SHRP-P-619

Soil Moisture Proficiency Sample Program

Garland W. Steel, P.E. Steel Engineering, Inc.

Strategic Highway Research Program National Research Council Washington, DC 1993

PUBL. NO. SHRP-P-619

Program Manager: Neil Hawks Production Editor: Marsha Barrett Program Area Secretary: Cindy Baker

February 1993

key words: base course aggregates cohesive soils

Strategic Highway Research Program National Academy of Sciences 2101 Constitution Avenue N.W. Washington, DC 20418

(202) 334-3774

The publication of this report does not necessarily indicate approval or endorsement of the findings, opinions, conclusions, or recommendations either inferred or specifically expressed herein by the National Academy of Sciences, the United States Government, or the American Association of State Highway and Transportation Officials or its member states.

© 1993 National Academy of Sciences

Acknowledgments

The research described herein was supported by the Strategic Highway Research Program (SHRP). SHRP is a unit of the National Research Council that was authorized by section 128 of the Surface Transportation and Uniform Relocation Assistance Act of 1987.

Contents

Acknowledgments iii
Abstract
Summary of Research
Appendix I-Descriptive test results on materials used by AMRL for samples 5
Appendix II-AMRL report on SHRP Moisture Content Proficiency Sample Program 13
Appendix III—Correspondence regarding transmitting AMRL report 103
Appendix IV—Correspondence concerning analysis of data
Appendix V-Memorandum on variance component analysis
Appendix VI-Example of report distributed to each participant
Appendix VII-AASHTO/ASTM format precision statements

.

Abstract

This report describes the development of the Long-Term Pavement Performance (LTPP) soil sample selection process based on the American Association of State Highway Transportation Officials (AASHTO) model. Lab results present the bias in determining moisture content in cohesive soil and base course aggregate samples.

SUMMARY OF RESEARCH

•

.

FINAL RESEARCH REPORT on the SHRP SOIL MOISTURE PROFICIENCY SAMPLE PROGRAM

One element of Quality Assurance (QA) for laboratory testing that was deemed to be of key importance by SHRP, as a result of Expert Task Group (ETG) recommendations, is the American Association of State Highway and Transportation Officials (AASHTO) accreditation program (AAP) for laboratories. All laboratories providing long term pavement performance (LTPP) testing services were required Most of the laboratory tests on LTPP to be accredited by AAP. field samples were addressed by the AAP, which includes on site inspections of equipment and procedures, and participation in applicable proficiency sample series. However, a few critical tests in the SHRP LTPP studies were not fully addressed. After extensive consultation and careful study, it was determined that supplemental programs should be designed to provide assurance of quality test data in a manner similar to that provided by AAP for other tests.

The Soil Moisture Proficiency Sample Program was one of the supplemental programs approved for implementation. The program was designed to provide precision and bias data concerning standard tests for moisture content of subgrade soils and base course aggregates.

The soil moisture program was modeled after the familiar AASHTO Materials Reference Laboratory (AMRL) proficiency sample programs at the National Institute of Standards and Technology (NIST). The moisture samples were prepared and distributed to participants, the raw test data was collected and collated, and a report documenting the program was issued for SHRP by the AMRL.

Two different cohesive soils were supplied for the program by the Maryland Department of Transportation's Materials Laboratory. These soils were from the same sources that were used in the Type II Soil Proficiency Sample Program. Soil classification data is contained in appendix I.

Two different base course aggregates were supplied for the program by the University of Nevada-Reno. The aggregates were from the same sources that were used in the Type I Proficiency Sample Program. It is also noted that these materials were obtained from SHRP reference material sources, Watsonville Granite at Monterey, California and Kaiser at Pleasonton, California. Classification data for the materials used is contained in appendix I.

AMRL thoroughly blended, then split each of the four primary materials into two approximately equal parts, one part to

eventually provide material for dry samples and the other part to eventually provide material for wet samples. Each of these 8 parts was then split again into two approximately equal portions designated as split A and split B. Each of the 16 splits(8 A and 8 B) was then split to yield 64 test samples. 8 of the sets of 64 samples were finally processed for distribution in an air dried condition and the other 8 sets were processed for distribution in a wet condition. Finally, 20 groups of 3 test samples each were randomly selected from each of the 16 sets of 64 test samples and identified for shipment to each participating laboratory. Every participant received a total of 48 test samples (16 groups of 3 test samples each).

All samples were selected and identified in accordance with statistically acceptable random procedures. The entire experiment was designed in consultation with SHRP statisticians to allow a complete components of variance analysis to be conducted as resources allowed.

Instructions to the participants (appendix II, page 7) provided directions concerning test sequencing, identification and procedure to follow (AASHTO T265).

Raw test data was returned to AMRL for collation and incorporation into the AMRL report (appendix II). The report was forwarded to the SHRP Quality Assurance Engineer when all data had been received. It was then transmitted to the SHRP Statistician for analysis and determination of test precision and bias.

The Statistician's report (appendix V) provides a full explanation of the data analysis along with complete information derived therefrom.

Precision statements (appendix VII) were drafted in the standard AASHTO\ASTM format for use by standards writing committees as they deem appropriate.

The appendices to this report contain the complete set of supporting documents for this program as listed in the table of contents.

Seventeen (17) laboratories participated in this experiment. Each participant has made a substantial contribution to the successful completion of SHRP research in the LTPP program.

The participants are listed in Appendix II, page 11.

APPENDIX I

.

SHA -73.0-32 REVISED 3-75 MATERIALS AND RESEARCH Laboratory Worksheet COMBINED HYDROMETER, SIEVE ANALYSIS AND TEST DATA SHEET CONTRACT: HO - 292- 202 - 771 AS & R.F. LOG NO.: HU- 7289 FIELD CLASS ICATI LOCATION - STA. 672 + 50 150' RT. 18 SURY. DEPTH: 0.5 70 EST. MOIST. : A OPT. MOIST. DATE: 6-5-90 CUT E FILL D NC/NF DENTI DATE 6-20-90 CHECKED BY 1.9 DATE 6/79/6-OPERATOR LTD A47 * AASHO Ac(3) EST. C.B.R. VALUE _ G CLASSIFICATION : MSMT SHRINKAGE LIMIT 18 LIQUID LIMIT I : 32 SHRINKAGE RATIO PLASTICITY INDEX: //_ ☐ FACTOR 598% T-99 MOISTURE DENSITY (T-180 _____ MAX. DEN. = _____ (} IT-180 _____ MAX. DEN. = _____ pcf OPT. MOIST. = ___ □ T-99 _____ MAX. DEN. = _____ pcf OPT. MOIST. = ___ % RELATIONS % GRADATION (PERCENT PASSING by WEIGHT) 2 %______ %_____%99____ #40____ PERCENT OF SOIL MORTAR 7/ *COARSE SAND: (2.0-0.42mm) _ DATA 46 63 *FINE SAND: (0.42-0.075mm) 26 ∛8 2" _ #60 __ 94 #100 55 SILT : (0.075 - 0.005 mm) 23 ا ∦ #4 EST *E*7 *#*200 ____ 47 * CLAY : (0.005 - 0.001 mm) ۳_ 100 #10 _ 31 99 #30 _____ #270 ___ 34" _____ COLLOIDS: (0.001 mm Minus) _ MOISTURE AT _____ ()= ____%(); MOISTURE AT_____(□ P.H. ______, □ OTHER TESTS <u>SI.CL > 2.C</u>7 □ C.B.R. ______ % () ___%, 🗆 P.H. _ ORGANIC TEST COLOR % REMARKS: * TR. RF SOIL STABILIZATION ATTN. B. KOCHEN * AND MICA 🖪 24 Hr. Both □ MSMT □ [#]40 Wash □ [#]200 Wash 🗆 No Bath Required MECHANICAL ANALYSIS DATA (W_o) 23.12 TEST SAMPLE H YGRO W_a × 100 ÷ (% HYGRO + 100)= W_s (Ws)- 22.66 (W,) . 26 × 100 ÷ Ws= 1.1 55.19 Ws= % HYGRO ₩a = 54.59 (R/W_s)XIOO EST. MAX. % CLAY^A SIZE COARSE SAND PLO - P.40 = SEDIMENTATION TEMP н С R 18 BATH ٩F P.10 - P.40= START MIN mm FINE SAND 28 P.40 - P.200= .005 FINE SIEVE ANALYSIS NOMENCLATURE WHERE PP = $\frac{Wp}{We} \times 100$ MAX Pp 10=100 WHERE : GRAIN ONS % TOTAL Pp SAMPLE PASS SIEVE Wa= $W_n = Air Dry(qm)$ 54 59 W_s = Oven Dry (gm) CULAT W_w'= Water Wt. (gm) #30 0.60 Wp= H = Hydrometer Reading **‡** C = Temp. Correction Factor AL 9.01 w. #40 0.425 R = Corrected Hydrom. Reading .87 7/ 82 03 + 82 Wor 44.78 $P_{R} = \%$ Samp Retained on Sieve کک ک P_P = % Sample Passing Sieve W١ #60 . 87 0.250 63 Wp 39.25 71.06 + 72 $W_i = Wt$. Retained on Sieve (gm) S = % Total Sample Passing 4.8! #100 Wa -0150 .87 #10 Sieve 55 Wo= 34.42 63 05 + 63 Wp = Wt. Passing Sieve (gm) 5.09 Wi #200 0.075 .87 47 53:73 + 54 Wp= 29.33 Wr Wp= 0.053 #270 +

LO	G. NO	HO . 7	2 8 7		24	HOUR	HYDRO	METER	ANALYS	SIS				
	$P = \frac{R}{V}$	a V, × 100						d = d ₁ × K _L × K _G × K _n						
ļ	WHERE :							WHERE :						
FORMULA	R = (a = (W _s = (H = (C = (S = (% Soil in Corrected Constant Oven Dry Hydromet Correctio % Total S	d Hydrom - Depend Weight c er Readi n Factor Sample P	eter Red ling on S of Test S ng, Unco for Tem assing #	Specific ample rrected. perature	·		d, = M K _L = C K _g = C K _n = C	ax. Grain prrection prrection prrection	Dia. Und for Ele for Va	Diameter ler Assumivation of riation c riation c ium.	Hydrom of Specit	eter (H) fic Gra	
_	S, =	% Total : 0.9			54.59		% Total S	ample P	assing #	#IO(S)	87	Sp.	Gr	2.67
	TEMP. °F		+ C =		(<u>100 a</u> Ws		T	OBS. TIME	T MIN.		< К_ ×			
			-						30 sec.	.081				
			-						1	.057				
SNO	76	31.5	- 5 2	26.3	1823	47.9	42		2	.040	. 83/	. 0	380	.032
CALCULATIONS	74	30.0	1	24.B		45 Z	31		5	.026	. \$ 40	.0	247	.021
ALCL	75	27.5	- - <u>5</u> .4	22.1		40.3	35		15	.015	5ذ8.	0	لم لم ا	.0/2
o	75		- <u>5</u> .4	20.6	<u> </u>	37.6	33		30	.010	. B 64		096	.0083
	75	1	- 5.U			33.9	29		6 0	.0074	. 8 76		071	. 0062
	74		- 5.6	15.4		ze.1	24		250	.0036	895		35	.003/
	74	180	- - 5,6	12.1	1,473	226	20		1440	.0015	. 910	.0	01 4	.00/3
		1			NALYSI		ASHO D	E SICNA			AND T.			1.00,0
			MECHAI		STANDARD		IZE					ROMETER		
	100		Ō	Â	₹ <u>£</u>	<u>2</u> 2	No 30	No 60	ź	No 270				o
	90													ia
	(9N 80					*								00 00 00 00 00 00 00 00 00 00 00 00 00
	(PASSING) 20													RET
												┊┼┽┽╍┾╍┾		3° ~
	WEIGHT					1								VEIGHT
	× ⊱ ⁵⁰									+				5° 28
										16				
											S			COARSER
	20 20 20													~ ⁷⁰ 5
	25 ZO												$\pm \pm$	PERCENT O
	L 10												+	
	o.		250	8.06 6	4 75	50		0.25	01	11 1 12			<u> </u>	
,	<u> </u>		n 12 17	<u>e</u> v,	4	æ	AIN SIZE I			0.053	0.0	0.005	0.002	0.00
			GR	AVEL		1	SAN	ND						

.

SHA -									
REVIS	MATERIALS AND RESEARCH Laboratory Worksheet COMBINED HYDROMETER, SIEVE ANALYSIS AND TEST DATA SHEET								
		COMBINED	HYDROME	TER, SIE	VE ANAL	YSIS AN	D TES	T DATA SHEET	
DENTIFICATION	1 00 41	TION - STA						ELD CLASS: DEPTH: FILL D NC/NF D DATE <u>3 ~ 2/ - 90</u>	
TEST DATA	LIQUIC PLAST MOIST 2 ½ 2" 1" 34" MOIST □ 0 □ 0	LIMIT	F-180 T-99 PASSING by D/OU D ()=_	SHRINKAGE SHRINKAGE MAX. WEIGHT) #40 _ #60 _ #60 _ #200 _ #270 _ %, □ PH.	LIMIT: RATIO: DEN. = DEN. = 91 83 75 62 }; Mi	PERC 	SHR pcf pcf CENT_OF RSE_SAN SAND: ': (0.07 Y: (0.07 Y: (0.07 Y: (0.07 COIDS: (0 AT OTHER	EST. C.B.R. VALUE INKAGE $) 95\% T-180$ FACTOR $) 98\% T-99$ OPT. MOIST. = OPT. MOIST. = F SOIL MORTAR (0.42 - 0.075mm) /	
:	_ _				#10.000				
	I	24 Hr. Bath 26. 39	MS			LYSIS	DATA	🗆 No Bath Required	
	(W°)	26 39	⊡ MS ME	CHANICA		LYSIS TEST SAN Wa x 100	DATA	GRO + 100)= Ws	
	(W.) (W.) (W.)	26 39	□ MS ME 00 ÷ Ws= TEMP	2.9 %	AL ANA	LYSIS TEST SAM W _a × 100 W _a = <u>5</u> (R/W _a)x100	DATA IPLE +(% HY(. 4 / EST. MAX. GRAIN	GRO + 100)= Ws Ws= 53.85	
	(W.) (W.) (W.)	26 39 - <u>25 65</u> - 74 × 1 SEDIMENTATION	□ MS ME 00 ÷ Ws=	CHANICA	AL ANA	LYSIS TEST SAN W. × 100 W.= 55	DATA IPLE +(% HY(GRO + 100)= Ws Ws= 53-85 *COARSE SAND P, 10 - P, 40 = 9	
	0 (W°) (M°) (M°) (M°)	26 39 - <u>25 65</u> - 74 × 1 SEDIMENTATION	□ MS ME 00 ÷ Ws= TEMP	2.9 %	AL ANA	LYSIS TEST SAM W _a × 100 W _a = <u>5</u> (R/W _a)x100	DATA PLE +(% HY(. 4 / EST. MAX. GRAIN SIZE	$GRO + 100) = W_s$ $W_s = 53.85$ $*COARSE SAND G$	
		26 39 - <u>25 65</u> - 74 × 1 SEDIMENTATION	□ MS ME 00 ÷ Ws= TEMP	CHANICA 2.9 % H + C	HYGRO	LYSIS TEST SAM W _a × 100 W _a = <u>5</u> (R/W _a)x100	DATA PLE +(% HY(. 4 / EST. MAX. GRAIN SIZE mm	$GRO + 100) = W_{s}$ $W_{s} = 53.85$ $COARSE SAND 9$ $P_{p} 10 - P_{p} 40 = 9$ $FINE SAND 9$ $P_{p} 40 - P_{p} 200 = 29$ NOMENCLATURE	
IONS		26.39 - <u>25.65</u> .74 × 1 SED IMENTATION RT MIN. - Pp = WP WS × 100	□ MS ME 00 ÷ Ws = TEMP °F FINE SIEVE	CHANICA	HYGRO	LYSIS TEST SAM W _a × 100 W _a = <u>5</u> (R/W _a)x100	DATA PLE +(% HY(EST. MAX. GRAIN SIZE MAX. GRAIN SIZE	GRO + 100)= W _s $W_{s}= 53.85$ *COARSE SAND P _p 10 - P _p 40 = 9 FINE SAND 29 P _p 40 - P _p 200 = 29 NOMENCLATURE WHERE: W ₀ = Air Dry (gm)	
CULATIONS		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	□ MS ME 00 ÷ Ws = TEMP °F FINE SIEVE	2.9% H + C 	AL ANA	LYSIS TEST SAN W ₀ × 100 W ₀ = <u>5</u> (R/W ₃)XIOO % CLAY ^A	DATA PLE +(% HY(EST. MAX. GRAIN SIZE MAX. GRAIN SIZE	GRO + 100)= W _s $W_{s}= 53.85$ *COARSE SAND P _p 10 - P _p 40 = 9 FINE SAND 29 P _p 40 - P _p 200 = 29 NOMENCLATURE WHERE: W ₀ = Air Dry (gm) W _s = Oven Dry (gm) W _w = Water Wt. (gm) H = Hydrometer Reading	
CALCULATIONS		$\frac{26 \ 39}{74 \ x1}$ SED IMENTATION RT NIN Pp = $\frac{Wp}{Ws} \times 100$ E No. 53.85	□ MS ME 00 ÷ Ws = TEMP °F FINE SIEVE FINE SIEVE	2.9 % H + C 	AL ANA	LYSIS TEST SAN W ₀ × 100 W ₀ = <u>5</u> (R/W ₃)XIOO % CLAY ^A	DATA IPLE +(% HY(. 4 / EST. MAX. GRAIN SIZE MM SIZE MM	GRO + 100)= W _s $W_{s}= 53.85$ *COARSE SAND P _p 10 - P _p 40 = 9 FINE SAND 29 P _p 40 - P _p 200 = 29 NOMENCLATURE WHERE: W ₀ = Air Dry (gm) W _s = Oven Dry (gm) W _s = Oven Dry (gm) W _s = Water Wt. (gm) H = Hydrometer Reading C = Temp. Correction Factor R = Corrected Hydrom. Read	
CALCULATIONS	02 (W.) (W.) (W.) (W.) (W.) (W.) (W.) (W.)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	□ MS ME 00 ÷ Ws = TEMP °F FINE SIEVE FINE SIEVE FINE SIEVE	2 9 % H + C 	AL ANAI HYGRO = R *100 :: 3/100	LYSIS TEST SAN $W_c \times 100$ $W_c = 55$ (R/W_s)XIOO % CLAY^ SAMPLE PASS 9/	DATA IPLE +(% HY(EST. MAX. GRAIN SIZE mm OO5 MAX. GRAIN SIZE mm 0.60	GRO + 100)= W_s W_s = 53.85 *COARSE SAND $P_p 10 - P_p 40 = 9$ FINE SAND 29 $P_p 40 - P_p 200 = 29$ NOMENCLATURE WHERE: W_o = Air Dry (gm) W_s = Oven Dry (gm) W_s = Oven Dry (gm) W_s = Oven Dry (gm) W_s = Oven Dry (gm) W_s = Correction Factor R = Corrected Hydrom. Read P_R = % Samp. Retained on Sieve W_1 = Wt. Retained on Sieve (gr	
C C ALCULATIONS	02 (W.) (W.) (W.) (W.) (W.) (W.) (W.) (W.)	$\frac{26 \ 39}{.74 \ x1}$ SED IMENTATION RT MIN. $\frac{P_{p} = \frac{Wp}{Ws} \times 100}{\frac{53 \ 85}{W_{p}}}$ $\frac{W_{1}}{W_{p}} = \frac{4.76}{.49.09}$ $\frac{W_{1}}{W_{1}} = \frac{4.3}{.31}$	□ MS ME 00 ÷ Ws= TEMP °F FINE SIEVE FINE SIEVE 91 83	$\begin{array}{c} 2 9 \% \\ H + C \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	AL ANA HYGRO = R =100 :: 3/100 	LYSIS TEST SAM $W_c \times 100$ $W_c = 55$ (R/W ₅)XIOO % CLAY CLAY SAMPLE PASS SAMPLE PASS	DATA IPLE +(% HY(EST. MAX. GRAIN SIZE MM SIZE MM 0.005 0.60 0.425	$GRO + 100) = W_{s}$ $W_{s} = 53.85$ $COARSE SAND \qquad 9 P_{P} 10 - P_{P} 40 = 9 FINE SAND \qquad 29 P_{P} 40 - P_{P} 200 = 29 NOMENCLATURE WHERE: W_{o} = Air Dry (gm) W_{s} = Oven Dry (gm) W_{w} = Water Wt. (gm) H = Hydrometer Reading C = Temp. Correction Factor R = Corrected Hydrom. Read P_{R} = % Samp. Retained on Sieve P_{P} = % Sample Passing Sieve W_{i} = Wt. Retained on Sieve (g) S = % Total Sample Passing # 10 Sieve W = Var = 52 Total Sample Passing # 10 Sieve $	
U	01 (W,) 92 (W,) 11 (W,) 12 STA 14 STA 15 STA 16 STA 17 STA 18 STA 19 STA 10 STA 11 STA 11 STA 11 STA 11 STA 11 STA 11 STA 12 STA 13 STA 14 STA	$26 39$ $.74 \times 1$ SED IMENTATION RT $P_{p} = \frac{W_{p}}{W_{s}} \times 100$ $E = \frac{W_{s}}{W_{s}} \times 100$ $E = \frac{W_{s}}{W_{s}} \times \frac{100}{W_{p}} = \frac{476}{49.09}$ $\frac{W_{1}}{W_{p}} = \frac{476}{49.09}$ $\frac{W_{1}}{W_{p}} = \frac{4.37}{44.79}$ $\frac{W_{1}}{W_{1}} = \frac{4.50}{44.79}$	□ MS ME 00 ÷ Ws = TEMP °F FINE SIEVE FINE SIEVE 91 83 74	$\frac{2 9 \%}{H + C}$ $\frac{-}{-}$	AL ANA HYGRO R = R = 100 :: 3/100 :: 3/100 :: 3/100 :: 1.0 :: 1.0	LYSIS TEST SAM $W_c \times 100$ $W_c = 55$ $(R/W_s)X100$ $% CLAY^A$ % TOTAL = 5AMPLE PASS 9/ 83	DATA IPLE +(% HY(. 4 / EST. MAX. GRAIN SIZE mm 0.005 MAX. GRAIN SIZE mm 0.60 0.425 0.250	GRO + 100)= W _s W _s = 53.85 *COARSE SAND P _p 10 - P _p 40 = 9 *FINE SAND 29 P _p 40 - P _p 200= 29 NOMENCLATURE WHERE: W _o = Air Dry (gm) W _s = Oven Dry (gm) W _s = Oven Dry (gm) W _s = Water Wt. (gm) H = Hydrometer Reading C = Temp. Correction Factor R = Corrected Hydrom. Read P _R = % Samp. Retained on Sieve W _I = Wt. Retained on Sieve W _I = Wt. Retained on Sieve (gr S = % Total Sample Passing	

.

