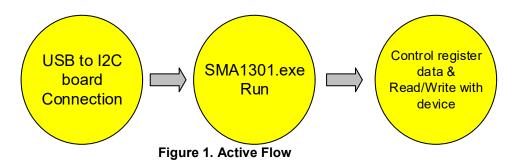


GUI User Manual


Revision 0.0.2

*Technology by

1. Purpose

Graphic User Interface (GUI) is a software program that verifies and tests the function of the Silicon Mitus product. This document is based on SMA1301 GUI.

The Silicon Mitus evaluation system has an I2C port, so the user can control the action via the GUI program. The diagram below describes the connection for the Silicon Mitus evaluation system using the GUI Program with test equipment, USB to I2C Board, PC, USB cable and Silicon Mitus Evaluation Board (EVB) Kit.

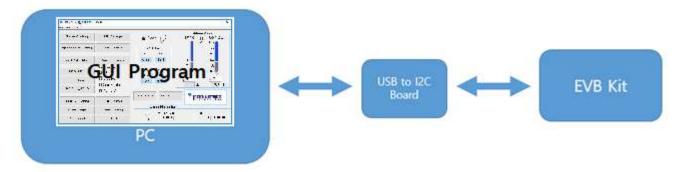
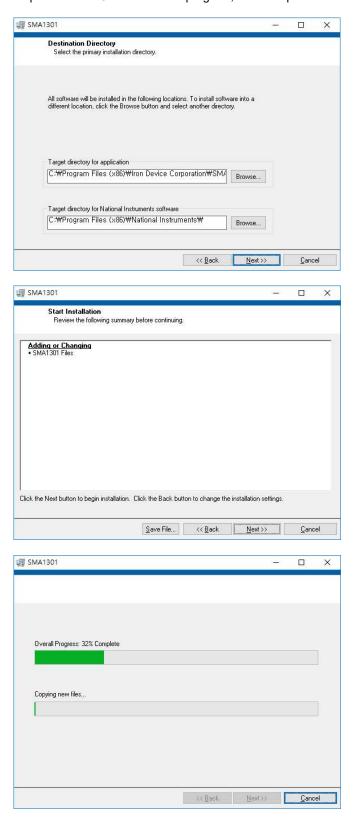
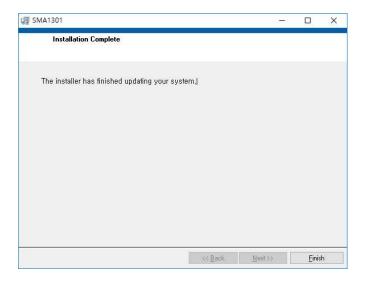




Figure 2. Connection Diagram

2. Installation

Unzip SMA1301_Control_Panel.zip to a local PC. To install the program, run "Setup.exe" file.

Installation Path

- 1. Windows Start → Click " SMA1301 " SMA1301
- 2. C:\Program Files (x86)\Iron Device Corporation\SMA1301 folder. Run with SMA1301.exe

3. Device Configuration

Connect 'USB to I2C Board' to the 'Evaluation Board Kit.'

- 1. Run SMA1301 GUI Program
- 2. If the USB to I2C Board is not connected normally, an error message pop-up window will appear.

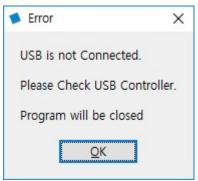


Figure 3. Error Message Pop-up

4. Board Manual

4.1 Introduction

The SMA1301 Evaluation (EV) Board is a demonstration and evaluation board that shows the capabilities and features of the SMA1301 chipset designed by Silicon Mitus (Iron Device). This board has an I2S interface for digital input and differential analog output with a 2.54 mm pitch header. This board can operate the Class-D amplifier with an integrated boost converter. The boost converter converts output voltage into the digital amplifier to produce stable large sound pressure levels. It has a typical output voltage of 5.5 V to 6.1 V and class-G control by digital feed-forward processing.

4.2 Board Package Content

The SMA1301 EV Board package includes the following:

- 1. SMA1301 EV Board
- 2. USB to I2C Control Board
- 3. Cable set to connect the board in lab conditions
- 4. Control S/W (Released by e-mail. Please contact Silicon Mitus separately.)

