

Application Development Manual

SpaceChain OS

 SPC002008 V1.00 Date: 2018/06/13 Product Manual

类别

Type

内容

Contents

Key Word SpaceChain OS Brief history Functions

Abstract Brief history of the operating system

SpaceChain OS

Manual SpaceChain

OS.

i

Application Development Manual

Revision History

Version Date Reason

V1.00 2018/06/19 Create file

Application Development Manaual
 SpaceChain OS

Manual SpaceChain OS

Preface

Brief introduction

The book describes SylixOS program design interface, including: SylixOS system API

function, POSIX standard API function and many functions provided by standard C, and is

applicable to all programmers.

As an advanced real-time embedded Operation System, SylixOS has been widely

applied in aeronautics and astronautics, industrial automation, communications, new

energy and other fields. Similar to many operating systems (such as VxWorks, Linux and

so on), SylixOS provides massive service for program execution, such as: open file, read

and write file, close file, dynamic loader, dynamic distribution of memory space, dynamic

file creation, obtain system time and other services. Through the command under SylixOS

Shell, one can conveniently view the system information. For example: view the running

thread in the system via ts command, view the running process in the system via ps

command, and view memory status via free command. How to use the command built in

SylixOS Shell will be introduced in brief introduction to Shell in Chapter 3 of the book.

SylixOS is an open source operating system. Therefore, one can conveniently obtain

the source code (obtain SylixOS source code from www.sylixos.com), learn the

knowledge in the book through SylixOS source code, and verify the knowledge in each

section with the instance in the book step by step.

This book will explain the programming method of the real-time system from the

perspective of real-time system and precautions during programming.

Overview of this book

This book describes in detail the application programming method of SylixOS and use

of application program interface thereof. The organization structure of this book is as

follows:

 Chapter 1 describes the history of SylixOS and its application in various fields,

and also describes POSIX standard of SylixOS;

 Chapter 2 describes the introduction and building of SylixOS development

environment;

 Chapters 3 and 4 describe use of SylixOS Shell command and how to write the

first SylixOS application;

 Chapter 5 provides an in-depth analysis of I/O system of SylixOS, and details the

standard functions commonly used in I/O operations. These functions include

unbuffered I/O functions, file and directory operation functions, and buffered I/O

function and I/O multiplexed functions;

SpaceChain OS

Manual SpaceChain

OS.

II

Application Development Manual

 Chapter 6

describes the multi-thread programming method of SylixOS and its thread

scheduling principles;

 Chapter 7 describes the inter-thread communication mechanism of SylixOS and

how to use the lock in the thread.

 Chapter 8 describes the multi-process programming method of SylixOS and its

process principle;

 Chapter 9 describes the inter-process communication mechanism of SylixOS.

 Chapter 10 describes the signal system of SylixOS and how to correctly use the

signal during programming;

 Chapter 11 describes how to use SylixOS time management functions.

 Chapter 12 describes the principle of fixed-length memory and variable-length

memory of SylixOS and its virtual memory principle, and how to correctly use

these memories;

 Chapter 13 describes the standard I/O device operation of SylixO;

 Chapter 14 describes the principle of the hot swapping system and how to use

the API;

 Chapter 15 describes the network programming method of SylixOS and how to

use its network tools;

 Chapter 16 describes the file system principle of SylixOS.

 Chapter 17 analyzes the log system of SylixOS in detail;

 Chapter 18 describes the multi-user management of SylixOS;

 Chapter 19 describes the dynamic loading principle of SylixOS and how to use

its application program interface;

 Chapter 20 describes how to the power management functions of SylixOS;

 Chapter 21 describes the programming method for SylixOS graphical interface

Qt and how to transplant the third-party library to SylixOS;

 Chapter 22 describes how the application is migrated from the Linux platform or

the VxWorks platform to the SylixOS platform.

 Finally, the appendix lists the standard header files in SylixOS and wrong

numbers and their meanings in SylixOS. Appendix C details the SylixOS

Makefiile files.

If the reader has experience in Linux or VxWorks system programming, it will be easy

to understand the knowledge in the book. Of course, you can also easily learn the

SpaceChain OS

Manual SpaceChain

OS.

III

Application Development Manual

knowledge in the book without these experience, because this book contains a

large number of instances, which are easy to understand (requiring C language program

design basis). By learning this book, readers can quickly understand SylixOS, and be able

to start developing their own SylixOS application.

Acknowledgment

This book can be successfully completed thanks to colleagues who have spent a lot

of time and energy reviewing and writing. At the same time, we also want to thank

enthusiastic netizens for their suggestions for revision of this book. Due to the limited level

of writing staff, there will inevitably be some inadequacies in the book. Welcome readers

to offer criticism and revision suggestions.

Beijing Acoinfo Technology Co., Ltd.

SpaceChain OS

Manual SpaceChain

OS.

1

Application Development Manual

Contents

Noun explanation and agreement .. 11

Chapter I Brief introduction to SylixOS operating system .. 13

1.1 Brief history of the operating system ... 13

1.2 Functions of the operating system .. 14

1.3 Classification of operating systems ... 15

1.4 Brief introduction to POSIX Standards .. 16

1.5 POSIX restrictions ... 17

1.6 SylixOS Overview .. 21

1.7 SylixOS application field .. 23

1.8 Current application cases of SylixOS .. 24

Chapter 2 Integrated development environment .. 26

2.1 Introduction to ARM processor .. 26

2.1.1 Brief introduction ... 26

2.1.2 Features .. 26

2.1.3 Operating mode .. 27

2.1.4 Register organization .. 28

2.1.5 Instruction structure ... 30

2.2 Introduction to RealEvo-IDE .. 30

2.2.1 Brief introduction ... 30

2.2.2 Functions ... 32

2.3 Introduction to GCC toolchain ... 33

2.4 Installation of RealEvo-IDE ... 33

2.4.1 Acquisition of SylixOS development kit ... 33

2.4.2 Installation of SylixOS development kit ... 33

Chapter 3 Brief introduction to Shell ... 35

3.1 What's Shell ... 35

3.2 Instructions for common Shell commands .. 35

3.2.1 System command ... 36

3.2.2 File command .. 41

3.2.3 Network command .. 44

3.2.4 Time command .. 47

3.2.5 Dynamic loading command ... 49

3.2.6 Other commands ... 50

3.3 Environment variable ... 51

3.4 Root file system ... 52

3.5 Operation application .. 55

3.6 I/O redirection .. 55

Chapter 4 Compiling the first program.. 57

4.1 Hello world application .. 57

4.1.1 Create SylixOS.base project ... 57

SpaceChain OS

Manual SpaceChain

OS.

2

Application Development Manual

4.1.2 Create the Hello World Project .. 60

4.1.3 Compiling the Hello world project ... 62

4.1.4 Deployment file ... 63

4.1.5 Run the Hello world application .. 64

4.1.6 Debug the Hello world application .. 65

4.1.7 Non-stop debugging mode .. 72

4.2 Hello Library .. 73

4.2.1 Create Hello Library Project .. 74

4.2.2 Compile Hello Library Project ... 74

4.2.3 Deploy the library file ... 75

4.2.4 Modify Hello World application .. 75

4.2.5 Run the Hello world Application .. 77

4.2.6 Debug Hello world applications and dynamic library 77

Chapter 5 I/O System ... 79

5.1 I/O System ... 79

5.1.1 File type ... 79

5.1.2 File descriptor .. 81

5.1.3 I/O System structure ... 82

5.2 Standard I/O access .. 85

5.2.1 File I/O ... 86

5.2.2 Files and directories .. 104

5.2.3 Standard I/O library ... 120

5.3 Asynchronous I/O access .. 132

5.3.1 POSIX asynchronous I/O .. 133

5.4 Advanced I/O access ... 141

5.4.1 Decentralized aggregation operation .. 141

5.4.2 Non-blocking I/O ... 144

5.4.3 I/O multiplexing ... 144

5.4.4 File record lock .. 150

5.4.5 File memory mapping.. 154

Chapter 6 Thread management.. 155

6.1 Thread ... 155

6.2 Thread state machine .. 155

6.3 SylixOS thread ... 157

6.3.1 Thread creation ... 157

6.3.2 Thread control ... 164

6.3.3 End of thread ... 167

6.3.4 Multi-thread security .. 168

6.4 POSIX thread .. 173

6.4.1 Thread attribute ... 173

6.4.2 Thread creation ... 179

6.4.3 Thread exit .. 181

6.4.4 Thread cancel .. 184

SpaceChain OS

Manual SpaceChain

OS.

3

Application Development Manual

6.5 POSIX thread key value ... 192

6.6 SylixOS thread scheduling .. 195

6.6.1 Priority scheduling ... 195

6.6.2 RR (Round-Robin) scheduling .. 197

6.7 POSIX thread scheduling .. 199

6.8 SylixOS RMS scheduling .. 203

6.9 SylixOS coroutine .. 208

Chapter 7 Inter-thread communication ... 213

7.1 Shared resource .. 213

7.2 Inter-thread communication ... 214

7.3 SylixOS semaphore ... 215

7.3.1 Binary semaphore ... 216

7.3.2 Counting semaphore ... 225

7.3.3 Mutex semaphore ... 232

7.3.4 Read-write semaphore .. 238

7.4 POSIX semaphore... 241

7.4.1 POSIX anonymous semaphore .. 241

7.5 Priority inversion .. 246

7.5.1 What's priority inversion .. 246

7.5.2 How to solve priority inversion .. 247

7.6 POSIX mutex semaphore .. 247

7.6.1 Mutex semaphore attribute block .. 248

7.6.2 Mutex semaphore ... 251

7.7 Deadlock .. 257

7.7.1 What's deadlock .. 257

7.7.2 Generation conditions of deadlock ... 257

7.7.3 Deadlock prevention ... 258

7.8 POSIX read-write lock ... 260

7.8.1 Read-write lock attribute block① ... 261

7.8.2 Read-write lock ... 262

7.9 SylixOS condition variable ... 266

7.9.1 Condition variable attribute block .. 268

7.9.2 Condition variable ... 269

7.10 POSIX condition variable .. 273

7.10.1 Condition variable attribute block .. 274

7.10.2 Condition variable ... 275

7.11 SylixOS message queue ... 279

7.11.1 Message queue ... 280

7.12 SylixOS event set .. 289

7.12.1 Event set ... 290

7.13 POSIX thread barrier ... 296

7.13.1 Thread barrier attribute block .. 297

SpaceChain OS

Manual SpaceChain

OS.

4

Application Development Manual

7.13.2 Thread barrier ... 298

7.14 POSIX spin lock ... 300

7.14.1 Spin lock .. 302

7.15 SylixOS atomic number ... 305

7.15.1 Atomic number .. 306

7.16 One-time initialization .. 310

7.16.1 pthread_once_t variable ... 310

Chapter 8 Process management .. 314

8.1 Real-time process .. 314

8.2 Process state machine .. 315

8.3 POSIX processAPI .. 315

8.3.1 Execute program ... 316

8.3.2 Create process .. 319

8.3.3 Process scheduling ... 328

8.3.4 Process relation .. 333

8.3.5 Process control ... 338

8.3.6 Process environment .. 347

8.4 SylixOS process API.. 349

8.4.1 Create processes by using SylixOS API ... 349

8.4.2 SylixOS process control API ... 351

Chapter 9 Inter-Process Communication ... 356

9.1 Definition of IPC ... 356

9.2 Anonymous Pipe .. 356

9.2.1 Operate Anonymous Pipe ... 357

9.3 Named Pipe ... 360

9.3.1 Operate Named Pipe .. 360

9.4 POSIX Named Semaphore ... 363

9.4.1 Named Semaphore ... 364

9.5 POSIX Named Message Queue ... 368

9.5.1 Attribute Block of Named Message Queue ... 368

9.5.2 Named Message Queue ... 369

9.6 POSIX Shared Memory ... 376

9.7 XSI IPC .. 377

9.7.1 XSI Identifiers and Keys .. 377

9.7.2 XSI Permission Structure .. 378

9.7.3 XSI IPC Semaphore .. 380

9.7.4 XSI IPC Message Queue .. 382

9.7.5 XSI IPC Shared Memory ... 385

Chapter 10 Signal System .. 389

10.1 Signal System .. 389

10.1.1 Unreliable Signals and Reliable Signals ... 392

10.2 Signal Installation .. 393

10.2.1 Function signal .. 393

SpaceChain OS

Manual SpaceChain

OS.

5

Application Development Manual

10.2.2 Function sigaction .. 393

10.3 Signal Set .. 398

10.4 Signal Transmission .. 403

10.4.1 非排队信号.. 错误!未定义书签。

10.4.1 Non-queued Signal ... 404

10.4.2 Queued Signal .. 405

10.4.3 Timer Signal .. 407

10.5 Signal Blocking .. 417

10.6 Process and Signal ... 420

10.7 Influence of Signal ... 421

10.7.1 System Call Interrupt① .. 421

10.7.2 Reentrancy Effect of Function ... 422

Chapter 11 Time Management ... 426

11.1 SylixOS Time Management ... 426

11.1.1 System Time .. 426

11.1.2 RTC Time... 427

11.2 POSIX Time Management ... 429

11.2.1 UTC Time and Local Time ... 429

11.2.2 Time Form Transformation .. 431

11.2.3 High-precision Time ... 435

11.2.4 Get Process or Thread Clock Source ... 437

11.2.5 Time-related Extension Operations ... 437

Chapter 12 Memory Management .. 440

12.1 Fixed Length Memory Management ... 440

12.1.1 Create Memory Partition ... 440

12.1.2 Delete Memory Partition ... 441

12.1.3 Get/return Memory Block .. 442

12.1.4 Get Current State of Memory Partition ... 442

12.1.5 Get Memory Partition Name ... 443

12.2 Variable Length Memory Management ... 447

12.2.1 Create Memory Area ... 447

12.2.2 Delete Memory Area ... 447

12.2.3 Memory Area Increases Memory Space... 448

12.2.4 Memory Allocation ... 448

12.2.5 Allocate Memory of Address Aligned .. 449

12.2.6 Dynamic Memory Adjustment ... 450

12.2.7 Free the Memory ... 451

12.2.8 Get Current State of Memory Area ... 451

12.2.9 Get Memory Area Name ... 452

12.3 POSIX Standard Memory Management ... 455

12.3.1 Memory Allocation ... 455

12.3.2 Allocate Memory Specifying Alignment Value 457

SpaceChain OS

Manual SpaceChain

OS.

6

Application Development Manual

12.3.3 Free the Memory .. 458

12.3.4 Memory Allocation Function with Security Detection 458

12.4 Virtual Memory Management .. 459

12.4.1 Memory Division .. 459

12.4.2 Process Page Management .. 460

12.4.3 Virtual Memory Mapping ... 460

12.4.4 Other Operations of Virtual Memory ... 472

Chapter 13 Standard I/O Devices ... 474

13.1 /dev/null ... 474

13.2 /dev/zero .. 474

13.3 Terminal ... 474

13.4 Virtual Terminal .. 477

13.5 Graphic Device .. 477

13.6 Input Device ... 483

13.6.1 Mouse Device ... 483

13.6.2 Keyboard Device ... 487

13.7 Memory Device .. 490

13.8 Random Device ... 492

13.9 Audio Device .. 493

13.9.1 Basics .. 493

13.9.2 Audio Programming ... 494

13.9.3 Mixer Programming ... 497

13.10 Audio Device .. 500

13.10.1 Device Description .. 500

13.10.2 Description of Device Channels .. 501

13.10.3 Description of Image Format of the Device Channel 502

13.10.4 Setting of Device Channel .. 504

13.10.5 Setting of Device Buffer .. 505

13.10.6 Video Capture Control ... 507

13.10.7 Summary of Operation Commands for the Video Device 508

13.10.8 Video Device Application Examples ... 510

13.11 Real-Time Clock Device .. 513

13.12 GPIO Devices .. 513

13.13 CAN Bus Device .. 517

13.14 Virtual Device Files .. 523

13.14.1 eventfd ... 523

13.14.2 timerfd ... 526

13.14.3 hstimerfd .. 531

13.14.4 signalfd .. 532

Chapter 14 Hot-plug System .. 537

14.1 Introduction of the Hot-plug System .. 537

14.2 Hot-plug Message ... 538

14.2.1 Format of Hot-Plug Messages .. 538

SpaceChain OS

Manual SpaceChain

OS.

7

Application Development Manual

14.2.2 Processing the Hot-Plug Messages ... 538

Chapter 15 Network I/O .. 543

15.1 socket interface ... 543

15.1.1 Network endian ... 544

15.1.2 Socket address ... 546

15.1.3 Socket function .. 551

15.1.4 Socket option .. 553

15.2 Brief introduction to TCP/IP ... 558

15.2.1 Layering of TCP/IP .. 558

15.2.2 IP address ... 561

15.2.3 Data encapsulation ... 562

15.2.4 Data demultiplexing ... 563

15.2.5 Port number... 564

15.2.6 Link layer ... 564

15.2.7 IP Internet protocol .. 568

15.2.8 ARP address desorption protocol ... 570

15.2.9 ICMP message control protocol .. 571

15.2.10 UDP user datagram protocol .. 575

15.2.11 TCP transmission control protocol .. 575

15.3 Network communication instance ... 580

15.3.1 UDP instance .. 580

15.3.2 TCP instance ... 588

15.3.3 Raw socket (RAW) instance ... 597

15.4 Introduction to DNS ... 601

15.5 AF_UNIX domain protocol ... 612

15.5.1 AF_UNIX instance ... 613

15.6 AF_PACKET link layer communication ... 622

15.6.1 AF_PACKET instance ... 624

15.6.2 AF_PACKET and mmap .. 627

15.7 Network event detection .. 634

15.8 Standard network function library .. 638

15.8.1 ifconfig tool .. 638

15.8.2 TFTP.. 639

15.8.3 FTP .. 641

15.8.4 Telnet ... 647

15.8.5 ping .. 650

15.8.6 PPP ... 652

15.8.7 Network address translation ... 656

15.8.8 SylixOS network routing .. 659

15.8.9 netstat .. 676

15.8.10 npf ... 681

15.9 Control interface of the standard network card ... 686

15.10 Brief introduction to wireless communications and ad-hoc network 694

SpaceChain OS

Manual SpaceChain

OS.

8

Application Development Manual

Chapter 16 File system ... 700

16.1 Introduction of the file system ... 700

16.2 TPSFS file system ... 702

16.3 FAT file system .. 704

16.3.1 FAT command ... 704

16.4 NFS file system ... 705

16.4.1 Basic operations of NFS ... 705

16.5 ROM file system .. 708

16.6 RAM file system ... 709

16.7 ROOT file system .. 710

16.8 PROC file system .. 712

16.8.1 /proc/pid process related information .. 713

16.8.2 /proc/ksymbol kernel symbol table .. 715

16.8.3 /proc/posix POSIX subsystem information ... 716

16.8.4 /proc/net network subsystem .. 716

16.8.5 /proc/power power management subsystem 717

16.8.6 Subsystem of the /proc/fs file system ... 719

16.8.7 /proc/version kernel version information ... 720

16.8.8 /proc/kernel kernel information.. 720

16.8.9 /proc/cpuinfo processor information .. 722

16.8.10 /proc/bspmem memory mapping information 723

16.8.11 proc/self auxiliary information .. 723

16.8.12 /proc/yaffs YAFFS partition information .. 724

16.9 YAFFS file system ... 726

16.9.1 The difference between NAND Flash and NOR Flash 726

16.9.2 YAFFS proper nouns ... 727

16.9.3 Memory Technology Device（MTD） ... 728

16.9.4 YAFFS partition ... 729

16.9.5 YAFFS command .. 731

16.10 File system Shell command .. 733

Chapter 17 Logging System ... 750

17.1 SylixOS logging system ... 750

17.2 POSIX logging system .. 752

Chapter 18 Multi-user Management ... 760

18.1 Introduction of POSIX User Management ... 760

18.1.1 Users ... 760

18.1.2 User Groups .. 761

18.2 Management of POSIX Authority .. 762

18.2.1 File Authority and Expression Method .. 763

18.2.2 File Authority Management Command chmod 764

18.3 User Management-related Files in the /etc Directory 765

18.3.1 /etc/passwd File .. 765

18.3.2 /etc/shadow File .. 767

SpaceChain OS

Manual SpaceChain

OS.

9

Application Development Manual

18.3.3 /etc/group File .. 769

18.4 POSIX User Operations .. 770

18.4.1 User Password Operation ... 770

18.4.2 User Shadow Password Operation ... 772

18.4.3 User Group Operation ... 773

18.4.4 User’s Additional Group Operation ... 774

18.5 Multi-user Management Database .. 776

18.5.1 User Operation .. 776

18.5.2 Group Operation ... 777

18.5.3 Password Operation.. 778

18.5.4 User Shell Commands .. 778

Chapter 19 Dynamic Loading ... 782

19.1 Principle of Dynamic Link Library .. 782

19.1.1 Format of ELF File .. 782

19.1.2 ELF Files in SylixOS ... 782

19.1.3 SylixOS Dynamic Loader Features ... 783

19.2 Autoloading of Dynamic Library .. 783

19.2.1 Linking of Dynamic Library .. 783

19.2.2 Downloading of Dynamic Library .. 784

19.2.3 Loading of Kernel Module ... 785

19.3 POSIX Dynamic Link Library API .. 785

19.3.1 Common API of Dynamic Library .. 785

19.3.2 Other APIs ... 788

19.4 Dynamic Link Library Shell Command .. 790

19.4.1 Viewing Dynamic Link Libraries .. 790

19.4.2 Loading Kernel Modules ... 791

19.4.3 Unloading Kernel Modules .. 791

Chapter 20 Power Management ... 794

20.1 SylixOS Power Management .. 794

20.2 Power Management API .. 795

Chapter 21 Introduction to Standard Third-Party Software .. 798

21.1 Qt Graphical Interface Software .. 798

21.1.1 Qt Porting in SylixOS .. 798

21.1.2 Verification of Qt Graphical Interface Library 800

21.1.3 QtCreator Installation and Configuration .. 802

21.2 Zlib File Compression Library.. 808

21.2.1 Porting of Zlib Library .. 808

21.2.2 Verification of Zlib Library .. 811

21.3 SQLite3 Database ... 811

21.3.1 Porting of SQLite3 in SylixOS ... 811

21.3.2 Verification of SQLite3 Library .. 811

21.4 OpenSSL Encryption Library ... 812

21.4.1 Introduction to OpenSSL ... 812

SpaceChain OS

Manual SpaceChain

OS.

10

Application Development Manual

21.4.2 Porting of OpenSSL Library ... 813

21.4.3 Verification of OpenSSL Library .. 815

21.5 GoAhead Web Server ... 816

21.5.1 Porting of GoAhead... 816

21.5.2 GoAhead Verification .. 817

21.6 C-Language Interpreter ... 817

21.6.1 Picoc Porting ... 818

21.6.2 Picoc Usage Verification ... 818

Chapter 22 Platform Porting ... 819

22.1 From Linux to SylixOS ... 819

22.2 From VxWorks to SylixOS ... 820

22.2.1 Development of VxWorks Applications in RealEvo-IDE 820

Appendix A Standard Header File .. 827

A.1 C Standard Header File .. 827

A.2 POSIX Standard Header File .. 827

Annex B SylixOS Error Number ... 830

B.1 POSIX Error Number .. 830

B.2 IPC/Web Error Number ... 830

B.3 SylixOS Kernel Error Number ... 832

B.4 Thread Error Number .. 833

B.5 Message Queue Error Number ... 835

B.6 TIMERError Number ... 835

B.7 Memory Operation Error Number ... 836

B.8 I/O System Error Number ... 837

B.9 Shell Operation Error Number .. 837

B.10 Other Error Numbers .. 837

Annex C Description of SylixOS Makefile .. 839

C.1 Description of SylixOS Makefile ... 839

C.1.1 Directory Structure of SylixOS .. 839

C.1.2 config.mk File.. 841

C.1.3 Makefile File.. 843

Annex D Description of SylixOSOpen Source Community .. 851

References .. 852

SpaceChain OS

Manual SpaceChain

OS.

11

Application Development Manual

Noun explanation and agreement

This book strives to introduce the application development technology of the SylixOS

real-time operation system with simplified language and space. The following computer

vocabulary will be frequently used in the book. The following explanations and

conventions are made for the computer terminology and its acronyms used.

 CPU: i.e., central processing unit (CPU) is the computing core and control core

of a computer. It is collectively referred to as the three core components of the

computer together with internal memory and input / output device.

 RISC: reduced instruction set computer, which adopts superscalar and

superpipelined structures; there are only a few dozens of instructions, but the

parallel processing capability is greatly enhanced.

 SMP: i.e., symmetric multi-processing, referring to the CPU which collects a

group of same instruction set on a computer. Various CPUs shares the memory

subsystem and bus structure. It is usually called as multi-core CPU system.

 AMP: i.e., Asynchronous Multiprocessing, referring to collection of a set of CPUs

with different instruction sets and different functions on a computer. They are

usually linked in a loosely coupled organization, and are responsible for

processing different data respectively.

 Compiler: it is the program which translates the advanced computer language

program (C/C++ and so on) to the machine language (binary code).

 Assembler: it is the language which translates the assembly language to

machine language.

 Linker: it is a program which links one or more target files generated by the

compiler or assembler with the dependent library to form an executable file.

 GNU: GNU Project was publicly launched by Richard Stallman on September 27,

1983, and it is aimed to provide a completely free operating system. Richard

Stallman created the Free Software Foundation in 1985 to provide the technical,

legal, and financial support for the GNU Project. Linux, GCC, EMAC and other

software are from or enter GNU Project.

 GCC: it is the abbreviation of GNU Compiler Collection. GCC referred in

particular to C compiler released by GNU. Due to rapid development of GCC, it

SpaceChain OS

Manual SpaceChain

OS.

12

Application Development Manual

has not been just a compiler, but a development tool chain which integrates the

compiler, linker, debugger, object analysis and other functions.

 Multi-task: it refers to that the user can run multiple applications within the same

time, and each application is called as a task. In the single CPU system structure,

multiple tasks operate on a CPU alternatively. In the multi-CPU system structure,

the tasks with the equal quantity can operate simultaneously.

 Scheduler: it is the core of the operating system. It is actually a memory-resident

program. It constantly scans the thread queues, utilizes a specific algorithm to

find out the thread which needs to run more than the thread currently occupying

the CPU, ,and the use right of CPU is deprived from the previous thread and

transferred to to threads that need to run.

 Embedded system: the embedded system refers to a dedicated computer

system based on computer technology and with strict requirements for software

and hardware tailoring, function, reliability, cost, size and power consumption in a

narrow sense. An embedded system is a kind of dedicated computer system as a

part of the device or equipment. The generalized embedded system refers to all

computer systems except the server and PC.

 Preemptive system: it refers to the system which immediately abandons the

current task, and turns to handle the more important event if any.

 Version management: it is the foundation of software configuration

management, which manages and protects the developer's software resources.

The main functions include: centralized file management; software version

upgrade management; locking function; provide comparison of different versions

of source programs.

 BUG tracking: it is the foundation of software defect management. The main

functions include: recording and saving the problem-solving process; recording

and saving the process and basis of a design decision. It can effectively record

the process from software defect discovery to correction.

 BSP: abbreviation of board support packet. It is the collection of underlying

programs running on the hardware platform of the operating system, generally

including: startup program, driver, interrupt service program and other basic

programs.

 TCM: the tightly coupled memory is an RAM with fixed size, which is closely

coupled to the processor kernel, and provides the performance equivalent to

Cache. Compared with Cache, the advantage is that the program code can

accurately control the position of the function or code (stored in RAM).

SpaceChain OS

Manual SpaceChain

OS.

13

Application Development Manual

 Cross compilation: that is

to say, generate the executable code on a platform on another platform. For

example, the executable program on ARM platform can be developed on x86

platform.

 Host machine: the computer used for development during cross compilation.

 Target machine: sometimes referred to as the target system or device, it is the

target computer of cross compilation. The computer or device is used to run the

cross-compiled executable program.

Chapter I Brief introduction to SylixOS operating

system

1.1 Brief history of the operating system

The operating system (OS for short) is a computer program which manages and

controls the computer hardware and software resources. It is the most basic system

software which directly runs on the "bare machine".

The operating system is the interface between the user and the computer, and also

the interface between the computer hardware and other software. The functions of the

operating system include managing hardware, software and data resources of the

computer system, controlling program operation, improving the human-machine interface,

and providing support for other application software. The operating system can maximizes

functions of the computer system resources.

There are many kinds of operating systems. From simple to complex, they can be

divided into smart card operating system, real-time operating system, sensor node

operating system, embedded operating systems, personal computer operating systems,

multi-processor operating system, network operating system and mainframe operating

system. There are mainly three types according to the application field: desktop operating

system, server operating system and embedded operating system.

In the middle of the 20th century, humans entered the age of information with the birth

of computers. At that time, the first-generation computers did not have an operating

system, because the way to build the early personal computers (same with building the

mechanical computer) and performance were insufficient to execute such program. In

1947, due to invention of transistors and the micro-programming method invented by

Maurice Vincent Wilkes, the computer was no longer a mechanical device but an

electronic product. System management tools and programs which simplify the hardware

operation process quickly emerged, which became the foundation of the operating

SpaceChain OS

Manual SpaceChain

OS.

14

Application Development Manual

system.

By the mid-1950s, the commercial computer manufacturers had created the batch

processing system which can serialize establishment, scheduling and execution of the

work. At that time, the computer manufacturer writes different operating systems for each

different model of computer, so the program written for one computer cannot be

transplanted to other computers for execution, even if it is of the same model.

In 1963, General Electric Company worked with Bell Labs and MIT to develop the

Multics operating system in PL/I language. Its appearance was a source of inspiration for

establishment of many operating systems in the 1970s. The UNIX system established by

Dennis Ritchie and Ken Thompson from AT&T Bell Laboratories. The operating system

was rewritten in C Language in 1969 in order to realize portability of the platform.

The UNIX operating system written in C Language is of inter-temporal significance. It

is the first modern operating system in the real sense. Later-born systems, such as Linux,

BSD, Mactonish and Solaris, all came from UNIX system in the aspects of principle and

application program interface. The impact of UNIX system on operating systems

continues to this day.

1.2 Functions of the operating system

The theoretical researchers of the operating system sometimes divide the operating

system into four major parts:

 Device driver: the bottom part with direct control and monitoring of all types of

hardware. Their responsibilities are to hide the hardware details and provide an

abstract and generic interface to other parts.

 Kernel: the kernel part of the operating system, usually running at the highest

privilege level, responsible for providing basic and structural functions.

 Interface library: it is a series of special program libraries. Their responsibilities

are to wrap the basic services provided by the system into the programming

interface (API) which can be used by the application, and it is the part closest to

the application.

 Periphery: refers to all other parts of the operating system other than the above

three types, and is usually used to provide specific advanced services. For

example, in a microkernel structure, most system services and various daemons

in UNIX/Linux are usually classified in this list.

The main functions of the operating system are resource management, program

control, human-machine interaction and so on. The resources of the computer system can

be divided into two major categories of device resources and information resources.

Device resources refer to hardware devices constituting the computer, such as central

SpaceChain OS

Manual SpaceChain

OS.

15

Application Development Manual

processors, main memory, magnetic disc memory, printer, tape memory, monitor,

keyboard, mouse and other devices. Information resources refer to various data stored in

the computer, such as files, program library, system software, application software and so

on.

The operating system is located between the underlying hardware and application

software or users, and is the bridge between the two. The application or the user can

operate the computer via various interfaces provided by the operating system. A standard

operating system shall provide the following functions:

 Task management.

 Memory Management.

 File System.

 Networking.

 Security.

 User Interface.

 Device Drivers.

1.3 Classification of operating systems

Due to differences in features and application fields, the operating systems can be

divided into the following types:

Batch Processing Operating System: the user submits the job to the system

operator. The system operator composes the jobs of multiple users into a batch of jobs,

and then enters it into the computer to form a continuous job flow with automatic transfer

in the system. Then start the operating system, and the system will automatically executes

each job in turn. The batch processing operating system is divided into the simple batch

processing system and the multi-channel batch processing system.

Time Sharing Operating System: multiple users can access the system through the

terminal simultaneously. Since multiple users share the processor time, the technology is

called Time Sharing. The user interactively submits commands to the system. In response

to the request, the system accepts each user's commands and controls each user

program to be executed alternately in a short time unit (this type of time unit is called as

time slice). This technology makes each user think that they own the processor. The

time-sharing system is characterized by multiplexing, interactivity, "exclusivity" and

timeliness.

Real Time Operating System: referring to an operating system which enables the

computer to respond to the request of an external event in a timely manner, complete

processing of the event within a defined “strict time”, and control all real-time devices and

SpaceChain OS

Manual SpaceChain

OS.

16

Application Development Manual

real-time tasks to work in concert. The goal of the real-time operating system is to:

respond to external requests within a "strict time" range, which has the characteristics of

high reliability, integrity, resource allocation, and real-time task scheduling. Resource

allocation and real-time task scheduling are its main features. In addition, the real-time

operating system shall have strong fault tolerance. The real-time operating system is

divided into the hard real-time operating system and the soft real-time operating system.

The hard real-time operating system can guarantee that all real-time events can be

properly responded within a certain period. The soft real-time operating system can only

do its utmost to strive for the real-time event to get response within a certain time.

Distributed Software Systems: the operating system configured for distributed

computing systems. A large number of computers are linked together via the network, so

as to obtain extremely high calculation capability and extensive data sharing. This system

is called as the distributed system. It differs from other operating systems in resource

management, communication control and operating system structure. At the same time,

the distributed operating system must support parallel processing. Therefore, the

communication mechanism it provides is different from that provided by the network

operating system. It requires a fast communication speed. The structure of the distributed

operating system is also different from those of other operating systems. It is distributed

on various computers in the system and can handle various demands of the users in

parallel. It has strong fault tolerance.

The Embedded Operating System is an operating system which runs on an

embedded device. The embedded operating system is an operating system widely used.

The embedded device generally adopts the dedicated embedded operating systems.

They are usually the real-time operating system, such as SylixOS, VxWorks, and some

are functionally-reduced versions of Linux kernel operating systems, such as Android,

Tizen, MeeGo and so on.

1.4 Brief introduction to POSIX Standards

Since the first modern operating system - UNIX was born in 1970, there have been a

variety of modern operating systems, such as: Windows, Linux, BSD, Solaris, etc. In order

to facilitate the transplantation of applications and middleware, most operating systems

adopt UNIX-compatible API (except for Windows). The POSIX standard was established

to ensure mutual compatibility of operating system API.

POSIX is a collective term for a series of interconnected standards defined by the

IEEE (Institute of Electrical and Electronics Engineers) to regulate the API interfaces

provided by various UNIX operating systems. It is officially called as IEEE1003, and the

international standard name is ISO/IEC9945. This standard originated from a project

which began approximately in 1985. The name of POSIX is an easy-to-remember name

proposed by Richard Stallman at the request of the IEEE. It is basically the abbreviation of

Portable Operating System Interface, and X indicates its inheritance of Unix API.

SpaceChain OS

Manual SpaceChain

OS.

17

Application Development Manual

The POSIX standard defines a sub-protocol called as 1003.1b for real-time

operating system. This protocol defines the basic behavior of the standard real-time

operating system. SylixOS satisfies requirements of this protocol.

The current POSIX is mainly divided into four parts: Base Definitions, System

Interfaces, Shell and Utilities and Rationale. SylixOS is compatible with most

specifications in these four parts.

The current operating systems conforming to the POSIX standard protocol are: UNIX,

BSD, Linux, iOS, Android, SylixOS, VxWorks, RTEMS, etc. Due to the support of POSIX

by SylixOS, applications on other compatible POSIX systems can be easily transplanted

to SylixOS operating system.

Table A.2 lists the POSIX standard header files supported by SylixOS.

1.5 POSIX restrictions

POSIX defines a number of constants which involve operating system

implementation restrictions. Unfortunately, this is one of the most puzzling parts of POSIX.

Although POSIX defines a lot of restrictions and constants, we only care about the parts

related to the basic POSIX interface. These limits and constants are divided into the

following 7 categories.

 Numeric restrictions: LONG_BIT, SSIZE_MAX and WORD_BIT;

 Minimum value: as shown in Table 1.1;

 Maximum value: _POSIX_CLOCKRES_MIN;

 Value which can be increased during operation: CHARCLASS_NAME_MAX,

COLL_WEIGHTS_MAX, LINE_MAX, NGROUPS_MAX and RE_DUP_MAX;

 Invariant value; during operation;

 Other invariant values: NL_ARGMAX, NL_MSGMAX, NL_SETMAX and

NL_TEXTMAX;

 Variable value of path name: FILESIZEBITS, LINK_MAX, MAX_CANON,

MAX_INPUT, NAME_MAX, PATH_MAX, PIPE_BUF and SYMLINK_MAX.

Among these restrictions and constants, some may be defined in <limits.h>, and the

rest may be defined and may not be defined according to specific conditions .

These minimum values are constant (they do not change with the system). They

specify the most restrictive values of these features. A POSIX-compliant implementation

shall provide such a large value at least. This is why they are called as the minimum

values, even though their names all include MAX. In addition, in order to ensure portability,

a strictly POSIX-compliant application shall not require a larger value.

SpaceChain OS

Manual SpaceChain

OS.

18

Application Development Manual

SpaceChain OS

Manual SpaceChain

OS.

19

Application Development Manual

Table 1.1 Minimum value of POSIX in <limits.h>

Name of the minimum value Note

_POSIX_CHILD_MAX Number of child processes per actual user ID

_POSIX_DELAYTIMER_MAX Maximum number of timer overruns

_POSIX_HOST_NAME_MAX Length of the host name returned by the gethostname function

_POSIX_LINK_MAX Number of links of the file

_POSIX_LOGIN_NAME_MAX Length of the login name

_POSIX _MAX_CANON Number of bytes in terminal specification input queue

_POSIX _MAX_INPUT Available space of the terminal input queue

_POSIX_NAME_MAX Number of bytes in the file name, excluding terminating null bytes

_POSIX_NGROUPS_MAX Number of group IDs added by each process at the same time

_POSIX_OPEN_MAX Number of open files per process

_POSIX_PATH_MAX Number of bytes in the path name, including terminating null bytes

_POSIX_PIPE_BUF Number of bytes which can be atomically written to a pipe

_POSIX_RE_DUP_MAX

Times of repetitions of basic regular expression allowed by the

regexec and regcomp functions when the interval notation \{m,n\}

is used

_POSIX_RTSIG_MAX Number of real-time signal numbers reserved for the application

_POSIX_SEM_NSEMS_MAX
Number of semaphores which can be used by a process

simultaneously

_POSIX_SEM_VALUE_MAX Value which can be held by the semaphore

_POSIX_SIGQUEUE_MAX
Number of queued signals which can be sent and suspended by a

progress

_POSIX_SSIZE_MAX Value which can exist in the ssize_t object

_POSIX_STREAM_MAX
Number of standard I/O streams which can be opened by a

process simultaneously

_POSIX_SYMLINK_MAX Number of bytes in the symbolic link

_POSIX_SYMLOOP_MAX
Number of compliant links which can be traversed when parsing

path names

_POSIX_TIMER_MAX Number of timers per process

_POSIX_TTY_NAME_MAX
Length of the terminal device name , including the terminating null

bytes

_POSIX_TZNAME_MAX Time zone name bytes

A specific value may not be defined in this header file, because the actual value of a

given process may depend on the total amount of storage in the system. If not defined in

the header file, they cannot be used as numeric boundaries during compilation. Therefore,

POSIX provides 3 runtime functions for call: sysconf, pathconf, and fpathconf. The actual

implementation value can be obtained at runtime with these 3 functions..

SpaceChain OS

Manual SpaceChain

OS.

20

Application Development Manual

#include <unistd.h>

long sysconf(int name);

long fpathconf(int fd, int name);

long pathconf(const char *path, int name);

Function sysconf prototype analysis:

 For success of the function, return the corresponding value. For failure, return -1

and set the error number;

 The parameter name is the request constant name, as shown in Table 1.2.

Function fpathconf prototype analysis:

 For success of the function, return the corresponding value. For failure, return -1

and set the error number;

 The parameter fd is the open file descriptor;

The parameter name is the request constant name, as shown in Table 1.3.

Function pathconf prototype analysis:

 For success of the function, return the corresponding value. For failure, return -1

and set the error number;

 The parameter path is the file path name;

 The parameter name is the request constant name, as shown in Table 1.3.

Table 1.2 Sysconf call (partial) name parameter

Name parameter Return value

_SC_ARG_MAX ARG_MAX

_SC_CLK_TCK LW_TICK_HZ

_SC_DELAYTIMER_MAX __ARCH_INT_MAX

_SC_IOV_MAX __ARCH_LONG_MAX

_SC_LINE_MAX LINE_MAX

_SC_LOGIN_NAME_MAX LOGIN_NAME_MAX

_SC_OPEN_MAX LW_CFG_MAX_FILES

_SC_PAGESIZE PAGESIZE

_SC_RTSIG_MAX RTSIG_MAX

_SC_SEM_NSEMS_MAX SEM_NSEMS_MAX

_SC_SEM_VALUE_MAX __ARCH_UINT_MAX

_SC_SIGQUEUE_MAX SIGQUEUE_MAX

_SC_TIMER_MAX LW_CFG_MAX_TIMERS

_SC_TZNAME_MAX TZNAME_MAX

SpaceChain OS

Manual SpaceChain

OS.

21

Application Development Manual

Table 1.3 Pathconf and fpathconf calls (partial) name parameters

name parameter Return value

_PC_FILESIZEBITS FILESIZEBITS

_PC_LINK_MAX Internal definition of the system

_PC_MAX_CANON MAX_CANON

_PC_MAX_INPUT MAX_INPUT

_PC_NAME_MAX NAME_MAX

_PC_PATH_MAX PATH_MAX

_PC_PIPE_BUF PIPE_BUF

_PC_SYMLINK_MAX Internal definition of the system

The difference between the latter two functions is that: one takes the file descriptor as

the parameter, and the other uses the path name as the parameter.

If name is not a correct constant, these 3 functions return to -1, and set errno to

EINVAL. Some name will return a variable value or -1, -1 represents an indeterminate

value. At the moment, errno value will not be changed.

1.6 SylixOS Overview

SylixOS is a large-scale embedded real-time operating system, which was born in

2006. At first, it was only a small multi-tasking scheduler. After years of development,

SylixOS has become a stable and reliable embedded system software development

platform with full functions and excellent performance.

Among the real-time operating system similar to SylixOS, VxWorks (mainly used in

aeronautics, astronautics, military and industrial automation) and RTEMS (originated from

the missile and rocket control real-time system of the US Department of Defense) are

well-known in the world.

As a latecomer of the real-time operating system, SylixOS has borrowed many design

ideas from many real-time operating systems, making SylixOS reach or exceed the level

of many real-time operating systems in terms of functionality and specific performance,

and making it one of the most best representatives in domestic real-time operating

systems
①
.

SylixOS, as a preemptive multi-task hard real-time operating system, has the

following features and characteristics:

 Compatible with IEEE1003 (ISO/IEC9945) operating system interface

specifications;

SpaceChain OS

Manual SpaceChain

OS.

22

Application Development Manual

 Compatible with POSIX

1003.1b (ISO/IEC 9945-1) real-time programming standards;

 Excellent real-time performance (task scheduling and switching, interrupt

response algorithms are 0 (1) time complexity algorithm);

 Support unlimited multitasking;

 Preemptive scheduling supports 256 priorities;

 Support coroutines (called as fiber in windows);

 Support virtual process;

 Support priority inheritance to prevent priority inversion;

 Extremely stable kernel, many products based on SylixOS development require

7×24-hour continuous operation;

 The CPU occupancy rate of the kernel is low;

 Flexible system (Scalable);

 The core code is written in C Language, which has good portability;

 Support tightly-coupled homogeneous multi-processor (SMP), such as: ARM

Cortex-A9 SMP Core;

 Unique hard real-time multi-core scheduling algorithm;

 Support standard I/O, multiple I/O multiplexing and asynchronous I/O interfaces;

 Support multiple emerging asynchronous event synchronization interfaces, such

as signalfd, timerfd and eventfd;

 Support many standard file systems: TPSFS, FAT, YAFFS, RAMFS, NFS,

ROMFS, etc;

 Support file record lock, and can support database;

 Support the uniform block device Cache model;

 Support memory management unit (MMU);

 Support third-party GUI graphic libraries, such as Qt, Microwindows and emWin;

 Support dynamic loading applications, dynamic link libraries and modules;

 Support extended system symbol interface;

 Support standard TCP/IPv4/IPv6 dual network protocol stack, and provide

standard socket operation interface;

 Support AF_UNIX, AF_PACKET, AF_INET, AF_INET6 protocol domain;

SpaceChain OS

Manual SpaceChain

OS.

23

Application Development Manual

 Integrated with many

network tools, such as: FTP, TFTP, NAT, PING, TELNET, NFS, etc.

 Integrated with shell interface, support environment variables (basically

compatible with Linux operation habits);

 Integrated with re-entry ISO/ANSI C library (supports over 80% of standard

functions);

 Supports many standard device abstractions, such as TTY, BLOCK, DMA, ATA,

GRAPH, RTC and PIPE. Meanwhile, support a variety of industrial equipment or

bus models, such as: PCI, USB, CAN, I2C, SPI, SDIO, etc.;

 Provide high-speed timer device interface, and can provide timing service higher

than the master clock frequency;

 Support hot swapping device;

 Support device power management;

 Kernel, drivers, and applications support GDB debugging;

 Provide kernel behavior tracker to facilitate application performance and failure

analysis.

1.7 SylixOS application field

SylixOS adopts the preemptive, multitasking and hard real-time approach to design

the whole operating system. The core target of its technical implementation is real-time

control, stability and reliability. Therefore, SylixOS is suitable for (but not limited to) the

following fields where the requirements for real-timeness and stability are particularly

prominent:

 Industrial real-time control: mainly including industrial robot system, site

security monitoring and protection system, industrial field bus communication

management system and so on;

 Aeronautics and astronautics: mainly including aircraft flight control systems,

aerospace data acquisition and recording system, high-precision surveying and

mapping system, aerospace communication system and so on;

 National defense security: mainly including encryption communication system,

sensor terminal system, virtual instrument system, data acquisition and recording

system, fire control system and so on;

 Financial terminal: mainly including POS charging system, terminal payment

system, ATM and so on;

SpaceChain OS

Manual SpaceChain

OS.

24

Application Development Manual

 High-reliability civil use:

mainly including vehicle traveling data recorder system, central control system

for vehicles and marine engines, production line testing system, medical

instrument system, distributed unattended system and so on.

1.8 Current application cases of SylixOS

Since 2006, many projects or products have been developed based on SylixOS,

covering a wide range of fields, and the products have stable and reliable operation. The

following describes some products based on SylixOS from industrial automation, military,

communication, civil use and other fields. Most products require 7×24 hour uninterrupted

operation, and many SylixOS system nodes have run over 50,000 hours without

interruption.

1. Industrial automation

 Universal configuration development human-machine interface.

 Electrical fire alarm system.

 Toll-by-weight and overlimit detector.

 Special vehicle and marine engine state monitor.

 Power environment monitoring station.

 Access control system event server.

 Universal PLC system.

2. Communications

 A variety of industrial fieldbus protocol converters.

 Industrial high-reliability IP router.

 Coal mine wireless personnel positioning system.

3. New energy

 Small photovoltaic power generation real-time data manager.

 Large-scale photovoltaic power generation node manager.

 Super capacitor car balance charge and discharge controller.

4. Weapon system

 Conventional submarine battery monitoring system.

 Wheeled armored vehicle real-time monitoring system.

SpaceChain OS

Manual SpaceChain

OS.

25

Application Development Manual

 Application Development Manual
SpaceChain OS

Manual SylixOS.

Chapter 2 Integrated development environment

This chapter introduces the functions and use of the integrated development

environment of the SylixOS operating system. This book takes the most common ARM

processor on the market as an example (similar to the development, debugging and

deployment of x86, MIPS, PowerPC processor and ARM processor).

2.1 Introduction to ARM processor

2.1.1 Brief introduction

ARM (Advanced RISC Machines) can be deemed as a company's name, the generic

name for ARM core microprocessor, or the name of a technology.

ARM was founded in Cambridge, UK in 1991, and mainly sells authorization of chip

design technology. At present, the microprocessor adopting AMR technical intellectual

property (IP) core (i.e., ARM processor mentioned normally) has been widely used in

industrial control, consumer electronic product, communication system, network system,

wireless system and various product markets. ARM-based microprocessor application

occupies over 75% of market share of 32-bit RISC microprocessor, and ARM technology

is gradually seeping into every aspect of daily life.

ARM processors can be divided into different series according to different kernels

used. Division of these series is based on ARM7, ARM9, ARM10 and ARM11 kernels

(suffix numbers of 7,9,10 and 11 indicate different kernel designs). Digital ascending

indicates improvement in performance and complexity. In each series, there are also

multiple changes in memory management, Cache and TCM processor extension.

2.1.2 Features

 Small volume, low power consumption, low cost and high performance;

 Support Thumb (16-bit) /ARM (32-bit) dual instruction sets, and be compatible

with 8-bit / 16-bit device;

 Extensive use of registers, realizing rapid instruction execution;

 Most date operations are completed in the register;

 The addressing mode is flexible and simple with high execution efficiency;

 The instruction length is fixed.

SpaceChain OS

Manual SpaceChain

OS.

27

Application Development Manual

2.1.3 Operating mode

ARM processor has 7 operating modes in total, as shown in Table 2.1.

SpaceChain OS

Manual SpaceChain

OS.

28

Application Development Manual

Table 2.1 Operating mode of ARM processor

Operating mode Instructions

User mode (User) For execution of normal program

System mode (System) Operate the operating system tasks with privilege

General interrupt mode (lrq) For normal interrupt processing

Fast interrupt mode (Fiq) For fast interrupt processing

Management mode (Supervisor) Protected mode used for the operating system

Abort mode (Abort) Enter the mode when data or instruction prefetch is terminated

Undefined mode (Undefined) Enter the mode when the undefined instruction is executed

1. Privileged mode

Except for the user mode, other modes are privileged modes. ARM internal registers

and some on-chip peripherals can only be accessed in the privileged mode on the

hardware design. In addition, the privileged mode can be freely switched to the processor

mode, and the user mode cannot be directly switched to other modes.

2. Exception mode

Except for the system mode, other 5 modes in the privileged modes are also

collectively referred as exception modes. In addition to entry through program switching in

privilege, they can enter it from specific abnormality. For example, enter the interrupt

exception mode when the hardware generates the interrupt signal, enter the abort

exception mode when the data without authority is read, and enter the abort exception

mode of undefined instruction when the undefined instruction is executed. Where, the

management mode is also called as the superuser mode, and the specific mode providing

software interrupt for the operating system. It is precisely because of software interrupt

that the user program can switch to the management mode through system call.

2.1.4 Register organization

There are 37×32-bit registers in ARM processor, including 31 general registers and 6

status registers. These registers cannot be accessed at the same time. Programmability

and Accessibility of the register depends on working state and specific operation mode of

the microprocessor. However, general registers R0 to R14 and the program counter and

SpaceChain OS

Manual SpaceChain

OS.

29

Application Development Manual

one or two status registers can be accessed at any time.

1. General register

The general registers include R0 to R15, which can be divided into three categories:

 Unbanked register R0 to R7.

 Banked register R8 to R14.

 Program counter PC (R15).

In all operation modes, unbanked registers are pointed at the same physical register,

and not used for special purpose by the system. Therefore, damage to the register data

may be caused when conversion of operation modes is performed for interrupt or

exception handling.

R8 to R12 registers respectively correspond to two different physical registers.

Access registers of R8_fiq to R12_fiq in fiq mode, and access registers of R8_usr to

R12_usr in other modes.

R13 and R14 registers respectively correspond to 6 different physical registers, one

of the physical registers is shared by the user mode and the system mode, and other 5

physical registers correspond to other 5 different operation modes. R13_<mode> and

R14_<mode> modes are adopted to identify different physical registers (modes are USR,

FIQ, IRQ, SVC, ABT and UND).

R13 is often used as the stack pointer in ARM instruction, but it is only a idiomatic

usage. The user can also use other registers as stack pointers. Each operation mode of

the processor has its own independent physical register R13. Therefore, R13 in the

corresponding mode shall be initialized in the initialization part. When program operation

enters the exception mode, the register to be protected can be placed into the stack

pointed by R13. However, when the program returns from the exception mode, it shall be

recovered from the corresponding stack.

R14 is also called as the subroutine link register or the link register LR. When the call

instruction of BL subroutine is executed, R15 (program counter PC) backup can be

obtained from R14, and R14 can be used to save the return address of the subroutine in

each operation mode.

The register R15 is called as the program counter (PC). Although R15 can be used as

the general register, but it is not used in this way usually, because there are some special

restrictions on use of R15, and execution results of the program are unknown if these

restrictions are violated.

SpaceChain OS

Manual SpaceChain

OS.

30

Application Development Manual

2. Status register

Status registers include the current program status register and the saved program

status register. CPSP can be accessed in any operation mode, which includes the

condition flag bit, interrupt disable bit, pattern flag bit of current processor, and other

related control and status bits. There is a special physical status register SPSR in each

exception mode, SPSR is used to save the current value of CPSR in case of any

exception, and CPSR can be recovered by SPSR when quit from exception. Since the

user mode and the system mode do not belong to the exception mode, they do not have

SPSR, and results are unknown when SPSR is accessed in the two modes.

2.1.5 Instruction structure

ARM microprocessor supports two instruction sets in newer system structure: ARM

instruction set and Thumb instruction set. Where, the length of ARM instruction set is 32

bits, the execution cycle is mostly single cycle, and the instructions are executed with

conditions; The Thumb instruction can be seen as a subset of the ARM instruction set in

the compressed form, it has 16-bit code density, while the execution efficiency is lower

than that of ARM instruction. The Thumb instruction has the following features:

 The instruction execution condition will not be used frequently.

 The source register is same with the target register frequently.

 The number of registers used is relatively less.

 The value of the constant is relatively small.

 The Barrel Shifter in the kernel is not used frequently.

2.2 Introduction to RealEvo-IDE

2.2.1 Brief introduction

RealEvo-IDE is the dedicated integrated development environment for the SylixOS

operating system. It can enable development of SylixOS operating system application,

BSPs, driver and shared library to be simple and efficient. RealEvo-IDE includes the

following parts:

 SylixOS Base project: The project includes libsylixos (high-performance SylixOS

kernel), libVxWorks (VxWorks compatible library), libcextern (C extension library),

SpaceChain OS

Manual SpaceChain

OS.

31

Application Development Manual

liblua, libluaplugin (Lua script support), libzmodem (zmodem protocol support)

and libsqlite3 (SQLite database) and so on;

 Various project templates: BSP project template, application project template,

shared library project template, kernel module project template, as shown in

Figure 2.1;

 Development tools: automatic upload tools, RealEvo-Simulator, kernel behavior

monitor and so on;

 Integrated development environment: It can help the use manage and build the

project, compile corresponding code according to different hardware platforms,

and can organize and manage communication, debugging and operation with

SylixOS target system;

 Complier: having powerful code editing function;

 Compiler: including ARM, MIPS, PowerPC, x86, c6x, SPARC, Lite and other

platform compilers.

SpaceChain OS

Manual SpaceChain

OS.

32

Application Development Manual

Figure 2.1 RealEvo-IDE project template

Note: the experience version of RealEvo-IDE does not include the SylixOS Lite Project, and the

function can be obtained by purchasing the Pro version of RealEvo-IDE.

Figure 2.2 shows the communication and debugging relationship between

RealEvo-IDE integrated development environment and SylixOS target system.

Figure 2.2 RealEvo-IDE and target machine

2.2.2 Functions

1. Edit

Code edition is one of the most fundamental and important work for software

development, and an efficient code editor will yield twice the result with half the effort. The

RealEvo-IDE editor has multiple color assortment schemes and functions of code static

analysis and supplement. Therefore, code development is more efficient.

2. Compilation

The RealEvo-IDE toolbar contains a one-key compilation button on the left, as shown

in Figure 2.3. After the project you want to compile is selected, click this button for

compilation. In addition, you can click the right mouse button on the project requiring

compilation and select "Build Project" for compilation.

Figure 2.3 compilation button

SpaceChain OS

Manual SpaceChain

OS.

33

Application Development Manual

3. Debugging

SylixOS has a debugging server with powerful function, which can realize online

debugging of applications on devices with SylixOS running. RealEvo-IDE provides the

supported debugging tool, which can conveniently debug SylixOS application. At present,

RealEvo-IDE supports three debugging methods: automatic push debugging, manual

debugging, and remote attachment debugging (Attach).

4. Push

In order to more conveniently and rapidly deploy SylixOS application and driver to the

SylixOS device, RealEvo-IDE provides the function of one-key push to conveniently

deploy the program complied on the SylixOS target system (see Section 4.1.4).

2.3 Introduction to GCC toolchain

The GCC toolchain is a group of compilation kit (GCC), plus some binary files (such

as the linking tool LD, object file packaging tool AR and so on) and some standard

compilation kits consisting of C library. The GCC toolchain with RealEvo-IDE is the

compilation tool formed by adding SylixOS-related elements and more efficient library files

based on standard GCC and satisfying SylixOS requirements.

2.4 Installation of RealEvo-IDE

2.4.1 Acquisition of SylixOS development kit

SylixOS development kit is divided into experience and commercial versions, and you

can obtain a experience version of the development kit in the following ways: visit SylixOS

official website (www.sylixos.com or www.acoinfo.com), and you can apply for a complete

set of SylixOS integrated development environment.

2.4.2 Installation of SylixOS development kit

After a set of SylixOS development kit is obtained successfully, one can carefully read

the document in CD to obtain more information about the SylixOS integrated development

kit.

The following process is to install RealEvo-IDE through the SylixOS development kit

CD:

Open SylinOS IDE, double click to open the InstallWizard.exe file, and you will see

SpaceChain OS

Manual SpaceChain

OS.

34

Application Development Manual

installation toolset of the SylixOS Development Kit, precautions, and SylixOS

website information. It can be seen from Figure 2.4 that SylixOS IDE includes installation

of “RealEvo-IDE”, “QtCreator” and “RealEvo-QtSylixOS”.

Figure 2.4 Integrated development environment toolset

It is installed according to the sequence in Figure 2.4, RealEvo-IDE in SylixOS

integrated development environment can be used only after registration. For the specific

registration process and the place to be noticed during registration, view the file of

RealEvo Software Registration Procedure in CD.

After above process, installation of SylixOS integrated development environment is

completed.

 Application Development Manual
SpaceChain OS

Manual SylixOS.

Chapter 3 Brief introduction to Shell

3.1 What's Shell

Shell is the "shell" program of the operating system, it provides the user with a user

interface based on command-line type, and can be called as the command parser. The

system developer usually use the interface to operate the computer. Almost all operating

systems include Shell programs, for example: the more common shell in Linux is the Bash

program, and the shell program in Windows is cmd.exe. SylixOS is no exception, and also

includes its own Shell program: ttinyShell.

The ttinyShell program is the simplest and most convenient interface for the system

developer to operate the SylixOS operating system. It has the functions similar to those of

the the Linux system, what's different is that ttinyShell runs in the kernel space, and it is

not an application
①
. The ttinyShell can run application, and many common commands

solidified in SylinxOS kernel are built in. The operation interface of ttinyShell program is

shown in Figure 3.1.

Figure 3.1 ttinyShell operation interface

3.2 Instructions for common Shell commands

Some common ttinyShell built-in commands will be briefly introduced in the section,

which are divided into the system command, file command, network command, time

command, dynamic load command and other commands, and detailed instructions can be

SpaceChain OS

Manual SpaceChain

OS.

36

Application Development Manual

viewed on the Sylix OS device with the help [keyword] command.

The kernel version is different from clipping configuration. Therefore, ttinyShell built-in

commands will be different on SylixOS systems with different versions and configurations.

3.2.1 System command

For ttinyShell built-in system commands, see Table 3.1.

Table 3.1 Common built-in system commands of SylixOS

Command name Brief description

help Display list of all built-in commands of ttinyShell

free Display current memory information of the system

echo Echo parameters entered by the user

ts View thread information in the system

tp Check information of the thread blocked in the system

ss View status conditions of all threads and interrupt system stacks in the system

ps View information of all system processes

touch Create a regular file

ints View information of the system interrupt vector table

mems
View memory utilization of kernel and system memory heap of the operating

system

zones View partition status conditions of physical pages of the operating system

env View the global environment variable table of the operating system

varsave
Save the environment variable table of current operating system, and the default

save path is /etc/profile

varload
Extract the load environment variable table from the file with specified

parameters, and from /etc/profile at default

vardel Delete a appointed system environment variable

cpuus View cpu utilization rate

top View cpu utilization rate

kill Send the signal to the appointed thread or process, SIGKILL signal at default

drvlics Display table information of all device drivers installed in the system

devs Display all devices mounted in the system

buss Display all bus information mounted in the system

tty Display tty file corresponding to current Shell terminal

clear Clear the current screen.

aborts Display statistical information of exception handling of current operating system

sprio Set priority of the appointed thread

renice Set priority of the appointed process

hostname Display or set the host name of current SylixOS mirror image

login Switch the user and log in again

SpaceChain OS

Manual SpaceChain

OS.

37

Application Development Manual

who View identity of the current login user

shutdown Shut down or restart the system

monitor Start, shut down, or set the kernel tracker

pcis Print related information of PCI bus and equipment of system

lsusb
Print related information of USB bus and USB device of the system (dependent

on USB library)

which Check the file location appointed by the parameter

exit Quit current Shell terminal

The following are several common and more important commands.

Command ts

The information of current running thread of SylixOS system can be viewed with “ts”

command.

 [Command format]

ts [pid]

 [Common option]

None

 [Instructions for parameters]

pid ：process ID

The following are detailed meanings of output information of the ts command:

ts
①

thread show >>

 NAME TID PID PRI STAT ERRNO DELAY PAGEFAILS FPU CPU

---------------- ------- ----- --- ---- ------- ---------- --------- --- ---

t_idle 4010000 0 255 RDY 0 0 0 0

……

thread : 16

Various meanings of output are as follows:

① "#" represents the administrator user in SylixOS, and here is no user name or other information

compared with the reality ([root@sylixos_station:/]#). In order to avoid differences among different
users, "#” is used to represent operation under ttinyShell in the book, and the path information is
ignored.

SpaceChain OS

Manual SpaceChain

OS.

38

Application Development Manual

 NAME: it is the thread name, for example, t_idle represents the IDLE thread of

SylixOS;

 TID: it is the thread ID (handle), represented with hexadecimal system, such as

4010001;

 PID: it is ID of the process belonging to the thread, represented with decimal

system, which is same with the representation method in UNIX system (0

represents the kernel thread of the operating system);

 PRI: it is the priority of the thread, represented with decimal system (the smaller

the value, and the higher the priority.), such as 255;

 STAT: it is the current state of the thread, and RDY represents the ready state

(for the thread state, see 6.2 Thread State Machine);

 ERRNO: it is the running error number;

 DELAY: it is the thread delay;

 PAGEFAILS: it is missing page interruption counting;

 FPU: it represents whether the hardware floating-point unit (fpu) is used;

 CPU: it represents on which CPU the thread is running (there may be other

values on the multi-core system);

 thread: it represents the total number of current running thread.

2. Command tp

The blockage information of current running thread of SylixOS system can be viewed

with the command.

 [Command format]

tp [pid]

 [Common option]

None

 [Instructions for parameters]

pid ：process ID

The following are detailed meanings of output information of the tp command:

tp

thread pending show >>

 NAME TID PID STAT DELAY PEND EVENT OWNER

SpaceChain OS

Manual SpaceChain

OS.

39

Application Development Manual

---------------- ------- ----- ---- ---------- -----------------------

t_except 4010002 0 SEM 0 10010003:job_sync

……

pending thread : 14

Various meanings of output are as follows:

 NAME: it is the name of the thread

 TID: it is ID of the thread;

 PID: it is ID of the process;

 STAT: it is the current state of the thread;

 DELAY: it is the thread delay;

 PEND EVENT: it represents what kind of event the thread is currently blocking,

such as semaphore, message queue and so on;

 OWNER: it represents the thread ID occupying the blocking object when the

thread is blocked (the domain will include the thread ID occupying the lock with

occupy lock in case of any deadlock);

 pending thread: it represents that 14 threads among the running threads are

blocked on an event.

3. Command ps

The information of the running process of SylixOS system can be viewed with the ps

command.

 [Command format]

ps

 [Common option]

None

 [Instructions for parameters]

None

The following are detailed meanings of output information of the ps command:

ps

 NAME FATHER STAT PID GRP MEMORY UID GID USER

---------------- ---------------- ---- ----- ----- ---------- ----- ----- ------

kernel <orphan> R 0 0 0KB 0 0 root

SpaceChain OS

Manual SpaceChain

OS.

40

Application Development Manual

app <orphan> R 2 2 196KB 0 0

root

total vprocess: 2

Various meanings of output are as follows:

 NAME: process name (program name);

 FATHER: it represents the father process, orphan represents an orphan process,

i.e., there is no father process;

 STAT: it represents the process state, as shown in Table 3.2;

 PID: it is ID of the process;

 GRP: it is ID of the process group;

 MEMORY: it is the total memory consumed by the process (unit: byte);

 UID: it is the user ID of the process;

 GID: it is the user group ID of the process;

 USER: it is the user name of the process, such as root.

Table 3.2 Process state

State label Note

I Initial state of the process, the process has not started to run yet;

R Running state of the process, the process is running;

T Stop state of the process, the process stops running for a certain reason;

Z
Zombie state of the process, the process has exited, waiting for the resource to be

recycled.

4. Command ints

The interrupt vector information of SylinOS system can be displayed with the ints

command.

 [Command format]

ints [cpuid start] [cpuid end]

 [Common option]

SpaceChain OS

Manual SpaceChain

OS.

41

Application Development Manual

None

 [Instructions for parameters]

cpuid start ：CPU ID at the beginning

cpuid end ：CPU ID in the end

The following are detailed meanings of output information of the ints command:

ints

interrupt vector show >>

 IRQ NAME ENTRY CLEAR PARAM ENABLE RND PREEMPT CPU 0

---- -------------- -------- -------- -------- ------ --- ------- -------------

 7 dm9000_isr 20013978 0 2c62fbe8 true 4068

……

interrupt nesting show >>

 CPU MAX NESTING IPI

----- ----------- -------------

 0 1 0

interrupt vector base : 0x2c7a96a8

Various meanings of output are as follows:

 IRQ: it is the interrupt number;

 NAME: it is the registered interrupt name;

 ENTRY: it is the address of the interrupt service function, represented with

hexadecimal system, such as 20013978;

 CLEAR: it is the address of the interrupt cleaning function;

 PARAM: it is the parameter address of the interrupt service function;

 ENABLE: it represents whether the interrupt is enabled;

 RND: it represents whether it can be used as the system random number seed;

 PREEMPT: it represents whether occupation is allowed;

 CPU 0 (0 represents the CPU number): it represents the number of interrupts

generated on CPU0. For example, dm9000_isr generates 4068 interrupts on

CPU0.

3.2.2 File command

SpaceChain OS

Manual SpaceChain

OS.

42

Application Development Manual

Built-in file commands of ttinyShell are shown in Table 3.3.

SpaceChain OS

Manual SpaceChain

OS.

43

Application Development Manual

Table 3.3 Common built-in file commands of the system

Command name Brief description

ls List files in the appointed directory, current directory at default

ll
List the detailed information of the file in the appointed directory, current

directory at default

files
List the information of the file opened in the system kernel (excluding the file

opened by the process)

fdentrys
Lists all file information on which the operating system is working (including files

opened by the process)

sync
Write all system cache files, devices, and disk information in the corresponding

physical device

logfileadd Add the appointed kernel file descriptor to the kernel log print function

logfileclear Clear the appointed kernel file descriptor from the list of the kernel log print files

logfiles Display the list of kernel log print files

loglevel Display or set the print level of current kernel log

cd Switch the current directory

pwd View current working directory

df View the file system information of the appointed directory

tmpname Obtain a temporary file name which can be created

mkdir Create a directory

mkfifo
Create a naming pipeline. Notice: it can only be created under the device of the

root file system

rmdir Delete a directory

rm Delete a file

mv Move or rename a file

cat View contents of a file

cp Copy a file

cmp Compare contents of two files

dsize Calculate all file information contained in an appointed directory

chmod Set the permission bit of of the file or directory

mkfs Format the appointed disk

shfile Execute the appointed Shell script

mount Mount a volume

umount Uninstall a volume

showmount View all volumes mounted in the system

ln Create the symbolic link file

dosfslabel View the volume label of the fat file system

fatugid Set the user and group id of the fat file system

mmaps Display the system mmap information

fdisk Disk partition

SpaceChain OS

Manual SpaceChain

OS.

44

Application Development Manual

1. Command fdisk

The disk partition can be displayed or the partition table of the disk device can be

created with the fdisk command

 [Command format]

fdisk [-f] [block I/O device]

 [Common option]

-f：Specified disk device

 [Instructions for parameters]

block I/O device：block device,such as /dev/blk/sdcard0

The following is how to use the fdisk command:

Display udisk0 partition table:

fdisk /dev/blk/udisk0

Create the partition table:

fdisk –f /dev/blk/udisk0

4 partitions can be created with fdisk (number of partitions: 1 to 4), the size

percentage of each partition shall be indicated (such as 40%), one can select whether the

appointed partition is the active partition (including: active and inactive). The file system

types currently supported include: 1:FAT, 2: TPSFS (SylixOS power-failure security file

system), and 3: LINUX.

3.2.3 Network command

Built-in network commands of ttinyShell are shown in Table 3.4.

SpaceChain OS

Manual SpaceChain

OS.

45

Application Development Manual

Table 3.4 Common built-in network commands of the system

Command name Brief description

route Add, delete, modify or view the system routing table

netstat View the network state

ifconfig Configure the network interface information

ifup Enable a network interface

ifdown Disable a network interface

arp Add, delete, or view the ARP table

ping ping command

ping6 IPv6 ping command

tftpdpath View or set the local path of tftp server

tftp Receive and send a file with the tftp command

ftpds Display ftp server information

ftpdpath View or set the initialization path of ftP server

nat Start, shut down, or set service of NAT virtual network address

nats View the service state of current NAT virtual address

npfs View the state of the network packet filter

npfruleadd Add a rule of the network packet filter

npfruledel Delete a rule of the network packet filter

npfattach Enable the network packets filter on the appointed network interface

npfdetach Disable the network packets filter on the appointed network interface

flowctl ioctl flow control

1. Command ifup and ifdown

The ifup command enables the appointed network interface, and can open and close

dhcp lease at the same time. The ifdown command can disable the appointed network

interface.

 [Command format]

ifup [netifname] [{-dhcp | -nodhcp}]

ifdown [netifname]

 [Common option]

-dhcp ：Open DHCP lease

-nodhcp ：close DHCP lease

 [Instructions for parameters]

netifname ：network interface name（eg：en1）

SpaceChain OS

Manual SpaceChain

OS.

46

Application Development Manual

The following shows how to use ifup and ifdown commands:

 Enable network interface en1;

ifup en1

 Enable network interface en1 and open dhcp lease;

ifup en1 –dhcp

 Enable network interface en1 and stop dhcp mode;

ifup en1 –nodhcp

 Stop network interface en1.

ifdown en1

2. Command flwoctl

The flowctl command enables the flow control function, which can perform flow

control for the network interface, IPv4 and IPv6.

 [Command format]

flowctl [cn] [type] ips ipe [proto] ps pe dev [ifname] [dl][ul] bufs

 [Common option]

cn :

 add : add

 del : delete

 chg : change

type ：

ip ：traffic control for IP address

if ：traffic control for network interface

proto ：

 tcp ：TCP protocol

 udp ：UDP protocol

 all ：default protocol

 [Instructions for parameters]

When type is ip：

ips ：IP address at the beginning

ipe ：IP address in the end

ps ：port number at the beginning

pe ：port number in the end

when type is if：

 Do not need to enter ips, ipe, proto, ps, and pe

SpaceChain OS

Manual SpaceChain

OS.

47

Application Development Manual

ifname ：network interface name（eg：en1）

bufs ：buffer size

dl ：download speed

ul ：upload speed

The following shows how to use the flowctl command:

 Add the flow control information of the network interface;

flowctl if dev en1 50 100 64

 Add IPv4 flow control information;

flowctl add ip 192.168.1.1 192.168.1.10 tcp 20 80 dev en1 50 100 64

 Delete IPv4 flow control information;

flowctl del ip 192.168.1.1 192.168.1.10 tcp 20 80 dev en1

 Modify IPv4 flow control information.

flowctl chg ip 192.168.1.1 192.168.1.10 tcp 20 80 dev en1 100 200

For flow control information, the uplink and downlink speed can only be modified, and

modification in ip and the port number is invalid.

For detailed information of other network commands, see Chapter I15 Network I/O.

3.2.4 Time command

Built-in time commands of ttinyShell are shown in Table 3.5.

SpaceChain OS

Manual SpaceChain

OS.

48

Application Development Manual

Table 3.5 Common built-in time commands of SyinxOS

Command name Brief description

date Display or set the system time

times Display the current time of the system

hwclock Display or synchronize the operating system and hardware RTC clock

1. Command date

The system time can be displayed or set with the date command

 [Command format]

date [-s {time | date}]

 [Common option]

-s： set time

 [Instructions for parameters]

time：hour、minute、second format

date：year、month、day format

The following shows how to use the date command:

 Display the system time;

date

 Set 24h time format of the system;

date –s 18:15:09

 Set system date.

data –s 20150918

2. Command hwclock

hwclock command can display or synchronize hardware RTC clock.

 [Command format]

hwclock [{--show | --hctosys | --systohc}]

 [Common option]

--show ： show RTC time

SpaceChain OS

Manual SpaceChain

OS.

49

Application Development Manual

--hctosys ：Synchronize RTC time to system time

--systohc ：Synchronize system time to RTC time

 [Instructions for parameters]

None

The following shows how to use the hwclock command:

 Display hardware RTC time;

hwclock –show

 Synchronize hardware RTC time to system time;

hwclock --hctosys

 Synchronize system time to hardware RTC time.

hwclock –-systohc

3.2.5 Dynamic loading command

The ttinyShell built-in dynamic loading command is shown in Table 3.6.

Table 3.6 SylixOS common built-in dynamic loading commands

Command name Brief description

debug Debug a process

dlconfig Configure working parameter of the dynamic linker

modulereg Register a kernel module

moduleunreg Uninstall a kernel module

modulestat View a kernel module or dynamic link library file information

lsmod See all kernel module information loaded by the system

modules
View all kernel module and process dynamic link library information loaded by

the system

1. Command debug

The debug command is used to debug the SylixOS application.

 [Command format]

debug [connect options] [program] [argments...]

 [Common option]

None

SpaceChain OS

Manual SpaceChain

OS.

50

Application Development Manual

 [Instructions for parameters]

connect options ：Connection options

program ：program name

argments... ：Program parameter list

The following shows how to use the debug command:

 Through network debugging, the SylixOS device starts the debugger.

localhost:1234 represents the debugging port number of the SylixOS device:

1234, ./app is the application program to be debugged in the current directory;

debug localhost:1234 ./app

 Through serial debugging, the SylixOS device starts the debugger. The default

serial port baud rate is 115200 bps, the number of data bits is 8, the stop bit is 1

bit, and there is no parity check.

debug /dev/ttyS1 ./app

3.2.6 Other commands

The ttinyShell built-in other commands are shown in Table 3.7.

Table 3.7 SylixOS common built-in other commands

Command name Brief description

shstack
Display or set the Shell task stack size, and setting is only valid for the shell

started later

leakchkstart Start system memory leak tracker

leakchkstop Turn off system memory leak tracker

leakchk Memory leak check

xmodems Send a file thorough the xmodem protocol

xmodemr Receive a file thorough the xmodem protocol

untar Unpack or unzip a tar or tar.gz file package

gzip Compress or decompress a file

vi Start the vi editor

1. Commands leakchkstart, leakchkstop, and leakchk

The above commands can detect system memory leak.

 [Command format]

leakchkstart [max save node number] [pid]

leakchkstop

SpaceChain OS

Manual SpaceChain

OS.

51

Application Development Manual

leakchk

 [Common option]

None

 [Instructions for parameters]

max save node number ：Maximum storage nodes

pid ：Process ID

The following shows how to use the above commands:

Start the memory leak tracker, the second parameter 2048 is the maximum number of

nodes tracked, and the third parameter 0 is detection of kernel memory. When the

parameter is less than 0, it represents detection of all memory (kernel and user process).

If the parameter is larger than 0, it represents detection of memory of the specified

process,

leakchkstart 2048 0

Detect memory leaks,

leakchk

Stop the memory leak tracker.

leakchkstop

Note: the number of nodes in the second parameter is the number of memory blocks in the

fixed-length memory, and these memories are used for temporary cache. For detailed description of

fixed-length memory, see Chapter 12 Memory Management.

3.3 Environment variable

Environment variable is an object with specific name in the operating system. It

contains the information which one or more applications will use. It is generally used to

specify some parameters of the operating system or the application execution

environment, such as the temporary directory location, application search location, etc.

The configuration information of environment variables is usually saved in the /etc/profile

file.

A complete environment variable definition table is saved in Shell environment. When

the system is started, BSP will automatically import definition of environment variables in

this file into the Shell environment. Users can use the env command to view all

environment variables of the system. When an application is started, this environment

variable will be imported into the application process (meanwhile, creating several

environment variables which indicate application parameters, such as HOME, etc.).

SpaceChain OS

Manual SpaceChain

OS.

52

Application Development Manual

The environment variable is equivalent to some parameters set for the system

or the user application, and the specific role is related to the specific environment variable.

The common environment variables of SylixOS are shown in Table 3.8.

Table 3.8 Description of SylixOS environment variables

Name of the environment variable Brief description

XINPUT_PRIO xinput subsystem priority

LANG Language selection

LD_LIBRARY_PATH Dynamic loader search path

PATH Application search path

NFS_CLIENT_PROTO NFS client protocol

NFS_CLIENT_AUTH NFS login authentication mode

SYSLOGD_HOST syslogd remote address

SO_MEM_PAGES
Number of page initially occupied by the application

memory heap

TSLIB_TSDEVICE Touch screen device

MOUSE xinput subsystem detection mouse device set

KEYBOARD xinput subsystem detection keyboard device set

TZ System time zone

TMPDIR Temporary folder

The user can also quote the value of the environment variable in the command line,

and the reference format is ${VAR_NAME}. When this parameter is encountered,

ttinyShell will automatically use the contents of the environment variable to substitute

${VAR_NAME}. For example: ttinyShell executes the echo ${PATH} command, and the

system will echo the contents of PATH environment variable.

Users can add their own environment variables in the following format:

VAR=VALUE

Use command varsave to save the Shell environment variable to the default

configuration file /etc/profile. An environment variable can have multiple different values.

Different values are separated with a colon, as shown below:

PATH /usr/bin:/bin:/usr/local/bin:/home/user

3.4 Root file system

The first file system automatically mounted after SylixOS is started is called as the

root file system. Unlike Linux system, SylixOS root file system is a virtual file system. After

the power failure, modification of the file system will not be saved, so SylixOS can work on

a machine without non-volatile memory (usually a hard disk or other magnetic disc

SpaceChain OS

Manual SpaceChain

OS.

53

Application Development Manual

memories). On this file system, SylixOS will automatically create the dev, media

and mnt directories. Other standard directories require BSP to do mounts or symbolic

links at the initialization phase.

The standard directory structure used by SylixOS is shown in Table 3.9.

SpaceChain OS

Manual SpaceChain

OS.

54

Application Development Manual

Table 3.9 Instructions for directory of SylixOS root file system

Directory name Brief description

qt Dynamic link library of Qt graphics system and other Qt resource directories

tmp Temporary directory

var Store various changed file directories, such as logs, buffer files etc.

root Home directory of root user

home Home directory of other users

apps Application directory

sbin System program directory

bin Common Shell program directory

usr User program library and environment directory

lib System program library and environment directory

etc Directory of system or other application configuration files

boot Directory of operating system boot image

media Directory of automatic mount of file system device (such as USB, SD card and so on)

proc Directory of system kernel information file

mnt Directory of dynamic file system mount

dev System device file directory

SpaceChain OS

Manual SpaceChain

OS.

55

Application Development Manual

3.5 Operation application

ttinyShell can not only execute the built-in command, but also execute user

application. The method of executing the application is the same with that of executing the

built-in command. When the user types the command name and parameters in the Shell

interface and clicks Enter, ttinyShell will firstly detect whether the command is a user

application. If so, execute the user application first. If not, check whether the command is

a built-in command. If not, ttinyShell will print the error message.

The ttinyShell command detection sequence is as follows:

 (1) Detect whether the command is a file path. If the file exists, execute the specified

application.

 (2) Detect the path specified by the PATH environment variable. if the file exists,

execute the specified application.

 (3) Detect whether the command is a built-in command. If so, execute the built-in

command.

There are two ways for ttinyShell to execute the built-in command or application:

synchronous and asynchronous.

 Synchronous mode: when ttinyShell executes the built-in command, the

command code is in the context of the ttinyShell thread at default. When the

application is executed, ttinyShell will create a process, and load the application

code in the process. At the same time, ttinyShell blocks itself, and waits for the

process to end to resume execution;

 Asynchronous: when the user enters & symbol behind the command keyed in,

ttinyShell will execute the command asynchronously. When ttinyShell executes

the built-in command, it will create a kernel thread to execute the command code.

When the application is executed, ttinyShell will create a process and load

application code in this process. Unlike the synchronization method, ttinyShell

does not wait for the command to complete, but is immediately ready to receive

the user's next command.

3.6 I/O redirection

Each application has three standard file descriptors (for detailed introduction, see

Chapter 5 I/O System): 0, 1 and 2.

 0 represents standard input, i.e., files read by scanf, getc and other functions;

 1 represents standard output, i.e, files written by printf, putc and other functions;

 2 represents standard error, i.e., files written by perror and other functions.

SpaceChain OS

Manual SpaceChain

OS.

56

Application Development Manual

At default, ttinyShell will use current terminal device as the standard file, and

the process created by ttinyShell will inherit settings of ttinyShell standard file. Of course,

the user can also set the standard file for the command. When there is the I/O redirection

parameter behind command string, ttinyShell will analyze redirection expression, and set

the new standard file descriptor. The setting method is as follows:

 Redirect standard output to the file_path file;

echo “aaa“ 1>file_path

 If it is required to add a certain file, one can use 1>>file_path. The method of

defining a standard error file is similar to that of a standard output file, such as

2>file_path
①
.

 It is required to locate standard input to a certain file, and parameter 0<file_path

can be added with the command at the end.

 Application Development Manual
SpaceChain OS

Manual SylixOS.

Chapter 4 Compiling the first program

4.1 Hello world application

The chapter will focus on how to use the RealEvo-IDE development environment to

create and compile SylixOS application and dynamic link library program.

The Hello world program is always the first program to appear in various

programming language books as a classic example. We will use the Hello world project to

introduce how to compile and run SylixOS application in the following.

4.1.1 Create SylixOS.base project

Open RealEvo-IDE, select the "File" → "New" → "SylixOS Base" template, and you

can freely set “Project name”, for example: fill in "SylixOS" here. Click "Next" to pop up the

dialog box of project settings, as shown in Figure 4.2. In the dialog box, you can select the

type of compilation toolchain (the default is arm-sylixos-toolchain), the debugging level of

compilation code (the default is Debug) and CPU Type (the default is arm920t, and the

option shall be selected according to the CPU type of the actual SylixOS target system.).

After above settings, click "Next" to pop up the dialog box of default library selection, as

shown in Figure 4.3. SylixOS Base includes libsylixos and libcextern at default (you can

select other libraries as required). Finally, click "Finish" to complete creation of the

SylixOS Base project. After the SylixOS Base project is created, use the method

introduced in 2.2.2 for completion, and the project will generate multiple related libraries of

the operating system kernel after completion.

Note: libsylixos is the the source code library of the SylixOS kernel, libcextern is c standard library of

the application, which provides support of standard C function library for the application.

SpaceChain OS

Manual SpaceChain

OS.

58

Application Development Manual

Figure 4.1 Base project creation

SpaceChain OS

Manual SpaceChain

OS.

59

Application Development Manual

Figure 4.2 Base project settings

SpaceChain OS

Manual SpaceChain

OS.

60

Application Development Manual

Figure 4.3 Default Library Selection

4.1.2 Create the Hello World Project

Open RealEvo-IDE, select "File" → "New" → "SylixOS App" template, fill "helloworld"

in "Project name", Click "Next" to pop up the dialog box of project creation, as shown in

Figure 4.5. In the "SylixOS Base Project" box, select the base project folder created and

click "Finish" to complete creation of the helloworld project.

SpaceChain OS

Manual SpaceChain

OS.

61

Application Development Manual

Figure 4.4 App project creation

SpaceChain OS

Manual SpaceChain

OS.

62

Application Development Manual

Figure 4.5 Project settings

4.1.3 Compiling the Hello world project

Select the created helloworld project in "Project Explorer", click the right mouse

button and select "Build Project" to complete compilation of the helloworld project (you

can also use the method introduced in 2.2.2 for compilation). After compilation, the Debug

folder will be generated under the helloworld project, and the Hello World executable file

compiled will be generated under the Debug folder, as shown in Figure 4.6.

SpaceChain OS

Manual SpaceChain

OS.

63

Application Development Manual

Figure 4.6 Debug folder

4.1.4 Deployment file

SylixOS supports ftp server, and you can use ftp client (such as software FileZilla) to

upload files to the SylixOS target system. You can obtain more information about use of

the ftp client tool through the Internet, and the section focuses on how to upload files to

the SylixOS target system through RealEvo-IDE.

1. Deployment Settings

Select the helloworld project, click the right mouse button to select "Properties" →

"SylixOS Project" → "Device Setting", and click "New Device" to add a new device

configuration, as shown in Figure 4.7. Finally, select the newly added device on the

"Device Setting" configuration page and click OK to complete setting.

Figure 4.7 New Device

SpaceChain OS

Manual SpaceChain

OS.

64

Application Development Manual

Figure 4.8 Device Setting

2. File uploading

After the target file is set, select the helloworld project, click the right mouse button

and select the "SylixOS" option in the pop-up dialog box, then select "Upload", and

RealEvo-IDE start uploading files. If the file is uploaded successfully, the printed word of

"Upload file success!" will be indicated in the pop-up "Console". If the file upload fails, the

printed word of "Upload file failed!" will be indicated. The situation is usually caused due to

the Internet or other reasons, such as incorrect Ip address, wrong user name password,

firewall interception and so on.

4.1.5 Run the Hello world application

There are two ways to run the helloworld program in the SylixOS device.

1. Running under the SylixOS Shell

The method of run the program under the SylixOS Shell is the same with that of the

Linux system. Firstly, use the cd command to switch the directory to /apps / helloworld/,

and use the ls command to view the file in the current directory to confirm that the file

helloworld is included. Enter the ./helloworld executive program file, and running results

are as shown below.

#ls

helloworld

#./helloworld

Hello World!

SpaceChain OS

Manual SpaceChain

OS.

65

Application Development Manual

2. RealEvo-IDE start

Select the helloworld project and click the right mouse button to select "Running

As→SylixOS Remote Application", and the SylixOS application will run automatically.

4.1.6 Debug the Hello world application

During program development, it is inevitable that the program will not run properly

due to some programming problems, we can find the problem by checking the code

specification or analyzing the code logic at the moment, and can quickly locate problems

through the method when the amount of code is small. However, when the amount of

code reaches tens of thousands of lines or even more, the situation will become worse.

One can use the cross debugging technique for the situation to simplify the complicated

problem, and can rapidly locate the problem. The following we will use the helloworld

project as an example to show how to debug SylixOS application through RealEvo-IDE.

1. One-key push debugging

One-key push debugging function, it shall be configured in RealEvo-IDE as follows:

 Select the project to be debugged. Select the "helloworld" project here, and

select the menu "Run" -> "Debug Configurations" to open the debugger

interface;

 Select "SylixOS Remote Application", click "New launch configuration" button to

create a new debugger object, and fill in the debugger object name in the "Name"

edit box;

SpaceChain OS

Manual SpaceChain

OS.

66

Application Development Manual

Figure 4.9 Debug configuration

Note: one can quickly start debugging by right-click on the successfully compiled application to

select "Debug As" → "SylixOS Remote Application".

Click Figure 4.9 Debug button to enter the debugging interface as shown in Figure

4.10. Here are some RealEvo-IDE debugging commands:

 Start debugging (full speed operation) "Run" → "Resume (F8)";

 Step into the function "Run" → "Step Into (F5)";

 Step over "Run" → "Step Over (F6)";

 Quit from the function "Run" → "Step Return (F7)";

 Stop debugging "Run" → "Terminate (Ctrl + F2)";

 Set the breakpoint "Run" → "Toggle Breakpoint (Ctrl + Shift + B)".

SpaceChain OS

Manual SpaceChain

OS.

67

Application Development Manual

Figure 4.10 Debug operation interface

2. Manually start debugging

To manually start debugging, it is required to manually start GDB server in SylixOS

Shell, and the specific method is as follows:

 Use the debug command to start the application (such as helloworld) to be

debugged, as shown in Figure 4.11 (for use of the debug command, see 3.2.5);

SpaceChain OS

Manual SpaceChain

OS.

68

Application Development Manual

Figure 4.11 Manually start debug

 Select the project to be debugged (such asa "helloworld" project), and select the

menu "Run" -> "Debug Configurations" to open the debugger interface; Select

"SylixOS Remote Application", create a new debugger object, select the "Select

other..." button, enable "Use configuration specific settings" in the pop-up box,

select "SylixOS Manual Remote App Debugging Launcher" in the drop-down list,

click "OK" to return to the "Debug Configurations" dialog box, as shown in Figure

4.12 (the arrow indicates the operation sequence);

SpaceChain OS

Manual SpaceChain

OS.

69

Application Development Manual

Figure 4.12 Manual debugging of configuration

 Open “Debugger”→“Connection” tab, select “TCP” in the “Type” drop-down box,

enter the IP address of SylixOS device in the “Host name or IP address” edit box,

and enter the port number in the “Port number” edit box (the port number must

be consistent with that when the debug command is started. Click "Apply" to

apply modification, and click Debug to start debugging, as shown in Figure 4.13

SpaceChain OS

Manual SpaceChain

OS.

70

Application Development Manual

Figure 4.13 Set debug configuration

3. Attach debugging

When the program is running (the program may have been running for a long time),

a serious error (the program did not stop because of this error) appears. Because the

program cannot stop at the moment, we need a special method to find the problem when

the program is running. The Attach debugging method is a method which can debug the

run the program. The debugging method exactly satisfies the above conditions. SylixOS

supports the Attach debugging method. The following introduces how to use the Attach

method to debug the SylixOS application:

 Modify the helloworld project code, as shown in program list 4.1;

 Start the application manually, as shown in Figure 4.14, and use the ps

command to view the process ID;

Program List 4.1 helloworld project code

#include <unistd.h>

#include <stdio.h>

int main (int argc, char *argv[])

SpaceChain OS

Manual SpaceChain

OS.

71

Application Development Manual

{

 while (1) {

 printf("Hello SylixOS!\n");

 sleep(1);

}

return (0);

}

Note: the program code is added in the program code, and the purpose is to let the program run

continuously. sleep is a sleep function, which will make the program run with time delay by a second, so

that other threads of SylixOS have the opportunity to be executed.

Figure 4.14 Helloworld program

Select the "helloworld" project, and select the menu "Run" → "Debug Configurations"

to open the debugger interface. Select "SylixOS Remote Application", create a new

debugger object, the default name, select the "Select other..." button, enable "Use

configuration specific setting" in the pop-up box, select "SylixOS Attach Remote App

Debugging Lancher" in the drop-down list, click "OK" to return to the "Debug

Configurations" dialog box, as shown in Figure 4.15 (the arrow indicates the operation

sequence);

SpaceChain OS

Manual SpaceChain

OS.

72

Application Development Manual

Figure 4.15 Attach debugging

Set “Target process ID”. This option is filled in with the process ID previously viewed.

Finally, click “Apply” to complete setting.

4.1.7 Non-stop debugging mode

During multi-thread debugging, it is often necessary to debug a specific thread.

Non-stop mode allows the debugger to stop only the thread set with breakpoint when it

encounters a breakpoint, and the other threads continue to run. In SylixOS system, the

three debugging modes described in Section 4.1.6 all support Non-stop mode. The setting

method is as follows: select "Run" → "Debug Configurations" dialog box, open

"Debugger" → "Main" property page, enable "Non-stop mode" to open Non-stop mode, as

shown in Figure 4.16.

SpaceChain OS

Manual SpaceChain

OS.

73

Application Development Manual

Figure 4.16 Non-stop mode

4.2 Hello Library

In essence, the library is a binary form of executable code which can be loaded into

the memory for execution for the operating system. SylixOS's libraries are divided into

static libraries and shared libraries (also called dynamic libraries or dynamic link libraries).

The difference is that the library code is loaded at different times:

 The static library is linked to the object code during program compilation (the file

extension name is usually .a). When the program is running, it is no longer

necessary to dynamically load the library. If multiple applications requires the the

same static library, each application code part is linked to this static

library.Therefore, the application code has large size;

 The dynamic library will not be linked to the object code (the file extension name

is usually .so) when the program is compiled, but is only loaded when the

program runs. Therefore, the dynamic library file shall be stored in the target

system when the program is running. When multiple applications use the same

dynamic library, the dynamic library is shared by several application processes in

the memory. Therefore, the application code has small size.

SpaceChain OS

Manual SpaceChain

OS.

74

Application Development Manual

4.2.1 Create Hello Library Project

The method for creating a library project is similar to that for creating an application

project. The difference is that you need to select "SylixOS Shared Lib" on the project

template, as shown in Figure 4.17. Click "Finish" to complete creation of the library

project.

Figure 4.17 Library project settings

4.2.2 Compile Hello Library Project

The compilation method is the same with the method to compile helloworld project.

SpaceChain OS

Manual SpaceChain

OS.

75

Application Development Manual

After compilation, the file list shown in Figure 4.18 will be generated after

compilation.

Figure 4.18 List of library files

4.2.3 Deploy the library file

The compiled result file is used to deploy the library file to the target system according

to the method described in Subsection 4.1.4. SylixOS shared library file is usually stored

in the directory specified under /lib of the SylixOS system or the environment variable

LD_LIBRARY_PATH. The corresponding adjustment can be made according to the

specific situation.

4.2.4 Modify Hello World application

This section describes how SylixOS application uses the dynamic library and makes

the following changes based on the helloworld project:

Figure 4.19 Link library settings

SpaceChain OS

Manual SpaceChain

OS.

76

Application Development Manual

Note: Modify the helloworld source file, as shown in Program List 4.2;

Program List 4.2 helloworld code

#include <unistd.h>

#include <stdio.h>

extern void lib_func_test(void);

int main (int argc, char *argv[])

{

 while (1) {

 lib_func_test();

 sleep(1);

 }

 return (0);

}

SpaceChain OS

Manual SpaceChain

OS.

77

Application Development Manual

4.2.5 Run the Hello world Application

Recompile the code modified in the previous section, and then upload the result file

generated to the SylixOS device and run it. Observe the running running, as shown in

Figure 4.20.

Figure 4.20 Running results

4.2.6 Debug Hello world applications and dynamic library

In the debugging process, sometimes it is required to jump to the library function for

further analysis of the program. At the moment, one must use RealEvo-IDE dynamic

library debugging to complete it. In order to achieve dynamic library debugging,

RealEvo-IDE shall be subject to following settings.

Select "helloworld" project, open "Debug Configurations" dialog box, open

"Debugger" tab, select "Add library paths from project setting" at "Library Paths Setting",

click "Apply" button to complete settings, as shown in Figure 4.21.

SpaceChain OS

Manual SpaceChain

OS.

78

Application Development Manual

Figure 4.21 Settings of dynamic library debugging

 Application Development Manual
SpaceChain OS

Manual SylixOS.

Chapter 5 I/O System

5.1 I/O System

I/O system is also called as the input / output system. SylixOS is compatible with the

POSIX standard input / output system. I/O concept of SylixOS inherits I/O concept of

UNIX operating system, which considers everything as files. Same with UNIX operating

system, files in SylixOS are also divided into different types.

5.1.1 File type

The regular files and directory files are the most common in SylixOS system, but

there are other special file types, including the following:

 Regular file, it is the most common file type, and such files contain certain forms

of data. Such data, regardless of plain text or binary, makes no difference to

SylixOS. It shall be noted that the kernel must understand its format for a binary

executable file. The binary executable file of SylixOS follows a standardized

format, which allows SylixOS to determine the program code and data loading

location (for details, see Chapter 19 Dynamic Loading);

 Directory files, which contain the names of other files and pointers pointed at the

information related with these files;

 Block device files. The I/O interface standards provided by such files conform to

SylixOS's definition of block devices.

 Character device file, which is a standard unbuffered device file. The most

common device file in the system is the character device file;

 FIFO file. This type of file is used for inter-process communication, and it

sometimes is also called as named pipe;

 Socket files, which can be used for inter-process network communication (for

detailed introduction, see Chapter 15 Network I/O);

 Symbolic link, this type of file points to another file.

The information of file type is contained in the st_mode member of the stat structure.

It can be judged through the macros shown in Table 5.1, and the parameters of these

macros are the type values of the member st_mode.

Table 5.1 File type

Macro name File type

SpaceChain OS

Manual SpaceChain

OS.

80

Application Development Manual

S_ISDIR(mode) Directory file

S_ISCHR(mode) Character device file

S_ISBLK(mode) Block device file

S_ISREG(mode) Regular file

S_ISLNK(mode) Symbolic link file

S_ISFIFO(mode) Pipe or a named pipe

S_ISSOCK(mode) Socket file

Here is an example of the print file type:

Program List 5.1 Print file type

#include <stdio.h>

#include <sys/stat.h>

int main (int argc, char *argv[])

{

 struct stat mystat;

 int ret;

 if (argc < 2) {

 fprintf(stderr, "argc error.\n");

 return (-1);

 }

 ret = stat(argv[1], &mystat);

 if (ret < 0) {

 perror("stat");

 return (-1);

 }

 if (S_ISDIR(mystat.st_mode)) {

 fprintf(stdout, "file: %s is dir file.\n", argv[1]);

 }

 if (S_ISCHR(mystat.st_mode)) {

 fprintf(stdout, "file: %s is char file.\n", argv[1]);

 }

 if (S_ISBLK(mystat.st_mode)) {

 fprintf(stdout, "file: %s is block file.\n", argv[1]);

 }

SpaceChain OS

Manual SpaceChain

OS.

81

Application Development Manual

 if (S_ISREG(mystat.st_mode)) {

 fprintf(stdout, "file: %s is general file.\n", argv[1]);

 }

 if (S_ISLNK(mystat.st_mode)) {

 fprintf(stdout, "file: %s is link file.\n", argv[1]);

 }

 if (S_ISSOCK(mystat.st_mode)) {

 fprintf(stdout, "file: %s is socket file.\n", argv[1]);

 }

 return (0);

}

Run the program under the SylixOS Shell:

./type_test /dev/socket

file: /dev/socket is socket file.

./type_test /dev/null

file: /dev/null is char file.

Program List 5.1 uses the stat function. The detailed information of this function will

be introduced in Subsection 5.2.2. It can be seen from the program results that the file

type can be judged by the macros shown in Table 5.1. The program also displays how to

use macros in Table 5.1.

5.1.2 File descriptor

For the kernel, all open files are referenced through the file descriptor. The file

descriptor is a non-negative integer. When an existing file is opened or a new file is

created, the kernel returns a file descriptor to the process. When reading or writing a file,

use the file descriptor returned by the open function or the creat function to identify the file.

This file descriptor can be transferred to the read function or the write function as a

parameter.

SylixOS file descriptor is compatible with POSIX definition. It is an integer number

(_POSIX_OPEN_MAX) starting from 0 up to a maximum value. Each open file has one or

more (dup) file descriptors for matching. SylixOS, like the majority of operating systems,

always uses a minimal and unused file descriptor as a newly allocated file descriptor when

opening a file.

According to the habit, 0 file descriptor represents standard input, 1 file descriptor

represents standard output, and 2 file descriptor represents standard error. It shall be

noted here that each process of SylixOS has its own file descriptor table, and each

SpaceChain OS

Manual SpaceChain

OS.

82

Application Development Manual

process does not conflict with each other. If a child process has a parent process,

all file descriptors of the parent process will be inherited; if the child process is an orphan

process, only 3 standard file descriptors of the system will be inherited. All threads within a

process share the process file descriptor. There is a global file descriptor table in the

kernel. This file descriptor table does not contain 0, 1 and 2 standard files. These three file

descriptors are remapping flags in the kernel, that is to say, SylixOS allows each kernel

task in the kernel has its own standard file.

In POSIX.1-compliant applications, 0, 1, and 2 have been standardized, but they shall

be replaced with symbolic constants STDIN_FILENO, STDOUT_FILENO and

STDERR_FILENO, so as to improve readability. In SylixOS, one can use these constants

by including <unistd.h> header file.

5.1.3 I/O System structure

The I/O system structure of SylixOS is divided into ORIG drive structure and NEW_1

drive structure for historical reasons. The NEW_1 drive structure is added with file access

permission, file record lock and other functions based on ORIG drive structure.

Figure 5.1 shows the diagram of ORIG drive structure of SylixOS:

Figure 5.1 ORIG drive structure

Each file descriptor in SylixOS corresponds to a file structure. Different file descriptors

may correspond to the same file structure. When all file descriptors corresponding to the

same file structure are closed, the operating system will release the corresponding file

structure, and call the corresponding driver. Different file structures can point to the same

logical device. For example, a FAT file system device can be opened with many file

structures. Different logical devices can also correspond to the same driver. For example,

serial port 0 and serial port 1 with the same physical structure can correspond to a group

of drivers for their services. The hardware device for specific service of each group of

SpaceChain OS

Manual SpaceChain

OS.

83

Application Development Manual

drivers is determined by the bottom BSP.

Figure 5.2 shows the diagram of SylixOS NEW_1 driver structure:

Figure 5.2 NEW_1 driver structure

The NEW_1 driver structure is added with file nodes based on ORIG. Therefore, file

access permission, file user information, file record locks (described in detail in Section

5.4.4) are introduced.

Figure 5.3 NEW_1 kernel data structure

SpaceChain OS

Manual SpaceChain

OS.

84

Application Development Manual

It is found from Figure 5.2 that SylixOS supports sharing open files between

different processes. It can be seen from Figure 5.3 NEW_1 kernel data structure that

SylixOS kernel uses three data structures (file descriptor item, file structure and file node)

to represent the open file, and their relationship determines possible influence of a

process on another process in the aspect of file sharing.

 Each process maintains a file descriptor table of its own. Each file descriptor

occupies one item, and those associated with each file descriptor are:

 Pointer to the file structure;

 File reference count;

 File descriptor flag (FD_CLOEXEC).

 The kernel maintains a file structure table for all open files, and entries of each

file structure table includes (partial):

 Device head pointer (this pointer points to the device node);

 File name;

 File node pointer;

 File attribute flags (read, write, etc. See Table 5.2 for more information);

 File current pointer (indicating file offset).

 Each open file has a file node, and the file node includes (partial):

 Device descriptor;

 Inode
①
(there is only one inode in the same file);

 File permissions information (readable, writable and executable);

 File user information;

 Current file size;

 File record lock pointer.

Figure 5.3 shows the relationship among the three data structures corresponding to a

process. The process opens two different files, one opened from file descriptor 3 and the

other opened from file descriptor 4.

If two independent processes open the same file respectively, the relation is shown in

Figure 5.4.

SpaceChain OS

Manual SpaceChain

OS.

85

Application Development Manual

Figure 5.4 Two independent processes open the same file respectively

We assume that the first process opens the file on file descriptor 3, while another

process opens the same file on file descriptor 4. Each process which opens the file gets its

own file structure, but there is only one file node for a given file. Each process gets its own

file structure because it allows each process to have its own current read / write pointer to

the file (file operation offset).

The file descriptor flag and the file attribute flag are different in terms of action scope.

The former only applies to one file descriptor in a process, while the latter applies to all file

descriptors in any process which points to the given file structure. In Section 5.2.1, we will

describe how to call the fcntl function to obtain and modify the file descriptor flag and the

file attribute flag.

5.2 Standard I/O access

Standard I/O is also called as synchronous I/O, i.e., initiating transmission and

controlling I/O are both user-active actions. The file or device must operate with user's

intervention. The majority of applications currently use this type of I/O operation. SylixOS

supports the majority of synchronous I/O operations specified by POSIX. We will describe

in detail operation of files and directories in SylixOS as follows.

SpaceChain OS

Manual SpaceChain

OS.

86

Application Development Manual

5.2.1 File I/O

1. Function open

#include <fcntl.h>

int open(const char *cpcName, int iFlag, ...);

Prototype analysis of Function open:

 For success of the function, return the file descriptor. For failure, return -1 and set

the error number;

 Parameter cpcName is the name of the file to be opened
①
；

 Parameter iFlag is the open file flag;

 Parameter... is a variable parameter.

Call the open function to open or create a file. The last parameter of the open function

is written as ..., ISO C uses this method to represent that the number of remaining

parameters and its type are variable. For open function, this parameter will only be used

when the new file is created.

Parameter iFlag contains multiple options, as shown in Table 5.2. This parameter is

usually composed by adding "or" between multiple options.

Table 5.2 iFlag options

Option name Note

O_RDONLY Open the file in a read-only manner

O_WRONLY Open the file in a write-only manner

O_RDWR Open the file in a readable or writable manner

O_CREAT
If the file does not exist, the file is created, and the third parameter of open function

specifies the file permission mode

O_TRUNC
If the file exists and it is opened successfully in write-only or read-write mode, its

length is truncated to 0

O_APPEND Append the read-write pointer to the end of the file

O_EXCL
If O_CREAT is specified and the file exists, an error occurs. If the file does not

exist, create it

O_NONBLOCK Open the file in a non-blocking manner

O_SYNC
Enable each write to wait for physical I/O operation to complete, including file

attribute updates caused by the write operation.

O_DSYNC

Make each write wait for physical I/O operation to complete. However, if the write

operation does not affect reading the data just written, you must not wait for the file

attributes to be updated

O_NOCTTY
If cpcName quotes the terminal device, the device will not be assigned as control

terminal for this process

O_NOFOLLOW If cpcName quotes a symbolic link, an error occurs

SpaceChain OS

Manual SpaceChain

OS.

87

Application Development Manual

O_CLOEXEC Set FD_CLOEXEC flag as the file descriptor flag

O_LARGEFILE Open big file flag

The file descriptor returned by the open function must be the smallest and unused

descriptor value in the system. This is used by some applications to open new files on

standard input, standard output or standard error. For example, an application can first

close standard output (file descriptor 1) and then open another file. Before executing the

open operation, it can be understood that the file will be opened on file descriptor 1. When

explaining dup2, you will learn that there is a better way to open a file on a given file

descriptor.

I/O system of SylixOS supports up to 2TB file. However, limited by certain file system

design, the FAT file system, for example, can only support 4GB file size at maximum. In an

application, in order to explicitly specify to open a large file, the O_LARGEFILE flag shall

be specified when the open function is called. SylixOS also provides the following

functions to open large files.

#include <fcntl.h>

int open64(const char *cpcName, int iFlag, ...);

Function open64 prototype analysis:

 For success of the function, return the file descriptor. For failure, return -1 and set

the error number;

 Parameter cpcName is the name of the file to be opened;

 Parameter iFlag is the open file flag;

 Parameter... is a variable parameter.

2. Function creat

#include <fcntl.h>

int creat(const char *cpcName, int iMode);

Function creat prototype analysis:

 For success of the function, return the file descriptor. For failure, return -1 and set

the error number;

 Parameter cpcName is the name of the file to be created;

 Parameter iMode is the mode to create file.

A file can be created by calling creat function. The function is equivalent to the

following function call:

open(cpcName, O_WRONLY | O_CREAT | O_TRUNC, iMode);

SpaceChain OS

Manual SpaceChain

OS.

88

Application Development Manual

The file access permission mode (iMode) will be described in detail in Section 5.2.2.

One drawback of creat function is that it opens the created file in a write-only manner.

If a file is created with creat function and then it is required to read the file, one must firstly

call creat function to create the file, then call close to close the file, and then open the file

in a read manner. However, this way can be achieved directly by calling open function:

open(cpcName, O_RDWR | O_CREAT | O_TRUNC, iMode);

3. Function close

#include <unistd.h>

int close(int iFd);

Prototype analysis of function close:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter iFd is the file descriptor.

Calling of close function will reduce the reference count of file descriptors and the

total reference count of files by one. When the reference count of file descriptors is zero,

the file descriptor will be deleted (one will see the point at introduction to dup function).

When the total reference count is reduced to zero, close the file, and release all record

locks added by the current process on the file (Section 5.4.4 Introduction to Record Lock).

When a process is terminated, the kernel will automatically close all the files it opens.

Many programs take advantage of the function not to explicitly call close function to close

the open file.

4. Function read

#include <unistd.h>

ssize_t read(int iFd,

 void *pvBuffer,

 size_t stMaxBytes);

Prototype analysis of Function read:

 For success of the function, return the number of bytes read. For failure, return -1

and set the error number;

 Parameter iFd is the file descriptor;

 Output parameter pvBuffer is the receive buffer zone;

 Parameter stMaxBytes is the size of the receive buffer zone.

The data can be read from the open file by calling read function, and the number of

bytes actually read is less than the number of bytes to be read in many cases:

SpaceChain OS

Manual SpaceChain

OS.

89

Application Development Manual

 When the ordinary file is

read, the file end has been reached before the requested number of bytes is

read;

 For reading from a terminal device, a line is read at most at a time;

 For reading from the network, the buffer mechanism in the network may cause

that the return value is less than the number of bytes to be read;

 When it is interrupted by the signal, and some data has been read.

Usually, we need to judge the quantity and correctness of the read data through the

read return value.

5. Function write

#include <unistd.h>

ssize_t write(int iFd,

 const void *pvBuffer,

 size_t stNBytes);

Prototype analysis of Function write:

 For success of the function, return the number of bytes written. For failure, return

-1 and set the error number;

 Parameter iFd is the file descriptor;

 Parameter pvBuffer is the address of the data buffer zone to be written to the

file;

 Parameter stNBytes is the number of bytes written to the file.

Call Function write to write data to the open file, the return value is usually the same

with Parameter stNBytes value. Otherwise, it means an error. A common cause for write

error is that the disk is full or exceeds the file length limit of a process.

For ordinary files, the write operation is start at the current offset of the file. If the

O_APPEND flag is specified when the file is opened, the file offset is set at the file end

before each operation. After a successful write, the file offset increases the number of

bytes actually written at the file end.

6. Function lseek

Each open file has a current file offset associated with it, which is usually an integer,

which measures the number of bytes calculated from the file beginning. In general, both

read and write operations are started from the current file offset, and the offset increases

the number of bytes read and written. At default of SylixOS, when a file is opened, the

current file offset is always set as 0 unless the O_APPEND flag is specified.

#include <fcntl.h>

SpaceChain OS

Manual SpaceChain

OS.

90

Application Development Manual

off_t lseek(int iFd,

off_t oftOffset,

 int iWhence);

Prototype analysis of Function lseek:

 For success of the function, return the new file offset. For failure, return -1 and

set the error number;

 Parameter iFd is the file descriptor;

 Parameter oftOffset is the offset;

 Parameter iWhence is the location datum.

Calling the lseek function can explicitly set an offset for an open file. It shall be noted

that the lseek call just adjusts the file offset records associated with the file descriptor in

the kernel, but does not cause access to any physical device.

The meaning of Parameter oftOffset varies depending on Parameter iWhence, as

shown in Table 5.3:

Table 5.3 iWhence value correlation

iWhence value Instructions for oftOffset

SEEK_SET Set the file offset with oftOffset bytes from the file beginning.

SEEK_CUR
Set the file offset as the current value plus oftOffset bytes, and oftOffset can be

negative

SEEK_END Set the file offset to file length plus oftOffset bytes, and oftOffset can be negative

The meaning of iWhence parameter is shown in Figure 5.5.

Figure 5.5 Meaning of iWhence parameter

Here are some instances of Function lseek call, and the note describes where to

move the current file pointer.

lseek(fd, 0, SEEK_SET); /* at the beginning of the file */

lseek(fd, 0, SEEK_END); /* at the end of the file */

SpaceChain OS

Manual SpaceChain

OS.

91

Application Development Manual

lseek(fd, -1, SEEK_END); /* The first byte of the file is counted

down */

lseek(fd, -20, SEEK_CUR); /* 20 bytes before the current location

of the file */

lseek(fd, 100, SEEK_END); /* Extend 100 bytes at the end of the file

 */

If the file offset of the program has already spanned the file end, perform I/O

operation, read function call will return 0, indicating the file end. However, write function

can write data at any position behind the file end.

The space from the file end to the newly written data is called as file hole. From the

perspective of programming, there is a byte in the file hole, and reading the hole will return

a buffer zone filled with 0.

Existence of hole means that the nominal size of a file may be larger than the total

disk storage it occupies (sometimes much larger). Of course, the specific processing

method is related to implementation of the file system.

The following instance shows use of lseek function. This program creates a new file,

generates a file hole by calling lseek function, and then writes some data at the file end, so

that the program can read the file hole part, which are non-printable characters. Program

print "\0" represents non-printable character.

Program List 5.2 Use instance of Function lseek

#include <stdio.h>

#include <fcntl.h>

#include <ctype.h>

#include <unistd.h>

#define FILE_MODE (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP)

int main (int argc, char *argv[])

{

 int fd, i;

 off_t ret;

 ssize_t size;

 char *buf1 = "sylixos";

 char buf2[16];

 fd = open("./file", O_RDWR | O_CREAT | O_TRUNC, FILE_MODE);

 if (fd < 0) {

 fprintf(stderr, "Create file failed.\n");

 return -1;

 }

SpaceChain OS

Manual SpaceChain

OS.

92

Application Development Manual

 write(fd, buf1, 7);

 ret = lseek(fd, 1000, SEEK_SET);

 if (ret < 0) {

 fprintf(stderr, "lseek failed.\n");

 close(fd);

 return -1;

 }

 write(fd, buf1, 7);

 lseek(fd, -7, SEEK_END);

 size = read(fd, buf2, 7);

 if (size < 0) {

 fprintf(stderr, "read error.\n");

 close(fd);

 return -1;

 }

 for (i = 0; i < size; i++) {

 if (!isprint(buf2[i])) {

 fprintf(stdout, "\\0");

 } else {

 fprintf(stdout, "%c", buf2[i]);

 }

 }

 fprintf(stdout, "\n");

 lseek(fd, -14, SEEK_END);

 size = read(fd, buf2, 7);

 if (size < 0) {

 fprintf(stderr, "read error.\n");

 close(fd);

 return -1;

 }

 for (i = 0; i < size; i++) {

 if (!isprint(buf2[i])) {

 fprintf(stdout, "\\0");

 } else {

 fprintf(stdout, "%c", buf2[i]);

 }

SpaceChain OS

Manual SpaceChain

OS.

93

Application Development Manual

 }

 fprintf(stdout, "\n");

 close(fd);

 return 0;

}

Run this program under the SylixOS Shell, and the program results show that the

written data and contents of the file hole part are correctly read.

./lseek_test

sylixos

\0\0\0\0\0\0\0

7. Functions pread and pwrite

Section 5.1.3 introduces that multiple processes in SylixOS can read the same file.

Each process has its own file structure, which also has its own current file offset. However,

in non-NEW_1 file systems (without unique file node), unexpected results may be

generated when multiple processes write the same file. To illustrate how to avoid this

situation, one needs to understand concept of atomic operation.

Considering the following code, a file is opened in the process to append data to it.

……

 ret = lseek(fd, 0, SEEK_END);

 if (ret < 0) {

 fprintf(stderr, "Lseek error.\n");

 }

 ret = write(fd, buf, 10);

 if (ret != 10) {

 fprintf(stderr, "Write data error.\n")

}

……

This code has no problem in the case of single process, and the fact also proves this.

However, if there are multiple processes, problems will be caused by using this method to

append data to the file.

If there are two independent processes 1 and 2 to simultaneously append the write

operation to a file, each process does not use the O_APPEND flag when opening the file.

At this time, the relation of each data structure is shown in Figure 5.4. Each process is has

its own file structure and file current offset, but a file node is shared. If process 1 calls

lseek function to set the current file offset to the file end, then process 2 runs, calls lseek

function, and also sets the current file offset to the file end. Then process 2 calls write

function to push the file offset of process 2 backward by 10 bytes. At this time, the file

becomes longer, and the kernel also increases the file length in the file node by 10 bytes.

SpaceChain OS

Manual SpaceChain

OS.

94

Application Development Manual

After that, the kernel switches process 1 for running, and calls the write function. At

this point, process 1 starts to write from its own current offset, thus overwriting the data

that process 2 just wrote.

As can be seen from the above process, the problem lies in the "position to the file

end, and then write the file", this process is completed with two functions. Therefore, it

causes a non-atomic operation, because the process may be switched between two

functions. Therefore, we can conclude that if the process is completed in a function

(forming an atomic operation), the problem can be solved.

SylixOS provides an atomic operation method for this operation. When the file is

opened, the O_APPEND flag is set, so that the kernel will set the current offset to the file

end for each write operation, and it is not required to call lseek function before each write.

SylixOS provides an atomic function to locate and perform I/O operations: pread,

pwrite
①
.

#include <unistd.h>

ssize_t pread(int iFd,

 void *pvBuffer,

 size_t stMaxBytes,

 off_t oftPos);

ssize_t pwrite(int iFd,

 const void *pvBuffer,

 size_t stNBytes,

 off_t oftPos);

Prototype analysis of Function pread:

 For success of the function, return the number of bytes read. For failure, return -1

and set the error number;

 Parameter iFd is the file descriptor;

 Output parameter pvBuffer is the receive buffer zone;

 Parameter stMaxBytes is the size of the buffer zone;

 Parameter oftPos appoints the read position.

Prototype analysis of Function pwrite:

 For success of the function, return the number of bytes written. For failure, return

-1 and set the error number;

 Parameter iFd is the file descriptor;

 Parameter pvBuffer is the data buffer zone;

 Parameter stNBytes is the number of bytes written;

SpaceChain OS

Manual SpaceChain

OS.

95

Application Development Manual

 Parameter oftPos

appoints the writing position.

Calling pread function is equivalent to calling lseek function before calling read

function, but pred function has the following important differences from this sequence:

 When calling the pread function, its positioning and read operations cannot be

interrupted (atomic operation process);

 Do not update the current file offset.

Calling pwrite function is equivalent to calling write function after calling lseek function

first, but there are also similar differences from the above.

In general, atomic operation refers to one operation consisting of multiple steps. If the

operation is performed atomically, either all steps are performed or no step is performed, it

is not possible to perform only a subset of all steps.

To be able to read and write larger files (usually larger than 4GB), SylixOS provides

the following group of functions.

#include <unistd.h>

ssize_t pread64(INT iFd,

 PVOID pvBuffer,

 size_t stMaxBytes,

 off64_t oftPos);

ssize_t pwrite64(INT iFd,

 CPVOID pvBuffer,

 size_t stNBytes,

 off_t64 oftPos);

Prototype analysis of Function pread64:

 For success of the function, return the number of bytes read. For failure, return -1

and set the error number;

 Parameter iFd is the file descriptor;

 Output parameter pvBuffer is the receive buffer zone;

 Parameter stMaxBytes is the size of the buffer zone;

 Parameter oftPos appoints the read position.

Prototype analysis of Function pwrite6:

 For success of the function, return the number of bytes written. For failure, return

-1 and set the error number;

 Parameter iFd is the file descriptor;

SpaceChain OS

Manual SpaceChain

OS.

96

Application Development Manual

 Parameter pvBuffer is the

data buffer zone;

 Parameter stNBytes is the number of bytes written;

 Parameter oftPos appoints the writing position.

The following example shows how to use pwrite function and pread function. This

program creates a new file, writes data to the specified offset of the file by calling pwrite

function, and then calls read function to verify the current offset of the file. Calling pread

function also verifies that the file hole is generated.

Program List 5.3 Use of pwrite and pread functions

#include <stdio.h>

#include <fcntl.h>

#include <ctype.h>

#include <unistd.h>

#define FILE_MODE (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP)

int main (int argc, char *argv[])

{

 int fd, i;

 ssize_t size;

 char *buf1 = "sylixos";

 char buf2[16];

 fd = open("./file", O_RDWR | O_CREAT | O_TRUNC, FILE_MODE);

 if (fd < 0) {

 fprintf(stderr, "Create file failed.\n");

 return (-1);

 }

 size = pwrite(fd, buf1, 7, 100);

 if (size != 7) {

 fprintf(stderr, "pwrite error.\n");

 close(fd);

 return -1;

 }

 size = read(fd, buf2, 7);

 if (size < 0) {

 fprintf(stderr, "read error.\n");

 close(fd);

SpaceChain OS

Manual SpaceChain

OS.

97

Application Development Manual

 return (-1);

 }

 for (i = 0; i < size; i++) {

 if (!isprint(buf2[i])) {

 fprintf(stdout, "\\0");

 } else {

 fprintf(stdout, "%c", buf2[i]);

 }

 }

 fprintf(stdout, "\n");

 size = pread(fd, buf2, 7, 100);

 if (size < 0) {

 fprintf(stderr, "pread error.\n");

 close(fd);

 return (-1);

 }

 for (i = 0; i < size; i++) {

 if (!isprint(buf2[i])) {

 fprintf(stdout, "\\0");

 } else {

 fprintf(stdout, "%c", buf2[i]);

 }

 }

 fprintf(stdout, "\n");

 close(fd);

 return (0);

}

Run the program under the SylixOS Shell:

./pwrite_test

\0\0\0\0\0\0\0

sylixos

The print results show that the file hole is generated after pwrite function was called,

and the current file offset has not changed. This also confirms that the aforementioned

pwrite function is equivalent to calling lseek function before function write, but the

difference is that pwrite is an atomic operation.

8. Functions dup and dup2

SpaceChain OS

Manual SpaceChain

OS.

98

Application Development Manual

#include <unistd.h>

int dup(int iFd);

int dup2(int iFd1, int iFd2);

Prototype analysis of Function dup:

 For success of the function, return the file descriptor. For failure, return -1 and set

the error number;

 Parameter iFd is the original file descriptor.

Prototype analysis of Function dup2:

 For success of the function, return iFd2 file descriptor. For failure, return -1 and

set the error number;

 Parameter iFd1 is the file descriptor 1;

 Parameter iFd2 is the file descriptor 2;

Calling dup function and dup2 function can copy an existing file descriptor. The new

file descriptor returned by the dup function must be the smallest value in the currently

available file descriptor. For dup2 function, one can use Parameter iFd2 to specify the

value of the new file descriptor. If iFd2 has been already opened, it shall be closed firstly,

and FD_CLOEXEC file descriptor flag of iFd2 will be cleared, so that iFd2 is open when

the process calls exec function (see Chapter 8 Process Management). Note that the

SylixOS kernel does not currently support the situation that iFd1 is equal to iFd2.

The file descriptor returned by dup function and Parameter iFd share the same file

structure item (file table entry). Similarly, the file descriptors iFd1 and iFd2 of dup2

function also share the same file structure item, as shown in Figure 5.6.

Figure 5.6 Kernel data structure behind dup(3)

In Figure 5.6, the process calls:

fd = dup(3);

Assume that file descriptor 3 has already been occupied (which is very likely). At the

SpaceChain OS

Manual SpaceChain

OS.

99

Application Development Manual

moment, we call dup function to use file descriptor 4, because both file descriptors

point to the same file structure (file table entry). Therefore, they share the same file

attribute flag (read, write, append, etc.) and the same file current pointer (file offset).

Each file has its own set of file descriptor flags, and the new file descriptor flag

(FD_CLOEXEC) is always cleared by dup function.

Another way to copy the descriptor is to use fcntl function. The following subsection

introduces the function, in fact, calling

dup(fd);

Equivalent to

fcntl(fd, F_DUPFD, 0);

While, calling

dup2(fd, fd2);

Equivalent to

fcntl(fd, F_DUP2FD
①
, fd2);

Or

close(fd2);

fcntl(fd, F_DUPFD, fd2);

As mentioned above, each process of SylixOS has its own file descriptor table, and

there is also a global file descriptor table in the kernel. Then if a file is opened in the

process, the kernel cannot see the file descriptor, but there are some file descriptors to be

opened by the kernel operating process (for example: write data to the file specified by the

application in the log system). SylixOS provides the following functions to realize copying

of the process file descriptor to the kernel space.

#include <unistd.h>

int dup2kernel(int fd);

Prototype analysis of Function dup2kernel:

 For success of the function, return the kernel file descriptor. For failure, return -1

and set the error number;

 Parameter fd is the process file descriptor.

The following program shows how to use the dup function. The program creates a

new file, calls dup function to copy a new file descriptor, and then manipulates the created

file on the new file descriptor.

① POSIX.1-2008 addition.

SpaceChain OS

Manual SpaceChain

OS.

100

Application Development Manual

Program List 5.4 Use of dup function

#include <stdio.h>

#include <fcntl.h>

int main (int argc, char *argv[])

{

 int fd, newfd;

 char buf[64] = {0};

 fd = open("./file", O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);

 if (fd < 0) {

 fprintf(stderr, "open file: %s failed.\n", "./file");

 return -1;

 }

 newfd = dup(fd);

 if (newfd < 0) {

 fprintf(stderr, "dup error.\n");

 close(fd);

 return -1;

 }

 write(newfd, "sylixos", 7);

 lseek(newfd, 0, SEEK_SET);

 read(fd, buf, 7);

 fprintf(stdout, "buf: %s\n", buf);

 return 0;

}

Running this program in SylixOS Shell, and the operation results show that lseek

operation newfd is equivalent to operation fd.

./dup_test

buf: sylixos

9. Functions sync, fsync and fdatasync

SylixOS system has a disk cache in the kernel and most disk I/O is conducted

through the buffer zone. When we write data to the file, the kernel usually copies the data

into the buffer zone buffer, then queues it, and then writes it to the disk (done by the thread

“t_diskcache”) when appropriate. This is called as delayed write.

In general, when the kernel needs to re-use the buffer zone to store other disk block

data, it will write all delayed write data blocks to the disk. In order to guarantee

SpaceChain OS

Manual SpaceChain

OS.

101

Application Development Manual

consistency between the actual file system on the disk and contents in the buffer

zone, SylixOS provides three functions of sync, fsync and fdatasync.

#include <fcntl.h>

void sync(void);

int fsync(int iFd);

int fdatasync(int iFd);

Prototype analysis of Function fsync:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter iFd is the file descriptor.

Prototype analysis of Function fdatasync:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter iFd is the file descriptor.

The sync function arranges all modified disk caches in the system to the write queue,

and then waits to complete the actual write disk operation before return.

The fsync function only works for a file specified by the file descriptor iFd.

The fdatasync function is similar to fsync function, but it only affects the data portion

of the file. In addition to the data, fsync also synchronously updates file attributes.

10. Function fcntl

#include <fcntl.h>

int fcntl(int iFd, int iCmd, ...);

Prototype analysis of Function fcntl:

 For success of the function, return different values according to different

Parameter iCmd. For failure, return -1 and set the error number;

 Parameter iFd is the file descriptor;

 Parameter iCmd is the command;

 Parameter ... is the command parameter.

Calling fcntl function can change attributes of the opened file. In the instance of this

section, the 3rd parameter is always an integer. However, when the record lock is

described, the 3rd parameter is a pointer to a structure.

SylixOS fcntl function supports the following 4 functions:

 Copy an existing file descriptor (iCmd = F_DUPFD, F_DUPFD_CLOEXEC,

SpaceChain OS

Manual SpaceChain

OS.

102

Application Development Manual

F_DUP2FD, F_DUP2FD_CLOEXEC);

 Get / set the file descriptor flag (iCmd = F_GETFD, F_SETFD);

 Get / set the file attribute flag (iCmd = F_GETFL, F_SETFL);

 Get / set the file record lock (iCmd = F_GETLK, F_SETLK, F_SETLKW).

Table 5.4 describes the functions of the first 3 commands, and the record lock

function will be described in detail in Subsection 5.4.4 File Record Lock.

Table 5.4 Function description of fcntl

Command Note

F_DUPFD Copy the file descriptor, equivalent to dup and dup2 functions

F_DUPFD_CLOEXEC Copy the file descriptor, and set the file descriptor flag

F_DUP2FD Copy the file descriptor, equivalent to dup2 function

F_DUP2FD_CLOEXEC Copy the file descriptor, and set the file descriptor flag

F_GETFD
Get the file descriptor flag (FD_CLOEXEC), and return it as the return

value

F_SETFD Set the file descriptor flag (FD_CLOEXEC)

F_GETFL Get the file attribute flag, and return it as the return value

F_SETFL Set the file attribute flag

The following program shows how to get the file attribute flag by calling fcntl function.

The user enters different file open attribute flags to verify that the attribute flags got by fcntl

function are also different.

Program List 5.5 fcntl modify file attribute flag

#include <stdio.h>

#include <fcntl.h>

#include <string.h>

int main (int argc, char *argv[])

{

 int fd;

 int flags, inflags = 0;

 if (argc < 3) {

 fprintf(stderr, "Don't find parse files.\n");

 return (-1);

 }

 if (!strcmp(argv[2], "O_RDONLY")) {

SpaceChain OS

Manual SpaceChain

OS.

103

Application Development Manual

 inflags = O_RDONLY;

 }

 if (!strcmp(argv[2], "O_WRONLY")) {

 inflags = O_WRONLY;

 }

 if (!strcmp(argv[2], "O_RDWR")) {

 inflags = O_RDWR;

 }

 fd = open(argv[1], inflags);

 if (fd < 0) {

fprintf(stderr, "open file: %s failed.\n", argv[1]);

return (-1);

 }

 flags = fcntl(fd, F_GETFL, 0);

 switch (flags & O_ACCMODE) {

 case O_RDONLY:

 fprintf(stdout, "file: %s read only!\n", argv[1]);

 break;

 case O_WRONLY:

 fprintf(stdout, "file: %s write only!\n", argv[1]);

 break;

 case O_RDWR:

 fprintf(stdout, "file: %s read write.\n", argv[1]);

 break;

 default:

 fprintf(stdout, "file: %s flags: %x\n", argv[1], flags);

 break;

 }

 close(fd);

 return (0);

}

Run the program under SylixOS Shell. Judging from the program running results, if

the open file attribute flags are different, and the file attribute flags obtained by fcntl

SpaceChain OS

Manual SpaceChain

OS.

104

Application Development Manual

function will also be changed.

touch test.file

./fcntl_test test.file O_RDONLY

file: test.file read only!

./fcntl_test test.file O_RDWR

file: test.file read write.

11. Function ioctl

#include <fcntl.h>

int ioctl(int iFd, int iFunction,...);

 Play the role of Function ioctl

 For success of the function, return 0. For failure, return -1;

 Parameter iFd is the file descriptor;

 Parameter iFunction is the function;

 Parameter... is the function parameter.

For I/O operation, ioctl function can be seen as a “treasure chest”. Those which

cannot be done with I/O function can be done with ioctl function. A lot of ioctl operations

are used in the terminal I/O.

Each device driver can define its own set of ioctl commands. The system provides the

generic ioctl command for different types of devices.

5.2.2 Files and directories

In the previous section, we discussed the basic operations of the file: open file, read

file, write file and so on. In this section, we introduce other features of the file and how to

modify these features. Finally, we will introduce the symbolic links in SylixOS.

1. Functions stat, lstat and fstat

#include <sys/stat.h>

int stat(const char *pcName, struct stat *pstat);

int lstat(const char *pcName, struct stat *pstat);

int fstat(int iFd, struct stat *pstat);

Prototype analysis of Function stat:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter pcName is the file name;

 Output parameter pstat returns the file status information.

SpaceChain OS

Manual SpaceChain

OS.

105

Application Development Manual

Prototype analysis of Function lstat:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter pcName is the file name;

 Output parameter pstat returns the file status information.

Prototype analysis of Function fstat:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter iFd is the file descriptor;

 Output parameter pstat returns the file status information.

Calling stat function will return the status information of the pcName file through

Parameter pstat, calling the fstat function will get information about the file which has

been opened on the descriptor iFd. lstat function is similar to stat function. However, when

the incoming file name is the symbolic link name, lstat function will get information about

the symbolic link, but not information of the actual file which the symbolic link refers to (the

subsections below will detail the symbolic link).

Parameter pstat is a status buffer zone to be provided by the user. The pointer points

to the stat structure type buffer zone, and the structure is as shown below:

struct stat {

 dev_t st_dev; /* device */

 ino_t st_ino; /* inode */

 mode_t st_mode; /* protection */

 nlink_t st_nlink; /* number of hard links */

 uid_t st_uid; /* user ID of owner */

 gid_t st_gid; /* group ID of owner */

 dev_t st_rdev; /* device type (if inode device) */

 off_t st_size; /* total size, in bytes */

 time_t st_atime; /* time of last access */

 time_t st_mtime; /* time of last modification */

 time_t st_ctime; /* time of last create */

 blksize_t st_blksize; /* blocksize for filesystem I/O */

 blkcnt_t st_blocks; /* number of blocks allocated */

……

};

In the stat structure, there are basically the basic data types of the system. The ll

SpaceChain OS

Manual SpaceChain

OS.

106

Application Development Manual

command is mostly used in stat function of SylixOS, and this command can get the

following file information:

ll

-rw-r--r-- root root Tue Jul 07 10:22:28 2015 0 B, test.file

-rwxr-xr-x root root Tue Jul 07 10:18:51 2015 233KB, app

Next, we will focus on the file mode (st_mode information). We introduced the file

types in Section 5.1.1. Table 5.5 shows the corresponding bit information of these types in

st_mode.

Table 5.5 File type bit

st_mode bit Note

S_IFIFO FIFO file

S_IFCHR Character file

S_IFDIR Directory file

S_IFBLK Block device file

S_IFREG Ordinary file

S_IFLNK Symbolic link file

S_IFSOCK Socket file

All of these file types have access permission, and each file has 9 access permission

bits, just like the first column output by ll command. These access permission bits can be

divided into 3 categories, as shown in Table 5.6.

Table 5.6 Access permission bit

st_mode bit Note

S_IRUSR

S_IWUSR

S_IXUSR

User read

User write

User execution

S_IRGRP

S_IWGRP

S_IXGRP

Group read

Group write

Group execution

SpaceChain OS

Manual SpaceChain

OS.