Ģ

H = Hydrometer Reading, Uncorrected. C = Correction Factor for Temperature S = % Total Sample Passing #10 Sieve S ₁ = % Total Sample Passing $a = \underbrace{0.982}_{W_s} = \underbrace{53.85}_{W_s} = \text{ % Total Sample Passing #10(S)}_{W_s} = P \times S_{100} = S_1 \underbrace{008S}_{TIME} \underbrace{T}_{MIN.} d_1 \times K_L \times K_c \times K_n = d$ TEMP (H + C = R) $\times \frac{100a}{W_s} = P \times S_{100} = S_1 \underbrace{008S}_{TIME} \underbrace{T}_{MIN.} d_1 \times K_L \times K_c \times K_n = d$ $= \underbrace{1000}_{V_s} = $		$P = \frac{R}{M}$	<u>a</u> × 100						d = d, ×	K _L × K _g ×	K,				
$ \begin{array}{c cccccccccccccccccccccccccccccccc$	FURMULA	P = 9 R = 0 W _s = 0 H = 1 C = 0 S = 9	% Soil in Corrected Constant Oven Dry Hydromet Correction % Total S	1 Hydrom - Depend Weight o er Readi n Factor Sample P	heter Rec ding on S of Test So ng, Uncor for Temp assing #	Specific ample rected. perature	Gravity		$d = C$ $d_1 = M$ $K_L = C$ $K_G = C$ $K_n = C$	orrected ax. Grain prrection prrection prrection	Dia.Und for Ele for Va for Va	ler Assume vation of riation o riation o	Hydrome f Specif	eter (H) fic Gra	
30 sec .08/ 30 sec .08/ 1 057 74 28.0 +.5 23.5 1.824 42.4 43 2 040 .652 .0364 .037 77 24.0 +.5 17.5 35.4 36 5 026 .0137 .012 77 17.0 -4.5 14.5 20.4 24 15 015 .965 .0137 .012 77 17.0 -4.5 12.5 27.6 73 30 010 .715 .0241 .0083 79 14.0 -1.5 17.3 17 60 .0074 .932 .0267 .0262 800 10.0 -4.3 5.7 10.4 10 250 .0036 .755 .0014 .0033 .0031 .0031 77 9.0 -4.7 4.1 1.924 7.4 7 1440 .0015 .755 .0014 .0014 .0015 .755 .0014 .0016 .755 .0014 <td< th=""><th></th><th>o =</th><th>0.98</th><th>32_ v</th><th>V_s =</th><th>53.8</th><th>ہ</th><th>6 Total S</th><th>ample Po</th><th>ssing #</th><th>#10(S)_</th><th>100</th><th> Sp.</th><th>Gr</th><th>2.73</th></td<>		o =	0.98	32_ v	V _s =	53.8	ہ	6 Total S	ample Po	ssing #	#10(S)_	100	Sp.	Gr	2.73
1 00 79 28.0 4.5 23.5 1.824 42.9 43 2 0.40 .852 .6 36.4 .931 79 24.0 4.5 11.5 35.6 36.6 5 0.26 .852 .6 36.4 .931 79 24.0 4.5 11.5 35.6 36.6 5 0.26 .852 .6 36.4 .931 79 14.0 -4.5 14.5 26.4 26 15 .015 .965 .0 137 .021 79 14.0 -4.5 14.5 17.3 .17 60 0.074 .930 .0667 .0062 80 10.0 7.5 .0 .4 10.2 250 0.036 .750 .0014 .0023 .0214 .0015 .955 .0014 .0023 .0014 .0015 .955 .0014 .0023 .0014 .0015 .955 .0014 .0014 .0015 .955 .0014 .0014 .0015 .955 .0014 .0015 .955 .0014 <th></th> <th></th> <th>(н -</th> <th>+ C =</th> <th>= R) x</th> <th><u>100 a</u> W,</th> <th>PxS</th> <th>Y_{IOO} = S,</th> <th></th> <th></th> <th>d, ></th> <th>< К_L ×</th> <th>K_g ></th> <th>κ K_n</th> <th>= đ</th>			(н -	+ C =	= R) x	<u>100 a</u> W,	PxS	Y _{IOO} = S,			d, >	< К _L ×	K _g >	κ K _n	= đ
80 79 28.0 -4.5 23.5 1.824 42.9 43 2 .040 .852 .6364 .031 79 24.0 -4.5 11.5 35.6 36 5 026 .876 .0237 .021 79 24.0 -4.5 11.5 35.6 36 5 026 .876 .0137 .012 79 19.0 -4.5 12.5 22.6 73 30 .010 .137 .012 79 14.0 -4.5 .2.5 22.6 73 30 .010 .915 .0067 .0062 80 10.0 4.5 .5.7 10.4 10 250 .0036 .955 .0033 .0031 77 9.0 -4.9 4.1 1.824 7.4 7 1440 .0015 .955 .0014 .0013 .0033 .0031 77 9.0 -4.9 4.1 1.824 7.4 7 1440 .0015 .955 .0014 .0015 .955 .0014 .0015				-						30 sec	.081			•	
79 17.0 - 4.5 12.5 22.6 23 30 010 11.5 .0 c.41 .0063 79 14.0 - 4.5 9.5 17.3 17 60 0074 9.50 .0 c.67 .0062 80 10.0 - 4.3 5.7 10.4 10 250 0036 150 .0 c.67 .0062 77 9.0 - 4.3 5.7 10.4 10 250 0036 150 .0 <td>ا _م</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>.057</td> <td></td> <td></td> <td></td> <td></td>	ا _م			-						1	.057				
79 17.0 - 4.5 12.5 22.6 23 30 010 11.5 .0 0.41 .0083 79 14.0 - 4.5 9.5 17.3 17 60 0074 9.50 .0 .0 .0 0.62 .0<	žo	79	28.0	- 4.5	23.5	1.824	42.9	4 3		2	.040	.952	.0	364	.031
79 17.0 4.5 12.5 22.6 23 30 010 115 0.041 0.063 79 14.0 -4.5 9.5 17.3 17 60 0074 9.50 .0667 .0662 80 10.0 -4.3 5.7 10.4 10 250 0036 150 .0033 .0031 77 9.0 -4.3 4.1 1.824 7.4 7 1440 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0016	ULAT	79	24.0	- 4.5	19.5	~	35.6	36		5	.026	. 876	.0	237	.021
79 17.0 - 4.5 12.5 22.6 23 30 010 11.5 0.0 6.1 0.063 79 14.0 - 4.5 9.5 17.3 17 60 0074 9.50 .00C67 0.062 80 10.0 - 4.3 5.7 10.4 10 250 0036 950 .00C67 0.062 77 9.0 - 4.3 5.7 10.4 10 250 0036 950 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0014 .0015 .955 .0	ALC	79	19.0	- 4.5	14.5		26.4	26		15	.015	.905	.0	137	.012
79 14.0 - 4.5 9.5 17.3 17 60 0074 930 .00067 .0002 20 10.0 -4.3 5.7 10.4 10 250 0036 950 .00036 </td <td></td> <td></td> <td>1</td> <td><u> </u></td> <td></td> <td>;</td> <td>27.8</td> <td></td> <td></td> <td>30</td> <td>.010</td> <td></td> <td></td> <td></td> <td>. 0083</td>			1	<u> </u>		;	27.8			30	.010				. 0083
DO 10.0 -4.3 S.7 10.4 10 250 0036 .950 .9033 .0031 77 9.0 -4.3 4.1 1.824 7.4 7 1440 .0015 .955 .9014 .0014 MECHANICAL ANALYSIS (AASHO DE SIGNATIONS M 146 AND T.88) US STANDARD SIEVE SIZE MECHANICAL ANALYSIS (AASHO DE SIGNATIONS M 146 AND T.88) NIAGO DE SIGNATIONS M 146 AND T.88) NIAGO DE SIGNATIONS M 146 AND T.88) NOT TREE OUT TREE TRECHANCEL		79	14.0			- 1		.17		60	.0074	. 930			.0062
MECHANICAL ANALYSI (AASHO DE SIGNATIONS M.146 AND T.88) US STANDARD SIEVE SIZE HYDROMETER HYDROMETE		20	10.0	- 4.3	1			10		250					.0031
MECHANICAL ANALYSI (AASHO DE SIGNATIONS M.146 AND T.88) US STANDARD SIEVE SIZE HYDROMETER HYDROMETE				-											
US STANDARD SIEVE SIZE US STANDARD SIEVE SIZE HYDROMETER HYDROM		77	9.0	- 4.9	4.1	1.824	7.4	7		· 1440	.0015	. 935	. 0	014	.0013
GRAVEL SAND SILT CLAY		BY WEIGHT (PASSING) 00 00 00 00 00										8			Deficiency Deficiency Deficiency Deficiency
		000 				1	GR						0	•	0
	3	00 01	,					e A 1							

-

~

SHRP PROFICIENCY SAMPLES FOR RESILIENT MODULUS TESTING OF UNBOUNDED MATERIAL (Gradation)

Sieve Size	Total % Passing
1.5"	100
1"	82
3/4"	73
1/2"	61
3/8"	52
#4	39
#8	27
#16	. 21
#30	15
#50	10
#100	8
#200	6

AASHTO Soil Classification

Unified Soil Classification

A-1-a

GW-GM

PLASTIC INDEX np

Material Identification	Specific Gravity of Material Passing #4	Specific Gravity of Material Retained on #4
Watsonville	2.777	2.865
Pleasonton	2.713	2.748

APPENDIX II

SHRP Moisture Content Proficiency Sample Program

S.H.R.P. Moisture - Content Proficiency Sample Program

<u>CONTENTS</u>

Correspondence Document

The correspondance document that was mailed to the 17 laboratories participating in the S.H.R.P. Moisture Content Proficiency Sample Program, consists of an Instruction page, a copy of the Standard Test method, and a Data sheet to be used for recording test results.

* Although only 17 complete samples were distributed by AMRL, (17 laboratories participated in the Proficiency Sample Program) 20 complete samples were prepared, leaving 3 complete samples to serve as replacements in case of loss or damage during shipment. As a result, the following report reflects the in-house data recorded for 20 complete samples. (A complete sample is defined as 16 Sets of 3 sub-samples each, with one Set coming from each of the 16 Sample Types).

Section 1 - Master Identification Record

Laboratory Identification Sheet

This sheet identifies each laboratory participating in the program. Each laboratory was assigned a number which is used to identify and trace the laboratories data.

Test Sample Splitting Procedure

This document illustrates the process used to split the material from the Split A or Split B portion to yield 64 sub-samples. Each of the 4 Primary materials was blended and then split into 2 approximately equal portions. Each of these portions was then split to yield 2 portions, one half being identified as Split A, and the other half being identified as Split B. Each of the splits, (Split A or Split B) was then split to yield 64 sub-samples. Each laboratory was shipped 3 randomly selected sub-samples from the 64 sub-samples. (3 sub-samples constitute one Set for a particular material type.

Sample Type Identification Sheet

This document describes the attributes of each of the 16 different sample types. It also identifies the four primary materials that were used to in preparing the samples. Each laboratory was shipped one set, (3 sub-samples) from each of the 16 Sample Types.

Each Sample Type is described by the following criteria:

* Primary material type. (Aggregate 1 or Aggegate 2, Soil 1 or Soil 2) * Which half of the split the sample originated from. (Split A or Split B) * Moisture condition of the material. (Air dry, Plastic Limit or Saturated Surface Dry. To approximate the plastic limit or saturated surface dry condition, the following moisture contents were added to the air dry samples:

- * Aggregate 1 --> 2.00 ± .04% moisture.
- * Aggregate 2 --> 3.00 ± .04% moisture.
- * Soil 1 --> 15.00 ± .04% moisture.
- * Soil 2 --> 25.00 ± .04% moisture.

Laboratory Sub-Sample Identification Sheet

These sheets identify the 3 randomly selected sub-samples that were assigned to each laboratory for a particular sample type. The sub-samples that each laboratory received are identified by sample type number and the letter a, b or c on the data sheets. The sheets also identify the proper set testing sequence for that set of 3 sub-samples. The numbers were assigned using the Lotus random number generator function.

Example: For Sample Type No. 1, Laboratory No. 1 was assigned sub-sample No.'s 12, 42 and 57. These 3 sub-samples are identified as Sample#'s 1a, 1b and 1c respectively. These 3 sub-samples were labeled Set #11, meaning that from the total group of 16 sets received by the laboratory, Sample Type No. 1 would be the eleventh set tested.

Laboratory Set Testing Sequence Table

This table shows the Set Testing Sequence for all of the laboratories. There is a column for each sample type and a row for each laboratory.

Section 2 - Master Data Record

Master Data Record

These are the data tables used to record the mass and the amount of moisture added to the sub-samples prepared by AMRL. These data sheets may be compared with the Returned Data Sheets shown in Section 3.

Section 3 - Returned Data Sheets

<u>Returned Data Sheets</u>

These data sheets were filled out by participating laboratories and returned to AMRL.

Returned Tare Weights

* Note that Laboratory No.'s 3, 7, 9, 10, 11, 13 and 19 did not comply with the request to record the tare weights of the bags on the back of the Data Sheet.

* When comparing the respective masses of the sub-samples on the Master Data Sheets with the masses of the sub-samples submitted from the laboratories on the Returned Data Sheets, it appears that some of the laboratories may not have used the entire sub-sample when testing for moisture content.

Errors in processing

Note 1: Laboratory No. 15 received two sets identified as Set #1. The Set containing Sub-Samples 9a, 9b and 9c was inadvertantly identified as Set #1 when it should have been Set #3. The situation was explained to the laboratory prior to testing and is considered resolved.

Note 2: Laboratory No. 11, Set 8, Sample 9b had an excessive amount of moisture added to the sample. This error is reflected in the laboratories returned data sheet.

Written and Conducted by: Aggg V. Aul

Gregory V. Uherek, AMRL Research Associate October, 1990

Correspondence Document

Date

Name of laboratory manager Laboratory name and address

Subject: SHRP Moisture Content Proficiency Test Samples

Dear (insert name):

SHRP has engaged the AASHTO Materials Reference Laboratory to prepare and distribute proficiency test samples for moisture content determination. In connection with this effort, we are sending two boxes containing 16 sets of material to your laboratory. Each set of material is identified with a Set Number from 1 to 16 and contains three double-bagged test samples identified with a Sample Number. The two boxes you receive should contain fortyeight test samples (16 sets containing 3 samples each).

Please determine the moisture content of each sample in accordance with Section 5 of AASHTO T265-86. A copy of this standard is attached for your convenience. Test each set individually and in numerical order according to the Set Number (i.e. Begin testing with Set Number 1 and end testing with Set Number 16.). Do not open the bags containing a test sample until the test sample is ready to be tested. Opening the sample bags too soon may affect the moisture content of the samples.

Please use the enclosed data sheet to record your test results. (Additional copies of this letter, test method T265 and the data sheet have been included in each box of material being sent to your laboratory.) Set and Sample Numbers have been entered in the appropriate columns on the data sheet and are exclusive to your laboratory. Record all weights to the nearest 0.1 g and calculate and report the moisture content to the nearest 0.01%. After testing record the weight of the bag containing each sample and the applicable Set and Sample Number on the back of the data sheet.

Please test all samples as soon as possible, but no later than thirty days after receipt, and return a completed data sheet: Gregory Uherek, AASHTO Materials Reference Laboratory, Building 226, Room A365, Gaithersburg, Maryland 20899.

If you have any questions, or if the samples received are damaged or incomplete, please contact Greg Uherek at (301) 975-6704.

Sincerely,

Peter A. Spellerberg, Assistant Manager AASHTO Materials Reference Laboratory

Enclosures

T265 METHODS OF SAMPLING AND TESTING	5. PROCEDURE	5.1 Weigh a clean, dry container with its lid, and place the moisture content sample in the con- tainer Reedere the lid immediately and mint the content to the distribution of the content sample in the con-	Remove the fid and place the container with the moist sample in the drying oven maintained at a temperature of 230 ± 9 F(110 \pm 5C) and dry to a constant weight (Notes 1 and 2). Immediately upon removal from the oven, place the lid and allow the sample to cool to room temperature. Weigh the	container including the lid and the dried sample (Notes 3 and 4). NOTE I-Christing every name contain sample to derivate and a dried to a contain weight is impractical. In most case, drying of a motivity contain name correct life as the unforces in a list order to a contain weight is impractical. In most case,		the dived stample is weighed immediately fiber basis reaves provide an even or after coording in a diamediately after basis relations the most fiber or or after coording in a diamediately after and providing. NOTE 4-Moliture concest samples should be discurded and should not be used in any other tests.	of 6. CALCULATION	ine 6.1 Calculate the moisture content of the soil as follows: but the	$w = [(weight of moisture)/(weight of oven-dry soli)] \times 100 = ([W_1 - W_2)/(W_2 - W_c)] \times 100$	where:	of $W_1 = W_2$ moisture content, \mathcal{G}_0 $W_1 = W_2$ weight of container and moist soil, g, and $W_2 = W_2$ weight of container, and oven-dried soil, g, and $W_c = W_c$ weight of container, g.	of 6.2 Calculate the percent of moisture content to the nearest 0.1 percent.
24	Standard Method of Test for	Laboratory Determination of Moisture Content of Soils	AASHTO DESIGNATION: T 265-86 (ASTM DESIGNATION: D 2216-71 (1980))	. SCOPE	1.1 This method covers the laboratory determination of the moisture content of soil. 1.2 The following applies to all specified limits in this standard: For the purposes of determining conformance with these specifications, an observed value or a calculated value shall be rounded off "to the nearest unit" in the last right-hand place of figures used in expressing the limiting value, in accordance with the rounding-off method of AASHTO R-11, Recommended Practice For Indicating Which Places Of Figures Are To Be Considered Significant In Specified Limiting Values.	L. DEFINITION	2.1 Mousture or Water Content of a Soil-The ratio, expressed as a percentage, of the weight of	rater in a given mass of soil to the weight of the solid particles. Practical application is to determine be weight of water removed by drying the moist soil to a constant weight in a drying oven controlled it $230 \pm 9F(110 \pm 5C)$ and to use this value as the weight of water in the given soil mass. The weight	M soil remaining after over-drying is used as the weight of the solid particles.	. APPARATUS	3.1 Drying Oven, thermostatically-controlled, preferably of the forced-draft type, capable of ting heated continuously at a temperature of 230 ± 9 F (110 \pm 5 C). 3.2 Balance -The balance shall conform to the requirements of AASHTO M 231, for the class of general purpose balance required for the principal sample weight of the sample being prepared. 3.3 Containers-Suitable containers made of material resistant to corrosion and not subject to the same in weight of charter of the intervention of a second part of the sample being prepared.	ds to prevent loss unsuspendent ou represent manue counta. Containers staut nave close-titing to the prevent loss domaiture from samples before initial weighing and to prevent absorption of lositure from the atmosphere following drying and before final weighing. One container is needed or each moleture content determination.

. TEST SAMPLE

4.1 Select a representative quantity of moist soil in the amount indicated in the method of test. ' ao amount is indicated, the minimum weight of the sample shall be in accordance with the followig table:

Minimum Weight of Sample, g	9	0	8	ŝ	0001
Maximum Particle Size	No. 40 (0.425 mm) sieve	No. 4 (4.75 mm) sieve	½ in. (12.5 mm)	1 in. (25.0 mm)	2 in. (50 mm)

5

•

24 <u>4</u>2

T265

METHODS OF SAMPLING AND TESTING

S.H.R.P. Moisture Content Proficiency Sample Program

Data Sheet

Laboratory Name

Laboratory No. _

Set#	Sample#	Beginning weight(0.1g)	Ending weight(0.1g)	Moisture loss(0.01%)	Set#	Sample#	Beginning weight(0.1g)	Ending weight(0.1g)	Moisture loss(0.01%)
•••	χ. χ. χ. 				6	10a 10b 10c			
7	\$ \$ \$ \$				10	දී සී සී			
e	12a 12b 12c				11	15 Ib 19			
4	13a 13b 13c				12	జ్ జ్ జ్			
ŝ	444				13				
Ŷ	15a 15b - 15c -				14	86 168 168			
٢	14a 14b 14c				15	11a 11b 11c			
œ	96 99 80 99				16	7a 76			
		Each set o	of three samples is t Please t	Each set of three samples is to be tested individually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet.	ly and in nun correct blan	nerical or ks on the	der according to t data sheet.	he set number.	

Responsible Technician, Date: _

Checked and Approved, Date:

Section 1

Master Identification Record

S.H.R.P. MOISTURE CONTENT PROFICIENCY SAMPLE PROGRAM Participating Laboratories

Braun Engineering Testing, Inc. Minneapolis, Minnesota 55435

California Department of Transportation Sacramento, California 95819

Federal Highway Administration Denver, Colorado 80225

Florida Department of Transportation Gainesville, Florida 32602

Iowa Department of Transportation Ames, Iowa 50010

Kansas Department of Transportation Topeka, Kansas 66611

Law Engineering Atlanta, Georgia 30324

Maryland State Highway Administration Brooklandville, Maryland 21022

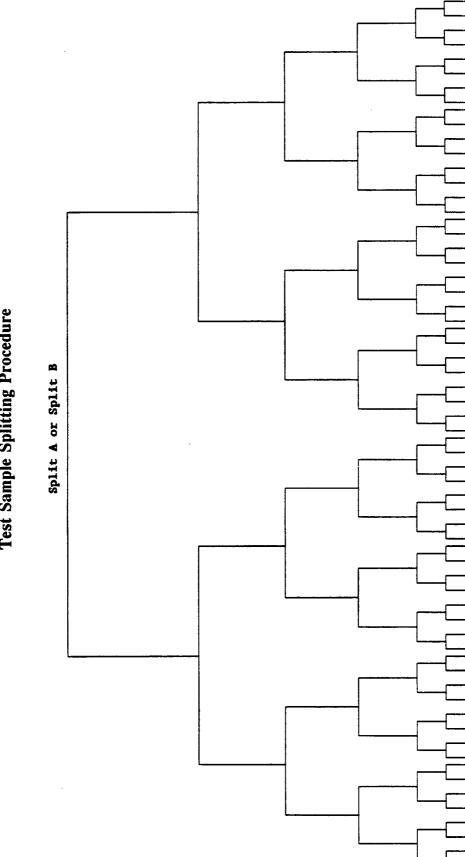
Minnesota Department of Transportation Maplewood, Minnesota 55109

Nevada Department of Transportation Carson City, Nevada 89712

Oregon State Highway Division Salem, Oregon 97310

PSI

Pittsburgh, Pennsylvania 15220


Southwestern Laboratories Houston, Texas 77249

Texas State Department of Highways and Public Transportation Austin, Texas 78731-6033

University of Nevada-Reno Reno, Nevada 89557-0030

West Virginia Department of Transportation Charleston, West Virginia 25311

Western Technologies Inc. Phoenix, Arizona 85036

-> 64

THE BOTTOM ROW OF THE DIAGRAM REPRESENTS THE 64 SUB-SAMPLES AS SPLIT FROM THE ORIGINAL TEST SAMPLE. EACH PARTICIPATING LABORATORY WILL RECIEVE 3 RANDOMLY SELECTED SUB-SAMPLES.

¢...

S.H.R.P. Moisture Content Proficiency Sample Program Test Sample Splitting Procedure

S.H.R.P. Moisture Content Proficiency Sample Program Sample Type Identification Sheet

SAMPLE TYPE NO.

SAMPLE DESCRIPTTION

2 3	 Aggregate 1, Split A, SSD Condition Aggregate 1, Split B, SSD Condition Aggregate 2, Split A, SSD Condition Aggregate 2, Split B, SSD Condition
5	. Aggregate 1, Split A, Air Dry Condition
	. Aggregate 1, Split B, Air Dry Condition
	. Aggregate 2, Split A, Air Dry Condition
	. Aggregate 2, Split B, Air Dry Condition
9	. Soil 1, Split A, Plastic Limit Condition
10	Soil 1, Split B, Plastic Limit Condition
	Soil 2, Split A, Plastic Limit Condition
12	Soil 2, Split B, Plastic Limit Condition
13	. Soil 1, Split A, Air Dry Condition
	. Soil 1, Split B, Air Dry Condition
	. Soil 2, Split A, Air Dry Condition
	. Soil 2, Split B, Air Dry Condition

PRIMARY MATERIALS USED

Aggregate 1 - Watsonville, Supplied by University of Reno, Nevada Aggregate 2 - Pleasonton, Supplied by University of Reno, Nevada

Soil 1 - **, Supplied by the Department of Highways, Maryland Soil 2 - **, Supplied by the Department of Highways, Maryland

SAMPLE TYPE NO. 1

Aggregate No. 1, Split A, Saturated - Surface - Dry Condition

.

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ
1	12	42	57	11
2	64	10	59	10
3	8	36	38	1
4	6	39	7	14
5	46	3	21	2
6	35	1	13	12
7	37	25	9	12
8	17	61	20	
9	31	27	16	7
10	14	15	41	6
11	29	2	52	1
12	47	56	18	1
13	44	48	54	13
14	49	50	45	10
15	_ 43	26	19	12
16	32	51	4	10
17	30	24	28	15
18	34	53	58	15
19	11	55	5	8
20	62	33	60	8

REMAINDERS: 23, 22, 40, 63

and the second second

SAMPLE TYPE NO. 2

Aggregate No. 1, Split B, Saturated - Surface - Dry Condition

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ.
1	40	46	15	13
2	52	18	13	8
3	34	22	26	6
4	36	20	43	8
5	57	33	23	10
6	51	19	2	4
7	6	49	4	1
8	50	48	27	11
9	7	37	16	12
10	25	29	41	15
11	47	45	60	11
12	14	5	38	9
13	21	9	61	2
14	3	39	64	16
15	24	31	12	1
16	58	11	42	15
17	1	32	30	3
18	56	53	63	11
19	54	35	44	4
20	55	59	28	14

XEMAINDERS : 8, 17, 62, 10

•

SAMPLE TYPE NO. 3

Aggregate No. 2, Split A, Saturated - Surface - Dry Condition

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ.
1	36	37	52	2
2	18	13	19	2
3	26	40	31	6
4	11	47	33	2
5	39	29	20	9
6	45	12	28	5
7	41	7	50	11
8	5	63	23	13
9	64	54	24	13
10	2	48	22	8
11	3	9	30	6
12	14	25	60	13
13	59	6	10	7
14	8	4	32	11
15	44	62	34	5
16	46	55	15	6
17	1	58	61	12
18	43	51	17	9
19	42	57	35	15
20	38	53	16	9

REMAINDERS : 56, 49, 21, 27

an shipe da shikara da sa

SAMPLE TYPE NO. 4

Aggregate No. 2, Split B, Saturated - Surface - Dry Condition

BORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ.
1 2	17	49	18 28	5 12
2	19 63	35 4	13	12
4	23	43	33	12
5	42	56	14	14
6	47	50	1	1
7	58	38	40	7
8 9	9 20	36 16	7 22	10 8
10	53	26	10	12
11	30	51	12	12
12	57	45	55	14
13	44	59 32	11 61	3 15
14 15	39 6	41	25	8
16	2	62	27	14
17	64	8	24	5
18	21	46	3	7
19 20	60 15	48 29	34 37	13 5

REMAINDERS: 31, 52, 5, 54

SAMPLE TYPE NO. 5

Aggregate	No. 1	, Sj	plit A,	Air -	Dry	Condition
-----------	-------	------	---------	-------	-----	-----------

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ.
1	8	1	3	1
2	16	49	27	16
3	9	38	34	7
45	35 23	7	57	10
3	<u> </u>	60	59	16
6	14	44	24	16
7	47	29	39	6
8	25	32	41	3
9	30	19	33	9
10	20	2	58	2
11	31	54	61	15
12	45	26	51	8
13	40	11	37	1
14	55	21	4	2
15	43	36	42	10
16	5	52	13	13
17	17	22	28	2
18	48	64	46	6
19	15	12	63	6
20	10	18	6	12

REMAINDERS : 56, 53, 62, 50

and the second s

SAMPLE TYPE NO. 6

Aggregate	No.	1,	Split	Β,	Air -	Dry	Condition
-----------	-----	----	-------	----	-------	-----	-----------

LABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ.
1	29	26	27	10
2	58	28	15	13
3	6	21	20	4
4	47	17	30	13
5	44	62	45	3
6	13	55	3	13
7	38	23	14	5
8	16	18	11	16
9	35	37	12	3
10	54	41	56	5
11	50	48	33	2
12	2	4	8	7
13	61	59	60	10
14	24	51	5	9
15	25	40	32	7
16	39	22	34	12
17	36	49	46	4
18	53	52	43	1
19	7	9	1	2
20	64	19	31	15

REMAINDERS : 57, 63, 42, 10

SAMPLE TYPE NO. 7

Aggregate No. 2, Split A, Air - Dry Condition

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ
1 2	26	22	12	16
	8	60	20	11
3	59	47	30	3
4	2	29	33	5
5	25	19	45	13
6	32	53	49	3
7	54	24	38	16
8	21	48	39	6
9	17	31	61	2
10	46	4	62	11
11	57	37	56	7
12	41	50	43	11
13	10	51	34	8
14	6	40	11	7
15	52	16	5	6
16	35	44	42	8
17	28	27	58	14
18	36	15	18	12
19	23	7	64	10
20	1	55	9	13

REMAINDERS : 13, 63, 14, 3

Teacher and a subscription of the

.....

SAMPLE TYPE NO. 8

Aggregate No. 2, Split B, Air - Dry Condition

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ.
1	33	27	36	12
2	26	52	40	6
3	3	2	4	15
4	57	15	38	6
5	61	59	34	11
6	12	6	64	2
7	42	11	56	15
8	23	37	21	5
9	53	55	1	11
10	58	13	8	3
11	17	62	18	5
12	25	41	28	10
13	22	16	10	4
14	14	5	20	8
15	49	31	50	16
16	51	9	24	4
17	60	48	29	1
18	35	39	47	16
19	43	44	19	5
20	45	32	7	10

REMAINDERS : 54, 30, 63, 46

SAMPLE TYPE NO. 9

Soil No. 1,	Split A,	Plastic - Limit	Condition

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ.
1	51	59	31	8
2	56	40	26	1
3	29	7	30	2
4	46	57	32	3
5	18	34	45	8
6	8	11	50	8
7	47	37	38	2
8	44	62	63	1
9	48	2	35	15
10	41	42	52	7
11	55	3	5	8
12	64	49	14	15
13	61	54	17	14
14	43	25	53	5
15	12	20	15	3
16	4	1	10	1
17	28	27	39	9
18	9	58	16	14
19	33	19	60	12
20	23	13	24	1

REMAINDERS : 21, 22, 36, 6

and a second second

SAMPLE TYPE NO. 10

Soil No. 1, Split B, Plastic - Limit Condition

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ.
1	2	21	3	9
2	17 28	16 19	55 62	14 11
3	40	47	38	1
5	10	20	29	6
6	61	6	43	7
7	4	52	31	3
8 9	9 41	14 35	26 44	8 1
10	18	33	5	ī
11	13	54	36	9
12	34	60	59	16
13 14	42 58	53 24	50 25	16 12
15	11	56	23	11
16	30	32	8	7
17	22	12	7	10
18	27	39	37	13
19 20	57 48	51 46	63 1	3

REMAINDERS: 45, 64, 49, 15

SAMPLE TYPE NO. 11

Soil No. 2,	Split A,	Plastic -	Limit	Condition
-------------	----------	-----------	-------	-----------

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ.
1	60	11	6	15
2 3	64 59	37 12	55 14	15 12
4	26	18	25	16
5	33	40	3	4
6	8	58	17	6
7	44	48	2	8
8 9	20	1	45	4
10	31 28	38 5	41 49	4 9
11	47	4	52	16
12	23	61	15	3
13 14	30 7	24 39	57 34	5 1
15	29	54	42	4
16	21	62	43	3
17	27	46	53	6
18	9	13	63	4
19	35	32	10	9
20	19	51	50	16

XEMAINDERS : 56, 22, 36, 16

an an ann aite an an an an an an an an

SAMPLE TYPE NO. 12

Soil No. 2, Split B, Plastic - Limit Condition

......

