find the overlay segment number in the link map of the
program you are debugging.
TASK Keyword indicating you want SDEBUG to remove a trace range.
taskname Name of task associated with a trace range; for programs containing
only a single task, omit this parameter.
start-add Trace range starting address.
end-add Trace range ending address.
ALL Remove all breakpoints and trace ranges.

%

Use the most recently referenced breakpoint or trace range
specification. The system determines this by the last usage of an AT,
GO, or OFF command.

Chapter 4. Utilities 4-101

SDEBUG

PATCH — Modify Storage or Registers

4-102 sC34-0940

PATCH modifies the contents of storage locations, task registers, hardware registers,
task code words, and the IAR (instruction address register). You can modify the
entire LSB (level status block) by patching the IAR with a length specification of 11
words. The patch to any register data is guaranteed only if a SDEBUG breakpoint
or trace range stops the corresponding task. To respecify the data for the most
recent patch or to patch the data the most recent LIST command displays, enter
PATCH *. To modify values within the TCB you must use the specific keywords
(for example: R7, IAR, TCODE). You will not see the correct values if you look
directly into the TCB with the keyword ADDR.

The following example shows the PATCH command prompts. You can patch
unmapped as well as mapped storage. Unmapped storage can be patched only after
the GETSTG statement is issued.

Example: PATCH command for unmapped storage.

After you enter the patch command, the system displays the current storage or
register content, and you are prompted for the patch data (a string of data entries
that satisfies the length and mode specifications). Use spaces to separate the entries.
After you enter the patch data, you can apply the patch by responding YES, cancel
the patch by responding NO, or indicate additional patches by responding
CONTINUE to the prompting message. If you respond CONTINUE, the system
performs the patch and prompting continues for new length, mode, and data
specifications to storage or register locations immediately behind your previous
patch.

If you enter less data than specified with the length operand, the patch is padded to
the right with blanks for character data and zeros for all other data types.

O

O

Syntax:

SDEBUG

PATCH *

PATCH ADDR address length mode

PATCH RO...R7 taskname length mode

PATCH #1/#2 taskname length mode

PATCH IAR taskname length mode

PATCH TCODE taskname length mode

PATCH UNMAP storblk address swap# displacement length mode

Operands Description

* Use the most recently referenced LIST or PATCH specification. This
is determined by the last usage of a LIST or PATCH command.

ADDR Keyword indicating this is a mapped storage patch.

RO...R7 One of the Series/1 hardware registers RO through R7 where you want
$DEBUG to start the patch.

taskname Name of task for which you want $DEBUG to modify register daid.
For programs containing only a single task, omit this parameter.

#1/#2 Task register #1 or #2 specification.

IAR Keyword indicating you want the IAR (instruction address register) to
be modified.

TCODE Keyword indicating which task return code word(s) (first two words of
the TCB) you want modified.

UNMAP Keyword indicating this is an unmapped storage patch.

storblk address
Address of the storage statement that defines the unmapped storage
location you want SDEBUG to display. (You can obtain this address
from the program header on a copy of your application program.)

swap# Number of the unmapped storage area instruction. If you specify 0,
you can list mapped storage.

displacement Number of bytes (in aex) where you want to start patching an
unmapped storage area. For example, if you enter 1A, SDEBUG
begins patching from byte 26 of the unmapped storage area indicated.
The largest possible value for displacement is X'FFFF' since the
maximum size of an unmapped storage area is 64K.

length Length of patch in words, doublewords, or characters depending on
mode.

mode Mode of data entry:

X — hexadecimal word

F — decimal number(word)

D — decimal number(doubleword)
A — relocatable address

C — EBCDIC character.

Chapter 4. Utilities 4-103

$DEBUG

POST — Post an Event or Process Interrupt

POST activates a task waiting for an event or a process interrupt. To duplicate a
previous posting, enter POST *. The address of the ECB (event control block) that
the system will post is contained in the second word of a WAIT instruction as shown
on a program assembly listing. You can also post process interrupts by name using
the PIxx option.

Note: Be sure to enter a valid ECB address; an invalid address will result in
unpredictable results.

Syntax:

POST ADDR address code
POST PIxx code
POST *

Operands Description
ADDR The address of an ECB (event control block).
address ECB address you want posted.

code Decimal code you want posted to the specified ECB.

PIxx Name of process interrupt PI1 to PI99.

* Use the most recently referenced ECB address or PIxx name and code
specification.

QUALIFY — Modify Base Address

4-104 SC34-0940

QUALIFY modifiés the base address that SDEBUG uses to refer to physical storage
locations. The base address must be greater than or equal to the beginning address
of available storage in the partition. To determine where the beginning of available
storage is, issue the $A operator command.

Syntax:

QUALIFY base displ
Q base displ

Operands Description
base New hexadecimal base address.

displ Hexadecimal offset you want added to the base to form the new base
address for all subsequent address references. Enter the origin of the
program module as shown on the link editor listing.

O

SDEBUG

PRINT — Direct Output to Another Terminal
PRINT allows you to direct the output to a terminal other than the one you used to
m load $DEBUG.

Syntax:

PRINT terminal-name
PRINT *
PRINT

Operands Description

terminal-name The name of the terminal where you want the output directed. To
direct the output back to the current terminal, enter a blank or * to
indicate the terminal you used to load $SDEBUG.

WHERE — Display Status of All Tasks
WHERE displays the current status of each task. If a task is currently processing its
breakpoint routine, the system marks it CHECKED. If a breakpoint or trace
request has stopped a task or if $DEBUG has not yet attached the main task, the
system marks the task STOPPED. In all other cases, the system shows that each
task is at the currently executing instruction, at the command it will start executing
when dispatched by the task supervisor, or at the last command executed prior to
entering a wait state.

n Note: SDEBUG can only locate tasks within a program if the task control blocks

C“) (TCBs) are chained together. This chaining takes place at program assembly
time for all tasks that are part of the assembly containing the main program
task. Tasks that are assembled separately and then linked to the main task
will not have their TCBs chained together until the system ATTACHSs the
task at program execution time. (Refer to the Language Reference for a
description of the ATTACH instruction.) For $DEBUG to control tasks that
are linked to the main task, you must load into storage the program you are
debugging, and you must attach the desired tasks before you load SDEBUG
to control the further execution of the tasks.

Syntax:

WHERE
WH

Required: none

Operands Description

None None

Chapter 4. Utilities 4-105

$DICOMP

$DICOMP — Display/Modify Profiles O

Use the SDICOMP utility to add display profiles to the composer and to modify
existing display profiles. Because this utility does not change the basic structure of
the online data base, you can use it at the same time you are performing other
functions. You can use $SDIINTR to cause the system to generate a partial display.
If you need corrections or additions, use SDICOMP to alter the display profile.

Loading $DICOMP
Load $DICOMP with the $L operator command or option 5.2 of the session

manager.

To start execution of $SDICOMP:

1. Load the $DICOMP utility and specify the appropriate data set name. You can
use $DIFILE, the online data set, or any other data set. However, you should
make sure that another user or program is not changing or using the same data

set.

2. The system responds with the program-loaded message followed by:

Note: The display data base must not exceed 32767 records in length.

$DICOMP Commands

To display the SDICOMP commands at your terminal, enter a question mark in
response to the prompting message COMMAND (7):

After SDICOMP displays the commands, it prompts you again with COMMAND
(?). Then you can respond with the command of your choice (for example, AD). 0}

4-106 SC34-0940

O

$DICOMP

AD — Add a New Member to Data Base

Use the AD command to generate a new display profile. The display can be either
report or graphic form. You are prompted to enter a 1—8 character display profile
name that the interpreter will then use to retrieve the display. The next prompt
message asks if you want a display heading. - If you respond yes, the system assumes
you want a report display. If you respond no, the system assumes you want a
graphic display and prompts you to proceed with generating the display. You can
also select the device where you want the system to route the output from the
interpreter.

Report Display: If you respond N to the question

L“TI‘S’ THIS A GRAPHIC DISPLAY? N

$DICOMP prompts you to enter the column headings you want. The system allows
one line, up to 132 characters. Following your entry of the column headings,
$DICOMP prompts you to enter the name of the print report data member and then
to enter the next command.

Graphic Display: If you want a graphic display, you should respond Y to the
question

The composer then asks if you want a three-dimentional (3-D) object display. If you
respond Y, then all following references to X and Y values will also include the Z
value. The composer asks you to enter the values X, Y, and Z. The system uses
them to position the first character of the display heading. $DICOMP then prompts
you for a command, COMMAND (?). You can use the “Composer Subcommands”
on page 4-109 now to add, change, or insert elements in your display.

AL — Alter an Existing Member

Use the AL command to display each element of a display profile and make
changes, using subcommands, provided you do not change the size of the element
and the sequence of commands. This command is of great value during the
trial-and-error period when you are generating a new display. You can generate a
display using the AD command and display the results using the interpreter. You
are allowed to start alteration at the beginning of the member and display each
element in turn or to skip to a specific element within the member. Use the PR
command to display the elements and their sequence numbers. As the system
displays each element, it questions you whether or not you want to alter this
element.

Chapter 4. Utilities 4-107

$DICOMP

EN — Exit Program

If you choose to alter this element, $DICOMP prompts you to reenter the element as
described previously in the AD command. When the system reaches the end of the
display profile, the composer ends and you can redisplay the profile to see if you are
satisfied with the corrections.

Use the EN command to exit immediately from the composer.

IN — Insert or Delete Elements in an Existing Member

4-108 SC34-0940

Use the IN command to combine the facilities of the AL and AD commands with
the ability to delete individual display elements. Because the IN command creates a
new member in the data base, you can change the size and sequence of display
elements.

Note: We recommend using the SDICOMP utility to verify that sufficient space
remains in the data base. By using the SDIUTIL utility (LA and ST
commands), you can determine the size of the member you want to modify
and the remaining space in the data base. As described in the AL command,
the composer displays each element in turn, asking the following questions:

If you elect to keep the entry, the composer proceeds to the next element. If you
respond N, the system displays the DELETE ENTRY? question. If you respond N
again, the system displays the ALTER ENTRY? question. If you respond Y to this
prompt, the composer proceeds with the alteration process as described in the AL
command.

Following the alteration of the display, the system returns control to the ID
command and repeats the process for the next element. If you did not alter the
element, the system prompts you to insert a new subcommand. At this point, all the
functions of the AD command are available. You can add one display element.

The system then returns control to the ID command and redisplays the previous
element and repeats the sequence.

Again, as in the alteration procedure, you must step through each element in the
display profile before completion. When the system reaches the end of the display, it
issues the following message:

The composer then returns to the AD command and you can enter additional
commands.

O

U

$DICOMP

Note: You must issue an SA (save) subcommand to end insertion of data. When
you issue the SA subcommand, the composer deletes the old member and
0 renames the newly-built member with the old name. This procedure makes
the modified version available to the interpreter. It is recommended that you
use SCOMPRES to compress the data base following insert activity to prevent
fragmentation of the data base and reclaim unused space.

PR — Print Member Formatted
Use the PR command to display, on the terminal or printer, the contents of a
display profile member formatted the same way as the AL and IN commands. This
display is useful as an aid in maintaining display profiles. To obtain a high-speed
hard copy, direct the listing to the $SSYSPRTR.

TD — Test Display as Currently Entered
When you issue the TD command, $DICOMP prompts you for the name of a plot
control member and then loads $DIINTR to generate the specified display. The
system returns control to you to make changes.

Composer Subcommands
When adding, altering, or inserting elements in a member, use subcommands. These
are listed below and described on the following pages. When you enter a
subcommand, the system places it in to modify the member. The interpreter can use
the member later to generate the desired display. You can use the following
subcommands:

Method for Producing a Graphic Display
The suggested method to produce a graphic display is to draw the display on graph
paper first and assign X and Y coordinates to the key nodes in the display. Then
use this drawing as a guide to the generation of the display, keeping in mind the
screen limits of the terminal you will use. The view area of the graphic terminals
0 supported is shown in Figure 4-4 on page 4-110. Figure 4-5 on page 4-110 shows
’ the space supported in three-dimentional (3-D) mode.

Chapter 4. Ultilities 4-109

SDICOMP

Normal viewing area

01to 1023 \
Y units \
addressable 0 to 779
Y units
< 0to 1023 >
X units
addressable
BG1185
Figure 4-4. XY Coordinate Grid and Viewing Area
A 32767
Z axis 0 —
- 32767/'
,,/’/,// 0
g Y axis
Y -32768 — = | -32768 /
-32768 0 32767
~< X axis >

Figure 4-5. X,Y,Z Coordinate Grid and Viewing Area

_ 4-110 SC34-0940

BG1186

C

O

AD — Advance X,Y

DI — Direct Output

$DICOMP

Use the AD subcommand to move the beam position by the value specified. This
can be helpful in displaying data with even spacing on the screen. After issuing a
DR subcommand using a symbol, AD advances the X,Y position to the next
position without regard to the actual screen X,Y location. The limit for the specified
X or Y value is plus or minus 512 units. If you are defining a three-dimentional
(3-D) object, then the system requests the Z axis value as well.

Use the DI subcommand to direct the resulting graphic output to a terminal other
than the one you used to enter commands. The terminal name you enter is the label
of the TERMINAL statement used to describe the desired terminal.

DR — Draw a Symboi

Use the DR subcommand to draw a predefined symbol. Several commonly used
symbols have been provided. In specifying a symbol, you are prompted to enter the
symbol number and the symbol modifier. These values are used by the interpreter to
generate the requested symbol. Some of the symbols require additional information.
If so, the system prompts you for this additional information. Valid symbol
numbers are 1 through 14. The following examples illustrate specifying symbols 1
through 14.

Symbol # - 1: Draw fan symbol left-hand format.

and opening on left side of

Modifier = Radius of fan body RI
fan. Must be a multiple of 4.

>

= start and end X, Y
current position. 1/2 R

8G1187

Symbol # - 2: Draw fan symbol right-hand format.

and opening on right side of

Modifier = Radius of fan body R I R
fan. Must be a multiple of 4.

<]

= start and end X, Y 1/2 R

current position.

BG1188

Chapter 4. Utilities 4-111

$DICOMP

4-112 SC34-0940

Symbol # - 3: Draw damper vertical.

Modifier = Number of damper
pairs to be generated in the
down direction.

P S ——

16 Units Y
=start and end X, Y
current position.
40 Units X
BG1189
Symbol # - 4: Draw damper horizontal.
Modifier = Number of damper
pairs to be generatedto T 7 o
the right. /
— 40 Units Y
=statandend XY
current position.
16 Units X ((»
BG1190
Symbol # - 5: Draw a hot coil.
Modifier = Number of hot coil
pairs to be generated inthe T I
down direction. D
16 Units Y
=statandend X,Y g —
current position.
12 Units X
BG1191

$DICOMP

Symbol # - 6: Draw a cold coil.

Modifier = Number of double
pairs to be generated in the

down direction. \\

16 Units Y
= start and end X, Y -__-____>__
current position.
16 Units X
BG1192
Symbol # - 7: Draw a filter element.
Modifier = Number of elements
to be generated in the down
direction.
16 Units Y
=startand end X, Y
current position.
8 Units X
BG1193

Chapter 4. Utilities 4-113

$DICOMP

Symbol # - 8: Draw a valve.

§_< I 16 Units Y

For 2-way valve

Modifier = 2 3 >
32 Units X
For 3-way valve
Modifier = 3
32 Units Y
=startand end X, Y
current position.
BG1194

Symbol # - 9: Draw an arrow.

-<] I 8 Units Y

Modifier = >
1 for left '<——>|

2 for right 16 Units X

3 for up
16 Units Y
4 for down

8 Units X <]

= startand end X, Y
current position.
16 Units Y

BG1195

4-114 SC34-0940

Symbol # - 10: Draw a logic block right.

$DICOMP

Modifier = Radius of half circle.
Must be a multiple of 4.

= start and end X, Y
current position.

2R

BG1196
Symbol # - 11: Draw a logic block left.
Modifier = Radius of half circle.
Must be a multiple of 4.
2R

= start and end X, Y
current position.