4.3 EV Board Overview

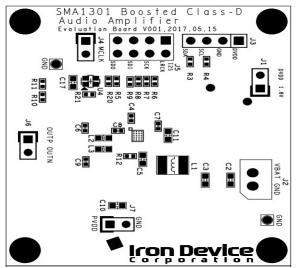
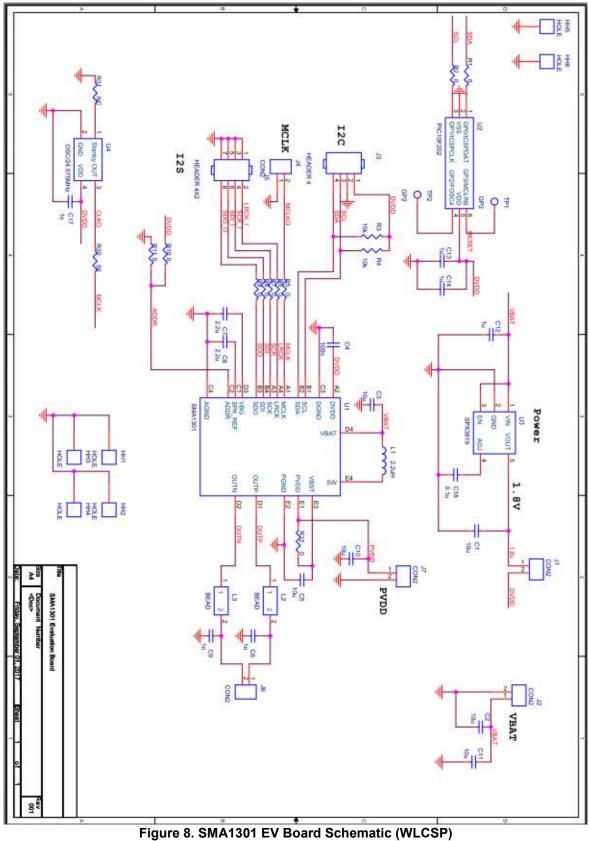


Figure 4. SMA1301 EV Board Placement (left: WLCSP / right: QFN)

Figure 5. SMA1301 EV Board (left: WLCSP / right: QFN)

Figure 6. USB to High Speed I2C Control Board

Type: 2.54 mm Pitch Pin Header for J6		
Pin	Description	Value
1	3.3 V LDO Output	+3.3 V
2	IOVDD	IOVDD
Do not connect Pin 1 and Pin 2 for SMA1301 (IO voltage should be +1.8 V)		


Type: 2.54 mm Pitch Pin Deader for J7		
Pin	Description	Value
1	IOVDD	IOVDD (+1.8 V from EV board)
2	GND	GND
3	SCL	0 V to +1.8 V
4	SDA	0 V to +1.8 V

Ordering Information

Part	Temp. Range	Pb- Free	Package
SMA1301	-40°C to +85°C	Yes	20-WLCSP (1.75x2.30mm², 0.4mm pitch)
SMA1301Q	-40°C to +85°C	Yes	24-QFN-0404 (4.0x4.0mm², 0.5mm pitch)