107

Application Development Manual

S_IROTH

S_IWOTH

S_IXOTH

Other read

Other write

Other implementation

In each group shown in Table 5.6, the term "user" refers to the file owner, "group"

refers to the group of the owner, and "other" refers to other users not belonging to this

group. The 9 permission bits can be modified with the chmod command. It shall be noted

that during permission modification with the chmod command in Linux and other systems,

user can be represented by u, group can be represented by g, and others can be

represented by o. SylixOS is directly represented with the number. For example: 755

represents -rwxr -xr-x.

When we open a file of any type with a name, we must have execution permission for

each directory contained in that name, including the current working directory it may imply.

For example, in order to open the file /apps/app/test.c, it is required to have execution

permission bits for directory /apps, /apps/app.

The read permission bit for a file determines whether we can open an existing file for

read operation. This is related to the O_RDONLY and O_RDWR flags of open function. Of

course, the write situation is similar.

2. Function access

#include <unistd.h>

int access(const char *pcName, int iMode);

Prototype analysis of Function access

 For success of the function, return 0. For failure, return -1 and set the error

number；

 Parameter pcName is the file name;

 Parameter iMode is the access mode.

access function performs test according to the file access permission of the file owner.

The test mode of access function is shown in Table 5.7.

Table 5.7 iMode bit of access function

iMode bit Note

R_OK File readable

SpaceChain OS

Manual SpaceChain

OS.

108

Application Development Manual

W_OK File writable

X_OK File executable

F_OK File exist

The following program shows how to use access function. The program reads the file

provided by the user from the Shell interface, and then determines whether the file is

writable and can be successfully opened.

SpaceChain OS

Manual SpaceChain

OS.

109

Application Development Manual

Program List 5.6 Use method of access function

#include <stdio.h>

#include <fcntl.h>

int main (int argc, char *argv[])

{

 int fd;

 if (argc != 2) {

 fprintf(stderr, "%s [filename].\n", argv[0]);

 return -1;

 }

 if (access(argv[1], W_OK) < 0) {

 fprintf(stdout, "%s can't write.\n", argv[1]);

 } else {

 fprintf(stdout, "%s can write.\n", argv[1]);

 }

 if ((fd = open(argv[1], O_WRONLY)) < 0) {

 fprintf(stdout, "open file failed.\n");

 } else {

 fprintf(stdout, "open file success.\n");

 close(fd);

 }

 return 0;

}

Run the program under the SylixOS Shell:

ll

-rw-r--r-- root root Tue Jul 07 13:49:01 2015 0 B, b.c

-r-------- root root Tue Jul 07 13:48:33 2015 0 B, a.c

./access_test b.c

b.c can write.

open file success.

./access_test a.c

a.c can't write.

open file failed.

It can be seen from the above instance that open function cannot open this file

normally by setting the file access permission.

SpaceChain OS

Manual SpaceChain

OS.

110

Application Development Manual

3. Function umask

#include <sys/stat.h>

mode_t umask(mode_t modeMask);

Prototype analysis of Function umask：

 This function returns the previous mask word;

 Parameter modeMask is the new mask word.

The umask function creates a mask word for the current process setup file, and

returns the previous value. It is a function without error value returned.

Among them, Parameter modeMask consists of a number of bitwise "or" from the

constants listed in Table 5.6.

When the process creates a new file or a new directory, it will surely use the file mode

to create mask words (during introduction of open function and creat function, both

functions have a mode parameter, which specifies the access permissions of the new file).

For the bit as 1 the file mask word, the corresponding access permission bits in the file

must be closed. It shall be noted that the owner's read permission will not be masked

when the Sylix OS kernel creates a new file (this guarantees that the file owner can read

files normally).

The following program shows how to use umask function. The program creates two

files. When the first one is created, the umask value is 0. That is to say, no permission bit

will be masked. The file will be created according to the default permission mode of the

kernel. When the second is created, the umask value disables group and other read and

write permissions.

Program List 5.7 Use of umask function

#include <stdio.h>

#include <fcntl.h>

#define FILE_MODE (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)

int main (int argc, char *argv[])

{

 umask(0);

 if (creat("./a.c", FILE_MODE) < 0) {

 fprintf(stderr, "create file failed.\n");

 return -1;

}

 umask(S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH);

SpaceChain OS

Manual SpaceChain

OS.

111

Application Development Manual

 if (creat("./b.c", FILE_MODE) < 0) {

 fprintf(stderr, "create file failed.\n");

 return -1;

 }

 return 0;

}

Running this program under the SylixOS Shell, and it can be found from the running

results that the file permission bit is affected by the process mask word.

./umask_test

ll

-rw------- root root Tue Jul 07 15:10:25 2015 0 B, b.c

-rw-rw-rw- root root Tue Jul 07 15:10:25 2015 0 B, a.c

4. Functions fchmod and chmod

#include <sys/stat.h>

int fchmod(int iFd, int iMode);

int chmod(const char *pcName, int iMode);

Prototype analysis of Function fchmod:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter iFd is the file descriptor;

 Parameter iMode is the mode to be set.

Prototype analysis of Function chmod:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter pcName is the file name;

 arameter iMode is the mode to be set.

Calling chmod function and fchmod function can change the access permissions of

existing files. chmod function operates on the specified file, and fchmod function operates

on the opened file.

The following program shows use of chmod function. The program implements two

operations. One operation is to remove a certain permission based on the original access

permission of the file, and the other operation is to set certain access permission bits.

SpaceChain OS

Manual SpaceChain

OS.

112

Application Development Manual

Program List 5.8 Use of Function chmod

#include <stdio.h>

#include <sys/stat.h>

int main (int argc, char *argv[])

{

 struct stat newstat;

 if (stat("./a.c", &newstat) < 0) {

 fprintf(stderr, "stat error.\n");

 return -1;

 }

 if (chmod("./a.c", (newstat.st_mode & ~S_IRGRP)) < 0) {

 fprintf(stderr, "drop mode error.\n");

 return -1;

 }

 if (chmod("./b.c", S_IRUSR | S_IWGRP) < 0) {

 fprintf(stderr, "set mode error.\n");

 }

 return 0;

}

Run the program under SylixOS Shell, and it can be seen from program running

results that chmod function correctly sets corresponding access permission bits.

ll

-rw-rw-rw- root root Tue Jul 07 15:10:25 2015 0 B, b.c

-rw-rw-rw- root root Tue Jul 07 15:10:25 2015 0 B, a.c

./chmod_test

ll

-r---w---- root root Tue Jul 07 15:10:25 2015 0 B, b.c

-rw--w-rw- root root Tue Jul 07 15:10:25 2015 0 B, a.c

5. Function unlink and remove

#include <unistd.h>

int unlink(const char *pcName);

Prototype analysis of Function unlink:

 For success of the function, return 0. For failure, return -1 and set the error

number;

SpaceChain OS

Manual SpaceChain

OS.

113

Application Development Manual

 Parameter pcName is the

name of the file to be deleted.

One can delete a file via calling the unlink function. File deletion shall satisfy a certain

condition. When the reference count of the file reaches 0, the file can be deleted. When

the process opens the file, it cannot be deleted. When a file is deleted, the kernel first

checks the number of processes opening the file. If the number reaches 0, the kernel

rechecks the reference count. If it is also 0, then the file is deleted.

If Parameter pcName is the name of a symbolic link, the symbolic link will be deleted,

instead of deleting the file referenced by the symbolic link.

You can also call the remove function in ANSI C to delete a file.

#include <stdio.h>

int remove(const char *file);

Prototype analysis of Function remove:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter file is the name of the file to be deleted.

6. Function rename

#include <stdio.h>

int rename(const char *pcOldName, const char *pcNewName);

Prototype analysis of Function rename:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter pcOldName is the old file name;

 Parameter pcNewName is the file name modified.

The file or directory can be renamed with the rename function. The following several

situations shall be indicated according to different Parameter pcOldName:

 If pcOldName points to a non-directory file, there are two following situations:

 If pcNewName already exists, pcNewName cannot be a directory file;

 If pcNewName already exists and is not a directory file, delete it firstly, and

rename pcOldName.

 If pcOldName points to a directory file, there are two following situations:

 If pcNewName already exists, pcNewName must be an empty directory;

 If pcNewName already exists, delete it firstly, and rename pcOldName.

SpaceChain OS

Manual SpaceChain

OS.

114

Application Development Manual

 If pcOldName and pcNewName are the same file, the function returns

silently without any modification.

Note: In SylixOS, if pcOldName is a symbolic link name, calling the rename function will modify the

name of the real file to which the symbolic link points, and special attention shall be paid for the point.

7. Function opendir and closedir

#include <dirent.h>

DIR *opendir(const char *pathname);

int closedir(DIR *dir);

Prototype analysis of Function opendir:

 For success of the function, return the directory pointer. For failure, return NULL

and set the error number;

 Parameter pathname is the directory name.

Prototype analysis of Function closedir:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter dir is the directory pointer.

Calling the opendir function will open the directory to which the pathname points and

returns the directory pointer of DIR type, which points to the starting position of the

directory. It might also be noted that the opendir function will open the directory in a

read-only manner. It means that the open directory must exist. Otherwise, it will return

NULL and set the errno as ENOENT. If the pathname is not a valid directory file, NULL is

returned and the errno is set as ENOTDIR.

Calling the closedir function will close the directory to which dir points (dir is returned

via the opendir function).

8. Function readdir and readdir_r

#include <dirent.h>

struct dirent *readdir(DIR *dir);

int readdir_r(DIR *pdir,

 struct dirent *pdirentEntry,

 struct dirent **ppdirentResult);

Prototype analysis of Function readdir:

 For success of the function, return the directory information pointer. For failure,

 Parameter dir is an open directory pointer.

Prototype analysis of Function readdir_r:

SpaceChain OS

Manual SpaceChain

OS.

115

Application Development Manual

 For success of the

function, return 0. For failure, return -1 and set the error number;

 Parameter pdir is an open directory pointer.

 Output parameter pdirentEntry returns directory information;

 Output parameter ppdirentResult points to the pdirentEntry address or NULL.

Calling the readdir function will return the directory information of the specified

directory, and the readdir function is not reentrant. The readdir_r function is reentrant

implementation of the readdir function, and pdirentEntry points to the user buffer for

storing directory information. If the end of the directory is read, *ppdirentResult is equal

to NULL.

The read directory information is stored in the dirent structure, as shown below:

struct dirent {

 char d_name[NAME_MAX + 1]; /* file name */

 unsigned char d_type; /* file type(maybe DT_UNKNOWN) */

 char d_shortname[13]; /* fat short file name (maybe

doesn’t exist) */

 ……

};

The d_name member saves the name of the file in the directory. and the d_type

indicates the type of the file as shown in Table 5.1. The following macros can realize

mutual conversion of the file type and the file type mode bit (shown in Table 5.5).

#include <dirent.h>

unsigned char IFTODT
①
(mode_t mode);

mode_t DTTOIF(unsigned char dtype);

IFTODT macro converts the type mode to the file type, and DTTOIF macro converts

the file type to the type mode.

The following program shows how to use operation directory function. The program

opens a appointed directory (such as "/") and reads the directory information, and then

displays the name and type of the directory file.

Program List 5.9 Display directory information

#include <stdio.h>

#include <dirent.h>

#include <string.h>

① Here is a kind of representation form of macro function, which hides details realized in the macro.

SpaceChain OS

Manual SpaceChain

OS.

116

Application Development Manual

#define DIR_PATH "/"

char *file_type (char type, char *name, int len)

{

 if (!name) {

 return (NULL);

 }

 if (S_ISDIR(DTTOIF(type))) {

 strlcpy(name, "directory", len);

 return (name);

 }

 if (S_ISREG(DTTOIF(type))) {

 strlcpy(name, "regular", len);

 return (name);

 }

 if (S_ISSOCK(DTTOIF(type))) {

 strlcpy(name, "socket", len);

 return (name);

 }

 if (S_ISLNK(DTTOIF(type))) {

 strlcpy(name, "link", len);

 return (name);

 }

 return (NULL);

}

int main (int argc, char *argv[])

{

 DIR *dir;

 struct dirent dirinfo;

 struct dirent *tempdir;

 int ret;

 char name[64];

 dir = opendir(DIR_PATH);

 if (dir == NULL) {

 return (-1);

 }

SpaceChain OS

Manual SpaceChain

OS.

117

Application Development Manual

 while (((ret = readdir_r(dir, &dirinfo, &tempdir)) == 0) && tempdir) {

 fprintf(stdout, "file: %s type is: %s file\n",

 dirinfo.d_name, file_type(dirinfo.d_type, name, sizeof(name)));

 }

 closedir(dir);

 return (0);

}

Run the program under the SylixOS Shell:

./readdir_test

file: tmp type is: directory file

file: var type is: link file

file: root type is: link file

file: home type is: link file

……

9. Function mkdir and rmdir

#include <sys/stat.h>

int mkdir(const char *dirname, mode_t mode);

int rmdir(const char *pathname);

Prototype analysis of Function mkdir:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter dirname is the name of the created directory;

 Parameter mode is the creation mode.

Prototype analysis of Function rmdir:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter pathname is the directory name.

Calling the mkdir function can create an empty directory, the access authority of the

directory appointed directory is appointed by the mode, and the mode will modify the

mask work according to the file mode of the progress.

Calling Function rmdir can delete an empty directory, and the underlying can be

realized by calling the unlink function.

10. Function chdir, fchdir and getcwd

SpaceChain OS

Manual SpaceChain

OS.

118

Application Development Manual

Each process has a current working directory, which is the starting point for

searching all relative path names (the path not starting with the oblique line is called the

relative path). When the user logins SylixOS, the current working directory is usually the

sixth field of the user's login entry in the password file "/etc/passwd" - the user's home

directory.

#include <unistd.h>

int chdir(const char *pcName);

int fchdir(int iFd);

char *getcwd(char *pcBuffer, size_t stByteSize);

Prototype analysis of Function chdir:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter pcName is the new default directory.

Prototype analysis of Function fchdir:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter iFd is the file descriptor.

Prototype analysis of Function getcwd:

 For success of the function, return the first address in the buffer zone of the

default directory. For failure, return NULL;

 Output parameter pcBuffer is the default directory buffer;

 Parameter stMaxBytes is the size of the buffer zone.

The process calls the chdir function or the fchdir function to change the current

working directory, the chdir function appoints the current working directory with parameter

pcName, and the fchdir function appoints the current working directory via the file

descriptor iFd.

The current working directory is a property of the process. Therefore, it is worth noting

that modification of the working directory of the process will not influence the working

directory of other processes.

Calling the getcwd function can get the current default working path, and the function

must have a large enough buffer zone to store the name of the absolute path returned

plus a terminating null byte. Otherwise, it returns error.

The getcwd function is very useful when an application is required to return to the

starting point of its work in the file system. Before change of the working directory, one call

the getcwd function to save the current working directory firstly. After processing, one can

SpaceChain OS

Manual SpaceChain

OS.

119

Application Development Manual

take the working directory previously saved as the parameter and transfer it to the

chdir function, which returns to the starting point of the file system.

The fchdir function provides a more convenient method. Before change in different

locations of the file system, call the open function to open the current working directory

firstly, and save the file descriptor returned. When it is hoped to return the original working

directory, it is required to take the saved file descriptor as the parameter and transfer it to

the fchdir function.

11. Symbolic link

The symbolic link is the indirect pointer to a file, and any user can create the symbolic

link to the directory. The symbolic link is generally used to direct a file or the whole

directory str

When the file is opened with the open function, if the parameter of the file name

transferred to the open function is a symbolic link, open will open the appointed file with

the symbolic link. However, if the file does not exist, the open function will return error

indicating that the file does not exist, and the point shall be noticed.

#include <unistd.h>

int symlink(const char * pcActualPath, const char *pcSymPath);

ssize_t readlink(const char *pcSymPath, char *pcBuffer, size_t iSize);

Prototype analysis of Function symlink:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter pcActualPath is the target file of the actual link;

 Parameter pcSymPath is the symbolic link file newly created.

Prototype analysis of Function readlink:

 For success of the function, return the length of symbolic link contents read. For

failure, return -1 and set the error number;

 Parameter pcSymPath is the symbolic link name to be read;

 Output parameter pcBuffer is the content buffer zone;

 Parameter iSize is the length of the buffer zone.

SylixOS can call symlink function to create the symbolic links, symlink function will

create a symbolic link pcSymPath pointing to pcActualPath, and pcActualPath and

pcSymPath cannot be in the same file system The open function mentioned above can

only open the file to which the symbolic link points. Therefore, there needs to be a way to

open the symbolic link itself, and read its contents. The readlink provides such function.

Note: SylixOS does not support the hard link at present.

SpaceChain OS

Manual SpaceChain

OS.

120

Application Development Manual

12. File truncation

Sometimes we need to intercept some data at the end of the file to shorten the file,

and it is a special case to truncate the length of a file to 0. One can do this with the

O_TRUNC flag when you open a file.

#include <unistd.h>

int ftruncate(int iFd, off_t oftLength);

int truncate(const char *pcName, off_t oftLength);

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter iFd is the file descriptor;

 Parameter oftLength is the file length.

Prototype analysis of Function truncate:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter pcName is the file name;

 Parameter oftLength is the file length.

Calling the truncate function and ftruncate function can reduce or extend the file

length. If the previous file length is longer than the oftLength, the additional data will be

lost. If the previous file length is smaller than the appointed length, the file length will be

expanded, i.e., the file hole is generated. The ftruncate function operates the file has been

opened by the user, and the file descriptor is transferred.

5.2.3 Standard I/O library

1. Standard input, standard output and standard error

All I/O functions introduced above surround the file descriptor. When a file is opened,

a file descriptor is returned, and the file descriptor is used for subsequent I/O operation.

For standard I/O libraries, their operation is performed around the stream. When a file is

opened with the standard I/O library, the file is correspondingly associated with the file,

and then a file pointer of the FILE type is returned.

Three streams are predefined for a process, and the three streams are automatically

used by the process, including standard input, standard output and standard error. The

files quoted by these streams are the same with those by the file descriptors of

STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO.

The predefined file pointers of three stream are: stdin, stdout and stderr, which are

used by our print function previously.

SpaceChain OS

Manual SpaceChain

OS.

121

Application Development Manual

2. Buffer area

The standard I/O library provides buffering to call the read function and the write

function as little as possible, and automatically perform buffer management for each I/O

stream, so as to avoid the trouble from consideration of the point by the application. The

standard I/O library provides 3 types of buffer zones.

 Full buffer. In this case, actual I/O operations can be performed after filling the

standard I/O buffer zone. Full buffer is usually performed for the file stayed on the

disk via the standard I/O library.

 Line buffer. Actual I/O operations, i.e., standard input and standard output, are

performed when the line break is encountered at input and output, and line buffer

is used usually.

 No buffer, the standard I/O library does not perform buffer storage for the

character. Standard errors are usually unbuffered, so that the error information

can be indicated as far as possible.

Calling the following functions can modify types of the buffer zone.

#include <stdio.h>

void setbuf(FILE *fp, char *buf);

int setvbuf(FILE *fp, char *buf, int mode, size_t size);

Prototype analysis of Function setbuf:

 Parameter fp is the file pointer.

 Parameter buf is the buffer zone.

Prototype analysis of Function setvbuf:

 For success of the function, return 0. For failure, return non-0 value and set the

error number;

 Parameter fp is the file pointer;

 Parameter buf is the buffer zone;

 Parameter mode is the buffer type, as shown in Table 5.8;

Table 5.8 Standard I/O buffer type

Type of buffer zone Note

_IOFBF Full buffer

_IOLBF Line buffer

_IONBF No buffer

SpaceChain OS

Manual SpaceChain

OS.

122

Application Development Manual

 Parameter size is the

buffer size.

The above function requires that the appointed stream has been opened, and called

before any operation. One can use the setbuf function to open or close the buffer zone. In

order to set a buffer zone, the parameter buf points to the first address of the buffer zone,

and BUFSIZ defines the size of the buffer zone (defined in <stdio.h>). If one wants to

close the buffer zone, it is only required to point the buf parameter to NULL. Calling the

setvbuf function can appoint the buffer type, as shown in Table 5.8.

Generally, standard I/O will automatically release the buffer zone when the stream is

closed. Of course, calling the fflush function can flush a stream at any time.

#include <stdio.h>

int fflush(FILE *fp);

Prototype analysis of Function fflush:

 For success of the function, return 0. For failure, return EOF
①
;

 Parameter fp is the file pointer.

The fflush function transmits all unwritten data on the appointed stream to the kernel,

and SylixOS does not currently support the case where fp is NULL.

3. Open the stream

#include <stdio.h>

FILE *fopen(const char *file, const char *mode);

FILE *freopen(const char *file, const char *mode, FILE *fp);

FILE *fdopen(int fd, const char *mode);

Prototype analysis of Function fopen:

 For success of the function, return the file pointer. For failure, return NULL and

set the error number;

 Parameter file is the name of file to be opened;

 Parameter mode is the open mode, as shown in Table 5.9.

Prototype analysis of Function freopen:

 For success of the function, return the file pointer. For failure, return NULL and

set the error number;

 Parameter file is the name of file to be opened;

 Parameter mode is the open mode, as shown in Table 5.9;

 Parameter fp is the file pointer.

SpaceChain OS

Manual SpaceChain

OS.

123

Application Development Manual

Prototype analysis of Function fdopen:

 For success of the function, return the file pointer. For failure, return NULL and

set the error number;

 Parameter fd is the open file descriptor;

 Parameter mode is the open mode.

Above 3 functions can open a standard I/O stream, and the fopen function opens the

file appointed by file. The freopen function opens an appointed file on an appointed

stream. If the stream has been opened, it is closed first. If the stream has been orientated,

the orientation will be cleared. The fdopen function takes an existing file descriptor, and

combines a standard I/O stream with the descriptor.

Table 5.9 mode parameter of opening standard I/O stream

Operation type Note Symbol of the open function

r or rb Open it in a read-only manner O_RDONLY

w or wb
Truncate the file to 0 byte length, or

create it in a write manner
O_WRONLY|O_CREAT|O_TRUNC

a or ab

Add, and open it in a write manner at

the end of the file, or create it in a

write manner

O_WRONLY|O_CREAT|O_APPEND

r+ or r+b or rb+ Open it in read and write manners O_RDWR

w+ or w+b or wb+
Truncate the file to 0 byte length, or

open it in read and write manners
O_RDWR|O_CREAT|O_TRUNC

a+ or a+b or ab+
Open or create it from the file end in

read and write manners
O_RDWR|O_CREAT|O_APPEND

Use character b as a part of the mode. Therefore, the standard I/O system can

differentiate the text file and the binary file. However, these two files are not differentiated

in SylixOS, so that Character b is invalid in SylixOS.

For the fdopen function, the meaning of the mode parameter is slightly different. The

file descriptor has been opened. Therefore, the file opened via the fdopen function for

writing are not truncated. In addition, the append write manner of standard I/O cannot be

used to create the file.

After opening a file with append write, the data will be written at the end of the file

each time. If multiple processes open the same file via the append write manner of

standard I/O, the data from each process will be correctly written in the file.

Calling the fclose function close an open stream.

#include <stdio.h>

SpaceChain OS

Manual SpaceChain

OS.

124

Application Development Manual

int fclose(FILE *fp);

Prototype analysis of Function fclose:

 For success of the function, return 0. For failure, return EOF and set the error

number;

 Parameter fp is the file pointer.

Before the file is closed, the output data in the buffer zone is flushed first, and the

input data in the buffer is discarded. If the standard I/O library has automatically

distributed the buffer zone, it is released.

When a process is terminated normally, all standard I/O streams with unwritten buffer

data are flushed, and all open standard I/O streams are closed.

4. Read and write streams

Once the stream is opened, one can read and write different types of I/O, and read a

character at a time when calling the following functions.

#include <stdio.h>

int getc(FILE *fp);

int fgetc(FILE *fp);

int getchar(void);

Prototype analysis of Function getc:

 For success of the function, return the next character. For failure, return EOF;

 Parameter fp is the file pointer.

Prototype analysis of Function fgetc:

 For success of the function, return the next character. For failure, return EOF;

 Parameter fp is the file pointer.

Prototype analysis of Function getchar:

 For success of the function, return the next character. For failure, return EOF.

The getchar function is equal to getc (stdin). The difference between the getc function

and the getc function is that the getc function can be implemented as the macro, and the

fgetc function cannot be implemented as the macro.

Above 3 input functions correspond to the following 3 output functions.

#include <stdio.h>

int putc(int c, FILE *fp);

int fputc(int c, FILE *fp);

int putchar(int c);

SpaceChain OS

Manual SpaceChain

OS.

125

Application Development Manual

Prototype analysis of Function putc:

 For success of the function, return the entered character. For failure, return EOF

and set the error number;

 Parameter c is the character to be entered;

 Parameter fp is the file pointer.

Prototype analysis of Function fputc:

 For success of the function, return the entered character. For failure, return EOF

and set the error number;

 Parameter c is the character to be entered;

 Parameter fp is the file pointer.

Prototype analysis of Function putchar:

 For success of the function, return the entered character. For failure, return EOF

and set the error number;

 Parameter c is the character to be entered.

Putchar(c) is equal to putc(c, stdout), and the putc function and the fputc function can

output a character to the appointed stream. The difference is that the putc function can be

implemented as the macro, and the fputc function cannot be implemented as the macro.

The following functions can read a line of characters from the appointed stream (line

terminators are represented with "\n").

#include <stdio.h>

char *fgets(char *buf, int n, FILE *fp);

char *gets(char *buf);

Prototype analysis of Function fgets:

 For success of the function, return the first address of bus. For failure, return

NULL;

 Parameter buf is the character buffer zone;

 Parameter n is the length of the buffer zone;

 Parameter fp is the file pointer.

Prototype analysis of Function gets:

 For success of the function, return the first address of buf. For failure, return

NULL;

 Parameter buf is the character buffer zone,

SpaceChain OS

Manual SpaceChain

OS.

126

Application Development Manual

Two functions appoint the address of the buffer zone to which the lines read

will be sent. The gets function is read from standard input, and the fgets function is read

from the appointed stream.

The gets function must appoint the length of the buffer zone, and the function is

always read until the next break line character, not exceeding n-1 characters. The read

character is sent to the buffer zone ending with a null character. If the number of

characters in the final line include the line is more than n-1, the fgets function returns only

an incomplete line. The buffer always ends with the null byte, and the next call to the fgets

function will continue read the line.

The gets function is not recommended, because the caller does not appoint the

length of the buffer, which may cause buffer area overflow
①
.

The following function can output one line of characters to the appointed stream.

#include <stdio.h>

int fputs(const char *str, FILE *fp);

int puts(const char *str);

Prototype analysis of Function fputs:

 For success of the function, return the non-negative value. For failure, return

EOF and set the error number;

 Parameter str is character string to be written;

 Parameter fp is the file pointer.

Prototype analysis of Function puts:

 For success of the function, return the non-negative value. For failure, return

EOF and set the error number;

 Parameter str is character string to be written.

The fputs function writes a null-terminated string to the appointed stream, and the

stop character null at the end is not written. The puts function writes a null-terminated

string to the standard output, and the stop character null is not written. Unlike the fputs

function, the puts function will write a break line character to the standard output

afterwards. The puts function is not recommended generally.

The following program shows how to use the standard I/O read and write functions.

The program writes a string to the open file, then call the rewind function (usage of the

function will be introduced later) to move the file's current pointer to beginning of the file,

and call the fgets function to read the character string in the file for printing.

Program List 5.10 Use of standard I/O function read and write

#include <stdio.h>

SpaceChain OS

Manual SpaceChain

OS.

127

Application Development Manual

int main (int argc, char *argv[])

{

 FILE *fp;

 int ret;

 char *str = "This is test sylixos string functions example.";

 char buf[64] = {0};

 fp = fopen("file", "r+");

 if (fp == NULL) {

 fprintf(stderr, "fopen error.\n");

 return (-1);

 }

 ret = fputs(str, fp);

 if (ret < 0) {

 fprintf(stderr, "fputs write error.\n");

 fclose(fp);

 return (-1);

 }

 rewind(fp); /* currently offset to the

beginning of the file */

 if (fgets(buf, sizeof(buf), fp) == NULL) {

 fprintf(stderr, "fgets read fp error.\n");

 fclose(fp);

 return (-1);

 }

fprintf(stdout, "buf: %s\n", buf);

 fclose(fp);

 return (0);

}

Run the program under the SylixOS Shell:

./iorw_test

buf: This is test sylixos string functions example.

5. Positioning stream

#include <stdio.h>

long ftell(FILE *fp);

int fseek(FILE *fp, long offset, int whence);

SpaceChain OS

Manual SpaceChain

OS.

128

Application Development Manual

void rewind(FILE *fp);

Prototype analysis of Function ftell:

 For success of the function, return the current file offset. For failure, return -1 and

set the error number;

 Parameter fp is the file pointer.

Prototype analysis of Function fseek:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter fp is the file pointer;

 Parameter offset is the set offset;

 Parameter whence, as shown in Table 5.3.

Prototype analysis of Function rewind:

 Parameter fp is the file pointer.

For a binary file, its file location indicator is measured in byte from the file start

location. When ftell function is used for the binary file, the return value is this byte location.

In order to use fseek to locate a binary file, one must appoint a byte offset and whence.

ISO C does not require an implementation to support SEEK_END for binary files. The

reason is that some systems require that the length of the binary file is the integral multiple

of a certain magic number. However, SEEK_END is supported in SylixOS.

For the text file, the current location of their files may not be measured by the simple

byte offset. This is also mainly in non-UNIX systems, and the text files may be stored in

different formats. In order to locate a text file, whence must be SEEK_SET, and offset

can only have two values: 0 (rewind to the file start location), or the value returned by ftell

function of the file. A stream can also be set to the file start location by using rewind

function.

The fgetpos function and the fsetpos function are introduced by ISO C standard.

#include <stdio.h>

int fgetpos(FILE *fp, fpos_t *pos);

int fsetpos(FILE *fp, const fpos_t *pos);

Prototype analysis of Function fgetpos:

 For success of the function, return 0. For failure, return non-0 value and set the

error number;

 Parameter fp is the file pointer.

 The output parameter pos is the file offset location.

SpaceChain OS

Manual SpaceChain

OS.

129

Application Development Manual

Prototype analysis of Function fsetpos:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter fp is the file pointer.

 Parameter pos is the file offset.

The fgetspos function stores the current value of the file position indicator in the

object pointed to by pos. You can use this value to relocate the stream to that position

when the fsetpos function is called later.

6. I/O formatting

#include <stdio.h>

int printf(const char *format, ...);

int fprintf(FILE *fp, const char *format, ...);

int fdprintf(int fd, const char *format, ...);

int sprintf(char *buf, const char *format, ...);

int snprintf(char *buf, size_t n, const char *format, ...);

Prototype analysis of Function printf:

 For success of the function, return the number of characters output. For failure,

return the negative value;

 Parameter format is the format character string;

 Parameter... is a variable parameter.

Prototype analysis of Function fprintf:

 For success of the function, return the number of characters output. For failure,

return the negative value;

 Parameter fp is the file pointer;

 Parameter format is the format character string;

 Parameter... is a variable parameter.

Prototype analysis of Function fdprintf:

 For success of the function, return the number of characters output. For failure,

return the negative value;

 Parameter fd is the file descriptor;

 Parameter format is the format character string;

 Parameter... is a variable parameter.

SpaceChain OS

Manual SpaceChain

OS.

130

Application Development Manual

Prototype analysis of Function sprintf:

 For success of the function, return the number of characters output. For failure,

return the negative value;

 Parameter buf is the pointer of the character buffer zone;

 Parameter format is the format character string;

 Parameter... is a variable parameter.

Prototype analysis of Function snprintf:

 For success of the function, return the number of characters output. For failure,

return the negative value;

 Parameter buf is the pointer of the character buffer zone;

 Parameter n is the length of the buffer zone;

 Parameter format is the format character string;

 Parameter... is a variable parameter.

The printf function prints characters to the standard output stream in the format

specified by format. The fprintf function prints characters to the stream specified by fp in

the format specified by format. Parameter fd of the fdprintf function is the descriptor of the

opened file. This function prints the format character to the file specified by fd. The sprintf

function and The snprintf function print the format characters to the buffer zone specified

by buf. The difference between two functions is that snprintf function specifies the length

of the buffer zone, so as to guarantee memory security. It is not suggested to use sprintf

function.

#include <stdio.h>

int scanf(const char *format, ...);

int fscanf(FILE *fp, const char *format, ...);

int sscanf(const char *buf, const char *format, ...);

Prototype analysis of Function scanf:

 For success of the function, return the number of matching characters.

Otherwise, return EOF;

 Parameter format is the format character string;

 Parameter... is a variable parameter.

Prototype analysis of Function fscanf:

 For success of the function, return the number of matching characters.

Otherwise, return EOF;

SpaceChain OS

Manual SpaceChain

OS.

131

Application Development Manual

 Parameter fp is the file

pointer;

 Parameter format is the format character string;

 Parameter... is a variable parameter.

Prototype analysis of Function sscanf:

 For success of the function, return the number of matching characters.

Otherwise, return EOF;

 Parameter buf is the pointer of the buffer zone;

 Parameter format is the format character string;

 Parameter... is a variable parameter.

The scanf function scans the standard input and stores the value in the format format

to the appropriate memory. The memory address will be given in the variable parameter.

Functions of the fscanf function are similar to those of the sscanf function. The difference

is that the fscanf function scans characters from the stream specified by fp, while the

sscanf function scans characters from the buffer zone specified by buf.

The following program shows how to use the formatting function. The program uses

the fdopen function to get the file pointer from the opened file descriptor.

Program List 5.11 Use of the formatting function

#include <stdio.h>

#include <fcntl.h>

int main (int argc, char *argv[])

{

 FILE *fp;

 char buf[64] = {0};

 char *content = "Format print function test.";

 char *temp;

 int fd;

 fd = open("file", O_RDWR | O_CREAT, 0644);

 if (fd < 0) {

 fprintf(stderr, "open failed test done.\n");

 return (-1);

 }

 fp = fdopen(fd, "r+");

 if (fp == NULL) {

SpaceChain OS

Manual SpaceChain

OS.

132

Application Development Manual

 fprintf(stderr, "fdopen failed test done.\n");

 close(fd);

 return (-1);

 }

 fprintf(fp, "%s", content);

 rewind(fp);

 temp = fgets(buf, sizeof(buf), fp);

 if (temp == NULL) {

 fprintf(stderr, "fgets read error or file end.\n");

 fclose(fp);

 return (-1);

 }

 fprintf(stdout, "buf: %s\n", buf);

 fclose(fp);

 return (0);

}

Run the program under the SylixOS Shell:

./format_test

buf: Format print function test.

5.3 Asynchronous I/O access

The signaling mechanism (see Chapter 10 Signaling System) provides a way to

asynchronously notify that certain events have occurred. However, such asynchronous

I/O is limited. They cannot be used on all file types, and only a signal can be used. If

asynchronous I/O is performed on more than one file descriptors, then the process does

not know which file descriptor the signal corresponds to when receiving the signal.

SylixOS supports the standard asynchronous I/O interfaces defined by the POSIX

1003.1b real-time extension protocol, namely aio_read function, aio_write function,

aio_fsync function, aio_cancel function, aio_error function, aio_return function,

aio_suspend function and lio_listio function. This group of APIs is used to operate

asynchronous I/O. Asynchronous I/O is a concept proposed as per synchronous I/O. It

does not require the thread to wait for I/O results, but only requests transmission. Then

the system automatically completes the I/O transmission. At the end or when an error

occurs, the corresponding I/O signal will be generated. The user program only needs to

set the corresponding signal sink function to handle an asynchronous I/O event.

SpaceChain OS

Manual SpaceChain

OS.

133

Application Development Manual

5.3.1 POSIX asynchronous I/O

The POSIX asynchronous I/O interface provides a set of consistent method for

asynchronous I/O for different types of files. These interfaces come from the real-time

draft standard, and these asynchronous I/O interfaces adopt AIO control block to describe

I/O operation. The aiocb structure defines AIO control block, and SylixOS implements this

structure as follows:

struct aiocb {

 int aio_fildes; /* file descriptor */

 off_t aio_offset; /* file offset */

 volatile void *aio_buf; /* Location of buffer. */

 size_t aio_nbytes; /* Length of transfer. */

 int aio_reqprio; /* Request priority offset. */

 struct sigevent aio_sigevent; /* Signal number and value. */

int aio_lio_opcode; /* Operation to be performed. */

……

};

The following describes the structure members in detail:

 The aio_fildes is the file descriptor to be operated, i.e., the file descriptor returned

by the open function;

 The aio_offset is the file offset at the start of read and write;

 The aio_buf is a pointer of the data buffer zone. For read, the data is read from

the buffer zone. For write, the data is written to the buffer zone;

 The aio_nbytes is the number of bytes read and written;

 The aio_reqprio is the priority of asynchronous I/O request. This priority

determines the read and write sequence, which also means that the higher the

priority is, the sooner it is read or written.

 The aio_sigevent is the signal to be sent. When a read or write is completed, the

the signal specified by the application will be sent.

 The aio_lio_opcode is the type of asynchronous I/O operation, as shown in Table

5.10;

Table 5.10 Type of asynchronous I/O operation

Operation type Note

LIO_NOP No transmission request

LIO_READ Request a read operation

SpaceChain OS

Manual SpaceChain

OS.

134

Application Development Manual

LIO_WRITE Request a write operation

LIO_SYNC Request asynchronous I/O synchronization

Before asynchronous I/O operation, we need to initialize the AIO control block firstly,

and then request asynchronous write operation by calling the aio_read function, and

request an asynchronous read operation by calling the aio_write function.

#include <aio.h>

int aio_read(struct aiocb *paiocb);

int aio_write(struct aiocb *paiocb);

Prototype analysis of Function aio_read:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter paiocb is AIO control block.

Prototype analysis of Function aio_write:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter paiocb is AIO control block.

After the aio_read function and the aio_write function have been called successfully,

the asynchronous I/O request has already been put into the waiting queue by the

operating system. These return values have nothing to do with the results of actual I/O

operation. If it is required to view the return status of the function, you can call aio_error

function.

To force all waiting asynchronous operations to write to memory without waiting, one

can create an AIO control block, and call the aio_fsync function.

#include <aio.h>

int aio_fsync(int op, struct aiocb *paiocb);

Prototype analysis of Function aio_fsync:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter op is the operation option;

 Parameter paiocb is AIO control block.

The aio_fildes member in the structure struct aiocb is the file to be synchronized. If

the op parameter is set to O_SYNC, the aio_fsync call is similar to fsync. If the op

parameter is set as O_DSYNC, the aio_fsync call is similar to fdatasync (Currently

SpaceChain OS

Manual SpaceChain

OS.

135

Application Development Manual

SylixOS does not make a specific distinction between the two situations).

Same with the aio_read function and the aio_write function, aio_error can be called

by viewing the aio_fsync function.

#include <aio.h>

int aio_error(const struct aiocb *paiocb);

Prototype analysis of Function aio_error:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter paiocb is AIO control block.

The return value shall be one of the following 4 situations:

 0: asynchronous operation completed successfully, call aio_return function to get

the return code;

 -1: failure to call aio_error;

 EINPROGRESS: waiting for asynchronous operation;

 Other cases: any other return value is the error code returned by the associated

asynchronous operation failure.

If asynchronous operation is successful, one can call the aio_return function to get

the return value of asynchronous operation.

#include <aio.h>

ssize_t aio_return(struct aiocb *paiocb);

Prototype analysis of Function aio_return:

 For success of the function, return the return value after asynchronous operation

completion. For failure, return -1 and set the error number;

 Parameter paiocb is AIO control block.

When performing I/O operations, one can use asynchronous I/O if there are other

transactions to be processed without being blocked by I/O operation. However, if all

transactions are completed but asynchronous operation is not completed, one can call the

aio_suspend function to block the process until operation is completed.

#include <aio.h>

int aio_suspend(const struct aiocb * const list[], int nent,

 const struct timespec *timeout);

Prototype analysis of Function aio_suspend:

SpaceChain OS

Manual SpaceChain

OS.

136

Application Development Manual

 For success of the

function, return 0. For failure, return -1 and set the error number;

 Parameter list is the array of AIO control blocks;

 Parameter nent is the number of array elements;

 Parameter timeout is the set timeout period.

The aio_suspend may return one of the following 3 situations:

 In case of block timeout, then the aio_suspend function will return -1;

 If any I/O operation is completed, the aio_suspend function will return 0;

 If all asynchronous I/O operations have been completed when the aio_suspend

function is called, the aio_suspend function will return when not blocked.

Parameter list will automatically ignore the null pointer, and the non-null element is

the initialized AIO control block.

When there are still waiting asynchronous I/O operations not to be completed, one

can call the aio_cancel function to cancel them.

#include <aio.h>

int aio_cancel(int fildes, struct aiocb *paiocb);

Prototype analysis of Function aio_cancel:

 This function return value is shown in Table 5.11;

Table 5.11 Type of aio_cancel return value

Type of return value Note

AIO_CANCELED All requested operations have been canceled

AIO_NOTCANCELED At least one requested operation is not canceled

AIO_ALLDONE Completed before the request is canceled

-1 Failure to call the aio_cancel function

 Parameter fildes is the file descriptor to be operated;

 Parameter paiocb is AIO control block.

If paiocb is NULL, the system will try to cancel all unfinished asynchronous I/O

operations on this file. In other cases, the system will attempt to cancel the single

asynchronous I/O operation described by the AIO control block specified by paiocb.

If the asynchronous I/O operation is successfully canceled, the corresponding AIO

SpaceChain OS

Manual SpaceChain

OS.

137

Application Development Manual

control block will call the aio_error function to return error ECANCE LED. If the

operation cannot be canceled, the corresponding AIO control block will not be modified

due to call of the aio_cancel function.

The following program shows how to use the above function. The program constructs

an AIO control block for read operation, and then calls aio_read to request read operation.

After the operation is completed, the signal_handler function will be notified via the signal

(see the signal section) for further processing.

Program List 5.12 Use of asynchronous I/O function
①

#include <aio.h>

#include <stdio.h>

#include <fcntl.h>

#include <stdlib.h>

#include <string.h>

#include <signal.h>

#define BUFSIZE (64)

void signal_handler (union sigval val)

{

 struct aiocb *paio = (struct aiocb *)val.sival_ptr;

 ssize_t ret;

 ret = aio_return(paio);

 if (ret < 0) {

 fprintf(stderr, "aio_return error.\n");

 return;

 }

 fprintf(stdout, "len: %ld\ncontent: %s\n", ret, (char *)(paio->aio_buf));

}

int main (int argc, char *argv[])

{

 int fd;

 int ret;

 static struct aiocb aio;

 const struct aiocb *const list[] = {&aio};

 fd = open("file", O_RDONLY);

 if (fd < 0) {

 fprintf(stderr, "open file failed.\n");

SpaceChain OS

Manual SpaceChain

OS.

138

Application Development Manual

 return (-1);

 }

 memset(&aio, 0, sizeof(struct aiocb));

 /*

 * 设置 AIO控制块

 */

 aio.aio_fildes = fd;

 aio.aio_buf = malloc(BUFSIZE + 1);

 aio.aio_nbytes = BUFSIZE;

 aio.aio_offset = 0;

 aio.aio_reqprio = 1;

 aio.aio_lio_opcode = LIO_READ;

 aio.aio_sigevent.sigev_notify = SIGEV_THREAD | SIGEV_SIGNAL;

 aio.aio_sigevent.sigev_value.sival_ptr = (void *)&aio;

 aio.aio_sigevent.sigev_signo = SIGUSR1;

 aio.aio_sigevent.sigev_notify_function = signal_handler;

 ret = aio_read(&aio);

 if (ret < 0) {

 perror("aio_read");

 close(fd);

 return (-1);

 }

aio_suspend(list, 1, NULL);

 close(fd);

 return (0);

}

Run the program under the SylixOS Shell:

./aio_read_test

len: 64

content: This is a sylixos test file

Calling the lio_listio function can submit a series of I/O requests described by a list of

AIO control blocks.

#include <aio.h>

int lio_listio(int mode, struct aiocb * const list[], int nent,

 struct sigevent *sig);

Prototype analysis of Function lio_listio:

SpaceChain OS

Manual SpaceChain

OS.

139

Application Development Manual

 For success of the

function, return 0. For failure, return -1 and set the error number;

 Parameter mode is the transfer mode (LIO_WAIT, LIO_NOWAIT);

 Parameter list is the array of request AIO control blocks;

 Parameter nent is the array of AIO control blocks;

 Parameter sig is the signal method generated after all I/O operations are

completed.

Parameter mode determines whether I/O is really asynchronous. If this parameter is

set as LIO_WAIT, the lio_listio function will return after all I/O operations specified by the

list are completed. In this case, Parameter sig will be ignored. If the mode parameter is

set as LIO_NOWAIT, the lio_listio function will return immediately after the I/O request is

enqueued. The process will be notified asynchronously as specified by Parameter sig

after all I/O operations are completed. If notice is not required, one can set Parameter sig

as NULL. It might also be noted that each asynchronous I/O operation can be set with its

own notification mode. However, the notification mode specified by Parameter sig is an

additional notification mode, and it will be notified only after all operations are completed.

In each AIO control block, the aio_lio_opcode field specifies whether the operation is

a read operation (LIO_READ), a write operation (LIO_WRITE), or a null operation

(LIO_NOP) which will be ignored.

The following program shows how to use the lio_listio function. It can be seen from

the code that a single lio_listio function call initiates multiple transmissions. From this point,

it can be concluded that performance of the lio_listio function is worth studying.

Program List 5.13 Use of lio_listio function

#include <aio.h>

#include <stdio.h>

#include <fcntl.h>

#include <stdlib.h>

#include <string.h>

#include <signal.h>

#define BUFSIZE (64)

void signal_handler (union sigval val)

{

 fprintf(stdout, "async operator complete.\n");

}

int main (int argc, char *argv[])

SpaceChain OS

Manual SpaceChain

OS.

140

Application Development Manual

{

 int fd;

 int ret;

 struct aiocb aio[2];

 struct aiocb *const list[] = {&aio[0], &aio[1]};

 static struct sigevent notify;

 fd = open("file", O_RDONLY);

 if (fd < 0) {

 fprintf(stderr, "open file failed.\n");

 return (-1);

 }

 memset(&aio[0], 0, sizeof(struct aiocb));

 memset(&aio[1], 0, sizeof(struct aiocb));

 /*

 * Set up the first AIO control block

 */

 aio[0].aio_fildes = fd;

 aio[0].aio_buf = malloc(BUFSIZE + 1);

 aio[0].aio_nbytes = BUFSIZE;

 aio[0].aio_offset = 0;

 aio[0].aio_reqprio = 1;

 aio[0].aio_lio_opcode = LIO_READ;

 /*

 * Set up second AIO control block

 */

 aio[1].aio_fildes = fd;

 aio[1].aio_buf = malloc(BUFSIZE + 1);

 aio[1].aio_nbytes = BUFSIZE;

 aio[1].aio_offset = BUFSIZE;

 aio[1].aio_reqprio = 2;

 aio[1].aio_lio_opcode = LIO_READ;

 notify.sigev_signo = SIGUSR1;

 notify.sigev_notify_function = signal_handler;

 notify.sigev_notify = SIGEV_THREAD | SIGEV_SIGNAL;

 ret = lio_listio(LIO_NOWAIT, list, 2, ¬ify);

 if (ret < 0) {

 perror("lio_listio");

 close(fd);

 return (-1);

SpaceChain OS

Manual SpaceChain

OS.

141

Application Development Manual

 }

sleep(60);

 close(fd);

 return (0);

}

Run the program under the SylixOS Shell:

./lio_listio_test

signal handler.

During implementation of asynchronous I/O of SylixOS, I/O operation will be

performed via an additional thread (proxy thread). In order to be able to set or get the

stack information of the proxy thread, SylixOS adds the following set of functions. This set

of functions are not defined in the standard. It might also be noted that that the set stack

information is only valid for future start threads (this usually occurs in future I/O requests).

#include <aio.h>

int aio_setstacksize(size_t newsize);

size_t aio_getstacksize(void);

Prototype analysis of Function aio_setstacksize:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter newsize is the new stack size.

Prototype analysis of Function aio_getstacksize:

 This function always returns the size of the current thread stack.

Call the aio_setstacksize function to set the stack size for future start threads (proxy

thread), and call the aio_getstacksize function to get the size of the current thread (proxy

thread) stack.

5.4 Advanced I/O access

5.4.1 Decentralized aggregation operation

#include <sys/uio.h>

ssize_t readv(int iFd, struct iovec *piovec, int iIovcnt);

ssize_t writev(int iFd, const struct iovec *piovec,int iIovcnt);

Prototype analysis of Function readv:

SpaceChain OS

Manual SpaceChain

OS.

142

Application Development Manual

 For success of the

function, return the number of bytes read. For failure, return -1 and set the error

number;

 Parameter iFd is the file descriptor;

 The output parameter popovec is a pointer of the decentralized buffer zone

array;

 Parameter iIovcnt is the number of the buffer zones.

Prototype analysis of Function writev:

 For success of the function, return the number of bytes written. For failure, return

-1 and set the error number;

 Parameter iFd is the file descriptor;

 Parameter popovec is an pointer of the aggregation buffer zone (data to be sent)

array;

 Parameter iIovcnt is the number of the buffer zones.

The readv function and the writev function are used to read and write multiple

non-contiguous buffer zones in a single function call. Sometimes, these two functions are

called scatter read and gather write.

The second parameter of these two functions is a pointer to the iovec structure array:

struct iovec {

 PVOID iov_base; /* base address */

 size_t iov_len; /* length */

};

The member iov_base in the structure points to the first address of a buffer zone, and

the member iov_len is the length of the buffer zone. The relation between the parameters

of these two functions and the iovec structure is shown in Figure 5.7.

（缓冲区=relief area）

Figure 5.7 Relation between readv and writev and iovec structures

The order to read readv function from the buffer zone is piovec[0], piovec[1] until

piovec [iIovcnt-1], and the total number of bytes read is successfully returned. The write

order of the writev function is the same with that of readv, and the total number of bytes

SpaceChain OS

Manual SpaceChain

OS.

143

Application Development Manual

written is successfully returned.

The following program shows how to use the readv function and the writev function.

The program defines two iovec elements, two buffer zones with different lengths, calls the

readv function to read data from the file a.test, and then calls the writev function to write

data to the file b.test.

Program List 5.14 Use of readv and writev

#include <stdio.h>

#include <sys/uio.h>

int main (int argc, char *argv[])

{

 int fd;

 char buf1[15], buf2[34];

 struct iovec iov[2];

 ssize_t ret;

 iov[0].iov_base = buf1;

 iov[0].iov_len = sizeof(buf1);

 iov[1].iov_base = buf2;

 iov[1].iov_len = sizeof(buf2);

 fd = open("a.test", O_RDONLY);

 if (fd < 0) {

 fprintf(stderr, "open file: %s failed.", "a.test");

 return (-1);

 }

 ret = readv(fd, iov, 2);

 if (ret < 0) {

 fprintf(stderr, "readv error.\n");

 close(fd);

 return (-1);

 }

 fprintf(stdout, "readv read bytes %ld\n", ret);

 close(fd);

 fd = open("b.test", O_WRONLY);

 if (fd < 0) {

 fprintf(stderr, "open file: %s failed.\n", "b.test");

 return (-1);

 }

SpaceChain OS

Manual SpaceChain

OS.

144

Application Development Manual

 ret = writev(fd, iov, 2);

 if (ret < 0) {

 fprintf(stderr, "writev error.\n");

 close(fd);

 return (-1);

 }

 fprintf(stdout, "writev write bytes %ld\n", ret);

 close(fd);

 return (0);

}

Run the program under the SylixOS Shell. It can be seen from the program operation

results that the readv function will read two buffer zones in turn, while the writev function

will write the data in the two buffer zones to the specified file.

cat a.test

This is a sylixos test readv and writev example.

./rwv_test

readv read bytes 49

writev write bytes 49

cat b.test

This is a sylixos test readv and writev example.

5.4.2 Non-blocking I/O

Some "low-speed" system functions
①

may block the process forever, such as certain

inter-process communication functions, certain ioctl operations and so on.

Non-blocking I/O makes open, read and write operations unblocked forever (requiring

support by the device driver). If these operations cannot be completed, the call

immediately returns with an error, indicating that the operation will be blocked if it

continues.

There are two ways to get a non-blocking I/O:

 Call the open function to get a file descriptor, and one can specify the

O_NONBLOCK flag;

 If the file is already open, one can call ioctl to specify the FIONBIO command, or

call fcntl to specify the F_SETFL option.

5.4.3 I/O multiplexing

The I/O multiplexing technique is to construct a list of file descriptors which we are

SpaceChain OS

Manual SpaceChain

OS.

145

Application Development Manual

interested in, and then call a function. The function will not return until one of these

descriptors is ready for I/O. 4 functions of select, pselect, poll and ppoll can implement I/O

multiplexing functions. When these functions return, the process or thread is notified

which file descriptors have been ready for I/O operation.

The details of the select function, pselect function, poll function, and ppoll function are

described as below.

1. select function group

#include <sys/select.h>

int select(int iWidth,

 fd_set *pfdsetRead,

 fd_set *pfdsetWrite,

 fd_set *pfdsetExcept,

 struct timeval *ptmvalTO);

int pselect(int iWidth,

 fd_set *pfdsetRead,

 fd_set *pfdsetWrite,

 fd_set *pfdsetExcept,

 const struct timespec *ptmspecTO,

 const sigset_t *sigsetMask);

Prototype analysis of Function select:

 For success of the function, return the quantity of descriptor waited. For failure,

return -1 and set the error number;

 Parameter iWidth is the maximum descriptor in the list of file descriptors plus 1;

 Parameter pfdsetRead is the set of read descriptors;

 Parameter pfdsetWrite is the set of write descriptors;

 Parameter pfdsetExcept is the set of exception descriptors;

 Parameter ptmvalTo is the waiting timeout.

Prototype analysis of Function pselect:

 For success of the function, return the quantity of descriptor waited. For failure,

return -1 and set the error number;

 Parameter iWidth is the maximum descriptor in the list of file descriptors plus 1;

 Parameter pfdsetRead is the set of read descriptors;

 Parameter pfdsetWrite is the set of write descriptors;

 Parameter pfdsetExcept is the set of exception descriptors;

 Parameter ptmspecTo is the waiting timeout;

SpaceChain OS

Manual SpaceChain

OS.

146

Application Development Manual

 Parameter sigsetMask is

the signal blocked at waiting.

Judging from parameters of the select function and the parameters transferred to the

kernel, the following points can be seen:

 Tell the kernel which file descriptors we care about;

 Conditions which we care about for each file descriptor (read, write and

exception);

 How long you are willing to wait (you can wait forever, you may not wait, you can

wait for the specified time);

When select returns, we can know how many file descriptors are ready and which file

descriptors are ready. Read, write and other operations can be performed with these

ready file descriptors.

 Parameter ptmvalTo can be divided into 3 kinds of situations:

 When ptmvalTo == NULL, it represents waiting forever,

 When ptmvalTo->tv_sec == 0 && ptmvalTo->tv_usec == 0, it represents noy

wait,

 When ptmvalTo->tv_sec != 0 || ptmvalTo->tv_usec != 0, it represents waiting for

the satisfy number of seconds and microseconds.

Parameters pfdsetRead, pfdsetWrite and pfdsetExcept are pointers to the file

descriptor set. Each file descriptor set is stored in a variable of the fd_set data type. For

this type, different systems may have different implementations. Here we can consider it

as a very large byte array, and each file descriptor occupies a bit. In SylixOS, the following

group of macros is provided for variables of fd_set type:

Table 5.12 Variable operation macro of fd_set type

Macro name Note

FD_SET(n, p) Set the file descriptor n in the file descriptor set p

FD_CLR(n, p) Clear the file descriptor n from file descriptor set p

FD_ISSET(n, p) Determine whether the file descriptor n belongs to the file descriptor set p

FD_ZERO(p) Clear the file descriptor set p

After declaring a file descriptor set of fd_set type, firstly use FD_ZERO to clear the file

descriptor set, and then use FD_SET to put the file descriptor we care about into the set.

When select returns successfully, use FD_ISSET to determine it is the file descriptor we

SpaceChain OS

Manual SpaceChain

OS.

147

Application Development Manual

care about.

The select function has 3 possible return values:

 The return value -1 indicates an error. For example, if a signal is captured when

none of the specified file descriptors is ready, return -1;

 Return value 0 represents no file descriptor is ready, because no file descriptor is

ready within the specified time, i.e., call timeout;

 The return value is an integer larger than zero. This value is the sum of all ready

file descriptors in the 3 file descriptor sets.

The select function returns the sum of the ready file descriptors, and here "ready" has

the following meanings:

 For a file descriptor in the read set, read operation will not block;

 For a file descriptor in the write set, write operation will not block;

 For a file descriptor in the exception set, there is a pending exception condition.

It might also be noted that if the file end is encountered on a file descriptor, the select

function will consider the file descriptor as readable, and then call the read function to

return 0.

In the above definition, we see that except for the last two parameters and select

function, other parameters of the pselect function are the same. Let's introduce these two

different parameters.

The type of select function timeout value is struct timeval, while timeout value type of

the pselect function is struct timespec (see Chapter 11 Time Management). The timespec

structure expresses the timeout value in seconds and nanoseconds, that is to say, the

pselect function provides more accurate timeout value than the select function
①
.

The pselect function can use signal mask words. If sigmask is NULL, the operation

conditions of the pselect function and the select function are the same. Otherwise,

sigmask points to a signal mask word, which is installed through atomic operation when

the pselect function is called. On return, the previous signal mask word is recovered.

The following program shows how to the select function. The program waits for the

standard input (STDIN_FILENO) descriptor to be readable. If select returns within the

timeout period, the standard input is read, and the read character is printed.

Program List 5.15 Use of select function

#include <stdio.h>

#include <sys/select.h>

int main (int argc, char *argv[])

SpaceChain OS

Manual SpaceChain

OS.

148

Application Development Manual

{

 fd_set fdset;

 int ret;

 struct timeval timeout;

 char ch;

 timeout.tv_sec = 10;

 timeout.tv_usec = 0;

 for (;;) {

 FD_ZERO(&fdset);

 FD_SET(STDIN_FILENO, &fdset);

 ret = select(STDIN_FILENO + 1, &fdset, NULL, NULL, &timeout);

 if (ret <= 0) {

 break;

 } else if (FD_ISSET(STDIN_FILENO, &fdset)){

 read(STDIN_FILENO, &ch, 1);

 if (ch == '\n') {

 continue;

 }

 fprintf(stdout, "input char: %c\n", ch);

 if (ch == 'q') {

 break;

 }

 }

 }

 return (0);

}

Run the program under the SylixOS Shell, and enter the characters to see the

corresponding print.

./select_test

h

input char: h

2. poll function group

Functions of the poll function are similar to those of the select function, but the

function interface are different.

#include <poll.h>

SpaceChain OS

Manual SpaceChain

OS.

149

Application Development Manual

int poll(struct pollfd fds[], nfds_t nfds, int timeout);

int ppoll(struct pollfd fds[],

nfds_t nfds,

const struct timespec *timeout_ts,

 const sigset_t *sigmask);

Prototype analysis of Function poll:

 For success of the function, return the quantity of descriptor waited. For failure,

return -1 and set the error number;

 Parameter fds is the array of poll file descriptors;

 Parameter nfds is the number of elements in fds array;

 Parameter timeout is the timeout value.

Prototype analysis of Function ppoll:

 For success of the function, return the quantity of descriptor waited. For failure,

return -1 and set the error number;

 Parameter nfds is the number of elements in fds array;

 Parameter timeout_ts is the timeout value;

 Parameter sigmask is a signal blocked while waiting.

Unlike the select function, the poll function does not construct a file descriptor set for

each condition. Instead, it constructs an array of pollfd structure. Each array element

specifies a file descriptor number and the conditions for which we are interested in the file

descriptor.

struct pollfd {

 int fd; /* file descriptor being polled */

 short int events; /* the input event flags */

 short int revents; /* the output event flags */

};

When the poll function is called, events in each fds element shall be set as one or

more values in Table 5.13. These values tell the kernel which events of the each file

descriptor we care about. At return, the revents member is set by the kernel to indicate

which events occur in each file descriptor.

3 lines in Table 5.13 represents the readable, writable and exception from top to

bottom.

SpaceChain OS

Manual SpaceChain

OS.

150

Application Development Manual

Table 5.13 pollfd event value

Macro name Note

POLLIN

POLLRDNORM

POLLRDBAND

POLLPRI

Can read data beyond high priority without blocking (Equivalent to

POLRRDNORM | POLLRDBAND)

Can read ordinary data without blocking

Can read priority data without blocking

Can read data with high priority without blocking

POLLOUT

POLLWRNORM

POLLWRBAND

Can write the ordinary data without blocking

Same with POLLOUT

Can write priority data without blocking

POLLERR

POLLHUP

There has been error

Hanged off

The timeout wait parameters of the poll function are similar to those of the select

function which are also divided into three cases. We shall notice that the poll function and

the select function will not affect the blocking condition because a file descriptor is

blocked.

The behaviors of the ppoll function are similar to those of poll, except that the ppoll

function can specify the signal mask word.

5.4.4 File record lock

When a process is reading or modifying a portion of a file, the file record lock can be

used to prevent other processes from modifying the same area of the same file. It can be

used to lock an area of a file or the entire file. SylixOS supports multiple file record lock

API.

Previously, we said that SylixOS supports multiple device driver models. However,

only NEW_1 device driver supports file record lock function currently. Such driver file

nodes are similar to vnode of the UNIX system.

Firstly, we introduce the fcntl lock with flexible functions. For the function prototype,

refer to the fcntl part of Section 5.2.1. When introducing the fcntl function earlier, we

mentioned that the fcntl function contains the function to operate the file record lock. This

function contains 3 commands: F_GETLK, F_SETLK and F_SETLKW. The 3rd parameter

of fcntl record lock is a flock structure pointer.

SpaceChain OS

Manual SpaceChain

OS.

151

Application Development Manual

struct flock {

 short l_type; /* F_RDLCK, F_WRLCK, or F_UNLCK */

 short l_whence; /* flag to choose starting offset */

 off_t l_start; /* relative offset, in bytes */

 off_t l_len; /* length, in bytes; 0 means */

 /* lock to EOF */

 pid_t l_pid; /* returned with F_GETLK */

……

};

The meaning of the struct flock member is as follows:

 l_type is the lock type: F_RDLOCK (shared read lock), F_WRLOCK (exclusive

write lock) and F_UNLCK (unlock);

 l_whence value, as shown in Table 5.3;

 l_start is relative to the starting position of l_whence offset (note that it cannot be

locked from the beginning of the file);

 l_len is the length of the lock area. If it is 0, the end of file (EOF) is locked. If data

is added to the file, it will also be locked.

 l_pid is the process ID preventing the current process from locking (returned by

the command F_GETLK).

For the shared read locks and the exclusive write lock mentioned above, the basic

rules are: any number of processes can have a shared read lock on a given byte, but only

one process can have an exclusive write lock on a given byte. Further, if there has already

been one or more read locks on a given byte, you cannot add a write lock on the byte; if

there is a write lock on a byte, you cannot add any more locks.

The above rules apply to lock requests made by different processes, but do not apply

to lock requests proposed by the single process. That is to say, if a process already has a

lock in a file range, and the process attempts to add a lock in the same range, it is also OK,

and the new lock will replace the existing lock at the moment. Therefore, if a process adds

a write lock to a file, and then attempts to add a read lock to the file, it will be executed

successfully, and the original write lock will be replaced by the read lock. We will verify this

view via Program List 5.16.

In addition, when the read lock is added, the file descriptor must be read open. When

the write lock is added, the file descriptor must be write open.

SpaceChain OS

Manual SpaceChain

OS.

152

Application Development Manual

Program List 5.16 Locking in the single process

#include <stdio.h>

#include <unistd.h>

int main (int argc, char *argv[])

{

 int fd;

 struct flock fl;

 short lockt = F_WRLCK;

 fd = open("file", O_RDWR);

 if (fd < 0) {

 fprintf(stderr, "open file failed.\n");

 return -1;

 }

 fl.l_type = lockt;

 fl.l_whence = SEEK_SET;

 fl.l_start = 0;

 fl.l_len = 0;

 if (fcntl(fd, F_SETLK, &fl) < 0) {

 perror("fcntl");

 fprintf(stderr, "add write lock failed.\n");

 close(fd);

 return -1;

 }

 fprintf(stdout, "add write lock success.\n");

 lockt = F_RDLCK;

 fl.l_type = lockt;

 fl.l_whence = SEEK_SET;

 fl.l_start = 0;

 fl.l_len = 0;

 if (fcntl(fd, F_SETLK, &fl) < 0) {

 perror("fcntl");

 fprintf(stderr, "add read lock failed.\n");

 close(fd);

 return -1;

 }

 fprintf(stdout, "add read lock success.\n");

SpaceChain OS

Manual SpaceChain

OS.

153

Application Development Manual

 return 0;

}

Run the program under the SylixOS Shell:

./lock_test

add write lock success.

add read lock success.

SylixOS supports lock of the whole file via the traditional BSD function flock to lock

the entire file. This function is an old API.

#include <sys/file.h>

int flock(int iFd, int iOperation);

Prototype analysis of Function flock:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter iFd is the file descriptor;

 Parameter iOperation is the lock type (as shown in Table 5.14).

Calling the flock function locks an open file, and the types of locks supported by this

function are shown in Table 5.14. When the process uses the flock function to try to lock

the file, if the file has already been locked by other processes, the process will be blocked

until the lock is released, or when the flock function is called, the LOCK_NB parameter is

used. When the file has been locked by other processes when attempts to lock, an error

will return.

The flock function can call the LOCK_UN parameter to release the file lock, or release

the file lock by closing fd, which means that the flock lock will be released as the process

exits.

Table 5.14 Type of flock lock

Type of flock lock Note

LOCK_SH Shared lock, multiple processes can use a lock, commonly used as read lock

LOCK_EX
Exclusive lock, only allow to be occupied by a process, commonly used as

write lock

LOCK_NB Implement non-blocking, blocking at default

LOCK_UN Unlock

SylixOS supports the lockf function, which is a POSIX lock and can be seen as an

package of the fcntl interface.

SpaceChain OS

Manual SpaceChain

OS.

154

Application Development Manual

#include <unistd.h>

int lockf(int iFd, int iCmd, off_t oftLen);

Prototype analysis of Function lockf:

 For success of the function, return 0. For failure, return -1;

 Parameter iFd is the file descriptor;

 Parameter iCmd is the lock command;

 Parameter oftLen is the locked resource length, started from the current offset.

The behavior of calling the lockf function is basically the same with that of the fcntl

function. The file descriptor is input by the lockf function. The lock commands supported

by this function are shown in Table 5.15.

Table 5.15 Lockf lock command

Lockf lock command Note

F_ULOCK Unlock

F_LOCK Request the exclusive lock in the blocking way, i.e., write lock

F_TLOCK Request the exclusive lock in a non-blocking way, i.e., write lock

F_TEST Get the lock status of the specified file area, and test whether it is locked

5.4.5 File memory mapping

File memory mapping can map a disk file to a memory area in memory space. When

the data is fetched from the buffer zone, it is equivalent to read the corresponding byte in

the file. Correspondingly, when data is stored in the buffer zone, the corresponding byte is

automatically written to the file. This makes it possible to perform I/O operations without

using the read function and the write function.

To use this feature, one shall firstly tell the kernel to map a given file into a memory

area. This is realized via the mmap function. These technical details will be introduced in

Chapter 12 Memory Management.

SpaceChain OS

Manual SpaceChain

OS.

155

Application Development Manual

Chapter 6 Thread management

6.1 Thread

The thread is also called as the task, the instruction stream of a certain single

sequence, and it is the smallest unit scheduling of the operating system. A standard

thread consists of thread handle (or ID), current instruction pointer (PC), CPU register set

and thread stack. Each thread is the scheduling unit of the operating system.

The thread itself has only limited and indispensable resources during operation, such

as CPU register, stack and so on. The kernel thread shares all kernel resources, such as

the kernel file descriptor table, while the in-process thread shares all resources in the

process, such as the process file descriptor table.

A CPU can only run one thread at a moment (multi-CPU system can run multiple

threads at the same time). If there are multiple threads in the system, the CPU requires

running switch between several threads, equivalent to concurrent execution of multiple

threads macroscopically. The correspondence between time and thread of CPU is

determined via the scheduling algorithm of the operating system, For example, the time

sharing operating system divides time into smaller fragments, called as time slices. After

each thread runs for a period, the operating system will command the CPU to switch to

another thread for execution. Each thread in the real-time operation system has its own

priority. When it is required to execute the thread with high priority, the operating system

will immediately switch the current CPU to execute the thread with higher priority, and

such dispatching algorithm satisfy demands of the system for real-time signal response.

6.2 Thread state machine

Multiple threads in the same process or kernel can be executed concurrently.

However, threads has discontinuity during operation due to mutual restraint between

threads. The threads also have three basic states of block, ready and run. Meanings of

three states are as follows:

 Block: the thread lacks the conditions or resources to make it run, and can enter

the ready state after conditions are satisfied.

 Ready: The thread already has all resources to make it run, waiting for

scheduling of the operating system;

 Run: the thread has been scheduled by the operating system (the operating

system distributes a CPU to the thread for execution of the thread code).

SpaceChain OS

Manual SpaceChain

OS.

156

Application Development Manual

The thread created in SylixOS system is always at any of these three states.

Where, the blockage state is divided into the following due to different reasons: wait for

semaphores, wait for messages, sleep and so on. State switching between threads is

shown in Figure 6.1.

Figure 6.1 State conversion diagram of the thread

In Figure 6.1, the initial state is just a state before the thread was created. Let's see

switching relationship between other three states:

 Ready → Run: the thread at the ready state is scheduled by the system, and the

right to use CPU is gotten;

 Run → Ready: the threat at the running state is occupied by other threads, or the

right to use CPU is abandoned;

 Ready → Block: other threads actively suspend it (not recommended for

SylixOS);

 Block → Ready: the waiting resource becomes available;

 Run → Block: waiting for semaphores, receiving messages and sleeping make it

blocked.

It is required to indicate that SylixOS does not recommend using the thread suspend

function to suspend other threads (a kind of blockage). Therefore, the structured design of

the program will be damaged, so that design of the application is complicated and

unpredictable, and it is easy to cause design error.

After transition relationships of these states are analyzed, let's see the application

interface function in SylixOS causing these changes in state:

Table 6.1 State change function

Function name State changes

Lw_Thread_Create Create a thread, and the thread will enter the ready state

SpaceChain OS

Manual SpaceChain

OS.

157

Application Development Manual

Lw_Thread_Init Initialize a thread, and the thread enters the initial state

Lw_Thread_Start Enable a thread at the initial state to enter the ready state

Lw_Thread_Suspend Enable the thread to enter the blocked state (not recommended)

Lw_Thread_Resume
Enable the thread from the blocked state to the ready state (not

recommended)

Lw_Thread_ForceResume Force the thread to enter the ready state (not recommended)

Lw_Thread_Yield Enable the thread actively abandon CPU to enter the ready state

Lw_Thread_Wakeup The thread is awakened from the sleep mode into the ready state

Lw_Semaphore_Wait Block thread

Lw_Semaphore_Post Recover the thread from the blocked state to the ready state

Lw_SemaphoreC_Wait Block thread

Lw_SemaphoreC_Post Recover the thread from the blocked state to the ready state

Lw_SemaphoreB_Wait Block thread

Lw_SemaphoreB_Post Recover the thread from the blocked state to the ready state

Lw_SemaphoreM_Wait Block thread

Lw_SemaphoreM_Post Recover the thread from the blocked state to the ready state

Lw_MsgQueue_Receive Block thread

Lw_MsgQueue_Send Recover the thread from the blocked state to the ready state

Lw_Time_Sleep Thread sleep enters the blocked state

Lw_Time_SSleep Thread sleep enters the blocked state

Lw_Time_MSleep Thread sleep enters the blocked state

6.3 SylixOS thread

SylixOS is the multi-thread operating system, which can create multiple threads at the

same time. The specific maximum number of threads depends on the size of the system

memory and related configuration when compilation the SylixOS operating system
①
.

6.3.1 Thread creation

1. Thread attribute creation

Each SylixOS thread has its own attribute, including priority of the thread, stack

information, thread parameters and so on.

#include <SylixOS.h>

ULONG Lw_ThreadAttr_Build(PLW_CLASS_THREADATTR pthreadattr,

size_t stStackByteSize,

UINT8 ucPriority,

ULONG ulOption,

PVOID pvArg);

SpaceChain OS

Manual SpaceChain

OS.

158

Application Development Manual

Prototype analysis of Function Lw_ThreadAttr_Build:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Output parameter pthreadattr returns the generated attribute block;

Each thread attribute block consists of the structure LW_CLASS_THREADATTR. The

structure members are as follows:

typedef struct {

 PLW_STACK THREADATTR_pstkLowAddr; /* Stack low memory start

address */

 size_t THREADATTR_stGuardSize; /* Stack alert area size */

 size_t THREADATTR_stStackByteSize; /* Total stack size (bytes)*/

 UINT8 THREADATTR_ucPriority; /* Thread priority */

 ULONG THREADATTR_ulOption; /* Task options */

 PVOID THREADATTR_pvArg; /* Thread parameters */

 PVOID THREADATTR_pvExt; /* Extended data segment

pointer */

} LW_CLASS_THREADATTR;

For users of SylixOS application development, it is only required to care about the

bold part, and the operating system will set by default for other members.

 Parameter stStackByteSize is the stack size (byte);

 Parameter ucPriority is the thread priority;

In order to use thread priority reasonably, SylixOS sets some common priority values

(the smaller the value, the higher the priority of the thread, and the system has priority

scheduling), as follows
①
.

Table 6.2 Thread priority macro (part)

Macro name Value

LW_PRIO_HIGHEST 0

LW_PRIO_LOWEST 255

LW_PRIO_EXTREME LW_PRIO_HIGHEST

LW_PRIO_CRITICAL 50

LW_PRIO_REALTIME 100

LW_PRIO_HIGH 150

LW_PRIO_NORMAL 200

LW_PRIO_LOW 250

LW_PRIO_IDLE LW_PRIO_LOWEST

SpaceChain OS

Manual SpaceChain

OS.

159

Application Development Manual

In application development, the task priority shall be between LW_PRIO_HIGH

and LW_PRIO_LOW generally, so as not to influence the system kernel threads as much

as possible.

 Parameter ulOption is the thread option;

 Parameter pvArg is the thread parameter;

Table 6.3 Thread option

Macro name Explanation

LW_OPTION_THREAD_STK_CHK Inspect the thread stack during running

LW_OPTION_THREAD_STK_CLR Zero the data during thread creation

LW_OPTION_THREAD_USED_FP Save the floating-point arithmetic unit

LW_OPTION_THREAD_SUSPEND Create thread rear blockage

LW_OPTION_THREAD_INIT Initialize the thread

LW_OPTION_THREAD_SAFE The thread created is the safe mode

LW_OPTION_THREAD_DETACHED The thread shall be free of merger

LW_OPTION_THREAD_UNSELECT The thread does not use the select function

LW_OPTION_THREAD_NO_MONITOR The kernel tracker does not work on the thread

LW_OPTION_THREAD_ UNPREEMPTIVE
The task cannot be occupied (not supported at

present)

LW_OPTION_THREAD_SCOPE_PROCESS
Competition in the progress (not supported at

present)

Note: SylixOS provides a quick function to get the default attribute block of the system, LwStud _

ThreadAttrStup _ GetDefault, and the return value of the function is the thread attribute block. For the

attribute block, the default setting size of the thread stack is 4K, the priority is LW_PRIO_NORMAL, and

the option is LW_OPTION_THREAD_STK_CHK. The reader can appropriately modify the returned

attribute block, and modify the thread option (value assignment between options in the form of "or") and

parameter usually.

SylixOS provides the following set of functions to modify the thread's attribute blocks:

#include <SylixOS.h>

ULONG Lw_ThreadAttr_SetGuardSize(PLW_CLASS_THREADATTR pthreadattr,

 size_t stGuardSize);

ULONG Lw_ThreadAttr_SetStackSize(PLW_CLASS_THREADATTR pthreadattr,

 size_t stStackByteSize);

ULONG Lw_ThreadAttr_SetArg(PLW_CLASS_THREADATTR pthreadattr,

 PVOID pvArg);

The Lw_ThreadAttr_SetGuardSize function modifies the size of the stack alerting

area of the thread attribute block, and the parameter stGuardSize appoints the size of the

new stack alerting area. The Lw_ThreadAttr_SetStackSize function modifies the stack

SpaceChain OS

Manual SpaceChain

OS.

160

Application Development Manual

size of the thread attribute block, and the parameter stStackByteSize appoints the

new stack size. The Lw_ThreadAttr_SetArg function can set the thread's startup

parameter pvArg.

2. Thread stack

Each thread has its own stack area. These areas are used for thread's function call,

distribution of automatic variable, function return value and so on. Each thread control

block saves the initial position, terminal position and stack warning point (for stack

overflow check) of the stack area. The thread is the basic unit of SylixOS scheduling.

When task scheduling occurs, the thread stack area will save the thread's current

environment (for recovery in the context). Therefore, setting of the thread stack must be

reasonable. If it is too big, waste of memory space will be caused. If it is too small, stack

overflow will be caused. All threads in SylixOS run in the same address space. For

real-time requirements, there is no address protection mechanism between threads.

Therefore, stack overflow will cause unpredictable errors.

There is no formula applied mechanically for setting of the stack size. Generally, one

can set a large value according to experience, store space to replace reliability, and use

the ss command to view usage of each task stack in the shell environment.

3. Thread creation

#include <SylixOS.h>

LW_HANDLE Lw_Thread_Create(CPCHAR pcName,

PTHREAD_START_ROUTINE pfuncThread,

PLW_CLASS_THREADATTR pthreadattr,

LW_OBJECT_ID *pulId);

Prototype analysis of Function Lw_Thread_Create:

 For success of the function, return a thread ID created successfully

(LW_HANDLE type). For failure, return the error number;

 Parameter pcName is the thread name;

 The parameter pfuncThread is the thread entry function, i.e., the starting

address of the thread code segment;

 Parameter pthreadattr is the attribute block pointer of the thread (when NULL,

the default property block will be used);

 The parameter pulId is the pointer of the thread ID, and the content is the same

with the return value. It can be NULL.

The function can create an SylixOS thread. Let's take a look at how SylixOS creates a

thread via the following example.

Program List 6.1 Thread creation instance

SpaceChain OS

Manual SpaceChain

OS.

161

Application Development Manual

#include <SylixOS.h>

PVOID tTest (PVOID pvArg)

{

 while (1) {

 printf("thread running...\n");

 sleep(1);

 }

}

int main (int argc, char *argv[])

{

LW_CLASS_THREADATTR threadattr;

LW_HANDLE hThreadId;

Lw_ThreadAttr_Build(&threadattr,

4 * LW_CFG_KB_SIZE,

LW_PRIO_NORMAL,

LW_OPTION_THREAD_STK_CHK,

LW_NULL);

 hThreadId = Lw_Thread_Create("t_test", tTest, &threadattr, LW_NULL);

 if (hThreadId == LW_OBJECT_HANDLE_INVALID) {

 return (PX_ERROR);

 }

 return (ERROR_NONE);

}

Run the program under the SylixOS Shell:

#./thread_test

thread running...

thread running...

#ts

thread show >>

 NAME TID PID PRI STAT ERRNO DELAY PAGEFAILS FPU CPU

---------------- ------- ----- --- ---- ------- ---------- --------- --- ---

……

thread_test 4010033 10 200 SEM 0 0 1 0

t_test 4010034 10 200 SLP 71 88 0 0

……

Output results of the program are printed every 1 second as expected. From output

results of the ts command, it can be seen that the "t_test" thread has been created (ID:

4010034 priority: 200), indicating that our thread is created successfully.

SpaceChain OS

Manual SpaceChain

OS.

162

Application Development Manual

This program uses two functions above mentioned and creation of thread

attributes, and distributes 4 * LW_CFG_KB_SIZE (LW_CFG_KB_SIZE is the built-in

macro of SylixOS system, and the value is 1024) stack size, thread priority of

LW_PRIO_NORMAL and thread option of LW_OPTION_THREAD_STK_CHK, and there

is no thread parameters. The name of the created thread is "t_test". This thread does not

do any substantial thing, but is only a simple print. However, it is enough to explain the

process and method of creating the SylixOS thread.

4. Thread initialization

#include <SylixOS.h>

LW_HANDLE Lw_Thread_Init(CPCHAR pcName,

PTHREAD_START_ROUTINE pfuncThread,

PLW_CLASS_THREADATTR pthreadattr,

LW_OBJECT_ID *pulId);

ULONG Lw_Thread_Start(LW_OBJECT_HANDLE ulId);

Prototype analysis of Function Lw_Thread_Init:

 For success of the function, return the threadID. For failure, return the error

number;

 Parameter pcName is the thread name;

 Parameter pfuncThread is the entry function of the thread;

 Parameter pthreadattr is the thread attribute (when NULL, the default property

block will be used);

 Parameter pulld is the ID pointer, and can be NULL;

Prototype analysis of Function Lw_Thread_Start:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the thread ID;

The Lw_Thread_Init function will create a thread like the Lw_Thread_Create function.

However, there is an essential difference between both functions, i.e., the thread created

by the Lw_Thread_Init function is only at an initial state. The thread is not ready. The

scheduler will not allocate CPU use right to the thread. Only when Lw_Thread_Start

function is called, the thread can be at the ready state, and can be scheduled by the

scheduler.

The following program shows how to use the thread initialize function.

Program List 6.2 Thread initialization instance

SpaceChain OS

Manual SpaceChain

OS.

163

Application Development Manual

#include <SylixOS.h>

PVOID tTest (PVOID pvArg)

{

 while (1) {

 printf("Thread running...\n");

 sleep(1);

 }

 return (LW_NULL);

}

int main (int argc, char *argv[])

{

 LW_CLASS_THREADATTR threadattr;

 LW_HANDLE hThreadId;

 INT iRet;

 Lw_ThreadAttr_Build(&threadattr,

4 * LW_CFG_KB_SIZE,

LW_PRIO_NORMAL,

LW_OPTION_THREAD_STK_CHK,

LW_NULL);

 hThreadId = Lw_Thread_Init("t_test", tTest, &threadattr, LW_NULL);

 if (hThreadId == LW_OBJECT_HANDLE_INVALID) {

 return (PX_ERROR);

 }

 iRet = Lw_Thread_Start(hThreadId);

 if (iRet) {

 return (PX_ERROR);

 }

 return (ERROR_NONE);

}

Run the program under the SylixOS Shell:

#./thread_init

Thread running...

Thread running...

#ts

thread show >>

 NAME TID PID PRI STAT ERRNO DELAY PAGEFAILS FPU CPU

---------------- ------- ----- --- ---- ------- ---------- --------- --- ---

……

SpaceChain OS

Manual SpaceChain

OS.

164

Application Development Manual

thread_init 4010014 1 200 SEM 0 0 1

 0

t_test 4010015 1 200 SLP 71 68 0 0

……

Output results of the program are printed every 1 second as expected. From output

results of the ts command, it can be seen that the "t_test" thread has been created (ID:

4010015 priority: 200), indicating that our thread is created successfully.

Comparing with Program List 6.1, we find that operation results of the two programs

are the same, and properties of the thread created are also the same. Therefore, from the

perspective of running behavior, effect of Program List 6.2 is the same with that of

Program List 6.1. We will use the method in Program List 6.2 to actively control our

threads to enter the ready state, and the method is very useful for some situations.

Note: it might also be noted that all created functions introduced above cannot be called in the

interrupt context.

6.3.2 Thread control

1. Thread suspend and resume

The thread suspend is to make the specified thread at the non-ready state. The

thread at the suspend state is ignored by the scheduler and is relatively "quiet" for

debugging until the suspend is released.

#include <SylixOS.h>

ULONG Lw_Thread_Suspend(LW_OBJECT_HANDLE ulId);

ULONG Lw_Thread_Resume(LW_OBJECT_HANDLE ulId);

Prototype analysis of Function Lw_Thread_Suspend:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the thread ID;

Prototype analysis of Function Lw_Thread_Resume:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the thread ID;

Suspend is a binary memoryless state of a task. It will not check whether the task was

suspended or released before prior to suspend, so:

 Effects of repeated suspend of a certain task are the same with those of one-time

suspend;

SpaceChain OS

Manual SpaceChain

OS.

165

Application Development Manual

 If suspend and release suspend are completed by different tasks, one

must ensure that they are conducted in the correct order;

Let's see the following scenario, thread T1 sends a message to a certain thread T2

before suspend, and T2 releases the suspend state of T1 thread after receiving this

message.

……

T1：Send message to T2 thread

T1：调用 Lw_Thread_Suspend挂起自己

……

T2：Received T1 message

T2：Call Lw_Thread_Resume to release T1 pending state

……

We will find that there is a competitive risk after careful analysis of above scenario. T1

just sends the message. At this time, T2 with high priority receives the message to release

thread suspend. Release has no effect at the moment, and T1 starts to suspend, thus

entering the unlimited suspend state. We shall be careful about this situation.

In addition, we must also pay attention to avoid deadlock of the system at suspend,

which usually requires suspend of the thread after obtaining a certain system resource

with mutex access. One shall especially avoid such situation at asynchronous suspend.

To avoid the competition risk, we can attach the suspend state to the delayed state

and the blocked state, causing the thread to enter the "delayed suspend" or "blocked

suspend" state. The additional suspend state does not influence the original delay and

block of the thread, which means that the suspend state and delayed or blocked state can

coexist.

 During suspension, the delay thread still calculates the delay. If the delay expires,

the task enters the suspend-only state.

 If the waiting condition is satisfied during suspension, the blocked thread will be

unblocked, and enter the suspend-only state.

 If the thread is de-suspended when the delay expires or when the waiting

condition occurs, the thread will returns to the original delay / block state.

Note: Lw_Thread_Suspend function and Lw_Thread_Resume function can be called during interrupt,

and thread suspend is unconditional. To check the thread state at the moment in SylixOS, one can view

“STAT” column via Shell command ts. As shown below, thread “t_test” is at the “SLP” state.

ts

thread show >>

 NAME TID PID PRI STAT ERRNO DELAY PAGEFAILS FPU CPU

---------------- ------- ----- --- ---- ------- ---------- --------- --- ---

SpaceChain OS

Manual SpaceChain

OS.

166

Application Development Manual

……

t_test …… SLP ……

……

2. Thread delay

The thread delay is to let the thread sleep, so that the scheduler can schedule other

threads, and resume operation after thread sleep.

#include <SylixOS.h>

VOID Lw_Time_Sleep(ULONG ulTick);

VOID Lw_Time_SSleep(ULONG ulSeconds);

VOID Lw_Time_MSleep(ULONG ulMSeconds);

Function prototype analysis
①
:

 Lw_Time_Sleep delay unit is Tick
②
;

 Lw_Time_SSleep delay unit is s

 Lw_Time_MSleep delay unit is ms;

The minimum time delay which can be obtained by using Lw_Time_Sleep series

function in SylixOS is 1Tick, If you specify ulTick to be 0, SylixOS will not delay, it will not

affect the current thread's behavior. If you want a shorter time delay (for example: 1ms).

The nanosleep function can be called.

#include <time.h>

int nanosleep(const struct timespec *rqtp,

strutc timespec *rmtp);

Prototype analysis of Function nanosleep:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter rqtp is the sleep time;

 Parameter rmtp saves the remaining time;

The function belongs to POSIX standard. The required wait time is represented by

the pointer rqtp of the structure timespec. The structure represents time in seconds and

nanoseconds. Unlike the above three functions, if rmtp is not NULL, the remaining time is

returned via it. It might also be noted that this function can be awakened by the signal. If

so, the error number errno is EINTR. For a detailed explanation of the signal, see Chapter

10 Signal System.

Note: If no signal is interrupted during nanosleep sleep, rmtp always returns 0. Otherwise, it will

return the time interval from the signal interrupt time point to delay completion.

3. Thread mutex

SpaceChain OS

Manual SpaceChain

OS.

167

Application Development Manual

Mutex access is a classical theoretical problem in the operating system. It is

used to implement consistent access to shared resources. SylixOS implements different

functions to provide multiple mutex mechanisms.

 Thread lock: Lw_Thread_Lock.

 Interrupt lock: Lw_Interrupt_Lock.

 Semaphore: Lw_Semaphore_Wait.

When the time for shared resource accessed is very long, semaphore method is very

effective. For example, when a thread wants to apply for a shared area locked by

semaphore, then this thread will be blocked at the moment, so as to save CPU cycle. For

detailed use of semaphore, see Chapter 7 Inter-thread Communication.

Using the lock interrupt method will increase delay in interrupt response of the system.

For general threads, lock interrupt is not a good method, and it is not suggested to adopt

lock interrupt for general application development SylixOS.

Let's take a look at the thread lock. In SylixOS, we can call the thread lock function to

disable the scheduler. When the thread calls the thread lock function, the scheduler

temporarily fails. Even if a high-priority thread is ready, the thread will not be called out of

the processor until the thread calls the thread release function. This mutex scheme

introduces a priority delay (scheduling delay) for the system; the high priority thread which

requires high real-time performance must wait until the thread is unlocked before being

scheduled. Therefore, superior real-time performance of SylixOS is sacrificed to some

extent. Therefore, this method is also not recommended.

Based on multiple considerations, the semaphore method is generally adopted for

SylixOS application development to achieve mutex access.

Note: the thread lock function only locks the current CPU's schedule, but does not affect the other

CPU's schedule. The blocking function cannot be used during thread locking. Thread locking does not

lock interrupt. When interrupt occurs, the interrupt service routine is called as usual.

6.3.3 End of thread

End of thread means the end of the thread life cycle. End of thread includes 3 cases

of operation end and exit, thread exit and thread delete.

1. Thread delete

Thread delete is to return the thread resources to the operating system, and the

deleted thread can no longer be scheduled.

#include <SylixOS.h>

ULONG Lw_Thread_Delete(LW_OBJECT_HANDLE *pulId, PVOID pvRetVal);

ULONG Lw_Thread_ForceDelete(LW_OBJECT_HANDLE *pulId, PVOID pvRetVal);

SpaceChain OS

Manual SpaceChain

OS.

168

Application Development Manual

Function prototype analysis:

 For success of two functions, return ERROR_NONE. For failure, return the error

number;

 Parameter pulId is the handle of the thread to be deleted;

 Parameter pvRetVal is the value returned to the JOIN function;

Calling above two functions can make the thread end, and release thread resources.

Because SylixOS supports the process, the delete thread can only be a thread in the

same process, and the main thread can only be deleted by itself.

Active deletion of other executing threads may cause that unlocked resources cannot

be released or atomic operations are interrupted. Therefore, it is not recommended to

directly use thread delete function for call in SylixOS and any other operating system

unless security is guaranteed. During application design, "request" delete mode shall be

considered. When the thread finds that it has nothing to do or is requested to delete, the

thread deletes itself (thread exit).

2. Thread exit

#include <SylixOS.h>

ULONG Lw_Thread_Exit(PVOID pvRetVal);

Prototype analysis of Function Lw_Thread_Exit:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter pvRetVal is the value returned to the JOIN function.

3. Thread cancel

#include <SylixOS.h>

ULONG Lw_Thread_Cancel(LW_OBJECT_HANDLE *pulId);

Prototype analysis of Function Lw_Thread_Cancel:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter pulId is the canceled thread ID.

The method to cancel the thread is to send the Cancel signal to the target thread, but

how to deal with the Cancel signal is determined by the target thread itself. It might also be

noted that the thread cancel is a complicated process, and consistency of the resource

shall be considered. For detailed information of thread cancel, see 6.4.4 Thread Cancel.

6.3.4 Multi-thread security

SpaceChain OS

Manual SpaceChain

OS.

169

Application Development Manual

The inherent advantages of the multi-thread model make SMP multi-core

processor to realize true concurrent execution. However, multi-thread brings convenience

and introduces some problems, such as the mutex access of global resources. For safe

access to these resources, the competition conditions and deadlock shall be considered

during program design.

Multi-thread security is a mechanism where a resource can be safely used by multiple

threads in the case of concurrent execution of multiple threads. Multi-thread security

includes the protection and reentrancy of critical section of code. The critical section of

code refers to code which is indivisible when processed. Once execution of this part of the

code is started, no interruption is allowed. To ensure that execution of the critical section

code is not interrupted, interrupt must be closed before entering the critical section, and

interrupt must be immediately opened after the critical section code is executed.

"Reentrability"
①
 means that the function can be called by multiple threads without

destroying the data. Regardless of how many threads are used, the reentrant function

always gets the expected results for each thread. The function which allows reentry is

called as "reentrant function". Otherwise, it is the "non-reentrant function".

The problem of code reentrability is caused by parallel operation of multiple threads.

Therefore, code reentrability is called as "multi-thread security".

In SylixOS, occasions which may cause code reentry include: multi-thread scheduling,

interrupt service program scheduling and signal processing function scheduling.

The following two functions are considered:

char *ctime (const time_t *time)

{

 static char cTimeBuffer[sizeof(ASCBUF)];

 …… /* Write a string to the

buffer */

 return (cTimeBuffer);

}

char *ctime_r (const time_t *time, char *buffer)

{

 …… /* Write a string to the

buffer */

 return (buffer);

}

Two functions will convert the time represented by Parameter time to a character

string for return. The ctime function defines the character string as a local static buffer

zone. Considering that multiple threads call ctime "simultaneously", call of different

threads will cause the ctime function to modify the same character string buffer area

apparently. Therefore, the ctime function is the non-reentrant function. In contrast, the

SpaceChain OS

Manual SpaceChain

OS.

170

Application Development Manual

character string buffer area of the ctime_r function is allocated by the caller, and

different threads run to modify their respective buffer areas. Therefore, it is safe for

multi-thread call.

Some functions will inevitably use global or static variables, such as the malloc

function. In order to protect global variables from being destroyed, mutex is an option.

In addition to the method introduced above to implement function reentrancy, SylixOS

also provides a "thread private data" mechanism to implement function reentry. Such

protection sacrifices real-time performance of the system, and is only effective for single

CPU system. It is not recommended to adopt the method in SylixOS unless necessary.

Thread private data is an unsigned long value of the thread context record (which can

be seen as a pointer to a global variable) and a temporary variable which saves the global

variable value (used to restore the value of the global variable in the thread context).

Every time the thread is called into the processor, the system automatically loads the

value of the global variable from the thread context according to the pointer.

Correspondingly, when the task is called out of the processor, the system automatically

saves the value of the global variable to the thread context according to the pointer.

The following group of functions implement operation of thread private data.

#include <SylixOS.h>

ULONG Lw_Thread_VarAdd(LW_HANDLE ulId, ULONG *pulAddr);

ULONG Lw_Thread_VarDelete(LW_HANDLE ulId, ULONG *pulAddr);

ULONG Lw_Thread_VarSet(LW_HANDLE ulId, ULONG *pulAddr, ULONG ulValue);

ULONG Lw_Thread_VarGet(LW_HANDLE ulId, ULONG *pulAddr);

ULONG Lw_Thread_VarInfo(LW_HANDLE ulId, ULONG *pulAddr[], INT iMaxCounter);

Function prototype analysis:

 Parameter ulId is the thread handle;

 Parameter pulAddr is the private data address;

 Parameter ulValue is the set value;

 Parameter iMaxCounter is the size of address list.

Calling Lw_Thread_VarAdd function can declare a thread private data. For success

of the function, return ERROR_NONE. For failure, return the error number; Calling

Lw_Thread_Delete function can declare a thread private data declared. For success of

the function, return ERROR_NONE. For failure, return the error number; Calling

Lw_Thread_VarSet function can set the value of the thread private data; calling

Lw_Thread_VarGet function can get the value of the thread private data. The function

returns the value of private data or 0; Calling Lw_Thread_VarInfo function will get

information of the thread private data. The function returns the number of private data.

The process for the thread private data to implement reentrant is as follows:

SpaceChain OS

Manual SpaceChain

OS.

171

Application Development Manual

INT _G_iGlobal;

VOID func (VOID)

{

 ……

 if (Lw_Thread_VarAdd(threadId, (ULONG *)&_G_iGlobal) != 0) {

 …… /* Error handling

*/

 }

 _G_iGlobal++; /* Global variable

processing */

 ……

}

Obviously, for each new thread generated based on the func function, the global

variable iGlobal will be added. After the thread private data is declared, the system will

save and load the duplicate of global variable iGlobal owned by each thread when the

thread context switches, so that modification of global variable iGlobal by different threads

will not affect each other, as shown in Figure 6.2.

Figure 6.2 Thread private data

It might also be noted that the thread private data must be declared before any value

assignment.

The Lw_Thread_VarSet function and the Lw_Thread_VarGet function are usually

used to allow multiple cooperative threads participating in a job to obtain the thread private

data values of other threads. It has the function of inter-thread communication. Program

List 6.3 shows an instance of implementation of inter-thread communication by the private

data.

Program List 6.3 Private data implements inter-thread communication

#include <SylixOS.h>

#include <stdio.h>

INT _G_iGlobal = 0;

PVOID tTest (PVOID pvArg)

Private data Private data

SpaceChain OS

Manual SpaceChain

OS.

172

Application Development Manual

{

 while (1) {

 fprintf(stdout, "tTest global value: %d\n", _G_iGlobal);

 sleep(1);

 }

 return (LW_NULL);

}

int main (int argc, char *argv[])

{

 LW_HANDLE hId;

 hId = Lw_Thread_Create("t_test", tTest, NULL, NULL);

 if (hId == LW_HANDLE_INVALID) {

 return (PX_ERROR);

 }

if (Lw_Thread_VarAdd(hId, (ULONG *)&_G_iGlobal) != 0){

 return (PX_ERROR);

 }

 while (1) {

 Lw_Thread_VarSet(hId, (ULONG *)&_G_iGlobal, 55);

 sleep(1);

 }

 Lw_Thread_Join(hId, NULL);

 return (ERROR_NONE);

}

Run the program under the SylixOS Shell, and the results are as follows:

./var_test

tTest global value: 55

tTest global value: 55

Each thread private data added will cause thread context switch, increasing unsigned

long memory copy overhead, which is the flaw of thread private data. Compared to the

previous method based on local dynamic variables, there are also limitations. When it is

required to span the function scope, the global variables must be used. However, the

commonly used method of "global variables + mutex" is more complicated than the

method of thread private data, and mutex also requires a certain running overhead.

SpaceChain OS

Manual SpaceChain

OS.

173

Application Development Manual

6.4 POSIX thread

6.4.1 Thread attribute

All POSIX thread attributes are represented via an attribute object defined as the

structure pthread_attr_t. POSIX defines a series of function settings and read thread

attribute values. Therefore, application does not need to know details of pthread_attr_t

definition.

Management of thread attributes shall comply with the same mode usually:

 Each object is associated with the attribute object of its own type (thread and

thread properties, mutex amount and mutex attribute and so on, and one

attribute object contains multiple attributes (pthread_attr_t). Encapsulation of the

attribute object makes application easier to transplant;

 The attribute object has an initialization function which sets the attribute as the

default value;

 There is a destroy function corresponding to initialization for deinitialization;

 Each attribute object has a function which gets the attribute value from the

attribute object. For success of the function, return 0. For failure, return the error

number. Therefore, it can be returned to the caller via storing the attribute value

in the memory unit appointed by a certain parameter of the function;

 Each attribute object has a function which sets the attribute value, so that the

attribute value is transferred via the parameter.

Calling the pthread_attr_init function can initialize a thread attribute object, and calling

the pthread_attr_destroy function can destroy a thread attribute object.

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *pattr);

int pthread_attr_destroy(pthread_attr_t *pattr);

Prototype analysis of Function pthread_attr_init:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute object pointer requiring initialization;

Prototype analysis of Function pthread_attr_destroy:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute object pointer requiring destroy.

SpaceChain OS

Manual SpaceChain

OS.

174

Application Development Manual

Initialization of the attribute object assigns default values to various attributes,

and POSIX does not restrict the default value. After the attribute object is initialized, the

program usually needs to set the suitable value for single attribute.

Destroy attribute is an inverse process of attribute initialization, which usually sets the

attribute value as the invalid value. If some system resources is dynamically distributed

during initialization, these resources will be released during destroy. Only the thread

option value is set as the invalid value in SylixOS. The attribute object cannot be used for

thread creation after destroy unless reinitialization.

The pthread_getattr_np function can be called to get a attribute object of a appointed

thread. The function is not a part of the POSIX standard, but a kind of extension of the

Linux and SylixOS systems. SylixOS also supports the FreeBSD extension function

pthread_attr_get_np.

#include <pthread.h>

int pthread_attr_get_np(pthread_t thread, pthread_attr_t *pattr);

int pthread_getattr_np(pthread_t thread, pthread_attr_t *pattr);

Prototype analysis of Function pthread_attr_get_np:

 For success of the function, return 0. For failure, return the error number;

 Parameter thread is the thread handle;

 The output parameter pattr is the attribute object of the return thread.

The pthread_attr_get_np and pthread_getattr_np functions have the same functions

and parameter types, and the pthread_getattr_np function calls the pthread_attr_get_np

function on underlying implementation.

Calling the following functions can get or set the name of the POSIX thread.

#include <pthread.h>

int pthread_attr_setname(pthread_attr_t *pattr, const char *pcName);

int pthread_attr_getname(const pthread_attr_t *pattr, char **ppcName);

Prototype analysis of Function pthread_attr_setname:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute object pointer;

 Parameter pcName is the thread name to be set.

Prototype analysis of Function pthread_attr_getname:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute object pointer;

 The output parameter ppcName is the name of the return thread.

SpaceChain OS

Manual SpaceChain

OS.

175

Application Development Manual

Calling the pthread_attr_setname function can set the name of the thread, and

calling the pthread_attr_getname function can get the name of the thread. The default

thread name for initializing the thread attribute object in SylixOS is "pthread".

Thread attributes specified by POSIX are as follows.

1. Stack size

#include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t *pattr, size_t stSize);

int pthread_attr_getstacksize(const pthread_attr_t *pattr, size_t *pstSize);

Prototype analysis of Function pthread_attr_setstacksize:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute object pointer;

 Parameter stSize is the stack size.

Prototype analysis of Function pthread_attr_ getstacksize:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute object pointer;

 The output parameter pstSize returns the stack size.

Calling the pthread_attr_setstacksize function can set the size of the thread stack,

and calling the pthread_attr_getstacksize function will get the stack size of the appointed

thread. The default stack value for initializing the thread attribute object in SylixOS is 0,

which means that the stack size will inherit that of the creator.

Note: The stack size set shall not be less than 128 bytes
①
. Otherwise, EINVAL error value will be

returned.

2. Stack address

#include <pthread.h>

int pthread_attr_setstackaddr(pthread_attr_t *pattr, void *pvStackAddr);

int pthread_attr_getstackaddr(const pthread_attr_t *pattr,

void **ppvStackAddr);

Prototype analysis of Function pthread_attr_setstackaddr:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute object pointer;

 Parameter pvStackAddr is the stack address.

Prototype analysis of Function pthread_attr_getstackaddr:

SpaceChain OS

Manual SpaceChain

OS.

176

Application Development Manual

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute object pointer;

 The output parameter ppvStackAddr is the the return address of the stack.

Calling the pthread_attr_setstackaddr function can set the new starting address of the

stack, and calling the pthread_attr_getstackaddr function will get the starting address of

the stack. The default stack address for initializing the thread attribute object in SylixOS is

LW_NULL, which means that the system will automatically distribute the stack space.

#include <pthread.h>

int pthread_attr_setstack(pthread_attr_t *pattr,

void *pvStackAddr,

size_t stSize);

int pthread_attr_getstack(const pthread_attr_t *pattr,

void **ppvStackAddr,

size_t *pstSize);

Prototype analysis of Function pthread_attr_setstack:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute pointer;

 Parameter pvStackAddr is the stack address;

 Parameter stSize is the stack size.

Prototype analysis of Function pthread_attr_getstack:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute pointer;

 The output parameter ppvStackAddr is the the return address of the stack;

 The output parameter pstSize is the size of the return stack.

Calling the pthread_attr_setstack function can set the starting address and the size of

the stack simultaneously, and calling the pthread_attr_getstack function will get the

starting address and the size of the stack simultaneously.

3. Guard area of the thread stack

#include <pthread.h>

int pthread_attr_setguardsize(pthread_attr_t *pattr, size_t stGuard);

int pthread_attr_getguardsize(pthread_attr_t *pattr, size_t *pstGuard);

Prototype analysis of Function pthread_attr_setguradsize:

 For success of the function, return 0. For failure, return the error number;

SpaceChain OS

Manual SpaceChain

OS.

177

Application Development Manual

 Parameter pattr is the thread attribute pointer;

 Parameter stGuard is the size of the stack guard area.

Prototype analysis of Function pthread_attr_getguradsize:

 For success of the function, return 0. For failure, return the error number;

 Output parameter pstGuard is the size of the return stack guard area.

Calling the pthread_attr_setguradsize function can set the size of the stack guard

area, and calling the pthread_attr_getguradsize function will get the size of the stack

guard area. The size of the default stack guard area for initializing the thread attribute

object in SylixOS is LW_CFG_THREAD_DEFAULT_GUARD_SIZE.

4. Detach status

#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *pattr, int iDetachState);

int pthread_attr_getdetachstate(const pthread_attr_t *pattr,

int *piDetachState);

int pthread_detach(pthread_t thread);

Prototype analysis of Function pthread_attr_setdetachstate:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute pointer;

 Parameter iDetachState is the detach state value.

Prototype analysis of Function pthread_attr_getdetachstate:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute pointer;

 The output parameter piDetachState is the return detach state value.

Prototype analysis of Function pthread_detach:

 For success of the function, return 0. For failure, return the error number;

 Parameter thread is the thread handle to be detached.

The thread detach states is divided into the join state and the separate state. At the

join state, the thread creates a new thread to block itself until the new thread exits.

Calling the pthread_attr_setdetachstate function can set the detach state of the

thread attribute object, and calling the pthread_attr_getname function will get the detach

state of the thread attribute object. The default detach state for initializing the thread

attribute object in SylixOS is the join state (PTHREAD_CREATE_JOINABLE).

SpaceChain OS

Manual SpaceChain

OS.

178

Application Development Manual

If the thread is created in the join state, the thread can call the pthread_detach

function to make it into a separate state. Otherwise, it is infeasible.

5. Inherit scheduling

#include <pthread.h>

int pthread_attr_setinheritsched(pthread_attr_t *pattr, int iInherit);

int pthread_attr_getinheritsched(const pthread_attr_t *pattr,

int *piInherit);

Prototype analysis of Function pthread_attr_setinheritsched:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute pointer;

 Parameter iInherit is the inherit attribute.

Prototype analysis of Function pthread_attr_getinheritsched:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute pointer;

Inherit scheduling determines whether to inherit the scheduling parameter from the

parent thread (PTHREAD_INHERIT_SCHED) or be appointed explicitly

(PTHREAD_EXPLICIT_SCHED) when creating the thread.

Calling the pthread_attr_setinheritsched function can set inheritance of the thread

attribute object, and calling the pthread_attr_getinheritsched function will get the

scheduling strategy of the thread attribute object (inheritance). The default scheduling

strategy for initializing the thread attribute object in is explicitly appointed.

6. Dispatching strategy

#include <pthread.h>

int pthread_attr_setschedpolicy(pthread_attr_t *pattr, int iPolicy);

int pthread_attr_getschedpolicy(const pthread_attr_t *pattr, int *piPolicy);

Prototype analysis of Function pthread_attr_setschedpolicy:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute pointer;

 Parameter iPolicy is the scheduling strategy.

Prototype analysis of Function pthread_attr_getschedpolicy:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute pointer;

SpaceChain OS

Manual SpaceChain

OS.

179

Application Development Manual

 The output parameter piPolicy returns the scheduling strategy.

The item appoints the scheduling strategy to create the new thread, including

SCHED_FIFO, SCHED_RR and SCHED_OTHER (SCHED_OTHER is the custom

scheduling strategy specified by POSIX, and SCHED_OTHER is equal to SCHED_RR in

SylixOS.). For detailed contents of these two scheduling strategies, see Section 6.6.

Calling the pthread_attr_setschedpolicy function can set the scheduling strategy of

the thread attribute object, and calling the pthread_attr_getschedpolicy function will get

the scheduling strategy of the thread attribute object. The default scheduling strategy for

initializing the thread attribute object in SylixOS is SCHED_RR.

7. Scheduling parameter

#include <pthread.h>

int pthread_attr_setschedparam(pthread_attr_t *pattr,

 const struct sched_param *pschedparam);

int pthread_attr_getschedparam(const pthread_attr_t *pattr,

 struct sched_param *pschedparam);

Prototype analysis of Function pthread_attr_setschedparam:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute pointer;

 The output paramete pschedparam is the scheduling parameter;

Prototype analysis of Function pthread_attr_getschedparam:

 For success of the function, return 0. For failure, return the error number;

 Parameter pattr is the thread attribute pointer;

 The output parameter pschedparam returns the scheduling parameter.

After the thread is created successfully, the scheduling parameter is allowed to be

modified dynamically. For detailed contents of the scheduling parameter, see Section 6.7.

Calling the pthread_attr_setschedparam function can set the scheduling parameter of

the thread attribute object, and calling the pthread_attr_getschedpolicy function will get

the scheduling parameter of the thread attribute object. The default scheduling parameter

for initializing the thread attribute object in SylixOS only sets the thread priority as

LW_PRIO_NORMAL.

6.4.2 Thread creation

#include <pthread.h>

int pthread_create(pthread_t *pthread,

SpaceChain OS

Manual SpaceChain

OS.

180

Application Development Manual

const pthread_attr_t *pattr,

void *(*start_routine)(void *),

void *arg);

Prototype analysis of Function pthread_create:

 For success of the function, return 0. For failure, return the error number;

 Output parameter pthread is the return thread handle;

 Parameter pattr is the thread attribute object pointer;

 Parameter start_routine is the thread function;

 Parameter arg is the entry function parameter.

Calling the pthread_create function can create a POSIX thread, and the thread

attribute object pattr can be created or dynamically set via the pthread_attr_* series of

functions. If the pattr is NULL, the system will set a default thread attribute object. When

the thread function appointed by the start_routine returns, the new thread ends. It might

also be noted that the thread function start_routine has only one pointer parameter arg,

which means that multiple parameters shall be packaged as a structure for transfer.

The POSIX thread handle is defined as the pthread_t type variable.

POSIXPOSIXPOSIXThe thread creator gets the created thread handle when the thread is

created, the thread can get its own thread handle via calling the pthread_self function, and

POSIX also defines the pthread_equal function to compare two threads for equality.

#include <pthread.h>

pthread_t pthread_self(void);

int pthread_equal(pthread_t thread1, pthread_t thread2);

Prototype analysis of Function pthread_self:

 For success of the function, return the current thread handle. For failure, return 0.

Prototype analysis of Function pthread_equal:

 The function returns comparative results;

 Parameter thread1 is the thread handle;

 Parameter thread2 is the thread handle;

The following program shows how to creat the POSIX thread. The following program

calls the function pthread_join to thread join, which will cause the main thread to wait for

the child thread until exit (the specific usage of the pthread_join function is introduced in

the next section).

Program List 6.4 POSIX thread creation

#include <stdio.h>

SpaceChain OS

Manual SpaceChain

OS.

181

Application Development Manual

#include <pthread.h>

#include <time.h>

void *routine (void *arg)

{

 fprintf(stdout, "pthread running...\n");

 return (NULL);

}

int main (int argc, char *argv[])

{

 pthread_t tid;

 pthread_attr_t attr;

 int ret;

 ret = pthread_attr_init(&attr);

 if (ret != 0) {

 fprintf(stderr, "pthread attr init failed.\n");

 return (-1);

 }

 ret = pthread_create(&tid, &attr, routine, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 pthread_join(tid, NULL);

 pthread_attr_destroy(&attr);

 return (0);

}

The above program calls the function pthread_attr_init to initialize the thread attribute

object, and correspondingly calls the function pthread_attr_destroy to deinitialize the

attribute object. Actually, we are accustomed to setting the second parameter of the

pthread_create function as NULL during programming, so as to tell the operating system

to set the thread attribute object as the default value.

Run the program under the SylixOS Shell, and the results are as follows:

./pthread_test

pthread running...

6.4.3 Thread exit

SpaceChain OS

Manual SpaceChain

OS.

182

Application Development Manual

#include <pthread.h>

void pthread_exit(void *status);

Prototype analysis of Function pthread_exit:

 The function has no return value;

 Parameter status is the thread exit status code.

Thread end, i.e., the thread explicitly or implicitly calls the pthread_exit function.The

status usually represents an integer, and can also point to a more complex data structure.

The thread end code will be got by another thread which has joind with the thread.

The single thread can exit in 3 ways:

 The thread can simply return from the thread entry function, and the return value

is the thread exit code;

 Threads can be canceled by other threads in the same process (see 6.4.4

Thread cancel);

 The thread explicitly calls the pthread_exit function.

The thread can wait for another thread to exit synchronously and get its exit code. It

might also be noted that the synchronously waiting target thread must be at the join state,

as shown in Figure 6.3.

Figure 6.3 Thread synchronization wait

#include <pthread.h>

int pthread_join(pthread_t thread, void **ppstatus);

Prototype analysis of Function pthread_join:

 For success of the function, return 0. For failure, return the error number;

 Parameter thread is the thread handle requiring join;

 Output parameter ppstatus is the thread exit status.

Calling the pthread_join function can merge the appointed thread. Calling thread will

always block wait until it returns. After the thread returns, the pthread_join function will get

the exit code of the thread via the ppstatus parameter.

SpaceChain OS

Manual SpaceChain

OS.

183

Application Development Manual

One can set the ppstatus as NULL if not interested in the return value of the

thread. In this case, the thread calling the pthread_join function can wait for the appointed

thread to terminate, but it does not get the termination status of the thread.

The following program shows how to get the exit code of the thread via pthread_join.

Program List 6.5 Get the exit code of the thread

#include <stdio.h>

#include <pthread.h>

void *routine (void *arg)

{

 fprintf(stdout, "thread 1 return.\n");

 return ((void *)1);

}

void *routine1 (void *arg)

{

 fprintf(stdout, "thread 2 exit.\n");

 pthread_exit((void *)2);

}

int main (int argc, char *argv[])

{

 pthread_t tid, tid1;

 int ret;

 void *retval;

 ret = pthread_create(&tid, NULL, routine, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 ret = pthread_join(tid, &retval);

 if (ret != 0) {

 fprintf(stderr, "pthread join thread 1 failed.\n");

 return (-1);

 }

 fprintf(stdout, "thread 1 return code: %ld\n", (long)retval);

 ret = pthread_create(&tid1, NULL, routine1, NULL);

 if (ret != 0) {

SpaceChain OS

Manual SpaceChain

OS.

184

Application Development Manual

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 ret = pthread_join(tid1, &retval);

 if (ret != 0) {

 fprintf(stderr, "pthread join thread 2 failed.\n");

 perror("pthread_join");

 return (-1);

}

fprintf(stdout, "thread 2 exit code: %ld\n", (long)retval);

 return (0);

}

The above program uses two methods for thread exit: return thread and call the

pthread_exit function to exit.

Run the program under the SylixOS Shell, and the results are as follows:

./join_test

thread 1 return.

thread 1 return code: 1

thread 2 exit.

thread 2 exit code: 2

It can be seen from execution results that when a thread exits by calling the

pthread_exit function or simply returns from the thread function, other threads in the

process can get the exit code of the thread by calling the pthread_join function.

As mentioned earlier, the untyped pointer parameters of the pthread_create function

and the pthread_exit function can transfer a more complex structure. However, it shall be

noted that the memory used by the structure must remain valid after the caller completes

the call. For example, if the structure is allocated on the stack calling the thread, the

memory contents of other threads may have changed when using the structure. For

another example, the thread allocates a structure on its own stack and then transfers the

pointer pointing to the structure to the pthread_exit function. When the thread calling the

pthread_join function tries to use the structure, the stack may have been revoked, and the

memory has been used for other purposes.

6.4.4 Thread cancel

Canceling a thread shall guarantee that the thread can release any locked and

allocated memory it holds, so as to maintain consistency in the whole the system. It has

SpaceChain OS

Manual SpaceChain

OS.

185

Application Development Manual

cert

A simple thread cancel: the cancel thread calls a cancel thread function, and the

canceled thread dies. In this case, the resources held by the canceled thread are not

released. The cancel thread shall guarantee that the canceled one is at the safe

cancellation state. In a system requiring high reliability, such guarantee is very difficult or

cannot be realized. This cancel is called as unrestricted asynchronous cancel.

Asynchronous cancel security is related with the asynchronous cancel, i.e., a piece of

code can be canceled at any point during execution without causing inconsistency. The

function satisfying the condition is called as the asynchronous cancel security function.

Apparently, the asynchronous cancel security function does not involve use of mutex and

so on. The POSIX standard requires that these functions are asynchronous cancel

security functions: pthread_cancel, pthread_setcancelstate and pthread_setcanceltype.

The POSIX standard defines a more secure thread cancel mechanism. A thread can

sent the cancel request to other threads of the process in a reliable and controlled manner,

and the target thread can suspend the request and enable the actual cancel action to take

place later, called as the delay cancel. The target thread can also define the thread

clearing function automatically called by the system after canceled. A concept related with

the delay cancel is the cancel point.

POSIX cancels the point function and a series of cancel control functions to realize

the delay cancel via defining a cancelable state for a thread.

The thread can call the pthread_cancel function to request cancellation of a thread.

#include <pthread.h>

int pthread_cancel(pthread_t thread);

Prototype analysis of Function pthread_cancel:

 For success of the function, return 0. For failure, return the error number;

 Parameter thread is the thread handle.

The pthread_cancel function is asynchronous with the cancel action of the target

thread. According to different settings of the target thread, the cancel request may be

ignored, executed immediately or delayed. In order to clarify these actions, here we need

to understand the cancel state, cancel type and cancel point concept of the thread.

1. Cancellation status

The thread cancel state determines whether the appointed thread can be canceled.

The cancel state is divided into allow cancel and prohibit cancel, as shown in Table 6.4.

Setting a thread as prohibit cancel means that the thread can only return from itself or call

the pthread_exit function to exit.

#include <pthread.h>

SpaceChain OS

Manual SpaceChain

OS.

186

Application Development Manual

int pthread_setcancelstate(int newstate, int *poldstate);

Prototype analysis of Function pthread_setcancelstate:

 For success of the function, return 0. For failure, return the error number;

 The parameter newstate is the new state, as shown in Table 6.4;

 The output parameter poldstate returns to the previous state.

Table 6.4 Cancel state

Cancellation status Note

LW_THREAD_CANCEL_ENABLE Allow cancel

LW_THREAD_CANCEL_DISABLE Prohibit cancel

Calling the pthread_setcancelstate function appoints newstate parameter value as

LW_THREAD_CANCEL_ENABLE to allow cancel, and

LW_THREAD_CANCEL_DISABLE to prohibit cancel. If the parameter poldstate is not

NULL, it returns the previous cancel state.

2. Cancellation type

The cancel type is the thread cancel mode, which is divided into asynchronous cancel

and delay cancel, as shown in Table 6.5.

#include <pthread.h>

int pthread_setcanceltype(int newtype, int *poldtype);

Prototype analysis of Function pthread_setcancelstate:

 For success of the function, return 0. For failure, return non-0 value;

 Parameter newtype is the new type, as shown in Table 6.5;

 Output parameter poldtype returns the previous type.

Table 6.5 Cancel type

Cancellation type Note

LW_THREAD_CANCEL_ASYNCHRONOUS Asynchronous cancel

LW_THREAD_CANCEL_DEFERRED Delay cancel

Calling the pthread_setcanceltype function can set the cancellation type. When the

poldtype is non-NULL, it returns the previous cancel type.

When the cancel state is set to prohibit, the cancel request for the thread will be

SpaceChain OS

Manual SpaceChain

OS.

187

Application Development Manual

ignored. When the cancel state is set to allow, if the cancel request is received, the

system action is determined by the selected cancel type.

 Asynchronous cancel, the cancel request is executed immediately;

 Delay cancel, the cancellation request is suspended, and executed until running

to the next cancel point.

3. Cancel point

When the delay cancel mechanism is canceled, a thread defines the cancel point

where it can be canceled. When the cancel request is received, the canceled thread exits

when it reaches the cancel point or when a cancel point call is blocked. By the delay

cancel, the program does not require prohibit/ allow cancel operation when entering the

critical section.

It can be canceled at the cancel point during the delay cancel, and the restriction may

enable the cancel request to be suspended for any length of time. Therefore, if a certain

call may enable the thread to be blocked or enter a certain process for a long term, POSIX

requests that these calls belong to a cancel point, or call these calls as cancel point calls,

so as to prevent the cancel request from falling into long-term wait. Functions owning the

cancel point in SylixOS are as shown in Table 6.6.

Table 6.6 Functions owning the cancel point

Function name Function name Function name

Lw_Thread_Join send open

Lw_Thread_Start sendmsg close

sleep aio_suspend read

Lw_Thread_Cond_Wait mq_send pread

system mq_timedsend write

wait mq_reltimedsend_np pwrite

waitid mq_receive readv

waitpid mq_timedreceive writev

wait3 mq_reltimedreceive_np lockf

wait4 pthread_barrier_wait fsync

reclaimchild sem_wait fdatasync

accept4 sem_timedwait pselect

connect sem_reltimedwait_np select

recv tcdrain pause

recvfrom fcntl sigsuspend

recvmsg creat sigwait

sigwaitinfo sigtimedwait msgrcv

msgsnd pthread_join pthread_testcancel

SpaceChain OS

Manual SpaceChain

OS.

188

Application Development Manual

The following program is an example of thread delay cancel. The program

creates the thread thread0, and sets the cancel type as the delay cancel in the thread. The

sleep function is a function which owns a cancel point. Therefore, the program will check

whether the thread has the cancel request when running to the sleep function. When the

cancel request is checked, the thread will be canceled at the next cancel point.

Program List 6.6 Thread delay cancel

#include <pthread.h>

#include <stdio.h>

void *thread0 (void *arg)

{

 int oldstate;

 int oldtype;

 pthread_setcancelstate(LW_THREAD_CANCEL_ENABLE, &oldstate);

 pthread_setcanceltype(LW_THREAD_CANCEL_DEFERRED, &oldtype);

 while (1) {

 fprintf(stdout, "thread0 running...\n");

 sleep(1);

 }

 return (NULL);

}

int main (int argc, char *argv[])

{

 pthread_t tid;

 int ret;

 ret = pthread_create(&tid, NULL, thread0, NULL);

 if (ret != 0) {

 return (-1);

 }

 sleep(3);

 pthread_cancel(tid);

 pthread_join(tid, NULL);

 fprintf(stdout, "thread0 cancel.\n");

 return (0);

}

Run the program under the SylixOS Shell, and the cancel situation of the thread can

SpaceChain OS

Manual SpaceChain

OS.

189

Application Development Manual

be seen from the results.

./cancel_test

thread0 running...

thread0 running...

thread0 running...

thread0 cancel.

The functions shown in Table 6.6 are realized via directly or indirectly calling the

pthread_testcancel function. Therefore, the target thread can also call the

pthread_testcancel function to check the cancel request. The difference between

pthread_testcancel and other cancellation point calls is that the function does nothing

except for creating a cancel point, i.e., specifically responds to cancel request.

#include <pthread.h>

void pthread_testcancel(void);

If the pthread_testcancel function does not check the cancel request, it is directly

returned to the caller. When the cancel request is checked, the thread will be deleted and

no longer returned to the caller.

The thread can arrange the function where it needs to call when it exits, such function

is called as the thread cleanup processing program, and a thread can create multiple

cleanup processing programs. The processing programs are recorded in the stack, i.e.,

the sequence of execution is opposite with that of registration, as shown in Figure 6.4.

Figure 6.4 Cleanup function stack

#include <pthread.h>

void pthread_cleanup_pop(int iNeedRun);

void pthread_cleanup_push(void (*pfunc)(void *), void *arg);

Prototype analysis of Function pthread_cleanup_pop:

 Parameter iNeedRun indicates whether to execute.

Prototype analysis of the function pthread_cleanup_push:

SpaceChain OS

Manual SpaceChain

OS.

190

Application Development Manual

 Parameter pfunc is the cleanup function to be executed;

 Parameter arg is the cleanup function parameter.

If iNeedRun is 0, the cleanup function will not be called, the pthread_cleanup_pop

function will delete the cleanup processing program created via the last

pthread_cleanup_push call.

These functions must be used in the paired form in the action scope same with the

thread.

The following program shows how to use these two functions.

Program List 6.7 Thread cleanup

#include <stdio.h>

#include <pthread.h>

void cleanup (void *arg)

{

 fprintf(stdout, "cleanup: %s.\n", (char *)arg);

}

void *routine (void *arg)

{

 fprintf(stdout, "thread 1 running...\n");

 pthread_cleanup_push(cleanup, "thread1 first");

 pthread_cleanup_push(cleanup, "thread1 second");

 pthread_cleanup_pop(0);

 pthread_cleanup_pop(0);

 return ((void *)1);

}

void *routine1 (void *arg)

{

 fprintf(stdout, "thread 2 running...\n");

 pthread_cleanup_push(cleanup, "thread2 first");

 pthread_cleanup_push(cleanup, "thread2 second");

 if (arg) {

 return ((void *)2);

 }

SpaceChain OS

Manual SpaceChain

OS.

191

Application Development Manual

 pthread_cleanup_pop(0);

 pthread_cleanup_pop(0);

 return ((void *)2);

}

int main (int argc, char *argv[])

{

 pthread_t tid, tid1;

 int ret;

 void *retval;

 ret = pthread_create(&tid, NULL, routine, (void *)1);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 ret = pthread_join(tid, &retval);

 if (ret != 0) {

 fprintf(stderr, "pthread join thread 1 failed.\n");

 return (-1);

 }

 fprintf(stdout, "thread 1 return code: %ld\n", (long)retval);

 ret = pthread_create(&tid1, NULL, routine1, (void *)2);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 ret = pthread_join(tid1, &retval);

 if (ret != 0) {

 fprintf(stderr, "pthread join thread 2 failed.\n");

 perror("pthread_join");

 return (-1);

 }

 fprintf(stdout, "thread 2 exit code: %ld\n", (long)retval);

 return (0);

}

Run the program under the SylixOS Shell:

./push_test

SpaceChain OS

Manual SpaceChain

OS.

192

Application Development Manual

thread 1 running...

thread 1 return code: 1

thread 2 running...

cleanup: thread2 second.

cleanup: thread2 first.

thread 2 exit code: 2

From running results of the program, it can be seen that both threads run and exit

normally, while the thread 1 does not call the cleanup function. As we mentioned before,

the pthread_cleanup_pop function parameter iNeedRun is 0, and it will not call the clean

function. However, the pthread_cleanup_pop function parameter iNeedRun of the

thread2 is also 0, but it calls the cleanup function. This shows that the clean function is

called after the thread function exits, and the call sequence is opposite with that during

installation.

6.5 POSIX thread key value

The POSIX thread key value is also called as the thread private data. Intrinsically, the

thread key values has same names and different values for multiple threads, as shown in

Figure 6.5. In Section 6.3.4 we discussed the role of thread private data in multi-threaded

security. The following describes API of the POSIX thread key and how to use it.

（线程=thread）

Figure 6.5 Thread key value

Note:global chain tables manages all keys in SylixOS. Therefore, keys in SylixOS are visual in the

whole system.

#include <pthread.h>

int pthread_key_create(pthread_key_t *pkey, void (*destructor)(void *));

int pthread_key_delete(pthread_key_t key);

Prototype analysis of Function pthread_key_create:

 For success of the function, return 0. For failure, return the error number;

 Output parameter pkey returns the thread key created;

SpaceChain OS

Manual SpaceChain

OS.

193

Application Development Manual

 Parameter destructor is the delete function.

Prototype analysis of Function pthread_key_delete:

 For success of the function, return 0. For failure, return the error number;

 Parameter key is the key to be deleted.

Calling the pthread_key_create function can create a key, which can be used by all

threads in the same process. Therefore, the key is usually defined as a global variable. If

Parameter destructor is not NULL, it is automatically called when the key is deleted. If it

is not required to release any memory, Parameter destructor can be set as NULL. Calling

the pthread_key_delete function will delete a key. It might also be noted that, the key

cannot be deleted in the parameter destructor function, because the key belongs to the

whole system, i.e., all threads is visual. If the key in the destructor function is deleted,

other threads may access it again, which will cause unpredictable errors.

A key corresponds to the only destructor function shared by all threads. The

destructor function must be appointed when the key is created, and cannot be changed.

If the destructor function is appointed, SylixOS will automatically call the cleanup function

when the thread exits.

The key returned by the pthread_key_create function is the pthread_key_t type,

which may represent different types in different system realization. The key value is just

the array index in some systems, while the key value represents an address value in

SylixOS. Therefore, we will not get the preconceive results when trying to print a key

value.

Calling the pthread_setspecific function can associate the thread private data with the

key.(the key is returned via the previous pthread_key_create call) The function of the

pthread_getspecific function is opposite with that of the pthread_setspecific function, and

the private data (pvalue) associated with the key in the thread is returned.

#include <pthread.h>

int pthread_setspecific(pthread_key_t key, const void *pvalue);

void *pthread_getspecific(pthread_key_t key);

Prototype analysis of Function pthread_setspecific:

 For success of the function, return 0. For failure, return the error number;

 Parameter key is the key;

 Parameter pvalue is the value to be set.

Prototype analysis of Function pthread_getspecific:

 For success of the function, return 0. For failure, return the error number;

 Parameter key is the key;

SpaceChain OS

Manual SpaceChain

OS.

194

Application Development Manual

Parameter pvalue of the pthread_setspecific function is an untyped pointer,

which can point to any data type, including complex data structure. When the thread

terminates, the pointer will be transfered as a parameter to the destructor function

(pthread_key_create parameter) corresponding to the key.

The following program shows how to use POSIX thread key.

Program List 6.8 Use of POSIX thread key

#include <pthread.h>

#include <stdio.h>

static char *str = "this is pthread key.";

static pthread_key_t key;

void *thread (void *arg)

{

 void *keyval;

 pthread_setspecific(key, str);

 sleep(2);

 keyval = pthread_getspecific(key);

 fprintf(stdout, "keyval child thread is: %s\n", (char *)keyval);

 return (NULL);

}

int main (int argc, char *argv[])

{

 pthread_t tid;

 int ret;

 void *keyval;

 ret = pthread_key_create(&key, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread key create failed.\n");

 return (-1);

 }

 ret = pthread_create(&tid, NULL, thread, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

SpaceChain OS

Manual SpaceChain

OS.

195

Application Development Manual

 }

 keyval = pthread_getspecific(key);

 fprintf(stdout, "keyval main thread is: %s\n", (char *)keyval);

 pthread_join(tid, NULL);

 pthread_key_delete(key);

 return (0);

}

Run the program in SylixOS Shell, and it can be seen from program running results

that two threads in the program share a key, but the key value set in the child thread is not

visible in the main thread. As shown in Figure 6.5, although the thread ID_x and the thread

ID_y share the key key_n, their values value_x and value_y are different.

./key_test

keyval main thread is: (null).

keyval child thread is: this is pthread key.

6.6 SylixOS thread scheduling

A significant difference between real-time system and time-sharing system is

reflected in the scheduling strategy. Real-time system scheduling concerns delay in

response to real-time events. However, the traditional time-sharing system scheduling

considers multiple objectives: fairness, efficiency, utilization and throughput. Therefore,

the real-time system usually adopts priority scheduling, that is to say, the operating

system always selects the highest priority from the ready task queue for operation.

6.6.1 Priority scheduling

A thread will monopolize processor running once it gets the processor, and the

system will schedule other threads unless it decides to abandon the processor for a

certain reason, the scheduling mode is called as "non-preemptive scheduling", i.e., the

system reselects the thread according to priority scheduling after the thread actively

makes way for the processor. The scheduling mode will cause that the ready thread with

high priority cannot be timely responded. Therefore, the real-time response speed will be

reduced, When a thread is running, the operating system can deprive the processor

allocated to it and allocate it to other threads according to a certain principle, the

scheduling mode is called as "preemptive scheduling", and the scheduler principle

includes: priority principle, time slice principle and so on. The preemptive priority

scheduling principle is adopted between different priorities in SylixOS.

SpaceChain OS

Manual SpaceChain

OS.

196

Application Development Manual

It can be seen from the above that the "preemptive scheduling” mode shall be

adopted when focusing on real-time response. As long as the higher-priority thread is

ready, the system immediately interrupts the current thread to schedule the high-priority

thread, so as to guarantee that the high-priority thread can get the processor at any time,

which is basic requirements for the real-time system.

The SylixOS kernel supports 256 priorities
①
: 0 to 255. Priority 0 is the highest and

Priority 255 is the lowest. The priority is determined when the thread is created, and

dynamic modification is allowed during program execution. For the kernel, the priority is

determined when a thread is selected from the ready queue, i.e., the kernel will not

dynamically calculate the priority of each thread. Therefore, the scheduling strategy

belongs to the static scheduling strategy. Compared with scheduling of the dynamic

scheduling strategy, the thread priority shall be dynamically determined and scheduled

according to a certain target. The efficiency of the static scheduling strategy is higher than

that of the dynamic scheduling strategy.

#include <SylixOS.h>

ULONG Lw_Thread_SetPriority(LW_OBJECT_HANDLE ulId, UINT8 ucPriority);

ULONG Lw_Thread_GetPriority(LW_OBJECT_HANDLE ulId, UINT8 *pucPriority);

Prototype analysis of Function Lw_Thread_SetPriority:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulld is the thread handle to be set;

 Parameter ucPriority is the new priority value.

Prototype analysis of Function Lw_Thread_GetPriority:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the thread handle;

 Output parameter pucPriority returns the thread priority.

Calling the Lw_Thread_SetPriority function can set the priority of a appointed thread,

and calling the Lw_Thread_GetPriority function can get the priority of the appointed

thread.

Note: we can use the Shell command sprio to dynamically modify the priority of the running thread.

 [Command format]

sprio [priority thread_id]

 [Common option]

None

 [Instructions for parameters]

SpaceChain OS

Manual SpaceChain

OS.

197

Application Development Manual

priority ：Priority value

thread_id ：Target thread ID

6.6.2 RR (Round-Robin) scheduling

The above-mentioned priority-based scheduling strategy has such problems: if it is

not preempted by the higher-priority thread, or makes way for the processor due to

blockage or other reasons, the thread will keep on running. In the circumstance, the

thread with the same priority will not run. RR scheduling is based on such philosophy: on

the premise of higher-priority thread scheduling still runs preferentially, fairness in a

certain significance is pursued during scheduling between threads with the same priority.