BG1197

Chapter 4. Ultilities

4-115

$DICOMP

Symbol # - 12: Draw a circle.

Modifier = Radius of circle.
Must be a multiple of 4.

= start and end X, Y
current position.

BG1198

Symbol # - 13: Draw an arc right.

Modifier = Radius of circle.
Must be a multiple of 4.

= start and end X, Y current position. R

Notes:

1. This symbol requires additional values. @

a. Draw arc up or down. Enter zero for
down or one for up.

b. Number of Y units to draw arc. Must
be a multiple of 4.

2. This symbol always starts at X=0 and proceeds
until the Y units have been exhausted.

BG1199

4-116 SC34-0940

EN — Exit Program

EP — End Display

HX — Send Data

$DICOMP

Symbol # - 14: Draw an arc left.

Modifier = Radius of circle.
Must be a multiple of 4.

= start and end X, Y current position. R

Note:

See notes under symbo! 13 for additional information.

BG1200

Use the EN subcommand to terminate without updating the display profile data
base directory. All data collected up to this point for this member is lost.

Use the EP subcommand to specify that the end of this section of the display has
been reached. Normally, you would follow this command with the SA
subcommand. However, this command can be useful if a jump zero/not zero causes
the interpreter to take alternate paths. Use the EP subcommand at the end of each
of these paths instead of an unconditional jump to a common ending point.

Use the HX subcommand to send up to 16 words of data without conversion to the
terminal. All bit patterns are valid; therefore, you can send control or special data
to the terminal.

IM — Insert Member

Use the IM subcommand to combine display profile members to form one display.
IM allows you to conserve disk space, decrease time required to enter display
profiles, and standardize display formats. For example, you can build a display
profile member to represent a common background of a physical system or floor
plan. Then, by defining another display profile member, you can superimpose on
the background the variables that will make the display unique. the system permits
only one level of nesting. That is, a member you insert using the IM subcommand
cannot contain any IM subcommands. However, a primary member can include
multiple IM subcommands.

Chapter 4. Utilities 4-117

$DICOMP

JP — Jump to Address

JR — Jump Reference

4-118 SC34-0940

Use the JP subcommand to change the sequence of execution of subcommands. .
There are three types of “jump to address” subcommands that you can use. They) .‘M
are:

e Jump unconditional
e Jump if zero
e Jump if not zero.

As described in the display variable command, the conditional jump commands are
dependent on the use of the real-time data member. If you select conditional jump,
then the jump is based on the current condition (zero/not zero) of the specified word
and record. Jump unconditional prompts you to enter a JR subcommand. This
reference is two characters and is resolved when you define a JR subcommand (see
the JR subcommand definition). If you select a conditional jump, the system issues
prompt messages requesting word number and record number. Following the
definition of these two codes, the system prompts you to enter the JR subcommand.
The jump to reference for a conditional jump is the same as that of an unconditional
jump.

The following example shows the use of the JP subcommand.

The preceding example draws a fan symbol at 200,200 either right or left depending
on the zero/not zero condition of the real-time data member word 0, record 4.

In the preceding sequence, the first JP causes a jump to JR AA if word 0 of record 4
is zero. The second JP causes an unconditional jump to JR BB.

Use the JR subcommand to indicate to the composer that this location in the
command sequence is referred to in a JP subcommand. The location is defined by 2
characters. If you have used these characters already, the system issues an error
message. If you exceed the capacity of the JR table, the system issues an error
message. The capacity of the jump reference table is 40 unique jump reference
points for each display.

LB — Display Characters

$DICOMP

Use the LB subcommand to place a character string on the screen. You do not have
to use an MP subcommand to position the beam because LB allows specification of
the location of first character. If you are defining a three-dimentional (3-D) object,
then the system requests X, Y, and Z values. The system can display up to 72
characters. The ending X,Y position is 1 character position beyond the last

character in the string.

Ll — Draw a Line to X,Y

Use the LI subcommand to draw a vector to the specified X and Y coordinates from
wherever you left the beam with the previous command.

END X, Y Current position

600

200

—

Draw line to X=600 Y=600 Line shown on screen

T |
100 600

BG1201

When generating a three-dimentional (3-D) display, the system requires 3 values.

These values are X, Y, and Z.

Draw line to X=600 Y=600 Z=600
END X, Y, Z

600 —
O_

BG1202

Chapter 4. Utilities 4-119

$DICOMP

LR — Draw Line Relative

Use the LR subcommand to draw a line relative to the current position. For
example, you can (through the use of the MP, JP, and JR subcommands) position
the beam at various current positions based on Real-time Data Member conditions.
Then you can draw a series of lines to form a symbol using the LR subcommand.
This would have the effect of placing the symbol at various screen locations based
on external conditions. The limits allowed for the X,Y values are plus or minus 512
units. If you are defining a three-dimentional (3-D) object, then the system also
requests Z axis value.

MP — Move Beam to X,Y

4-120

SC34-0940

Use the MP subcommand to draw a dark vector to the specified X and Y
coordinates. A dark vector is not visible and, therefore, results in moving the beam
to the specified location.

200 1 °
T

100

Beam moved to X=100 Y=200 Nothing shown on screen
END X, Y Current position

BG1203

When generating a three-dimentional (3-D) display, the system requires 3 values.
These values are X, Y, and Z.

100 —

~-100

Beam moved to X=100 Y=100 Z=100
END X, Y, Z Current position

BG1204

O

O

$DICOMP

PC — Plot Curve Only

PL — Plot Data

Use the PC subcommand to provide multiple curves on an existing background as
defined by a preceding PL command. See the following section (PL) for descriptions
of entry procedure. Steps 9 and 10 in that section are the only required actions.
You can include as many PC subcommands as you need to obtain the desired
results.

Use the PL subcommand to format the viewing area into a basic plotter. The
system provides options for X and Y labels as well as X and Y grids. The system
prompts you to include the name of a plot curve data member. See “$SDIUTIL —
Maintain Partitioned Data Base” on page 4-186 for information regarding the
allocation and formatting of the plot curve data member. The following illustrates
the information that PL requires to format the viewing area into a basic plotter:

1. Enter the number of the Y axis divisions

To present a readable display, it is suggested that you make this value under 20.
However, if you bypass Y axis division values (Step 7), then you may use larger
values. Y axis divisions become unreadable when this value exceeds 125.

2. Enter the number of the X axis divisions

To present a readable display, it is suggested that you make this value under 40.
However, if you bypass X axis division values (Step 8), then you may use larger
values. X axis divisions become unreadable when this value exceeds 200.

3. Do you want a vertical grid?

Specifying a Y answer causes the Composer to include commands to connect the
X axis divisions (specified in 2 preceding) to the top of the viewing area.
Specifying an N bypasses this feature.

4. Do you want a horizontal grid?

Specifying a Y causes the Composer to include commands to connect the Y axis
divisions (specified in 1 preceding) to the right side of the viewing area.
Specifying an N bypasses this feature.

5. Enter Y axis label — 24 characters

You must enter the Y axis label. If you do not want an axis label, press the
enter key. This label is general in nature and is placed at the left side of the
viewing area. This label is vertical, that is, one character appears under the
next.

6. Enter X axis label — 24 characters

You must enter the X axis label. If you do not want an X axis label, press the
enter key. This label is general in nature and is placed near the lower portion of
the plot viewing area.

7. Do you want Y axis division values?

If you want Y axis division values, respond with a Y. The composer asks for as
many values as you have specified divisions plus 1 (see Step 1). You must enter
6 characters for each division. The first value the system requests is the value
for the Y base line and each succeeding value is for the next division in the plus
Y direction.

Chapter 4. Utilities 4-121

$DICOMP

8. Do you want X axis division values?

composer asks for as many values as you have specified divisions plus 1 (see
Step 2). You must enter 6 characters for each division. The first value the
system requests is the value for the X base line and each succeeding value is for
the next division in the plus X direction.

If you want the X axis division values displayed, respond with a Y. The 0

9. Enter name of member for plot data

Enter the name of a plot curve data member. You must have allocated and
initialized this member with the utility program $DIUTIL. See “$DIUTIL —
Maintain Partitioned Data Base” on page 4-186 for procedures on allocating
and initializing this member.

10. Is this plot a point plot?

If you specify Y, the system requests the plot character you want. The composer
allows you to use any valid printable character for the plot. If you specify N,
then the system uses a normal line for the curve

The preceding steps generate the necessary commands to cause the system to display
a basic plot background and superimpose one curve on that background. If you
want additional curves, then you must issue PC subcommands next.

RT — Activate New Real-time Data Member

Use the RT subcommand to define multiple real-time data members. This
subcommand allows you to switch from one member to another during the
generation of a display. The default name for the real-time data member is

REALTIME. ' @

SA — Save Accumulated Data

Use the SA subcommand to specify that completion of a display profile has been
reached. The composer enters the member name into the directory of the display
profile data base and makes it available for the interpreter.

TD — Display Time and Date

Use the TD subcommand to display the current time of day and date from the
real-time clocks used by the Event Driven Executive. You are reminded that prior
to issuing a TD subcommand, you may have to issue an MP subcommand to
position the beam to the display location you want. The TD subcommand displays
the time and date in the following format:

4-122 SC34-0940

Where: HH is Hours
MM is Minutes
SS is Seconds
MM is Month
DD is Day
YY is Year.

O

$DICOMP

VA — Display Variable

Use the VA subcommand to place a data variable from the real-time data member
on the screen. $DICOMP issues a prompt message asking if you wish to locate the
data at a location other than the current X,Y position. If you are defining a
three-dimentional (3-D) object, then the system requests X, Y, and Z. This
subcommand requires that you allocate the real-time data member. The composer
continues by asking you for the record number and word number. The record
number is the record number within the real-time data member. The word number
is the word number within the record specified. This value is in the range of 0—8.

The system requests the function code next and indicates the type of variable to be
displayed. Valid function codes are as follows:

0 Single-precision integer

1 Double-precision integer

2 Standard-precision floating point

3 Extended-precision ﬂoating point

15 Character data.

The system requests type code next. It is an indicator of the format of the value to
be displayed. Valid type codes are:

0 Integer
1 Floating-point F format
2 Floating-point E format.

The system requests field width and number of decimal places next. If the variable
is an integer, the number of decimals should be zero.

Chapter 4. Utilities 4-123

$DIINTR

$DIINTR — Graphics Interpreter Utility @

Loading $DIINTR

4-124 SC34-0940

The $DIINTR interpreter utility searches the data base and generates the display
you request. You can generate both graphic and report displays in this manner.
Each display profile is made up of many display profile elements. Each element,
when retrieved from the data base by the interpreter, is decoded and converted to
the appropriate command to cause the system to perform the action you request.
Each display profile element contains various parts, such as display code, X and Y
coordinates, symbol ID, and symbol modifier. Real-time data member record
number and additional member names are included in the display profile element.

You load $DIINTR with the $L operator command or option 5.3 of the session
manager.

To begin operation of the interpreter, you must first load SDIINTR. The system
directs output to the terminal that requests the display or as directed by the display
profile. Use the following steps to initiate the processor monitor.

1. Load $DIINTR.

C

2. The system responds with the prompt message:

3. To terminate the interpreter, enter EXIT. To cause the interpreter to prepare
the display, enter the display ID.

O

O

$DIINTR

Using $DIINTR from an Application Program

You can issue $DIINTR from an application program to allow displays without
operator assistance. Following is an example of loading $DIINTR from an
application program:

* Your program

LOAD $DIINTR,MBRNME,DS=($DIFILE),EVENT=#WAIT, C
LOGMSG=NO
WAIT #WAIT

MBRNME DATA CL8'DISPLAY'

S1 DATA F'O! THESE 8 VALUES ARE FOR 3D OBJECTS
S2 DATA F'O' *
S3 DATA F'O' *
D DATA F'O' *
T DATA F'O' *
R DATA F'Q' *
D1 DATA F'O' *
T1 DATA F'0' *

You must supply eight values to describe the manner in which you want the system
to display a three-dimensional (3-D) object. Coding of these values is shown in the
above example starting with S1 and continuing to T1. The following describes the

meaning of these values when you pass them to $DIINTR.

S1 Platform Location X=

S2 Platform Location Y=

S3 Platform Location Z=

D Platform Direction in Degrees
T Platform Tilt in Degrees

R Platform Rotate in Degrees
D1 View Direction in Degrees

T1 View Tilt in Degrees

These values are single-precision integers and can contain a numeric value from
—32768 to +32767.

You must have a 4955 processor with floating-point hardware installed to display
three-dimentional (3-D) images.

Chapter 4. Utilities 4-125

$SDIINTR

Three-dimensional (3-D) Concepts as Used by $DIINTR

diskette in much the same way as two-dimensional (2-D) objects. The only
difference is that each point in space has three values associated with it instead of
two. These three values represent the X, Y, and Z coordinates of the point in space.
The following illustration shows the limits of the defined area in space. The
maximum limits of the defined areas in space are —32768 to +32767. You can
define one or more objects within this cube. Once you define the object, you can
view it from any location within the same space.

Three-dimensional (3-D) objects can be defined by $DICOMP and placed on disk or w

To specify the location from where you wish to view the object, either pass these
eight values through the use of the PARM = parameter in the LOAD instruction or,
if you loaded it by the $L command, wait for SDIINTR to request this input. The
concept used to compute the two-dimentional (2-D) representation of a
three-dimentional (3-D) object is as follows. The system assumes the viewer is
suspended on a platform at a specific location in space. The first three values are
the X, Y, and Z values that define the location in space of the viewing platform.
The next five values represent the physical orientation of the platform and the
viewer’s orientation on that platform.

Platform Direction in Degrees

4-126 SC34-0940

Assume the following unit vector:

z

v, C

BG1205

If this unit vector is rotated in the direction Y to X around the Z axis, you can turn
the view in any direction. A plus value causes the unit vector to rotate clockwise as
viewed from the +Z axis to zero.

SDIINTR

Platform Tilt in Degrees
0 Assume the following unit vector:

BG1206

If this unit vector is rotated in the direction Z to Y around the X axis, you can tilt
the view to any angle. A plus value causes the unit vector to rotate clockwise as
viewed from the +X axis to zero.

Platform Rotate in Degrees
Assume the following unit vectors:

BG1207

If this unit vector is rotated in the direction Z to X around the Y axis, you can
rotate the view to any angle. A plus value causes the unit vector to rotate clockwise
as viewed from the —Y axis to zero.

View Direction In Degrees

The system uses this value in the same way it uses the Platform Direction, but it
calculates the value after it computes the previous three. This calculation rotates the
unit vector in a Y to X direction around the Z axis with a plus value causing the
unit vector to rotate clockwise as viewed from the +Z axis to zero.

Chapter 4. Utilities 4-127

$SDIINTR

View Tilt In Degrees
The system uses this value in the same way it uses the Platform Tilt, but it calculates .
the value after it computes the previous four. This calculation rotates the unit vector {‘\
in a Z to X direction around the Y axis with a plus value causing the unit to rotate F
clockwise as viewed from the —Y axis to zero.

Once the eight values you provided are computed, the system converts the object in
space to its 2-D representation and sends it to the terminal. It is possible to view an
object with all or a portion of it outside the viewing area. The system does not show
points and lines that do not fall within the viewing area. Figure 4-6 shows the
viewing area.

3D object in space

2D object on screen

/ Viewing screen

Platform location
Distance between platform location
and viewing screen = 1

BG1208

Figure 4-6. Viewing Area in 3-D Mode

4-128 SC34-0940

$SDIINTR

The following examples define a three-dimentional (3-D) object in space:

A cube

CMD X Y 4
mMP - 100 - 100 - 100
Li + 100 - 100 - 100
LI +100 - 100 +100
LI - 100 - 100 +100
LI - 100 - 100 - 100
LI - 100 +100 - 100
LI +100 +100 - 100
LI +100 +100 +100
LI - 100 +100 +100
LI - 100 +100 - 100
MP +100 - 100 - 100
LI +100 +100 - 100
MP + 100 - 100 +100
Li + 100 +100 +100
MP - 100 - 100 +100
Li - 100 +100 +100
EP

SA

BG1209

Object as viewed from:

S1 0

S2 -400

S3 0

D 0

T 0
0
0
0

R
D1
T

BG1210

Chapter 4. Utilities 4-129

$SDIINTR

4-130 SC34-0940

Object as viewed from:

S1
S2
S3
D
T
R
D1
ik

BG1211

Object as viewed from:

S1
S2
S3
B
T
R
D1
T

-150
-400
100
0

0

45

0

0

BG1212

O

C

SDIRECT

$DIRECT — Directory Organization Sort
$DIRECT sorts a disk or diskette volume directory. $DIRECT sorts alphabetically,
by size, by location on disk, or in specific order.
Notes:

1. Allocation or deletion of a data set alters the ordering of the data sets.
2. It is neither possible nor necessary to use the $C command with $DIRECT since
the utility patches itself.