Figure 7. SMA1301 Ordering Information

4.4 Board Schematic

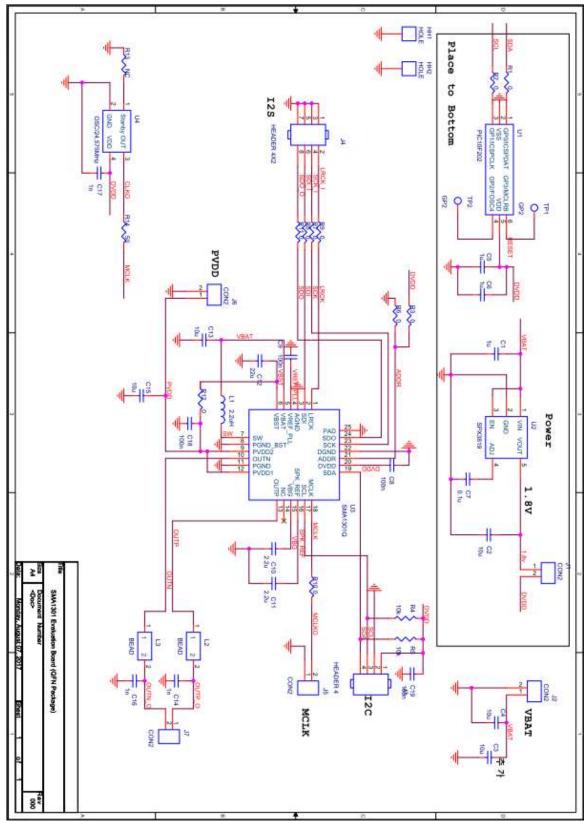


Figure 9. SMA1301 EV Board Schematic (QFN)

4.5 Connectors

J1: DVDD / 1.8 V

Type: 2.54 mm Pitch Pin Header		
Pin	Description	Value
1	1.8 V	+1.8 V (LDO on board)
2	DVDD	+1.8 V (external power supply)
Pin 1 and Pin 2 should be connected when using LDO on board for DVDD.		

J2: VBAT

Type: 2.54 mm Pitch Pin Header		
Pin	in Description Value	
1	VBAT (battery voltage)	Typical +3.6 V / Maximum +4.2 V
2	GND	GND

J3: I2C Control Pin

Type: 2.54 mm Pitch Pin Header		
Pin	Description	Value
1	DVDD	DVDD (+1.8 V)
2	GND	GND
3	SCL	0V to +1.8 V
4	SDA	0V to +1.8 V

J5 (WLCSP) / J4 (QFN): I2S Input Port

Type: 2.54 mm Pitch Pin Header		
Pin Description Valu		Value
1, 3, 5, 7	GND	GND
2	LRCK	0V to +1.8 V
4	SCK	0V to +1.8 V
6	SDI (input data from source)	0V to +1.8 V
8	SDO (output data from chipset)	0V to +1.8 V

J6 (WLCSP) / J7 (QFN): Output

Type: 2.54 mm Pitch Pin Header		
Pin	Description	Value
1	SPK Output P	Max +6.1 V
2	SPK Output N	Max +6.1 V

J4 (WLCSP) / J5 (QFN) : External Clock Input

Type: 2.54 mm Pitch Pin Header		
Pin Description Value		Value
1	GND	GND
2	MCLKO	External Clock

4.6 Measurement Set Up (APX525)

This set up is for the evaluation of SMA1301. Reference equipment is APX-525 from Audio Precision.

4.6.1 Connection

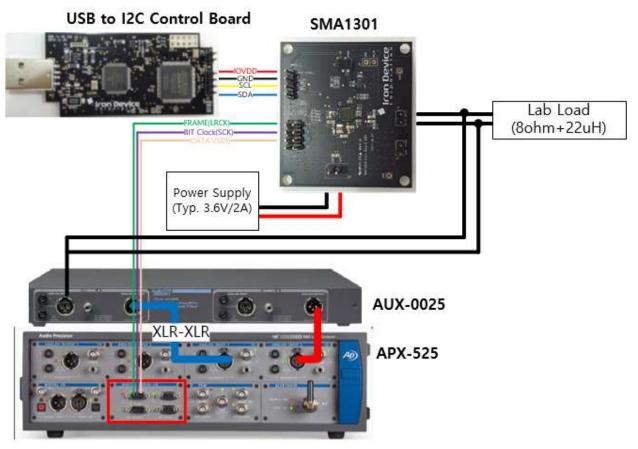


Figure 10. Measurement Connection (I2S input)