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ.
1	40	24	33	3
2	39	12	55	4
3	61	49	1	16
4 5	25 60	16 3	62 31	9 7
	60	<u>а</u>		
6	22	45	53	15
7	29	9	41	14
8	8	18	54	12
9	10	36	21	5
10	52	28	4	16
11	5	7	51	13
12	19	15	6	6
13	46	63	14	15
14	50	57	30	14
15	48	34	59	15
16	58	27	13	2
17	17	56	20	13
18	23	32	35	3
19	42	11	44	11
20	64	38	43	2

REMAINDERS : 26, 2, 47, 37

SAMPLE TYPE NO. 13

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ
1 2	4 35	50 27	52	4
3	56	3	34 40	5 5
4	21 15	32	10	45
	CT CT	60	59	5
6 7	39 28	47	12	11
8	8	58 31	13 53	9 2
9 10	25 55	16	37	6
	55	20	44	4
11	23	1	22	4
12 13	6 2	45 49	19 7	4 11
14	61	36	26	3
15	48	64	62	14
16	· 11	9	17	9
17 18	33 41	46 51	42	11
19	54	5	24 29	27
20	63	14	43	6

Soil No. 1, Split A, Air - Dry Condition

REMAINDERS : 30, 38, 36, 6

್ಷ ಅಭಿಸ್ಥಾನಕ ಸಮಿಸಿದ್ದ

SAMPLE TYPE NO. 14

Soil No. 1, Split B, Air - Dry Condition

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ
1	63	49	27	7
2	24 35	23	60	9
4	35 6	10 29	51	13
5	58	43	48 18	11
			10	12
6	9	22	38	10
7	37	50	61	13
8 9	12	26 55	30	15
10	3 8	53 57	62	10
	-		39	10
11	13	40	52	14
12	5	36	59	12
13 14	20 28	14	45	12
15	20 56	44 31	7	6
		J1	42	9
16	2	32	41	11
17	15	34	21	B
18 19	4 19	25	46	8
20	19	54 1	47	1
	* *	4	64	4

REMAINDERS : 55, 17, 33, 11

SAMPLE TYPE NO. 15

Soil N	No. 2,	Split A,	Air - Dry	Condition
--------	--------	----------	-----------	-----------

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ.
1	51	6	17	6
2	47	24	28	7
3	60 37	26 55	15 3	14
5	18	54	29	15
6	12	33	41	14
7	22	53	32	4 9
8 9	20 5	21 8	39 35	9 14
10	31	45	58	13
11	10	46	4	10
12	43	44	23	5
13 14	11 57	48 52	19 16	9 4
14	13	56	10	2
16	64	50	9	16
17	61	7	1	16
18	63	27	42	5
19 20	36 49	59 62	30 34	16 7

REMAINDERS : 40, 38, 2, 25

Longer we will be an eight of

SAMPLE TYPE NO. 16

Soil No. 2,	Split B,	Air - Dry	Condition
-------------	----------	-----------	-----------

ABORATORY NO.	SUB-SAMPLE A	SUB-SAMPLE B	SUB-SAMPLE C	TESTING SEQ.
1 2	62 40	57 20	8	14
3	22	32	35 29	3 9
4 5	63	5	53	15
5	7	51	17	1
6	59	4	13	9
78	28 3	21 48	16 36	10
с 9	12	40	38 47	14
10	34	49	56	14
11	43	10	6	3
12	41	58	26	2
13 14	24 23	15 25	19 27	6 13
15	42	11	60	13
16	61	31	1	5
17	55	38	45	7
18 19	14	54	52	10
20	9 39	30 44	2 37	14

REMAINDERS : 50, 64, 33, 46

.

S.H.R.P. Moisture - Content Proficiency Sample Program Laboratory Set Testing Sequence Table

	Γ				
	16	40004	6 1 1 0 0 4 1 0 0 4 1 0 0 4 1 0 4 1 0 0 4 1 0 1 0	55000	1140 140 1140
	15	121476	44040	90040	16 15 15 15
	14	20040	00000	4000	11 8 8 1 4
Ŷ	13	40040	10N94	**	0 I 0 F 0
	12	049 1964	15 12 16 16	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 H B B B 8
	11	15 15 16 16	88440	16 4 1 5 3 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NUMBER	10	9 11 11 6	P B B B A	9 16 12 11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TYPE N	6	84248	8 15 15	15 14 3	10401 10401
SAMPLE T	8	12 15 11	152 11 11 11	5 4 16 16	4-1950
- SAM	7	19 13 13 13	3 16 11 11	7 11 8 7 6	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	v	9240a	80980 1	2005 1006	12 4 1 2 1 5 2
>	ŝ	10021	9976A	10 2 1 8 1 10 2 1 8 1	13 13 13 13
	4	50024	12804F	11 12 12 12 12 12 12 12 12 12 12 12 12 1	9 C 4 8 F
	'n	0 0 0 0 N	∾ <u>48</u> 3∞	94240 14	66989 66989
	3	ဂ္ဂစစစ္	44158	100%H	н 2014 4 2
	-	<u> </u>	8445K	448 <u>88</u>	8 8 8 9 0 0
	IAB	49440	90849 F	12123	16 20 20 20 20 20 20 20 20 20 20 20 20 20

:

Section 2

1

an secondar

Master Data Record

S.H.R.P. Master Data Sheet

Lab Name:

Laboratory No. 1

				_	_	_			_	_	_	_	_								_			
Moisture Content (0.01%)	14.99	15.01	15.00	air dry	air dry	air dry	2.00	1.99	2.00	air dry	air dry	air dry	2.02	2.01	2.00	air dry	air dry	air dry	25.03	25.00	25.00	air dry	air dry	air dry
Ending weight (0.1 g)	429.5	387.6	417.8				850.5	671.8	1057.7				551.2	686.8	958.7				439.1	610.0	589.6			
Beginning veight (0.1 g)	373.5	337.0	363.3	749.5	633.6	473.5	833.8	658.7	1037.0	598.3	889.7	643.4	540.3	673.3	939.9	449.0	417.4	334.8	351.2	488.0	471.7	1024.7	825.2	847.2
Samp1e#	10a	10b	10c	6a	бЪ	60	1a	1b	lc	8a .	8b	8c	2a	2b	2c	16a	16b	16 c	11a	11b	11c	7a	7b	7c
Set#	6			10			11			12			13	L		14			15	L		16		
			1440	(† 14													••••							
			<u>.</u>																					
Moisture Content (0.01%)	air dry	air dry	air dry	2.99	3.00	3.00	24.99	25.00	25.01	air dry	air dry	air dry	3.00	3.00	3.00	air dry	air dry	air dry	air dry	air dry	air dry	15.00	15.01	15.01
Ending Moisture weight Content (0.1 g) (0.01%)	air dry		air dry	679.1 2.99	806.1 3.00	980.9 3.00	515.6 24.99	486.0 25.00	672.2 25.01	air dry	air dry	air dry	720.1 3.00	721.1 3.00	734.5 3.00	air dry	air dry	air dry		air dry	air dry	399.4 15.00	399.2 15.01	358.5 15.01
8) H R	873.9 air dry		800.0 air dry	.1					.2	453.7 air dry	364.3 air dry	336.0 air dry				547.3 air dry	478.0 air dry	363.2 air dry		340.6 air dry	381.5 air dry			
nning Ending ight weight 1 g) (0.1 g)	3.9 air	9.2 air	0.0 air	9.4 679.1	2.6 806.1	2.3 980.9	2.5 515.6	8.8 486.0	7.7 672.2	3.7	4.3 air	6.0	720.1	721.1	3.1 734.5	7.3	8.0	3.2	3.2 air	0.6 air	1.5	7.3 399.4	7.1 399.2	1.7 358.5

:

:

51

ł

	. [-							Lab	Laboratory No	0. 2
Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)		Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
	9a	302.1	347.4	15.00	<u>u</u>	6	148	305.0		atr drv
	9b	276.9	318.4	14.99			14b	373.4		
	96	337.2	387.8	15.01			14c	272.6		air drv
7	3a	917.6	945.1	3.00	L	10	la	917.5	935.8	1.99
	3b	931.2	959.2	3.01			1b	701.4	715.4	2.00
	3c	917.4	944.9	3.00		•	lc	881.6	899.2	2.00
m	16a	467.5		air dry	L	11	7a	891.3		air drv
	16b	524.0		air dry		<u> </u>	7b	770.6		air dry
	16c	419.7		air dry			7c	690.0		air dry
4	12a	383.4	479.3	25.01		12	48	739.1	761.3	3.00
	12b	413.2	516.5	25.00		L	4b	698.0	718.9	2.99
	12c	333.7	417.1	24.99		L	4c	897.1	924.0	3.00
ŝ	13a	329.4		air dry		13	6a	849.3		air drv
	13b	341.8		air dry		<u> </u>	6b	699.1		air drv
	13c	275.0		air dry		L	6c	1058.5		air drv
ف	8a	1156.1		air dry	L	14	10a	352.8	405.7	
	8b	878.6		air dry		L	10b	404.9	465.6	14.99
	8c	698.6		air dry		L	10c	267.0	307.1	15.02
2	15a	394.2		air dry	L	15	11a	379.9	474.8	24.98
	15b	407.2		air dry		L	11b	428.7	535.9	25.01
	15c	360.7		air dry		L	11c	364.3	455.4	25.01
æ	2a	552.2	563.2	1.99	<u> </u>	16	5a	1016.9		air dry
	2b	770.7	786.1	2.00		L	5b	824.9		
	2c	651.9	664.9	1.99		L	5c	860.5		

ł

ab .	ab Name:								Lab	Laboratory No	. 3
	Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)		Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
L	1	la	838.2	855.0	2.00		6	16a	525.9		air dry
		qt	921.7	940.2	2.01			16b	556.3		air dry
•		lc	797.3	813.2	1.99			16c	500.3		air dry
	2	9a	346.2	398.1	14.99		10	48	787.7	811.3	3.00
		q6	289.5	333.0	15.03			4Þ	768.0	791.0	2.99
		96	315.3	362.6	15.00			40	958.2	987.0	3.01
<u> </u>	Э	78	681.3		air dry		11	10a	340.4	391.4	14.98
		7b	723.5		air dry			10b	373.7	429.8	15.01
		7c	891.1		air dry			10c	262.2	301.5	15.00
L	4	6a	872.7		air dry		12	lla	386.0	482.5	25.00
		6b	804.8		air dry			11b	499.6	624.5	25.00
		éc	784.9		air dry			11 c	423.6	529.5	25.00
	5	13a	337.0		air dry		13	14a	335.6		air dry
		13b	288.0		air dry			14b	303.5		air dry
		13c	334.9		air dry			14c	224.8		air dry
L.,	9	За	1036.3	1067.4	3.00		14	15a	475.7		air dry
		3b	822.8	847.5	3.00			15b	360.6		air dry
		3c	1087.6	1120.2	3.00			15c	583.6		air dry
	7	5a	791.4		air dry		15	8a	698.3		air dry
<u> </u>		Sb	642.4		air dry			8b	867.0		air dry
<u> </u>		5c	861.0		air dry			8c	782.7		air dry
	8	2a	851.0	868.0	2.00		16	12a	406.8	508.5	25.00
		2b	880.4	898.0	2.00			12b	447.7	559.6	24.99
		2c	820.7	837.1	2.00		1 	120	426.0	532.5	25.00
ļ	"					1					

• •

Laboratory No. 4

-
-

54

						<u></u>					<u></u>					÷								
Moisture Content (0.01%)	24.99	24.99	25.01	air dry	air dry	air dry	air dry	air dry	air dry	2.99	3.00	3.00	air dry	air dry	air dry	2.00	2.00	2.00	air dry	air dry	air dry	24.99	25.00	25.01
Ending weight (0.1 g)	604.6	526.1	556.9							722.2	831.0	632.1				1000.0	875.8	1069.1				499.6	529.0	484.8
Beginning weight (0.1 g)	483.7	420.9	445.5	786.2	761.5	770.9	326.2	391.3	389.6	701.2	806.8	613.7	950.7	691.8	669.4	980.4	858.6	1048.1	469.0	353.0	436.2	399.7	423.2	387.8
Sample#	12a	12b	12c	5a	Sb	5c	14a	14b	14c	4a	4b	4c	6a	6b	6c	la	1b	1c	16a	16b	16c	11a	11b	11c
Set#	6			10	4		11			12			13	L		14	·1		15			16		
*******																		:						H
Moisture Content (0.01%)	14.97	15.02	14.97	3.00	3.00	3.01	14.98	15.01	14.99	air dry	air dry	air dry	air dry	air dry	air dry	air dry	air dry	air dry	air dry	air dry	air dry	2.01	2.00	2.00
Ending Moisture weight Content (0.1 g) (0.01%)	391.0 14.97	342.4 15.02	384.1 14.97	893.2 3.00	792.1 3.00	847.6 3.01	376.0 14.98	369.3 15.01	371.2 14.99	air dry	air dry		air dry				air dry				air dry	574.6 2.01	952.4 2.00	794.7 2.00
828		_							.2	398.7 air dry	352.6 air dry		878.5 air dry				797.9 air dry				404.4 air dry			
Ending weight (0.1 g)	391.0	342.4	384.1	893.2	792.1	847.6	376.0	369.3	371.2	air	air	air	air	air	air	air	air	air	air	air	air	574.6	952.4	794.7

:

ŝ Laboratory No.

ᇟ									dall	Laboratory No	. <u>5</u>
	Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)		Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
	1	16a	319.4		air dry		6	3а	832.5	857.5	3.00
-	R	16b	461.6		air dry			3b	1066.0	1098.0	3.00
		16c	512.7		air dry			3с	932.3	960.3	3.00
	~	1a	734.0	748.7	2.00		10	2а	824.1	840.5	1.99
		1b	788.8	804.5	1.99			2b	949.5	968.6	2.01
		lc	1031.9	1052.5	2.00			2c	896.7	914.6	2.00
	m	6a	950.4		air dry		11	8.a	983.7		air dry
	4	6b	727.0		air dry			8b	734.2		air dry
		6c	1057.5		air dry			8c	846.7		air dry
	4	lla	512.9	641.1	25.00		12	14a	267.1		air dry
	I	11b	436.0	545.0	25.00			14b	361.4		air dry
		11c	480.9	601.1	24.99			14c	348.9		air dry
	I	13a	377.3		air dry		13	7.8	969.9		air dry
		13b	357.0		air dry			7b	835.3		air dry
		13c	358.1		air dry			7c	737.0		air dry
	ا و	10a	331.3	381.0	15.00		14	48	788.2	811.8	2.99
		10b	371.1	426.7	14.98			4b	848.4	873.9	3.01
		10c	327.7	376.8	14.98			4c	816.0	840.5	3.00
_	~	12a	383.3	479.1	24.99		15	15a	400.7		air dry
	1	12b	431.3	539.1	24.99			15b	613.2		air dry
		12c	401.8	502.3	25.01			15c	341.6		air dry
	l	9a	333.7	383.8	15.01	L	16	5a	889.4		air dry
	l	9b	293.8	337.9	15.01			5b	869.0		air dry
		9c	319.0	366.9	15.02			5c	775.1		air dry
				ļ		l					

Laboratory No. 6

•••	
B	
R	
å	
Ľ	

Samples Destination weight (0.18) Moisture contant (0.018) South contant (0.018) Moisture contant (0.018) Set (0.18) (0.018) Set (0.18) (0.018) Ending weight (0.018) Ending weight (0.019) Ending (0.019) Ending (0.010) Ending (0.019) Ending (0.019) Ending (0.019) Ending (0.019) Ending (0.019) Ending (0.019) Ending (0.019) Ending (0.019) Ending (0.019) Ending (0.010) Ending (0.019) Ending (0.019) Ending (0.010) Ending (0.010) Ending (0.010) Ending (0.01											
	Set#		Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)	Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)	
4b 824.5 849.2 3.00 16 145.5 140.5 141.0	1	48	1097.5	1130.4	3.00	6	16a	416.6		air dry	
4c 145.0 167.4 3.01 166 311.0 11 116 320.3 11 8b 761.0 11 117 147 303.3 11 117 317.4 111 8c 897.4 11 114 355.3 11 317.6 311 111 17 124 111 132 20.3 111 312.6 111 111 1112 111 1112 111	·.	4₽	824.5	849.2	3.00		16b	345.5		air dry	
Ba 810.3 ait dry ait dry 80 $ait dry140 355.3 ait aitait ait dryait ait dry ait dryait ait dry ait dry<$		40	745.0	767.4	3.01		16c	371.0		air dry	
Bb 761.0 air dry air dry lub 365.3 air dry $7a$ 727.4 $air dry$ $air dry$ 11 $13a$ 375.8 air $7b$ 718.1 $air dry$ $air dry$ 11 $13a$ 375.8 air $7b$ 718.1 $air dry$ $air dry$ 11 $13a$ 375.8 air $7b$ 767.9 $air dry$ $air dry$ 11 $13b$ 322.2 air $7c$ 767.9 rot $air dry$ 12 $13b$ 320.2 air $2a$ 703.2 717.3 2.01 $air dry$ 725.0 air $2a$ 703.2 1003.3 2.01 $air dry$ air $2a$ 922.8 920.1 2.01 12 12 air $2a$ 920.1 12 12 12 12 air $3a$ 920.1 920.1	5	88	810.3			01	14a	320.3			
8c 897.4 air dry air dry 11 13a 375.8 air air 7b 718.1 air dry air dry 13b 322.2 air air 7b 718.1 air dry 13b 322.2 air air 7c 767.9 717.0 air dry 12 13b 322.2 air 7c 767.9 717.3 2.01 12 13b 40.0 2. 2b 983.5 1003.3 2.01 60 12 13 2. 2c 594.1 606.0 2.00 12 12 12 31 2 3a 922.8 9103.3 2.01 66 832.4 631.1 2 3b 923.6 100 106.2 3.00 66 832.4 641.6 31 3b 474.6 591.1 25.02 14 15 66 832.4 66 32.4 66 31		8b	761.0		air dry		14b	365.3			·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		8c	897.4				14c	387.1		air dry	
7b 718.1 air dry air dry air dry 130 322.2 air air 7c 767.9 \sim air dry 13c 420.8 \sim air 2a 703.2 717.3 2.01 2.01 13c 420.8 809.7 2. 2b 983.5 1003.3 2.01 2.01 12 1a 793.8 809.7 2. 2b 981.9 66.0 2.00 13 6a 914.0 air 3b 887.9 914.5 3.00 9 13 6a 914.0 air 3b 887.9 914.5 3.01 6b 832.4 air 3b 887.9 914.5 3.01 6b 832.4 air 3b 887.9 914.5 3.01 6b 832.4 air 3b 887.9 914.5 3.01 0.05 3.1 2. 3b 11a 474.4 593.1<	ñ	. 7a	727.4			11	13a	375.8		air dry	
7c 76.9 76.9 air dry air dry 13c 420.8 809.7 2 2a 703.2 717.3 2.01 12 1a 793.8 809.7 2 2b 983.5 1003.3 2.01 12 1b 630.5 643.1 2 2b 983.5 1003.3 2.00 2 1c 759.7 775.0 2 2c 594.1 606.0 2.00 1 6 832.4 643.1 2 3a 922.8 930.5 3.00 1 6 832.4 641.6 1 3b 887.9 914.5 3.01.0 1 1 1 3c 1035.0 1066.2 3.01 6 832.4 6 1 1 3c 11b 474.6 593.1 25.02 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7b	718.1				13b	322.2			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7c	767.9		air dry		13c	420.8		air dry	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	2а	703.2	•	2.01	12	1a	793.8	809.7	2.00	
2c 594.1 606.0 2.00 1.0		2b	983.5		2.01		1b		643.1	2.00	
		2c	594.1	606.0	2.00		1c	759.7	775.0	2.01	
3b 887.9 914.5 3.00 6b 832.4 air 3c 1035.0 1066.2 3.01 6c 762.0 air 3c 1035.0 1066.2 3.01 6c 762.0 air 11a 474.4 593.1 25.02 14 15a 461.6 air 11b 412.5 515.6 24.99 14 15a 461.6 air 11b 474.6 593.3 25.01 15b 301.0 air 11b 474.6 593.3 25.01 15c' 404.6 31 11c 474.6 593.3 25.01 15c' 404.6 25 10a 236.0 14.99 15c' $12a$ 485.8 607.3 25 10b 338.3 389.0 14.99 12a 485.6 677.9 25 10c 359.7 413.6 14.98 5a 866.0 570.9 25 </td <th>S</th> <td>3a</td> <td>922.8</td> <td>950.5</td> <td>3.00</td> <th>13</th> <td>6a</td> <td>914.0</td> <td></td> <td>air dry</td> <td></td>	S	3a	922.8	950.5	3.00	13	6a	914.0		air dry	
$3c$ 1035.0 1066.2 3.01 $6c$ 762.0 air $11a$ 474.4 593.1 25.02 14 $15a$ 461.6 air $11b$ 412.5 515.6 24.99 14 $15a$ 461.6 air $11c$ 474.6 593.3 25.01 $15b$ 301.0 air $11c$ 474.6 593.3 25.01 $15c^{*}$ 404.6 air $11c$ 474.6 593.3 25.01 $15c^{*}$ 404.6 air $10a$ 250.0 287.5 15.00 14.98 607.3 $25.$ $10b$ 338.3 389.0 14.98 $12a$ 485.8 607.3 $25.$ $10b$ 338.3 $413.6b$ 14.98 $12b$ 374.3 467.9 $25.$ $9a$ 291.8 335.6 15.02 920.9 950.9 950.6 995.6 $91r$ $91r$ <		3b	887.9	914.5	3.00		6b	832.4		air dry	
11a 474.4 593.1 25.02 14 15a 461.6 461.6 11b 412.5 515.6 24.99 7 $15b$ 301.0 301.0 11c 474.6 593.3 25.01 15.01 $15c'$ 404.6 593.3 11c 474.6 593.3 25.01 15.00 $15c'$ 404.6 70.6 10a 250.0 287.5 15.00 14.99 15 $12a$ 485.8 607.3 10b 338.3 389.0 14.99 12 274.3 467.9 10c 359.7 413.6 14.98 $12c$ 456.7 570.9 $9a$ 291.8 335.6 15.01 16 $5a$ 886.0 70.9 $9b$ 297.0 341.6 15.02 $5b$ 685.5 70.9		3с	1035.0	1066.2	3.01	 	60	762.0			
11b 412.5 515.6 24.99 15c' $15b'$ 301.0 11c 474.6 593.3 25.01 $15c'$ 404.6 301.0 10a 250.0 287.5 15.00 15.00 15 $12a$ 404.6 607.3 10b 238.3 389.0 14.99 15 $12a$ 485.8 607.3 10b 338.3 389.0 14.99 15 $12a$ 485.8 607.3 10c 359.7 413.6 14.98 $12c$ 456.7 570.9 9a 291.8 335.6 15.01 16 $5a$ 886.0 70.9 9b 297.0 341.6 15.02 $5b$ 685.5 70.9 9c 350.0 402.5 15.00 $5c$ 895.6 70.6	9	118	474.4	593.1	25.02	14	15a [.]	461.6			
11c 474.6 593.3 25.01 $15c'$ 404.6 607.3 10a 250.0 287.5 15.00 15 $12a$ 485.8 607.3 10b 338.3 389.0 14.99 $12a$ 485.8 607.3 10b 338.3 389.0 14.99 $12a$ 274.3 467.9 10c 359.7 413.6 14.98 $12c$ 456.7 570.9 9a 291.8 335.6 15.01 16 $5a$ 886.0 685.5 9b 297.0 341.6 15.02 $5b$ 685.5 70.9 9c 350.0 402.5 15.00 $5c$ 895.6 70.5		11b	412.5	515.6	24.99		15b	301.0		air dry	
		11c	474.6		25.01		15c'	404.6		air dry	
	٢	10a	250.0	287.5	15.00	 15	12a	485.8	•	25.01	
10c 359.7 413.6 14.98 12c 456.7 570.9 9a 291.8 335.6 15.01 16 5a 886.0 570.9 9b 297.0 341.6 15.02 5b 685.5 5b 685.5 9c 350.0 402.5 15.00 5c 895.6 70		10b	338.3	389.0	14.99		12b	374.3	467.9	25.01	
9a 291.8 335.6 15.01 16 5a 886.0 9b 297.0 341.6 15.02 5b 685.5 55 685.5 9c 350.0 402.5 15.00 5c 895.6 5c		10c	359.7	413.6	14.98		12c	456.7	570.9	25.01	
9b 297.0 341.6 15.02 5b 685.5 9c 350.0 402.5 15.00 5c 895.6	8	9a	291.8	335.6	15.01	16	5а	886.0		air dry	
9c 350.0 402.5 15.00 5c 895.6		9b	297.0	341.6	15.02		5b	685.5		air dry	
		9c	350.0	402.5	15.00		5c	895.6		air dry	

9 13a 13b 13b 13b 13c 10 16a 10 16b 11 16c 12 16c 13 3b 3c 3c 13 14b 14b 14b 14b 14c 14 12a 15 12b 15 12c 15 12c 15 12c 15 12b 15 12b 15 12b
8b
8c
16 7a
7b
7c

~

:

- 8 - 8 - P

•

:

~		
	a.	
	8	
P.	R	- 6
μ.	Ľ	- 4
0	H	. 7
ũ,	R	ŝ
		Ś
ra	Ľ.	
5		

Lab Name:	le:							Lab	Laboratory No	. 8
Set#	# Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)		Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
-	9.a	320.9	369.0	14.99		6	15a	373.1		air dry
	96	379.8	436.8	15.01			15b	353.6		air dry
	9c	380.7	437.8	15.00			15c	310.4		air dry
7	13a	278.0		air dry		10	4a	776.2	799.5	3.00
	13b	348.4		air dry			4b	620.0	638.6	3.00
	13 c	336.6		air dry			4c	936.3	964.4	3.00
3	5а	639.2		air dry		11	2а	579.1	590.7	2.00
	5b	753.9		air dry			2b	779.8	795.5	2.01
	5c	804.8		air dry			2c	911.4	929.5	1.99
4	11a	411.6	514.5	25.00		12	12a	394.2	492.8	25.01
	11b	472.4	590.6	25.02			12b	544.3	680.4	25.00
	11c	394.3	492.9	25.01		-	12c	398.1	497.6	24.99
Ŷ	8a	962.3		air dry		13	3а	732.9	754.9	3.00
	8b	901.7		air dry			3b	977.0	1006.3	3.00
	8c	675.9		air dry	1		3с	1068.8	1100.7	2.98
9	7 a	802.6		air dry		14	16a	337.7		air dry
	7b	695.8		air dry			16b	532.4		air dry
	7c	789.7		air dry			16c	439.1		air dry
~	la	1076.3	1097.8	2.00		15	14a	309.3		air dry
	lb	977.9	997.5	2.00			14b	354.5		air dry
	lc	904.7	922.9	2.01	1		14c	388.2		air dry
8	10a	348.4	400.6	14.98		16	6a	1001.1		air dry
	10b	352.2	405.0	15.00			6b	683.0		air dry
	10c	342.4	393.8	15.01			бc	806.6		air dry
Į										

Lab Name:	: ei								Lab	Laboratory No	. 9
Se	Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)		Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
	1	10a	348.7	401.0	15.00		6	5a	0.769		air drv
:		10b	285.5	328.3	14.99			Sb	1000.0		air dry
	\neg	10c	380.3	437,4	15.01			5c	834.2		air dry
~	~	78	770.8		air dry		10	148	365.8		air dry
		7b	688.1		air dry			14b	308.9		
	+	7c	685.8		air dry]		14c	288.2		air dry
۳ 		6a	1177.3		air dry		11	8a	813.0		air dry
		66	943.8		air dry			8b	875.0		air dry
	-	éc	782.9		air dry	1		8c	816.7		air dry
4		11a	395.5	494.4	25.01	L	12	2а	792.5	808.4	2.01
		411	387.2	484.0	25.00			2b	647.4	660.5	2.02
	-	11c	379.9	474.9	25.01			2c	519.4	529.8	2.00
~ ~		12a	478.0	597.5	25.00		13	3а	1089.1	1121.9	3.01
		12b	430.3	537.9	25.01		<u> </u>	3b	855.2	880.9	3.00
	-	12c	397.0	496.3	25.01		L	3с	948.8	977.3	3.00
9		13a	294.3		air dry	L	14	15a	410.2		air dry
<u> </u>		13b	382.0		air dry		L	15b	483.9		air dry
	_	13c	339.1		air dry]		15c	283.2		air dry
~		la	916.7	935.1	2.01	_	15	9a	307.6	353.7	14.99
		ЪЪ	983.2	1002.9	2.00		L	9b	256.6	295.1	15.00
	-+	lc	888.4	906.2	2.00			9c	320.7	368.8	15.00
8		4.8	675.0	695.3	3.01		16	16a	381.3		air dry
		4b	892.1	918.9	3.00			16b	515.3		air dry
		4c	714.4	735.8	3.00		L	16c	458.9		air dry
						<u> </u>	ر ار				, , ,

-	- 22
~ >	. 8
- 54	1
0	H
- 5	
- =	
<u> </u>	1
0	
_م	
Č 🖬	
_	
-	H.
	4
	Π.
	۲.
	R
	8
	8

	Blite								Labo	Laboratory No.	· 10
<u> </u>	Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)		Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
		10a	362.0	416.3	15.00		6	11a	352.8	441.0	25.00
	L	10b	332.7	382.7	15.03			11b	462.4	578.0	25.00
		10c	321.6	369.8	14.99			11c	556.5	695.6	25.00
	~	5a	1058.8		air dry		10	14a	278.1		air dry
	1	5b	904.1		air dry			14b	296.0		air dry
		5c	860.2		air dry			14c	355.2		
		8a	952.8		air dry		11	78	751.0		air dry
	1	8b	815.3		air dry			7b	769.3		air dry
	-+	8c	660.4		air dry			7c	731.4		air dry
	 	134	356.7		air dry		12	4a	1068.7	1100.8	3.00
		13b	321.1		air dry			4b	928.7	956.6	3.00
	-+	13c	320.6		air dry			4c	786.4	810.1	3.01
	<u>ب</u> م	6a	996.9		air dry		13	15a	374.8		air dry
	1	6b	868.3		air dry			15b	372.7		air dry
	-	éc	814.3		air dry			15c	448.9		air dry
-	 。	1a	910.5	928.9	2.02		14	16a	414.8		air dry
¥	L	ę	776.4	791.9	2.00			16b	467.2		air dry
	+	lc	898.4	916.4	2.00			16c	482.7		air dry
		9a	315.9	363.3	15.00		15	2a	864.1	881.4	2.00
		9b	331.1	380.8	15.01		L	2b	983.2	1002.9	2.00
		9c	322.7	371.1	15.00		L	2c	740.7	755.6	2.01
		3a	619.0	637.6	3.00	L	16	12a	396.4	495.5	25.00
		3b	868.6	894.7	3.00		L	12b	477.0	596.3	25.01
		3с	844.7	870.0	3.00		L	12c	475.2	594.0	25.00

Lab Nai

ab l	Name:								Labor	Laboratory No.	11
	Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)		Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
		18	899.5	917.5	2.00		6	10a	326.8	375.8	14.99
		1b	800.6	816.6	2.00			10b	260.3	299.3	14.98
		lc	1040.1	1060.9	2.00	1		10c	271.2	311.9	15.01
<u>I</u>	2	6a	1011.6		air dry		10	15a	401.3		air dry
		6b	1130.5		air dry			15b	358.8		air dry
		éc	983.9		air dry			15c	407.1		air dry
<u> </u>	e	16a	479.4		air dry		11	2а	653.4	666.5	2.00
		16b	360.7		air dry			2b	623.4	635.9	2.01
		16c	318.5		air dry			2c	938.1	956.9	2.00
<u> </u>	4	13a	389.5		air dry		12	4a	994.2	1024.0	3.00
		13b	273.1		air dry			4b	716.7	738.2	3.00
		13c	350.7		air dry			40	901.7	928.8	3.01
	5	8a	960.2		air dry		13	12a	401.8	502.3	25.01
		8b	812.8		air dry			12b	363.2	454.0	25.00
		8c	710.0		air dry			12c	375.3	469.1	25.00
L	6	3a	701.2	722.2	2.99		14	148	315.9		air dry
		3b	889.3	916.0	3.00			14b	385.3		air dry
		3¢	1037.8	1068.9	3.00			14c	243.5		air dry
L	7	7a	806.1		air dry		15	5а	700.4		air dry
		7b	988.5		air dry			5b	842.5		air dry
		7c	637.3		air dry			5c	847.8		air dry
<u> </u>	8	9а	319.5	367.4	14.99		9t	11a	400.7	500.9	25.01
		q6	279.1	334.8	*19.96			11b	458.1	572.6	24.99
		96	591 4	335.1	15.00			11c	410.4	513.0	25.00
l	1						1				

a. .

Laboratory No. 12

۰.

Lab Name:

									THE POLE OF NO.	
Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)		Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
1	la	671.5	685.0	2.01		6	2a	590.6	602.4	2.00
	Jb	875.3	892.9	2.01			2b	893.6	911.5	2.00
	lc	1163.4	1186.7	2.00			2c	533.3	543.9	1.99
3	16a	471.1		air dry		10	8a	1006.9		air dry
	16b	436.8		air dry			8b	708.8		air dry
	16c	490.8		air dry			8c	1026.6		air dry
ñ	. 11a	436.7	545.9	25.01		11	7a	871.3		air dry
	116	370.2	462.8	25.01			7b	851.8		air dry
	11c	454.3	567.9	25.01			7c	809.9		air dry
4	13a	274.2		air dry		12	14a	324.9		air dry
	13b	276.8		air dry			14b	302.5		air dry
	13c	380.9		air dry			140	254.8		air dry
Ś	15a	401.8		air dry	L	13	За	1054.0	1085.6	3.00
	15b	427.0		air dry			3b	1151.6	1186.1	3.00
	15c	382.8		air dry			3с	1035.8	1066.9	3.00
ور	12a	449.3	561.6	24.99		14	4a	912.6	940.0	3.00
I.	12b	368.4	460.5	25.00		L	4Þ	869.5	895.7	3.01
	12c	423.9	529.9	25.01	1		40	888.7	915.4	3.00
~	68	786.5		air dry		15	9a	333.5	383.5	14.99
I	6b	698.8		air dry			9b	375.1	431.4	15.01
	9c	834.2		air dry]		9c	303.4	349.0	15.03
∞	5a	946.8		air dry		16	10a	352.8	405.7	14.99
[5b	875.4		air dry			10b	251.1	288.8	15.01
	5c	649.5		air dry	 	ا <u></u> ا	10c	241.4	277.6	15.00
					1	r				

13 Laboratory No.

			T	T	<u> </u>	T	<u> </u>	T	<u> </u>	T-	T	7	-	-			-			_					
	Moisture Content	air dru	air dry	air dry		air dry			air dry	air dry	air dry	air dry	air dru	0 6		20.7 10 c	14 99	15.01	15.01	24.97	25.00	25.02	15.00	15.02	15.01
Laboratory No	Ending weight (0,1 °)													823.4			423.4	420.7	368.6	614.1	443.1	575.2	446.9	290.3	296.6
	Beginning weight (0.1 g)	442.8	391.0	371.6	759.5	820.5	755.4	250.6	386.5	280.7	323.9	298.9	416.0	807.2	836.5	955.0	368.2	365.8	320.5	491.4	354.5	460.1	388.6	252.4	257.9
	Sample#	15a	15b	15c	68	6b	6c	13a	13b	13c	14a	14b	14c	la	4	lc	9a	9b	9c	12a	12b	12c	10a	10b	10c
	Set#	6			10			11	!		12		L	13	1	<u> </u>	14	L		15	<u> </u>	L	16		
														L			L								
	Moisture Content (0.01%)	air dry	air dry	air dry	2.00	2.00	2.00	3.02	3.00	2.99	air dry	air dry	air dry	air dry	3.01	3.01	3.00	air dry	air dry	air dry					
	Ending weight (0.1 g)				932.2	725.9	1263.4	806.2	896.2	879.1										1047.9	959.7	728.5			
	Beginning weight (0.1 g)	912.1	838.6	921.7	913.9	711.7	1238.6	782.6	870.1	853.6	644.3	790.4	1203.4	480.0	399.5	457.7	545.1	403.1	543.6	1017.3	931.7	707.3	847.7	853.1	895.3
	fordmes.	Śа	Sb	2c	. 2a	2b	2c	48	44	40	88	a 8	80	11a	11b	11c	16a	16b	16c	3а	3b	3c	7а	<u>م</u>	7c
	oec/	1			8					T	4	L		~_L	1	·	 ``			~		+	<u></u>		

37.7 5

:

ab Name:	Ше:								Labo	Laboratory No.	14
Se	Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)		Set#	Sample∦	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
-		11a	438.6	548.2	24.99		6	6а	739.5		air dry
		11b	397.8	497.3	25.00			6Ь	1151.4		air dry
		11c	438.2	547.9	25.03			60	884.6		air dry
8		5 a	728.8		air dry	-	10	la	877.8	895.4	2.01
		Şb	949.3		air dry			1b	944.4	963.3	2.00
		5с	752.3		air dry			lc	789.7	805.5	2.00
e.		13a	317.7		air dry		11	3в	731.0	752.9	3.00
]	13b	278.0		air dry		<i>_</i>	3b	677.2	697.5	3.00
		13 c	291.8		air dry			3c	961.4	990.2	3.00
4		15a	449.3		air dry		12	10a	236.8	272.3	14.99
		15b	572.3		air dry			10b	382.7	440.1	15.00
		15c	582.1		air dry			10c	331.8	381.6	15.00
<u>.</u>		9a	308.9	355.2	14.99		13	16a	511.9		air dry
		9b	337.1	387.7	15.01			16b	454.7		air dry
		9c	360.2	414.2	14.99			16c	461.9		air dry
9		14a	354.2		air dry		14	12a	401.6	502.1	25.02
		14b	373.6		air dry			12b	403.8	504.8	25.01
		14c	391.3		air dry			12c	414.6	518.3	25.01
2		7a	914.7		air dry		15	4a	781.9	805.3	2.99
		7b	736.1		air dry			4b	1105.1	1138.3	3.00
	-	7c	820.6		air dry			4c	859.2	885.0	3.00
8		8a	746.2		air dry		16	2а	611.4	623.6	2.00
	[8b	740.4		air dry		1	2b	700.5	714.5	2.00
		8c	737.9		air dry			2c	1004.3	1024.5	2.01

Lab

				the second					
Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)	Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
1	2a	953.3	972.5	2.01	6	148	270.2		air dry
	2b	1054.1	1075.2	2.00		14b	319.0		air dry
	2c	799.4	815.4	2.00		14c	377.9		air dry
2	15a	554.1		air dry	10	Śа	1003.0		air dry
	15b	547.8		air dry		5b	727.4		air dry
	15c	574.2		air dry		5c	758.4		air dry
3	9a	283.3	325.8	15.00	11	10a	344.3	395.9	15.00
	q6	321.4	369.6	15.00		10b	263.4	302.9	15.00
	9c	311.7	358.5	15.01		10c	365.6	420.4	14.99
4	⁄11a	434.5	543.1	24.99	12	1a	814.8	831.1	2.00
	11b	455.0	568.8	25.01		1b	915.9	934.2	2.00
	llc	506.6	633.3	25.01		1c	992.4	1012.2	2.00
5	3а	873.8	900.0	3.00	13	16a	498.6		air dry
	3b	955.6	984.3	3.00		16b	364.2		air dry
	3с	728.7	750.6	3.01		16c	424.9		air dry
6	7a	692.6		air dry	14	13a	334.6		air dry
	7b	887.9		air dry		13b	365.1		air dry
	7c	1027.6		air dry		13c	341.0		air dry
7	ба	590.2		air dry	15	12a	427.3	534.1	24.99
	6b	924.8		air dry		12b	596.1	745.1	25.00
	6c	625.0		air dry		12c	388.4	485.5	25.00
8	48	819.2	843.8	3.00	16	8a	828.4		air dry
	qþ	719.7	741.3	3.00	·	8b	816.0		air dry
-									

r.....

Beginning beginning beginning (0.1 g) Indiation (0.1 g) Notifies (0.1 g) Notifies (0.1 g) Indiation (0.1 g) Notifies (0.1 g) Indiation (0.1 g) Indiation									Labo	Laboratory No	. 16
	Set	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)	<u> </u>	et#	Sample#	Beginning weight (0.1 g)	Ending weight (0,1,0)	Moisture Content
9b 279.5 321.5 15.03 13 373.8 $atr.$ 2 12a 470.8 366.4 15.00 13 238.5 23.9.5 $atr.$ 2 12b 417.3 221.6 24.99 10 1a 74.0 789.6 2.1 311.5 417.3 221.9 25.01 10 774.0 789.6 2.1 3 11b 416.0 520.0 25.00 11 14a 321.0 atr. 4 88 977.3 25.01 1a 14b 311.2 atr. 4 11b 416.0 520.0 25.00 1a 1a 311.2 atr. 4 88 975.4 24.9 311.2 atr. atr. 4 88 976.4 1atr. 1atr. 1atr. 1atr. atr. 4 88 975.1 1atr. 13 5a 96.7 atr. 4 88	-	9a	292.3	336.1	14.98	<u> </u>	6	13a	438.6	(9	(410.0)
9c 318.6 366.4 15.00 13c 328.5 $atr atr 12a 470.8 588.6 25.02 1b 774.0 789.6 2. 12b 417.3 521.6 24.99 1b 774.0 789.6 2. 12b 417.5 521.9 25.01 11 14a 321.0 atr 2. 11b 461.8 577.3 25.01 11 14a 321.0 atr atr 11b 461.8 577.3 25.01 11 14a 321.0 atr atr 11b 461.8 577.3 25.01 114 311.2 atr atr 11b 461.8 577.3 25.01 14b 311.2 atr atr 8 980.7 atr 491.4 577.3 520.0 atr atr 8 980.7 atr 126 249.6 249.6 atr $		9b	279.5	321.5	15.03		1	13b	373.8		air an
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		9c	318.6	366.4	15.00		<u> </u>	13c	328.5		
	8	12a	470.8	588.6	25.02		01	la	774.0	789 6	a 11 ur y
		12b	417.3	521.6	24.99		<u>L</u>	41	792.5	808 4	20.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12c	417.5	521.9	25.01		<u> </u>	lc	773.1	788 6	10.2
11b 416.0 520.0 25.00 14b 311.2 air air $11c$ 396.5 495.6 24.99 14c 350.9 air air 8 801.7 air dry air dry $6c$ 950.9 air air 8 801.7 air dry $6c$ 1067.9 899.4 air air $8c$ 953.1 air dry $6c$ 1067.9 air air $8c$ 951.1 air dry $6c$ 1067.9 air air $16a$ 458.2 air dry $6c$ 1067.9 air air $16b$ 562.5 air dry air $4ry$ 768.7 791.8 3.0 $16b$ 338.7 air dry 13 $5a$ 948.3 air air $3ab$ 948.7 378.9 742.9 927.6 3.0 3.0 $16c$ 326.7 $873.$	ر	11a	461.8	577.3	25.01			14a	321.0		air dru
		11b	416.0	520.0	25.00		[14b	311.2		air dry
k $8a$ 801.7 $air dry$ $air dry$ $air dry$ bb 796.4 $air dry$ $air dry$ bb 796.4 $air dry$ $air dry$ bb 990.4 air air Bc 953.1 $air dry$ $air dry$ bc 1067.9 air air Bc 953.1 $air dry$ $air dry$ bc 1067.9 air air $16b$ 562.5 $air dry$ $air dry$ 13 $5a$ 948.3 air air $16b$ 562.5 $air dry$ $air dry$ 13 $5a$ 948.3 air air $16b$ 562.5 3.00 $air dry$ 742.9 air air 316 900.5 927.5 3.00 14 $4a$ 762.6 967.6 3.0 326.7 378.7 378.7 $4b$ 902.5 929.6 3.0 326.7 378.3 <t< td=""><th></th><td>11c</td><td>396.5</td><td>495.6</td><td>24.99</td><th></th><td>l</td><td>14c</td><td>350.9</td><td></td><td></td></t<>		11c	396.5	495.6	24.99		l	14c	350.9		
8b 796.4 air dry etc 899.4 air air 8c 933.1 air dry air dry 6c 1067.9 air air 8c 933.1 air dry air dry 55 742.9 air air 16b 562.5 3.00 air dry 55 742.9 air air 16b 562.5 3.00 14 4a 768.7 791.8 3.0 16c 338.7 920.5 3.00 14 4a 768.7 791.8 3.0 3b 948.7 977.2 3.00 14 4a 768.7 791.8 3.0 3b 948.7 977.2 3.00 14 4a 768.7 791.8 3.0 3c 16 325.7 374.6 15.00 15 2a 967.8 987.3 2.0 10b 368.3 423.5 15.00 2b 843.4 860.3 2.0	4	88	801.7		air dry		2	68	950.9		
8c 953.1 air dry 6c 1067.9 air air 16a 458.2 air dry $air dry$ 13 $5a$ 948.3 air air 16b 562.5 air dry $air dry$ $5b$ 742.9 air air 16c 338.7 $air dry$ $air dry$ $5c$ 996.6 air air 16c 338.7 $air dry$ $air dry$ $5c$ 996.6 air air 3b 948.7 977.2 3.00 14 $4a$ 768.7 791.8 3.0 3b 948.7 977.2 3.00 14 $4a$ 768.7 791.8 3.0 3c 16 325.7 374.6 15.00 15 $4c$ 967.8 987.3 2.0 10a 325.7 374.6 15.00 15 $2a$ 974.6 860.3 2.0 10b 368.3		æ	796.4					6b	899.4		
16a 458.2 air dry 13 5a 948.3 air 16b 562.5 air dry 5b 742.9 air air 16b 562.5 air dry 5b 742.9 air air 16c 338.7 air dry 5c 996.6 797.8 air 3a 900.5 927.5 3.00 14 4a 768.7 791.8 3.0 3b 948.7 977.2 3.00 4b 902.5 929.6 3.0 3c 852.7 878.3 3.00 4c 967.8 987.3 2.0 3c 10a 325.7 374.6 15.00 15 2a 967.8 987.3 2.0 10b 368.3 423.5 15.00 2b 843.4 860.3 2.0 7b 861.3 150 2c 843.4 860.3 2.0 7b 843.4 860.3 16 15a 2.0 <		8c	953.1		air dry		L	6c	1067.9		
16b 562.5 air dry 5b 742.9 air 16c 338.7 air dry 5c 996.6 air 16c 338.7 air dry 5c 996.6 7 air 3a 900.5 927.5 3.00 14 $4a$ 768.7 791.8 3.0 3b 948.7 977.2 3.00 4b 902.5 929.6 3.0 3c 852.7 878.3 3.00 4c 902.5 929.6 3.0 10a 325.7 374.6 15.00 15 2a 967.8 987.3 2.0 10b 368.3 423.5 15.00 2b 843.4 860.3 2.0 7a 746.9 746.9 743.5 15.00 2c 97.2 2.0 7b 802.5 409.3 16 15a 544.6 76 2.0 7b 802.5 910.3 15b 556.1 912.2 2.0 <	Ś	16a	458.2		air dry		<u>س</u>	5a	948.3		
16c 338.7 air dry 5c 996.6 air air 3a 900.5 927.5 3.00 14 $4a$ 768.7 791.8 3. 3b 948.7 977.2 3.00 14 $4a$ 768.7 791.8 3. 3b 948.7 977.2 3.00 4b 902.5 929.6 3. 3c 852.7 878.3 3.00 4c 926.0 953.8 3. 10a 325.7 374.6 15.00 15 2a 967.8 987.3 2.0 10b 368.3 423.5 15.00 25 281.4 860.3 2.0 7a 746.9 409.3 15.00 2c 873.7 891.2 2.0 7a 746.9 409.3 15.00 2c 873.7 891.2 2.0 7a 746.9 60.3 2c 874.6 7.0 2.0 7b 802.5 802.5		16b	562.5		air dry		L	Sb	742.9		
3a 900.5 927.5 3.00 14 $4a$ 768.7 791.8 $3.$ $3b$ 948.7 977.2 3.00 $4b$ 902.5 929.6 $3.$ $3c$ 852.7 878.3 3.00 $4c$ 902.5 929.6 $3.$ $3c$ 852.7 878.3 3.000 $4c$ 967.8 987.3 2.0 $10a$ 325.7 374.6 15.000 15 $2a$ 967.8 987.3 2.0 $10b$ 368.3 423.5 15.000 15 $2a$ 967.8 987.3 2.0 $10c$ 355.9 409.3 15.00 $2b$ 843.4 860.3 2.0 $7a$ 746.9 409.3 15.00 $2c$ 873.7 891.2 2.0 $7a$ 746.9 802.5 409.3 16 156 556.1 air $7c$ 847.1 air dry <th></th> <td>16c</td> <td>338.7</td> <td></td> <td>air dry</td> <th></th> <td><u> </u></td> <td>5c</td> <td>996.6</td> <td></td> <td>air dru</td>		16c	338.7		air dry		<u> </u>	5c	996.6		air dru
3b 948.7 977.2 3.00 4b 902.5 929.6 3.00 3c 852.7 878.3 3.00 4c 926.0 953.8 3.0 10a 325.7 374.6 15.00 15 2a 967.8 987.3 2. 10b 368.3 423.5 15.00 15 2a 967.8 987.3 2. 10b 368.3 423.5 15.00 2b 843.4 860.3 2. 10c 355.9 409.3 15.00 2b 843.4 860.3 2. 7a 746.9 air dry 16 15a 544.6 air air 7b 802.5 air dry 16 15a 544.6 1 air 7c 847.1 air dry 15b 556.1 1 1 air	v	3а	900.5	927.5	3.00	-	4	48	768.7		3 01
3c 852.7 878.3 3.00 $4c$ 926.0 953.8 $3.$ $10a$ 325.7 374.6 15.00 15 $2a$ 967.8 987.3 $2.$ $10b$ 368.3 423.5 15.00 $2b$ 843.4 860.3 $2.$ $10c$ 355.9 409.3 15.00 $2c$ 873.7 891.2 $2.$ $7a$ 746.9 409.3 15.00 $2c$ 873.7 891.2 $2.$ $7a$ 746.9 $air dry$ 16 $15a$ 544.6 air air $7c$ 847.1 $air dry$ $air dry$ 16 $15c$ 556.1 air air		3b	948.7	977.2	3.00			4b	902.5	929.6	3 00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3c	852.7	878.3	3.00		L	4c	926.0	953.8	3.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	10a		374.6	15.00	1		2a	967.8		2.01
10c 355.9 409.3 15.00 2c 873.7 891.2 2. 7a 746.9 air dry 16 15a 544.6 air air 7b 802.5 air dry 16 15b 556.1 air air 7c 847.1 air dry 15c 369.4 air air	<u>`</u>	10b	368.3	423.5	15.00			2b	843.4	860.3	2.00
7a 746.9 air dry 16 15a 544.6 air 7b 802.5 air dry 15b 556.1 air 7c 847.1 air dry 15c 369.4 air		10c	355.9	409.3	15.00		<u> </u>	2c	873.7	•	2.00
802.5 air dry 15b 556.1 air 847.1 air dry 15c 369.4 air	~~~	7a	746.9		air dry	1		15a	544.6		air dry
847.1 air dry 15c 369.4 air	L.	7b	802.5		air dry			15b	556.1		air dry
		7c	847.1					15c	369.4		air drv