Loading $DIRECT
Load $DIRECT with the $L command. When you load it, SDIRECT prompts you
to set the terminal to roll screen mode. If you respond Y, it places the terminal in
roll screen mode which means you do not need to press the enter key each time the
screen fills up. Output “rolls” off the top of the screen as new terminal output
appears at the bottom of the screen. If you respond N, you must press the enter key
each time the screen fills up.

$DIRECT then prompts you for the volume you want accessed for the directory
sort.

If you enter an incorrect or nonexistent volume name, $DIRECT issues the
following message:

If you reply Y, SDIRECT prompts you for another volume name. If you respond
N, $DIRECT ends.

Chapter 4. Utilities 4-131

SDIRECT.

$SDIRECT Commands

To display the SDIRECT commands at your terminal, enter a question mark in
response to the prompting message COMMAND (?):

After SDIRECT displays the commands, it prompts you with COMMAND (?):
again. Then you can respond with the command of your choice (for example, LA).
$DIRECT prompts you for any parameters the requested function requires.

Each command and its explanation is presented in alphabetical order on the
following pages.

AO — Alphabetical Order Sort
Use the AO command to sort the directory in alphabetical order. This command

makes it easier for you to find a data set in a directory list.

Example: Sort alphabetically.

After executing the AO command, the directory looks as follows:

4-132 SC34-0940

$DIRECT

CV — Change Volume to be Accessed for Directory Sort

Use the CV command to change the volume you want to access for your directory
0 sort. This command displays the volume the system is using currently and prompts
you for the name of the volume you want to access.

Example: Change volume.

COMMAND (7): €V
USING VOLUME EDX003
- ENTER NEW VOLUME LABEL = EDX002

USING VOLUME EDX062

L COMMAND’ (?)

DL — Sort By Location on Disk/Diskette
Use the DL command to sort the directory by the data set location on disk/diskette.

Example: Sort by location.

' "\ SORT BY LOCATION ON DISK(ETTE) USING VOLUME EDX0O

After executing the DL command, the directory looks as follows:

Chapter 4. Utilities 4-133

$SDIRECT

EN — End $DIRECT
Use the EN command to end the $SDIRECT utility.

Example: End $DIRECT.

LA — List All Data Sets in a Volume
Use the LA command to list all the data sets contained in a specified volume. Press
the attention key and enter the CA command to cancel the list and return to the
COMMAND (?): prompt.

Example: List data sets on EDX002.

4-134 SC34-0940

C

SDIRECT

SA — Sort By Ascending Data Set Size

Use the SA command to sort the directory by ascending (smallest-to-largest) data set
‘ ’ size.

Nete: If you allocate a data set with extents, the system uses the size of the primary
data set to do the sort.

Example: Sort directory in ascending order.

COMMAND (?): SA
SORT BY ASCENDING SIZE USING VOLUME EDX002 CONTINUE (Y/N)? Y

' DIRECTORY SORTED

COMMAND (2) :

After executing the SA command, the directory looks as follows:

SD — Sort By Descending Data Set Size

Use the SA command to sort the directory by descending (largest-to-smallest) data
set size.

Note: If you allocate a data set with extents, the system uses the size of the primary
data set to do the sort.

Example: Sort directory in descending order.

Chapter 4. Utilities 4-135

$DIRECT

After executing the SD command, the directory looks as follows:

Note: Sorting the directory in descending order can be beneficial if you want to
copy the volume to another volume. By placing the largest members at the
top of the directory, the system copies them first. This decreases
fragmentation of disk space and gives you the best chance of doing the copy
without having to compress the target volume.

UD — Sort Directory in Predefined Order

4-136 SC34-0940

Use the UD command to place members in the order you feel is most desirable for
retrieval. You can put the most frequently accessed data sets at the top of the
directory to increase speed of retrieval. This command prompts you for a previously
allocated data set containing the order, by data set name, in which you want the
directory sorted. You create this data set using SFSEDIT. The system allows only
one data set name for each 80-byte record and you must begin that name in column
1. The first record must be // and the last must be /*. The /* marks the logical end
of data which may or may not be the physical end of data.

Example: The following is an example of a data set named TESTSORT on
EDX002.

O

SDIRECT

The utility reorders the directory as specified by the input data set.

A PREVIOUSLY ALLOCATED DATA SET I REQUIRED CONTINUE (Y/N)? Y
kENTER (NAME VOLUME) TESTSORT EDX002 .

:"DIRECT HAS BEEN POSITIONED
WRONG ~ NOT FOUND

SORTLIST HAS BEEN POSITIONED

_RUNCALC HAS BEEN POSITiONED

$EDXDEF HAS BEEN POSITIONED

TESTSORT HAS BEEN POSITIONED

Chapter 4. Utilities

4-137

$SDIRECT

UT — Sort Directory in Desired Order Interactively

4-138 sC34-0940

Use the UT command to place members in the order you feel is most desirable for -
retrieval. You can put the data sets you access most frequently at the top of the ({ “m
directory to increase speed of retrieval. This command prompts you for member g
names you want to place at the top of the directory. A blank ends the command.

Example:

The utility reorders the directory to look as follows:

$DISKUT1

$DISKUT1 — Allocate/Delete/List Directory Data

0 $DISKUTT1 performs several commonly-used disk or diskette storage management
functions. With this utility, you can:

* Allocate a data set (with or without disk extents)
¢ Rename a data set

¢ List data sets

¢ Direct listings to $SYSPRTR or terminal.

Note: For tape management functions, see “STAPEUT1 — Tape Management” on
page 4-565.

Loading $DISKUT1
Load $DISKUT!1 with the $L command or option 3.1 of the session manager.

‘> $L $DISKUTL R
,‘LOADING $DISKUT1 + 52P,00:28:08, LP= 9200

$DISKUT1 - DATA SET MANAGEMENT
USING VOLUME EDXGOZ :

k COMMAND (7)

Cj When you load $DISKUT], it issues the following message:

where XXXXXX is the IPL volume.

To point to another volume, enter the CV command and the name of the volume.
All commands act upon the specified volume until you change it by another CV
command or until you end and reload $SDISKUTI1. If you specify an invalid volume
on a CV command, SDISKUT]1 uses the IPL volume if it is available. If the IPL
volume is not available, the system issues the message NO VOLUME AVAILABLE.
You can either end $DISKUT! or specify the CV command with a valid volume.

Chapter 4. Utilities 4-139

$DISKUT1

$DISKUT1 Commands

To display the SDISKUT! commands at your terminal, enter a question mark in -
response to the prompting message COMMAND (?): (‘)ﬁ

O

After SDISKUTT1 displays the commands, it prompts you once again with the
prompt, COMMAND (7). Then you can respond with the command of your choice
(for example, AL). Each command and its explanation is presented in alphabetical
order on the following pages.

Notes:

1. You can enter a prefix on the commands that have an asterisk. The prefix can
be up to eight characters. If you do specify a prefix, the system lists only those
data sets beginning with the prefix.

2. To cancel a list, press the attention key, press the enter key, then enter CA and
press enter again. To cancel a LAV command, see “LAV — List All Volumes”
on page 4-149.

Note: For a 3101 (or equivalent) display terminal, press the attention key and
enter CA.

3. If your system includes timer support and you direct output to the $SYSPRTR,
the system includes the time and date in the listing.

4-140 SC34-0940

$DISKUT1

4. For the 4962 disk and the 4963 disk subsystem, the system shows disk locations
in cylinder, track, and sector (CTS) format instead of by record number.
0 5. For the 4967 disk subsystem, as well as DDSK-30 and DDSK-60 disks, the
system shows disk locations in relative block address (RBA) format instead of by
record number.

AL — Allocate a Data Set
Use the AL command to allocate a data set. $DISKUT1 prompts you for the
following information:

¢ The name of the data set
¢ The size of the data set in records
* The organization type.

The Event Driven Executive recognizes two types of data sets: data-type and
program-type. A data-type data set contains work files, user source modules, and
application data sets. A program-type data set contains executable (loadable) EDL
programs.

Select one of the following organization types:

D Data organization for data sets used as work files, user source modules, and
application data sets.

P Program organization for data sets that will contain executable (loadable) Event
Driven Executive Language programs. Use this for executable object programs
(the output of SUPDATE/$SUPDATEH).

O Example: Allocate a 100-record data-type data set named DATAFILE.

AL
DATAFILE

Chapter 4. Utilities 4-141

$SDISKUT1

ALX — Allocate a Data Set With Disk Extents

4-142 SC34-0940

Use the ALX command to allocate a data set with disk extents. A data set with
extents is a data set that the system expands automatically when additional space is
required (and volume and directory space is available). Use data sets with extents
when you expect an increase in data over time. You can maximize volume space by
using data sets with extents because the data sets expand only when space is
required.

$DISKUT1 allocates one extent at allocation time. Then the system creates more
extents as the data set requires more records and space is available. All extents for a
data set are the same size.

You define the number of records the extent will contain. $DISKUT1 prompts you
for the following information:

¢ The name of the data set
e The size of the primary data set in records
e The size of each disk extent.

When a data set requires more space, the system creates extents as they are needed
and volume and directory space is available. The system can create up to 957
extents. (The total number of extents is equivalent to the maximum number of
entries in the directory (958 per volume) minus one entry for the primary data set.)
The maximum size of an extent is 32,767 records.

Notes:

1. Do not use the ALX command to create a work data set with extents or a log
data set with extents.

2. In the example below, at the time of allocation the primary data set DATAFILE
is 1000 records in size. At the time the system allocates DATAFILE, 1 extent is
created at 100 records in size. Therefore, at the time of allocation, the total data
set size for DATAFILE is 1100 records.

Example: Allocate a 1000-record data set with disk extents 100 records in size.

O

$DISKUT1

CV — Change Volume
) Use the CV command to change the volume you want to access with other
commands. $DISKUTI1 prompts you for the new volume label after you enter the
CV command.

Example: Change volume.

COMMAND (?): cv
NEW VOLUME LABEL = EDX002

USING VOLUME EDX002

COMMAND (?}:
\-

DE — Delete a Data Set
Use the DE command to delete a data set.

Notes:

1. If you use the DE command to delete a data set containing extents, the contents
of the entire data set (including the extents) are deleted.

2. In order to make a data set non-extendable, you must allocate a data set using
the AL command and copy the contents of the extendable data set to the new
data set (which has no extents).

$DISKUTI1 prompts you for the name of the data set (member) you want to delete.

Example: Delete a data set named DATAFILE.

~ COMMAND (?): DE

| MEMBER NAME: DATAFILE ;
DATAFILE DELETE (Y/N)? Y-
DATAFILE DELETED

Chapter 4. Utilities 4-143

$DISKUT1

DG — Delete All Members Starting with Text
Use DG to delete data sets that start with a specific prefix. The system displays
each data set starting with the specified prefix and $DISKUT1 prompts you as O
shown in the example. If you do not want to display each data set, use the SNQ
command to turn off the prompt mode. $DISKUT]1 then deletes the appropriate
data sets without verification.

Example: Delete all data sets starting with the prefix $Z.

Respond Y to the DELETE? prompt to delete a data set or respond N to cancel the
delete function. $DISKUT1 continues prompting for each data set on the volume
with the specified prefix.

Note: NA means that the system has not set the end-of-data pointer and flag in the
directory member entry.

DGD — Delete all Data-Type Data Sets Starting with Text
Use the DGP command to delete all data-type data sets starting with a specific
prefix. DGD operates in the same manner as DG except that you can only delete
data-type data sets.

DGP — Delete All Programs Starting with Text
Use the DGP command to delete all program-type data sets starting with a specific
prefix. DGP operates in the same manner as DG except that you can only delete
program-type data sets.

4-144 SC34-0940

$DISKUT1

DNG — Delete All Data Sets Not Starting with Text
Use the DNG command to delete all data sets (data- and program-type) not starting
0 with a specific prefix. $DISKUT]1 displays each data set that does not start with the
specified prefix, then prompts you as shown in the example. If you do not want to
be prompted for each data set, use the SNQ command to turn off the prompt mode.
$DISKUT]1 then deletes the appropriate data sets without verifying them.

Example: Delete all data sets that do not start with the prefix $Z.

g ' R
COMMAND (2): DNG ,
ENTER GENERIC TEXT: §2

ADELETE ALL MEMBERS NOT STARTING WITH $Z (Y/N)?

CONFIRM DELETE GENERIC REQUEST ON VOLUME JMMOBJ
CONTINUE (Y/N)? Y

USING VOLUME JMMOBJ “ ' B
NAME- - TYPE FIRST RECORD SIZE - EQD/PGMSZ

DATAL -~ DATA 1681 2 . NA
DELETE (Y/N)? Y T T
- DATAL DELETED

MYDATA DA

Respond Y to the DELETE? prompt to delete a data set and respond N to cancel
the delete function. $DISKUT1 continues prompting for each data set on the
volume with the specified prefix.

Note: NA means that the system has not set the end-of-data pointer and flag in the
directory member entry.

DNGD — Delete All Data-Type Data Sets Not Starting with Text
Use the DNGD command to delete all data-type data sets that do not start with a
specific prefix. DNGD operates in the same manner as DNG except you can only
delete data-type data sets.

DNGP — Delete All Programs Not Starting with Text
Use the DNGP command to delete all program-type data sets not starting with a
specific prefix. DNGP operates in the same manner as DNG except you can only
delete program-type data sets.

Chapter 4. Utilities 4-145

$DISKUT1

EN — End the Program

Use the EN command to end the $DISKUT1 utility.

LA — List All Data Sets

4-146 SC34-0940

Use the LA command to list all data sets on a specific volume. There are four types
of data sets:

DATA a standard data-type data set.
DATA-P a primary data set that contains extents.

DATA-E the portion of the data set that is an extent. The exfent is part of a
DATA-P type data set.

PGM a standard program-type data set.

If a data set contains extents, the system includes a summary of the primary data set
(DATA-P) along with each extent (DATA-E). The summary lists the number of
records in the primary data set and the number of records in each extent.

(" commmno (2): o

Notes:

1. EOD is the displacement to the next available record for data-type data sets.

2. NA means that the system has not set the end-of-data pointer and flag in the
directory member entry.

3. In the example above, data set AF is a data set with extents. The primary data
set (DATA-P) originally had 30 records. Later the data set expanded to 42
records. The data set expanded by obtaining 3 extents with 5 records each
(DATA-E type data sets). Three records were not used because the EOD was
set at 42.

To cancel a list, press the attention key, enter CA and press enter.

O

@)

$DISKUT1

LACTS — List All Data Sets in CTS/RBA Mode

Use the LACTS command to list all data sets (data- and program-type) on a specific
volume.

For the 4962 disk and the 4963 disk subsystem, the system shows the disk locations
of the data sets in CTS format. For the 4967 disk subsystem, as well as DDSK-30
and DDSK-60 disks, the system shows the disk locations of the data sets in RBA
format.

Example 1: List all data sets in CTS format. Volume EDXO001 resides on a 4963
disk subsystem; the system shows the disk locations of the data set in CTS format.

(rCOMMAND (?): LACTS s A

USING VOLUME EDX001

NAME ~TYPE ORG(CTS)
NOMSG DATA 0080067 0080012
EDXSTART ~ DATA 0030115 0040106

N DATA 0050006 0050008

PGM 0400010

1046 FREE RECORDS IN LIBRARY

Example 2: List all data sets in RBA format. Volume EDXO001 resides on a 4967
disk subsystem; the system shows the disk locations of the data sets in RBA format.