RR scheduling divides thread running into time slices. After the thread runs for a time

slice, the kernel calls it out of the processor and places it at the queue tail of the ready

thread with same priority, and reselects thread running conforming to conditions. The

effect of RR scheduling is to "make way for" the processor to the next thread after each

thread runs a time slice, like rotation, so it is also called rotation scheduling. It can be seen

that RP scheduling does not change characteristics of two real-time scheduling of

"priority-based" and "preemptible".

If the RR scheduling strategy is adopted, one issue worth considering is

determination of the time slice size. The small time slice facilitates the thread with same

priority to fairly share the processor, but increases the scheduling overhead. If the time

slice is increased, the scheduling overhead decreases, but the scheduling effect will tend

to priority scheduling. The reasonable time slice will be compromised between fairness

and efficiency.

Calling the following function can dynamically change and get the time slice of the

thread.

#include <SylixOS.h>

ULONG Lw_Thread_SetSlice(LW_OBJECT_HANDLE ulId, UINT16 usSlice);

ULONG Lw_Thread_GetSlice(LW_OBJECT_HANDLE ulId, UINT16 *pusSliceTemp);

ULONG Lw_Thread_GetSliceEx(LW_OBJECT_HANDLE ulId, UINT16 *pusSliceTemp,

UINT16 *pusCounter);

Prototype analysis of Function Lw_Thread_SetSlice:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the thread handle;

 Parameter usSlice is the new time slice of the thread.

Prototype analysis of Function Lw_Thread_GetSlice:

SpaceChain OS

Manual SpaceChain

OS.

198

Application Development Manual

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the thread handle;

 Output parameter pusSliceTemp returns the time slice.

Prototype analysis of Function Lw_Thread_GetSliceEx:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the thread handle;

 Output parameter pusSliceTemp returns the time slice;

 Output parameter pusCounter returns the remaining time slice.

Calling the Lw_Thread_SetSlice function can set the running slice of the thread,

calling the Lw_Thread_GetSlice function can get the time slice of the thread and calling

the Lw_Thread_GetSliceEx function will also get the remaining time slice of the thread.

Calling the following functions can modify the thread scheduling strategy in SylixOS.

#include <SylixOS.h>

ULONG Lw_Thread_SetSchedParam(LW_OBJECT_HANDLE ulId,

 UINT8 ucPolicy,

 UINT8 ucActivatedMode);

ULONG Lw_Thread_GetSchedParam(LW_OBJECT_HANDLE ulId,

 UINT8 *pucPolicy,

 UINT8 *pucActivatedMode);

Prototype analysis of Function Lw_Thread_SetSchedParam:

 For success of the function, return 0. For failure, return non-0 value;

 Parameter ulId is the thread handle;

 Parameter ucPolicy is the scheduling strategy;

 Parameter ucActivatedMode is the response model, as shown in Table 6.7.

Table 6.7 Thread response mode

Response mode Note

LW_OPTION_RESPOND_IMMIEDIA High-speed response thread (only for test)

LW_OPTION_RESPOND_STANDARD Common response thread

LW_OPTION_RESPOND_AUTO Automatic

Prototype analysis of Function Lw_Thread_GetSchedParam:

 For success of the function, return 0. For failure, return non-0 value;

SpaceChain OS

Manual SpaceChain

OS.

199

Application Development Manual

 Output parameter pucPolicy returns the scheduling strategy;

 Output parameter pucActivatedMode returns the thread response mode, as

shown in Table 6.7.

Calling the Lw_Thread_SetSchedParam function can set the thread scheduling

strategy, and calling the Lw_Thread_GetSchedParam function can get the thread

scheduling strategy.

6.7 POSIX thread scheduling

The scheduling behavior is affected by two factors: scheduling strategy and task

priority. Each task has a priority. The system maintains a list of ready tasks for each

allowed priority. The list has a certain sequence, list head task and list tail task.If there is a

new task ready, it will be put at the suitable place in the list (it is usually required to select

this according to the scheduling strategy).

For the real-time system, the response speed is the most important. Therefore, as

real-time extension of the basic definition of POSIX, the scheduling strategy defined by

POSIX 1003.1b is based on the priority. Other evaluation indicators such as fairness and

throughput capacity are secondary.

POSIX standard specifies that the high-priority thread has the large priority digital.

The priority in SylixOS is opposite. Therefore, SylixOS performs priority conversion, and

definition is as follows:

#include <posix/include/px_sched_param.h>

#define PX_PRIORITY_CONVERT(prio) (LW_PRIO_LOWEST - (prio))

The macro does not concern application development, but understanding the macro

can clarity relationship between POSIX priority and SylixOS priority.

POSIX defines the structure sched_param to represent the scheduling-related

parameter, and implementation in SylixOS is shown below：

struct sched_param {

 int sched_priority; /* POSIX scheduling priority */

 /* SCHED_SPORADIC parameter */

 int sched_ss_low_priority; /* Low scheduling priority for */

 /* sporadic server. */

 struct timespec sched_ss_repl_period; /* Replenishment period for */

 /* sporadic server. */

 struct timespec sched_ss_init_budget; /* Initial budget for sporadic */

 /* server. */

 int sched_ss_max_repl; /* Max pending replenishments */

 /* for sporadic server. */

SpaceChain OS

Manual SpaceChain

OS.

200

Application Development Manual

 ……

};

Note: SylixOS only supports the priority setting of the structure at present, while others are reserved

items.

POSIX defines the following functions to dynamically select thread scheduling

strategy (SCHED_FIFO and SCHED_RR).

#include <sched.h>

int sched_setscheduler(pid_t pid
①
,

 int iPolicy,

 const struct sched_param *pschedparam);

int sched_getscheduler(pid_t pid);

Prototype analysis of Function sched_setscheduler:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter pid is the process ID;

 Parameter iPolicy is the scheduling strategy.

 Output parameter pschedparam is the scheduler parameter.

Prototype analysis of Function sched_getscheduler:

 For success of the function, return the scheduler strategy (SCHED_FIFO and

SCHED_RR). For failure, return -1 and set the error number;

 Parameter pid is the process ID;

In Section 6.4.1, when the scheduling strategy is introduced, we learned that the

thread scheduling policy can be set via calling the pthread_attr_setschedpolicy function,

the method is set before the thread is created, i.e., a static change method. However, a

method to dynamically change the thread priority is provided by calling the

sched_setscheduler function. Calling the sched_getscheduler function can get the

scheduling policy of the appointed thread.

It might also be noted that the sched_setscheduler function will set the thread priority

while setting the scheduling strategy, and later we will introduce what range values the

POSIX thread priority shall satisfy.

Calling the following two functions can get the maximum and minimum values of the

POSIX thread priority, and the priority set by application shall be within the range of these

two values (excluded).

① Process operation usually refers to operation of the main thread of the process in SylixOS. Therefore,

the process scheduling strategy here usually refers to the thread scheduling strategy.

SpaceChain OS

Manual SpaceChain

OS.

201

Application Development Manual

#include <sched.h>

int sched_get_priority_max(int iPolicy);

int sched_get_priority_min(int iPolicy);

Prototype analysis of Function sched_get_priority_max:

 The function returns the maximum priority value of POSIX;

 Parameter iPolicy is the scheduling strategy.

Prototype analysis of Function sched_get_priority_min:

 The function returns the minimum priority value of POSIX;

 Parameter iPolicy is the scheduling strategy.

POSIX allows different priority ranges to be defined when different scheduling

strategies are adopted. For implementation of current SylixOS, all scheduling strategies

have the same priority range.

Calling the sched_setscheduler function sets the process priority while setting the

scheduling priority. Actually, calling the sched_setparam function can set the process

priority, and calling the sched_getparam function can get the priority of the appointed

process.

#include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *pschedparam);

int sched_getparam(pid_t pid, struct sched_param *pschedparam);

Prototype analysis of Function sched_setparam:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter pid is the process ID;

 Output paramete pschedparam is the scheduling parameter.

Prototype analysis of Function sched_getparam:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter pid is the process ID;

 The output parameter pschedparam returns the scheduling parameter.

If pid equals 0, the current thread priority is set. It might also be noted that if the set

priority is the same with the current priority of the appointed thread, nothing is done and 0

is returned.

#include <sched.h>

SpaceChain OS

Manual SpaceChain

OS.

202

Application Development Manual

int sched_rr_get_interval(pid_t pid, struct timespec *interval);

int sched_yield(void);

Prototype analysis of Function sched_rr_get_interval:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter pid is the process ID;

 Output parameter interval returns the time remaining for the process or thread.

Calling the sched_rr_get_interval function will return the time slice size (timespec

type time value) of the appointed thread. The function is valid only when the scheduling

strategy is SCHED_RR. Otherwise, it returns -1 and sets errno as EINVAL. Calling the

sched_yield function will actively abandon the processor once.

The following program shows how to use the POSIX thread scheduling function.

Program List 6.9 Use of the POSIX thread scheduling function

#include <sched.h>

#include <stdio.h>

int main (int argc, char *argv[])

{

 struct sched_param param;

 struct sched_param newparam;

 struct timespec time;

 int ret;

 fprintf(stdout, "Max prio: %d, Min: %d\n",

 sched_get_priority_max(SCHED_RR),

 sched_get_priority_min(SCHED_RR));

 ret = sched_getparam(0, ¶m);

 if (ret != 0) {

 perror("sched_getparam");

 return (-1);

 }

 fprintf(stdout, "old prio: %d\n", param.sched_priority);

 param.sched_priority = 40;

 ret = sched_setscheduler(0, SCHED_RR, ¶m);

 if (ret != 0) {

 return (-1);

 }

SpaceChain OS

Manual SpaceChain

OS.

203

Application Development Manual

 ret = sched_getparam(0, &newparam);

 if (ret != 0) {

 perror("sched_getparam");

 return (-1);

 }

 fprintf(stdout, "new prio: %d\n", newparam.sched_priority);

 sched_rr_get_interval(0, &time);

 fprintf(stdout, "time slice %lld(s):%ld(ns)\n", time.tv_sec, time.tv_nsec);

 return (0);

}

Run the program in the SylixOS Shell: Running results show that the range of

available priority of the POSIX thread in SylixOS is from 1 to 254, indicating that priority 0

and priority 255 are not recommended by the Sylix OS kernel.

./sched_test

Max prio: 254, Min prio: 1

old prio: 55

new prio: 40

time slice 0(s):70000000(ns)

6.8 SylixOS RMS scheduling

A very good method to solve multi-task scheduling conflicts for the periodic task is

rate monotonic scheduling (Rate Monotonic Scheduling RMS), and RMS appoints the

priority based on the task cycle.

In RMS, the task with the shortest cycle has the highest priority, the task with the next

shortest cycle has the next highest priority, and so forth. When multiple tasks can be

executed at the same time, the task with the shortest cycle is executed preferentially. If the

function deems the task priority as the rate, then this is a monotonically increasing

function.

#include <SylixOS.h>

LW_HANDLE Lw_Rms_Create(CPCHAR pcName,

ULONG ulOption,

LW_OBJECT_ID *pulId);

ULONG Lw_Rms_Delete(LW_HANDLE *pulId);

ULONG Lw_Rms_DeleteEx(LW_HANDLE *pulId,

BOOL bForce);

ULONG Lw_Rms_Cancel(LW_HANDLE ulId);

SpaceChain OS

Manual SpaceChain

OS.

204

Application Development Manual

Prototype analysis of Function Lw_Rms_Create:

 For function success, return RMS handle. For failure, return

LW_HANDLE_INVALID, and set the error number;

 Parameter pcName is RMS name;

 Parameter ulOption is RMS option;

 Output parameter pulId returns RMS handle.

Prototype analysis of Function Lw_Rms_Delete:

 For success of the function, return 0. For failure, return the error number;

 Parameter pulId is RMS handle pointer.

Prototype analysis on Function Lw_Rms_DeleteEx:

 For success of the function, return 0. For failure, return the error number;

 Parameter pulId is RMS handle pointer;

 Parameter bForce is delete type.

Prototype analysis of Function Lw_Rms_Cancel:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is RMS handle.

Calling Lw_Rms_Create function can create an RMS scheduler; calling

Lw_Rms_Delete function can delete an RMS scheduler. It might also be noted that if RMS

scheduler is at the task blocking state, the RMS object will not be deleted, and errno will

be set as ERROR_RMS_STATUS; Calling Lw_Rms_DeleteEx function can delete an

RMS scheduler. Different from Lw_Rms_Delete function, if bForce is true, the RMS

scheduler will be deleted regardless of the state. Otherwise, the behavior is the same with

that of the Lw_Rms_Delete function; calling the Lw_Rms_Cancel function will stop the

specified RMS scheduler, but will not delete RMS object.

#include <SylixOS.h>

ULONG Lw_Rms_Period(LW_HANDLE ulId,

ULONG ulPeriod);

ULONG Lw_Rms_ExecTimeGet(LW_HANDLE *pulId,

ULONG *pulExecTime);

Prototype analysis of Function Lw_Rms_Period:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the RMS handle;

SpaceChain OS

Manual SpaceChain

OS.

205

Application Development Manual

 Parameter ulPeriod is the program execution cycle.

Prototype analysis of Function Lw_Rms_ExecTimeGet:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the RMS handle;

 Output parameter pulExecTime returns the running time.

After the Lw_Rms_Period function is called,

RMS scheduler will start work according to the period specified by Parameter ulPeriod;

calling the Lw_Rms_ExecTimeGet function will obtain the time from the start of

Lw_Rms_Period function call to the current execution (unit: Tick).

#include <SylixOS.h>

ULONG Lw_Rms_Status(LW_HANDLE ulId,

UINT8 *pucStatus,

ULONG *pulTimeLeft,

LW_HANDLE *pulOwnerId);

ULONG Lw_Rms_GetName(LW_HANDLE ulId, PCHAR pcName);

Prototype analysis of Function Lw_Rms_Status:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the RMS handle;

 Output parameter pucStatus returns RMS state;

 Output parameter pulTimeLeft returns the remaining waiting time;

 Output parameter pulOwnerId returns the owner ID.

Prototype analysis of Function Lw_Rms_GetName:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the RMS handle;

 Output parameter pcName returns RMS name.

Calling Lw_Rms_Status will return the status of the RMS scheduler. If Parameter

pucStatus is not NULL, the status as shown in Table 6.8 will be returned . If Parameter

pulTimeLeft is not NULL, the remaining time of the schedule will be returned. If

Parameter pulOwnerId is not NULL, the thread handle of the RMS scheduler owner will

be returned; calling the Lw_Rms_GetName function will return the name of the RMS

scheduler.

Table 6.8 RMS scheduler status

SpaceChain OS

Manual SpaceChain

OS.

206

Application Development Manual

State name Note

LW_RMS_INACTIVE RMS scheduler just created

LW_RMS_ACTIVE Initialize the cycle, and measure the execution time

LW_RMS_EXPIRED With task blocking

As an extension to POSIX, SylixOS provides the following set of functions to

implement the POSIX RMS scheduler. Compared with the previous RMS implementation,

the following functions are easier to use, and have higher time accuracy

(nanosecond-level).

#include <sched_rms.h>

int sched_rms_init(sched_rms_t *prms, pthread_t thread);

int sched_rms_destroy(sched_rms_t *prms);

int sched_rms_period(sched_rms_t *prms, const struct timespec *period);

Prototype analysis of Function sched_rms_init:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter prms is the RMS scheduler pointer;

 Parameter thread is the call thread handle.

Prototype analysis of Function sched_rms_destroy:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter prms is the RMS scheduler pointer;

Prototype analysis of Function sched_rms_period:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter prms is the RMS scheduler pointer;

 Parameter period is the program execution cycle。

Calling the sched_rms_init function will initialize the RMS scheduler specified by

Parameter prms. Unlike the Lw_Rms_Create function, the application creates an RMS

scheduler of sched_rms_t type, and then the sched_rms_init function is called to initialize

the scheduler for the former. That is to say, the scheduler will be created and destroyed by

the application. However, the RMS scheduler created by the latter is managed by the

kernel, i.e., the application will not directly manage the scheduler used.

SpaceChain OS

Manual SpaceChain

OS.

207

Application Development Manual

Calling the sched_rms_destroy function will destroy the scheduler initialized by

the sched_rms_init function. The destroyed scheduler cannot be used unless it is

reinitialized.

Calling the sched_rms_period function enables the RMS scheduler to start working.

The following program shows how to use the RMS scheduler.

Program List 6.10 RMS scheduler

#include <sched_rms.h>

#include <pthread.h>

sched_rms_t rms;

void process_func(void)

{

 int i = 1;

 for (; i >= 0; --i) {

 sleep(1);

 }

}

void *rms_thread (void *arg)

{

 struct timespec *period = (struct timespec *)arg;

sched_rms_init(&rms, pthread_self());

 while (1) {

 if (sched_rms_period(&rms, period) != 0) {

 break;

 }

 process_func();

 fprintf(stdout, "rms thread running...\n");

 }

 return (NULL);

}

int main (int argc, char *argv[])

{

 pthread_t tid;

 int ret;

SpaceChain OS

Manual SpaceChain

OS.

208

Application Development Manual

 struct timespec period;

 period.tv_nsec = 0;

 period.tv_sec = 3;

 ret = pthread_create(&tid, NULL, rms_thread, (void *)&period);

 if (ret < 0) {

 fprintf(stderr, "pthread_create error.\n");

 return (-1);

 }

 pthread_join(tid, NULL);

 sched_rms_destroy(&rms);

 return (0);

}

Run the program under the SylixOS Shell:

./rms_test

rms thread running...

rms thread running...

……

The scheduling cycle set by the program is 3 seconds, and the running time of the

running function process_func of the thread rms_thread is more than 2 seconds and less

than 3 seconds. Therefore, the thread can be scheduled normally, and program operation

results also prove the point. If we change the i value in the process_func function to a

value larger than or equal to 2, the thread will only be scheduled once. The running time of

the thread at the moment is greater than the cycle value of the RMS scheduler, which will

cause timeout overflow error of the scheduler (EOVERFLOW).

6.9 SylixOS coroutine

Coroutine is the executable code sequence smaller than the thread. A thread can

have multiple coroutines, which share resources of the thread except the stack, such as

the priority, kernel object and so on. All coroutines in the thread share the kernel object of

the thread itself. Therefore, the scheduler itself does not know existence of the coroutine,

and the coroutine is executed when the thread to which it belongs is scheduled. The

internal coroutine of a thread cannot be preempted, and can only run in cycle. Only when

the current running coroutine voluntarily abandons the processor, other coroutines in the

same thread can get the processor. When the thread is deleted, all coroutines within the

thread are deleted at the same time.

SpaceChain OS

Manual SpaceChain

OS.

209

Application Development Manual

The SylixOS kernel supports coroutines instead of using third-party library

emulation, which makes coroutine management within SylixOS easier and more efficient.

Calling the Lw_Coroutine_Create function will create a coroutine in the current thread.

It might also be noted that creation of each thread creation will create a starting coroutine

at default. Therefore, the thread always runs from the starting coroutine.

#include <SylixOS.h>

PVOID Lw_Coroutine_Create(PCOROUTINE_START_ROUTINE pCoroutineStartAddr,

 size_t stStackByteSize,

 PVOID pvArg);

Prototype analysis of Function Lw_Coroutine_Create:

 For success of the function, return the coroutine control pointer. For failure,

return LW_NULL and set the error number;

 Parameter pCoroutineStartAddr is the coroutine starting address;

 Parameter stStackByteSize is the coroutine stack size
①
;

 Parameter pvArg is the entry parameter.

Calling the Lw_Coroutine_Delete function will delete an appointed coroutine. If the

current coroutine system is deleted, the system will directly call the Lw_Coroutine_Exit

function for exit. The thread will exit when the last coroutine in the thread exits.

#include <SylixOS.h>

ULONG Lw_Coroutine_Delete(PVOID pvCrcb);

ULONG Lw_Coroutine_Exit(VOID);

Prototype analysis of Function Lw_Coroutine_Delete:

 For success of the function, return 0. For failure, return the error number;

 Parameter pvCrcb is the coroutine control pointer.

Prototype analysis of Function Lw_Coroutine_Exit:

 For success of the function, return 0. For failure, return the error number;

As we mentioned earlier, the scheduler does not know existence of the coroutine, and

the coroutines run in cycle, which determines that coroutine scheduling must be managed

by the user program. SylixOS provides the following functions to change the scheduling

sequence of the coroutine.

#include <SylixOS.h>

VOID Lw_Coroutine_Yield(VOID);

ULONG Lw_Coroutine_Resume(PVOID pvCrcb);

Prototype analysis of Function Lw_Coroutine_Resume:

SpaceChain OS

Manual SpaceChain

OS.

210

Application Development Manual

 For success of the function, return 0. For failure, return non-0 value;

 Parameter pvCrcb is the coroutine control pointer.

Calling the Lw_Coroutine_Yield function can actively abandon the processor, and

calling the Lw_Coroutine_Resume function can recover the appointed coroutine.

Calling the Lw_Coroutine_StackCheck function can check the coroutine stack.

#include <SylixOS.h>

ULONG Lw_Coroutine_StackCheck(PVOID pvCrcb,

 size_t *pstFreeByteSize,

 size_t *pstUsedByteSize,

 size_t *pstCrcbByteSize);

Prototype analysis of Function Lw_Coroutine_StackCheck:

 For success of the function, return 0. For failure, return the error number;

 Parameter pvCrcb is the coroutine control pointer;

 Output parameter pstFreeByteSize returns the idle stack size;

 Output parameter pstFreeByteSize returns the use stack size;

 Output parameter pstCrcbByteSize returns the size of the coroutine control

block.

Parameters pstFreeByteSize, pstUsedByteSize and pstCrcbByteSize can be NULL. If

the corresponding parameter is NULL, stack of the appointed type will not be concerned.

It might also be noted that if service of the coroutine stack is checked, the stack check

option must be used for the stack the coroutine parent, as shown in Table 6.3.

The following program shows how to use the SylixOS coroutine.

Program List 6.11 Coroutine use

#include <SylixOS.h>

#include <stdio.h>

VOID coroutine0 (PVOID pvArg)

{

 INT i;

 for (i = 0; i < 5; i++) {

 fprintf(stdout, "coroutine0 running...\n");

 Lw_Time_SSleep(1);

 }

}

SpaceChain OS

Manual SpaceChain

OS.

211

Application Development Manual

VOID coroutine1 (PVOID pvArg)

{

 INT i;

 for (i = 0; i < 5; i++) {

 fprintf(stdout, "coroutine1 running...\n");

 Lw_Time_SSleep(1);

 }

}

PVOID tTest (PVOID pvArg)

{

 PVOID pcCrcb0, pcCrcb1;

 pcCrcb0 = Lw_Coroutine_Create(coroutine0, 2 * 1024, LW_NULL);

 if (pcCrcb0 == LW_NULL) {

 return (LW_NULL);

 }

 pcCrcb1 = Lw_Coroutine_Create(coroutine1, 2 * 1024, LW_NULL);

 if (pcCrcb1 == LW_NULL) {

 return (LW_NULL);

 }

 Lw_Coroutine_Yield(); /* Make other coroutines

run */

 while (1) {

 Lw_Time_SSleep(10);

 }

 return ((PVOID)1);

}

int main (int argc, char *argv[])

{

 LW_HANDLE hId;

 hId = Lw_Thread_Create("t_test", tTest, LW_NULL, LW_NULL);

 if (hId == LW_HANDLE_INVALID) {

 return (PX_ERROR);

 }

SpaceChain OS

Manual SpaceChain

OS.

212

Application Development Manual

 Lw_Thread_Join(hId, LW_NULL);

 return (ERROR_NONE);

}

Run the program under the SylixOS Shell:

./coroutine_test

coroutine0 running...

coroutine0 running...

coroutine0 running...

coroutine0 running...

coroutine0 running...

coroutine1 running...

coroutine1 running...

coroutine1 running...

coroutine1 running...

coroutine1 running...

It can be seen from running results that the coroutine0 gets execution first, and is not

interrupted due to delay and blockage at running time. Let's analyze the process below.

In the tTest thread, the program creates the coroutine0 coroutine firstly and then the

coroutine1 coroutine. It was introduced above that when the thread is created, a starting

coroutine will be created at default. Therefore, the thread starts running from the starting

coroutine firstly. Here the program calls the Lw_Coroutine_Yield function to actively

abandon the processor, and the coroutine0 get the processor for running at the moment.

The coroutines run in cycle. Therefore, the coroutine0 will not actively abandon the

processor before running (the program does not actively call the Lw_Coroutine_Yield

function. Meanwhile, it is proved that the scheduler does not perceive existence of the

coroutine). The coroutine1 will be automatically switched to after running of coroutine0.

This also indicates that the coroutine firstly created will get the processor in priority, which

conforms to the FIFO principle.

SpaceChain OS

Manual SpaceChain

OS.

213

Application Development Manual

Chapter 7 Inter-thread communication

7.1 Shared resource

The entity, such as a variable, device or memory block accessible by the thread, is

called as resource.

The resources which can be accessed by multiple threads are called as shared

resources; while the behavior of simultaneous access to shared resources is called as

shared resource competition.

If you do not monopolize the shared resource while accessing the shared resource, it

may cause resource exception (such as variable value confusion, device error, or the

memory block content not being the expected value, etc.), which may lead to the program

to run abnormally or even crash.

Now, two threads (Thread A and Thread B) need to perform add one operation to the

same Variable V (the initial value is 0).

On the RISC machine, the load/store system structure is generally adopted, that is to

say, access to the memory only allows load and store operations; the machine instruction

process for auto increment operation of Variable V is as follows:

 (1) Load the address of Variable V to the working register 0 of the CPU;

 (2) The load instruction loads the contents of the address stored in working register

0 into working register 1;

 (3) The inc instruction adds 1 to the value of working register 1;

 (4) The store instruction saves the value of working register 1 to the address pointed

to by working register 0.

It can be seen from the above that the auto increment operation of Variable V is not

completed in one step. If Thread A and Thread B complete the above four steps in

sequence, then the final value of Variable V will be 2.

If Thread A completes the previous three steps, then Thread B interrupts the work of

Thread A, Thread B rewrites Variable V to 1; Thread A continues to perform the fourth step,

and then the final value of Variable V is still 1, which is obviously not what we expect.

In order to solve this problem, we need to perform mutex access to the process.

Mutex is an exclusive behavior, which means that only one thread is allowed to access

shared resources at the same time. There are several methods to implement mutex:

disable interrupt, disable task scheduling, semaphore and so on.

SpaceChain OS

Manual SpaceChain

OS.

214

Application Development Manual

For the above process, we can add a lock (semaphore), which must be held

before auto increment operation of Variable V, and released after the operation is

completed; assuming that the lock has been occupied by Thread A, if the thread B also

wants to apply for the lock, Thread B will be blocked because the lock is exclusive; this

ensures that only one thread can access the variable at the same time, so that the value

of Variable V will not have the risk of confusion.

（变量 V 的自增操作=The autogenous operation of variable V）

Figure 7.1 Auto increment operation of Variable V

We call the area protected by the lock as the critical area.

If the critical area protection code cannot be interrupted, then the process is atomic

operation. Non-interruptible means that there is no blocking or hardware interrupt in the

critical area, and the atomic operation masks the hardware interrupt response of the

current CPU core. Therefore, the atomic operation shall be as brief as possible.

In the multi-thread environment, operation of each variable needs to be treated with

care. Multi-threaded programming can make our program clear and easy to implement,

but it requires careful design. SylixOS has prepared us a large number of solutions to

mutex problems during multi-threaded programming, such as semaphore, mutex lock,

message queue and so on.

7.2 Inter-thread communication

In the process of executing the thread, it is inevitable to communicate with other

threads. For example, if Thread A notifies Thread B of the processing results after

processing an event, Thread B will continue to run after receiving the processing results of

the event.

There are mainly the following types of inter-thread communication:

 Mutex type communication: shared resources require exclusive access, and

semaphore and mutex can be used for mutex type communication.

 Notification type communication: the above Thread A informs Thread B, and

the notification-type communication can be performed by using semaphore,

event set and condition variable;

SpaceChain OS

Manual SpaceChain

OS.

215

Application Development Manual

 Message type

communication: a thread or an interrupt service program is only responsible for

collecting data, but does not directly process data, and passes the data to

another thread for data processing. Message queue can be used for message

type communication.

SylixOS operating system provides rich means for inter-thread communication, as

shown in Table 7.1. These communication means satisfy demands for inter-thread

communication for embedded system software development.

Table 7.1 Inter-thread communication means

Inter-thread communication means Purpose

Binary semaphore
Mutex type communication and notification type

communication

Counting semaphore Notification type communication

Mutex type semaphore Mutex type communication

Event set Notification type communication

Condition variable Notification type communication

Message queue Message type communication

7.3 SylixOS semaphore

As described in 7.1, multiple threads must implement mutex access or synchronous

access (for example, Thread B waits for the result of Thread A to continue running) to the

shared data through a certain method when reading or writing certain shared data (global

variables, etc.). Among them, semaphore is one of the most common methods.

In fact, semaphore is an agreed mechanism: during mutex access to shared

resources, it is agreed that when a thread gets the semaphore (Wait), other threads

cannot get the semaphore again until the semaphore is released (Give). In the

synchronization mechanism, it is agreed that the thread waiting for the semaphore (Take)

(or waiting signal is more precise) shall be at the blocking state before receiving the

semaphore until other thread send the semaphore (Post).

In general, only three operations can be performed on the semaphore: create a

semaphore (Create), wait semaphore (Wait) or pend (Pend), give semaphore (Give) or

post (Post). The operating system shall include a semaphore waiting thread queue (for

storing thread waiting for semaphore). When the semaphore can be obtained, the

operating system selects a thread which can get the semaphore from the queue to

continue running according to a certain strategy.

SylixOS semaphore include four types: binary semaphore, counting semaphore,

mutex semaphore (for short mutex) and read-write semaphore.

SpaceChain OS

Manual SpaceChain

OS.

216

Application Development Manual

The value of binary semaphore is limited to FALSE and TRUE; while the

minimum value of the counting semaphore is 0, and the maximum value is determined

when creating the counting semaphore.

The binary semaphore is mainly used in the following situations:

 There is a resource which allows the thread to access, the binary semaphore is

used as the mutex means, and the initial value is TRUE;

 The thread or interrupt informs another thread that an event occurs, and the

initial value is FALSE.

The counting semaphore is mainly used in the following situations:

 There are n resources which allows the thread to access, the counting

semaphore is used as the remaining count of resources, and the initial value is n;

 The thread or interrupt informs another thread that some event occurs, the

counting semaphore is used as the event count, and the initial value is 0.

7.3.1 Binary semaphore

As mentioned above, the semaphore must be created before use. SylixOS provides

the following functions to create a binary semaphore.

#include <SylixOS.h>

LW_HANDLE Lw_SemaphoreB_Create(CPCHAR pcName,

 BOOL bInitValue,

 ULONG ulOption,

 LW_OBJECT_ID *pulId);

Prototype analysis of Function Lw_SemaphoreB_Create:

 The function returns the handle of binary semaphore. For failure, return NULL

and set the error number.

 Parameter pcName is the name of binary semaphore;

 Parameter bInitValue is the initial value of binary semaphore (FALSE or TRUE);

 Parameter ulOption is the creation option of binary semaphore, as shown in

Table 7.2;

 Output parameter pulld is used to return the handle of binary semaphore (same

with the return value), which can be NULL.

Table 7.2 Creation Options of binary semaphore

Macro name Meaning

SpaceChain OS

Manual SpaceChain

OS.

217

Application Development Manual

LW_OPTION_WAIT_PRIORITY Wait in priority order

LW_OPTION_WAIT_FIFO Wait in FIFO order

LW_OPTION_OBJECT_GLOBAL Global object

LW_OPTION_OBJECT_LOCAL Native object

SylixOS provides two semaphore waiting queues: Priority

(LW_OPTION_WAIT_PRIORITY) and FIFO (LW_OPTION_WAIT_FIFO). The priority

mode is to take the thread conforming to conditions from the queue for running according

to the thread priority; the FIFO mode is to take the thread conforming to conditions from

the queue for running according to the FIFO principle;

It might be noted that either LW_OPTION_WAIT_PRIORITY or

LW_OPTION_WAIT_FIFO can be selected. Likewise, either

LW_OPTION_OBJECT_GLOBAL or LW_OPTION_OBJECT_LOCAL
①

 can also be

selected.

Different parameter bInitValue determines different purposes of binary semaphores,

which can be used for mutex access of shared resources when the value of bInitValue is

TRUE, as shown in Figure 7.2. When the value is FALSE, the bInitValue can be used for

synchronization between multiple threads, as shown in Figure 7.3.

Figure 7.2 Mutex access of shared resources

SpaceChain OS

Manual SpaceChain

OS.

218

Application Development Manual

Figure 7.3 Thread synchronization

The binary semaphore not required can be deleted by calling the following functions,

and SylixOS will recover kernel resources occupied (unknown errors will occur when

trying to use the deleted binary semaphore).

#include <SylixOS.h>

ULONG Lw_SemaphoreB_Delete(LW_HANDLE *pulId);

Prototype analysis of Function Lw_SemaphoreB_Delete:

 For success of the function, return 0. For failure, return the error number;

 Parameter pulId is the handle of binary semaphore.

If a thread needs to wait for a binary semaphore, the Lw_SemaphoreB_Wait function

can be called It might be noted that the interrupt service routine cannot call the

Lw_SemaphoreB_Wait function to wait for a binary semaphore, because the function will

block the currently executing task when the value of binary semaphore is FALSE, and the

interrupt service routine is used to handle the most urgent things. Therefore, blockage

shall not be allowed. Otherwise, other threads will not get the scheduling opportunity.

#include <SylixOS.h>

ULONG Lw_SemaphoreB_Wait(LW_HANDLE ulId,

 ULONG ulTimeout);

ULONG Lw_SemaphoreB_TryWait(LW_HANDLE ulId);

Prototype analysis of above functions:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the handle of binary semaphore;

 Parameter ulTimeout is the waiting timeout, and the unit is Tick.

Parameter ulTimeout
①
 can use macros as shown in Table 7.3 in addition to digital.

Table 7.3 Available macros of Parameter ulTimeout

SpaceChain OS

Manual SpaceChain

OS.

219

Application Development Manual

Macro name Meaning

LW_OPTION_NOT_WAIT Immediately exit without waiting

LW_OPTION_WAIT_INFINITE Always wait

LW_OPTION_WAIT_A_TICK Wait for a clock tick

LW_OPTION_WAIT_A_SECOND Wait for a second

SylixOS provides a timeout mechanism for binary semaphore wait. It is returned

immediately and errno is set as ERROR_THREAD_WAIT_TIMEOUT when the waiting

time is timed out.

Lw_SemaphoreB_TryWait is a non-blocking semaphore wait function, and difference

between the function and Lw_SemaphoreB_Wait is that if the initial value created by

binary semaphore is FALSE, Lw_SemaphoreB_TryWait will immediately exit and return,

while Lw_SemaphoreB_Wait will be blocked until awakened.

The interrupt service routine can use the Lw_SemaphoreB_TryWait function to try to

wait for binary semaphore, because the Lw_SemaphoreB_TryWait function will

immediately return when the value of binary semaphore is FALSE, and the current thread

will not be blocked.

Release of a binary semaphore can call the Lw_SemaphoreB_Post,

Lw_SemaphoreB_Post2, or Lw_SemaphoreB_Release function.

The Lw_SemaphoreB_Post2 function can return the activated thread handle via

Parameter pulId when return. If the parameter pulId is set as NULL, the behavior is the

same with Lw_SemaphoreB_Post.

#include <SylixOS.h>

ULONG Lw_SemaphoreB_Post(LW_HANDLE ulId);

Prototype analysis of Function Lw_SemaphoreB_Post:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the handle of binary semaphore.

#include <SylixOS.h>

ULONG Lw_SemaphoreB_Post2(LW_HANDLE ulId, LW_HANDLE *pulId);

Prototype analysis of Function Lw_SemaphoreB_Post:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the handle of binary semaphore;

 Parameter pulld returns the activated thread ID.

#include <SylixOS.h>

ULONG Lw_SemaphoreB_Release(LW_HANDLE ulId,

SpaceChain OS

Manual SpaceChain

OS.

220

Application Development Manual

 ULONG ulReleaseCounter,

 BOOL *pbPreviousValue);

Prototype analysis of Function Lw_SemaphoreB_Release:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the handle of binary semaphore;

 Parameter ulReleaseCounter is the release counter of binary semaphore;

 Output parameter pbPreviousValue is used to receive the original binary

semaphore state, which can be NULL.

The Lw_SemaphoreB_Release function is an advanced API, and multiple threads

can be released at one time by calling the function when wait for the same semaphore

(POSIX thread barrier calls the function to release multiple waiting threads, see Section

7.13).

Figure 7.4 shows the operation process of the basic operation function of binary

semaphore between threads and between interrupt and thread.

（线程=thread）

（中断=break off）

Figure 7.4 SylixOS binary semaphore

Calling the Lw_SemaphoreB_Clear function will clear binary semaphore, so that the

initial value of binary semaphore will be set as FALSE.

#include <SylixOS.h>

ULONG Lw_SemaphoreB_Clear(LW_HANDLE ulId);

Prototype analysis of Function Lw_SemaphoreB_Clear:

 The function returns the error number;

SpaceChain OS

Manual SpaceChain

OS.

221

Application Development Manual

 Parameter ulId is the handle of binary semaphore.

Calling the Lw_SemaphoreB_Flush function will release all threads waiting on the

appointed semaphore.

#include <SylixOS.h>

ULONG Lw_SemaphoreB_Flush(LW_HANDLE ulId,

 ULONG *pulThreadUnblockNum);

Prototype analysis of Function Lw_SemaphoreB_Flush:

 The function returns the error number;

 Parameter ulId is the handle of binary semaphore;

 Output parameter pulThreadUnblockNum is used to receive the number of

unblocked threads, which can be NULL.

The Lw_SemaphoreB_Status function returns state information of a valid semaphore.

#include <SylixOS.h>

ULONG Lw_SemaphoreB_Status(LW_HANDLE ulId,

 BOOL *pbValue,

 ULONG *pulOption,

 ULONG *pulThreadBlockNum);

Prototype analysis of Function Lw_SemaphoreB_Status:

 The function returns the error number;

 Parameter ulId is the handle of binary semaphore;

 Output parameter pbValue is used to receive the current value of binary

semaphore (FALSE or TRUE);

 Output parameter pulOption is used to receive creation options of binary

semaphore;

 Output parameter pulThreadBlockNum is used to receive the number of the

thread currently blocked at the binary semaphore.

Calling the Lw_SemaphoreB_GetName function can get the name of the appointed

semaphore.

#include <SylixOS.h>

ULONG Lw_SemaphoreB_GetName(LW_HANDLE ulId, PCHAR pcName)

Prototype analysis of Function Lw_SemaphoreB_GetName:

 The function returns the error number;

 Parameter ulId is the handle of binary semaphore;

SpaceChain OS

Manual SpaceChain

OS.

222

Application Development Manual

 Output parameter pcName is the name of the binary semaphore, and

pcName shall be pointed at a character array with size of

LW_CFG_OBJECT_NAME_SIZE.

#include <SylixOS.h>

ULONG Lw_SemaphoreB_WaitEx(LW_HANDLE ulId,

ULONG ulTimeout,

PVOID *ppvMsgPtr);

Prototype analysis of Function Lw_SemaphoreB_WaitEx:

 The function returns the error number;

 Parameter ulId is the handle of binary semaphore;

 Parameter ulTimeout is the waiting timeout, and the unit is Tick;

 Output parameter ppvMsgPtr (a null pointer) is used to receive messages

transferred by the Lw_SemaphoreB_PostEx function.

#include <SylixOS.h>

ULONG Lw_SemaphoreB_PostEx(LW_HANDLE ulId,

 PVOID pvMsgPtr);

Prototype analysis of Function Lw_SemaphoreB_PostEx:

 The function returns the error number;

 Parameter ulId is the handle of binary semaphore;

 Parameter pvMsgPtr is the message pointer (a null pointer which can point to

any type of data). The message will be transferred to Output parameter

ppvMsgPtr of the Lw_SemaphoreB_WaitEx function.

The message passing function is added in the Lw_SemaphoreB_WaitEx and

Lw_SemaphoreB_PostEx functions, and the additional message can be transferred in

semaphore via Parameter pvMsgPtr. For example, the following program fragment

shows the process:

threadA ()

{

 PVOID ppvMsgPtr;

 Lw_SemaphoreB_WaitEx(ulId, &ppvMsgPtr);

}

threadB ()

{

 Lw_SemaphoreB_PostEx(ulId, "msg");

SpaceChain OS

Manual SpaceChain

OS.

223

Application Development Manual

}

Note: thread A and thread B are two different threads, and the above process implements a simply

inter-thread synchronous creation of additional message.

Function composition of Lw_SemaphoreB_WaitEx and Lw_SemaphoreB_PostEx has

played the role of the traditional RTOS E-mail, and SylixOS does not provide API for

E-mail.

The following program shows how to use SylixOS binary semaphore, the program

creates two threads and a SylixOS binary semaphore, two threads respectively perform

auto increment operation and printing for Variable _G_iCount, and SylixOS binary

semaphore is used as mutex means of the access variable _G_iCount.

Program List 7.1 How to use SylixOS binary semaphore

#include <SylixOS.h>

static LW_HANDLE _G_hLock;

static INT _G_iCount = 0;

static PVOID tTestA (PVOID pvArg)

{

 INT iError;

 while (1) {

 iError = Lw_SemaphoreB_Wait(_G_hLock, LW_OPTION_WAIT_INFINITE);

 if (iError != ERROR_NONE) {

 break;

 }

 _G_iCount++;

 printf("tTestA(): count = %d\n", _G_iCount);

 Lw_SemaphoreB_Post(_G_hLock);

 Lw_Time_MSleep(500);

 }

 return (LW_NULL);

}

static PVOID tTestB (PVOID pvArg)

{

 INT iError;

 while (1) {

SpaceChain OS

Manual SpaceChain

OS.

224

Application Development Manual

 iError = Lw_SemaphoreB_Wait(_G_hLock, LW_OPTION_WAIT_INFINITE);

 if (iError != ERROR_NONE) {

 break;

 }

 _G_iCount++;

 printf("tTestB(): count = %d\n", _G_iCount);

 Lw_SemaphoreB_Post(_G_hLock);

 Lw_Time_MSleep(500);

 }

 return (LW_NULL);

}

int main (int argc, char *argv[])

{

 LW_HANDLE hThreadAId;

 LW_HANDLE hThreadBId;

 _G_hLock = Lw_SemaphoreB_Create("count_lock",

 LW_TRUE,

 LW_OPTION_WAIT_FIFO |

 LW_OPTION_OBJECT_LOCAL,

 LW_NULL);

 if (_G_hLock == LW_OBJECT_HANDLE_INVALID) {

 printf("semaphore create failed.\n");

 return (-1);

 }

 hThreadAId = Lw_Thread_Create("t_testa", tTestA, LW_NULL, LW_NULL);

 if (hThreadAId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testa create failed.\n");

 return (-1);

 }

 hThreadBId = Lw_Thread_Create("t_testb", tTestB, LW_NULL, LW_NULL);

 if (hThreadBId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testb create failed.\n");

 return (-1);

 }

 Lw_Thread_Join(hThreadAId, LW_NULL);

SpaceChain OS

Manual SpaceChain

OS.

225

Application Development Manual

 Lw_Thread_Join(hThreadBId, LW_NULL);

 Lw_SemaphoreB_Delete(&_G_hLock);

 return (0);

}

Run the program under the SylixOS Shell:

./SemaphoreB

tTestA(): count = 1

tTestB(): count = 2

tTestA(): count = 3

tTestB(): count = 4

tTestA(): count = 5

tTestB(): count = 6

7.3.2 Counting semaphore

As mentioned above, counting semaphore is usually used for multiple threads to

share a certain resource. For example, manage a certain equipment ID pool with

semaphore. It is assumed that the ID pool can apply for 15 device IDs at the same time,

and we use counting semaphore to perform mutex access for the ID pool in this case. For

each equipment ID applied, the counting semaphore is reduced by 1, and it is reduced to

0, the thread for ID reapplication will be blocked. If the equipment ID is released, the

counting semaphore is added by 1, and the new thread can be reapplied at the moment.

The process is as shown in Figure 7.5.

SpaceChain OS

Manual SpaceChain

OS.

226

Application Development Manual

Figure 7.5 How to use counting semaphore

A SylixOS counting semaphore can call the Lw_SemaphoreC_Create function for

creation, and a handle of counting semaphore will be returned after successful creation.

#include <SylixOS.h>

LW_HANDLE Lw_SemaphoreC_Create(CPCHAR pcName,

 ULONG ulInitCounter,

 ULONG ulMaxCounter,

 ULONG ulOption,

 LW_OBJECT_ID *pulId);

Prototype analysis of Function Lw_SemaphoreC_Create:

 For success of the function, return the handle of the counting semaphore. For

failure, return NULL and set the error number;

 Parameter pcName is the name of counting semaphore;

 Parameter ulInitCounter is the handle of counting semaphore;

 Parameter ulMaxCounter is the maximum value of counting semaphore;

 Parameter ulOption is the creation option of the counting semaphore, as shown

in Table 7.2.

 Output parameter pulld returns ID of counting semaphore (same with the return

value), which can be NULL.

The value range of counting semaphore is 0 <= counted value (ulInitCounter) <

ulMaxCounte
①

. Especially, if the value of ulInitCounter is 0, it can be used for

synchronization between multiple threads.

A counting semaphore not used can be deleted via calling the following functions.

The deleted semaphore system automatically recovers the occupied system resources

(unknown errors will occur when trying to use the counting semaphore deleted).

#include <SylixOS.h>

ULONG Lw_SemaphoreC_Delete(LW_HANDLE *pulId);

Prototype analysis of Function Lw_SemaphoreC_Delete:

 For success of the function, return 0. For failure, return the error number;

 Parameter pulId is the handle of counting semaphore.

If the thread needs to wait for a counted semaphore, the Lw_SemaphoreC_Wait

function can be called. It might be noted that the interrupt service routine cannot call the

Lw_SemaphoreC_Wait function to wait for a counting semaphore, because the

SpaceChain OS

Manual SpaceChain

OS.

227

Application Development Manual

Lw_SemaphoreC_Wait will block the current thread when the value of counting

semaphore is 0 (thread synchronization function).

#include <SylixOS.h>

ULONG Lw_SemaphoreC_Wait(LW_HANDLE ulId,

 ULONG ulTimeout);

ULONG Lw_SemaphoreC_TryWait(LW_HANDLE ulId);

Prototype analysis of above two functions:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the handle of counting semaphore;

 Parameter ulTimeout is the waiting timeout, and the unit is Tick.

Difference between Lw_SemaphoreC_TryWait and Lw_SemaphoreC_Wait is that if

the current value of counting semaphore is FALSE, Lw_SemaphoreC_TryWait will

immediately exit and return ERROR_THREAD_WAIT_TIMEOUT, while

Lw_SemaphoreC_Wait will be blocked until awakened.

The interrupt service routine can use the Lw_SemaphoreC_TryWait function to try to

wait for counting semaphore, because the Lw_SemaphoreC_TryWait function will

immediately return when the value of counting semaphore is FALSE, and the current

thread will not be blocked.

Releasing a counting semaphore can call the Lw_SemaphoreC_Post function.

#include <SylixOS.h>

ULONG Lw_SemaphoreC_Post(LW_HANDLE ulId);

Prototype analysis of Function Lw_SemaphoreC_Post:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the handle of counting semaphore.

Releasing multiple counting semaphores at a time can call the

Lw_SemaphoreC_Release function.

#include <SylixOS.h>

ULONG Lw_SemaphoreC_Release(LW_HANDLE ulId,

 ULONG ulReleaseCounter,

 ULONG *pulPreviousCounter);

Prototype analysis of Function Lw_SemaphoreC_Release:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the handle of counting semaphore;

 Parameter ulReleaseCounter is the release counter of counting semaphore;

SpaceChain OS

Manual SpaceChain

OS.

228

Application Development Manual

 Output parameter pulPreviousCounter is used to receive original

semaphore counter, which can be NULL.

Lw_SemaphoreC_Release is an advanced API, and POSIX read-write lock can call

the function to release multiple read-write threads simultaneously (for POSIX read-write

lock, see Section 7.8).

Figure 7.6 shows the operation process of the basic operation function of counting

semaphore between threads and between interrupt and thread.

（线程=thread）

（中断=break off）

Figure 7.6 SylixOS counting semaphore

Calling the Lw_SemaphoreC_Clear function will clear counting semaphore, so that

the initial value of counting semaphore will be set as 0.

#include <SylixOS.h>

ULONG Lw_SemaphoreC_Clear(LW_HANDLE ulId);

Prototype analysis of Function Lw_SemaphoreC_Clear:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of counting semaphore;

Calling Lw_SemaphoreC_Flush will release all threads waiting on the appointed

counting semaphore.

#include <SylixOS.h>

ULONG Lw_SemaphoreC_Flush(LW_HANDLE ulId,

 ULONG *pulThreadUnblockNum);

Prototype analysis of Function Lw_SemaphoreC_Flush:

SpaceChain OS

Manual SpaceChain

OS.

229

Application Development Manual

 For success of the function, return ERROR_NONE. For failure, return the

error number;

 Parameter ulId is the handle of counting semaphore;

 Output parameter pulThreadUnblockNum is used to receive the number of

unblocked threads, which can be NULL.

The following two functions can get state information of the appointed counting

semaphore.

#include <SylixOS.h>

ULONG Lw_SemaphoreC_Status(LW_HANDLE ulId,

 ULONG *pulCounter,

 ULONG *pulOption,

 ULONG *pulThreadBlockNum);

ULONG Lw_SemaphoreC_StatusEx(LW_HANDLE ulId,

 ULONG *pulCounter,

 ULONG *pulOption,

 ULONG *pulThreadBlockNum,

ULONG *pulMaxCounter);

Prototype analysis of above two functions:

 Above two functions return the error number;

 Parameter ulId is the handle of counting semaphore;

 Output parameter pulCounter is used to receive the current value of counting

semaphore;

 Output parameter pulOption is used to receive creation options of counting

semaphore;

 Output parameter pulThreadBlockNum is used to receive the number of the

threat currently blocked in counting semaphore.

 Output parameter pulMaxCounter is used to receive the maximum counted

value of the counting semaphore.

The Lw_SemaphoreC_GetName function can get the name of the appointed counting

semaphore.

#include <SylixOS.h>

ULONG Lw_SemaphoreC_GetName(LW_HANDLE ulId, PCHAR pcName);

Prototype analysis of Function Lw_SemaphoreC_GetName:

 The function returns the error number;

 Parameter ulId is the handle of counting semaphore;

SpaceChain OS

Manual SpaceChain

OS.

230

Application Development Manual

 Output parameter pcName is the name of the counting semaphore, and

pcName shall be pointed at a character array with size of

LW_CFG_OBJECT_NAME_SIZE.

The following program shows how to use SylixOS counting semaphore, and the

program creates two threads and a SylixOS counting semaphore; counting semaphore is

taken as the remaining count of resources, the initial number of resources is 5, and the

maximum number is 100; Thread A is the consumer of the resource, and Thread B is the

producer of the resource.

Program List 7.2 How to use SylixOS counting semaphore

#include <SylixOS.h>

static LW_HANDLE _G_hResCntSema;

static PVOID tTestA (PVOID pvArg)

{

 INT iError;

 while (1) {

 iError = Lw_SemaphoreC_Wait(_G_hResCntSema, LW_OPTION_WAIT_INFINITE);

 if (iError != ERROR_NONE) {

 break;

 }

 printf("tTestA(): get a resource\n");

 }

 return (LW_NULL);

}

static PVOID tTestB (PVOID pvArg)

{

 while (1) {

 Lw_Time_SSleep(1);

 Lw_SemaphoreC_Post(_G_hResCntSema);

 }

 return (LW_NULL);

}

int main (int argc, char *argv[])

{

SpaceChain OS

Manual SpaceChain

OS.

231

Application Development Manual

 LW_HANDLE hThreadAId;

 LW_HANDLE hThreadBId;

 _G_hResCntSema = Lw_SemaphoreC_Create("res_sema",

 5,

 100,

 LW_OPTION_WAIT_FIFO |

 LW_OPTION_OBJECT_LOCAL,

 LW_NULL);

 if (_G_hResCntSema == LW_OBJECT_HANDLE_INVALID) {

 printf("semaphore create failed.\n");

 return (-1);

 }

 hThreadAId = Lw_Thread_Create("t_testa", tTestA, LW_NULL, LW_NULL);

 if (hThreadAId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testa create failed.\n");

 return (-1);

 }

 hThreadBId = Lw_Thread_Create("t_testb", tTestB, LW_NULL, LW_NULL);

 if (hThreadBId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testb create failed.\n");

 return (-1);

 }

 Lw_Thread_Join(hThreadAId, LW_NULL);

 Lw_Thread_Join(hThreadBId, LW_NULL);

 Lw_SemaphoreC_Delete(&_G_hResCntSema);

 return (0);

}

Run the program under the SylixOS Shell:

./SemaphoreC

tTestA(): get a resource

tTestA(): get a resource

tTestA(): get a resource

tTestA(): get a resource

tTestA(): get a resource

tTestA(): get a resource

SpaceChain OS

Manual SpaceChain

OS.

232

Application Development Manual

7.3.3 Mutex semaphore

During introduction to binary semaphore, it was discussed that if the bInitValue

parameter is set as TRUE when binary semaphore is created, it can be used for mutex

access of shared resources. Actually, mutex implemented by SylixOS binary semaphore

is to initialize and mark a variable as 1, and reduce the variable by 1 (equal to 0 at the

moment) at semaphore waiting (Wait). If another thread waits again, the semaphore will

be blocked until released (variable added by 1), so that mutex access of shared resources

is implemented.

If there are only two threads in the system, the above process has no problem.

However, once multiple threads are involved, the above process will have the following

problems:

A high-priority thread may also have access to the same shared resource (it is entirely

possible). At the moment, only blocking wait can be performed. However, another thread

with medium priority will control the thread occupying semaphore. The process causes

failure in running high-priority thread for a long time (the situation is not allowed in

SylixOS).

The problem in above process is the classic priority inversion, which will be

continuously discussed in Section 7.5.

Mutex semaphore is used at the place where mutex access of shared resources, it

can be understood as the binary semaphore with priority ceiling and priority inheritance

mechanism (intended to solve the priority inversion problem) with an initial value of TRUE,

and only the thread with mutex semaphore has the right to release mutex semaphore.

Note: Mutex semaphore needs to record the owner thread and adjust the priority, but the interrupt

priority cannot be modified. Therefore, the interrupt service routine cannot operate mutex semaphore.

The following pseudocode fragment shows the process to use mutex semaphore.

Define global shared resources (_G_shared)

void *thread (void *)

{

 Wait for mutex(Wait)

 Operation to shared resources (_G_shared)

 Release the mutex (Post)

 Thread exit (Exit)

SpaceChain OS

Manual SpaceChain

OS.

233

Application Development Manual

}

void main_func (void)

{

 Define mutex handler (semM)

 Create mutex (Create)

 Create thread (thread)

 Join the thread (join)

 Delete mutex (Delete)

}

A SylixOS mutex semaphore can be used after creation by calling the

Lw_SemaphoreM_Create function, and the function will return a handle of mutex

semaphore after successful creation.

#include <SylixOS.h>

LW_HANDLE Lw_SemaphoreM_Create(CPCHAR pcName,

 UINT8 ucCeilingPriority,

 ULONG ulOption,

 LW_OBJECT_ID *pulId);

Prototype analysis of Function Lw_SemaphoreM_Create:

 For success of the function, return the handle of the mutex semaphore. For

failure, return NULL and set the error number;

 Parameter pcName is the name of mutex semaphore;

 Parameter ucCeilingPriority is valid when priority ceiling algorithm is used, and

the parameter is the ceiling priority;

 Parameter ulOption is the creation option of mutex semaphore;

 Output parameter pulld returns the handle of mutex semaphore (same with the

return value), which can be NULL.

Create options include the create option of the binary signal. In addition, the unique

create option of mutex semaphore shown in Table 7.4 can also be used.

Table 7.4 Creation option of mutex semaphore

Macro name Meaning

SpaceChain OS

Manual SpaceChain

OS.

234

Application Development Manual

LW_OPTION_INHERIT_PRIORITY Priority inheritance algorithm

LW_OPTION_PRIORITY_CEILING Priority ceiling algorithm

LW_OPTION_NORMAL Not checked during recursive locking (not recommended)

LW_OPTION_ERRORCHECK Report errors during recursive locking

LW_OPTION_RECURSIVE Support recursive locking

It might be noted either LW_OPTION_INHERIT_PRIORITY or

LW_OPTION_PRIORITY_CEILING can be selected. Likewise, only one of

LW_OPTION_NORMAL, LW_OPTION_ERRORCHECK and LW_OPTION_RECURSIVE

can be selected.

A mutex semaphore not used can be deleted by calling the following functions. The

semaphore system deleted will automatically recover system resources occupied

(unknown errors will occur when trying to use the deleted mutex semaphore).

#include <SylixOS.h>

ULONG Lw_SemaphoreM_Delete(LW_HANDLE *pulId);

Prototype analysis of Function Lw_SemaphoreM_Delete:

 The function returns the error number;

 Parameter pulId is the handle of mutex semaphore;

If the thread needs to wait for a mutex semaphore, the Lw_SemaphoreM_Wait

function can be called Releasing a mutex semaphore can call the Lw_SemaphoreM_Post

function.

#include <SylixOS.h>

ULONG Lw_SemaphoreM_Wait(LW_HANDLE ulId,

 ULONG ulTimeout);

Prototype analysis of Function Lw_SemaphoreM_Wait:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the handle of mutex semaphore;

 Parameter ulTimeout is the waiting timeout, and the unit is Tick.

#include <SylixOS.h>

ULONG Lw_SemaphoreM_Post(LW_HANDLE ulId);

Prototype analysis of Function Lw_SemaphoreM_Post:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the handle of mutex semaphore;

SpaceChain OS

Manual SpaceChain

OS.

235

Application Development Manual

It might be noted that only the owner can release mutex semaphore

Figure 7.7 shows the operation process of the basic operation function of mutex

semaphore in the thread.

（线程=thread）

Figure 7.7 SylixOS mutex semaphore

The following functions can get state information of mutex semaphore.

#include <SylixOS.h>

ULONG Lw_SemaphoreM_Status(LW_HANDLE ulId,

 BOOL *pbValue,

 ULONG *pulOption,

 ULONG *pulThreadBlockNum);

ULONG Lw_SemaphoreM_StatusEx(LW_HANDLE ulId,

BOOL *pbValue,

 ULONG *pulOption,

 ULONG *pulThreadBlockNum,

 LW_HANDLE *pulOwnerId);

Prototype analysis of above two functions:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the handle of mutex semaphore;

 Output parameter pbValue is used to receive the current state of mutex

semaphore;

 Output parameter pulOption is used to receive creation option of mutex

semaphore;

 Output parameter pulThreadBlockNum is used to receive the number of

threads currently blocked at the mutex semaphore.

 Output parameter pulOwnerId is used to receive the handle of the thread

currently owning the mutex semaphore.

SpaceChain OS

Manual SpaceChain

OS.

236

Application Development Manual

If you want to get the name of a mutex semaphore, the following functions can

be called.

#include <SylixOS.h>

ULONG Lw_SemaphoreM_GetName(LW_HANDLE ulId,

 PCHAR pcName);

Prototype analysis of Function Lw_SemaphoreM_GetName:

 For success of the function, return 0. For failure, return the error number;

 Parameter ulId is the handle of mutex semaphore;

 Output parameter pcName is the name of the mutex semaphore, and pcName

shall be pointed at a character array with size of

LW_CFG_OBJECT_NAME_SIZE.

The following program shows how to use SylixOS mutex semaphore, the program

creates two threads with different priorities and a SylixOS mutex semaphore, two threads

perform auto increment operation and printing for Variable _G_iCount respectively, and

SylixOS mutex semaphore is used as mutex means of Variable _G_iCount. Where, the

mutex semaphore uses priority inheritance algorithm.

Program List 7.3 How to use SylixOS counting mutex semaphore

#include <SylixOS.h>

static LW_HANDLE _G_hLock;

static INT _G_iCount = 0;

static PVOID tTestA (PVOID pvArg)

{

 INT iError;

 while (1) {

 iError = Lw_SemaphoreM_Wait(_G_hLock, LW_OPTION_WAIT_INFINITE);

 if (iError != ERROR_NONE) {

 break;

 }

 _G_iCount++;

 printf("tTestA(): count = %d\n", _G_iCount);

 Lw_SemaphoreM_Post(_G_hLock);

 Lw_Time_MSleep(500);

 }

 return (LW_NULL);

SpaceChain OS

Manual SpaceChain

OS.

237

Application Development Manual

}

static PVOID tTestB (PVOID pvArg)

{

 INT iError;

 while (1) {

 iError = Lw_SemaphoreM_Wait(_G_hLock, LW_OPTION_WAIT_INFINITE);

 if (iError != ERROR_NONE) {

 break;

 }

 _G_iCount++;

 printf("tTestB(): count = %d\n", _G_iCount);

 Lw_SemaphoreM_Post(_G_hLock);

 Lw_Time_MSleep(500);

 }

 return (LW_NULL);

}

int main (int argc, char *argv[])

{

 LW_CLASS_THREADATTR threadattr;

 LW_HANDLE hThreadAId;

 LW_HANDLE hThreadBId;

 _G_hLock = Lw_SemaphoreM_Create("count_lock",

 LW_PRIO_HIGH,

 LW_OPTION_WAIT_FIFO |

 LW_OPTION_OBJECT_LOCAL|

 LW_OPTION_INHERIT_PRIORITY |

 LW_OPTION_ERRORCHECK,

 LW_NULL);

 if (_G_hLock == LW_OBJECT_HANDLE_INVALID) {

 printf("mutex create failed.\n");

 return (-1);

 }

 Lw_ThreadAttr_Build(&threadattr,

 4 * LW_CFG_KB_SIZE,

 LW_PRIO_NORMAL - 1,

SpaceChain OS

Manual SpaceChain

OS.

238

Application Development Manual

 LW_OPTION_THREAD_STK_CHK,

 LW_NULL);

 hThreadAId = Lw_Thread_Create("t_testa", tTestA, &threadattr, LW_NULL);

 if (hThreadAId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testa create failed.\n");

 return (-1);

 }

 Lw_ThreadAttr_Build(&threadattr,

 4 * LW_CFG_KB_SIZE,

 LW_PRIO_NORMAL,

 LW_OPTION_THREAD_STK_CHK,

 LW_NULL);

 hThreadBId = Lw_Thread_Create("t_testb", tTestB, &threadattr, LW_NULL);

 if (hThreadBId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testb create failed.\n");

 return (-1);

 }

 Lw_Thread_Join(hThreadAId, LW_NULL);

 Lw_Thread_Join(hThreadBId, LW_NULL);

 Lw_SemaphoreM_Delete(&_G_hLock);

 return (0);

}

Run the program under the SylixOS Shell:

./SemaphoreM

tTestA(): count = 1

tTestB(): count = 2

tTestA(): count = 3

tTestB(): count = 4

tTestA(): count = 5

tTestB(): count = 6

7.3.4 Read-write semaphore

As introduced in 7.8 POSIX read-write lock, when there are multiple readers and

single writer, purely using mutex semaphore will greatly weaken the processing

performance of the multi-threaded operating system. In order to satisfy requirements for

SpaceChain OS

Manual SpaceChain

OS.

239

Application Development Manual

high concurrency processing speed, SylixOS introduces read-write semaphore,

and its application scenario is similar to POSIX read-write lock.

SylixOS read-write semaphore satisfies the principle of write priority, that is to say, if

the write semaphore has existed, the read semaphore cannot be applied until the write

semaphore is released. However, when the read semaphore has existed, the read

semaphore may be requested again. The mechanism satisfies high concurrency of read.

A SylixOS read-write semaphore can be used after creation by calling the

Lw_SemaphoreRW_Create function, and the function will return a handle of read-write

semaphore after successful creation.

#include <SylixOS.h>

LW_HANDLE Lw_SemaphoreRW_Create(CPCHAR pcName,

 ULONG ulOption,

 LW_OBJECT_ID *pulId);

Prototype analysis of Function Lw_SemaphoreRW_Create:

 For success of the function, return the handle of the read-write semaphore. For

failure, return NULL and set the error number;

 Parameter pcName is the name of read-write semaphore;

 Parameter ulOption is creation option of read-write semaphore;

 Output parameter pulld returns the handle of read-write semaphore (same with

the return value), which can be NULL.

A read-write semaphore not used can be deleted by calling the following functions.

The semaphore system deleted will automatically recover system resources occupied

(unknown errors will occur when trying to use the deleted read-write semaphore).

#include <SylixOS.h>

ULONG Lw_SemaphoreRW_Delete(LW_HANDLE *pulId);

Prototype analysis of Function Lw_SemaphoreRW_Delete:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter pulld is the handle of read-write semaphore.

If the thread needs to wait for a read semaphore, the Lw_SemaphoreRW_RWait

function can be called. If the thread needs to wait for a write semaphore, the

Lw_SemaphoreRW_WWait can be called. Releasing a read-write semaphore can call the

Lw_SemaphoreRW_Post function.

#include <SylixOS.h>

ULONG Lw_SemaphoreRW_RWait(LW_HANDLE ulId,

SpaceChain OS

Manual SpaceChain

OS.

240

Application Development Manual

 ULONG ulTimeout);

Prototype analysis of Function Lw_SemaphoreRW_RWait:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of read semaphore;

 Parameter ulTimeout is the waiting timeout, and the unit is Tick.

#include <SylixOS.h>

ULONG Lw_SemaphoreRW_WWait(LW_HANDLE ulId,

 ULONG ulTimeout);

Prototype analysis of Function Lw_SemaphoreRW_WWait:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of write semaphore;

 Parameter ulTimeout is the waiting timeout, and the unit is Tick.

#include <SylixOS.h>

ULONG Lw_SemaphoreRW_Post(LW_HANDLE ulId);

Prototype analysis of Function Lw_SemaphoreRW_Post:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of read-write semaphore;

It might be noted that only the owner of read-write semaphore can release the

read-write semaphore.

Calling the following functions can get detailed information of read-write semaphore:

#include <SylixOS.h>

ULONG Lw_SemaphoreRW_Status(LW_OBJECT_HANDLE ulId,

 ULONG *pulRWCount,

 ULONG *pulRPend,

 ULONG *pulWPend,

 ULONG *pulOption,

 LW_OBJECT_HANDLE *pulOwnerId);

Prototype analysis of Function Lw_SemaphoreRW_Status:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

SpaceChain OS

Manual SpaceChain

OS.

241

Application Development Manual

 Parameter ulId is the handle of read-write semaphore;

 Parameter pulRWCount returns the number of threads which are performing

concurrent operation of read-write semaphore, and the parameter can be NULL.

 Parameter pulRPend returns the number of blocks of current read operation,

and the parameter can be NULL.

 Parameter pulWPend returns the number of blocks of current write operation,

and the parameter can be NULL.

 Parameter pulOption returns option information of current read-write semaphore,

and the parameter can be NULL.

 Parameter pulOwnerId returns the owner ID of current write semaphore, and the

parameter can be NULL.

7.4 POSIX semaphore

There are two types of POSIX semaphore: anonymous semaphore and named

semaphore. The anonymous semaphore only exists in memory, which requires that the

thread using semaphore can have access to memory. Therefore, the anonymous

semaphore can be applied for inter-thread communication in the same process, and the

memory shall be mapped to the address space between different processes. Named

semaphores can be accessed via name and can therefore be applied for interprocess

communication (see Chapter 9 Interprocess Communication). The essence of the POSIX

semaphore is the counting semaphore.

The POSIX semaphore is defined as the sem_t type, and the variable of the sem_t

type shall be defined before use. For example:

sem_t sem;

7.4.1 POSIX anonymous semaphore

A POSIX anonymous semaphore can be used after creation by calling the sem_init

function.

#include <semaphore.h>

int sem_init(sem_t *psem, int pshared, unsigned int value);

Prototype analysis of Function sem_init:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Output parameter psem returns the pointer of POSIX semaphore;

SpaceChain OS

Manual SpaceChain

OS.

242

Application Development Manual

 Parameter pshared identifies whether the POSIX semaphore is shared

by the process (SylixOS does not use the item);

 Parameter value is the initial value of the POSIX semaphore.

After a POSIX anonymous semaphore is used (and it is no longer used in the future),

it shall be deleted by calling the sem_destroy function, and SylixOS will recover kernel

resources occupied by the semaphore.

#include <semaphore.h>

int sem_destroy(sem_t *psem);

Prototype analysis of Function sem_destroy:

 The function returns the error number;

 Parameter psem is the pointer of POSIX semaphore;

If the thread needs to wait for a POSIX semaphore, the sem_wait function can be

called, and the interrupt service routine cannot call any API of the POSIX semaphore.

Release a semaphore to use the sem_post function.

#include <semaphore.h>

int sem_wait(sem_t *psem);

int sem_trywait(sem_t *psem);

int sem_timedwait(sem_t *psem, const struct timespec *abs_timeout);

int sem_reltimedwait_np(sem_t *psem, const struct timespec *rel_timeout);

Prototype analysis of above several functions:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter psem is the pointer of POSIX semaphore;

 Parameter timeout is the waiting absolute timeout;

 Parameter rel_timeout is the waiting relative timeout.

Sem_trywait is the "try wait" version of sem_wait. When the value of the POSIX

semaphore is 0, sem_wait will be blocked until awakened, while sem_trywait will return

immediately.

The sem_timedwait is the version of the sem_wait with wait timeout, and the timeout

is the absolute wait timeout. The absolute timeout can be got by adding a relative timeout

based on the current time during use. For example:

struct timespec ts;

clock_gettime(CLOCK_REALTIME, &ts);

ts.tv_sec += 1;

SpaceChain OS

Manual SpaceChain

OS.

243

Application Development Manual

sem_timedwait(&sem, &ts);

Sem_reltimedwait_np is the non-POSIX standard version of sem_timedwait, and

Parameter rel_timeout is relative wait timeout. For example:

struct timespec ts;

ts.tv_sec = 1;

ts.tv_nsec = 0;

sem_reltimedwait_np(&sem, &ts);

It can be seen that the sem_reltimedwait_np is more convenient than the

sem_timedwait in use.

#include <semaphore.h>

int sem_post(sem_t *psem);

Prototype analysis of Function sem_post:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter psem is the pointer of POSIX semaphore;

Figure 7.8 shows the operation process of the basic operation function of the

anonymous semaphore in the thread.

（线程=thread）

Figure 7.8 POSIX anonymous semaphore

The sem_getvalue function can be used to retrieve the semaphore value. It might be

noted that when we try to use the value just read out, the semaphore value may have

changed. It is not suggested to use the sem_getvalue function unless other

synchronization mechanisms are used to avoid this competition.

#include <semaphore.h>

int sem_getvalue(sem_t *psem, int *pivalue);

Prototype analysis of Function sem_getvalue:

SpaceChain OS

Manual SpaceChain

OS.

244

Application Development Manual

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter psem is the pointer of POSIX semaphore;

 Output parameter pivalue is used to receive the current counted value of the

POSIX semaphore.

The following program shows how to use POSIX semaphore, the program creates

two threads and a POSIX semaphore, two threads perform auto increment operation and

printing for Variable count respectively, and POSIX semaphore is used as mutex means of

the access variable count.

Program List 7.4 Use of POSIX semaphore

#include <stdio.h>

#include <pthread.h>

#include <semaphore.h>

static sem_t lock;

static int count = 0;

static void *thread_a (void *arg)

{

 while (1) {

 sem_wait(&lock);

 count++;

 printf("thread_a(): count = %d\n", count);

 sem_post(&lock);

 usleep(500 * 1000);

 }

 return (NULL);

}

static void *thread_b (void *arg)

{

 while (1) {

 sem_wait(&lock);

 count++;

 printf("thread_b(): count = %d\n", count);

 sem_post(&lock);

 usleep(500 * 1000);

 }

 return (NULL);

}

SpaceChain OS

Manual SpaceChain

OS.

245

Application Development Manual

int main (int argc, char *argv[])

{

 pthread_t threada_tid;

 pthread_t threadb_tid;

 int ret;

 ret = sem_init(&lock, 1, 1);

 if (ret != 0) {

 fprintf(stderr, "semaphore create failed.\n");

 return (-1);

 }

 ret = pthread_create(&threada_tid, NULL, thread_a, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 ret = pthread_create(&threadb_tid, NULL, thread_b, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 pthread_join(threada_tid, NULL);

 pthread_join(threadb_tid, NULL);

sem_destroy(&lock);

 return (0);

}

Run the program under the SylixOS Shell:

./posix_sema

thread_a(): count = 1

thread_b(): count = 2

thread_a(): count = 3

thread_b(): count = 4

thread_a(): count = 5

SpaceChain OS

Manual SpaceChain

OS.

246

Application Development Manual

7.5 Priority inversion

7.5.1 What's priority inversion

We present an example of shared resource competition above: two threads shall

perform increment operation of the same variable V (initial value of 0) simultaneously. The

solution to shared resource competition is to add a lock. The lock is occupied before

access to variable V, and released after access. In general, we can use THE binary

semaphore with the initial value of TRUE or the counting semaphore with the initial value

of 1 as the lock.

Now we will slightly change the example. There are three threads (thread A, thread B

and thread C) and a variable V, and thread A and thread B shall have access to Variable V

simultaneously. Obviously, we need a lock (i.e., Lock L of the protected variable V).

The priorities of Thread A, thread B and thread C are 1, 2 and 3 respectively, i.e.,

priority: thread A> thread C> thread B.

We assume that now thread A and thread C are at the blocking state, and thread B is

at running state. Thread B occupies lock L (#1 in Figure 7.9). At the moment, the event

waited by Thread C enters the ready state. The priority of Thread C is higher than that of

thread B, and thread C will preempt execution of Thread B (#2 in Figure 7.9); at the

moment, the event waited by Thread A enters the ready state. The priority of Thread A is

higher than that of thread C, and thread A will preempt execution of Thread C (#3 in Figure

7.9); At the moment, Thread A also applies for lock L. Lock L has been occupied by

Thread B, Thread A must block and wait for Lock L to be released by Thread B, while

Thread C with medium priority will continue to run (Figure 7.9 #4), At the moment, the

running statuses of 3 threads are as follows: thread A blocked, thread C running normally,

and thread B blocked, which obviously violates the real-time principle of RTOS.

（线程=thread）

Figure 7.9 Priority inversion

When a high-priority thread has access to shared resources via the semaphore

mechanism, the semaphore has been occupied by a low-priority thread. However, the

low-priority thread may be occupied by other medium-priority threads when access to

SpaceChain OS

Manual SpaceChain

OS.

247

Application Development Manual

shared resources. Therefore, high-priority threads are blocked by many threads

with lower priority, and we call the phenomenon priority inversion.

7.5.2 How to solve priority inversion

There are two ways to solve the priority inversion problem: priority ceiling and priority

inheritance (supported by SylixOS mutex semaphore simultaneously).

The priority ceiling is to raise the priority of a thread to the highest priority of all

threads which can have access to the resource when applying for a certain shared

resource. The priority is called the priority ceiling of the resource. The method is simple

and easy to implement, without complicated judgment. Even if the thread blocks running

of the high-priority thread, the priority of the thread will be promoted as long as the thread

has access to shared resources.

Priority inheritance is shown as follows: when Thread A applies for the shared

resource V which is being used by Thread B, if it is found that the priority of Thread B is

lower than its own priority through comparison, the priority of Thread B is promoted to its

own priority, and recovered to the original priority after Thread B releases the shared

resource V. The method dynamically changes the priority of the thread only when the

low-priority thread occupying the resource blocks the high-priority thread.

Both binary semaphore and counting semaphore do not support priority ceiling and

priority inheritance, and only mutex semaphore supports priority ceiling and priority

inheritance.

7.6 POSIX mutex semaphore

POSIX mutex semaphore is the “POSIX” interface function performing mutex access

to shared resources, and the function implemented is same with that of SylixOS

semaphore.

The type of POSIX mutex semaphore is pthread_mutex_t. A variable of

pthread_mutex_t type shall be defined during use. For example:

pthread_mutex_t mutex;

A POSIX mutex semaphore must be initialized firstly before use. The initial value of

the mutex can be set as PTHREAD_MUTEX_INITIALIZER (static initialization), and

dynamic initialization can also be performed by calling the pthread_mutex_init function.

If the thread needs to wait for a mutex semaphore, the pthread_mutex_lock function

can be called. Release a mutex semaphore to use the pthread_mutex_unlock function.

A mutex semaphore will be deleted by calling the pthread_mutex_destroy function

after use, and SylixOS will recover kernel resources occupied by the mutex semaphore. It

SpaceChain OS

Manual SpaceChain

OS.

248

Application Development Manual

might be noted that unknown errors will occur if a deleted semaphore is tried to be

used again.

（线程=thread）

Figure 7.10 POSIX mutex semaphore

The thread has attribute objects, SPOSIX mutex semaphore has its own attribute

objects, and attribute blocks of POSIX mutex semaphore shall be used to create a POSIX

mutex semaphore. The type of POSIX mutex semaphore attribute block is

pthread_mutexattr_t. A variable of pthread_mutexattr_t type shall be defined during use.

For example:

pthread_mutexattr_t mutexattr;

7.6.1 Mutex semaphore attribute block

1. Initialization and deletion of the mutex semaphore attribute block

#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *pmutexattr);

Prototype analysis of Function pthread_mutexattr_init:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutexattr is the pointer of POSIX mutex semaphore attribute block.

#include <pthread.h>

int pthread_mutexattr_destroy(pthread_mutexattr_t *pmutexattr);

Prototype analysis of Function pthread_mutexattr_destroy:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutexattr is the pointer of POSIX mutex semaphore attribute block.

2. Set and get the type of mutex semaphore attribute block

#include <pthread.h>

SpaceChain OS

Manual SpaceChain

OS.

249

Application Development Manual

int pthread_mutexattr_settype(pthread_mutexattr_t *pmutexattr,

int type);

Prototype analysis of Function pthread_mutexattr_settype:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutexattr is the pointer of POSIX mutex semaphore attribute block;

 Parameter type is the type of POSIX mutex semaphore attribute block.

The type of mutex semaphore attribute block can use the macro shown in Table 7.5.

Table 7.5 Type of mutex semaphore attribute block

Macro name Meaning

PTHREAD_MUTEX_NORMAL Generate deadlock at recursive locking

PTHREAD_MUTEX_ERRORCHECK Return error at recursive locking

PTHREAD_MUTEX_RECURSIVE Support recursive locking

PTHREAD_MUTEX_FAST_NP Equivalent to PTHREAD_MUTEX_NORMAL

PTHREAD_MUTEX_ERRORCHECK_NP Equivalent to PTHREAD_MUTEX_ERRORCHECK

PTHREAD_MUTEX_RECURSIVE_NP Equivalent to PTHREAD_MUTEX_RECURSIVE

PTHREAD_MUTEX_DEFAULT Equivalent to PTHREAD_MUTEX_RECURSIVE

#include <pthread.h>

int pthread_mutexattr_gettype(const pthread_mutexattr_t *pmutexattr,

int *type);

Prototype analysis of Function pthread_mutexattr_gettype:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutexattr is the pointer of POSIX mutex semaphore attribute block;

 Output parameter type is the type of mutex semaphore attribute block.

3. Set and get algorithm type of the mutex semaphore attribute block

#include <pthread.h>

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *pmutexattr,

int protocol);

Prototype analysis of Function pthread_mutexattr_setprotocol:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutexattr is the pointer of POSIX mutex semaphore attribute block;

 Parameter protocol is the algorithm type of POSIX mutex semaphore attribute

block.

SpaceChain OS

Manual SpaceChain

OS.

250

Application Development Manual

The type of mutex semaphore attribute block can use the macro shown in

Table 7.6.

Table 7.6 Algorithm type of the mutex semaphore attribute block

Macro name Meaning

PTHREAD_PRIO_NONE Priority inheritance algorithm, wait in FIFO order

PTHREAD_PRIO_INHERIT Priority inheritance algorithm, wait in priority order

PTHREAD_PRIO_PROTECT Priority ceiling

#include <pthread.h>

int pthread_mutexattr_getprotocol(

const pthread_mutexattr_t *pmutexattr,

int protocol

);

Prototype analysis of Function pthread_mutexattr_getprotocol:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutexattr is the pointer of POSIX mutex semaphore attribute block;

 Parameter protocol is the algorithm type of POSIX mutex semaphore attribute

block.

4. Set and get the ceiling priority of mutex semaphore attribute block.

#include <pthread.h>

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *pmutexattr,

int prioceiling);

Prototype analysis of Function pthread_mutexattr_setprioceiling:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutexattr is the pointer of POSIX mutex semaphore attribute block;

 Parameter prioceiling is the ceiling priority of POSIX mutex semaphore attribute

block.

#include <pthread.h>

int pthread_mutexattr_getprioceiling(

const pthread_mutexattr_t *pmutexattr,

int *prioceiling

);

Prototype analysis of Function pthread_mutexattr_setprioceiling:

 For success of the function, return 0. For failure, return the error number;

SpaceChain OS

Manual SpaceChain

OS.

251

Application Development Manual

 Parameter pmutexattr is the pointer of POSIX mutex semaphore attribute

block;

 Output parameter prioceiling is the ceiling priority of POSIX mutex semaphore

attribute block.

5. Set and get process shared attributes of the mutex semaphore attribute

block

#include <pthread.h>

int pthread_mutexattr_setpshared(pthread_mutexattr_t *pmutexattr,

int pshared);

Prototype analysis of Function pthread_mutexattr_setpshared①:

 The function returns 0;

 Parameter pmutexattr is the pointer of POSIX mutex semaphore attribute block;

 Parameter pshared identifies whether the POSIX mutex semaphore attribute

block is shared by processes.

Process sharing parameters can use the macro shown in Table 7.7.

Table 7.7 Parameter shared by processes

Macro name Meaning

PTHREAD_PROCESS_SHARED Process share

PTHREAD_PROCESS_PRIVATE Process private

#include <pthread.h>

int pthread_mutexattr_getpshared(const pthread_mutexattr_t *pmutexattr,

int *pshared);

Prototype analysis of Function pthread_mutexattr_getpshared:

 The function returns 0;

 Parameter pmutexattr is the pointer of POSIX mutex semaphore attribute block;

 Output parameter pshared identifies whether the POSIX mutex semaphore

attribute block is shared by processes.

It might be noted that SylixOS is always private to the process

(PTHREAD_PROCESS_PRIVATE).

7.6.2 Mutex semaphore

1. Initialization and deletion of the mutex semaphore

SpaceChain OS

Manual SpaceChain

OS.

252

Application Development Manual

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *pmutex,

const pthread_mutexattr_t *pmutexattr);

Prototype analysis of Function pthread_mutex_init:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutex is the pointer of POSIX mutex semaphore;

 Parameter pmutexattr is the pointer of POSIX mutex semaphore attribute block,

which can be NULL;

#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *pmutex);

Prototype analysis of Function pthread_mutex_destroy:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutex is the pointer of POSIX mutex semaphore;

2. Wait of mutex semaphore

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *pmutex);

int pthread_mutex_trylock(pthread_mutex_t *pmutex);

int pthread_mutex_timedlock(pthread_mutex_t *pmutex,

const struct timespec *abs_timeout);

int pthread_mutex_reltimedlock_np(pthread_mutex_t *pmutex,

 const struct timespec *rel_timeout);

Prototype analysis of above functions:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutex is the pointer of POSIX mutex semaphore;

 Parameter abs_timeout is the waiting absolute timeout;

 Parameter rel_timeout is the waiting relative timeout.

The pthread_mutex_trylock is the "try wait" version of pthread_mutex_lock. When

POSIX mutex semaphore has been occupied, the pthread_mutex_lock will be blocked

until awakened, while the pthread_mutex_trylock will return immediately.

The pthread_mutex_timedlock is the version of the pthread_mutex_lock with wait

timeout, and the abs_timeout is the absolute wait timeout. The absolute timeout can be

got by adding a relative timeout based on the current time during use.

The pthread_mutex_reltimedlock_np is the non-POSIX standard version of the

pthread_mutex_timedlock, and Parameter rel_timeout is relative wait timeout.

SpaceChain OS

Manual SpaceChain

OS.

253

Application Development Manual

3. Release of mutex semaphore

#include <pthread.h>

int pthread_mutex_unlock(pthread_mutex_t *pmutex);

Prototype analysis of Function pthread_mutex_unlock:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutex is the pointer of POSIX mutex semaphore.

4. Set and get the ceiling priority of mutex semaphore.

#include <pthread.h>

int pthread_mutex_setprioceiling(pthread_mutex_t *pmutex,

int prioceiling);

Prototype analysis of Function pthread_mutex_setprioceiling:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutex is the pointer of POSIX mutex semaphore;

 Parameter prioceiling is the ceiling priority of POSIX mutex semaphore.

#include <pthread.h>

int pthread_mutex_getprioceiling(pthread_mutex_t *pmutex,

int *prioceiling);

Prototype analysis of Function pthread_mutex_getprioceiling:

 For success of the function, return 0. For failure, return the error number;

 Parameter pmutex is the pointer of POSIX mutex semaphore;

 Output parameter prioceiling is the ceiling priority of POSIX mutex semaphore.

The following program shows how to use POSIX mutex semaphore, the program

creates two threads and a POSIX mutex semaphore, two threads perform auto increment

operation and printing for Variable count respectively, and POSIX mutex semaphore is

used as mutex for access to Variable count. Where, the mutex semaphore uses priority

inheritance algorithm, and wait in priority order.

Program List 7.5 Use of POSIX mutex semaphore

#include <stdio.h>

#include <pthread.h>

static pthread_mutex_t lock;

static int count = 0;

static void *thread_a (void *arg)

SpaceChain OS

Manual SpaceChain

OS.

254

Application Development Manual

{

 while (1) {

 pthread_mutex_lock(&lock);

 count++;

 printf("thread_a(): count = %d\n", count);

 pthread_mutex_unlock(&lock);

 usleep(500 * 1000);

 }

 return (NULL);

}

static void *thread_b (void *arg)

{

 while (1) {

 pthread_mutex_lock(&lock);

 count++;

 printf("thread_b(): count = %d\n", count);

 pthread_mutex_unlock(&lock);

 usleep(500 * 1000);

 }

 return (NULL);

}

int main (int argc, char *argv[])

{

 pthread_mutexattr_t mutexattr;

 pthread_t threada_tid;

 pthread_t threadb_tid;

 int ret;

 pthread_mutexattr_init(&mutexattr);

 pthread_mutexattr_settype(&mutexattr, PTHREAD_MUTEX_NORMAL);

 pthread_mutexattr_setprotocol(&mutexattr, PTHREAD_PRIO_INHERIT);

 ret = pthread_mutex_init(&lock, &mutexattr);

 if (ret != 0) {

 fprintf(stderr, "mutex create failed.\n");

 return (-1);

 }

 pthread_mutexattr_destroy(&mutexattr);

 ret = pthread_create(&threada_tid, NULL, thread_a, NULL);

SpaceChain OS

Manual SpaceChain

OS.

255

Application Development Manual

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 ret = pthread_create(&threadb_tid, NULL, thread_b, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 pthread_join(threada_tid, NULL);

 pthread_join(threadb_tid, NULL);

 pthread_mutex_destroy(&lock);

 return (0);

}

Run the program under the SylixOS Shell:

./posix_mutex

thread_a(): count = 1

thread_b(): count = 2

thread_a(): count = 3

thread_b(): count = 4

thread_a(): count = 5

thread_b(): count = 6

The above program sets the type of mutex attribute as

PTHREAD_MUTEX_NORMAL, which will not check recursive locking (a possible

recursive locking as shown in the Figure 7.11), and deadlock will occur in case of

recursive locking as shown in the following figure (we will discuss deadlock concept in

details in Section 7.7). Therefore, it is not suggested to use the lock of the type in actual

application, and SylixOS suggests to set the type of lock as

PTHREAD_MUTEX_ERRORCHECK. The lock of the type will automatically check lock

recursion when locked, and Error EDEADLK will be returned in case of lock recursion.

SpaceChain OS

Manual SpaceChain

OS.

256

Application Development Manual

（加锁=lock）

（解锁=unlock）

Figure 7.11 Recursive locking

Program List can be simplified as the following pseudocode, which locks shared

resources in different thread contexts. so as to well avoid recursive lock.

thread_a ()

{

 lock(lock)

 count++

 unlock(lock)

}

thread_b ()

{

 lock(lock)

 count++

 unlock(lock)

}

main ()

{

 Create lock(lock)

 Create thread thread_a thread_b

}

SpaceChain OS

Manual SpaceChain

OS.

257

Application Development Manual

7.7 Deadlock

7.7.1 What's deadlock

The so-called deadlock refers to the indefinite standoff situation where multiple

threads circularly wait for resources occupied by other parties. Obviously, various threads

involving deadlock will be at blocking state without external force.

Just like two people passing the single-plank bridge, if both of them want to pass

firstly, and refuse to retreat, deadlock will occur due to resource competition; however, if

either of them goes on the bridge after checking that there is no person at the opposite

side of the bridge, the problem will be solved.

Figure 7.12 Deadlock

7.7.2 Generation conditions of deadlock

If there are four necessary conditions in the computer system simultaneously,

deadlock will occur. In other words, as long as one of the following four conditions not be

provided, the system will not be deadlocked.

 Mutex conditions

That is to say, a certain resource can only be occupied by a thread for a period, and

cannot be occupied by two or more than two threads simultaneously. The exclusive

resources such as CD-ROM driver and printer can only be occupied by other threads after

actively released by the thread occupying the resources. It is determined by attribute of

resources. For example, the single-plank bridge is a kind of exclusive resource, and

people on both sides cannot cross the bridge simultaneously.

 Non-preemptive condition

Before the resource got by the thread is used up, the resource applicant cannot

forcibly seize the resource from the resource occupant, while can only be released

independently by the occupant thread of the resource. If the person passing the

single-plank bridge cannot force the person at the opposite side to retreat, or cannot

illegally push the person at the opposite off the bridge, the person at the opposite side can

pass the bridge after the person on the bridge passes the bridge and the deck is empty

(i.e., the resources occupied are actively released).

SpaceChain OS

Manual SpaceChain

OS.

258

Application Development Manual

 Possession and application conditions

The thread has occupied a resource at least, while applies for the new resources; the

resource has been occupied by other threads, and the thread is blocked at the moment;

However, it still continue to occupy the resources occupied when waiting for the new

resources. Take passing the single-plank bridge as an example again, A and B meet on

the bridge. A walks through a section of deck (i.e., occupy some resources), and needs to

walk the rest of deck) (apply for new resources). However, the part of deck has been

occupied by B (B walks through a section of deck). A cannot move forward or backward; B

is in the same condition.

 Circular wait conditions

There is a thread wait sequence {P1,P2,...,Pn}. Where, P1 waits a certain resource

occupied by P2, P2 waits a certain resource occupied by P3, ……, while Pn waits a

certain resource occupied by P1, causing circular wait. Just like the above case of

crossing single-wood bridge, A waits for the bridge occupied by B, while B waits for the

bridge occupied by B, causing circular wait.

The above four conditions we mentioned will occur simultaneously during deadlock.

That is to say, deadlock will not occur as long as a necessary condition is not satisfied.

7.7.3 Deadlock prevention

The four necessary conditions for deadlock are introduced above. As long as any of

the four conditions is broken, the deadlock will not occur. This provides possibility to solve

the deadlock problem. Generally, the method to solve the deadlock is divided into three

kinds of deadlock prevention, avoidance, detection and recovery (note: deadlock

detection and recovery is a method).

Deadlock prevention is a strategy to guarantee that the system does not enter the

deadlock state. Its basic thought is to require the thread to comply with certain protocols

when applying for resources, so as to break one or more of the four necessary conditions

causing deadlock, and guarantee that the system does not enter the deadlock state.

 Mutex breaking conditions

That is to say, the thread is allowed to have access to some resources. However,

some resources are not allowed to be accessed simultaneously, such as printers, etc.

which is determined by the attribute of the resources themselves. Therefore, the approach

has no practical value.

 Non-preemptive breaking conditions

That is to say, the thread is allowed to forcibly seize some resources from the

occupant. That is to say, when a thread has occupied some resources, and cannot be

immediately satisfied when the new resource is applied, it must release all occupied

SpaceChain OS

Manual SpaceChain

OS.

259

Application Development Manual

resources, and reapply in the future. The resources released can be allocated to

other threads. This means that the resources occupied by the thread are occupied snugly.

It is difficult to implement the method of deadlock prevention, and the system performance

will be reduced.

 Possession and application breaking conditions

The resource pre-allocation strategy can be implemented. The thread applies for all

necessary resources to the system at a time. If all resources required for a certain thread

cannot be satisfied, any resource will not be allocated, and the thread does not run

temporarily. Only when the system can satisfy all resource demands of the current thread,

all resources applied can be allocated to the thread at a time. The running thread has

occupied all necessary resources, and phenomena of simultaneous resource occupation

and resource application will not occur. Therefore, deadlock will not occur. However, the

strategy also has the following disadvantages:

 In many cases, a thread is impossible to know all resources required before

execution. The thread is dynamic and unpredictable during execution;

 The resource utilization rate is low. No matter when the allocated resources

are used, a thread can be executed only after all necessary resources are

occupied. Even if some resources are used once by the thread finally, the

thread has occupied them for the duration of its existence, causing

long-term occupation without use. This is a great waste of resources

apparently;

 Reduces concurrency of the thread. Because of limited resources and

existed waste, the number of threads which can be allocated with all

necessary resources is less inevitably.

 Break cycle wait conditions

Implement resource allocation strategy in order. Adopting the strategy, the resources

are classified and numbered in advance, and allocated by number, so that the thread will

not form the loop when applying for and occupying resources. Request of all threads to

resources must be proposed in ascending order of resource numbers. The thread can

apply for large resources after small resources are occupied, and the loop will not be

generated, so as to prevent deadlock. Compared with the previous strategy, the strategy

has greatly improved resource utilization and system throughput. However, the following

disadvantages are existed:

 Request of the thread to resources is restricted, it is difficult to reasonably

number all resources in the system, and system overhead is increased.

 In order to comply with the number application order, the resources not used

temporarily shall also be applied in advance, so that the duration when the

thread occupies the resources is increased.

SpaceChain OS

Manual SpaceChain

OS.

260

Application Development Manual

SylixOS does not support avoidance, detection and recovery of deadlock,

which can only be prevented. Generally, we use circular wait breaking conditions to

prevent deadlock, and use timeout wait to dissolve deadlock simultaneously. However, it

is required that the application has the perfect timeout error processing mechanism.

7.8 POSIX read-write lock

We present an example of shared resource competition above: two threads shall

perform increment operation of the same variable V (initial value of 0) simultaneously. The

solution to shared resource competition is to add a lock. The lock is occupied before

access to variable V, and released after access. Generally, we can use the binary

semaphore with an initial value of TRUE or the counting semaphore or mutex semaphore

with an initial value of 1 as the lock.

We now slightly modify the example. There are ten threads (thread A, thread 1...

thread 9) and a Variable V. Thread A needs to write Variable V, and thread [1-9] need to

read Variable V. Apparently, Variable V has more reader threads than writer threads. In

this case, if we continue to use the binary semaphore with an initial value of TRUE or the

counting semaphore or mutex semaphore with an initial value of 1 as the lock, other

reader threads will be blocked on the lock when a reader thread occupies the lock,

apparently causing low read concurrent efficiency of shared resources, because direct

read operation by multiple threads to Variable V will not confuse the value of Variable V.

In order to solve the problem of low read concurrent efficiency of the common locking

mechanism in the case of "read more and write less” of shared resources, the POSIX

standard defines read-write lock and operation thereof, and the read-write lock has three

states: read state, write state and unlock state. Provisions for read-write lock: the

read-write lock at the read state can lock any read lock again, while the requested write

lock will be firstly responded after the read lock is unlocked (SylixOS supports the write

lock priority principle); the read-write lock at the write state will not respond to any lock, i.e.,

any lock request will fail.

The type of POSIX read-write lock is pthread_rwlock_t. A variable of

pthread_mutexattr_t type is defined during use. For example:

pthread_rwlock_t rwlock;

A POSIX read-write lock can be used after creation by calling the pthread_rwlock_init

function.

If the thread needs to wait a read-write lock, the pthread_rwlock_rdlock or

pthread_rwlock function is called separately according to use (read or write) for shared

resources, and the interrupt service routine cannot call any POSIX read-write lock function.

A read-write lock is unlocked by calling the pthread_rwlock_unlock function.

SpaceChain OS

Manual SpaceChain

OS.

261

Application Development Manual

A read-write lock shall be deleted by calling the pthread_rwlock_destroy

function after use (guarantee no use in the future), and SylixOS will recover kernel

resources occupied by the read-write lock.

（线程=thread）

Figure 7.13 POSIX read-write lock

A POSIX read-write lock attribute block shall be used as the parameter when a

POSIX read-write lock is created. The type of POSIX read-write lock attribute block is

pthread_rwlockattr_t. A variable of pthread_rwlockattr_t type is defined during use. For

example:

pthread_rwlockattr_t rwlockattr;

7.8.1 Read-write lock attribute block
①

1. Initialization and deletion of the read-write lock attribute block

#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *prwlockattr);

Prototype analysis of Function pthread_rwlockattr_init:

 For success of the function, return 0. For failure, return the error number;

 Parameter prwlockattr is the pointer of POSIX read-write lock attribute block;

#include <pthread.h>

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *prwlockattr);

Prototype analysis of Function pthread_rwlockattr_destroy:

 For success of the function, return 0. For failure, return the error number;

 Parameter prwlockattr is the pointer of POSIX read-write lock attribute block;

2. Set and get process shared attributes of the read-write lock attribute block

#include <pthread.h>

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *prwlockattr,

SpaceChain OS

Manual SpaceChain

OS.

262

Application Development Manual

int pshared);

Prototype analysis of Function pthread_rwlockattr_setpshared:

 For success of the function, return 0. For failure, return the error number;

 Parameter prwlockattr is the pointer of POSIX read-write lock attribute block;

 Parameter pshared identifies whether the POSIX read-write lock attribute block

is shared by processes.

#include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *prwlockattr,

int *pshared);

Prototype analysis of Function pthread_rwlockattr_getpshared:

 For success of the function, return 0. For failure, return the error number;

 Parameter prwlockattr is the pointer of POSIX read-write lock attribute block;

 Output parameter pshared identifies whether the POSIX read-write lock attribute

block is shared by processes.

7.8.2 Read-write lock

1. Initialization and deletion of the read-write lock

#include <pthread.h>

int pthread_rwlock_init(pthread_rwlock_t *prwlock,

const pthread_rwlockattr_t *prwlockattr);

Prototype analysis of Function pthread_rwlock_init:

 For success of the function, return 0. For failure, return the error number;

 Parameter prwlock is the pointer of POSIX read-write lock;

 Parameter prwlockattr is the pointer of POSIX read-write lock attribute object,

which can be NULL;

#include <pthread.h>

int pthread_rwlock_destroy(pthread_rwlock_t *prwlock);

Prototype analysis of Function pthread_rwlock_destroy:

 For success of the function, return 0. For failure, return the error number;

 Parameter prwlock is the pointer of POSIX read-write lock.

2. Read wait of read-write lock

SpaceChain OS

Manual SpaceChain

OS.

263

Application Development Manual

#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *prwlock);

int pthread_rwlock_tryrdlock(pthread_rwlock_t *prwlock);

int pthread_rwlock_timedrdlock(pthread_rwlock_t *prwlock,

 const struct timespec *abs_timeout);

Prototype analysis of above three functions:

 For success of the function, return 0. For failure, return the error number;

 Parameter prwlock is the pointer of POSIX read-write lock;

 Parameter abs_timeout is the waiting absolute timeout.

The pthread_rwlock_timedrdlock is the version of the pthread_rwlock_rdlock with wait

timeout, and the abs_timeout is the absolute wait timeout (see Chapter 11 Time

Management).

The pthread_rwlock_tryrdlock is the "try wait" version of the pthread_rwlock_rdlock.

When the read-write lock has been occupied by the write lock, the pthread_rwlock_rdlock

will be blocked until awakened, while the pthread_rwlock_tryrdlock will return immediately,

and the error number EBUSY is returned.

3. Write wait of read-write lock

#include <pthread.h>

int pthread_rwlock_wrlock(pthread_rwlock_t *prwlock);

int pthread_rwlock_trywrlock(pthread_rwlock_t *prwlock);

int pthread_rwlock_timedwrlock(pthread_rwlock_t *prwlock,

 const struct timespec *abs_timeout);

Prototype analysis of above three functions:

 For success of the function, return 0. For failure, return the error number;

 Parameter prwlock is the pointer of POSIX read-write lock;

 Parameter abs_timeout is the waiting absolute timeout.

The pthread_rwlock_timedwrlock is the version of the pthread_rwlock_wrlock with

wait timeout, and the abs_timeout is the absolute wait timeout

The pthread_rwlock_trywrlock is the "try wait" version of the pthread_rwlock_wrloc.

When the read-write lock has been occupied by the read lock, the pthread_rwlock_wrlock

will be blocked until awakened, while the pthread_rwlock_trywrlock will return immediately,

and the error number EBUSY is returned.

4. Unlock of read-write lock

#include <pthread.h>

int pthread_rwlock_unlock(pthread_rwlock_t *prwlock);

SpaceChain OS

Manual SpaceChain

OS.

264

Application Development Manual

Prototype analysis of Function pthread_rwlock_unlock:

 For success of the function, return 0. For failure, return the error number;

 Parameter prwlock is the pointer of POSIX read-write lock.

The following program shows how to use POSIX read-write lock, the program creates

four reader threads, a writer semaphore and a POSIX read-write lock, the writer thread

performs auto increment operation for Variable count, four reader threads perform printing

for Variable count, and POSIX read-write lock is used as mutex means of the access

variable count.

Program List 7.6 Use of POSIX read-write lock

#include <stdio.h>

#include <pthread.h>

#define READ_THREAD_NR 4

static pthread_rwlock_t lock;

static int count = 0;

static void *thread_read (void *arg)

{

 while (1) {

 pthread_rwlock_rdlock(&lock);

 printf("thread_read(): count = %d\n", count);

 pthread_rwlock_unlock(&lock);

 sleep(1);

 }

 return (NULL);

}

static void *thread_write (void *arg)

{

 while (1) {

 pthread_rwlock_wrlock(&lock);

 count++;

 pthread_rwlock_unlock(&lock);

 sleep(1);

 }

 return (NULL);

}

int main (int argc, char *argv[])

SpaceChain OS

Manual SpaceChain

OS.

265

Application Development Manual

{

 pthread_t threadrd_tid[READ_THREAD_NR];

 pthread_t threadwr_tid;

 int ret;

 int i;

 ret = pthread_rwlock_init(&lock, NULL);

 if (ret != 0) {

 fprintf(stderr, "rwlock create failed.\n");

 return (-1);

 }

 for (i = 0; i < READ_THREAD_NR; i++) {

 ret = pthread_create(&threadrd_tid[i], NULL, thread_read, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 }

 ret = pthread_create(&threadwr_tid, NULL, thread_write, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 for (i = 0; i < READ_THREAD_NR; i++) {

 pthread_join(threadrd_tid[i], NULL);

 }

 pthread_join(threadwr_tid, NULL);

 pthread_rwlock_destroy(&lock);

 return (0);

}

Run the program under the SylixOS Shell:

./posix_rwlock

thread_read(): count = 0

thread_read(): count = 0

thread_read(): count = 0

thread_read(): count = 0

thread_read(): count = 1

thread_read(): count = 1

SpaceChain OS

Manual SpaceChain

OS.

266

Application Development Manual

thread_read(): count = 1

thread_read(): count = 1

7.9 SylixOS condition variable

We continue to use instance in read-write lock section of POSIX:

There are ten threads (thread A, thread 1... thread 9) and a Variable V. Thread A

needs to write Variable V, and thread1...thread 9 need to read Variable V.

We assume that the reader thread needs to read Variable V only when the value of

Variable V is changed, and the reader thread needs to be blocked when the value of

Variable V is unchanged.

The reader thread may need a "judgment" operation before blocking, so as to judge

whether the current value of Variable V is inconsistent with the last read value; "judgment"

shall be locked before operation, and the reader thread shall be blocked if consistent. The

reader thread needs to release the lock before entering the blocking state, and lock

releasing and block need a uninterruptible atomic operation

We can imagine the situation that lock releasing and blocking are not an atomic

operation. If the reader thread is occupied by Thread A between lock releasing and

blocking. Thread A can successfully get the lock certainly. Thread A writes Variable V, and

the value of Variable V is changed, while the reader thread is blocked. Apparently, the

reader thread loses a response to change in the value of Variable V!

Meanwhile, multiple threads are “informed” to read the variable via broadcast after

Thread A writes Variable V.

We need a new means of inter-thread communication - condition variable to solve

the above problem - lock releasing and blocking are an atomic operation and can "inform"

multiple reader threads via broadcast.

The condition variable is a synchronization mechanism between multiple threads.

When the condition variable is used together with the mutex lock, the thread is allowed to

wait for conditions to occur without competition. The condition itself is protected by the

mutex. Therefore, the mutex must be locked before the thread changes the condition, and

other threads will not detect change in conditions before the mutex is got. The following

pseudocode process is one possible way to use the condition variable:

Define global condition (global_cond)

Defining a global mutex (global_lock)

Global variables (global_value)

t1 ()

{

SpaceChain OS

Manual SpaceChain

OS.

267

Application Development Manual

 Get a mutex (lock global_lock)

 Wait condition (Wait)

 Release the mutex (unlock global_lock)

}

t2 ()

{

 Get a mutex (lock global_lock)

 Global variable operations

 Notification conditions are met (Signal)

 Release the mutex (unlock global_lock)

}

main ()

{

 Initialize condition (global_cond)

 Create mutex (global_lock)

 Create thread (t1 t2)

 Join threads (join t1 t2)

 Destroy condition variables (global_cond)

 Delete mutex (global_lock)

}

The type of SylixOS condition variable is LW_THREAD_COND.

A variable of LW_THREAD_COND type shall be defined during use. For example:

LW_THREAD_COND tcd;

A SylixOS condition variable can be used after creation by calling the

Lw_Thread_Cond_Init function.

If it is required to wait for a condition variable, the Lw_Thread_Cond_Wait function

can be called. The interrupt service routine cannot call the Lw_Thread_Cond_Wait

function to wait for a condition variable, because the Lw_Thread_Cond_Wait function will

block the current thread.

Sending a condition variable can use the Lw_Thread_Cond_Signal or

Lw_Thread_Cond_Broadcast function, and the interrupt service routine can also send a

condition variable.

A condition variable shall be deleted by calling the Lw_Thread_Cond_Destroy

function after use, and SylixOS will recover kernel resources occupied by the condition

variable. It might be noted that trying to use a condition variable deleted will generate

unknown errors.

SpaceChain OS

Manual SpaceChain

OS.

268

Application Development Manual

（线程=thread）

（中断=break off）

Figure 7.14 SylixOS condition variable

The SylixOS condition variable attribute block shall be used to create a SylixOS

condition variable. The type of SylixOS condition variable attribute block is ULONG.

A variable of ULONG type is defined during use. For example:

ULONG ulCondAttr;

7.9.1 Condition variable attribute block

1. Initialization and deletion of the condition variable attribute block

#include <SylixOS.h>

ULONG Lw_Thread_Condattr_Init(ULONG *pulAttr);

Prototype analysis of Function Lw_Thread_Condattr_Init:

 For success of the function, return 0. For failure, return the error number;

 Parameter pulAttr is the pointer of SylixOS condition variable attribute block.

#include <SylixOS.h>

ULONG Lw_Thread_Condattr_Destroy(ULONG *pulAttr);

Prototype analysis of Function Lw_Thread_Condattr_Destroy:

 For success of the function, return 0. For failure, return the error number;

 Parameter pulAttr is the pointer of SylixOS condition variable attribute block.

2. Shared attributes of the progress to set and obtain condition variable

attribute block

SpaceChain OS

Manual SpaceChain

OS.

269

Application Development Manual

#include <SylixOS.h>

ULONG Lw_Thread_Condattr_Setpshared(ULONG *pulAttr, INT iShared);

Prototype analysis of Function Lw_Thread_Condattr_Setpshared:

 For success of the function, return 0. For failure, return the error number;

 Parameter pulAttr is the pointer of SylixOS condition variable attribute block;

 Parameter iShared identifies whether the SylixOS condition variable attribute

block is shared by processes.

#include <SylixOS.h>

ULONG Lw_Thread_Condattr_Getpshared(const ULONG *pulAttr, INT *piShared);

Prototype analysis of Function Lw_Thread_Condattr_Getpshared:

 For success of the function, return 0. For failure, return the error number;

 Parameter pulAttr is the pointer of SylixOS condition variable attribute block;

 Output parameter iShared identifies whether the SylixOS condition variable

attribute block is shared by processes.

7.9.2 Condition variable

1. Initialization and deletion of the condition variable

#include <SylixOS.h>

ULONG Lw_Thread_Cond_Init(PLW_THREAD_COND ptcd, ULONG ulAttr);

Prototype analysis of Function Lw_Thread_Cond_Init:

 For success of the function, return 0. For failure, return the error number;

 Parameter ptcd is the pointer of SylixOS condition variable;

 Parameter ulAttr is SylixOS condition variable attribute block.

#include <SylixOS.h>

ULONG Lw_Thread_Cond_Destroy(PLW_THREAD_COND ptcd);

Prototype analysis of Function Lw_Thread_Cond_Destroy:

 For success of the function, return 0. For failure, return the error number;

 Parameter ptcd is the pointer of SylixOS condition variable.

2. Waiting of condition variable

#include <SylixOS.h>

ULONG Lw_Thread_Cond_Wait(PLW_THREAD_COND ptcd,

SpaceChain OS

Manual SpaceChain

OS.

270

Application Development Manual

LW_HANDLE ulMutex,

ULONG ulTimeout);

Prototype analysis of Function Lw_Thread_Cond_Wait:

 For success of the function, return 0. For failure, return the error number;

 Parameter ptcd is the pointer of SylixOS condition variable;

 Parameter ulMutex is the handle of SylixOS mutex semaphore;

 Parameter ulTimeout is the waiting timeout, and the unit is Tick.

3. Sending of condition variable

#include <SylixOS.h>

ULONG Lw_Thread_Cond_Signal(PLW_THREAD_COND ptcd);

ULONG Lw_Thread_Cond_Broadcast(PLW_THREAD_COND ptcd);

Prototype analysis of above two functions:

 For success of the function, return 0. For failure, return the error number;

 Parameter ptcd is the pointer of SylixOS condition variable.

The difference between Lw_Thread_Cond_Broadcast and Lw_Thread_Cond_Signal

is that Lw_Thread_Cond_Broadcast will awaken all threads blocked at the condition

variable via broadcast, while Lw_Thread_Cond_Signal will only awaken a thread.

The following program shows how to use the SylixOS condition variable, the program

creates two threads, a SylixOS mutex semaphore and a SylixOS condition variable;

Thread tTestA waits for condition satisfied and prints the value of Variable _G_iCount, and

Thread tTestB performs auto increment operation for Variable _G_iCount and sends

condition satisfied signal via broadcast. The SylixOS mutex semaphore is used as mutex

for access to Variable _G_iCount, and the SylixOS condition variable is used to inform

change in the value of Variable _G_iCount.

Program List 7.7 How to use SylixOS condition variable

#include <SylixOS.h>

static INT _G_iCount = 0;

static LW_HANDLE _G_hLock;

static LW_THREAD_COND _G_threadCond;

static PVOID tTestA (PVOID pvArg)

{

 INT iError;

 while (1) {

SpaceChain OS

Manual SpaceChain

OS.

271

Application Development Manual

 iError = Lw_SemaphoreM_Wait(_G_hLock, LW_OPTION_WAIT_INFINITE);

 if (iError != ERROR_NONE) {

 break;

 }

 iError = Lw_Thread_Cond_Wait(&_G_threadCond,

 _G_hLock,

 LW_OPTION_WAIT_INFINITE);

 if (iError != ERROR_NONE) {

 Lw_SemaphoreM_Post(_G_hLock);

 break;

 }

 printf("tTestA(): count = %d\n", _G_iCount);

 Lw_SemaphoreM_Post(_G_hLock);

 }

 return (LW_NULL);

}

static PVOID tTestB (PVOID pvArg)

{

 INT iError;

 while (1) {

 iError = Lw_SemaphoreM_Wait(_G_hLock, LW_OPTION_WAIT_INFINITE);

 if (iError != ERROR_NONE) {

 break;

 }

 _G_iCount++;

 Lw_Thread_Cond_Broadcast(&_G_threadCond);

 Lw_SemaphoreM_Post(_G_hLock);

 Lw_Time_SSleep(1);

 }

 return (LW_NULL);

}

int main (int argc, char *argv[])

{

 LW_HANDLE hThreadAId;

 LW_HANDLE hThreadBId;

 ULONG ulCondAttr;

SpaceChain OS

Manual SpaceChain

OS.

272

Application Development Manual

 INT iError;

 Lw_Thread_Condattr_Init(&ulCondAttr);

 Lw_Thread_Condattr_Setpshared(&ulCondAttr, LW_FALSE);

 iError = Lw_Thread_Cond_Init(&_G_threadCond, ulCondAttr);

 if (iError != ERROR_NONE) {

 printf("cond create failed.\n");

 return (-1);

 }

 Lw_Thread_Condattr_Destroy(&ulCondAttr);

 _G_hLock = Lw_SemaphoreM_Create("count_lock",

 LW_PRIO_HIGH,

 LW_OPTION_WAIT_FIFO |

 LW_OPTION_OBJECT_LOCAL|

 LW_OPTION_INHERIT_PRIORITY |

 LW_OPTION_ERRORCHECK,

 LW_NULL);

 if (_G_hLock == LW_OBJECT_HANDLE_INVALID) {

 printf("mutex create failed.\n");

 return (-1);

 }

 hThreadAId = Lw_Thread_Create("t_testa", tTestA, LW_NULL, LW_NULL);

 if (hThreadAId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testa create failed.\n");

 return (-1);

 }

 hThreadBId = Lw_Thread_Create("t_testb", tTestB, LW_NULL, LW_NULL);

 if (hThreadBId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testb create failed.\n");

 return (-1);

 }

 Lw_Thread_Join(hThreadAId, LW_NULL);

 Lw_Thread_Join(hThreadBId, LW_NULL);

 Lw_Thread_Cond_Destroy(&_G_threadCond);

 Lw_SemaphoreM_Delete(&_G_hLock);

SpaceChain OS

Manual SpaceChain

OS.

273

Application Development Manual

 return (0);

}

Run the program under the SylixOS Shell:

./ThreadCond

tTestA(): count = 1

tTestA(): count = 2

tTestA(): count = 3

tTestA(): count = 4

7.10 POSIX condition variable

The type of POSIX condition variable is pthread_cond_t. A variable of pthread_cond_t

type shall be defined during use. For example:

pthread_cond_t cond;

POSIX condition variable need to be used in combination with POSIX mutex

semaphore. and we need to firstly create a POSIX mutex semaphore for sharing resource

lock before POSIX condition variable is used.

A POSIX condition variable can be used after creation by calling the

pthread_cond_init function.

If the thread needs to wait for a condition variable, the pthread_cond_wait function

can be called. The interrupt service routine cannot call the pthread_cond_wait function to

wait for a condition variable, because the pthread_cond_wait function will block the

current thread.

Sending a condition variable can use the pthread_cond_signal or

pthread_cond_broadca function, and the interrupt service routine cannot send a POSIX

condition variable.

A condition variable shall be deleted by calling the pthread_cond_destroy function

after use (guarantee no use in the future), and SylixOS will recover kernel resources

occupied by the condition variable.

（线程=thread）

SpaceChain OS

Manual SpaceChain

OS.

274

Application Development Manual

Figure 7.15 POSIX condition variable

The POSIX condition variable attribute block shall be used to create a POSIX

condition variable. The type of POSIX condition variable is pthread_condattr_t. A variable

of pthread_condattr_t type shall be defined during use. For example:

pthread_condattr_t condattr;

7.10.1 Condition variable attribute block

1. Initialization and deletion of the condition variable attribute block

#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t *pcondattr);

Prototype analysis of Function pthread_condattr_init:

 For success of the function, return 0. For failure, return the error number;

 Parameter pcondattr is the pointer of POSIX condition variable attribute block.

#include <pthread.h>

int pthread_condattr_destroy(pthread_condattr_t *pcondattr);

Prototype analysis of Function pthread_condattr_destroy:

 For success of the function, return 0. For failure, return the error number;

 Parameter pcondattr is the pointer of POSIX condition variable attribute block.

2. Shared attributes of the progress to set and obtain condition variable

attribute block

#include <pthread.h>

int pthread_condattr_setpshared(pthread_condattr_t *pcondattr,

int ishare);

Prototype analysis of Function pthread_condattr_setpshared:

 For success of the function, return 0. For failure, return the error number;

 Parameter pcondattr is the pointer of POSIX condition variable attribute block;

 Parameter ishare identifies whether the POSIX condition variable attribute block

is shared by processes.

#include <pthread.h>

int pthread_condattr_getpshared(const pthread_condattr_t *pcondattr,

int *pishare);

SpaceChain OS

Manual SpaceChain

OS.

275

Application Development Manual

Prototype analysis of Function pthread_condattr_getpshared:

 For success of the function, return 0. For failure, return the error number;

 Parameter pcondattr is the pointer of POSIX condition variable attribute block;

 Output parameter pishare identifies whether the POSIX condition variable

attribute block is shared by processes.

3. Set and get clock type of the condition variable attribute block

#include <pthread.h>

int pthread_condattr_setclock(pthread_condattr_t *pcondattr,

clockid_t clock_id);

Prototype analysis of Function pthread_condattr_setclock:

 For success of the function, return 0. For failure, return the error number;

 Parameter pcondattr is the pointer of POSIX condition variable attribute block;

 Parameter clock_id is the clock type.

Note: The current parameter clock_id can only use Macro CLOCK_REALTIME (see Chapter 11

Time Management).

#include <pthread.h>

int pthread_condattr_getclock(const pthread_condattr_t *pcondattr,

clockid_t *pclock_id);

Prototype analysis of Function pthread_condattr_getclock:

 For success of the function, return 0. For failure, return the error number;

 Parameter pcondattr is the pointer of POSIX condition variable attribute block;

 Output parameter clock_id is the clock type.

7.10.2 Condition variable

1. Initialization and deletion of the condition variable

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *pcond,

const pthread_condattr_t *pcondattr);

Prototype analysis of Function pthread_cond_init:

 For success of the function, return 0. For failure, return the error number;

 Parameter pcond is the pointer of POSIX condition variable;

SpaceChain OS

Manual SpaceChain

OS.

276

Application Development Manual

 Parameter pcondattr is the pointer of POSIX condition variable attribute

block, which can be NULL.

#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *pcond);

Prototype analysis of Function pthread_cond_destroy:

 For success of the function, return 0. For failure, return the error number;

 Parameter pcond is the pointer of POSIX condition variable.

2. Sending of condition variable

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *pcond);

int pthread_cond_broadcast(pthread_cond_t *pcond);

Prototype analysis of above two functions:

 For success of the function, return 0. For failure, return the error number;

 Parameter pcond is the pointer of POSIX condition variable.

The difference between pthread_cond_broadcast and pthread_cond_signal is that

pthread_cond_broadcast will awaken all threads blocked at the condition variable via

broadcast, while pthread_cond_signal will only awaken a thread.

3. Waiting of condition variable

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *pcond,

pthread_mutex_t *pmutex);

int pthread_cond_timedwait(pthread_cond_t *pcond,

 pthread_mutex_t *pmutex,

 const struct timespec *abs_timeout);

int pthread_cond_reltimedwait_np(pthread_cond_t *pcond,

 pthread_mutex_t *pmutex,

 const struct timespec *rel_timeout);

Prototype analysis of above three functions:

 For success of the function, return 0. For failure, return the error number;

 Parameter pcond is the pointer of POSIX condition variable;

 Parameter pmutex is the pointer of POSIX mutex semaphore;

 Parameter abs_timeout is the waiting absolute timeout;

 Parameter rel_timeout is the waiting relative timeout.

SpaceChain OS

Manual SpaceChain

OS.

277

Application Development Manual

The pthread_cond_timedwait is the version of the pthread_cond_wait with wait

timeout, and the abs_timeout is the absolute wait timeout.

The pthread_cond_reltimedwait_np is the non-POSIX standard version of the

pthread_cond_timedwait, and Parameter rel_timeout is relative wait timeout.

The following program shows how to use POSIX condition variable, the program

creates two threads, a POSIX mutex semaphore and a POSIX condition variable, Thread

thread_a prints Variable count, and Thread thread_b performs auto increment operation

for Variable count. POSIX mutex semaphore is used as mutex for access to Variable

count, and POSIX condition variable is used to inform change in the value of Variable

count.

Program List 7.8 Use of POSIX condition variable

#include <stdio.h>

#include <pthread.h>

static pthread_mutex_t lock;

static pthread_cond_t cond;

static int count = 0;

static void *thread_a (void *arg)

{

 while (1) {

 pthread_mutex_lock(&lock);

 pthread_cond_wait(&cond, &lock);

 printf("thread_a(): count = %d\n", count);

 pthread_mutex_unlock(&lock);

 }

 return (NULL);

}

static void *thread_b (void *arg)

{

 while (1) {

 pthread_mutex_lock(&lock);

 count++;

 pthread_cond_broadcast(&cond);

 pthread_mutex_unlock(&lock);

SpaceChain OS

Manual SpaceChain

OS.

278

Application Development Manual

 sleep(1);

 }

 return (NULL);

}

int main (int argc, char *argv[])

{

 pthread_t threada_tid;

 pthread_t threadb_tid;

 int ret;

 ret = pthread_mutex_init(&lock, NULL);

 if (ret != 0) {

 fprintf(stderr, "mutex create failed.\n");

 return (-1);

 }

 ret = pthread_cond_init(&cond, NULL);

 if (ret != 0) {

 fprintf(stderr, "cond create failed.\n");

 return (-1);

 }

 ret = pthread_create(&threada_tid, NULL, thread_a, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 ret = pthread_create(&threadb_tid, NULL, thread_b, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 pthread_join(threada_tid, NULL);

 pthread_join(threadb_tid, NULL);

 pthread_cond_destroy(&cond);

 pthread_mutex_destroy(&lock);

 return (0);

SpaceChain OS

Manual SpaceChain

OS.

279

Application Development Manual

}

Run the program under the SylixOS Shell:

./posix_cond

thread_a(): count = 1

thread_a(): count = 2

thread_a(): count = 3

thread_a(): count = 4

thread_a(): count = 5

7.11 SylixOS message queue

Before instructions for the message queue, let's have a look at the instance: there are

two threads (Thread A and Thread B, Thread A is higher than Thread B in priority) and a

variable V. Thread A needs to write Variable V, and Thread B needs to read Variable V.

We assume that Thread B needs to read Variable V only when the value of Variable V

is changed, and Thread B needs to be blocked when the value of Variable V is

unchanged.

If we continue to use the condition variable to perform inter-thread communication,

when Thread A rapidly and frequently modifies the value of Variable V, Thread B may lose

a part of response to change in the value of Variable V —— the old value to be read has

been overwritten by the new value.

The message queue is an FIFO queue which can store multiple messages. If we use

the message queue as communication means between Threads A and B, Thread A stores

the modified value of Variable V as a message to the message queue, Thread B only

needs to read the message from the message queue (i.e., the modified value of Variable

V). then Thread B will not loss a part of response to change in the value of Variable V

before the message queue is full.

The message queue makes it easier for our software to be divided and implemented

by function modules, and different function modules are implemented by using different

threads. The message queue is used to perform communication decoupling between

function modules instead of definition of calling interface.

For example, the ADC
①
thread reads results of ADC after conversion and deposits

them in the message queue, and the UI thread takes out results from the message queue

and displays it on the screen; the key thread reads the key pressed by the user and stores

the key value in the message queue, and the UI thread takes out the key value to switch

the display page.... Therefore, only the UI thread can operate the display interface, so as

to avoid display error.

SpaceChain OS

Manual SpaceChain

OS.

280

Application Development Manual

The SylixOS message queue also supports sending of emergency messages,

which are inserted directly at the head of the message queue. Emergency messages will

be processed firstly, so as to guarantee security in case of some anomalies.

A SylixOS message queue can be used after creation by calling the

Lw_MsgQueue_Create function, and the Lw_MsgQueue_Create function will return a

handle of message queue after successful creation.

If the thread needs to receive message, the Lw_MsgQueue_Receive function can be

called. The interrupt service routine cannot call the Lw_MsgQueue_Receive function to

receive message, because the Lw_MsgQueue_Receive function will block the current

thread when the message queue is empty.

The interrupt service routine can use the Lw_MsgQueue_TryReceive function to

receive message, the Lw_MsgQueue_TryReceive function will immediately return when

the message queue is empty, and the current thread will not be blocked.

The message can be sent by calling the Lw_MsgQueue_Send function.

A message queue shall be deleted by calling the Lw_MsgQueue_Delete function

after use (guarantee no use in the future), and SylixOS will recover kernel resources

occupied by the message queue.

（线程=thread）

（中断=break off）

Figure 7.16 SylixOS message queue

7.11.1 Message queue

1. Creation and deletion of the message queue

#include <SylixOS.h>

LW_HANDLE Lw_MsgQueue_Create(CPCHAR pcName,

 ULONG ulMaxMsgCounter,

SpaceChain OS

Manual SpaceChain

OS.

281

Application Development Manual

 size_t stMaxMsgByteSize,

 ULONG ulOption,

 LW_OBJECT_ID *pulId);

Prototype analysis of Function Lw_MsgQueue_Create:

 For function success, return the handle of the message queue. For failure, return

LW_HANDLE_INVALID, and set the error number;

 Parameter pcName is the message queue name;

 Parameter ulMaxMsgCounter is the maximum number of messages which can

be contained in the message queue;

 Parameter stMaxMsgByteSize is the maximum length of single message in the

message queue;

 Parameter ulOption is the creation option of message queue, as shown in Table

7.2;

 Output parameter pulld is used to receive the message queue ID.

It might be noted that the minimum value of the largest message queue in the

message queue is sizeof(size_t), i.e., the minimum capacity to create the message queue

is sizeof(size_t) bytes.

#include <SylixOS.h>

ULONG Lw_MsgQueue_Delete(LW_HANDLE *pulId);

Prototype analysis of Function Lw_MsgQueue_Create:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter pulId is the handle of message queue.

2. Receive message

#include <SylixOS.h>

ULONG Lw_MsgQueue_Receive(LW_HANDLE ulId,

 PVOID pvMsgBuffer,

 size_t stMaxByteSize,

 size_t *pstMsgLen,

 ULONG ulTimeout);

ULONG Lw_MsgQueue_ReceiveEx(LW_HANDLE ulId,

 PVOID pvMsgBuffer,

 size_t stMaxByteSize,

 size_t *pstMsgLen,

 ULONG ulTimeout,

 ULONG ulOption);

SpaceChain OS

Manual SpaceChain

OS.

282

Application Development Manual

ULONG Lw_MsgQueue_TryReceive(LW_HANDLE ulId,

 PVOID pvMsgBuffer,

 size_t stMaxByteSize,

 size_t *pstMsgLen);

Prototype analysis of above three functions:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of message queue;

 Parameter pvMsgBuffer points at the message buffer zone used to send

message (a pointer of void type, can point at any type);

 Parameter stMaxByteSize is the length of the message buffer zone;

 Output parameter pstMsgLen is used to receive the message length;

 Parameter ulTimeout is the waiting timeout, and the unit is Tick.

 Parameter ulOption is the receive option of message queue, as shown in Table

7.8.

Table 7.8 Receive option of message queue

Macro name Meaning

LW_OPTION_NOERROR
The nessage larger than the buffer zone is automatically truncated

(default for the option)

Calling the Lw_MsgQueue_Receive function will get the message from the message

queue represented by ulld:

 When there is a message in the queue, the function will copy the message to the

message buffer zone to the direction of Parameter pvMsgBuffer. If the buffer is

larger than the message in length, the rest of the buffer is not modified; if the

buffer zone is less than the message in length, the message will be truncated

without any error returned. The Lw_MsgQueue_ReceiveEx function provides the

message error checking mechanism, and will return the error number E2BIG

when the message is truncated;

 When there is no message in the queue, the thread will be blocked. If the timeout

value of ulTimeout is set as LW_OPTION_WAIT_INFINITE, the thread will be

blocked forever until the message arrives; if the timeout value of ulTimeout is

not LW_OPTION_WAIT_INFINITE, the thread automatically awaken the thread

after the appointed timeout.

SpaceChain OS

Manual SpaceChain

OS.

283

Application Development Manual

3. Send message

#include <SylixOS.h>

ULONG Lw_MsgQueue_Send(LW_HANDLE ulId,

 const PVOID pvMsgBuffer,

 size_t stMsgLen);

ULONG Lw_MsgQueue_SendEx(LW_HANDLE ulId,

 const PVOID pvMsgBuffer,

 size_t stMsgLen,

 ULONG ulOption);

Prototype analysis of above two functions:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of message queue;

 Parameter pvMsgBuffer points at the buffer zone of message to be sent (a

pointer of void type can point at any type);

 Parameter stMsgLen is the length of the message to be sent;

 Parameter ulOption is the message sending option, as shown in Table 7.9.

Table 7.9 Send option of message queue

Macro name Meaning

LW_OPTION_DEFAULT Default options

LW_OPTION_URGENT Emergency message sending

LW_OPTION_BROADCAST Send broadcast

If the LW_OPTION_URGENT option is used, the message will be inserted at the

head of the message queue. If the LW_OPTION_BROADCAST option is used, the

message will b

4. Message sending with time delay

#include <SylixOS.h>

ULONG Lw_MsgQueue_Send2(LW_HANDLE ulId,

 const PVOID pvMsgBuffer,

 size_t stMsgLen

ULONG ulTimeout);

ULONG Lw_MsgQueue_SendEx2(LW_HANDLE ulId,

 const PVOID pvMsgBuffer,

 size_t stMsgLen,

SpaceChain OS

Manual SpaceChain

OS.

284

Application Development Manual

 ULONG ulTimeout

 ULONG ulOption);

Prototype analysis of above two functions:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of message queue;

 Parameter pvMsgBuffer points at the buffer zone of message to be sent (a

pointer of void type can point at any type);

 Parameter stMsgLen is the length of the message to be sent;

 Parameter ultimeout is the delay waiting time to send message;

 Parameter ulOption is the message sending option, as shown in Table 7.9.

Parameter ulTimeout is added in passing of different parameters between the above

two functions and the Lw_MsgQueue_Send function, which indicates that the message is

sent with the delay waiting function. It means that message sending will wait for the

ulTimeout time when the message queue sent is full. If the message queue is still at full

state when the timeout is up, the message will be abandoned. Otherwise, the message

will be sent successfully.

5. Clear message queue

#include <SylixOS.h>

ULONG Lw_MsgQueue_Clear(LW_HANDLE ulId);

Prototype analysis of Function Lw_MsgQueue_Clear:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of message queue.

Message queue clearing means that all messages in the queue will be deleted (the

queue is still valid when the message is abandoned), and the expected results will not be

got when trying to receive the message from it.

6. Release all threads in the message waiting queue

#include <SylixOS.h>

ULONG Lw_MsgQueue_Flush(LW_HANDLE ulId,

 ULONG *pulThreadUnblockNum);

Prototype analysis of Function Lw_MsgQueue_Flush:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

SpaceChain OS

Manual SpaceChain

OS.

285

Application Development Manual

 Parameter ulId is the handle of message queue;

 Output parameter pulThreadUnblockNum returns the number of unblocked

threads, which can be NULL.

Calling the Lw_MsgQueue_Flush function will make all threads (including send and

receive threads) blocked in the appointed message queue ready, so as to avoid the thread

from long-term blocking.

#include <SylixOS.h>

ULONG Lw_MsgQueue_FlushSend(LW_HANDLE ulId,

 ULONG *pulThreadUnblockNum);

Prototype analysis of Function Lw_MsgQueue_FlushSend:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of message queue;

 Output parameter pulThreadUnblockNum returns the number of unblocked

threads, which can be NULL.

Calling the Lw_MsgQueue_FlushSend function will make all sending threads blocked

in the appointed message queue ready, so as to avoid the sending thread from long-term

blocking due to not sending out the message for a long term.

#include <SylixOS.h>

ULONG Lw_MsgQueue_FlushReceive(LW_HANDLE ulId,

 ULONG *pulThreadUnblockNum);

Prototype analysis of Function Lw_MsgQueue_FlushReceive:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of message queue;

 Output parameter pulThreadUnblockNum returns the number of unblocked

threads, which can be NULL.

Calling the Lw_MsgQueue_FlushReceive function will make all receiving threads

blocked in the appointed message queue ready, so as to avoid the receiving thread from

long-term blocking due to not receiving the message for a long term.

7. Get the state of the message queue

#include <SylixOS.h>

ULONG Lw_MsgQueue_Status(LW_HANDLE ulId,

 ULONG *pulMaxMsgNum,

 ULONG *pulCounter,

SpaceChain OS

Manual SpaceChain

OS.

286

Application Development Manual

 size_t *pstMsgLen,

 ULONG *pulOption,

 ULONG *pulThreadBlockNum);

ULONG Lw_MsgQueue_StatusEx(LW_HANDLE ulId,

 ULONG *pulMaxMsgNum,

 ULONG *pulCounter,

 size_t *pstMsgLen,

 ULONG *pulOption,

 ULONG *pulThreadBlockNum,

 size_t *pstMaxMsgLen);

Prototype analysis of above functions:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of message queue;

 Output parameter pulMaxMsgNum is used to receive the maximum number of

messages which can be contained in the message queue;

 Output parameter pulCounter is used to receive the number of current

messages in the message queue.

 Output parameter pstMsgLen is used to receive the length of the recent

message in the message queue;

 Output parameter pulOption is used to receive creation option of the message

queue;

 Output parameter pulThreadBlockNum is used to receive the number of

threads currently blocked in the message queue;

 Output parameter pstMaxMsgLen is used to receive the maximum length of

single message in the message queue.

8. Get the name of the message queue

#include <SylixOS.h>

ULONG Lw_MsgQueue_GetName(LW_HANDLE ulId,

 PCHAR pcName);

Prototype analysis of Function Lw_MsgQueue_GetName:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of message queue;

SpaceChain OS

Manual SpaceChain

OS.