Lab Nam

17 Laboratory No.

						the second second second				
Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)		Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
-	8.8	713.6		air dry	L	6	9a	284.6	327.3	15.00
	86	774.9		air dry			9b	318.6	366.4	15.00
	80	923.5		air dry			9c	319.1	367.0	15.00
8	58	955.0		air dry		10	10a	393.6	452.6	15.00
	5b	936.5		air dry			10b	374.6	430.8	15.00
	50	703.5		air dry			10c	362.2	416.5	15.00
	2a	565.4	576.7	2.00		11	13a	251.7		air dry
	2b	1052.2	1073.3	2.01			13b	304.6		air dry
	2c	1038.6	1059.4	2.00			13c	287.3		air dry
4	6a	1181.8		air dry	1	12	3а	650.3	669.8	3.00
	6b	971.8		air dry			3b	982.2	1011.7	3.00
_	60	1032.8		air dry			3с	966.7	995.7	3.00
2	48	920.1	947.7	3.00		13	12a	519.5	649.5	25.02
	4þ	809.0	833.3	3.00			12b	310.6	388.3	25.02
	40	662.8	682.7	3.00			12c	476.4	595.6	25.02
0	11a	495.0	618.8	25.01		14	7.a	830.2		air dry
	11b	445.0	556.3	25.01			7b	913.4		air dry
	11c	388.5	485.6	24.99			7c	868.7		air dry
~	16a	482.1		air dry		15	la	1081.3	1102.9	2.00
	16b	457.7		air dry			1b	839.6	856.4	2.00
	16c	485.7		air dry			1c	993.4	1013.3	2.00
8	14a	311.3		air dry		16	15a	500.1		air dry
	14b	335.8		air dry			15b	427.7		air dry
1	140	405.6		air dry	{		15c	400.7		air dry
	8 ~ v v v t m s		(0.1 8 714 8b 774 8b 774 8b 774 8b 774 8b 774 8b 923 5a 925 5b 936 5c 703 5c 703 5c 703 5c 703 5c 703 5c 703 2a 565 2b 1052 2c 1031 6a 1181 6b 971 6c 1032 6c 1032 4c 662 4d 920 4d 920 4d 920 11a 495 16b 457 16b 457 16b 457 16c 485 14a 311 14c 145 14c 405 14c 405 14c 485 14c 485 14c 485 14c 485 14c 485 14c 485 14c	(0.1 g) 8a 713.6 8b 774.9 8b 774.9 8c 923.5 5a 955.0 5a 936.5 5b 936.5 5c 703.5 5c 1052.2 2a 1052.2 2b 1038.6 6b 971.8 6b 971.8 6b 971.8 6c 1032.8 4d 909.0 4d 909.0 4d 809.0 11a 495.0 11b 445.0 16b 482.1 16c 485.7 16b 485.7 14a 311.3 14c 405.6 <tr 0<="" th=""><th>$(0.1 g)$ $(0.1 g)$ $(0.1 g)$ $(0.0 \ 0.0$ 8b 714.9 air 8b 774.9 air 8c 923.5 air 8c 923.5 air 8c 936.5 air 5a 936.5 air 5b 936.5 air 5c 703.5 air 5c 703.5 air 5c 703.5 air 5c 1052.2 1073.3 2. 2a 565.4 576.7 2. 2b 1052.2 1073.3 2. 2c 1038.6 1059.4 2. 2b 971.8 air 4a 920.1 947.7 3. 4b 809.0 833.3 2. 11b 445.0 556.3 25 11c 488.5 485.6 24 16b 457.7 air 16c 485.0 556</th><th>$(0.1 g)$ $(0.1 g)$ $(0.1 g)$ $(0.0 \ 0.0$ 8b 714.9 air 8b 774.9 air 8c 923.5 air 8c 923.5 air 8c 936.5 air 5a 936.5 air 5b 936.5 air 5c 703.5 air 5c 703.5 air 5c 703.5 air 5c 1052.2 1073.3 2. 2a 565.4 576.7 2. 2b 1052.2 1073.3 2. 2c 1038.6 1059.4 2. 2b 971.8 air 4a 920.1 947.7 3. 4b 809.0 833.3 2. 11b 445.0 556.3 25 11c 488.5 485.6 24 16b 457.7 air 16c 485.0 556</th><th>(0.1 g) $(0.1 g)$ $(0.01 k)$ 8a 713.6 air dry 8b 774.9 air dry 8c 923.5 air dry 8c 923.5 air dry 8c 923.5 air dry 8c 923.5 air dry 9 936.5 air dry 9 936.5 air dry 9 936.5 1073.3 2.01 2a 565.4 576.7 2.00 2b 1052.2 1073.3 2.01 2c 1038.6 1059.4 2.00 2b 971.8 air dry 6a 1181.8 air dry 6b 971.8 air dry 44 920.1 947.7 3.00 44 920.1 947.7 3.00 45 662.8 682.7 3.00 45 662.8 682.7 3.00 11b 445.0 556.3 25.01</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th></th><th>(0.1 g) (0.1 g) <</th></tr>	$(0.1 g)$ $(0.1 g)$ $(0.1 g)$ $(0.0 \ 0.0$ 8b 714.9 air 8b 774.9 air 8c 923.5 air 8c 923.5 air 8c 936.5 air 5a 936.5 air 5b 936.5 air 5c 703.5 air 5c 703.5 air 5c 703.5 air 5c 1052.2 1073.3 2. 2a 565.4 576.7 2. 2b 1052.2 1073.3 2. 2c 1038.6 1059.4 2. 2b 971.8 air 4a 920.1 947.7 3. 4b 809.0 833.3 2. 11b 445.0 556.3 25 11c 488.5 485.6 24 16b 457.7 air 16c 485.0 556	$(0.1 g)$ $(0.1 g)$ $(0.1 g)$ $(0.0 \ 0.0$ 8b 714.9 air 8b 774.9 air 8c 923.5 air 8c 923.5 air 8c 936.5 air 5a 936.5 air 5b 936.5 air 5c 703.5 air 5c 703.5 air 5c 703.5 air 5c 1052.2 1073.3 2. 2a 565.4 576.7 2. 2b 1052.2 1073.3 2. 2c 1038.6 1059.4 2. 2b 971.8 air 4a 920.1 947.7 3. 4b 809.0 833.3 2. 11b 445.0 556.3 25 11c 488.5 485.6 24 16b 457.7 air 16c 485.0 556	(0.1 g) $(0.1 g)$ $(0.01 k)$ 8a 713.6 air dry 8b 774.9 air dry 8c 923.5 air dry 8c 923.5 air dry 8c 923.5 air dry 8c 923.5 air dry 9 936.5 air dry 9 936.5 air dry 9 936.5 1073.3 2.01 2a 565.4 576.7 2.00 2b 1052.2 1073.3 2.01 2c 1038.6 1059.4 2.00 2b 971.8 air dry 6a 1181.8 air dry 6b 971.8 air dry 44 920.1 947.7 3.00 44 920.1 947.7 3.00 45 662.8 682.7 3.00 45 662.8 682.7 3.00 11b 445.0 556.3 25.01	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(0.1 g) <
$(0.1 g)$ $(0.1 g)$ $(0.1 g)$ $(0.0 \ 0.0$ 8b 714.9 air 8b 774.9 air 8c 923.5 air 8c 923.5 air 8c 936.5 air 5a 936.5 air 5b 936.5 air 5c 703.5 air 5c 703.5 air 5c 703.5 air 5c 1052.2 1073.3 2. 2a 565.4 576.7 2. 2b 1052.2 1073.3 2. 2c 1038.6 1059.4 2. 2b 971.8 air 4a 920.1 947.7 3. 4b 809.0 833.3 2. 11b 445.0 556.3 25 11c 488.5 485.6 24 16b 457.7 air 16c 485.0 556	$(0.1 g)$ $(0.1 g)$ $(0.1 g)$ $(0.0 \ 0.0$ 8b 714.9 air 8b 774.9 air 8c 923.5 air 8c 923.5 air 8c 936.5 air 5a 936.5 air 5b 936.5 air 5c 703.5 air 5c 703.5 air 5c 703.5 air 5c 1052.2 1073.3 2. 2a 565.4 576.7 2. 2b 1052.2 1073.3 2. 2c 1038.6 1059.4 2. 2b 971.8 air 4a 920.1 947.7 3. 4b 809.0 833.3 2. 11b 445.0 556.3 25 11c 488.5 485.6 24 16b 457.7 air 16c 485.0 556	(0.1 g) $(0.1 g)$ $(0.01 k)$ 8a 713.6 air dry 8b 774.9 air dry 8c 923.5 air dry 8c 923.5 air dry 8c 923.5 air dry 8c 923.5 air dry 9 936.5 air dry 9 936.5 air dry 9 936.5 1073.3 2.01 2a 565.4 576.7 2.00 2b 1052.2 1073.3 2.01 2c 1038.6 1059.4 2.00 2b 971.8 air dry 6a 1181.8 air dry 6b 971.8 air dry 44 920.1 947.7 3.00 44 920.1 947.7 3.00 45 662.8 682.7 3.00 45 662.8 682.7 3.00 11b 445.0 556.3 25.01	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(0.1 g) <					

1

ł

L L

•••

67

1 E

68

۰.

								Labo	Laboratory No.	18
Set#	t∦ Sample∦	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)		Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
-	6a	952.2		air dry		6	3а	979.5	1008.9	3.00
-	6b	967.9		air dry			3b	1006.4	1036.6	3.00
	ęc	897.5		air dry			3с	703.0	724.1	3.00
8	13a	313.0		air dry		10	16 a	349.3		air dry
	13b	349.0		air dry			16b	461.5		air dry
	13c	369.0		air dry			16c	483.8		air dry
m	, 12a	397.7	497.1	24.99		11	2a	9.977	795.6	2.01
	12b	462.5	578.1	24.99			2b	811.3	827.5	2.00
	12c	419.7	524.6	24.99			2c	925.1	943.7	2.01
4	11a	483.2	604.0	25.00		12	7a	826.1		air dry
	11b	438.7	548.3	24.98			Jb	955.6		air dry
	11c	375.0	468.8	25.01			7c	601.2		air dry
S	15a	502.4		air dry		13	10a	310.7	357.3	15.00
	15b	371.3		air dry			10b	341.3	392.5	15.00
	15c	389.3		air dry			10c	307.1	353.2	15.01
9	5a	821.4		air dry		14	9a	295.4	339.7	15.00
	5b	803.6		air dry			9b	327.3	376.4	15.00
	5c	898.2		air dry			9c"	309.7	356.1	14.98
~	48	753.5	776.1	3.00		15	la	733.4	748.1	2.00
	4b	920.3	948.0	3.01		1	1b	1013.5	1033.8	2.00
	40	832.3	857.3	3.00]		1c	1122.8	1145.3	2.00
80	14a	334.2		air dry		16	8a	706.0		air dry
	14b	342.9		air dry			8b	748.6		air dry
	14c	419.7		air dry		L	8c	684.1		air dry
ł										

19 Laboratory No.

_ ہے	ab Name:					- " · ·		Labo	Laboratory No.	. 19	1
	Set#	Sample#	Beginning veight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)	 Set#	Samplef	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)	
<u> </u>	-	148	332.4		air dry	6	11a	404.8	506.0	25.00	
		14b	286.3		air dry		11b	345.2	431.5	25.00	
		14c	370.3		air dry		11c	412.3	515.4	25.01	
	2	6a	810.2		air dry	10	78	826.6		air dry	
		6Ъ	947.0		air dry		7b	844.5		air dry	
		6c	637.8		air dry		7c	742.5		air dry	
L	æ	10a	255.1	293.4	15.01	11	12a	433.2	541.5	25.00	_
		10b	290.8	334.4	14.99		12b	417.8	522.3	25.01	
		10c	246.3	283.2	14.98		12c	430.5	538.2	25.02	
	4	28	863.2	880.5	2.00	12	9a	338.2	388.9	14.99	
	7 i	2b	653.1	666.2	2.01	.	9b	322.8	371.2	14.99	
		2c	622.8	635.2	1.99		9c	331.7	381.5	15.01	
	5	88	655.5		air dry	13	48	857.5	883.3	3.01	
	-	8b	700.9		air dry		4b	893.7	920.5	3.00	
		8c	950.0		air dry		40	724.6	746.3	2.99	
	9	5a	895.1		air dry	14	16a	389.4		air dry	
		5b	825.1		air dry		16b	461.6		air dry	
		ξc	800.6		air dry		16c	350.9		air dry	
	2	13a	310.3		air dry	15	3а	856.5	882.2	3.00	
		13b	277.6		air dry	 	3b	838.0	863.1	3.00	
		13c	328.2		air dry		3с	867.6	893.6	3.00	
	8	1.8	822.0	838.5	2.01	16	15a	284.6		air dry	
-		1b	786.7	802.5	2.01	 L	15b	420.7		air dry	
	<u></u>	16	776 7	792.1	96.	L	15c	354.9		air dry	
1	1					1					

5

...

İ

.

							1.400	LADOFATORY NO.	20
Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)	 Set#	Sample#	Beginning weight (0.1 g)	Ending weight (0.1 g)	Moisture Content (0.01%)
1	9a	347.4	399.5	15.00	6	3а	808.2	832.5	3.01
	9 b	327.5	376.6	14.99	 	3b	752.4	774.9	2.99
	9c	322.3	370.6	14.99	3	3с	829.4	854.3	3.00
8	12a	405.3	506.6	24.99	10	8a	823.9		air dry
	12b	485.3	606.6	24.99		8b	988.6		air dry
	12c	371.4	464.3	25.01	•	8c	814.3		air dry
m	10a	315.0	362.3	15.00	11	16a	461.0		air dry
	10b	299.0	343.8	14.98	 	16b	486.2		air dry
	10c	400.1	460.0	14.97	•	16c	421.9		air dry
4	148	317.4		air dry	12	5 a	793.5		air dry
	14b	348.6		air dry		5b	901.2		air dry
	14c	307.1		air dry	 L	5c	829.6		air dry
2	48	1045.4	1076.7	2.99	13	7a	707.2		air dry
	4b	1037.3	1068.4	3.00	L	7b	890.6		air dry
	40	897.7	924.6	3.00		7c	976.8		air dry
و	13a	391.3		air dry	14	2а	712.5	726.8	2.01
	13b	332.6		air dry	 L	2b	1015.2	1035.6	2.01
	13c	338.5		air dry	L	2c	943.2	962.1	2.00
2	15a	502.7		air dry	15	6a	862.2		air dry
	15b	499.4		air dry	I	6b	713.2		air dry
	15c	311.0		air dry		60	617.9		air dry
8	la	1164.4	1187.8	2.01	16	11a	441.6	552.0	25.00
	1b	811.8	828.0	2.00		11b	427.2	534.0	25.00
	lc	1077.9	1099.5	2.0(L	11c	446.3	557.9	25.01
]									

d**a**l

Section 3

Returned Data Sheets

Univer Reno,	University of Nevada-Reno Reno, Nevada	rada-Reno						Labora	Laboratory No. 1
Set	Sample#	Beginning weight(0.1g)	· Ending weight(0.1g)	Moisture Ious(0.01%)	Set#	Sample#	Beginning weight(0.1g)	Ending weight(0.1g)	Moisture Joss(0.01%)
-	383	873.2 838.3 79.6	870.6 856.4 797.5	0.23 0.23 0.25	•	22 2	428.1 374.5 416.1	36.8.8 322.5 353.5	17.67 17.67 17.71
-	ዳ ቶ ዳ	678.0 805.4 979.9	656.8 778 -4 948-4	3.32 3.47 3.52	2	588	748.8 632.5 472.7	746.4 6307 477.3	0.27 0.27 0.30
•	4 <u>4</u> 4	514.4 484.8 676.6	3689 3478 481.2	39.46 33.39 39.56	=	4 8 2	<u>848.9</u> 670.5 1256.0	831. Z 656. 7 10.33. 8	Z13 Z02 Z05
•	- - - - - - - - - - - - - - - - - - -	252.6 356.4 335.7	247.0	2.27 2.47 2.58	2	2 2 2	597.6 888.8 642.8	575.5 885.8 640.4	0.35 0.34 0.37
v i	444	716.5 719.8 733.1	6926 6936	3,45 3,48 3,44	3	ភុនុង	5 50.1 685.9 456.8	538.7 671.3 937.0	2/2 2/2 2.11
٠	2 2 3 1	546.9 417.1 362.8	489.0 428.0 326.0	11, 84 11, 47 11, 29	2	2223	448.0 416,2 333.7	402.6 375.7 293.9	11.28 11.37 11.27
•		<u>302,7</u> 340. 2 381.0	294.8 331.5 372.0	242 242 242	15	11a 11b 11c	4370 1.081 5.16.5	312,4 432.0 423.0	37.88 37.15 38.72
•	***	397.6 397.4 356.7	342.5 . 341.3 306.5	16.09 16.44 16.38	2	***	1024.1 824.7 846.7	10/8.7 820.9 843.5	0.53 0.58 0.38

Each set of three samples is to be tested individually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet. \sim

10-1-90

Responsible Technician, Date: T.M.RTINI

10-2-01

Checked and Approved, Date: 1/21

•

73

S.H.R.P. Moisture Content Proficiency Sample Program

Data Sheet

S.H.R.P. Moisture Content Proficiency Sample Program

Data Sheet

Federal Highway Administration

• Laboratory No.

	a a						• • •		
Laboratory No2	Moisture loss(0.01%)	2.33	2222	0.37 0.42	3.40 3.41 3.71	0.24 0.19	17.44	40.10 39.87 39.87	0.35
Dala	Ending wcight(0.1g)	395.2 364.0 266.1	699.5.2 699.7	887.6 767.3 286.7	734.4 694.2 893.6	846.6 696.8 1055.8	344.0 395.2 295.2	336.9 353.5 324.3	1013.5 821.4 857.2
	c# Beginning weight(0.1g)	404.6 372.7 272.3	034.4 714.5 891.9	890.9 770.9 689.6	759.4	848.6 698.5 10578	4040 463.4 305.2	472.0 5-33.6 453.6	1016.1 8243 8543
	Sample#	4 44	4 9 3	4 C 2	444	33 3	6 6 3	114 116	2 2 3 2
	Set#	•	9	H	11	13	14	15	2
				111					
	Moisture loss(0.01%)	17.16 15.27 15.81	3.26 3.26 3.17	10.99 11.28 11.11	38.66 38.65 39.04	2.12 2.00 2.13	0.31 0.32 0.36	11.09 11.09 11.30	2.20 2.23 2.11
	Ending Molsture weight(0.1g) loss(0.01%)	300.1 15.47 275.1 15.37 333.3 15.81	913.7 3.36 9277 3.36 914.0 3.17	4304 10.99 469.9 11.38 377.1 11.11	3445 38.66 371.3 38.65 39.04	331.9 3.11 334.4 2.00 268.4 2.12	1152.0 0.31 875.1 0.32 695.5 0.36	353.9 11.16 366.2 11.09 324.0 11.30	
	Beginning Ending weight(0.1g) weight(0.1g)		5				۲.I.		add
Denver, Colorado	Ending weight(0.1g)	<u>333.3</u>	9 9 13.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	6 4004 0 3771	3445	334.4	1152.0 875.1 695.5	3539	55057 168.2 650.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2

Checked and Approved, Date: DARRELL |WEDIKS Each set of three samples is to be tested individually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet. Responsible Technician, Date: <u>LARRY SNYDER</u>, 9/22/90

9[25]90

le Program	
Sample	
t Proficiency Sample	ata Chant
Content	Dete
S.H.R.P. Moisture (
S.H.R.P.	

Data Sheet

Florida Gaines	Florida Department Gainesville, Florida	Florida Department of Transportation Gainesville, Florida	tion					Labor	Laboratory No. 3
Set	Sample#	Beginning weight(0.1g)	Ending weight(0.1g)	Moisture Ioss(0.01%)	Set	Sample#	 Beginning weight(0.1g) 	Ending weight(0.1g)	Mobiure Ious(0.01%)
-	382	652.4 153.2 121.1	639.4 738.6 712.3	2.03 1.98 2.08	•	233	336.2 373.7 402.1	305.5 340.6 367.3	10.05 9.72 9.47
"	***	236.1 206.9 216.3	202.4 177.9 186.2	16.65 16.30 16.17	2	444	810.7 787.4 986.1	783.8 761.7 954.0	3.43 3.37 3.36
	***	680.9 722.9 890.5	678.9 720.6 887.5	0.29 0.32 0.34	=	<u> </u>	210.2 217.0 214.3	180.3 184.1 183.3	16.58 17.87 16.91
•	333	872.2 804.4 784.3	870.5 802.7 782.7	0.20 0.21 0.20	3	11a 11b 11c	221.2 241.6 209.9	156.4 172.7 150.7	41.43 39.90 39.28
W 3	222	197.9 201.1 217.4	193.7 196.9 212.7	2.17 2.13 2.21	11	4 44	211.6 225.0 224.3	206.7 220.0 219.1	2.37 2.27 2.37
•	සිසි සි	1066.5 846.7 1119.3	1032.7 819.7 1084.1	3.27 3.29 3.25	1	156 156	368.5 359.6 413.4	335.0 326.5 376.6	10.00 10.14 9.77
•	સક્સ	791.0 642.0 860.3	789.4 640.8 858.7	0.20 0.19 0.19	51	2223	697.8 866.7 782.2	695.6 864.0 779.6	0.32 0.31 0.33
•	***	867.3 897.4 836.5	849.2 878.1 818.5	2.13 2.20 2.20	91	12 8 126	234.2 350.6 250.1	169.0 254.4 180.9	38.58 37.81 38.25

• • • •

-----**-**,

9-2-90 Responsible Technician, Date: Murrel Hines

Checked and Approved, Date: ____

Each set of three samples is to be tested individually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet. (-7)

S.H.R.P. Moisture Content Proficiency Sample Program

Data Sheet

faryland Department of Transportation

2

Look	andville,	rooklandville, Maryland					1	Laboratory No. 4
Set	Sample	Sample# Beginning weight(0.1g)	Ending weight(0.1g)	Molsture loss(0.01%)	Set	Sample# Beginning weight(0.1g)	Ending weight(0.1e)	Moisture hea() 01 42)
-	0 00000000000000000000000000000000000	474.5 476.4 476.5	426.0 385.2 420.4	17-41 17-41 19-11	•	124 - 204. 3 124 - 204. 3 124 - 241. 5	222	35. 20
4	සී සී සී	187.1 846.0 141.9	655. J		2	50 840 8 50 856.0 866.3	879. 1 854. 7 864. 7	00.22
•	\$ \$ \$	471.0 464.1 464.5	415.0 415.7 1	16 - 43 16 - 41	11	14 4 20.9 140 4 56.7 140 4 56.7	4140	2. 29
•	13a 13b 13c	493.0 447.6 465.5	4 57 4 4 56 4 4 56 4	2.34 28-1 20-2	1 3	4 825.7 4 925.4 4 126.1	261.2	
5	223	97 × 4 94 2 × 4 890 - 7	164. 1 124. 2 287. 7	0.40 0.32 0.38	1	6 10 4 5 9 6 2 4 5 4 6 2 4 5 4	10 4 3 4 3 4 2 4 3 4 2 4 2 4 2 4 2 4 2 4 2	12 12 14
•	දී සි සි	998.4 892.2 865.8	59% 5 885.0 862.7	0.32 0.40 25	2	1a 1094.4 1b 994.4 1c 1/63.4	1023.2	1.12
•	2 2 2 2 2 2 2 2	390.5 203.5 498.7	160. J 644. 6 454. 6	11.37	51	16a 563.4 16b 464.4 16c 530.4	212	10-17 11-07
	4 22	669.7 888.9	657.2	2.22	2	11a <u>595.9</u> 11b <u>623.6</u> 11c <u>577.9</u>	410.2	39.07 38.26 38.36

on the data succi. Checked and Approved, Date: Rhan Phanasana Each set of three samples is to be tested individually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet.

Responsible Technician, Date: Jon C. Yorree 6/1/90

į

S.H.R.P. Moisture Content Proficiency Sample Program Data Sheet

lowa Department of Transportation Ames, lowa

Laboratory No. 5

	2 (%)								
(Moisture kons(0.01%)	3.37 3.30 3.29	2.20 2.22 2.24	0.34 0.33 0.31	2.42 2.35 2.44	0.31 0.38 0.35	3.30 3.42 3.33	9.52 8.58 10.12	0.21 0.20 0.16
	Ending weight(0.1g)	829.1 1062.0 928.7	821.8 946.7 894.0	980.0 731.3 843.6	260.8 352.8 340.3	966.5 831.7 734.0	784.2 844.2 811.1	365.5 564.3 309.4	887.1 867.0 773.5
	Beginning weight(0.1g)	857.0 1097.0 959.3	839.9 967.7 914.0	983.3 733.7 846.2	267.1 361.1 348.6	969.5 834.9 736.6	810.1 8/3.1 838.1	400.3 612.7 340.7	889.0 868.7 774.7
	Sampled		111 488	5 8 8 1 1 1	1 1 1 7 2 2 2	 888	444	고 당 것 	383 111
	Sei	•	2	11	2	n	71	15	16
			111			111			
	Moisture Ions(0.01%)	10.45 9.11 8.42	2.20 2.20 2.16	0.23 0.25 0.23	31.03 35.76 19.72	1.78 1.83 2.17	17.59 17.61 17.19	37.15 31.68 34.01	16.09 15.71 16.26
	Ending weight(0.1g)	288.9 422.8 472.6	731.7 786.8 1029.3	947.8 724.7 1054.4	487.3 399.6 499.5	370.4 349.9 350.2	323.0 361.7 320.6	348.3 408.5 373.7	330.0 291.5 314.9
	Sample# Beginning weight(0.1g)	319.1 461.3 512.4	747.8 804.1 1051.5	950.0 726.5 1056.8	638.5 542.5 598.0	377.0 356.3 357.8	379.8 425.4 375.7	477.7 537.9 500.8	383.1 337.3 366.1
8	Sampled	<u>ৰ বৃ ৰ</u>	4 42	223				1 1 1 1	888
Ames, Iowa	3		"	•	•	5	•	•	•

Each set of three samples is to be tested hadividually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet.

9-15-80

Checked and Approved, Date: 201

Responsible Technician, Date: Steve Steel 9-10-90

ł

S.H.R.P. Moisture Content Proficiency Sample Program

Data Sheet

•

Laboratory No. 6	Sci# Sample# Beginning Ending Moisture weight(0.1g) weight(0.1g) loss(0.01%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 1a 608.8 791.6 2.17 1b 642.3 628.7 2.16 1c 774.1 757.6 2.18	3 6a 913.2 911.1 0.23 6b <u>831.5 829.7 0.22</u> 6c 761.4 760.0 0.18	15a 460.6 418.8 9.98 15b 500.3 270.7 10.94 15c 403.5 365.6 10.37	5 12a 605.5 448.8 34.92 12b 466.5 377.6 38.12 12c 567.9 420.4 35.09	5a 885.3 883.6 5b 684.9 683.6 5c 895.0 893.3
	Moisture Set loss(0.01%)	3.44 3.34 3.35	0.¥ 0.40 0.40	0.33 0.34 0.30	2.21 12 2.20 2.18	<u>5.31</u> <u>5.34</u> <u>5.34</u>	<u>34. 36.</u> <u>38. 53</u> <u>34. 01</u>	16.70 15 17.59 15	16.06 16 16.31 16.07
	Ending 1 weight(0.1g) ho	1091.5 820.2 140.5	807.1 758.1 893.9	724.5	701.0 980.8 592.5	919.0 88 3.9 10 30.5	440.1 371.1 441.3 34	245.5 16 330.0 17 351.3 17	200.3 16 293.0 16 345.9 16
Oregon State Highway Division Salem, Oregon	Sample# Beginning weight(0.1g)	41 1129.0 45 047.6 46 165.5	8a 809.8 8b 760.4 8c 896.9	7a 726.9 7b 717.6 7c 767.0	2a 716.5 2b 1002.4 2c 605.4	3a 949.4 3b 913.4 3c 1064.9	11a 591.3 11b 514.1 11c 591.4	10a 286.5 10b 788.0 10c 412.4	9a 334.6 9b <u>340.8</u> 9c 401.5
Oregon State F Salem, Oregon	Set#	-	7	n	▼	v 3	•	r L	••

Each set of three samples is to be tested individually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet.