Chapter 4. Utilities 4-147

$DISKUT1

LAD — List Data Sets on All Volumes

Use the LAD command to list all data sets (data- and program-type) on all volumes.
You may only want to list data sets starting with a specific prefix. Do this by
entering the LAD command followed by the prefix. This command is useful in
finding a data set when you do not know the name of the volume where it resides or
if the same data set appears on multiple volumes. $DISKUT!1 lists the name of each
data set along with the following information:

4-148 SC34-0940

The type (data or program)

The number of the first record in the data set

The size of the data set

The last record in a data-type data set or the number of records in a
program-type data set

The volume where it resides.

Example: List data sets with a prefix of ‘S’ in all volumes.

LAV — List All Volumes

$DISKUT1

Use the LAV command to list all volumes on your Series/l. You may only want to
list volumes starting with a specific prefix. Do this by entering the LAV command
followed by a prefix. The LAV command scans all existing volumes and lists the
name of each volume along with the following information:

e The device address

¢ The number of the first record on the volume

¢ The size of the volume.

When it finishes the scan, $DISKUT1 points to the last volume accessed.

Example: List all volumes on your Series/1.

-
COMMAND (?): LAV

EDX002
ASMLIB
MIMSRC
TSTSRC

 USING VOLUME EDX002

VOLUME NAME = DEVICE ADDRESS FIRS

0003
0003

0013
0013

To cancel a list, press the attention key and enter $C $DISKUTI1. This cancels the
listing and $DISKUT1.

Chapter 4. Ultilities

4-149

$SDISKUT1

LD — List Data-Type Data Sets
Use the LD command to list all the data-type data sets on a specific voiume, the
number of the first record in the data set, and the size of the data set.

Example: List the data sets on volume EDX001.

Notes:

1. EOD is the displacement to the next available record.
2. NA means that the system has not set the end-of-data pointer and flag in the
directory member entry.

4-150 SC34-0940

$SDISKUT1

LDCTS — List Data-Type Data Sets in CTS/RBA Mode
Use the LDCTS command to list only data-type data sets on a specific volume.
0 : Depending upon the disk on which the volume resides, the system shows the
locations of the data sets in CTS or RBA format.

For the 4962 disk and the 4963 disk subsystem, the system shows the disk locations
of the members in CTS format. For the 4967 disk subsystem, as well as DDSK-30
and DDSK-60 disks, the system shows the disk locations of the members in RBA
format.

Example 1: List all data sets in CTS format. Volume EDX001 resides on a 4963
disk subsystem; the example shows the disk locations of the data sets in CTS format.

4 N
COMMAND (?): LDCTS

USING VOLUME EDX001

NAME ORG(CTS) END(CTS)
NOMSG 0080007 0080012
EDXSTART 0030115 0040106
LNO 0050006 0050008

FULLR

1046 FREEiRECQRDS:IN LIBRARY

0 Example 2: List all data sets in RBA format. Volume EDXO001 resides on a 4967
disk subsystem; the example shows the disk locations of the data sets in RBA
format.

USING VOLUME.
NAME .

Chapter 4. Utilities 4-151

$DISKUT1

LISTP — Direct Listing to Printer

Use the LISTP command to direct all $DISKUT!1 listings to a specified printer. If
you do not specify a device, the system directs the output to the device you designate
as SSYSPRTR. The system directs all listings to the specified device (or
$SYSPRTR) until you specify another one.

Example: List all subsequent $DISKUTT listings to the MPRINTER.

LISTP MPRINTER

LISTT — Direct Listing to Terminal

4-152 SC34-0940

Use the LISTT command to direct all $DISKUT]1 listings to the terminal that
loaded $DISKUT1. Once you specify this command, the system directs all listings
to that terminal until you specify another device.

Example: List all subsequent SDISKUTT1 listings to the terminal that loaded
S$DISKUTI.

$DISKUT1

LM — List a Specific Data Set
Use the LM command to list the description of a specific data set. $DISKUTT1 lists
0 the data set type, the disk location of the first record, the size of the data set and the
EOD. The EOD is the displacement to the next available record for data-type data
sets.

Example 1: List the directory description of a data-type data set (member).

For the 4962 disk and the 4963 disk subsystem, the system shows the disk location
of a data set in CTS format.

-
‘COMMAND. (?): LM
MEMBER NAME: TEST12

USING VOLUME EDX001

NAME TYPE FIRST RECORD
TESTI2 DATA 305
(I0DA = 0003

CTS = 0220115,0220121

" COMMAND (?) :

Notes:

C\ 1. IODA is the device address. CTS= is the cylinder, track, and sector. In this
! example, the data set is on the device at device address 003 at cylinder 22, track
01, from sector 15 through sector 21.
2. FIRST RECORD is the number containing the first record of the data set.

Chapter 4. Utilities 4-153

$DISKUT1

Example 2: List the directory description of a program-type data set (member).

For the 4967 disk subsystems, as well as the DDSK-30 and DDSK-60 disks, the {r}
system shows the disk location of a data set in RBA (relative block address) format. \
In this example, the data set is on the device at address 0048 at relative block

address 188404.

| RBA = 188404, 188423

el Ee 17 i ‘ -
| COMMAND (?): =

Notes:

1. IODA is the device address. RBA =is the relative block address. In this
example, the data set is on the device at address 0048 at relative block address
188404.
2. FIRST RECORD is the number containing the first record of the data set. P
S

4-154 - SC34-0940

$SDISKUT1

Example 3: List the directory description of an extended data set (a data set with
extents).

‘COMMAND (?): M
MEMBER NAME: Al

USING VOLUME MYDISK

NAME TYPE FIRST RECORD SIZE EOD/PGMSZ

AL DATA-P 9 30 37
I00A = 00C5

RBA = 1191044,1191053

Al DATA-E - 39 NA -
I0DA = 00C5
RBA = 1191041,1191043 :
;,EXTENTS:V 1 TOTAL DATA SET SIZE: 35
CCOMMAND (2):
(oommaD (1) .
Notes:
C> 1. IODA is the I/O device address. In this example, the primary data set
- (DATA-P) is on the device at device address 0002 at cylinder 1, track 0, sector

10 through cylinder 2, track 0, sector 9. The first extent portion of the data set
(DATA-E) is on the device at device address 0002 at cylinder 1, track 0, sectors
5 through 9. The second extent portion of the data set (DATA-E) is on the
device at device address 0002 at cylinder 2, track 0, sectors 10 through 14.

2. FIRST RECORD is the number containing the first record of the data set.

3. Data set AF is a data set with extents. The primary data set (DATA-P type
data set) originally had 30 records. Later the data set expanded to 40 records.
The data set expanded by obtaining 2 extents with 5 records each (DATA-E type
data sets). Three records were not used because the EOD was set at 37. If the
EOD were not set at 37, the data set size would equal 40 (30 + 5 + 95).

Chapter 4. Utilities 4-155

$SDISKUT1

LP — List Programs

4-156 SC34-0940

Use the LP command to list all program-type data sets on a specific volume or only
those starting with a specified prefix. The system directs the listing to the
$SYSPRTR. You can redirect the listing by specifying the label of the printer
following the LP command or the prefix. For example, to direct the listing in the
example to a printer other than $SYSPRTR, enter the following:

LP $DISK $SYSLOGA

The system directs the listing, in this case, towards the printer designated as the
alternate logging device ($SYSLOGA).

Example: List directory description of the program-type data sets beginning with
the prefix $DISK.

Notes:

1. FIRST RECORD is the number of the first record of the data set.
2. PGMSZ shows the size of the program in records, excluding RLDs and overlays.
3. OVLY indicates an overlay program.

O

$SDISKUT1

LPCTS — List Program-Type Data Sets in CTS/RBA Mode

Use the LPCTS command to list only program-type data sets on a specific volume.
Depending upon the disk on which the volume resides, the location of the data sets
(members) are shown in CTS or RBA format.

For the 4962 disk and the 4963 disk subsystem, the system shows the disk locations
of the members in CTS format.

For the 4967 disk subsystems, as well as DDSK-30 and DDSK-60 disks, the system
shows the disk locations of the members in RBA format.

Example 1: List all data sets in CTS format. Volume EDXO001 resides on a 4963
disk subsystem; the system shows the locations of the data sets in CTS format.

COMMAND (?): LPCTS

USING VOLUME EDX001
NAME ORG(CTS) END(CTS)

CFULL 0140113 0150001

1046 FREE RECORDS IN LIBRARY

Example 2: List all data sets in RBA format. Volume EDX001 resides on a 4967
disk subsystem; the system shows the locations of the data sets in RBA format.

Chapter 4. Utilities 4-157

$DISKUT1

LS — List Free Space

Use the LS command to list the free space available on a specific volume.

In addition, $SDISKUT]1 lists the following information:

¢ The size (in records) of the volume

¢ The number of unused records

e The number of directory entries

¢ The number of unused directory entries
e The total number of data sets

¢ The number of free space entries.

$DISKUT]1 then prompts if you wish to list the free space chain. Respond Y and
$DISKUT!]1 lists the size and the location (number of the first record) of each area of
free space on the volume.

Example: List free space available on volume EDXO001.

Note: FIRST RECORD is the number of the first record within the data set.

4-158 sC34-0940

$DISKUT1

RE — Rename a Data Set
0 Use the RE command to rename a data set.

Example: Rename a data set named PROG1 to MYPROG.

COMMAND (?): RE

" MEMBER NAME: PROGL
NEW NAME: ~MYPROG
RENAME COMPLETED

SE — Set End of Data Pointer/Flag
Use the SE command to set the end-of-data pointer/flag on within a data- or
program-type data set.

Example: Set end of data pointer for data set named DATAFILE.

(T ~
COMMAND (?): SE DATAFILE

 DATAFILE EOD PO
| DATAFILE EOD FL

- NEW EOD (-1 TO RESET EOD AND FLAG): 2
 ARE ALL PARAMETERS CORRECT (Y/N)? Y

‘ j DATAFILE EOD POINTER IS NO
. | DATAFILE EOD FLAG 1S NOW

Notes:

1. RESET option sets the EOD flag off and the EOD pointer to 0.
2. This command modifies fields within the directory member entry. It does not
change the actual data set.

Chapter 4. Utilities 4-159

$SDISKUT1

SNQ — Reset Prompt Modes
Use the SNQ command to turn off the prompt mode for the delete generic ,
commands (DG, DGP, DGD, DNG, DNGP and DNGD). This means that for @
these commands, SDISKUT1 deletes the data sets without prompting you to verify ot
each one. If you want to turn prompt mode off, do so before you use any of these
commands.

SQ — Set Prompt Modes
Use the SQ command to set $DISKUT1 to prompt mode for the delete generic
commands. This means that for the DG, DPG, DGD, DNG, DNGP and DNGD
commands, $DISKUT! prompts you to verify each data set you want to delete.
Prompt mode is the default for the list commands. If you do not want to be
prompted for each data set to be deleted, use the SNQ command to turn off prompt
mode.

Example:

4-160 SC34-0940

O

$SDISKUT?2

$DISKUT2 — Patch/Dump/List/Search Data Set or Program

With $DISKUT?2, you can perform the following operations on data sets and/or
programs:

Clear (set to zero) all or portions of a data set and reset the end-of-data pointer.

Dump any data set created using SEDIT1IN or SFSEDIT or any program to the
terminal you are using or to the printer of your choice.

Patch a data record in a data set or an address within a program.
Modify the default load time storage allocation associated with a program.

List the contents of a data set on the terminal you are using or on the printer of
your choice.

List the log data set associated with a specific device on the terminal you are
using or on the printer of your choice.

Search a data set or program for an EBCDIC or hexadecimal string.

Note: For tape management functions, see “STAPEUT1 — Tape Management” on

page 4-565.

Program and Data Set Member Dumps and Patches
You make program member dumps and patches by relative address (hexadecimal)
within the program. The relative address corresponds exactly to the address
specified in the LOC field of an assembly listing. You can enter data in decimal,
hexadecimal, or EBCDIC as shown in the examples that follow.

You make data set member dumps and patches by specifying a record number and a
first word. The numbering for both record and word number begins with 1. You
can enter data in either decimal, hexadecimal, or EBCDIC. You should separate
each field of patch data with a nonnumeric character other than a carriage return.

Note: Any patch you make to a data set or a program is permanent. Be sure that

the data set record or program address you are patching is correct. Check a
dump of the data set or the program assembly listing before you perform a
patch.

The system formats dumps of program or data set members when you select
hexadecimal as an option.

Chapter 4. Utilities 4-161

$DISKUT2

Absolute Record Numbers

A special feature of $DISKUT? allows dumping and/or patching of any area on a
disk volume by referencing absolute record numbers. Select this mode by entering
the characters $SEDXVOL as a member data set name. When you use this mode,
the system will direct operation to absolute record numbers rather than symbolic
data/program member names, with record 1 being the first physical record on the
disk or diskette where the volume resides.

If you enter the special system name $SEDXLIB, the system uses absolute record
numbers and considers the first record in the directory as record 1. $$EDXVOL
references the first physical record on the disk or diskette. On diskettes, the system
uses $SEDXVOL to reference records on cylinder 0 only. If you attempt to access
other cylinders, you will produce unpredictable results. You can reference all other
records on diskette using SSEDXLIB.

Notes:

1. $8, $SEDXVOL, and $SEDXLIB are special system data set names. $$ is a
reserved system name. $SEDXVOL points to the beginning of a device.
$SEDXLIB points to the beginning of the data set directory within a volume.

2. When using this mode, you also have access to records that are meant for
Series/1 hardware use only. For example, the system designates records 121
through 240 on the disks for alternate sector assignment and they are not meant
to be accessed directly.

3. When you use the DU or LU commands to dump or list $$EDXVOL, you
dump only the data, not the whole device.

Loading $DISKUT2
Load $DISKUT?2 with the $L. command or option 3.2 of the session manager.

4-162 SC34-0940

O

$DISKUT2

$DISKUT2 Commands

To display the $DISKUT2 commands at your terminal, enter a question mark in
response to the prompting command COMMAND (?).

' ™
COMMAND (?): ?
CD - CLEAR DATA SET
CV - CHANGE VOLUME '
DP - DUMP DS OR PGM ON PRINTER... DP DSNAME PRTNAME
DU - DUMP DS OR PGM ON CONSOLE
(-CA- WILL CANCEL)
PA - PATCH DS OR PGM
SS - SET PROGRAM STORAGE PARM
| LP - LIST DS ON ANY PRINTER... LP DSNAME PRTNAME
LU - LIST DS ON CONSOLE
PL - LIST LOG ON ANY PRINTER... PL DSNAME PRTNAME
LL - LIST LOG ON CONSOLE
PR - LIST LOG BY WRAP COUNT AND RELATIVE RECORD ON ANY PRINTER
LR - LIST LOG BY WRAP COUNT AND RELATIVE RECORD ON CONSOLE
PV LIST $VIRLOG DATA SET ON ANY PRINTER... PV DSNAME PRTNAME
- (BLANK TO LIST ON CONSOLE) S B
SR SEARCH A DS OR PGM FOR- A STRING . SE DSNAME .. .
,fEN -~END PROGRAM ‘ : S SR
’ i
K\COMMAND ())

Note: The LR and PR commands are for remote manager (RM1) users only.

$DISKUT?2 includes the time and the date in your listing if you include timer
support in your system and you direct output to a print device using DP, LP, PL, or
PR. You can send your output to any printer using the PRTNAME parameter on
the DP, LP, PL, or PR command. The default is SSYSPRTR.

Note: If you dump (DU) or list (LU) a data set on a terminal using $SSEDXVOL,
you are limited to the number of logical records.

All the functions listed (except for ?, CV, and EN) act upon the IPL volume. When
you load $DISKUT?2, it issues the following message:

To point to another volume to perform one or more of the previously listed
functions, enter the CV command and the name of the volume.