287

Application Development Manual

 Output parameter

pcName is the name of the counting semaphore, and pcName shall be pointed

at a character array with size of LW_CFG_OBJECT_NAME_SIZE.

The following program shows how to use the SylixOS message queue. The program

creates two threads and a SylixOS message queue; Thread tTestB sends the character

string as a message to the message queue, and Thread tTestA reads and prints the

message from the message queue.

Program List 7.9 How to use SylixOS message queue

#include <SylixOS.h>

#include "string.h"

static LW_HANDLE _G_hMsgQ;

static PVOID tTestA (PVOID pvArg)

{

 INT iError;

 CHAR acMsg[64];

 size_t stLen;

 while (1) {

 iError = Lw_MsgQueue_Receive(_G_hMsgQ, acMsg, sizeof(acMsg), &stLen,

LW_OPTION_WAIT_INFINITE);

 if (iError != ERROR_NONE) {

 break;

 }

 printf("tTestA(): get a msg \"%s\"\n", acMsg);

 }

 return (LW_NULL);

}

static PVOID tTestB (PVOID pvArg)

{

 INT iError;

 CHAR acMsg[64];

 size_t stLen;

 INT iCount = 0;

 while (1) {

 sprintf(acMsg, "hello SylixOS %d", iCount);

 stLen = strlen(acMsg) + 1;

SpaceChain OS

Manual SpaceChain

OS.

288

Application Development Manual

 iCount++;

 iError = Lw_MsgQueue_Send(_G_hMsgQ, acMsg, stLen);

 if (iError != ERROR_NONE) {

 break;

 }

 Lw_Time_SSleep(1);

 }

 return (LW_NULL);

}

int main (int argc, char *argv[])

{

 LW_HANDLE hThreadAId;

 LW_HANDLE hThreadBId;

 _G_hMsgQ = Lw_MsgQueue_Create("msgq", 10, 64,

 LW_OPTION_WAIT_FIFO |

 LW_OPTION_OBJECT_LOCAL,

 LW_NULL);

 if (_G_hMsgQ == LW_OBJECT_HANDLE_INVALID) {

 printf("message queue create failed.\n");

 return (-1);

 }

 hThreadAId = Lw_Thread_Create("t_testa", tTestA, LW_NULL, LW_NULL);

 if (hThreadAId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testa create failed.\n");

 return (-1);

 }

 hThreadBId = Lw_Thread_Create("t_testb", tTestB, LW_NULL, LW_NULL);

 if (hThreadBId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testb create failed.\n");

 return (-1);

 }

 Lw_Thread_Join(hThreadAId, LW_NULL);

 Lw_Thread_Join(hThreadBId, LW_NULL);

 Lw_MsgQueue_Delete(&_G_hMsgQ);

SpaceChain OS

Manual SpaceChain

OS.

289

Application Development Manual

 return (0);

}

Run the program under the SylixOS Shell:

./MsgQueue

tTestA(): get a msg "hello SylixOS 0"

tTestA(): get a msg "hello SylixOS 1"

tTestA(): get a msg "hello SylixOS 2"

tTestA(): get a msg "hello SylixOS 3"

7.12 SylixOS event set

We generally have used the P2P software (such as BT, eMule and so on) to

download movies and so on. P2P software divides the files to be downloaded into many

small pieces, downloads these different file fragments from multiple file sources, and

assembles them into one file after all file fragments have been downloaded:

The P2P software needs to record the download status of these file fragments and

implement the online playback function, and the event set provided by SylixOS solves

these problems very well via inter-thread communication.

The event set is defined as the ULONG type, and each bit represents an event. For

the above instance, each bit represents a file fragment. Therefore, the problem to record

the download status of file fragments is solved very well.

The online play function relies on current file fragments to be played. If current file

fragments to be played is not downloaded, play can only be paused. Download and play

are implemented with different threads. The download thread cannot simply download a

file fragment to awaken the play thread for play, because it is uncertain which file

fragments can be downloaded, and the file fragments downloaded currently may not be

required for the play thread currently. The event set provides API for sending and waiting

for events, which solves the problem of synchronization of download and play threads

very well.

Here is the instance of P2P software to indicate the purpose of the event set, and the

function of the event set is not limited to this actually.

A SylixOS event set can be used after creation by calling the Lw_Event_Create

function, and the Lw_Event_Create function will return a handle of event set after

successful creation.

If it is required to wait for the event, the Lw_Event_Wait function can be called. The

interrupt service routine cannot call the Lw_Event_Wait function to wait for the event,

because the Lw_Event_Wai function will block the current thread when the event is invalid

SpaceChain OS

Manual SpaceChain

OS.

290

Application Development Manual

The interrupt service routine can use the Lw_Event_TryWait function to try to

wait for the event, because the Lw_Event_TryWait function will immediately return when

the event are invalid, and the current thread will not be blocked.

The event can be sent by calling the Lw_Event_Send function.

A event set shall be deleted by calling the Lw_Event_Delete function after use

(guarantee no use in the future), and SylixOS will recover kernel resources occupied by

the event set.

（线程=thread）

（中断=break off）

Figure 7.17 SylixOS event set

7.12.1 Event set

1. Creation and deletion of the event set

#include <SylixOS.h>

LW_HANDLE Lw_Event_Create(CPCHAR pcName,

 ULONG ulInitEvent,

 ULONG ulOption,

 LW_OBJECT_ID *pulId);

Prototype analysis of Function Lw_Event_Create

 For function success, return handle of the event set. For failure, return

LW_HANDLE_INVALID, and set the error number;

 Parameter pcName is the name of the event set;

 Parameter ulInitEvent is the initial value of the event set;

 Parameter ulOption is creation option of the event set;

SpaceChain OS

Manual SpaceChain

OS.

291

Application Development Manual

 Output parameter pulld is used to receive the event set ID.

Combination of Macro LW_OPTION_EVENT_n (n ranges from 0 to 31) can be used

for the event, while Macro LW_OPTION_EVENT_ALL can be used for all events.

#include <SylixOS.h>

ULONG Lw_Event_Delete(LW_HANDLE *pulId);

Prototype analysis of Function Lw_Event_Delete:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter pulId is the handle of receive event set.

2. Send event set

#include <SylixOS.h>

ULONG Lw_Event_Send(LW_HANDLE ulId,

 ULONG ulEvent,

 ULONG ulOption);

Prototype analysis of Function Lw_Event_Send:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of event set.

 Parameter ulEvent is the event to be sent;

 Parameter ulOption is the message send option, as shown in Table 7.10.

Table 7.10 Sent option of the event set

Macro name Meaning

LW_OPTION_EVENTSET_SET Set the designated event as 1

LW_OPTION_EVENTSET_CLR Set the designated event as 0

3. Wait of the event set

#include <SylixOS.h>

ULONG Lw_Event_Wait(LW_HANDLE ulId,

 ULONG ulEvent,

 ULONG ulOption,

 ULONG ulTimeout);

ULONG Lw_Event_WaitEx(LW_HANDLE ulId,

 ULONG ulEvent,

SpaceChain OS

Manual SpaceChain

OS.

292

Application Development Manual

 ULONG ulOption,

 ULONG ulTimeout,

 ULONG *pulEvent);

ULONG Lw_Event_TryWait(LW_HANDLE ulId,

 ULONG ulEvent,

 ULONG ulOption);

ULONG Lw_Event_TryWaitEx(LW_HANDLE ulId,

 ULONG ulEvent,

 ULONG ulOption,

 ULONG *pulEvent);

Prototype analysis of above functions:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of event set.

 Parameter ulEvent is the event to be waited;

 Parameter ulOption is the wait event option, as shown in Table 7.11.

 Parameter ulTimeout is the waiting timeout, and the unit is Tick.

 Output parameter pulEvent identifies the events received.

The difference between Lw_Event_TryWait and Lw_Event_Wait is that if the current

event to be waited is invalid, Lw_Event_TryWait will immediately exit and return

ERROR_THREAD_WAIT_TIMEOUT, while Lw_Event_Wait will be blocked until

awakened.

Table 7.11 Wait option of the event set

Macro name Meaning

LW_OPTION_EVENTSET_WAIT_CLR_ALL Activated when the designated event is 0

LW_OPTION_EVENTSET_WAIT_CLR_ANY Activated when any bit of the designated event is 0

LW_OPTION_EVENTSET_WAIT_SET_ALL Activated when the designated event is 1

LW_OPTION_EVENTSET_WAIT_SET_ANY Activated when any bit of the designated event is 1

LW_OPTION_EVENTSET_RETURN_ALL Return all valid events after getting the event

LW_OPTION_EVENTSET_RESET Automatically clear the event after getting the event

SpaceChain OS

Manual SpaceChain

OS.

293

Application Development Manual

LW_OPTION_EVENTSET_RESET_ALL Clear all events after getting the event

4. Get the state of the event set

#include <SylixOS.h>

ULONG Lw_Event_Status(LW_HANDLE ulId,

 ULONG *pulEvent,

 ULONG *pulOption);

Prototype analysis of Function Lw_Event_Status:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of event set.

 Output parameter pulEvent identifies the event at the current position;

 Output parameter pulOption is creation option of the event set;

5. Get the name of the event set

#include <SylixOS.h>

ULONG Lw_Event_GetName(LW_HANDLE ulId,

 PCHAR pcName);

Prototype analysis of Function Lw_Event_GetName:

 For success of the function, return ERROR_NONE. For failure, return the error

number;

 Parameter ulId is the handle of event set.

 Output parameter pcName is the name of the event set, and pcName shall be

pointed at a character array with size of LW_CFG_OBJECT_NAME_SIZE.

The following program shows how to use the SylixOS event set. The program creates

two threads and a SylixOS event set; Thread tTestB constantly sends events 0 to 31, and

Thread tTestA waits for the event and prints the event number.

Program List 7.10 How to use SylixOS event set

#include <SylixOS.h>

static LW_HANDLE _G_hEventSet;

static PVOID tTestA (PVOID pvArg)

SpaceChain OS

Manual SpaceChain

OS.

294

Application Development Manual

{

 INT iError;

 ULONG ulEvent;

 INT i;

 while (1) {

 iError = Lw_Event_WaitEx(_G_hEventSet,

 LW_OPTION_EVENT_ALL,

 LW_OPTION_EVENTSET_WAIT_SET_ANY |

LW_OPTION_EVENTSET_RESET,

 LW_OPTION_WAIT_INFINITE,

 &ulEvent);

 if (iError != ERROR_NONE) {

 break;

 }

 for (i = 0; i < 32; i++) {

 if (ulEvent & (1 << i)) {

 printf("tTestA(): get event %d\n", i);

 }

 }

 }

 return (LW_NULL);

}

static PVOID tTestB (PVOID pvArg)

{

 INT iError;

 INT i;

 while (1) {

 for (i = 0; i < 32; i++) {

 iError = Lw_Event_Send(_G_hEventSet, (1 << i),

LW_OPTION_EVENTSET_SET);

 if (iError != ERROR_NONE) {

 return (LW_NULL);

 }

 Lw_Time_SSleep(1);

 }

 }

 return (LW_NULL);

}

SpaceChain OS

Manual SpaceChain

OS.

295

Application Development Manual

int main (int argc, char *argv[])

{

 LW_HANDLE hThreadAId;

 LW_HANDLE hThreadBId;

 _G_hEventSet = Lw_Event_Create("event_set", 0,

 LW_OPTION_WAIT_FIFO |

 LW_OPTION_OBJECT_LOCAL,

 LW_NULL);

 if (_G_hEventSet == LW_OBJECT_HANDLE_INVALID) {

 printf("event set create failed.\n");

 return (-1);

 }

 hThreadAId = Lw_Thread_Create("t_testa", tTestA, LW_NULL, LW_NULL);

 if (hThreadAId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testa create failed.\n");

 return (-1);

 }

 hThreadBId = Lw_Thread_Create("t_testb", tTestB, LW_NULL, LW_NULL);

 if (hThreadBId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testb create failed.\n");

 return (-1);

 }

 Lw_Thread_Join(hThreadAId, LW_NULL);

 Lw_Thread_Join(hThreadBId, LW_NULL);

 Lw_Event_Delete(&_G_hEventSet);

 return (0);

}

Run the program under the SylixOS Shell:

./event_test

tTestA(): get event 0

tTestA(): get event 1

tTestA(): get event 2

tTestA(): get event 3

tTestA(): get event 4

SpaceChain OS

Manual SpaceChain

OS.

296

Application Development Manual

7.13 POSIX thread barrier

We must have the experience in organizing the team to visit tourist attractions.

Assuming that we have five companions, Companion A goes to the ticket office to buy the

group ticket, the rest four companions can only wait at the ticket gate (because tickets

have not been bought yet). When Companion A buys the group ticket and collects at

entrance of the ticket office, we can enter the tourist attraction from the ticket office.

In the field of computer, there are many similar application scenarios: sort the extra

large arrays. In order to exert the concurrent performance of the multi-core processor, 10

threads can be used to sort 10 parts of the extra large arrays. The subsequent incorporate

operation can be performed after respective sorting of 10 threads is completed. The firstly

completed thread will be suspended to wait, and all wait threads can be awakened until all

threads are completed.

We can use semaphore, condition variable and other inter-thread communication

methods to complete the above application scenario. However, the POSIX standard

defines the thread barrier and operation thereof for more elegant and concise

implementation.

Thread barrier Barrier is also called as the thread fence, which mainly used to

coordinate with multiple threads to concurrently and jointly complete a certain task. A

thread barrier object can enable each thread to be blocked, and continue to run until all

coordination threads to (combination to complete a certain task) execute to a certain

appointed point (like the dam for water storage).

The type of POSIX thread barrier is pthread_barrier_t. A variable of

pthread_spinlock_t type shall be defined during use, such as:

pthread_barrier_t barrier;

A POSIX thread barrier can be used after creation by calling the pthread_barrier_init

function.

If it is required to wait for a thread barrier, the pthread_spin_lock function can be

called and the interrupt service routine cannot call any POSIX spin lock API.

A thread barrier shall be deleted by calling the pthread_barrier_destroy function after

use (guarantee no use in the future), and SylixOS will recover kernel resources occupied

by the thread barrier.

SpaceChain OS

Manual SpaceChain

OS.

297

Application Development Manual

（线程=thread）

Figure 7.18 POSIX thread barrier

The POSIX thread barrier attribute block shall be used to create a POSIX thread

barrier. The type of POSIX thread barrier attribute block is pthread_barrierattr_t. A variable

of pthread_barrierattr_t type shall be defined during use, such as:

pthread_barrierattr_t barrierattr;

7.13.1 Thread barrier attribute block

1. Initialization and deletion of the thread barrier attribute block

#include <pthread.h>

int pthread_barrierattr_init(pthread_barrierattr_t *pbarrierattr);

int pthread_barrierattr_destroy(pthread_barrierattr_t *pbarrierattr);

Prototype analysis of above two functions:

 For success of the function, return 0. For failure, return the error number;

 Parameter pbarrierattr is the pointer of POSIX thread barrier attribute block.

2. Set and get process shared attributes of the thread barrier attribute block

#include <pthread.h>

int pthread_barrierattr_setpshared(pthread_barrierattr_t *pbarrierattr,

int shared);

Prototype analysis of Function pthread_barrierattr_setpshared:

 The function returns 0;

 Parameter pbarrierattr is the pointer of POSIX thread barrier attribute block;

 Parameter shared identifies whether the POSIX thread barrier attribute block is

shared by processes.

#include <pthread.h>

int pthread_barrierattr_getpshared(const pthread_barrierattr_t *pbarrierattr,

SpaceChain OS

Manual SpaceChain

OS.

298

Application Development Manual

int

*pshared);

Prototype analysis of Function pthread_barrierattr_getpshared:

 The function returns 0;

 Parameter pbarrierattr is the pointer of POSIX thread barrier attribute block;

 Output parameter pshared identifies whether the POSIX thread barrier attribute

block is shared by processes.

7.13.2 Thread barrier

1. Initialization and deletion of the thread barrier

#include <pthread.h>

int pthread_barrier_init(pthread_barrier_t *pbarrier,

 const pthread_barrierattr_t *pbarrierattr,

 unsigned int count);

Prototype analysis of Function pthread_barrier_init:

 For success of the function, return 0. For failure, return the error number;

 Parameter pbarrier is the pointer of POSIX thread barrier;

 Parameter pbarrierattr is the pointer of POSIX thread barrier attribute block,

which can be NULL;

 Parameter count identifies how many threads the POSIX thread barrier will

barrier.

#include <pthread.h>

int pthread_barrier_destroy(pthread_barrier_t *pbarrier);

Prototype analysis of Function pthread_barrier_destroy:

 For success of the function, return 0. For failure, return the error number;

 Parameter pbarrier is the pointer of POSIX thread barrier.

2. Wait of the thread barrier

#include <pthread.h>

int pthread_barrier_wait(pthread_barrier_t *pbarrier);

Prototype analysis of Function pthread_barrier_wait:

 For success of the function, return 0. For failure, return the error number;

 Parameter pbarrier is the pointer of POSIX thread barrier.

SpaceChain OS

Manual SpaceChain

OS.

299

Application Development Manual

The following program shows how to use the POSIX thread barrier. The

program creates four threads and a POSIX thread barrier; four threads delay for different

seconds, and then wait for the thread barrier. When all four threads arrive at the thread

barrier, the four threads continue to run.

Program List 7.11 Use of POSIX thread barrier

#include <stdio.h>

#include <pthread.h>

#define TEST_THREAD_NR 4

static pthread_barrier_t barrier;

static void *thread_test (void *arg)

{

 int sec = (int)arg;

 printf("thread_test(): i will sleep %d second.\n", sec);

 sleep(sec);

 pthread_barrier_wait(&barrier);

 printf("thread_test(): i am here.\n");

 return (NULL);

}

int main (int argc, char *argv[])

{

 pthread_t tid[TEST_THREAD_NR];

 pthread_attr_t attr;

 int ret;

 int i;

 ret = pthread_barrier_init(&barrier, NULL, TEST_THREAD_NR);

 if (ret != 0) {

 fprintf(stderr, "barrier create failed.\n");

 return (-1);

 }

 ret = pthread_attr_init(&attr);

 if (ret != 0) {

SpaceChain OS

Manual SpaceChain

OS.

300

Application Development Manual

 fprintf(stderr, "pthread attr init failed.\n");

 return (-1);

 }

 for (i = 0; i < TEST_THREAD_NR; i++) {

 ret = pthread_create(&tid[i], &attr, thread_test, (void *)(i + 1));

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 }

 for (i = 0; i < TEST_THREAD_NR; i++) {

 pthread_join(tid[i], NULL);

 }

 pthread_barrier_destroy(&barrier);

 return (0);

}

Run the program under the SylixOS Shell, and the results are as follows:

./posix_barrier

thread_test(): i will sleep 1 second

thread_test(): i will sleep 2 second

thread_test(): i will sleep 3 second

thread_test(): i will sleep 4 second

thread_test(): i am here

thread_test(): i am here

thread_test(): i am here

thread_test(): i am here

It can be seen from the program running results that all threads will run to the print

position of "i am here” simultaneously after successful creation. Therefore, it can be got

that the thread barrier can make different threads run to the same point and continue to

run (although the creation time of threads is different).

7.14 POSIX spin lock

Spin lock is a kind of lightweight locking mechanism for protecting shared resources.

In fact, the spin lock and the mutex lock are similar, which are designed to solve mutex

access to shared resources.

SpaceChain OS

Manual SpaceChain

OS.

301

Application Development Manual

Regardless of mutex lock or spin lock, there can be one owner at most at any

time, that is to say, only one thread can acquire lock at most at any time. However, they

are very different in the scheduling mechanism. For mutex lock, if the mutex lock has been

occupied, the applicant can only enter the dormant state. However, the spin lock will not

cause the applicant to sleep. If the spin lock has been occupied by another thread, the

applicant has to cyclically judge whether the owner of the spin lock has released the lock.

The word "spin" is named after it.

It can be seen therefrom that the spin lock is a lower-level primitive way to protect the

data structure or code fragment. This locking mechanism may have the following two

problems:

 Deadlock: if the applicant tries to recursively acquire the spin lock, deadlock will

be caused inevitably;

 Consume too many CPU resources: if the application is not successful, the

applicant will continue to make cyclic judgment, which undoubtedly reduces the

CPU utilization rate.

It can be seen that the spin lock is suitable for relatively short locking time kept by the

lock user. The semaphore is suitable for keeping the locking time longer.

It might also be noted that the CPU cannot be abandoned for any reason when the

spin-protected critical area code is executed. Therefore, any API which may trigger

system task scheduling cannot be called in the area protected by the spin lock.

The type of POSIX spin lock is pthread_spinlock_t. Define a variable of

pthread_spinlock_t type for use, such as:

pthread_spinlock_t spin;

A POSIX spin lock must be created by calling the pthread_spin_init function before

use.

If the thread needs to wait for a spinlock, the pthread_spin_lock function can be called

and the interrupt service routine cannot call any POSIX spin lock API. A spin lock can be

released by calling the pthread_spin_unlock function.

After a spin lock is used (and it will not be used later), it shall be deleted by calling the

pthread_spin_destroy function. SylixOS will reclaim the kernel resources occupied by the

spin lock.

SpaceChain OS

Manual SpaceChain

OS.

302

Application Development Manual

（线程=thread）

Figure 7.19 POSIX spin lock

7.14.1 Spin lock

1. Initialization and deletion of the spin lock

#include <pthread.h>

int pthread_spin_init(pthread_spinlock_t *pspinlock, int pshare);

Prototype analysis of Function pthread_spin_init:

 For success of the function, return 0. For failure, return the error number;

 Parameter pspinlock is the pointer of POSIX spinlock;

 Parameter pshare labels whether POSIX spin lock has process sharing.

#include <pthread.h>

int pthread_spin_destroy(pthread_spinlock_t *pspinlock);

Prototype analysis of Function pthread_spin_destroy:

 For success of the function, return 0. For failure, return the error number;

 Parameter pspinlock is the pointer of POSIX spinlock.

2. Locking and unlocking of the spin lock

#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *pspinlock);

int pthread_spin_unlock(pthread_spinlock_t *pspinlock);

int pthread_spin_trylock(pthread_spinlock_t *pspinlock);

Prototype analysis of above functions:

 For success of the function, return 0. For failure, return the error number;

 Parameter pspinlock is the pointer of POSIX spinlock.

SpaceChain OS

Manual SpaceChain

OS.

303

Application Development Manual

Pthread_spin_trylock is the "try-to-wait" version of pthread_spin_lock. When

the POSIX spin lock has already occupied, pthread_spin_lock will "spin", and

pthread_spin_trylock will return immediately.

At the moment, the unlock operation of the POSIX spin lock can only call the

pthread_spin_unlock function.

If the interrupt service routine may also use resources protected by POSIX spin lock,

the POSIX spin lock API with an interrupt mask version shall be used. Otherwise,

deadlock will occur:

#include <pthread.h>

int pthread_spin_lock_irq_np(pthread_spinlock_t *pspinlock,

pthread_int_t *irqctx);

int pthread_spin_unlock_irq_np(pthread_spinlock_t *pspinlock,

pthread_int_t irqctx);

int pthread_spin_trylock_irq_np(pthread_spinlock_t *pspinlock,

pthread_int_t *irqctx);

Prototype analysis of above several functions:

 For success of the function, return 0. For failure, return the error number;

 Parameter pspinlock is the pointer of POSIX spinlock;

 Parameter irqctx is the pointer of pthread_int_t type, which is used to save and

restore the interrupt mask register of CPU.

pthread_spin_trylock_irq_np is a "try-to-wait" version of pthread_spin_lock_irq_np.

When the POSIX spin lock has already been occupied, pthread_spin_lock_irq_np will

"spin", and pthread_spin_trylock_irq_np will return immediately.

At this time, the unlock operation of POSIX spin lock can only call the

pthread_spin_unlock_irq_np function.

The following program shows how to use POSIX spin lock. The program creates two

threads and a POSIX spin lock. Two threads perform auto increment operation and

printing of Variable count respectively. POSIX spin lock is used as mutex for access to

Variable count.

Program List 7.12 Use of POSIX spin lock

#include <stdio.h>

#include <pthread.h>

static pthread_spinlock_t lock;

static int count = 0;

static void *thread_a (void *arg)

SpaceChain OS

Manual SpaceChain

OS.

304

Application Development Manual

{

 int value;

 while (1) {

 pthread_spin_lock(&lock);

 value = count;

 pthread_spin_unlock(&lock);

 printf("thread_a(): count = %d\n", value);

 sleep(1);

 }

 return (NULL);

}

static void *thread_b (void *arg)

{

 while (1) {

 pthread_spin_lock(&lock);

 count++;

 pthread_spin_unlock(&lock);

 sleep(1);

 }

 return (NULL);

}

int main (int argc, char *argv[])

{

 pthread_t threada_tid;

 pthread_t threadb_tid;

 int ret;

 ret = pthread_spin_init(&lock, FALSE);

 if (ret != 0) {

 fprintf(stderr, "mutex create failed.\n");

 return (-1);

 }

 ret = pthread_create(&threada_tid, NULL, thread_a, NULL);

 if (ret != 0) {

SpaceChain OS

Manual SpaceChain

OS.

305

Application Development Manual

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 ret = pthread_create(&threadb_tid, NULL, thread_b, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 pthread_join(threada_tid, NULL);

 pthread_join(threadb_tid, NULL);

 pthread_spin_destroy(&lock);

 return (0);

}

Run the program under the SylixOS Shell:

./posix_spin

thread_a(): count = 0

thread_a(): count = 1

thread_a(): count = 2

thread_a(): count = 3

thread_a(): count = 4

thread_a(): count = 5

7.15 SylixOS atomic number

At the beginning of this chapter, we introduce the risk of chaos in the multi-thread

environment for the auto increment operation of Variable V. To solve this problem, we

propose the solution to add a lock to protect auto increment operation of Variable V.

When our program has more variables like Variable V or more access to such

variables, our program will inevitably have more lock and lock operations. On the one

hand, this makes our program difficult to write and maintain. On the other hand,

unreasonable lock operation may cause deadlock.

In order to avoid these problems, SylixOS provides the atomic type atomic_t and its

API. The atomic number type can store an integer INT value. At the same time, the

operation performed to the atomic number with atomic number API is an atomic operation,

because atomic operation cannot be interrupted. There is no risk of confusion in the

multi-thread environment.

SpaceChain OS

Manual SpaceChain

OS.

306

Application Development Manual

The type of SylixOS atomic number is atomic_t. A variable of atomic_t type

shall be defined during use, such as:

atomic_t atomic;

7.15.1 Atomic number

1. Setting and getting of atomic number

#include <SylixOS.h>

VOID Lw_Atomic_Set(INT iVal, atomic_t *patomic);

Prototype analysis of Function Lw_Atomic_Set:

 Parameter iVal is the value to be set;

 Parameter patomic is the pointer of atomic number.

#include <SylixOS.h>

INT Lw_Atomic_Get(atomic_t *patomic);

Prototype analysis of Function Lw_Atomic_Get:

 For success of the function, return the value of the atomic number. For failure,

return -1 and set the error number;

 Parameter patomic is the pointer of atomic number.

2. Addition and subtraction of the atomic number

#include <SylixOS.h>

INT Lw_Atomic_Add(INT iVal, atomic_t *patomic);

Prototype analysis of Function Lw_Atomic_Add:

 For success of the function, return the new value of the atomic number. For

failure, return -1 and set the error number;

 Parameter iVal is the value to be added;

 Parameter patomic is the pointer of atomic number.

#include <SylixOS.h>

INT Lw_Atomic_Sub(INT iVal, atomic_t *patomic);

Prototype analysis of Function Lw_Atomic_Sub:

 For success of the function, return the new value of the atomic number. For

failure, return -1 and set the error number;

 Parameter iVal is the value to be subtracted;

SpaceChain OS

Manual SpaceChain

OS.

307

Application Development Manual

 Parameter patomic is the

pointer of atomic number.

3. Auto increment and auto decrement of atomic number

#include <SylixOS.h>

INT Lw_Atomic_Inc(atomic_t *patomic);

INT Lw_Atomic_Dec(atomic_t *patomic);

Prototype analysis of above two functions:

 For success of the function, return the new value of the atomic number. For

failure, return -1 and set the error number;

 Parameter patomic is the pointer of atomic number.

4. Logic bit operation of atomic number

#include <SylixOS.h>

INT Lw_Atomic_And(INT iVal, atomic_t *patomic);

Prototype analysis of Function Lw_Atomic_And:

 For success of the function, return the new value of the atomic number. For

failure, return -1 and set the error number;

 Parameter iVal is the value requiring logic bit and operation;

 Parameter patomic is the pointer of atomic number.

#include <SylixOS.h>

INT Lw_Atomic_Nand(INT iVal, atomic_t *patomic);

Prototype analysis of Function Lw_Atomic_Nand:

 For success of the function, return the new value of the atomic number. For

failure, return -1 and set the error number;

 Parameter iVal is the value requiring logic bit and not operation;

 Parameter patomic is the pointer of atomic number.

#include <SylixOS.h>

INT Lw_Atomic_Or(INT iVal, atomic_t *patomic);

Prototype analysis of Function Lw_Atomic_Or:

 For success of the function, return the new value of the atomic number. For

failure, return -1 and set the error number;

 Parameter iVal is the value requiring logic bit or operation;

 Parameter patomic is the pointer of atomic number.

SpaceChain OS

Manual SpaceChain

OS.

308

Application Development Manual

#include <SylixOS.h>

INT Lw_Atomic_Xor(INT iVal, atomic_t *patomic);

Prototype analysis of Function Lw_Atomic_Xor:

 For success of the function, return the new value of the atomic number. For

failure, return -1 and set the error number;

 Parameter iVal is the value requiring logic bit XOR operation;

 Parameter patomic is the pointer of atomic number.

5. Swap operation of atomic number

#include <SylixOS.h>

INT Lw_Atomic_Swp(INT iVal, atomic_t *patomic);

Prototype analysis of Function Lw_Atomic_Swp:

 For success of the function, return the old value of the atomic number (value

before operation). For failure, return -1 and set the error number;

 Parameter iVal is the value to be set;

 Parameter patomic is the pointer of atomic number.

The following program shows how to use POSIX atomic number. The program

creates two threads. The two threads perform auto increment operation and printing to

atomic number _G_atomicCount respectively.

Program List 7.13 Use of POSIX atomic number

#include <SylixOS.h>

static atomic_t _G_atomicCount;

static PVOID tTestA (PVOID pvArg)

{

 while (1) {

 printf("tTestA(): count = %d\n", API_AtomicGet(&_G_atomicCount));

 Lw_Time_SSleep(1);

 }

 return (LW_NULL);

}

static PVOID tTestB (PVOID pvArg)

{

 while (1) {

SpaceChain OS

Manual SpaceChain

OS.

309

Application Development Manual

 Lw_Atomic_Inc(&_G_atomicCount);

 Lw_Time_SSleep(1);

 }

 return (LW_NULL);

}

int main (int argc, char *argv[])

{

 LW_HANDLE hThreadAId;

 LW_HANDLE hThreadBId;

 Lw_Atomic_Set(0, &_G_atomicCount);

 hThreadAId = Lw_Thread_Create("t_testa", tTestA, LW_NULL, LW_NULL);

 if (hThreadAId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testa create failed.\n");

 return (-1);

 }

 hThreadBId = Lw_Thread_Create("t_testb", tTestB, LW_NULL, LW_NULL);

 if (hThreadBId == LW_OBJECT_HANDLE_INVALID) {

 printf("t_testb create failed.\n");

 return (-1);

 }

 Lw_Thread_Join(hThreadAId, LW_NULL);

 Lw_Thread_Join(hThreadBId, LW_NULL);

 return (0);

}

Run the program under the SylixOS Shell:

./Atomic

tTestA(): count = 0

tTestA(): count = 1

tTestA(): count = 2

tTestA(): count = 3

tTestA(): count = 4

SpaceChain OS

Manual SpaceChain

OS.

310

Application Development Manual

7.16 One-time initialization

Sometimes, we need to perform one-time initialization of some POSIX objects, such

as the thread key pthread_key_t. If we perform multiple initializations, an error will occur.

During traditional sequential programming, one-time initialization is often managed by

using Boolean BOOL type variables. Boolean type control variable is statically initialized

as FALSE, and any code which relies on initialization can test the variable. If the variable

value is FALSE, initialization is performed, and then the variable value is set as TRUE.

The code checked later will skip initialization.

However, things will get complicated in the multi-threaded program. If multiple

threads concurrently execute the initialization sequence code, multiple threads may find

that the variable value is FALSE at the same time, and are initialized. However, the

process is only performed once.

Although we can add a POSIX mutex semaphore to protect the initialization process

from being executed for multiple times, it is much more convenient to use the

pthread_once_t variable and the pthread_once function provided by the POSIX standard.

Definition and initialization of the pthread_once_t variable:

static pthread_once_t once = PTHREAD_ONCE_INIT;

7.16.1 pthread_once_t variable

#include <pthread.h>

int pthread_once(pthread_once_t *once, void (*pfunc)(void));

Prototype analysis of Function pthread_once:

 This function returns error number ERRNO_NONE or POSIX standard error

number (errno records the cause of error);

 Parameter once is the pointer of pthread_once_t type variable;

 Parameter pfunc is a function pointer which completes one-time initialization.

SylixOS also provides an API similar to the pthread_once function:

#include <SylixOS.h>

INT Lw_Thread_Once(BOOL *pbOnce, VOIDFUNCPTR pfuncRoutine);

Prototype analysis of Function Lw_Thread_Once:

 The function returns the error number;

 Parameter pbOnce is the pointer to Boolean BOOL type variable;

SpaceChain OS

Manual SpaceChain

OS.

311

Application Development Manual

 Parameter pfuncRoutine is the function pointer which completes

one-time initialization.

The following program shows how to use the pthread_once_t variable and the

pthread_once function. This program is modified from Program List 7.8, and places

creation of POSIX conditional variable and POSIX mutex in the one-time initialization

function. Although the pthread_once(&once, var_init) statement is called twice, the

var_init function will only be called once.

Program List 7.14 Use of pthread_once_t variable and pthread_once function

#include <stdio.h>

#include <pthread.h>

static pthread_once_t once = PTHREAD_ONCE_INIT;

static pthread_mutex_t lock;

static pthread_cond_t cond;

static int count = 0;

static void var_init(void)

{

 pthread_mutex_init(&lock, NULL);

 pthread_cond_init(&cond, NULL);

}

static void *thread_a (void *arg)

{

 pthread_once(&once, var_init);

 while (1) {

 pthread_mutex_lock(&lock);

 pthread_cond_wait(&cond, &lock);

 printf("thread_a(): count = %d\n", count);

 pthread_mutex_unlock(&lock);

 }

 return (NULL);

}

static void *thread_b (void *arg)

{

SpaceChain OS

Manual SpaceChain

OS.

312

Application Development Manual

 pthread_once(&once, var_init);

 while (1) {

 pthread_mutex_lock(&lock);

 count++;

 pthread_cond_broadcast(&cond);

 pthread_mutex_unlock(&lock);

 sleep(1);

 }

 return (NULL);

}

int main (int argc, char *argv[])

{

pthread_t threada_tid;

pthread_t threadb_tid;

int ret;

 ret = pthread_create(&threada_tid, NULL, thread_a, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 ret = pthread_create(&threadb_tid, NULL, thread_b, NULL);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 pthread_join(threada_tid, NULL);

 pthread_join(threadb_tid, NULL);

 return 0;

}

Run the program under the SylixOS Shell:

./posix_once

thread_a(): count = 1

thread_a(): count = 2

SpaceChain OS

Manual SpaceChain

OS.

313

Application Development Manual

thread_a(): count = 3

thread_a(): count = 4

thread_a(): count = 5

 Application Development Manual
SpaceChain OS

Manual SylixOS.

Chapter 8 Process management

8.1 Real-time process

The process is the container for resources in the operating system. All applications

must be attached to the process for running, and the process manages the code, data,

thread, semaphore and other resources of the program. When a process is destroyed, all

resources belonging to the process will also be destroyed, such as: file handles, socket ,

thread and so on.

SylixOS support process. SylixOS process manages application resources, as

described above. Unlike Linux and Windows operating systems, the SylixOS process is

designed to take full account of real-time system demands. We call this as real-time

process. SylixOS improves process real-time performance in following two aspects:

 All threads in SylixOS process use real-time scheduling algorithm for scheduling.

 All SylixOS processes share an address space. There is no need to switch page

tables during task switching. Existence of process has no effect on the real-time

performance of task switching.

Executing an executable file in SylixOS Shell will create a process in the system. The

current running process can be viewed with the ps command. Execute the program

named app in the current directory as follows:

./app&

app is running

ps

 NAME FATHER PID GRP MEMORY UID GID USER

----------------- ----------------- ----- ----- ---------- ----- ----- ------

kernel <orphan> 0 0 0 0 0 root

app <orphan> 2 2 65536 0 0 root

total vprocess : 2

Adding "&" symbol behind the command indicates that the process is executed at the

background. The user program part of the process in SylixOS system starts execution

from the main function. The thread where the main function is located is the main thread of

the process. The main thread can call the thread creation function to create other threads.

Note: the executable files of the process and its child process in all instances set in the section are

are stored in the current directory of Shell.

SpaceChain OS

Manual SpaceChain

OS.

315

Application Development Manual

8.2 Process state machine

The process state reflects different stages of the process execution process. The

process state is converted with process execution and changes in external conditions.

SylixOS process has the following four states.

 Initialization state: the process is still in the initialization process, and the

program loading, memory initialization and other operations are being performed,

and the operating conditions are not yet available;

 Running state: the process is running, and the thread in the process is either

involved in scheduling or at the blocked state;

 Exit state: the process has finished running. When the process enters the exit

state, the signal will be sent to its parent process. The parent process will timely

recover the remaining resources of the child process. In case of zombie process,

the system will recycle resources after the exit state is entered.;

 Stopped state: some processes will enter the stopped state in the running

process. At the stopped state, all threads of the process stop running, and do not

participate in scheduling. In the debugging the process, the debugger will often

let the process enter the stopped state, so as to observe the process data.

Figure 8.1 Process state machine

8.3 POSIX processAPI

In addition to executing the program creation process in SylixOS Shell, SylixOS also

provides APIs for creating process and setting process parameters in the program. When

SpaceChain OS

Manual SpaceChain

OS.

316

Application Development Manual

a process creates another process, this process becomes the parent process of the

created process, and the created process becomes the child process of this process. The

parent-child processes are related to each other and can call the corresponding API to

find each other. When the child process exits, the child process will send the signal to

notify the parent process. At the moment, the parent process can obtain the child process

exit code, and recycle the child process resources. If the parent process of a process exits

before the child process, the child process will become the orphan process, and the

system will automatically complete resource recycling of the orphan process at exit.

SylixOS provides a set of POSIX-compatible APIs. Therefore, it is easy to write

SylixOS program or port the program to SylixOS.

8.3.1 Execute program

1. Use the exec function to execute program

#include <process.h>

int execl(const char *path, const char *argv0, ...);

int execle(const char *path, const char *argv0, ...);

int execlp(const char *file, const char *argv0, ...);

int execv(const char *path, char * const *argv);

int execve(const char *path, char * const *argv, char * const *envp);

int execvp(const char *file, char * const *argv);

int execvpe(const char *file, char * const *argv, char * const *envp);

Function prototype analysis:

 Return the function execution results. For success of the function, return 0. For

failure, return -1 and set the error code.

 Parameter path is the executable file path;

 Parameter argv0 is the first command line parameter, which is generally the

command name;

 Parameter file is the executable file name. What's different from Parameter path

is that it does not have the directory, and the application loader search the file at

the specified path. The search paths of application dynamic library in SylixOS are

as follows in sequence:

 Shell current directory (usually the user's home directory), but not the

application directory;

 Search path included in PATH environment.

 Parameter...is the variable parameter, which represents the remaining

parameters in the command line, and the command line parameter is ended with

SpaceChain OS

Manual SpaceChain

OS.

317

Application Development Manual

0. In the execle function, there is an array of environment variables behind the

command line parameter which ends with 0. The array ends with 0. Refer to

instructions for the envp parameter;

 Parameter argv is the array of character strings consisting of command line

parameter. The array starts with the executable file name and ends with 0. 0

indicates no use of command line parameter;

 Parameter envp is the array of process environment variable character strings

preset before executing the program. The array ends with 0. 0 indicates that it is

not required to set the environment variable.

Note: this function can only be called by the main thread of the current process. Otherwise, it will

return failure.

The following instance shows how to use exec series functions. Program List 8.2,

Program List 8.3 and Program List 8.4 show how to use the execl, execle and execve

functions respectively.

Program List 8.1 exec instance child process

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

 char *env_parent = (char*)0;

 if (argc < 2) {

 printf("child process param error!\n");

 return (-1);

 }

 printf("child process: %s\n", argv[1]);

 env_parent = getenv("PARENT");

 if (env_parent) {

 printf("environment variable: PARENT = %s\n", env_parent);

 }

 return (0);

}

SpaceChain OS

Manual SpaceChain

OS.

318

Application Development Manual

Program List 8.2 execl instance

#include <stdio.h>

#include <process.h>

int main (int argc, char *argv[])

{

 printf("before execl\n");

 execl("./child_process", "child_process",

"execl test", (char *)0);

 printf("after execl\n");

 return 0;

}

Run the program in the SylixOS Shell:

./execl_test

before execl

child process, execl test

Program List 8.3 execle instance

#include <stdio.h>

#include <process.h>

int main (int argc, char *argv[])

{

 char *env[] = { "PARENT=execle_demo", (char *)0 };

 printf("before execle\n");

 execle("./child_process", "child_process",

 "execle demo", (char *)0, env);

 printf("after execle\n");

 return 0;

}

Run the program in the SylixOS Shell:

./execle_demo

before execle

child process, execle demo

environment variable PARENT = execle_demo

Program List 8.4 execve instance

SpaceChain OS

Manual SpaceChain

OS.

319

Application Development Manual

#include <stdio.h>

#include <process.h>

int main (int argc, char *argv[])

{

 char *cmd[] = { "child_process", "execve test", (char *)0 };

 char *env[] = { "PARENT=execve_demo", (char *)0 };

 printf("before execve\n");

 execve("./child_process", cmd, env);

 printf("after execve\n");

 return 0;

}

Run the program in the SylixOS Shell:

./execve_demo

before execve

child process, execve test

environment variable PARENT = execve_demo

It can be seen from the instance that the exec function will overwrite this process

environment. Therefore, the print statement behind the exec function will not be executed.

8.3.2 Create process

1. Use the posix_spawn function to create the process

The posix_spawn series functions are more powerful than the exec series functions in

functions, and more complex in use. The posix_spawn can set the command line

parameter and environment variable of the new process, and can also set file operations

and process attributes of the new process. The function prototype is as follows:

#include <spawn.h>

int posix_spawn(pid_t *pid, const char *path,

 const posix_spawn_file_actions_t *file_actions,

 const posix_spawnattr_t *attrp,

 char *const argv[],

 char *const envp[]);

int posix_spawnp(pid_t *pid, const char *file,

 const posix_spawn_file_actions_t *file_actions,

 const posix_spawnattr_t *attrp,

SpaceChain OS

Manual SpaceChain

OS.

320

Application Development Manual

 char *const argv[],

 char *const envp[]);

Function prototype analysis:

 For success of the function, return 0. For failure, return -1 and set the error code;

 Parameter pid saves the new process ID;

 Parameter path is the executable file path;

 Parameter file is the executable file name. What's different from Parameter path

is that it does not have the directory, and the application loader search the file at

the specified path. The search paths of application dynamic library in SylixOS are

as follows in sequence:

 Shell current directory, but not the application directory;

 Search path included in PATH environment.

 Parameter file_actions is the file operation set to be processed when the new

process starts, and 0 indicates that no file operations are performed.

Construction, value assignment and other operations for the file_actions are

introduced in subsequent functions, which is named as the file operation set

object in the introduction of the chapter below.

 Parameter attrp is the initialization attribute of the new process, and NULL

indicates no setting. Construction, value assignment and other operations for the

attrp are introduced in subsequent functions, which is named as the process

attribute object in the introduction of the chapter below.

 Parameter argv is the character string array consisting of command line

parameters. The array starts with the executable file name and ends with NULL.

NULL indicates that command line parameters are not used;

 Parameter envp is the character string array of the process environment variable

to be preset, ending with NULL. NULL indicates that it is not required to set the

environment variable.

2. Initialize the process attribute object

#include <spawn.h>

int posix_spawnattr_init(posix_spawnattr_t *attrp);

Prototype analysis of Function posix_spawnattr_init:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object to be initialized.

3. Destroy the process attribute object

SpaceChain OS

Manual SpaceChain

OS.

321

Application Development Manual

#include <spawn.h>

int posix_spawnattr_destroy(posix_spawnattr_t *attrp);

Prototype analysis of Function posix_spawnattr_destroy:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object to be destroyed.

4. Set the working directory in the process attribute object

#include <spawn.h>

int posix_spawnattr_setwd(posix_spawnattr_t *attrp, const char *pwd);

Prototype analysis of Function posix_spawnattr_setwd:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object;

 Parameter pwd is the character string of the new working directory.

5. Get the working directory in the process attribute object

#include <spawn.h>

int posix_spawnattr_getwd(const posix_spawnattr_t *attrp,

char *pwd, size_t size);

Prototype analysis of Function posix_spawnattr_getwd:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object;

 Parameter pwd is the buffer zone used to save the character string of the

working directory;

 Parameter size is the length of the buffer zone.

6. Set the signal mask in the process attribute object

#include <spawn.h>

int posix_spawnattr_setsigmask(posix_spawnattr_t *attrp,

 const sigset_t *sigmask);

Prototype analysis of Function posix_spawnattr_setsigmask:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object;

 Parameter sigmask is the process signal mask to be set.

SpaceChain OS

Manual SpaceChain

OS.

322

Application Development Manual

7. Get the signal mask in the process attribute object

#include <spawn.h>

int posix_spawnattr_getsigmask(const posix_spawnattr_t *attrp,

 sigset_t *sigmask);

Prototype analysis of Function posix_spawnattr_getsigmask:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object;

 Parameter sigmask is the process signal mask got.

8. Set the flag bit in the process attribute object

#include <spawn.h>

int posix_spawnattr_setflags(posix_spawnattr_t *attrp,

 short flags);

Prototype analysis of Function posix_spawnattr_setflags:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object;

 Parameter flags is the flag bit mask of the process attribute. Only the enabled

attribute in the flag bit will take effect when the process starts, and the value of

the flag bit mask is any combination of the following values.

Table 8.1 Flag bit of the process attribute object

Macro name Explanation

POSIX_SPAWN_SETPGROUP Enabled process group setting

POSIX_SPAWN_SETSIGMASK Enable signal mask setting

POSIX_SPAWN_SETSCHEDULER Enable scheduler parameter setting

POSIX_SPAWN_SETSCHEDPARAM Enable process priority setting

9. get the flag bit in the process attribute object

#include <spawn.h>

int posix_spawnattr_getflags(const posix_spawnattr_t *attrp,

 short *flags);

Prototype analysis of Function posix_spawnattr_getflags:

 For success of the function, return 0. For failure, return the error code;

SpaceChain OS

Manual SpaceChain

OS.

323

Application Development Manual

 Parameter attrp is the

process attribute object;

 Parameter flags is the flag bit mask of the process attribute. Only the enabled

attribute in the flag bit will take effect when the process starts, and values of the

flag bit are shown in Table 8.1.

10. Set the process group number to the process attribute object

#include <spawn.h>

int posix_spawnattr_setpgroup(posix_spawnattr_t *attrp,

 pid_t pgroup);

Prototype analysis of Function posix_spawnattr_setpgroup:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object;

 Parameter pgroup is the process group number.

11. Get the process group number from the process attribute object

#include <spawn.h>

int posix_spawnattr_getpgroup(const posix_spawnattr_t *attrp,

 pid_t *pgroup);

 Prototype analysis of Function posix_spawnattr_getpgroup:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object;

 Parameter pgroup is the process group number returned.

12. Set the scheduling policy in the process attribute object

#include <spawn.h>

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attrp,

 int schedpolicy);

Prototype analysis of Function posix_spawnattr_setschedpolicy:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object;

 Parameter schedpolicy is the process scheduling policy. Parameter schedpolic

can have the following cases:

Table 8.2 Table of process scheduling policy

Macro name Explanation

SpaceChain OS

Manual SpaceChain

OS.

324

Application Development Manual

LW_OPTION_SCHED_FIFO SCHED_FIFO FCFS real-time scheduling policy

LW_OPTION_SCHED_RR SCHED_RR round-robin real-time scheduling policy

13. Get the scheduling policy in the process attribute object

#include <spawn.h>

int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *attrp,

 int *schedpolicy);

Prototype analysis of Function posix_spawnattr_getschedpolicy:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object;

 Parameter schedpolicy is the process scheduling policy got

14. Set the process priority in the process attribute object

#include <spawn.h>

int posix_spawnattr_setschedparam(posix_spawnattr_t *attrp,

 const struct sched_param *schedparam);

Prototype analysis of Function posix_spawnattr_setschedparam:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object;

 Parameter schedparam is the scheduling parameter (see 6.7 POSIX thread

scheduling).

15. Get the process priority in the process attribute object

#include <spawn.h>

int posix_spawnattr_getschedparam(const posix_spawnattr_t *attrp,

 struct sched_param *schedparam);

Prototype analysis of Function posix_spawnattr_getschedparam:

 For success of the function, return 0. For failure, return the error code;

 Parameter attrp is the process attribute object;

 Parameter schedparam is the process priority setting parameters got.

16. Initialize the file operation set object

#include <spawn.h>

int posix_spawn_file_actions_init(posix_spawn_file_actions_t *file_actions);

SpaceChain OS

Manual SpaceChain

OS.

325

Application Development Manual

Prototype analysis of Function posix_spawn_file_actions_init:

 For success of the function, return 0. For failure, return the error code;

 Parameter file_actions is the file operation set object.

17. Destroy the file operation set object

#include <spawn.h>

int posix_spawn_file_actions_destroy(posix_spawn_file_actions *file_actions);

Prototype analysis of Function posix_spawn_file_actions_destroy:

 For success of the function, return 0. For failure, return the error code;

 Parameter file_actions is the file operation set object.

18. Add open file operation to the file operation set object

#include <spawn.h>

int posix_spawn_file_actions_addopen(

posix_spawn_file_actions_t *file_actions,

 int fd,

const char *path,

int oflag,

mode_t mode

);

Prototype analysis of Function posix_spawn_file_actions_addopen:

 For success of the function, return 0. For failure, return the error code;

 Parameter file_actions is the file operation set object;

 Parameter fd is number of the file opened;

 Parameter path is the file path;

 Parameter oflag is the file open mode;

 Parameter mode is valid only when creating a new file, indicating the creation

mode of the new file.

19. Add close file operation to the file operation set object

#include <spawn.h>

int posix_spawn_file_actions_addclose(

posix_spawn_file_actions_t *file_actions,

 int fd

);

Prototype analysis of Function posix_spawn_file_actions_addclose:

SpaceChain OS

Manual SpaceChain

OS.

326

Application Development Manual

 For success of the

function, return 0. For failure, return the error code;

 Parameter file_actions is the file operation set object;

 Parameter fd is the number of the file to be closed.

20. Add file descriptor dup operation to the file operation set object

#include <spawn.h>

int posix_spawn_file_actions_adddup2(

posix_spawn_file_actions_t *file_actions,

int fd,

int newfd

);

Prototype analysis of Function posix_spawn_file_actions_adddup2:

 For success of the function, return 0. For failure, return the error code;

 Parameter file_actions is the file operation set object;

 Parameter fd is the number of the file to be copied;

 Parameter newfd is the new file number pointing to the file corresponding to

Parameter fd.

The following instances indicate how to use POSIX API to create the process.

Program List 8.5 posix_spawn function instance

#include <stdio.h>

#include <spawn.h>

int main (int argc, char *argv[])

{

 posix_spawn_file_actions_t file_actions;

 struct sched_param schedparam;

 posix_spawnattr_t spawnattr;

 pid_t pid;

 char *cmd[] = { "child_process", "execve test", (char *)0 };

 char *env[] = { "PARENT=execve_demo", (char *)0 };

 char *log_file = "/tmp/child_process_output";

 mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;

/*

* Initialize process attribute

*/

SpaceChain OS

Manual SpaceChain

OS.

327

Application Development Manual

 if (posix_spawnattr_init(&spawnattr) != 0) {

 fprintf(stderr, "init posix_spawnattr_t failed\n");

 return (-1);

}

/*

* Set the priority of the new process is NORMAL.

*/

 schedparam.sched_priority = PX_PRIORITY_CONVERT(LW_PRIO_NORMAL);

 posix_spawnattr_setschedparam(&spawnattr, &schedparam);

 posix_spawnattr_setflags(&spawnattr, POSIX_SPAWN_SETSCHEDPARAM);

/*

* Initialize file operation handler

*/

 if (posix_spawn_file_actions_init(&file_actions) != 0) {

fprintf(stderr, "init posix_spawn_file_actions_t failed\n");

 return (-2);

 }

 /*

 * Turn off standard input, standard output, error output

 */

 if (posix_spawn_file_actions_addclose(&file_actions, STDIN_FILENO) != 0 ||

 posix_spawn_file_actions_addclose(&file_actions, STDOUT_FILENO) != 0 ||

 posix_spawn_file_actions_addclose(&file_actions, STDERR_FILENO) != 0) {

 fprintf (stderr, "close std file failed\n");

 return (-3);

 }

 /*

 * Redirect standard output to log file

 */

 if (posix_spawn_file_actions_addopen(&file_actions,

STDOUT_FILENO,

log_file,

 O_WRONLY | O_CREAT | O_TRUNC,

mode) != 0) {

 fprintf (stderr, "redirection std output failed\n");

 return (-4);

 }

 if (posix_spawnp(&pid, "./child_process",

 &file_actions,

SpaceChain OS

Manual SpaceChain

OS.

328

Application Development Manual

&spawnattr, cmd, env) != 0) { /* 启动进程

 */

 posix_spawnattr_destroy(&spawnattr);

 posix_spawn_file_actions_destroy(&file_actions);

 return (-6);

 }

 posix_spawnattr_destroy(&spawnattr);

 posix_spawn_file_actions_destroy(&file_actions);

 return (0);

}

The instance uses the program in Program List 8.1 as the executable file of the child

process, and the program is executed in SylixOS Shell:

./posix_spawn_demo

The standard output has been redirected when the program starts. Therefore, any

program output cannot be seen in Shell, which can be seen by checking contents in the

/tmp/child_process_output file.

cat /tmp/child_process_output

child process, execve test

environment variable PARENT = execve_demo

8.3.3 Process scheduling

The process is the basic unit of system resource allocation (it can be seen as the

container of resources), and the thread is the basic unit of scheduling. Therefore, SylixOS

process scheduling refers to scheduling for the main thread of the process.

1. Set the process scheduling priority

Sets the SylixOS scheduling priority of all threads satisfying conditions.

#include <sys/resource.h>

int setpriority(int which, id_t who, int value);

Prototype analysis of Function setpriority:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter which appoints the meaning of Parameter who;

SpaceChain OS

Manual SpaceChain

OS.

329

Application Development Manual

 The meaning of Parameter who is appointed by Parameter which, as

shown in Table 8.3:

Table 8.3 Corresponding relation between Parameter which and Parameter who

Macro name Explanation

PRIO_PROCESS The value of Parameter who is the process ID

PRIO_PGRP The value of Parameter who is the group ID

PRIO_USER The value of Parameter who is the user ID

 Parameter value is the SylixOS priority to be set.

2. Get the SylixOS scheduling priority

#include <sys/resource.h>

int getpriority(int which, id_t who);

Prototype analysis of Function getpriority:

 Return the maximum value of the SylixOS priority in all threads satisfying

conditions. Note: the priority value is the largest and therefore the priority is the

lowest here;

 Parameter which appoints the meaning of Parameter who, as shown in Table

8.3;

 The meaning of Parameter who is appointed by Parameter which.

Function setpriority and Function getpriority set and get the SylixOS priority. Different

from the priority indicated by the sched_priority member in the previous sched_param

structure, the sched_priority member is the POSIX priority.

3. Adjust the SylixOS scheduling priority

The nice function can adjust the priority of current process.

#include <unistd.h>

int nice(int incr);

Prototype analysis of Function nice:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter incr is the value to be adjusted. The process flow of the function to

Parameter incr is as follows:

SpaceChain OS

Manual SpaceChain

OS.

330

Application Development Manual

 (1) Firstly, get the lowest priority among all threads in the current process,

i.e., the priority with the maximum value;

 (2) Then sum the value got and Parameter incr;

 (3) Set the result of the previous sum to all threads in the current process.

The following instances indicate how to use the POSIX process to schedule API

setting and get the process priority.

Program List 8.6 Scheduler parameter setting instance child process

#include <stdio.h>

#include <unistd.h>

#include <sys/resource.h>

int main (int argc, char *argv[])

{

 int pid;

 int priority;

 pid = getpid(); /* Get process ID */

 priority = getpriority(PRIO_PROCESS, pid); /* Get process priority*/

 fprintf(stdout, "child process priority: %d\n", priority);

 sleep(3); /* Waiting for the parent

process to modify the priority */

 priority = getpriority(PRIO_PROCESS, pid); /* Get modified priority

 */

 fprintf(stdout, "child process priority after sched_setscheduler: %d\n",

priority);

 nice(1); /* Call nice to adjust

priority */

 priority = getpriority(PRIO_PROCESS, pid); /* Get adjusted priority

 */

 fprintf(stdout, "child process priority after nice: %d\n", priority);

 return (0);

}

Program List 8.7 Scheduler parameter setting instance parent process

#include <stdio.h>

SpaceChain OS

Manual SpaceChain

OS.

331

Application Development Manual

#include <spawn.h>

#include <sched.h>

int main (int argc, char *argv[])

{

 pid_t pid;

 struct sched_param param;

 int policy;

char *policy_name[] = {"SCHED_RR",

"LW_OPTION_SCHED_FIFO"};

 if (posix_spawnp(&pid, "./sched_child_proc",

 NULL, NULL, NULL, NULL) != 0) { /* Startup process */

 fprintf(stderr, "create child process failed\n");

 return (-1);

 }

 sleep(1); /* Waiting for the child

process to start */

 if (sched_getparam(pid, ¶m) != 0) { /* Get child process

priority */

 fprintf(stderr, "get sched_param failed\n");

 return (-3);

 }

 policy = sched_getscheduler(pid); /* Get process

scheduling policy */

 if (policy == -1) {

 fprintf(stderr, "get scheduler policy failed\n");

 return (-4);

 }

 fprintf(stdout, "child process pid:%d, posix priority:%d, policy:%s\n",

 pid, param.sched_priority, policy_name[policy]);

 param.sched_priority += 1;

 if (sched_setscheduler(pid,

policy,

¶m) != 0) { /* Set process priority and

scheduling policy */

 fprintf(stderr, "get sched_param and scheduler policy failed\n");

 return (-5);

SpaceChain OS

Manual SpaceChain

OS.

332

Application Development Manual

 }

 fprintf(stdout, "set posix priority to %d\n", param.sched_priority);

 sleep(5); /* Wait for the child process

to end */

 return (0);

}

The parent process in the instance uses the sched_getparam function to get the child

process priority, and the child process uses the getpriority function to get its own priority.

Therefore, conversion relation between the POSIX priority and the SylixOS system priority

can be seen. Run the program in the SylixOS Shell:

./posix_sched_demo

child process priority: 200

child process pid:18, posix priority:55, policy:SCHED_RR

set posix priority to 56

child process priority after sched_setscheduler: 199

child process priority after nice: 200

4. Set process affinity

The sched_setaffinity function locks all threads of the process running on the

appointed cpu set, only for the multi-core situation.

#include <sys/resource.h>

int sched_setaffinity(pid_t pid, size_t setsize, const cpu_set_t *set);

Prototype analysis of Function sched_setaffinity:

 For success of the function, return 0. For failure, return -1 and set the error code.

 Parameter pid appoints the process ID.

 Parameter set appoints the processor core allowing the process to execute. It is

a 2048-bit bit set, and each bit represents a processor core. 1 indicates that the

process is allowed to execute on the core. Otherwise, it is not allowed.

5. Get the main thread affinity of the process

The sched_getaffinity function gets affinity setting of the main thread processor of the

process.

#include <sys/resource.h>

int sched_getaffinity(pid_t pid, size_t setsize, cpu_set_t *set);

Prototype analysis of Function sched_getaffinity:

SpaceChain OS

Manual SpaceChain

OS.

333

Application Development Manual

 For success of the

function, return 0. For failure, return -1 and set the error number;

 Parameter pid appoints the process ID;

 Parameter set represents the processor core allowing the process to execute. It

is a 2048-bit bit set, and each bit represents a processor core. 1 indicates that

the process is allowed to execute on the core. Otherwise, it is not allowed.

8.3.4 Process relation

1. Get the process ID

#include <unistd.h>

pid_t getpid(void);

Prototype analysis of Function getpid:

 The function returns the calling process ID

2. Set process group ID

#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

Prototype analysis of Function setpgid:

 For success of the function, return 0. For failure, return -1 and set the error code.

 Parameter pid is the process ID;

 Parameter pgid is the process group ID to be set.

3. Get process group ID

#include <unistd.h>

pid_t getpgid(pid_t pid);

Prototype analysis of Function getpgid:

 For success of the function, return the target process group ID. For failure, return

-1 and set the error code;

 Parameter pid is the process ID;

4. Set the process as the session header

#include <unistd.h>

pid_t setpgrp(void);

Prototype analysis of Function setpgrp:

SpaceChain OS

Manual SpaceChain

OS.

334

Application Development Manual

 This function will call the process group ID as this process ID, making this

process the session header. For success of the function, return 0. For failure,

return -1 and set the error code.

5. Get process group ID

#include <unistd.h>

pid_t getpgrp(void);

Prototype analysis of Function getpgrp:

 The function returns the calling process group ID

6. Get the parent process ID

#include <unistd.h>

pid_t getppid(void);

Prototype analysis of Function getppid:

 The function returns the parent process ID of the calling process.

Each SylixOS process includes three user IDs:

 Actual user ID: the actual user ID is the user ID of the start process, and the

Shell login user ID of the start process;

 Valid user ID: the valid user ID is the user ID currently used by the process. If

authority judgment is required, the kernel will only verify the valid user ID.

 Saved set user ID: the saved set user ID is the owning user ID of the executable

file of the process, and the saved set user ID is valid only if the executable file

sets the S_ISUID bit.

In the same way, the user group ID is also divided into the actual user group ID, the

valid user group ID, and the saved set user group ID. When the process starts, if the file

sets the S_ISUID attribute bit, the valid user ID of the process and the saved set user ID

are set as the owner ID of the file. If the S_ISUID bit is not set, the saved set user ID is

invalid, and the valid user ID is set as the actual user ID. The process group ID is also set

likewise, and the difference is that the bit of the detected file attribute S_ISGID.

The following indicates how to set and get the process user ID.

7. S_ISUID or S_ISGID bit judgment

If the S_ISUID bit in the file attribute is 1, the S_ISUID bit is set when the process

starts. If the S_ISGID bit in the file attribute is 1, the S_ISGID bit is set when the process

starts.

#include <unistd.h>

int issetugid (void);

SpaceChain OS

Manual SpaceChain

OS.

335

Application Development Manual

Prototype analysis of Function issetugid:

 If either S_ISUID or S_ISGID is set to 1 in the start process, return true.

Otherwise, return false.

8. Set the actual process user ID

#include <unistd.h>

int setuid(uid_t uid);

Prototype analysis of Function setuid:

 For success of the function, return 0. For failure, return -1 and set the error code;

 Parameter uid is the process user ID to be set

If the current user is the superuser, i.e., the valid user ID is 0, and the setuid can set

the user ID to any ID. Once setting is successful, the actual user ID, valid user ID, and

saved set user ID of the process are all set as the new IDs. If the current user is the

ordinary user, i.e., the user ID is not 0, only the valid user ID is modified, which can only be

modified as the actual user ID or the saved set user ID.

9. Get the actual process user ID

#include <unistd.h>

uid_t getuid(void);

Prototype analysis of Function getuid:

 Return the actual user ID of the calling process.

10. Set the valid user ID of the process

#include <unistd.h>

int seteuid(uid_t euid);

Prototype analysis of Function seteuid:

 For success of the function, return 0. For failure, return -1 and set the error code;

 Parameter euid is the valid user ID of the process to be set.

If the current user is the superuser, the seteuid can change the valid user ID of the

process to any ID. If the current user is the ordinary user, the valid user ID of the process

can only be modified as the actual user ID or the saved set user ID.

11. Get the valid user ID of the process

#include <unistd.h>

uid_t geteuid(void);

Prototype analysis of Function geteuid:

SpaceChain OS

Manual SpaceChain

OS.

336

Application Development Manual

 The function returns the valid user ID of the calling process.

12. Set the process user group ID

#include <unistd.h>

int setgid(gid_t gid);

Prototype analysis of Function setgid:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter gid is the user group ID of the process to be set.

If the current user is the superuser, i.e., the user ID is 0, and the setgid can set the

user group ID to any group ID. However, once setting is successful, the actual user group

ID, valid user group ID, and saved set user group ID of the process are all set as the new

group IDs. If the current user is the ordinary user, i.e., the user ID is not 0, only the valid

user group ID can be modified, which can only be modified as the actual user group ID or

the saved set user group ID.

13. Get the actual user ID of the process

#include <unistd.h>

gid_t getgid(void);

Prototype analysis of Function getgid:

 The function returns the actual user ID of the calling process.

14. Set the valid user ID of the process

#include <unistd.h>

int setegid(gid_t egid);

Prototype analysis of Function setegid:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter egid is the valid user group ID of the process to be set.

If the current user is the superuser, the setegid can set the valid user group ID as any

group ID. If the current user is the ordinary user, the valid user group ID can only be

modified as the actual user group ID or the saved set user group ID.

15. Get the valid user ID of the process

#include <unistd.h>

gid_t getegid(void);

Prototype analysis of Function getegid:

SpaceChain OS

Manual SpaceChain

OS.

337

Application Development Manual

 The function returns the valid user ID of the calling process

The following instances indicate how to set and get the process user ID and the user

group ID.

Program List 8.8 Setting instances of user ID and user group ID

#include <stdio.h>

#include <unistd.h>

int main (int argc, char *argv[])

{

 fprintf(stdout, "uid: %d, gid:%d, euid:%d, egid:%d\n",

 getuid(), getgid(), geteuid(), getegid()); /* 打印用户 ID和组 ID */

 if (setuid(1) != 0) { /* Set user ID */

 fprintf(stderr, "setuid failed\n");

 }

 if (setgid(1) != 0) { /* Set user group ID

 */

 fprintf(stderr, "setgid failed\n");

 }

 fprintf(stdout, "uid: %d, gid:%d, euid:%d, egid:%d\n",

 getuid(), getgid(), geteuid(), getegid());

 return (0);

}

Run the program in the SylixOS Shell:

./setuid_demo

user and group id before set, uid: 0, gid:0, euid:0, egid:0

setgid failed

user and group id after set, uid: 1, gid:0, euid:1, egid:0

It can be seen that the initial valid user ID of the process is 0 (superuser), the setuid(1)

call sets the actual user ID and valid user ID of the process to 1, and the valid user ID of

the process is not the superuser ID at the moment. When the setuid(1) call is executed,

the system finds that the target group ID is not the actual user group ID or the saved set

user group ID (the program does not set S_ISUID and S_ISGID, and the saved set user

group ID is invalid). Refuse execution, and return failure.

16. Set the extended user group ID of the current process

The superuser authority must be owned to call the function process. Otherwise,

return failure.

SpaceChain OS

Manual SpaceChain

OS.

338

Application Development Manual

#include <unistd.h>

int setgroups(int groupsun, const gid_t grlist[]);

Prototype analysis of Function setgroups:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter groupsun is the size of Parameter grlist array;

 Parameter grlist is the array of the extended user group ID.

17. Extended user group ID got

#include <unistd.h>

int getgroups(int groupsize, gid_t grlist[]);

Prototype analysis of Function setgroups:

 The function returns the number of extended user group IDs of the process.

 Parameter groupsize is the size of Parameter grlist[] array. If groupsize is less

than the number of extended user group IDs, only groupsize user group IDs are

filled. 0 represents only statistics of quantity of extended user group ID.

 Parameter grlist is the buffer zone array used to save the extended user group

ID. 0 represents only statistics of quantity of extended user group ID.

8.3.5 Process control

1. Process quit

#include <stdlib.h>

void exit(int status);

void _Exit(int status);

#include <unistd.h>

void _exit(int status);

Function prototype analysis:

 Parameter status is the process return code.

The above three functions are all used for process exit. The difference is that the exit

function will use the hook function registered with the agetit function, but _Exit and _exit

do not call it. Functions of the _Exit and _exit functions are the same.

2. Register process exit hook

#include <stdlib.h>

void atexit(void (*func)(void));

SpaceChain OS

Manual SpaceChain

OS.

339

Application Development Manual

Prototype analysis of Function atexit:

 Parameter func is the process exit hook function. When the process exits

normally (the main function return or call exit function), the hook function is called

in reverse order of the atexit registration sequence.

The following example shows how to use the atexit function and the exit function.

Program List 8.9 Process exit instance

#include <stdio.h>

#include <stdlib.h>

void exit_hook1()

{

 fprintf(stdout, "in exit_hook1\n");

}

void exit_hook2()

{

 fprintf(stdout, "in exit_hook2\n");

}

int main (int argc, char *argv[])

{

 atexit(exit_hook1); /* Register the hook

function */

 atexit(exit_hook2);

 fprintf(stdout, "this is exit hook demo.\n");

 exit(0);

}

Run the program in the SylixOS Shell:

./exit_demo

this is exit hook demo.

in exit_hook2

in exit_hook1

3. Wait for the child process to end

The following function waits for the end of a child process.

#include <wait.h>

pid_t wait(int *stat_loc);

SpaceChain OS

Manual SpaceChain

OS.

340

Application Development Manual

Prototype analysis of Function wait;

 For success of the function, return child process ID. For failure, return -1 and set

the error code.

 Parameter stat_loc is the child process exit code.

The following example shows how to wait for a child process with the wait function.

Program List 8.10 wait instance child process

#include <stdio.h>

#include <unistd.h>

int main (int argc, char *argv[])

{

int pid;

 sleep(2); /* Wait two seconds to

exit */

 pid = getpid();

 fprintf(stdout, "child process %d exit\n", pid);

 exit(1);

}

Program List 8.11 wait instance parent process

#include <stdio.h>

#include <spawn.h>

#include <sys/wait.h>

int main (int argc, char *argv[])

{

 pid_t pid;

 int status;

 if (posix_spawnp(&pid, "./wait_demo_child",

 NULL, NULL, NULL, NULL) != 0) { /* Startup process

 */

 fprintf (stderr, "create child process failed\n");

 return (-1);

 }

 fprintf(stdout, "create child process %d\n", pid);

SpaceChain OS

Manual SpaceChain

OS.

341

Application Development Manual

 pid = wait(&status); /* Wait for the

child process to exit */

 fprintf(stdout, "wait returned, child process: %d, status: %d\n",

pid, status);

 return (0);

}

Run the program in the SylixOS Shell:

./wait_demo

create child process 25

child process 25 exit

wait returned, child process: 25, status: 0

4. Wait for child process state change

#include <wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

Prototype analysis of Function waitpid：

 If function return is caused due to child process state, return child process ID. If

options is set with WNOHANG bit, and the child process state conforming to

conditions is not changed, do not wait, and return 0. In other cases, return -1,

and set the error code;

 Parameter idtype indicates the meaning of Parameter id, there are the following

situations;

Table 8.4 id meaning

Macro name Explanation

P_PID Wait for the child process with process ID equal to Parameter id

P_PGID Wait for the child process with process group ID equal to Parameter id

P_ALL Wait for any child process

 The meaning of Parameter id is specified by idtype, and is used to specify the

child process;

 Parameter infop returns the received child process signal, which records the

information of child process with state changes;

SpaceChain OS

Manual SpaceChain

OS.

342

Application Development Manual

 Parameter option is the function option consisting of bit mask, as shown

in Table 8.5:

Table 8.5 option parameter bit mask

Macro name Explanation

WNOHANG
If it is 1, the function does not wait, and returns directly when there is no child

process state change

WUNTRACED
If it is 1, return when the child process enters the stopped state. Otherwise,

return only when the process exits

5. Wait for appointed child process state change

#include <wait.h>

pid_t waitpid(pid_t pid, int *stat_loc, int options);

Prototype analysis of Function waitpid:

 If function return is caused due to child process state, return child process ID. If

options is set with WNOHANG bit, and the child process state is not changed, do

not wait, and return 0. In other cases, return -1, and set the error code;

 Parameter pid can have the following cases:

 pid > 0: indicating wait for the child process with process number of pid;

 pid == 0: indicating wait for the child process in the same group with the

calling process;

 pid < -1: indicating wait for the child process with the process group ID as

the absolute value of pid.

 Parameter stat_loc is the child process exit code;

 Parameter option is the function option, consisting of the bit mask, as shown in

Table 8.5.

The following function shows how to use the waitpid function. Create two child

processes in the program in succession, set different group Ids for the child process

respectively, and call waitpid function to wait for the child process.

Program List 8.12 waitpid instance

#include <stdio.h>

#include <unistd.h>

#include <spawn.h>

#include <sys/wait.h>

int main (int argc, char *argv[])

SpaceChain OS

Manual SpaceChain

OS.

343

Application Development Manual

{

 pid_t pid;

 int status;

 if (posix_spawnp(&pid, "./wait_demo_child",

 NULL, NULL, NULL, NULL) != 0) { /* Startup process

 */

 fprintf (stderr, "create child process failed\n");

 return (-1);

 }

 fprintf(stdout, "create child process %d\n", pid);

 setpgid(pid, 10); /* Set process group ID

 */

 fprintf(stdout, "waiting for group id 10...\n");

 pid = waitpid(-10, &status, 0); /* Wait for the child

process to exit */

 fprintf(stdout, "waitpid returned, child process: %d, status: %d\n",

pid, status);

 if (posix_spawnp(&pid, "./wait_demo_child",

 NULL, NULL, NULL, NULL) != 0) { /* Startup process

 */

 fprintf("create child process failed\n");

 return (-1);

 }

 fprintf(stdout, "create child process %d\n", pid);

 setpgid(pid, 11); /* Set process group ID

 */

 fprintf(stdout, "waiting for group id 11...\n");

 pid = waitpid(-11, &status, 0); /* Wait for the child

process to exit */

 fprintf(stdout, "waitpid returned, child process: %d, status: %d\n",

pid, status);

 return (0);

}

SpaceChain OS

Manual SpaceChain

OS.

344

Application Development Manual

Run the program under the SylixOS Shell: It can be seen that waitpid does not return

when the child process group ID is different from the absolute value of pid parameter

passed by the parent process by calling the waitpid function.

./waitpid_demo

create child process 9

waiting for group id 10...

child process 9 exit

waitpid returned, child process: 9, status: 0

create child process 10

waiting for group id 11...

child process 10 exit

6. Get process resource status

#include <sys/resource.h>

int getrusage(int who, struct rusage *r_usage);

Prototype analysis of Function getrusage:

 For success of the function, return 0. For failure, return -1 and set the error code;

 Parameter who is the object of resources obtained, and the value is shown in

Table 8.6:

Table 8.6 Value of who parameter

Macro name Explanation

RUSAGE_SELF Get the process resource status

RUSAGE_CHILDREN Get the child process resource status

 Parameter r_usage returns process resource status. The rusage structure is

defined as follows:

struct rusage {

 struct timeval ru_utime; /* User time */

 struct timeval ru_stime; /* System time */

 long ru_maxrss;

#define ru_first ru_ixrss

 long ru_ixrss;

 long ru_idrss;

 long ru_isrss;

 long ru_minflt;

 long ru_majflt;

 long ru_nswap;

 long ru_inblock;

SpaceChain OS

Manual SpaceChain

OS.

345

Application Development Manual

 long ru_oublock;

 long ru_msgsnd;

 long ru_msgrcv;

 long ru_nsignals;

 long ru_nvcsw;

 long ru_nivcsw;

#define ru_last ru_nivcsw

};

Note: currently, SylixOS only uses two fields of ru_utime and ru_stime. Other fields are reserved for

subsequent expansion.

7. Get process time

#include <sys/times.h>

clock_t times(struct tms *ptms);

Prototype analysis of Function times:

 The function returns the current time of the system;

 Parameter ptms is the time status of the process and its child processes. The

tms structure is defined as follows.

struct tms {

 clock_t tms_utime; /* Process user time */

 clock_t tms_stime; /* Process system time */

 clock_t tms_cutime; /* Child process user time */

 clock_t tms_cstime; /* Child process system time

 */

};

It shall be noted that if Parameter ptms is NULL, set errno to EINVAL, and return the

system time.

The following pseudocode shows how to get the program running time:

clock_t start, end, run;

struct tms tm_start, tm_end;

start = times(&tm_start);

/*

 * Program

 */

...

end = times(&tm_end);

SpaceChain OS

Manual SpaceChain

OS.

346

Application Development Manual

run = end - start;

SpaceChain OS

Manual SpaceChain

OS.

347

Application Development Manual

8.3.6 Process environment

1. Get environment variable

#include <stdlib.h>

char *getenv(const char *name);

Prototype analysis of Function getenv:

 For success of the function, return the found character string character string

pointer. For failure, return NULL and set the error code;

 Parameter name is the name of the environment variable.

Calling getenv can get the current system environment variable. It shall be noted that

if the environment variable exists but has no associated value, the function will return an

empty character string, that is to say, the first character of the character string is ‘\0’.

2. Set the environment variable

#include <stdlib.h>

int putenv(char *string);

Prototype analysis of Function putenv:

 For success of the function, return 0. For failure, return non-0 value and set the

error number;

 Parameter string is an environment variable setting character string, of which

the format is: name=value. If the name already exists, the original definition will

be deleted.

#include <stdlib.h>

int setenv(const char *name, const char *value, int overwrite);

Prototype analysis of Function setenv:

 For success of the function, return 0. For failure, return -1 and set the error code;

 Parameter name is the name of the environment variable set;

 Parameter value is the value of the environment variable;

 Parameter overwrite indicates whether the original environment variable is

overwritten when the environment variable already exists. 1 indicates overwriting,

and 0 indicates not overwriting.

Both the putenv function and the setenv function can be used to set the system

environment variable. The difference is that setenv can set the environment variable in a

more flexible way.

3. Clear environment variable

SpaceChain OS

Manual SpaceChain

OS.

348

Application Development Manual

#include <stdlib.h>

int unsetenv(const char *name);

Prototype analysis of Function unsetenv:

 For success of the function, return 0. For failure, return -1 and set the error

number;

 Parameter name is the name of the environment variable to be cleared;

The following example shows how to use the environment variable function.

Program List 8.13 Environment variable instance

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

 const char *env_value = 0;

 const char *env_name = "ENV_DEMO";

 env_value = getenv(env_name);

 if (env_value) {

 fprintf(stdout, "value of %s before setenv is %s\n",

env_name, env_value);

 } else {

 fprintf(stderr, "value of %s is not setted before setenv\n",

env_name);

 }

 env_value = "test_value";

 if (setenv(env_name, env_value, 0) != 0) {

 fprintf(stderr, "setenv failed\n");

 } else {

 fprintf(stdout, "set value of %s to %s\n", env_name, env_value);

 }

 env_value = getenv(env_name);

 if (env_value) {

 fprintf(stdout, "value of %s after setevn is %s\n",

env_name, env_value);

 } else {

 fprintf(stderr, "value of %s is not setted after setenv\n",

env_name);

 }

SpaceChain OS

Manual SpaceChain

OS.

349

Application Development Manual

 if (unsetenv(env_name) != 0) {

 fprintf(stderr, "unsetenv failed\n");

 } else {

 fprintf(stdout, "unset value of %s\n", env_name);

 }

 env_value = getenv(env_name);

 if (env_value) {

 fprintf(stdout, "value of %s after unsetenv is %s\n",

env_name, nv_value);

 } else {

 fprintf(stderr, "value of %s is not setted after unsetenv\n",

env_name);

 }

 return (0);

}

Run the program in SylixOS Shell, and the results are as follows:

./env_demo

value of ENV_DEMO is not setted before setenv

set value of ENV_DEMO to test_value

value of ENV_DEMO after setevn is test_value

unset value of ENV_DEMO

value of ENV_DEMO is not setted after unsetenv

8.4 SylixOS process API

In addition to the POSIX standard-compliant process API, SylixOS also provides the

process operation function conforming to UNIX standard. The POSIX standard process

API is recommended for writing programs, but it is more convenient to use this part of the

function in some cases.

8.4.1 Create processes by using SylixOS API

1. Create process by using the spawn function

The difference between the spawn function and the exec function is that: the exec

series function will not create the new process, and can only execute the new executable

file in the existing process environment. The spawn series function can choose to execute

the executable file in the existing process environment or choose to create the new child

process.

#include <process.h>

int spawnl(int mode, const char *path, const char *argv0, ...);

SpaceChain OS

Manual SpaceChain

OS.

350

Application Development Manual

int spawnle(int mode, const char *path, const char *argv0, ...);

int spawnlp(int mode, const char *file, const char *argv0, ...);

int spawnv(int mode, const char *path, char * const *argv);

int spawnve(int mode, const char *path, char * const *argv, char * const *envp);

int spawnvp(int mode, const char *file, char * const *argv);

int spawnvpe(int mode, const char *file, char * const *argv, char * const *envp);

Function prototype analysis:

 For success of the function, return 0. For failure, return -1 and set the error code;

 Parameter mode is the process creation mode, and the value is shown in Table

8.7;

Table 8.7 Table of process creation mode

Macro name Explanation

P_WAIT
Create the new child process, and calling thread waits for the child process to exit

and continues execution

P_NOWAIT
Create the new child process, and calling thread does not wait for the child process

to exit

P_OVERLAY
Do not create the new child process, and run the new program in the current

process space

 Parameter path is the executable file path;

 Parameter argv0 is the first command line parameter, which is generally the

command name;

 Parameter file is the executable file name. What's different from Parameter path

is that it does not have the directory, and the application loader search the file at

the specified path. The search paths of application dynamic library in SylixOS are

as follows in sequence:

 Shell current directory, but not the application directory;

 Search path included in PATH environment.

 Parameter...is the variable parameter, which represents the remaining

parameters in the command line, and the command line parameter is ended with

0. In the execle function, there is an array of environment variables behind the

command line parameter which ends with 0. The array ends with 0. See

instructions for the envp parameter;

 Parameter argv is the array of character strings consisting of command line

parameter. The array starts with the executable file name and ends with 0.

SpaceChain OS

Manual SpaceChain

OS.

351

Application Development Manual

 Parameter envp is the set of process environment variable character

strings preset. The array ends with 0.

The following instance shows how to create the new process and execute the

executable program with the spawn series function.

Program List 8.14 Instance of the spawn function

#include <stdio.h>

#include <process.h>

int main (int argc, char *argv[])

{

 char *cmd[] = { "child_process", "spawnve demo", (char *)0 };

 char *env[] = { "PARENT=spawnve_demo", (char *)0 };

 fprintf(stdout, "before spawnve\n");

 spawnve(P_WAIT, "./child_process", cmd, env);

 fprintf(stdout, "after spawnve\n");

 return (0);

}

Run the program in the SylixOS Shell:

./spawn_demo

before spawnve

child process, spawnve demo

environment variable PARENT = spawnve_demo

after spawnve

It can be seen from the instance that when the mode is not P_OVERLAY, the spawn

function creates the new child process, and the parent process continues to execute.

Therefore, the final print statement of the spawn function is valid.

8.4.2 SylixOS process control API

1. Set the current process as the daemon

#include <unistd.h>

int daemon(int nochdir, int noclose);

Prototype analysis of Function daemon:

 For success of the function, return 0. For failure, return -1 and set the error code;

 Parameter nochdir indicates whether to switch the current working directory of

the process to the root directory "/". 0 indicates switching, while others indicate

no switching;

SpaceChain OS

Manual SpaceChain

OS.

352

Application Development Manual

 Parameter noclose indicates whether to redirect standard input, standard

output and standard error output to "/dev/null" file. 0 means redirect, while others

mean no redirect.

The following instance shows how to use the deamon function.

Program List 8.15 Daemon instance

#include <stdio.h>

#include <unistd.h>

int main (int argc, char *argv[])

{

 fprintf(stdout, "before daemon\n");

 daemon(0, 0);

 fprintf(stdout, "after daemon\n");

 while (1) {

 sleep(1);

 }

 return (0);

}

Run the program in the SylixOS Shell:

./deamon_demo&

before daemon

It can be seen from the running results that after the function daemon is called, the

print statement is invalid, and the ps command is used to check the running status of the

program.

ps

 NAME FATHER PID GRP MEMORY UID GID USER

----------------- ----------------- ----- ----- ---------- ----- ----- -----

kernel <orphan> 0 0 0 0 0 root

deamon_demo <orphan> 33 33 106496 0 0 root

total vprocess : 2

2. Wait for appointed child process state change

#include <wait.h>

SpaceChain OS

Manual SpaceChain

OS.

353

Application Development Manual

pid_t wait3(int *stat_loc, int options, struct rusage *prusage);

Prototype analysis of Function wait3;

 If changes in child process state cause function return, return 0. If options is set

with WNOHANG bit, and the child process state is not changed, do not wait, and

return 0. In other cases, return -1, and set the error number;

 Parameter stat_loc is the child process exit code;

 Parameter option is the function option consisting of bit mask, as shown in Table

8.5:

 Parameter prusage is the resource service conditions of the child process.

3. Wait for appointed child process state change

#include <wait.h>

pid_t wait4(pid_t pid, int *stat_loc, int options, struct rusage *prusage);

Prototype analysis of Function wait4;

 If function return is caused due to child process state, return child process ID. If

options is set with WNOHANG bit, and the child process state is not changed,

do not wait, and return 0. In other cases, return -1, and set the error code;

 Parameter pid can have the following cases:

 pid > 0: indicating wait for the child process with process number of pid;

 pid == 0: indicating wait for the process in the same group with the calling

process;

 pid < -1: indicating wait for the process with the process group ID as the

absolute value of pid.

 Parameter stat_loc is the child process exit code;

 Parameter option is the function option, consisting of the bit mask, as shown in

Table 8.5;

 Parameter prusage is the resource service conditions of the child process.

The following example shows how to use the wait4 function;

Program List 8.16 Use of the wait4 function

#include <stdio.h>

#include <unistd.h>

#include <spawn.h>

#include <wait.h>

int main (int argc, char *argv[])

SpaceChain OS

Manual SpaceChain

OS.

354

Application Development Manual

{

 pid_t pid;

 int status;

 struct rusage rusage;

 if (posix_spawnp(&pid, "/apps/wait_demo_child/wait_demo_child",

 NULL, NULL, NULL, NULL) != 0) { /* Startup process */

 fprintf("create child process failed\n");

 return (-1);

 }

 fprintf(stdout, "create child process %d\n", pid);

 setpgid(pid, 10); /* Set process group ID

 */

 fprintf(stdout, "waiting for group id 10...\n");

 pid = wait4(-10, &status, 0, &rusage); /* Wait for the child

process to exit */

 fprintf(stdout, "waitpid returned, child process: %d, status: %d\n"

 "utime: %dus, stime: %dus\n",

 pid, status,

 (int)(rusage.ru_utime.tv_sec * 1000000 + rusage.ru_utime.tv_usec),

 (int)(rusage.ru_stime.tv_sec * 1000000 + rusage.ru_stime.tv_usec));

 if (posix_spawnp(&pid, "/apps/wait_demo_child/wait_demo_child",

NULL, NULL, NULL, NULL) != 0) { /* Startup process */

 printf ("create child process failed\n");

 return (-1);

 }

 fprintf(stdout, "create child process %d\n", pid);

 setpgid(pid, 11); /* Set process group ID */

 fprintf(stdout, "waiting for group id 11...\n");

 pid = wait4(-10, &status, 0, &rusage); /* Wait for the child process to

exit */

 fprintf(stdout, "waitpid returned, child process: %d, status: %d\n"

 "utime: %dus, stime: %dus\n",

 pid, status,

 (int)(rusage.ru_utime.tv_sec * 1000000 + rusage.ru_utime.tv_usec),

 (int)(rusage.ru_stime.tv_sec * 1000000 + rusage.ru_stime.tv_usec));

 return (0);

}

SpaceChain OS

Manual SpaceChain

OS.

355

Application Development Manual

Run the program in SylixOS Shell, it can be seen that the wait4 function does not

return when the child process group ID is different from the absolute value of pid

parameter passed by the parent process by calling the wait4 function.

./wait4_demo

create child process 8

waiting for group id 10...

child process 8 exit

waitpid returned, child process: 8, status: 0

utime: 40000us, stime: 0us

create child process 9

waiting for group id 11...

child process 9 exit

 Application Development Manual
SpaceChain OS

Manual SylixOS.

Chapter 9 Inter-Process Communication

9.1 Definition of IPC

The Inter-Process Communication (IPC) refers to the technique or method of

transferring data or signals between two or more processes. The process is the smallest

unit of resource allocation in a computer system. Each process has its own part of a

separate system resource that is isolated from each other. The IPC mechanism is

required to enable different processes to access resources and coordinate work.

Common interprocess communication methods include: pipe, named message queue,

named semaphore, shared memory, and signals etc.

9.2 Anonymous Pipe

The pipe is a mode of SylixOS IPC. Similar to the transmission pipe in the real world,

the pipe has two ports: the read port and the write port, and only allows the data to flow

from the write port to the read port. Therefore, the pipe is a streaming device.

The pipes are classified as the anonymous pipe and the named pipe fifo.

The pipe function is needed for creating an anonymous pipe. The output parameters

of the pipe function are two file descriptors: one for the read port file and the other for the

write port file. After creating the anonymous pipe, usually create a child process using the

posix_spawn family or spawn family function. As the child process inherits the file

descriptor of the parent process, both the child process and the parent process can read

and write the anonymous pipe by means of the read and write functions.

Both the child and parent processes have two file descriptors for the anonymous pipe:

the read port file and the write port file, but this does not mean that the anonymous pipe

can carry out the full-duplex communication between the parent and child processes. The

anonymous pipe has only two ports: read and write, and only allows the data to flow from

the write port to the read port, and thus the anonymous pipe can only carry out the

half-duplex communication. If the full duplex communication is required, two anonymous

pipe are needed creating.

（父进程=father process）

（子进程=son process）

Figure 9.1 Anonymous Pipe

SpaceChain OS

Manual SpaceChain

OS.

357

Application Development Manual

9.2.1 Operate Anonymous Pipe

1. Create Anonymous Pipe

#include <unistd.h>

int pipe(int iFd[2]);

int pipe2(int iFd[2], int iFlag);

Function prototype analysis:

 The above function returns 0 when succeeds and returns -1 when fails, and sets

the error number;

 The output parameter iFd is used to record the two file descriptors for the

anonymous pipe: iFd[0] is the read port file descriptor and iFd[1] is the write port

file descriptor.

 The parameter iFlag is the file flag for the anonymous pipe that can be combined

with a macro of 0 or less.

Table 9.1 Parameter iFlag

Macro Name Meaning

O_NONBLOCK The read-write pipe is a non-blocking operation.

O_CLOEXEC The pipe will be closed when exec occurs.

2. Read and Write Anonymous Pipe

As the output parameter of the pipe function has two file descriptors: the first is the

read port file descriptor and the second is the write port file descriptor. Therefore, the read

and write operations of the anonymous pipe can use the standard file read and write

functions.

3. Wait for Anonymous Pipe

When the anonymous pipe is empty or full, the read or write anonymous pipe

operation will be blocked (unless the parameter iFlag specifies the O_NONBLOCK option

when creating the anonymous pipe using the pipe2 function); and call the select function

when Wait for the anonymous pipe to read or write.

4. Close Anonymous Pipe

Use the standard file close function to close an anonymous pipe. As the anonymous

pipe has two file descriptors, it is necessary to close the anonymous pipe using the close

function to close the two file descriptors of the anonymous pipe.

Meanwhile as the child process (if existing) inherits the two file descriptors of the

anonymous pipe, the child process also needs to close the two file descriptors of the

anonymous pipe.

SpaceChain OS

Manual SpaceChain

OS.

358

Application Development Manual

The following program shows how to use the anonymous pipe. The parent

process calls the posix_spawn function to create the child process, closes the standard

input of the child process and the pipe write port of the child process, and copies the read

port file descriptor of the pipe to the standard input of the child process. The child process

reads data from the pipe read port every 1 second.

Program List 9.1 Child Process of Anonymous Pipe

#include <stdio.h>

#include <unistd.h>

int main (int argc, char *argv[])

{

 char buf[64] = {0};

 int i;

 for (i = 0; i < 10; i++) {

 read(STDIN_FILENO, buf, sizeof(buf));

 fprintf(stdout, "buf:%s\n", buf);

 sleep(1);

}

close(STDIN_FILENO);

 return (0);

}

Program List 9.2 Parent Process of Anonymous Pipe

#include <stdio.h>

#include <spawn.h>

#include <unistd.h>

#include <string.h>

#include <wait.h>

#define SEND_STR "From parent."

int main (int argc, char *argv[])

{

 posix_spawn_file_actions_t file_actions;

 posix_spawnattr_t spawnattr;

 pid_t pid;

 int fd[2];

 int ret, i;

 char *cmd[] = {"child_process", (char *)0};

SpaceChain OS

Manual SpaceChain

OS.

359

Application Development Manual

 ret = pipe(fd);

 if (ret < 0) {

 fprintf(stderr, "pipe error.\n");

 return (-1);

 }

 /*

 * Initialize process attributes

 */

 if (posix_spawnattr_init(&spawnattr) != 0) {

 fprintf(stderr, "init posix_spawnattr_t failed\n");

 return (-1);

 }

 /*

 * Initialize file operations

 */

 if (posix_spawn_file_actions_init(&file_actions) != 0) {

 fprintf(stderr, "init posix_spawn_file_actions_t failed\n");

 return (-2);

 }

 /*

 * Close the standard input of the child process and the write end of the

pipe

 */

posix_spawn_file_actions_addclose(&file_actions, STDIN_FILENO);

 posix_spawn_file_actions_addclose(&file_actions, fd[1]);

 /*

 * Copy the reading end to the standard input of the child process

 */

 posix_spawn_file_actions_adddup2(&file_actions, fd[0], STDIN_FILENO);

 if (posix_spawn(&pid, "./child_process",

 &file_actions, &spawnattr, cmd, NULL) != 0) {

 posix_spawnattr_destroy(&spawnattr);

 posix_spawn_file_actions_destroy(&file_actions);

 return (-6);

 }

close(fd[0]);

SpaceChain OS

Manual SpaceChain

OS.

360

Application Development Manual

 for (i = 0; i < 10; i++) {

 write(fd[1], SEND_STR, strlen(SEND_STR));

 sleep(1);

}

close(fd[1]);

 wait(NULL);

 posix_spawnattr_destroy(&spawnattr);

 posix_spawn_file_actions_destroy(&file_actions);

 return (0);

}

9.3 Named Pipe

The anonymous pipe is a file but it does not exist in the file system, and thus the

anonymous pipe can only be used for the communication between parent and child

processes. For the irrelevant process, there is no way to communicate using any

anonymous pipe because there is no inheritance of file descriptors, but you can use the

named pipe to communicate.

Use the mkfifo function to create a named pipe and the mkfifo function specifies the

device file path for the named pipe, and other processes can use the open function of

standard file to open the named pipe. You can read and write the named pipe by means of

the read-write functions.

（进程=process）

Figure 9.2 Named Pipe

9.3.1 Operate Named Pipe

1. Create Named Pipe

#include <unistd.h>

int mkfifo(const char *pcFifoName, mode_t mode);

Prototype analysis on function mkfifo:

SpaceChain OS

Manual SpaceChain

OS.

361

Application Development Manual

 The function returns 0 when succeeds and returns -1 when fails, and sets

the error number;

 The parameter pcFifoName specifies the device file path for the named pipe;

 The parameter mode specifies the device file mode for the named pipe, which is

the same as the open function mode.

Creating a named pipe is similar to creating a file, and thus the pathname of the

named pipe exists in the file system.

2. Open Named Pipe

As the named pipe exists in the file system, you can open the function using the

standard file to open the named pipe. When the open function is called, the parameter

iFlag is the open flag of the named pipe. In addition to the file flags that can use the

anonymous pipe, the parameter iFlag can also use the following flags.

Table 9.2 File Flags

Macro Name Meaning

O_RDONLY Open the pipe in the read-only mode

O_WRONLY Open the pipe in the write-only mode

O_RDWR Open the pipe in the read and write modes

3. Read and Write Named Pipe

The read and write operations of the named pipe use the read and write functions of

standard file respectively.

4. Wait for Named Pipe

When the named pipe is empty or full, the read or write named pipe operation will be

blocked (unless the parameter iFlag specifies the O_NONBLOCK option when creating

the named pipe by means of the open function); and call the select function when waiting

for the named pipe to read or write.

5. Close Named Pipe

Close a named pipe by using the close function of standard file.

6. Unlink Named Pipe

Use the unlink function of standard file to unlink the named pipe.

The following program shows how to use the named pipe. The program consists of

client programs and server programs. Create a named pipe file "/dev/fifo" on the server

program and write data to the pipe. The client-side program opens the file and reads the

data from the pipe.

Program List 9.3 Named Pipe Client-side

SpaceChain OS

Manual SpaceChain

OS.

362

Application Development Manual

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#define FIFO_NAME "/dev/fifo"

#define SEND_STR "From server."

int main (int argc, char *argv[])

{

 int fd;

 char buf[64] = {0};

 int i;

 fd = open(FIFO_NAME, O_RDWR);

 if (fd < 0) {

 fprintf(stderr, "open fifo error.\n");

 return (-1);

 }

 for (i = 0; i < 10; i++) {

 read(fd, buf, strlen(SEND_STR));

 fprintf(stdout, "read \"%s\" from fifo.\n", buf);

 sleep(1);

 }

 close(fd);

 return (0);

}

Program List 9.4 Named Pipe Server

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#define FIFO_NAME "/dev/fifo"

#define SEND_STR "From server."

int main (int argc, char *argv[])

{

 int ret, i;

 int fd;

SpaceChain OS

Manual SpaceChain

OS.

363

Application Development Manual

 ret = mkfifo(FIFO_NAME, 0777);

 if (ret < 0) {

 perror("mkfifo");

 fprintf(stderr, "mkfifo error.\n");

 return (-1);

 }

 fd = open(FIFO_NAME, O_RDWR);

 if (fd < 0) {

 fprintf(stderr, "open fifo error.\n");

 return (-1);

 }

 for (i = 0; i < 10; i++) {

 write(fd, SEND_STR, strlen(SEND_STR));

 fprintf(stdout, "write \"%s\" to fifo.\n", SEND_STR);

 sleep(1);

 }

 sleep(3);

 close(fd);

 unlink(FIFO_NAME);

 return (0);

}

9.4 POSIX Named Semaphore

We have introduced the use of POSIX anonymous semaphore in Section 7.4. POSIX

anonymous semaphore can only be used for inter-thread communication within the same

process. To achieve synchronization between processes, you can use the POSIX named

semaphore.

A POSIX named semaphore must be created or opened after the sem_open function

is called.

When a POSIX named semaphore is used, the sem_close function should be called

to close it; when a POSIX named semaphore is no longer useful, the sem_unlink function

should be called to unlink it, and the SylixOS will recycle the kernel resources that the

semaphore has consumed.

SpaceChain OS

Manual SpaceChain

OS.

364

Application Development Manual

（进程=process）

Figure 9.3 POSIX Named Semaphore

9.4.1 Named Semaphore

1. Create and Open Named Semaphore

#include <semaphore.h>

sem_t *sem_open(const char *name, int flag, ...);

Prototype analysis on function sem_open:

 This function returns a pointer to a sem_t type when it succeeds, returns NULL

when it fails, and sets the error number.

 The parameter name is the name of the POSIX named semaphore;

 The parameter flag is the open option for the POSIX named semaphore

(O_CREAT and O_EXCL...);

 The parameter ... is a variable parameter that can normally specify the open

mode (mode and value).

If you need to create a POSIX named semaphore, open the option and add

O_CREAT, and the variable parameter should specify the value of mode and value.

If you need to open an existing POSIX named semaphore, the open option cannot

contain the O_CREAT option flag.

2. Close Named Semaphore

#include <semaphore.h>

int sem_close(sem_t *psem);

Prototype analysis on function sem_close:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter psem is a pointer to the POSIX named semaphore.

SpaceChain OS

Manual SpaceChain

OS.

365

Application Development Manual

Calling the sem_close function reduces the use count of a named semaphore,

but does not unlink a named semaphore. It is important to note that if the sem_close

function is called to close an anonymous semaphore, it will return -1 and set errno as

EINVAL.

3. Unlink Named Semaphore

#include <semaphore.h>

int sem_unlink(const char *name);

Prototype analysis on function sem_unlink:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter name is the name of the POSIX named semaphore.

The sem_unlink function unlinks a named semaphore that is no longer used, and

frees system resources. The sem_unlink function firstly determines the use count of

semaphore. If the count reaches 0, then the semaphore is unlinked, and if no 0 is reached,

the error returns, and errno is set to EBUSY.

The following program realizes the IPC through named semaphore. The server

program waits for the semaphore sem. When the semaphore waiting is unlinked, new

data can be read in the named pipe. After reading the data, the server program sends

another semaphore sem1 to the client-side indicating that the reading data is complete.

The client program firstly writes the new data to the pipe, then sends the semaphore sem

to the server and waits for the semaphore sem1 (the server read operation completed).

Program List 9.5 Named Semaphore Client-side

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <semaphore.h>

#define FIFO_NAME "/dev/fifo"

#define SEND_STR "server."

#define SEM_FILE "sem_named"

#define SEM_FILE1 "sem_named1"

int main (int argc, char *argv[])

{

 int fd;

 int i;

 sem_t *sem, *sem1;

SpaceChain OS

Manual SpaceChain

OS.

366

Application Development Manual

 fd = open(FIFO_NAME, O_RDWR);

 if (fd < 0) {

 fprintf(stderr, "open fifo error.\n");

 return (-1);

 }

 sem = sem_open(SEM_FILE, 0);

 if (sem == SEM_FAILED) {

 fprintf(stderr, "sem_open error.\n");

 return (-1);

 }

 sem1 = sem_open(SEM_FILE, 0);

 if (sem1 == SEM_FAILED) {

 fprintf(stderr, "sem_open error.\n");

 return (-1);

 }

 for (i = 0; i < 10; i++) {

 write(fd, SEND_STR, strlen(SEND_STR));

 fprintf(stdout, "write \"%s\" to fifo.\n", SEND_STR);

 sem_post(sem);

 sem_wait(sem1);

 }

 close(fd);

 sem_close(sem);

 sem_close(sem1);

 return (0);

}

Program List 9.6 Named Semaphore Server

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <semaphore.h>

#define FIFO_NAME "/dev/fifo"

#define SEND_STR "server."

#define SEM_FILE "sem_named"

#define SEM_FILE1 "sem_named1"

SpaceChain OS

Manual SpaceChain

OS.

367

Application Development Manual

int main (int argc, char *argv[])

{

 int ret, i;

 int fd;

 sem_t *sem, *sem1;

 char buf[64] = {0};

 ret = mkfifo(FIFO_NAME, 0777);

 if (ret < 0) {

 perror("mkfifo");

 fprintf(stderr, "mkfifo error.\n");

 return (-1);

 }

 fd = open(FIFO_NAME, O_RDWR);

 if (fd < 0) {

 fprintf(stderr, "open fifo error.\n");

 return (-1);

 }

 sem = sem_open(SEM_FILE, O_CREAT, 0644, 0);

 if (sem == SEM_FAILED) {

 fprintf(stderr, "sem_open error.\n");

 return (-1);

 }

 sem1 = sem_open(SEM_FILE, O_CREAT, 0644, 0);

 if (sem1 == SEM_FAILED) {

 fprintf(stderr, "sem_open error.\n");

 return (-1);

 }

 for (i = 0; i < 10; i++) {

 sem_wait(sem);

 read(fd, buf, strlen(SEND_STR));

 fprintf(stdout, "read \"%s\" from fifo.\n", buf);

 sem_post(sem1);

 }

 close(fd);

 unlink(FIFO_NAME);

 sem_close(sem);

 sem_close(sem1);

SpaceChain OS

Manual SpaceChain

OS.

368

Application Development Manual

 sem_unlink(SEM_FILE);

 sem_unlink(SEM_FILE1);

 return (0);

}

9.5 POSIX Named Message Queue

The type of handle to the POSIX named message queue is mqd_t. When it is used,

you need to define a variable of type mqd_t: mqd_t mqd:

mqd_t mqd;

A POSIX named message queue must be created or opened after the mq_open

function is called. The receive message can call the mq_receive function and the

message can be sent using the mq_send function.

When a POSIX named message queue completes using, the mq_close function

should be called to close it. When a POSIX named message queue no longer has any

purpose, it should be unlinked by calling the mq_unlink function, and the SylixOS will

recycle the kernel resources that the message queue has consumed.

（进程=process）

Figure 9.4 POSIX Named Message Queue

9.5.1 Attribute Block of Named Message Queue

Creating a POSIX named message queue requires an attribute block of POSIX

named message queue. The attribute block type of the POSIX named message queue is

struct mq_attr, which is defined as follows:

typedef struct mq_attr {

 long mq_flags; /* Message queue file flag */

 long mq_maxmsg; /* The maximum number of messages

that the message queue can hold */

 long mq_msgsize; /* The maximum length of a message

message queue's single message */

SpaceChain OS

Manual SpaceChain

OS.

369

Application Development Manual

 long mq_curmsgs; /* The number of messages in

the current message queue */

} mq_attr_t;

When using, you need to define a struct mq_attr structure variable, such as:

struct mq_attr mqattr;

Because the POSIX does not define the operation function of the attribute block of

POSIX named message queue, the member of the struct mq_attr structure needs to be

assigned to use, and the sample code is as follows:

struct mq_attr mqattr = {O_RDWR, 128, 64, 0};

9.5.2 Named Message Queue

1. Create and Open Named Message Queue

#include <mqueue.h>

mqd_t mq_open(const char *name, int flag, ...);

Prototype analysis on function mq_open:

 This function returns a handle to a named message queue when it succeeds,

returns MQ_FAILED when it fails and sets the error number;

 The parameter name is the name of the named message queue;

 The parameter flag is the open option for the named message queues

(O_CREAT and O_EXCL...);

 The parameter ... is a variable parameter that specifies the mode and attribute

block (mode and pmqattr) of the message queue.

If you need to create a POSIX named message queue, open the option and add

O_CREAT, and the variable parameter should specify mode and pmqattr. When the

pmqattr is NULL, the default attribute is used. Create a command message queue as

follows:

mqd_t mq;

mq = mq_open(“mq_test”, O_RDWR | O_CREAT, 0666, NULL);

If you open an existing POSIX named message queue, open the option but not add

O_CREAT.

The default attributes are defined as follows:

mq_attr_t mq_attr_default = {O_RDWR, 128, 64, 0};

The message queue can hold 128 messages, and the maximum length of a single

message is 64 bytes.

SpaceChain OS

Manual SpaceChain

OS.

370

Application Development Manual

2. Get and Set Named Message Queue Attributes

#include <mqueue.h>

int mq_getattr(mqd_t mqd, struct mq_attr *pmqattr);

Prototype analysis on function mq_getattr:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter mqd is the handle to the POSIX named message queue;

 The output parameter pmqattr is used to receive the attributes of the POSIX

named message queue.

#include <mqueue.h>

int mq_setattr(mqd_t mqd, const struct mq_attr *pmqattrNew,

 struct mq_attr *pmqattrOld);

Prototype analysis on function mq_setattr:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter mqd is the handle to the POSIX named message queue;

 The parameter pmqattrNew points to an attribute block of POSIX named

message queue, which is a new attribute that needs to be set.

 The output parameter pmqattrOld is used to receive the current attribute of the

POSIX named message queue, which can be NULL.

3. Send Message to Named Message Queue

#include <mqueue.h>

int mq_send(mqd_t mqd, const char *msg, size_t msglen,

unsigned msgprio);

int mq_timedsend(mqd_t mqd, const char *msg, size_t msglen,

 unsigned msgprio, const struct timespec *abs_timeout);

int mq_reltimedsend_np(mqd_t mqd, const char *msg, size_t msglen,

 unsigned msgprio, const struct timespec *rel_timeout);

Prototype analysis on the above three functions:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter mqd is the handle to the POSIX named message queue;

 The parameter msg points to the message buffer that needs to be sent (a const

char type pointer);

SpaceChain OS

Manual SpaceChain

OS.

371

Application Development Manual

 The parameter msglen is the length of the message to be sent;

 The parameter msgprio is the priority of the message to be sent;

 The parameter abs_timeout is the absolute timeout period that the sender

thread needs to wait when the message queue is full.

 The parameter rel_timeout is the relative timeout period that the sender thread

needs to wait when the message queue is full.

The mq_timedsend function is the version of the mq_sendfunction waiting for timeout.

The abs_timeout is the absolute timeout waiting period (the absolute time refers to some

point in the future).

The mq_reltimedsend_np function is the non-POSIX standard version of the

mq_timedsend function, with the parameter rel_timeout as the waiting relative timeout

(the relative time refers to a time interval starting at the current time).

4. Receive Message of Named Message Queue

#include <mqueue.h>

ssize_t mq_receive(mqd_t mqd, char *msg, size_t msglen,

unsigned *pmsgprio);

ssize_t mq_timedreceive(mqd_t mqd, char *msg, size_t msglen,

 unsigned *pmsgprio,

const struct timespec *abs_timeout);

ssize_t mq_reltimedreceive_np(mqd_t mqd, char *msg, size_t msglen,

 unsigned *pmsgprio,

const struct timespec *rel_timeout);

Prototype analysis on the above three functions:

 The above function returns the length of the received message when it succeeds,

and returns -1 and sets the error number when fails;

 The parameter mqd is the handle to the POSIX named message queue;

 The parameter msg points to the message buffer used to receive messages (a

char type pointer);

 The parameter msglen is the length of message buffer;

 The output parameter pmsgprio is used to receive message priority;

 The parameter abs_timeout is the absolute timeout period that the receiver

thread needs to wait when the message queue is empty.

 The parameter rel_timeout is the relative timeout that the receiver thread needs

to wait when the message queue is empty.

SpaceChain OS

Manual SpaceChain

OS.

372

Application Development Manual

The mq_timedreceive is the version of the mq_receive that waits for timeout,

and the abs_timeout is the absolute waiting timeout.

The mq_reltimedreceive _np is the non-POSIX standard version of mq_timedreceive,

and the parameter rel_timeout is the relative timeout waiting period.

5. Notification Signal of Registering Named Message Queue for Reading

#include <mqueue.h>

int mq_notify(mqd_t mqd, const struct sigevent *pnotify);

Prototype analysis on function mq_notify:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter mqd is the handle to the POSIX named message queue;

 The parameter pnotify points to the variable of a struct sigevent signal event

type (see the signal system in Chapter 10).

6. Close Named Message Queue

#include <mqueue.h>

int mq_close(mqd_t mqd);

Prototype analysis on function mq_close:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter mqd is the handle to the POSIX named message queue.

7. Unlink Named Message Queue

#include <mqueue.h>

int mq_unlink(const char *name);

Prototype analysis on function mq_close:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter name is the name of the POSIX named message queue.

Here is the producer and consumer instances implemented through the POSIX

named message queue. The producer program sends a message to the message queue

every 1 second. The consumer gets a message from the queue every 2 seconds. After the

producer has finished the production, the delay is 1 minute to wait for the consumer to exit

normally. After 1 minute, the producer calls the mq_unlink function to unlink the message

queue file.

SpaceChain OS

Manual SpaceChain

OS.

373

Application Development Manual

Program List 9.7 Producer Program

#include <stdio.h>

#include <mqueue.h>

#include <sys/stat.h>

#include <stdlib.h>

#include <unistd.h>

#include <time.h>

#include <string.h>

#define MAXSIZE (10)

#define BUFFER (8192)

#define FILE_NAME "/posix"

struct msg_type {

 int len;

 char buf[MAXSIZE];

};

int main (int argc, char *argv[])

{

 mqd_t msgq_id;

 struct msg_type msg;

 unsigned int prio = 1;

 struct mq_attr msgq_attr;

 int ret;

 int i;

 msgq_id = mq_open(FILE_NAME, O_RDWR | O_CREAT, S_IRWXU | S_IRWXG, NULL);

 if(msgq_id == (mqd_t)-1) {

 perror("mq_open");

 return (-1);

 }

 ret = mq_getattr(msgq_id, &msgq_attr);

 if(ret < 0) {

 perror("mq_getattr");

 return (-1);

 }

 ret = mq_setattr(msgq_id, &msgq_attr, NULL);

 if(ret < 0) {

 perror("mq_setattr");

SpaceChain OS

Manual SpaceChain

OS.

374

Application Development Manual

 return (-1);

 }

 for (i = 0; i < 10; ++i) {

 memset(msg.buf, 0, MAXSIZE);

 sprintf(msg.buf, "%c", i + 'a');

 msg.len = 1;

 fprintf(stdout, "msg.buf = %s\n", msg.buf);

 ret = mq_send(msgq_id, (char*)&msg, sizeof(struct msg_type), prio);

 if(ret < 0) {

 perror("mq_send");

 return (-1);

 }

 sleep(1);

 }

 sleep(60);

 ret = mq_close(msgq_id);

 if(ret < 0) {

 perror("mq_close");

 return (-1);

 }

 ret = mq_unlink(FILE_NAME);

 if(ret < 0) {

 perror("mq_unlink");

 return (-1);

 }

 return (0);

}

Program List 9.8 Consumer Program

#include <stdio.h>

#include <mqueue.h>

#include <sys/stat.h>

#include <stdlib.h>

#include <unistd.h>

#include <time.h>

#include <string.h>

SpaceChain OS

Manual SpaceChain

OS.

375

Application Development Manual

#define MAXSIZE (10)

#define BUFFER (8192)

#define FILE_NAME "/posix"

struct msg_type {

 int len;

 char buf[MAXSIZE];

};

int main (int argc, char *argv[])

{

 mqd_t msgq_id;

 unsigned int sender;

 struct msg_type msg;

 struct mq_attr msgq_attr;

 long recv_size = BUFFER;

 int ret;

 int i;

 msgq_id = mq_open(FILE_NAME, O_RDWR);

 if(msgq_id < 0) {

 perror("mq_open");

 return (-1);

 }

 ret = mq_getattr(msgq_id, &msgq_attr);

 if(ret < 0) {

 perror("mq_getattr");

 return (-1);

 }

 if(recv_size < msgq_attr.mq_msgsize) {

 recv_size = msgq_attr.mq_msgsize;

 }

 for (i = 0; i < 10; ++i) {

 msg.len = -1;

 memset(msg.buf, 0, MAXSIZE);

 ret = mq_receive(msgq_id, (char*)&msg, recv_size, &sender);

 if (ret < 0) {

 perror("mq_receive");

 return (-1);

SpaceChain OS

Manual SpaceChain

OS.

376

Application Development Manual

 }

 fprintf(stdout, "msg.len = %d, msg.buf = %s\n", msg.len, msg.buf);

 sleep(2);

 }

 ret = mq_close(msgq_id);

 if(ret < 0) {

 perror("mq_close");

 return (-1);

 }

 return (0);

}

9.6 POSIX Shared Memory

Though both the pipe and POSIX named message queue can achieve the

inter-process data communication, the efficiency of the pipe and POSIX named message

queue is a bit low when the data volume is large. The POSIX shared memory is

recommended for direct data communication.

In order to avoid having multiple writer processes write operations on the same

shared memory, it is usually necessary to use a named semaphore as the write lock for

that shared memory.

Meanwhile, in order to let the reader process know that the writer process has

modified the contents of shared memory, a named semaphore is usually used as the read

notification signal for the shared memory.

You can use the shm_open function to create a POSIX shared memory. The

shm_open function specifies the device file path for the POSIX shared memory, and other

processes can open the shared memory using the shm_open function. The shm_open

function returns a file descriptor, and then uses the mmap function to map the shared

memory into the process virtual space. The mmap function returns a virtual address,

which can then be read and written to the shared memory via this virtual address, thus

achieving the purpose of direct and large data volume communication between

processes.

When a POSIX shared memory is used, the close function should be called to close it.

When a POSIX shared memory no longer has any purpose, the shm_unlink function

should be called to unlink it. The SylixOS will recycle the kernel resources that the shared

memory has consumed.

The detailed usage of POSIX shared memory is shown in Section 12.4 Virtual

Memory Management.

SpaceChain OS

Manual SpaceChain

OS.

377

Application Development Manual

9.7 XSI IPC

There are three IPC mechanisms called XSI IPC: message queue, semaphore, and

shared memory. They have a lot in common and this section starts with a description of

their similar features.

9.7.1 XSI Identifiers and Keys

The IPC structure in each kernel (message queue, semaphore, or shared memory) is

referenced with a non-negative integer identifier. For example, to send a message to a

message queue or to fetch a message from a message queue, you only need to know its

queue identifier. Unlike the file descriptors, the IPC identifier is not a small integer. When

an IPC structure is created and then unlinked, the identifiers associated with this structure

are added 1 consecutively so as to reach the maximum positive value of an integer, and

then back to 0.

The identifier is the internal name of the IPC object. To enable multiple collaboration

processes to converge on the same IPC object, an external naming scheme is required.

To do this, each IPC object is associated with a key and this action is taken as the external

name of the object.

Whenever you create an IPC structure (call msgget, semget, or create shmget), you

should specify a key whose data type is the basic system data type key_t.

There are several ways to make the client process and server process converge on

the same IPC structure:

 The server process can specify the key IPC_PRIVATE to create a new IPC

structure and store the returned identifiers somewhere (such as a file) for the

client process to fetch. The key IPC_PRIVATE ensures that the server process

creates a new IPC structure;

 A key can be defined in a common header file for both a client process and a

server process. The server process then specifies this key to create a new IPC

structure;

 The client process and server process identify a path name and item ID (the item

ID is the character value between 0 and 255). Next, the call function ftok

transforms the two values into a single key. The key is then used in the above

method.

#include <sys/ipc.h>

key_t ftok(const char *path, int id);

Prototype analysis on function ftok:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

SpaceChain OS

Manual SpaceChain

OS.

378

Application Development Manual

 The parameter path refers to an existing file;

 The parameter id is the item id (the parameter only uses the low 8 bits).

The keys created by the ftok function usually get the stat structure using path, and

then combine the st_dev and st_ino member values in the stat structure with the item ID.

In SylixOS, st_dev and st_ino are device identifiers, and thus the keys to different files in

the same file system may be the same (when the item ID is identical).

Msgget, semget, and shmget have two similar parameters, a key and an integer flag.

When a new queue structure is created, if the key is IPC_PRIVATE or is not related to the

current type of IPC structure, it needs to specify the flag bit of flag IPC_CREAT. To

reference an existing queue, the key must equal the value of the key specified by the

queue creation, and IPC_CREAT cannot be specified.

Table 9.3 XSI IPC Flag Bit

Flag Meaning

IPC_CREAT Create if the key does not exist

IPC_EXCL Error if the key exists

IPC_NOWAIT Non-blocking

It is important to note that you cannot specify IPC_PRIVATE as a key to reference an

existing queue, because this particular key is always used to create a new queue.

If you want to create a new IPC structure, and make sure that you don’t reference an

existing IPC structure with the same identifier, you must specify both IPC_CREAT and

IPC_EXCL bits in flag. After this setting, if the IPC structure already exists, the error is

returned and errno is set to EEXIST.

9.7.2 XSI Permission Structure

XSI IPC has an ipc_perm structure associated with each IPC structure. The structure

defines permissions and owners, which are defined in SylixOS as follows:

struct ipc_perm {

 uid_t uid; /* owner's effective user ID */

 gid_t gid; /* owner's effective group ID */

 uid_t cuid; /* creator's effective user ID */

 gid_t cgid; /* creator's effective group ID */

 mode_t mode; /* read/write permission */

};

When you create an IPC structure, you need to assign initial values to all members,

and then you can call MSGCTL, semctl, or SHMCTL functions to modify uid, gid, and

mode members. To modify these values, the calling process must be the creator or

superuser of the IPC structure. Modifying these member values is similar to files calling

chown functions and chmod functions.

SpaceChain OS

Manual SpaceChain

OS.

379

Application Development Manual

SpaceChain OS

Manual SpaceChain

OS.

380

Application Development Manual

9.7.3 XSI IPC Semaphore

The XSI IPC semaphore is different from pipe, named pipe, and message queue;

instead, it is a counter that provides access to shared data objects for multiple processes.

To obtain shared resources, the process needs to do the following:

 The test controls the semaphore of the resource;

 If the value of this semaphore is positive, the process can use the resource. In

this case, the process reduces the signal value by 1, indicating that it uses a

resource unit;

 Otherwise, if the value of this semaphore is 0, the process goes into hibernation

until the signal value is greater than 0, and the process is awakened and returns

to the first step.

When a process is no longer using a shared resource controlled by a semaphore, the

signal is incremented by 1. If a process is dormant waiting for this semaphore, wake it up.

In order to correctly realize the semaphore, the test of the semaphore value and the

reduction of 1 operation should be the atomic operation. For this, the semaphore is usually

implemented in the kernel.

The commonly used semaphore form is called a binary semaphore, which controls a

single resource with an initial value of 1. However, in general, the initial value of the

semaphore can be any positive value, indicating how many shared resource units are

available for sharing applications.

The kernel provides a semid_ds structure for each semaphore set maintainer.

struct semid_ds {

 struct ipc_perm sem_perm; /* operation permission structure */

 u_short sem_nsems; /* number of semaphores in set */

 time_t sem_otime; /* last semop^) time */

 time_t sem_ctime; /* last time changed by semctl() */

 ……

};

Under SylixOS, each semaphore is defined by the following structure:

struct sem {

 unsigned short semval; /* semaphore value */

 pid_t sempid; /* pid of last operation */

 unsigned short semncnt; /* # awaiting semval > cval */

 unsigned short semzcnt; /* # awaiting semval == 0 */

};

When using a XSI IPC semaphore, the semget function is called firstly:

SpaceChain OS

Manual SpaceChain

OS.

381

Application Development Manual

#include <sys/sem.h>

int semget(key_t key, int nsems, int flag);

Prototype analysis on function semget:

 The semaphore ID returns 0 when succeeds and returns -1 when fails, and sets

the error number;

 The parameter key is the key returned by the ftok function;

 The parameter nsems is the number of semaphore in the set.

 The parameter flag is the semaphore flag, as shown in Table 9.3.

The semctl function includes a variety of semaphore operations:

#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ...);

Prototype analysis on function semctl:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter semid is the semaphore ID;

 The parameter semnum is the semaphore number;

 The parameter cmd is the command;

 The parameter... is a variable parameter.

The variable parameter of semctl function is optional according to cmd, and its type is

union semun, which is a combination of specific parameters under multiple commands:

union semun {

 int val; /* value for SETVAL */

 struct semid_ds *buf; /* buffer for IPC_STAT & IPC_SET */

 unsigned short *array; /* array for GETALL & SETALL */

};

The dunction semop automatically performs an array of operations on the semaphore

set:

#include <sys/sem.h>

int semop(int semid, struct sembuf *semoparray, size_t nops);

Prototype analysis on function semop:

 The parameter semid is the semaphore ID;

 The parameter semoparray points to an array of semaphore operations

represented by sembuf structure;

SpaceChain OS

Manual SpaceChain

OS.

382

Application Development Manual

 The parameter nops is the number of semaphore manipulation arrays.

The following is the type definition of struct sembuf structure:

struct sembuf {

 u_short sem_num; /* semaphore */

 short sem_op; /* semaphore operation */

 short sem_flg; /* operation flags */

};

9.7.4 XSI IPC Message Queue

The message queues are linked lists of messages, stored in the kernel and identified

by message queue identifiers. The msgget function is used to create a new queue or open

an existing queue. The msgsnd function adds new messages to the end of the queue.

Each message contains a positive long integer type field, a non-negative length, and

actual data bytes. All these are passed to the msgsnd function when the message is

added to the queue. The msgsnd function is used to fetch messages from the queue, and

we do not have to fetch the message in the first-in first-out order, or fetch messages based

on the message type.

Each queue has an msgid_ds structure associated with it:

struct msqid_ds {

 struct ipc_perm msg_perm; /* msg queue permission bits */

 msgqnum_t msg_qnum; /* number of msgs in the queue */

 msglen_t msg_qbytes; /* max # of bytes on the queue */

 pid_t msg_lspid; /* pid of last msgsnd() */

 pid_t msg_lrpid; /* pid of last msgrcv() */

 time_t msg_stime; /* time of last msgsnd() */

 time_t msg_rtime; /* time of last msgrcv() */

 time_t msg_ctime; /* time of last msgctl() */

 ……

};

This structure defines the current state of the queue, and different systems may

contain different members.

The first function of the XSI IPC message queue call is the msgget function, which

opens an existing queue or creates a new queue.

#include <sys/msg.h>

int msgget(key_t key, int flag);

Prototype analysis on function msgget:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

SpaceChain OS

Manual SpaceChain

OS.

383

Application Development Manual

 The parameter key is the key created by the ftok function or the

IPC_PRIVATE specified to create the new IPC structure;

 The parameter flag is the message creation flag, as shown in Table 9.3.

The msgctl function performs a variety of operations on the queue, similar to the ioctl

function.

#include <sys/msg.h>

int msgctl(int msgid, int cmd, struct msqid_ds *buf);

Prototype analysis on function msgctl:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter msgid is the message ID returned by the msgget function;

 The parameter cmd is the command as shown in Table 9.4;

 The parameter buf is the msgid_ds structure pointer.

Table 9.4 XSI IPC Command

Command Meaning

IPC_STAT Take the msgid_ds structure of this queue and store it in buf.

IPC_SET
The members such as msg_perm.uid, msg_perm.gid, and msg_perm. mode in buf are

assigned to the msqid_ds structure associated with this queue.

IPC_RMID Unlink the message queue from the system and all the data that is still in the queue.

Call the MSGSND function to place the data in the message queue:

#include <sys/msg.h>

int msgsnd(int msgid, const void *ptr, size_t nbytes, int flag);

Prototype analysis on function msgsnd:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter msgid is the message ID returned by the msgget function;

 The parameter ptr is the message pointer;

 The parameter nbytes is the number of messages in the message body;

 The parameter flag is the message flag.

As previously mentioned, every message is composed of 3 parts: the long integer

type of field, the length of a nonnegative (nbytes) and the actual data bytes

(corresponding to the length), and the message is always at the end of a queue.

SpaceChain OS

Manual SpaceChain

OS.

384

Application Development Manual

The parameter ptr is a pointer to the mymesg structure, which contains the

long integer message type and message data, and defines a 512-byte message structure

as follows:

struct mymesg {

 long mtype; /* Message type */

 char mtest[512]; /* Message body */

};

The MSGRCV function takes messages from the queue.

#include <sys/msg.h>

ssize_t msgrcv(int msgid, void *ptr, size_t nbytes, long type, int flag);

Prototype analysis on function msgrcv:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter msgid is the message ID returned by the msgget function;

 The parameter ptr is the message pointer;

 The parameter nbytes is the message buffer length;

 The parameter type is the message type;

 The parameter flag is the message flag.

Like the msgsnd function, the ptr parameter points to the long integer (where the

returned message type is stored), followed by a buffer that stores the actual message data.

The parameter type can specify which message you want:

 type == 0 returns the first message in the queue;

 type > 0 returns the first message of type in the queue;

 type < 0 the message type value in the return queue is less than or equal to the

absolute value of type, and if there are several of these messages, the message

with the lowest type value is taken.

The type value not 0 is used for reading messages not in the first-in first-out order. For

example, if the application gives priority to messages, then the type can be a priority value.

If a message queue is used by multiple client processes and a service process, and then

the type field can be used to contain the client process ID (as long as the process ID can

be stored in a long integer).

When the msgrcv is successfully executed, the kernel updates the msgid_ds

structure associated with the message queue to indicate the caller's process ID and call

time, and indicates that the number of messages in the queue has been reduced by 1.

SpaceChain OS

Manual SpaceChain

OS.

385

Application Development Manual

9.7.5 XSI IPC Shared Memory

The shared storage allows two or more processes to share a given storage area.

Because the data does not need to be replicated between the client process and the

server process, this is the fastest type of IPC. The only skill to master when using the

shared storage is to synchronize access to a given storage area between multiple

processes. If the server process is putting data into a shared storage area, the client

process should not fetch the data before it completes the operation. The semaphore is

usually used for synchronizing the shared storage access. The XSI shared memory differs

from the memory mapping file that the former has no relevant files. The XSI shared

memory segment is an anonymous segment of memory.

The kernel maintains a structure for each shared memory segment, which is

implemented in SylixOS as follows:

struct shmid_ds {

 struct ipc_perm shm_perm; /* operation permission structure */

 size_t shm_segsz; /* size of segment in bytes */

 pid_t shm_lpid; /* process ID of last shared memory op */

 pid_t shm_cpid; /* process ID of creator */

 shmatt_t shm_nattch; /* number of current attaches */

 time_t shm_atime; /* time of last shmat() */

 time_t shm_dtime; /* time of last shmdt() */

 time_t shm_ctime; /* time of last change by shmctl() */

 void *shm_internal;

};

The first function that XSI IPC calls is the shmget function, which gets a shared

memory identifier:

#include <sys/shm.h>

int shmget(key_t key, size_t size, int flag);

Prototype analysis on function shmget:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter key is the return key of ftok function;

 The parameter size is the length of the shared memory area;

 The parameter flag is the shared memory flag.

The parameter size is the length of the shared memory area in bytes, and the

implementation usually takes it up as an integer multiple of the system page length.

However, if the specified size value is not an integer multiple of the system page length,

SpaceChain OS

Manual SpaceChain

OS.

386

Application Development Manual

the remainder of the last page is not available. If you are creating a new segment,

you must specify its size. If an existing segment is being referenced, the size is specified

as 0. When a new segment is created, the contents of the segment are initialized to 0.

The SHMCTL function performs a variety of operations on the shared storage

segments:

#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Prototype analysis on function shmctl:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter shmid is the shared memory ID;

 The parameter cmd is the command;

 The parameter buf is the structure pointer of the structure shmid_ds.

Once a shared memory segment is created, the process can call the shmat function

to connect it to its address space.

#include <sys/shm.h>

void *shmat(int shmid, const void *addr, int flag);

Prototype analysis on function shmat:

 This function returns the mapped memory address if succeeds, and returns

MAP_FAILED and sets the error number if fails;

 The parameter shmid is the shared memory ID;

 The parameter addr must be NULL;

 The parameter flag is the shared memory flag.

If the SHM_RDONLY bit is specified in the flag, then the segment is connected

read-only. Otherwise, connect this section with read and write mode.

The return value of the shmat function is the actual address that the segment is

connected to, and MAP_FAILED is returned if an error occurs. If the shmat function is

executed successfully, the kernel will add 1 to the shm_nattach counter in the shmid_ds

structure of the shared memory segment. When the operation on the shared storage

segment is finished, the shmdt function is called to disconnect the segment. Note that this

will not unlink its identifier and data structure from the system. The identifier still exists

until a process calls the shmctl (with the command IPC_RMID) to unlink it.

#include <sys/shm.h>

int shmdt(const void *addr);

SpaceChain OS

Manual SpaceChain

OS.

387

Application Development Manual

Prototype analysis on function shmdt:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter addr is the memory address to be disconnected.

The parameter addr is the return value when the shmat function was called before. If

successful, the shmdt function will subtract 1 from the shm_nattach counter value in the

associated shmid_ds structure.

Where the kernel places the shared memory area is closely related to the system.

The following program prints the information of each data memory location.

Program List 9.9 Shared Memory Distribution

#include <stdlib.h>

#include <mman.h>

#include <sys/shm.h>

#define ARRAY_SIZE (4096)

#define MALLOC_SIZE (4096)

#define SHM_SIZE (4096)

#define SHM_MODE (0666)

static char array[ARRAY_SIZE];

int main (int argc, char *argv[])

{

 int shmid;

 char *ptr, *shmptr;

 fprintf(stdout, "global data area from [0x%lx] to [0x%lx]\n",

 (unsigned long)&array[0],

 (unsigned long)&array[ARRAY_SIZE]);

 fprintf(stdout, "stack area [0x%lx]\n", (unsigned long)&shmid);

 ptr = malloc(MALLOC_SIZE);

 if(ptr == NULL) {

 fprintf(stderr, "malloc error");

 return (-1);

 }

 fprintf(stdout, "heap area from [0x%lx] to [0x%lx]\n", (unsigned long)ptr,

 (unsigned long)ptr + MALLOC_SIZE);

SpaceChain OS

Manual SpaceChain

OS.

388

Application Development Manual

 if((shmid = shmget(IPC_PRIVATE, SHM_SIZE, SHM_MODE)) < 0) {

 fprintf(stderr, "shmget error");

 return (-1);

 }

 if((shmptr = shmat(shmid, 0, 0)) == MAP_FAILED) {

 fprintf(stderr, "shmat error");

 return (-1);

 }

 fprintf(stdout, "shared memory area from [0x%lx] to [0x%lx]\n",

 (unsigned long)shmptr, (unsigned long)shmptr + SHM_SIZE);

 if(shmctl(shmid, IPC_RMID, 0) < 0) {

 fprintf(stderr, "shmctl error");

 return (-1);

 }

 return (0);

}

Operation results under SylixOS:

./shm_test

global data area from [0xc00107cc] to [0xc00117cc]

stack area [0x30915dc4]

heap area from [0xc0032400] to [0xc0033400]

shared memory area from [0xc0006000] to [0xc0007000]

As you can see from the operation results that the shared memory area of SylixOS is

under the heap memory area. Note that the mapped memory of XSI IPC shared memory

is not associated with a specific file, whereas the mapped memory of mmap function is

associated with a specific file (see Section 12.4).

 Application Development Manual
SpaceChain OS

389

Chapter 10 Signal System

10.1 Signal System

A signal is an interrupt that is simulated at the software level
①
. The signal processing

flow is shown in Figure 10.1. Many of the more important applications need to process

signals that provide a way to handle asynchronous events. For example, the end user

types the interrupt key and stops a program through the signal mechanism.

Figure 10.1 Signal Processing Flow

Each signal has its own name and the signal name begins with “SIG”. For example,

SIGTERM is a termination signal that sends this signal to the process to terminate a

process. Currently, SylixOS can support 63 different signals, including the standard and

real-time signals.