Responsible Technician, Date: Ralph Borchert 9-11-90

Checked and Approved, Date: Bill Lien 9-12-90

S.H.R.P. Moisture Content Proficiency Sample Program Data Sheet

Califoi Sacran	California Department Sacramento, California	California Department of Transportation Sectamento, California	rtation				odel	Laboratory No. 7	
Set	Sample#	of Beginning weight(0.1g)	Ending weight(0.1g)	Moisture Ious(0.01%)	Set#	Set# Sample# Beginning weight(0.1g)	Ending weight(0.1g)	Moisture boss(0.01 %)	
-	ភុស្ត	898.4 750.9 613.4	879.5 734.5 671.3	2.15 2.23 2.08	•	13a <u>2 2 6.0</u> 13b <u>2 7 2.4</u> 13c <u>2 6 7 4</u>	221.7 266.1 261.7	194 237 2.18	
7	888	160.8 186.0 160.6	/38.0 16/.0 13R.4	16.52 15.53 16.04	9	166 2446.6 166 263.0 166 221.B	221.7 236,5 199,4	11.23 11.23 11.23	
•	2 2 2	186.2 155.3 111.9	157.1 132.2 146.9	17.81 17.47 17.02	H	3a 802.2 3b b72.8 3c 976.7	775.8 652.0 547.1	3.40 3.34 3.34	
•	156 156	201.3 286.7 204.3	181.1 259.0 185.5	11.15 10.67 11.21	1	1a <u>801.8</u> 1b <u>847.4</u> 1c <u>759.5</u>	784.5 823.0 742.8	2.2/ 2.24 2.22	
\$	223	1102.9 730.0 842.3	1100.4 728.5 837.7	0.23 0.23 0.29	S .	148 2.69.9 146 2.65.0 14c 2.26.4	263.6 278.9 221.0	2.39 2.45 2.44	
٠	383	972.9 795.3 965.1	970.7 793.6 912.9	0.23 0.21 0.25	2	12a <u>392.2</u> 12b <u>444.5</u> 12c <u>425.8</u>	281.4 320,3 305.5	39.37 38.78 39.38	
2	444	1057.6 912.3 937.4	1022.4 930.2 905.9	3.44 3.45 3.48	<u>\$</u> 1	84 690.0 85 153.3 86 873.7	687.3 750.7 870.1	0,39 * 0,35 * 0.41 *	
•	11 9 1110	352.7 374.4 386.3	253.3 267.6 278.2	39.24 <u>39.91</u> 38.86	9	7a 645.0 7a 126.2 7c 962.2	440.3 712.9 958.7	0.42.4 0.46 X 0.37 ¥	
		Each set o	of three samples is t	to be tested individual	ly and in num	* Barys were open or ha Each set of three symples is to be tested individually and in numerical order according to the set number.	P	been punctur.	
			Disco 1	to contract an AM in At.	facily second a	a an the data shart			

Please be certain to fill in the correct blanks on the data shoet.

I

5

79

nsib' "xhn' Dai

Laboratory NO.

co(

uthwestern Laboratories

uston, Texas

many modelly many modely many modelly many modelly </th <th>Veight(0.1g) 15 a 372.6</th> <th></th> <th></th>	Veight(0.1g) 15 a 372.6		
77.2 15.99 77.2 15.99 77.1 1.95 77.1 1.95 77.1 1.95 77.1 1.95 77.1 2.16 77.1 2.16 77.1 2.16 77.1 2.19 77.6 0.29 77.6 0.20 77.6 0.20 77.7 0.20 77.6 0.20 77.6 0.20 77.6 0.20 77.6 0.20 77.7 0.20 77.6 0.20 77.7 0.20 77.0	15 • 372.6	Weight(0.1g)	Loss(0.01%)
15.99 17.13 1.05 17.13 1.95 17.14 1.95 17.14 1.95 17.15 0.26 17.15 0.26		337.1	10.53
776.2 16.06 777.3 195 271.6 170 271.6 170 271.9 226 271.9 226 271.9 217 272.1 217 273.9 219 273.9 219 274.8 223 274.9 219 274.8 223 274.9 219 274.9 219 274.9 219 274.9 219	15 b 353.2	319.4	10.58
277.3 1.13 211.6 1.70 201.6 2.00 201.3 0.20 201.1 20 202.1 20 202.1 20 203.2 20 203.2 215 203.2 215 200.2 215 200.2 215 200.2 215 200.2 215 200.2 215 200.2 215 200.2	lS e 309.7	292	10.92
M1.9 1.70 Table 2.16 (57.5 0.26 (57.5 0.26 751.9 0.28 802.6 0.21 802.6 0.28 803.5 0.29 803.5 0.29 803.5 0.29 803.5 0.29 803.5 0.29 803.5 0.28 803.5 0	E TOT	211 K	
216 216 2173 0.20 2113 0.20 2119 0.20 2026 0.21 2026 0.21 2029 0.23 2039 0.23 2039 0.23 2039 0.23 2036 0.25 2038 0.23 2038 0.23 2	4 h km km km		? : ?
617.3 151.9 151.9 162.6 162.6 162.1 162.1 162.6 163.2 16	6 813 813	930.6	10:0 62 B
751.9 0.20 751.9 0.20 752.1 24.2 752.1 24.2 753.0 0.25 671.3 0.33 766.9 0.35 766.9 0.35 767.9 0.35 77.9 0.35 77.9 0.35 77.0 0			
2013 2026 0.20 2026 0.21 2021 2.23 2022 2.23 2023 0.25 2023 0.25 203	3 a 590.2	577.3	2.23
3666 31.73 255.1 31.34 255.1 31.34 255.1 31.34 255.0 31.34 259.0 0.29 863.3 0.29 863.9 0.21 766.9 0.23 766.9 0.33 766.9 0.33 766.9 0.35 766.9 0.35 766.9 0.35 766.3 0.35 766.3 0.35 766.3 0.35 766.3 0.35 766.3 0.35 766.3 0.35 766.4 0.36 766.5 0.35 767.2 2.19 767.3 2.19	2 b 794.8	u:u	2.20
368.6 34.73 425.1 31.34 425.1 31.34 425.1 31.34 425.1 31.34 425.1 31.34 425.1 31.34 425.1 31.34 425.1 31.34 425.1 0.13 667.3 0.13 786.6 0.13 786.7 0.13 786.9 0.13 786.9 0.13 786.9 0.13 786.9 0.13 786.1 0.13 786.1 0.14 786.1 0.15 786.1 0.14 786.1 0.15 786.1 0.14 786.1 0.14 786.1 0.14 786.1 0.14 786.1 0.14 786.1 0.15 786.1 0.14 786.1 0.14 786.1 0.14 786.1 0.14 786.1 0.14 786.1 0.14 786.1 0.14 786.1 0.14 786.1 0.14 786.1 0.14 786.1 0.14 1	2 e 921.9	902.9	2.20
425.1 31.34 413.3 40.5 459.4 0.25 667.3 0.25 677.3 0.25 786.6 0.35 786.6 0.35 746.8 0.35 74.8 0.35 74.8 2.23 74.8 2.23	12 . 491.0	332.9	50.13
M12 M19 999.4 0.29 991.5 0.29 991.5 0.29 991.5 0.21 991.5 0.21 992.9 0.21 993.9 0.21 994.8 0.25 974.8 2.23 974.8 2.23 974.8 2.23 974.1 2.23	12 b 677.1	487.6	39.01
939.4 0.29 984.5 0.29 673.3 0.33 798.9 0.31 662.9 0.35 662.9 0.35 786.6 0.36 1073.5 2.15 974.8 2.23 974.8 2.23	12 e 496.6	336.1	35,46
881.5 0.28 673.3 0.29 799.9 0.31 692.9 0.35 786.6 0.36 1073.5 2.15 974.8 2.23 974.8 2.23	1. 30.0		
673.3 0.31 799.9 0.31 662.9 0.35 662.9 0.35 746.8 0.36 974.8 2.23 974.8 2.23 974.8 2.23		- 45	4.
799.9 0.31 692.9 0.35 692.9 0.35 1073.5 2.15 974.8 2.23 974.8 2.23 974.8 2.19	5.001 • E	1064.8	
692.9 0.35 746.6 0.36 107.5 2.15 974.8 2.23 974.8 2.23 974.8 2.19	1(A 11	6 WE	
766.6 0.36 1073.5 2.15 974.8 2.23 974.8 2.23 902.3 2.19	16 b 532.2	7 0 CV	
1073.5 2.15 974.8 2.23 902.2 2.19 10.1 11	16 c 433.9	395.0	
974.8 2.23 902.2 2.19 116.1 12.1	14. i 300 ¢	- M	
80.2 2.19 10.1	14 b 354.1	1.976	577 17 C
	14 e 380.1	371.3	
	- mi	• *	
345.0 17 04		0.642	570
0 m.7 zu.i itu	6 c 804.0	800.8 P.V. 1	12.0

Julinousi 10/1190

ŧ

Letter 10/1/30 Checked and Approved, Date: 20 2011/1020 Hatai Akinlabi, CET

Responsible Technician, Date:

Each set of three sample is to be tested individuilary and in sumerical order according to the set sumber PLesses be certain to fill in the correct blanks on the data about

S.H.R.P. Moisture Content Proficiency Sample Program Data Sheet

S.H.R.P. Moisture Content Proficiency Sample Program

Data Sheet

•

Braun Minne	Braun Engineering Test Minneapolis, Minnesota	Braun Engineering Testing, Inc. Minneapolis, Minnesota					Labora	Laboratory No. 9	-
Set	Sample#	Beginning weight(0.1g)	Ending weight(0.1g)	Moisture koss(0.01%)	Set#	Sample# Beginning weight(0.1g)	g Ending g) weight(0.1g)	Moisture loes(0.01%)	
-	555	400.5 328.3 4338.4	340.6 279.1 373.8	17.59 17.71 17.28	•	5a <u>(a96.6</u> 5b <u>499.4</u> 5c <u>833.5</u>	1769 1775	0.29 0.29 0.31	
7		770.3 687.5 685.3	766.8 6845 682.3	0.46 0.44 0.44	2	142 <u>368.5</u> 146 <u>368.7</u> 146 <u>288.7</u>	356.7 300.9 200.6	2.59	
•	388 111	1176.5 943.0 788.1	1173.7 2.049 799.9	0,28 0,28 0,28	H	8 812.5 83440 16.1	800.2 1000 1000 1000	0:41 0:41 0:46	
•		490.9 481.4 472.0	3511 344,8 336,4	39.82 39.62 39.45	21	22 807.6 23 659.8 2 529.2	790.4 645.3 517.3	2.30 2.30	•
5	51 1 1 1 1 1	595.7 536.5 494.5	N29.1 384.4 354.4	39.87 39.67 39.53	13	3 1120.6 3 8349.2 3 976.0	1084.1	3:37 3:26 3:32	
•	1 1 1 136 13	<u>293.6</u> <u>3867</u> 3383	285.7 372.0 329.5	8.76 2.61 2.64	2	15a 409.1 15b <u>482.6</u> 15c <u>282.2</u>	367.4 434.0 252.B	11.25 11.25 11.43	
2	443	905.1 1001.6 933.1	885.2 980.0 912.6	2.25	15	8 352.5 8 252.5 368.0	303.2 2.53.1 313.8	الارتان 11،41 15.80	
-	444	694.1 914.4 734.7	6 70.2 885.9 709.4	157 147 131 147 157	2	16a <u>380.9</u> 16b <u>5/4.7</u> 16c <u>458.3</u>	342.4 <u>463.4</u> 410.3	11.15 11.07 11.70	

5. a 😽

KADAN ANDAS

477

Checked and Approved, Date: William Dyd 9-12-90 Each set of three samples is to be tested individually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet. J

ŝ

Responsible Technician, Date: Zhuched Dallage 4-12-90

S.H.R.P. Moisture Content Proficiency Sample Program **Data Sheet**

Norada Department of Transportation Caron Civ. Newda

1 4 2 ł I ahon

S	Carson City, Nevada	icrada						4	Laboratory No. 10
2	Samples	es Beginning weight(0.1g)	Ending weight(0.1g)	Moisture kou (0.01%)	Sei	Sample# 1	Beginning weight(0.1g)	Ending weicht(0.1e)	Moisture Mousture
-	4 4 4	227.0 211.4 221.5	200.5 186.6 195.4	17.35 17.78 17.71	•	223 223	213.3 257.3 232.7	168.6 202.5 182.8	36.90 35.65 37.21
•	***	1337.4 1190.6 1150.3	1335.8 1189.1 1148.8	0.15 0.17 0.17	2	233 	175.7 176.1 207.3	172.9 173.3 203.8	2.18 2.19 2.27
•	384	1227.3 1110.2 946.1	1224.7 1107.4 944.3	0.27 0.34 0.27	Ξ	5 8 8 10 10	1044.6 1078.3 1011.9	1042.6 1076.3 1010.0	0.27 0.26 0.26
•	탄 문 당 당	227.7 201.1 191.9	224.0 198.1 189.3	2.09 2.00 1.82	13	4 4 4 4 4 4	1392.1 1247.6 1084.6	1356.8 1216.0 1058.0	3.32 3.43 3.41
•	333	1281.5 1157.8 1169.9	1280.0 1156.2 1168.5	0.15 0.18 0.16	[]	82 83 83 2000	303.8 338.7 321.4	285.0 318.4 301.31	7.90 7.55 7.94
٠	*	1066.9 1237.9 1223.7	1050.3 1218.4 1204.3	2.14 2.15 2.16	2	3333 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	330.6 340.5 304.9	310.7 320.2 285.8	7.62 7.45 8.10
~	888	203.1 249.1 203.4	181.9 222.0 182.3	16.10 15.58 15.54	15	4 8 8	1168.6 1290.1 1019.1	1150.1 1269.1 1003.0	2.15 2.14 2.18
•	222 222 222 222 222 222 222 222 222 22	924.4 1158.4 1160.9 mples had part	924.4 904.5 1158.4 1129.5 1160.9 1133.5 *Samples had partially opened bags.	3.23 3.34 3.26 3.26	2	5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	257.0 276.2 262.3	206.0 220.9 206.0	32.49 32.21 35.68
	i i		Each act of three samples is to be tested individually and in numerical order accordin Please be certain to fill in the correct blanks on the data sheet.	be tested ladividan certain to fill in t	individually and in numerical order according to the set number. fill in the correct blanks on the data sheet.	rical order ac	cording to the sheet.	s et number.	

A Checked and Approved, Date: Ted Beeston, 9-6-90

Þ

Responsible Technician, Date: Peter Baker: 9-6-90

S.H.R.P. Moisture Content Proficiency Sample Program

Data Sheet

Ê Kanese D.

Laboratory No. 11	Ending Moisture weight(0.1g) hiss(0.01%)	166-9 17-16 165-1 17-26 173-4 17-29	361.4 10.87 322.9 10.99 366.4 11.00	566.1 2.00 587.2 2.18 697.3 2.07	661.2 1.24 629.1 1.26 686.6 1.25	118.3 37.95 124.5 38.55 113.9 40.56	191.3 2.40 191.7 2.35 189.7 2.48	1.1 1.1 1.5 1.0	5 40.00 .5 40.17 .3 39.52
	Sci# Sample# Beginning weight(0.1g) w	9 1(ha 195.5 16 10h 191.8 16 10c 201.1 1 17	10 15a <u>400.7 36</u> 15b <u>358.4 32</u> 15c <u>406.7 36</u>	11 2a 577.4 56 2b 600.0 58 2c 711.7 69	12 4a <u>684.7</u> 663. 4b <u>649.8</u> 629. 4c <u>708.9</u> 686.	13 12a 163.2 11 12b 172 5 12 12c 160.1 11	14 195.9 191.3 14b 196.2 191.2 14c 194.4 189.2	5 5a <u>613 9</u> <u>613 1</u> 5b <u>700.9</u> <u>(99.3</u> 5c <u>690.2</u> <u>(89.5</u>	6 11a <u>186 1 131 5</u> 11b <u>168 9 120.5</u> 11c <u>180.4 129.3</u>
	E Moisturc Ig) kess(0.01%)	<u> </u>		10.86 11.11 11.17	2.35 2.18 2.28		1.12		15.83 21.65 17.18
Kansas Department of Transportation Topeka, Kansas	Sample# Beginning Endin wcight(U.1g) wcight(U	la 535.7 525.5 lb 520.7 510.4 lc 579.9 568.0	6a 624.6 623.6 6b 679.3 677.4 6c 700.4 698.5	16a 206.2 186.0 16b <u>327.1</u> 294.4 16c <u>318.4</u> 286.4	13a 183.2 179.0 13b 192.0 187.9 13c 188.8 184.6	8a 717.0 714.8 8b 671.2 669.3 8c 633.2 631.3	3a 591.7 573.2 3b 684.4 663.7 3c 701.1 679.8	7a 741.2 739.1 7b 749.7 746.8 7c 627.0 625.5	9a 171.2 147.8 9b 173.6 142.7 9c 186.2 158.9
Kansas Topcka,	Set	-	7	m	•	Ś	•	٢	••

Each set of three samples is to be tested individually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet.

÷

2

Responsible Technician, Date: 1/1/1/

∩(, -11 - {,

Checked and Approved, Date: 1/4Uly & Herry,

:

÷

•

S.H.R.P. Moisture Content Proficiency Sample Program

Data Sheet

PSI Pittsburgh, Pennsylvania

Laboratory No. 12

•		•								• • • •
	Moisture Ioss(0.01%)	2.21 2.13 2.24	0.45 0.45 0.52	0.44 0.45 0.32	2.40 2.48 2.37	3.30 3.30	3.34 3.61 3.44	16.13 16.00 15.99	17.59 16.87 16.87	OVER
	Bading weight(0.1g)	588.6 891.2 531.5	1001.5 705.1 1020.7	867.0 847.6 806.8	316.7 294.5 248.5	1048.7 1146.5 1031.1	907.6 863.2 883.7	328.6 369.9 299.6	345.0 246.6 237.1	
	Set# Sample# Beginning weight(0.1g)	b 601.6 b 910.2 c 543.4	1006.0 708.3 1026.0	870.8 851.4 6 809.4	lda 324.3 1db 301.8 1dc 254.4	1083.3 1184.1 c 1065.1	b 937.9 b 894.4 c 914.1	a 381.6 b 429.1 c 347.5	10a 405.7 10b 287.8 10c 277.1	
	iet# Sam	•		=	323	3	3 :	222	9999 9	
	3								:	
	Moisture Joss(0.01%)	2.12 2.13 2.09	9.34 10.34 8.42	33.28 36.73 35.55	2.16 1.65 1.96	9.70 9.78 10.26	34.46 36.18 35.35	0.22 0.23 0.23	0.19 0.21 0.23	
	Ending weight(0.1g)	668.6 871.6 1160.9	430.2 395.6 452.3	405.4 336.5 416.6	267.9 272.1 373.3	365.8 388.5 346.9	415.5 336.1 390.1	784.0 697.0 832.1	944.5 872.9 647.7	al anti-man analy to
sylvania	Boglaning weight(0.1g)	682.8 <u>890.2</u> 1185.2	470.4 436.5 490.4	540.3 460.1 564.7	273.7 276.6 380.6	401.3 426.5 386.1	<u>558.7</u> 457.7 528.0	785.7 698.5 834.0	946.3 874.7 649.2	
Pittsburgh, Pennsylvania	Sampled		<u>a 8 8</u>	116	ដ្ឋ ជ <u>្</u> ម ស្ព	2 2 2 2 2 2 2 2	4 <u>5</u> 2	583	383	
Pittebu	Set	-	n	•	•	**	•	2	10 .	

Each set of three samples is to be tested individually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet. l

1

Permusible Tachnyran. Date: De---14 ul 10-

จ

의

unded - Apple - Da.

iciency Sample Program	t
rol	Shee
	ta S
Content	Dat
. Moisture	
S.H.R.P.	

Minnesota Department of Transportation Maplewood, Minnesota

N A A A	N poor	Maplewood, Minnesota							Laboratory No. 13	
Set	Sample#	ica Beginning weight(0.1g)	Ending weight(0.1g)	Moisture loss(0.01 %)	Set	Samples	-	Ending	Moisture	•
-	383	911.5 837.9 220.8	910.4 936.2 919.7	-13 -13	•	28	2.70.6	399.3 357.2	12.57	-
-	4 4 X	931 225:2 226:9	109.7	1 1	2	ମୁ ସବଏ । । ।	271.2 252.9 754.9	333.2 756.5 752.9	04.11 2E. 27	
•	444	804 895.3 878	777.7 865.7 848.9	3.38 3.42 3.43	11	8 द्वयूर्न । ।।	22017	817.6 245.6 377.9	2.20 2.20	
•	4 6 8	6 43.8 189.8 1203.0	641.8 187 1198.4	.1) .12/ .18/	2	1 14	323.6 323.6 275.7	275 3163 291,7	2.27 2.31 2.40	
5	111	597.9 497.9 569.8	431 358:4 409	38.72 38.72 39.31	3	1 11	822.5 822.5	404.2 824.2	2.77 2.14 2.15	
•	2 2 3	544.3 (402.5 542.7	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.91	2	1 11	113 4122 4125	<u> 955</u> 363.2 359.3	1.88 16.19 16.75	
۲	ቘ ቘቘ	1047.9 958.1 727.6	1012.8 926.5 204.8	3 .47 3 .41 3 .24	51	× ঘঘর এ ন ারণ	12	317 440-3 316-3	15.99 3 7. 00 3 7. 36	
••	***	846.9 852.5 874.6	843.3 892.5 892.1	بل 55 28	16	• • • •	289.1 289.1 289.1	413.8 379.5 245.9 247.8	38.50 17.34 17.57	
		Each act of	three samples is to the	Each set of three samples is to be tested ladividually and in numerical order according to the set number.	and in namer	ical order	according to the	a net mumber.		

•

Please be certain to fill in the correct blanks on the data sheet.

Checked and Approved, Date: Mil Mc Du

ţ

-

5. 1 % 5 C

85

ample Program	•
officiency Sa	5
isture Content]	
S.H.R.P. Moi	

Data Sheet

۱

ł .

Texas State Dept. of Hwys. & Public Transportation

1			11	1 1 1	1 1 4	,		• • •	<u>ــــــــــــــــــــــــــــــــــــ</u>		
Laboratory No14	Moisture	loss(0.01%) 0.23	0.24	2.24	2,18 3,48 3,32	3.38 16.65 17.55	11.06	39-70 39-29	39.04 3.45 3.45	6.05 2.21 2.29	
Labo	Ending	737.3	1147.9 881.9	874.7 941.4 707.5	C.181 7.827 0.428	232.4 373.2	460.3 409.0	357 A	777.0 1098.5	608.9 698.3 1000.7	
	Sample# Beginning weichten 125	'	B84.3	894. 3 962. 2 806. 7					803.8 1136.4	622.6 713.7 1023.6	
	Set# Sam		33	• • • •	: #8% =	13 10 10 10 10 10	EI 601 601 601 601 601 601 601 601 601 601				
	<i>S</i>				-	1	-	4	15	16	
	Moisture koss(0.01 %)	39.39 30.30	38.82	0.32 0.29 0.25	1.76 2.44 2.31	11.30 11.15 11.20	16.00 16.19 16.01	3.27 2.44 2.98	0.44 0.38 0.38	0.35 0.46 0.37	
JUIC TRASPORTION	Ending weight(0.1g)	<u>355.7</u>	393.4	725.8 945.9 749.7	312.3 271.0 285.4	403.5 514.7 523.3	305.0 332.9 356.0	342.4 364.3 379.7	910.0 732.8 816.7	763-2 736-5 736-9	
ocp. of trays, or rubbe Iransportation	ple# Begianing weight(0.1g)			728.1 948.6 751.6	317.8 277.6 292.0	449.1 572.1 581.9	353.8 386.8 413.0	353.6 323.2 391.0	914.0 735.6 819.8	745.8 739.9 737.6	1
Austin, Texas	t# Sample#	a11 011		ም ዓ ያ ያ	13a 13b	15a 15b 15c	888	4 4 ¥	***	සු සු සු	
₹	Set	-		0	•	•	5	•	2	60	

Each set of three samples is to be tested individually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet.

Responsible Technician, Date: David M. (2056 por 9.20.90 Janust D. Zuman 9-20 5,

Checked and Approved, Date: Lenerall

•

S.H.R.P. Moisture Content Proficiency Sample Program

Data Sheet

West Virginia Department of Transportation Charleston, West Virginia

.

•

Laboratory No. 15

8

÷ .

Set Set	Charleston, West Virginia Set# Sample# Begin	t Virginia * Beginning ********************************	Ending Levientin 1.	Moisture	Set	Samples	·		Moisture
-	<u>ส</u> ุส	970.9 1073.1 B14.1	949.8 1049.7 796.3	2.23 2.23 2.23	•	4 44	269.2 318.0 377.4	weght(0.1g) 263.2 310.8 368.8	bou(0.01%) 2.28 2.33 2.33
•	<u> য</u> য য	553.0 546.8 573.7	. 502.5 495.9 522.0	10.05 10.26 9.90			1001.3 - 726.3 757.4	<u>9</u> 99.6 724.8 755.5	0.21 0.21 0.25
•	888 8	289.9 320.6 365.5	288.1 275.7 314.0	16.24 16.18 16.40	=	특별 실	394.4 301.1 418.7	335.8 257.1 356.3	17.45 17.11 17.51
▼		539.6 564.9 630.0	395.0 410.1 475.9	36.61 37.75 37.58	1	442	829.6 932.7 1010.3	812.2 912.5 988.7	2.14 2.21 2.18
5	***	898.2 982.4 749.5	868.7 950.8 724.7	3.40 3.32 3.42	2	<u>a</u> a a	497.9 363.7 424.0	451.7 328.9 385.7	10.23 10.58 9.93
•	***	691.5 886.3 1026.1	689.3 882.9 1022.3	0.32 0.39 0.37	3	ម្មដ្ឋដ	334.4 365.1 340.5	328.8 359.5 335.0	1.70 1.56 1.64
r	111 3633	589.2 923.4 624.2	588.0 921.2 622.5	0.20 0.24 0.27	21	ម្មដ្ឋដ	531.3 742.4 483.8	385.0 543.7 350.1	38.00 36.55 38.19
•	444	841.7 739.0 969.8	813.9 714.5 937.3	3.42 3.43 3.47	91	***	827.2 814.9 837.3	824.6 812.0 835.0	0.32 0.36 0.28
	-	i							

а.

:

Each set of three samples is to be tested individually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet.