Chapter 4. Utilities 4-163

$SDISKUT?2

All functions act upon the specified volume until you change it with another CV

command or until you end and reload $DISKUT2. If you specify an invalid N
volume, the utility uses the IPL volume, if it is available. If the IPL volume is not } ;
available, the system issues the message NO VOLUME AVAILABLE. You can N
either end $DISKUT?2 or change volumes using the CV command.

Each command and its explanation is presented in alphabetical order on the
following pages.

CD — Clear a Data Set (to Zeros)
Use CD to clear an entire data set or a portion of a data set and to reset the
end-of-data pointer. This sets the data within the data set to zero.

Example:

CV — Change Volume
Use the CV command to change volumes. When you load $DISKUT?2, it assumes
you are using the IPL volume. All $DISKUT?2 functions operate on the IPL volume
until you change to another volume.

Example:

4-164 SC34-0940

$DISKUT2

Use DP to dximp all or portions of a data set or program to a printer. If you do not
specify a printer, the system directs the dump to the $SYSPRTR.

Example 1: Dump a data set on a printer other than $SYSPRTR.

(VCOMMAND (7): DP EJWL MPRTR

EJWL IS A DATA SET

FIRST RECORD (0 TO CANCEL COMMAND) 1
LAST RECORD: 2

FIRST WORD: 1

WORDS/RECORDS: 12

(D)EC, (E)BCDIC OR (H)EX: H

DUMP COMPLETE
ANOTHER AREA (Y/N)? N

COMMAND (?7):
N

Notes:

1. You must specify the printer name on the same line as the command and the
data set/program. The system does not issue a prompt for the printer name.

2. The printer name is the label on the TERMINAL definition statement defining
the printer to the supervisor.

Example 2: Dump a portion of a program on $SYSPRTR.

Chapter 4. Utilities 4-165

$DISKUT?2

DU — Dump a Data Set or Program on Terminal

Use the DU command to dump all or a portion of a data set or a program to the
terminal where you loaded $DISKUT?2.

Example 1: Dump a portion of a data set on the terminal.

4-166 SC34-0940

o

O

$SDISKUT2

Example 3: Dump a portion of a program with overlay segments on the terminal.

-
COMMAND (?): DU

PGM OR DS NAME: EX31ESO1

EX31ESOL IS A PROGRAM OF HEX SIZE 00002FA8 WITH 2 OVERLAY SEGMENTS

ADDRESS: 100

HOW MANY WORDS? 10

0100 0060 ©OB2 €026 2221 7CC4 0640 E8D6 E440 |........ @D0 YOu
0110, E6C1 D5E3 WANT

DUMP COMPLETE
ANOTHER AREA (Y/N)? N

?) .
| COMMAND (?): J

Example 4: Dump an overlay segment of a program on a terminal.

- ; ™
COMMAND (?): DU EX31ES61 N
EX31ESOL IS A PROGRAM OF HEX SIZE G0082FA8 WITH 2 OVERLAY SEGMENTS
'ADDRESS: 2F0@
| DUMP OVERLAY SEGEMENT (0) OR RESIDENT CODE (R)?
| WHICH OVERLAY? 2 ,
| HOW. MANY WORDS? LI

0.

T 0258 3232 C9D5 C4C5 D7C5 DSC4 C5
0268 DGC7;DQC1

- DUMP ’COMPLV’ETE,

Note: Addresses within an overlay segment are relative to the beginning of that
overlay segment.

Chapter 4. Utilities 4-167

$SDISKUT?2

Example 5: Dump a portion of the supervisor that is located in an overlay area.

$EDXNUCC |

Example 6: Dump a portion of a supervisor with overlay segments. The portion
you are dumping does not reside within the overlay segment.

$EDXNUCC

4-168 SC34-0940

C

$DISKUT?2

Example 7: Dump a portion of a supervisor not located within an overlay area.

COMMAND (?): DU
PGM OR DS NAME: $EDXNUCC

ENTER PARTITION NUMBER(1-8): 1

PARTITION 1 OF $EDXNUCC HAS A HEX SIZE OF 0QOODIFF WITH 3 OVERLAY SEGMENTS
ADDRESS: 9600

HOW MANY WORDS? - 3

9000 0000 0004 8C60

DUMP COMPLETE
ANOTHER AREA (Y/N)? N

COMMAND (7):
-

You can use single-line entry; however, be sure to enter the information required in
the order that SDISKUT?2 expects it. Here is the information for the above example
entered in single-line entry:

LCGMMAND (2): DU SEDXNUCC 1 9000 3 o

EN — End $DISKUT2

Use EN to end $DISKUT?2.

Example:

Chapter 4. Utilities 4-169

$DISKUT2

LL — List Log Data Set for a Specific Device on a Terminal
Use LL to list the log data set for a specific device on the terminal where you loaded

SDISKUT2. (N

Example: List log data set for device at address 02 on the terminal. (Refer to the
Problem Determination Guide for an explanation of the log output.)

4-170 SC34-0940

$DISKUT2

LP — List All or a Portion of a‘ Data Set on Printer

Use LP to list all or a portion of a data set on the printer. If you do not specify a
0 printer, the system directs the list to the SSYSPRTR.

Example 1: List a data set on a printer other than $SYSPRTR.

COMMAND. (?): ~LP CS MPRTR
LIST ALL OF THE DATA SET (Y/N)? Y

COMMAND (?7):

Notes:

1. You must specify the printer name on the same line as the command and the
data set/program. The system does not issue a prompt for the printer name.

2. The printer name is the label on the TERMINAL definition statement defining
the printer to the supervisor.

Example 2: List a portion of a data set on $SYSPRTR.

- COMMAND (?): LP
DATA SET NAME?. MYPROG e
~LIST ALL OF THE DATA SET (Y/N)? N

- FIRST RECORD: 1 RO
LAST RECORD: 20 A

| LIST COMPLETE

Chapter 4. Utilities 4-171

$DISKUT2

LR — List Log by Wrap Count and Relative Record for a Specific Device on a Terminal

O

Use LR to list the log by wrap count and relative record on the terminal where you
loaded $SDISKUT2.

Example 1: List log by wrap count and relative record on current terminal. (Refer
to the Problem Determination Guide for an explanation of the log output.)

LOGDS,EDX002

When your log data set is filled, $LOG increments its wrap count by one even if @
there is no data after the wrap. The header, therefore, shows a wrap with no data.

In this situation, specify the previous wrap count number. By doing so, you dump

the entire data set.)

4-172 SC34-0940

$DISKUT2

Example 2: In the following example of a log eight records long, two are control
records and six are data records. $LOG writes to the end of the data set and sets
0 the wrap count to two. No more data is written.

COMMAND (?): LR
LOG DATA SET (NAME,VOLUME): $LOGDS,EDX002

ENTER (HEX) WRAP COUNT AND RELATIVE
RECORD NUMBER IN THE FORM WWWW RRRR: 2

**% | 0G DATA SET WRAP COUNT IS 0602 HEX
**% NO DATA WAS WRITTEN AFTER THE LAST WRAP
*** ENTER PREVIOUS WRAP COUNT - 0061 HEX

ENTER (HEX) WRAP COUNT AND RELATIVE
RECORD NUMBER IN THE FORM WWWW RRRR: 1

*** RELATIVE RECORD OUT OF RANGE.
**% ALLOWABLE RECORDS ARE 0001 - 00606 HEX

ENTER (HEX) WRAP COUNT AND RELATIVE
| RECORD NUMBER IN THE FORM WHMW RRRR: 1 6

/
LU — List Contents of a Data Set on Terminal
" Use LU to list all or a portion of a source data set on the terminal where you loaded
C) SDISKUT2.

Example: List a portion of a data set.

CALSRC G S
ATA SET (Y/N)? N

Chapter 4. Utilities 4-173

$DISKUT2

PA — Patch a Data Set or Program
Use PA to patch a data set record(s) or an area within a program in decimal,
EBCDIC, or hexadecimal.

Example 1: Patch a data set in decimal.

Example 2: Patch a data set in EBCDIC. @

4-174 SC34-0940

$SDISKUT?2

Example 3: Patch a data set in hexadecimal.

(rCOMMAND (?): PA ASMOBJ

ASMOBJ IS A DATA SET

FIRST RECORD (0 TO CANCEL COMMAND): 2
FIRST WORD: 3

HOW MANY WORDS? 1

(D)EC, (E)BCDIC OR (H)EX? H

NOW IS: .
3 0060 0000 0000 0030 |.........

ENTER DATA: 0002 0003 0004 000A

NEW DATA:
3 0002 0003 0004 00GA |.........

0K (Y/N)? v
PATCH COMPLETE
ANOTHER PATCH (Y/N)? N

COMMAND (2):
§ (?)

Example 4: Patch a program in decimal.

(

COMMAND (?): PA

PGM OR DS NAME: MYPROG

MYPROG IS A PROGRAM OF HEX SIZE o0
 ADDRESS: 0208
“'HOW MANY WORDS? 1
(D)EC, (E)BCDIC OR (H)EX7 [

Chapter 4. Utilities 4-175

$DISKUT2

4-176 SC34-0940

Example 5: Patch a program in EBCDIC.

Example 6: Patch a program in hexadecimal.

¢

$DISKUT2

Example 7: Patch a program with overlay segments.

~
COMMAND (?): PA EX31ESO1

COMMAND (?):
N

EX31ESO1 IS A PROGRAM OF HEX SIZE 00002FA8 WITH 2 OVERLAY SEGMENTS
ADDRESS: 2F32

PATCH OVERLAY SEGMENT (0) OR RESIDENT CODE (R)? 0

WHICH OVERLAY? 1

HOW MANY WORDS? 2

(D)EC, (E)BCDIC, OR (H)EX?: H

NOW IS:
028A 0001 G09A

ENTER DATA: 0002 009B

NEW DATA:
028A 0002 0098

oK (Y/N)? Y
PATCH COMPLETE
ANOTHER PATCH (Y/N)? N

Note: Addresses within an overlay ségment are relative to the beginning of that

overlay segment.

Example 8: Patch a portion of the supervisor that resides in an overlay area.

Chapter 4. Utilities 4-177

$DISKUT2

Example 9: Patch a portion of the supervisor that resides in partition 2.

You can use single-line entry; however, be sure to enter the information required in
the order that the SDISKUT?2 expects it. Here is the information for the above
example entered in single-line entry:

4-178 SC34-0940

$DISKUT2

PL — List Log Data Set for a Specific Device on a Printer
Use PL to list the log data set for a specific device or all devices on the printer of
0 your choice. If you do not specify a printer, the system directs the list to the
$SYSPRTR.

Example 1: List the log data set for device 02 on the $SYSPRTR. (Refer to the
Problem Determination Guide for an explanation of the log output.)

(rCOMMAND {(2): PL
LOG DS NAME: EDXLOGDS
CHOOSE ONE OF THE FOLLOWING:

«.1 ~ DISPLAY ALL LOG RECORDS- (DEFAULT) ,
DISPLAY LOG RECORDS BY DEVICE ADDRESS
DISPLAY PROGRAM/SYSTEM CHECKS
DISPLAY APPC GENERAL INFORMATION -

- DISPLAY APPC -GDS VARIABLE INFORMATION

B W N
i

OPTION NUMBER 2

: ,,'DRESS (HEX)‘

OR Log LIST DATA EDXLOGDS ON EDX002

Notes:

1. You must specify the printer name on the same line as the command and the
program name. The system does not issue a prompt for the printer name.

2. The printer name is the label on the TERMINAL definition statement defining
the printer to the supervisor.

Chapter 4. Utilities 4-179

$SDISKUT?2

PR — List Log by Wrap Count and Relative Record
If you are a remote manager user (RM1), use PR to list the log wrap count and
relative record for a specific device or all devices on the printer of your choice. If
you do not specify a printer, the system directs the list to $SYSPRTR.

Example: List log by wrap count and relative record on $SYSPRTR. (Refer to the
Problem Determination Guide for an explanation of the log output.)

If you enter an incorrect wrap count for PR or LR, the system displays the following
message:

If you enter an invalid record number, the system displays the following message:

4-180 SC34-0940

O

$SDISKUT2

PV — Print $SYSLOG Message Data Set
Use the PV command to print the $SYSLOG messages that you have stored in a
0 disk data set. For more information on the $VIRLOG initialization option, refer to
the Installation and System Generation Guide. The PV command prompts for the
name of the data set. You can specify the name of the printer on the same line.

Example: Print the data set called EDXSMLDS on $SYSPRTR.

- T
COMMAND (2): PV

ENTER MESSAGE DATA SET NAME: EDXSMLDS $SYSPRTR

EDX SYSTEM MESSAGE LOG
= IPL OR $VIRLOG LOAD ============ -

TIME: 10:26:47 MM/DD/YY

PROGRAM CHECK: S ,

PLP TCB PSW IAR AKR LSR R& Rl R2 R3 R4 R5 R6 R7
2000 20C2 8102 6976 OAAO 10D 0052 20A0 20C2 2034 2037 005C 00B8 7426

Chapter 4. Utilities 4-181

$DISKUT?2

SE — Search a Program or Data Set for Character String
Use the SE command to search a data set or program for an EBCDIC or
hexadecimal string. Direct the results to any output device or to your terminal
(default). For more information on the SE command, refer to the Operation Guide.

Example 1: Search a program for a hexadecimal string.

5BC9 D4
N .

Note: If you do not want to search for all occurrences, only the occurrences within
the record are displayed.

4-182 SC34-0940

®

$SDISKUT2

Example 2: Search a program with overlay segments.

COMMAND(?): SE SMYDATAZ

ENTER NAME OF OUTPUT DEVICE (BLANK FOR TERMINAL):
 $MYDATA2 IS A PROGRAM OF HEX SIZE 00002C16 WITH 5 OVERLAY SEGMENTS

ENTER NUMBER OF BYTES OR CHARS TO SEARCH FOR (1 10): 6

'ENTER MODE - {E)BCDIC OR (H)EX: - H

ENTER STRING TO BE SEARCHED FOR:
\‘SEARCH FOR ALL OCCURRENCES (Y/N)? Y

FFFF 1101 5500

$SYSPRTR

Note: The hexadecimal string is found at address 0BFC.

Vel

AT ADDRESS(ES): OBFC

0B0O D428 OEO4 4024 ODFC
0B10 9F19 1AGC 5005 0CO0-
E 40CA 4024 OE36 4424
4424 OE95 45E4 0OSE
FBFB 50E9 40C8 000

- E240 GAGF 0026 3241
0002 7084 0404 OF08

~~100E E5D0 E2D3 E4D1
0801 AGD1 FBF2 1A07

HEX STRING ==> FFFF 1101 5500 <==
IN OVERLAY SEGMENT 4 (OVERLAY ADDRESS =

~ 6D2F 0000 1105 89E8

~ CBF8 0400 40CA 0800 50F

9F1D 1A10 4024 OE18
4224 09BA OF08-2C4C |

OE61 5004 4024 OE6A
0F06 2084 FBFA 080C

'2C44 406F 0000 000
AGDO 89E8 0000

FOUND IN $MYDATAZ
1516)

D3 6D6E 0022 |E ..
0000 0026 FBEF 1A23 | ..
6A6E 0020 72C4 6A2E |

Chapter 4. Utilities 4-183

$DISKUT?2

4-184 SC34-0940

Example 3: Search a data set for a character string.

e

o

O

$SDISKUT?2

SS — Set Program Storage Parameter
Use SS to modify the default load time storage allocation associated with a program.
You can change the allocation without reassembling the source code or providing an
override on the LOAD instruction. SS requires that you express the size as bytes in
decimal. The system rounds up the value you request if it is not an even multiple of
256.

Example: Reduce the dynamic storage you want allocated for the COBOL compiler
at program load.

/

" $DISKUT2 - DATA SET MGMT, UTILITY II

0K TO CONTIN

COMMAND (?): N
$DISKUT2 ENDED AT 01:

> $L $DISKUT2 ,,
LOADING $DISKUT2 ~ 51P,01:30:15, LP= 9200, PART=1

USING VOLUME EDX002
COMMAND (?): CV ASMLIB
USING VOLUME ASMLIB

COMMAND (?): SS $COBOL ‘
OLD STORAGE SIZE WAS 8448

R NEW STORAGE SIZE IN BYTES: 2816

NEW SIZE WILL BE 2816

E (Y/N)é y

o e e

Chapter 4. Utilities 4-185

$DIUTIL

$DIUTIL — Maintain Partitioned Data Base

$DIUTIL maintains a disk-resident partitioned data base. This utility provides
comprehensive facilities to keep the data base current by means of the following
functions:

e Initialize the disk-resident data base

¢ Delete a member

* Reclaim space in the data base due to deleted members
» Display contents of data base

e Copy the data base

¢ Copy individual members of the data base

¢ Allocate and build a data member.