Many conditions can generate signals:

 When a user presses a key, this will cause the terminal to generate a signal, for

example, Ctrl+C generates the SIGINT signal;

 The alarm function sets the timer timeout to generate the SIGALRM signal;

 The SIGCHLD signal is generated after the child process exits or is abnormally

terminated.

 Access to illegal memory generates the SIGSEGV signals;

 The user can call the kill command to send the signal to other processes, and

often uses this command to terminate an out-of-control background process.

SpaceChain OS

390

Application Development Manual

Signal asynchrony means that the application does not have to wait for events

to occur. When the signal occurs, the application is automatically caught in the

corresponding signal processing function. Events that generate signals are random in the

process. The process cannot simply test a variable to determine whether a signal has

occurred, but must tell the kernel that “when this signal occurs, do the following.”

When a signal occurs, you can tell the kernel to handle in one of the following three

ways:

 Ignore signal: Most of the signals can be processed in this way, and there is a

signal in SylixOS that cannot be ignored. The reason that this signal cannot be

ignored is that it provides the kernel with a reliable way to terminate the process.

In addition, if you ignore certain signals generated by hardware exceptions (such

as illegal memory access), the operation behavior of the process is undefined;

 Capture signal: To do this, notify the kernel that a user function is called when a

signal occurs. In the user function, the action that the user wants is executable.

For example, after capturing the SIGALRM signal, the user can control a thread

in the corresponding processing function. If the SIGCHLD signal is captured, it

indicates that a subprocess has been terminated, and thus the capture function

of this signal can call the waitpid function to get the exit status of the child

process. Again for example, if the process creates temporary files, it may

possibly write a signal capture function for the SIGTERM signal to clear the

temporary files. It is important to note that the SIGSTOP signal cannot be

captured (the debugging server in SylixOS will capture the SIGKILL signal, and

thus the SIGKILL signal in the SylixOS implementation can be captured or

ignored).

 Execute system default action: The default action for most signals is to

terminate the process.

Below we detail the signals supported in SylixOS, as shown in Table 10.1.

SpaceChain OS

391

Application Development Manual

Table 10.1 Signals

Signal Name Description

SIGHUP

Hang up the control terminal or process. This notification daemon is usually used to

read their configuration files again, as the daemon does not have a control terminal

and will not normally receive such a signal.

SIGINT

Interruption from the keyboard. Ctrl + c is generally used to generate this signal.

When a process gets out of control during operation, especially if it is generating a

large amount of unwanted output on the screen, this signal will terminate.

SIGQUIT Exit from the keyboard

SIGILL Disable instruction

SIGTRAP Track breakpoint

SIGABRT Abnormal termination

SIGUNUSED Unused

SIGFPE Co-processing error, such as dividing by 0, and floating point overflow etc.

SIGKILL The forced process terminates.

SIGBUS A bus error, usually indicating the implemented defined hardware failure

SIGSEGV Invalid memory reference

SIGUNUSED2 Unused 2

SIGPIPE Pipe write error, no reader

SIGALRM Real-time timer alarm

SIGTERM

The process terminates. This is the default action for the kill command, because the

signal is captured by the application, and the usage of SIGTERM also gives the

program an opportunity to clean up before exiting, and thus gracefully terminates.

SIGCNCL Thread cancels

SIGSTOP Stop process execution. This signal cannot be captured and ignored.

SIGTSTP Tty sends stop process

SIGCONT The recovery process continues.

SIGCHLD The child process stops or is terminated. The system default is to ignore this signal.

SIGTTIN Background process requests input

SIGTTOU Background process requests output

SIGCANCEL Identical to sigterm

SIGIO Asynchronous i/o event

SIGXCPU The process exceeded the soft cpu event limit.

SIGXFSZ The process exceeded the soft file length limit.

SIGVTALRM The virtual interval timer set by the function setitimer has timed out.

SIGPROF The outline interval timer set by the function setitimer has timed out.

SIGWINCH The window size is changed.

SIGINFO Information request

SIGPOLL Identical to sigio

SIGUSR1 User-defined signal 1

SIGUSR2 User-defined signal 2

SIGPWR The power fails and restarts

SpaceChain OS

392

Application Development Manual

SIGSYS Wrong system call

SIGURG
This signal can be selectively generated when the network is connected to the

external data.

SIGRTMIN-SI

GRTMAX

Sylixos realizes SIGRTMIN = 48 and SIGRTMAX = 63, the system does not specify a

clear meaning, it is user-defined and should not use a value.

10.1.1 Unreliable Signals and Reliable Signals

The signals were unreliable in the early version of UNIX. In other words, the signal

might be lost, which was usually expressed as a signal that occured, but the process

might not know it. In the earlier version, the signal was reset to the default value every

time the process received a signal to handle it (we will expand on this when we introduce

the signal function).

As mentioned above, signals can come from different sources. In SylixOS, the signal

source contains several types as shown in Table 10.2. When a signal is generated, the

kernel usually sets a flag in some form as specified in the process table. When the signal

performs the corresponding action, this represents a signal delivered to the process. The

signal is pending in the interval between signal generation and delivery.

The process can shield (or block) signals. If the signal is generated and the signal

action is system default or captured during the signal blocking period, the signal will

remain pending until the process unblocks the signal or sets the signal action to be

ignored.

The SylixOS kernel will have two ways to handle the signal that occurs several times

before the process unblocks the signal: one is that the signal generated by the SI_KILL

mode will be delivered only once, that is, the signal will not be queued (see Section

10.4.1); and the other signal produced by the non-SI_KILL method will be delivered

multiple times, that is, the signal generates a queue.

In the SylixOS kernel implementation, if multiple different signals are delivered to one

process, the signal with a small signal number is preferred to be delivered.

Table 10.2 Source of Signal Generation

Source of Signal Generation Description

SI_KILL/SI_USER Signal sent by using kill function

SI_QUEUE Signal sent by using sigqueue function

SI_TIMER Signal sent by Posix timer

SI_ASYNCIO Signal completed and sent by asynchronous I/O system

SI_MESGQ Signal generated by receiving a message

SI_KERNEL Internal use of sylixos kernel

As it can be seen, the signal mechanism of SylixOS eliminates the previously

unreliable signal mechanism. All the signals generated by the non-SI_KILL mode will be

queued.

SpaceChain OS

393

Application Development Manual

Because a thread is a unit of SylixOS dispatching, each signal that needs

processing will be embedded into the thread to execute, it is more consistent with the

characteristics of SylixOS to introduce the signal by means of thread. In fact, the delivery

of signals to the process in SylixOS is the main thread of delivery to the process
①
.

10.2 Signal Installation

10.2.1 Function signal

The simplest interface in the SylixOS signal mechanism is the signal function:

#include <signal.h>

void (*signal(int iSigNo, void (*pfuncHandler)(int)))(int);

Prototype analysis on function signal:

 This function returns a function pointer when it succeeds and returns SIG_ERR

when it fails, as shown in Table 10.3;

 The function pointer to the function has no return value;

 The parameter is an integer value.

 The parameter iSigNo is any signal name as shown in Table 10.1;

 The parameter pfuncHandler is the signal function or constant SIG_IGN, and

the constant SIG_DFL to be installed.

We check <system/signal/signal.h> and find out the definitions as shown in Table

10.3:

Table 10.3 Signal Macros

Macro Name Value

SIG_ERR (PSIGNAL_HANDLE)-1

SIG_DFL (PSIGNAL_HANDLE)0

SIG_IGN (PSIGNAL_HANDLE)1

SIG_CATCH (PSIGNAL_HANDLE)2

SIG_HOLD (PSIGNAL_HANDLE)3

Note: The macro PSIGNAL_HANDLE can be found out in <kernel/include/k_ptype.h>:

typedef VOID (*PSIGNAL_HANDLE)(INT);

In the previous UNIX system implementation, the signal function installed was

unreliable because the installed signal was not permanent
①
. As long as the signal is

delivered, the signal action will revert to the default action. Fortunately, the SylixOS signal

mechanism supports the POSIX real-time extension, ensuring that the signal function will

permanently install a signal.

10.2.2 Function sigaction

SpaceChain OS

394

Application Development Manual

The sigaction function checks or modifies the processing actions associated

with the specified signal. This function replaces the signal function, and the signal function

is implemented by calling the sigaction function in the SylixOS system.

#include <signal.h>

int sigaction(int iSigNo,

const struct sigaction *psigactionNew,

struct sigaction *psigactionOld);

Prototype analysis on function sigaction:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter iSigNo is any signal name as shown in Table 10.1;

 The parameter psigactionNew is the new signal processing structure;

 The output parameter psigactionOld saves the previously processed structure.

The sigaction function uses the following structure to check or modify the processing

actions associated with the specified signal:

struct sigaction {

 union {

 PSIGNAL_HANDLE _sa_handler;

 PSIGNAL_HANDLE_ACT _sa_sigaction;

 } _u; /* Signal service function

handler */

 sigset_t sa_mask; /* Signal mask code when

executed */

 INT sa_flags; /* The handle handler flag

 */

 PSIGNAL_HANDLE sa_restorer; /* Resume processing

function pointer */

};

#define sa_handler _u._sa_handler

#define sa_sigaction _u._sa_sigaction

When changing the signal action, if the sa_handler member contains the address of a

signal capture function (not a constant SIG_IGN or SIG_DFL), the sa_mask member

contains a signal set (see Section 10.3 for the operation of signal set). Before calling the

signal capture function, the signal set is added to the thread signal mask. The sa_flags

member specifies various options for processing signal. The significance of sa_flags

member flags is shown in Table 10.4.

Table 10.4 Flag Options of sa_flags

SpaceChain OS

395

Application Development Manual

Option Description

SA_NOCLDSTOP Do not generate signal when the child process is deleteed.

SA_NOCLDWAIT No zombie process.

SA_SIGINFO The signal handle requires the siginfo parameter.

SA_ONSTACK Self-defined stack

SA_RESTART Restart the call after the signal handle is executed.

SA_INTERRUPT Do not restart the call after the signal handle is executed.

SA_NOMASK Do not prevent receiving the signal in the specified signal processing handle.

SA_RESETHAND After the handle is executed, set the signal handle as the default action.

If the sa_flags contains the SA_NOCLDSTOP flag, the parent process does not

receive a pause signal from the child process. The SIGCHLD signal is ignored, and the

SIGCHLD signal is introduced in detail in Section 10.6.

Specify the SA_NOCLDWAIT flag that the system will take over the resources of the

recovery child process, and thus there is no zombie process.

Specify the SA_NOMASK flag, and when the signal processing function is executed,

if the same signal is received, it will be interrupted so that the recursion is formed.

Specify the SA_RESETHAND flag, and once the signal processing function is

executed, the signal action will be set to the default action, which is compatible with the

previously unreliable signal mechanism.

The sa_sigaction member is an alternative signal handler. If the SA_SIGINFO flag is

used in the sigaction structure, the signal handler is used. In SylixOS, members of

sa_sigaction and sa_handler use the same storage area, and all applications can only use

one of these two members at once.

Typically, if you use the sa_handler member, call the signal handler as follows:

void handler(int signo);

 If you use the sa_sigaction member, which sets the SA_SIGINFO flag, then the

signal handler is called as follows:

void handler(int signo, siginfo_t *siginfo, void *arg);

 The siginfo_t structure contains information about the cause of signal generation,

which is defined as follows in SylixOS:

typedef struct siginfo {

 INT si_signo;

 INT si_errno;

 INT si_code;

 union {

 struct {

 INT _si_pid;

 INT _si_uid;

SpaceChain OS

396

Application Development Manual

 } _kill;

 struct {

 INT _si_tid;

 INT _si_overrun;

 } _timer;

 struct {

 INT _si_pid;

 INT _si_uid;

 } _rt;

 struct {

 INT _si_pid;

 INT _si_uid;

 INT _si_status;

 clock_t _si_utime;

 clock_t _si_stime;

 } _sigchld;

 struct {

 INT _si_band;

 INT _si_fd;

 } _sigpoll;

 } _sifields;

#define si_pid _sifields._kill._si_pid

#define si_uid _sifields._kill._si_uid

#define si_timerid _sifields._timer._si_tid

#define si_overrun _sifields._timer._si_overrun

#define si_status _sifields._sigchld._si_status

#define si_utime _sifields._sigchld._si_utime

#define si_stime _sifields._sigchld._si_stime

#define si_band _sifields._sigpoll._si_band

#define si_fd _sifields._sigpoll._si_fd

 union sigval si_value;

#define si_addr si_value.sival_ptr /* Faulting insn/memory ref */

#define si_int si_value.sival_int

#define si_ptr si_value.sival_ptr

 ……

} siginfo_t;

Union sigval will be detailed in Section 10.4.2 and the member si_code indicates the

causes of signal generation. The si_code value definition for various signals in SylixOS is

shown in Table 10.5. The third parameter of the signal processing function returns the

stack address or NULL in the SylixOS.

The sa_restorer members are discarded and should not be used.

SpaceChain OS

397

Application Development Manual

Table 10.5 Value Definition of si_code

Signal Code Description

ANY

SI_KILL

SI_USER

SI_QUEUE

SI_TIMER

SI_ASYNCIO

SI_MESGQ

SI_KERNEL

Signal sent by using kill ()

Identical to SI_KILL

Signal sent by using sigqueue

Signal sent by Posix timer

Signal completed and sent by asynchronous I/O system

Signal generated by receiving a message

Internal use of sylixos kernel

SIGILL

ILL_ILLOPC

ILL_ILLOPN

ILL_ILLADR

ILL_ILLTRP

ILL_PRVOPC

ILL_PRVREG

ILL_COPROC

ILL_BADSTK

Illegal opcode

Illegal operand

Illegal address mode

Illegal trap

Privileged opcode

Privileged register

Coprocessor error

Internal stack error

SIGFPE

FPE_INTDIV

FPE_INTOVF

FPE_FLTDIV

FPE_FLTOVF

FPE_FLTUND

FPE_FLTRES

FPE_FLTINV

FPE_FLTSUB

Integer divided by 0

Integer overflow

Floating point divided by 0

Floating point overflow upwards

Floating point overflow downwards

Imprecise floating point result

Invalid floating point operation

Subscript out of range

SIGSEGV
SEGV_MAPERR

SEGV_ACCERR

Address not mapped to object

Invalid permissions for mapped object

SIGBUS

BUS_ADRALN

BUS_ADRERR

BUS_OBJERR

Invalid address alignment

Inexistent physical address

Specific object hardware error

SIGTRAP
TRAP_BRKPT

TRAP_TRACE

Process breakpoint trap

Process tracing trap

SIGCHLD

CLD_EXITED

CLD_KILLED

CLD_DUMPED

CLD_TRAPPED

CLD_STOPPED

CLD_CONTINUED

Subprocess termination

Subprocess abnormally terminated (without core)

Subprocess abnormally terminated (with core, currently

SylixOS does not support core files)

Tracked child process trapped

Child process stopped

The stopped child process has continued

SpaceChain OS

398

Application Development Manual

SIGPOLL

POLL_IN

POLL_OUT

POLL_MSG

POLL_ERR

POLL_PRI

POLL_HUP

Available data entry

Available output buffer

Available input message

I/O error

Available high priority input

Equipment disconnected

The following examples show how the sigaction function is used, and the alarm

function in the program is described in detail in the following sections.

Program List 10.1 Usage of Sigaction

#include <stdio.h>

#include <signal.h>

void handler (int signum, siginfo_t *siginfo, void *arg)

{

 fprintf(stdout, "alarm signal.\n");

}

int main (int argc, char *argv[])

{

 struct sigaction newact, oldact;

 int ret;

 newact.sa_sigaction = handler;

 newact.sa_flags = SA_SIGINFO;

sigemptyset(&newact.sa_mask);

 ret = sigaction(SIGALRM, &newact, &oldact);

 if (ret < 0) {

 fprintf(stderr, "sigaction error.\n");

 return (-1);

}

 alarm(2);

sleep(5);

 sigaction(SIGALRM, &oldact, NULL); /*restore the signal behavior

before */

 return (0);

}

10.3 Signal Set

In SylixOS, a signal set that can represent multiple signals is needed to tell the kernel

that it is not allowed to deliver the signal in the signal set. Different signal numbers may

SpaceChain OS

399

Application Development Manual

exceed the number of digits contained in an integer quantity. Therefore, in general,

a signal set cannot be represented by an integer quantity. POSIX.1 defines the data type

sigset_t to define the corresponding signal set. Different system sigset_t may have

different definition methods, and thus it should not assume what type sigset_t should be.

The SylixOS defines the following five functions to operate on the signal set.

#include <signal.h>

int sigemptyset(sigset_t *psigset);

int sigfillset(sigset_t *psigset);

int sigaddset(sigset_t *psigset, int iSigNo);

int sigdelset(sigset_t *psigset, int iSigNo);

int sigismember(const sigset_t *psigset, int iSigNo);

Prototype analysis on function sigemptyset:

 This function returns 0;

 The parameter psigset is the signal set to operate.

Prototype analysis on function sigfillset:

 This function returns 0;

 The parameter psigset is the signal set to operate.

Prototype analysis on function sigaddset:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter psigset is the signal set to add signal;

 The parameter iSigNo is the signal we added to the signal set.

Prototype analysis on function sigdelset:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter psigset is the signal set to delete the signal;

 The parameter iSigNo is the signal to be deleteed.

Prototype analysis on function sigismember:

 The function returning 1 represents belonging to the specified signal set,

returning 0 represents not belonging to the specified signal set, and returning -1

represents error and sets error number;

 The parameter psigset is the signal set to be judged;

 The parameter iSigNo is the judged signal.

SpaceChain OS

400

Application Development Manual

The sigemptyset function initializes a signal set to clear all the signals. The

sigfillset function initializes a signal set to contain all the signals. All the applications will

call a sigemptyset function or the sigfillset function before operating the signal set. The

sigaddset function adds the specified signal to the existing signal set. Note that the

existing signal set has been initialized. The function sigdelset deletes the specified signal

from the existing signal set. The function sigismember determines whether a signal is

contained in the specified signal set.

A thread signal mask (or signal mask code) is the signal set that is currently blocked

and cannot be delivered to the process. Calling the sigprocmask function can detect,

change, or simultaneously detect and change the signal mask.

#include <signal.h>

int sigprocmask(int iHow,

const sigset_t *sigset,

sigset_t *sigsetOld);

Prototype analysis on function sigprocmask:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter iHow is the command of signal set operation as shown in Table

10.6;

SpaceChain OS

401

Application Development Manual

Table 10.6 Command Value of iHow

Macro Name Value

SIG_BLOCK The new signal set (sigset) is added to the current signal mask.

SIG_UNBLOCK
Delete the signal contained in the new signal set (sigset) from the current

signal mask.

SIG_SETMASK Assign the new signal set (sigset) to the current signal mask.

 The parameter sigset is the new signal set;

 The output parameter sigsetOld saves the previous signal set.

If the sigset is NULL, the signal mask for the thread is not changed (specifically, if the

sigsetOlds is not empty at this time, then the current signal mask of the thread is

returned), and the value of iHow is meaningless. If the sigsetOld is NULL, the previous

signal set is not saved.

After calling the sigprocmask function, if there are any pending signals that are no

longer masked, at least one of them will be delivered to the process before the

sigprocmask returns.

As an early BSD compatible interface, the SylixOS provides the following set of

functions to operate on the signal mask.

#include <signal.h>

int sigmask(int iSigNo);

int siggetmask(VOID);

int sigsetmask(int iMask);

int sigblock(int iBlock);

Prototype analysis on function sigmask:

 This function returns the signal mask when it succeeds, returns 0 when it fails

and sets the error number;

 The parameter iSigNo is the signal value.

Prototype analysis on function siggetmask:

 This function returns the current thread signal mask.

Prototype analysis on function sigsetmask:

 This function returns the pre-set signal mask;

 The parameter iMask is the new signal mask.

Prototype analysis on function sigblock:

SpaceChain OS

402

Application Development Manual

 This function returns the pre-set signal mask;

 The parameter iBlock is a new signal set to be added.

The sigmask function gets the mask bit (mask code bit) corresponding to this signal

through the signal value. The siggetmask function is called to get the signal mask for the

current thread. The sigsetmask function is called to set the specified signal set as the

signal mask for the current thread. The sigblock function is called to add the specified

signal set to the current thread signal mask. Note that unlike the sigsetmask function, this

function does not replace the previous signal mask, and the sigsetmask function replaces

the current thread signal mask with the new signal set.

The sigpending function returns a pending signal set for the current thread, where the

signal is blocked and cannot be delivered.

#include <signal.h>

int sigpending(sigset_t *sigset);

Prototype analysis on function sigpending:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The output parameter sigset returns a pending signal set.

The following examples show the usage of signal set function. The program firstly

adds the SIGALRM signal to the thread (main thread of process) signal mask. After 2

seconds to generate the SIGALRM signal, the sigpending function is called to get the

pending signal set of the thread and determine whether to include the SIGALRM signal,

and finally restore the previous signal mask.

Program List 10.2 Usage of Signal Set Function

#include <stdio.h>

#include <signal.h>

void int_handler (int signum)

{

 fprintf(stdout, "signal SIGALRM\n");

 if (signal(SIGALRM, SIG_DFL) == SIG_ERR) {

 fprintf(stderr, "Reset SIGALRM error.\n");

 }

}

int main (int argc, char *argv[])

{

 sigset_t newmask, oldmask, pendmask;

 if (signal(SIGALRM, int_handler) == SIG_ERR) {

SpaceChain OS

403

Application Development Manual

 fprintf(stderr, "Signal error.\n");

 return (-1);

}

 sigemptyset(&newmask);

 sigaddset(&newmask, SIGALRM);

 if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0) {

 fprintf(stderr, "Sigprocmask error.\n");

 return (-1);

}

 alarm(2);

 sleep(5);

 sigpending(&pendmask);

 if (sigismember(&pendmask, SIGALRM) == 1) {

 fprintf(stdout, "Signal SIGALRM pending.\n");

 } else {

 fprintf(stdout, "SIGALRM no pending.\n");

}

 if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0) {

 fprintf(stderr, "Resume mask error.\n");

 return (-1);

}

 sleep(5);

 return (0);

}

Run the program under the SylixOS Shell, and the results are stated as follows:

#./sigset_test

Signal SIGALRM pending.

Signal SIGALRM

As can be seen from the operation results, the SIGALRM signal is shielded. But when

the non-shielding state is restored, the SIGALRM signal processing function has been

executed. Therefore, the signal is shielded but not discarded. When the non-shielding

state is restored, the signal will continue to be delivered.

10.4 Signal Transmission

Signal events are generated from two sources: hardware source (such as we press a

key on the keyboard or other hardware failure occurs) and software source including

SpaceChain OS

404

Application Development Manual

illegal arithmetic operation, and calling sending signal function etc. The software

sourcs are shown in Table 10.2.

The usage of signal sending function is introduced according to different signal

sources.

10.4.1 Non-queued Signal

The SylixOS can send the non-queued signal by the following functions. This means

that if the sent signal is in the thread signal mask (the signal is shielded), the signal has

been sent multiple times; when this signal is unshielded, it will only be delivered once:

#include <signal.h>

int raise(int iSigNo);

int kill(LW_HANDLE ulId, int iSigNo);
①

Prototype analysis on function raise:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter iSigNo is the signal value.

Prototype analysis on function kill:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter ulId is the thread handle;

 The parameter iSigNo is the signal value.

The raise function allows the thread to send a signal to itself meanwhile the kill

function sends the signal to the specified thread. If it is a process, the signal is sent to the

main thread.

The pthread_kill function is the sent signal function in the POSIX thread, which is

implemented by calling the kill function in SylixOS.

#include <pthread.h>

int pthread_kill(pthread_t thread, int signo);

Prototype analysis on function pthread_kill:

 This function returns 0 when it succeeds and returns the corresponding error

number when it fails.

 The parameter thread is the thread handle;

 The parameter signo is the signal value.

① It is worth noting that this function sends a signal to a process or a process group in Linux.

SpaceChain OS

405

Application Development Manual

It is important to note that the thread parameter handle is returned by the

pthread_create function. The generation source type of this type of signal is SI_KILL.

10.4.2 Queued Signal

As mentioned above, the SylixOS supports the real-time extension of POSIX, and

thus the SylixOS signal mechanism implements signal queuing.

#include <signal.h>

int sigqueue(LW_HANDLE ulId, int iSigNo, const union sigval sigvalue);

Prototype analysis on function sigqueue:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter ulId is the thread handle;

 The parameter iSigNo is the signal value.

 The parameter sigvalue is the parameter delivered by the signal.

Calling the sigqueue function will proactively send a queue type signal. This means

that the same signal is sent multiple times and the signal will be queued. If the signal is

shielded, after the signal is unshieldeded, it will be delivered the same times of being sent.

Usually a signal contains only one digital message: the signal itself. In addition to

queuing for signals, the real-time extensions of POSIX allow applications to deliver more

information while delivering the signal. The information is embedded in union sigval. In

addition to the information provided by the system, the application can either pass an

integer to the signal handler or point to a buffer pointer that contains more information.

The third parameter of the sigqueue function is the information delivered to the signal

handler by the application. The union sigval information is as follows:

typedef union sigval {

 INT sival_int;

 PVOID sival_ptr;

} sigval_t;

 sival_int: will deliver an integer value;

 sival_ptr: points to a buffer structure containing more information.

This is a consortium type, that is, the application can only deliver one of these two

types at a time.

To use the queued signal, you must do the following:

 Specify the SA_SIGINFO flag when using the sigaction function to install the

signal handler. If this flag is not given, then in the SylixOS, the application

information will not be delivered to the signal processing function.

SpaceChain OS

406

Application Development Manual

 The signal handlers are provided in the sa_sigaction member of the

sigaction structure, not the usual sa_handler. If the application uses the

sa_handler member, you cannot get additional information delivered by the

sigqueue function.

The sigqueue function is similar to the kill function except that it can use the

parameter sigvalue to pass the integer and pointer values to the signal handler. The

signal cannot be queued indefinitely. In the POSIX definition, the

_POSIX_SIGQUEUE_MAX limits the maximum value of signal queue, and when it

reaches the corresponding limit, the sigqueue fails, and the corresponding errno value is

set. The generation source type of this type of signal is: SI_QUEUE.

The following examples show the usage methods of sigqueue function. The program

defines a struct CLS with more information. When the signal is installed, specify the

sa_flags flag as SA_SIGINFO and use the sa_sigaction member, and then call the

sigqueue function to send the signal SIGUSR1 and attach our additional information in

sival_ptr.

Program List 10.3 Usage of sigqueue Function

#include <signal.h>

#include <stdio.h>

#include <unistd.h>

typedef struct {

 int num;

 char name[64];

} cls;

void sig_handler (int signum, struct siginfo *info, void *arg)

{

 cls *name = (cls *)info->si_value.sival_ptr;

 fprintf(stdout, "num: %d, name: %s\n", name->num, name->name);

}

int main (int argc, char *argv[])

{

 struct sigaction act;

 int error;

 cls name = {1, "sylixos"};

 union sigval val;

 act.sa_sigaction = sig_handler;

 act.sa_flags = SA_SIGINFO;

 sigemptyset(&act.sa_mask);

SpaceChain OS

407

Application Development Manual

 error = sigaction(SIGUSR1, &act, NULL);

 if (error != 0) {

 fprintf(stderr, "sigaction install signal SIGUSR1 failed.\n");

 return (-1);

 }

 val.sival_ptr = (void *)&name;

 error = sigqueue(getpid(), SIGUSR1, val);

 if (error != 0) {

 fprintf(stderr, "sigqueue send signal failed.\n");

 return (-1);

 }

 sleep(5);

 return (0);

}

Run the program under the SylixOS Shell, you can see from the operation results that

the signal processing function successfully received the information we delivered.

./sigqueue_test

num: 1, name: sylixos

10.4.3 Timer Signal

In the SylixOS, the timer allows the work to be processed at the specified time point.

The timer provides a way to delay processing.

1. Process Timer Signal

The SylixOS system provides three types of timers for the process. Each timer

decreases its value in a different time domain. When the timer runs out, the corresponding

signal is sent to the process and then the timer reloads.

Table 10.7 is the type supported by SylixOS process timer, and its definition can be

found in <sys/time.h>.

Table 10.7 Process Timer Type

Timer Type Description

ITIMER_REAL Reduce based on the system real time and send the SIGALRM signal

ITIMER_VIRTUAL
Reduce based on the process in user state time and send the SIGVTALRM

signal

ITIMER_PROF
Reduce based on the process in kernel state and user state time and send the

SIGPROF signal

SpaceChain OS

408

Application Development Manual

For the timer of ITIMER_REAL type, each system TICK updates the ITIMER_REAL

type time of all processes in the system; if a timeout occurs, the SIGALRM signal is sent.

For the timer of ITIMER_VIRTUAL type, only update the operation time of the current

process in the user state; if a timeout occurs, the SIGVTALRM signal is sent. For the timer

of ITIMER_PROF type, update the operation time of the current process in the user state

and kernel state; if a timeout occurs, the SIGPROF signal is sent. The generation source

type of this type of signal is: SI_TIMER.

The SylixOS provides the following functions to operate on three types of timers:

#include <sys/time.h>

int setitimer(int iWhich,

const struct itimerval *pitValue,

struct itimerval *pitOld);

int getitimer(int iWhich, struct itimerval *pitValue);

Prototype analysis on function setitimer:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter iWhich is the timer type as shown in Table 10.7;

 The parameter pitValue is the timer parameter pointer;

 The output parameter pitOld saves the previous timer parameter pointer.

Prototype analysis on function getitimer:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter iWhich is the timer type as shown in Table 10.7;

 The output parameter pitValue gets the current timer information pointer.

The setitimer function can set a timer in the context of the process. After the specified

time timeout, the corresponding signal can be generated, and the getitimer function can

get the timing information of the specified timer. The setitimer function sets the timer

expiration time and reload time through the itimerval structure. The time precision of this

timer is microsecond.

struct itimerval {

 struct timeval it_interval;

 struct timeval it_value;

};

The following examples show how process timers are used. The program is installed

with SIGARLM, SIGVTALRM and SIGPROF. The three signals are spaced by 4 seconds

SpaceChain OS

409

Application Development Manual

apart. The program finally uses the circulation mode to wait for the signal. Note that

you cannot use the pause function or the sleep function to suspend the process, because

the timers of ITIMER_VIRTUAL and ITIMER_PROF types decrease their value only when

the process is operating.

Program List 10.4 Process Timer

#include <signal.h>

#include <stdio.h>

#include <sys/time.h>

void sig_handler (int signum)

{

 switch (signum) {

 case SIGALRM:

 fprintf(stdout, "catch SIGALRM sinal.\n");

 break;

 case SIGVTALRM:

 fprintf(stdout, "catch SIGVTALRM sinal.\n");

 break;

 case SIGPROF:

 fprintf(stdout, "catch SIGPROF sinal.\n");

 break;

 default:

 fprintf(stdout, "catch other signal.\n");

 }

}

int main (int argc, char *argv[])

{

 struct itimerval newtime0, newtime1, newtime2, oldtime;

 struct timeval value;

 signal(SIGALRM, sig_handler);

 signal(SIGVTALRM, sig_handler);

 signal(SIGPROF, sig_handler);

 value.tv_sec = 4;

 value.tv_usec = 0;

 newtime0.it_interval = value;

 newtime0.it_value = value;

SpaceChain OS

410

Application Development Manual

 newtime1.it_interval = value;

 newtime2.it_interval = value;

 value.tv_sec = 2;

 value.tv_usec = 0;

 newtime1.it_value = value;

 value.tv_sec = 3;

 value.tv_usec = 0;

 newtime2.it_value = value;

 setitimer(ITIMER_REAL, &newtime0, &oldtime);

 setitimer(ITIMER_VIRTUAL, &newtime1, &oldtime);

 setitimer(ITIMER_PROF, &newtime2, &oldtime);

 while (1) {

 ; /* Cannot call pause function or sleep

function */

 }

 return (0);

}

Run the program under the SylixOS Shell, and the operation results can be viewed as

the operation effects of the timer.

./setitimer_test

catch SIGVTALRM sinal.

catch SIGPROF sinal.

catch SIGALRM sinal.

catch SIGVTALRM sinal.

catch SIGPROF sinal.

catch SIGALRM sinal.

……

The SylixOS also provides a simpler timer function -- an alarm function in seconds or

microseconds.

#include <unistd.h>

unsigned int alarm(UINT uiSeconds);

useconds_t ualarm(useconds_t usec, useconds_t usecInterval);

Prototype analysis on function alarm:

 When this function is successful, return the remaining seconds of the previous

alarm clock, return 0 when it fails, and set the error number;

SpaceChain OS

411

Application Development Manual

 The parameter uiSeconds specifies how many seconds to generate the

alarm signal.

Prototype analysis on function ualarm:

 When this function is successful, return the remaining seconds of the previous

alarm clock, return 0 when it fails, and set the error number;

 The parameter usec is the initial microseconds;

 The parameter usecInterval is the interval microseconds.

Set a timer with an alarm or ualarm function. At some point in the future, the timer will

time out and generate a SIGALRM signal. If this signal is not captured, the default action

is to terminate the process.

Each process can only have one alarm clock time. If alarm or ualarm is called, the

alarm clock registered for the process has not timed out, the remaining value of the alarm

clock time will be returned as the value of the call, and the previously registered alarm

clock will be replaced by the new value.

Although the default action of SIGALRM is to terminate the process, most processes

that use an alarm clock will capture this signal. If the process terminates at this point, it

can perform the required cleanup operations before terminating. To capture the SIGALRM

signal, we need to register our signal function before calling alarm or ualarm. Here is an

example of the usage of alarm clock function.

Program List 10.5 Usage of Alarm Clock Function

#include <stdio.h>

#include <signal.h>

#include < unistd.h>

void alarm_handler (int signum)

{

 fprintf(stdout, "alarm signal.\n");

}

int main (int argc, char *argv[])

{

 if (signal(SIGALRM, alarm_handler) == SIG_ERR) {

 fprintf(stderr, "install signal handler failed.\n");

 return -1;

}

 alarm(1);

 pause();

SpaceChain OS

412

Application Development Manual

 return (0);

}

Run the program under the SylixOS Shell:

./alarm_test

alarm signal.

2. POSIX Timer Signal

In the SylixOS, you can create a specific timer by calling timer_create. Unlike the

process timer, this timer can send a signal to either a specified thread or a specified

function, not just the main thread of the process.

#include <sys/time.h>

int timer_create(clockid_t clockid, struct sigevent *sigeventT,

timer_t *ptimer);

int timer_delete(timer_t timer);

int timer_gettime(timer_t timer, struct itimerspec *ptvTime);

int timer_getoverrun(timer_t timer);

int timer_settime(timer_t timer, int iFlag,

const struct itimerspec *ptvNew,

struct itimerspec *ptvOld);

Prototype analysis on function timer_create:

 The function returns 0 when it succeeds and returns -1 when it fails, and sets the

error number;

 The parameter clockid is the clock source type as shown in Table 10.8;

 The parameter sigeventT is a signal event.

 The output parameter ptimer returns the timer handle.

Prototype analysis on function timer_delete:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter timer is the timer handle.

Prototype analysis on function timer_gettime:

 The function returns 0 when it succeeds and returns -1 when it fails, and sets the

error number;

 The output parameter ptvTime returns the time parameter of the timer.

Prototype analysis on function timer_getoverrun:

 This function returns the timer timeout number successfully, fails to return -1 and

sets the error number;

SpaceChain OS

413

Application Development Manual

 The parameter timer is the timer handle.

Prototype analysis on function timer_settime:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter timer is the timer handle.

 The parameter iFlag is the timer flag;

 The parameter ptvNew is the new time information of the timer;

 The output parameter ptvOldsaves previous timer time information.

Call the timer_create function to create a POSIX timer, and we need to specify the

clock source type for the created timer. If the sigeventT is NULL, then the default signal

event is set (timeout sends the SIGALRM signal). If the sigeventT is not NULL, then the

application-specific signal event is set. The application needs to specify the ptimer buffer

address to hold the created timer handle. If the ptimer is NULL, return -1 and set errno to

EINVAL. The following is the definition of clock source type, and see the detailed

introduction in Chapter 10 Clock Management.

SpaceChain OS

414

Application Development Manual

Table 10.8 Clock Source

Clock Source Name Description

CLOCK_REALTIME Represent actual physical time

CLOCK_MONOTONIC Monotone growth time

The properties and behaviors of the timer are contained in struct sigevent. The

member sigev_signo is the signal that we want to send by the timer timeout. The

notification type of sigev_notify signal is shown in Table 10.9. The sigev_notify_function is

the function that needs to be notified, and the sigev_notify_thread_id is the thread ID that

needs to be notified. The application needs to cooperate with the sigev_noify type to

select different signal notification modes.

typedef struct sigevent {

 INT sigev_signo;

 union sigval sigev_value;

 INT sigev_notify;

 void (*sigev_notify_function)(union sigval);

#if LW_CFG_POSIX_EN > 0

 pthread_attr_t *sigev_notify_attributes;

#else

 PVOID sigev_notify_attributes;

#endif /* LW_CFG_POSIX_EN > 0 */

 LW_OBJECT_HANDLE sigev_notify_thread_id; /* Linux-specific */

 /* equ pthread_t */

 ……

} sigevent_t;

SpaceChain OS

415

Application Development Manual

Table 10.9 Signal Notification Type

Macro Name Description

SIGEV_NONE No signal notification

SIGEV_SIGNAL Send signal notification

SIGEV_THREAD Notify the sigev_notify_function and the system creates a new thread

SIGEV_THREAD_ID Notify the sigev_notify_thread_id thread to apply your own thread creation.

Calling the timer_delete function will delete an already created POSIX timer. If the

deleteed timer does not exist, return -1 and set errno to EINVAL. Calling the timer_gettime

function will return the time information of the timer. It is important to note that if the timer

exists but does not run, it returns successfully and the time value is 0. Calling the

timer_getoverrun function will get the number of timer timeout. In SylixOS, this value can

also be got by the si_overrun member of the siginfo_t struct (for example, call the

sigwaitinfo function, see Section 10.5 Signal Block). POSIX provides that if the timeout

value returned is greater than DELAYTIMER_MAX, the DELAYTIMER_MAX value will be

returned. In fact, the SylixOS provides the following functions to return values greater than

DELAYTIMER_MAX. It is important to note that the usage of this function is limited, and

there is no header file to which the function belongs. In other words, the application cannot

be used directly. In fact, this function is the extension provided by SylixOS for timerfd (see

Chapter 13 Standard I/O Equipment).

INT timer_getoverrun_64(timer_t timer, UINT64 *pu64Overruns, BOOL bClear);

The timer created by calling the timer_create function does not start. The

timer_settime function is called to associate the created timer to an expiration time and

start the timer. The timer uses the itimerspec structure to set the expiration time value

(it_value) and the reload time value (it_interval). If the reload time value is 0 and the

expiration time value is not 0, then the timer will not automatically reload, and the timer will

stop automatically once the timer expires. The timer stops if the expiration time value and

reload time value are 0 at the same time. The POSIX timer provides nanosecond time

precision.

struct itimerspec {

 struct timespec it_interval; /* Timer reload */

 struct timespec it_value; /* The remaining time until the

next expiration */

};

The timer flag iFlag indicates the time type of timer. POSIX defines the absolute clock

as follows. The absolute clock time refers to a time point greater than the current time

point, and the non-absolute clock is also called the relative clock. The time type POSIX of

this clock does not specify a value; in other words, any non-0x1 value is considered by

SylixOS to be a relative clock time, and the relative clock time refers to a time length.

#include <sys/time.h>

SpaceChain OS

416

Application Development Manual

#define TIMER_ABSTIME 0x1 /* Absolute clock

*/

The following program shows how the thread timer is used:

Program List 10.6 Timer Usage

#include <stdio.h>

#include <signal.h>

#include <sys/time.h>

#include <pthread.h>

void *timer_thread (void *arg)

{

 sigset_t sigset;

 int sig;

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

sigprocmask(SIG_BLOCK, &sigset, NULL);

 for (;;) {

 sigwait(&sigset, &sig);

 if (sig == SIGUSR1) {

 fprintf(stdout, "Find signal SIGUSR1.\n");

 }

 }

 return NULL;

}

int main (int argc, char *argv[])

{

 struct sigevent sigev;

 timer_t timerid;

 pthread_t tid;

 struct timespec interval;

 struct itimerspec tspec;

 int ret;

 ret = pthread_create(&tid, NULL, timer_thread, NULL);

 if (ret) {

 fprintf(stderr, "pthread create failed.\n");

 return -1;

 }

 sigev.sigev_notify = SIGEV_THREAD_ID | SIGEV_SIGNAL;

 sigev.sigev_signo = SIGUSR1;

SpaceChain OS

417

Application Development Manual

sigev.sigev_notify_thread_id = tid;

 ret = timer_create(CLOCK_MONOTONIC, &sigev, &timerid);

 if (ret) {

 fprintf(stderr, "timer create failed.\n");

 return -1;

 }

 /*

 * 我们以秒为单位

 */

 interval.tv_sec = 2;

 interval.tv_nsec = 0;

 tspec.it_interval = interval;

tspec.it_value = interval;

 ret = timer_settime(timerid, 0, &tspec, LW_NULL);

 if (ret) {

 fprintf(stderr, "timer settime failed.\n");

 return -1;

 }

 return 0;

}

Run the program under the SylixOS Shell:

#./timer_test

Find signal SIGUSR1.

The program sends a SIGUSR1 signal to the user thread every two seconds from

timer. The thread is blocking the arrival of the SIGUSR1 signal by calling sigwait (see

Section 10.5 Signal Blocking). Here the timer clock source uses CLOCK_MONOTONIC

and the signal notification parameter sigev_notify uses the options of

SIGEV_THREAD_ID and SIGEV_SIGNAL.

10.5 Signal Blocking

#include <signal.h>

int sigsuspend(const sigset_t *sigsetMask);

int pause(void);

Prototype analysis on function sigsuspend:

 This function returns -1;

 The parameter sigsetMask is the specified signal mask.

Prototype analysis on function pause:

SpaceChain OS

418

Application Development Manual

 This function returns -1;

The sigsuspend function sets the current signal mask of the process to the value

specified by sigsetMask, and causes the current process to suspend. When the signal

specified by sigsetMask arrives, it will not be processed because it is shielded meanwhile

it will not affect the suspended state of the process. When the signal outside sigsetMask

occurs, the signal will be executed and after the signal processing function is returned, the

suspended process state will be lifted and the sigsuspend function will set the signal mask

of the process to the previous value. The return value is -1 and errno is set to EINTR.

The pause function suspenders the call process until it catches any signal. The pause

function returns only if a signal processing function is executed and returned from it. The

return value is -1 and errno is set to EINTR.

Modifying the signal mask can shield or remove the signal selected by shielding.

Using this technique can protect the critical area of code that does not want to be

interrupted by a signal. Here is a way to protect critical area code.

……

sigprocmask(SIG_BLOCK, &newmask, &oldmask);

…… /* Critical area code */

sigprocmask(SIG_SETMASK, &oldmask, NULL);

pause();

……

The above program fragment uses the sigprocmask function to shield the selected

signal. When the critical area code is executed, the shielded signal is removed and the

pause function is called to wait for the shielded signal to be delivered. This process seems

to be very protective for the critical area, but there is a very serious problem. If there is a

signal between the unshielding moment and the pause function in the sigprocmask

function, then the pause function may be blocked forever. In other words, the signal will be

lost during this time period. The sigsuspend function can be seen as an atomic operation

of this process, and thus calling the sigsuspend function will not have such a period.

The following functions will synchronously wait for the pending signals while removing

the shielding state. If there are more than one signal, return from small to large in a serial

manner.

#include <signal.h>

int sigwait(const sigset_t *sigset, int *piSig);

int sigwaitinfo(const sigset_t *sigset, struct siginfo *psiginfo);

Prototype analysis on function sigwait:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter sigset is the specified signal set;

 The output parameter piSig returns a pending signal.

SpaceChain OS

419

Application Development Manual

Prototype analysis on function sigtimedwait:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter sigset is the specified signal set;

 The output parameter psiginfo returns the pending signal information;

 The parameter ptv is the equal timeout value.

The sigwait function causes the call process or thread to suspend until the signal

contained in sigset is pending, and the pending signal is returned via piSig. This signal

will be removed from the mask. Note that the signal in sigset is shielded.

The sigwaitinfo function causes the calling process or thread to suspend until the

signal contained in sigset is pending, and the pending signal is returned via psiginfo.

Unlike the sigwait function, the sigwaitinfo function returns the signal information as

siginfo_t (see Section 10.2.2), meaning that more information is returned.

If there is no pending signal, the sigwait function and the sigwaitinfo function will

always be blocked. Sometimes this is not allowed by the program. The sigtimedwait

function can be called to set a waiting time, and the other functions are the same as the

sigwaitinfo function. It is important to note that if ptv is NULL, wait forever until a pending

signal is generated.

The following functions provide a timeout mechanism for signal waiting. The function

returns and sets errno to EAGAIN when the specified time timeout occurs. In particular, if

the parameter ptv is NULL, wait until the signal is pending.

#include <signal.h>

int sigtimedwait(const sigset_t *sigset,

struct siginfo *psiginfo,

 const struct timespec *ptv);

Prototype analysis on function sigtimedwait:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter sigset is the specified signal set;

 The output parameter psiginfo returns the pending signal information;

 The parameter ptv is the waiting time information.

The following program shows the usage methods of sigwait function.

Program List 10.7 Sigwait Usage

#include <stdio.h>

#include <signal.h>

SpaceChain OS

420

Application Development Manual

int main (int argc, char *argv[])

{

 sigset_t newmask;

 int sig;

 int ret;

 sigemptyset(&newmask);

 sigaddset(&newmask, SIGALRM);

sigprocmask(SIG_BLOCK, &newmask, NULL);

alarm(1);

 ret = sigwait(&newmask, &sig);

 if (!ret) {

 if (sig == SIGALRM) {

 fprintf(stdout, "Signal SIGALRM.\n");

 }

 }

 return (0);

}

Operate this program under the SylixOS Shell, and you can see from the program

results that the sigwait function returns the shielded SIGALRM signal via sig.

#./sigwait_test

Signal SIGALRM.

10.6 Process and Signal

The termination of child process is an asynchronous event, and the parent process

cannot predict when the child process will terminate. The parent process can call the wait

function to prevent the accumulation of zombie processes, and usually the parent process

can use the following two methods:

 The parent process calls the wait function or the waitpid function without the

WNOHANG flag, and if the child process has not been terminated, the calling will

be blocked.

 The parent process periodically calls the waitpid function with the WNOHANG

flag and performs a non-blocking check on the specified child process.

For the first method, sometimes you may not want the parent process to wait for the

child process to terminate in a blocked way. The second method, repeatedly polling,

causes waste of CPU resources and increases the complexity of application design.

Therefore, in order to avoid these problems, we can use the processing program for the

SIGCHLD signal.

SpaceChain OS

421

Application Development Manual

Whenever the child process terminates, the SIGCHLD signal is sent to the

parent process (this is the default of SylixOS), and SylixOS defaults to the signal. There

are two scenarios, one is default ignoring and the other is that if the sa_flags flag of

sigaction is set to contain SA_NOCLDWAIT, the system will automatically recycle the child

process resources (which will be recovered by the system thread “t_recliam”). The

application can also install signal processing functions to capture the SIGCHLD signals,

and the recover the child process resources in the signal processing functions.

As we mentioned above, except for the SI_KILL (kill function sending) type signal, all

the other types of signals can be queued. Therefore, we can know that the SA_NOMASK

flag is not specified even when the SIGCHLD signal is installed. The SIGCHLD signal sent

by the child process will not be lost because the signal will be queued.

If you want to install the SIGCHLD signal processing function, you have to consider

reentrancy in the program implementation (details in Section 10.7.2). For example, calling

a system function in a signal processing function may change the value of the global

variable errno. In this case, when the signal processing function attempts to explicitly set

the errno value or when the system function returns a failure to check the errno value,

there may be a conflict. Therefore, when you write a signal processing function, you firstly

save the errno value with a local variable, and then restore it.

As mentioned above, when the child process exits, the SIGCHLD signal is sent to the

parent process. However, if the SA_NOCLDSTOP flag is specified when the sigaction

function is called, the child process is forbidden to send the SIGCHLD signal. It is

important to note that the SA_NOCLDSTOP flag only works for the SIGCHLD signals. In

SylixOS, when the signal SIGCONT causes the stopped child process to recover, it sends

the SIGCHLD signal to its parent process, which is allowed in SUSv3.

10.7 Influence of Signal

As mentioned above, the signal is soft interrupt, which is mainly because the signal

transmission and the interrupt is the same as the characteristics of asynchrony and

randomness.

10.7.1 System Call Interrupt
①

If the thread catches a signal during the blocking of some slow system call, then the

system call will be interrupted, and the error number will be returned and errno will be set

to EINTR.

System calls under this category include:

 POSIX message queue call: mq_receive function, and mq_send function;

 POSIX AIO call: aio_suspend function;

SpaceChain OS

422

Application Development Manual

 Signal call: sigsuspend function, pause function, sigtimedwait function,

and sigwaitinfo function;

 Timer call: nanosleep function, and sleep function;

The function of the signal to the above system call may be exactly what the design

desired or the design must avoid. In either case, a sound system should consider this

effect adequately. If you want to avoid the effect of the signal on the system call, take

certain steps to restart the system call. In 4.2BSD, the program can choose to

automatically recover the system call interrupted by the signal, and SylixOS supports this

feature. As long as the SA_RESTART flag is set when the signal processing function is

installed, the system will automatically determine and restore the interrupted system call.

Table 10.10 shows partial system calls that can be interrupted by signal in SylixOS:

Table 10.10 System Calls Interrupted by Signal

Function Name Description

nanosleep Cause thread to sleep at a specified time (nanosecond)

usleep Cause thread to sleep at a specified time (microsecond)

sleep Cause thread to sleep at a specified time (second)

mq_send POSIX message queue sending function

mq_timedsend POSIX message queue sending function with timeout (absolute time)

mq_reltimedsend_np POSIX message queue sending function with timeout (relative time)

mq_receive POSIX message queue receiving function

mq_timedreceive POSIX message queue receiving function with timeout (absolute time)

mq_reltimedreceive_np POSIX message queue receiving function with timeout (relative time)

sem_wait POSIX semaphore blocking function

sem_timedwait POSIX semaphore blocking function with timeout (absolute time)

sem_reltimedwait_np POSIX semaphore blocking function with timeout (relative time)

10.7.2 Reentrancy Effect of Function

When a thread catches the signal and processes it, the normal sequence of

instructions being executed is temporarily interrupted by the signal handler, which first

lyexecutes the instructions in the signal processing function. If the signal handler is

returned, the normal sequence of instructions that is being executed when the signal is

captured is continuously executed (similar to what happens when the hardware is

interrupted). However, in the signal processing function, it is not possible to determine

where the thread is executed when the signal is captured. If malloc is being executed (see

Chapter 12 Memory Management) to allocate additional storage space in its heap, and

then the signal handler is inserted because of the captured signal, it also calls the malloc

function, which may cause damage to the context being executed.

The Single UNIX Specification describes functions that guarantee the call of security

in a signal handler. These functions are reentrant. In addition to the reentrancy, during the

SpaceChain OS

423

Application Development Manual

signal processing operation, it will block any signal that will cause a consistent

transmission. These asynchronous signal security functions are listed in Table 10.11.

Table 10.11 Signal Security Function

Function

Name

Function

Name

Function

Name

Function

Name
Function Name

Function

Name

abort dup2 getpid recv sigfillset times

accept execl getppid recvfrom sigismember umask

access execle getsockname recvmsg signal uname

aio_error execv getsockopt rename sigpending unlink

aio_return execve getuid rmdir sigprocmask utime

aio_suspend _Exit kill select sigqueue utimes

alarm _exit listen sem_post sigsuspend wait

bind fchmod lseek send sleep waitpid

cfgetispeed fchown lstat sendmsg socket write

cfggetospeed fcntl mkdir sendto socketpair

cfsetispeed fdatasync mkfifo setgid stat

cfsetospeed fstat mknod setpgid symlink

chdir fsync open setsid tcdrain

chmod ftruncate pause setsockopt tcflush

chown getegid pipe setuid tcgetattr

clock_gettime geteuid poll shutdown tcsetattr

close getgid pselect sigaction time

connect getgroups raise sigaddset timer_getoverrun

creat getpeername read sigdelset timer_gettime

dup getpgrp readlink sigemptyset timer_settime

Let’s look at an example. The getpwnam function is called in the signal processing

function int_handler to get the username, and int_handler is called once every second.

Program List 10.8 Call Non-Reentrant Function in Signal Processing Function

#include <stdio.h>

#include <string.h>

#include <signal.h>

#include <pwd.h>

void int_handler (int signum)

{

 struct passwd *ptr;

 fprintf(stdout, "Alarm signal!\n");

 if ((ptr = getpwnam("root")) == NULL) {

SpaceChain OS

424

Application Development Manual

 fprintf(stderr, "getpwnam error.\n");

 }

 alarm(1);

}

int main (int argc, char *argv[])

{

 struct passwd *ptr;

 signal(SIGALRM, int_handler);

alarm(1);

 for (;;) {

 if ((ptr = getpwnam("sylixos")) == NULL) {

 fprintf(stderr, "getpwnam error.\n");

 }

 if (strcmp(ptr->pw_name, "sylixos") != 0) {

 fprintf(stderr, "ptr->pw_name: %s\n", ptr->pw_name);

 }

 }

 return (0);

}

You will find that the program structure is random during the program operation.

Generally, after the signal processing function is called a few times, the program will

probably have an exception and the signal SIGSEGV will terminate it, or the main function

will operate properly but the system Shell has an exception.

As you can see from these examples, if you call a non-reentrant function in the signal

processing function, the result is unpredictable.

SpaceChain OS

425

Application Development Manual

SpaceChain OS

426

Application Development Manual

Chapter 11 Time Management

11.1 SylixOS Time Management

11.1.1 System Time

SylixOS records the clock ticks produced since the system started (we call them TICK)

counts, which represent the system time. The clock ticks is produced at a fixed frequency.

There are three important functions related to this:

#include <SylixOS.h>

ULONG Lw_Time_GetFrequency(VOID);

ULONG Lw_Time_Get(VOID);

INT64 Lw_Time_Get64(VOID);

Call the Lw_Time_GetFrequency function to get the SylixOS clock tick frequency (the

number of ticks per second). The Lw_Time_Get function will return the current clock tick

counts of SylixOS, and the Lw_Time_Get64 function will return a wider range of clock tick

counts.

The following examples show how long the system has been running through the

above functions.

Program List 11.1 Get System Runtime

#include <SylixOS.h>

int main (int argc, char *argv[])

{

 ULONG ulUsecPerTick;

ULONG ulMsecTotal;

 ulUsecPerTick = 1000000 / Lw_Time_GetFrequency();

 ulMsecTotal = Lw_Time_Get () * ulUsecPerTick / 1000;

fprintf(stdout, "system has run for %lu milliseconds.\n", ulMsecTotal);

 return (0);

}

In practice, we are used to adopting unit of time of second or millisecond, and there

are many APIs in SylixOS that take the clock ticks as parameters. Therefore, the system

provides the following two operation macros for the conversion of clock ticks:

#include <SylixOS.h>

SpaceChain OS

427

Application Development Manual

ULONG LW_MSECOND_TO_TICK_0(ULONG ulMs);

ULONG LW_MSECOND_TO_TICK_1(ULONG ulMs);

LW_MSECOND_TO_TICK_0 converts milliseconds to clock ticks, and the

millisecond value less than one clock tick are discarded. LW_MSECOND_TO_TICK_1

takes the millisecond value less than one clock tick as one clock tick.

11.1.2 RTC Time

RTC time comes from a hardware device that is independent of CPU time. The

biggest difference between it and system time is that the RTC time can continue to be

counted after the system is switched off. Therefore, it can represente the actual physical

time.

#include <SylixOS.h>

INT Lw_Rtc_Set(time_t time);

INT Lw_Rtc_Get(time_t *ptime);

Prototype analysis on function Lw_Rtc_Set:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter time is the time that needs to be set.

Prototype analysis on function Lw_Rtc_Get:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The output parameter ptime is the got RTC time.

Time_t is the time type defined by POSIX, and the more detailed information is shown

in Section 11.2.

SylixOS provides 3 functions of RTC time synchronized with system time:

#include <SylixOS.h>

INT Lw_Rtc_SysToRtc(VOID);

INT Lw_Rtc_RtcToSys(VIOD);

INT Lw_Rtc_RtcToRoot(VOID);

Lw_Rtc_SysToRtc function is used to synchronize the system time to the RTC time.

Lw_Rtc_RtcToSys function is used to synchronize the RTC time to the system time. The

Lw_Rtc_RtcToRoot function is used to synchronize the RTC time to the root file system

time.

Note: The system will automatically call Lw_Rtc_RtcToSys and Lw_Rtc_RtcToRoot to ensure that

their time is consistent.

SpaceChain OS

428

Application Development Manual

SpaceChain OS

429

Application Development Manual

11.2 POSIX Time Management

11.2.1 UTC Time and Local Time

UTC refers to Universal Time Coordinated. In practice, it is equivalent to Greenwich

Mean Time (GMT). The UTC time takes 00:00:00 on 01/01/1970 as the base time and

takes second as the smallest unit. From the GMT (prime meridian) of Greenwich, England,

the earth is divided into 12 time zones with one hour difference between each time zone.

This is the local time of each time zone. As the earth rotates from west to east, the eastern

time zone is earlier than the GMT, and the western time zone is later than the GMT.

#include <time.h>

time_t time(time_t *time);

time_t timelocal(time_t *time);

Prototype analysis on function time:

 This function returns the UTC time of type time_t;

 The output parameter time is the UTC time got, which is the same as the return

value. The parameter can be NULL.

Prototype analysis on function timelocal:

 This function returns the local time of type time_t;

 The output parameter time is the local time got, which is the same as the return

value. The parameter can be NULL.

Time_t is defined as a 32-bit signed integer number in some Unix-like systems, with

the maximum positive second being 2147483647 seconds, which can be expressed as

the latest time at 03:14:07 on January 19, 2038. This means that time will overflow if more

than this. In SylixOS, time_t is defined as a 64-bit signed integer number, and thus no

such problem exists. Use the following function to handle the higher precision time.

#include <time.h>

int gettimeofday(struct timeval *tv, struct timezone *tz);

int settimeofday(const struct timeval *tv, const struct timezone *tz);

函数 gettimeofday 原型分析：

Prototype analysis on function gettimeofday:

 This function returns 0 and no error value is returned;

 The output parameter tv is a timeval structure pointer which saves the acquired

time information;

 The output parameter tz is a timezone structure pointer which saves the acquired

information of timezone.

SpaceChain OS

430

Application Development Manual

The structure timeval is defined as follows:

struct timeval {

 time_t tv_sec; /* seconds */

 LONG tv_usec; /* microseconds */

};

The value of tv_usec is 0-999999, that is, no more than 1 second, and tv_sec and

tv_usec make up the current time. Note that this time is UTC time. The structure timezone

is defined as follows:

struct timezone {

 int tz_minuteswest; /* Time difference from Greenwich

time to the West */

 /* In minutes (East 8 District)

-60*8 */

 int tz_dsttime; /* The time correction method must

be 0 */

};

The definition of tz_minuteswest is different from the previous one, which is defined

as the time difference between Greenwich time and the west, and thus the time zone

value of the eastern time zone is negative.

#include <time.h>

void tzset(void);

The tzset function sets the time zone of the system, which has no parameters. In fact,

it gets an environment variable named TZ, which is a description of the time zone. In

SylixOS, the tzset function uses the current value of the environment variable TZ to be

assigned to the global variable timezone and tzname (currently SylixOS does not support

daylight). The TZ is described as follows:

echo $TZ

CST-8:00:00

For the CST (China Standard Time), the time difference from Greenwich to the west

is negative 8 hours, 0 minute and 0 second, which is actually GMT+8. You can use the

following program to set the current time zone:

Program List 11.2 Set System Time Zone

#include <stdlib.h>

#include <time.h>

int main(int argc, char *argv[])

{

 system("TZ=CST-6:0:0");

tzset();

SpaceChain OS

431

Application Development Manual

 return (0);

}

The above program sets the current time zone to GMT+6, and the following two Shell

commands have exactly the same effect.

TZ=CST-6:0:0

tzsync

11.2.2 Time Form Transformation

The time taken in the last Section is expressed in a single second, which is not

consistent with normal usage. Therefore, there is a function that converts this time into a

time format that we are usually familiar with.

#include <time.h>

struct tm *gmtime(const time_t *time);

struct tm *gmtime_r(const time_t *time, struct tm *ptmBuffer);

Prototype analysis on function mtime:

 This function returns the tm structure pointer when it succeeds and returns NULL

when it fails;

 The parameter time is the local time.

Prototype analysis on function gmtime_r:

 This function returns the tm structure pointer when it succeeds and returns NULL

when it fails;

 The parameter time is the local time;

 The output parameter ptmBuffer is the tm structure buffer.

It is important to note that the gmtime function is non-reentrant and therefore it is

non-thread and safe. You can see this by Program List 11.3 and Program List 11.4.

The struct tm describes the usage we usually get used to, which is defined as follows:

struct tm {

 INT tm_sec; /* seconds after the minute - [0, 59] */

 INT tm_min; /* minutes after the hour - [0, 59] */

 INT tm_hour; /* hours after midnight - [0, 23] */

 INT tm_mday; /* day of the month - [1, 31] */

 INT tm_mon; /* months since January - [0, 11] */

 INT tm_year; /* years since 1900 */

 INT tm_wday; /* days since Sunday - [0, 6] */

 INT tm_yday; /* days since January 1 - [0, 365] */

SpaceChain OS

432

Application Development Manual

#define tm_day tm_yday

 INT tm_isdst; /* Daylight Saving Time flag */

 /* must zero */

};

Gmtime converts time_t type time to tm type time. It is known from the function name

that it takes the input parameter time as UTC time (also known as GMT) and the time

zone is not converted internally. Therefore, when we use the UTC time as a parameter,

the returned tm pointer represents the UTC time. When we use the local time as a

parameter, the returned tm pointer represents the local time.

Note that the pointer returned by gmtime actually points to an internal global variable.

Therefore, successive calls to this function to get different time will get the same time

value, as shown in Program List 11.3.

Program List 11.3 Gmtime Test

#include <time.h>

int main (int argc, char *argv[])

{

 struct tm *tm_old;

 struct tm *tm_new;

 time_t time_old;

 time_t time_new;

 time_old = time(NULL);

 sleep(10);

 time_new = time(NULL);

 tm_old = gmtime(&time_old);

 tm_new = gmtime(&time_new);

 fprintf(stdout, "old: %d:%d\n", tm_old->tm_min, tm_old->tm_sec);

 fprintf(stdout, "new: %d:%d\n", tm_new->tm_min, tm_new->tm_sec);

 return (0);

}

After run the program, the results are shown as follows, and you can see that the two

time is the same. In fact, tm_old and tm_new both point to the same object, which is the

result of the last call, tm_new.

./gm0_test

old: 33:21

new: 33:21

To solve the above problem, there is the corresponding gmtime_r function. The suffix

_r indicates that this is a reentrant version, and it has an output parameter ptmBuffer,

SpaceChain OS

433

Application Development Manual

which will change the internal global variable previously used to give the user a

buffer object that outputs results. This allows users to get different results if they use

different buffer objects. The Program List 11.4 uses gmtime_r to handle the same

problem.

Program List 11.4 Gmtime_r Test

#include <time.h>

int main (int argc, char *argv[])

{

 struct tm tm_old;

 struct tm tm_new;

 time_t time_old;

 time_t time_new;

 time_old = time(NULL);

 sleep(10);

 time_new = time(NULL);

 gmtime_r(&time_old, &tm_old);

 gmtime_r(&time_new, &tm_new);

 fprintf(stdout, "old: %d:%d\n", tm_old.tm_min, tm_old.tm_sec);

 fprintf(stdout, "new: %d:%d\n", tm_new.tm_min, tm_new.tm_sec);

 return (0);

}

The program operation result is as follows: the time difference between the two is 10

seconds as expected.

./gm1_test

old: 56:18

new: 56:28

In the above program, we must define two data objects that save the results, instead

of just defining two pointers as before. These two objects save different data and achieve

the original purpose of the program. The example above shows the problem of

continuously calling gmtime in a single thread. In multithreading, we must use the

gmtime_r. There are several other functions that have the same problem and the same

solution. This book will no longer elaborate on their reentrancy version functions, just list

their function prototypes.

#include <time.h>

struct tm *localtime(const time_t *time);

struct tm *localtime_r(const time_t *time, struct tm *ptmBuffer);

SpaceChain OS

434

Application Development Manual

Localtime has the same performance as gmtime, but it will have UTC time to convert

to localtime. Therefore, the correct usage is to pass in the parameter of UTC time.

#include <time.h>

char *asctime(const struct tm *ptm);

char *asctime_r(const struct tm *ptm, char *pcBuffer);

Prototype analysis on function asctime:

 This function returns the formatted time string pointer when it succeeds, and

returns NULL when it fails.

 The parameter ptm is a tm structure pointer.

Note that when the asctime function handles the parameter ptm, it will not make any

time zone conversions. Like the gmtime function, the program should pass in the required

tm data objects as needed. The format of the time string returned by the asctime function

is “Tue May 21 13:46:22 1991\n”. Therefore, when using the reentrant version asctime_r

of this function, its parameter pcBuffer must ensure that the length is no less than 26

bytes.

#include <time.h>

char *ctime(const time_t *time);

char *ctime_r(const time_t *time, char *pcBuffer);

Prototype analysis on function ctime:

 This function returns the formatted time string pointer when it succeeds, and

returns NULL when it fails.

 The input parameter time is a time_t type pointer.

The ctime function converts local time into a string format that matches with human

habit. The string format is similar to the converted asctime function. Therefore, the

parameter pcBuffer length in the reentrant function ctime_r must be guaranteed no less

than 26 bytes. Note that the ctime will internally convert UTC time to local time.

#include <time.h>

time_t mktime(struct tm *ptm);

time_t timegm(struct tm *ptm);

Prototype analysis on function mktime:

 This function returns the converted UTC time when it succeeds.

 The input parameter ptm is the tm type pointer.

The performance of mktime function is to convert local time to UTC time. It internally

converts the local time to UTC time, and thus the correct input parameter should be local

time. The timegm with the same performance is just a conversion from tm to time_t data

type, and the correct input parameter should be the UTC time.

SpaceChain OS

435

Application Development Manual

You can call the following function to calculate the difference between the two

time_t types of time.

#include <time.h>

double difftime(time_t time1, time_t time2);

11.2.3 High-precision Time

#include <time.h>

clock_t clock(void);

The function clock returns the clock counts that have elapsed since the system

started, and the count type is clock_t. The clock here refers to the clock ticks, and thus the

performance of the clock function is the same as the Lw_Time_Get function.

The accuracy of the system high-precision time can be got by using the clock_getres.

#include <time.h>

int clock_getres(clockid_t clockid, struct timespec *res);

Prototype analysis on function clock_getres:

 The function returns 0 when it succeeds and returns error number when it fails;

 The input parameter clockid is the clock source ID, and its type clockid_t has the

following definition:

Table 11.1 Clock Source Definition

Clock Source Name Description

CLOCK_REALTIME Represent actual physical time

CLOCK_MONOTONIC Monotone growth time

CLOCK_PROCESS_CPUTIME_ID The CPU time consumed by the process from start

CLOCK_THREAD_CPUTIME_ID The CPU time consumed by the thread from start

 The time accuracy got by the output parameter res can reach 1 nanosecond

precision, and its type timespec is defined as follows:

struct timespec {

 time_t tv_sec; /* seconds */

 LONG tv_nsec; /* nanoseconds */

};

Because CLOCK_REALTIME represents the actual physical time, changes to the

system time will affect it. The CLOCK_MONOTONIC has been growing since the system

started and it will not be affected by any operation. The time difference between the two

operations is usually calculated by using the CLOCK_MONOTONIC clock source.

#include <time.h>

SpaceChain OS

436

Application Development Manual

int clock_gettime(clockid_t clockid, struct timespec *tv);

Prototype analysis on function clock_gettime:

 The function returns 0 when it succeeds, returns -1 when it fails, and sets the

error code;

 The parameter clockid is the clock source as shown in Table 11.1;

 The output parameter tv saves the got high-precision time.

The clock_gettime function gets the time value of the struct timespec type according

to different clock source types. Note that clock_gettime gets the UTC time.

#include <time.h>

int clock_settime(clockid_t clockid, const struct timespec *tv);

Prototype analysis on function clock_settime:

 The function returns 0 when it succeeds, returns -1 when it fails, and sets the

error code;

 The parameter clockid specifies the clock source (only CLOCK_REALTIME);

 The parameter tv is the high-precision time that needs to be set.

The CLOCK_MONOTONIC is not affected by any operation and the

CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are only

updated within the system, therefore the clock source of clock_settime can only be

CLOCK_REALTIME.

#include <time.h>

int clock_nanosleep(clockid_t clockid,

int flags,

const struct timespec *rqtp,

struct timespec *rmtp);

Prototype analysis on function clock_nanosleep:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter clockid specifies the clock source;

 The parameter flags is the time type (such as TIMER_ABSTIME);

 The parameter rqtp specifies the sleep duration;

 The output parameter rmtp returns the remaining sleep duration.

Clock_nanosleep is similar to nanosleep, which can make a process sleep specify

nanoseconds. The difference is that if the parameter flags is specified as absolute time

(TIMER_ABSTIME), rmtp is no longer meaningful. The meaning of the remaining sleep

duration usually refers to the remaining duration after the sleep is interrupted by signal.

SpaceChain OS

437

Application Development Manual

11.2.4 Get Process or Thread Clock Source

#include <time.h>

int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);

Prototype analysis on function clock_getcpuclockid:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter pid is the process ID;

 The output parameter clock_id returns the clock source type as shown in Table

11.1.

Call the clock_getcpuclockid function to get the clock source type for the specified

process pid, and SylixOS always returns CLOCK_PROCESS_CPUTIME_ID.

#include <pthread.h>

int pthread_getcpuclockid(pthread_t thread, clockid_t *clock_id);

Prototype analysis on function pthread_getcpuclockid:

 This function returns 0 when it succeeds and returns the error number when it

fails;

 The parameter thread is the thread ID;

 The output parameter clock_id returns the clock type.

Call the pthread_getcpuclockid function to get the clock source type of the specified

thread, and SylixOS always returns CLOCK_THREAD_CPUTIME_ID.

11.2.5 Time-related Extension Operations

For the timeval structure (see Section 11.2.1), the system provides several useful

macros conveniently to operate the structure object. Note these operations are not

defined in POSIX and they exist in Linux and most Unix-like systems. They are defined as

follows (though they are both macro definitions, they are defined here in the form of

function based on their actual usage):

#include <sys/time.h>

void timeradd(struct timeval *a, struct timeval *b, struct timeval *result);

void timersub(struct timeval *a, struct timeval *b, struct timeval *result);

void timerclear(struct timeval *tvp);

int timerisset(struct timeval *tvp);

int timercmp(struct timeval *a, struct timeval *b, CMP);

SpaceChain OS

438

Application Development Manual

timeradd adds the time of a and b, and the structure is saved in result. The internal

process will automatically handle the carry problem from microseconds to seconds.

Timersub subtracts time a from time b, the structure is saved in result, and the internal

process will automatically handle the carry problem from microseconds to seconds. Note

that there will be no overflow or size of any security test inside these two operations, and

thus the result may not be in line with the expected time value, and these problems need

to be processed by the application.

timerclear zeros a time value and timerisset detects whether the time value is 0.

timercmp compares the two time and CMP is an operator, such as >, ==, <, !=, <=

etc.

The following program shows how these macros are used.

Program List 11.5 Operation Example of Timeval Extension

#include <stdio.h>

#include <sys/time.h>

#define timeval_show(des, tv) \

 fprintf(stdout, des "sec = %llu, usec = %lu.\n", \

tv.tv_sec, tv.tv_usec)

int main(int argc, char *argv[])

{

 struct timeval a;

 struct timeval b;

 struct timeval result;

 a.tv_sec = 100;

 a.tv_usec = 800000;

 b.tv_sec = 80;

 b.tv_usec = 330000;

 timeval_show("time a: ", a);

 timeval_show("time b: ", b);

 timeradd(&a, &b, &result);

 timeval_show("time a + b: ", result);

 timersub(&a, &b, &result);

 timeval_show("time a - b: ", result);

 timerclear(&result);

 if (timerisset(&result)) {

 timeval_show("time is set: ", result);

SpaceChain OS

439

Application Development Manual

 } else {

 timeval_show("time is zero: ", result);

 }

 if (timercmp(&a, &b, >)) {

 fprintf(stdout, "time a is larger than time b.\n");

 } else {

 fprintf(stderr, "time a is not larger than time b.\n");

 }

 return (0);

}

After the program operation, output the following results:

./timeext_test

time a: sec = 100, usec = 800000.

time b: sec = 80, usec = 330000.

time a + b: sec = 181, usec = 130000.

time a - b: sec = 20, usec = 470000.

time is zero: sec = 0, usec = 0.

time a is larger than time b.

SpaceChain OS

440

Application Development Manual

Chapter 12 Memory Management

12.1 Fixed Length Memory Management

Fixed length memory refers to the got same size of memory in each allocation, that is,

we use the memory block with the fixed length. Meanwhile the total number of memory

blocks is also determined, that is, the total memory size is also determined. This is the

same concept as the memory pool we usually understand. There are two advantages in

using this memory: one is that the stability of critical applications can be greatly improved

by allocating enough memory in advance; and the other is that the management of fixed

length memory usually has a simpler algorithm, which is more efficient to allocate/free. In

SylixOS, the managed fixed length memory is called PARTITION, or memory partition.

12.1.1 Create Memory Partition

#include <SylixOS.h>

LW_HANDLE Lw_Partition_Create(CPCHAR pcName,

 PVOID pvLowAddr,

 ULONG ulBlockCounter,

 size_t stBlockByteSize,

 ULONG ulOption,

 LW_OBJECT_ID *pulId)

Prototype analysis on function Lw_Partition_Create:

 When this function succeeds, it returns a memory partition handle, returns

LW_HANDLE_INVALID and sets the error number when it fails.

 The parameter pcName specifies the name of memory partition, which can be

LW_NULL;

 The parameter pvLowAddr defines a low address for a user-defined piece of

memory, that is, the starting address. The address must satisfy the alignment of

a CPU word length, such as in a 32-bit system, which must be 4-byte aligned;

 The parameter ulBlockCounter is the number of fixed length memory blocks in

the memory partition;

 The parameter stBlockByteSize is the size of memory block, which must be no

less than the length of a pointer and have 4 bytes in the 32-bit system;

 The parameter ulOption is an option to create a memory partition, as shown in

Table 12.1;

SpaceChain OS

441

Application Development Manual

Table 12.1 Create Options of Memory Partition

Option Name Explanation

LW_OPTION_OBJECT_GLOBAL Represent the object as a kernel global object

LW_OPTION_OBJECT_LOCAL
Indicate the object is owned only by one process, that is the local

object

LW_OPTION_DEFAULT Default option

 The output parameter pulId saves the ID of memory partition, the same as the

return value. It can be LW_NULL.

Note: The LW_OPTION_OBJECT_GLOBAL option is used for the driver or kernel module, and the

corresponding LW_OPTION_OBJECT_LOCAL option is used for the application. To make the application

more compatible, the LW_OPTION_DEFAULT option is recommended, which contains the properties of

LW_OPTION_OBJECT_LOCAL.

It is important to note that the maximum length is LW_CFG_OBJECT_NAME_SIZE

for the SylixOS object name, the macro definition is located in

the<SylixOS/config/kernel/kernel_cfg.h>, and its value is 32. If the length of the parameter

pcName exceeds this value, the memory partition creation fails.

12.1.2 Delete Memory Partition

#include <SylixOS.h>

ULONG Lw_Partition_DeleteEx(LW_HANDLE *pulId, BOOL bForce);

ULONG Lw_Partition_Delete(LW_HANDLE *pulId);

Prototype analysis on function Lw_Partition_DeleteEx:

 This function returns ERROR_NONE when it succeeds and returns an error

code when it fails;

 The parameter pulId is the memory partition handle pointer, and the successful

operation will invalidate the handle.

 The parameter bForce indicates whether to force the memory partition to be

deleteed.

If a memory block is still being used in a memory partition, it should theoretically not

be deleteed immediately. If bForce is LW_TRUE, Lw_Partition_DeleteEx ignores this

condition and deletes the partition directly. Typically, the application should not use this

method, which can lead to memory errors. It is recommended to use the

Lw_Partition_Delete function in general, which corresponds to the following call.

Lw_Partition_DeleteEx(Id, LW_FALSE);

SpaceChain OS

442

Application Development Manual

12.1.3 Get/return Memory Block

#include <SylixOS.h>

PVOID Lw_Partition_Get(LW_HANDLE ulId);

PVOID Lw_Partition_Put(LW_HANDLE ulId, PVOID pvBlock);

Prototype analysis on function Lw_Partition_Get:

 This function returns the memory block pointer when it succeeds, returns

LW_NULL and sets the error number when it fails.

 The parameter ulId is the memory partition handle.

Prototype analysis on function Lw_Partition_Put:

 This function returns LW_NULL when it succeeds, and returns the currently

returned memory block pointer when it fails.

 The parameter ulId is the memory partition handle;

 The parameter pvBlock is the memory block pointer that needs to be returned.

The Lw_Partition_Get function is called to get the memory block of a memory

partition, and its size is specified when the memory partition is created. Call the

Lw_Partition_Put function to get the memory block (by Lw_Partition_Get) returned to the

memory partition. Note that if pvBlock is NULL, the error number is set to

ERROR_PARTITION_NULL.

In order to meet the needs of different users, SylixOS also provides the following two

sets of APIs, with the same performance as above.

#include <SylixOS.h>

PVOID Lw_Partition_Take(LW_HANDLE ulId);

PVOID Lw_Partition_Give(LW_HANDLE ulId, PVOID pvBlock);

PVOID Lw_Partition_Allocate(LW_HANDLE ulId);

PVOID Lw_Partition_Free(LW_HANDLE ulId, PVOID pvBlock);

12.1.4 Get Current State of Memory Partition

#include <SylixOS.h>

ULONG Lw_Partition_Status(LW_HANDLE ulId,

 ULONG *pulBlockCounter,

 ULONG *pulFreeBlockCounter,

 size_t *pstBlockByteSize);

Prototype analysis on function Lw_Partition_Status:

 This function returns ERROR_NONE when it succeeds and returns an error

code when it fails;

 The parameter ulId is the memory partition handle;

SpaceChain OS

443

Application Development Manual

 The output parameter pulBlockCounter saves the total memory block

number of the memory partition;

 The output parameter pulFreeBlockCounter saves the number of memory

blocks that are not used by the memory partition;

 The output parameter pstBlockByteSize saves the memory block size of the

memory partition.

The Lw_Partition_Status function is called to get the status information of the memory

partition, such as the total number of memory partitions, the size of memory block, and the

number of memory blocks currently available. In particular, if the parameters

pulBlockCounter, pulFreeBlockCounter, and pstBlockByteSize are NULL, this

function will be returned calmly.

12.1.5 Get Memory Partition Name

#include <SylixOS.h>

ULONG Lw_Partition_GetName(LW_HANDLE ulId, PCHAR pcName);

Prototype analysis on function Lw_Partition_GetName:

 This function returns ERROR_NONE when it succeeds and returns an error

code when it fails;

 The parameter ulId is the memory partition handle;

 The output parameter pcName saves the memory partition name.

As mentioned above, the pcName buffer length should be no less than

LW_CFG_OBJECT_NAME_SIZE to ensure that the operation buffer is safe.

The following example shows how to use memory partitions.

Program List 12.1 Usage Method of Memory Partition

#include <SylixOS.h>

typedef struct my_element {

 INT iValue;

} MY_ELEMENET;

#define ELEMENT_MAX (8)

UINT8 _G_pucMyElementPool[sizeof(MY_ELEMENET) * ELEMENT_MAX];

LW_HANDLE _G_hMyPartition;

int main (int argc, char *argv[])

{

 MY_ELEMENET *peleTable[ELEMENT_MAX] = {LW_NULL};

SpaceChain OS

444

Application Development Manual

 MY_ELEMENET *peleTmp;

 ULONG ulError;

 INT i = 0;

 _G_hMyPartition = Lw_Partition_Create("my_partition",

 _G_pucMyElementPool,

 ELEMENT_MAX,

 sizeof(MY_ELEMENET),

 LW_OPTION_DEFAULT,

 LW_NULL);

 if (_G_hMyPartition == LW_HANDLE_INVALID) {

 fprintf(stderr, "create partition failed.\n");

 return (-1);

 }

 /*

 * How many element memories can be obtained

 */

 while (1) {

 peleTmp = (MY_ELEMENET *)Lw_Partition_Get(_G_hMyPartition);

 if (peleTmp != LW_NULL) {

 peleTable[i] = peleTmp;

 peleTmp->iValue = i;

 fprintf(stdout, "get element successfully, count = %d.\n", i);

 } else {

 fprintf(stderr, "get element failed, count = %d.\n", i);

 break;

 }

 i++;

 }

 /*

 * Delete memory partitions without all reclaiming element memory

 */

 ulError = Lw_Partition_Delete(&_G_hMyPartition);

 if (ulError != ERROR_NONE) {

 fprintf(stderr, "delete partition error.\n");

 } else {

 return (0);

 }

 for (i = 0; i < ELEMENT_MAX; i++) {

 peleTmp = peleTable[i];

SpaceChain OS

445

Application Development Manual

 if (peleTmp != LW_NULL) {

 fprintf(stdout, "element%d value = %d.\n", i, peleTmp->iValue);

 peleTmp = Lw_Partition_Put(_G_hMyPartition, peleTmp);

 if (peleTmp != LW_NULL) {

 fprintf(stderr, "element%d put failed.\n", i);

 }

 } else {

 break;

 }

 }

 /*

 * Delete memory partitions after all memory elements are reclaimed */

 ulError = Lw_Partition_Delete(&_G_hMyPartition);

 if (ulError != ERROR_NONE) {

 fprintf(stderr, "delete partition error.\n");

 return (-1);

 } else {

 fprintf(stderr, "delete partition successfully.\n");

 }

 return (0);

}

The memory partition does not allocate memory directly to us, it just provides us with

a way to manage memory. Therefore, when creating a memory partition, we need to

specify the memory that needs to be managed, which is determined by the size of the

element used (that is, the memory block described above) and the maximum number of

elements. In Program List 12.1, a memory partition with the maximum of 8 types of

MY_ELEMENT objects is created. The usage of the SylixOS memory partition is then

shown by getting the element object, using the element object, and deleting the memory

partition. After the program operation, the results are stated as follows:

get element successfully, count = 0.

get element successfully, count = 1.

get element successfully, count = 2.

get element successfully, count = 3.

get element successfully, count = 4.

get element successfully, count = 5.

get element successfully, count = 6.

get element successfully, count = 7.

get element failed, count = 8.

delete partition error.

SpaceChain OS

446

Application Development Manual

element0 value = 0.

element1 value = 1.

element2 value = 2.

element3 value = 3.

element4 value = 4.

element5 value = 5.

element6 value = 6.

element7 value = 7.

delete partition successfully.

Based on the operation results, the maximum number of elements is 8, and thus the

ninth time you get the element will fail. The memory partition is then deleteed using the

Lw_Partition_Delete function. The deletion fails as the element has not yet been

recovered, and it can be deleteed successfully only when the element is fully recovered.

The maximum size of memory we define can accommodate up to 8 elements, and the

maximum number of elements got through the memory partition is also 8. Therefore, it can

be speculated that the memory of _G_pucMyElementPool is completely used by the

program. The address of element 0 is the address of _G_pucMyElementPool, the address

of element 1 is _G_pucMyElementPool plus MY_ELEMENT structure size. Therefore,

there is a security hazard in the program above. That is, when the address of

_G_pucMyElementPool does not meet the alignment requirements of the struct

MY_ELEMENT, on some hardware, access to the member variable iValue will result in

errors in multiple bytes of misaligned access (typical hardware platform such as ARM).

Normally, the compiler will assign aligned address for the variables (global variables or

local variables), but does not rule out that there are different ways of handling it under

different compilers. At this point, you should define the type of _G_pucMyElementPool as

UINT8, namely single-byte access, and logically its starting address can be any alignment

value.For security, the following methods are recommended to define the memory buffer

(for example, the Program List 12.1):

MY_ELEMENET _G_pmyelementPool[ELEMENT_MAX];

LW_STACK _G_pstackMyElementPool[sizeof(MY_ELEMENET) * ELEMENT_MAX /

sizeof(LW_STACK)];

In Method 1, change the type of _G_pucMyElementPool to the type of element to be

accessed. The compiler guarantees that the address of _G_pucMyElementPool must

satisfy the condition of the MY_ELEMENT structure alignment access, which is the most

common method. In fact, as long as the initial address of the structure satisfies the CPU

word length alignment, the the alignment of access to all member variables will not cause

the problem. In SylixOS, a data type of LW_STACK is defined, which means “stack access

type of word alignment”, and the size of this type is actually the CPU word length. Method

2 gives a way to define the memory buffer using LW_STACK.

SpaceChain OS

447

Application Development Manual

12.2 Variable Length Memory Management

The biggest difference between the variable long memory and the fixed length

memory mentioned above is that the size of memory allocated each time may be different.

In usage, it is similar to malloc/free, and the only difference is that the memory used is

provided by the user. In SylixOS, the variable long memory is called REGION, that is, the

memory area. Because the usage of functions like malloc/free is the same memory heap

in the system, when a component in an application has an operation that frequently

allocates/frees memory, there may be a lot of memory fragments, meanwhile it also

affects the efficiency of other applications using memory heaps. In this case, you should

consider creating a separate memory area for this component to effectively avoid the

above problem.

12.2.1 Create Memory Area

#include <SylixOS.h>

LW_HANDLE Lw_Region_Create(CPCHAR pcName,

 PVOID pvLowAddr,

 size_t stRegionByteSize,

 ULONG ulOption,

 LW_OBJECT_ID *pulId);

Prototype analysis on function Lw_Region_Create:

 This function returns a memory area handle when it succeeds, returns

LW_HANDLE_INVALID and sets the error number when it fails.

 The parameter pcName specifies the memory area name and can be LW_NULL;

 The parameter pvLowAddr defines a low address for a user-defined piece of

memory, that is, the starting address. The address must satisfy the alignment of

a CPU word length, such as in a 32-bit system, which must be 4-byte aligned;

 The parameter stRegionByteSize is the memory area size with byte as unit;

 The parameter ulOption is the option to create the memory area, which is

defined in the same way as Table 12.1;

 The output parameter pulId returns the ID of memory area, the same as the

return value. It can be LW_NULL.

The Lw_Region_Create function can be called to create a variable memory partition.

In contrast to the creation of memory partition, the memory area does not require the

parameter of data block size. Note that the pcName length here should be no less than

LW_CFG_OBJECT_NAME_SIZE.

12.2.2 Delete Memory Area

SpaceChain OS

448

Application Development Manual

#include <SylixOS.h>

ULONG Lw_Region_DeleteEx(LW_HANDLE *pulId, BOOL bForce);

ULONG Lw_Region_Delete(LW_HANDLE *pulId);

Prototype analysis on function Lw_Region_DeleteEx:

 This function returns ERROR_NONE when it succeeds and returns an error

code when it fails;

 The parameter pulId is the memory area handle pointer, and the successful

operation will invalidate the handle.

 The parameter bForce indicates whether to force the memory area to be

deleteed.

As with the fixed length memory management, deleteing the memory area is not

theoretically allowed when the memory area is already in use. Use the

Lw_Region_DeleteEx function to forcibly delete the memory area. But we should usually

use the Lw_Region_Delete function to delete a memory area and the function is

equivalent to the following call.

Lw_Region_DeleteEx(id, LW_FALSE);

12.2.3 Memory Area Increases Memory Space

#include <SylixOS.h>

ULONG Lw_Region_AddMem(LW_HANDLE ulId,

PVOID pvMem,

size_t stByteSize);

Prototype analysis on function Lw_Region_AddMem:

 This function returns ERROR_NONE when it succeeds and returns an error

code when it fails;

 The parameter ulId is the memory area handle;

 The parameter pvMem is the increased memory pointer;

 The parameter stByteSize is the increased memory size with byte as unit.

When a memory area has insufficient memory space, it can dynamically increase its

memory space. This means that the memory area can be managed with discontinuous

memory in multiple addresses, meanwhile the memory partition can only manage one

address which must have contiguous memory.

12.2.4 Memory Allocation

#include <SylixOS.h>

SpaceChain OS

449

Application Development Manual

PVOID Lw_Region_Allocate(LW_HANDLE ulId, size_t stByteSize);

Prototype analysis on function Lw_Region_Allocate:

 This function returns the allocated memory pointer when it succeeds, returns

LW_NULL and sets the error number when it fails;

 The parameter ulId is the memory area handle;

 The parameter stByteSize is the memory size that needs to be allocated with

byte as unit.

To meet the usage habits of different users, the following two functions have exactly

the same performance as that of Lw_Region_Allocate:

#include <SylixOS.h>

PVOID Lw_Region_Take(LW_HANDLE ulId, size_t stByteSize);

PVOID Lw_Region_Get(LW_HANDLE ulId, size_t stByteSize);

12.2.5 Allocate Memory of Address Aligned

#include <SylixOS.h>

PVOID Lw_Region_AllocateAlign(LW_HANDLE ulId,

 size_t stByteSize,

 size_t stAlign);

Prototype analysis on function Lw_Region_ AllocateAlign:

 This function returns the allocated memory pointer when it succeeds, returns

LW_NULL and sets the error number when it fails;

 The parameter ulId is the memory area handle;

 The parameter stByteSize is the memory size that needs to be allocated with

byte as unit.

 The parameter stAlign is the aligned value and must be the power of 2, and it

must be greater than or equal to the CPU word length.

The Lw_Region_AllocateAlign function is called to get a buffer that specifies the

memory alignment relationship. There are two functions that have the same performance:

#include <SylixOS.h>

PVOID Lw_Region_TakeAlign(LW_HANDLE ulId,

 size_t stByteSize,

 size_t stAlign);

PVOID Lw_Region_GetAlign(LW_HANDLE ulId,

 size_t stByteSize,

 size_t stAlign);

SpaceChain OS

450

Application Development Manual

12.2.6 Dynamic Memory Adjustment

#include <SylixOS.h>

PVOID Lw_Region_Realloc(LW_HANDLE ulId,

 PVOID pvOldMem,

 size_t stNewByteSize);

Prototype analysis on function Lw_Region_Realloc:

 This function returns the newly allocated memory pointer when it succeeds,

returns LW_NULL and sets the error number when it fails.

 The parameter ulId is the memory area handle;

 The parameter pvOldMem is the previously allocated memory pointer;

 The parameter stNewByteSize is the new memory size that needs to be

allocated and its unit is in byte.

When stNewByteSize is larger than the originally allocated memory, new memory

will be allocated. Meanwhile the original memory is copied into the newly allocated

memory, and the original allocated memory is recycled (this is only the most common

case. If there is enough free memory to be contiguous with the currently allocated memory

address, the current memory will be extended directly so that the return is the original

memory pointer.). When stNewByteSize is equal to the originally allocated memory size,

it returns directly to the original memory pointer. When stNewByteSize is less than the

originally allocated memory size, it returns the original memory pointer. However, if the

extra memory can be zoned, the extra memory is divided into a new memory zoning

recovery management. In addition, the function also contains two hidden behaviors:

 When stNewByteSize is 0, just free the memory that pvOldMem points to, and

the return value is pvOldMem.

 When pvOldMem is LW_NULL, only the memory of stNewByteSize is allocated.

Therefore, a more accurate description of the function performance should be:

recycle old memory and allocate new memory. It should also be noted that, regardless of

the return result after the function is called, the program should not revisit the memory that

pvOldMem points to.

The two functions with the same performance are stated as follows:

#include <SylixOS.h>

PVOID Lw_Region_Reget(LW_HANDLE ulId,

 PVOID pvOldMem,

 size_t stNewByteSize);

PVOID Lw_Region_Retake(LW_HANDLE ulId,

 PVOID pvOldMem,

 size_t stNewByteSize);

SpaceChain OS

451

Application Development Manual

12.2.7 Free the Memory

#include <SylixOS.h>

PVOID Lw_Region_Free(LW_HANDLE ulId,

 PVOID pvSegmentData);

Prototype analysis on function Lw_Region_Free:

 The function returns LW_NULL when it succeeds and returns the memory pointer

that needs to be freed when it fails.

 The parameter ulId is the memory area handle;

 The parameter pvSegmentData is the memory pointer that needs to be freed;

The two functions with the same performance are stated as follows:

#include <SylixOS.h>

PVOID Lw_Region_Put(LW_HANDLE ulId,

 PVOID pvSegmentData);

PVOID Lw_Region_Give(LW_HANDLe ulId,

 PVOID pvSegmentData);

12.2.8 Get Current State of Memory Area

#include <SylixOS.h>

ULONG Lw_Region_Status(LW_HANDLE ulId,

 size_t *pstByteSize,

 ULONG *pulSegmentCounter,

 size_t *pstUsedByteSize,

 size_t *pstFreeByteSize,

 size_t *pstMaxUsedByteSize);

Prototype analysis on function Lw_Region_Status:

 This function returns ERROR_NONE when it succeeds and returns an error

code when it fails;

 The parameter ulId is the memory area handle;

 The output parameter pstByteSize is the total memory size of memory area;

 The output parameter pulSegmentCounter is the total number of memory

shards;

 The output parameter pstUsedByteSize is the memory size currently used;

 The output parameter pstFreeByteSize is the currently remaining memory size;

 The output parameter pstMaxUsedByteSize represents the maximum size of

memory used so far.

SpaceChain OS

452

Application Development Manual

The Lw_Region_Status function gets the area information that specifies the

variable length memory. The Lw_Region_StatusEx function will get an extra Section list in

addition to the performance of the Lw_Region_Status function.

#include <SylixOS.h>

ULONG Lw_Region_StatusEx(LW_ HANDLE ulId,

 size_t *pstByteSize,

 ULONG *pulSegmentCounter,

 size_t *pstUsedByteSize,

 size_t *pstFreeByteSize,

 size_t *pstMaxUsedByteSize,

 PLW_CLASS_SEGMENT psegmentList[],

 INT iMaxCounter);

Each memory allocation may result in new memory sharding. The memory sharding

in one memory area includes the allocated memory, the recovered memory, and the

remained memory after allocation. Many tiny memory shardings may be generated after

many times of allocating/releasing memory.Because it is too tiny to meet the application

usage requirements, the memory allocation fails and this is called memory fragmentation

which will “consume” the available memory. The SylixOS kernel uses the memory

management algorithm of the “first fit - immediate aggregation”, which can effectively

reduce the generation of memory fragmentation.

Use the Lw_Region_StatusEx function to look more closely at the fragmentation of

the current memory area. The output parameter psegmentList is used to save the

memory sharding information. iMaxCounter indicates that the corresponding buffer can

contain the number of holding sharding information, and PLW_CLASS_SEGMENT is

described as follows:

typedef struct {

 LW_LIST_LINE SEGMENT_lineManage; /* Neighbor pointer */

 LW_LIST_RING SEGMENT_ringFreeList; /* Next free segment linked

list */

 size_t SEGMENT_stByteSize; /* Segment size */

 size_t SEGMENT_stMagic; /* Segment identification

 */

} LW_CLASS_SEGMENT;

typedef LW_CLASS_SEGMENT *PLW_CLASS_SEGMENT;

The definition of this structure is closely related to the memory management

algorithm. This book does not focus on discussing specific implementation details, and the

application usually does not need to care about this information. Therefore, the specific

meaning of the structure members is not explained here.

12.2.9 Get Memory Area Name

SpaceChain OS

453

Application Development Manual

#include <SylixOS.h>

ULONG Lw_Region_GetName(LW_HANDLE ulId,

 PCHAR pcName);

Prototype analysis on function Lw_Region_GetName:

 This function returns ERROR_NONE when it succeeds and returns an error

code when it fails;

 The parameter ulId is the memory area handle;

 The output parameter pcName saves the memory area name.

As mentioned above, the pcName buffer length should not be less than

LW_CFG_OBJECT_NAME_SIZE to ensure that the operation buffer is safe.

The following is a concrete example to how the memory area is used and where it is

worth noting.

Program List 12.2 Memory Area Test

#include <SylixOS.h>

#define REGION_SIZE (1024)

#define BLOCK_SIZE (256)

#define BLOCK_CNT (REGION_SIZE / BLOCK_SIZE)

LW_STACK _G_pstackRegionMemory[REGION_SIZE / sizeof(LW_STACK)];

LW_HANDLE _G_hMyRegion;

int main(int argc, char *argv[])

{

 VOID *pvBlockTable[BLOCK_CNT] = {LW_NULL};

 VOID *pvBlockTmp;

 ULONG ulError;

 INT i = 0;

 _G_hMyRegion = Lw_Region_Create("my_region",

 _G_pstackRegionMemory,

 REGION_SIZE,

 LW_OPTION_DEFAULT,

 LW_NULL);

 if (_G_hMyRegion == LW_HANDLE_INVALID) {

 fprintf(stderr, "create region failed.\n");

 return (-1);

 }

 /*

SpaceChain OS

454

Application Development Manual

 * How many times can the test be allocated

 */

 while (1) {

 pvBlockTmp = Lw_Region_Allocate(_G_hMyRegion, BLOCK_SIZE);

 if (pvBlockTmp != LW_NULL) {

 pvBlockTable[i] = pvBlockTmp;

 fprintf(stdout, "alloc block successfully, count = %d.\n", i);

 } else {

 fprintf(stderr, "alloc block failed, count = %d.\n", i);

 break;

 }

 i++;

 }

 /*

 * Test to remove memory area without fully freeing memory

 */

 ulError = Lw_Region_Delete(&_G_hMyRegion);

 if (ulError != ERROR_NONE) {

 fprintf(stdout, "delete region error.\n");

 } else {

 return (0);

 }

 for (i = 0; i < BLOCK_CNT; i++) {

 pvBlockTmp = pvBlockTable[i];

 if (pvBlockTmp != LW_NULL) {

 pvBlockTmp = Lw_Region_Free(_G_hMyRegion, pvBlockTmp);

 if (pvBlockTmp != LW_NULL) {

 fprintf(stderr, "block%d free failed.\n", i);

 }

 } else {

 break;

 }

 }

 /*

 * Delete memory partition after releasing all memory

 */

 ulError = Lw_Region_Delete(&_G_hMyRegion);

 if (ulError != ERROR_NONE) {

 fprintf(stderr, "delete region error.\n");

 return (-1);

 } else {

SpaceChain OS

455

Application Development Manual

 fprintf(stdout, "delete region successfully.\n");

 }

 return (0);

}

After run the program, the results are stated as follows:

./region_test

alloc block successfully, count = 0.

alloc block successfully, count = 1.

alloc block successfully, count = 2.

alloc block failed, count = 3.

delete region error.

delete region successfully.

In the test program, we created a memory area of 1024 bytes of memory. After each

allocation of 256 bytes of memory, the results show that only 3 memory blocks have been

allocated successfully. In other words, the memory provided when we create the memory

area cannot be fully used by the program. The memory area itself uses some space to

store the memory sharding information, which is significantly different from the memory

partition. In addition, memory locations allocated through memory areas are always

aligned (8-byte alignment on 32-bit systems, the same as Linux), which is the default

processing within SylixOS.

12.3 POSIX Standard Memory Management

The POSIX standard memory management-related functions are exactly the same as

the variable length memory management described in Section 12.2 in terms of

performance and internal behavior. The POSIX specifies that the memory addresses

allocated by malloc, calloc, and realloc must be aligned. The purpose of specifying

address alignment is to efficiently access any type of data structure on any hardware

platform meanwhile it can also avoid on some hardware platforms the abnormal hardware

errors caused by multi-byte access on unaligned addresses. This is also consistent with

the default processing within SylixOS. In other words, SylixOS memory management itself

conforms to the POSIX standard. Each time a new process is created, the memory is

allocated internally to create a memory heap for it, rather than requiring the user to specify

the memory space as the memory area does.

12.3.1 Memory Allocation

#include <malloc.h>

void *malloc(size_t stNBytes);

void *calloc(size_t stNNum, size_t stSize);

void *realloc(void *pvPtr, size_t stNewSize);

SpaceChain OS

456

Application Development Manual

Prototype analysis on function malloc:

 This function returns the allocated memory pointer when it succeeds, returns

LW_NULL and sets the error number when it fails;

 The parameter stNBytes represents the number of bytes for memory allocation.

Prototype analysis on function calloc:

 This function returns the allocated memory pointer when it succeeds, returns

LW_NULL and sets the error number when it fails;

 The parameter stNNum represents the number of data blocks;

 The parameter stSize represents the size of a data block with byte as unit.

Note: The parameters of calloc seem to indicate that it allocates stNNum size to stSize memory. But

in fact, it allocates the memory of a contiguous address space of stNNum*stSize, which is no different

from malloc. Unlike malloc, calloc will zero the allocated memory.

Prototype analysis on function realloc:

 This function returns the allocated memory pointer when it succeeds, returns

LW_NULL and sets the error number when it fails;

 The parameter stNewSize represents the number of bytes of the newly allocated

memory.

Note: The behavior of realloc is exactly the same as Lw_Region_Realloc in Section 12.2, which is

not repeated here.

Call the malloc function to allocate memory for the application. Support 3 memory

allocation methods in SylixOS: the dlmalloc method, the orig method (this method is

implemented by the SylixOS kernel, and thus it is usually used in kernel memory

allocation), and tlsf methods.

Dlmalloc is a memory allocator which was developed by Doug Lea in 1987 and has

been widely used in many operating systems. Dlmalloc adopts two ways to apply for

memory. If the applied memory amount in single application is less than 256kb, dlmalloc

calls the BRK function to expand the process heap space. But the memory amount of that

dlmalloc applies to the kernel is greater than the memory amount applied by the

application. After applying to memory, dlmalloc divides the memory into two pieces: one

returns to application and the other one is reserved as free memory. When the next

application applies for memory, dlmalloc does not need to apply memory to the kernel

again, thus speeding up the memory allocation efficiency. When the application calls the

free function to free the memory, if the memory block is less than 256kb, dlmalloc does not

immediately free the memory block, but marks the memory block as idle. There are two

reasons for this: firstly, the memory blocks may not be immediately freed back to the

kernel (for example, the memory blocks are not located on the top of the heap); secondly,

it supplies the application for memory use next time (this is the main reason). The free

SpaceChain OS

457

Application Development Manual

memory is released back into the kernel when the amount of idle memory in the

dlmalloc function reaches a certain value. If the applied memory amount by application is

more than 256kb, the dlmalloc function calls the mmap function to apply one memory

block to the kernel and returns it to the application. If the application frees the memory

more than 256kb, the dlmalloc function immediately calls the munmap function to free the

memory. Dlmalloc does not cache the memory blocks greater than 256kb.

tlsf is mainly used to support dynamic memory management of embedded real-time

system. It combines the advantages of classified search algorithm and bitmap search

algorithm, and is featured by fast speed and low memory consumption. The time

complexity of malloc and free in tlsf does not vary with the number of free memory blocks,

and it is always O(1).

Note: tlsf has the memory management algorithm of O(1) time complexity and it is suitable for

real-time operating system. However, it can only maintain 4-byte alignment on 32-bit system, and it can

only maintain 8-byte alignment on 64-bit system. It does not satisfy the alignment requirement that

POSIX should have 2 * sizeof(size_t) for malloc. Therefore, some software may have serious errors such

as Qt/JavaScript engine, and it should be used carefully! Use it only after verifying that the application

does not have 2 * sizeof(size_t) alignment requirements.

SylixOS can choose which memory allocation method is used by configuring the

macro LW_CFG_VP_HEAP_ALGORITHM. The macro can be found out in the header file

<SylixOS/config/kernel/memory_cfg.h>.

12.3.2 Allocate Memory Specifying Alignment Value

#include <malloc.h>

void *memalign(size_t stAlign, size_t stNbytes);

int posix_memalign(void **memptr, size_t alignment, size_t size);

Prototype analysis on function memalign:

 This function returns the allocated memory pointer when it succeeds, returns

LW_NULL and sets the error number when it fails;

 The parameter stAlign is the aligned value and must be the power of 2;

 The parameter stNbytes is the memory size to be allocated.

Prototype analysis on function posix_memalign:

 This function returns ERROR_NONE when it succeeds and returns an error

code when it fails;

 The output parameter memptr is the aligned memory pointer that saves

allocation;

 The parameter alignment is the alignment value and must be the power of 2,

and the value must be no less than the CPU word length;

SpaceChain OS

458

Application Development Manual

 The parameter size is the memory size that needs to be allocated with

byte as unit.

posix_memalign is the function defined in POSIX1003.1d. This function is different

from memalign and it requires the alignment value to be no less than the CPU word length,

which is the same as the requirement of Lw_Region_AllocateAlign function in SylixOS.

Note that when this function allocation memory fails, the value of memptr is undefined.

Therefore, the application should not determine whether the memory is allocated

successfully by the value of memptr as NULL or not.

12.3.3 Free the Memory

#include <malloc.h>

void free(void *pvPtr);

Prototype analysis on function free:

 The parameter pvPtr is the memory pointer that needs to be freed;

If the input parameter pvPtr equals NULL, the free function does not do anything. The

free function frees the memory allocated by all the memory allocation functions above.

12.3.4 Memory Allocation Function with Security Detection

#include <malloc.h>

void *xmalloc(size_t stNBytes);

void *xcalloc(size_t stNNum, size_t stSize);

void *xrealloc(void *pvPtr, size_t stNewSize);

void *xmemalign(size_t stAlign, size_t stNbytes);

The above function has the same performance as the memory allocation function with

the corresponding name (without x prefix), except that there is a difference in behavior.

When the allocated memory fails, the inside of these functions outputs the error

information to the standard error output device, stderr. Meanwhile it also calls the exit

function to end the current process, and thus it makes no sense to judge the return value

of these functions. Using these functions can bring convenience to your application at

some point. For example, when an application has an error code that fails to detect

whether the memory is allocated successfully, and the access pointer causes the program

to crash, such errors are often difficult to detect. Using this kind of function can provide us

with useful information. However, this kind of function cannot meet the requirements in

many cases because it has fixed the behavior of memory allocation failure (ending the

current process). Note that this set of functions may have an xfree function in some

systems to free the corresponding memory, and SylixOS uses the free function to free.

SpaceChain OS

459

Application Development Manual

12.4 Virtual Memory Management

SylixOS, as a multi-process operating system, is divided into kernel space and user

space, like the other multi-process operating systems. Kernel threads, drivers, and kernel

modules exist in the kernel space meanwhile applications (i.e. processes) and dynamic

link libraries exist in the user space.

12.4.1 Memory Division

Figure 12.1 System Memory Division

Figure 12.1 describes the layout of SylixOS in physical memory and its relationship to

virtual memory. The common memory area is the memory space used by the operating

system itself, namely the kernel space. It mainly includes operating system image,

memory heap and stack space used by the system. Its physical address and virtual

address are exactly the same. It can be seen that they don’t have a corresponding virtual

page. VMM (Virtual Memory Management) manages all physical memories except the

common memory area in the form of page. VMM is also responsible for managing the

virtual memory space in the form of page and mapping the virtual memory pages to the

physical memory pages when needed. The size of virtual page and physical page has the

same value as PAGESIZE (usually 4KB).

In Figure 12.1, there is a special DMA page area dedicated to DMA data transmission

(because DMA hardware can only access physical addresses). SylixOS especially

provides an API for allocating DMA memory only for kernel modules and drivers. The

applications should not use these APIs, and thus they will not be explained here. The rest

is the physical pages used by applications and dynamic link libraries which all have the

corresponding virtual pages. What we often call the virtual memory is the contiguous

virtual page space at this address. The operating system ensures that the virtual page

address does not overlap with the common memory and DMA memory addresses.

Imagine, if you have any overlap, the process of data itself (global variables, stack space,

and code etc.) may be mapped to system memory or DMA memory, which will cause

unpredictable errors. The space that we cannot overlap is often called the reserved space

of operating system. The mapping relation between the virtual page and the physical page

in the Figure above shows only the corresponding relationship between the two

(“applications use special methods to directly access DMA memory in virtual space”

comes next). However, the physical address space of DMA Page cannot be overlapped

SpaceChain OS

460

Application Development Manual

with the virtual address space, and thus the DMA Page is clearly distinguished from

the Physical Page.

12.4.2 Process Page Management

As mentioned above, a process is accessing virtual addresses. This includes two

aspects: firstly, when the process is created, the loader assigns virtual pages to the

process itself, including the process data segment, code segment, and heap memory etc.

Secondly, when the process is running, access the stack memory or use the memory

allocated by the memory allocation function mentioned above. SylixOS currently allocates

32MB virtual memory pages of contiguous addresses for each newly created process, and

it allocates physical memory for some necessary data of the process itself, such as code

segments and data segments etc. In addition, the physical memory is allocated only when

the process is running, depending on the need for memory access.

The virtual memory space can be larger than the physical memory space. The

number of processes supported by the system is not only limited to the size of physical

memory, but also limited to the size of virtual memory space. As mentioned above,

because of the reserved space, the virtual space is always less than the maximum space

that the hardware can access (for example, the virtual space is less than 4GB in the 32-bit

CPU). This is a common feature of all multi-process operating systems.

VMM can ensure that the virtual pages allocated each time have contiguous

addresses, but the corresponding physical page addresses are not necessarily

contiguous. When the process frees the memory, only the corresponding physical page

memory is freed and the virtual page is not recycled. When the process exits, the virtual

pages and physical pages are all recycled.

12.4.3 Virtual Memory Mapping

The application can use the mmap function to map a device file to the application

virtual space, this is a memory access changed from file I/O access. The mmap function

prototype declaration is located in <sys/mman.h>. This file contains a set of applications

that explicitly handle the functions associated with virtual memory mapping.

#include <sys/mman.h>

void *mmap(void *pvAddr, size_t stLen, int iProt,

int iFlag, int iFd, off_t off);

void *mmap64(void *pvAddr, size_t stLen, int iProt,

int iFlag, int iFd, off64_t off);

Prototype analysis on function mmap:

 This function returns the allocated virtual memory address when it succeeds,

returns MAP_FAILED and sets the error number when it fails.

SpaceChain OS

461

Application Development Manual

 The parameter pvAddr represents the process virtual address that needs

to be mapped. If it is not NULL, the return value is the same, and the pvAddr

must be the page aligned address. In most cases, we should use NULL, which

means that the system automatically allocates the new virtual memory;

 The parameter stLen specifies the partial content size of the corresponding file

to be mapped with byte as unit. Because VMM manages the memory in pages,

when stLen is not an integer multiple of page size, the number of virtual page

bytes actually allocated will be greater than stLen;

 The parameter iProt is a mapped memory protection option whose value can be

either one of the following options or their combination (multiple options are

composed of “or”);

Table 12.2 Memory Protection Options

Protection Option Name Explanation

PROT_READ Memory pages can read access

PROT_WRITE Memory pages can write access

PROT_EXEC Memory pages can execute code

PROT_NONE Memory pages cannot be accessed

Note: When the PROT_NONE option is used, any access (read, write and execute) mapping

memory will result in an invalid page memory access error. In addition, the settings of protection options

cannot exceed the open permissions of the file itself. That is, you cannot create a mapping with a file that

is opened in read-only mode with the PROT_WRITE method.

 The parameter iFlag is a memory mapping identifier whose value can be either

one of the following options or their combination (multiple options are composed

of “or”);

Table 12.3 Memory Mapping Identification

Identification name Explanation

MAP_SHARED Shared mapping

MAP_PRIVATE Private mapping

MAP_FIXED Fixed virtual address mapping

MAP_ANONYMOUS Anonymous mapping

Note: When MAP_SHARED is used, the mapped files are shared by multiple processes. This means

that a process that modifies its mapping space to all other shared mappings is visible. If multiple

processes use MAP_PRIVATE to map the same file, each process modification to its mapping space is

not visible to other processes. Once a process writes to the mapping region, the system copies a private

mapping space for that process. This is similar to what we know about writing copy technology, which is

also supported SylixOS. Meanwhile the written data is not synchronized to the file itself. When

SpaceChain OS

462

Application Development Manual

MAP_FIXED is used, the pvAddr parameter passed in by the user is used as the virtual address

for mapping. The system assumes that the address is a valid virtual address and does not perform any

security test and corresponding processing. Therefore, this is a dangerous mode and POSIX does not

encourage program to use this option. In SylixOS, the MAP_FIXED option will always cause the mapping

to fail. The file descriptor iFd and the file offset value off are ignored when MAP_ANONYMOUS is used.

However, for the portability of the program, iFd should be set to -1 when this option is used.

 The parameter iFd is the file descriptor that needs to be mapped;

 The parameter off specifies a mapping from one of the starting locations of the

file. This parameter must be an integer multiple of the page size.

The parameters stLen and off determine the scope of mapping file. When the scope

exceeds the size of the file itself, it is still able to create the mapping successfully.

However, the data beyond the scope will not be synchronized to the file, that is, the

content written will not exceed the size of the file. If the size of the file itself is 0, it will

cause the mapping to fail.

Note that not all device files can use mmap functions to map memory, and the

support of device drivers is usually required. In SylixOS, the disk files and the FrameBuffer

device files support the mmap function operation, and the mmap function cannot be used

for the serial port device file. The mmap function also adds 1 to the mapped file reference

counts. This means that even if the close function is called to close the file, its file

descriptor is still valid; this is because the file is not actually closed and the close function

only reduces one file descriptor reference count. Therefore, after the mmap is called,

there is no strict requirement on when to close the mapped file.

Mmap64 can support 64-bit file offsets. In fact, in SylixOS, the data types of off_t and

off64_t are defined as the 64-bit signed type. Therefore the performances of these two

functions are exactly the same. SylixOS provides the mmap64 functions to improve

program compatibility.

At some point, the application may need to expand or shrink the current virtual

memory mapping and call the mremap function for processing.

#include <sys/mman.h>

void *mremap(void *pvAddr, size_t stOldSize, size_t stNewSize, int iFlag, ...);

Prototype analysis on function mremap:

 This function returns the first address of the new virtual memory when it

succeeds, returns MAP_FAILED and sets the error number when it fails.

 The parameter pvAddr is the virtual address of the current memory mapping and

must be the page aligned address;

 The parameter stOldSize is the size of the current memory mapping with byte as

unit;

 The parameter stNewSize is the new mapping size with byte as unit;

SpaceChain OS

463

Application Development Manual

 The parameter iFlag is the remapped option, as shown in Table 12.4.

Table 12.4 Remapped Options

Option Name Explanation

MREAP_MAYMOVE Allow virtual space of mobile mapping

MREAP_FIXED Use the specified new virtual address mapping

The behavior of mremap function is very similar to the Lw_Region_Realloc function

and the realloc function mentioned above. When stNewSize is larger than stOldSize, if

there are enough pages that are contiguous with the original virtual address, then the

original virtual memory will be extended directly to return the originally mapped page

address. If there is no virtual page that satisfies this condition and the iFlag sets the

MREMAP_MAYMOVE flag, the new virtual pages will be allocated meanwhile the original

virtual pages are recycled and the new page address is returned. This result means that

the virtual memory is moved when it is expanded. When stNewSize is smaller than

stOldSize, it will recycle the redundant virtual pages and the corresponding physical

pages.

If the MREMAP_FIXED option is used, the function will accept the fifth variable

parameter, which is void *pvNewAddr. This parameter is specified by the user specifying

the virtual address that needs to be remapped, instead of the internal automatic allocation.

This means that the mmap function will be mapped and used before the pvNewAddr is

removed. Using this option is risky and it does not have portability (different systems have

different support for this option), and thus it is not recommended to be used in the program.

Using this option in SylixOS will return the error directly.

The mremap function is not the function as specified by the POSIX standard. But it

has been supported since Linux 2.3.1, SylixOS still provides this function for better

compatibility.

#include <sys/mman.h>

int munmap(void *pvAddr, size_t stLen);

Prototype analysis on function munmap:

 The function returns 0 when it succeeds and returns error number when it fails;

 The parameter pvAddr is the virtual address that uses mmap mapping;

 The parameter stLen is the memory size that needs to be unmapped with byte

as unit, and the inside will be processed as an integer multiple of the page.

The munmap function performs opposite to mmap function: subtract 1 from the file

reference counts (if the reference count of the file is 0, then the file is closed), remove

virtual space mappings, and recycle virtual pages and corresponding physical pages (if

they exist) etc. Note that munmap does not guarantee that the data modified for the

SpaceChain OS

464

Application Development Manual

mapping space can be synchronized to the file itself. Therefore, the msync function

should be called manually to ensure that the modified data is fully written back to the file.

#include <sys/mman.h>

int msync(void *pvAddr, size_t stLen, int iFlag);

Prototype analysis on function msync:

 The parameter pvAddr is the mapped virtual space address;

 The parameter stLen is the data size that needs to be synchronized with byte as

unit;

 The parameter iFlag is the synchronization option, as shown in Table 12.5.

Table 12.5 Synchronization Options

Option Name Explanation

MS_ASYNC Write back file asynchronously

MS_SYNC Write back file synchronously

MS_INVALIDATE Virtual space for invalid mappings

When you use an asynchronous method, calling msync function will return

immediately, and the kernel asynchronously writes the data back to the file at the

appropriate time. When you use the synchronization method, you wait for the data to be

written back before returning. The parameter MS_INVALIDATE invalidates the virtual

memory, then reads the virtual memory and reads the data from the file. In practice,

MS_INVALIDATE can be combined with MS_ASYNC or MS_SYNC, but MS_ASYNC and

MS_SYNC cannot be used at the same time.

Use virtual memory mapping for the following purposes:

 Use memory instead of I/O to access device files to improve efficiency;

 Virtual space of multiple processes are mapped to the same device file for

shared memory;

 Using anonymous mappings is equivalent to allocating virtual memory, or for

communicating between parent and child processes.

Next, based on practical application, several examples illustrate how to use the

mmap series of functions..

1. Access I/O Devices by Memory

Program List 12.3 Use mmap to Access Device

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <string.h>

SpaceChain OS

465

Application Development Manual

#include <stdio.h>

#define FILE_NAME "mmap.dat"

#define FILE_SIZE 32

#define DATA_OFF 10

char data_buff[] = "<mmap data>";

int main(int argc, char *argv[])

{

 char *file_buff;

 char tmp_buff[FILE_SIZE];

 int fd;

 int ret;

 ret = access(FILE_NAME, F_OK);

 if (ret < 0) {

 char tmp = 'X';

 int i;

 fd = open(FILE_NAME, O_CREAT | O_RDWR, S_IWUSR | S_IRUSR);

 if (fd < 0) {

 fprintf(stderr, "create file failed.\n");

 return (-1);

 }

 for (i = 0; i < FILE_SIZE; i++) {

 write(fd, &tmp, 1);

 }

 close(fd);

 }

 fd = open(FILE_NAME, O_RDWR);

 if (fd < 0) {

 fprintf(stderr, "open file failed.\n");

 return (-1);

 }

 file_buff = mmap(NULL, FILE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

 if (file_buff == MAP_FAILED) {

 fprintf(stderr, "mmap failed.\n");

 return (-1);

 }

 /*

 * Write data using memory access

 */

 memcpy(file_buff + DATA_OFF, data_buff, sizeof(data_buff) - 1);

SpaceChain OS

466

Application Development Manual

 msync(file_buff, FILE_SIZE, MS_SYNC);

 munmap(file_buff, FILE_SIZE);

 /*

 * Reading data using I/O functions

 */

 ret = read(fd, tmp_buff, FILE_SIZE);

 if (ret <= 0) {

 fprintf(stderr, "read file data failed.\n");

 } else {

 tmp_buff[ret] = '\0';

 fprintf(stdout, "read file date: %s\n ", tmp_buff);

 }

 close(fd);

 return (0);

}

The results of program operation are stated as follows:

./share_test

read file date: XXXXXXXXXX<mmap data>XXXXXXXXXXXXX

In the above program, firstly check if the disk file that needs to be mapped exists; if

not, create a new file. As mentioned above, if the data length of a file is 0, then mmap

cannot be used to set up the mapping, and thus the file is written into data of 32 bytes in

length. For intuitive comparison, the data is the “X” that can be displayed. Because we call

mmap to map the file in a read-write way, the file is opened in the read-write way. To get

the data back to the file itself, we must use the MAP_SHARED mapping option. The

program operates file data in the form of memory write and I/O functions. Based on the

results, as we expected, the memory of operation mapping is the same as the operation

file itself. You can access a part of a file more flexibly using the memory, without the need

to use the file location function such as lseek.

Sometimes the application needs to directly access the memory data of device file

itself. The most common is frame buffer device (FrameBuffer). The device itself has a

piece of physical memory that the controller can access through the DMA bus, which is

commonly referred to as video memory, from the DMA Page area shown in Figure 12.1. If

I/O function is used to operate the video memory, it is inevitable that there will be a data

copy between the user buffer and the memory, which greatly affects the refresh response

speed of graphical interface. Using the mmap function, you can map the video memory

directly to the user space, allowing the application to directly operate the memory itself.

Using the frame buffer device usually includes the following procedure: open the device

(its device name is usually "/dev/fb0" and "/dev/fb1" etc.), get the relevant information

(such as video memory size,and color coding of pixels etc.) of video memory, call mmap to

map virtual space, and read and write mappings to virtual space to operate video memory.

You can see that the process of using mmap to operate video memory is the same as that

of the above operation of common files.

SpaceChain OS

467

Application Development Manual

2. Use mmap for Shared Memory

Compared to message queues, pipes and other inter-process communication

methods, shared memory has higher communication efficiency on some occasions.

Though the purpose of shared memory can be achieved with any device file, there should

be a dedicated device in the POSIX-defined operating system that can be used to

implement shared memory matched with the mmap function cluster. There is no difference

between the device and common disk devices in respect of external performance (both

can be used to create/delete files etc.). But it doesn’t have a physical storage medium,

and you can think of it as a virtual device. Therefore, it makes no sense to call msync on

the device file. The relevant API functions are stated as follows:

int shm_open(const char *name, int oflag, mode_t mode);

int shm_unlink(const char *name);

The function shm_open is the same as the normal open function, except that it opens

or creates a file on the shared memory device. Its prototype analysis is stated as follows:

 This function returns the file descriptor when it succeeds, returns -1 and sets the

error number when it fails;

 The parameter name is the file name for shared memory mapping;

 The parameter oflag is the operational identification, such as O_CREAT,

O_RDWR etc.;

 The parameter mode is the mode to create the file.

The function shm_unlink is used to delete a file on the memory device. The prototype

analysis is stated as follows:

 The function returns 0 when succeeds and returns -1 when fails, and sets the

error number;

 The parameter name is the file name that needs to be deleteed.

Note that there is no shm_close function corresponding to shm_open, this is because

the shared memory device is also a standard I/O device, and thus you can close the

corresponding file by using the close function. On different systems, the shared memory

device may have different implementations with different names, and shm_open hides the

difference to achieve portability.

The following two processes simulate the process of a login session between the

client-side and the server-side, showing how mmap implements the shared memory.

Program List 12.4 Sample of Server-Side Program of Shared Memory

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <semaphore.h>

SpaceChain OS

468

Application Development Manual

#include <string.h>

#include <stdio.h>

#define MAX_MSG_SIZE 32

#define REQ_SIG_NAME "req_signal"

#define ACK_SIG_NAME "ack_signal"

#define SHM_FILE_NAME "msg_buffer"

int main(int argc, char *argv[])

{

 char *msg_buff;

 sem_t *req_signal;

 sem_t *ack_signal;

 int shm_fd;

 req_signal = sem_open(REQ_SIG_NAME, O_CREAT, 0666, 0);

 if (!req_signal) {

 fprintf(stderr, "create request signal failed.\n");

 return (-1);

 }

 ack_signal = sem_open(ACK_SIG_NAME, O_CREAT, 0666, 0);

 if (!ack_signal) {

 fprintf(stderr, "create acknowledeg signal failed.\n");

 return (-1);

 }

 shm_fd = shm_open(SHM_FILE_NAME, O_CREAT | O_RDWR, 0666);

 if (shm_fd < 0) {

 fprintf(stderr, "open file failed.\n");

 return (-1);

 }

 ftruncate(shm_fd, MAX_MSG_SIZE);

msg_buff = mmap(NULL, MAX_MSG_SIZE, PROT_READ |

PROT_WRITE, MAP_SHARED, shm_fd, 0);

 if (msg_buff == MAP_FAILED) {

 fprintf(stderr, "mmap failed.\n");

 return (-1);

 }

 sem_wait(req_signal);

 fprintf(stdout, "get new request message: %s.\n", msg_buff);

 strcpy(msg_buff, "welcome");

 sem_post(ack_signal);

 munmap(msg_buff, MAX_MSG_SIZE);

SpaceChain OS

469

Application Development Manual

 close(shm_fd);

 sem_close(req_signal);

 sem_close(ack_signal);

 shm_unlink(SHM_FILE_NAME);

 sem_unlink(REQ_SIG_NAME);

 sem_unlink(ACK_SIG_NAME);

 return (0);

}

As shown in Program List 12.4, the server-side program waits for a request from the

client-side. When the server-side program receives the request, the response information

is returned to the client-side. Here we use the mapped shared memory for both sides to

communicate, and thus this is called the message buffer. meanwhile in order to

synchronize access to the message buffer, two POSIX named semaphores are created,

respectively for the request message and the notification event for the reply message. It

can also be seen from above that all the resources are created and destroyed by the

server-side, which is the most common way of processing applications. It should be noted

that after creating the file, we use the ftruncate function to adjust the file size. As

mentioned above, if the file length is 0, the mmap function will fail.

In the previous examples, we changed the disk file size by calling the standard I/O

function write. But for the files on the shared memory devices, we cannot guarantee all the

systems to be able to use the write function (using the write function in SylixOS to operate

the file on the memory device will return the error directly). For better portability, the

application should use the ftruncate function to resize the file.

Program List 12.5 Sample of Client-Side Program of Shared Memory

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <semaphore.h>

#include <string.h>

#include <stdio.h>

#define MAX_MSG_SIZE 32

#define REQ_SIG_NAME "req_signal"

#define ACK_SIG_NAME "ack_signal"

#define SHM_FILE_NAME "msg_buffer"

int main(int argc, char *argv[])

{

 char *msg_buff;

 sem_t *req_signal;

 sem_t *ack_signal;

SpaceChain OS

470

Application Development Manual

 int shm_fd;

 req_signal = sem_open(REQ_SIG_NAME, 0, 0666, 0);

 if (!req_signal) {

 fprintf(stderr, "open request signal failed.\n");

 return (-1);

 }

 ack_signal = sem_open(ACK_SIG_NAME, 0, 0666, 0);

 if (!ack_signal) {

 fprintf(stderr, "open acknowledeg signal failed.\n");

 return (-1);

 }

 shm_fd = shm_open(SHM_FILE_NAME, O_RDWR, 0666);

 if (shm_fd < 0) {

 fprintf(stderr, "open shm file failed.\n");

 return (-1);

 }

msg_buff = mmap(NULL, MAX_MSG_SIZE, PROT_READ |

PROT_WRITE, MAP_SHARED, shm_fd, 0);

 if (msg_buff == MAP_FAILED) {

 fprintf(stderr, "mmap failed.\n");

 return (-1);

 }

 strcpy(msg_buff, "request login");

 sem_post(req_signal);

 sem_wait(ack_signal);

 fprintf(stdout, "get acknowledge message: %s.\n", msg_buff);

 munmap(msg_buff, MAX_MSG_SIZE);

 close(shm_fd);

 sem_close(req_signal);

 sem_close(ack_signal);

 return (0);

}

The client-side program is relatively simple. Assume that the relevant resources

already exist, and you only need to open them and close the relevant resources just

before the program exits. The msg_buff mapped in the client-side and the msg_buff

pointer mapped in the server-side are actually pointing to the same physical memory

block (this refers to the logical or several physical memory blocks with discontinuous

address). Therefore, the process of sending a message here only needs to rewrite the

message buffered data, and then send the synchronization signal. If you use message

queues, there is bound to be a data copy process. If the amount of message data is large,

SpaceChain OS

471

Application Development Manual

it will consume a lot of memory. A large number of data copies can also greatly

reduce operational efficiency.

Finally, let’s look at the operation results. Firstly, operate the server-side program

using the background execution and there is no output at this point. Then, the operate

client-side program and the terminal outputs the following information. It can be seen that

the server-side and client-side correctly implement information interaction through the

shared memory.

./shm_test

get new request msg: request login.

get acknowledge: welcome.

3. Anonymous Mapping

Anonymous mapping is the mapped virtual memory without any associated device

files. In systems that support the fork system call (e.g. Unix and Linux etc.), because the

child process inherits the virtual memory mapping of the parent process, the shared

memory between the two is also possible. Currently, though SylixOS has the concept of

parent-child process, it does not support the fork system call. The parent-child process is

just a logical connection, and thus you cannot use this to realize the shared memory

between parent and child processes.

Another purpose of anonymous mapping is to allocate virtual memory for applications,

which is similar to malloc in performance, but there is a difference between the two, as

shown in Figure 12.2:

Figure 12.2 Use mmap to Allocate Memory Pages

The memory allocated by the application using the malloc function comes from the

memory heap of the process itself, which is allocated from the virtual memory page by the

operating system when the process is created. The memory allocated using the mmap

function comes directly from the virtual memory page area. In addition, the malloc function

allocates memory in bytes, and the mmap function uses the page mode to allocate

SpaceChain OS

472

Application Development Manual

memory. Typically, the latter has a higher memory allocation efficiency. The usage

of anonymous mapping is shown below:

mmap(NULL, BUF_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS,

-1, 0);

At this point, we pass in the file descriptor parameter as -1, and add the

MAP_ANONYMOUS option. There is no difference between this and the usual usage.

The function returns the mapped virtual space when it succeeds. The virtual space does

not have the corresponding physical memory at the beginning. Only when the actual

access is done, the operating system allocates the appropriate physical memory pages for

the missing page interrupts.

12.4.4 Other Operations of Virtual Memory

1. Lock Memory

#include <sys/mman.h>

int mlock(const void *pvAddr, size_t stLen);

int munlock(const void *pvAddr, size_t stLen);

int mlockall(int iFlag);

int munlockall(void);

When the physical memory size cannot meet the needs of current application, some

operating systems allow free physical memory pages owned by some applications to be

freed for use by other programs, and the freed data is swapped to disk space (the free

term here refers to the different page switching algorithms unused for a long time, and the

time is differently defined and processed). The function mlock is used to lock a segment of

virtual memory in the user space to avoid the corresponding physical memory being

swapped to disk space by the operating system. munlock is used to remove memory

locking meanwhile mlockall locks all the virtual space in the process.

Page swapping has its inherent advantages but it also brings uncertainty to the

application, reduces disk usage efficiency and service life, which is generally

unacceptable in embedded systems. Therefore, most embedded systems do not

implement page swapping algorithms, and SylixOS either. The application using the

above function will not make any sense.

2. Set Memory Protection Attribute

#include <sys/mman.h>

int mprotect(void *pvAddr, size_t stLen, int iProt);

Prototype analysis on function mprotect:

 The function returns 0 when it succeeds and returns error number when it fails;

SpaceChain OS

473

Application Development Manual

 The parameter pvAddr is the virtual page address;

 The parameter stLen is the virtual page size with byte as unit;

 The parameter iProt is the page protection option as shown in Table 12.2.

This function allows the application to specify attributes that require access to

memory. The mprotect can implement some special features that the application does not

normally require.

3. Memory Advice

Memory advice refers to an application that tells the operating system that it will use a

specified range of memory space in a particular mode. It is advised that the operating

system should optimize the resource management related to this memory to improve

system performance according to the information.

#include <sys/mman.h>

int posix_madvise(void *addr, size_t len, int advice);

Prototype analysis on function posix_madvise:

 The function returns 0 when it succeeds and returns error number when it fails;

 The parameter addr is virtual memory address;

 The parameter len is the memory size with byte as unit;

 The parameter advice is the memory advice options as shown in Table 12.6.

Table 12.6 Memory Advice Options

Option Name Explanation

POSIX_MADV_NORMAL
There is no advice and the operating system manages memory

related resources by default.

POSIX_MADV_RANDOM The application will randomly access the specified memory.

POSIX_MADV_SEQUENTIAL
The application will access the specified memory from a low

address to a high address.

POSIX_MADV_WILLNEED The application will access the specified memory in the near future.

POSIX_MADV_DONTNEED The application will no longer access the specified memory.

Based on the above options, they have a lot to do with memory management

algorithms, such as page recycling and page swapping etc. But using this function

requires an application to specify the usage of memory to achieve the intended purpose.

Currently, using this function in SylixOS will return 0 directly.

SpaceChain OS

474

Application Development Manual

Chapter 13 Standard I/O Devices

13.1 /dev/null

A null device is a special device file, and usually called a "black hole". It is equivalent

to a write-only file, and all the contents written into it will be lost forever, but the number of

written bytes can be successfully returned. In SylixOS, this device does not support being

read. However, it is very useful for command-lines and scripts. Here is an example of

using the device in the command-line:

cat file

This is test sylixos string functions example.

cat file >/dev/null

The upper cat command outputs the contents of the "file" to the standard output and

the lower cat command re-send the output contents to the "/dev/null" device so that the

contents of the file are lost forever, and therefore there is not any content is displayed in

the terminal. We can also re-send the standard error to the "/dev/null" device with the

following method.

ll abc 2>/dev/null

13.2 /dev/zero

A zero device is also a special device file. It can be regarded as a storage device with

an infinite capacity and the data in it is always 0. Reading the device can obtain infinite

data with the content of 0 (NULL, ASCII NUL and 0x00). Writing to this device will not have

any effect on its contents.

We can use this device to create a null file with a specified length for initialization, for

example: a temporary exchange file. In described in Chapter 12 Memory Management,

we can use mmap's anonymous mapping to allocate virtual memory. Similarly, we can

also use mmap to create a virtual mapping with the zero device, and the memory with an

initial content of 0 can be allocated.

13.3 Terminal

Terminal device, is also known as tty device. The word “tty” is derived from Teletypes,

or teletypewriters, originally referring to a teletypewriter, which was the medium for

reading and sending information through the serial cable using the printer's keyboard, and

SpaceChain OS

475

Application Development Manual

later was replaced by a keyboard and a display, so it is more appropriate to be

named as a terminal now. A terminal is a character-type device, and it is usually used for

human-computer interaction. For example, if we start a shell interface through a serial port

after starting the system, then the terminal is namely a serial terminal.