5. Detail Controls

5.1 Control Panel Overview (Main Panel)

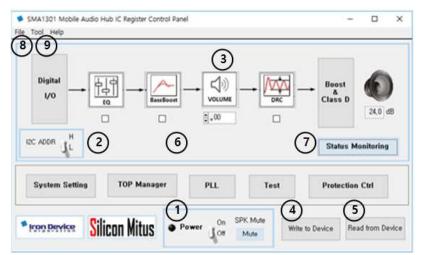


Figure 11. SMA1301 Mobile Audio Hub IC Register Control Panel

No.	Item	Description
1	Power On/Off with Sequence	Power On: Power-up → Speaker Output On → De-mute Power Off: Mute → Speaker Output Off → Power Off
2	I2C ADDR	High: I2C Slave Address with 0x3E Low: I2C Slave Address with 0x1E
3	Volume Control	Master Volume Control
4	Write to Device	Read Set Value from Panels and Write to DUT
(5)	Read from Device	R Read I2C from DUT and Set Panel
6	DSP On/Off	EQ: On/Off BassBoost: On/Off DRC: On/Off
7	Status Monitoring	Open Status Monitoring Panel Reads status register and updates display every 0.2 seconds Stops monitoring when clicked again
8	Menu Bar – File	Load Register: Register Load from .dat file Save Register: Register Save to .dat file and datx file
9	Menu Bar – Tool	Direct Register Control Panel – Open Direct Register Control Panel

5.2 Digital I/O

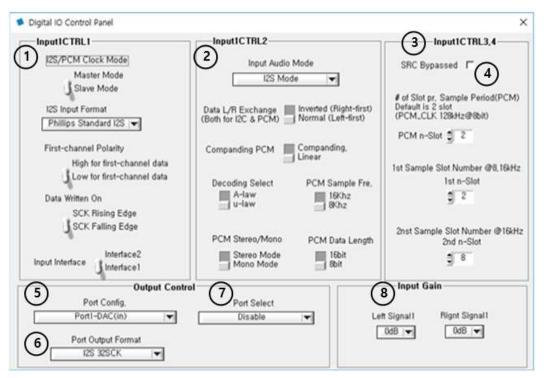


Figure 12. Digital IO Control Panel

No.	Item	Description
1	Input1 CTRL 1	I2S Input Format Settings
2	Input1 CTRL 2	PCM Input Format Settings
3	Input1 CTRL 3,4	PCM Slot Settings
4	SRC Bypass	Sample Rate Converter turns off when checked
5	Port Config.	Port Configuration Use only "OUT: Port3, IN: Port 1-DAC"
6	Port Output Format	SDO Signal Format
7	Port Select	Select signal to output only when in master mode (see TOP Manager Panel) Format Convert Input Mixer Output (48 KHz) SPK Path after DSP (48 KHz)
8	Input Gain	Digital Input Gain

5.3 EQ

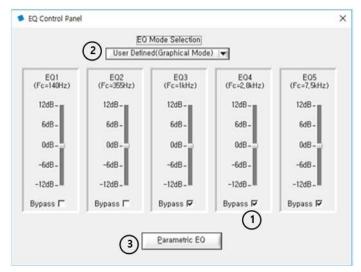


Figure 13. EQ Control Panel

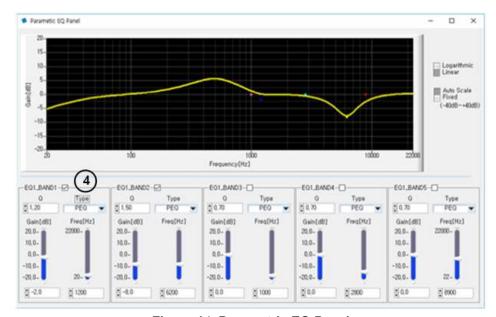


Figure 14. Parametric EQ Panel

No.	Item	Description
1	EQ	EQ is bypassed if checked
2	EQ Filters	User Defined User can change/tune filter Pre-defined Classic / Rock & Pop / Jazz / R&B / Dance / Speech
3	Parametric EQ	Graphical display that user can tune
4	EQ Band	Q Factor Biquad Filter Type PEQ Butter Worth HPF Butter Worth LPF Gain (-20 dB to +20 dB) Frequency 20 Hz to 20 KHz Check Box Checked: On