Normally, you use SDIUTIL only when no other programs of the display processor
are in use. You can change the online data base or you may select another data
base for the system to reference. This allows you to create displays in a data base
other than the online data base and then copy the members into the online data base
after testing.

Loading $DIUTIL

Load $DIUTIL with the $L. command or option 5.1 of the session manager. To
start execution of $DIUTIL:

1. Load $DIUTIL specifying the appropriate data set. You can use $DIFILE, the
online data set, or any other data set. However, be sure that another user or
program is not changing or using the same data set.

2. The system responds with the program-loaded message followed by:

Note: The display data base must not exceed 32767 records in length.

4-186 SC34-0940

$SDIUTIL

$DIUTIL Commands

To display the $DIUTIL commands at your terminal, enter a question mark in reply
0 to the prompting message COMMAND (?):

e ™
COMMAND (?): ?
AL - ALLOCATE DATA MEMBER
-BU - BUILD DATA MEMBER
CP - COMPRESS DATA BASE
CM - COPY MEMBER
DE - DELETE A MEMBER
EN - EXIT PROGRAM
IN - INITIALIZE DATA BASE
LA - DISPLAY MEMBER DIRECTORY
~LH - DISPLAY MEMBER HEADER
“MD - MOVE DATA BASE
RE - RENAME MEMBER
ST - DISPLAY DATA SET STATUS
COMMAND (?):
\Com J

After $DIUTIL displays the commands, it prompts you with COMMAND (?):
again. Then you can respond with the command of your choice (for example, AL).

AL — Allocate Data Member
Use the AL command to reserve space in a data base for one of several types of data
C. . members. The system requests information such as size in sectors and member
codes. Member codes are specified as follows:

4 — Print Report Data Member: The system requests information such as number of
lines and line length. It then enters each line, limited to 132 characters each.

5 — Plot Curve Data Member: The system requests information such as X and Y
ranges, X and Y base values, and number of points it must plot. You can select
automatic entry of the X points to reduce the data entry requirements. The system
provides a sawtooth pattern option to shade under the curve for more vivid
presentation of plotted data. Using fewer than 200 points on the X axis gives an
inadequate shading effect.

6 — Real-time Data Member: The system requests the number of records. You can
enter hexadecimal data for testing.

7 through 9 — User Data Member: The build function uses these codes to guide you
through the correct data entry procedure.

Chapter 4. Utilities 4~187

$DIUTIL

BU — Build Data Member
Use the BU command to insert fixed data into a data member. This command
allows you to enter data records to describe a fixed display or enter records, which 4‘.“#
normally will be dynamic, with a fixed value, to allow testing of the display.

You may have allocated the member using AL, if not, the system prompts you for
the allocation information it requires before it proceeds with the “build” process.
The system guides you one step at a time through the initialization of the data
member.

In this case, the member was already allocated.

o

4-188 SC34-0940

$SDIUTIL

CP — Compress Data Base
Use the CP command to reclaim unused space in the data base. The system actually
0 does not remove deleted members; it merely flags the space as unusable until you
compress it. Then the system moves other members into that space and displays a
message after each member it moves. When the system completes the compress, it
displays the following message:

L COMPRESS COMPLETED

You should exercise caution in using this function as it actually rearranges the
members in the data base. To prevent unpredictable results, you should restrict your
use of the interpreter ($DIINTR) during this process.

Note: If an unrecoverable I/O error occurs, it destroys the data set. .

RN B
COMMAND (?): CP
WARNING--COMPRESS IN PLACE. IF AN ERROR
- SHOULD OCCUR DATA SET WILL BE DESTROYED
DO YOU WISH TO PROCEED (Y/N)? Y
_DATA ~ COPIED .
RDATA . COPIED
_REPORT ~~ COPIED
SQUARE ~ COPIED
CIRCLE ~ COPIED
RPT COPIED
C: ARC - COPIED
/ COPIED
'COMPLETED
oy

CM — Copy Member
Use the CM command to copy a member from the source data base to the target
data base. The options available under MD (move data base) are also available
under CM (copy member).

Chapter 4. Utilities 4-189

$DIUTIL

DE — Delete a Member
Use the DE command to remove display or data members from the data base. The
system prompts you for the name of the member you want to delete and asks you to
verify the accuracy of your entry prior to actual deletion.

EN — Exit Program
Use the EN command to terminate the $SDIUTIL utility.

IN — Initialize Data Base
Use the IN command to format the entire data base to zeros and to format the
directory to reflect the starting and ending record numbers. The system prompts
you to proceed.

Note: This function destroys any data in the data base.
Make sure you enter the correct data set name. IN ends when the system displays

the message DATA SET FORMATTED. Each directory record allocated with IN
contains 16 directory entries, except the first, which contains 15.

4-190 SC34-0940

O

$DIUTIL

LA — Display Directory
Use the LA command to display all active members. Each line of display shows the
member name followed by four values:

1. Starting sector relative to the start of the data base.
2. Length of member in records.
3. Member usage code.

4. User-defined member code.

4 ™\
COMMAND (?): LA
NAME START ~ LENGTH CODE USER CODE
PLOT 11 4 2 0
DATA 15 10 5 0
RDATA 25 10 4 0
REPORT 35 1 1 0
SQUARE 36 1 2 0
CIRCLE 38 1 2 0
RPT 39 1 1 e
ARC a0 1 2 0
COMMAND (?):

LH — Display Member Header
Use the LH command to display the header of a data member (types 4—9). The
header describes the characteristics and use of the member.

Example:

Chapter 4. Utilities 4-191

$SDIUTIL

MD — Move Data Base

4-192 SC34-0940

Use the MD command to move the data base on the same or another volume when
the data base becomes too small to add a member. You can move the online data
base to another location temporarily, delete the old version, reallocate and initialize
the new expanded version, and move back the previous contents. During this
procedure, use the Interpreter with care.

Note: If you are moving the data base and the Interpreter uses a member, you will
get unpredictable results.

During the execution of MD, the system prompts you for a new source data if you
want one and a target data base. You have the option of saving the members in the
target data base. MD is helpful if you wish to use $DICOMP to develop display
members in a different data base than the online version and then, at a later time,
combine the new members with those in the online data base.

O

$SDIUTIL

RE — Rename Member

Use the RE command to change the display profile ID name. The system prompts
you for each step and takes no action until it obtains your response first. RE is
useful when you need to modify an online member. You can copy the member that
needs changing to another data base, modify and test it, then rename it and copy it
back to the online data base. By using the rename and delete functions, you can
exchange the new for the old without interfering with any online functions.

COMMAND (?): RE
MEMBER NAME: PLOT
ENTER NEW NAME: - PLTT
RENAME COMPLETED

COMMAND (?):
.

ST — Display Data Base Status

Use the ST command to display the current data base status. The first line shows
the data base location and name. The data that follows is the current status of the
data base. There are four values presented. The first is the next available record.
The second is the total number of records in the data base. You can see then how
much space is available for new members. If space is running short, you can
compress the data base or allocate a larger area. The next value displayed is the
next available directory entry. The last value displayed is the total number of
directory entries available. Refer to these two values to determine if you need more
or less space for directory entries. Following the completion of the status display,
the system displays a message indicating end-of-status.

Chapter 4. Utilities 4-193

$DSKMON

$DSKMON — Monitor Disk I/0 Activity {N

Use the $DSKMON utility to monitor disk activity. With the information the
$DSKMON utility provides, you can organize a disk for optimum usage. By
rearranging where files are on the disk, you can minimize disk seeks and unnecessary
disk I/O.

$DSKMON tracks the total number of times a program reads and writes to disk, the
number of times a program accesses a cylinder, and the number of times a program
accesses cache. $DSKMON records this data and stores it on disk in a data set.

Use the $DSKPRT1 utility to print the data that SDSKMON records. See
“$DSKPRT! — Print a Log for all Disk Activity” on page 4-197 for an explanation
of how the $SDSKPRT1 utility works. Use the $DSKPRT?2 utility to print two
reports per disk summarizing disk activity. See “SDSKPRT2 — Print a Disk
Activity Report” on page 4-203 for an explanation of how the SDSKPRT?2 utility
works.

$DSKMON logs the total number of times the system accesses a disk and loads a
program, minute by minute, on a terminal you specify.

$DSKMON Requirements
You must allocate two data sets before you can use $DSKMON. The system uses
the first data set to store the data that DSKMON collects. The recommended size
for this data set is 1800 records which is enough space to record data for 9600
operations. You can name the data set anything you like and it can reside on any ™
volume. When this data set becomes full the system issues a message and (_/
$DSKMON ends. The system uses the second data set to collect the DDB’s/VDE’s
for the disks on the system you monitored. The recommended size for this data set
is 50 records. You can name this data set anything you like and it can reside on any
volume. When you use the SDSKPRT2 and $SDSKPRT1 utilities, you are prompted
for the two data sets. The data set names and volumes remain the same. See
“$DISKUT1 — Allocate/Delete/List Directory Data” on page 4-139 for information
on allocating a data set.

In order to use $DSKMON, you must set the time and date each time you IPL the
system. You must also include timer support when generating the system. For more
information on generating your system, refer to the Installation and System
Generation Guide.

Note: If you attempt to load $DSKMON when $SCPUMON or $S1PSYS is active,
the system issues the message “SDSKMON LOAD FAILED - SCPUMON
OR $S1PSYS ACTIVE.” You must end SCPUMON or $SIPSYS and then
load SDSKMON.

Loading SDSKMON
Load $DSKMON with the $L operator command. Specify the name of the
DATAFILE and the DDBFILE data sets. (Allocate these data sets before loading
$DSKMON.) You are prompted for the number of buffers that SDSKMON can
use. (Each buffer is 2,304 bytes in size.) The default buffer amount is 3. This
number should be enough for most applications. The number of buffers that
$DSKMON needs depends on the amount of disk I/Os and the disk access rate. O
You may require additional buffers if the amount of disk I/O’s is high and the access
rate is fast. ‘

4-194 SC34-0940

O

$DSKMON

$DSKMON prompts for the name of the printer or terminal where you want the
summary log displayed. You are asked if you want to print the summary log. If
you reply Y, the log is displayed on the terminal or printer you specify. If you reply
N, you do not receive the summary log. When you reply Y or N to the prompt,
$DSKMON stores the monitored data in the DATAFILE data set. If you decide
later that you want to display the summary log, you can use the > PRINT
command. See “SDSKMON Attention Commands” on page 4-196 for more
information on this command.

$DSKMON then prompts you to put the terminal in roll mode. In roll-screen
mode, you do not need to press the enter key each time the screen fills up.

In the following example, $DSKMON runs for 4 minutes. Then $DSKMON is
cancelled. From the time $DSKMON was activated till 11:44:04, there were 172

disk I/O operations and 3 program/overlay loads.

Example:

> SL SDSKMON
DATAFILE (NAME,V

Chapter 4. Utilities 4-195

$DSKMON

$DSKMON Attention Commands
$DSKMON has three attention commands: ENDMON, NOPRINT, and PRINT.
These commands are explained below. O

ENDMON — End the $DSKMON Utility
To end the $DSKMON utility, press the attention key, type in ENDMON, and
press the enter key.

Example:

NOPRINT — Stop Printing the Summary Log
To stop the system from printing the summary log, press the attention key, type in
NOPRINT, and press the enter key. Ql]

PRINT — Start Printing the Summary Log
To start printing, press the attention key, type in PRINT, and press the enter key.

Example:

4-196 SC34-0940

O

$DSKPRT1 .

$DSKPRT1 — Print a Log for all Disk Activity

Use the $SDSKPRT]1 utility to generate a log that lists all activity on all disks.

$DSKPRT1 formats and prints the data that SDSKMON records. This data is
stored in the data set you allocated when using SDSKMON. After monitoring your
disks with $DSKMON and analyzing the logs you print with SDSKPRTI, you may
find large seek distances resulting from 2 or more programs accessing data sets on
the same device. To use your disk more efficiently, you can locate files (physically)
closer together. You can also move one of the conflicting files to a different device
or run one of the programs at different times.

Loading $SDSKPRT1

Load $DSKPRT1 with the SL operator command. $DSKPRTI1 prompts for the
names and volumes of two data sets. You must allocate these data sets before you
use $SDSKMON. For more information, see “$DSKMON — Monitor Disk I/O
Activity” on page 4-194.

After the system loads $DSKPRTI, it prompts you for the terminal or printer where
you want the output displayed.

Respond to the prompts as shown in the example. The report, which is printed on
the system printer ($SYSPRTR), follows the example.

Example: List all activity on all disks

Chapter 4. Utilities 4-197

$DSKPRT1

$DSKPRT1 SUMMARY REPORT MM/DD/YY

ET(MS) MN/SC

21
20
19
11798
14053

53 3
53 3
53 3
53 15
53 29
39 53 29
12 53 29
8 5329
12 53 29
3 5329
53 29
9 5329
8 5329
9 5329
9 5329
8 53 30
53 30
53 30
7 53 30
53 30
8 53 30
53 30
4 53 30
53 30
9 5330
9 5330
9 5330
8 53 30
9 53 30
53 30
53 30
53 30
6 53 30
53 30
9 53 30
53 30
53 30
53 30
53 30
53 30
53 30
53 30
53 30
53 30
53 30
53 30
53 30

— =
D Oy 0 WO 0 W O

= O

463
117

The following is sample output of a log listing activity on all disks. An explanation

of the report fields follows the sample output.