In SylixOS, the names of common serial terminal devices are /dev/ttyS0, /dev/ttyS1,

etc., and the names of USB serial-port devices are /dev/ttyUSB0, /dev/ttyUSB1, and so on.

Normally, /dev/ttyS0 is used for the default shell service of the system and other serial

devices can be used for general communication.

The following program shows the general use method of serial devices.

Program List 13.1 Serial Port Test Program

#include <SylixOS.h>

#include <fcntl.h>

#include <stdio.h>

#define SERIL_BUF_SIZE 512

#define SERIL_DEV_NAME "/dev/ttyS1"

int main(int argc, char *argv[])

{

 int iFd;

 char pcBuff[SERIL_BUF_SIZE];

 char pc int iRet;

 ssize_t sstReadLen;

 ssize_t sstWriteLen;

 iFd = open(SERIL_DEV_NAME, O_RDWR);

 if (iFd < 0) {

 fprintf(stderr, "open %s failed.\n", SERIL_DEV_NAME);

 return (-1);

 }

 /*

 * Baud rate : 9600

 * Hardware options为: 8bits data_bit, 1bit stop_bit，No parity

 */

 iRet = ioctl(iFd, SIO_BAUD_SET, 9600);

 if (iRet != 0) {

 goto __error;

 }

 iRet = ioctl(iFd, SIO_HW_OPTS_SET, CS8);

 if (iRet != 0) {

 goto __error;

 }

SpaceChain OS

476

Application Development Manual

 iRet = ioctl(iFd, FIORBUFSET, SERIL_BUF_SIZE);

 if (iRet != 0) {

 goto __error;

 }

 while (1) {

 sstReadLen = read(iFd, pcBuff, SERIL_BUF_SIZE);

 if (sstReadLen < 0) {

 fprintf(stderr, "read error.\n");

 goto __error;

 }

 if (sstReadLen == 0) {

 continue;

 }

 sstWriteLen = write(iFd, pcBuff, sstReadLen);

 if (sstWriteLen < 0) {

 fprintf(stderr, "write error.\n");

 goto __error;

 }

 if (sstWriteLen < sstReadLen) {

 printf("write data may be lost.\n");

 }

 }

 close(iFd);

 return (0);

__error:

 close(iFd);

 return (-1);

}

The above is a simple serial echo test program. /dev/ttyS0 is already used by Shell,

so /dev/ttyS1 is used for the test here. Before reading and writing the serial port, we need

to set the communication parameters, such as baud rate, data bit, stop bit and enable

check or not. These parameters must be exactly the same as those on the other end of

the communication. The relevant commands for setting the serial communication

parameters are located in the <SylixOS/system/util/sioLib.h> file. Since the default buffer

zone of the serial device is limited in size, it may not be able to meet the requirements of a

single transmission. If the sender sends the data too fast, the data that is too late to be

read will be overwritten, so the program uses the FIORBUFSET (ioctl command)

command to set the size of the receiving buffer zone, which is also a problem that must be

considered when using serial communication. FIORBUFSET is located in the

<SylixOS/system/include/s_option.h> file, in which almost all device control options are

SpaceChain OS

477

Application Development Manual

defined. The operations about the device buffer also include FIOWBUFSET,

FIORFLUSH, FIOWFLUSH, etc., used to set the size of the sending buffer zone and

empty the reading and writing buffer zones.

In Linux, the applications typically use the termios assembly to operate tty devices.

SylixOS is compatible with most of the termios operations to improve the program’s

compatibility. To use termios to operate the serial port, we need to include the following

header files in the source file:

#include <termios.h>

13.4 Virtual Terminal

A virtual terminal, is called pty (pseudo-tty), namely a pseudo terminal. It is a terminal

device that is virtualized by the system, usually used for the remote login service of the

system. A virtual terminal contains two I/O devices, which are called the host device end

and the device end respectively. The host device end is viewed from the perspective of

the local system. It is a tty device that is the same as the serial device and behaves

exactly like all the other tty devices. The device end is viewed from the perspective of a

remote device. It can be regarded as an intermediate device that connects the host device

end to the remote end communication port. The system simulates it as a device with the

same serial hardware behavior in terms of internal implementation. The Telnet in SylixOS

uses the virtual terminal device. If we use the devs command after using Telnet to log in to

the system, we will see the following information (only the pty devices are listed):

devs

device show (minor device) >>

drv open name

 14 1 /dev/pty/9.dev

 15 1 /dev/pty/9.hst

At this point, there are two pty devices that have been turned on. The number 9

before the device name is the unique identifier of a pty device, and the paired device and

host have the same identifier.

13.5 Graphic Device

A graphic device, is also known as FrameBuffer device, through which, the video

memory itself can be operated directly. The name of a graphic device in SylixOS is

/dev/fb0. If the hardware supports multiple layers, the devices such as /dev/fb1 and

/dev/fb2 will exist accordingly. Before using a graphic device, we need to first obtain its

information related to the display mode, such as the resolution, the byte size occupied by

each pixel, and the RGB encoding structure, the capacity of the video memory, etc., so

that we can write the image data to be displayed into the video memory correctly. In

SylixOS, the structure definition used to describe the graphic device information is located

at <SylixOS/system/device/graph/gmemDev.h> as shown in Program List 13.2

SpaceChain OS

478

Application Development Manual

Program List 13.2 Graphic Device Information Description Structure

typedef struct {

 ULONG GMVI_ulXRes; /* Visible area */

 ULONG GMVI_ulYRes;

ULONG GMVI_ulXResVirtual; /* Virtual area */

 ULONG GMVI_ulYResVirtual;

 ULONG GMVI_ulXOffset; /* Display area offset */

 ULONG GMVI_ulYOffset;

 ULONG GMVI_ulBitsPerPixel; /* Number of data bits per pixel

 */

 ULONG GMVI_ulBytesPerPixel; /* Number of bytes per pixel

 */

 /* Some graphics processors DMA for

alignment */

 /* Used to pad invalid bytes */

 ULONG GMVI_ulGrayscale; /* Gray scale */

 ULONG GMVI_ulRedMask; /* Red mask */

 ULONG GMVI_ulGreenMask; /* Green mask */

 ULONG GMVI_ulBlueMask; /* Blue mask */

 ULONG GMVI_ulTransMask; /* Transparency mask */

 LW_GM_BITFIELD GMVI_gmbfRed; /* true color bitfield */

 LW_GM_BITFIELD GMVI_gmbfGreen;

 LW_GM_BITFIELD GMVI_gmbfBlue;

 LW_GM_BITFIELD GMVI_gmbfTrans;

 BOOL GMVI_bHardwareAccelerate; /* Whether to use hardware

acceleration */

 ULONG GMVI_ulMode; /* Display mode */

 ULONG GMVI_ulStatus; /* Display status */

} LW_GM_VARINFO;

typedef LW_GM_VARINFO *PLW_GM_VARINFO;

typedef struct {

 PCHAR GMSI_pcName; /* Display name */

 ULONG GMSI_ulId; /* ID */

 size_t GMSI_stMemSize; /* framebuffer memory size */

 size_t GMSI_stMemSizePerLine; /* The memory size of each row */

 caddr_t GMSI_pcMem; /* Display memory (requires driver

mapping) */

SpaceChain OS

479

Application Development Manual

} LW_GM_SCRINFO;

typedef LW_GM_SCRINFO *PLW_GM_SCRINFO;

LW_GM_VARINFO contains information that is closely related to the display data, of

which, the most important is the pixel's RGB mask and the number of data bits it occupies.

The numbers of data bits include the following:

 8-bit: A maximum of 256 colors can be displayed. If the hardware only supports

black and white display, then one pixel can support 256 gray-scale values. If the

hardware supports color display, the 256 coded values usually correspond to the

256 colors most commonly used in life. This is the palette mode, which uses a

limited number of colors to approximately express the actual display

requirements.

 16-bit: A maximum of 65,536 colors can be displayed, and it is also called

pseudo-true color. The hardware supporting16-bit color can display the vast

majority of colors in life. With 16-bit data display, there are two encoding methods,

i.e. RGB555 and RGB565, which can be obtained by the above

GMVI_ulRedMask, GMVI_ulGreenMask and GMVI_ulBlueMask;

 24-bit: Up to 16 million colors can be displayed, and it is almost impossible to

distinguish its difference from the actual color with the naked eye, so it is also

called true color. With the 24-bit display, the red, green, and blue colors of a pixel

are respectively expressed by 8 bits;

 32-bit: The additional 8 bits relative to 24-bit are used to express the 256

transparency scale of the pixel (0 means opaque, 255 means fully transparent,

and the pixel is not displayed in this case). Through the use of

GMVI_ulTransMask, we can know the position of the pixel transparency value.

In most embedded systems, the display controller usually supports 8-bit or 16-bit data

display, and only some high-end processors support 24-bit or 32-bit true color display.

Normally, one pixel occupies 1 byte of memory in the case of 8-bit data display, 16-bit

occupies 2 bytes of memory, 24-bit occupies 3 bytes of memory, and 32-bit occupies 4

bytes of memory accordingly. Due to alignment restrictions of some types of hardware on

DMA memory, however, it is required to pad bytes between the memories occupied by

pixels to meet the alignment needs. Therefore, in actual use, we should set for pixels

using GMVI_ulBitsPerPixel and RGB mask values, and process the memory offset

between pixels using GMVI_ulBytesPerPixel.

LW_GM_SCRINFO contains some necessary information for video memory.

GMSI_stMemSize denotes the total byte size of the video memory.

GMSI_stMemSizePerLine denotes the size of the byte occupied by each line. Based on

this information, we can know how to process the memory offset between lines and know

the total number of columns.

Normally, we can correctly achieve the display the image based on the above

information. In addition, there is some other information, such as video area, virtual area,

SpaceChain OS

480

Application Development Manual

display area offset, hardware acceleration and so on. The following program simply

shows how to use a graphic device.

Program List 13.3 Graphic Device Operation Example

#include <SylixOS.h>

#include <fcntl.h>

#include <stdio.h>

#include <string.h>

#include <sys/mman.h>

static VOID __drawPixel (VOID *pvFrameBuffer,

 LW_GM_SCRINFO *pscrinfo,

 LW_GM_VARINFO *pvarinfo,

 INT iX,

 INT iY,

 UINT32 uiColor)

{

 VOID *pvPixelAddr;

 if ((iX < 0) || (iX >= pvarinfo->GMVI_ulXResVirtual) ||

 (iY < 0) || (iY >= pvarinfo->GMVI_ulYResVirtual)) {

 return;

 }

pvPixelAddr = (UINT8 *)pvFrameBuffer + iY *

pscrinfo->GMSI_stMemSizePerLine;

 switch (pvarinfo->GMVI_ulBitsPerPixel) {

 case 16:

 if (pvarinfo->GMVI_ulGreenMask == (0x3f << 5)) { /* RGB565 mode

 */

 uiColor = ((uiColor & 0xff0000) >> 16 >> 3 << 11) |

 ((uiColor & 0x00ff00) >> 8 >> 2 << 5) |

 ((uiColor & 0x0000ff) >> 0 >> 3 << 0);

 } else { /* RGB555 mode */

 uiColor = ((uiColor & 0xff0000) >> 16 >> 3 << 10) |

 ((uiColor & 0x00ff00) >> 8 >> 3 << 5) |

 ((uiColor & 0x0000ff) >> 0 >> 3 << 0);

 }

 *((UINT16 *)pvPixelAddr + iX) = (UINT16)uiColor;

 break;

 case 24:

 case 32:

SpaceChain OS

481

Application Development Manual

 *((UINT32 *)pvPixelAddr + iX) = uiColor;

 break;

 }

}

static VOID __drawHorizLine (VOID *pvFrameBuffer,

 LW_GM_SCRINFO *pscrinfo,

 LW_GM_VARINFO *pvarinfo,

 INT iXstart,

 INT iYstart,

 INT iXend,

 UINT32 uiColor)

{

 for (; iXstart <= iXend; iXstart++) {

 __drawPixel(pvFrameBuffer, pscrinfo, pvarinfo,

iXstart, iYstart, uiColor);

 }

}

int main (int argc, char *argv[])

{

 INT iFbFd;

 LW_GM_SCRINFO scrInfo;

 LW_GM_VARINFO varInfo;

 INT iError;

 VOID *pvFrameBuffer;

 iFbFd = open("/dev/fb0", O_RDWR);

 if (iFbFd < 0) {

 fprintf(stderr, "open /dev/fb0 failed.\n");

 return (-1);

 }

 iError = ioctl(iFbFd, LW_GM_GET_SCRINFO, &scrInfo);

 if (iError < 0) {

 fprintf(stderr, "get /dev/fb0 screen info failed.\n");

 goto __error;

 }

 iError = ioctl(iFbFd, LW_GM_GET_VARINFO, &varInfo);

 if (iError < 0) {

 fprintf(stderr, "get /dev/fb0 var info failed.\n");

 goto __error;

 }

 pvFrameBuffer = mmap(LW_NULL, scrInfo.GMSI_stMemSize,

SpaceChain OS

482

Application Development Manual

 PROT_READ | PROT_WRITE, MAP_SHARED, iFbFd, 0);

 if (pvFrameBuffer == MAP_FAILED) {

 fprintf(stderr, "mmap /dev/fb0 failed.\n");

 goto __error;

 }

 memset(pvFrameBuffer, 0xff, scrInfo.GMSI_stMemSize); /* Clear screen */

 __drawHorizLine(pvFrameBuffer, &scrInfo, &varInfo, 0, 10,

 varInfo.GMVI_ulXResVirtual - 1, 0xff0000);

 __drawHorizLine(pvFrameBuffer, &scrInfo, &varInfo, 0, 20,

 varInfo.GMVI_ulXResVirtual - 1, 0x00ff00);

 __drawHorizLine(pvFrameBuffer, &scrInfo, &varInfo, 0, 30,

 varInfo.GMVI_ulXResVirtual - 1, 0x0000ff);

 munmap(pvFrameBuffer, scrInfo.GMSI_stMemSize);

 close(iFbFd);

 return (0);

__error:

 close(iFbFd);

 return (-1);

}

In the main function, we first obtain the information related to the display, and then

use mmap to map the video memory to the user's virtual space, thus we operate the

virtual space is equivalent to direct operation of the video memory. For details about

mmap, see Section 12.4 Management of Virtual Memory.

In the __drawPixel function, the parameter uiColor is defined as a type of 32-bit

data, starting from the lower address to the higher address, byte 0 denotes blue, byte 1

denotes green and byte 2 denotes red, which is the same as the true color (24-bit or 32-bit)

in terms of color format. For a 16-bit data pattern, we can know the current RGB mode just

through the green mask value and can perform the corresponding conversion according to

the corresponding mode. Note that since all the true colors can not be fully expressed in

the 16-bit mode, a corresponding linear conversion process is performed, such as 0 to

255. For the 5-bit data, it corresponds to 0 to 31, and for a 6-bit data, it corresponds to 0 to

63. The focus of this example is to show how to use a graphics device, so only three

horizontal lines are drawn. The reader can understand the relevant algorithm for drawing

any line, circle or ellipse through other ways.

Due to space limitations, and in order to make the program simple and intuitive, many

details are omitted. For example, the actual byte size occupied by the pixel is not taken

into account, and it is just assumed to be the same as the number of its data bits; the

offset between the real display area and the virtual display area is not considered as well,

and it is just assumed as 0; the 8-bit data display is not involved in the program; and, the

SpaceChain OS

483

Application Development Manual

pixel transparency information in the 32-bit mode is also ignored. The reader must

understand that this information must be properly processed in practical applications.

Generally, the application indirectly operates the video memory device through GUI

assembly. The GUI itself processes all of the above information. Only in some special

situations (for example, a higher display efficiency is required, or there are some simple

graphic applications), it is necessary to directly operate the video memory itself.

13.6 Input Device

The input device usually includes a mouse, a touch screen, and a keyboard, as well

as input devices with special functions such as joysticks and tablet. SylixOS defines the

supported input devices in the SylixOS/system/device/input/ directory. Currently, only the

mouse and keyboard are defined. They are located in <mouse.h> and <keyboard.h>

respectively.

13.6.1 Mouse Device

The mouse driver notifies the system of the occurrence of a mouse event by reporting

the data of a mouse_event_notify structure. The structure is defined as follows:

Program List 13.4 Structure of Mouse Event

typedef struct mouse_event_notify {

 int32_t ctype; /* coordinate type */

 int32_t kstat; /* mouse button stat */

 int32_t wscroll[MOUSE_MAX_WHEEL]; /* wheel scroll */

int32_t xmovement;

int32_t ymovement;

 /*

 * if use absolutely coordinate (such as touch screen)

 * if you use touch screen:

 * (kstat & MOUSE_LEFT) != 0 (press)

 * (kstat & MOUSE_LEFT) == 0 (release)

 */

#define xanalog xmovement /* analog samples values */

#define yanalog ymovement

} mouse_event_notify;

Ctype is used to distinguish the coordinate type of a device, which can be

MOUSE_CTYPE_REL or MOUSE_CTYPE_ABS, namely relative coordinates (general

mouse device) or absolute coordinates (touch screen device).

SpaceChain OS

484

Application Development Manual

Kstat is used to identify the state of the mouse key, including the left key,

middle key, and right key. In addition, it defines additional key state that can be used to

satisfy specific mouse (such as gaming mouse) applications. Each key state is denoted by

a data bit, 0 denotes being released and 1 denotes being pressed. The key state is

defined as follows:

Table 13.1 Definition of Mouse Key Status Bit

Key State Description

MOUSE_LEFT Left mouse key

MOUSE_RIGHT Right mouse key

MOUSE_MIDDLE Middle mouse key

MOUSE_BUTTON4 ~ MOUSE_BUTTON7 Additional 4 predefined keys

When the device is a touch screen, the left mouse key status bit is used to indicate

the information that it is released and pressed, as noted in the Program List 13.4.

Xmovement and ymovement denote the relative displacement values of the mouse.

When it is an absolute coordinate, the system suggests the program to use xanalog and

yanalog (although they are the same member variable as xmovement and ymovement) so

that the program is more intuitive and readable.

In SylixOS, the mouse device names are /dev/input/mse0, /dev/input/mse1, etc., and

the touch screen device names are /dev/input/touch0, /dev/input/touch1, and so on.

General operation methods are demonstrated below by reading mouse device events.

The operation methods of the touch screen device are similar to these.

Program List 13.5 Mouse Application Example

#include <stdio.h>

#include <fcntl.h>

#include <mouse.h>

#define MOUSE_DEV_NAME "/dev/input/mse0"

#define MOUSE_READ_CNT 50

int main(int argc, char *argv[])

{

 int mse_fd;

SpaceChain OS

485

Application Development Manual

 mouse_event_notify mse_event;

 ssize_t read_len;

 int read_cnt = 0;

 mse_fd = open(MOUSE_DEV_NAME, O_RDONLY);

 if (mse_fd < 0) {

 fprintf(stderr, "open %s failed.\n", MOUSE_DEV_NAME);

 return (-1);

 }

 while (read_cnt++ < MOUSE_READ_CNT) {

 read_len = read(mse_fd, (void *)&mse_event, sizeof(mouse_event_notify));

 if (read_len < 0) {

 fprintf(stderr, "read mouse event error, abort.\n");

 break;

 }

 if (read_len < sizeof(mouse_event_notify)) {

 fprintf(stderr, "read mouse event invalid, continue.\n");

 continue;

 }

 fprintf(stdout, "mouse report [%d] >>\n", read_cnt);

 fprintf(stdout, "key : ");

 if (mse_event.kstat & MOUSE_LEFT) {

 fprintf(stdout, "left ");

 }

 if (mse_event.kstat & MOUSE_RIGHT) {

 fprintf(stdout, "right ");

 }

 if (mse_event.kstat & MOUSE_MIDDLE) {

 fprintf(stdout, "middle ");

 }

 if (mse_event.kstat == 0) {

 fprintf(stdout, "none");

 }

 fprintf(stdout, "\n");

 fprintf(stdout, "move : x: %d, y: %d\n", mse_event.xmovement,

 mse_event.ymovement);

 fprintf(stdout, "wheel: %d[%s]\n", mse_event.wscroll[0],

 mse_event.wscroll[0] == 0 ? "none" :

 mse_event.wscroll[0] > 0 ? "up" : "down");

 fprintf(stdout, "\n");

 }

SpaceChain OS

486

Application Development Manual

close(mse_fd);

return (0);

}

In the above programs, up to 50 mouse events will be read. After run the program, the

following information may be printed:

mouse report [2] >>

key : left right middle

move : x: -1, y: 3

wheel: 1[up]

mouse report [28] >>

key : left right middle

move : x: 4, y: 1

wheel: -1[down]

The above structure requires such operations as pressing the left, middle (pulley),

and right three keys of the mouse simultaneously, and scrolling the pulley up or down

while moving the mouse. This shows that a mouse event can pass multiple messages at

the same time. If it is a touch screen device, there is no key information, but the released

or pressed state.

When there are multiple mouse devices in the system (multiple USB devices or touch

screens exist at the same time), the application does not need to handle the events of

these multiple devices separately. This is because SylixOS provides a standard kernel

module called xinput.ko. After the module is registered, two devices will be created,

namely /dev/input/xmse and /dev/input/xkbd, which will collect all the mouse and

keyboard events in the system. The application will only need to read the two devices. For

xmse devices, there are general mouse messages and touch screen messages, so the

application need to handle them separately. The general operation of the xmse device is

as follows:

Program List 13.6 Handling Mouse Event Pseudocode Using xmse Devices

mse_fd = open(/dev/input/xmse, O_RDONLY);

read(mse_fd, &mse_event, ...);

if (mse_event.ctype == MOUSE_CTYPE_REL) {

 /*

 * Handle normal mouse events

 */

} else {

 /*

 * Handling touch screen events

 */

}

SpaceChain OS

487

Application Development Manual

13.6.2 Keyboard Device

The keyboard device driver notifies the system of the occurrence of a keyboard event

by reporting the data of a keyboard_event_notify structure. The structure is defined as

follows:

Program List 13.7 Structure of Keyboard Events

typedef struct keyboard_event_notify {

 int32_t nmsg; /* message num, usually one msg*/

 int32_t type; /* press or release */

 int32_t ledstate; /* LED stat */

 int32_t fkstat; /* func-key stat */

 int32_t keymsg[KE_MAX_KEY_ST]; /* key code */

} keyboard_event_notify;

The value of type is either KE_PRESS or KE_RELEASE, which means being pressed

or released respectively.

ledstate is used to indicate the state of the key with the LED indicator. If the

corresponding bit is 0, it indicates the LED key is in the On state, otherwise it is in the Off

state. In the On state,the keyboard driver usually turns on the corresponding LED

indicator, the status bits of these keys are defined as follows:

Table 13.2 LED Key Status Bits

Status Bit Description

KE_LED_NUMLOCK Used to indicate whether the numeric keypad is On.

KE_LED_CAPSLOCK Used to indicate whether the capitalization of the alphabet is enabled.

KE_LED_SCROLLLOCK Used to indicate whether the scroll lock state is enabled.

fkstate is used to indicate the state of the function key. If the corresponding bit is 0, it

indicates the function key is pressed, and if not, it is not pressed. The status bits of all

function keys are defined as follows:

Table 13.3 Function Key Status Bit

Status Bit Description

KE_FK_CTRL Used to indicate whether the left Ctrl key is pressed.

KE_FK_ALT Used to indicate whether the left Alt key is pressed.

KE_FK_SHIFT Used to indicate whether the left Shift key is pressed.

KE_FK_CTRLR Used to indicate whether the right Ctrl key is pressed.

KE_FK_ALTR Used to indicate whether the right Alt key is pressed.

KE_FK_SHIFTR Used to indicate whether the right Shift key is pressed.

SpaceChain OS

488

Application Development Manual

nmsg and keymsg are used to indicate the codes of all common keys except

the LED keys and function keys. The macro KE_MAX_KEY_ST is currently defined as 8,

which means that the system allows the keyboard driver to report up to 8 common key

messages at a time. Note that the capitalization of alphabetic keys is not processed by the

driver. For example, if we press the Shift key and then press the letter key A, the code in

keymsg will be the character 'a', and the KE_FK_SHFT status bit in fkstate will be 1. In the

case of enabling capslock, the code in keymsg is still ‘a’, but the KE_LED_CAPSLOCK

status bit in ledstate is 1. state Therefore, the application needs to perform proper case

conversion of characters based on this information. Some other keys that are affected by

the Shift state, such as the number keys 1 to 9 on the main keyboard, when the shift is

pressed, the code in the keymsg is correspondingly " !,@ and #”. The following program

shows the general method to process the keyboard messages through the /dev/input/xkbd

device.

List of Program 13.8 Example of Processing Keyboard Messages

#include <stdio.h>

#include <fcntl.h>

#include <ctype.h>

#include <keyboard.h>

#define KBD_DEV_NAME "/dev/input/xkbd"

#define KBD_READ_CNT 50

int main(int argc, char *argv[])

{

 int kbd_fd;

 keyboard_event_notify kbd_event;

 ssize_t read_len;

 int read_cnt = 0;

 int32_t keymsg;

 int i;

 kbd_fd = open(KBD_DEV_NAME, O_RDONLY);

 if (kbd_fd < 0) {

 fprintf(stderr, "open %s failed.\n", KBD_DEV_NAME);

 return (-1);

 }

 while (read_cnt++ < KBD_READ_CNT) {

 read_len = read(kbd_fd, (void *)&kbd_event,

 sizeof(keyboard_event_notify));

 if (read_len < 0) {

 fprintf(stderr, "read keyboard event error, abort.\n");

 break;

SpaceChain OS

489

Application Development Manual

 }

 if (read_len < sizeof(keyboard_event_notify)) {

 fprintf(stderr, "read keyboard event invalid, continue.\n");

 continue;

 }

 fprintf(stdout, "keyboard report [%d] >>\n", read_cnt);

 for (i = 0; i < kbd_event.nmsg; i++) {

 keymsg = kbd_event.keymsg[i];

 fprintf(stdout, "key code: <%3d [%c] (%s)> ",

 keymsg,

 isprint(keymsg) ? keymsg : ' ',

 kbd_event.type == KE_PRESS ? "press" : "release");

 }

 fprintf(stdout, "\nled sta : ");

 if (kbd_event.ledstate == 0) {

 printf("none");

 }

 if (kbd_event.ledstate & KE_LED_NUMLOCK) {

 fprintf(stdout, "numlock ");

 }

 if (kbd_event.ledstate & KE_LED_CAPSLOCK) {

 fprintf(stdout, "capslock ");

 }

 if (kbd_event.ledstate & KE_LED_SCROLLLOCK) {

 fprintf(stdout, "scrollock ");

 }

 fprintf(stdout, "\nfunc key: ");

 if (kbd_event.fkstat == 0) {

 fprintf(stdout, "none");

 }

 if (kbd_event.fkstat & KE_FK_CTRL) {

 fprintf(stdout, "left-ctrl ");

 }

 if (kbd_event.fkstat & KE_FK_ALT) {

 printf("left-alt ");

 }

 if (kbd_event.fkstat & KE_FK_SHIFT) {

 fprintf(stdout, "left-shift ");

 }

 if (kbd_event.fkstat & KE_FK_CTRLR) {

 fprintf(stdout, "right-ctrl ");

SpaceChain OS

490

Application Development Manual

 }

 if (kbd_event.fkstat & KE_FK_ALTR) {

 fprintf(stdout, "right-alt ");

 }

 if (kbd_event.fkstat & KE_FK_SHIFTR) {

 fprintf(stdout, "right-shift ");

 }

 fprintf(stdout, "\n\n");

 }

 close(kbd_fd);

 return (0);

}

The above program just prints out the original keyboard message obtained without

any conversion processing. The reader can use this program to test the difference

between the messages in the case of different key combinations. In normal circumstances,

the original message input into the device is not processed by the application directly, but

analyzed and processed by the GUI layer, where it is converted into higher-level message

description for use by the program.

13.7 Memory Device

The memory device drives the program to access the memory as if it were accessing

a virtual I/O device. The creation of the memory device does not currently provide support

for the application layer (requires macro __SYLIXOS_KERNEL to increase the support to

the creation of the memory device). After a memory device is created in the kernel layer,

the application can use standard I/O functions to read and write the memory device. The

following is a list of functions for creating the memory devices the kernel layer:

#define __SYLIXOS_KERNEL

#include <SylixOS.h>

INT API_MemDrvInstall(void);

INT API_MemDevCreate(char *name, char *base, size_t length);

INT API_MemDevCreateDir(char *name, MEM_DRV_DIRENTRY *files, int numFiles);

INT API_MemDevDelete(char *name);

Before creating a memory device, we need to first call the API_MemDrvInstall

function to install the memory device driver. An memory device can correspond to a

file/device or multiple files/devices and be created through different functions.

The API_MemDevCreate function can create a single-file memory device, as shown

in Program List 13.9, and the use method is as shown in Program List 13.10.

Program List 13.9 Creation of the Memory Device(Module)

#define __SYLIXOS_KERNEL

SpaceChain OS

491

Application Development Manual

#include <SylixOS.h>

#include <module.h>

char membase[64] = "SylixOS mem device test.";

int module_init (void)

{

 API_MemDrvInstall();

 API_MemDevCreate("/dev/mem", membase, 64);

 return (0);

}

void module_exit (void)

{

 API_MemDevDelete("dev/mem");

}

Load the kernel module using the following command:

modulreg memdev.ko

Note: See Chapter 19 Dynamic Load for details on the Kernel Module.

Program List 13.10 Reading of the Memory Device

#include <stdio.h>

#include <unistd.h>

int main (int argc, char *argv[])

{

 int fd;

 char buf[64];

if (argc < 2) {

 fprintf(stderr, "%s [memdev].\n", argv[1]);

 return (-1);

 }

 fd = open("/dev/mem", O_RDWR);

 if (fd < 0) {

 return (-1);

 }

 read(fd, buf, 64);

 fprintf(stdout, "buf: %s\n", buf);

 return (0);

SpaceChain OS

492

Application Development Manual

}

Run the program under the SylixOS Shell and the results are as follows:

./memdev_test /dev/mem

buf: SylixOS mem device test.

The API_MemDevCreateDir function can create multiple-file memory devices as

shown in Program List 13.11.

Program List 13.11 Creation of Multi-file Memory Device(module)

#define __SYLIXOS_KERNEL

#include <SylixOS.h>

#include <module.h>

static char membase0[64] = "SylixOS mem device test.";

static char membase1[64] = "membase1 device test.";

static MEM_DRV_DIRENTRY memdirdata0[] = {{"mem.dat", membase0, NULL, 64}};

static MEM_DRV_DIRENTRY memdirdata1[] = {{"mem.dat", membase1, NULL, 64}};

static MEM_DRV_DIRENTRY memdir[] = {

 {"mem0", NULL, memdirdata0, 1},

 {"mem1", NULL, memdirdata1, 1},

};

int module_init (void)

{

 API_MemDrvInstall();

 API_MemDevCreateDir("/mem/", memdir, 2);

 return (0);

}

void module_exit (void)

{

 API_MemDevDelete("/mem/");

}

13.8 Random Device

entropy is a physical quantity that describes the disorder of a system. The greater the

entropy of a system is, the worse the orderability of the system (the greater the uncertainty

of the system) will be. In informatics, entropy is used to indicate the uncertainty of a

symbol or system. The greater the entropy is, the less information the system contains.

SpaceChain OS

493

Application Development Manual

The computer itself is a predictable system, so it is impossible to generate real

random using the computer algorithm. However, the machine environment is full of

various kinds of noise, for example, the time when the hardware device is interrupted, and

the time interval between the user's clicks of the mouse is completely random and cannot

be predicted in advance. The random number generator implemented by the SylixOS

kernel generates high-quality random sequences with such random noises in the system.

The random in SylixOS can be generated from two special files, one is /dev/urandom

and the other is /dev/random. The principle that they generate random is to use the

entropy pool of the current system to calculate a fixed number of random bits, and then

return these bits as a byte stream.

13.9 Audio Device

OSS (Open Sound System) is a unified audio interface standard on the Unix platform.

Previously, each Unix manufacturer provided a set of proprietary APIs for processing

audio. This means that audio processing applications written for a Unix platform must be

rewritten when ported to another Unix platform. More than that, the features available on

one platform may be not available on another platform.

However, the situation is quite different after the emergence of the OSS standard. As

long as the audio processing application is written in accordance with the API under the

OSS standard, it only needs to be recompiled when being ported to another platform.

Therefore, the OSS standard provides source code-level portability.

SylixOS supports simple OSS standards.

13.9.1 Basics

Digital audio device (sometimes called codec, PCM, DSP or ADC/DAC device): Play

or record of digitized sound. Its main indicators include: sampling rate (8KHz for

telephones and 96KHz for DVDs), number of channels (mono and stereo), and sampling

resolution (8bit and 16bit).

 Mixer: used to control the volume of multiple inputs and outputs, as well as the

switch between the inputs (microphone, line-in, CD).

 Synthesizer: used to synthesize sounds using the pre-defined waveforms, and

sometimes used to produce sound effects in the games.

 MIDI Interface: It is a serial interface for connecting synthesizer, keyboard, props,

and lighting controllers on the stage.

In the SylixOS system, the device is abstracted into a file and the access to the

device is realized through the access to the file (open the file first, and then read/write it, at

the same time, read/set the parameters using ioctl, and finally close the file). In the OSS

standard, there are mainly the following device files:

SpaceChain OS

494

Application Development Manual

 /dev/mixer: used to access the built-in mixer in the sound card, adjust the

volume, and select the sound source;

 / dev / sndstat: used to test the sound card, performing the cat / dev / sndstat will

result in the display of the information of the sound card driver information;

 /dev/dsp, /dev/dspW, /dev/audio: Reading this device is equivalent to recording,

and writing it is equivalent to playing. / The difference between dev/dsp and

/dev/audio is that the sampling code is different. /dev/audio uses μ-law code,

/dev/dsp uses 8bit (unsigned) linear code, and /dev/dspW has linear code when

using 16bit (signed). dev/audio is used mainly for compatibility with SunOS and

is generally not recommended;

 /dev/sequencer: used to access the synthesizer with a built-in sound card, or

connected to a MIDI interface.

The specific audio device files in SylixOS actually depend on the implementation of

the underlying driver, and typically there are only the /dev/dsp and /dev/mixer devices.

13.9.2 Audio Programming

Next we will discuss turning-on, playback, recording and parameter adjustment of

the audio device.

1. Definition of Header File

#include <ioctl.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/soundcard.h>

#define BUF_SIZE 4096

int audio_fd;

unsigned char audio_buffer[BUF_SIZE];

2. Opening of Audio Device

if ((audio_fd = open("/dev/dsp", open_mode, 0)) == -1) {

perror("/dev/dsp");

exit(1);

}

There are three options for open_mode: O_RDONLY, O_WRONLY, and O_RDWR,

which represent read-only, write-only, and read-write, respectively. The OSS standard

recommends that read-only or write-only should be used as much as possible, and the

SpaceChain OS

495

Application Development Manual

read-write mode should only be used in the full-duplex situation (i.e. recording and

playing simultaneously).

3. Recording

int len;

if ((len = read(audio_fd, audio_buffer, count)) == -1) {

perror("audio read");

exit(1);

}

Count is the number of bytes of recording data (an exponent of 2 is recommended),

but it should not exceed the size of audio_buffer. The time can be measured accurately by

reading the number of bytes. For example, the rate of 8KHz, 16bit stereo is

8000*2*2=32000 bytes/second, which is the only way to know when to stop recording.

4. Playback

Playback is actually very similar to recording, except that read is changed to write,

and in the corresponding audio_buffer is audio data, and count is the length of the data.

Note that users always have to read/write a complete sample. For example, in a

16-bit stereo mode, there are 4 bytes in each sample, so the application must read/write

the bytes based on the number of multiples of 4 each time.

In addition, since OSS is a cross-platform audio interface, users should consider

portability durign programming. One of the important aspects is the byte order of

read/write.

5. Setting of Sampling Format

int format;

format = AFMT_S16_LE;

if (ioctl(audio_fd, SNDCTL_DSP_SETFMT, &format) == -1) {

perror("SNDCTL_DSP_SETFMT");

exit(1);

}

if (format != AFMT_S16_LE) {

 /*

 * This device does not support the selected sampling format

 */

}

Before setting the sampling format, you can first test which sampling formats the

device supports. The method is as follows:

int mask;

SpaceChain OS

496

Application Development Manual

if (ioctl(audio_fd, SNDCTL_DSP_GETFMTS, &mask) == -1) {

perror("SNDCTL_DSP_GETFMTS");

exit(1);

}

if (mask & AFMT_MPEG) {

 /*

 * This device supports MPEG sampling format...

 */

}

6. Setting of the Number of Channels

int channels = 2; /* 1=mono, 2=stereo */

if (ioctl(audio_fd, SNDCTL_DSP_CHANNELS, &channels) == -1) {

perror("SNDCTL_DSP_CHANNELS");

exit(1);

}

if (channels != 2){

/*

 * This device does not support stereo mode...

 */

}

7. Setting of Sampling Rate

int speed = 11025;

if (ioctl(audio_fd, SNDCTL_DSP_SPEED, &speed)==-1) {

perror("SNDCTL_DSP_SPEED");

exit(1);

}

if (/* The rate of return (ie the rate supported by the hardware) is very different

from the rate required... */) {

/*

 * This device does not support the required rate...

 */

}

The audio device generates the required sampling clock by frequency division, so it is

not possible to generate all the frequencies. The driver will calculate the frequency that is

closest to the requirement, and the user program will check the returned rate value. If the

error is small, it can be ignored.

SpaceChain OS

497

Application Development Manual

13.9.3 Mixer Programming

The control of Mixer includes adjusting the volume, selecting the recording source

(microphone, line-in), querying the function and state of the mixer, and the control is

achieved mainly through the ioctl interface of the /dev/mixer for the Mixer. Correspondingly,

the functions provided by the ioctl interface are also divided into three categories:

adjusting the volume, querying the ability of the mixer, and selecting the recording channel

of the mixer. The following describes the use method:

The mixer_fd below is the file descriptor returned by the open operation of the mixer

device.

1. Adjusting the volume

The application reads/sets the volume via the ioctl's MIXER_READ and

MIXER_WIRTE function number. In the OSS standard, the volume ranges from 0 to 100.

Use methods are as follows:

int vol;

if (ioctl(mixer_fd, MIXER_READ(SOUND_MIXER_MIC), &vol) == -1) {

/*

 * Accessed an undefined mixer channel...

 */

}

SOUND_MIXER_MIC is a channel parameter that indicates the volume of the read

microphone channel and the result is placed in vol. If the channel is stereo, then the least

significant byte of vol is the left channel's volume value, followed by the right channel's

volume value, and the other two bytes are unused. If the channel is mono, the left and

right channels in vol have the same value.

2. Querying the Ability of Mixer

int mask;

if (ioctl(mixer_fd, SOUND_MIXER_READ_xxxx, &mask) == -1) {

/*

 * Mixer does not have this ability...

 */

}

The xxxx in SOUND_MIXER_READ_xxxx represents the content to be queried:

 Check the available mixer channels using SOUND_MIXER_READ_DEVMASK;

 Check available the recording device using SOUND_MIXER_READ_RECMASK;

 Check mono/stereo using SOUND_MIXER_READ_STEREODEVS;

 Check the general capabilities of the mixer, using

SOUND_MIXER_READ_CAPS and so on.

SpaceChain OS

498

Application Development Manual

The result of the query for all channels is placed in the mask. Therefore, use

mask&(1 << channel_no) to distinguish the state of a particular channel.

3. Selecting the Recording Channel of Mixer

Check the available recording channels through SOUND_MIXER_READ_RECMASK

first, and then select the recording channels using SOUND_MIXER_WRITE_RECSRC.

You can query the recording channel already selected in the current sound card through

SOUND_MIXER_READ_RECSRC at any time.

The OSS standard proposes to separate the user control functions of the mixer and

make it form a general program. But the premise is that you need to check the capabilities

of the sound card first through the API query function before using the mixer.

The following procedure shows the operation method to play music using the OSS

standard.

#include "unistd.h"

#include "stdlib.h"

#include "sys/soundcard.h"

#define __OSS_TEST_BUFFER_LEN 10 * 1024

#define __OSS_TEST_WAV_FILE "/apps/wo.wav"

#define __OSS_TEST_SAMPLE_RATE 11025

#define __OSS_TEST_CHANNELS 2

#define __OSS_TEST_SAMPLE_FORMAT AFMT_S16_LE

int main (int argc, char *argv[])

{

CHAR *pcBuffer;

CHAR *pcPtr;

INT iSampleFmt;

INT iChannels;

INT iSampleRate;

INT iDspFd;

INT iFileFd;

ssize_t stLen;

ssize_t stRet;

 pcBuffer = malloc(__OSS_TEST_BUFFER_LEN);

 if (!pcBuffer) {

 printf("failed to alloc buffer!\n");

 return (-1);

 }

 iDspFd = open("/dev/dsp", O_WRONLY, 0666);

 if (iDspFd < 0) {

SpaceChain OS

499

Application Development Manual

 printf("failed to open /dev/dsp device!\n");

 return (-1);

 }

 iSampleFmt = __OSS_TEST_SAMPLE_FORMAT;

 stRet = ioctl(iDspFd, SNDCTL_DSP_SETFMT, &iSampleFmt);

 if (stRet < 0) {

 printf("failed to set sample format!\n");

 close(iDspFd);

 return (-1);

 }

 iChannels = __OSS_TEST_CHANNELS;

 stRet = ioctl(iDspFd, SNDCTL_DSP_CHANNELS, &iChannels);

 if (stRet < 0) {

 printf("failed to set channels!\n");

 close(iDspFd);

 return (-1);

 }

 iSampleRate = __OSS_TEST_SAMPLE_RATE;

 stRet = ioctl(iDspFd, SNDCTL_DSP_SPEED, &iSampleRate);

 if (stRet < 0) {

 printf("failed to set sample rate!\n");

 close(iDspFd);

 return (-1);

 }

 iFileFd = open(__OSS_TEST_WAV_FILE, O_RDONLY, 0666);

 if (iFileFd < 0) {

 printf("failed to open test audio file %s!\n",

__OSS_TEST_WAV_FILE);

 close(iDspFd);

 return (-1);

 }

 read(iFileFd, pcBuffer, 0x2E * 2);

 while ((stLen = read(iFileFd, pcBuffer,

__OSS_TEST_BUFFER_LEN)) > 0) {

 pcPtr = pcBuffer;

 while (stLen > 0) {

SpaceChain OS

500

Application Development Manual

 stRet = write(iDspFd, pcPtr, stLen);

 if (stRet < 0) {

 break;

 }

 pcPtr += stRet;

 stLen -= stRet;

 }

 }

 sleep(3);

 close(iFileFd);

 close(iDspFd);

 free(pcBuffer);

 return (0);

}

13.10 Audio Device

In a video capture interface, there may be multiple video input sources, and there

may also be multiple video output channels via video format conversion. Each channel

may support different output formats, such as RGB format for direct display, or YUV or

JPEG formats for compressed storage or transmission. When a user uses a specific video

device, they usually do not care too much about the information of the video input source

(such information is usually processed by the driver), and they are more concerned with

the video output information, such as the format, size, and occupied memory of the output

image. All definitions of video devices in SylixOS are located in the

<system/device/video/video.h> header file, and all of its data structures and control

commands are designed based on the video interface features described above.

13.10.1 Device Description

SylixOS uses the following structure to describe a specific video device:

typedef struct video_dev_desc {

 CHAR driver[32];

 CHAR card[32];

 CHAR bus[32];

 UINT32 version; /* Video driver version

 */

#define VIDEO_DRV_VERSION 1

 UINT32 capabilities; /* ability */

SpaceChain OS

501

Application Development Manual

#define VIDEO_CAP_CAPTURE 1 /* Video capture

capability*/

#define VIDEO_CAP_READWRITE 2 /* read/write System call

support */

 UINT32 sources; /* The number of video sources

 */

 UINT32 channels; /* Total number of acquisition

channels */

 ……

} video_dev_desc;

The structure is described as follows:

 driver is the drive name used by the video device;

 card is the name of the corresponding video interface card (video processing

device);

 bus is the description information for the bus of the video interface card;

 version represents the version of the video framework that the video device’s

driver should follow
①
;

 capabilities describes the functions of a video device. The currently-defined

functions include video capture and support for the call of the read/write system.

 sources is the total number of video input sources for a video device;

 channels is the number of video capture channels, which is also the number of

video output channels;

 reserve is a reserved byte and it is compatible with subsequent extension

definitions.

13.10.2 Description of Device Channels

According to video_dev_desc, we can obtain the overall information of a video device,

and the application is most concerned with the information of each video output channel.

SylixOS describes a video output channel through the following structure:

typedef struct video_channel_desc {

 UINT32 channel; /* Specified video capture

channel */

 CHAR description[32]; /* Instructions */

 UINT32 xsize_max; /* max size */

 UINT32 ysize_max;

SpaceChain OS

502

Application Development Manual

UINT32 queue_max; /* Maximum supported storage

sequence number */

 UINT32 formats; /* Number of supported video

capture formats */

 UINT32 capabilities; /* ability */

#define VIDEO_CHAN_ONESHOT 1 /* Only one frame is acquired

 */

 ……

} video_channel_desc;

The structure is described as follows:

 channel is the channel number;

 description is a format description string;

 Xsize_max and ysize_max: respectively represent the maximum width and

maximum height (in pixel) of the output image supported by the channel;

 Queue_max: the maximum number of supported memory sequences. The

sequence here refers to a sequence of image frames;

 formats: the number of supported video formats;

 capabilities: the function of channel. Currently, it is only defined that the

channel is allowable to sample only one frame of data at a time.

13.10.3 Description of Image Format of the Device Channel

typedef struct video_format_desc {

 UINT32 channel; /* Specified video capture

channel */

 UINT32 index; /* Specified sequence number

 */

 CHAR description[32]; /* Instructions */

 UINT32 format; /* Frame format

video_pixel_format*/

 UINT32 order; /* MSB or LSB video_order_t*/

 UINT32 reserve[8];

} video_format_desc;

As mentioned above, the number of video formats supported by the channel is given

in the channel descriptor through the format member and video_format_desc describes a

specific video format.

SpaceChain OS

503

Application Development Manual

 channel is the channel number corresponding to the format. The user sets

this value to obtain the supported format of the specified channel.

 index is relative to formats and its value should be 0~formats, indicating that the

number of type of the obtained format description information.

 description is the description string of the format;

 order indicates that a pixel data is stored at the big end or the small end, and its

value is of video_order_t type.

typedef enum {

 VIDEO_LSB_CRCB = 0, /*Low front (LSB)

 */

 VIDEO_MSB_CRCB = 1 /* High front (MSB)

 */

} video_order_t;

format is a specific video format flag whose value is the video_pixel_format

enumeration type and is defined as follows:

typedef enum {

 VIDEO_PIXEL_FORMAT_RESERVE = 0,

 /*

 * RGB

 */

 VIDEO_PIXEL_FORMAT_RGBA_8888 = 1,

 VIDEO_PIXEL_FORMAT_RGBX_8888 = 2,

 VIDEO_PIXEL_FORMAT_RGB_888 = 3,

 VIDEO_PIXEL_FORMAT_RGB_565 = 4,

 VIDEO_PIXEL_FORMAT_BGRA_8888 = 5,

 VIDEO_PIXEL_FORMAT_RGBA_5551 = 6,

 VIDEO_PIXEL_FORMAT_RGBA_4444 = 7,

 /*

 * 0x8 ~ 0xF range reserve

 */

 VIDEO_PIXEL_FORMAT_YCbCr_422_SP = 0x10, /* NV16 */

 VIDEO_PIXEL_FORMAT_YCrCb_420_SP = 0x11, /* NV21 */

 VIDEO_PIXEL_FORMAT_YCbCr_422_P = 0x12, /* IYUV */

 VIDEO_PIXEL_FORMAT_YCbCr_420_P = 0x13, /* YUV9 */

 VIDEO_PIXEL_FORMAT_YCbCr_422_I = 0x14, /* YUY2 */

 /*

 * 0x15 reserve

 */

 VIDEO_PIXEL_FORMAT_CbYCrY_422_I = 0x16,

 /*

 * 0x17 0x18 ~ 0x1F range reserve

SpaceChain OS

504

Application Development Manual

 */

 VIDEO_PIXEL_FORMAT_YCbCr_420_SP_TILED = 0x20, /* NV12 tiled */

 VIDEO_PIXEL_FORMAT_YCbCr_420_SP = 0x21, /* NV12 */

 VIDEO_PIXEL_FORMAT_YCrCb_420_SP_TILED = 0x22, /* NV21 tiled */

 VIDEO_PIXEL_FORMAT_YCrCb_422_SP = 0x23, /* NV61 */

 VIDEO_PIXEL_FORMAT_YCrCb_422_P = 0x24 /* YV12 */

} video_pixel_format;

Currently, SylixOS only gives the definitions for YUV and RGB image formats, and

does not define other compression formats such as JPEG, BMP, etc., namely, it mainly

processes video capture-related devices. From the above it can be seen that there are

many video formats,no more information about YUV and RGB will be given in his section,

and readers can understand it by other means.

13.10.4 Setting of Device Channel

After obtaining the information about device descriptors, channel descriptors, and

format descriptor for each channel, the user can set related parameters of the channel

according to actual needs. The structure of the channel control is defined as follows:

typedef struct video_channel_ctl {

 UINT32 channel; /* Video channel number */

 UINT32 xsize; /* Acquisition output size */

 UINT32 ysize;

 UINT32 x_off; /* Relative acquisition start

offset */

 UINT32 y_off;

 UINT32 x_cut; /* Relative acquisition end offset

 */

 UINT32 y_cut;

 UINT32 queue; /* Acquisition sequence number

 */

 UINT32 source; /* Specified video input source

 */

 UINT32 format; /* video_pixel_format */

 UINT32 order; /* MSB or LSB video_order_t */

 ……

} video_channel_ctl;

SpaceChain OS

505

Application Development Manual

The structure is described as follows:

 Xsize and ysize are used to specify the size of the final output image;

 X_off, y_off, x_cut, and y_cut refers to trimming processes of image frame. This

means that we can extract only part of the original image frame and scale the

partial area through xsize and ysize. Of course, these features require the

support of a specific video device driver. If the video device does not support

trimming and scaling, the application can only obtain the original video image

data;

 queue indicates how many frames of data the video device needs to acquire.

This value cannot exceed the maximum number of frames supported by the

video device (queue_max defined by the channel descriptor described above);

 source specifies the input source of this channel, not exceeding the maximum

number of video sources supported by the device;

 format and order should be one of the video format descriptors supported by the

channel.

13.10.5 Setting of Device Buffer

Video acquisition is a continuous process, and the acquisition process continues

while the upper layer is processing and acquiring a frame of data. This requires a buffer

that can hold several frames of video data. The user always handles the buffering of valid

frame data. The video device always puts the acquired data into the idle frame buffer,

which avoids the conflict of the two. In fact, the vast majority of video capture devices

support the setting of multi-frame buffering on the hardware. That is, each video output

channel has one or more frame buffer queues. The queue is also called the ping-pong

buffer. The capture card cyclically places the video data in the ping-pong buffer. For

example, if a channel has 4 queue buffers, the video capture card will repeat this process

from frame 1 to frame 4 at a time. Among the device channel descriptors mentioned above,

queue_max represents the maximum number of valid frames of data that a video channel

can buffer. Unlike other systems, the frame buffer defined by SylixOS is a piece of

memory with continuous physical addresses that can hold several frames of data. This

memory can be allocated for application by the application or automatically allocated by

the driver.

In addition to the parameter of the number of frames in the buffer, there are other

parameters that the user should attention. We talked about using the channel control

structure video_channel_ctl to set the channel parameters, including the image size,

cropping area, and format. In fact, after setting the channel parameters, the driver can get

the buffer size of each frame of data and the total size of the buffer according to its own

hardware. The user uses the buffer calculation request structure to obtain the detailed

buffer parameters given by the driver:

SpaceChain OS

506

Application Development Manual

typedef struct video_buf_cal {

 UINT32 channel; /* Video channel number */

 size_t align; /* Minimum memory

alignment requirement */

 size_t size; /* The total size of the

channel buffer memory */

 size_t size_per_fq; /* Memory size per frame in

the queue */

 size_t size_per_line; /* One line of memory in

each image */

 ……

} video_buf_cal;

align is the memory alignment value of the entire buffer. In most cases, the video

device internally uses DMA to transfer video data and has the address alignment

requirements for the memory used.

size is the total size of the memory. Size_per_fq is the size of a frame of data,

size_per_line is the size of each line of memory in a frame of image. In general, the size of

a frame of data is equal to the product of the number of bytes per pixel and the length and

width of the frame. However, different types of hardware may have data alignment

requirements for each row of the frame data, so there may be cases where the end of row

is padded with invalid data to satisfy the alignment condition. The user can know how to

deal with the frame data according to the actual size of the image, combining with

size_per_fq and size_per_line.

After obtaining the specific parameters of the buffer, set the specific buffer through the

buffer control structure:

typedef struct video_buf_ctl {

 UINT32 channel; /* Video channel number */

 PVOID mem; /* Frame buffer (physical

memory address) */

 size_t size; /* Buffer size */

 UINT32 mtype; /* Frame buffer type

video_mem_t */

 ……;

} video_buf_ctl;

As mentioned earlier, the memory of the frame buffer can be allocated by the user

and provided to the driver. mem points to the memory allocated by the user. Note that the

parameter requirements specified by video_buf_cal, such as the total memory size and

the alignment value, must be satisfied. size indicates the size of the actual memory, which

SpaceChain OS

507

Application Development Manual

is not less than the size specified by videoo_buf_cal. mtype indicates the type of

the frame buffer and its value is of enumeration type, i.e. video_mem_t, defined as

follows:

typedef enum {

 VIDEO_MEMORY_AUTO = 0, /* Automatically allocate

frame buffer */

 VIDEO_MEMORY_USER = 1 /* User allocation frame

buffer */

} video_mem_t;

If the user allocates a buffer himself/herself, he/she needs to set mtype as

VIDEO_MEMORY_USER, otherwise as VIDEO_MEMORY_AUTO, and set mem as

LW_NULL. That the user allocates physical memory by himself/herself, which can result in

better performance and efficiency to the application sometimes. If the driver allocates

memory on its own, the application can only access the memory through the mmap

memory map, which consumes the page space of the virtual memory. If there is a

hardware in the system that needs to reprocess the image data, it also uses DMA to

access the image memory, then we can apply the memory allocated by the user to the

hardware and video interfaces at the same time so that the two directly perform memory

interactions to achieve zero copy.

13.10.6 Video Capture Control

After completing the above steps, we can start the video device to start video capture.

The structure of controlling the video capture is as follows:

typedef struct video_cap_ctl {

 UINT32 channel; /* Video channel number */

#define VIDEO_CAP_ALLCHANNEL 0xffffffff

 UINT32 on; /* on / off */

 UINT32 flags;

#define VIDEO_CAP_ONESHOT 1 /* Only one frame is

acquired */

 ……;

} video_cap_ctl;

The structure is described as follows:

 channel specifies the channel to start the capture. If all the channels are set, then

multiple channels can be started once via VIDEO_CAP_ALLCHANNEL. Of

course, if only part of the channels are set, we need to start each channel

separately;

SpaceChain OS

508

Application Development Manual

 on indicates start or stop of the capture, 0 indicates stop and non-zero

indicates start;

 Flags is a capture flag. Currently, only VIDEO_CAP_ONESHOT is defined,

which corresponds to the capabilities of the channel descriptor.

After starting the video capture, in order to correctly process the captured data, we

also need to obtain the current capture state using the following structure:

typedef struct video_cap_stat {

 UINT32 channel; /* 视频通道号 */

 UINT32 on; /* on / off */

 UINT32 qindex_vaild; /* The frame number of the

most recent valid frame */

 UINT32 qindex_cur; /* The queue number being

collected */

#define VIDEO_CAP_QINVAL 0xffffffff

 ……

} video_cap_stat;

The structure is described as follows:

 on indicates the current capture state, 0 is stopped, non-zero is started;

 qindex_valid indicates the queue number of the nearest frame, and the

application should use this frame data.

 qindex_cur indicates the queue number being collected and the application

should not use this frame data.

If the queue number is VIDEO_VAP_QINVAL, it indicates an invalid queue number,

indicating that there is no valid frame data yet, and the application should continue to

query the capture state.

As mentioned earlier, in SylixOS, all the frame buffers captured by the video are one

continuous physical memory space, and the application can access the specified frame

data according to the size of each frame of data and the frame index.

13.10.7 Summary of Operation Commands for the Video Device

Like other systems, the video device in SylixOS is a standard I/O device. All of the

previously mentioned operations on the device are performed through ioctl system

commands. Table 13.4 lists all the operating commands.

Table 13.4 Device operation command

Command Word Parameter (for this type of pointer) Description

VIDIOC_DEVDESC video_dev_desc Get the device descriptor

SpaceChain OS

509

Application Development Manual

VIDIOC_CHANDESC video_channel_desc
Get the specified channel

descriptor of the device

VIDIOC_FORMATDESC video_format_desc
Get the format descriptors

supported by the channel

VIDIOC_GCHANCTL video_channel_ctl
Get the parameters of the

current channel

VIDIOC_SCHANCTL video_channel_ctl
Set the parameters of the

current channel

VIDIOC_MAPCAL video_buf_cal
Get the parameters of the frame

buffer

VIDIOC_MAPPREPAIR video_buf_ctl
Set the frame buffer

(pre-allocation of memory)

VIDIOC_CAPSTAT video_cap_stat Get the capture state

VIDIOC_GCAPCTL video_cap_ctl
Get the current capture

parameter

VIDIOC_SCAPCTL video_cap_ctl
Set the current capture

parameter

SpaceChain OS

510

Application Development Manual

13.10.8 Video Device Application Examples

Next we will show an example of how to get specific information for a video device, as

shown in Program List 13.12:

Program List 13.12 Getting Video Device Information

#include <SylixOS.h>

#include <video.h>

int main (int argc, char *argv[])

{

 int fd;

 int i, j;

 video_dev_desc dev;

 video_channel_desc channel;

 video_format_desc format;

 fd = open("/dev/video0", O_RDWR);

 ioctl(fd, VIDIOC_DEVDESC, &dev);

 for (i = 0; i < dev.channels; i++) {

 channel.channel = i;

 ioctl(fd, VIDIOC_CHANDESC, &channel);

 for (j = 0; j < channel.formats; j++) {

 format.channel = i;

 format.index = j;

 ioctl(fd, VIDIOC_FORMATDESC, &format);

 }

 }

 return 0;

}

In the above program, the device descriptor is first got, thus the number of video

output channels supported by the device is obtained. Then, the channel descriptor of each

channel its is got, thus the number of video formats supported by each channel is

obtained, and all the video formats supported by each channel of the video device is also

obtained.

Let’s suppose a specific application scenario below: we need to display the captured

video in real time through the LCD. We need to understand the display parameters of the

LCD device (that is, frame buffer FrameBuffer) and the format parameters of the video

data, the data should be put it into FrameBuffer for display after appropriate software

processing. Due to space limitations, the following program is implemented in

pseudo-code and a lot of simplification is made.

Program List 13.13 Video Capture Example

SpaceChain OS

511

Application Development Manual

#include <SylixOS.h>

#include <video.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

int main (int argc, char *argv[])

{

 int fd;

 int fb_fd;

 video_channel_ctl channel;

 video_buf_cal cal;

 video_buf_ctl buf;

 video_cap_ctl cap;

 video_cap_stat sta;

 void *pcapmem;

 void *pfbmem;

 void *pframe;

 fd_set fdset;

 /*

 * Open the video device and get the necessary information */

 fd = open("/dev/video0", O_RDWR);

 ...

 /*

 * Set the desired output image parameters

 * At the same time get the frame memory parameters

 */

 channel.channel = 0;

 channel.xsize = 640;

 channel.ysize = 480;

 channel.x_off = 0;

 channel.y_off = 0;

 channel.queue = 1;

 channel.source = 0;

 channel.format = VIDEO_PIXEL_FORMAT_RGBX_8888;

 channel.order = VIDEO_LSB_CRCB;

 ioctl(fd, VIDIOC_SCHANCTL, &channel);

 ioctl(fd, VIDIOC_MAPCAL, &cal);

 /*

 * Prepare memory data

 */

SpaceChain OS

512

Application Development Manual

 buf.channel = 0;

 buf.mem = NULL;

 buf.size = cal.size;

 buf.mtype = VIDEO_MEMORY_AUTO;

 ioctl(fd, VIDIOC_MAPPREPAIR, &buf);

 /*

 * Map frame memory

 */

 pcapmem = mmap(NULL, buf.size, PROT_READ, MAP_SHARED, fd, 0);

 cap.channel = 0;

 cap.on = 1;

 cap.flags = 0;

 ioctl(fd, VIDIOC_SCAPCTL, &cap);

 /*

 * Open FrameBuffer device

 * Map FrameBuffer Memory

 */

 fb_fd = open(...);

 pfbmem = mmap(..., fb_fd, 0);

 for (;;) {

 FD_ZERO(&fdset);

 FD_SET(fd, &fdset);

 /*

 * Wait for the device to read.

 * Every time the valid frame data is completed, the driver will wake up

the thread blocked here.

 */

 select(fd + 1, &fdset, NULL, NULL, NULL);

 if (FD_ISSET(fd, &fdset)) {

 ioctl(fd, VIDIOC_CAPSTAT, &sta);

 pframe = (char *)pcapmem + cal.size_per_fq * sta.qindex_vaild;

 ...

 memcpy(pfbmem, pframe, cal.size_per_fq);

 }

 }

 munmap(pcapmem, buf.size);

 close(fd);

SpaceChain OS

513

Application Development Manual

 munmap(pfbmem, ...);

 close(fb_fd);

 return (0);

}

In the above example, we assume that the format parameter of the display device are

known as RGB32 format, and the width and height are 640 and 480 pixels, respectively,

and the same video output format is set. After starting the video capture, we wait for each

frame of data through the call of the “select” system. The current valid frame index is

obtained through the VIDIOC_CAPSTAT command. Note that a lot of simplification

processing is made for the cases of obtaining the current frame data to be processed, the

padding problem of invalid data is not considered, but it is assumed that all the data are

valid pixel data. We get the current frame buffer address by the size of each frame and the

current valid frame index, and then copy it directly to the display buffer. It is assumed here

that the format of the captured video data is exactly the same as that of the display buffer

format, otherwise, appropriate conversion processing should be performed before

copying.

In fact, the operation of video device is relatively more cumbersome than other

devices because it involves more parameter control. It is not simple to implement a video

application that can adapt to a wide variety of hardware and software platforms. For

example, if the video format does not support the RGB format, we also need to convert it

to RGB format to achieve correct display. This example only serves as a guide and

readers can gain insights through other means.

13.11 Real-Time Clock Device

A real-time clock device, i.e. RTC device, is an external device that is independent of

the CPU clock and is usually powered by a separate power supply. Therefore, it is

possible to continue processing time counts after the system is powered off. So we can

believe that the RTC time indicates the real physical time. In SylixOS, the RTC device is a

standard I/O device. Although the application can directly operate the device using

standard I/O functions, this method is not recommended because an RTC device may be

integrated inside the processor chip and may also be an external clock counting device,

so its device name is not unique, absolutely depending on the driver. Therefore, in order to

have a better portability of the program, it is recommended to use the standard API

provided by SylixOS to operate RTC time (see Section 11.1.2 RTC time).

13.12 GPIO Devices

GPIO is namely a general-purpose input/output port, hereinafter referred to as an I/O

port. An I/O port can provide input, output, or interrupt function. The GPIO device in

SylixOS manages all available GPIO ports on the entire hardware system, allowing the

SpaceChain OS

514

Application Development Manual

application to use the GPIO's three functions through the standard interface. The

relevant definitions for the GPIO devices are located in the <sys/gpiofd.h> file. The

relevant APIs are described below.

#include <sys/gpiofd.h>

int gpiofd(unsigned int gpio, int flags, int gpio_flags);

int gpiofd_read(int fd, uint8_t *value);

int gpiofd_write(int fd, uint8_t value);

Function gpiofd prototype analysis:

 The file descriptor corresponding to the GPIO port will be returned when the

function succeeds, and a negative number will be returned when it fails;

 The parameter gpio is the unique number of the GPIO port. This number is

associated to the specific system hardware. The application program should be

selected correctly according to the definition of the GPIO port number in the BSP

package.

 The parameter flags has the similar meaning to the second parameter of the

open function, which can be O_RDONLY, O_RDWR, etc.

 The parameter gpio_flags is an identifier associated to the GPIO characteristic,

which can be a combination of multiple bit identifiers. Refer to the following table:

Figure 13.1 GPIO function signature

Bit Identifier Description

GPIO_FLAG_DIR_OUT Set GPIO as the output function

GPIO_FLAG_DIR_IN Set GPIO as the input function

GPIO_FLAG_IN The same as GPIO_FLAG_DIR_IN

GPIO_FLAG_OUT_INIT_LOW
Set GPIO as the output function and initialize the output low

level at the same time

GPIO_FLAG_OUT_INIT_HIGH
Set GPIO as the output function and initialize the output

high level at the same time

GPIO_FLAG_OPEN_DRAIN Set GPIO output as the drain output mode

GPIO_FLAG_OPEN_SOURCE Set GPIO output as the source output mode

GPIO_FLAG_PULL_DEFAULT Use the default pull-up/pull-down mode

SpaceChain OS

515

Application Development Manual

GPIO_FLAG_PULL_UP Use pull-up resistor mode

GPIO_FLAG_PULL_DOWN Use pull-down resistor mode

GPIO_FLAG_PULL_DISABLE Disable pull-up/pull-down mode

GPIO_FLAG_TRIG_FALL
Set GPIO as the interrupt function and the falling edge

trigger interrupted

GPIO_FLAG_TRIG_RISE
Set GPIO as the interrupting function and the rising edge

trigger interrupted

GPIO_FLAG_TRIG_LEVEL
Set GPIO as the interrupting function and the level trigger

interrupted

Note: When using the GPIO_FLAG_TRIG_LEVE flag, we can only use one of

GPIO_FLAG_TRIG_FALL and GPIO_FLAG_TRIG_RISE to combine with it, indicating low level trigger

and high level trigger respectively. When GPIO_FLAG_TRIG_LEVE is not used, we can use

GPIO_FLAG_TRIG_TRIG_FALL in combination with GPIO_FLAG_TRIG_RISE to indicate double-edge

triggering.

The function gpiofd_read reads the level state of a GPIO port with only two values of

0 and 1. The prototype analysis is as follows:

 This function returns 0 when it suceed and returns the error code when it fails.

 The parameter fd is the file descriptor corresponding to the GPIO port;

 The output parameter value holds the read level value, 0 means low level, 1

means high level.

The function gpiofd_write sets the level state of a GPIO port. There are only two

values of 0 and 1. The prototype analysis is as follows:

 This function returns 0 when it suceed and returns the error code when it fails.

 The parameter fd is the file descriptor corresponding to the GPIO port;

 The parameter value is the level value to be set, 0 means low level, and 1 means

high level.

The above function can only process the input and output of GPIO, but it cannot use

its interrupt function. The way to use the interrupt function of the GPIO in the driver is to

call the system kernel API to register the corresponding interrupt service program, but the

application cannot call these functions. We know that I/O multiplexing (select) allows a

SpaceChain OS

516

Application Development Manual

task to wait for one or more file descriptors in a block way to satisfy a specified

state (read, write, or exception). SylixOS uses this to provide the application with the

method to use the GPIO interrupt function. When a GPIO with an interrupt function

generates an interrupt, the kernel wakes up all threads that call “select” to wait for the

readable state of the GPIO file descriptor, to notify the thread of the generation of an

interrupt. When “select” returns correctly, the thread will perform the corresponding

processing, which is similar to completing an interrupt service. The following program

shows the general use of GPIO devices.

Program List 13.14 Examples of GPIO Device Operations

#include <stdio.h>

#include <fcntl.h>

#include <sys/select.h>

#include <sys/gpiofd.h>

#define LED_GPIO_NUM 52

#define KEY_GPIO_NUM 32

int main (int argc, char *argv[])

{

 fd_set fdset;

 int led_fd;

 int key_fd;

 int ret;

 uint8_t value = 1;

 led_fd = gpiofd(LED_GPIO_NUM, O_WRONLY, GPIO_FLAG_OUT_INIT_LOW);

 if (led_fd < 0) {

 fprintf(stderr, "open led gpiofd failed.\n");

 return (-1);

 }

 key_fd = gpiofd(KEY_GPIO_NUM, O_RDONLY, GPIO_FLAG_TRIG_FALL);

 if (key_fd < 0) {

 fprintf(stderr, "open key gpiofd failed.\n");

 return (-1);

 }

 while (1) {

 FD_ZERO(&fdset);

 FD_SET(key_fd, &fdset);

/*

* 等待按键中断产生

*/

SpaceChain OS

517

Application Development Manual

 ret = select(key_fd + 1, &fdset, NULL, NULL, NULL);

 if (ret != 1) {

 fprintf(stderr, "select error.\n");

 break;

 }

 gpiofd_write(led_fd, value);

 value = !value;

 }

 close(led_fd);

 close(key_fd);

 return (0);

}

In the above program, we assume that the port number of the control LED is 52, the

port number of the interrupt detection key is 32, and it is assumed that a falling edge

interrupt will be generated when the key is pressed. We set fdset as the read wait file

descriptor set for the select function, that is, waiting for the GPIO file to be readable,

actually waiting for a key interrupt to occur. The effect of the above program is that the

LED light's state changes every time the button is pressed (from being lighted to being

extinguished or from being extinguished to being lighted).

13.13 CAN Bus Device

CAN is namely the Controller Area Network. and it is a serial communication protocol,

and widely used in automotive electronics, automatic control, and security monitoring. The

CAN bus protocol only defines the physical layer and data link layer in the OSI model. In

practical applications, communication is usually performed in a high-layer protocol based

on the CAN basic protocol. In the CAN,basic protocol, the frame is used as the basic

transmission unit. Similar to the MAC frame in Ethernet, the CAN controller is responsible

for performing level conversion, message verification, error handling, and bus arbitration

for the CAN frame. However, there is no source address and destination address in the

CAN frame. This indicates that in a CAN bus system, the CAN controllers of all nodes

cannot perform hardware address filtering like Ethernet to achieve directional

communication, and only the application layer determines whether to receive the frame.

The CAN high-layer protocol deals with similar tasks. It carefully defines various fields of

the CAN frame, giving it special meaning, and handles some of the work that the

underlying protocol does not handle, such as device type definition, device status

monitoring and management on the bus. We refer to CAN high-layer protocols collectively

as CAN application layer protocols.

Currently, CAN application layer protocols include DeviceNet, CANopen, CAL, etc.

They have their own protocol standards for different applications. Due to space limitations,

SpaceChain OS

518

Application Development Manual

this document does not introduce the specific knowledge about the CAN underlying

protocol and application protocol.

The CAN bus device in SylixOS only supports the underlying protocol. The device is a

character device, but its read and write operations must use a CAN frame as the basic unit.

The definition of the CAN frame in SylixOS is located in <SylixOS/system/device/can.h>

and the structure is as follows:

#define CAN_MAX_DATA 8 /* CAN The maximum length of the

frame data */

typedef struct {

 UINT CAN_uiId; /* Identification code */

 UINT CAN_uiChannel; /* Channel number */

 BOOL CAN_bExtId; /* Whether it is an extended

frame */

 BOOL CAN_bRtr; /* Whether it is a remote frame

 */

 UCHAR CAN_ucLen; /* Data length */

 UCHAR CAN_ucData[CAN_MAX_DATA]; /* Frame data */

} CAN_FRAME;

typedef CAN_FRAME *PCAN_FRAME;

The member CAN_uiId is a CAN node identifier. In a CAN bus system, the identifier

of each node is unique. If the member CAN_bExtId is FALSE, it indicates a standard

frame, the lower 11 bits of CAN_uiId are valid, otherwise it is expressed as an extended

frame, then the lower 29 bits of CAN_uiId are valid. Most application protocols will

redefine CAN_uiId, for example, using a part of bits to indicate the data type of the device,

and some bits to indicate the address of the device. Therefore, the purpose of the

extension frame is to meet more application data requirements and support more devices

within the unified network on an existing basis. CAN_uiChannel is not specified by the

CAN protocol. This data is used in SylixOS to indicate the hardware channel number of

the CAN device in the system. It is usually not processed in actual applications. CAN_bRtr

indicates whether it is a remote frame. The role of a remote frame is to allow the nodes

that desire for the frame to request for the frames having the same remote frame identifier

from the node in the CAN system. The maximum frame data length of a CAN frame is 8

bytes. The member CAN_ucLen denotes the actual length of the data in the current frame,

and CAN_ucData denotes the actual data.

Now we consider such an application scenario: In a CAN bus system, there are many

nodes responsible for data acquisition. The data types they acquired are different, and the

corresponding data formats are also different. Of course, there may be multiple nodes for

the acquisitions of the same data type. In the system, there is also a node responsible for

collecting and processing these data. The basic requirement on it is to correctly identify

different data formats and perform corresponding parsing processing. In order to

effectively distinguish the different data types, we can artificially define the data in the

CAN frame. For example, we can use part of the data bits of CAN_uiId to indicate the data

SpaceChain OS

519

Application Development Manual

type, and the rest indicates the node ID, but this reduce the number of CAN nodes

that can be supported by the entire CAN system; another method is to use part of the

CAN_ucData data bits (such as the first byte) to indicate the data type, but this will reduce

the amount of data that can be transmitted in a single time. In order to describe these

behaviors, we need to define a common operating standard. This is equivalent to that we

define a CAN application layer protocol ourselves. Here we will simply call the custom

protocol APP and define it in appLib.h.

Program List 13.15 CAN Custom Application Protocol

#ifndef __APP_LIB_H

#define __APP_LIB_H

#define APP_TYPE_MASTER 0

#define APP_TYPE_INT32 1

#define APP_TYPE_STRING 2

#define APP_ADDR_MASTER 0

#define APP_TYPE(id) ((id >> 7) & 0x0f)

#define APP_ADDR(id) (id & 0x3f)

#define APP_NET_ID(t, a) ((((UINT)t & 0x0f) << 7) | ((UINT)a & 0x3f))

static inline INT32 __appByteToInt32 (const UCHAR *pucByte)

{

 INT32 iData;

 iData = ((INT32)pucByte[0])

 | ((INT32)pucByte[1] << 8)

 | ((INT32)pucByte[2] << 16)

 | ((INT32)pucByte[3] << 24);

 return (iData);

}

static inline VOID __appInt32ToByte (UCHAR *pucByte, INT32 iData)

{

 pucByte[0] = iData & 0xff;

 pucByte[1] = (iData >> 8) & 0xff;

 pucByte[2] = (iData >> 16) & 0xff;

 pucByte[3] = (iData >> 24) & 0xff;

}

SpaceChain OS

520

Application Development Manual

extern UINT __appSlaveAddrGet(VOID);

#endif /* __APP_LIB_H */

As shown in Program List 13.15, we have redefined the ID of the CAN underlying

protocol. First of all, only standard frames exist in the system. This means that the

effective data bits of the ID are 11 bits. We use the upper 4 bits to indicate the data type

and the lower 7 bits to indicate the CAN device address. For simplicity, we define two data

types, one indicates the data is the 32-bit signed integer and the other indicates that the

data is a string. In addition, we refer to the node responsible for collecting data in the

system as the master and refer to the node responsible for information acquisition as the

slave. The macro definition APP_ADDR_MASTER reserves a device address for the

master mode. This shows that there can be only one master node in the entire system.

The inline functions __appByteToInt32 and __appInt32ToByte process the data with

the type of integers, the former is used for the integers that are parsed to be the actual

application after the master node has received the byte-form data, and the latter is used

for the data that has been processed to be byte form by the slave node prior to the the

transmission of the integer data, and the data will be send to the network.

__appSlaveAddrGet is used to get a unique slave node address. Just like the IP

address and MAC address in Ethernet, the unique identifier of the node in a network must

be managed by a third party organization (IP address is managed by IANA, and MAC

address is managed by IEEE). In our CAN bus system, although each node can be

artificially guaranteed with the uniqueness of the address, the source or storage of the

addresses may not be the same. It can come from non-volatile memory such as EEPROM,

NANDFLASH, or SD card, and even we can provide a service node similar to DHCP in the

entire system, allowing other nodes to dynamically obtain the address information.

Because of so many possibilities, we let the method of address acquisition achieved in the

specific applications, the above function is only declared as an external function instead

of being implementation.

Program List 13.16 Example of Master Nodes for CAN Custom Protocols

#include <SylixOS.h>

#include "appLib.h"

#define CAN_DEV_NAME "/dev/can0"

int main(int argc, char *argv[])

{

 INT iCanFd;

SpaceChain OS

521

Application Development Manual

 CAN_FRAME canframe;

 UINT uiType;

 UINT uiAddr;

 ssize_t sstReadLen;

 UINT uiNetId;

 iCanFd = open(CAN_DEV_NAME, O_RDONLY);

 if (iCanFd < 0) {

 fprintf(stderr, "open %s failed.\n", CAN_DEV_NAME);

 return (-1);

 }

 while (1) {

 sstReadLen = read(iCanFd, &canframe, sizeof(CAN_FRAME));

 if (sstReadLen < 0) {

 fprintf(stderr, "read error.\n");

 break;

 }

 if (sstReadLen < sizeof(CAN_FRAME)) {

 continue;

 }

 uiNetId = canframe.CAN_uiId;

 uiAddr = APP_ADDR(uiNetId);

 uiType = APP_TYPE(uiNetId);

 switch (uiType) {

 case APP_TYPE_INT32:

 {

 INT32 iData;

 iData = __appByteToInt32(canframe.CAN_ucData);

 printf("node addr = %d, type = int32, value = %d.\n",

 uiAddr, iData);

 }

 break;

 case APP_TYPE_STRING:

 {

 CHAR *pcData = (CHAR *)canframe.CAN_ucData;

 pcData[canframe.CAN_ucLen] = '\0';

 printf("node addr = %d, type = string, value = %s.\n",

 uiAddr, pcData);

 }

 break;

SpaceChain OS

522

Application Development Manual

 default:

 break;

 }

 }

 close(iCanFd);

 return (0);

}

The above is the master node program, and its function is very simple, namely

continuously obtaining the data from the slave node in the network, and printing it out after

corresponding processing according to the data type. Be sure to read the data with a CAN

frame as the basic size.

Program List 13.17 Sample Slave Nodes for CAN Custom Protocols

#include <SylixOS.h>

#include "appLib.h"

#define CAN_DEV_NAME "/dev/can0"

int main(int argc, char *argv[])

{

 INT iCanFd;

 CAN_FRAME canframe;

 UINT uiAddr;

 ssize_t sstWriteLen;

 INT32 iData = 0;

 iCanFd = open(CAN_DEV_NAME, O_WRONLY);

 if (iCanFd < 0) {

 fprintf(stderr, "open %s failed.\n", CAN_DEV_NAME);

 return (-1);

 }

 uiAddr = __appSlaveAddrGet();

 canframe.CAN_uiId = APP_NET_ID(APP_TYPE_INT32, uiAddr);

 canframe.CAN_ucLen = sizeof(INT32);

 canframe.CAN_bExtId = LW_FALSE;

 canframe.CAN_bRtr = LW_FALSE;

 canframe.CAN_uiChannel = 0;

 while (1) {

 __appInt32ToByte(canframe.CAN_ucData, iData);

 sstWriteLen = write(iCanFd, &canframe, sizeof(CAN_FRAME));

 if (sstWriteLen < 0) {

 fprintf(stderr, "write error.\n");

SpaceChain OS

523

Application Development Manual

 break;

 }

 iData++;

 sleep(5);

 }

 close(iCanFd);

 return (0);

}

The above slave program reports the data of integer type to the system every 5

seconds. All that needs to be done is to set the data type field in the ID to

APP_TYPE_INT32. In our example program, we did not use the extension frame and

remote frame identification in the CAN frame, nor did we deal with the details of more

communication, such as the effective recovery, initiation and response to communication,

processing of big and small endian data between different nodes when the abnormal

communication occurs on a certain node. As mentioned earlier, the existing CAN

application layer protocols can handle the problems of ensuring the stability and validity of

communications, and provide convenient operating interfaces for applications.

13.14 Virtual Device Files

The Linux kernel has been gradually added with three virtual device files since

version 2.6.22, namely, eventfd, timerfd and signalfd. These three files allow applications

to use events (semaphores), timers, and signal resources through standard I/O operations

instead of the traditional method to call API. The biggest advantage due to this is that

applications can use “select (or poll and epoll)” while monitoring multiple such files

simultaneously (or such files and other files), so that the asynchronous parallel processing

of multiple events can be converted into synchronous serial processing, which is very

useful in many applications. SylixOS is fully compatible with these three virtual device files

and added with a hstimerfd used for high-precision timers. The following describes how to

use them.

13.14.1 eventfd

eventfd is mainly used for event notification between threads. Linux supports the call

of the fork system, so it can also be used for event notification between parent and child

processes. The relevant API is described as follows:

int eventfd(unsigned int initval, int flags);

int eventfd_read(int fd, eventfd_t *value);

int eventfd_write(int fd, eventfd_t value);

The prototype analysis of the function eventfd:

SpaceChain OS

524

Application Development Manual

 The function returns a file descriptor if it succeeds, and returns a negative

number and set the error number when it fails;

 The parameter initval indicates the initial state of the event. For example, 0

means no event occurs currently.

 The parameter flags is the operation option for this event file and can be

EFD_CLOEXEC, EFD_NONBLOCK, and EFD_SEMAPHORE. The specific

meaning of EFD_SEMAPHORE will be explained later.

The function eventfd_read is used to read the event file, namely, waiting for the

sending of event. When there is no event and the EFD_NONBLOCK parameter is not

used, the function will be blocked. Its prototype analysis is as follows:

 The function returns 0 when it succeeds, and returns the error code when it fails;

 The parameter fd is an event file descriptor opened by eventfd;

 The output parameter value holds the number of the read events, and its

behavior is related to the EFD_SEMAPORE flag. eventfd_t is defined as an

unsigned 64-bit integer in most systems. In normal circumstances, the number of

events it can indicate can be interpreted as infinite.

When the parameter flag using the eventfd function contains EFD_SEMAPORE, it

means that the event is operated by the counting semaphore. That is, if multiple events

have been generated, only one event will be obtained for each read. The internal event

counter of the file only performs the calculation by decrement of one, and the value in the

file is 1. When EFD_SEMAPORE is not used, all events are read at a time. The contents

of value are the number of read events , and the internal event counter will be zeroed. The

two ways can meet the needs of the application in different scenarios.

The function eventfd_write is used to write event files, i.e. sending events. When the

internal event counter reaches the maximum value, no events can be further sent, and the

prototype analysis is as follows:

 The function returns 0 when it succeeds, and returns the error code when it fails;

 The parameter fd is an event file descriptor opened by eventfd;

 The input parameter value is the number of the sent events, and its behavior is

related to the EFD_SEMAPHORE flag.

The following example shows the use of eventfd.

Program List 13.18 Achieving synchronization between threads using the event file

#include <stdio.h>

#include <sys/eventfd.h>

#include <pthread.h>

void *event_write_routine (void *arg)

SpaceChain OS

525

Application Development Manual

{

 eventfd_t value = 1;

 int event_fd = (int)arg;

 int ret;

 while (1) {

 ret = eventfd_write(event_fd, value);

 if (ret) {

 fprintf(stderr, "write eventfd error.\n");

 break;

 }

 value++;

 }

 return (NULL);

}

int event_write_server_start (int event_fd, void *(*routine)(void *))

{

 pthread_t tid;

 int ret;

 ret = pthread_create(&tid, NULL, routine, (void *)event_fd);

 if (ret != 0) {

 fprintf(stderr, "pthread create failed.\n");

 return (-1);

 }

 return (0);

}

int main (int argc, char *arvg[])

{

 int event_fd;

 int ret;

 eventfd_t value;

 event_fd = eventfd(0, 0);

 if (event_fd < 0) {

 fprintf(stderr, "open eventfd failed.\n");

 return (-1);

 }

 ret = event_write_server_start(event_fd, event_write_routine);

 if (ret) {

SpaceChain OS

526

Application Development Manual

 fprintf(stderr, "start eventfd write server failed.\n");

 close(event_fd);

 return (-1);

 }

 while (1) {

 ret = eventfd_read(event_fd, &value);

 if (ret) {

 fprintf(stderr, "read eventfd error.\n");

 break;

 }

 fprintf(stdout, "read event value count: %llu.\n", value);

 }

 close(event_fd);

 return (0);

}

In the above program, the child thread continuously writes an incremented event to

the event file. The main thread continuously reads the event and prints the value of this

event. Its operating results are as follows:

./eventfd_test

read event value count: 1.

read event value count: 2.

read event value count: 3.

read event value count: 4.

read event value count: 5.

read event value count: 6.

read event value count: 7.

read event value count: 8.

The above result is very regular. It can be seen that the event value of each read

reflects only the value of the event written once, rather than the sum of multiple write

values. In fact, the eventfd_write function will always wait for the last write event to be read

to complete the write of this event. Therefore, the read and write of the event file is a

synchronized process. The value of an event can be understood as the number of

resources that can be processed after an event occurs, EFD_SEMAPHORE allows the

event receiver to decide whether to handle multiple resources at a time or a single

resource.

13.14.2 timerfd

SpaceChain OS

527

Application Development Manual

In Chapter 11 Time Management, we have described the use of SylixOS

timer-related API functions. The timer function can also be achieved through the use of

Timerfd. The relevant APIs are as follows.

#include <timerfd.h>

int timerfd_create(clockid_t clockid, int flags);

int timerfd_settime(int fd, int flags, const struct itimerspec *ntmr,

struct itimerspec *otmr);

int timerfd_gettime(int fd, struct itimerspec *currvalue);

The prototype analysis of the function timerfd_create:

 The function returns a timer descriptor if it succeeds, and returns a negative

number and set the error number when it fails;

 The parameter clockid indicates the type of clock source referenced by the timer,

which may be CLOCK_REALTIME or CLOCK_MONOTONIC, representing real

time and linear increment time, respectively;

 The parameter flags is the option bit identifier of the timer file, which can be

TFD_CLOEXEC (equal to O_CLOEXEC) and TFD_NONBLOCK (equal to

O_NONBLOCK);

The function timerfd_settime is used to set the timer start time and reload interval.

The prototype analysis is as follows:

 The function returns 0 if it succeeds, and returns a negative number and set the

error number when it fails;

 The parameter fd is a timer file descriptor;

 The parameter flags is an identifier related to timing, which may be 0 or

TIMER_ABSTIME, and affects the meaning of the parameter ntmr;

 The parameter ntmr describes the time parameters of the timer: start time and

reload time;

 The output parameter otmr holds the old time parameter, which can be NULL.

The data type itimerspec is defined as follows:

struct itimerspec {

 struct timespec it_interval; /* Timer reload value */

 struct timespec it_value; /* The remaining time until the

next expiration */

};

it_interval is the time interval for the timer period trigger, and it_value indicates the

time when the timer is first triggered. The meaning of this value is defined by flags. If the

TIMER_ABSTIME flag is set, it indicates that it_value is an absolute time. When the

system time reaches this value, the timer is triggered. If flags is 0, it indicates it_value is a

SpaceChain OS

528

Application Development Manual

relative time, after which, the timer will be triggered. The types of the two are both

timespec, which means that the timer can achieve nanosecond time accuracy.

The function timerfd_gettime obtains the current time parameter of the timer file. The

prototype analysis is as follows:

 The function returns 0 if it succeeds, and returns a negative number and set the

error number when it fails;

 The parameter fd is a timer file descriptor;

 The output parameter currvalue holds the current time parameter.

Once the timerfd_settime is called successfully, the timer will be started and the timer

will be triggered when the set time condition is met. The application can use “read” or

“select” to wait for a timer trigger (same as GPIO device).

Program List 13.19 Example of timerfd Application

#include <sys/timerfd.h>

#include <stdio.h>

#include <stdint.h>

#include <time.h>

static int show_elapsed_time (void)

{

 static struct timespec start;

 struct timespec curr;

 static int first_call = 1;

 int secs;

 int nsecs;

 if (first_call) {

 first_call = 0;

 if (clock_gettime(CLOCK_MONOTONIC, &start) == -1) {

 return (-1);

 }

 }

 if (clock_gettime(CLOCK_MONOTONIC, &curr) == -1) {

 return (-1);

 }

 secs = curr.tv_sec - start.tv_sec;

 nsecs = curr.tv_nsec - start.tv_nsec;

 if (nsecs < 0) {

 secs--;

 nsecs += 1000000000;

 }

fprintf(stdout, "time elapsed: %d.%03d seconds.\n",

SpaceChain OS

529

Application Development Manual

secs, (nsecs + 500000) / 1000000);

 return (0);

}

int main(int argc, char *argv[])

{

 struct itimerspec time;

 int timer_fd;

 int ret;

 uint64_t expired;

 ssize_t read_len;

 timer_fd = timerfd_create(CLOCK_MONOTONIC, 0);

 if (timer_fd < 0) {

 fprintf(stderr, "create timerfd failed.\n");

 return (-1);

 }

 time.it_value.tv_sec = 3;

 time.it_value.tv_nsec = 0;

 time.it_interval.tv_sec = 1;

 time.it_interval.tv_nsec = 0;

 ret = timerfd_settime(timer_fd, 0, &time, NULL);

 if (ret) {

 fprintf(stderr, "start timerfd error.\n");

 close(timer_fd);

 return (-1);

 }

 ret = show_elapsed_time();

 if (ret) {

 close(timer_fd);

 return (-1);

}

 while (1) {

 read_len = read(timer_fd, &expired, sizeof(uint64_t));

 if (read_len < sizeof(uint64_t)) {

 fprintf(stderr, "read timerfd error.\n");

 break;

 }

 ret = show_elapsed_time();

 if (ret) {

 break;

SpaceChain OS

530

Application Development Manual

 }

 fprintf(stdout, "timer is triggered, expire count = %llu.\n", expired);

 sleep(2);

 }

 close(timer_fd);

 return (0);

}

In the above program, when the timer is created, the parameter flags is 0, which

means the relative time is used. When the timerfd_settime is called, the setting of the time

parameter indicates that the timer is triggered 3 seconds after it was started, and then will

be triggered once every 1 second. . The private function show_elapsed_time is used to

display the elapsed time since the timer is started, which is used as a criterion for verifying

the accuracy of the timer. After the timer is triggered for the first time, the program

periodically waits for the timer's triggering state every 2 seconds. Note that the read way is

used to wait for the trigger of the timer. The data it reads is a 64-bit unsigned type. The

data indicates how many times the timer is triggered up to this triggering. We also refer to

it as a timer’s number of expirations. After the program is run, the result is as follows:

./timerfd_test

time elapsed: 0.000 seconds.

time elapsed: 2.996 seconds.

timer is triggered, expire count = 1.

time elapsed: 4.996 seconds.

timer is triggered, expire count = 2.

time elapsed: 6.996 seconds.

timer is triggered, expire count = 2.

time elapsed: 8.996 seconds.

timer is triggered, expire count = 2.

time elapsed: 10.996 seconds.

timer is triggered, expire count = 2.

time elapsed: 12.996 seconds.

timer is triggered, expire count = 2.

From the results, it can be seen that 2.996 seconds (there is a certain deviation in the

precision) has passed in the timer when the timer is triggered for the first time, and the

timer expiration count is displayed as 1, which is in accordance with our setting. Thereafter,

the timer is triggered once every 1 second, we have to get the timer expiration count of 2

every 2 seconds, which is also consistent with expectations.

It should be noted that when setting the time parameter of the timer, if the time value

of it_value is 0, it does not mean that the timer is triggered immediately, but means to stop

the timer; similarly, when the time value of it_interval is 0, it does not indicate the timer is

triggered infinitely without waiting time, but indicates to stop the timer.

SpaceChain OS

531

Application Development Manual

13.14.3 hstimerfd

SylixOS supports the timer with the time accuracy higher than the system clock, and

provides related API functions (see Chapter 11 Time Management). The high-precision

timer can only guarantee its time accuracy is not lower than the ordinary timer, and the

accuracy depends entirely on the system hardware and the support of BSP package.

SylixOS also provides hstimerfd files similar to tirmfd, allowing the application to use the

high-precision timer via standard I/O. The relevant API is defined as follows:

#include <sys/hstimerfd.h>

int hstimerfd_hz(void);

int hstimerfd_create(int flags);

int hstimerfd_settime(int fd,

const struct itimerspec *ntmr,

struct itimerspec *otmr);

int hstimerfd_settime2(int fd, hstimer_cnt_t *ncnt, hstimer_cnt_t *ocnt);

int hstimerfd_gettime(int fd, struct itimerspec *currvalue);

int hstimerfd_gettime2(int fd, hstimer_cnt_t *currvalue);

Hstimerfd_settime and hstimerfd_gettime are consistent with the the common timer

API mentioned in the previous section in terms of parameters and behaviors The function

hstimerfd_hz returns the count frequency of the high-precision timer, which is also the

timing accuracy that can be achieved.

The function hstimerfd_create prototype analysis is as follows:

 The function returns a file descriptor if it succeeds, and returns a negative

number and set the error number when it fails;

 The parameter flags is the file identifier, which can be HSTFD_CLOEXEC (equal

to O_CLOEXEC) and HSTFD_NONBLOCK (equal to O_NONBLOCK);

The function hstimerfd_settime2 prototype analysis is as follows:

 The function returns 0 when it succeeds, and returns the error code when it fails;

 The parameter fd is a timer file descriptor;

 The parameter ncnt is similar to hstimer_cnt_t, indicating a new timer time count

parameter;

 The output parameter ocnt holds the old timer time count parameter.

Hstimerfd provides a new time parameter method that uses the count value of a

high-precision timer as its time parameter. The data structure hstimer_cnt_t is defined as

follows:

typedef struct hstimer_cnt {

 unsigned long value;

 unsigned long interval;

} hstimer_cnt_t;

SpaceChain OS

532

Application Development Manual

The member variable value denotes the count value (the count value upon first-time

expiration) that the timer is triggered for the first time since the timer was started. interval

is the count value for the timer period trigger.

The function hstimerfd_gettime2 prototype analysis is as follows:

 The function returns 0 when it succeeds, and returns the error code when it fails;

 The parameter fd is a timer file descriptor;

 The output parameter currvalue holds the timer's current time parameter.

A high-precision timer is similar to a common timer except that the time accuracy is

different, so no further examples are given here. The reader can perform a slight

modification according to the programs listed in Program List 13.19, that means, a

high-precision timer can be used.

13.14.4 signalfd

The traditional signal processing method is to use the signal or sigaction functions to

register the signal processing function concerned. When the signal occurs, these

functions will be called in an asynchronous manner. Therefore, the data concurrency

needs to be considered in use, and See Chapter 10 Signal System for its related API and

its use methods. signalfd allows the application to wait for signals to be generated in the

file form and process them synchronously. signalfd is a standard I/O device file whose

definition is located in the <sys/signalfd.h> header file, as shown below:

#include <sys/signalfd.h>

int signalfd(int fd, const sigset_t *mask, int flags);

The function signalfd prototype analysis is as follows:

 The function returns a signal descriptor if it succeeds, and returns a negative

number and set the error number when it fails;

 The parameter fd indicates an existing signal file descriptor. If fd is -1, it indicates

a new signal file should be created; and if fd is an existing signal file descriptor, it

means the signal to be processes should be reset;

 The parameter mask contains a set of signals that need attention;

 The parameter flags may be SFD_CLOEXEC (equal to O_CLOEXEC) and

SFD_NONBLOCK (equal to O_NONBLOCK).

When the function signalfd is successfully called, the file descriptor returned by it is

associated with the signal specified by the parameter mask. Thereafter, the function read

is used to wait for the signal to occur, the read data is a signalfd_siginfo structure, which is

defined as follows:

struct signalfd_siginfo {

SpaceChain OS

533

Application Development Manual

 uint32_t ssi_signo; /* Signal number

 */

 int32_t ssi_errno; /* Error number (unused) */

 int32_t ssi_code; /* Signal code */

 uint32_t ssi_pid; /* PID of sender */

 uint32_t ssi_uid; /* Real UID of sender */

 int32_t ssi_fd; /* File descriptor (SIGIO) */

 uint32_t ssi_tid; /* Kernel timer ID (POSIX timers) */

 uint32_t ssi_band; /* Band event (SIGIO) */

 uint32_t ssi_overrun; /* POSIX timer overrun count */

 uint32_t ssi_trapno; /* Trap number that caused signal */

 int32_t ssi_status; /* Exit status or signal (SIGCHLD) */

 int32_t ssi_int; /* Integer sent by sigqueue(3) */

 uint64_t ssi_ptr; /* Pointer sent by sigqueue(3) */

 uint64_t ssi_utime; /* User CPU time consumed (SIGCHLD) */

 uint64_t ssi_stime; /* System CPU time consumed (SIGCHLD) */

 uint64_t ssi_addr; /* Address that generated signal */

 /* (for hardware-generated signals) */

 uint8_t pad[48];

};

The member variable ssi_signo of signalfd_siginfo is the number of the current signal,

and we can deal with different signals according to it. signalfd_siginfo has the same

meaning as many members of the same name in siginfo_t. See siginfo_t and refer to

Chapter 10 Signal System for details. Next, a simple example for how to use signalfd is

given.

Program List 13.20 Signalfd Application Example

#include <sys/signalfd.h>

#include <stdio.h>

#include <stdint.h>

#include <signal.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

 sigset_t sig_mask;

 int sig_fd;

 struct signalfd_siginfo sig_info;

 ssize_t read_size;

 sigemptyset(&sig_mask);

 sigaddset(&sig_mask, SIGINT);

 sigaddset(&sig_mask, SIGQUIT);

SpaceChain OS

534

Application Development Manual

 if (sigprocmask(SIG_BLOCK, &sig_mask, NULL) == -1) {

 fprintf(stderr,"sigprocmask error.\n");

 return (-1);

 }

 sig_fd = signalfd(-1, &sig_mask, 0);

 if (sig_fd < 0) {

 fprintf(stderr,"crteate signalfd error.\n");

 return (-1);

 }

 while (1) {

 read_size = read(sig_fd, &sig_info, sizeof(struct signalfd_siginfo));

 if (read_size != sizeof(struct signalfd_siginfo)) {

 fprintf(stderr, "read signalfd error.\n");

 break;

 }

 if (sig_info.ssi_signo == SIGINT) {

 printf("got SIGINT signal.\n");

 } else if (sig_info.ssi_signo == SIGQUIT) {

 printf("got SIGQUIT signal.\n");

 break;

 } else {

 fprintf(stderr, "got unexpected signal.\n");

 }

 }

 close(sig_fd);

 return (0);

}

In the above program, we added the two signals of interest SIGINT and SIGQUIT to

the signal set, and then block them through sigprocmask. This is not the same as using

signal or sigaction to process signals. They require that the signal of interest cannot be

blocked. When signalfd is used, if the signasl are not blocked, they will go to the default

signal processing function when the signal occurs. When the signal occurs, although

these signals are blocked, the system will make the files associated with these signals

readable, so we use the read function to wait for the signal to occur. In this way, SIGINT

and SIGQUIT are serialized in one thread. After the program is running, first check its

result with the ps command as follows:

./sigfd_test &

ps

 NAME FATHER PID GRP MEMORY UID GID USER

SpaceChain OS

535

Application Development Manual

----------------- ----------------- ----- ----- ---------- ----- -----

kernel <orphan> 0 0 36864 0 0 root

sigfd_test <orphan> 16 16 45056 0 0 root

The name of the test program is sigfd_test, and its PID is 16. Now we use the kill

command to send the two signals of interest to the process. The corresponding number of

SIGINT is 2, and that of SIGQUIT is 3. The result is as follows:

kill -n 2 16

got SIGINT signal.

kill -n 2 16

got SIGINT signal.

kill -n 2 16

got SIGINT signal.

kill -n 3 16

got SIGQUIT signal.

Under Linux, we can use the Ctrl+C key combination to send the SIGINT signal to the

current process. Use Ctrl+\ to send the SIGQUIT signal to the current process. In SylixOS,

using Ctrl+C always always exits the current process without outputting the above

information.

SpaceChain OS

536

Application Development Manual

 Application Development Manual
SpaceChain OS

537

Chapter 14 Hot-plug System

14.1 Introduction of the Hot-plug System

The hot-plug system is used to manage and monitor the plug-in/removal state of all

the hot-plug devices in the system, so that the system internally create/delete such

devices automatically, without the need of the user’s manual operation. At the same time,

the hot-plug system also collects information related to hot-plug and supplies the same to

the application.

Figure 14.1 Overall Structure of a Hot-plug System

As shown in Figure 14.1, there is a kernel thread named "t_hotplug" in the SylixOS

system. The hot-plug state of the device is reported to the thread through the event. The

creation/deletion of the device is handled by this thread. Some devices cannot generate

hot-plug events (such as the devices without plug-in interception detection pins). You

can register hot-plug detection functions with the system, and the “t_hotplug” thread can

periodically calls such registered functions to perform hot-plug detection, namely the

polling detection (corresponding to the poll module in the above figure). The system also

has a virtual device named "/dev/hotplug". It collects related hot-plug messages. Generally,

hot-plug messages come from the "t_hotplug" thread, and may also from the device driver.

The application can read the /dev/hotplug device and get the hot-plug messages it cares

about.

SylixOS defines the current hot-plug device messages, such as USB, SD, and PCI. In

addition, there are messages similar to the hot-plug behavior such as the connection and

disconnection of the network and the change of the connection state of the power supply.

SpaceChain OS

538

Application Development Manual

14.2 Hot-plug Message

14.2.1 Format of Hot-Plug Messages

Figure 14.2 Format of Hot-plug Message

As shown in the above figure, the first 4 bytes of the message indicates the type of

the message, which is of the big-endian format. The currently-defined message type is

located in the <SylixOS/system/hotplugLib/hotplugLib.h> header file, such as USB

keyboard, USB mouse, SD memory card, SDIO wireless network card, and so on. On an

actual hardware platform, a device driver can also define its own hot-plug message type.

The 5th byte is the device state, with 0 indicating the device is unplugged and 1

indicating the device is inserted.

Beginning from the 6th byte, it indicates the name of the device, the content of which

is a string ending with ‘\0’. The application should get a full name with this as the

terminator. The name is the full path name of a device, such as "/dev/ttyUSB0",

"/media/sdcard0", and so on. The maximum length of a full path name in SylixOS is 512,

plus the end character '\0', so the maximum length of the dev name field is 513.

Immediately following the device name (the end of the ‘\0’ character) are four

parameters that can be used for flexible expansion, and each of them has 4 bytes in

length. These four parameters can be adapted to the special processing of different

device messages. SylixOS does not specify the specific usage and storage format (large

endian or small endian) of each parameter and is completely defined by the device driver.

From the above we can see that the maximum length of a hot-plug message is: 4 + 1

+ 513 + 4 + 4 + 4 + 4 = 534 bytes.

14.2.2 Processing the Hot-Plug Messages

The following is a specific example describing how to get and process hot-plug

messages through the /dev/hotplug device.

Program List 14.1 Example of Processing Hot-plug Messages

#include <stdio.h>

#include <string.h>

#define MSG_LEN_MAX (534)

SpaceChain OS

539

Application Development Manual

int main(int argc, char *argv[])

{

 UINT8 pucMsgBuff[MSG_LEN_MAX];

 INT iFd;

 INT32 iMsgType;

 BOOL bInsert;

 CHAR *pcDevName;

 UINT8 *pucArg;

 UINT8 *pucTemp;

 ssize_t sstReadLen;

 iFd = open("/dev/hotplug", O_RDONLY);

 if (iFd < 0) {

 fprintf(stderr, "open /dev/hotplug failed.\n");

 return (-1);

 }

 while (1) {

 sstReadLen = read(iFd, pucMsgBuff, MSG_LEN_MAX);

 if (sstReadLen < 0) {

 fprintf(stderr, "read hotplug message error.\n");

 close(iFd);

 return (-1);

 }

 if (sstReadLen < 5) {

 continue;

 }

 /*

 * 解析热插拔消息

 */

 pucTemp = pucMsgBuff;

 iMsgType = (pucTemp[0] << 24)

 | (pucTemp[1] << 16)

 | (pucTemp[2] << 8)

 | (pucTemp[3]);

 pucTemp += 4;

 bInsert = *pucTemp ? TRUE : FALSE;

 pucTemp += 1;

 pcDevName = (CHAR *)pucTemp;

 pucArg = pucTemp + strlen(pcDevName) + 1;

SpaceChain OS

540

Application Development Manual

 printf("get new hotplug message >>\n"

 " message type: %d\n"

 "device status: %s\n"

 " device name: %s\n"

 " arg0: 0x%01x%01x%01x%01x\n"

 " arg1: 0x%01x%01x%01x%01x\n"

 " arg2: 0x%01x%01x%01x%01x\n"

 " arg3: 0x%01x%01x%01x%01x\n",

 iMsgType,

 bInsert ? "insert" : "remove",

 pcDevName,

 pucArg[0], pucArg[1], pucArg[2], pucArg[3],

 pucArg[4], pucArg[5], pucArg[6], pucArg[7],

 pucArg[8], pucArg[9], pucArg[10], pucArg[11],

 pucArg[12], pucArg[13], pucArg[14], pucArg[15]);

 }

 close(iFd);

 return (0);

}

In the above program, the obtained hot-plug message is subject to simple error

processing, that means, the message length should be at least 5 bytes long, because a

hot-plug message necessarily includes the message type and the device's plug-in/pull-out

state. Note that when processing message types in the program, a parse is required

according to the big endian data storage format, that means, the low address byte

represents the high byte data. The starting address of the addition parameter of the

message is namely the address of the device name plus the address of its length and the

end character.

After the program is running, if we insert or unplug the SD memory card, the following

message will be printed out:

Insert the SD memory card:

get new hotplug message >>

message type: 346

device status: insert

 device name: /media/sdcard0

 arg0: 0x0000

 arg1: 0x0000

 arg2: 0x0000

 arg3: 0x0000

Pull out the SD memory card:

get new hotplug message >>

SpaceChain OS

541

Application Development Manual

message type: 346

device status: remove

 device name: /media/sdcard0

 arg0: 0x0000

 arg1: 0x0000

 arg2: 0x0000

 arg3: 0x0000

The displayed the message type value is 346 in decimal. Compared to the message

type defined in the <SylixOS/system/hotplugLib/hotplugLib.h> file, it is equal to

LW_HOTPLUG_MSG_SD_STORAGE (0x0100+90), which is namely the hot-plug

message for the SD memory card device. . The device name in the message is

/media/sdcard0, which is the standard name for the SD memory card in SylixOS. In

addition, other storage devices are also mounted by default under the /media directory.

For example, the name of the U disk is /media/udisk0. The value of the 4 additional

parameters is 0, indicating that the hot-plug message corresponding to SD memory card

does not use this additional parameter (in fact, most of the hot-plug messages do not use

the additional parameters).

The above program is an example for all hot-plug messages in a general detection

system. It doesn’t process the corresponding parameter messages for a specific message

type, but prints out the value only in hexadecimal system. Since the /dev/hotplug device

can be turned on multiple times by any program, in actual use, therefore, a program

usually only needs to read the hot-plug message types that it concerns about, such as the

xinput module in SylixOS, which only monitors the state of the input devices, such as USB

mouse, USB keyboard, etc.

SpaceChain OS

542

Application Development Manual

 Application Development Manual
SpaceChain OS

543

Chapter 15 Network I/O

15.1 socket interface

In the eyes of many underlying network application developers, all programming is socket,

and almost all network programming relies on socket. When we open the browser every day to

browse the website, the socket is required for communication between the browser process

and the Web server. Socket is the interface between the process corresponding to the

application program in the network communication and the network protocol, as shown in

Figure 15.1.

Figure 15.1 Position of socket in the network

Socket has the following functions in network transmission:

 The socket is located above the protocol, and shields the differences between

different network protocols:

 Socket is the entrance of network programming. It provides a large number of system

calls, and constitutes the main body of the network program;

 Socket is a device in the SylixOS file system, which can operate socket via the

standard I/O function. This makes our control of the network as easy as control of

files.

There are three common socket types: stream (SOCK_STREAM), datagram

(SOCK_DGRAM) and raw (SOCK_RAW). Stream is a connection-oriented socket for

SpaceChain OS

544

Application Development Manual

connection-oriented TCP service application. The datagram socket is a kind of

connectionless socket corresponding to connectionless UDP service application. For TCP or

UDP program development, the focus is on the Data field. We cannot directly modify the TCP

or UDP header fields, and of course, the IP header. In other words, we have very limited space

for their head operations, and can only use the source, destination IP, source and destination

ports opened to us. For the raw type, one can obtain the raw IP packet, then customize the

specific protocol type carried by IP, such as TCP, UDP or ICMP, and manually fill each type of

packet carried in the IP protocol.

IP address and port number uniquely identify an application in the network communication,

where the IP address plus the port number is called as socket, also referred to as the socket.

The application layer programming interface designed for the TCP/IP is called as socket API.

The socket API's location in the network hierarchy is shown in Figure 15.2.

Figure 15.2 socket application interface

15.1.1 Network endian

We already know that the multi-byte data in memory has big and little endians with respect

to the memory address, and the multi-byte data in the disk file also has big and little endians

with respect to the offset address in the file. The network data stream also has the big endian

and little endian. It is a topic requiring attention how to define the address of the network data

stream. The send host usually sends the data in the send buffer zone according to the memory

address from low to high. The receive host saves the byte received from the network in the

receive buffer zone, i.e., save according to the memory address from low to high. Therefore,

the address of the network data stream shall be specified as follows: the data sent first is the

low address, and the data sent later is the high address.

SpaceChain OS

545

Application Development Manual

The 16-bit data big-endian and little-endian represent the memory layout, as shown

in Figure 15.3.

Figure 15.3 16-bit data big-endian and little-endian

The TCP/IP protocol stipulates that the network data stream shall adopt the big endian,

that is to say, the low address stores the high byte. In order to make the network program

portable, and the same C code run normally after compilation on big endian and little endian

computers. The following library functions can be called for conversion of network endian and

host endian.

#include <arpa/inet.h>

uint32_t htonl(uint32_t x);

uint16_t htons(uint16_t x);

uint32_t ntohl(uint32_t x);

uint16_t ntohs(uint16_t x);

In the above function names, h represents host, n represents network, l represents long,

and s represents short. For example, the htonl function converts the long integer from host

endian to network endian, and returns it. For example, send after IP address conversion. If the

host is the small endian, these functions will perform the corresponding big-little endian

conversion of the parameters and return them. If the host is the big endian, these functions will

not perform conversion, and return the parameters as they are. Although the <arpa/inet.h>

header file is included when using these functions, system implementation often declares

these functions in other header files. All of these header files are included in <arpa/inet.h>. For

the system, these functions can also be implemented as macros.

SpaceChain OS

546

Application Development Manual

15.1.2 Socket address

The socket API is applicable for a variety of underlying network protocols, such as IPv4,

IPv6, and UNIX Domain sockets to be discussed later. However, the address formats of

various network protocols are not the same. In order to enable addresses in different formats

to be passed to the socket function, the address will be forcibly converted into a common

address structure sockaddr.

The following is implementation in SylixOS system:

struct sockaddr {

 u8_t sa_len;

 sa_family_t sa_family;

#if LWIP_IPV6

 char sa_data[26];/* sylixos add 4 bytes to a same size with in6 */

#else /* LWIP_IPV6 */

 char sa_data[14];

#endif /* LWIP_IPV6 */

};

IPv4 (AF_INET) address in_addr structure:

struct in_addr {

 in_addr_t s_addr;

};

IPv4 (AF_INET) address sockaddr_in structure:

struct sockaddr_in {

 u8_t sin_len;

 sa_family_t sin_family;

 in_port_t sin_port;

 struct in_addr sin_addr;

#define SIN_ZERO_LEN 8

 char sin_zero[SIN_ZERO_LEN];

};

 Sin_len: length of the data structure, increased to add OSI protocol support. With the

length member, processing of variable-length socket address structure is simplified;

 Sin_family: address family (AF_INET);

 Sin_port: network protocol port number;

 Sin_addr: IPv4 address of network endian;

 Sin_zero: 8-byte data padding.

IPv6 (AF_INET6) address in6_addr structure:

struct in6_addr {

SpaceChain OS

547

Application Development Manual

 union {

 u8_t u8_addr[16];

 u32_t u32_addr[4];

 } un;

#define s6_addr un.u8_addr

};

IPv6 (AF_INET6) address sockaddr_in6 structure:

struct sockaddr_in6 {

 u8_t sin6_len; /* length of this structure */

 sa_family_t sin6_family; /* AF_INET6 */

 in_port_t sin6_port; /* Transport layer port */

 u32_t sin6_flowinfo; /* IPv6 flow information */

 struct in6_addr sin6_addr; /* IPv6 address */

 /*

 * sylixos add this

 */

u32_t sin6_scope_id; /* set of interfaces for a scope */

};

 Sin6_len: length of data structure;

 Sin6_family: address family (AF_INET6);

 Sin6_port: transmission layer port number;

 Sin6_flowinfo: stream information, low order 20 bits are stream tags, high order 12

bits reserved;

 Sin6_addr: IPv6 address;

 Sin6_scope_id: scope ID.

UNIX protocol domain address sockaddr_un structure:

struct sockaddr_un {

 uint8_t sun_len; /* sockaddr len including null */

 uint8_t sun_family; /* AF_UNIX */

 char sun_path[104]; /* path name (gag) */

};

 Sun_len: the length of the data structure;

 Sun_family: address family (AF_UNIX);

 Sun_path: path name;

Comparison of different socket address structures is shown in Figure 15.4.

SpaceChain OS

548

Application Development Manual

Figure 15.4 Comparison of different socket address structures

The member sin_addr in sockaddr_in represents the 32-bit IPv4 address. However, we

usually use a dotted decimal character string to represent IPv4 addresses. The following

functions can perform address conversion between the character string representation and the

in_addr representation.

The dotted decimal character string (like "192.168.1.15") is converted to the 32-bit

network endian binary value function:

#include <arpa/inet.h>

uint32_t inet_addr(const char *name);

Prototype analysis of Function inet_addr:

 For success of the function, return the 32-bit binary network endian address. For

failure, return INADDR_NONE;

 Parameter name is a dotted decimal address, such as "192.168.1.15".

There is a problem in this function, which cannot represent all valid IP addresses (from

0.0.0.0 to 255.255.255.255). When the function fails, the return value is INADDR_NONE

(usually a 32-bit value of 1), which means that the dotted decimal string 255.255.255.255

(which is the limited broadcast address for IPv4) cannot be converted by this function, because

its binary value is used to indicate function failure. There is also a potential problem in this

function. Some informal documents define the return value on error as -1 instead of

INADDR_NONE. Therefore, there may be problem during comparison of the return value

(unsigned value) and negative constant value of the function, which depends on the C

compiler.

The dotted decimal character string (like "192.168.1.15") is converted to the 32-bit

network endian binary value function:

#include <sys/socket.h>

SpaceChain OS

549

Application Development Manual

#include <netinet/in.h>

#include <arpa/inet.h>

int inet_aton(const char *name, struct in_addr *addr);

Prototype analysis of Function inet_aton:

 Return 1 if this function character string is valid and 0 if invalid.

 Parameter name is the dotted decimal address, such as "192.168.1.15";

 Parameter addr is the buffer address for storing network endian binary value.

This function has a feature not written into the official document. If the pointer is empty, the

function still performs validity check of the input string, but does not store any result.

The 32-bit network endian binary value is converted to the dotted decimal character string

(such as "192.168.1.15") function:

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

char *inet_ntoa(struct in_addr addr);

Prototype analysis of Function inet_ntoa:

 Return the character string pointer when this function is correct, and return NULL

when wrong;

 Parameter addr is the 32-bit network endian address.

Since the character string pointed to by this function's return value resides in the static

memory, it means that the function is not reentrant, and this function takes the structure as the

parameter. It is not a pointer to the structure. Normally, this function is designed as a macro.

The reentrant 32-bit network endian binary value is converted to the dotted decimal

character string (such as "192.168.1.15") function:

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

char *inet_ntoa_r(struct in_addr addr， char *buf, int buflen);

Prototype analysis of Function inet_ntoa_r:

 Return the character string pointer when this function is correct, and return NULL

when wrong;

 Parameter addr is the 32-bit network endian address;

 Parameter buf is the buffer zone for dotted decimal character string;

 Parameter buflen is the length of the buffer zone.

SpaceChain OS

550

Application Development Manual

Inet_pton and inet_ntop are two newer address conversion functions which can

process both IPv4 and IPv6 addresses. The letters p and n represent presentation and

numeric respectively. The address presentation format is usually an ASCII string, and the

numeric format is the binary value existing in the socket address structure.

Function inet_pton converts the character string address presentation to the binary value:

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

int inet_pton(int af, const char *cp, void *buf);

Prototype analysis of Function inet_pton:

 Return 1 if the function is correct, -1 if wrong, and 0 if input is not a valid presentation

format;

 Parameter af must be AF_INET or AF_INET6. Other address families are not

supported and an error is returned;

 Parameter cp is the address string, such as "192.168.1.15" for IPv4;

 Parameter buf is used to save the binary results.

The inet_pton function does not specify the size of buf. Therefore, the application is

required to guarantee that there is enough space to store 32-bit address at AF_INET and

128-bit address at AF_INET6.

The inet_ntop function converts the binary value to the character string expression:

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

const char *inet_ntop(int af, const void *cp, char *buf, size_t len);

Prototype analysis of Function inet_ntop:

 Return the address string pointer when this function is correct, and return NULL when

wrong;

 Parameter af must be AF_INET or AF_INET6. Other address families are not

supported and an error is returned;

 Parameter cp saves the binary value;

 Parameter buf is used to save the address character string converted;

 Parameter len specifies the size of buf to avoid buffer area overflow.

The address conversion function is summarized in Figure 15.5.

SpaceChain OS

551

Application Development Manual

Figure 15.5 Address conversion

15.1.3 Socket function

In order to perform network I/O, the first thing which must be done is to call the socket

function and specify the desired communication protocol type (TCP using IPv4, UDP using

IPv6, UNIX domain protocol, etc.).

A socket can be created by calling the socket function:

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Prototype analysis of Function socket:

 For success of the function,, the file descriptor returned is also called the socket

descriptor, which is simply called socketfd. For failure, return -1, and set the error

number.

 Parameter domain is the protocol domain, also known as the protocol family. The

protocol family determines the address type of the socket, and must use the

corresponding address during communication. If AF_INET decides to use

combination of IPv4 address (32-bit) and port number (16-bit), AF_UNIX decides to

use an absolute path name as the address. Protocol family parameter description, as

shown in Table 15.1;

Table 15.1 socket protocol domain

Protocol domain Instructions

AF_UNSPEC Not specified

AF_INET IPv4 Internet domain

AF_INET6 IPv6 Internet domain

AF_UNIX UNIX domain

SpaceChain OS

552

Application Development Manual

AF_PACKET PACKET domain

 Parameter type is the socket type. As shown in Table 15.2:

Table 15.2 Socket type

Socket type Instructions

SOCK_DGRAM Datagram socket, fixed length, connectionless, unreliable message passing

SOCK_RAW Original socket, datagram interface of IP protocol

SOCK_SEQPACKET
Ordered packet socket, fixed-length, ordered, reliable, connection-oriented

message passing

SOCK_STREAM
Byte stream socket, ordered, reliable, bidirectional and connection-oriented

byte stream

 Parameter protocol is the protocol type:

Table 15.3 Protocol type

Protocol type Instructions

IPPROTO_IP IPv4 network protocol

IPPROTO_ICMP Internet control message protocol

IPPROTO_TCP Transmission control protocol

IPPROTO_UDP User datagram protocol

IPPROTO_IPV6 IPv6 network protocol

IPPROTO_RAW Original IP data packet protocol

Parameter domain determines the communication characteristics, including the address

format and so on. AF_UNIX is an advanced IPC mechanism. The specific use will be

described in detail in Section 15.5. AF_PACKET is a newer socket type, and supports

operation on the data link layer. The specific use will be described in detail in Section 15.6. The

AF_UNSPEC domain is not supported in SylixOS.

Parameter protocol is usually 0, indicating that the default protocol is chosen for the

given domain and socket type. When multiple protocols are supported for the same domain

and socket type, protocol can be used to select a specific protocol. In the AF_INET

SpaceChain OS

553

Application Development Manual

communication domain, the default protocol for the socket type SOCK_STREAM is the

transmission control protocol (TCP), and the default protocol for the socket type

SOCK_DGRAM is UDP.

For the datagram interface, no logical connection is required for communication between

two peer-to-peer applications. It is only required send a message to the socket used by the

peer-to-peer application. Therefore, the datagram (SOCK_DGRAM) provides a connectionless

service. However, the bytestream (SOCK_STREAM) requires establishment of a logical

connection between the local socket and the socket of peer-to-peer application of the

communication before data exchange.

For the byte stream (SOCK_STREAM), the application cannot distinguish the boundaries

of the message. This means that when reading data from the byte stream socket, it may not

return the number of all bytes written by the sending application. All data sent can be got

eventually, but may only be got through several function calls.

Not all combinations of socket protocol domain and type are valid. As shown in Table 15.4,

some valid combinations and corresponding real protocols are given, where the item identified

with "Y" signifies valid. Only a convenient abbreviation is not found, and the item identified with

the "N" signifies unsupported.

Table 15.4 Protocol domain and type combination

Type

Protocol domain

AF_INET AF_INET6 AF_UNIX AF_PACKET

SOCK_STRE

AM

TCP TCP Y N

SOCK_DGRA

M

UDP UDP Y Y

SOCK_RAW IPv4 IPv6 N Y

15.1.4 Socket option

The socket options is operated by calling the setsockopt function and the getsockopt

function. The SylixOS network supports a variety of socket options, as shown in Table 15.5.

#include <sys/socket.h>

int setsockopt(int s, int level, int optname,

const void *optval, socklen_t optlen);

SpaceChain OS

554

Application Development Manual

Prototype analysis of Function setsockopt:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter s is the socket (socket function returns);

 Parameter level is the option level, as shown in Table 15.5;

 Parameter optname is the option name, as shown in Table 15.5;

 Parameter optval is the option value;

 Parameter optlen is the option length.

Different options for different option levels are set by calling the setsockopt function.

Parameter optval is the type of pointer to the variable. If the options are different, the types are

also different, as shown in Table 15.5.

#include <sys/socket.h>

int getsockopt(int s, int level, int optname,

void *optval, socklen_t *optlen);

Prototype analysis of Function getsockopt:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter s is the socket (socket function returns);

 Parameter level is the option level, as shown in Table 15.5;

 Parameter optname is the option name, as shown in Table 15.5;

 Output parameter optval returns the option value;

 Parameter optlen is the option length.

The socket option value can be obtained by calling the getsockopt function, and

Parameter optlen will return the actual length of the option value.

Table 15.5 List of socket options

Option

level

Option name Note Data type

SOL_SOCKET SO_BROADCAST

SO_ERROR

SO_KEEPALIVE

Run to send the broadcast datagram

Get the pending error and eliminate it

Periodically test whether connection survives

Int

Int

Int

SpaceChain OS

555

Application Development Manual

SO_LINGER

SO_DONTLINGER

SO_RCVBUF

SO_RCVTIMEO

SO_SNDTIMEO

SO_REUSEADDR

SO_REUSEPORT

SO_TYPE

SO_CONTIMEO

Delay to close if there is data to send

Turn off SO_LINGER option

Accept the buffer zone size

Accept timeout

Send timeout

Allow reuse of local address

Allow reuse of local port

Get socket type

Connection timeout

struct linger

int

int

struct timeval

struct timeval

int

int

int

struct timeval

SOL_PACKET PACKET_ADD_MEMBERS

HIP

PACKET_DROP_MEMBER

SHIP

PACKET_RECV_OUTPUT

PACKET_RX_RING

PACKET_VERSION

PACKET_RESERVE

Join multi-cast group

Leave multi-cast group

Whether to receive output data packet

Allocate memory space for mmap

Set AF_PACKET version

Reserved space for mmap to reserve extra header

space

struct

packet_mreq

struct

packet_mreq

int

struct

tpacket_req

int

unsigned int

IPPROTO_IP IP_TOS Service type and priority Int

SpaceChain OS

556

Application Development Manual

IP_TTL

IP_MULTICAST_IF

IP_MULTICAST_TTL

IP_MULTICAST_LOOP

IP_ADD_MEMBERSHIP

IP_DROP_MEMBERSHIP

Survival time

Specify outgoing interface

Specify outgoing TTL

Specify whether to feed back

Join multi-cast group

Leave multi-cast group

Int

struct in_addr

unsigned char

unsigned char

struct in_mreq

struct in_mreq

IPPROTO_TCP TCP_KEEPALIVE

TCP_ KEEPIDLE

TCP_ KEEPINTVL

TCP_ KEEPCNT

Test the number of idle seconds before

connection

Permissible time before detection of a connection

Time interval of two detections

Maximum times of detection

Int

Int

Int

int

IPPROTO_IPV6 IPV6_V6ONLY Only allow IPV6 (SylixOS does not support

datagram communication)

int

IPPROTO_UDP

LITE

UDPLITE_SEND_CSCOV

UDPLITE_RECV_CSCOV

执行发送校验和

执行接收校验和

Int

int

IPPROTO_RA

W

IPV6_CHECKSUM IPV6 校验和

int

The option level of SOL_PACKET in Table 15.5 is used for AF_PACKET type socket,

which are described in detail in Section 15.6.

The following program shows control of the behavior of the corresponding socket by

setting the socket option. This program first sets the size of the IPv4 receive buffer zone by

SpaceChain OS

557

Application Development Manual

calling the setsockopt function, and then calls the getsockopt function to get the receive

the size of receive buffer zone to confirm that the size of receive buffer zone is correctly

changed.

Program List 15.1 Set socket option

#include <stdio.h>

#include <sys/socket.h>

int main (int argc, char *argv[])

{

 int sockfd;

 int sopt = 2048;

 int gopt;

 int ret;

 socklen_t len = sizeof(int);

 sockfd = socket(AF_INET, SOCK_DGRAM, 0);

 if (sockfd < 0) {

 fprintf(stderr, "create socket error.\n");

 return (-1);

 }

 ret = setsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &sopt, len);

 if (ret < 0) {

 fprintf(stderr, "setsockopt error.\n");

 return (-1);

 }

 ret = getsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &gopt, &len);

 if (ret < 0) {

 fprintf(stderr, "getsocket error.\n");

 return (-1);

 }

 fprintf(stdout, "IPv4 recv buffer size: %d\n", gopt);

 return (0);

}

Run the program in SylixOS Shell, and the results are as follows:

./sockopt_test

IPv4 recv buffer size: 2048

SpaceChain OS

558

Application Development Manual

15.2 Brief introduction to TCP/IP

TCP/IP is the abbreviation of Transmission Control Protocol / Internet Protocol, also

known as the network communication protocol. It is the most basic protocol of the Internet, and

the basis of the international Internet. It consists of IP protocol of the network layer and TCP

protocol of the transmission layer. TCP/IP defines the criteria for access of electronic device to

the Internet and data transmission between them. The 4-layer hierarchical structure is adopted

for the protocol, and each layer calls the protocol provided by its next layer to complete its own

demands. Popularly speaking, TCP is responsible for finding the problem in transmission.

Once there is any problem, retransmission is required until all data is transmitted to the

destination in a safe and correct manner. IP specifies an address for each Internet-connected

device.

Data transmission process can be visually understood as two envelopes. TCP and IP are

like envelopes. The information to be transmitted is divided into several segments. Each

segment is stuffed into a TCP envelope, and the information of the section number is recorded

on the envelope cover. Then insert TCP envelope into the IP large envelope, and send it to the

network. At the receiving end, a TCP software package collects the envelopes, extracts the

data, restores them in the sequence before sending, and verifies them. If an error is found,

TCP will request retransmission. For ordinary users, they do not need to understand the entire

structure of the network protocol, but only need to know the IP address format for network

communications all over the world.

15.2.1 Layering of TCP/IP

Figure 15.6 shows the corresponding relation between the 4-layer structure of the TCP/IP

protocol and the 7-layer structure of OSI.

Figure 15.6 Network protocol model

SpaceChain OS

559

Application Development Manual

TCP and UDP are the two most famous transport layer protocols, and both use IP

as the network layer protocol. Although TCP uses unreliable IP services, it provides a kind of

reliable transport layer service.

 Link layer: sometimes also called as the data link layer or network interface layer. It

usually includes the device driver in the operating system and the corresponding

network interface card in the computer. They deal with details of the physical interface

associated with the cable (or any other transmission medium) together;

 Network layer: sometimes also called as the Internet layer, it deals with the activities

of packets in the network, such as routing of packets. In the TCP/IP protocol family,

the network layer protocols include IP protocol (Internet protocol), ICMP protocol

(Internet Control Message Protocol), and IGMP protocol (Internet Group

Management Protocol);

 Transport layer: it mainly provides end-to-end communications for applications on two

hosts. In the TCP/IP protocol family, there are two different transmission protocols,

TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). TCP

provides data communication with high reliability. Its work includes: divide the data

handed over by the application into appropriate small blocks to the following network

layer, confirm the received packets, set the timeout clock sending the finally

confirmed packet and so on. UDP provides a kind of very simple service for the

application layer. It only sends packets called as datagram from one host to another,

but does not guarantee that the datagram can reach the other end. Any necessary

reliability must be provided by the application layer;

 The application layer is responsible for processing specific application details. Here

are some common application protocols:

 FTP file transmission protocol;

 SMTP simple mail transmission protocol;

 SNMP simple network management protocol.

There are many kinds of protocols in the TCP/IP protocol family. The common protocols

are shown in Figure 15.7.

SpaceChain OS

560

Application Development Manual

Figure 15.7 Layer Protocols in the protocol hierarchy

IPv4 (Internet Protocol version 4). IPv4 (usually called as IP) has been the main protocol

of the Internet protocol family since the early 1980s. It uses 32-bit addresses to provide the

passing packet service to TCP, UDP, ICMP and IGMP.

IPv6 (Internet Protocol version 6). IPv6 was designed in the mid-1990s to replace IPv4.

The main change is use of 128-bit address.

TCP (Transmission Control Protocol) is a kind of connection-oriented protocol. It provides

the users with the reliable full-duplex byte stream. TCP socket is a kind of stream socket. TCP

cares for specific details such as acknowledgment, timeout and retransmissions.

UDP (User Datagram Protocol) is a kind of connectionless protocol. UDP socket is a kind

of datagram socket. UDP datagrams are not guaranteed to eventually reach their destination.

IP (Internet Protocol). IP is the main protocol at the network layer, and is used by both

TCP and UDP simultaneously. Each set of TCP and UDP data is transmitted in the Internet

through the IP layer in the end system and each intermediate router.

ICMP (Internet Control Message Protocol). ICMP processes error and control messages

between the router and the host (for example, the ping command to check whether the

network is connected is the process of ICMP protocol work).

IGMP (Internet Group Management Protocol). IGMP is used for multi-cast. It is used to

multi-cast a UDP datagram to multiple hosts.

SpaceChain OS

561

Application Development Manual

ARP (Address Resolution Protocol). ARP maps IPv4 address to hardware address

(such as Ethernet address). ARP is generally used for broadcast networks, such as Ethernet,

token ring, etc., but not for point-to-point network.

RARP (Reverse Address Resolution Protocol). It maps hardware address to IPv4 address.

It is sometimes used for booting diskless nodes.

Figure 15.8 lists all protocols involved in running the FTP protocol client-server mode.

Figure 15.8 FTP communication model

15.2.2 IP address

Each interface on the Internet must have a unique Internet address (also called as IP

address). The IP address is 32-bit long and has a certain structure. There are five different

types of Internet address formats, as shown in Figure 15.9.

Figure 15.9 Five address representation methods

SpaceChain OS

562

Application Development Manual

These 32-bit addresses are usually written as four decimal numbers, where each

integer corresponds to one byte. This representation method is called as "doted decimal

notation". The easiest way to distinguish various types of addresses is to see its first decimal

integer.

It shall be pointed out that multi-homed host has multiple IP addresses, and each interface

corresponds to an IP address. Since each interface on the Internet must have a unique IP

address, there must be a regulatory agency which assigns IP addresses to network accessed

to the Internet. The regulatory agency is the Internet Network Information Center, called as

InterNIC. The five address scopes are shown in Table 15.6. For example: 192.168.1.15

belongs to Class C address.

Table 15.6 Five address scopes

Type Scope

Class A 0.0.0.0 to 127.255.255.255

Class B 128.0.0.0 to 191.255.255.255

Class C 192.0.0.0 to 223. 255.255.255

Class D 224.0.0.0 to 239. 255.255.255

Class E 240.0.0.0 to 247. 255.255.255

15.2.3 Data encapsulation

When the application transmits data via TCP, the data is sent to the protocol stack, and

passes through each layer until it is sent to the network as a series of bit streams. Each layer

will add some header information to the received data (sometimes tail information shall also be

added). The process is shown in Figure 15.10.

SpaceChain OS

563

Application Development Manual

Figure 15.10 Protocol encapsulation of data stream

The bottom of Figure 15.10 shows the typical length of each protocol header. For example,

the Ethernet header is 14 octet
①

, the IP header is 20 octet and so on. The physical

characteristics of the Ethernet data frame must be 46 and 1500 octet.

The data unit send by TCP to IP is called as TCP segment. The data unit send by IP to the

network interface layer is called as IP datagram. The bit stream transmitted via the Ethernet is

called as Frame.

UDP data is basically the same with TCP data. The only difference is that the information

unit passed from UDP to IP is called as UDP datagram, but the header of UDP is 8 bytes.

Since TCP, UDP, ICMP and IGMP send data to IP, IP must add some kind of identity to the

generated IP header to indicate which layer the data belongs to. For this purpose, IP stores a

value of 8 bits in length in the header, called as the protocol domain, 1 for the ICMP protocol, 2

for the IGMP protocol, 6 for the TCP protocol, and 17 for the UDP protocol.

15.2.4 Data demultiplexing

When the destination host receives an Ethernet data frame, the data starts to rise from the

bottom of the protocol stack, while removing the message header added in each layer protocol.

Each layer protocol must check the protocol identifier in the message header to determine the

upper-layer protocol for receiving data. This process is called as data demultiplexing, as

shown in Figure 15.11.