06/1/6

Checked and Approved, Date: R. Capper

;

Responsible Technician, Date: M. Sajid

87

• •

· · · • •

Law E Atlanti	Law Engineering Atlanta, Georgia	2 a						Laborato	Laboratory No. 16
Set	Sample#	Beginning weight(0.1g)	Ending weight(0.1g)	Moisturc loss(0.01 %)	Sci#	Sample#	.# Beginning weight(0.1g)	Ending weight(0.1g)	Moisture loss(0.01%)
-	888	126.5	1009 118-1	14.97	•	5 <u>5 5</u>	206.8 197.0	2027 1931	2012
9	128 126 251	161.5		29.59 28.72 28.72	9	19 19 19	537.3 Bot3	526.3	2.09
•	11 P	158.9	1.911	37.46	=	4 44	2049	2007	2.235
•	చి భి భ	3-16.4	375.2	0.32	2	333	950.3 898.7	948.1 896.8 1062.1	6 23 0 21
5	<u>5</u> 5 5	314.0	2860	50,00 26,00 26,00	1	22 2	9 47.4 755.8 994.0	945,0 2725 2725	220 12.0
٠	***	522,3 805,5 689,3	504.5 781.5 6684	3.64	1	444	743.9 815.1 952.3	7 20.3 7 88.3 7 20.7	2000 1000 1000 1000 1000 1000 1000 1000
r	2520	1582	135.5	20-91	15	শ শ শ	985 28285 8888	964.2 Buo,7	2.23
•	۾ ۾ د	708.9	1.00 L	0.40	9	15a 15b 15c	219.9	290.8	10.01

Each set of three samples is to be tested individually and in numerical order according to the set number. Please be certain to fill in the correct blanks on the data sheet. Responsible Technician, Date: 14. Jo Hrvsvv 10/3/90

Checked and Approved; Date: 100110. Klock 1 0/5/90

S.H.R.P. Moisture Content Proficiency Sample Program **Data Sheet**

Vester Phoeni Set#	Western Tochnologies Phocnir, Arizona Set# Sample# Be		Ending	Data Molsture	Uata Sheet	Sample&	Residentes Besidentes	Labora	Laboratory No. 17	
		weight(0.1g)	weight(0.1g)	loss(0.01%)			•	weight(0.1g)	Moisture bos(0.01 %)	
	122	122.	1713.S	0.08 0.13	•	888	324.1 363.7 34.5	278.8 212.1 314.6	11.25 10.25	
	\$ \$ \$	154.4 935.5 702.1	9539 9243	0.05 0.12 0.10	2	5 <u>5 5</u>	40.6 427.6 413.2	383.1 265.6 352.0	1.36 12.11	
	ភ ឹតិ	574.0 172.4 1058.4	12.4.7 1050.12 1031.4	2.00 2.00 2.005	H	223	251.4 324.6 287.4	252.8 2017 285.1	0.24 0.24 0.0	
	288	1161.3 171.2 1031.1	110:0 170:0 030:1	00 3 0.03	1	ది ది న	14087 1001-1 1942	196.5 10.1 13.3	2.4	
	444	946.8 831.7 481.2	0.119	3.22 3.10 3.01	3.	2 2 2 2 2 2 2 2	1245.3 381e.7 571.0	481.0 261.2 12.6	34.16 37.22	
	= = :	610.6 541.0 181.8	472 402 3424	21.04 27.04	1	***	829.4 912.7 848.4	878.4 411-7	0.1Z	-
	222	481.7 45.72 486.4	404	9.55 8.57 19.67	51	44 2	1121-7 855.4 1012.1	100.0 122	102	
	4 4%	311.0 375.6 405.5	25.8 21.1 21.1	1	9	2 <u>5</u> 5	50.3 427.4 42.2	458.Le 39.1.2 31.1.2	8-6 02-6 02-6	•
	le Tech	Each set of three a Responsible Technician, Date: All Mirit		ics is to be tested individually and in numerical order according to the set number. Rease be certain to fill in the correct blanks on the data sheet. $\frac{1}{1290}$ Checked and Approved. Date: $\frac{1}{2000}$	y and in nume corroct blank	rical on the Chocke	der scoording to th data sheet. ed and Anbrowed.	ical order according to the set number. On the data sheet. Checked and Approved. Date: M Kint Theorem		G
ı	,	†	Ţ			Check	od and Approved,	Date: 201.	t mil	tim to terrior 9-25. X

÷

S.H.R.P. Moisture Content Proficiency Sample Program Data Sheet

89

Checked and Approved, Date: M. Kund h Carles 9-25 90

Returned Tare Weights

LAB No. 1

ç

<u>SET #</u> 1	<u>SAMPLE</u> 5 A B C	<u>BAG WT.</u> 7.8 7.7 7.3	<u>SET #</u> 13	<u>SAMPLE</u> 2 A B C	<u>BAG WT.</u> 7.3 7.6 7.4
2	3 A B C	7.1 7.6 7.7	14	16 A B C	7.9 7.9 7.9
3	12 A B C	7.7 8.1 8.5	15	11 A B C	8.3 8.2 7.9
4	13 A B C	7.1 7.1 7.0	16	7 A B C	7.2 7.6 7.3
5	4 A B C	9.7 8.2 9.1			
6	15 A B C	7.4 7.9 7.5			
7	14 A B C	7.7 7.3 7.4			
8	9 A B C	8.3 8.0 7.7			
9	10 A B C	7.4 7.6 7.7			
10	6 A B C	7.4 7.7 7.7			
11	1 A B C	7.6 7.4 7.1			
12	8 A B C	7.7 7.6 7.1			

93

•

LAB No. 2

1.	9a-8.5 9b-7.6 9c-8.1	14.	10a-8.3 10b-8.5 10c-8.1
2.	3a-7.4 3b-7.7 3c-7.4	15.	11a-9.1 11b-8.9 11c-8.2
3.	16a-7.9 16b-7.9 16c-7.8	16.	5a-7.2 5b-7.6 5c-7.8
4.	12a-8.4 12b-8.0 12c-8.1		
5.	13a-7.3 13b-7.5 13c-7.6		
6.	8a-7.9 8b-7.9 8c-7.8		
7.	15a-8.0 15b-7.6 15c-7.5		
8.	2a-7.1 2b-7.2 2c-7.8		
9.	14a-7.4 14b-7.4 14c-7.5		
10.	1a-7.2 1b-7.4 1c-7.4		
11.	7a-7.6 7b-7.2 7c-7.3		
12.	4a-8.5 4b-7.8 4c-8.0		
13.	6a-7.4 6b-7.4 6c-7.5		

.....

LAB No.4

SAMPLE ;	# BAG WEIGHT	<u>SAMPLE #</u>	BAG WEIGHT
10 A	8.08	6 A	7.20
B	7.60	B	7.24
C	7.57	c	7.31
C	1.57	C	
3 A	7.60	1 A	7.15
B	7.28	В	7.43
Č	7.17	Ċ	7.10
C	,. <u>.</u> ,	-	
9 A	7.37	16 A	7.40
В	7.67	В	7.33
С	7.24	С	7.76
13 A	7.07	11 A	8.17
В	7.03	В	8.45
С	7.40	С	9.02
7 A	7.59		
В	7.52		
С	7.27		
8 A	7.34		
В	7.23		
С	7.22		
15 A	7.38		
В	7.78		
С	7.71		
<u> </u>	7.51		
2 A	7.51		
B	7.05		
С	7.48		
10 4	7 97		
12 A	7.87 11.41		
В			
С	7.90		
5 A	7.36		
B	7.61		
Б С	7.36		
C	7.50		
14 A	7.61		
B	7.18		
С С	7.22		
C	,		
4 A	7.67		
В	7.86		
Ĉ	7.66		
e			

_

LAB NO. 5

<u>Sample No.</u> 1A	Bag Weight 7.2	<u>Sample No.</u> 8A	Bag Weight 7.6	Sample No. 15A	Bag Weight 7.4
	· 7.6 7.3	88 80 80	7.8 7.8	158 15C	7.9
	7.2 7.7 7.6	98 98 90	7.8 7.4 8.0	16A 16B 16C	7.4 7.5 7.3
	7.6 7.2 7.8	10A 10B 10C	7.7 2.7		
	8.6 9.4 9.4	11A 11B 11C	9.2 9.3 10.0		
	7.5 7.3 7.7	12A 12B 12C	8.1 8.0 8.7	•	
	7.5 7.4 7.4	13A 13B 13C	7.0 7.4 7.1		
	7.6 7.3 7.4	14A 14B 14C	7.3 7.2 7.7		

····-

424

٠

LAB NO. 6

	Sample# WEIGHT	16a 7.98 16b 8.28 16c 7.87	14a 7.71 14b 7.68 14c 7.80	13a 7.36 13b 7.65 13c 7.20	la 7.27 lb 7.46 lc 7.63	66 7.06 66 7.74 66 7.71	15a 8.04 15b 8.30 15c 8.30	12a 8.51 12b 8.46 12c 9.85	5a 7.82 5b 7.64 5c 8.14
	Set#	•	01	1	13	11	1	15	2
Highway Divi	ice Exprt	7.04 8.18 8.57	7.29 7.29 7.70	7.60 7.61 7.32	7.56 7.55 7.24	7.71 7.60 7.29	8.36 8.00 8.68	7.80 7.71 7.47	7.89 7.75 7.88
Oregon State Salem, Oregon	Sample#	444	නී කි යි	***	* * *	***	11a 11b	5 <u>5</u> 5	\$ \$ \$
Orego Salem,	Set #	-	7	•	•	Ś	•	٢	a0
	• .	• •	• • •	• • .		, <u>,</u> .	• • · · ·	• .	

••••

97

É

S.H.R.P. Moisture Content Proficiency Sample Program Data Sheet

> Southwestern Laboratories Houston, Texas

Laboratory NO. B

	Weight of	Empty Bag(0.1g) 7.5	7.3 1.1		7.7 6.9 6.9	7.5 6.9	B	9.1 7.6	53	77 28	11	5 5	7.2	7.6 7.4	51 51	7.8 7.6
	Set# Sample#	(0.1 <u>0)</u> .3 9 15 a	8.0 IS 6 7.9 IS 6	(0 4 a	5 4 6 4 6 4 6 1	6 2 b 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c	13 13 6						5	• • * *	او و	• •
rousion, lexas	Set# Sample# Weight of	pty Ba			11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	-7 -7	- II - - - -		72			7.	7. 7. 1. 4. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	76	• 10 • 10 • 10 • 10 • 10 • 10 • 10 • 10	10 e

•

ł

OCT 04 '90 09:33 PSI/PTL-PGH1

LAB NO. 12

	ł						·		: :	
# Bag Weight(0.1g)	7.6 7.5 7.5	7.4 7.4 7.8	7.3 7.4 7.4	7.6 7.8 7.4	7.7 7.5 7.4	7.7 7.4 7.7	8.5 8.6 8.2	7.7 7.7 7.8	•	
Sample #	2 2 2 2	8 8 8 0 0 0 0 0	28 76 76	14a 14b 14c	9 9 9 9	44 44 45	8 6 6 9 6 9	106 105 105		
Set #	0	01	11	12	13	14	15	16	2.	
# Bag Weight(0.1g)	7.2 7.4 7.3	7.8 7.4 7.4	8.9 9.0 9.5	7.5 7.5 7.5	7.8 7.8 7.8	8.4 9.1 7.9	7.6 7.9 7.9	7.2 7.3 7.4		•
Set / Sample /	49 9	16a 16b	114 116 11c	13a 13b 13c	15a 15b	12 6 126	333	ង មូ		•
Set	7	7	ന ്	4	Ś	Ú.	~	80	•	

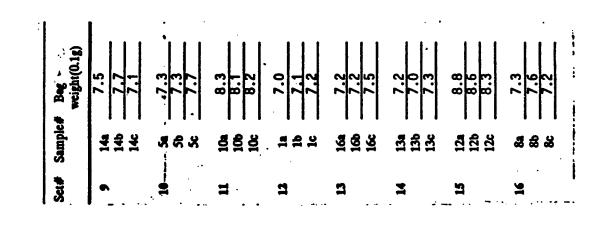
P.3/3

5

:

ht	7.7	7.3 7.6	7.6 8.0 7.7	7.9 7.9 7.9	7.5 7.5 7.3	9.3 8.6 8.2	7.9 8.0 14.0	7.9 2.2 2.3
Bag Weight	66 68 67		888	100 100 100	16A 16B 16B	12A 12B 12C	48 48	20 28 2V
å	6#	#10	111	#12	# 13	#14	#15	#16
ht	8.3 8.5 8.1	7.4 7.3 7.3	7.3 7.4 7.1	7.6 7.5 7.6	8.3 7.8 8.5	7.6 7.5 7.0	7.3 7.2 7.1	7.7 7.7 7.6
Bag Weight	111A 111B 111C	5 5 8 V	13A 13B 13C	15A 15B 15C	98 98 98	14A 14B 14C	7A 7B 7C	88 80 80 80 80
ä	E	5	5	4	5	9	5	80

.


· -- · --


.

.

·.

LAB NO. 15

Proficiency Sheet	PLASTIC BAGS Laboratory No. 16	Set Sampler WT. OF Set Sampler PLASTICBAG	• 134 7.44 136 7.20 136 7.37	10 11 7,03 16 7,27 16 7,50	11 14 7.52 140 7.52 140 7.52	11 68 7,59 68 7,59 7,58 7,58 1	13 54 7,53	= + 7.35 + + 7.35 - 7.53	15 22 7.63 28 7.60 28 7.24	16 15a 7.27 15b 7.34 15c 7.34 13c 7.34	ually and in numerical order according to the set number. the correct blanks on the data sheet.
S.H.R.P. Moisture Content Dat	Law Bagiacering WEIGHT OF Milania, Georgia	Self Sumplet WT. OF Deastic Bag Geams	2 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 17 3 7 17 17 17 17 17 17 17	124 7.7/ 126 7.25	3 11a 7.70 11b 7.64 11c 7.38		s 16s 7.3/ 16s 7.78 16c 7/.78	* <u>7:32</u>	1 10 7,68 10 7,68 10 7,80	-	Each set of three samples is to be tested individually and in numerical order accordin Please be certain to fill in the correct blanks on the data sheet.

Chected and Approved. Date: WWA's Klochel 10/5/92

Responsible Technician, Date: 4. Jo 41-20

APPENDIX III

Steele Engineering, Inc.

October 17, 1990

,

Robin High TRDF 2602 Dellana Lane Austin, TX 78746

Dear Robin:

Subject: SHRP Soil Moisture Proficiency Sample Program.

Enclosed is a report which summarizes implementation activities to date concerning the subject program. All test data sheets are contained under the blue page titled Section 3, Returned Data Sheets. Information needed to construct the data array for a components of variance analysis as previously discussed is contained in other sections of the report.

Please proceed with the analysis as soon as possible. As indicated in the past, participating laboratories should be identified only by a number in the final report compiled for distribution to interested parties.

Call me if anything has been overlooked or further elaboration is needed. I will review the analysis report upon receipt and contact you by telephone if questions arise.

Yours very truly

Garland W. Steele, P.E. President, Steele Engineering, Inc.

enclosure: SHRP Soil H20 Proficiency Sample Report

cc: Adrian Pelzner (letter only)

APPENDIX IV

Steele Engineering, Inc.

January 11, 1991

Virgil Anderson 48 Oaks Place Lago Vista, TX 78645

Dear Virgil:

Subject: SHRP Soil Moisture Proficiency Sample Program.

This will confirm the substance of telephone discussions with Robin during the past few days concerning the format for presenting precision data which can be determined from the analyses now underway of test data from the subject program.

The most desirable approach is to use a format that is generally used by AASHTO and ASTM. Examples are contained in ASTM C670, Standard Practice for Preparing Precision and Bias Statements for Construction Materials. For example, if the analysis yields an estimate of 2.1% for σ within laboratories by single operators, the statement could read-

Precision-The within laboratory single operator standard deviation has been found to be 2.1%.^A Therefore, results of two properly conducted tests by the same operator in the same laboratory on the same soil with the same moisture content should not differ by more than 5.94%.^A

^AThese numbers represent, respectively, the 1S and D2S limits as described in ASTM Practice C670, for Preparing Precision Statements for Test Methods for Construction Materials.

The data available from the subject program will, of course, yield considerably more information concerning the components of variance and, as discussed with Robin, will hopefully allow an estimate of bias to be determined.

As originally discussed during the design of this program, the within sample variance could be quantified by comparing the odd numbered (1 through 63) samples to the even numbered (2 through 64) samples for each of the 16 sample types. The between sample variance could be quantified by comparing the first two samples (1 and 2) of each group of four samples to the second two samples (3 and 4) of the same group of four etc. for all 16 groups of four in each of the 16 sample types. Likewise, the within material-same condition variance can be quantified by comparing the 64 samples from split A to the 64 samples from split B for each of the 8 pairs of A and B splits. In addition, the within material-different condition variance of variances could be quantified by comparing the variance of the 128 samples from sample types 1 and 2 to the variance of the 128 samples from sample types 5 and 6 and similarly for each of the other three sets. Further the between material-same condition and the between material-different condition variance of variances could be quantified in a similar manner.

Each of the above would provide valuable insight to SHRP and to other researchers and practitioners concerning a necessary and widely used test procedure.

Enclosed is a copy of a proposed revision to ASTM D2216 which Adrian suggested should be made available to you and Robin for information. Note particularly section 13 on page 11 of the proposed revision. Apparently, SHRP results will provide information of considerable interest to those responsible for such standards.

Please call if you have further suggestions or if my terminology needs clarification.

I appreciate very much your and Robin's efforts to expedite the statistical analyses necessary to allow the highest and best use of data now available from this program.

Yours very truly

Garland W. Steele, P.E. President, Steele Engineering Inc.

enclosures: 12 pages

cc: Robin High Adrian Pelzner (letter only) Bill Hadley (letter only)

Steele Engineering, Inc.

February 7, 1991

Virgil Anderson 48 Oaks Place Lago Vista, TX 78645

Dear Virgil:

Subject: SHRP Soil Moisture Proficiency Sample Program.

This will confirm the substance of a previous telephone discussion with Robin concerning an "AMRL style" scatter diagram report to be distributed to the participants in the subject program.

Enclosed, as promised, is a copy of some information concerning such reports. It is my understanding, based on discussions with AMRL, that the quadrants are now formed by intersecting <u>mean</u> lines rather than intersecting median lines. Also, that laboratory results eliminated (last paragraph of attachment) are those results outside the 3σ limits of the data as calculated using all results. The remaining results are then recalculated and no further eliminations are made.

Such a report would only be compiled after the currently scheduled analyses are completed.

Please let me know if there are any questions or recommended modifications to the above.

Yours very truly

Garland W. Steele President, Steele Engineering, Inc.

cc: Adrian Pelzner(letter only)
Bill Hadley(letter only)

APPENDIX V

SHRP . LONG TERM PAVEMENT PERFORMANCE PROGRAM

 TECH MEMO:
 AU-181
 DATE:
 June 12, 1991

 AUTHOR:
 Robin High
 FILE:
 P-001

 DISTRIBUTION:
 Garland Steele, Bill Hadley

 SUBJECT:
 Variance Components and Bias Estimation for SHRP Moisture Content

 Proficiency Sample Program

This memorandum summarizes the test results from the analysis of the SHRP moisture content proficiency sample program. When a test procedure is applied repeatedly to a set of identical material samples the same results rarely occur. An experimental design was structured to evaluate this variability when testing both aggregate and soil material samples for moisture content. Its purpose is to present the within-laboratory and between-laboratory variance components estimated from the data collected during this experiment.

The different factors of the experiment which represent sources of variability and how the materials were to be processed in each laboratory were originally developed as Design 4 in Technical Memorandum AU-95 (Ref 1). The analysis of data from these designs were described in Technical Memorandum AU-108 (Ref 2). The word "material" in this analysis represents both aggregate and soil samples and will be used throughout this report to refer to the applicable type of sample.

Due to the lack of an accepted reference value, an estimate of the amount of bias in the testing procedure for moisture content in the samples has not previously been evaluated. This study presents a unique opportunity to estimate the amount of bias due to the moisture measurement process. Results corresponding to this portion of the study will also be provided.

DATA DESCRIPTION

 $(|\mathbf{N}|)$

A brief description of the data is included in this report for completeness. Further details are available in the AMRL report (Ref 3). In this document a description of the experimental design, testing procedures,

2602 Dellana Lane Austin, Texas • Telephone 512 / 327-4211 • Fax 512 / 328-7246

and and a list of all of the data provided by AMRL collected by the 17 laboratories who participated in the experiment were provided.

Two types of material were used in the experimental plan (aggregates and soils). For both aggregates and soils, material from two different sources was acquired for the study. At each of the two levels of the factor representing the source of the material (MATL) the batch was randomly split into two portions (A or B).

For one-half of each split, moisture was added to the samples; the remaining samples were air dried. One level of the moisture factor refers to the Saturated Surface Dry (SSD) condition for aggregates and Plastic Limit (PLM) condition for soils. The other level for each material refers to the air dry condition.

Table 1 gives a brief summary the factors in the design. Sixteen different types of samples were created and then shipped to the laboratories. Sample numbers 1 through 4 refer to aggregates in the wet condition and samples 5 through 8 refer to aggregates in the dry condition. Sample numbers 9 through 12 refer to soils in the wet condition and 13 through 16 refer to soils in the dry condition. Each laboratory received 3 sets of the nearly identical subsamples from each of the sixteen samples processed by AMRL. Since the magnitude and the variability in the test results for soils was much larger than for aggregates, two separate analyses for each type of material will be given.

VARIANCE COMPONENT ANALYSIS

The experimental plan was developed to estimate the variance components associated with testing the moisture content of both aggregate and soil samples. Three replicate sets of material samples for each combination of the design factors were provided to the seventeen laboratories.

The analysis phase for the determination of moisture content first creates an analysis of variance table (ANOVA). The results are then used to

Table 1. Factor levels and sample type identification.

FACTOR	DESCRIPTION	TYPE OF EFFECT
MST	Moisture	Fixed
MATL	Material	Fixed
LAB	Laboratory	Random

SAMPLE TYPE NO.

SAMPLE DESCRIPTION

AGGREGATES

AGGREGATES	
SSD Condition	
•••••••	Aggregate 1, Split
••••••	Aggregate 2, Split
Air Dry Condition	
•••••••	Aggregate 1, Split

•	• • • • • • • • • • • • • • • • • • • •	Aggregate I, Sprit D
7	• • • • • • • • • • • • • • • • • • • •	Aggregate 2, Split A
8		Aggregate 2, Split B

Aggregate 1: WA - Supplied by University of Reno, Nevada Aggregate 2: PL - Supplied by University of Reno, Nevada

SOILS

SAMPLE TYPE NO.

SAMPLE DESCRIPTION

Plastic Limit Condition

9		Soil 1	, Split	А
10		Soil 1	, Split	В
11		Soil 2	, Split	Α
12	•••••	Soil 2	, Split	В
	Air Dry Condition			
13		Soil 1	, Split	Α
14		Soil 1	, Split	В
15		Soil 2	, Split	Α
16	•••••	Soil 2	, Split	B
Soil	1. Ml Supplied by Department	t of u	ichrome	Manulan

Soil 1: M1 - Supplied by Department of Highways, Maryland Soil 2: M2 - Supplied by Department of Highways, Maryland estimate the magnitudes of the between- and the within-laboratory testing variations (σ_{LAB}^2 and σ^2 respectively) for both types of materials.

Estimation of the Variance Components

The experimental design under which the data were collected has a direct impact on how the statistical analysis should proceed. The statistical model used to summarize these data takes the following form:

$$MSTLAB = \mu + MST + MATL + LAB + SPLT(MATL) + ERROR$$

The terms MST, MATL, and SPLT(MATL) remove the variability due to the planned moisture content and material type. This allows more accurate estimates of the random variation due to laboratories (LAB) and the random variation due to other unknown factors (ERROR).

Tables 2 and 3 provide the Analysis of Variance (ANOVA) tables for the results. From these summary statistics the two variance components representing the between-laboratory (σ^2_{LAB}) and the within-laboratory (σ^2) components are estimated and appear in the lower portion of the tables.

Differences Among Means

Tables 2 and 3 are also used to identify the laboratories which produce statistically different results from other laboratories. The average test results from each laboratory are presented in a column and are ranked from largest to smallest. Groups of laboratory means are underlined to indicate which ones are not statistically different from one another. The averages to be most concerned with are those which lie on either end of the row. If one continuous line does not appear underneath these averages, there is evidence to suggest the mean from that laboratory exceeds the two standard deviation control limits and does not conform with the remainder of the data.

The mean results from laboratory 17 for aggregates appears to be considerably smaller than the means from the other laboratories. A closer

Table 2. Variance component analysis for aggregate samples.

Source	Degrees of Freedom	Sum of Squares	Mean Square	F Value	Pr > F
Model MST MATL LAB Error Corrected Tota	18 1 16 385 1 403	659.049 614.220 43.343 1.486 29.966 689.015	36.6138 614.2196 43.3428 0.0929 0.07783	470.41 7891.49 556.87 1.19	0.0001 0.0001 0.0001 0.2699

Variance Components

$$\sigma^{2}_{LAB} = 0.0006345$$

$$\sigma^2 = 0.07783$$

Student-Newman-Keuls test for variable: MSTLAB

Means with the same underline are not significantly different.

SNK Grouping	Mean	LAB
1	1.5937	09
	1.5583	07
	1.5562	01
	1.5467	04
	1.5467	12
Í	1.5438	15
ĺ	1.5246	16
i i	1.5221	05
Í	1.5208	02
İ	1.5154	06
Í	1.5096	08
i	1.4974	14
i	1.4909	13
Í	1.4871	03
Í	1.4817	10
ĺ	1.4379	11
	1.1677	17

Tab]	Le	3	. Var:	Lance	component	analysis	for	soil	samples.
------	----	---	--------	-------	-----------	----------	-----	------	----------

Source	Degrees of Freedom	Sum of Squares	Mean Square	F Value	Pr > F
Model	18	66999.245	3722.180	292.19	0.0001
MST	1	45014.471	45014.471	3533.67	0.0001
MATL	1	21723.755	21723.755	1705.33	0.0001
LAB	16	261.019	16.314	1.28	0.2059
Error	388	4942.622	12.739		
Corrected Tota	406	71941.867			

Variance Components

$$\sigma^2_{LAB} = 0.1493$$

 $\sigma^2 = 12.739$

Means with the same underline are not significantly different.

SNK Grouping	Mean	N	LAB
1	17.628	24	11
	17.621	23	13
	17.583	24	09
	17.554	24	01
l l	17.390	24	14
	17.354	24	07
	17.301	24	02
1	17.252	24	04
i	17.154	24	08
İ	17.017	24	03
1	16.780	24	16
Ì	16.598	24	15
	16.255	24	06
İ	15.932	24	17
	15.904	24	12
	15.388	24	10
	14.958	24	05

examination of the raw data for this laboratory is required to determine a reason for this difference.