OPER DEV

WRITE ~----
WRITE ----
PROGSTOP--
WRITE 4963
READ 4967
READ 4967
READ 4967
READ 4967
LOAD ----
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
LOAD ----
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
READ 4967
WRITE 4963
WRITE 4963
PROGSTOP--

4-198 SC34-0940

11:56:33

AD RBA BYTES

256

256
(NON-DISK
49 2 256
54 3937 5888
54 218 256
54 828 256
54 829 768
(NON-DISK
54 3937 5888
54 3960 256
54 3961 256
54 3962 256
54 3963 256
54 3964 256
54 3965 256
54 218 256
54 833 256
54 834 2304
54 843 256
54 844 256
{(NON-DISK
54 3937 5888
54 3960 256
54 3961 256
54 3962 256
54 3963 256
54 3964 256
54 3965 256
b4 218 256
54 219 256
54 939 256
54 940 7168
54 969 256
54 970 256
54 971 256
54 972 256
54 973 256
54 974 256
54 975 256
54 976 256
54 218 256
54 219 256
54 845 512
49 200075 2304
49 2 256

S/R CYL-TK-SE SEEK

—

S
S
S
S
S

OPE

[T B B e B B T BT RV RV RV RV BV R Vs)

OPE

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
R
S
R

MEMDI
ME

FIXED
212
2
8
8

(<]

12
12
12
12
12
12
12

2

0 00 0

12
12
12
12
12
12
12

[cNoNoNoNoNoNoNRoNoNoNoNoNoNoNoRISE IS EHISEHCE L CEHNVEHS - N ol o Nol oo B VR LI CEHOSEL UL CEN VI V- - i o M o)
N

YOO NN WIWIWIWWIWWWWWON

312

ATIO

ATI

SK)
ISK)

MD
OPERATION

HEAD
17
22
44

P/
2
-2
0
5 0

=
~—

17
40
41
42
43
44
45
22
49
50
59
60

OO OO NOODODDODODOMN

o
=

17
40
41
42
43
44
45
22
23
57
58
87
88
89
90
91
92
93
94
22
23
61
11 312

[oRcoNoRoNoNoNoNoRoNoRoRoRoNolhVoNoNoNolNoNolNol

)
v

~

FIXED HEAD P/V
(NON-DISK OPERATION)

DS/PGM VOL TERMINAL
$DSKDDBD,DKMPG1 $SYSLOG

$DSKDDBD,DKMPO1 $SYSLOG

$DSKDDB

SYSDATE ,EDXFIX $SYSLOG

$$ s $SYSLOGA
$$ R $SYSLOGA
$$ s $SYSLOGA
$$. $SYSLOGA
$SMLOG $SYSLOGA
$$, $SYSLOGA
$$, $SYSLOGA
$$ s $SYSLOGA
$$, $SYSLOGA
$$, $SYSLOGA
$$ s $SYSLOGA
$$, $SYSLOGA
$$. $SYSLOGA
$$. $SYSLOGA
$$, $SYSLOGA
$$ s $SYSLOGA
$$, $SYSLOGA
$SMOPEN $SYSLOGA
$$, $SYSLOGA
$$ R $SYSLOGA
$$, $SYSLOGA
$$, $SYSLOGA
$$ s $SYSLOGA
$$ s $SYSLOGA
$$ s $SYSLOGA
$$ s $SYSLOGA
$$, $SYSLOGA
$$ s $SYSLOGA
$$ s $SYSLOGA
$$ s $SYSLOGA
$$ s $SYSLOGA
$$, $SYSLOGA
$$, $SYSLOGA
$$. $SYSLOGA
$$, $SYSLOGA
$$, $SYSLOGA
$$) $SYSLOGA
$$, $SYSLOGA
$$ s $SYSLOGA
$SMMLOG ,EDX002 $SYSLOGA

$DSKDATA,DKMBOL1 $SYSLOG
SYSDATE ,EDXFIX $SYSLOG
$SMOPEN

PROGRAM

$DSKDDB
$DSKDDB

$.DATTIM
(SYS)
(SYS)
(5YS)
(SYS)
$SMMAIN
(SYS)
(5YS)
(SYS)
(SYS)
(SYS)
(SYS)
(SYS)
(SYS)
(SYS)
(SYS)
(SYS)
(SYS)
$SMLOG
(SYS)
(SYS)
(5YS)
(5YS)
(SYS)
(SYS)
(SYS)
(SYS)
(SYS)
(5YS)
(5YS)
(SYS)
(5YS)
(SYS)
(SYS)
(SYS)
(SYS)
(SYS)
(SYS)
$SMOPEN
$SMOPEN
$SMOPEN
$DSKMON2
$.DATTIM

U
i

0

Report Field
ET

MN/SC
OPER

DEV
AD
RBA

BYTES
S/R

CY-TK-SE
SEEK

DS/PGM

VOL

TERMINAL
PROGRAM

$DSKPRT1

Description

The elapsed time in milliseconds (MS) since the last operation was
listed.

The minutes and seconds of the system clock.

The type of operation (READ, WRITE, LOAD, PROGSTOP, or
OVERLAY) that occurred.

The type of disk device on which the operation took place.
The address of the disk device on which this operation took place.

The relative block address of the record read or written. This is
relative to the device and, therefore, some computation will be
necessary to convert this address to record numbers within the
EDX volumes.

Byte count for this I/O operation.

The method of disk access. An S indicates sequential access. An R
indicates random access.

The cylinder, track, and sector on which this operation occurred.

If a seek is necessary to access the cylinder where the record is
located, the amount of seek is listed.

The name of the EDX data set accessed by this operation. If the
event was executed by the system, the data set name will usually be
“$8.” In the case of LOAD, OVERLAY, and PROGSTOP, this
column will be the name of the program loaded or stopped.

Name of the EDX volume that was accessed by this event. If this
column is blank, it indicates the IPL volume.

The terminal from which the executing program was loaded.

Name of the program executing the disk operation. If this
operation is performed by the system, “(SYS)” will be listed in this
column.

Chapter 4. Utilities 4-199

$DSKPRT1

Respond to the prompts as shown in the example. The report, which is printed on
the system printer ($SYSPRTR), follows the example.

Example: List disk activity for the $IAM program.

The following is sample output of all disk activity for the $IAM program.

$DSKPRT1 SUMMARY REPORT MM/DD/YY 11:57:40

ET(MS)

56
51
59
57
58
132
32
1898
2345
209

MN/SC

58
58
58
58
58
58
58
58
58
58

52
52
52
52
52
52
53
55
57
57

OPER

READ
READ
READ
READ
READ
READ
READ
READ
READ
WRITE

4-200 SC34-0940

DEV AD RBA BYTES S/R CYL-TK-SE SEEK DS/PGM VOL TERMINAL PROGRAM

DDSK 44 11969 256 R 44 0 1 12 NAMES LKEITH RAO $IAM
DDSK 44 11972 256 R 44 0 4 0 NAMES ,KEITH RAO $IAM
DDSK 44 11973 256 R 44 0 5 0 NAMES ,KEITH RAO $I1AM
DDSK 44 11974 256 R 44 0 6 0 NAMES LKEITH RAO $1AM
DDSK 44 11975 256 R 44 0 7 @ NAMES LKEITH RAO $IAM
DDSK 44 2730 256 R 10 0 9 -34 $IAMDIR,EDX002 $SYSLOG $IAM
DDSK 44 27742 256 R 101 3 66 91 QRYDIR ,QRYVOL $SYSLOG $IAM
DDSK 44 109781 256 R 403 2 27 302 QRYPSWD,QRYVOL $SYSLOG $IAM
DDSK 44 109783 256 R 403 2 29 0 QRYPSWD,QRYVOL $SYSLOG $IAM
DDSK 44 109781 256 R 403 2.27 0 QRYPSWD,QRYVOL $SYSLOG $IAM

C

C

$SDSKPRT1

Respond to the prompts as shown in the example. The report, which is printed on

the system printer ($SYSPRTR), follows the example.

Example: List a program trace.

p - ‘
> $L $DSKPRT1 DSKDATA,EDX001 DDBDATA,EDX001
LOADING $DSKPRTL ~ 41P,11:58:38, LP= 1800, PART= 2

*% DISK MONITOR LOG UTILITY **
ATTN 'CA' - TO CANCEL REPORT
ENTER OUTPUT DEVICE (DEFAULT - $SYSPRTR):
LIST ALL ACTIVITY ON ALL DISKS (Y/N)? N
LIST ONLY A PROGRAM TRACE (Y/N)? Y
SELECTED TIME PERIOD (Y/N)? N

ANOTHER REPORT (Y/N)? N
$DSKPRT1 ENDED at 11:58:40
U : e

-
The following is sample output from a program trace.

$DSKPRT1 SUMMARY REPORT MM/DD/YY 11:58:38

ET(MS) MN/SC OPER DEV AD RBA BYTES S/R CYL-TK-SE SEEK DS/PGM VOL TERMINAL PROGRAM

160219 53 3 PROGSTOP-- (NON-DISK OPERATION) $DSKDDB

25922 5329 IOAD ---- (NON-DISK OPERATION) $SMLOG , $SYSLOGA $SMMAIN
142 53 30 LOAD ---- (NON-DISK OPERATION) $SMOPEN , $SYSLOGA $SMLOG
839 53 30 PROGSTOP-- (NON-DISK OPERATION) $SMOPEN

2251 53 33 IOAD ---- (NON-DISK OPERATION) $SMALOC , $SYSLOGA $SMLOG
543 5333 IOAD ---- (NON-DISK OPERATION) $DISKUT3, $SYSLOGA $SMALOC
223 53 34 OVERLAY-- (NON-DISK OPERATION) §% s $SYSLOGA $DISKUT3
174 53 34 OVERLAY-- (NON-DISK OPERATION) $$ ’ $SYSLOGA $DISKUT3
182 53 34 OVERLAY-- (NON-DISK OPERATION) $% s $SYSLOGA $DISKUT3
253 53 34 OVERLAY-- (NON-DISK OPERATION) $% . $SYSLOGA $DISKUT3
187 53 34 OVERLAY-- (NON-DISK OPERATION) $$ > $SYSLOGA $DISKUT3
185 53 34 OVERLAY-- (NON-DISK OPERATION) §3 s $SYSLOGA $DISKUT3
253 5335 OVERLAY-- (NON-DISK OPERATION) §% s $SYSLOGA $DISKUT3
121 53 35 PROGSTOP-- (NON-DISK OPERATION) $DISKUT3

12 53 35 PROGSTOP-- (NON-DISK OPERATION) $SMALOC
17 53 35 PROGSTOP-- (NON-DISK OPERATION) $SMLOG

Chapter 4. Utilities 4-201

$DSKPRT1

Respond to the prompts as shown in the example. The report, which is printed on
the system printer (SSYSPRTR), follows the example.

Example: List activity for programs loaded from a specific terminal

The following is sample output for activity performed by programs loaded from a
specific terminal.

$DSKPRT1 SUMMARY REPORT MM/DD/YY 11:58:15

ET(MS)

21

20
11798
1
14999

MN/SC

53 3
53 3
53 15
53 30
53 30

OPER DEV

WRITE 4963
WRITE 4963
WRITE 4963
WRITE 4963
WRITE 4963

4-202 SC34-0940

AD

49
49
49
49
49

RBA

199937
199938
2
200075
2

BYTES S/R CYL-TK-SE SEEK

256
256
256
2304
256

N
S
R
S
R

312 4 1 312
312 4 2 0
FIXED HEAD P/V
312 6 11 312
FIXED HEAD P/V

DS/PGM VOL

TERMINAL PROGRAM

$DSKDDBD,DKMEG1 $SYSLOG $DSKDDB
$DSKDDB D,DKMOO1 $SYSLOG $DSKDDB
SYSDATE ,EDXFIX $SYSLOG §.DATTIM

$DSKDATA,KEITH
SYSDATE ,KEITH

$SYSLOG $DKMN2
$SYSLOG $.DATTIM

$DSKPRT2

$DSKPRT2 — Print a Disk Activity Report
0 $DSKPRT?2 formats and prints the data that SDSKMON records.

You can use the SDSKPRT? utility to generate a report and an optional graph of
the disk activity for each disk device.

Loading $SDSKPRT2
Load $DSKPRT?2 with the SL operator command. $DSKPRT2 prompts for the
names and volumes of two data sets. (These are the two data sets you allocated in
order to use $DSKMON.) For more information, see “SDSKMON — Monitor Disk
I/O Activity” on page 4-194.

> $L $DSKPRT2,EDX001 ,
DATAFILE (NAME,VOLUME): DSKDATA, USERVOL

' DDBFILE (NAME,VOLUME): DDBDATA,USERVOL
| LOADING $DSKPRT2 41P,11:59:14, LP= 1800, PART= 2

OUTPUT DEVICE (DEFAULT - $SYSPRTR):

After the system loads SDSKPRT2, it prompts you for the terminal or printer where
you want the output displayed. $DSKPRT2 prompts for hexadecimal address of the
disk you want to list activity for.

C List the activity on the 4967 disk at address 54. The report, which is printed on
$SYSPRTR, follows the example. Reply Y to the SUPPRESS ZERO COUNT
CYLINDERS prompt to avoid listing cylinders that are not accessed (zero count).
When you reply Y to the “PRINT SEEK PLOTS (Y/N)?” prompt as shown in the
example below, the system prints a graph of the cylinder access and seek distance
frequencies.

Example:

L $DSKPRT2 DSKFILE,EDX001 DDBFILE,EDX001

Chapter 4. Utilities 4-203

$DSKPRT2

The following is sample output listing the activity on the 4967 disk at address 54.

An explanation of the report fields follows the sample output.

$DSKPRT2 - SEEK/CYLINDER DISTRIBUTION - MM/DD/YY 11:59:14 PAGE 1
FOR 4967 DISK AT DEVICE ADDRESS 54

READS ===> 339 FIXED HD ===> 0
WRITES ==> 0

TOTAL ===> 339 ESTIMATED CACHE ACCESSES ===> 268
ESTIMATED CACHE USAGE (%) ===> 79

CYLINDER ACCESS FREQUENCY

CYL - FREQ CYL - FREQ CYL - FREQ CYL - FREQ CYL - FREQ
0 - 259 1- 45 2 - 35
SEEK DISTANCE FREQUENCY

SEEK - FREQ SEEK - FREQ SEEK - FREQ SEEK - FREQ SEEK - FREQ
0 - 322 1- 8 2 - 9

CYLINDER ACCESS FREQUENCY

0 30 60 90 120 156 180 210 240 270 300

I e e e

0 ***(259)

1 [Frrrrrwk (45)

2 *******(35)

NO ACTIVITY/SEEK ABOVE 2

SEEK DISTANCE FREQUENCY

0 40 80 120 160 200 240 280 320 360 460

I e e e

***(322)

*(8)
*(9)

w N = o

NO ACTIVITY/SEEK ABOVE 2

4-204 SC34-0940

O

$DSKPRT2

Report Field Description
READS The total number of times the system performed a read operation.
WRITES The total number of times the system performed a write operation.

FIXED HEAD The total number of times the system performed a fixed-head
operation. $DSKPRT? records this operation only when the
fixed-head volume is a performance volume.

ESTIMATED CACHE ACCESSES
The estimated number of times the system accessed cache for the
disk.

ESTIMATED CACHE USAGE
The ratio of estimated cache accesses to the total number of READ
operations. This percentage is available only when estimated cache
accesses are recorded.

CYLINDER ACCESS FREQUENCY
This graph lists each cylinder and how many times it was accessed.
Use this graph to decide where to place files.

SEEK DISTANCE FREQUENCY
This graph lists the seek distance and how many times the seek
occurred. Seek distances are listed from 0—1024. The seek distance
frequency graph provides a measure of the cylinder arm movement.

Chapter 4. Utilities 4-205

$DUMP

$DUMP — Format and Display Saved Environment O

$DUMP displays on a terminal or printer the contents of the data set generated by
the STRAP utility or stand-alone dump facility. After the successful execution of
$TRAP and the subsequent occurrence of a trap condition, the data set assigned to
$TRAP or the stand-alone dump will contain a storage image. Use SDUMP to
retrieve, format, and print the data on a terminal or printer. The Problem
Determination Guide shows how to interpret the output of SDUMP.

»Notes:

1. To print the contents of a stand-alone dump or STRAP diskette that you created
with $DASDI, use the data set and volume name $SEDXLIB,IBMEDX.

2. Taking a stand-alone or $TRAP dump allows you to dump unmapped as well as
mapped storage.

3. You can specify a partial dump of mapped storage but not of unmapped
storage.

Loading $SDUMP

Load $DUMP with the $L command or option 9.1 of the session manager.

Example 1: Partial dump of partition 3 to printer using $STRAP output.

4-206 SC34-0940

(o i > |

gE o

1

!

1

[
N

$SDUMP

The data set you specify here must be the same as the one you defined when
you executed $STRAP.

You can specify a terminal to receive the output from $DUMP. If you press
the enter key or enter SDUMP, the dump program assumes that it should
direct the output to the terminal where you loaded $DUMP. Using the
attention key followed by CA cancels any current $DUMP operation (such as
control blocks or mapped storage) but not the SDUMP program itself.

Reply Y to this prompt if you want the dump printed in two columns. If you
reply no to the prompt, the dump is printed in one column.

Reply N to this prompt if you do not wish to copy the diskettes to disk.

Reply N to this prompt to display all of storage. If any unmapped storage
resides in the data set, the system prompts you with DUMP UNMAPPED
STORAGE?. After you answer the prompt, the output display begins
immediately and continues until the system dumps all of storage or you enter
an attention CA. If you respond Y, SDUMP allows you to display certain
sections of mapped storage.

If you want a formatted display of the control blocks, respond to this question
with a Y.

If you want to dump mapped storage, respond with a Y and you will get the
PARTIAL DISPLAY? prompt. If you respond N, the system does not issue
the PARTIAL DISPLAY? prompt.

Enter a number 1 — 16 for the valid partition number that contains the storage
you want to dump.

Enter the starting and ending addresses of the storage you want to dump.

If you want to dump another mapped storage area, respond with a Y. The
system then prompts for the valid partition.

If you want to dump unmapped storage, respond with a Y. The system then
dumps all of unmapped storage. If you do not have mapped storage defined
on your system, you will not get this prompt.