SpaceChain OS

564

Application Development Manual

Figure 15.11 Ethernet data frame demultiplexing process

15.2.5 Port number

TCP and UDP use 16-bit port numbers to identify the application program. So how to

select these port numbers? The servers are generally identified through the well-known port

number. For example, for each TCP/IP implementation, TCP port number of FTP server is 21,

TCP port number of each Telnet server is 23, and UDP port number of each TFTP (Simple File

Transfer Protocol) server is 69. The service provided by any TCP/IP implementation adopts

the well-known port numbers between 1 and 1023. These well-known port numbers are

managed by the Internet Assigned Numbers Authority (IANA).

15.2.6 Link layer

TCP/IP supports a variety of different link layer protocols, depending on the hardware

used in the network, such as Ethernet, token ring network, FDDI (Fiber Distributed Data

Interface) and RS-232 serial line. It can be seen from Figure 15.7 that in the TCP/IP protocol

family, the link layer mainly has the following purposes:

 Send and receive IP datagrams for IP modules;

 Send ARP request and receive ARP reply for ARP module;

 Send RARP request and receive RARP reply for RARP.

802.3 for the entire CSMA/CD network, 802.4 for the token bus network, and 802.5 for the

token ring network. 802.2 and 802.3 define a frame format different from Ethernet.

Encapsulation of Ethernet IP datagram is defined in RFC 894, and encapsulation of IP

SpaceChain OS

565

Application Development Manual

datagram of IEEE 802 network is defined in RFC 1042. The encapsulation format is

shown in Figure 15.12.

Figure 15.12 Encapsulation format of Ethernet frame

The full name of SLIP is Serial Line IP. It is a simple form of encapsulating IP datagram on

the serial line, which is described in detail in RFC 1055. SLIP is suitable for RS-232 serial port

and high-speed modem of each computer in the home for access to the Internet.

Frame format defined in SLIP:

 The IP datagram ends with a special character called as END (0xC0). At the same

time, in order to prevent the line noise before arrival of datagram from being deemed

as datagram content, most implementations also transmit an END character at the

beginning of the datagram (if there is any line noise, then the END character will end

this erroneous message. In this way, the current message can be transmitted

correctly. After the previous error message is sent to the upper layer, it will be found

that its content is meaningless and is discarded).

 If a character in the IP packet is END, then two bytes 0xDB and 0xDC shall be

successively transmitted to replace it. The 0xDB special character is called as SLIP's

ESC character, but its value is different from the ASCII code's ESC character (0x1B).

 If a character in the IP message is an ESC character of SLIP, then two bytes 0xDB

and 0xDC are successively transmitted to replace it.

SpaceChain OS

566

Application Development Manual

As shown in Figure 15.13, an IP message contains one END character and one

ESC character. In this example, the total number of bytes transmitted on the serial line is the

length of the original IP message plus 4 bytes.

（数据报=datagram）

Figure 15.13 SLP message format

SLIP is a simple frame-packing method, with some drawbacks worth mentioning:

 Each end must know the other party's IP address. There is no way to notify the other

end of the local IP address;

 There is no type field in the data frame (similar to the type field in Ethernet). If a serial

line is used for SLIP, it cannot use other protocols at the same time;

 SLIP does not add the checksum in the data frame (similar to the CRC field in

Ethernet). If the message transmitted by SLIP is influenced by the line noise, causing

error, it can only be discovered through the upper layer protocol (another way is that

the new modem can detect and correct the error message). In this way, it is important

that the upper layer protocol provides some form of CRC.

PPP (point-to-point protocol) modifies all defects in the SLIP protocol. PPP includes the

following three parts:

 Method of encapsulating IP datagrams on the serial link. PPP supports asynchronous

mode with 8-bit data and without parity check (such as the serial interface commonly

existing in most computers), and also supports the bit-oriented synchronous link;

 Link Control Protocol (LCP) to establish, configure and test the data link. It allows

both parties to communications to negotiate to determine different options;

 Network Control Protocol (NCP) system for different network layer protocols.

PPP format encapsulation, as shown in Figure 15.14.

SpaceChain OS

567

Application Development Manual

Figure 15.14 PPP format encapsulation

The value of the flag character is 0x7E. Therefore, the character shall be escaped via PPP

when appearing in the information field. In the synchronous link, the process is done via a

hardware technology called bit stuffing. In the asynchronous link, the special character 0x7D is

used as the escape character. When it appears in the PPP data frame, the complement code

shall be taken for the 6th bit of the follow-up character, and the specific implementation

process is as follows:

 When Character 0x7E is encountered, two characters of 0x7D and 0x5E shall be

consecutively transmitted, so as to implement escape of the flag character;

 When Escape character 0x7D is encountered, two characters of 0x7D and 0x5D shall

be consecutively transmitted, so as to implement escape of the escape character;

 At default, the character will be escaped generally if the value is less than 0x20 (such

as an ASCII control character). For example, when Character 0x01 is encountered,

two characters of 0x7D and 0x21 shall be continuously transmitted (at the moment,

the 6th bit becomes 1 after the complement code is taken, but 0 in the two cases

above).

The reason for this is to prevent them from appearing in the serial interface driver or the

modulator-demodulator of both hosts. Therefore, they interpret these control characters as

special meanings sometimes. Another possibility is to use the link control protocol to appoint

whether some values in the 32 characters shall be escaped. All 32 characters are escaped at

default.

Similar to SLIP, PPP is commonly used for the low-speed serial link. Therefore, reduction

in the number of bytes of each frame can reduce interactive delay of the application. With the

link control protocol, most products can omit the flag character and address field through

SpaceChain OS

568

Application Development Manual

negotiations, and the protocol field is reduced from 2 bytes to 1 byte. Compare the PPP

frame format with the SLIP frame format above, we will find that PPP adds only 3 extra bytes: 1

byte is reserved for the protocol field, and the other 2 are used for the CRC field. In addition, by

using the IP network control protocol, most products can adopt Van Jacobson message header

compression method (corresponding to CSLIP compression) through negotiations, so as to

reduce the header length of IP and TCP.

In a word, PPP has the following advantages compared with SLIP:

 PPP supports running multiple protocols on the single serial line, not just the IP

protocol;

 Each frame has cyclic redundancy check;

 Both parties to communications can dynamically negotiate IP addresses (by using the

IP network control protocol);

 Similar to CSLIP, TCP and IP message headers are compressed;

 The link control protocol can set multiple data link options. The price to pay for these

advantages is to add 3 bytes at the header of each frame, passing of several frames

of negotiation data and more complicated implementation are required when the link

is created.

Both Ethernet and 802.3 have a limit on the length of the data frame, and the maximum

values are 1500 octet and 1492 octet respectively. The characteristic of the link layer is called

MTU (maximum transmission unit).

If the IP layer has a datagram to be sent, and the length of the data is larger than that of

MTU of the link layer, the IP layer shall be fragmented, and the datagram is divided into several

pieces. Therefore, each one is smaller than the MTU in length.

When two hosts on the same network communicate with each other, MTU of the network

is very important. However, if communication between two hosts shall pass multiple networks,

the link layer of each network may have the different MTU. What’s important is not the MTU

value of the network which two hosts at, but is the minimum MTU of two host paths, which is

called as the path MTU.

The path MTU between two hosts is not necessarily a constant. It depends on the route

chosen at that time. However, route selection is not necessarily symmetric. Therefore, the path

MTU is not necessarily consistent at both directions.

15.2.7 IP Internet protocol

IP is the most core protocol in the TCP/IP protocol family. All TCP, UDP, ICMP, and IGMP

data are transmitted in the IP datagram format. Many people who are new to TCP/IP are

surprised to find that IP provides unreliable and connectionless datagram delivery services.

SpaceChain OS

569

Application Development Manual

Unreliable means that it cannot guarantee that the IP datagram can reach the

destination successfully. IP only provides the best transmission service. In case of a certain

error, such as a certain router temporarily running out of the buffer zone, IP has a simple error

processing algorithm: discard the datagram, and then send the ICMP message to the source

end. Any required reliability must be provided by the upper layer (such as TCP).

Term connectionless means that the IP does not maintain any status information about

subsequent datagrams. Processing to each datagram is mutually independent. This also

indicates that the IP datagram can be received not in the sending order. If a source sends two

continuous datagrams (first A, then B) to the same sink, each datagram selects the route

independently, and may select a different routes. Therefore, B may arrive before A arrives.

The format of the IP datagram is shown in Figure 15.15. The ordinary IP header is 20

bytes unless the option field is included.

Figure 15.15 IP datagram format encapsulation

The most significant bit is on the left, recorded as 0 bit; the least significant bit is on the

right, recorded as 31 bits. The 32-bit values of 4 bytes are transmitted in the following order:

firstly 0 to 7 bit, secondly 8 to 15 bit, then 16 to 23 bit, and finally 24 to 31 bit. This transmission

order is called big endian. All binary integers in the TCP/IP header shall be transmitted in the

network in this order. Therefore, it is also called as the network endian. The machine which

stores binary integers in other forms, such as the little endian format, must convert the header

to the network endian before data transmission.

The version number of the current protocol is 4. Therefore, IP is called as IPv4 sometimes.

The header length refers to the number of 32-bit characters occupied by the header, including

any option. It is a 4-bit field. Therefore, the maximum length of the header is 60 bytes. The

value of the ordinary IP datagram (without any option) field is 5. The type of service (TOS) field

SpaceChain OS

570

Application Development Manual

includes a 3 bit priority subfield (ignored), 4 bit TOS subfield, and 1 bit unused bit but

must be set to zero. TOS of 4 bit represents respectively: minimum delay, maximum

throughout capacity, maximum reliability and minimum cost. Only 1 bit can be set in 4 bit. If all

4 bits are 0, it means general service.

The physical network layer generally limits the maximum length of each data frame sent.

When the IP layer receives an IP datagram to be sent at any time, it shall judge which local

interface the data is sent to, and inquires the interface to get MTU thereof. IP compares MTU

with the datagram length, which shall be fragmented if necessary. Fragments can occur on the

original sending host, or on the intermediate router.

After an IP datagram is fragmented, it is assembled only after arriving at the destination

address. Reassembly is performed by the destination IP layer, the purpose is to make

fragmentation and reassembly transparent to the transport layer (TCP and UDP), except for

some possible leapfrog operations. The datagram fragmented may be fragmented again

(maybe more than once). The data included in the IP header provides enough information for

fragmentation and reassembly.

For each IP datagram sent from the sending end, its identity field contains a unique value.

The value is copied to each slice when the datagram is fragmented, and the flag field uses one

of the bits to represent "more slices." Except for the last slice, every slice which constitutes the

datagram must set the bit as 1. The slice offset field refers to the position at the beginning of

the slice offset original datagram. In addition, when the datagram is fragmented, the total

length of each slice is changed as the length of the slice. Finally, there is a bit in the flag field

called the "unfragmented" bit. If this bit is set as 1, IP will not fragment the datagram.

When IP datagram is fragmented, each slice will become a packet with its own IP header,

and is independent from other packets during route selection. Therefore, when these slices of

the datagram arrive at the destination, it may be out of order. However, there is enough

information in the IP header to allow the receiving end to properly assemble the datagram

fragments.

15.2.8 ARP address desorption protocol

When a host sends the Ethernet data frame to another host on the same LAN, the

destination interface is determined according to the 48-bit Ethernet address. The device driver

never checks the destination IP address in the IP datagram. Address resolution provides

mapping for these two different address forms (32-bit IP address and any type of address used

by the data link layer).

When the IP address is resolved on the Ethernet, the format of the ARP request and

answer packet is shown in Figure 15.16 (ARP can be used for other types of networks, and

can resolve addresses beyond the IP address, and the first four fields immediately following

the frame type field appoint the type and length of the last four fields).

SpaceChain OS

571

Application Development Manual

Figure 15.16 ARP format encapsulation

The first two fields in the Ethernet header are the Ethernet source and destination

addresses. The special address with the destination address of 1 is the broadcast address,

and all Ethernet interfaces on the cable must receive broadcast data frames. The two-byte

long Ethernet frame type indicates the type of the following data. For ARP request or answer,

the value of this field is 0x0806.

The hardware type field indicates the type of the hardware address. The value of 1

indicates the Ethernet address, and the protocol type field indicates the protocol address type

to be mapped. Its value is 0x0800, i.e., indicating the IP address. Its value is the same with the

value of the type field in the Ethernet data frame including the IP datagram.

The length of the hardware address and the length of the protocol address indicate the

length of the hardware address and the protocol address respectively, in bytes. For the ARP

request or answer to the IP address on the Ethernet, their values are 6 and 4 respectively.

The operation field indicates four operation types: ARP request (the value is 1), ARP

answer (the value is 2), RARP request (the value is 3) and RARP answer (the value is 4).

For an ARP request, all other fields beyond the destination hardware address have filling

values. After receiving an ARP request message where the destination is the host, the system

will fill the hardware address, then replace the two sending addresses with the two destination

addresses, set the operation field as 2, and send it back.

The key to high-efficient operation of ARP is that there is an ARP cache on each host. This

cache stores the mapping record between the nearest Internet address to the hardware

address.

The arp command can be used to view the ARP cache table, as shown below:

arp –a

FACE INET ADDRESS PHYSICAL ADDRESS TYPE

en1 192.168.7.40 00:ff:ff:6f:a7:a0 dynamic

The 48 bit Ethernet address is indicated by 6 hexadecimal numbers, separated with the

colon.

15.2.9 ICMP message control protocol

SpaceChain OS

572

Application Development Manual

ICMP is deemed as a constituent part of the IP layer. It passes the error message

and other information to be noticed, the ICMP message is usually used by the IP layer or the

higher layer protocol (TCP or UDP), and some ICMP messages return the error messages to

the user progress. ICMP message is shown in Figure 15.17.

Figure 15.17 ICMP message format encapsulation

Various types of ICMP messages are shown in Table 15.7, different types are determined

jointly by the type field and code field in the message.

SpaceChain OS

573

Application Development Manual

Table 15.7 ICMP message type description

Typ

e

Cod

e
Description

Q

uery

Mist

ake

0 0 Echo reply (ping reply) ●

3

0 Network unreachable ●

1 Host unreachable ●

2 Protocol unreachable ●

3 Port unreachable ●

4
Fragmentation is required, but the non-sliced bit is

set
 ●

5 Source station routing failed ●

6 Destination network does not know ●

7 Destination host does not know ●

8 Source host is isolated ●

9 Destination network is forcibly prohibited ●

10 Destination host is forcibly prohibited ●

11 Network is unreachable due to service type TOS ●

12 Host is unreachable due to service type TOS ●

13 Communication is forcibly prohibited due to filtering ●

14 Communication is forcibly prohibited due to filtering ●

15 Priority suspension takes effect ●

4 0 Source end closed (basic flow control) ●

5 0 Redirection to network ●

SpaceChain OS

574

Application Development Manual

1 Redirection to host ●

2 Service type and network redirection ●

3 Service type and host redirection ●

8 0 Request echo (ping) ●

9 0 Router notice ●

10 0 Router request ●

11

0 The survival time during transmission is 0 ●

1 The survival time during datagram assembly is 0 ●

12

0 Bad IP header (including various mistakes) ●

1 Lack necessary options ●

13 0 Timestamp request ●

14 0 Timestamp reply ●

15 0 Information request (no longer used) ●

16 0 Information reply (no longer used) ●

17 0 Address mask request ●

18 0 Address mask reply ●

The following situations will not lead to ICMP error message:

 ICMP error message (however, ICMP query messages may generate ICMP error

messages);

 IP datagram with the destination address as the broadcast address or multi-cast

address;

 Datagram broadcast as a link layer broadcast;

 Not the first slice of IP fragmentation;

SpaceChain OS

575

Application Development Manual

 The source address is not the datagram of the single host. That is to say, the

source address cannot be zero address, loopback address, broadcast address or

multi-cast address.

These rules are designed to prevent broadcast storm brought by previously allowed

respond of ICMP error message to broadcast grouping.

15.2.10 UDP user datagram protocol

UDP is a simple datagram-oriented transport protocol. Unlike stream character-oriented

protocols, such as TCP, all data generated by the application may not be related to the single

IP datagram actually sent. UDP does not provide reliability: it sends data from the application

to the IP layer, but does not guarantee that it can reach the destination. The UDP datagram is

encapsulated in the format of an IP datagram, as shown in Figure 15.18.

Figure 15.18 UDP data format encapsulation

The UDP length field refers to the byte length of the UDP header and UDP data. UDP

checks and overwrites UDP headers and UDP data.

15.2.11 TCP transmission control protocol

Although both TCP and UDP use the same network layer (IP), TCP provides the

application layer with service completely different from UDP. TCP provides a

connection-oriented and reliable byte stream service. Connection-oriented means that two

applications using TCP (usually a client and a server) must establish a TCP connection before

SpaceChain OS

576

Application Development Manual

exchanging data with each other. The process is very similar to making a call: dial and

wait for the other person to pick up the phone and say “hello,” and then explain who it is. Only

two parties communicate with each other in a TCP connection.

TCP provides reliability via the following ways:

 The application data is divided into data block suitable for sending deemed by TCP.

This is completely different from UDP, the length of the datagram generated by the

application program will remain unchanged. and the information unit passed from

TCP to IP is called a message segment or segment;

 When TCP sends a segment, it starts a timer, and waits for the destination to confirm

receiving of the segment. If a confirmation cannot be received timely, the message

segment will be resent;

 When TCP receives data sent from the other end of TCP connection, it will send a

confirmation, which is not sent immediately, but usually be delayed by a little time.

 TCP will maintain the checksum of its header and data. This is an end-to-end

checksum to detect any change in the data during transmission. If the checksum of

the received segment has mistakes, TCP will discard the message segment and does

not confirm receiving of the segment (hope sending end timeout and retransmission);

 TCP segments are transmitted as IP datagrams, while arrival of IP datagrams may be

out of order. Therefore, arrival of TCP segments may also be out of order. If

necessary, TCP will reorder the received data and pass the received data to the

application layer in the correct order;

 Since IP datagrams will be duplicated, the receiving end of TCP must discard

duplicate data.

 TCP can also provide traffic control, and each side of the TCP connection has the

buffer space with fixed size. The receiving end of TCP only allows the other end to

send data the buffer zone of the receiving end can accept, so as to prevent the faster

host from causing buffer area overflow of the slower host.

TCP data is encapsulated in an IP datagram, as shown in Figure 15.19.

SpaceChain OS

577

Application Development Manual

Figure 15.19 TCP data format encapsulation

Each TCP segment contains port numbers of the source end and the active end, which is

used to find the sending and receiving end applications. These two values plus the source IP

address and the destination IP address in the IP header uniquely confirm a TCP connection.

Sometimes, an IP address and a port number are also called a socket, and four tuples,

including client IP address, the client port number, server IP address and server port number

may uniquely confirm both sides of each TCP connection in the network.

The serial number is used to identify the data byte stream sent from the TCP sending end

to the TCP receiving end, which represents the first data byte in this message segment. If the

byte stream is seen as one-way flow between two applications, TCP counts each byte with the

serial number. The serial number is the 32-bit unsigned number, which starts from 0 after

reaching the maximum value.

The SYN flag becomes 1 when a new connection is established. The serial number

segment contains the initial sequence number (ISN) of the connection selected by the host.

The sequence number of the first byte of data to be sent by the host is the ISN plus 1, because

the SYN flag consumes a sequence number.

SpaceChain OS

578

Application Development Manual

Since each transmitted byte is counted, the acknowledgment sequence number

contains the next sequence number expected to be received at the end of the

acknowledgment. Therefore, the acknowledgment sequence number shall be the sequence

number of data bytes successfully received last time plus 1. The sequence number field is

valid only when the ACK flag is 1. Sending ACK does not need any cost, because the 32-bit

acknowledgment sequence number field is same with that of the ACK flag, always a part of the

TCP header. Therefore, we see that once a connection is established, the field is always set,

and the ACK flag is always set as 1.

TCP provides full-duplex service for the application layer, which means that data can be

transmitted independently in two directions. Therefore, each end of the connection must

maintain the serial number of the transmitted data in each direction. TCP can be expressed as

a sliding window protocol without selective acknowledgment or denies. We say that TCP lacks

selective acknowledgment because the acknowledgment sequence number in the TCP header

indicates that the sender has successfully received the bytes. However, the bytes referred by

the acknowledgment sequence number are not included. The selected part in the data stream

cannot be confirmed at present. For example, if 1-1024 bytes have been successfully received,

the next message segment contains bytes with sequence numbers from 2049 to 3072, and the

receiving end cannot acknowledge the new message segment. All it can do is send back an

ACK with an acknowledgment sequence number of 1025, which also cannot deny a message

segment. For example, if the message segment containing 1025 to 2048 bytes is received, but

its checksum is wrong, what the TCP receiving end can do is send back an ACK with an

acknowledgment sequence number of 1025.

The length of the header gives the number of 32-bit characters in the header, the value is

required because the length of the optional field is variable, occupying 4 bits. Therefore, TCP

has the header with a maximum of 60 bytes. However, the normal length is 20 bytes without

the optional field. There are 6 flag bits in the TCP header, and many of them can be set as 1

simultaneously.

6 bit flag in the TCP header:

 URG (urgent pointer) is valid;

 ACK acknowledgment sequence number is valid;

 The PSH receiver shall submit the message segment to the application layer as soon

as possible.

 RST reconstruction connection;

 The SYN synchronization serial number is used to initiate a connection;

 The FIN sending end completes the sending task.

Figure 15.20 shows the process of establishing a TCP connection:

 The request end (usually called the client) sends a SYN segment to indicate the

server port to be connected by the client, and the initial sequence number (ISN);

SpaceChain OS

579

Application Development Manual

 The server sends back the SYN segment containing the initial sequence

number of the server as an answer. At the same time, the acknowledgment sequence

number is set as the customer's ISN plus 1 to confirm the customer's SYN message

segment. A SYN will occupy a sequence number;

 The client must set the acknowledgment sequence number as the server's ISN plus 1

to confirm the server's SYN message segment.

This process is also known as three-way handshake.

Figure 15.20 Establishment and suspension of TCP connection

Three-way handshake is required for establishing a connection, while four-way

handshake is required for terminating a connection. This is caused by the half-close of TCP.

Since a TCP connection is full-duplex (i.e., data can be passed in two directions

simultaneously), each direction must be closed independently. The principle is that a FIN can

be sent to terminate the direction connection after one side finishes its data sending task.

When a FIN is received at an end, it must notify the other end of the application layer that the

data transfer in that direction has been terminated. Sending FIN is usually the result of the

application layer closing.

Receiving a FIN only means that there is no data flow in this direction. A TCP connection

can still send data after receiving a FIN. This is possible for the semi-closed applications,

although only a few TCP applications do this in practical application. The normal shutdown

process is shown in Figure 15.20. Firstly, a side performing closing (i.e., send the first FIN) will

SpaceChain OS

580

Application Development Manual

perform active close, while the other side (receive the FIN) will perform passive close.

Usually a party completes active close while the other side completes passive close.

The TIME_WAIT state is also called as the 2MSL wait state. Each specific TCP

implementation must select MSL (Maximum Segment Lifetime) of a message segment. It is the

longest time in the network before any segment is discarded. We know that the time is limited,

because TCP segments are transmitted in the network as IP datagrams, while IP datagrams

have TTL fields limiting the lifetime. RFC 793 indicates that the MSL is 2 minutes. However, the

common value in implementation is 30 seconds, 1 minute, or 2 minutes. The limit on the TTL of

IP datagrams is based on the hop count instead of the timer. For MSL value given by specific

implementation, the processing principle is: when TCP performs an active close and sends

back the last ACK, the connection must stay at the TIME_WAIT state for 2 times the MSL.

Therefore, TCP can resend the last ACK to prevent the ACK from loss (the other side times out

and resends the last FIN). Another result of such 2MSL wait is that the socket defining TCP

connection (the client's IP address and port number, the server's IP address and port number)

cannot be reused. The connection can only be used after the 2MSL is ended.

15.3 Network communication instance

The client-server model is also called the master-slave architecture, or C/S structure for

short. It is a network architecture which distinguishes the client from the server. Each client

application instance can send a request to a server. There are many different types of servers,

such as file servers, terminal servers, mail servers and so on. Although the purpose of their

existence is different, the basic structure is the same.

This method is applied for many different types of applications in different ways, and the

most common one is the web pages currently used on the Internet. For example, when you

browse the SylixOS website on your computer, your computer and web browser are regarded

as a client, and the host constituting the SylixOS website is regarded as the server. When your

web browser requests an appointed article from the SylixOS site, the SylixOS site server finds

all information required for the article from the database, combines it into a web page, and

sends it back to your browser.

Server-side features: passive roles, wait for requests from clients, process requests and

return results.

Client features: active role, send request and wait for response to the request.

15.3.1 UDP instance

There is essential difference between writing applications with UDP and TCP, the reason

is the difference between the two transport layers: UDP is the connectionless and unreliable

datagram protocol, which is different from connection-oriented reliable byte stream provided by

TCP. However, some occasions is more suitable to use UDP. Some popular applications

SpaceChain OS

581

Application Development Manual

written with UDP are DNS (Domain Name System), NFS (Network File System) and

SNMP (Simple Network Management Protocol).

The client does not need to establish connection with the server, but the destination

address shall be appointed (server address), and the client only sends datagrams to the

server.

The server does not accept connections from clients, but only waits for data from a certain

client.

The typical UDP client and server side functions are shown in Figure 15.21.

Figure 15.21 UDP program socket function

The bind function assigns a local protocol address to a socket, and the meaning of the

protocol address depends only on the protocol itself. For Internet protocols, the protocol

address is combination of the 32-bit IPv4 address or the 128-bit IPv6 address and the 16-bit

TCP or UDP port. Calling the bind function can appoint the IP address or port, and both can be

appointed or not appointed.

#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, socklen_t namelen);

Prototype analysis of Function bind:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter s is the socket (socket function returns);

SpaceChain OS

582

Application Development Manual

 Parameter name is a pointer to the sockaddr structure type of the specific

protocol domain;

 Parameter namelen represents the length of name structure.

Figure 15.21 shows how to use recvfrom and sendto in the typical UDP client-side and

server-side programs (similar to the standard read and write functions, but three additional

parameters are required).

#include <sys/socket.h>

ssize_t recvfrom(int s, void *mem, size_t len, int flags,

 struct sockaddr *from, socklen_t *fromlen);

Prototype analysis of Function recvfrom:

 For success of the function, return the number of bytes of the data read. For failure,

return -1 and set the error number;

 Parameter s is the socket (socket function returns);

 Parameter mem is the pointer to the read buffer zone;

 Parameter len represents the byte length of the read data;

 Parameter flags is used to specify the message type. If you do not care about this

parameter, you can set it to 0. If you need to care about this parameter, please

configure its value to the following value:

 MSG_PEEK: pre-read data but do not delete data;

 MSG_WAITALL: wait until all data arrives before return;

 MSG_OOB: out-of-band data;

 MSG_DONTWAIT: non-blocking receiving data;

 MSG_MORE: there is more data to send.

 Parameter from used to indicate the protocol address of the UDP datagram sender

(for example, IP address and port number);

 Parameter fromlen is used to specify a pointer to the size of from address.

Since UDP is connectionless, it is also possible that the recvfrom function returns a value

of 0. If the from parameter is a null pointer, then the corresponding length parameter fromlen

must also be a null pointer, indicating that we do not care about the protocol address of the

data sender.

#include <sys/socket.h>

ssize_t sendto(int s, const void *data, size_t size, int flags,

 const struct sockaddr *to, socklen_t tolen);

Prototype analysis of Function sendto:

SpaceChain OS

583

Application Development Manual

 For success of the function, return the number of bytes of the data read. For

failure, return -1 and set the error number;

 Parameter s is the socket (socket function returns);

 Parameter data is a pointer to the write data buffer zone;

 The parameter size indicates the byte length of data written;

 Parameter flags is used to specify the message type. If you do not care about this

parameter, you can set it to 0. If you need to care about this parameter, please

configure its value to the following value:

 MSG_PEEK: pre-read data but do not delete data;

 MSG_WAITALL: wait until all data arrives before return;

 MSG_OOB: out-of-band data;

 MSG_DONTWAIT: non-blocking receiving data;

 MSG_MORE: there is more data to send.

 Parameter to is used to indicate the protocol address of the UDP datagram receiver

(for example, IP address and port number);

 Parameter tolen specifies the length of to address.

The sendto function is feasible to write a datagram of length 0, which results in a

datagram with IP header (usually 20 bytes for IPv4, 40 bytes for IPv6) and an 8-byte UDP

header but without data.

The UDP echo program model is shown in Figure 15.22. The client and the server follow

this flow to complete reception and echo of the retroflection data.

（客户端=client）

（服务器=service）

Figure 15.22 UDP echo program model

The client program uses the sendto function to send "SylixOS Hello!" to the server, uses

recvfrom to read back the server's echo, and finally outputs the received echo information

"SylixOS Hello!".

The server program uses the recvfrom function to read in the "SylixOS Hello!" data from

the client, and sends the received data to the client program via sendto.

Program List 15.2 UDP echo server program

SpaceChain OS

584

Application Development Manual

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#define __UDP_ECHO_TYPE_CLIENT 1 /* Client mode */

#define __UDP_ECHO_TYPE_SERVER 2 /* Server mode */

 /* Current mode selection */

#define __UDP_ECHO_TYPE (__UDP_ECHO_TYPE_SERVER)

 /* Client IP address */

#define __UDP_ECHO_IP_CLIENT "192.168.1.16"

 /* Server IP address */

#define __UDP_ECHO_IP_SERVER "192.168.1.17"

#define __UDP_ECHO_PORT_CLIENT 8000 /* Client port number */

#define __UDP_ECHO_PORT_SERVER 8001 /* Server port number */

#define __UDP_ECHO_BUFF_SIZE_CLIENT 257 /* Client receive buffer size */

#define __UDP_ECHO_BUFF_SIZE_SERVER 257 /* Server receive buffer size */

static int __UdpEchoServer (void)

{

 int iRet = -1; /* Operation result */

 int sockFd = -1; /* socket Descriptor */

 /* Address structure size */

socklen_t uiAddrLen = sizeof(struct sockaddr_in);

register ssize_t sstRecv = 0; /* Received data length */

 /* Receive buffer */

char cRecvBuff[__UDP_ECHO_BUFF_SIZE_SERVER] ={0};

struct sockaddr_in sockaddrinLocal; /* Local address */

struct sockaddr_in sockaddrinRemote; /* Remote address */

 fprintf(stdout, "UDP echo server start.\n");

 /* Create socket */

sockFd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

if (sockFd < 0) { /* operation failed */

 printf("UDP echo server socket error.\n");

 return (-1); /* Error return */

 }

 /*

 * Initialize the local address structure

 */

 /* Clear address information */

 memset(&sockaddrinLocal, 0, sizeof(sockaddrinLocal));

 /* Address structure size */

 sockaddrinLocal.sin_len = sizeof(struct sockaddr_in);

sockaddrinLocal.sin_family = AF_INET; /* Address family */

 /* net address */

SpaceChain OS

585

Application Development Manual

sockaddrinLocal.sin_addr.s_addr = INADDR_ANY;

 /* Binding server port */

 sockaddrinLocal.sin_port = htons(__UDP_ECHO_PORT_SERVER);

iRet = bind(sockFd,

 (struct sockaddr *)&sockaddrinLocal,

 sizeof(sockaddrinLocal)); /* Bind local address and port */

 if (iRet < 0) { /* Binding operation failed */

 close(sockFd); /* Close the socket that has been

created */

 fprintf(stderr, "UDP echo server bind error.\n");

 return (-1); /* Error return */

 }

 for (;;) {

 /* Clear the receive buffer */

memset(&cRecvBuff[0], 0, __UDP_ECHO_BUFF_SIZE_SERVER);

sstRecv = recvfrom(sockFd,

 (void *)&cRecvBuff[0],

 __UDP_ECHO_BUFF_SIZE_SERVER,

 0,

 (struct sockaddr *)&sockaddrinRemote,

 &uiAddrLen); /* Receive data from the remote */

 if (sstRecv <= 0) { /* Failed to receive data */

 if ((errno != ETIMEDOUT) &&

 (errno != EWOULDBLOCK)) { /* Non-timeout and non-blocking */

 close(sockFd); /* Close the socket that has been

created */

 fprintf(stderr, "UDP echo server recvfrom error.\n");

 return (-1);

 }

 continue;

 }

 sendto(sockFd,

 (const void *)&cRecvBuff[0],

 sstRecv,

 0,

 (const struct sockaddr *)&sockaddrinRemote,

 uiAddrLen);

 }

 return (0);

}

Program List 15.3 UDP echo client program

#include <stdio.h>

SpaceChain OS

586

Application Development Manual

#include <string.h>

#include <sys/socket.h>

#define __UDP_ECHO_TYPE_CLIENT 1 /* Client mode */

#define __UDP_ECHO_TYPE_SERVER 2 /* Server mode */

 /* Current mode selection */

#define __UDP_ECHO_TYPE (__UDP_ECHO_TYPE_CLIENT)

 /* Client IP address */

#define __UDP_ECHO_IP_CLIENT "192.168.1.16"

 /* Server IP address */

#define __UDP_ECHO_IP_SERVER "192.168.1.17"

#define __UDP_ECHO_PORT_CLIENT 8000 /* Client port number */

#define __UDP_ECHO_PORT_SERVER 8001 /* Server port number */

#define __UDP_ECHO_BUFF_SIZE_CLIENT 257 /* Client receive buffer size */

#define __UDP_ECHO_BUFF_SIZE_SERVER 257 /* Server receive buffer size */

static int __UdpEchoClient (void)

{

 int sockFd = -1; /* socket Descriptor */

 /* Address structure size */

 socklen_t uiAddrLen = sizeof(struct sockaddr_in);

 register ssize_t sstRecv = 0; /* Received data length */

 register ssize_t sstSend = 0; /* Received data length */

 /* String to send */

 const char *pcSendData = "SylixOS Hello!\n";

 /* Receive buffer */

 char cRecvBuff[__UDP_ECHO_BUFF_SIZE_CLIENT] ={0};

 struct sockaddr_in sockaddrinRemote; /* Remote address */

 fprintf(stdout, "UDP echo client start.\n");

 /* Create socket */

 sockFd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

 if (sockFd < 0) {

 fprintf(stderr, "UDP echo client socket error.\n");

 return (-1);

 }

 /*

 * Initialize the remote address structure

 */

 memset(&sockaddrinRemote, 0, sizeof(sockaddrinRemote));

 /* Address translation error */

 if (!inet_aton(__UDP_ECHO_IP_SERVER, &sockaddrinRemote.sin_addr)) {

SpaceChain OS

587

Application Development Manual

 close(sockFd); /* Close the socket that has

been created */

 fprintf(stderr, "UDP echo client get addr error.\n");

 return (-1); /* Error return */

 }

 /* Address structure size */

 sockaddrinRemote.sin_len = sizeof(struct sockaddr_in);

 sockaddrinRemote.sin_family = AF_INET; /* Address family */

 /* Bind server port */

 sockaddrinRemote.sin_port = htons(__UDP_ECHO_PORT_SERVER);

 for (;;) {

 fprintf(stdout, "Send Data: %s", pcSendData);

 sstRecv = strlen(pcSendData); /* Get the length of the send string

 */

 sstSend = sendto(sockFd,

 (const void *)pcSendData,

 sstRecv,

 0,

 (const struct sockaddr *)&sockaddrinRemote,

 uiAddrLen); /* Send data to the specified server

 */

 if (sstSend <= 0) { /* Failed to send data */

 if ((errno != ETIMEDOUT) &&

 (errno != EWOULDBLOCK)) { /* Non-timeout and non-blocking */

 close(sockFd); /* Close the socket that has been

created */

 fprintf(stderr, "UDP echo client sendto error.\n");

 return (-1); /* Error return */

 }

 continue; /* Rerun after timeout or

non-blocking */

 }

 memset(&cRecvBuff[0], 0, __UDP_ECHO_BUFF_SIZE_CLIENT);

 sstRecv = recvfrom(sockFd,

 (void *)&cRecvBuff[0],

 __UDP_ECHO_BUFF_SIZE_SERVER,

 0,

 (struct sockaddr *)&sockaddrinRemote,

 &uiAddrLen); /* Receive data from the far end*/

 if (sstRecv <= 0) { /* Failed to receive data */

 if ((errno != ETIMEDOUT) &&

 (errno != EWOULDBLOCK)) { /* Non-timeout and non-blocking */

SpaceChain OS

588

Application Development Manual

 close(sockFd); /* Close the socket that has

been created */

 fprintf(stderr, "UDP echo client recvfrom error.\n");

 return (-1); /* Error return */

 }

 continue; /* Rerun after timeout or

non-blocking */

 }

 fprintf(stdout, "Recv Data: ");

 cRecvBuff[sstRecv] = 0;

 fprintf(stdout, "%s\n", &cRecvBuff[0]);

 sleep(5); /* Sleep for a while */

 }

 return (0);

}

15.3.2 TCP instance

The typical TCP client and server communication process is shown in Figure 15.23. The

server is started first, the client is started sometime later, and it tries to connect to the server.

We assume that the client sends a request to the server, the server processes the request, and

sends a response back to the client. This process continues until the client closes the local

connection, and sends an end notification to the server. After the server receives the end

notification, it closes the server's local connection, and can either finish the operation or

continue to wait for new client connection.

SpaceChain OS

589

Application Development Manual

Figure 15.23 TCP Program socket function

The TCP client uses the connect function to establish connection with the TCP server.

#include <sys/socket.h>

int connect(int s, const struct sockaddr *name, socklen_t namelen);

Prototype analysis of Function connect:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter s is the socket (socket function returns);

SpaceChain OS

590

Application Development Manual

 Parameter name is a pointer to the sockaddr structure type of the specific

protocol domain;

 Parameter namelen represents the length of name structure.

The name (socket address structure) must contain the IP address and port number of the

server. The TCP socket calls the connect function to stimulate three-way handshake of TCP,

and only returns when the connection is established successfully or when an error occurs.

The listen function is only called by the TCP server, and indicates that a connection

request to the socket can be accepted.

#include <sys/socket.h>

int listen(int s, int backlog);

Prototype analysis of Function listen:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter s is the socket (socket function returns);

 Parameter backlog indicates the maximum number of connections which the

corresponding socket can accept.

The accept function is only called by the TCP server to return a completed connection.

#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

Prototype analysis of Function accept:

 For success of the function, return the non-negative and connected socket descriptor.

For failure, return -1 and set the error number;

 Parameter s is the socket (socket function returns);

 Parameter addr is used to return the protocol address structure information of the

connected peer (client);

 Parameter addrlen is used to return the size of the connected protocol address

structure.

We call the first s of accept as the listening socket (created by the socket, and then used

as the first parameter to the bind function and the listen function), saying that its return value is

the connected socket. It is important to distinguish the two sockets. A server usually only

creates a listening socket. It exists for the lifetime of the server. The system creates a

connected socket for each received client connection. (In other words, TCP's three-way

handshake has been completed). When the server completes the service of a certain client,

the corresponding connected socket is closed.

The getsockname function is used to return the local protocol address associated with a

certain socket.

SpaceChain OS

591

Application Development Manual

#include <sys/socket.h>

int getsockname(int s, struct sockaddr *name, socklen_t *namelen);

Prototype analysis of Function getsockname:

 For success of the function, return non-0. For failure, return -1;

 Parameter s is the socket (socket function returns);

 Parameter name is used to return the local protocol address structure information;

 Parameter addrlen is used to return the size of the local protocol address structure.

On a TCP client without calling the bind function, after the connect function returns

successfully, the getsockname function is used to return the local IP address and the local port

number of the connection.

When the bind function is called with the port number 0 (inform the system to select the

local port number), the getsockname function returns the local port number specified by the

system.

On a TCP server after calling the bind function with a wildcard IP address, once the

connection with a client is established (accept returns successfully), the getsockname function

can be used to return the local IP address of the connection. In such a call, the socket

parameter must be the connected socket, but not the listening socket.

The getpeername function is used to return the remote protocol address associated with a

certain socket.

#include <sys/socket.h>

int getpeername(int s, struct sockaddr *name, socklen_t *namelen);

Prototype analysis of Function getsockname:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter s is the socket (socket function returns);

 Parameter addr is used to return the protocol address structure information of the

connected peer (client);

 Parameter addrlen is used to return the size of the connected protocol address

structure.

Summary of TCP communication: all clients and servers start from calling the socket. It

returns a socket. The client calls the connect function. The server then calls the bind, listen

and accept functions. The socket is usually closed by using the standard close function.

However, you can also use the shutdown function to close the socket. Most TCP servers are

concurrent. They serve each pending client connection individually, and most UDP servers are

iterative.

The echo program model is shown in Figure 15.24 The client and the server follow this

flow to complete reception and echo of the retroflection data.

SpaceChain OS

592

Application Development Manual

（客户端=client）

（服务器=service）

Figure 15.24 TCP echo program model

The client program sends "SylixOS Hello!" to the server, uses read to read back the

server's echo, and finally outputs the received echo information "SylixOS Hello!".

The server program reads data from the client by using read, and sends the received data

to the client program via write.

Program List 15.4 TCP echo server program

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#define __TCP_ECHO_TYPE_CLIENT 1 /* Client mode */

#define __TCP_ECHO_TYPE_SERVER 2 /* Server mode */

 /* Current mode selection */

#define __TCP_ECHO_TYPE (__TCP_ECHO_TYPE_SERVER)

 /* Client IP address */

#define __TCP_ECHO_IP_CLIENT "192.168.1.16"

 /* Server IP address */

#define __TCP_ECHO_IP_SERVER "192.168.1.17"

#define __TCP_ECHO_PORT_CLIENT 8100 /* Client port number */

#define __TCP_ECHO_PORT_SERVER 8101 /* Server port number */

#define __TCP_ECHO_BUFF_SIZE_CLIENT 257 /* Client receive buffer size */

#define __TCP_ECHO_BUFF_SIZE_SERVER 257 /* Server receive buffer size */

static int __TcpEchoServer (void)

{

 int iRet = -1;

 int sockFd = -1;

int sockFdNew = -1;

 /* Address structure size */

socklen_t uiAddrLen = sizeof(struct sockaddr_in);

register ssize_t sstRecv = 0; /* Received data length */

 /* Receive buffer */

char cRecvBuff[__TCP_ECHO_BUFF_SIZE_SERVER] ={0};

struct sockaddr_in sockaddrinLocal; /* Local address */

SpaceChain OS

593

Application Development Manual

 struct sockaddr_in sockaddrinRemote; /* Remote address

*/

fprintf(stdout, "TCP echo server start.\n");

 sockFd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

 if (sockFd < 0) {

 fprintf(stderr, "TCP echo server socket error.\n");

 return (-1);

 }

 /*

 * Initialize the local address structure

 */

 memset(&sockaddrinLocal, 0, sizeof(sockaddrinLocal));

sockaddrinLocal.sin_len = sizeof(struct sockaddr_in);

 /* Address structure size */

sockaddrinLocal.sin_family = AF_INET; /* Address family */

 sockaddrinLocal.sin_addr.s_addr = INADDR_ANY;

 /*Bind server port */

 sockaddrinLocal.sin_port = htons(__TCP_ECHO_PORT_SERVER);

 iRet = bind(sockFd,

 (struct sockaddr *)&sockaddrinLocal,

 sizeof(sockaddrinLocal)); /* Bind local address and port */

 if (iRet < 0) { /* Bind operation failed */

 close(sockFd); /* Close the socket that has been

created */

 fprintf(stderr, "TCP echo server bind error.\n");

 return (-1); /* Error return */

 }

 listen(sockFd, 2);

 sockFdNew = accept(sockFd, (struct sockaddr *)&sockaddrinRemote, &uiAddrLen);

 if (sockFdNew < 0) {

 close(sockFd); /* Close the socket that has been

created */

 fprintf(stderr, "TCP echo server accept error.\n");

 return (-1); /* Error return */

 }

 for (;;) {

 /* Clear the receive buffer */

 memset(&cRecvBuff[0], 0, __TCP_ECHO_BUFF_SIZE_SERVER);

 /* Receive data from the far end */

 sstRecv = read(sockFdNew,

 (void *)&cRecvBuff[0],

 __TCP_ECHO_BUFF_SIZE_SERVER);

SpaceChain OS

594

Application Development Manual

 if (sstRecv <= 0) { /* Failed to receive data

*/

 if ((errno != ETIMEDOUT) &&

 (errno != EWOULDBLOCK)) { /* Non-timeout and non-blocking */

 close(sockFdNew); /* Shut down a connected socket

 */

 fprintf(stderr, "TCP echo server recvfrom error.\n");

 return (-1); /* Return error */

 }

 continue; /* Re-run after timeout or

non-blocking */

 }

 /* Send retroreflective data back to

the far end */

 write(sockFdNew, (const void *)&cRecvBuff[0], sstRecv);

 }

 return (0);

}

Program List 15.5 TCP echo client program

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#define __TCP_ECHO_TYPE_CLIENT 1 /* Client mode */

#define __TCP_ECHO_TYPE_SERVER 2 /* Server mode */

 /* Current mode selection */

#define __TCP_ECHO_TYPE (__TCP_ECHO_TYPE_ CLIENT)

 /*Client IP address */

#define __TCP_ECHO_IP_CLIENT "192.168.1.16"

 /* Server IP address */

#define __TCP_ECHO_IP_SERVER "192.168.1.17"

#define __TCP_ECHO_PORT_CLIENT 8100 /* Client port number */

#define __TCP_ECHO_PORT_SERVER 8101 /* Server port number */

#define __TCP_ECHO_BUFF_SIZE_CLIENT 257 /* Client receive buffer size */

#define __TCP_ECHO_BUFF_SIZE_SERVER 257 /* Server receive buffer size */

static int __TcpEchoClient (void)

{

 int iRet = -1; /* Operation result return value */

int sockFd = -1; /* socket Descriptor */

 /* Address structure size */

 socklen_t uiAddrLen = sizeof(struct sockaddr_in);

 register ssize_t sstRecv = 0; /* Received data length */

SpaceChain OS

595

Application Development Manual

register ssize_t sstSend = 0; /* Received data length */

 /* String to send */

const char *pcSendData = "SylixOS Hello!\n";

 /* Receive buffer */

 char cRecvBuff[__TCP_ECHO_BUFF_SIZE_CLIENT] ={0};

 struct sockaddr_in sockaddrinRemote; /* Remote address */

fprintf(stdout, "TCP echo client start.\n");

sockFd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (sockFd < 0) {

 fprintf(stderr, "TCP echo client socket error.\n");

 return (-1);

}

 /*

 * Initialize the remote address structure

 */

 /* Clear address information */

memset(&sockaddrinRemote, 0, sizeof(sockaddrinRemote));

 /* Address translation error */

 if (!inet_aton(__TCP_ECHO_IP_SERVER, &sockaddrinRemote.sin_addr)) {

 close(sockFd); /* Close the socket that has been

created */

 fprintf(stderr, "TCP echo client get addr error.\n");

 return (-1); /* error return */

}

 /* address structure size */

 sockaddrinRemote.sin_len = sizeof(struct sockaddr_in);

sockaddrinRemote.sin_family = AF_INET; /* address family */

 /* bind server por */

 sockaddrinRemote.sin_port = htons(__TCP_ECHO_PORT_SERVER);

 iRet = connect(sockFd,

 (const struct sockaddr *)&sockaddrinRemote,

 uiAddrLen);

 if (iRet < 0) { /* operation failed */

 fprintf(stderr, "TCP echo client connect error.\n");

 return (-1); /* Error return */

}

 for (;;) {

 fprintf(stdout, "Send Data: %s", pcSendData);

 sstRecv = strlen(pcSendData); /* Get the length of the send string

 */

SpaceChain OS

596

Application Development Manual

 sstSend = write(sockFd,

 (const void *)pcSendData,

 sstRecv); /* Send data to the specified server

 */

 if (sstSend <= 0) { /* Failed to send data */

 if ((errno != ETIMEDOUT) &&

 (errno != EWOULDBLOCK)) { /* Non-timeout and non-blocking

 */

 close(sockFd); /* Close the socket that has been

created */

 fprintf(stderr, "TCP echo client write error.\n");

 return (-1); /* Error return

 */

 }

 continue; /* Re-run after timeout or non-blocking

 */

 }

 /* Clear the receive buffer */

 memset(&cRecvBuff[0], 0, __TCP_ECHO_BUFF_SIZE_CLIENT);

 /* Receive data from the far end */

 sstRecv = read(sockFd,

 (void *)&cRecvBuff[0],

 __TCP_ECHO_BUFF_SIZE_SERVER);

 if (sstRecv <= 0) { /* Failed to receive data */

 if ((errno != ETIMEDOUT) &&

 (errno != EWOULDBLOCK)) { /* Non-timeout and non-blocking

 */

 close(sockFd); /* Close the socket that has been

created */

 fprintf(stderr, "TCP echo client read error.\n");

 return (-1); /*error return */

 }

 continue; /* Re-run after timeout or non-blocking

 */

 }

 fprintf(stdout, "Recv Data: ");

 cRecvBuff[sstRecv] = 0;

 fprintf(stdout, "%s\n", &cRecvBuff[0]);

 sleep(5); /* Sleep for a while */

 }

 return (0);

}

SpaceChain OS

597

Application Development Manual

15.3.3 Raw socket (RAW) instance

The raw socket can provide the following functions which are not normally provided by

TCP and UDP sockets.

 Use the raw socket to read and write ICMPv4, IGMPv4 and IGMPv6 grouping. For

example: ping command program;

 The special IPv4 datagram can be read and written with the raw socket. Recall the

protocol field in Figure 15.15. Most kernels only process 1 (ICMP), 2 (IGMP), 6 (TCP)

and 17 (UDP) datagrams, but the protocol field may also be other values. For

example, the OSPF routing protocol does not use TCP or UDP, but uses IP directly,

and sets the IP datagram protocol field to 89. Therefore, these datagrams contain

protocol fields which are completely unknown to the kernel and shall be implemented

by using the raw socket. These also apply to IPv6.

1. Creation of RAW socket

In order to create a raw socket the following steps are involved:

 When the second parameter of the socket function is SOCK_RAW, a raw socket is

created. The third parameter is usually not 0. The following code is to create an IPv4

raw socket:

int sockfd;

sockfd = socket(AF_INET, SOCK_RAW, protocol);

Note: the protocol parameter value is the IPPROTO_xxx constant value, such as IPPROTO_ICMP.

 The socket option can be set;

 The bind function can be called on the raw socket, but it is not common. This function

is only used to set the local address, and the port number has no meaning for a raw

socket;

 The connect function can be called on the raw socket, but it is not commonly used.

The connect function sets only the destination address. For the output, after calling

the connect function, we can call the write function or the send function instead of the

sendto function because the destination address has been already specified.

2. Output of RAW socket

Usually the raw socket can be output by calling the sendto function or the sendmsg

function and specifying the destination IP address. If the socket has already been connected

by calling the connect function, you can also call the write function, writev function or send

function.

3. Input of RAW socket

SpaceChain OS

598

Application Development Manual

For raw socket input, you need to consider which IP packet received will be passed

to the original socket. These need to comply with the following rules:

 The received TCP packet and UDP packet will never be passed to any raw socket. If

you wish to read IP datagram containing TCP packet or UDP packet, they must be

read at the link layer (see Section 15.2.6).

 When the kernel processes ICMP message, most of ICMP packets will be passed to

the original socket;

 After the kernel processes the IGMP message, all IGMP packets will passed to a raw

socket;

 All IP datagrams with protocol fields that the kernel does not recognize will be passed

to a raw socket;

 If the datagram arrives as a fragment, the packet will be passed to the original socket

after all fragments arrive and are reassembled.

After the kernel prepares a datagram to be passed, the kernel will check all raw sockets to

find all matching sockets. Each matching socket will receive a copy of the IP datagram. The

datagram will only be sent to the specified socket when the following conditions are satisfied:

 If the specified protocol parameter is not zero when the original socket is created, the

protocol field of the received datagram shall match this value. Otherwise, the

datagram will not be sent to the socket;

 If a local IP address is bound to this raw socket, the destination IP address of the

received datagram shall match the binding address; otherwise, the datagram will not

be sent to the original socket;

 If this primitive socket specifies a peer's IP address by calling the connect function,

the source IP address of the received datagram shall match the connected address.

Otherwise, the datagram will not be sent to the original socket.

The following program uses the raw socket to send TCP network datagrams. IP header

and TCP header of the datagram is constructed by us, and completed by the ip_packet_ctor

function and the tcp_packet_ctor function respectively.

Program List 15.6 Use of raw socket

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <inet/lwip/ip4.h>

#include <inet/lwip/tcp_impl.h>

#define DEST_PROT (4000)

#define PACKET_LEN (128)

SpaceChain OS

599

Application Development Manual

#define IPVERSION (0x4)

#define TTLVAL (255)

struct tcphdr {

 u16_t source;

 u16_t dest;

 u32_t seq;

 u32_t ack_seq;

 u16_t res1:4, doff:4, fin:1, syn:1, rst:1,

 psh:1, ack:1, urg:1, ece:1, cwr:1;

 u16_t window;

 u16_t check;

 u16_t urg_ptr;

};

void ip_packet_ctor (struct ip_hdr *iphdr, struct sockaddr_in *dest)

{

 int ip_len = sizeof(struct ip_hdr) + sizeof(struct tcphdr);

 IPH_VHL_SET(iphdr, IPVERSION, (sizeof(struct ip_hdr) >> 2));

 IPH_TOS_SET(iphdr, 0);

 IPH_LEN_SET(iphdr, htons(ip_len));

 IPH_ID_SET(iphdr, 0);

 IPH_OFFSET_SET(iphdr, 0);

 IPH_TTL_SET(iphdr, TTLVAL);

 IPH_PROTO_SET(iphdr, IPPROTO_TCP);

 IPH_CHKSUM_SET(iphdr, 0);

 iphdr->dest.addr = dest->sin_addr.s_addr;

}

void tcp_packet_ctor (struct tcphdr *tcphdr, u16_t srcprot, struct sockaddr_in

*dest)

{

 tcphdr->source = htons(srcprot);

 tcphdr->dest = dest->sin_port;

 tcphdr->seq = 3;

 tcphdr->ack_seq = 0;

 tcphdr->check = 0;

 tcphdr->doff = 5;

 tcphdr->syn = 1;

}

u16_t tcp_chksum (u16_t *addr, int len)

{

SpaceChain OS

600

Application Development Manual

 int nleft = len;

 int sum = 0;

 u16_t *temp = addr;

 short ans = 0;

 while (nleft > 1) {

 sum += *temp++;

 nleft -= 2;

 }

 if (nleft == 1) {

 *(unsigned char *)(&ans) = *(unsigned short *)temp;

 sum += ans;

 }

 sum = (sum >> 16) + (sum & 0xffff);

 sum += (sum >> 16);

 ans = ~sum;

 return (ans);

}

void send_packet (int sockfd, unsigned short srcport,

 char *src, struct sockaddr_in *dest)

{

 struct ip_hdr *iphdr;

 struct tcphdr *tcphdr;

 char buf[PACKET_LEN] = {0};

 struct in_addr srcaddr;

 int ip_len;

 ip_len = sizeof(struct ip_hdr) + sizeof(struct tcphdr);

 if (src) {

 inet_aton(src, &srcaddr);

 }

 iphdr = (struct ip_hdr *)buf;

 ip_packet_ctor(iphdr, dest);

 tcphdr = (struct tcphdr *)(buf + sizeof(struct ip_hdr));

 tcp_packet_ctor(tcphdr, srcport, dest);

 while (1) {

SpaceChain OS

601

Application Development Manual

 iphdr->src.addr = (src == NULL) ? random() : srcaddr.s_addr;

 tcphdr->check = tcp_chksum((unsigned short *)tcphdr,

sizeof(struct tcp_hdr));

 sendto(sockfd, buf, ip_len, 0, (struct sockaddr *)dest,

sizeof(struct sockaddr_in));

 }

}

int main (int argc, char *argv[])

{

 int sockfd;

 struct sockaddr_in destaddr;

 if (argc < 2) {

 fprintf(stderr, "%s src-addr dest addr.\n", argv[0]);

 return (-1);

 }

 sockfd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP);

 if (sockfd < 0) {

 perror("socket");

 return (-1);

 }

 bzero(&destaddr, sizeof(destaddr));

 destaddr.sin_family = AF_INET;

 destaddr.sin_len = sizeof(destaddr);

 destaddr.sin_port = htons(DEST_PROT);

 if (inet_aton(argv[2], &destaddr.sin_addr) == 0) {

 fprintf(stderr, "destination addr don't found.\n");

 return (-1);

 }

 send_packet(sockfd, DEST_PROT, argv[1], &destaddr);

 return (0);

}

15.4 Introduction to DNS

DNS is the abbreviation of Domain Name System. It is a core service of the Internet, and

serves as a distributed database which can map domain names and IP addresses to each

SpaceChain OS

602

Application Development Manual

other, enabling people to access the Internet more easily without remembering the IP

address which can be read directly by the machine.

#include <sys/socket.h>

#include <netdb.h>

int getaddrinfo(const char *nodename, const char *servname,

 const struct addrinfo *hints, struct addrinfo **res);

void freeaddrinfo(struct addrinfo *ai);

Prototype analysis of Function getaddrinfo:

 For success of the function, return 0. For failure, return non-0 value;

 Parameter nodename is the address character string;

 Parameter servname is the service name;

 Parameter hints enters address information;

 Output parameter res returns result address information.

函数 freeaddrinfo 原型分析：

Prototype analysis of Function freeaddrinfo;

 Parameter ai is the address information structure returned by the getaddrinfo

function.

The getaddrinfo function returns one or more address information for the addrinfo

structure. These address structures can be released by calling the freeaddrinfo function. The

addrinfo structure in SylixOS is as shown below:

struct addrinfo {

 int ai_flags; /* Input flags. */

 int ai_family; /* Address family of socket. */

 int ai_socktype; /* Socket type. */

 int ai_protocol; /* Protocol of socket. */

 socklen_t ai_addrlen; /* Length of socket address. */

 struct sockaddr *ai_addr; /* Socket address of socket. */

 char *ai_canonname; /* Canonical name of service location. */

 struct addrinfo *ai_next; /* Pointer to next in list. */

};

 ai_flags: input flags, as shown in Table 15.8;

 ai_family: socket address family;

 ai_socktype: socket type, as shown in Table 15.2;

 ai_protocol: protocol, as shown in Table 15.1;

 ai_addrlen: length of the socket address;

SpaceChain OS

603

Application Development Manual

 ai_addr: socket address;

 ai_canonname: canonical name.

Table 15.8 addrinfo structure input flag

Sign Instructions

AI_PASSIVE The socket address is used to listen for binding

AI_CANONNAME Need a canonical name (as opposed to an alias)

AI_NUMERICHOST Specify the host address numerically

AI_NUMERICSERV Specify the service as the digital port number

An optional hints can be provided to select the address conforming to specific conditions.

The hints is a template for filtering addresses, including ai_family, ai_flags, ai_protocol and

ai_socktype fields. The remaining fields are divided into two cases in SylixOS. Firstly, if the

program links to the external c library (libcextern), the remaining integer field must be 0, and

the pointer field must be empty; secondly, if the application does not link the external c library,

the remaining fields is not required.

#include <sys/socket.h>

#include <netdb.h>

int getnameinfo(const struct sockaddr *addr, socklen_t len,

 char *host, socklen_t hostlen,

 char *serv, socklen_t servlen, int flag);

Prototype analysis of Function getnameinfo:

 For success of the function, return 0. For failure, return non-0 error value;

 Parameter addr is the socket address;

 Parameter len is the length of socket address;

 Output parameter host returns the host name;

 Parameter hostlen is the length of parameter host buffer zone;

 Output parameter serv returns the service host name;

 Parameter servlen is the length of Parameter serv buffer zone;

 Parameter flag is the control flag, as shown in Table 15.10.

The getnameinfo function converts an address into a host name and service name. If host

is non-NULL, it points to a buffer zone with a length of hostlen bytes to store the returned host

name. Similarly, if serv is non-NULL, it points to a buffer zone with a length servlen bytes to

store the returned service host name. In order to allocate space for host and serv, SylixOS

contains the following constants:

Table 15.9 Constant values of character string length returned by the getnameinfo function

SpaceChain OS

604

Application Development Manual

Constant value Instructions Value

NI_MAXHOST Length of the returned host character string (parameter hostlen) 1025

NI_MAXSERV
Length of the returned service character string (parameter

servlen)

32

Table 15.10 shows the configurable flag (parameter flag) which can change operation of

the getnameinfo function.

Table 15.10 Flag of the getnameinfo function (flag)

Flag Instructions

NI_NUMERICHOST Return the numeric form of the host address, not the host name

NI_NUMERICSERV Return the numeric form (port number) of the service address, not the name

NI_DGRAM Service based on datagram but not stream

NI_NUMERICSCOPE For IPv6, returns the numeric form of the range ID, not the name

DNS defines a message format for query and response. The overall format of this

message is shown in Figure

Figure 15.25 DNS Format encapsulation

SpaceChain OS

605

Application Development Manual

The 16-bit flag field is divided into several subfields:

 QR is 1 bit field: 0 indicates query message, and 1 indicates response message;

 Opcode is 4 bit field: usually 0 (standard query), other values are 1 (reverse query)

and 2 (server status request);

 AA is a 1bit flag, which means "authoritative answer". The name server is authorized

in this domain, and this bit only makes sense at respond;

 TC is 1 bit field indicating "truncated", which shows that the packet is longer than the

allowable length. For example, when UDP is used, it means that when the total length

of the response exceeds 512 bytes, only the first 512 bytes are returned;

 RD is a 1 bit field indicating "recursion desired". This bit can be set in a query and

returned in the response. This flag tells the name server that this query must be

processed, also known as a recursive query. If this bit is 0, and the requested name

server does not have an authoritative answer, it returns a list of other name servers

which can answer the query. This is called as iterative query. In the following example,

we will see examples of these two types of queries;

 RA is 1bit field indicating "available recursion". If the name server supports recursive

query, this bit is set as 1 in the response. Most name servers provide recursive query,

except for some root servers;

 The 3bit field of zero must be 0;

 Rcode is a 4bit answer code field, as shown in Table 15.11.

Table 15.11 Answer code

Answer code Instructions

0 No error

1 Message format error (the server cannot understand the requested error)

2 Server failure (the error cannot be handled for the reason of the server)

3
Name error (only meaningful for the authorized domain name resolution server,

indicating that the resolved domain name does not exist)

4 Not realized

5 Deny (the server refused to respond because of the set policy)

6-15 Reserved value

In most queries, the query question segment contains questions, such as: specify the

question. This section contains the "number of questions" question, and each question format

is shown in Figure 15.26;

SpaceChain OS

606

Application Development Manual

（查询名=demand name）

（查询类=demand form）

Figure 15.26 Problem format

 The query name is encoded as some labels sequence. Each labels contains one byte

to indicate the length of the subsequent character string, and the character string. 0

length and the empty character string indicate the end of the name;

 The query type is represented with 16 bit, the value can be any available type value,

and the wildcard character represents all resource records;

 The query class is represented with 16 bit, as shown in Table 15.12.

SpaceChain OS

607

Application Development Manual

Table 15.12 Query class

Class Instructions

IN Internet class

CSNET CSNET class

CHAOS CHAOS class

HESIOD Designate MIT Athena Hesiod Class

ANY Above wildcard character

The answer, authorization and additional information segments all share the same format:

resource record, as shown in Figure 15.27.

Figure 15.27 Resource record format

 The domain name is the domain name contained in the resource record;

 Type represents 16bit resource record type;

 Class represents 16bit resource record class;

 The lifetime indicates the time that the resource record can be cached. If it is 0, it can

only be transmitted and cannot be cached.

 The resource data length indicates the data length.

The DNS query process is as follows:

 (1) The client sends the domain name resolution request, and sends the request to the

local domain name server;

 (2) When the local domain name server receives the request, it first queries the local

cache. If there is such record, the local domain name server will directly return the query

results;

 (3) If there is no such record in the local cache, the local domain name server directly

sends the request to the root name server, and queries its own cache. If there is no such

record, it returns the address of the related lower-level domain name server;

SpaceChain OS

608

Application Development Manual

 (4) Repeat Step 3 until you find the correct record.

The following program shows how to use the getaddrinfo function. This program only

implements the address information of those protocols that work with IPv4 (ai_family is

AF_INET). The program limits the output to the AF_INET protocol family, that is to say, the

ai_family field is set in the prompt.

Program List 15.7 Use of the getaddrinfo function

#include <stdio.h>

#include <netdb.h>

#include <netinet/in.h>

#include <netinet/ip.h>

#include <arpa/inet.h>

void family (struct addrinfo *ai)

{

 fprintf(stdout, "-------------show family-------------\n");

 switch (ai->ai_family) {

 case AF_INET:

 fprintf(stdout, "inet.\n");

 break;

 case AF_INET6:

 fprintf(stdout, "inet6.\n");

 break;

 case AF_UNIX:

 fprintf(stdout, "unix domain.\n");

 break;

 case AF_PACKET:

 fprintf(stdout, "packet domain.\n");

 break;

 case AF_UNSPEC:

 fprintf(stdout, "unspec.\n");

 break;

 default:

 fprintf(stderr, "unknown %d\n", ai->ai_family);

 }

}

SpaceChain OS

609

Application Development Manual

void type (struct addrinfo *ai)

{

 fprintf(stdout, "-------------show socktype-----------\n");

 switch (ai->ai_socktype) {

 case SOCK_STREAM:

 fprintf(stdout, "stream.\n");

 break;

 case SOCK_DGRAM:

 fprintf(stdout, "datagram.\n");

 break;

 case SOCK_RAW:

 fprintf(stdout, "raw.\n");

 break;

 case SOCK_SEQPACKET:

 fprintf(stdout, "seqpacket.\n");

 break;

 default:

 fprintf(stderr, "unknown %d.\n", ai->ai_socktype);

 }

}

void protocol (struct addrinfo *ai)

{

 fprintf(stdout, "-------------show protocol-----------\n");

 switch (ai->ai_protocol) {

 case 0:

 fprintf(stdout, "default.\n");

 break;

 case IPPROTO_TCP:

 fprintf(stdout, "TCP.\n");

 break;

 case IPPROTO_UDP:

 fprintf(stdout, "UDP.\n");

 break;

SpaceChain OS

610

Application Development Manual

 case IPPROTO_RAW:

 fprintf(stdout, "RAW.\n");

 break;

 default:

 fprintf(stderr, "unknown %d.\n", ai->ai_protocol);

 }

}

void flags (struct addrinfo *ai)

{

 fprintf(stdout, "-------------show flags--------------\n");

 if (ai->ai_flags == 0) {

 fprintf(stdout, " 0 \n");

 } else {

 if (ai->ai_flags & AI_PASSIVE) {

 fprintf(stdout, " AI_PASSIVE \n");

 }

 if (ai->ai_flags & AI_CANONNAME) {

 fprintf(stdout, " AI_CANONNAME \n");

 }

 if (ai->ai_flags & AI_NUMERICHOST) {

 fprintf(stdout, " AI_NUMERICHOST \n");

 }

 if (ai->ai_flags & AI_NUMERICSERV) {

 fprintf(stdout, " AI_NUMERICSERV \n");

 }

 }

}

int main (int argc, char *argv[])

{

 struct addrinfo hints;

 struct addrinfo *aip, *ailist;

 int ret;

 struct sockaddr_in *inetaddr;

 const char *addr = NULL;

 char buf[INET_ADDRSTRLEN];

 if (argc < 2) {

 fprintf(stderr, "%s [host]\n", argv[0]);

 return (-1);

SpaceChain OS

611

Application Development Manual

 }

 bzero(&hints, sizeof(hints));

 hints.ai_family = AF_INET;

 hints.ai_socktype = 0;

 hints.ai_flags = AI_CANONNAME;

 ret = getaddrinfo(argv[1], NULL, &hints, &ailist);

 if (ret != 0) {

 fprintf(stderr, "getaddrinfo %s.\n", strerror(ret));

 return (-1);

 }

 for (aip = ailist; aip != NULL; aip = aip->ai_next) {

 family(aip);

 type(aip);

 protocol(aip);

 flags(aip);

 fprintf(stdout, "host: %s\n",

aip->ai_canonname ? aip->ai_canonname : "=");

 if (aip->ai_family == AF_INET) {

 inetaddr = (struct sockaddr_in *)aip->ai_addr;

 addr = inet_ntop(AF_INET, &inetaddr->sin_addr, buf, INET_ADDRSTRLEN);

 fprintf(stdout, "ADDR[IPv4]: %s\n", addr ? addr : "NULL");

 }

 }

 freeaddrinfo(ailist);

 return (0);

}

Run the program under the SylixOS Shell, and the results are as displayed:

./getaddrinfo sylixos.com

-------------show family-------------

inet.

-------------show socktype-----------

unknown 0.

-------------show protocol-----------

default.

-------------show flags--------------

 0

host: sylixos.com

SpaceChain OS

612

Application Development Manual

ADDR[IPv4]: 106.39.47.146

15.5 AF_UNIX domain protocol

UNIX domain socket is an advanced IPC mechanism. IPC in the form can communicate

between two processes running in the same computer system. Although Internet domain

socket can be used for the same purpose, UNIX domain socket is more efficient. UNIX domain

socket merely copies data, but does not perform protocol processing. Therefore, there is no

need to add or delete network header, calculate the checksum, generate the serial number, or

send the confirmation message.

UNIX domain socket in SylixOS provides three interfaces: stream (SOCK_STREAM),

datagram (SOCK_DGRAM) and continuous datagram (SOCK_SEQPACKET). The UNIX

domain datagram service is reliable, free of message loss or passing error. UNIX domain

socket is like a mix of sockets and pipes. They can use their network-facing domain socket

interfaces or use the socketpair function to create a pair of unnamed and interconnected UNIX

domain sockets.

#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sv[2]);

Prototype analysis of Function socketpair:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter domain is the protocol domain (only supports AF_UNIX);

 Parameter type is the protocol type;

 Parameter protocol is the protocol;

 Output parameter sv[2] returns the file descriptor group.

Although the interface is general enough, the function only supports the UNIX domain in

SylixOS. A pair of interconnected UNIX domain sockets can play the role of full-duplex pipe:

both ends are open for reading and writing.

We will find that the socket created by the socketpair function is unnamed, which means

that the unrelated process cannot use them.

The Internet domain socket can bind an address to a socket by calling the bind function,

and can bind an address to the UNIX domain socket. The difference is that the address used

by the UNIX domain socket is different from that of the Internet socket.

In Section 15.1.2 we introduced that the address structure of the UNIX domain socket is

sockaddr_un, and the sun_path member of the structure contains a path name. When we bind

an address to the UNIX domain socket, the system will create a file of S_IFSOCK type with the

path name.

SpaceChain OS

613

Application Development Manual

This file is only used to notify the socket name to the client process, which cannot

be opened or used by the application for communication.

If the file has existed when we try to bind the same address, the bind request will fail. The

file is not automatically closed when the socket is closed. Therefore, it must be guaranteed that

the file is unlinked before the application exits.

When both parties to communications are on the same host, use of UNIX domain sockets

is usually twice as fast as TCP sockets. The UNIX domain socket can be used to pass the

descriptor between two processes on the same host. The UNIX domain socket can provide the

client's voucher to the server, which can provide additional security check.

The following shall be noticed when the NUIX domain socket is used:

 The path name used by the connect function must be a path name bound to an open

UNIX domain socket, and the socket type must also be consistent;

 The UNIX domain stream socket is similar to the TCP socket, and both provide a byte

stream interface without record boundary for the process.

 If the connect function call of the UNIX domain byte stream socket finds that the

queue of the listening socket is full, an ECONNREFUSED error code will be returned

immediately. This is different from TCP: if the queue of the listening socket is full, it

will ignore the incoming SYN, and the initiator of the TCP connection will send several

SYN retries.

 The UNIX domain datagram socket is similar to the UDP socket, and both provide an

unreliable data service that retains record boundaries;

 The SylixOS UNIX domain socket implements the SOCK_SEQPACKET datagram,

and this type guarantees the two-way function of connectivity and of record boundary

retention.

 Unlike UDP, sending the datagram on an unbound UNIX domain socket will not

bundle it with a path name (sending data on an unbound UDP socket will bundle a

temporary port for the socket). It means that the receiver cannot send back the

response datagram unless the sender of the datagram bundles a path name. Unlike

TCP and UDP, calling the connect function on the UNIX domain datagram socket will

not bundle a path name.

15.5.1 AF_UNIX instance

1. SOCK_STREAM type instance

The UNIX domain socket communication process of SOCK_STREAM type is as shown in

Figure 15.23. The following program uses the UNIX domain socket to communicate between

the server and the client. The server side waits for the client to send the character string

SpaceChain OS

614

Application Development Manual

"client", the server side sends "ACK” to respond the client after the character string

"client” is received successfully, and the client prints response results of the server side.

Program List 15.8 STREAM type client

#include <sys/types.h>

#include <sys/socket.h>

#include <stdio.h>

#include <sys/un.h>

#include <unistd.h>

#define AF_UNIX_FILE "afunix.tmp"

int main (int argc, char *argv[])

{

 int sockfd;

 struct sockaddr_un addr;

 socklen_t len;

 int i, bytes, result;

 char str[16];

 sockfd = socket(AF_UNIX, SOCK_STREAM, 0);

 if (sockfd < 0) {

 fprintf(stderr, "[client]socket error.\n");

 return (-1);

 }

 bzero(&addr, sizeof(addr));

 len = sizeof(addr);

 addr.sun_family = AF_UNIX;

 strcpy(addr.sun_path, AF_UNIX_FILE);

 result = connect(sockfd, (struct sockaddr *)&addr, len);

 if (result < 0) {

 fprintf(stderr, "[client]connect error.\n");

 close(sockfd);

 return (-1);

 }

 fprintf(stdout, "[client]connect server success.\n");

 for (i = 0; i < 5; i++) {

 bytes = write(sockfd, "client", 7);

 if (bytes < 0) {

 fprintf(stderr, "[client]write error.\n");

 break;;

SpaceChain OS

615

Application Development Manual

 }

 sleep(2);

 bytes = read(sockfd, str, 16);

 if (bytes < 0) {

 fprintf(stderr, "[client]read error.\n");

 break;

 }

 fprintf(stdout, "[client]receive ACK from server.\n");

 }

 close(sockfd);

 return (0);

}

Program List 15.9 STREAM type server side

#include <sys/types.h>

#include <sys/socket.h>

#include <stdio.h>

#include <sys/un.h>

#include <unistd.h>

#include <string.h>

#define AF_UNIX_FILE "afunix.tmp"

int main (int argc, char *argv[])

{

 int ssockfd, csockfd;

 socklen_t slen, clen;

 struct sockaddr_un saddr;

 int i, bytes;

 char str[16];

 unlink(AF_UNIX_FILE);

 ssockfd = socket(AF_UNIX, SOCK_STREAM, 0);

 if (ssockfd < 0) {

 fprintf(stderr, "[server]socket error.\n");

 return (-1);

 }

 slen = sizeof(saddr);

 strcpy(saddr.sun_path, AF_UNIX_FILE);

 saddr.sun_family = AF_UNIX;

SpaceChain OS

616

Application Development Manual

 bind(ssockfd, (struct sockaddr *)&saddr, slen);

 listen(ssockfd, 5);

 fprintf(stdout, "[server]waiting for client connect...\n");

 csockfd = accept(ssockfd, (struct sockaddr *)&saddr, &clen);

 if (csockfd < 0) {

 fprintf(stderr, "[server]accept error.\n");

 close(ssockfd);

 return (-1);

 }

 fprintf(stdout, "[server]connect success.\n");

 for (i = 0; i < 5; i++) {

 bytes = read(csockfd, str, 16);

 if (bytes < 0) {

 fprintf(stderr, "[server]read error.\n");

 break;

 }

 if (strncmp("client", str, 6) == 0) {

 fprintf(stdout, "[server]receiver from client is: %s\n", str);

 } else {

 fprintf(stderr, "[server]client send failed.\n");

 break;

 }

 sleep(1);

 fprintf(stdout, "[server]server reply ACK.\n");

 bytes = write(csockfd, "ACK", 4);

 if (bytes < 0) {

 fprintf(stderr, "[server]write error.\n");

 break;

 }

 }

 unlink(AF_UNIX_FILE);

 close(csockfd);

 close(ssockfd);

 return (0);

}

2. SOCK_DGRAM type instance

SpaceChain OS

617

Application Development Manual

The communication process of the UNIX domain socket of SOCK_DGRAM type

is similar to that of UDP, as shown in Figure 15.21. The following is the server-client

communication instance implemented with the SOCK_DGRAM type. Similar to the function of

SOCK_STREAM type, the server side passively receives data sent from the client. If the

server side receives Character "q", communication on request from the client is terminated,

which is the termination program of the server side. The client sends one-time local current

time every 1 second, and terminates the communication process after sending 5 times.

Program List 15.10 DGRAM type client

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stddef.h>

#include <time.h>

#define AF_UNIX_FILE "afunix.tmp"

int main (int argc, char **argv)

{

 int sockfd;

 struct sockaddr_un addr;

 int count = 0;

 socklen_t len;

 sockfd = socket(AF_UNIX, SOCK_DGRAM, 0);

 if (sockfd < 0) {

 fprintf(stderr, "[client]socker error.\n");

 return (-1);

 }

 bzero(&addr, sizeof(addr));

 len = sizeof(addr);

 addr.sun_family = AF_UNIX;

 strcpy(addr.sun_path, AF_UNIX_FILE);

 for (;;) {

 time_t t;

 char *str;

 ssize_t ret;

SpaceChain OS

618

Application Development Manual

 t = time(NULL);

 str = ctime(&t);

 if (str == NULL) {

 break;

 }

 if (count++ > 5) {

 str = "q";

 }

 ret = sendto(sockfd, str, strlen(str), 0, (struct sockaddr *)&addr, len);

 if (ret < 0) {

 fprintf(stderr, "[server]sendto error.\n");

 break;

 }

 fprintf(stdout, "[client]send %s", str);

 if (count > 6) {

 break;

 }

 sleep(1);

 }

 unlink(AF_UNIX_FILE);

 close(sockfd);

 return (0);

}

Program List 15.11 DGRAM type server side

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stddef.h>

#define AF_UNIX_FILE "afunix.tmp"

int main (int argc, char **argv)

{

 int sockfd;

 struct sockaddr_un addr;

SpaceChain OS

619

Application Development Manual

 int ret;

 socklen_t len;

 size_t size;

 char buf[BUFSIZ] = {0};

 unlink(AF_UNIX_FILE);

 sockfd = socket(AF_UNIX, SOCK_DGRAM, 0);

 if (sockfd < 0) {

 fprintf(stderr, "[server]socker error.\n");

 return (-1);

 }

 bzero(&addr, sizeof(addr));

 len = sizeof(addr);

 addr.sun_family = AF_UNIX;

 strcpy(addr.sun_path, AF_UNIX_FILE);

 ret = bind(sockfd, (struct sockaddr *)&addr, len);

 if (ret < 0) {

 fprintf(stderr, "[server]bind error.\n");

 close(sockfd);

 return (-1);

 }

 for (;;) {

 size = recvfrom(sockfd, buf, BUFSIZ, 0, NULL, NULL);

 if (size > 0) {

 fprintf(stdout, "[server]recv: %s", buf);

 }

 if (strncmp("q", buf, 1) == 0) {

 break;

 }

 }

 unlink(AF_UNIX_FILE);

 close(sockfd);

 return (0);

}

3. SOCK_SEQPACKET type instance

SpaceChain OS

620

Application Development Manual

The UNIX domain socket of SOCK_SEQPACKET type is a connection-oriented

block message transfer. Therefore, the communication process is similar to that of the socket

of SOCK_STREAM type.

Program List 15.12 SEQPACKET type client

#include <stdio.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <string.h>

#define UNIX_PATH "./AF_UNIX_SEQ"

#define SEND_STR "af_unix seqpacket test."

#define SEND_Q "q"

int main (int argc, char *argv[])

{

 int sockfd;

 int ret;

 struct sockaddr_un unixaddr;

 socklen_t len = sizeof(unixaddr);

 int i;

unlink(UNIX_PATH);

 sockfd = socket(AF_UNIX, SOCK_SEQPACKET, 0);

 if (sockfd < 0) {

 perror("socket");

 return (-1);

 }

 unixaddr.sun_family = AF_UNIX;

 strcpy(unixaddr.sun_path, UNIX_PATH);

 unixaddr.sun_len = SUN_LEN(&unixaddr);

 ret = connect(sockfd, (struct sockaddr *)&unixaddr, len);

 if (ret < 0) {

 perror("connect");

 return (-1);

 }

 for (i = 0; i < 10; i++) {

 sendto(sockfd, SEND_STR, strlen(SEND_STR), 0,

 (struct sockaddr *)&unixaddr, len);

 fprintf(stdout, "send msg: %s\n", SEND_STR);

 sleep(1);

SpaceChain OS

621

Application Development Manual

 }

 sendto(sockfd, SEND_Q, strlen(SEND_Q), 0,

 (struct sockaddr *)&unixaddr, len);

 return (0);

}

Program List 15.13 SEQPACKET type server side

#include <stdio.h>

#include <sys/socket.h>

#include <sys/un.h>

#define UNIX_PATH "./AF_UNIX_SEQ"

#define QUIT_STR "q"

int main (int argc, char *argv[])

{

 int sockfd, csockfd;

 int ret;

 char buf[1024] = {0};

 struct sockaddr_un unixaddr;

 socklen_t len = sizeof(unixaddr);

 unlink(UNIX_PATH);

 sockfd = socket(AF_UNIX, SOCK_SEQPACKET, 0);

 if (sockfd < 0) {

 perror("socket");

 return (-1);

 }

 unixaddr.sun_family = AF_UNIX;

 strcpy(unixaddr.sun_path, UNIX_PATH);

 unixaddr.sun_len = SUN_LEN(&unixaddr);

 ret = bind(sockfd, (struct sockaddr *)&unixaddr, len);

 if (ret < 0) {

 perror("bind");

 return (-1);

 }

 listen(sockfd, 5);

 csockfd = accept(sockfd, (struct sockaddr *)&unixaddr, &len);

SpaceChain OS

622

Application Development Manual

 if (csockfd < 0) {

 perror("accept");

 return (-1);

 }

 while (1) {

 ssize_t stlen;

 stlen = recvfrom(csockfd, buf, sizeof(buf), 0, NULL, NULL);

 if (stlen < 0) {

 continue;

 }

 if (!strncmp(buf, QUIT_STR, 1)) {

 fprintf(stdout, "server exit.\n");

 break;

 }

 fprintf(stdout, "buf: %s\n", buf);

 }

 return (0);

}

15.6 AF_PACKET link layer communication

Most operating systems provide applications with access to the data link layer at present,

and the application program can access the link layer to monitor the packet received on the

link layer. Therefore, we can monitor the network on the ordinary computer system via the

program like tcpdump without the special hardware device. If the promiscuous mode of the

network interface is used, we can even listen to all packets on the local cable, not just the

packet with the host where the program is running as the destination address.

The socket of PACKET type shall be created when the data link layer packed is read in

SylixOS, and the PACKET socket is used to send and receive the data frame on the link layer.

Therefore, the application can complete implementation of each layer above the link layer in

the user space. The PACKET socket is similar to TCP, UDP and UNIX in the definition mode:

int sockfd;

sockfd = socket(AF_PACKET, type, protocol);

PACKET socket definition needs to specify the socket function parameter domain as

AF_PACKET (PF_PACKET), Parameter type supports SOCK_DGRAM and SOCK_RAW,

SpaceChain OS

623

Application Development Manual

Parameter protocol contains the link layer protocol, and part of the commonly used

protocols are shown in Table 15.13 (the more protocols are defined in the file <net/if_ether.h>.

Table 15.13 PACKET socket protocol

Agreement Instructions
Value

ETH_P_IP IP type data frame 0x0800

ETH_P_ARP ARP type data frame 0x0806

ETH_P_RARP RARP type data frame 0x8035

ETH_P_ALL All types of data frames 0x0003

Specify Protocol ETH_P_XXX informs the data link layer to pass the different types of

frames it receives to the PACKET socket. If the data link supports promiscuous mode (such as

Ethernet), the promiscuous mode of the network device shall be set. The flag is got by calling

the ioctl function (command SIOCGIFFLAGS), and the IFF_PROMISC flag is set, then the ioctl

function (command SIOCSIFFLAGS) is called again to set a new flag (containing the

IFF_PROMISC flag).

We mentioned above that the parameter type supports SOCK_RAW type, which contains

the original packet of the link layer header information, i.e., a MAC header of ethhdr structure

type shall be added for the type of socket when sent, and the structure is defined as follows:

struct ethhdr {

 u_char h_dest[ETH_ALEN]; /* destination eth addr */

 u_char h_source[ETH_ALEN]; /* source ether addr */

 u_short h_proto; /* packet type ID field */

} __attribute__((packed));

 h_dest: destination MAC address of Ethernet;

 h_source: source MAC address of Ethernet;

 h_proto: frame type, as shown in 15.13;

The SOCK_DGRAM type has processed the header information of the link layer, i.e., the

Ethernet header of the received data frame has been removed, and the application shall not

add the header information when sending such data.

SpaceChain OS

624

Application Development Manual

For created socket, data can be received and sent by calling the recvfrom function.

Unlike UDP, the address structure of PACKET is the sockaddr_ll type, and the structure is

defined as follows:

struct sockaddr_ll {

 u_char sll_len; /* Total length of sockaddr */

 u_char sll_family; /* AF_PACKET */

 u_short sll_protocol; /* Physical layer protocol */

 int sll_ifindex; /* Interface number */

 u_short sll_hatype; /* ARP hardware type */

 u_char sll_pkttype; /* packet type */

 u_char sll_halen; /* Length of address */

 u_char sll_addr[8]; /* Physical layer address */

};

 sll_len: address structure length;

 sll_family: protocol family (AF_PACKET);

 sll_protocol: link layer protocol type, as shown in 15.13;

 sll_ifindex: network interface index number (such as 1 in en1);

 sll_hatype: device protocol type (For example, Ethernet is ARPHRD_ETHER);

 sll_pkttype: packet type, as shown in Table 15.14;

 sll_halen: physical address length (MAC address length);

 sll_addr: physical address.

The packet types supported by SylixOS are listed in the following table. It shall be noted

that these types are only meaningful for the received packets.

Table 15.14 Packet type

Packet type Instructions

PACKET_HOST The destination address is the local host packet

PACKET_BROADCAST Broadcast packet of the physical layer

PACKET_MULTICAST A packet sent to the multicast address of the physical layer

PACKET_OTHERHOST Packets sent to other hosts in promiscuous mode

PACKET_OUTGOING Loopback packet

15.6.1 AF_PACKET instance

It is introduced above that the AF_PACKET protocol family supports SOCK_DGRAM and

SOCK_RAW types. The former allows the kernel to process addition or removal of the

Ethernet packet header, while the latter allows the application to have complete control to the

Ethernet header. The protocol type must conform to one of the types defined in the header file

SpaceChain OS

625

Application Development Manual

<net/if_ether.h> during socket calling(For example: ETH_P_IP in the case), and

ETH_P_IP is used to process a set of protocols (TCP, UDP, ICMP and so on).

The instance program provides the method for AF_PACKET to read the raw data of the

link layer (SOCK_RAW), which is similar to sniffer in function. The program calls the socket

function to establish the socket firstly (the protocol field is AF_PACKET, and the protocol type

is SOCK_RAW). Since the IP layer datagram shall be processed, the protocol is appointed as

ETH_P_IP. Then the program calls the recvfrom function to start receiving the network packet.

After successfully receiving the network packet, it firstly determines whether it is a complete

packet (the length cannot be less than 42). If it is a complete packet, the MAC address and

network address (IP address) shall be printed. Otherwise, discard the packet and exit the

program.

Program List 15.14 AF_PACKET instance

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <unistd.h>

#include <sys/socket.h>

#include <sys/ioctl.h>

#include <net/if_ether.h>

#define IPV4_VERSION (0x4)

#define BUFSISE (2048)

int main (int argc, char *argv[])

{

 int sockfd;

 struct ethhdr *ethheader;

 unsigned char *ip4header;

 sockfd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));

 if (sockfd < 0) {

 perror("socket");

 return (-1);

 }

 while (1) {

 ssize_t len;

 unsigned char buf[BUFSISE];

 fprintf(stdout, "................\n");

 len = recvfrom(sockfd, (void *)buf, sizeof(buf), 0, NULL, NULL);

 if (len < 0) {

SpaceChain OS

626

Application Development Manual

 continue;

 }

 fprintf(stdout, "recv %ld bytes.\n", len);

 /*

 * Check whether the packet contains the complete Ethernet header (14), IP

header (20), TCP/UDP header (20/8)

 */

 if (len < 42) {

 perror("recvfrom: ");

 fprintf(stderr, "Incomplete packet[%s]\n", strerror(errno));

 break;

 }

 /*

 * Print Ethernet header information.

*/

 ethheader = (struct ethhdr *)buf;

 fprintf(stdout, "Ethernet type: 0x%x\n", ntohs(ethheader->h_proto));

 fprintf(stdout, "Source MAC addr: "

 "%02x:%02x:%02x:%02x:%02x:%02x\n",

 ethheader->h_source[0], (ethheader->h_source[1]),

(ethheader->h_source[2]), ethheader->h_source[3],

(ethheader->h_source[4]), (ethheader->h_source[5]));

 fprintf(stdout, "Destination MAC addr: "

 "%02x:%02x:%02x:%02x:%02x:%02x\n",

 ethheader->h_dest[0], ethheader->h_dest[1],

ethheader->h_dest[2], ethheader->h_dest[3],

ethheader->h_dest[4], ethheader->h_dest[5]);

 /*

 * Print IP header information.

*/

 ip4header = buf + sizeof(struct ethhdr);

 if (((*ip4header) & IPV4_VERSION) == IPV4_VERSION) {

 fprintf(stdout, "Source host %d.%d.%d.%d\n",

 ip4header[12], ip4header[13],

ip4header[14], ip4header[15]);

 fprintf(stdout, "Destination host %d.%d.%d.%d\n",

 ip4header[16], ip4header[17],

ip4header[18], ip4header[19]);

SpaceChain OS

627

Application Development Manual

 fprintf(stdout, "Source, Dest ports %d,%d\n",

 (ip4header[20] << 8) + ip4header[21],

(ip4header[22] << 8) + ip4header[23]);

 fprintf(stdout, "Layer[4] protocol %d\n", ip4header[9]);

 }

 }

 close(sockfd);

 return (0);

}

Run the program in SylixOS Shell, and partial results are displayed as follows:

./packet_test

................

recv 78 bytes.

Ethernet type: 0x800

Source MAC addr: 00:ff:ff:6f:a7:a0

Destination MAC addr: 08:08:3e:26:0a:5a

Source host 192.168.7.40

Destination host 192.168.7.30

Source, Dest ports 2048,1386

Layer[4] protocol 1

……

It can be seen from the program running results that the Ethernet type is 0x800 which is

the IP protocol type, and the MAC address and network address of the sender and the receiver

can be clearly seen. The value of protocol is 1, and it can be concluded that the network

packet is ICMP (1) packet. From more experimental results, the program only receives the

packet with the destination address of 192.168.7.30, i.e., only receives the network packet

sent to the host. Actually, the socket option can be set at the promiscuous mode (packets not

sent to the machine can be received) to receive more packets.

15.6.2 AF_PACKET and mmap

The PACKET socket transmission mode introduced above is in the form of the buffer zone,

and requires a function call for every packet captured, causing decline in transmission

efficiency. For example, the function (such as libpcap) shall be called twice to get the

timestamp of PACKET.

The PACKET MMAP mechanism solves this problem of low transmission efficiency. The

PACKET MMAP mechanism will allocate a kernel buffer in the kernel space, then the user

maps the buffer zone to user space by calling the mmap function, the kernel copies the

SpaceChain OS

628

Application Development Manual

received packet to the kernel buffer zone, and the application can directly access the

data in the buffer.

The PACKET MMAP mechanism provides a ring buffer zone which is mapped to the user

space with configurable size. The size of the buffer zone is got from the member values in the

tpacket_req structure, and the structure is defined as follows:

struct tpacket_req {

 u_int tp_block_size; /* Min size of contiguous block */

 u_int tp_block_nr; /* Number of blocks */

 u_int tp_frame_size; /* Size of frame */

 u_int tp_frame_nr; /* Total number of frames */

};

 tp_block_size: block size;

 tp_block_nr: block number;

 tp_frame_size: frame size;

 tp_frame_nr: frame number.

This ring buffer zone consists of tp_block_nr blocks, and each block contains

tp_block_size/tp_frame_size frames. Where, each frame must be in the same block. The block

size must be SylixOS page-aligned (the value obtained by the getpagesize function is 4K at

default in SylixOS), and the frame size must be TPACKET_ALIGNMENT == 16 (defined in

<netpacket/packet.h>) byte alignment. It shall be noted that tp_frame_nr must be the same

with (tp_block_size/tp_frame_size)*tp_block_nr. All blocks in SylixOS constitutes a contiguous

physical memory. This structure relation is shown in Figure 15.28.

Each frame header of the ring buffer zone contains a tpacket_hdr structure, storing some

information. The structure is divided into two versions of implementation, as shown below:

enum tpacket_versions {

 TPACKET_V1,

 TPACKET_V2

};

The following shows implementation of TPACKET_V1 version, and the meanings are as

follows:

struct tpacket_hdr {

 volatile u_long tp_status;

 volatile u_int tp_len;

 volatile u_int tp_snaplen;

 volatile u_short tp_mac;

 volatile u_short tp_net;

 volatile u_int tp_sec;

 volatile u_int tp_usec;

};

SpaceChain OS

629

Application Development Manual

 tp_status: frame status, as shown in Table 15.15:

 Tp_len: packet length (in case of the SOCK_DGRAM kernel, the length of the MAC

header will be subtracted);

 Tp_snaplen: valid data length;

 Tp_mac: Ethernet frame offset position;

 Tp_net: NET datagram offset position;

 Tp_sec: timestamp (seconds);

 Tv_usec: timestamp (microseconds).

Table 15.15 frame state

frame state Instructions

TP_STATUS_KERNEL
Indicate that the kernel can use this frame, that is to say, the application has

no data to read

TP_STATUS_USER
Indicate that the application is readable. The kernel cannot use this frame at

this time

The following shows implementation of the TPACKET_V2 version. The meanings are as

follows:

struct tpacket2_hdr {

 volatile u_int32_t tp_status;

 volatile u_int32_t tp_len;

 volatile u_int32_t tp_snaplen;

 volatile u_int16_t tp_mac;

 volatile u_int16_t tp_net;

 volatile u_int32_t tp_sec;

 volatile u_int32_t tp_nsec;

volatile u_int16_t tp_vlan_tci;

volatile u_int16_t tp_vlan_tpid;

};

 tp_status: frame status;

 Tp_len: packet length (in case of the SOCK_DGRAM kernel, the length of the MAC

header will be subtracted);

 Tp_snaplen: valid data length;

 Tp_mac: Ethernet frame offset position;

 Tp_net: NET datagram offset position;

 Tp_sec: timestamp (second);

SpaceChain OS

630

Application Development Manual

 Tp_nsec: timestamp (nanosecond);

 Tp_vlan_tci: two-byte tag control information (TCI) in the vlan;

 Tp_vlan_tpid: two-byte tag protocol identifier (TPID) in the vlan

Figure 15.28 shows the correspondence between block and frame implemented by

SylixOS as well as the frame structure.

（结构=structure）

Figure 15.28 Block and fracme structure

In order to use the mmap way to perform PACKET communication correctly, the following

process is needed:

 Create socket as follows:

int sockfd;

sockfd = socket(AF_PACKET, type, htons(ETH_P_ALL));

 Set the socket option to create a kernel ring buffer. The structure type of the req

parameter is tpacket_req, as shown below:

setsocketopt(sockfd, SOL_PACKET, PACKET_RX_RING, (void *)&req, sizeof(req));

 The application map and use buffer zone is as shown below:

mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, sockfd, 0);

SpaceChain OS

631

Application Development Manual

Through the above process, you can create a PACKET communication based on MMAP

mechanism. The program can wait for the buffer data to be read by calling the poll function.

When the buffer zone is no longer needed, simply call the close function to close the created

socket.

The following program instance shows how to use the MMAP mechanism:

Program List 15.15 AF_PACKET MMAP instance

#include <stdio.h>

#include <unistd.h>

#include <sys/socket.h>

#include <net/if_ether.h>

#include <netpacket/packet.h>

#include <net/if_arp.h>

#include <sys/mman.h>

#include <poll.h>

#define BUF_SIZE (16 * 1024 * 1024) /* 16M */

#define FREAM_SIZE (2 * 1024)

#define BLOCK_SIZE getpagesize() /* 1 page */

void show_packet (void *arg)

{

 struct tpacket_hdr *thdr = (struct tpacket_hdr *)arg;

 fprintf(stdout, "=================packet header=================\n");

 fprintf(stdout, "tpacket len: %d\n", thdr->tp_len);

 fprintf(stdout, "tpacket status: %lu\n", thdr->tp_status);

 fprintf(stdout, "tpacket snaplen: %d\n", thdr->tp_snaplen);

 fprintf(stdout, "tpacket mac offset: %d\n", thdr->tp_mac);

 fprintf(stdout, "tpacket net offset: %d\n", thdr->tp_net);

}

int process_packet (struct tpacket_hdr *thdr, int *idx)

{

 /*

 * If the status is TP_STATUS_KERNEL, there is no data.

 */

 if (thdr->tp_status == TP_STATUS_KERNEL) {

 return (-1);

 }

 show_packet((void *)thdr);

SpaceChain OS

632

Application Development Manual

 thdr->tp_len = 0;

 thdr->tp_status = TP_STATUS_KERNEL;

 (*idx)++;

 (*idx) %= BUF_SIZE / FREAM_SIZE;

 return (0);

}

int main (int argc, char *argv[])

{

void *buff = NULL;

 int sockfd;

 struct tpacket_req req;

 int ret;

 int tpacket_verion = TPACKET_V1;

 int index = 0, i;

 struct pollfd pfd;

 sockfd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));

 if (sockfd < 0) {

 perror("socket");

 goto exit2;

 }

 /*

 * Set the TPACKET version to 1

 */

ret = setsockopt(sockfd, SOL_PACKET, PACKET_VERSION,

(void *)&tpacket_verion, sizeof(int));

 if (ret < 0) {

 perror("setsockopt");

 goto exit2;

 }

 /*

 * Set buffer properties

 */

 req.tp_block_size = BLOCK_SIZE;

 req.tp_frame_size = FREAM_SIZE;

 req.tp_block_nr = BUF_SIZE / req.tp_block_size;

 req.tp_frame_nr = BUF_SIZE / req.tp_frame_size;

ret = setsockopt(sockfd, SOL_PACKET, PACKET_RX_RING,

SpaceChain OS

633

Application Development Manual

(void *)&req, sizeof(req));

 if (ret < 0) {

 perror("setsocket");

 goto exit2;

 }

 buff = mmap(0, BUF_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, sockfd, 0);

 if (MAP_FAILED == buff) {

 perror("mmap");

 goto exit2;

 }

 for (i = 0; i < req.tp_frame_nr; i++) {

 struct tpacket_hdr *thdr;

 /*

 * If data has been found before poll

 */

 thdr = (struct tpacket_hdr *)(buff + index * FREAM_SIZE);

 if (thdr->tp_status == TP_STATUS_USER) {

 goto proc_pkt;

 }

 pfd.fd = sockfd;

 pfd.events = POLLIN;

 pfd.revents = 0;

 ret = poll(&pfd, 1, -1);

 if (ret < 0) {

 perror("poll");

 goto exit1;

 }

proc_pkt:

 while (1) {

 thdr = (struct tpacket_hdr *)(buff + index * FREAM_SIZE);

 if (thdr->tp_status == TP_STATUS_KERNEL) {

 break;

 }

 show_packet((void *)thdr);

 thdr->tp_len = 0;

SpaceChain OS

634

Application Development Manual

 thdr->tp_status = TP_STATUS_KERNEL;

 index++;

 index %= req.tp_frame_nr;

 }

 }

exit1:

 munmap(buff, BUF_SIZE);

exit2:

 close(sockfd);

 return (0);

}

From the above example, it can be seen that it is not required to call the recv function or

the recvfrom function when the PACKET MMAP mechanism is used to receive the network

data.

15.7 Network event detection

During network transmission, the network interface may be added or deleted. In the

process of data transmission, the link is suddenly disconnected. These sudden situations

usually cause fatal errors to the network. In order to reduce the losses caused by these

problems, it is necessary for the application to take some countermeasures. For example, if

the link is suddenly disconnected, it shall wait for the network to recover and retransmit. Some

network protocols support the retransmission mechanism, but they all have a common feature:

the number of retransmissions is limited. Therefore, there shall be a kind of mechanism to

notify the application to retransmit when the network is recovered. This mechanism has the

following advantages:

 After the network is disconnected, it does not occupy too much CPU time (polling

detection of the network status);

 Be able to detect network recovery in a timely manner (similar to the interruption

mechanism);

 Retransmission for the application is controllable (the network protocol is

uncontrollable).

SylixOS implements this mechanism, which is called as the network event detection. The

network event is detected by operating SylixOS standard I/O device "/dev/netevent". This

means that the device can be operated like an ordinary file to obtain event notification on the

network. The only thing the application needs to know is the frame format of the event, as

shown in Figure 15.29.

SpaceChain OS

635

Application Development Manual

A SylixOS network event occupies the space of 24 bytes, which means that the

application requires the space of at least 24 bytes to receive a network event. Among the 24

bytes, the first 4 bytes store the event types shown in Table 15.16. It shall be noted that the

event type is stored in the first 4 bytes in big endian. 4 bytes behind the event type store a

network interface name (such as en1), and other space store other data. Usually, the

application can obtain a network event type in the following form (buf is the application receive

buffer zone).

event = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | (buf[3]);

Figure 15.29 Network event frame

SylixOS supports the network event as shown in Table 15.16.

Table 15.16 Network event type

Network event type Instructions

NET_EVENT_ADD Network card addition

NET_EVENT_REMOVE Network card deletion

NET_EVENT_UP Network card enable

NET_EVENT_DOWN Network card disable

NET_EVENT_LINK Network card connected

NET_EVENT_UNLINK Network card disconnected

NET_EVENT_ADDR Network card address change

NET_EVENT_AUTH_FAI

L

Network card authentication failed

SpaceChain OS

636

Application Development Manual

NET_EVENT_AUTH_TO Network card authentication timeout

NET_EVENT_PPP_DEA

D

Connection stop

NET_EVENT_PPP_INIT Enter initialization process

NET_EVENT_PPP_AUT

H

Enter user authentication

NET_EVENT_PPP_RUN Internet connectivity

NET_EVENT_PPP_DISC

ONN

Incoming connection interrupted

NET_EVENT_WL_QUAL Network card wireless environment changes (signal strength,

etc.)

NET_EVENT_WL_SCAN Wireless network card AP scanning end

The following program shows how the application detects a network event. During

program implementation, firstly, open the device NET_EVENT_DEV_PATH, install the

SIGALRM signal, disable the network card 2 seconds later, and the read function to reads the

network event and returns. Finally, print the network interface and event type.

Program List 15.16 Detecting network event

#include <unistd.h>

#include <signal.h>

#include <stdlib.h>

#include <net/if_event.h>

void show_eventype (int event)

{

 switch (event) {

 case NET_EVENT_UP:

 fprintf(stdout, "event: up.\n");

 break;

 case NET_EVENT_DOWN:

 fprintf(stdout, "event: down.\n");

 break;

SpaceChain OS

637

Application Development Manual

 case NET_EVENT_LINK:

 fprintf(stdout, "event: link.\n");

 break;

 case NET_EVENT_UNLINK:

 fprintf(stdout, "event: unlink.\n");

 break;

 default:

 fprintf(stdout, "event unknown\n");

 }

 system("ifup en1");

}

void sig_handler (int signum)

{

 system("ifdown en1");

}

int main (int argc, char *argv[])

{

 int fd;

 char buf[24];

 char ifname[4];

 ssize_t len;

 int event;

 fd = open(NET_EVENT_DEV_PATH, O_RDONLY);

 if (fd < 0) {

 perror("open");

 return (-1);

 }

 signal(SIGALRM, sig_handler);

 alarm(2);

 len = read(fd, buf, 512);

 if (len < 0) {

 perror("read");

 return (-1);

 }

SpaceChain OS

638

Application Development Manual

 event = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | (buf[3]);

 ifname[0] = buf[4];

 ifname[1] = buf[5];

 ifname[2] = buf[6];

 ifname[3] = buf[7];

 fprintf(stdout, "ifname: %s\n", ifname);

 show_eventype(event);

 return (0);

}

Run the program in SylixOS Shell, and the running results are as follows:

./netevent_test

net interface "en1" set down.

ifname: en1

event: down.

net interface "en1" set up.

15.8 Standard network function library

15.8.1 ifconfig tool

Ifconfig is the command used to display and configure the network device in SylixOS.

The commands are described as follows:

 [Command format]

ifconfig [netifname] [{inet | netmask | gateway}] [address]

 [Common option]

inet ：Specify to set the IPv4 address

netmask ：Specify the setting subnet mask

gateway ：Specify setting gateway

 [Instructions for parameters]

netifname ：The specified network interface name (such as en1)

address ：The specified address (such as 192.168.1.33)

1. Set IP address

ifconfig en1 inet 192.168.1.33

This command sets the IPv4 address of network interface en1 to 192.168.1.33.

SpaceChain OS

639

Application Development Manual

2. Set gateway

ifconfig en1 gateway 192.168.1.1

This command sets the gateway for network interface en1 to 192.168.1.1.

3. Set DNS

ifconfig dns 0 192.168.1.254

This command sets the DNS 0 address to 192.168.1.254.

If the ifconfig parameter is the network interface, the network information of the interface

will be printed. In particular, ifconfig does not specify any parameter to print information of all

network interfaces in the system.

15.8.2 TFTP

1.Introduction to TFTP

TFTP (Trivial File Transfer Protocol) is a simple file transfer protocol. At the beginning of

work, the TFTP client exchanges information with the server, and the client sends a read

request or a write request to the server.

The first two bytes of the TFTP message indicate the operation code. For read request

and write request, the file name field indicates the file on the server which the customer wants

to read or write. This file field ends with 0 byte. The pattern field is an ASCII character string

"netascii" or "octet" (any combination of uppercase and lowercase) and ends with 0 byte.

"netascii" indicates that the data is composed of lines of ASCII characters, and the carriage

return character followed by new line character (called CR/LF) is taken as the line terminator.

The two end-of-line characters translate between this format and the line delimiter used by the

local host. "octet" treats data as the byte stream of 8 bit per packet.

Each data packet contains a block number field, which is later used in the confirmation

packet. Take reading a file as an example, the TFTP client needs to send a read request

stating the file name and file mode to read. If this file can be read by this client, the TFTP

server returns a data packet with block number 1. The TFTP client sends an ACK with block

number 1 again. The TFTP server then sends data with block number 2. The TFTP client

sends back ACK with block number 2. Repeat this process until the file is delivered. Except

that the last data packet can contain less than 512 bytes of data, every other data packet

contains 512 bytes of data. When the TFTP client receives a data packet of less than 512

bytes, one can know that it received the last data packet.

In the case of a write request, the TFTP client sends a write request indicating the file

name and mode. If the file can be written by the client, the TFTP server returns an ACK packet

with a block number of 0. The client sends the first 512 bytes of the file with a block number of

1. The server returns an ACK with a block number of 1. This type of data transmission is called

as the stop-and-wait protocol (it is only used in some simple protocols, such as TFTP).

The last type of TFTP message is an error message, and its operation code is 5. It is used

when the server cannot handle the read request or write request. Read and write errors during

SpaceChain OS

640

Application Development Manual

file transfer can also result in the transmission of such messages and then stop the

transmission. The error number field gives a numeric error code followed by an ASCII error

message field which may contain additional information of the operating system. Since TFTP

uses unreliable UDP, TFTP must handle packet loss and packet duplication. Packet loss can

be resolved by the sender's timeout and retransmission mechanism. Like many UDP

applications, there is no checksum in the TFTP packet. It assumes that any data errors will be

checked and detected by UDP.

On the whole, TFTP is a simple protocol easy to implement: each packet size is fixed, and

each packet has the confirmation mechanism which can achieve a certain degree of reliability.

Of course, the disadvantages of TFTP are obvious: the transmission efficiency is not high, the

sliding window mechanism is too simple, the window has only one packet size, and the timeout

mechanism is not perfect.

Figure 15.30 shows five TFTP packet formats (messages with opcodes 1 and 2 use the

same format).

Figure 15.30 TFT message format

2. TFTP command

The tftp command in SylixOS allows you to send and receive files via the TFTP protocol.

The tftpdpath command can modify the default path of TFTP server.

 [Command format]

tftpdpath [new path]

SpaceChain OS

641

Application Development Manual

 [Common option]

None

 [Instructions for parameters]

new path ：new path name

The following command sets the path name of the tftp server to /tmp/sylixos.

tftpdpath /tmp/sylixos

 [Command format]

tftp [-i] [Host] [{get | put}] [Source] [Destination]

 [Common option]

-i ：Specify the TFTP mode as "octet"

get ：Obtain a file from the TFTP server

put ：Send a file to the TFTP server

 [Instructions for parameters]

Host ：server address

Source ：source file name

Destination ：Destination file name (this parameter can be empty when getting a file)

The following command gets the file sylixos.log from the TFTP server with IP

192.168.1.30.

tftp –i 192.168.1.30 get sylixos.log

15.8.3 FTP

1. Brief introduction to FTP

FTP (File Transfer Protocol) is one of the protocols in the TCP/IP protocol family. Its

purpose is to provide file sharing, that is to say, FTP completes copy between two computers.

FTP uses two TCP connections to transfer a file.

 The control connection is established as a normal client server. The server passively

opens the well-known port 21 for FTP, and then waits for the client's connection. The

client actively opens TCP port 21 to establish connection. The control connection

always waits for communication between the client and the server. The connection

will send the command from the client to the server, and return the server's response;

 Each time a file is transferred between the client and the server, a data connection is

created.

2. FTP data representation

SpaceChain OS

642

Application Development Manual

The FTP protocol specification provides many options for controlling file transfer

and storage. A choice must be made in each of the following four aspects.

 File types include ASCII file type, EBCDIC file type, binary file type and local file type

(currently, SylixOS only supports ASCII file type and binary file type);

 ASCII file type. The text file is transmitted in data connection in ASCII format.

This requires the sender to convert the local text file to ASCII format, and the

receiver to restore the ASCII code to the local text file. Each line transmitted in

ASCII has a carriage return followed by a line feed. This means that the receiver

must scan each byte to find CR and LF pairs;

 EBCDIC file type, text file transfer requires EBCDIC at both ends;

 Binary file type, data sent as a continuous bit stream, usually used to transfer

binary files;

 Local file type, which transfers the binary file between hosts with different byte

sizes. The number of bits per byte is specified by the sender. For the system

using 8bit bytes, transfer of the local file in 8bit bytes is equivalent to binary file

transfer.

 Format control, this option is only valid for ASCII file type and EBCDIC file type;

 Non-printing, the file cannot contain vertical format information;

 Remote login format control, the file contains the remote login vertical format

control explained to the printer;

 Fortran carriage control, the first character of each line is the Fortran format

control character.

 Structure:

 The file structure (selected by default) file is considered as a continuous byte

stream. There is no internal file structure;

 Record structure, which is only used for the text file (ASCII or EBCDIC);

 Page structure, each page is sent with a page number, so that the receiver can

randomly store the pages.

 Transmission mode, which specifies how the file is transmitted in the data connection.

 Stream mode, the file is transmitted in the form of byte stream. For the file

structure, the sender prompts to close the data connection at the end of file. For

the record structure, there is a dedicated two-byte serial code flag recording end

and file end;

 Block mode, the file is transmitted in a series of blocks, and each block has one

or more header bytes;

 Compression mode, a simple and full-length encoding compression method

which compresses the same byte which appears consecutively.

The following is chosen in SylixOS:

SpaceChain OS

643

Application Development Manual

 Type, ASCII or

binary;

 Format, non-printing;

 Structure, file structure;

 Transmission mode, stream mode.

3. FTP protocol command

Command and answer are transmitted in ASCII code on the control connection between

the client and the server. This requires that CR and LF pairs be returned at the end of each line

(that is to say, each command or each answer).

Table 15.17 shows the SylixOS-supported FTP command.

Table 15.17 FTP command

FTP command Instructions FTP command Instructions

USER
Specify the username on the

remote system
RNFR

The first half of the file

renaming process. The old

path and file name of the

file to be renamed

PASS

Send password to the remote

user (used after USER

command)

REST

Identify the data points in

the file, from which point

the file will continue to be

transmitted

CWD

Change the current directory to

the specified directory of the

remote file system

RETR

This command causes the

server to send a copy of the

file specified in the

pathname to the client

CDUP

Change the current directory to

the root directory of the remote

file system

STOR
Let the server receive a file

from data connection

PWD
Return the name of the current

working directory in the answer
APPE

Let the server prepare to

receive a file and instruct it

to attach the data to the

specified file name. If the

specified file does not exist,

create it

ALLO
Allocate x bytes on the server

before sending the file
SYST

Used to find out the type of

operating system on the

server

PORT
Specify an IP address and local

port for data connection
MKD

Create a directory specified

in the path name

SpaceChain OS

644

Application Development Manual

PASV

Tell the server to listen for data

connections on a non-standard

port

RMD
Delete a directory specified

in the path name

TYPE
Determine the data

transmission mode
DELE

Delete the file specified in

the path name on the

server site

LIST
Let the server send a list to the

client
MDTM Update time information

NLST
Let the server send the

customer a list of directories
SIZE Send file size

NOOP Do nothing SITE
Provide some service

features

4. FTP answer

The answers are all 3-digit figures in ASCII format, and are followed by the message

option. The reason is that the software system needs to decide how to answer according to the

digital code, but the option string is for manual processing. Since the client usually outputs

digital response and message string, an interactive user can determine the meaning of the

response by reading the message string (without remembering the meaning of all digital

answer codes).

Each digit of the answer 3-digit code has a different meaning. The meanings of the first

and second digits of the answer code are shown in Table 15.18.

SpaceChain OS

645

Application Development Manual

Table 15.18 Meaning of first and second digits of the answer code

Answe Instructions

1yz

2yz

3yz

4yz

5yz

Be sure to prepare the answer. It just starts when you expect another answer before

sending another command

Certainly complete the answer. A new command can be sent

Affirmative intermediary answer. The command has been accepted but another command

must be sent

Transient negative completion answer. The requested action did not occur, but the error

status is temporary, so the command can be issued later

Permanent negative completion answer. The command is not accepted and will not be

retried

x0z

x1z

x2z

x3z

x4z

x5z

Syntax error

Information

Connection. Answer means control or data connection

Identification and accounting. Answer used for registration or accounting command

Unspecified

File system state

The third digit gives the additional meaning of the error message. For example, here are

some typical answers, all with a possible message string.

 125: the data connection is already open; the transmission starts;

 200: ready command;

 214: help message (user-oriented);

 331: the user name is ready, required to input the password;

 425: can't open data connection;

 452: wrong writing file;

 500: syntax error (unrecognized command);

 501: syntax error (invalid parameter);

 502: unrealized MODE (mode command) type.

SpaceChain OS

646

Application Development Manual

5. FTP connection management

The data connection has the following three major applications:

 Send a file from the client to the server;

 Send a file from the server to the client;

 Send a list of files or directories from the server to the client.

The FTP server sends the list of files back from the data connection instead of controlling

multiple lines of answers on the connection. This avoids limitations of line finiteness in

directory size, and it is easier for customers to save the directory list as a file instead of

displaying the list on the terminal.

Earlier we said that the SylixOS transfer method is stream mode, and the end of file is a

sign of closing data connection. This means that a brand new data connection must be

established for each file transfer or directory list. The process is as follows:

 Because the customer issues the command to establish data connection, the data

connection is established under the control of the customer;

 The client usually selects a temporary port number for data connection on the client

host. The customer releases a passive open from the port;

 The client uses the PORT command to send the port number from the control

connection to the server;

 The server receives the port number on the control connection and issues an active

open to the port on the client host. The data connection end of the server uses port

20.

6. FTP command

The ftpds command in SylixOS can be used to view all the ftp information linked to

SylixOS. The ftpdpath command can modify the default path of FTP server.

 [Command format]

ftpdpath [new path]

 [Common option]

None

 [Instructions for parameters]

new path ：new path name

The following command sets the default path name of the FTP server to /sylixos.

ftpdpath /sylixos

 [Command format]

SpaceChain OS

647

Application Development Manual

ftpds

 [Common option]

None

 [Instructions for parameters]

None

The ftpds command is displayed as follows, and the result shows that a 192.168.1.30

FTP connection has been established.

ftpds

ftpd show >>

ftpd path: /sylixos

 REMOTE TIME ALIVE(s)

--------------- ------------------------ ------------

192.168.1.30 Sat Jan 09 12:01:00 2167 11

total ftp session : 1

15.8.4 Telnet

1. Brief introduction to Telnet

Telnet protocol is a simple remote login protocol. Its service process can be divided into

the following three steps:

 The local user logs in to the remote system on the local terminal;

 The keyboard input on the local terminal is transmitted to the remote terminal one by

one;

 Send the remote output back to the local terminal.

In the above process, the input / output are transparent to the kernel of the remote system,

and the remote login service is also transparent to the user. This transparency is an important

feature of Telnet.

Telnet provides three basic services. Firstly, a Network Virtual Terminal (NVT) is defined to

provide a standard interface for the remote system. The client program do not have to know in

detail all possible remote systems. They only need the program which uses the standard

interface. Secondly, it includes a mechanism for client and server to negotiate options, and

also provides a set of standard options. Finally, it handles both ends of the connection

peer-to-peer. That is to say, both parties to the connection can be programs. In particular, the

client is not necessarily not a user terminal. Any program is allowed as a client.

SpaceChain OS

648

Application Development Manual

When the user calls Telnet, the application on the user's machine establishes a

TCP connection with the remote server as a client, and communicates on this connection. At

this point, the client accepts the keyboard message from the user's keyboard and sends it to

the server. At the same time, it receives the character sent back from the server, and displays it

on the user's screen.

The server itself does not directly process the messages transmitted from the client.

Instead, the messages are sent to the operating system for processing, and the returned data

is then passed on to the customer. That is to say, the server at this time, which we call "Pseudo

Terminal", allows a run the program like the Telnet server to transfer characters to the

operating system, and makes the characters seem to come from the local keyboard.

In order to provide interoperability between different operating systems and different types

of computers, Telnet specifically provides a standard keyboard definition method called

Network Virtual Terminal (NVT). The client program converts the keystrokes and command

sequences from the user terminal into NVT format and sends them to the server. The remote

server program converts the received data and commands from the NVT format to the format

required by the remote system. For the returned data, the remote server converts the data

from the format of the remote machine to the NVT format, and the local client converts the data

from the NVT format to the format of the local machine.

SylixOS currently supports Telnet servers, which means that SylixOS device resources

can be managed by connecting to the SylixOS target system via Telnet client program.

2. Telnet protocol command

Table 15.19 shows the common commands of Telnet protocol.

Table 15.19 Telnet protocol command

Telnet command Instructions Telnet command Instructions

EOF EOF character EL Delete line

SUSP
Hang the current

process
GA Continue

ABORT
Abnormally terminate

process
SB Suboption start

EOR Record terminator WILL
The sender wants to activate

the option

SE Suboption end WONT
The sender wants to disable

the option

NOP No operation DO
The sender wants the recipient

to activate the option

DM Data tag DONT
The sender wants the receiver

to disable the option

BRK Interrupt IAC IAC

IP Interrupt process AYT
Whether the other party is

running

SpaceChain OS

649

Application Development Manual

AO
Abnormally terminate

output
EC Escape character

The commonly used options are negotiated as follows:

 WILL xxx: I want to have xxx features. Do you agree?

 WONT xxx: I don't want to have xxx features;

 DO xxx: I agree that you can have xxx features;

 DONT xxx: I do not agree that you have xxx features.

Option negotiation requires 3 bytes, first IAC, then WILL, DO, WONT, or DONT. The last

identification byte is used to indicate the operation option, as shown in Table 15.20.

SpaceChain OS

650

Application Development Manual

Table 15.20 Option identification

Option identification Instructions

ECHO（1） Echo

SGA（3） Suppression continues

STATUS（5） State

TM（6） Timing mark

TTYPE（24） Terminal type

NAWS（31） Window size

TSPEED（32） Port speed

LFLOW（33） Remote flow control

LINEMODE（34） Line mode

ENVIRON（36） Environment variable

Option negotiation is the most complicated part of the Telnet protocol. When a party wants

to execute an option, it needs to send a request to the other end. If the other party accepts the

option, the option works at both ends. Otherwise, two ends maintain the original mode. The

command format of Telnet is as shown in Figure 15.31. IAC is the reserved code in the Telnet

protocol. Both parties use IAC to determine whether the received byte is data or command.

The Telnet protocol command contains at least two characters (IAC and command code) in the

byte sequence. Option negotiation has 3 bytes. The third byte is the negotiation option. When

the negotiation option has sub-options, suboption negotiation shall be performed. The

command format is shown in Figure 15.32.

（命令码=command code）

（选项码=option code）

Figure 15.31 command format of Telnet

（选项码=option code）

（参数=parameter）

Figure 15.32 Suboption negotiation command format

15.8.5 ping

1. Brief introduction to ping

The ping command is a tool to check whether the network connection of another host

system on the network is normal. The working principle of the ping command is: to send an

SpaceChain OS

651

Application Development Manual

ICMP packet to another host system on the network. If the specified system receives

the packet, it sends the packet back to the sender.

Earlier we introduced that the ICMP protocol is an integral part of the IP layer. Therefore,

the raw socket (SOCK_RAW) shall be used to send and receive the ICMP packet. The ICMP

header format used by the ping command is as shown in Figure 15.33.

The identification part is used as the contracting label of the sender and the receiver. The

sender sends the label to the receiver. After receiving the reply from the receiver, the sender

checks the label to determine that the reply is concerned by itself. Count of ping recorded by

the serial number.

Figure 15.33 ping command ICMP header

2. ping command

In SylixOS, you can use the ping command to check whether the network is connected.

The command is described as follows:

 [Command format]

ping IP/hostname [-l datalen] [-n times] [-i ttl] [-w timeout]

 [Common option]

-l ：data length

-n ：times

-i ：TTL value

-w ：timeout value

 [Instructions for parameters]

IP ：Destination IP address

hostname ：Hostname (eg www.sylixos.com)

The following command checks whether www.sylixos.com is connected, displayed as

follows:

ping www.sylixos.com –n 3

Execute a DNS query...

Pinging www.sylixos.com [106.39.47.146]

Pinging 106.39.47.146

Reply from 106.39.47.146: bytes=32 time=0ms TTL=64

SpaceChain OS

652

Application Development Manual

Reply from 106.39.47.146: bytes=32 time=0ms TTL=64

Reply from 106.39.47.146: bytes=32 time=0ms TTL=64

Ping statistics for 106.39.47.146:

 Packets: Send = 3, Received = 3, Lost = 0(0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 0ms, Average = 0ms

15.8.6 PPP

1. Brief introduction to PPP

The full name of PPP protocol is the Point-to-Point Protocol. It is a data link layer protocol

which provides transmission of encapsulated network layer data packet on the point-to-point

links. It is located at the second layer of the TCP/IP protocol stack, and is mainly designed to

conduct point-to-point data transmission on the co-asynchronous link supporting full-duplex.

The PPP protocol is developed based on the SLIP (Serial Line IP). Because the SLIP

protocol only supports asynchronous transmission mode, and there is no negotiation process

(especially the network layer attributes, such as the IP addresses of both parties, cannot be

negotiated). In the later development process, it is gradually replaced by PPP.

PPP is mainly composed of three types of protocols: Link Control Protocol Family (LCP),

Network Layer Control Protocol Family (NCP) and PPP extension protocol family. The link

control protocol is mainly used to establish, remove and monitor PPP data link. The network

layer control protocol family is mainly used to negotiate the format and type of data packet

transmitted on the data link. The PPP extension protocol family is mainly used to provide

further support for PPP function, and PPP also provides authentication protocol family (PAP

and CHAP) for network security.

2. PPP frame format

PPP frame format, as shown in Figure 15.34.

Figure 15.34 PPP frame

The field F stands for Flag. This flag identifies the start and end of a physical frame. The

value is 0x7E; the field A represents Address. This address identifies the PPP broadcast

SpaceChain OS

653

Application Development Manual

address. The value is 0xFF; the field C represents Control and is the control field. The

value is 0x03. The FCS field is the frame check field. What truly belongs to PPP message

contents is the F, A, C, protocol and information fields.

According to the different protocol fields, the information fields are also different, as shown

in Table 15.21.

Table 15.21 Protocol and information

Agreement Information

0x0021 IP datagram

0xC021 Link control protocol LCP

0x8021 Network control data NCP

0xC023 Security certification PAP

0xC025 LQR

0xC223 Security certification CHAP

0x8031 Bridge NC

0x802b IPX control protocol

When bit 0x7E, which is the same as the flag field, appears in the information field, some

measures must be taken. Since the PPP protocol is character-oriented, it cannot use the

zero-bit insertion method used by HDLC (high-level data link control), but uses a special

character padding. The specific approach is to convert each 0x7E byte which appears in the

information field into a 2-byte endian (0x7D, 0x5E). If a 0x7D byte appears in the information

field, it is converted into a 2-byte sequence (0x7D, 0x5D). If an ASCII control character

appears in the information field, a 0x7D byte shall be added before the character. The purpose

is to prevent these apparent ASCII control characters from being incorrectly interpreted as

control characters.

3. PPP negotiation process

Before the link is established, PPP shall perform a series of negotiation processes. The

process is as follows: PPP firstly performs LCP negotiation. Negotiation contents include MRU

(maximum receiving unit), magic number, authentication mode, asynchronous character

mapping and other options. After LCP negotiation succeeds, the link establish state is entered.

If CHAP or PAP verification is configured, the CHAP or PAP verification stage is entered. After

verification is passed, the network stage will be entered for negotiation, such as negotiation of

IPCP, IPXCP and BCP. Failure in negotiation at any stage will tear down the link. The magic

word is mainly used to detect link self-loop. PPP sends the Echo Request and Echo Reply

packets to detect self-loop and maintain the link state. If the magic word in maximum allowed

self-loop number of Echo Request message is the same with the last magic word, then the

network is judged to have self-loop. If the link sends self-loop, the corresponding measures

shall be taken to reset the link. In addition, when LCP sends config request, it can also detect

self-loop. After LCP detects self-loop, and a certain number of packets are sent, the link will

also be reset. If the Echo Request packet sent by PPP is lost, the link will be reset after the

SpaceChain OS

654

Application Development Manual

maximum number of consecutive lost packets is lost, so as to avoid excessive invalid

data transmission.

4. PAP authentication process

PAP is the two-way handshake protocol, which authenticates the user with the user name

and password. The PAP authentication process is as follows: when the links at both ends can

transmit data to each other, the authenticatee sends the local user name and password to the

authenticator. The authenticator checks whether there is this user and the password is correct

based on the local user table (or radius server). If it is correct, ACK message will be sent to the

peer to inform that the peer has been allowed to enter the next phase of negotiation; otherwise,

NAK message shall be sent to inform peer verification failure. The link will not be closed

directly at the moment. Only when the number of verification failures reaches a certain value,

the link can be closed to prevent unnecessary LCP renegotiation process due to

mis-transmission, network interference and the like. The characteristic of PAP is to pass user

name and password in plain language on the network. If it is intercepted during transmission, it

may pose great threat to network security. Therefore, it is suitable for the environment with

relatively low requirements for network security.

5. CHAP verification process

CHAP is the three-way handshake protocol. Its characteristic is that it only transmits the

user name on the network but does not transmit the user password. Therefore, it is more

secure than PAP. The CHAP verification process is as follows: firstly, the verifying party sends

some randomly generated packets to the verified party, and simultaneously sends the host

name of the local end to the verified party. When receiving the challenge from the peer end to

the local end, the verified party searches for the user's password based on the host name of

the verifying party and the local user table in the packet. If the the user with the same host

name of the verified party in the user table, the message ID and the user's key are used to

generate a response by using the Md5 algorithm, and then the response and its own host

name are sent back. After receiving this response, the verifying party uses the message ID,

the reserved password (key) and the random message to obtain the result by using the Md5

algorithm, compares it with the verified party, and returns the corresponding results based on

the comparison results.

6. PPP API

The following function can be used in SylixOS to create PPPoS-type network card

#include <SylixOS.h>

INT API_PppOsCreate(CPCHAR pcSerial,

LW_PPP_TTY *ptty,

PCHAR pcIfName,

size_t stMaxSize);

Prototype analysis of Function API_PppOsCreate:

 For success of the function, return 0. For failure, return -1 and set the error number;

SpaceChain OS

655

Application Development Manual

 Parameter pcSerial is the serial interface device name;

 Parameter ptty is the working parameter of the serial port;

 Output parameter pcIfName returns the network interface name;

 Parameter stMaxSize is the size of the buffer zone.

The following function will create the PPPoE type network card.

#include <SylixOS.h>

INT API_PppOeCreate(CPCHAR pcEthIf, PCHAR pcIfName, size_t stMaxSize);

Prototype analysis of Function API_PppOeCreate:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter pcEthIf is the Ethernet network card name;

 Output parameter pcIfName returns the network device name;

 Parameter stMaxSize is the size of the buffer zone;

The following function will create PPPoL2TP network card.

#include <SylixOS.h>

INT API_PppOl2tpCreate(CPCHAR pcEthIf, CPCHAR pcIp,

UINT16 usPort, CPCHAR pcSecret,

size_t stSecretLen, PCHAR pcIfName,

size_t stMaxSize);

Prototype analysis of Function API_PppOl2tpCreate:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter pcEthIF is the Ethernet name;

 Parameter pcIp is the server address;

 Parameter usPort is the server port;

 Parameter pcSecret is security-related;

 Parameter stSecretLen is the size of the buffer zone;

 Output parameter pcIfName returns the network device name;

 Parameter stMaxSize is the size of the buffer zone.

The following function dials the connection.

#include <SylixOS.h>

INT API_PppConnect(CPCHAR pcIfName, LW_PPP_DIAL *pdial);

Prototype analysis of Function API_PppConnect:

 For success of the function, return 0. For failure, return -1 and set the error number;

SpaceChain OS

656

Application Development Manual

 Parameter pcIfName is the network device name;

 Parameter pdial is the dialing parameter.

The following function disconnects and deletes the connection.

#include <SylixOS.h>

INT API_PppDisconnect(CPCHAR pcIfName, BOOL bForce);

INT API_PppDelete(CPCHAR pcIfName);

Prototype analysis of Function API_PppDisconnect:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter pcIfName is the network device name;

 Parameter bForce indicates whether it is forcibly disconnected.

Prototype analysis of Function API_PppDelete:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter pcIfName is the network device name;

The following function gets the device connection status.

#include <SylixOS.h>

INT API_PppGetPhase(CPCHAR pcIfName, INT *piPhase);

Prototype analysis of Function API_PppGetPhase:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter pcIfName is the network device name;

 Output parameter piPhase returns the connection status.

15.8.7 Network address translation

1. Brief introduction to NAT

NAT is the process of converting the IP address in the IP datagram header to another IP

address. In practical applications, NAT is mainly used to implement private network access to

external network. This method of mapping the majority of private IP addresses by using a

small number of public IP addresses can relieve the pressure of depletion of the IP address

space to some extent.

The private network address (hereinafter referred to as the private network address)

refers to the IP address of the internal network or the host. The public network address

(hereinafter referred to as the public network address) refers to a globally unique IP address

SpaceChain OS

657

Application Development Manual

on the Internet. IANA (Internet Assigned Number Authority) specifies that the following

IP addresses are reserved as private network addresses and are not allocated on the Internet.

 Class A private address: 10.0.0.0 to 10.255.255.255;

 Class B private address: 172.16.0.0 to 172.31.255.255;

 C private addresses: 192.168.0.0 to 192.168.255.255.

If other network segments outside the above three ranges are selected as internal

network addresses, it may cause confusion during intercommunication with other networks.

2. NAT translation mechanism

An address port mapping table is maintained in the router. All messages passing through

the router and requiring address translation will be modified accordingly through the mapping

table for translation between <private address + port> and <public address + port>. The

translation process is as follows:

 When the internal network host sends the message to the outside, the router replaces

the source IP address and port of the message with the external network address and

port of the router;

 When the external message enters the internal network, the router will search the

address port mapping table, and convert the destination address and port of the

message to the real destination address.

Figure 15.35 Schematic diagram of NAT

As shown in Figure 15.35, the process for internal users to access external servers is as

follows:

 The user sends the message with source address of 1.1.1.1:5000 and destination

address of 2.2.2.2:5000 to the server;

 When the process sent by the user to the server passes the router, the message

source address is changed from 1.1.1.1:5000 to 2.2.2.1:2000;

 After receiving the user's message, the server sends the message back to the user.

The source address of the message is 2.2.2.2:5000, and the destination address is

2.2.2.1:2000;

SpaceChain OS

658

Application Development Manual

 When the message sent from the server to the user passes through the router,

the address is changed from 2.2.2.1:2000 to 1.1.1.1:5000.

The address translation process described above is transparent to the terminal (users and

servers in Figure 15.35). For the external server, it thinks that the client's IP address is 2.2.2.1

and does not know that this address of 1.1.1.1. Therefore, NAT "hides" topology of the private

network.

When an internal network host accesses an external network, the number of hosts on the

internal network is large, and there is only one external IP address, address translation may

appear to be inefficient. Solving this problem requires a private network with multiple external

addresses.

The NAT implemented in SylixOS uses the address pool to solve the above problems. The

address pool is a collection of legal IP addresses (public network IP addresses). Users can

configure the appropriate IP address pool based on the number of legal IP addresses they

have, the number of internal network hosts and the actual application. When the host

accesses the external network from the internal network, an IP address will be selected from

the address pool as the translated message source address.

NAT address translation enables a large number of internal hosts to use a small number of

public IP addresses to access external network resources, and provides "privacy" protection

for internal hosts. However, address translation has the following disadvantages:

 The data message involving IP addresses cannot be encrypted. Otherwise, address

translation of the data message cannot performed. In an application layer protocol,

the message cannot be encrypted if they contain addresses or ports to be translated.

For example, the encrypted FTP connection cannot be used. Otherwise, FTP's port

command cannot be converted correctly;

 Network debugging becomes more difficult. For example, if a host on an internal

network tries to attack other networks, it is difficult to indicate which machine is

malicious, because the host's IP address is blocked.

3. NAT API

In SylixOS, the following function is called to initialize the NAT library.

#include <SylixOS.h>

VOID Lw_Inet_NatInit(VOID);

The following function is called to start NAT translation and stop NAT translation.