PRECISION STATEMENTS FOR MOISTURE CONTENT

The within laboratory variance components for the moisture contents of the two material types are given in Tables 2 and 3. This section provides the within-laboratory precision statements for moisture content testing. The two standard deviation limits for the difference between two observations are given. These values imply that within one laboratory, a pair of measurements selected at random will differ by more than $2\sqrt{2}\sigma$ in only 5% of all cases.

<u>Aggregates</u>

Precision - The within-laboratory single operator standard deviation for aggregates is determined to be $\sigma = \sqrt{0.07783} = 0.2790$. Therefore, results of two properly conducted tests by the same operator in the same laboratory on this aggregate should not differ by more than $2\sqrt{2}\sigma = 0.7891$ from each other.

These numbers represent, respectively, the 1S and D2S limits as described in ASTM Practice C670, for Preparing Precision Statements for Test Methods for Construction Materials.

<u>Soils</u>

Precision - The within-laboratory single operator standard deviation for aggregates has been found to be $\sigma = \sqrt{12.739} = 3.5692$. Therefore, results of two properly conducted tests by the same operator in the same laboratory on this aggregate should not differ by more than $2\sqrt{2}\sigma = 10.0951$ from each other.

These numbers represent, respectively, the 1S and D2S limits as described in ASTM Practice C670, for Preparing Precision Statements for Test Methods for Construction Materials.

BETWEEN LABORTORIES PRECISION STATEMENTS FOR MOISTURE SAMPLES

The between-laboratory variance components for the moisture content of the two material types, are given in Tables 2 and 3. This section provides between-laboratory precision statements based on these results for resilient modulus testing. The two standard deviations limits for the difference between two observations from different laboratories are given. These values imply that the difference between one measurement selected at random from each of two laboratories will differ from each other by more than $2\sqrt{2(\sigma_{LAB}^2 + \sigma^2)}$ in only 5% of all cases.

Aggregates

Precision - The between laboratory single operator standard deviation for moisture content has been found to be $\sqrt{\sigma_{LAB}^2 + \sigma^2} = 0.28012$. Therefore, the results of properly conducted tests from two laboratories on the same aggregate should not differ by more than $2\sqrt{2}(\sigma_{LAB}^2 + \sigma^2) = 0.7923$ from each other.

These numbers represent, respectively, the 1S and D2S limits as described in ASTM Practice C670, for Preparing Precision Statements for Test Methods for Construction Materials.

<u>Soils</u>

Precision - The between laboratory single operator standard deviation for moisture content has been found to be $\sqrt{\sigma_{LAB}^2 + \sigma^2} = 3.5900$. Therefore, the results of properly conducted tests from two laboratories on the same soil should not differ by more than $2\sqrt{2}(\sigma_{LAB}^2 + \sigma^2) = 10.1541$ from each other.

These numbers represent, respectively, the 1S and D2S limits as described in ASTM Practice C670, for Preparing Precision Statements for Test Methods for Construction Materials.

ESTIMATION OF BIAS

The precision of the standard test method for the determination of moisture content of aggregates and soils in a laboratory was the primary topic of the two previous sections. These results showed the degree of mutual agreement of individual measurements both within and across laboratories. The accuracy of a test procedure takes the precision statements one step further. It covers both the precision and bias of the test method. The bias of a result, often called the systematic error, involves consistent deviations from a reference value. That is, the mean of the test will consistently be larger or smaller than its true value. Further explanations of precision and accuracy can be found in the ASTM publication E177 (Ref 3).

In order to have a valid statement on the bias of a test procedure, a reference value is required. Because data to support this requirement have not been available no estimate of bias has ever been determined. If an acceptable reference value for moisture content can be derived, then the data obtained from these test results may be used in estimating the bias of the test procedure.

The material samples, processed by AMRL, were bagged and shipped to the participating laboratories. An important requirement for estimating moisture content is to test the samples as soon as possible so that they do not remain in the bags for long periods of time. They should also have been stored at the proper temperature and kept away from direct sunlight. If any of these conditions were not satisfied, the possible impact on the bias calculations remains unknown.

Moisture samples constructed by AMRL were developed such that water was added in a known quantity to one-half of the samples and no water was added to the other half. Since no water was added to the "dry" samples, the moisture determined by the test results in the laboratories for these samples is the best estimate possible of the amount which occurs naturally in airdried material. The following procedure for estimating the bias in the moisture content test method for aggregates was followed. Each laboratory was sent 3 subsamples for each of the 8 samples of material for a total of 24 subsamples. The only difference between sample 1 and sample 5 materials is the added moisture content. The same association exists between sample pairs (2,6), (3,7), and (4,8).

For each laboratory the average moisture content was found for the three subsamples of material produced by AMRL for sample number 1. This average was added to the average moisture content found by each laboratory for sample number 5. This total represents the best estimate of the average moisture content contained in the "wet" samples. The average moisture content of the 3 subsamples for sample 1 as determined by the respective laboratory was subtracted to determine a bias term. The same procedure was used for "wet" samples 2 through 4 and "dry" samples 6 through 8.

The resulting means for the aggregate samples from the 17 laboratories across the different levels of factors in the study are shown in Table 4. The analysis of variance performed on these data is given in Table 5. The results indicate that only a small amount of bias exists for the aggregate samples. The overall average is 0.03113. This positive number indicates the laboratories did not estimate as much water in the sample as one would have expected to find. The individual means found in the right hand column of Table 4 indicate most of the laboratories produced a positive bias with laboratory 11 having the largest bias of 0.1200. Another interesting result is that material from source WA generally produced large positive results (average = 0.0615) and material from source PL generally produced both positive and negative results (average = 0.0007). Thus, the magnitude of the bias depends on the source of material used.

The same procedure was also followed for the soils. Sample numbers 9 through 12 had specific amounts of moisture added by AMRL. The corresponding pairs are given by sample numbers 13 through 16 left in the air-dry condition.

Table 4. Bias estimates for aggregate samples 1 through 8 (SSD condition).

M S A

S	P	A	т.					
L	A	L		6	ΙA.	PI	· ·	
	ĥ	B	Ť	A	В	С	D	Mean
			01	0.14000	0.18000	0.08333	-0.10333	0.0750
			02	0.17667	0.03667	0.16333	-0.06667	0.0775
			03	0.16333	0.02667	0.04667	-0.06667	0.0425
			04	0.04000	0.01000	0.03333	-0.13333	-0.0125
			05	0.00000	0.01667	0.02667	-0.02333	0.005
			06	0.02333	0.02000	-0.00333	-0.04667	-0.0017
			07	-0.00333	0.09667	0.05667	-0.06667	0.0208
			08	0.01667	0.01000	0.06333	-0.03667	0.0133
			09	0.06667	0.02667	0.13333	-0.09667	0.0325
			10	0.02000	0.01000	-0.01333	-0.09000	-0.0183
			11	0.13333	0.15667	0.14000	0.05000	0.1200
			12	0.10333	0.02667	0.11000	0.01333	0.0633
			13	0.07333	0.10500	0.05333	-0.07333	0.0396
			14	0.08000	0.00000	0.00667	-0.06167	0.00625
			15	0.03333	0.01333	-0.01667	-0.12000	-0.0225
			16	0.11333	0.03667	0.08333	-0.02667	0.05170
			17	0.11333	0.02667	0.01333	-0.00667	0.03667
P	٩ve	era	ages	0.0761	0.0470	0.0576	-0.0562	
			0.(0.0615 0.0007				
					0.0	3113		 _

125 .

Table 5. Analysis of Variance for bias estimates in aggregate samples.

Source	Degrees of Freedom	Sum of Squares	Mean Square	F Value	Pr > F
Model LAB MATL	17 16 1	0.1576 0.0948 0.0628	0.00927 0.00592 0.06281	2.23 1.43 15.14	0.0143 0.1675 0.0003
Error	50	0.2075	0.00415		
Corrected Tota	al 67	0.3650			

Student-Newman-Keuls test for variable: BIAS

Means with the same underline are not significantly different.

SNK Grouping	Mean	N	LAB
I	0.1200	4	11
	0.0775	4	02
1	0.0750	4	01
1	0.0633	4	12
1	0.0517	4	16
Í	0.0425	4	03
Í	0.0396	4	13
	0.0367	4	17
Í	0.0325	4	09
Í	0.0208	4	07
l l	0.0133	4	08
Í	0.0063	4	14
Í	0.0050	4	05
Í	-0.0017	4	06
ł	-0.0125	4	04
ĺ	-0.0183	4	10
l	-0.0225	4	15

The resulting means for the soil samples from the 17 laboratories across the levels of the factors in the study are shown in Table 6. The analysis of variance performed on these data is given in Table 7. The results indicate that a larger amount of bias exists for the soil samples, except now the difference is the negative value of -0.9834. This negative number indicates the laboratories overestimated the amount of water in the sample one would have expected to find. The individual means found in the right hand column of Table 6 indicate most of the laboratories produced a negative bias. However, laboratory 05 has a very large positive overall bias term of 1.614. Another interesting result is that material from source M1 generally produced positive results (average = 0.4749) and material from source M2 generally produced large negative results (average = -2.4418). Thus, the magnitude of the bias depends on the source of material used.

In summary, an interesting contrast emerges from these results. Bias is positive for aggregates and therefore the laboratories did not estimate as much water in the sample as one would have expected to find. The negative bias for soils indicates the laboratories overestimated the amount of water in the sample one would have expected to find. Also, for both aggregates and soils the source of the material influenced the size and the magnitude of the bias term.

PRECISION STATEMENTS FOR BIAS

The average laboratory bias components for the moisture contents of aggregates and soils are given in Tables 4 and 6. These means provide the basis for statements concerning the precision of the moisture content estimate. The appropriate standard deviation to apply depends upon the desired inference. Table 8 summarizes the calculations of the appropriate mean squares. Given the data provided for this experiment, confidence intervals for the true bias estimates will be provided.

Table 6. Bias estimates for soil samples 9 through 16 (PLM condition).

M SA							
P L L	T L	M1		M2	2		
A B	I T	A	В	С	D	Mean	
	01	1.07667	-0.11000	-2.70667	-3.10333	-1.2108	
	02	1.66333	-0.39000	-3.52000	-2.65667	-1.2258	
	03	0.80333	0.21333	-5.23333	-3.47000	-1.9217	
	04	0.69667	-0.22333	-2.84667	-2.62667	-1.2500	
	05	0.92000	-0.07333	5.56667	0.04333	1.6142	
	06	0.80667	0.12000	-0.19667	-0.76333	-0.0083	
	07	1.13333	-0.04333	-3.30667	-2.95000	-1.2917	
	08	1.05333	-0.13333	-2.99667	-3.10000	-1.2942	
	09	1.52333	0.09000	-3.24000	-2.99333	-1.1550	
	10	1.23333	-0.39333	-3.79000	-0.73333	-0.9208	
	11	0.70000	0.19667	-3.94333	-2.97000	-1.5042	
	12	0.89333	0.36000	-0.26333	-0.96333	0.0067	
	13	0.81000	-0.19000	-2.88667	-2.78667	-1.2633	
	14	1.10000	0.67333	-2.94667	-3.29667	-1.1175	
	15	0.36333	-0.05000	-2.24000	-2.33667	-1.0658	
	16	1.75667	0.33667	-4.23333	-3.87333	-1.5033	
	17	-0.38667	-0.38333	-4.02000	-1.63667	-1.6067	
Aver	ages	0.9498	0.0000	-2.5178	-2.3657		
		0.4	4749	-2.4			
			-0.9	9834		-	

Table 7. Analysis of Variance for bias estimates in aggregate samples.

- ----

Source	Degrees of Freedom	Sum of Squares	Mean Square	F Value	Pr > F
Model LAB MATL	17 16 1	188.612 43.993 144.618	11.0948 2.7496 144.6181	6.56 1.62 85.46	0.0001 0.0966 0.0001
Error	50	84.6079	1.6922		
Corrected Tota	al 67	273.2194			

Student-Newman-Keuls test for variable: BIAS

Means with the same underline are not significantly different.

SNK 	Grouping 	Mean 1.614 0.007 -0.008 -0.921	N 4 4 4	LAB 05 12 06 10
		-1.066 -1.117 -1.155 -1.211 -1.226 -1.250 -1.263 -1.292 -1.294 -1.503 -1.504	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	15 14 09 01 02 04 13 07 08 16 11
i I	i	-1.607 -1.922	4 4	17 03

,

Table 8. Mean square calculations for the bias of aggregates and soils.

AGGREGATES

Source	DF	Sum of Squares	Mean Square
Error	67	0.3650	0.005448
Corrected Total	67	0.3650	
Total	68	0.4309	

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
AGGR Error Corrected Total Total	1 66 67 68	0.0628 0.3022 0.3650 0.4309	0.06281 0.004578	13.72	0.0004

<u>SOILS</u>

Source	DF	Sum of Squares	Mean Square
Error	67	273.2194	4.0779
Corrected Total	67	273.2194	
Total	68	338.9847	

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
SOIL Error Corrected Total Total	1 66 67 68	144.6180 128.6013 273.2194 338.9847	144.6180 1.9485	74.22	0.0001

Precision Statements of Bias for Aggregates

<u>Aggregates</u>. Table 8 shows the within-laboratory single operator standard deviation for aggregates is determined to be $\sigma = \sqrt{0.005448}$ = 0.0738. Therefore, the bias of a properly conducted test by one operator in the same laboratory on an aggregate material should not differ by more than 2 σ = 0.1476 from the true value of the bias. When the experimental results were compared with a known reference value, the 95% confidence limits for the bias of a moisture test on an aggregate material was found to lie between 0.0311 ± 2 σ or (-0.116, 0.179).

<u>Aggregates</u>

from Source WA. The within-laboratory single operator standard deviation for aggregates from source WA is determined to be $\sigma = \sqrt{0.004578}$ = 0.06766. Therefore, the bias of a properly conducted test by one operator in the same laboratory on an aggregate from this source should not differ by more than 2 σ = 0.1353 from the true value of bias. A 95% confidence interval for the bias of the moisture content of aggregates from this source is 0.0615 ± 2 σ or (-0.074, 0.197).

Aggregates

<u>from Source PL</u>. The within-laboratory single operator standard deviation for aggregates from source PL is determined to be $\sigma = \sqrt{0.004578}$ = 0.06766. Therefore, the bias of a properly conducted test by one operator in the same laboratory on an aggregate from this source should not differ by more than 2 σ = 0.1353 from the true value of bias. A 95% confidence interval for the bias of the moisture content of aggregates from this source is 0.0007 ± 2 σ or (-0.135, 0.136).

These numbers represent, respectively, the 1S and 2S limits as described in ASTM Practice C670, for Preparing Precision Statements for Test Methods for Construction Materials.

Precision Statements of Bias for Soils

Soils. Table 8 shows the within-laboratory single operator standard deviation for soils is determined to be $\sigma = \sqrt{4.0779} = 2.0194$. Therefore, the bias of a properly conducted test by one operator in the same laboratory on a soil material should not differ by more than $2 \sigma = 4.0388$ from the true value of the bias. When the experimental results were compared with a known reference value, the 95% confidence limits for the bias of a moisture test on a soil material was found to lie between $-0.983 \pm 2 \sigma$ or (-5.022, 3.056).

Soils from

<u>Source M1</u>. The within-laboratory single operator standard deviation for soils from source M1 is determined to be $\sigma = \sqrt{1.9485} =$ 1.3959. Therefore, the bias of a properly conducted test by one operator in the same laboratory on a soil from this source should not differ by more than 2 $\sigma =$ 2.7918 from the true value of bias. A 95% confidence interval for the bias of the moisture content of soils from this source is 0.475 ± 2 σ or (-2.317, 3.267).

Soils from

Source M2. The within-laboratory single operator standard deviation for soils from source M2 is determined to be $\sigma = \sqrt{1.9485} =$ 1.3959. Therefore, the bias of a properly conducted test by one operator in the same laboratory on a soil from this source should not differ by more than 2 $\sigma =$ 2.7918 from the true value of bias. A 95% confidence interval for the bias of the moisture content of soils from this source is -2.442 \pm 2 σ or (-5.234, 0.350).

These numbers represent, respectively, the 1S and 2S limits as described in ASTM Practice C670, for Preparing Precision Statements for Test Methods for Construction Materials.

REFERENCES

- High, R., "Materials Testing Sampling Designs", Technical Memorandum AU-95, TRDF, December, 1989.
- Anderson, V., "Analysis of Material Testing Sampling Designs", Technical Memorandum AU-108, TRDF, January, 1990.
- 3. Uherek, G., "SHRP Moisture Content Proficiency Sample Program", AMRL, October, 1990.
- 4. American Society for the Testing of Materials, "Use of the Terms Precision and Accuracy as Applied to Measurement of a Property of a Material", E177, 1980.

APPENDIX VI

Steele Engineering, Inc.

November 18, 1991

Fred Martinez South Western Laboratories 222 Cavalcade Street PO Box 8768 Houston, TX 77249

Dear Fred:

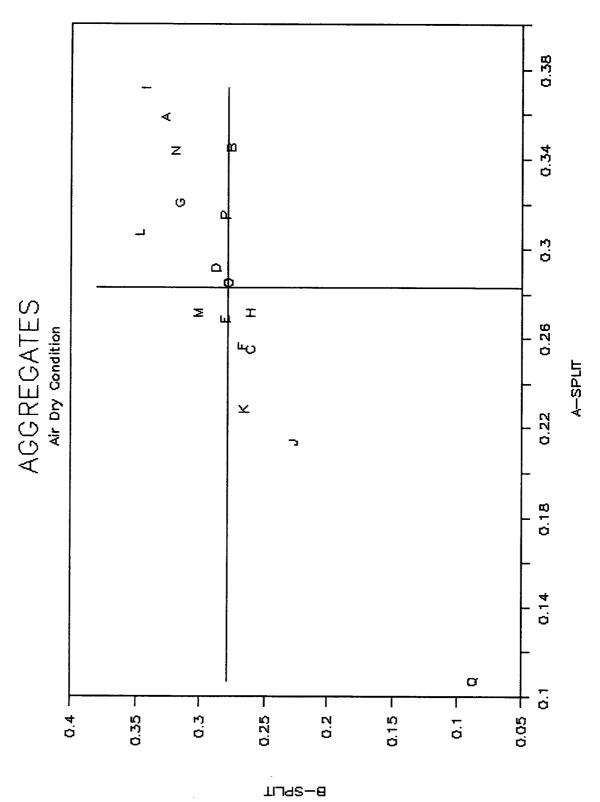
Subject: SHRP Soil Moisture Proficiency Sample Program

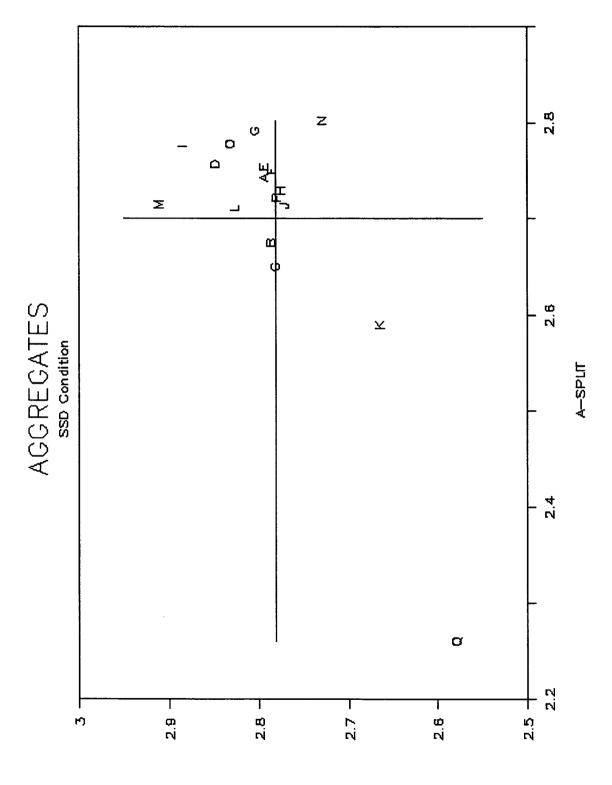
Enclosed for your information is a copy of following four scatter diagrams showing results of tests on the subject Program.

°Aggregate(SHRP Type I)-air dry condition °Aggregate(SHRP Type I)-saturated surface dry condition °Soil(SHRP Type II)-air dry condition °Soil(SHRP Type II)-plastic limit condition

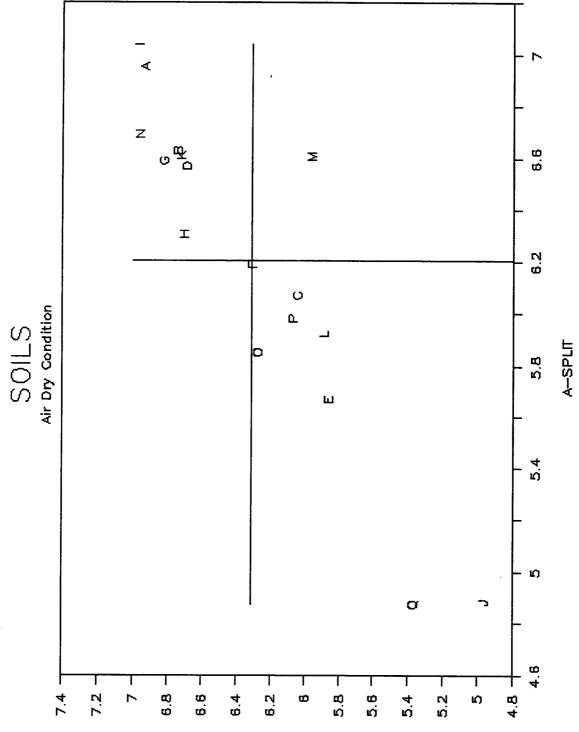
The vertical and horizontal lines on each diagram are the means of the A and B samples respectively for each of the four conditions noted above.

The test data derived by your laboratory is identified by the letter \underline{H} .

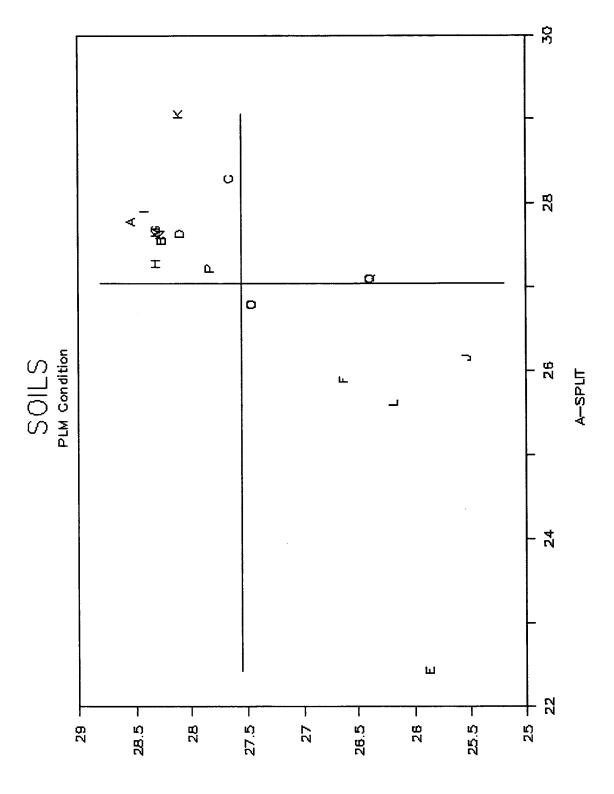

Yours very truly


Garland W. Steele, P.E. President, Steele Engineering Inc.

enclosure: 4 pages


cc: Neil Hawks(letter only)
Paul Teng(letter only)
Dave Esch(letter only)
Bill Hadley(letter only)
Robin High(letter only)

Box 173 • Tornado, West Virginia 25202 • Tele. (304) 727-8719



TUAS-8

TLAS-6

**

TILIA2-8

APPENDIX VII

Moisture Content-Aggregates

Precision

The within-laboratory single operator standard deviation for moisture content of aggregates has been found to be $\sigma = ^{AO.2790\%}$. Therefore, results of two properly conducted tests by the same operator in the same laboratory on the same type of aggregate sample should not differ by more than $2\sqrt{2} \sigma = ^{BO.7891\%}$ from each other.

The between-laboratory single operator standard deviation for moisture content of aggregates has been found to be $\sqrt{(\sigma^2_{1ab}+\sigma^2)} = \lambda 0.28012\%$. Therefore, results of properly conducted tests from two laboratories on the same aggregate should not differ by more than $2\sqrt{(2(\sigma^2_{1ab}+\sigma^2))} = B0.7923\%$ from each other.

These numbers represent, respectively, the $^{A}1S$ and $^{B}D2S$ limits as described in ASTM Practice C670, Preparing Precision Statements for Test Methods for Construction Materials.

Bias

When experimental results are compared with known values from accurately compounded specimens:

The bias of moisture tests on one aggregate material has been found to have a mean of +0.0615%. The bias of individual test values from the same aggregate material has been found with 95% confidence to lie between -0.074% and +0.197%.

The bias of moisture tests on a second aggregate material has been found to have a mean of +0.0007%. The bias of individual test values from the same aggregate material has been found with 95% confidence to lie between -0.135% and +0.136%.

The bias of moisture tests overall on both aggregate materials has been found to have a mean of +0.0311%. The bias of individual test values overall from both aggregate materials has been found with 95% confidence to lie between -0.116% and +0.179%.

Moisture Content-Soil

Precision

The within-laboratory single operator standard deviation for soils has been found to be $\sigma = \lambda 3.5692\%$. Therefore, results of two properly conducted tests by the same operator in the same laboratory on the same type soil should not differ by more than $2\sqrt{2} \sigma = B10.0951\%$ from each other.

The between-laboratory single operator standard deviation for moisture content of soils has been found to be $\sqrt{(\sigma^2_{1ab}+\sigma^2)} = ^{\lambda}3.5900\%$. Therefore, results of properly conducted tests from two laboratories on the same soil should not differ by more than $2\sqrt{(2(\sigma^2_{1ab}+\sigma^2))} = ^{B}10.1541\%$ from each other.

These numbers represent, respectively, the $^{A}1S$ and $^{B}D2S$ limits as described in ASTM Practice C670, Preparing Precision Statements for Test Methods for Construction Materials.

Bias

When experimental results are compared with known values from accurately compounded specimens:

The bias of moisture tests on one soil material has been found to have a mean of +0.475%. The bias of individual test values from the same soil material has been found with 95% confidence to lie between -2.317% and +3.267%.

The bias of moisture tests on a second soil material has been found to have a mean of -2.442%. The bias of individual test values from the same soil material has been found with 95% confidence to lie between -5.234% and +0.350%.

The bias of moisture tests overall on both soil materials has been found to have a mean of -0.983%. The bias of individual test values overall from both soil materials has been found with 95% confidence to lie between -5.022% and +3.056%.