SDUMP allows you to request several dumps. If you respond with a Y,
$DUMP prompts you again, starting with the DUMP MAPPED STORAGE

(Y/N)? prompt.

Chapter 4. Utilities 4-207

$DUMP

4-208 SC34-0940

Example 2: Formatted display of control blocks.

IAR
AKR

R7

FRO

FR3

BLOCK
0000
0800
F800

BLOCK

0000
0800

F8e0

LEVEL ©
568A
6D0o0

0000

0000 0000
0000 0000

0000 0000
0000 0000

LEVEL 1
55AC
0000

0000

0000 0000
0000 0000

0000 0000
0000 0000

SVCI INTERRUPT TABLE

REQ ADDR AKR

STORAGE SEGMENTATION

ADSOO ADSO1

0004 0104

0oeC 010C

06FC O1FC

ADS08 ADS09

0804 0904
080C 096C

08FC 09FC

NO SVCI INTERRUPTS PENDING

LEVEL 2
062E
oDD7

0007

0000 0000
0000 0000

0000 0000
0000 0000

NO CHECK LOG ENTRIES SINCE IPL

REGISTERS:

ADS02 ADSO3 ADS04 ADSO5

0204 0304 0404 0504

020C 030C 040C 050C

02FC 0Q3FC 04FC 05FC

ADS10 ADS11 ADS12 ADS13

0AO4 0BG4 0CO4 0DO4
BGAOC 0BOC 0CeC obpoC

OAFC OBFC 0OCFC ODFC

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

AT TIME OF TRAP PSW WAS 8102 ON HARDWARE LEVEL 2

LEVEL 3
55AC
0000

0000

0000 0000
0000 6000

0000 0000
0000 0000

ADSO6

0604

060C

06FC

ADS14

OE04
0EeC

OEFC

SVC-LSB
55AC
0000

0000

0000 0000
0000 0000

0000 0000
0000 0000

MACHINE/PROGRAM CHECK LOG BUFFER _ LATEST ENTRY PRINTS LAST

ADSO7
0704
070C
07FC
ADS15

0Fo4
OFoC

OFFC

SVCI-LSB
5584
0000

0000

0000 0000
0000 Q006

0000 0000
0000 0000

$SDUMP

BLOCK

0000
0800

F800
BLOCK

0000
0860

F800

1/0 SEGMENTATION REGISTERS:

BLOCK

0000
0800

F800
BLOCK

0000
0800

"F800
BLOCK
0000
6800
*Fa00
BLOCK
6000

0800

F800

ADS16 ADS17

1004 1104
160C 110C

10FC 11FC
ADS24 ADS25

1804 1904
180C 196C

18FC 19FC

BNKGO

0004
0eec

00FC

BNKO8

0804

080C

08FC

BNK16

1004

100C

10FC

BNK24

1804
180C

18FC

BNKO1
0D04
003C
01FC
BNKO9
0904
090C
09FC
BNK17
1104
110C
11FC
BNK25
1904

190C

19FC

ADS18

1204
120C

12FC
ADS26

1A04
1A0C

1AFC

BNKO2

1A14
1A14

0Do4

BNK10

0A04
0AOC

OAFC
ANK18
1204
120C
12FC
BNK26
1A04

1A0C

1AFC

ADS19

1304
130C

13FC
ADS27

1B04
1BaC

1BFC

BNKO3

opoc

ehlole

1884

BNK11

0BOA
0BOC

OBFC
BNK19
1304
130C
13FC
BNK27
1B04

1BaC

1BFC

ADS20

1404
140C

14FC
ADS28

1Co4
1cecC

1CFC

BNKO4

6D04
0D3C

0D4c

BNK12

0co4
0cec

0CFC

BNK20

1404

140C

14FC

BNK28

1C04
1coC

1CFC

ADS21

1504
150C

15FC
ADS29

1D04
1DecC

1DFC

BNKO5

0D3C
0D4C

0D4C
BNK13
0Do4
anoec
ODFC
BNK21
1504
150C
15FC
BNK29
1Do4

1pboc

1DFC

ADS22

1604
160C

16FC
ADS30
1E04
1EQC

1EFC

BNKO6

0604
060C

06FC

BNK14

OEO04

OEGC

OEFC

BNK22

1604

160C

16FC

BNK30

1E04

1E0C

1EFC

ADS23

1704
170C

17FC
ADS31

1F04
1F0C

1FFC

BNKO7

0F04
0D4ac

07FC

BNK15

0Fo4

oFoc

OFFC

BNK23

1704

170C

17FC

BNK31

1F04

1FeC

1FFC

Chapter 4. Utilities

4-209

$DUMP

4-210 SC34-0940

STORAGE MAP:$SYSCOM AT ADDRESS 4DAO

EDXFLGAS 6000 SVCFLAGS 10BO
PART# NAME ADDR PAGES ATASK TCB(S)
P1 ADS= 0 0000 256

DATA B500 2
FREE B700 73

P14 ADS=13 0000 256
$TRAP 0000 62 3AB2 162C 1458
TRAP1 3E00 1 3E52
FREE 3F00 193

P32 ADS=31 0000 256
FREE 0000 256
EDX LEVEL TABLE - TCB READY CHAIN

LEVEL ACTIVE READY (TCB-ADS)
1 NONE NONE
2 3E52-13 NONE
3 NONE NONE

LOADER QCB CUR-TCB CHAIN (TCB-ADS)

8AE2 FFFF NONE NONE

I0 DEVICE DDB INFORMATION
TERMINAL LIST:
NAME CCs ID IODA FEAT QCB CUR

$SYSLOG 25B0 FFFF 00BO 0600 FFFF NON

;BANDZ 477E 2002 0083 0020 FFFF NON
DISK(ETTE) OR TAPE VDE :

VDE NAME DDB FLAGS QCB CUR-TCB

1542 *DDE* 1570 0800 819E NONE

1640 *DDE* 166E 0800 819E NONE

2126 *DDE* 2154 2817 819E NONE

-TCB

E

E

CHAIN

NONE
NONE

NONE

CHAIN

NONE

NONE

C

SDUMP

DDB IODA DEVID DSCB-> TASK DSCB-CHAIN

1570 0048 3106 550E-13 222C NONE
166E 0050 3106 550E-13 22AC NONE

2154 0022 0126 B7D4- © 24AC NONE
EXIO DEVICE LIST

NO EXIO DEVICE SYSGENED

BSCA DEVICE LIST
DDB ID 1IODA
4958 1006 0000
49FE 1006 0060

LCC DEVICE LIST
DDB ID 1IODA

4AA4 320E 0090

4BA6 320E 0091

4CA8 320E 0092

NATIVE TIMER

TIMER DDB CHAIN (TCB-ADS) 0:36:48 0/00/00

811C NONE

If you have a program that is using unmapped storage, dump the partition where the
program is running as well as the unmapped storage area. Determine which
unmapped storage pointers relate to your program by locating the STORBLKS
within your program. Then use the unmapped storage equate ($STORUSR) to
determine the address of the start of the list of unmapped storage pointers within
this STORBLK. The unmapped storage pointers listed within the STORBLK are
owned by your program. They point to 2K blocks of storage which should have
been printed out. Use these pointers to locate the correct 2K blocks in your
$DUMP listing. Refer to the Problem Determination Guide for additional
information.

The following example shows a dump using stand-alone dump output.

Chapter 4. Utilities 4-211

$DUMP

Example 3: How to copy a stand-alone dump from diskette(s) to disk.

C

4-212 SC34-0940

C

SEDIT1 and EDITIN

SEDIT1 and EDITIN — Line Editors

$EDIT1 and $EDITI1N provide a text editing facility (primarily used for source
program entry and editing) that you can load while other programs are executing.
The Host Communication Facility-related version (SEDIT1) provides a few
commands for data communication using the Host Communications Facility IUP on
the System/370; with them you can control almost the entire process of program
preparation from a Series/l terminal.

Both utilities work with 80-character lines with line numbers in positions 73 — 80.
You load them with the $L operator command.

Data Set Requirements

The editing facility requires one work data set; you must allocate it on disk or
diskette using $DISKUT1. The system prompts you for its name when you load
either version. This data set contains both your data and some index information
during the editing session. The size (number of records) of the data set determines
the maximum number of data records that it can contain. It is divided into three
parts:

1. One header record

2. A series of index records (32 entries per record)

3. A series of data records (3 entries per record).
You can calculate the required data set size as follows: number of text lines (n)
divided by 30, times 11, plus 1 ((n/30 x 11) + 1).

Note: The data set must contain fewer than 32768 records.

Loading $EDIT1 or $EDITIN

Load $EDIT1 or $EDITIN with the $L operator command. The session manager
does not support either utility.

Chapter 4. Utilities 4-213

SEDIT1 and EDITIN

Sequence of Operations

4-214 SC34-0940

When you load $EDIT1 and $SEDITIN, they prompt you for the name of the work
data set. If you are going to edit an existing data set, use the READ command to
copy the data set to the work data set. For a new data set, enter edit mode. You
can print the contents of the work data set by using the LIST command.

Use the EDIT command to enter edit mode. The system then recognizes “Edit
Mode Subcommands” on page 4-222 until you end the utility with the END
command.

Note: You should use the VERIFY ON subcommand until you become familiar
with the editing process.

Use the TABSET subcommand if you want to specify the tab character and tab
column. TABSET eliminates blanks when a substantial amount of the text you are
entering is in tabular format or begins in a particular column.

You can enter data a line at a time under the INPUT subcommand (recommended
for new data sets and bulk sequential updates because of the automatic prompting
feature) or by using the line editing function (for single-line corrections). You can
list portions of the edited data at the terminal by using the LIST command.

The FIND, TOP, BOTTOM, UP, and DOWN subcommands control the position of
the current line pointer.

You can end edit mode with the END command. After you have edited the text,
use either the WRITE or SAVE subcommand to copy the work data set to a
permanent data set. The work data set is in a blocked format that is incompatible
with most Event Driven Executive functions. Therefore, the system performs
automatic translation from text editor format to source statement format.

G

SEDIT1 and EDITIN

The following figure shows the primary commands and subcommands available
under $SEDIT1/$EDITIN.

>$L $SEDIT1/N

-

A
(Editor ready >

A Y
LIST (printer) END $EDIT1/N EDIT

READ
4
(Edit mode >

WRITE
Y [

SUBMIT

INPUT END LIST (terminal) LINE EDIT
VERIFY
RENUM
SAVE
TABSET

Commands

Subcommands

CHANGE
COPY
DELETE
MOVE

FIND
TOP
BOTTOM
up
DOWN

IS
BG1213

Figure 4-7. $SEDIT1/$EDITIN Commands and Subcommands

Chapter 4. Utilities 4-215

$SEDIT1 and EDITIN

Special Control Keys

1. End-of-Line Character (see note below). You can use the carriage return key

(CR)/ENTER to end an input line.

. Line-Delete Character (see note below). You can use the delete key (DEL) of
certain teletypewriter terminals to delete an input line.

Note: You can define the CR and DEL keys in the TERMINAL statement.
Refer to the Installation and System Generation Guide.

. Character-Delete Character. You can use the backspace (BS) key on terminals
for the character delete function. On teletypewriter terminals, use the CTRL
and H keys simultaneously.

. Tabulation Character. You can set the TAB character to the character of your
choice. “%?7” is the default TAB character. Columns 10, 20, 40, and 72 are the
default TAB columns.

. ATTN Key (4978/4979), ALT MODE and PF8 Key (3101 or equivalent), or
ESC or ALT MODE Key (teletypewriter terminals). You can cancel the
subcommands CHANGE, FIND, and LIST, described below, by pressing the
ATTN/ESC key and entering, as a special system utility function, the

two-character code CA. This feature is useful, for example, to end a long listing.

Editor Commands

The editor commands are described in the following pages. Unless specifically
indicated, the commands apply to both the host and native versions of this utility.

The editor commands are:

Command

Description

EDIT

Enters edit mode; allows edit subcommands

END

Ends $EDIT! and $EDITIN

LIST

Lists the work data set on the system printer

READ

Reads a source data set into the work data
set

SUBMIT

Submits a job to the host batch job stream

WRITE

‘Writes the work data set into a source data
set

The descriptions that follow show the syntax of
operands associated with them.

4-216 SC34-0940

the editor commands, including any

O

C

C

$EDIT1 and EDITIN

EDIT — Enter Edit Mode

Use EDIT to begin editing source data.

Syntax:

EDIT OLD/NEW

Required: none

Defaults: NEW when using a newly allocated work data set
OLD when using an old work data set

Alias: E.ED '

Operands Description

OLD Indicates that data exists in the data set you want to modify.
NEW Indicates that you are creating new data.
Notes:

1. You must enter the EDIT command before you can use the editor
subcommands.

2. When you are in edit mode, you must enter the subcommand END or SAVE
before you can use the editor commands listed on the preceding page.

END — End $SEDIT1/$EDITIN

Use END to end $SEDITI or SEDITIN.

The system will not change the contents of the edit work data set. You can reload
SEDIT1/$EDITIN at a later time and continue.

Syntax:

END

Required: none
Defaults: none
Alias: EN

Operands Description

None None

LIST — List Work Data Set

Use LIST to print all or part of the work data set on the system printer
($SYSPRTR). You can enter a single line number or a pair of line numbers to
specify a line range. If you do not enter any line numbers, the system lists the entire
data set. You can end the listing by pressing the attention key and entering CA.
Note a similarity to the EDIT subcommand. If you use LIST as a command
following READY, the system prints the data set on $SYSPRTR. If you use LIST
as a subcommand following EDIT, the system displays the data set on your
terminal.

Chapter 4. Utilities 4-217

$SEDIT1 and EDITIN

Syntax:

LIST line-spec

Required: none
Defaults: none
Alias: L,L1

Operands Description

line-spec “*” (for the current line) or “line-number” to indicate a single line to
be listed. “* COUNT” or “linenum1 linenum?2” to display a range of
lines. If you omit this operand, the system prints the entire data set.

Example:

LIST 10 100
L*5

L *

LI

READ — Retrieve Host Data Set ($EDIT1)
Use READ to retrieve a data set from the host system and store it in your Series/1
work data set.

You must have the Host Communications Facility on the System/370.

Syntax:

READ dsname

Required: none - system prompts for dsname
Defaults: R, RE
Alias: none

Operands Description

dsname The fully qualified name of the host data set to be retrieved. It must
contain fixed length, 80-byte records, with line numbers in columns
73 —80.

You can enter the command and name together on the same line or enter
the command READ and the system prompts you for the data set name.

4-218 SC34-0940

$SEDIT1 and EDITIN

READ — Retrieve Series/1 Data Set (SEDIT1N)

Use READ to retrieve a named data set from a volume on the Series/1 disk or
diskette and store it in a Series/1 work data set.

Syntax:

READ dsname volname

Required: none - system prompts for operands
Default: none
Alias: R, RE

Operands Description
dsname Name of data set you want to retrieve.

volname Name of the volume containing the data set you want to retrieve.

Notes:

1. You can enter these operands as responses to system prompts.
2. You cannot use READ to retreive a data set with extents.

SUBMIT — Submit Job to Host (SEDIT1)

Use SUBMIT to place a job (job control statements and optional data) into the host
batch job stream.

You must have the Host Communications Facility on the System/370.

Note: Use this option only in systems with a HASP or JES/Host Communication
Facility interface.

Syntax:

SUBMIT dsname|DIRECT

Operands Description

dsname The fully-qualified name of the host data set, the contents of which you
want entered into the job stream. This data set must contain
fixed-length, 80-byte records.

DIRECT If you specify DIRECT, the system transfers the contents of your edit
work data set directly to the host job stream.

Chapter 4. Utilities 4-219

SEDIT1 and EDITIN

WRITE — Write Work Data Set to Host ($SEDIT1)

4-220

SC34-0940

Use WRITE to transfer your Series/1 work data set to a host data set. The system
assumes that you have edited or created your data set with the SEDIT1 utility
program.

You must have the Host Communications Facility on the System/370.
If you previously specified a host data set, the utility asks if you wish to reuse it. If
you do not