5.4 BassBoost

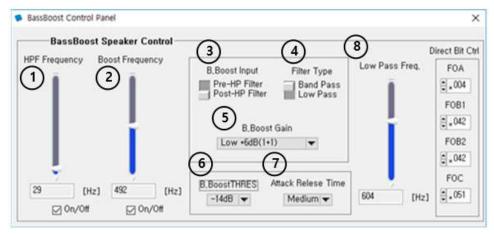


Figure 15. BassBoost Control Panel

No.	Item	Description	
1	HPF Frequency	1 st Order High Pass Filter Frequency Setting. "0" is off	
2	Boost Frequency Boost Frequency Setting: 20 Hz to 1 KHz		
3	B.Boost input	Select input of Bass Boost Block (Pre or Post HPF)	
4	Filter Type Band Pass Filter or Low Pass Filter Type		
5	B.Boost Gain	Bass Boost Gain Setting	
6	B.BoostTHRES (Boost Trigger)	Set the starting limit of Bass Boost	
7	Attack Release Time (Boost Trigger)	Set the attack/release time limit of Bass Boost	
8	Low Pass Frequency (Boost Trigger)	Low pass filter of the signal that controls the attack release function Should be set above boost frequency	

5.5 Volume

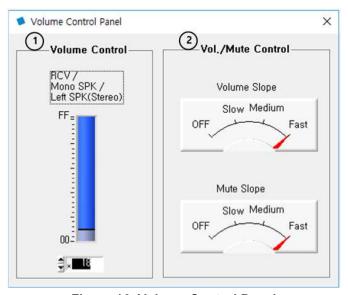


Figure 16. Volume Control Panel

No.	Item	Description
1	Volume Control	Master Volume for RCV/Mono SPK/Left SPK for Stereo
2	Vol./Mute Control	Volume and Mute Slope Control Fade In / Fade Out Effect

5.6 Boost & Class D

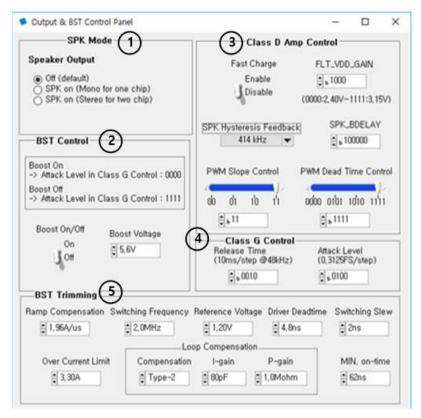


Figure 17. Output & BST Control Panel

No.	Item	Description
1	SPK mode	Off (default) SPK On (mono for one chip) SPK On (stereo for two chips)
2	BST Control	Boost On/Off On: Set to attack level with b'0000 Off: Set to attach level with b'1111 Boost Voltage: +5.5 V to +6.1 V
3	Class D Amp Control	Fast Charge Enable / Disable FLT_VDD_GAIN b'0000: 2.40 V to b'1111: 3.115 V SPK Hysteresis Feedback PWM Frequency of Speaker Output SPK_BDELAY / PWM Slope Control / PWM Dead Time Control Do not control this value. This value should be provided by and used accordingly to Silicon Mitus
4	Class G Control	Release Time Attack Level On: b'0000 Off: b'1111
5	BST Trimming	Do not edit. Please use recommended values.

5.7 System Setting

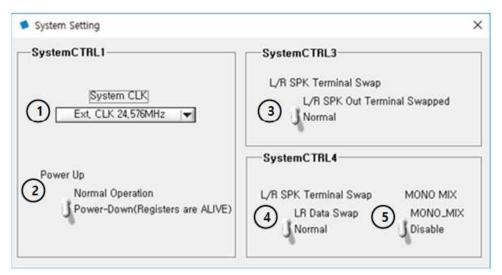


Figure 18. System Setting

No.	Item	Description	
1	System CLK	Ext. CLK 19.2 MHz Ext. CLK 24.576 MHz	
2	Power Up	Analog Block Power On	
3	L/R SPK Terminal Swap	Normal LR SPK Out Terminal Swapped	
4	L/R Data Swap	Data Swap for Left and Right Channels	
(5)	Mono Mix	Disable Mono Mixing	

5.8 TOP Manager

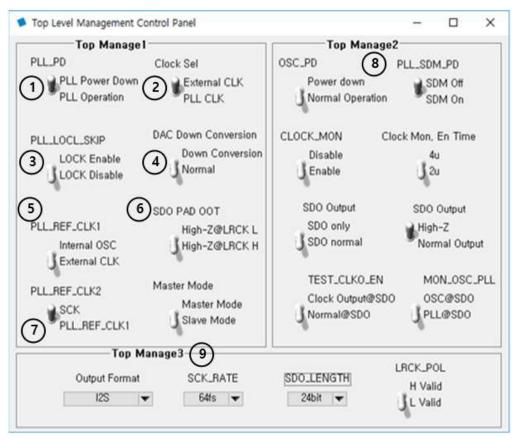
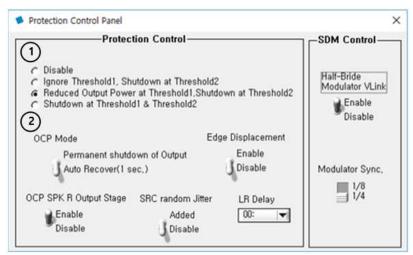



Figure 19. Top Level Management Control Panel

No.	Item	Description
1	PLL_PD	PLL On/Off
2	Clock Sel	System Clock Selection External CLK PLL CLK
3	PLL_LOCK_SKIP	PLL_LOCK_SKIP: Enable / Disable
4	DAC Down Conversion	Down Conversion or Normal
(5)	PLL_REF_CLK1	PLL Input Source Internal OSC External CLK
6	SDO PAD OOT	High-Z@LRCK L or High-Z@LRCL H
7	PLL_REF_CLK2	SCK from External PLLREF_CLK1
8	Top Manage2	There are 2ch(port)s at DAC input internally ADC: ADC output connect to CH2 Input Port → "L": DAC Only Mode (ADC output is not connected)
9	Top Manage3	Output Format for I2S LJ / RJ / I2S / SPI / PCM Short / PCM Long SCK_RATE 64 fs or 32 fs SDO_LENGTH 24-bit / 20-bit / 16-bit LRCK_POL H Valid or L Valid

5.9 Protection Control

Figure 20. Protection Control Panel

No.	Item	Description	
1	Thermal Protection Option	Disable Ignore Threshold1 (TSDW), Shutdown at Threshold2 (TSD) Reduced 6 dB Output at Threshold1 (TSDW), Shutdown at Threshold2 (TSD) Shutdown at Threshold1 (TSDW) and Threshold2 (TSD)	
2	OCP Mode	Permanent Shutdown of Output Auto Recover (1 sec)	
Other cor	Other controls are not used		

5.10 Status Monitoring

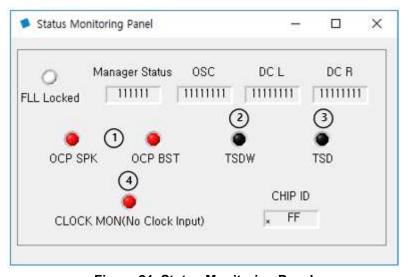


Figure 21. Status Monitoring Panel

No.	Item	Description
1	OCP SPK or OCP BST	Over Current Protection at Output SPK or BST
2	TSDW	Thermal Shutdown Warning Protection (Threshold1) Output level is reduced by -6 dB (default option)
3	TSD	Thermal Shutdown Protection (Threshold2)
4	CLOCK MON	Clock Fault Monitoring

Revision History

to riote in the total				
Rev	DATE	CHANGES	Issued by	Notes
0.0.0	09/05/2017	Initial Release Review with Richard and SM	Brian Pyun	
0.0.1	09/11/2017	Updated Typo and Figure10	Brian Pyun	
0.0.2	10/20/2017	Reviewed with Esther	Brian Pyun	

Silicon Mitus cannot assume any responsibility for the consequence of use of information furnished nor for any infringement of patents or other rights of third parties which may result from its use. No circuit patent licenses are implied. Silicon Mitus reserves the right to change the circuitry and specifications without notice at any time. This publication supersedes and replaces all information previously supplied. Silicon Mitus products are not authorized for use as critical components in life support devices or systems without the express written approval of Silicon Mitus.

© 2017 Silicon Mitus, Inc. - Printed in Korea - All Rights Reserved