#include <SylixOS.h>

INT Lw_Inet_NatStart(CPCHAR pcLocalNetif, CPCHAR pcApNetif);

INT Lw_Inet_NatStop(VOID);

Prototype analysis of Function Lw_Inet_NatStart:

 For success of the function, return 0. For failure, return -1 and set the error number;

SpaceChain OS

659

Application Development Manual

 Parameter pcLocalNetif is the local internal and external network interface;

 Parameter pcApNetif is the external network interface.

4. NAT command

You can use the nats
①
 command to view NAT information in SylixOS, and use the nat

command to start and stop the NAT network. The command is indicated as follows:

 [Command format]

nat [-stop] / {[LAN netif] [WAN netif]}

 [Common option]

-stop ：Stop the NAT network

 [Instructions for parameters]

LAN netif ：Local network interface

WAN netif ：External network interface

The following command will set wl2 as the local network interface and en1 as the external

network interface.

nat wl2 en1

 [Command format]

nats

 [Common option]

None

 [Instructions for parameters]

ip addr ：IP address

nats

NAT networking show >>

 LOCAL IP LOCAL PORT ASS PORT PROTO IDLE(min) STATUS

--------------- ---------- -------- ----- --------- --------

15.8.8 SylixOS network routing

1. Routing principle

IP routing selection is usually simple. If the destination host is directly connected to the

source host (such as a point-to-point link) or both are on the shared network (Ethernet or token

ring network), the IP datagram is sent directly to the destination host. Otherwise, the host

sends the datagram to the default router, and the router forwards the datagram. Most hosts

use this simple mechanism.

SpaceChain OS

660

Application Development Manual

In the general system, IP can receive the datagrams (i.e., locally generated

datagrams) from TCP, UDP, ICMP and IGMP and send them, or can receive datagrams

(datagrams to be forwarded) from a network interface and send them. The IP layer has a

routing table in memory. When it receives a datagram and sends it, it will search the table once.

When the datagram comes from a network interface, IP firstly checks whether the destination

IP address is one of the IP addresses of the machine or an IP broadcast address. If this is the

case, the datagram is sent to the protocol module specified by the IP header protocol field for

processing. If the destination of the datagram is not these addresses, then if the IP layer is set

as the router function, the datagram is forwarded. Otherwise, the datagram is discarded.

Each entry in the routing table contains the following information:

 The next-hop router's IP address or the directly-connected network IP address. The

next-hop router refers to a router on the directly connected network, through which

the datagram can be forwarded. The next-hop router is not the ultimate destination,

but it can forward the datagram delivered to the ultimate destination.

 Flag. One of the flags indicates whether the destination IP address is the network

address or the host address, and the other flag indicates whether the next-hop router

is the true next-hop router or a directly connected interface, as shown in Table 15.22.

 Specify a network interface for the datagram transmission;

 Network interface name (character string name).

IP routing is selected hop-by-hop. From information of this routing table, it can be seen

that IP does not know the full path to any destination (of course, except for those destinations

directly connected to the host). All IP routing selection only provides IP address of the next-hop

router for datagram transmission. It assumes that the next-hop router is closer to the

destination than the host which sents the datagram, and the next-hop router is directly

connected to the host.

IP routing selection mainly completes the following functions:

 Search the routing table for entries which can exactly match the destination IP

address (the network number and the host number must match). If found, the

message is sent to the next-hop router or directly connected network interface

specified by the entry (depending on the value of the flag field).

 Search the routing table, and address the network address which can match the

destination IP address;

 Search the routing table for entries marked "default". If found, the message is sent to

the next-hop router specified by the entry.

If none of these steps is successful, the datagram cannot be transmitted. If the datagram

which cannot be transmitted comes from the local machine, a "host unreachable" or "network

unreachable" error will be generally returned to the application program which generates the

datagram.

SpaceChain OS

661

Application Development Manual

Full host address matching is performed before the network number matches. The

default route is selected only if they all fail. The default route as well as the ICMP indirect

message sent by the next-hop router (if we select the wrong default route for the datagram) is

the powerful feature of the IP routing selection mechanism.

Route matching always matches the local host in priority. If the local host fails to match, it

matches the network address.

The following table describes the route flag:

SpaceChain OS

662

Application Development Manual

Table 15.22 Route flag

Route flag Instructions

U This route can be used

G
Route to a gateway (router). If there is no such flag, the destination address is a direct

connection

H

Route to a host. The destination address is a full host address. If this flag is not set, the

route is to a network, and the destination address is a network address: a network

number, or combination of network number and subnet

D The route is created by the redirect message

M The route has been modified by the redirect message

The flag G is very important because it distinguishes the indirect route and the direct route

(the direct route is not set with this flag). The packet sent to the direct route not only has the

destination IP address, but also has its link layer address. When sending to an indirect route,

the IP address indicates the final destination address, and the link layer address indicates the

gateway (the next-hop route).

H flag indicates that the destination address is a full host address. H flag is not specified to

indicate that the destination address is a network address (the host number part is 0). When

searching the routing table for a certain destination IP address, the host address entry must

exactly match the destination address, but the network address entry only needs to match the

network number and subnet number of the destination address.

Whenever an interface is initialized, a direct route is automatically created for the interface.

For point-to-point link and loopback interface, the route is to the host (for example, H flag is

set). For broadcast interface, such as Ethernet, routing is to the network.

If the route to the host or network is not directly connected, then the route table must be

added. The route command describes how to add a route entry to the route table.

2. Routing API (old style interface)

The application program prior to SylixOS 1.5.6 can call the simple routing interface to

operate the routing table, and the following function can add a piece of routing information to

the routing table:

#include <sys/route.h>

int route_add (struct in_addr *pinaddr, int type, const char *ifname);

Prototype analysis of Function route_add:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter pinaddr is the routing address;

SpaceChain OS

663

Application Development Manual

 Parameter type is the route type, as shown in Table 15.23;

 Parameter ifname is the network interface name.

SpaceChain OS

664

Application Development Manual

Table 15.23 Route type

Route type Instructions

ROUTE_TYPE_HOST The destination is host

ROUTE_TYPE_NET The destination is network

ROUTE_TYPE_GATEWAY The destination is gateway

ROUTE_TYPE_DEFAULT Default gateway

Calling the route_change function can change a piece of route information:

#include <sys/route.h>

int route_change(struct in_addr *pinaddr, int type, const char *ifname);

Prototype analysis of Function route_change prototype:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter pinaddr is the routing address;

 Parameter type is the route type as shown in Table 15.23;

 Parameter ifname is the network interface name.

Call the route_delete function to delete a piece of route information:

#include <sys/route.h>

int route_delete(struct in_addr *pinaddr);

Prototype analysis of Function route_delete:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter pinaddr is the routing address.

Calling the route_getnum function can get the total route entry in the routing table:

#include <sys/route.h>

int route_getnum(void);

Calling the route_get function can obtain routing information which satisfies certain

conditions:

#include <sys/route.h>

int route_get(u_char flag, struct route_msg *msgbuf, size_t num);

Prototype analysis of Function route_add:

 This function returns the number of route entries obtained;

 Parameter flag is the type mask as shown in Table 15.23;

 Output parameter msgbuf is the routing information structure;

SpaceChain OS

665

Application Development Manual

 Parameter num is the number of routing information structure caches.

The route entry information obtained by the route_get function will be stored in the

route_msg structure. The structure is described as follows:

struct route_msg {

u_char rm_flag; /* type */

 int rm_metric; /* Not used temporarily */

 struct in_addr rm_dst; /* Destination address information*/

 struct in_addr rm_gw; /* Gateway information */

 struct in_addr rm_mask; /* Subnet mask information */

 struct in_addr rm_if; /* Network interface address */

 char rm_ifname[IF_NAMESIZE]; /* Network interface name */

};

Note: the route type is stored as OR in the member rm_flag of the route_msg structure.

3. route command

Use the route command to display or set system routing table information.

 [Command format]

route [add | del | change] {-host | -net | -gw} [addr] [[dev] | if]

 [Common option]

add ：Add routing table entries

del ：Delete routing table entries

change ：Change routing table entries

-host ：Host address

-net ：website address

-gw ：Gateway address

dev ：Network equipment

 [Instructions for parameters]

addr ：IP address

if ：Network device interface name

4. Output information meaning

route

kernel routing tables

Destination Gateway Mask Flag Interface

build-in routing tables

Destination Gateway Mask Flag Interface

192.168.7.0 * 255.255.255.0 U en1

192.168.7.30 * 255.255.255.0 UH en1

127.0.0.0 * 255.0.0.0 U lo0

SpaceChain OS

666

Application Development Manual

127.0.0.1 * 255.0.0.0 UH lo0

default 192.168.7.1 255.255.255.0 UG en1

The meanings of various titles of the output information are as follows:

 Destination: routing destination address;

 Gateway: gateway address;

 Mask: subnet mask;

 Flag: route flag, as shown in Table 15.22;

 Interface: network interface.

The second line of the output reciprocal is the loopback interface. Its name is lo0. The

route flag is “UH”. No “G” flag indicates that the route is not a gateway but a direct route. “H”

flag indicates that the destination address (127.0.0.1) is a host address, but not a network

address.

The last line is the default route. Each host has one or more default routes. This item

indicates that if no specific route is found in the routing table, the packet is sent to the router

192.168.7.1, which means that the current host can use this routing table entry to access other

systems through the Internet and the router 192.168.7.1. "UG" flag indicates that it is a

gateway.

5. Routing API (new interface)

The application program after SylixOS 1.5.6 can manipulate route entries by calling

standard IO ioctl function or write function.

The supported ioctl commands are as follows:

 SIOCADDRT: add a piece of routing information;

 SIOCDELRT: delete a piece of routing information;

 SIOCCHGRT: modify a piece of routing information;

 SIOCGETRT: get a piece of routing information;

 SIOCLSTRT: traverses IPv4 routing information;

 SIOCLSTRTM: get the entire IPv4 routing information.

Parameter pArg of the Ioctl function is a pointer to the following type of structure. The

structure is as follows:

struct rtentry {

u_long rt_pad1;

struct sockaddr rt__dst; /* Destination address */

struct sockaddr rt_gateway; /* Network gateway */

struct sockaddr rt_genmask; /* Subnet mask */

char rt_ifname[IF_NAMESIZE]; /* Network Interface */

SpaceChain OS

667

Application Development Manual

u_short rt_flags;

u_short rt_refcnt;

u_long rt_pad3;

void *rt_pad4;

short rt_metric; /* measure */

void *rt_dev; /* Unused equipment */

u_long rt_hopcount; /* Hops count */

u_long rt_mtu; /* Routing MTU */

u_long rt_window;

u_short rt_irtt;

u_long rt_pad5[16]};

The structure related with the command SIOCLSTRT is as follows:

struct rtentry_list {

u_long rtl_bcnt; /* Rtentrt cache size */

u_long rtl_num; /* The number of routes in the

cache */

u_long rtl_total; /* All routes */

struct rtentry *rtl_buf; /* Route cache */

};

The structure related with the command SIOCLSTRTM is as follows:

struct rt_msghdr_list {

size_t rtml_bsize; /* Rtml_buf buffer size */

size_t rtml_rsize; /* Number of cache routes */

size_t rtml_tsize; /* The system returns all the

routes */

struct rt_msghdr *rtml_buf; /* Route cache */

};

 [Instance code]:

It has been known that various operations on route entries can be implemented through

the ioctl function of the standard IO, including add, delete, modify and get route information.

In the following program, the operation of adding a route is implemented by filling the

information in external structure rtentry of the route. Firstly, clear the structure information with

the bzero function, set the host route to RTF_UP | RTF_HOST, fill in the destination address,

subnet mask and gateway protocol cluster and protocol length, then write the desired

destination address, subnet mask and gateway information to sin_addr through the inet_aton

function, and finally set metric and rt_ifname.

Use the socket generated by AF_INET, and call SIOCADDRT command through the ioctl

function to add the route.

#include <stdio.h>

#include <net/route.h>

SpaceChain OS

668

Application Development Manual

#include <string.h>

#include <socket.h>

int main (int argc, char **argv)

{

 int iSock;

 int iRet;

 struct rtentry rtentry;

 bzero(&rtentry, sizeof(struct rtentry));

 rtentry.rt_flags = RTF_UP | RTF_HOST; /* Set host routes */

 rtentry.rt_dst.sa_len = sizeof(struct sockaddr_in);

 rtentry.rt_dst.sa_family = AF_INET;

 rtentry.rt_genmask.sa_len = sizeof(struct sockaddr_in);

 rtentry.rt_genmask.sa_family = AF_INET;

 rtentry.rt_gateway.sa_len = sizeof(struct sockaddr_in);

 rtentry.rt_gateway.sa_family = AF_INET;

 inet_aton("192.168.1.32", &((struct sockaddr_in *)&rtentry.rt_dst)->sin_addr);

 inet_aton("255.255.255.0", &((struct sockaddr_in

*)&rtentry.rt_genmask)->sin_addr);

 inet_aton("192.168.2.1", &((struct sockaddr_in

*)&rtentry.rt_gateway)->sin_addr);

 strlcpy(rtentry.rt_ifname, "en1", IF_NAMESIZE);

 rtentry.rt_metric = 3;

 iSock = socket(rtentry.rt_dst.sa_family, SOCK_DGRAM, 0);

 if (iSock < 0) {

 return (PX_ERROR);

 }

 /*

 * Add a route using the SIOCADDRT command

 */

 iRet = ioctl(iSock, SIOCADDRT, &rtentry);

 if (iRet < 0) {

 fprintf(stdout, "fail to ioctl\n");

 close(iSock);

SpaceChain OS

669

Application Development Manual

 return (-1);

 } else {

 close(iSock);

 }

return (0);

}

Run the program in SylixOS Shell, and partial results are displayed as follows:

./route_ioctl

route

IPv4 Route Table:

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.1.32 192.168.1.1 255.255.255.0 UH 3 0 0 en1

192.168.1.34 0.0.0.0 255.255.255.255 UH 4 0 0 en1

192.168.1.0 0.0.0.0 255.255.255.0 U 4 0 0 en1

127.0.0.1 0.0.0.0 255.255.255.255 UH 4 0 0 lo0

127.0.0.0 0.0.0.0 255.0.0.0 U 4 0 0 lo0

Check the routing information through the route command, and it can be seen that the

route to be set has been added. That is to say, route entry with destination address

192.168.1.32, subnet mask 255.255.255.0, gateway 192.168.1.1, metric 3 and interface of

en1.

The rt_msghdr structure shall be filled to add a route with the write function. Firstly, obtain

the file descriptor generated by the routing socket AF_ROUTE. Note that only SOCK_RAW

can communicate the bottom. When filling the rt_msghdr structure, you need to construct the

msg structure, the buf array of the structure is used to store the destination address, subnet

mask and gateway you want to set. It is also worth noting that when setting the destination

address, mask and gateway, the corresponding protocol cluster and length also need to be

filled.

After the information is filled, the write function is called to add the route.

#include <stdio.h>

#include <unistd.h>

#include <net/route.h>

#include <string.h>

#include <socket.h>

#define ROUND_UP(x, align) (size_t)(((size_t)(x) + (align - 1)) & ~(align - 1))

#define SO_ROUND_UP(len) ROUND_UP(len, sizeof(size_t))

#define SA_ROUND_UP(x) SO_ROUND_UP(((struct sockaddr *)(x))->sa_len)

#define SA_NEXT(t, x) (t)((PCHAR)(x) + SA_ROUND_UP(x))

SpaceChain OS

670

Application Development Manual

#define SOCKADDRSET(X,R) \

 if (msg.rtm.rtm_addrs & (R)) \

 { \

 int len = SA_ROUND_UP(X); \

 memcpy(pnt, (caddr_t)(X), len); \

 pnt += len; \

 }

struct {

 struct rt_msghdr rtm;

 char buf[512];

} msg;

int main (int argc, char **argv)

{

 int iSock;

 ssize_t iRet;

 caddr_t pnt;

 struct sockaddr_in dest;

 struct sockaddr_in mask;

 struct sockaddr_in gate;

 iSock = socket(AF_ROUTE, SOCK_RAW, 0);

 if (iSock < 0) {

 fprintf(stdout, "fail to socket\n");

 return (-1);

 }

 static int msg_seq = 0;

 memset (&msg, 0, sizeof (struct rt_msghdr));

 msg.rtm.rtm_version = RTM_VERSION;

 msg.rtm.rtm_type = RTM_ADD;

 msg.rtm.rtm_seq = msg_seq++;

 msg.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY | RTA_NETMASK;

 msg.rtm.rtm_flags = RTF_HOST | RTF_UP;

 msg.rtm.rtm_index = 1;

 pnt = (caddr_t)msg.buf;

 inet_aton("192.168.1.32", &dest.sin_addr);

 dest.sin_family = AF_INET;

 dest.sin_len = sizeof(struct sockaddr_in);

SpaceChain OS

671

Application Development Manual

 inet_aton("192.168.1.1", &gate.sin_addr);

 gate.sin_family = AF_INET;

 gate.sin_len = sizeof(struct sockaddr_in);

 inet_aton("255.255.255.0", &mask.sin_addr);

 mask.sin_family = AF_INET;

 mask.sin_len = sizeof(struct sockaddr_in);

 SOCKADDRSET (&dest, RTA_DST);

 SOCKADDRSET (&gate, RTA_GATEWAY);

 SOCKADDRSET (&mask, RTA_NETMASK);

 msg.rtm.rtm_msglen = pnt - (caddr_t) &msg;

 iRet = write(iSock, &msg, msg.rtm.rtm_msglen);

 if (iRet < 0) {

 fprintf(stdout, "fail to write error\n");

 return (PX_ERROR);

 }

 return (0);

}

Run the program in SylixOS Shell, and partial results are displayed as follows:

./route_write

route

IPv4 Route Table:

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.1.32 192.168.1.1 255.255.255.0 UH 0 0 0 en1

192.168.1.34 0.0.0.0 255.255.255.255 UH 4 0 0 en1

192.168.1.0 0.0.0.0 255.255.255.0 U 4 0 0 en1

127.0.0.1 0.0.0.0 255.255.255.255 UH 4 0 0 lo0

127.0.0.0 0.0.0.0 255.0.0.0 U 4 0 0 lo0

Check the routing information through the route command, and it can be seen that the

route to be set has been added. That is to say, route with destination address 192.168.1.32,

subnet mask 255.255.255.0, gateway 192.168.1.1 and interface of en1. Since no metric is set,

the default is 0.

6. AF_ROUTE get route message

The implemented function is that when the AF_ROUTE routing socket is created, call to

the read function will block until the routing information changes, and the routing information

changes in many ways, including plugging and unplugging the network cable, opening or

closing the interface, and adding or deleting routes, which can cause changes in routing

information.

SpaceChain OS

672

Application Development Manual

Here is only an example that read will return all details of the route in time when the

route is added. The point to note here is the conversion between pointers.

#include <stdio.h>

#include <unistd.h>

#include <net/route.h>

#include <string.h>

#include <socket.h>

struct rtm_type_parse {

 u_char rtm_type;

 void (*func)(void *);

};

#define NAMESIZE 2048

#ifndef ARRAY_SIZE

#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))

#endif

#define ROUND_UP(x, align) (size_t)(((size_t)(x) + (align - 1)) & ~(align - 1))

#define SO_ROUND_UP(len) ROUND_UP(len, sizeof(size_t))

#define SA_ROUND_UP(x) SO_ROUND_UP(((struct sockaddr *)(x))->sa_len)

#define SA_NEXT(t, x) (t)((PCHAR)(x) + SA_ROUND_UP(x))

#define SET_TAG()

printf("--\n")

char *num2family[] = {

 [0] = "AF_UNSPEC",

 [1] = "AF_UNIX",

 [2] = "AF_INET",

 [10] = "AF_INET6",

 [16] = "AF_ROUTE",

 [17] = "AF_PACKET",

 [18] = "AF_LINK"

};

int main (int argc, char **argv)

{

 int iSock;

 ssize_t iRet;

 char rBuf[NAMESIZE];

 struct rt_msghdr *pMy;

SpaceChain OS

673

Application Development Manual

 struct sockaddr_in *psockaddrin;

 void *p;

 int bits = 0;

 iSock = socket(AF_ROUTE, SOCK_RAW, 0);

 if (iSock < 0) {

 fprintf(stdout, "fail to socket\n");

 return (-1);

 }

 printf("iSock is %d\n", iSock);

 printf("rtentry count is %d\n", (int)sizeof(struct rt_msghdr));

 pMy = (struct rt_msghdr *)rBuf;

 printf("here is 1\n");

 iRet = read(iSock, rBuf, NAMESIZE);

 if (iRet < 0) {

 fprintf(stdout, "fail to read\n");

 return (-1);

 }

 if (pMy->rtm_type == RTM_ADD) {

 if ((pMy->rtm_type != RTM_ADD) ||

 (pMy->rtm_version != RTM_VERSION)) {

 printf("<%s> type[%x] mismatch.\n", "RTM_GET", pMy->rtm_type);

 }

 SET_TAG();

 printf("<%s> rtm_msglen = %d.\n", "RTM_GET", pMy->rtm_msglen);

 printf("<%s> rtm_version = %d.\n", "RTM_GET", pMy->rtm_version);

 printf("<%s> rtm_pid = %d.\n", "RTM_GET", pMy->rtm_pid);

 printf("<%s> rtm_seq = %d.\n", "RTM_GET", pMy->rtm_seq);

 printf("<%s> rtm_errno = %d.\n", "RTM_GET", pMy->rtm_errno);

 printf("<%s> rtm_use = %d.\n", "RTM_GET", pMy->rtm_use);

 printf("<%s> rtm_inits = %lu.\n", "RTM_GET", pMy->rtm_inits);

 SET_TAG();

 p = (void *)(pMy + 1);

 psockaddrin = (struct sockaddr_in *)p;

SpaceChain OS

674

Application Development Manual

 if (pMy->rtm_addrs & RTA_DST) {

 psockaddrin = (struct sockaddr_in *)p;

 printf("<%s> <RTA_DST> net family: %s\n", "RTM_GET",

num2family[psockaddrin->sin_family]);

 printf("<%s> <RTA_DST> net port: %d\n", "RTM_GET",

ntohs(psockaddrin->sin_port));

 printf("<%s> <RTA_DST> dest addr: %s\n", "RTM_GET",

inet_ntoa(psockaddrin->sin_addr));

 bits++;

 SET_TAG();

 }

 if (pMy->rtm_addrs & RTA_GATEWAY) {

 if (bits > 0) {

 psockaddrin = SA_NEXT(struct sockaddr_in *, psockaddrin);

 } else {

 psockaddrin = (struct sockaddr_in *)p;

 }

 printf("<%s> <RTA_GATEWAY> net family: %s\n", "RTM_GET",

num2family[psockaddrin->sin_family]);

 printf("<%s> <RTA_GATEWAY> net port: %d\n", "RTM_GET",

ntohs(psockaddrin->sin_port));

 printf("<%s> <RTA_GATEWAY> dest addr: %s\n", "RTM_GET",

inet_ntoa(psockaddrin->sin_addr));

 bits++;

 SET_TAG();

 }

 if (pMy->rtm_addrs & RTA_NETMASK) {

 if (bits > 0) {

 psockaddrin = SA_NEXT(struct sockaddr_in *, psockaddrin);

 } else {

 psockaddrin = (struct sockaddr_in *)p;

 }

 printf("<%s> <RTA_NETMASK> net family: %s\n", "RTM_GET",

num2family[psockaddrin->sin_family]);

 printf("<%s> <RTA_NETMASK> net port: %d\n", "RTM_GET",

ntohs(psockaddrin->sin_port));

 printf("<%s> <RTA_NETMASK> dest addr: %s\n", "RTM_GET",

inet_ntoa(psockaddrin->sin_addr));

 bits++;

SpaceChain OS

675

Application Development Manual

 SET_TAG();

 }

 } else {

 fprintf(stdout, "you need to add others\n");

 return (-1);

 }

 return (0);

}

Run the program in SylixOS Shell, and partial results are displayed as follows:

In a terminal execution program, read will enter the blocking state;

./route_read

All information of the route will be output until the route is added at another terminal.

--

<RTM_GET> rtm_msglen = 272.

<RTM_GET> rtm_version = 5.

<RTM_GET> rtm_pid = 8.

<RTM_GET> rtm_seq = 0.

<RTM_GET> rtm_errno = 0.

<RTM_GET> rtm_use = 0.

<RTM_GET> rtm_inits = 0.

--

<RTM_GET> <RTA_DST> net family: AF_INET

<RTM_GET> <RTA_DST> net port: 0

<RTM_GET> <RTA_DST> dest addr: 192.168.1.32

--

<RTM_GET> <RTA_GATEWAY> net family: AF_INET

<RTM_GET> <RTA_GATEWAY> net port: 0

<RTM_GET> <RTA_GATEWAY> dest addr: 192.168.2.1

--

<RTM_GET> <RTA_NETMASK> net family: AF_INET

<RTM_GET> <RTA_NETMASK> net port: 0

<RTM_GET> <RTA_NETMASK> dest addr: 255.255.255.0

--

7. New route command

In SylixOS, the route command is used to process information related to network routing.

For example, an IPv4 or IPv6 routing information can be added, deleted, modified and

acquired through an instruction, or all information of IPv4 or IPv6 route can be obtained by

traversing.

SpaceChain OS

676

Application Development Manual

 [Command format]

route [add|del|chg] [-host|-net|dl|gw] [dest] [netmask] [geteway] {metric} [dev]

 [Common option]

add ：Add routing table entries

del ：Delete routing table entries

chg ：Modify the metric of the routing table entry

-host ：Host address

-net ：website address

dest : target address

netmask ：Subnet mask

gateway ：Gateway address

metric ：measure

dev ：Network Device Interface

 [Instructions for parameters]

dl ：default ，Mainly operate on default routing information

gw : gateway , Mainly operate on default routing information

The following is an example of using the route command:

 Add a route to the host (network interface: en1);

route add –host 192.168.7.40 mask 255.0.0.0 123.0.0.0 dev en1

 Add a route to the network (network interface: en2), and set the metric to 3;

route add –net 180.149.132.47 mask 255.0.0.0 12.0.0.0 metric 3 dev en2

 Delete a network route;

route del -net 180.149.132.47 mask 255.0.0.0

 Delete a host route;

route del -host 192.168.7.40 dev en1

 Change the metric of a host route to 3;

route chg –host 192.168.7.40 mask 255.0.0.0 123.0.0.0 metric 3 dev en1

15.8.9 netstat

1. netstat command

In SylixOS, the netstat command is used to display network-related information, such as

network connection, routing table, interface status, multicast member and so on. The

command is indicated as follows:

 [Command format]

SpaceChain OS

677

Application Development Manual

netstat {[-wtux --A] -i | [hrigs]}

 [Common option]

-h ：Display help information

-r ：Display routing table information

-i ：Display interface information

-g ：Display multicast group member information

-s ：Display network status information

-w ：Display raw socket information

-t ：Display TCP information

-u ：Display UDP information

-p ：Display PACKET Socket Information

-x ：Display UNIX domain socket information

-l ：Display all LISTEN status information

-a ：Show all socket information

 [Instructions for parameters]

None

2. Output information meaning

In SylixOS, output after execution of the netstat command is as follows:

netstat -a

--UNIX--:

TYPE FLAG STATUS SHUTD NREAD MAX_BUFFER PATH

--PACKET--:

TYPE FLAG PROTOCOL INDEX MMAP MMAP_SIZE TOTAL DROP

--TCP LISTEN--:

LOCAL REMOTE STATUS RETRANS RCV_WND SND_WND

*:23 *:* listen 0 0 0

*:21 *:* listen 0 0 0

--UDP--:

LOCAL REMOTE UDPLITE

*:69 *:0 no

*:137 *:0 no

*:161 *:0 no

As can be seen from the output results, there are four parts: UNIX, PACKET, TCP and

UDP.

 UNIX part;

 TYPE: UNIX domain socket type: stream, seqpacket, dgram;

SpaceChain OS

678

Application Development Manual

 FLAG: I/O flag, such as NONBLOCK;

 STATUS: current state (only for type stream): none, listen, connect, estab;

 SHUTD: current shutdown state: rw, r, w, no;

 NREAD: number of valid data bytes (unit bytes);

 MAX_BUFFER: maximum size of the receive buffer zone

 PATH: UNIX domain file path name.

 PACKET part;

 TYPE: PACKET socket type: raw, dgram;

 FLAG: I/O flag, such as NONBLOCK;

 PROTOCOL: protocol type, as shown in Table 15.3;

 INDEX: network interface index;

 MMAP: whether mmap is performed;

 MMAP_SIZE: size of the mapped memory;

 TOTAL: total number of network packets;

 DROP: number of discarded network packets.

 TCP part:

 LOCAL: local IP address and port number;

 REMOTE: remote IP address and port number;

 STATUS: TCP status is shown in Table 15.24.

 RETRANS: retransmission count;

 RCV_WND: receive window size;

 SND_WND: send window size.

 UDP part.

 LOCAL: local IP address and port number;

 REMOTE: remote IP address and port number;

 UDPLITE: whether it is UDPLITE.

SpaceChain OS

679

Application Development Manual

Table 15.24 TCP status

TCP status Instructions

CLOSED Initial closed state

LISTEN Listening state, the server side can receive the connection

SYN_SENT The client enters this state after sending SYN packet

SYN_RCVD The server enters this state after receiving SYN packet

ESTABLISHED Connection has been established

FIN_WAIT_1
The side actively closing connection sends the FIN message, and enters this state

(generally difficult to see)

FIN_WAIT_2
Enter the end of the FIN_WAIT_1 state and enter this state when receiving ACK

from the other end

CLOSE_WAIT
The other side requests to close the connection. Enter this state after responding to

the ACK, and then it can perform other operations such as closing the local

CLOSING

The side initiating sending sends FIN message, and enters the state when receiving

FIN message of the other party before receiving ACK message (this situation may

be sent when both parties request to close at the same time).

LAST_ACK
After the passive closing sides sends the FIN packet, it finally waits for the other

side's ACK packet to enter this state.

TIME_WAIT
In the FIN_WAIT_1 state, the state is entered when the message with FIN flag and

ACK flag from the other side is received without entering FIN_WAIT_2 state.

3. Display network interface information

Execute the following command to display the network interface information.

netstat –i

 |RECEIVE |TRANSMIT

FACE MTU RX-BYTES RX-OK RX-ERR RX-DRP RX-OVR TX-BYTES TX-OK TX-ERR TX-DRP TX-OVR FLAG

en1: 1500 2031404 25593 0 0 0 1790 27 0 0 0

UBLEth

lo0: 0 648 11 0 0 0 648 11 0 0 0

UL

The output information shows all network interfaces and their information in the system.

The information includes: network MTU, number of bytes of data received, number of

successfully received packets, number of received error packets, number of packets sent,

network interface flags and so on. The network interface flags supported in SylixOS are shown

in Table 15.25.

Table 15.25 Network interface flag

SpaceChain OS

680

Application Development Manual

Flag Instructions

U Network interface Up

B Support broadcast

P The network interface is Point-to-point connection

D Network interface Dhcp is turned on

L Network interface has been connected (Linkup)

Eth The network interface is an Ethernet device which supports ARP (Etharp)

G Network interface supports IGMP

SpaceChain OS

681

Application Development Manual

15.8.10 npf

1. Brief introduction to npf

In order to provide protection for the internal network, it is necessary to check the packets

passing through the firewall, such as checking the source address and destination address,

port address and packet type, and determine whether the packet is a legitimate packet based

on the data. If it does not meet the predefined rules, this packet will not be sent to the

destination computer. Because the packet filtering technology requires that data packets for

internal and external communications must pass through the computer which uses this

technology to perform filtering, packet filtering technology is usually used on routers.

The network packet filter (npf) tool provided by SylixOS is a network filter which provides

the following filtering rules:

 Filter link layer frame: specified as MAC rule, this rule needs to provide the

destination computer's hardware address;

 Filter IP datagram: specified as IP rule, this rule needs to specify a range of IP

addresses that you want to filter;

 Filtering transport layer packet: specified as UDP or TCP rule, this rule filters packets

for a range of IP addresses and a range of port numbers.

Table 15.26 is the network packet filtering rule currently supported by SylixOS.

Table 15.26 Filter rules

Rules Instructions Value

LWIP_NPF_RULE_MAC Filter Ethernet frame 0

LWIP_NPF_RULE_IP Filter IP datagram 1

LWIP_NPF_RULE_UDP Filter UDP data packet 2

LWIP_NPF_RULE_TCP Filter TCP data packet 3

2. npf function

The following function initializes the SylixOS network packet filter.

#include <SylixOS.h>

INT Lw_Inet_NpfInit(VOID);

Prototype analysis of Function Lw_Inet_NpfInit:

 For success of the function, return 0. For failure, return -1 and set the error number;

The following function adds a new rule to the network packet filter.

SpaceChain OS

682

Application Development Manual

#include <SylixOS.h>

PVOID Lw_Inet_NpfRuleAdd(CPCHAR pcNetifName,

 INT iRule,

 UINT8 pucMac[],

 CPCHAR pcAddrStart,

 CPCHAR pcAddrEnd,

 UINT16 usPortStart,

 UINT16 usPortEnd);

Prototype analysis of Function Lw_Inet_NpfRuleAdd:

 For success of the function, return the new rule. For failure, return LW_NULL and set

the error number;

 Parameter pcNetifName is the network interface name;

 Parameter iRule is the corresponding rule, as shown in Table 15.26;

 Parameter pucMac is MAC address group of no-through traffic;

 Parameter pcAddrStart is the starting IP address of no-through traffic;

 Parameter pcAddrEnd is the termination IP address of no-through traffic;

 Parameter usPortStart is the starting port number of no-through traffic;

 Parameter usPortStart is the termination port number of no-through traffic;

Parameters pcAddrStart and pcAddrEndus are used for Rules "UDP", "TCP" and "IP",

Parameters usPortStart and usPortEnd are used for Rules "UDP" and "TCP", and Parameter

pucMac is used for Rule "MAC".

The following function deletes a rule from the network packet filter.

INT Lw_Inet_NpfRuleDel(CPCHAR pcNetifName,

 PVOID pvRule,

 INT iSeqNum);

Prototype analysis of Function Lw_Inet_NpfRuleDel:

 For success of the function, return 0. For failure, return -1 and set the error code;

 Parameter pcNetifName is the network interface name;

 Parameter pvRule is the rule handle (NULL means that the rule sequence number is

used);

 Parameter iSeqNum is the rule sequence number.

The following function can bind the network filter to the specified network card and unbind

it from the specified network card.

#include <SylixOS.h>

INT Lw_Inet_NpfAttach(CPCHAR pcNetifName);

SpaceChain OS

683

Application Development Manual

INT Lw_Inet_NpfDetach(CPCHAR pcNetifName);

Function prototype analysis:

 For success of the function, return 0. For failure, return -1 and set the error code;

 Parameter pcNetifName is the network interface name;

The following function can get network filter information.

ULONG Lw_Inet_NpfDropGet(VOID);

ULONG Lw_Inet_NpfAllowGet(VOID);

INT Lw_Inet_NpfShow(INT iFd);

Prototype analysis of Function Lw_Inet_NpfShow:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter iFd is the target file descriptor.

Calling the Lw_Inet_NpfDropGet function can get the number of discarded packets

(including abandonment caused by regular filtration and insufficient cache), calling the

Lw_Inet_NpfAllowGet function can get the number of packets running, and calling the

Lw_Inet_NpfShow function can print detailed information of the network filter to the specified

file (the file has been opened via the open function).

3. Npf comman

In SylixOS, filtering commands of the network packet include: npfs, npfsattach,

npfdetach, npfruleadd and npfruledel, and instructions for commands are as follows:

The npfattach command adds the filtering function to the specified network interface.

 [Command format]

npfattach [netifname]

 [Common option]

None

 [Instructions for parameters]

netifname ：Network interface name

The following shows how to use the npfattach command:

npfattach en1

attached.

The npfdetach command deletes the filtering function from the specified network

interface.

 [Command format]

npfdetach [netifname]

SpaceChain OS

684

Application Development Manual

 [Common option]

None

 [Instructions for parameters]

netifname ：Network interface name

The following shows how to use the npfdetach command:

npfdetach en1

detached.

The npfruleadd command adds a new network filtering rule to the system, and the rules

currently supported in SylixOS are as shown in Table 15.27.

 [Command format]

npfruleadd [netifname] [rule] [args...]

 [Common option]

None

 [Instructions for parameters]

netifname ：Network interface name；

rule ：The rule name currently includes: "mac", "ip", "tcp", "udp";

args ：It varies according to the rules, as shown in Table 15.27.

SpaceChain OS

685

Application Development Manual

Table 15.27 Rules and parameters

Rules Parameters

mac MAC address, such as 08:08:08:08:08:08

ip Starting IP address and termination IP address, such as 192.168.1.1 and 192.168.1.100

tcp
Starting IP address, termination IP address, starting port number and termination port

number, such as 192.168.1.1, 192.168.1.100, 20 and 30

udp
Starting IP address, termination IP address, starting port number and termination port

number

The following shows how to use the npfruleadd command:

npfruleadd en1 ip 192.168.1.1 192.168.1.200

rule add ok

The npfruledel command deletes an existing rule.

 [Command format]

npfruledel [netifname] [rule sequence num]

 [Common option]

None

 [Instructions for parameters]

netifname ：Network interface name；

rule sequence num ：Rule number。

The following shows how to use the npfruleadd command:

npfruledel en1 0

delete

The npfs command indicates the filter rule information currently added.

 [Command format]

npfs

 [Common option]

None

 [Instructions for parameters]

None

The following is the print information of the npfs command:

npfs

NETIF ATTACH SEQNUM RULE ALLOW MAC IPs IPe PORTs PORTe

SpaceChain OS

686

Application Development Manual

en1 YES 0 IP NO N/A 192.168.1.1 192.168.1.200 N/A N/A

drop:82 allow:1306

It can be seen from the information indicated from the npfs command that a filter rule of

“ip” type is added in SylixOS at present. The network interface is "en1", the sequence number

is 0, the starting IP address of the filtering rule is 192.168.1.1, and the termination IP address is

192.168.1.200. Because the type of the filter rule is "ip”, the start port number and termination

port number do not exist.

15.9 Control interface of the standard network card

SylixOS supports the control function of the POSIX standard network card, the application

can conveniently modify the behavior of the network interface via these functions. For example,

activate the network card, turn off the network card, enable DHCP and so on.

In addition, the IP address and network card flag (such as enabling the promiscuous mode)

can be got and set via the network ioctl command.

1. Network interface API

#include <net/if.h>

int if_down(const char *ifname);

Prototype analysis of Function if_down:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter ifname is the network interface name.

Calling the if_down function can turn off the specified network device. If the DHCP lease is

enabled on the network interface, the DHCP lease will be disabled simultaneously.

#include <net/if.h>

int if_up(const char *ifname);

Prototype analysis of Function if_up:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter ifname is the network interface name.

Calling the if_up function can activate the specified network device. If the DHCP flag is set,

DHCP lease will be enabled simultaneously.

#include <net/if.h>

int if_isup(const char *ifname);

Prototype analysis of Function if_isup:

SpaceChain OS

687

Application Development Manual

 For success of the function, return 0 represents that the network card is not

enabled, and 1 represents that the network card is enabled. For failure, return -1 and

set the error number;

 Parameter ifname is the network interface name.

Calling the if_isup function can detect whether the specified network interface is at

activated state.

#include <net/if.h>

int if_islink(const char *ifname);

Prototype analysis of Function if_islink:

 For success of the function, return 0 represents that the network card is not

connected, and 1 represents that the network card is connected. For failure, return -1

and set the error number;

 Parameter ifname is the network interface name.

Calling the if_islink function can detect whether the specified network interface is

connected. It shall be noted that the network interface packet can be sent after the activated

network interface is successfully connected.

#include <net/if.h>

int if_set_dhcp(const char *ifname, int en);

int if_get_dhcp(const char *ifname);

Prototype analysis of Function if_set_dhcp:

 For success of the function, return 0. For failure, return -1 and set the error number;

 Parameter ifname is the network interface name.

 Parameter en is divided into two values: 0 represents disabling the DHCP lease, and

1 represents enabling the DHCP lease.

Prototype analysis of Functionif_get_dhcp:

 For success of the function, get DHCP state. 0 represents disable, and 1 represents

enable. For failure, return -1 and set the error number;

 Parameter ifname is the network interface name.

Calling the if_set_dhcp function can enable or disable the DHCP lease the specified

network interface, and calling the if_get_dhcp function will get the DHCP state.

#include <net/if.h>

unsigned if_nametoindex(const char *ifname);

char *if_indextoname(unsigned ifindex, char *ifname);

Prototype analysis of Function if_nametoindex:

 The function returns the index number of the network interface;

SpaceChain OS

688

Application Development Manual

 Parameter ifname is the network interface name.

Prototype analysis of Function if_indextoname:

 For success of the function, return the network interface name (such as en1). For

failure, return LW_NULL;

 Parameter ifindex is the network interface index;

 Out parameter ifname returns the network interface name.

Calling the if_nametoindex function will return the index number corresponding to the

network interface ifname, calling the if_indextoname function will get the network interface

name, the network interface name is stored in the buffer zone referred to by the parameter

ifname, and the size of the buffer zone shall be at least IF_NAMESIZE (<net/if. h>).

#include <net/if.h>

struct if_nameindex *if_nameindex(void);

void if_freenameindex(struct if_nameindex *ptr);

Prototype analysis of Function if_nameindex:

 For success of the function, return the network interface structure array pointer. For

failure, return NULL and set the error number;

Prototype analysis of Function if_freenameindex:

 Parameter ptr is the pointer returned by the if_nameindex function.

Calling the if_nameindex function will return the array of the if_nameindex structure, the

array contains all local network interfaces and is allocated dynamically, and the memory can

be released by calling the if_freenameindex function. If_nameindex structure, as shown below:

struct if_nameindex {

 unsigned if_index; /* Numeric index of interface */

char *if_name; /* Null-terminated name of the */

 /* interface. */

 ……

};

 If_index: interface index;

 If_name: the network interface name ending with the null character, such as en1.

The following program prints all local network interfaces:

Program List 15.17 Print network interface

#include <net/if.h>

#include <stdio.h>

int main (int argc, char *argv[])

{

SpaceChain OS

689

Application Development Manual

 struct if_nameindex *if_ni, *p;

 if_ni = if_nameindex();

 if (if_ni == NULL) {

 fprintf(stderr, "if_nameindex error.\n");

 return (-1);

 }

 for (p = if_ni; !(p->if_index == 0 && p->if_name[0] == '\0'); p++) {

 fprintf(stdout, "%u: %s\n", p->if_index, p->if_name);

 }

 if_freenameindex(if_ni);

 return (0);

}

Run under the SylixOS Shell, and the results are as follows:

./if_test

1: en1

0: lo0

2. Network interface ioctl

The traditional ioctl function is used for any featured system interface which is common

but not suitable to be classified in other categories. However, POSIX removes ioctl, and

POSIX replaces ioctl with some standardized wrapper functions. For example: the function to

operate the serial port: tcgetattr function, tcflush function and so on. Nevertheless, network

programming still retains ioctl operation, so as to adapt to specific operations. For example,

get the network interface information, set the network card flag and so on.

The first step of the network interface program is usually to get all network interfaces

configured in the system from the kernel, which is implemented via request by the

SIOCGIFCONF command. This command uses the ifconf structure, and the ifconf structure

uses the ifreq structure. These two structures are as follows (both structures are defined in

<net/if.h>):

struct ifreq {

#define IFHWADDRLEN 6

 union {

 char ifrn_name[IFNAMSIZ];

 } ifr_ifrn;

 union {

 struct sockaddr ifru_addr;

 struct sockaddr ifru_dstaddr;

 struct sockaddr ifru_broadaddr;

SpaceChain OS

690

Application Development Manual

 struct sockaddr ifru_netmask;

 struct sockaddr ifru_hwaddr;

 short ifru_flags;

 int ifru_ifindex;

 int ifru_mtu;

 int ifru_metric;

 int ifru_type;

 void *ifru_data;

 } ifr_ifru;

};

#define ifr_name ifr_ifrn.ifrn_name

#define ifr_addr ifr_ifru.ifru_addr

#define ifr_dstaddr ifr_ifru.ifru_dstaddr

#define ifr_netmask ifr_ifru.ifru_netmask

#define ifr_broadaddr ifr_ifru.ifru_broadaddr

#define ifr_hwaddr ifr_ifru.ifru_hwaddr

#define ifr_flags ifr_ifru.ifru_flags

#define ifr_ifindex ifr_ifru.ifru_ifindex

#define ifr_mtu ifr_ifru.ifru_mtu

#define ifr_metric ifr_ifru.ifru_metric

#define ifr_type ifr_ifru.ifru_type

#define ifr_data ifr_ifru.ifru_data

For the application, the meaning of the following members shall be understood:

 ifr_name: network interface name (such as: en1);

 ifr_addr: network interface address;

 ifr_dstaddr: destination address;

 ifr_netmask: subnet mask;

 ifr_broadaddr: broadcast address;

 ifr_hwaddr: hardware address;

 ifr_flags: network flag, as shown in Table 15.28;

 ifr_ifindex: network interface index;

 ifr_mtu: network MTU;

 ifr_metric: network measurement;

 ifr_type: network type;

 ifr_data: request date.

Table 15.28 Network interface flag

SpaceChain OS

691

Application Development Manual

Entrance flag Instructions

IFF_UP Network equipment activated

IFF_BROADCAST The broadcast address of the network device is valid

IFF_POINTOPOINT The network devices is the point-to-point mode

IFF_RUNNING Network equipment connected

IFF_MULTICAST The network device supports IGMP

IFF_LOOPBACK Loopback device

IFF_NOARP The network interface does not support the APR protocol

IFF_PROMISC Network settings support the promiscuous mode

struct ifconf {

 int ifc_len; /* size of buffer in bytes */

 union {

 char *ifcu_buf;

 struct ifreq *ifcu_req;

 } ifc_ifcu;

};

#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */

#define ifc_req ifc_ifcu.ifcu_req /* array of structures */

The following is the meaning of the ifconf structure member:

 ifc_len: buffer zone length;

 ifc_buf: buffer zone pointer;

 ifc_req: ifreq structure pointer.

Allocate a buffer zone and an ifconf structure before calling the ioctl function, and then

initialize the ifconf structure. Figure 15.36 shows the memory layout of ifconf, and the third

parameter of the ioctl function points to the ifconf structure. The ifreq structure returned by the

kernel will be stored in the buffer zone where the ifc_buf points to shown in Figure 15.36, and

ifc_len is updated to reflect the actual number of existing bytes in the buffer zone.

Figure 15.36 Relation between the ifconf structure and ifreq structure.

SpaceChain OS

692

Application Development Manual

3. Network ioctl command

It is introduced above that different operations shall be performed via the ioctl command

request in network programming, and the following commands are included in SylixOS:

 The SIOCGIFCONF command can get the list of local network interfaces. It shall be

noticed that these network interfaces are AF_INET address family (IPv4), and the

system will return the list of network interfaces with the ifconf structure. If the length

returned by ifc_len is equal to the original incoming length, the size of the ifc_buf

buffer shall be increased;

 The SIOCGSIZIFCONF command can get the buffer zone size required for the list of

the network interface;

 The SIOCSIFFLAGS command can set the network flag, as shown in Table 15.28.

The network card flag is set via the ifr_flags member of the ifreq structure;

 The SIOCGIFFLAGS command can get the network flag, as shown in Table 15.28.

The network card flag is got via the ifr_flags member of the ifreq structure;

 The SIOCGIFTYPE command can get network interface types, which are usually

defined in <net/if_type.h> as IFT_* types, such as IFT_PPP, IFT_LOOP. These

network types are got via the ifr_type member of the ifreq structure;

 The SIOCGIFINDEX command can get the index value of the network interface. The

network interface index is got via the ifr_ifindex member of the ifreq structure.

 The SIOCGIFMTU command can get the MTU value of the network interface. The

network MTU is got via the ifr_mtu member of the ifreq structure (SylixOS does not

support setting the MTU value from the application at present);

 The SIOCGIFHWADDR command can get the hardware address of the network card.

The hardware address is got via the ifr_hwaddr member of the ifreq structure, the

member is of the sockaddr structure type, the sa_data member in the structure stores

the hardware address, and sa_family is of the ARPHRD_ETHER type.

 The SIOCSIFHWADDR command can set the hardware address of the network card,

which usually requires hardware-driven support;

 The SIOCSIFADDR command can set the IP address of the network card (the

command is valid for IPv4);

 The SIOCSIFNETMASK command can set the network mask (the command is valid

for IPv4);

 The SIOCSIFDSTADDR command can set the destination IP address (the command

is valid for IPv4);

 The SIOCSIFBRDADDR command can set the network broadcast address (the

command is valid for IPv4);

SpaceChain OS

693

Application Development Manual

 The SIOCGIFADDR command can get the IP address of the network card (the

command is valid for IPv4);

 The SIOCGIFNETMASK command can get the network mask (the command is valid

for IPv4);

 The SIOCGIFDSTADDR command can get the destination IP address (the command

is valid for IPv4);

 The SIOCGIFBRDADDR command can get the network broadcast address (the

command is valid for IPv4);

 The SIOCGIFNAME command can get the network interface name.

The following example shows how to get the local network interface information via the

network ioctl. The program calls the ioctl function to use the SIOCGIFCONF command to get

all local network interfaces and print the interface name and IP address.

Program List 15.18 Network interface information

#include <stdio.h>

#include <sys/socket.h>

#include <net/if.h>

#include <unistd.h>

#include <sys/ioctl.h>

#include <netdb.h>

void show_netif_msg (struct ifreq *ifreq)

{

 struct sockaddr_in *ip4;

 char ipbuf[20];

 fprintf(stdout, "--------------------------------------\n");

 fprintf(stdout, "netif name: %s\n", ifreq->ifr_name);

 ip4 = (struct sockaddr_in *)&ifreq->ifr_addr;

fprintf(stdout, "source addr: %s\n",

inet_ntop(AF_INET, (void *)&(ip4->sin_addr), ipbuf, 20));

}

int main (int argc, char *argv[])

{

 int fd;

 struct ifconf iconf;

 char buf[512];

 int ret, i;

SpaceChain OS

694

Application Development Manual

 fd = socket(AF_INET, SOCK_DGRAM, 0);

 if (fd < 0) {

 fprintf(stderr, "socket error.\n");

 return (-1);

 }

 iconf.ifc_len = 512;

 iconf.ifc_buf = (char *)buf;

 ret = ioctl(fd, SIOCGIFCONF, (void *)&iconf);

 if (ret < 0) {

 fprintf(stderr, "ioctl error.\n");

 return (-1);

 }

 if (iconf.ifc_len >= 512) {

 fprintf(stderr, "ifconf buffer overflow.\n");

 return (-1);

 }

 for (i = 0; i < iconf.ifc_len / sizeof(struct ifreq); i++) {

 show_netif_msg(&iconf.ifc_req[i]);

 }

 return (0);

}

Run the program under the SylixOS Shell, and the results are as follows:

./ifconf_test

netif name: en1

source addr: 192.168.1.32

netif name: lo0

source addr: 127.0.0.1

15.10 Brief introduction to wireless communications and ad-hoc network

The IEEE802.11 standard is adopted for majority of wireless networks. The basic wireless

network includes multiple radio broadcast stations in the 2.4 GHz or 5 GHz band. (However,

the specific frequency will change in the range of 2.3GHz to 4.9GHz with different regions or

for better communication)

SpaceChain OS

695

Application Development Manual

The 802.11 network has two organization modes: in the infrastructure mode, a

communication station is taken as the master station, and other communication stations are

associated with it; such network is called BSS, and the master station becomes the wireless

access point (AP). In BSS, all communication is completed via AP; even if communication

stations need to communicate with each other, the message must be sent to AP. In the second

form of network, the master station does not exist, and communication stations communicate

directly. The form of network is called IBSS, and ad-hoc network usually.

The 802.11 network was initially deployed in the 2.4 GHz band, and the protocols defined

by the IEEE 802.11 and 802.11b standards are adopted. These standards define the operation

frequency adopted and characteristics of the MAC layer including the subframe and

transmission rate (different rates can be used during communication). The later 802.11a

standard defines the use of the 5GHz band for operation, as well as different signaling

mechanisms and higher transmission rates. The 802.11g standard defined later enabled how

to use 802.11a signals and transport mechanisms at 2.4 GHz, so as to provide forward

compatibility with the earlier 802.11b network.

Various underlying transport mechanisms adopted the in 802.11 network provide different

types of security mechanisms. The original 802.11 standard defined a simple security protocol

called WEP. This protocol adopts a fixed pre-release key, and uses RC4 encryption algorithm

to encode the data transmitted on the network. All communication stations must use the same

fixed key to communicate. This pattern has proved to be easily broken, and is therefore rarely

used at present. Using this method only allows the users who access the network to quickly

disconnect. The latest security practice is given by the IEEE 802.11i standard, which defines

the new encryption algorithm and uses an additional protocol to allow the communication

station to verify the identity to the wireless access point and exchange keys for data

communication. Furthermore, the key used for encryption will be refreshed periodically, and

there is mechanism which can monitor the intrusion attempt (and prevent such attempt).

Another common security protocol standard in wireless networks is WPA. This is a transitional

standard defined by the industry organization prior to 802.11i. WPA defines a subset required

and specified in 802.11i, and is designed to be implemented on legacy hardware. In particular,

WPA requires that only the TKIP encryption algorithm derived from the algorithm adopted by

original WEP be used. 802.11i not only allows use of TKIP, but also requires support for

stronger encryption algorithm AES-CCM to encrypt data. (The AES encryption algorithm is not

required in WPA because of high computational complexity required to implement this

algorithm on legacy hardware).

In addition to the protocol standards described earlier, there is another standard to be

introduced is 802.11e. It defines the protocol for running multimedia applications on 802.11

network, such as video streaming and voice transmitted with IP (VoIP). Similar to 802.11i,

802.11e also has a predecessor standard, commonly referred to as WME (later renamed as

WMM), which is also the subset of the 802.11e defined by the industry organization, in order to

use multimedia applications in legacy hardware. Another important difference between

802.11e and WME/WMM is that the former allows traffic to be prioritized through quality of

service (QoS) protocol and enhanced media access protocol. For the correct implementation

of these protocols, high-speed burst data and traffic classification can be achieved.

SpaceChain OS

696

Application Development Manual

SylixOS supports the networks adopting 802.11a, 802.11b and 802.11g. Similarly,

she also supports WPA and 802.11i security protocols (in conjunction with 11a, 11b, and 11g),

while QoS and traffic grading required by WME/WMM provide support on some wireless

devices.

SylixOS not only supports traditional wired network communication models such as

Ethernet and a variety of industrial buses. SylixOS also supports the new-generation wireless

communication networking technology: Mesh (wireless mesh network). The wireless mesh

network is also called an "ad-hoc" network. It is a new type of wireless network technology

which is completely different from BSS network. In the BSS network, each client accesses the

network through a wireless link connected to AP. If the nodes want to communicate with each

other, they must first access a fixed access point (AP), which is also called as hotspot. The

network structure is called as single-hop network. All nodes in the network must be within the

range which AP can communicate with. However, in the wireless mesh network, any wireless

device node can be taken as both AP and router. Each node in the network can send and

receive the signal. Each node can communicate directly with one or more peer nodes.

Compared to BSS network, it is only required to simply connect the power supply to add

the new device. It can automatically configure itself, and determine the optimal multi-hop

transmission path. When adding or moving the device, the network can automatically discover

topology changes, and automatically adjust communication routes to get the most efficient

transmission path.

Compared with the BSS network, the wireless Mesh network has several unparalleled

advantages:

 Due to adoption of dynamic topology technology, Mesh network deployment and

installation are very simple and efficient. Remove the device from the box, and

connect it to the power supply. As installation is greatly simplified, users can easily

add new nodes to expand the wireless network coverage and network capacity;

 Since Mesh uses an automatic multi-hop routing mechanism, it is easy to implement

NLOS. The signal can automatically select the best path to jump from one node to

another, and eventually reach the target node without direct line of sight;

 Because the Mesh network does not have a central node, the entire network is very

robust and resistant to destruction. Because it does not depend on performance of a

single node. In a single-hop network, if one node fails, the entire network will collapse.

In the mesh network structure, each node has one or more paths for data

transmission. If the nearest node fails or is disturbed, the data packet will be

automatically routed to the standby path to continue transmission, and the entire

network operation will not be affected;

 Because the Mesh network adoptsthe dynamic topology, the structure is very flexible.

In the multi-hop network, the device can connect to the network through different

nodes at the same time, so it will not lead to decrease in system performance.

SpaceChain OS

697

Application Development Manual

SylixOS currently supports relatively complete wired and wireless communication

framework, and can support multiple types of communication networks simultaneously. They

can be uniformly abstracted into the common TCP/IP network interface for extremely easy to

access the Internet. The above features make it easy for nodes using SylixOS as the

underlying operating system to access the Mesh network.

Figure 15.37 is the SylixOS wireless communication network framework.

Figure 15.37 Wireless communication network framework

SylixOS's wireless network can be divided into 7 layers, including:

 Standard communication protocol layer: wired and wireless network systems do

not have any difference here. Therefore, the applications above it can work

seamlessly on the wired and wireless networks. There is no difference between them.

SpaceChain OS

698

Application Development Manual

 Dynamic routing protocol layer: this layer implements the automatic

networking function of the wireless network. The currently supported protocol is

MAODV. This protocol is applicable to medium-sized network with rapid changes in

contact points. The RPL protocol obtained the RFC standard number (RFC 6550) in

2012 and became a standard route exchange protocol. It is mainly used in IPv6

low-power wireless communication systems.

 Wireless network interface layer: SylixOS provides a standard IEEE 802.15.4

wireless network interface packet switching function. In order to reduce collision, the

wireless network generally use shorter data packet, but IPv6 specifies that the MTU

of the network interface shall not be less than 1280 bytes. Therefore, here is also

responsible for the data packet split and merge functions based on MAC layer. RF

interface which does not comply with the IEEE 802.15.4 standard can be virtualized

into such interfaces in RF drives;

 MAC adaptation layer: according to the type of wireless network selected, SylixOS

provides a variety of MAC access models: they are CSMA/CA (Carrier Sense Multiple

Access / Conflict Avoidance), TDMA (Time Division Multiplexing), etc.;

 Radio frequency cycle management layer: according to the application model of

the network, multiple management models for device work cycles are provided, such

as low-power X-MAC model, NULL model for high throughput and real-time

performance, and the like;

 Encryption layer: the encryption layer provides support for wireless network

encryption. SylixOS includes SIMPLE and AES_CCM.

 RF Drive: SylixOS provides a set of standard specifications for RF interface

(radio_driver) operation. All kinds of RF interface drivers can support Mesh network

as long as they comply with this specification.

SpaceChain OS

699

Application Development Manual

SpaceChain OS

700

Application Development Manual

Chapter 16 File system

16.1 Introduction of the file system

SylixOS offers a variety of standard file systems for user convenience. These file systems

are SylixOS built-in systems, if more file systems such as NTFS are needed, they can be

added via kernel modules. The SylixOS file system is actually a set of virtual device drivers. It

provides two sets of API interfaces that are compliant with the I/O system standards and

require device drivers to comply with the block device standards. The structure of the file

system in the I/O system is shown in figure 16.1.

Figure 16.1 Brief structure of the file system

The SylixOS file systems are mounted using standard interfaces provided by the I/O

system and access via standard I/O operation functions. In other words, there is no difference

between operating a normal file and operating a device file.

SylixOS currently includes the following built-in file systems:

 TPSFS file system;

 ROOT file system;

 PROC file system;

 RAMFS file system;

 FAT file system;

 YAFFS file system;

 NFS file system;

 ROMFS file system.

SpaceChain OS

701

Application Development Manual

The ROMFS file system is a read-only file system, and the key files of the system

can be placed in this file system to ensure security. When mounting file systems via mount,

the FAT, NFS, and YAFFS can also be mounted as read-only file systems.

PROC is a file system that holds operating system information and process information.

The file entities corresponding to this file system are all in the operating system kernel and are

the operating parameters and information fed back by the kernel. For example, the ID of each

process has a corresponding directory, which contains the current running information of the

process, such as the executable file corresponding to the process, the file descriptor table

opened by the process, the memory information consumed by the process, and the internal

dynamic link library information of the process etc. All SylixOS internal devices (including file

systems) must be mounted on the root file system. The root file system has a very special

device name — “/”. All device or file absolute paths start with the root symbol. That is, the

operating system always starts with the root file system when querying a device.

SylixOS also provides some components for easy applications of the file system, including

the disk partition checking tool, the disk buffer, the disk automounting tool, etc.

The disk partition checking tool can automatically check the partition status of a disk and

generate logical devices for the corresponding partition, each of which can be mounted on the

file system. The disk buffer is a special block device that between the file system and the disk.

Since the disk is a low-speed device that reads and writes at much lower speed than the CPU,

SylixOS provides a buffer for the corresponding block device to address this speed mismatch,

and this buffer can also greatly reduce the disk I/O access rate while improving system

performance. The principle of introducing a disk buffer is the same as that of a CPU, so it will

result a short time inconsistency between the data in the memory and the disk, but this

problem can be solved by calling the sync function, fsync function, or fdatasync function. The

sync function will block the current thread, then write all the data that needs to be written back

from the cache to the device and return it. The fsync function indicates that the cached data of

the specified file is synchronized to the physical disk, and the fdatasync function indicates that

the data portion of the specified file is synchronized to the physical disk.

The disk automounting tool is a collection of tools that encapsulate many disk tools. The

device can transfer the physical disk block device to the disk automounting tool through a hot

plug event. This tool will first create a disk buffer for this disk, then automatically perform disk

partition check and generate a virtual block device for each partition. Finally, it will identify the

file system type of each partition and load the corresponding file system. As a result, the user

can see the corresponding mounted file system directory in the operating system directory.

The SylixOS block device structure with the disk buffer and the partition processing tool is

shown in figure 16.2.

SpaceChain OS

702

Application Development Manual

Figure 16.2 Schematic of the block device

16.2 TPSFS file system

TPSFS (True Power Safe FS) is a power-fail safe file system and is also a SylixOS built-in

file system. Its structure is shown in Figure 16.3. TPSFS is a transaction-based B+ tree file

system: use transaction commit mechanism to modify metadata to ensure the consistency of

the file system; use B+ tree to manage the disk space and the file space, and record the

starting block and the number of blocks in B+ tree with different key values; use the file starting

block number to indicate the inode number, and use the space management B+ tree to

implement the inode management. The above principles make the TPSFS file system has the

following features:

 B+ tree file data storage improves the space management efficiency while

accelerating reading, writing, and positioning speeds;

 Atomic operations on metadata ensures power-fail safety;

 64-bit file system supports EP-level file length;

 Excellent large file processing performance;

 File record locks support large databases;

 Multi-block allocation mechanism improves system performance and allows the

dispenser to have ample room for optimization；

 Subdirectory extensibility allows unlimited number of subdirectories to be created in

one directory.

SpaceChain OS

703

Application Development Manual

Figure 16.3 Structure of TPSFS file system

Superblock is the first block of TPSFS, which records the basic information of the file

system, such as: block size, number of blocks, data block position, and log block position, etc.

Each data block in TPSFS is recorded in a B+ tree rooted at the inode block. The structure is

shown in figure 16.4.

After the superblock is the space management inode block, the B+ tree corresponding to

the inode manages the free blocks of the entire disk, which can be understood as forming all

the free block records into the space management inode to form a large file. Different from the

ordinary file, the key value of the space management inode B+ tree node is the physical block

number of the disk block interval, and the key value of the ordinary file inode B+ tree node is

the offset of the block interval in the file.

SpaceChain OS

704

Application Development Manual

Fifure 16.4 Structure of the B+tree nodes

As can be seen from figure 16.4, each B+ tree node contains several subitems whose

values are determined by the node type. If it is a leaf node, it contains a key, a starting block,

and a block number for recording a physical block interval. If it is a non-leaf node, the key and

the corresponding node number of the child node are recorded.

16.3 FAT file system

FAT (File Allocation Table) is a Windows-compatible file system. The removable storage

devices (USB flash disk and SD card, etc.) commonly used in SylixOS systems are often

mounted in the FAT file system format.

FatFs is a universal FAT file system module designed for embedded systems. FatFs is

written in compliance with ANSI C and is completely separate from the disk I/O layer. It is

independent (not depend) on the hardware architecture.

The main features of the FatFs file system:

 A Windows-compatible FAT file system;

 Not independ on the platfome and easy to transplant;

 The code and workspace occupy very little space;

 Multiple configuration options.

16.3.1 FAT command

In SylixOS, the fatugid command can be used to view and set the default uid and gid for a

volume label.

 [Command format]

fatugid [uid] [gid]

SpaceChain OS

705

Application Development Manual

 [Common option]

None

 [Instructions for parameters]

uid ：new user ID

gid ：new group ID

See the example content of the default uid and gid for the specified volume label:

fatugid

vfat current uid : 0 gid : 0

16.4 NFS file system

NFS, namely Network File System, is a distributed file system protocol released by Sun in

1984. It is also one of the file systems supported by FreeBSD, which allows network

computers to share resources over the TCP/IP network. In NFS applications, a local NFS client

application can transparently read and write files located on a remote NFS server just as if they

were local files. NFS is a successful file sharing method, but the biggest problem is that it is not

suitable for large distributed systems.

The main features of NFS:

 Local workstations use less disk space because the usual data can be stored on a

single computer and accessed over the network;

 Users do not have to keep the same directory on every network computer. The same

directory can be placed on the NFS server and is available everywhere on the

network;

 Storage devices such as floppy disk drives and CDROMs can be used on the network

by other computers, which can reduce the number of removable media devices on

the entire network.

In the development and debugging phase of an embedded device, this technology can be

used to create an NFS-based file system on the host and mount it on the embedded device to

facilitate file sharing between the host and the embedded device.

16.4.1 Basic operations of NFS

In the SylixOS system, the file system types supported by the current system can be

determined by viewing the /proc/fs/fssup file.

cat /proc/fs/fssup

SpaceChain OS

706

Application Development Manual

rootfs procfs ramfs romfs vfat nfs yaffs

Take FreeNFS as an example to illustrate the NFS mount operation of SylixOS. Run

FreeNFS software and set the parameters, after right-clicking the software icon and selecting

Settings, the interface shown in figure 16.5 will pop up.

Figure 16.5 FreeNFS settings

Enter the path that the server (PC running FreeNFS) needs to share in the Path field in

Server. The emptey Allowed Host field in Clients indicates that all clients can connect to the

server. Codename in Filenames indicates the encoding format of the current system file name.

Use showmount command to view the devices that are currently mounted on the system.

showmount

AUTO-Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/media/hdd0 /dev/blk/hdd0:0

Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/tmp 0

Use mount command to mount NFS file system. The nfs in /mnt/nfs is dynamically

created and does not need to be manually created.

mount -t nfs 192.168.1.15:/ /mnt/nfs

SpaceChain OS

707

Application Development Manual

showmount

AUTO-Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/media/hdd0 /dev/blk/hdd0:0

Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/mnt/nfs 192.168.1.15:/

/tmp 0

ls /mnt/nfs/

.metadata app_proc base_armv4 bsp_micro2440 bsp_mini2440

RemoteSystemsTempFiles

Use umount command to unmount NFS file system.

umount /mnt/nfs/

showmount

AUTO-Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/media/hdd0 /dev/blk/hdd0:0

Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/tmp 0

SpaceChain OS

708

Application Development Manual

16.5 ROM file system

ROMFS is a relatively simple and space-saving read-only file system with small size, high

reliability, and fast read speed. It supports directories, symbolic links, hard links (SylixOS does

not currently support hard links) and device files.

ROMFS is a read-only file system that uses sequential storage. All data, including

directories and links, are stored in the order of the directory tree. Therefore, ROMFS is very

space-saving compared to other large file systems. It is usually used as the root file system in

the embedded device, or used to save the bootloader to boot the system.

The sequential storage of ROMFS makes all the data stored in order, so the data in

ROMFS cannot be modified once it is determined. This data storage method causes ROMFS

to be unable to be written, which is why ROMFS can only be a read-only file system. Due to

the sequential storage, the data of each file in the ROMFS can be stored continuously. In the

reading process, only one addressing operation is needed to read the entire block of data, so

the ROMFS data reading efficiency is high.

SylixOS provides support for ROMFS, which can mount ROM file system via Shell like

other ones. SylixOS supports two ROMFS mounting methods: one is to mount a block device

that conforms to the ROMFS format in the /dev/blk directory so that read operations can be

performed at the application level via I/O functions (note that write operations cannot be

performed); Another one is to mount a ROMFS-compliant image file, but this requires the use

of other tools (like genromfs) to make a ROMFS image. The following is the process of

mounting a ROMFS image file:

 Compile the genromfs tool (this tool comes from the network);

 Generate the image file by executing the following command with genromfs

./genromfs –f romfile.img

Mount the file system:

mount –t romfs ./romfile.img /mnt/rom1

 Use showmount command to view the mounting progress of the file system.

showmount

AUTO-Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/media/hdd0 /dev/blk/hdd0:0

Mount point show >>

 VOLUME BLK NAME

SpaceChain OS

709

Application Development Manual

-------------------- --------------------------------

/mnt/rom1 ./romfile.img

/tmp 0

Though the above steps, a ROMFS-compliant image file is mounted as a ROM file

system.

16.6 RAM file system

RAMFS uses a portion of fixed-size memory as a partition. It is not an actual file system,

but a mechanism to load the actual file system into memory. Putting some files that are

frequently accessed but not changed into memory can significantly improve the performance

of the system. Moreover, in the initial stage of device debugging, using an in-memory file

system can facilitate device debugging when other file systems of the Flash type are still not

working properly.

Use mount command to mount RAMFS file system. The ram in /mnt/ram is dynamically

created and does not need to be manually created.

showmount

AUTO-Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/media/hdd0 /dev/blk/hdd0:0

Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/tmp 0

mount -t ramfs 10000 /mnt/ram

showmount

AUTO-Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/media/hdd0 /dev/blk/hdd0:0

SpaceChain OS

710

Application Development Manual

Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/mnt/ram 10000

/tmp 0

touch /mnt/ram/hy

ls /mnt/ram/

hy

umount /mnt/ram/

showmount

AUTO-Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/media/hdd0 /dev/blk/hdd0:0

Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/tmp 0

16.7 ROOT file system

ROOTFS is a special file system. The root file system is the first file system mounted at

kernel startup, so the root file system includes the necessary directories and critical files for

SylixOS startup, such as the etc directory necessary for kernel startup and the system

command bin directory, etc. Any file system that includes the items necessary for the SylixOS

system startup can become the root file system.

ROOTFS of the SylixOS operating system is a virtual-type root file system. Therefore, the

file system does not exist on a physical disk but is dynamically created and stored in memory

after the system is started.

The directory structure of ROOTFS is shown in table 16.1.

Table 16.1 Directory structure of root file system

SpaceChain OS

711

Application Development Manual

Root file

system

Typical symbolic

link
Feature

/ tmp /yaffs2/n1/tmp Store temporary files

/var /yaffs2/n1/var Store variable data

/root /yaffs2/n1/root Directory for root users

/home /yaffs2/n1/home Directory for odinary users

/apps /yaffs2/n1/apps Store applications

/sbin /yaffs2/n1/sbin System-level executable program

/bin /yaffs2/n1/bin Ordinary executable program

/usr /yaffs2/n1/usr Store shared data

/lib /yaffs2/n1/lib Store shared libraries and kernel modules

/qt /yaffs2/n1/qt Store Qt related files

/ftk /yaffs2/n1/ftk Store FTK related files

/etc /yaffs2/n0/etc Store common configuration files

/boot /yaffs2/n0/boot Store the files required by the loader

/usb N/A Mount root node of USB

/yaffs2 N/A YAFFS file system partition

/proc N/A PROC file system root node

/media N/A Mount root node of mobile device

/mnt N/A Mount root node of volume label

/dev N/A Mount root node of device

SpaceChain OS

712

Application Development Manual

16.8 PROC file system

For easy access to kernel information, SylixOS provides a PROC virtual file system that

exists in the /proc directory, contains a variety of files for displaying kernel information. This file

system allows the processes to easily read via regular file I/O system calls and can sometimes

modify this information. The /proc file system is called a virtual file system because the files

and subdirectories it contains are not stored on disk, but are dynamically created by the kernel

when the process accesses such information.

Sample directory content of the PROC file system provided by SylixOS:

ls

1 ksymbol posix net power fs

version kernel cpuinfo bspmem self yaffs

The description of the files and directories in the /proc directory is shown in table 16.2.

Table 16.2 Files and directories in the /proc directory

File/director

y
Description (process property)

1 Process information directory with process ID 1

ksymbol Kernel symbol table file

posix Subsystem information directory of POSIX

net Subsystem information directory of network

power Subsystem information directory of power management

fs Subsystem information directory of file system

version Information file of the kernel version that the current system is running

kernel Subsystem information directory of kernel

cpuinfo Processor related information file

bspmem
Mapping file for each physical memory device (RAM or ROM) in system

memory

self Auxiliary information directory

SpaceChain OS

713

Application Development Manual

yaffs Information file of YAFFS file system

The files in the /proc directory are usually accessed via scripts, and can also be accessed

in the program via regular I/O system calls, but with the following restrictions:

 Some of the files in the /proc directory are read-only, meaning that these files can

only display kernel information but cannot be modified. Most of the files in the

/proc/pid directory are of this type.

 Some files in the /proc directory can only be read by the file owner (or the superuser

process).

 Except for the files in the /proc/pid subdirectory, most of the other files in the /proc

directory belong to the root user, and only the root user can modify those files that

can be modified.

16.8.1 /proc/pid process related information

Enter the ps command in the terminal to view the current process information and the

process with PID 0 is the system kernel process. The kernel provides the appropriate directory

named /proc/pid for each process in the system, and pid is the process ID. Each file or

subdirectory in this directory contains information about the process.

Sample content of the process information directory:

ps

 NAME FATHER PID GRP MEMORY UID GID USER

----------------- ----------------- ----- ----- ---------- ----- ----- ------

kernel <orphan> 0 0 0 0 0 root

app_proc <orphan> 1 1 53248 0 0 root

total vprocess : 2

cd /proc/

ls

1 ksymbol posix net power fs

version kernel cpuinfo bspmem self yaffs

cd 1

ls

ioenv filedesc modules mem cmdline exe

SpaceChain OS

714

Application Development Manual

The description of the files in the /proc/pid directory is shown in table 16.3.

Table 16.3 Description of the files in the /proc/pid directory

File Description (process property)

ioenv Environment file of process I/O

filedesc Information file of file descriptor

modules Situation file of dynamic link library

mem Memery information file

cmdline Command line files separated by \0

exe Symbolic link to executable file

Sample content of the file in the /proc/ pid directory:

cd /proc/pid/1

cat ioenv

umask:0

wd:/

cat filedesc

FD NAME

0 /dev/pty/7.hst

1 /dev/pty/7.hst

2 /dev/pty/7.hst

cat modules

NAME HANDLE TYPE GLB BASE SIZE SYMCNT

app_proc 30c5f170 USER YES c0008000 8428 2

libvpmpdm.so 30c5f5a8 USER YES c0018000 d384 70

<VP Ver:1.5.1 dl-malloc>

cat mem

static memory : 49152

SpaceChain OS

715

Application Development Manual

heap memory : 4096

total memory : 53248

cat cmdline

/apps/app_proc/app_proc

ll

-r--r----- root root Mon Jul 27 14:37:11 2015 0 B, ioenv

-r--r----- root root Mon Jul 27 14:37:11 2015 0 B, filedesc

-r--r----- root root Mon Jul 27 14:37:11 2015 0 B, modules

-r--r----- root root Mon Jul 27 14:37:11 2015 0 B, mem

-r--r----- root root Mon Jul 27 14:37:11 2015 0 B, cmdline

lr--r----- root root Mon Jul 27 14:37:11 2015 exe/ ->

/apps/app_proc/app_proc

 total items : 6

16.8.2 /proc/ksymbol kernel symbol table

Example content of the kernel symbol table file:

cat /proc/ksymbol

 SYMBOL NAME ADDR TYPE

------------------------------ -------- --------

viShellInit 3000c888 RX

aodv_netif 3149e6b4 RW

_cppRtUninit 302afcec RX

_IosFileSet 302935b4 RX

_epollFindEvent 3028efb8 RX

__blockIoDevDelete 302631dc RX

__pxnameGet 3023db10 RX

mq_timedreceive 3023cc90 RX

API_INetNpfDetach 30221e90 RX

snmp_set_sysname 301da42c RX

igmp_joingroup 301c6d6c RX

SpaceChain OS

716

Application Development Manual

vprocIoFileDescGet 30178130 RX

API_MonitorUploadCreate 3016e528 RX

API_MonitorNet6UploadCreate 3016d490 RX

16.8.3 /proc/posix POSIX subsystem information

The POSIX subsystem contains the naming information file pnamed. The POSIX naming

information can be understood by viewing the pnamed content with the cat command. In the

pnamed content, TYPE indicates the type (SEM indicates the signal type, MQ indicates the

message queue), OPEN indicates the use count, and NAME indicates the object name.

Sample content of the /proc/posix directory:

cd /proc/posix/

ls

pnamed

cat pnamed

TYPE OPEN NAME

---- ------ --------------------------------

SEM 1 sem_named

16.8.4 /proc/net network subsystem

Sample content of the network subsystem directory:

cd /proc/net/

ls

netfilter wireless ppp packet arp if_inet6

dev unix tcpip_stat route igmp6 igmp raw6

 raw udplite6 udplite udp6 udp tcp6

 tcp mesh-adhoc

The description of each directory file in the network subsystem is shown in table 16.4.

Table 16.4 Description of the the files in the /proc/net directory

File Description (process property)

netfilter Network filter rules file

SpaceChain OS

717

Application Development Manual

wireless Wireless network configuration file

ppp PPP dial file

packet AF_PACKET information file

arp ARP information file

if_inet6 PIV6 network interface file

dev Information file of network interface device

unix AF_UNIX information file

tcpip_stat TCP/IP status information file

route Routing table information file

igmp6 IPV6 IGMP information file

igmp IGM information file

raw6 Information file of IPV6 raw data

raw Raw data information file

udplite6 IPV6 UDP brief information file

udplite UDP brief information file

udp6 IPV6 UDP information file

udp UDP information file

tcp6 IPV6 TCP information file

tcp TCP information file

mesh-adhoc Mesh ad hoc network information directory

16.8.5 /proc/power power management subsystem

SpaceChain OS

718

Application Development Manual

Sample content of the power management subsystem directory:

cd /proc/power/

ls

pminfo devices adapter

The description of the files in the /proc/power directory is shown in table16.5.

Table 16.5 Description of the files in the /proc/power directory

File Description (process property)

pminfo Current system information file

devices Device file of enabling power management

adapter Adapter information file

Sample information of pminfo file:

cat pminfo

NCPUS : 1

ACTIVE : 1

POWERLevel : Top

SYSStatus : Running

 NCPUS: Current system CPU cores;

 ACTIVE: Current system-enabled CPU cores;

 POWERLevel: Power level. The levels from top to bottom are Top, Fast, Normal, and

Slow;

 SYSStatus: Current system running status. The running statuses include the

low-power status Power-Saving and the normal status Running.

devices file information:

cat devices

PM-DEV ADAPTER CHANNLE POWER

uart2 inner_pm 12 on

uart1 inner_pm 11 on

uart0 inner_pm 10 on

SpaceChain OS

719

Application Development Manual

 PM-DEV: Power management device name;

 ADAPTER: Power management adapter name;

 CHANNLE: Channel number of the power management adapter;

 POWER: Current power statuses including on and off.

adapter file information:

cat adapter

ADAPTER MAX-CHANNLE

inner_pm 21

 ADAPTER: Power management adapter name;

 MAX-CHANNLE: Maximum channel number of the power management adapter.

16.8.6 Subsystem of the /proc/fs file system

Sample content of the file system directory:

cd /proc/fs

ls

fssup procfs rootfs

The description of the files in the /proc/fs directory is shown in table16.6.

Table 16.6 Description of the files in the /proc/fs directory

Directory/fil

e
Description (process property)

fssup File system support information file

procfs Information directory of PROC file system

rootfs Information directory of ROOT file system

fssup file information:

cat fssup

rootfs procfs ramfs romfs vfat nfs yaffs

procfs directory information:

SpaceChain OS

720

Application Development Manual

cd procfs/

ls

stat

cat stat

memory used : 0 bytes

total files : 47

 memory used: file size;

 total files: number of files.

rootfs directory information:

cd rootfs/

ls

stat

cat stat

memory used : 3031 bytes

total files : 43

 memory used: file size;

 total files: number of files.

16.8.7 /proc/version kernel version information

Sample content of kernel version information file:

cd /proc

cat version

SylixOS kernel version: 1.2.1 NeZha(a) BSP version 5.1.2 for GEMINI

(compile time : Jan 15 2016 11:44:33)

GCC:4.9.3

The kernel version information contains SylixOS kernel version information, BSP version

information, SylixOS kernel compile time and compiler version information.

16.8.8 /proc/kernel kernel information

Sample content of the kernel infromation directory:

SpaceChain OS

721

Application Development Manual

cd /proc/kernel/

ls

affinity objects tick

The description of the files in the /proc/kernel directory is shown in table16.7.

Table 16.7 Description of the files in the /proc/kernel directory

File Description (process property)

affinity Multi-core affinity information file

objects Kernel object information file

tick Systick information file

Sample content of the affinity file:

cat affinity

 NAME TID PID CPU

---------------- ------- ----- ---

t_idle 4010000 0 *

t_itimer 4010001 0 *

t_except 4010002 0 *

t_log 4010003 0 *

t_power 4010004 0 *

t_hotplug 4010005 0 *

t_reclaim 4010007 0 *

t_netjob 4010008 0 *

t_netproto 4010009 0 *

t_tftpd 401000a 0 *

t_ftpd 401000b 0 *

t_telnetd 401000c 0 *

t_tshell 401000e 0 *

 NAME: thread name;

SpaceChain OS

722

Application Development Manual

 TID: thread ID;

 PID: process ID;

 CPU: Current thread affinity to the specified CPU.

Sample content of the objects file:

cat objects

object total used max-used

event 1500 99 101

eventset 100 0 0

heap 22 2 2

msgqueue 300 6 6

partition 30 7 7

rms 30 1 1

thread 100 13 14

threadvar 20 0 0

timer 100 2 2

dpma 2 0 0

threadpool 2 0 0

 object: Kernel object type;

 total: The total number of specified type objects;

 used: The number of specified type objects that have been used

 max-used: The maximum number of specified type objects that have been used

Sample content of the tick file:

cat tick

tick rate : 100 hz

tick : 44304

 tick rate: System clock frequency;

 total: Total system clock count

16.8.9 /proc/cpuinfo processor information

Sample content of the cpuinfo file:

SpaceChain OS

723

Application Development Manual

cd /proc

cat cpuinfo

CPU : SAMSUNG S3C2440A (ARM920T 405/101MHz NonFPU)

CPU Family : ARM(R) 32-Bits

CPU Endian : Little-endian

CPU Cores : 1

CPU Active : 1

PWR Level : Top level

CACHE : 32KBytes L1-Cache (D-16K/I-16K)

PACKET : Mini2440 Packet

BogoMIPS 0 : 426.600

 CPU: processor type and key parameters;

 CPU Family: processor architecture type and word length;

 CPU Endian: big endian and little endian type;

 CPU Cores: Processor cores;

 CPU Active: The number of currently active processors;

 PWR Level: current power level;

 CACHE: Cache information;

 PACKET: board support package type;

 BogoMIPS 0: a measure of the calculator speed in SylixOS (millions per second).

16.8.10 /proc/bspmem memory mapping information

Sample content of the bspmem file:

cd /proc

cat bspmem

ROM SIZE: 0x00200000 Bytes (0x00000000 - 0x001fffff)

RAM SIZE: 0x04000000 Bytes (0x30000000 - 0x33ffffff)

use "mems" "zones" "virtuals"... can print memory usage factor.

16.8.11 proc/self auxiliary information

SpaceChain OS

724

Application Development Manual

Sample content of the self directory:

cd /proc/self/

ls

auxv

16.8.12 /proc/yaffs YAFFS partition information

Sample content of the yaffs file:

cd /proc

cat yaffs

Device : "/n1"

startBlock......... 129

endBlock........... 1023

totalBytesPerChunk. 2048

chunkGroupBits..... 0

chunkGroupSize..... 1

nErasedBlocks...... 871

nReservedBlocks.... 16

nCheckptResBlocks.. nil

blocksInCheckpoint. 0

nObjects........... 23

nTnodes............ 96

nFreeChunks........ 55975

nPageWrites........ 0

nPageReads......... 13

nBlockErasures..... 0

nErasureFailures... 0

nGCCopies.......... 0

allGCs............. 0

passiveGCs......... 0

nRetriedWrites..... 0

SpaceChain OS

725

Application Development Manual

nShortOpCaches..... 20

nRetiredBlocks..... 0

eccFixed........... 0

eccUnfixed......... 0

tagsEccFixed....... 0

tagsEccUnfixed..... 0

cacheHits.......... 0

nDeletedFiles...... 0

nUnlinkedFiles..... 0

nBackgroudDeletions 0

useNANDECC......... 1

isYaffs2........... 1

Device : "/n0"

startBlock......... 1

endBlock........... 128

totalBytesPerChunk. 2048

chunkGroupBits..... 0

chunkGroupSize..... 1

nErasedBlocks...... 126

nReservedBlocks.... 10

nCheckptResBlocks.. nil

blocksInCheckpoint. 0

nObjects........... 9

nTnodes............ 3

nFreeChunks........ 8183

nPageWrites........ 0

nPageReads......... 6

nBlockErasures..... 0

nErasureFailures... 0

SpaceChain OS

726

Application Development Manual

nGCCopies.......... 0

allGCs............. 0

passiveGCs......... 0

nRetriedWrites..... 0

nShortOpCaches..... 10

nRetiredBlocks..... 0

eccFixed........... 0

eccUnfixed......... 0

tagsEccFixed....... 0

tagsEccUnfixed..... 0

cacheHits.......... 0

nDeletedFiles...... 0

nUnlinkedFiles..... 0

nBackgroudDeletions 0

useNANDECC......... 1

isYaffs2........... 1

16.9 YAFFS file system

YAFFS (Yet Another Flash File System) is an embedded log file system designed

specifically for NAND Flash memory and is suitable for large-capacity storage devices. As it is

released under the GPL, the source code is available for free on its website.

YAFFS is a log-based file system that provides robustness to wear-leveling and

power-down recovery. It also made adjustments for large-capacity Flash chips, optimized boot

time and RAM usage, making it suitable for large-capacity storage devices.

16.9.1 The difference between NAND Flash and NOR Flash

NOR Flash features XIP (Excute In Place) so that applications can run directly within the

NOR Flash without writing code into system RAM. Its high transmission efficiency makes it

highly cost-effective at small capacities of 1 to 4 MB, but extremely low write and erase speed

greatly affect its performance.

NAND Flash architecture was released by Toshiba in 1989. Its internal non-linear macro

cell mode provides a cheap and effective solution for the development of solid-state

large-capacity memory. The advantages of large capacity, fast write and erase speed make

SpaceChain OS

727

Application Development Manual

NAND Flash suitable for storing large amounts of data, so it has been widely used in the

industry, such as embedded products including digital cameras, memory cards for MP3

players, compact USB flash disks, etc.

Both types of FLASH have the same memory cells and operating principle. In order to

shorten the access time, operations are not performed individually for each cell, but are

performed collectively for a certain number of cells. The NAND FLASH memory cells are

connected in series, while the NOR FLASH memory cells are connected in parallel. Therefore,

all memory cells must be uniformly addressed for effective management. All memory cells of

NAND FLASH are divided into several blocks, and each block is divided into several pages.

Each page is 512 bytes or 2048 bytes, which is 512 or 2048 8 digits. This means that each

page has 512 or 2048 bit lines and and each bit line contains 8 memory cells, so the data

stored on each page is exactly the same as the data stored on one sector of the hard disk. This

is specially designed to facilitate the data exchange with the disk. A HAND FLASH block is

similar to a cluster of the hard disk. When the capacity is different, the number of blocks is

different, and the number of pages that make up the block is also different. When the word line

and the bit line are locked to a certain transistor while reading data, the control electrode of this

transistor is not biased, and the other seven are biased to conduct. If there is a charge in the

floating gate of this transistor, it will conduct to make the bit line low. At this time, the readout

number is 0, otherwise it is 1. Each memory cell of the NOR FLASH is connected in parallel to

the bit lines to facilitate random access to each bit, and a dedicated address line enables

one-time direct addressing, eeducing the time for NOR FLASH to execute processor

instructions.

In NAND FLASH, the maximum number of EW per block is one million, while in NOR

FLASH it is one hundred thousand. Compared with NOR FLASH, NAND FLASH has a 10 to 1

advantage over the block erase cycle. Typical NAND FLASH block size is 8 times smaller than

NOR FLASH, each NAND FLASH block erases less in a given time, and HAND FLASH

controller interface is simpler.

16.9.2 YAFFS proper nouns

Page: The page unit is the addressing unit of the basic operation (read or write operation

or bad block flag) including a general area and an extension area. The general area is mainly

used for storing data, and the extended area is mainly used for storing flag information;

Block: The block unit is the address unit of the erase operation;

OOB: Exist in extension area, including ECC, bad block flag, YAFFS flag, etc. Typically,

each 512 bytes corresponds to a 16-byte OOB area, and each 2048 bytes corresponds to a

64-byte OOB area.

YAFFS flags in YAFFS2 mode:

 4-byte 32-bit data block ID

 4-byte 32-bit object ID;

SpaceChain OS

728

Application Development Manual

 The number of data bytes in this 2-byte data block;

 The serial number of this 4-byte block；

 3-byte flag area ECC

 12-byte data area ECC (3-byte ECC per 256-byte data).

Chunk: Addressing unit of YAFFS, usually consistent with the size of Page;

Object: YAFFS object, usually including files, paths, links, devices, etc.

Taking the NAND Flash of K9F4G08 from SAMSUNG as an example to illustrate the

structure of the common NAND Flash physical memory cell array. The schematic for the

structure of the K9F4G08 physical memory cell array is shown in figure 16.6.

Figure 16.6 K9F4G08 storage array schematic

16.9.3 Memory Technology Device（MTD）

MTD (Memory Technology Device) provides an abstract layer for memory operations in

order to make the drive of newly added storage devices easier. This subsystem provides a

common interface for drivers and upper-level systems to ensure that all memory (NAND,

OneNAND, NOR, AG-AND, NOR with ECC, etc.) operations use the same API. Hardware

drivers shall ignore the basic data storage formats and only provide basic operations such as

read operations, write operations, and erase operations.

MTD devices are neither character devices nor block devices. The comparison between

MTD devices and block devices is shown in figure 16.7.

Figure 16.7 The comparison between MTD devices and block devices

Block device MTD device

Consists of sectors Consists of erasable blocks

SpaceChain OS

729

Application Development Manual

Smaller sector size (512 or 1024 Byte) Larger erasable sector size (128 KB)

Read and write sectors Read block, write block and erase block

Bad sectors are hidden or remapped by

hardware

Bad blocks cannot be hidden and require

software processing

No limit on the reads and writes of sectors Limited block erasures

The MTD subsystem source code in SylixOS is located at "libsylixos/SylixOS/fs/mtd",

which mainly uses the MTD original device layer of the MTD subsystem. The Flash hardware

driver layer includes the NOR Flash driver and the NAND Flash driver and the NAND Flash

driver source code is located in "SylixOS/driver/mtd/nand" in the BSP package.

16.9.4 YAFFS partition

The YAFFS file system in SylixOS usually has two partitions as /yaffs2/n0 and /yaffs2/n1.

N0 is the boot area, which mainly stores the device firmware and some common configuration

files. N1 is the comm area which mainly stores the common files.

Sample directory structure of YAFFS file system:

ls

tmp var root home apps

sbin bin usr lib qt

ftk etc boot usb yaffs2

proc media mnt dev

cd yaffs2/

ls

n1 n0

ll n0

drwxr-xr-- root root Mon Jul 27 14:12:39 2015 boot/

drwxr-xr-- root root Mon Jul 27 14:14:58 2015 etc/

drw-rw-rw- root root Tue Aug 04 10:55:20 2015 lost+found/

 total items : 3

ll n1

SpaceChain OS

730

Application Development Manual

drwxr-xr-- root root Thu Jul 30 10:03:41 2015 ftk/

drwxr-xr-- root root Thu Jul 30 10:03:41 2015 qt/

drwxr-xr-- root root Thu Jul 30 10:03:41 2015 lib/

drwxr-xr-- root root Thu Jul 30 10:03:41 2015 usr/

drwxr-xr-- root root Thu Jul 30 10:03:41 2015 bin/

drwxr-xr-- root root Thu Jul 30 10:03:41 2015 tmp/

drwxr-xr-- root root Thu Jul 30 10:03:41 2015 sbin/

drwxr-xr-- root root Thu Jul 30 10:03:41 2015 apps/

drwxr-xr-- root root Thu Jul 30 10:03:41 2015 home/

drwxr-xr-- root root Thu Jul 30 10:03:41 2015 root/

drwxr-xr-- root root Thu Jul 30 10:03:41 2015 var/

drw-rw-rw- root root Tue Aug 04 10:55:20 2015 lost+found/

 total items : 12

Description for the sample directory structure of n0 partition:

 boot: boot loader required file directory;

 etc: configuration files (passwd, group, shadow, startup.sh, etc.) directory.

Description for the sample directory structure of n1 partition:

 ftk: FTK (funny tool kit) embedded GUI system directory

 qt: Qt cross-platform C++ GUI directory

 lib: dynamic library and kernel module directory;

 usr: user directory for storing user-level files;

 bin: executable files and program directories required at system startup;

 tmp: temporary file directory. The temporary file generated after system startup is

stored in /var/tmp;

 sbin: executable program directory;

 apps: application directory;

 home: Ordinary user's personal file directory

 root: system core file directory;

 var: frequently changed file directory during system execution.

Common symbolic links:

SpaceChain OS

731

Application Development Manual

/yaffs2/n0/boot -—> /boot

/yaffs2/n0/etc -—> /etc

/yaffs2/n1/ftk -—> /ftk

/yaffs2/n1/qt -—> /qt

/yaffs2/n1/lib -—> /lib

/yaffs2/n1/usr -—> /usr

/yaffs2/n1/bin -—> /bin

/yaffs2/n1/sbin -—> /sbin

/yaffs2/n1/apps -—> /apps

/yaffs2/n1/home -—> /home

/yaffs2/n1/root -—> /root

/yaffs2/n1/var -—> /var

/yaffs2/n1/tmp -—> /var/tmp

/yaffs2/n1/tmp -—> /tmp

16.9.5 YAFFS command

Operate the YAFFS file system with the yaffscmd command in SylixOS.

 [Command format]

yaffscmd volname [{bad | info | markbad | erase}]

 [Common option]

None

 [Instructions for parameters]

volname ：Volume label name, currently using n0 or n1 in the SylixOS system

bad ：Bad block information

info ：Parameter information

markbad ：Mark bad blocks

erase ：Memory erase

The following is the output of querying parameter information with the yaffscmd command:

yaffscmd n1 info

Device : "/n1"

SpaceChain OS

732

Application Development Manual

startBlock......... 129

endBlock........... 1023

totalBytesPerChunk. 2048

chunkGroupBits..... 0

chunkGroupSize..... 1

nErasedBlocks...... 894

nReservedBlocks.... 16

nCheckptResBlocks.. nil

blocksInCheckpoint. 0

nObjects........... 18

nTnodes............ 0

nFreeChunks........ 57265

nPageWrites........ 28

nPageReads......... 15

nBlockErasures..... 0

nErasureFailures... 0

nGCCopies.......... 0

allGCs............. 0

passiveGCs......... 0

nRetriedWrites..... 0

nShortOpCaches..... 20

nRetiredBlocks..... 0

eccFixed........... 0

eccUnfixed......... 0

tagsEccFixed....... 0

tagsEccUnfixed..... 0

cacheHits.......... 0

nDeletedFiles...... 0

nUnlinkedFiles..... 0

nBackgroudDeletions 0

SpaceChain OS

733

Application Development Manual

useNANDECC......... 1

isYaffs2........... 1

The following is the output of marking bad blocks with the yaffscmd command:

yaffscmd n1 markbad aa

yaffs: marking block 170 bad

mark the block 0xaa is a bad ok.

The following is the output of viewing bad block information with the yaffscmd command:

[root@sylixos_station:/]# yaffscmd n1 bad

block 0xaa is bad block.

The following is the output of erasing memory with the yaffscmd command:

yaffscmd n1 erase

yaffs volume erase ok.

16.10 File system Shell command

Switch the current directory with the cd command in SylixOS.

 [Command format]

cd path

 [Common option]

None

 [Instructions for parameters]

path：path name

The following is the output of switching the current directory to the /etc directory with the

cd command:

cd /etc/

ls

pointercal passwd group shadow fs_init.sh

qtenv.sh qtln_4.8.6.sh startup.sh profile

Switch the directory with the ch command in SylixOS.

 [Command format]

ch dir

SpaceChain OS

734

Application Development Manual

 [Common option]

None

 [Instructions for parameters]

dir：path name

The following is the output of switching the current directory to the /etc directory with the

ch command:

ch /etc/

ls

pointercal passwd group shadow fs_init.sh

qtenv.sh qtln_4.8.6.sh startup.sh profile

View the current directory with the pwd command in SylixOS.

 [Command format]

pwd

 [Common option]

None

 [Instructions for parameters]

None

The following is the output of viewing the current directory with the pwd command:

cd /etc

pwd

/etc

View the file system information for the specified directory with the df command in

SylixOS and the default is the current directory.

 [Command format]

df volume name

 [Common option]

None

 [Instructions for parameters]

volume name：path name

The following is the output of viewing the n1 file system information in the yaff2 partition

with the df command:

SpaceChain OS

735

Application Development Manual

df /yaffs2/n1

 VOLUME TOTAL FREE USED RO FS TYPE

-------------- ------------ ------------ ---- -- --------------------

/yaffs2/n1 109.88MB 42.05MB 61% n YAFFS FileSystem

Get a temporary file name that can be created with the tmpname command in SylixOS.

 [Command format]

tmpname

 [Common option]

None

 [Instructions for parameters]

None

The following is the output of the tmpname command:

tmpname

can mktmp as name : /tmp/tmp.0.6DQbEP

tmpname

can mktmp as name : /tmp/tmp.1.HcRXHN

Create a directory with the mkdir command in SylixOS.

 [Command format]

mkdir directory

 [Common option]

None

 [Instructions for parameters]

directory：directory name

The following is the output of creating a new directory sylixos in the /tmp directory with the

mkdir command:

cd /tmp

ls

.qt_soundserver-0 qtembedded-0

mkdir sylixos

ls

SpaceChain OS

736

Application Development Manual

sylixos .qt_soundserver-0 qtembedded-0

Create a named pipe with the mkfifo command in SylixOS.

Note: can only be created in the root file system device.

 [Command format]

mkfifo [fifo name]

 [Common option]

None

 [Instructions for parameters]

[fifo name]：fifo name

The following is the output of creating a new named pipe sy in the /dev directory with the

mkfifo command:

cd /dev

ls

log socket netevent fb0 ttyS2

ttyS1 ttyS0 urandom random shm rtc

 hotplug epollfd gpiofd signalfd hstimerfd

 timerfd eventfd zero null input

 pipe pty

mkfifo /dev/sy

ls

sy log socket netevent fb0

ttyS2 ttyS1 ttyS0 urandom random shm

 rtc hotplug epollfd gpiofd signalfd

 hstimerfd timerfd eventfd zero null

 input pipe pty

devs

device show (minor device) >>

drv open name

 19 0 /dev/sy

 14 1 /dev/pty/9.dev

 15 1 /dev/pty/9.hst

 30 0 /dev/input/xmse

 30 0 /dev/input/xkbd

SpaceChain OS

737

Application Development Manual

 29 0 /dev/socket

 28 0 /dev/netevent

 26 1 /dev/input/touch0

 27 0 /dev/fb0

 24 0 /yaffs2

 16 0 /dev/ttyS2

 16 0 /dev/ttyS1

 16 1 /dev/ttyS0

 13 0 /dev/urandom

 13 0 /dev/random

 12 0 /dev/shm

 11 0 /proc

 10 0 /dev/rtc

 9 1 /dev/hotplug

 8 0 /dev/epollfd

 7 0 /dev/gpiofd

 6 0 /dev/signalfd

 5 0 /dev/hstimerfd

 4 0 /dev/timerfd

 3 0 /dev/eventfd

 1 0 /dev/zero

 0 0 /dev/null

 2 0 /

Delete a directory with the rmdir command in SylixOS.

 [Command format]

rmdir directory

 [Common option]

None

 [Instructions for parameters]

directory：directory name

SpaceChain OS

738

Application Development Manual

The following is the output of deleting the sylixos directory in the /tmp directory with

the rmdir command:

cd /tmp

ls

qtembedded-0 .qt_soundserver-0 sylixos

rmdir sylixos/

ls

qtembedded-0 .qt_soundserver-0

Delete a file with the rm command in SylixOS.

 [Command format]

rm file name

 [Common option]

None

 [Instructions for parameters]

file name

The following is the output of deleting the sy file in the /tmp directory with the rm

command:

cd /tmp

ls

qtembedded-0 .qt_soundserver-0

touch sy

ls

sy qtembedded-0 .qt_soundserver-0

rm sy

ls

qtembedded-0 .qt_soundserver-0

Move or rename a file with th mv command in SylixOS.

 [Command format]

mv SRC file name, DST file name

 [Common option]

SpaceChain OS

739

Application Development Manual

None

 [Instructions for parameters]

SRC file name ：source file name

DST file name ：Destination file name

The following is the output of renaming the sy file in the /tmp directory with the mv

command:

cd /tmp

ls

qtembedded-0 .qt_soundserver-0

touch sy

ls

sy qtembedded-0 .qt_soundserver-0

mv sy sy0

ls

sy0 qtembedded-0 .qt_soundserver-0

View the content of a file with th cat command in SylixOS.

 [Command format]

cat file name

 [Common option]

None

 [Instructions for parameters]

file name：file name

The following is the output of viewing the content of the sy file in the /tmp directory with the

cat command:

cd /tmp

ls

qtembedded-0 .qt_soundserver-0

touch sy

ls

sy qtembedded-0 .qt_soundserver-0

SpaceChain OS

740

Application Development Manual

vi sy

sylixos and soft

ls

sy qtembedded-0 .qt_soundserver-0

cat sy

sylixos and soft

Copy a file with the cp command in SylixOS.

 [Command format]

cp scr file name dst file name

 [Common option]

None

 [Instructions for parameters]

scr file name：source file name

dst file name：destination file name

The following is the output of copying the sy file in the /tmp directory to the sy0 file with the

cp command.

cd /tmp

ls

sy qtembedded-0 .qt_soundserver-0

cat sy

sylixos and soft

cp sy sy0

copy complete. size:20(Bytes) time:0(s) speed:20(Bps)

ls

sy0 sy qtembedded-0 .qt_soundserver-0

cat sy0

sylixos and soft

Compare two files with the cmp command in SylixOS.

 [Command format]

cmp [file one] [file two]

SpaceChain OS

741

Application Development Manual

 [Common option]

None

 [Instructions for parameters]

[file one]：file 1’s name

[file two]：file 2’s name

The following is the output of comparing the sy file and the sy0 file in the /tmp directory

with the cmp command:

cd /tmp

ls

sy0 sy qtembedded-0 .qt_soundserver-0

cat sy0

sylixos and soft

cat sy

sylixos and soft

cmp sy0 sy

file same!

Create a file with the touch command in SylixOS.

 [Command format]

touch [-amc] file name

 [Common option]

-a：Change only access time

-m：Only change the modification time

-c：Do not create a file

 [Instructions for parameters]

file name：file name

The following is the output of creating a sylixos file in the /tmp directory and changing the

contents of the file with the touch command:

cd /tmp

ls

qtembedded-0 .qt_soundserver-0

SpaceChain OS

742

Application Development Manual

touch sylixos

ls

sylixos qtembedded-0 .qt_soundserver-0

vi sylixos

sylixos and soft

ls

sylixos qtembedded-0 .qt_soundserver-0

cat sylixos

sylixos and soft

List the files in the specified directory with the ls command in SylixOS and the default is

the current directory.

 [Command format]

ls [path name]

 [Common option]

None

 [Instructions for parameters]

path name：directory name

The following is the output of listing the files in the /tmp directory with the ls command:

ls /tmp/

sylixos qtembedded-0 .qt_soundserver-0

cd /tmp/

ls

sylixos qtembedded-0 .qt_soundserver-0

List the file details in the specified directory with the ll command in SylixOS and the

default is the current directory.

 [Command format]

ll [path name]

 [Common option]

None

 [Instructions for parameters]

SpaceChain OS

743

Application Development Manual

path name：directory name

The following is the output of listing the file details in the /tmp directory with the ll

command:

ll /tmp/

-rw-r--r-- root root Thu Jun 18 20:19:19 2015 20 B, syl

drwx------ root root Thu Jun 18 15:38:06 2015 qtembedded-0/

-rw------- root root Thu Jun 18 15:38:06 2015 0 B, .qt_soundserver-0

 total items : 3

cd /tmp/

ll

-rw-r--r-- root root Thu Jun 18 20:19:19 2015 20 B, syl

drwx------ root root Thu Jun 18 15:38:06 2015 qtembedded-0/

-rw------- root root Thu Jun 18 15:38:06 2015 0 B, .qt_soundserver-0

 total items : 3

Calculate the size of all the files contained in a given directory with the dsize command in

SylixOS.

 [Command format]

dsize [path name]

 [Common option]

None

 [Instructions for parameters]

path name：directory name

The following is the output of calculating all file sizes in the /tmp directory with the dsize

command:

dsize /tmp/

scanning...

total file 4 size 172

Set the permission bits of a directory or file with the chmod command in SylixOS.

 [Command format]

chmod newmode filename

 [Common option]

SpaceChain OS

744

Application Development Manual

None

 [Instructions for parameters]

newmode：New permission bits, using absolute mode

filename：File or directory name

The following is the output of setting the permission bits of the sylixos file in the /tmp

directory with the chmod command:

cd /tmp

ll

-rw-r--r-- root root Thu Jun 18 20:19:19 2015 20 B, sylixos

drwx------ root root Thu Jun 18 15:38:06 2015 qtembedded-0/

-rw------- root root Thu Jun 18 15:38:06 2015 0 B, .qt_soundserver-0

 total items : 3

chmod 755 sylixos

ll

-rwxr-xr-x root root Thu Jun 18 20:19:19 2015 20 B, sylixos

drwx------ root root Thu Jun 18 15:38:06 2015 qtembedded-0/

-rw------- root root Thu Jun 18 15:38:06 2015 0 B, .qt_soundserver-0

Format the specified disk with the mkfs command in SylixOS.

 [Command format]

mkfs media name

 [Common option]

None

 [Instructions for parameters]

media name：disk name

The following is the output of formatting sdcard0 with the mkfs command:

mkfs /media/sdcard0/

now format media, please wait...

disk format ok.

Run the specified Shell script file with the shfile command in SylixOS.

 [Command format]

SpaceChain OS

745

Application Development Manual

shfile shell file

 [Common option]

None

 [Instructions for parameters]

shell file：shell file

The following is the output of running script file factory.sh in the /etc directory with the

shfile command:

cd /etc

ls

passwd group shadow fs_init.sh qtenv.sh

qtln_4.8.6.sh startup.sh profile pointercal

touch factory.sh

vi factory.sh

echo factory shell file

cat factory.sh

echo factory shell file

shfile factory.sh

factory shell file

Mount a volume with the mount command in SylixOS.

 [Command format]

mount [-t fstype] [-o option] [blk dev] [mount path]

 [Common option]

-t：File system types such as ramfs, romfs, nfs, etc.

-o：File system type, ro is read-only, rw is read-write type

 [Instructions for parameters]

[blk dev]：block device

[mount path]：mount path

The following is the output of using the mount command:

showmount

AUTO-Mount point show >>

SpaceChain OS

746

Application Development Manual

 VOLUME BLK NAME

-------------------- --------------------------------

/media/hdd0 /dev/blk/hdd0:0

Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/tmp 0

mount -t ramfs 100 /mnt/ram

showmount

AUTO-Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/media/hdd0 /dev/blk/hdd0:0

Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/mnt/ram 100

/tmp 0

Unmount a volume with the umount command in SylixOS.

 [Command format]

umount [mount path]

 [Common option]

None

 [Instructions for parameters]

[mount path]：device path

The following is the output of using the umount command:

showmount

AUTO-Mount point show >>

SpaceChain OS

747

Application Development Manual

 VOLUME BLK NAME

-------------------- --------------------------------

/media/hdd0 /dev/blk/hdd0:0

Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/mnt/ram 100

/tmp 0

umount /mnt/ram/

showmount

AUTO-Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/media/hdd0 /dev/blk/hdd0:0

Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/tmp 0

View all the mounted volumes in the system with the showmount command in Sylix OS.

 [Command format]

showmount

 [Common option]

None

 [Instructions for parameters]

None

The following is the output of viewing all the mounted volumes in the system with the

showmount command:

showmount

SpaceChain OS

748

Application Development Manual

AUTO-Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/media/hdd0 /dev/blk/hdd0:0

Mount point show >>

 VOLUME BLK NAME

-------------------- --------------------------------

/tmp 0

Create a symbolic link file with the ln command in SylixOS.

 [Command format]

ln [-s | -f] [actualpath] [sympath]

 [Common option]

-s：Soft links (symbolic links)

-f：Enforce

 [Instructions for parameters]

[actualpath]：Actual path

[sympath]：Symbolic link path

The following is the output of linking /tmp/sylixos to /sylixos with the ln command:

ls

tmp var root home apps sbin

bin usr lib qt ftk etc

boot usb yaffs2 proc media mnt

dev

mkdir /tmp/sylixos

ls /tmp/

sylixos ram0 syl qtembedded-0 .qt_soundserver-0

ln -s /tmp/sylixos /sylixos

ls

sylixos tmp var root home apps

sbin bin usr lib qt ftk

SpaceChain OS

749

Application Development Manual

etc boot usb yaffs2 proc

media mnt dev

View or set the fat file system volume label with the dosfslabel command in SylixOS.

 [Command format]

dosfslabel [[vol newlabel] [vol]]

 [Common option]

None

 [Instructions for parameters]

[vol newlabel]：Volume name

[vol]：Label

The following is the output of viewing the volume label of /media/sdcard0 and setting the

new label as sylixos with the dosfslabel command:

dosfslabel /media/sdcard0/

sdcard

dosfslabel /media/sdcard0/ sylixos

dosfslabel /media/sdcard0/

sylixos

SpaceChain OS

750

Application Development Manual

Chapter 17 Logging System

17.1 SylixOS logging system

SylixOS has added a log management capability to enable real-time recording of various

events that occur in the system. By analyzing the log files, users can find and solve the runtime

problems in a timely manner.

In actual use, logs are divided into different levels according to specific conditions.

SylixOS log level is compatible with Linux log level and SylixOS provides the following macros

to indicate different log levels:

 KERN_EMERG: may cause the host system to be unavailable;

 KERN_ALERT: must be solved immediately;

 KERN_CRIT: a worse situation;

 KERN_ERR: runtime error;

 KERN_WARNING: may affect the system functionality;

 KERN_NOTICE: not affecting the system but is worth noting;

 KERN_INFO: general information;

 KERN_DEBUG: Program or system debugging information, etc.

The Log level goes down from top to bottom. In general, if a KERN_EMERG level log is

found, it means that the system cannot run due to a serious problem. The KERN_DEBUG level

logs are usually used to print some debugging information. In the development of the SylixOS

driver, the KERN_ERR level logs are often used to print some error messages, and the

KERN_INFO level logs are used to print some general information.

Call the following function to print log message.

#include <SylixOS.h>

INT logPrintk(CPCHAR pcFormat, ...);

The prototype analysis of the function logPrintk:

 This function returns the print length on success, returns -1 and sets the error number

on failure;

 The parameter pcFormat is the log print format string;

 The parameter ... is the variable parameter that can transfer more parameters.

SpaceChain OS

751

Application Development Manual

This function is typically used to drive log printing in development and is

functionally equivalent to the printk function, so the printk function is often used in place of this

function to improve program compatibility.

Note: In fact, printk in SylixOS is a macro definition of the logPrintk function.

The logPrintk function can be called to print the log message to the terminal. In the case of

a small amount of log message, this is undoubtedly an effective viewing method, but when the

log message is greatly increased, this method will be inefficient or even undesirable. To solve

this problem, log message is usually printed to a specified file for subsequent analysis.

The following functions are used to set the file descriptor of the log file.

#include <SylixOS.h>

INT logFdSet(INT iWidth, fd_set *pfdsetLog);

INT logFdGet(INT *piWidth, fd_set *pfdsetLog);

The prototype analysis of the function logFdSet:

 This function returns 0 on success, returns -1 and sets the error number on failure;

 The parameter iWidth is the width of the file descriptor;

 The parameter pfdsetLog is the file descriptor set of interest.

The function logFdSet sets the new file descriptor set to that of the logging system and the

function logFdGet gets the previous file descriptor information of the logging system. It should

be noted that these two functions are usually used as follows to ensure that the current file

descriptor set of the logging system will not be destroyed:

logFdGet(&iWidth, &fdset);

FD_SET(iNewFd, &fdset);

logFdSet(iNewWidth, &fdset);

When the file descriptor is set, the following functions are called to print the log.

INT logMsg(CPCHAR pcFormat, PVOID pvArg0,

 PVOID pvArg1, PVOID pvArg2,

 PVOID pvArg3, PVOID pvArg4,

 PVOID pvArg5, PVOID pvArg6,

 PVOID pvArg7, PVOID pvArg8,

 PVOID pvArg9, BOOL bIsNeedHeader);

The prototype analysis of the function logMsg:

 This function returns 0 on success, returns -1 and sets the error number on failure;

SpaceChain OS

752

Application Development Manual

 The parameter pcFormat is the character print format;

 The parameter pvArg0~pvArg9 are print parameters;

 The parameter bIsNeedHeader indicates whether to print the log header information.

Although SylixOS provides these print log functions to the application layer, they are often

used in kernel space (such as the function printk for driver development). In fact, POSIX

already provides a method for printing logs at the application layer, and SylixOS also provides

support for the POSIX logging system.

17.2 POSIX logging system

When there is no control terminal, we can neither write the error message to the standard

error nor write it to the specified file. Therefore, there is a need to have a centralized method of

recording the error message. Syslog can not only write error messages to the terminal or the

specified file, but also send them to the specified host.

Syslog is an industry-standard protocol that can be used to record device logs. In network

devices such as routers and switches, system logs can record events that occur at any time in

the system. Users can keep track of system statuses by viewing system records. The

operating system records system-related events and application runtime events via system

daemons or system threads. Users can also implement the machine-to-machine

communication in the syslog protocol with proper configuration, and track the relevant status of

devices and networks by analyzing the network behavior logs.

The syslog protocol provides a delivery method that allows a device to transfer event

information over the network to event information receivers (also known as log servers). Since

each process, application, and operating system is more or less independently completed,

there are some inconsistencies in the syslog message, so there is no specification for the

format or content of the information in the protocol. This protocol is simply designed to transfer

event information. In fact, syslog message can be transfered without configuring the receiver

or even without the receiver. Conversely, the receiver can also receive information without

being clearly configured or defined.

Almost all network devices can send log message via syslog protocol to the remote server

via UDP protocol. The remote receiving log server must monitor the UDP port (514) through

the syslog daemon and process the log message of the local and receiving access system

according to the configuration in syslog.conf, and write the specified event to a specific file for

the backend database to manage and respond. That is, all events can be logged to one or

more servers so that the backend database can analyze the events offline.

The device must be configured with some rules to display or transfer event information. To

send log message to the syslog receiver generally requires the following steps:

 Decide which message to send;

 Determine the level to send;

SpaceChain OS

753

Application Development Manual

 Define a remote receiver.

The format of the transfered syslog message mainly consists of three parts: PRI,

HEADER, and MSG. The length of the data packet is less than 1024 bytes. The PRI section

must have 3 to 5 characters, beginning with a “<” followed by a number and ending with a “>”.

The number in the parenthesis is called Priority and consists of two values: facility and

severity.

The facility name and its description are shown in table 17.1.

Table 17.1 facility parameters

facility Description

LOG_AUTO Certification related logs

LOG_KERN Kernel related logs

LOG_MAIL Mail related logs

LOG_DAEMON Daemon related logs

LOG_USER User related logs

LOG_SYSLOG syslog related logs

LOG_LPR Print related logs

LOG_NEWS News related logs

LOG_UUCP Unix to Unix cp related logs

LOG_CRON Task schedule related logs

LOG_AUTHPRIV Permission and authorization related logs

LOG_FTP FTP related logs

LOG_LOCAL0~LOG_LOCAL7 User defined

Each message Priority contains a decimal Severity parameter that describes the message

of Severity levels.

Table 17.2 Severity message

Level Description

LOG_EMERG cause the system to be unavailable

LOG_ALERT must be solved immediately

LOG_CRIT a worse situation

LOG_ERR error message

LOG_WARNING may affect the system functionality

LOG_NOTICE not affecting the system functionality but is worth noting

LOG_INFO general information

LOG_DEBUG program or system debugging information

Note: Priority = facility | Severity value.

SpaceChain OS

754

Application Development Manual

The HEADER part consists of two fields called TIMESTAMP and HOSTNAME.

Immediately after the ">" at the end of the PRI is a TIMESTAMP, and any TIMESTAMP or

HOSTNAME field must be followed by a space character. HOSTNAME contains the host name.

If there is no host name or the host name is not recognized, the IP address is displayed. If a

host holds multiple IP addresses, the one used to transfer information is usually displayed.

TIMESTAMP is the local time. It uses the format “Mmm dd hh:mm:ss” to represent the month,

day, hour, minute and second.

MSG is the rest part of the syslog packet. It usually contains additional information that

generates the information process, as well as the textual part of the information. The MSG

includes two domains, TAG and CONTENT. The value of TAG is the name of the program or

process that generated the information, and CONTENT contains the details of this information.

Traditionally, the format of this domain is more liberal and gives some time-specific information.

TAG is an alphanumeric string of not more than 32 characters. Any non-alphanumeric

character will terminate the TAG domain and be assumed to be the start of the CONTENT

domain.

SylixOS checks the environment variable SYSLOGD_HOST. If it is a valid syslog server

such as SYSLOGD_HOST=“192.168.0.1:514”, the message will be sent to the syslog server. If

the server needs to be re-determined, it is necessary to set the environment variable first, and

then call closelog, so that the system will re-determine the server when sending the next

message.

Call the following function to connect to a log server.

#include <syslog.h>

void openlog(const char *ident, int logopt, int facility);

void syslog(int priority, const char *message, ...);

The prototype analysis of the function openlog:

 The parameter ident is the prefix of each message;

 The parameter logopt is the option flag, as shown in table 17.3;

 The parameter facility is the capability parameter, as shown in table 17.1.

The prototype analysis of the function syslog:

 The parameter priority is the log priority, as shown in table 17.2;

 The parameter message is the log message;

 The parameter ... is the variable parameter that can transfer more parameters.

Table 17.3 Option flag

Option flag Description

LOG_PID Each message contains a process ID

LOG_CONS The terminal displays the sending message.

SpaceChain OS

755

Application Development Manual

LOG_ODELAY Delay when opening a connection

LOG_NDELAY No delay when opening a connection

LOG_NOWAIT Do not wait for child processes

LOG_PERROR Simultaneous printing to standard error

Call the closelog function to disconnect when no messages need to be sent to the log

server.

#include <syslog.h>

void closelog(void);

Each sending log process has a log priority mask that determines which logs can be sent

by syslog and which cannot. Call the setlogmask function to change the priority mask and

return the previous one.

#include <syslog.h>

int setlogmask(int maskpri);

The prototype analysis of the function setlogmask:

 This function returns the previous mask value.

 The parameter maskpri is the new mask value.

Since all of the above function calls need to operate on global variables, they are not

thread-safe in a multithreaded environment. Syslog adds syslog_data structure to solve this

problem. The structure is described as follows:

struct syslog_data {

 int log_file;

 int connected;

 int opened;

 int log_stat;

 const char *log_tag;

 int log_fac;

 int log_mask;

};

 log_file: socket;

 connected: established a connection;

 opened: open flag;

SpaceChain OS

756

Application Development Manual

 log_stat: option flag;

 log_tag: TAG domain value;

 log_fac: facility value;

 log_mask: priority mask.

The following is the syslog reentrant version function:

#include <syslog.h>

int setlogmask_r(int maskpri, struct syslog_data *data);

void syslog_r(int priority, struct syslog_data *data,

const char *message, ...);

The prototype analysis of the function setlogmask_r:

 This function returns the previous mask on success, returns -1 and sets the error

number on failure;

 The parameter maskpri is the new mask;

 The output parameter data is the syslog_data structure pointer.

The prototype analysis of the function syslog_r:

 The parameter priority is the Severity priority value, as shown in table 17.2;

 The parameter data is the syslog_data structure pointer that requires the application

to fill in the appropriate value;

 The parameter message is the log message sent.

The following programs show the use of syslog. The syslog receiver program

communicates by creating UNIX domain sockets. The default file name of UNIX domain socket

for syslog is "/dev/log". In the syslog log sender program, after setting the option flag

LOG_CONS of the openlog function for debugging purposes, the message sent by syslog will

be displayed on the terminal.

Program List 17.1 syslog receiver program

#include <stdio.h>

#include <socket.h>

#include <sys/un.h>

#include <syslog.h>

int main (int argc, char *argv[])

{

SpaceChain OS

757

Application Development Manual

 int sockfd;

 struct sockaddr_un unixaddr, unixfrom;

 socklen_t fromlen = sizeof(unixaddr);

 socklen_t len = fromlen;

 int ret;

 char buf[LOG_DEFAULT_SIZE] = {0};

 sockfd = socket(AF_UNIX, SOCK_DGRAM, 0);

 if (sockfd < 0) {

 perror("socket");

 return (-1);

 }

 unixaddr.sun_family = AF_UNIX;

 strcpy(unixaddr.sun_path, "/dev/log");

 unixaddr.sun_len = (uint8_t)(SUN_LEN(&unixaddr));

 ret = bind(sockfd, (struct sockaddr *)&unixaddr, len);

 if (ret < 0) {

 perror("bind");

 return (-1);

 }

 while (1) {

 ssize_t len;

 len = recvfrom(sockfd, buf, sizeof(buf), 0,

(struct sockaddr *)&unixfrom, &fromlen);

 fprintf(stdout, "MSG len: %ld\n", len);

 fprintf(stdout, "[R-MSG]: %s", buf);

SpaceChain OS

758

Application Development Manual

 }

 return (0);

}

Program List 17.2 syslog log sender program

#include <stdio.h>

#include <syslog.h>

int main (int argc, char *argv[])

{

 int i;

 openlog("SylixOS-SYSLOG", LOG_CONS | LOG_PID, LOG_USER);

 for (i = 0; i < 10; i++) {

 syslog(LOG_INFO, "[%d]syslog running...\n", i);

 sleep(1);

 }

 closelog();

 return (0);

}

Run the program in the SylixOS Shell. First start the receiver program, and then start the

sender program, the results are shown below:

Sender display:

<14>Oct 29 01:39:11 SylixOS-SYSLOG[4010043]:[0]syslog running...

<14>Oct 29 01:39:12 SylixOS-SYSLOG[4010043]:[1]syslog running...

<14>Oct 29 01:39:13 SylixOS-SYSLOG[4010043]:[2]syslog running...

……

SpaceChain OS

759

Application Development Manual

Receiver display:

MSG len: 65

[R-MSG]: <14>Oct 29 01:49:35 SylixOS-SYSLOG[4010046]:[0]syslog running...

MSG len: 65

[R-MSG]: <14>Oct 29 01:49:36 SylixOS-SYSLOG[4010046]:[1]syslog running...

MSG len: 65

[R-MSG]: <14>Oct 29 01:49:37 SylixOS-SYSLOG[4010046]:[2]syslog running...

……

 Application Development Manual
SpaceChain OS

760

Chapter 18 Multi-user Management

18.1 Introduction of POSIX User Management

Users and user groups are an important part of SylixOS system management and

also the basis of system security. In SylixOS, all files and programs belong to a specific

user. Each file and program has certain access rights for limiting different users’ access

behaviors. The SylixOS system divides users into different user groups based on certain

principles. SylixOS supports multi-user management and conforms to the UNIX multi-user

management standard.

18.1.1 Users

Users are usually denoted by a UID (User Identifier), which represents a combination

of authorities. Managing users and user groups is an important task of a system

administrator. The UID uniquely identifies a specific user within the SylixOS system. For

the users, however, remembering the UID is not easy because the UID is actually an

integer value. In order to solve this problem, there is also a concept in the SylixOS system

that is very close to the user, namely the login name. The login name is a string which is

specified for a user by the system administrator when the user is created. Generally, the

login name has a clear meaning. For the sake of safety, each login usually has its own

password, and the user can log in to the SylixOS system with its login name and password.

If the login name or password is incorrect, the SylixOS system will reject the login of the

user.

For example, the user "root" has its user name "root" and a password. The "root" can

be connected to the SylixOS system via Telnet, enter the username "root" and the

password "root" to log in to SylixOS.

In SylixOS, common users' operations are subject to certain restrictions. For example,

you cannot access other users' home directories, nor access the unauthorized files or

directories. When switching from a standard user to another user's execution environment,

we must know the user's password.

In SylixOS, we can use the user command to view all the user information.

 [Command format]

user [genpass]

 [Common Options]

None

 [Instructions for parameters]

[genpass] ：Whether to generate encrypted password information

SpaceChain OS

761

Application Development Manual

The following is the output of the user command.

user

login: root

password:

 USER ENABLE UID GID

-------------- ------ ----- -----

root yes 0 0

sylixos yes 1 1

apps yes 2 2

hanhui yes 2000 2

tty no 3 3

anonymous no 4 4

18.1.2 User Groups

A user group is a collection of users with the same or similar functions. Creating a

separate user group for certain users can facilitate the management of these users. For

example, the users in a group are uniformly authorized through the user group. In addition,

the users can be identified through the user group.

Similar to users, within the SylixOS system, each user group is assigned with a group

identifier, abbreviated as GID. GID is an unsigned integer value that uniquely identifies a

user group within the system. In addition, a user group also has a group name and a list of

users. Same as the user's login name, the group name is also a string with a clear

meaning. The list of users is a list of all the users belonging to the group.

In SylixOS, you can use the group command to view all the group information.

 [Command format]

group

 [Common Options]

None

 [Instructions for parameters]

None

The following is the output of the group command:

group

login: root

password:

 GROUP GID USERs

-------------- ----- --------------------------------

root 0 root,

sylixos 1 sylixos,

SpaceChain OS

762

Application Development Manual

apps 2 apps, hanhui, sylixos,

tty 3 tty,

anonymous 4 anonymous,

In SylixOS, using the who command can view the users who are currently logged in.

 [Command format]

who

 [Common Options]

None

 [Instructions for parameters]

None

The following is the output of the who command:

who

user:root terminal:/dev/ttyS0 uid:0 gid:0 euid:0 egid:0

18.2 Management of POSIX Authority

When a file is created, the system adds owner and group information to the user who

created the file and the private group file where the user is located, and sets its default

access authorities. The owner is often referred to as the file owner in the Linux system.

The file owner can perform all operations on the file, including reading, modifying and

deleting.

Note: In SylixOS, the root user has the highest authority, so it can read, modify, and delete any file in

the system.

The ll command can be used to view file details in the SylixOS system.

 [Command format]

ll [path name]

 [Common Options]

None

 [Instructions for parameters]

 [path name]：path name

The following is the output of the ll command:

ll /dev/

srwxrwxrwx root root Tue Jun 16 17:22:38 2015 0 B, log

srw-rw-rw- root root Tue Jun 16 17:22:38 2015 0 B, socket

SpaceChain OS

763

Application Development Manual

cr--r--r-- root root Tue Jun 16 17:22:38 2015 4096 B, netevent

crw-rw-rw- root root Tue Jun 16 17:22:38 2015 750KB, fb0

crw-rw-rw- root root Tue Jun 16 17:22:38 2015 0 B, ttyS2

crw-rw-rw- root root Tue Jun 16 17:22:38 2015 0 B, ttyS1

crw-rw-rw- root root Tue Jun 16 17:22:38 2015 0 B, ttyS0

cr--r--r-- root root Tue Jun 16 17:22:38 2015 0 B, urandom

cr--r--r-- root root Tue Jun 16 17:22:38 2015 0 B, random

drw-rw-rw- root root Tue Jun 16 17:22:38 2015 shm/

crw-r--r-- root root Tue Jun 16 17:22:38 2015 0 B, rtc

cr--r--r-- root root Tue Jun 16 17:22:38 2015 4096 B, hotplug

crw-rw-rw- root root Tue Jun 16 17:22:38 2015 0 B, epollfd

drw-rw-rw- root root Tue Jun 16 17:22:38 2015 gpiofd/

cr--r--r-- root root Tue Jun 16 17:22:38 2015 0 B, signalfd

cr--r--r-- root root Tue Jun 16 17:22:38 2015 0 B, hstimerfd

cr--r--r-- root root Tue Jun 16 17:22:38 2015 0 B, timerfd

crw-rw-rw- root root Tue Jun 16 17:22:38 2015 0 B, eventfd

crw-rw-rw- root root Tue Jun 16 17:22:38 2015 0 B, zero

crw-rw-rw- root root Tue Jun 16 17:22:38 2015 0 B, null

drwxr-xr-- root root Tue Jun 16 17:22:38 2015 input/

drwxr-xr-- root root Tue Jun 16 17:22:38 2015 pipe/

drwxr-xr-- root root Tue Jun 16 17:22:38 2015 pty/

 total items : 23

It can be seen that both the owner and the group of these files are root (the first root is

the owner, and the second root is the group).

By default, the system will give the members of the user's group some authorities (in

the form of group’s authorities). If the user is a member of multiple groups, the system will

use the group saved in the user file /etc/passwd (i.e. private group).

18.2.1 File Authority and Expression Method

Although the traditional file authorities in the SylixOS system only include three types,

i.e. reading, writing, and executing, the three have different meanings for files and

directories.

For files:

 Read: Allows reading of file contents, viewing, copying, etc.

 Write: Allows writing contents, editing, appending, deleting of files, etc.

 Execution: If the file is an executable script, binary code file, or program, this

authority controls whether the user can execute the file.

For directories:

 Read: Allows the user to view the list of files in the directory, such as ls;

SpaceChain OS

764

Application Development Manual

 Write: Allows the user to create and delete files in the directory. When

deleting a file in a directory, we should also have the corresponding write

authority of the file.

 Execution: Allows the user to access the directory using the cd command.

Although the user may not be able to access the directory or view the list of files in the

directory, if the file authority in the directory allows, the user can still manipulate the file by

entering the full path.

The authority expression methods in symbolic mode: read: r, write: w, execute: x.

The authority expression methods in absolute mode: read: 4, write: 2, execute: 1.

18.2.2 File Authority Management Command chmod

The file authority management is performed by the owner of the file or the root user,

and the chmod command can change the file's authority information.

 [Command format]

chmod
①
 newmode filename

 [Common Options]

None

 [Instructions for parameters]

newmode：Permission expression, permission expression using absolute mode

filename：file name

The following is the result of the execution of the chmod command:

cd tmp/

ls

.qt_soundserver-0 qtembedded-0

mkdir user

ls

user .qt_soundserver-0 qtembedded-0

ll

drwxr-xr-- root root Tue Jun 16 22:19:38 2015 user/

-rw------- root root Tue Jun 16 20:22:18 2015 0 B, .qt_soundserver-0

drwx------ root root Tue Jun 16 20:23:26 2015 qtembedded-0/

 total items : 3

chmod 070 user/

ll

① Chmod does not currently support setting authorities in symbolic mode.

SpaceChain OS

765

Application Development Manual

dr--rwx--- root root Tue Jun 16 22:19:38 2015 user/

-rw------- root root Tue Jun 16 20:22:18 2015 0 B, .qt_soundserver-0

drwx------ root root Tue Jun 16 20:23:26 2015 qtembedded-0/

 total items : 3

18.3 User Management-related Files in the /etc Directory

With the ls command, we can view the file information in the directory.

 [Command format]

ls [path name]

 [Common Options]

None

 [Instructions for parameters]

 [path name]：path name

The following is the execution result of viewing the /etc directory with the ls

command:

cd /etc/

ls

passwd group shadow fs_init.sh qtenv.sh

qtln_4.8.6.sh startup.sh profile pointercal

The user account information in the SylixOS system is maintained jointly by the

/etc/passwd and /etc/shadow files, and the user group information is maintained by the

/etc/group file. In these two files, each user has a corresponding record. After the user

name and password are entered as prompted using a terminal registration such as a

console, the system will check the /etc/passwd file based on the user name provided by

the user, and then make a comparison with the password field in the /etc/shadow file after

encrypting the file using the same encryption algorithm according to the password

provided by the user and also check other fields like the password expiration. If passing

the verification code, the user can access its own home directory according to the home

directory and command interpreter specified in the /etc/passwd file.

In addition to the user name and password, the user ID, user group ID, home

directory, and command interpreter are stored in the /etc/passwd and /etc/shadow files,

respectively.

18.3.1 /etc/passwd File

The /etc/passwd file contains the main user information except the password in the

SylixOS system. Each user's information occupies one line and each line consists of

SpaceChain OS

766

Application Development Manual

seven fields with a colon ":" as a delimiter. / The format of the etc/passwd file is

defined as follows:

username:password:uid:gid:comment: login info:home_dir:login_shell

 Username: the user name, consisting of more than 2 characters, and unique in

SylixOS;

 Password: This field was originally a user password, but the password has now

been moved into the /etc/shadow file. Therefore, if the user has a password, this

field will contain a lowercase “x”. The encrypted password is stored in the

/etc/shadow file. If this field is “!!”, it indicates that the corresponding user cannot

register to the system normally without a password. If the content of this field is

neither of the above two cases, it indicates that the corresponding user is in the

prohibited state;

 Uid: User ID (user’s identification). The user ID is the unique numeral ID

assigned to each user by the system. It is the primary means by which the

system identifies each user. When the system needs to understand the user

information (such as the contents of the account field), it usually uses the user ID

as an index to retrieve the /etc/passwd file. The user ID is a 32-bit unsigned

integer, where 0 to 99 are reserved for the system user and the custom common

user ID should be within the range of 100 to 60000. Taking into account the

compatibility with other systems, SylixOS recommends using 65535, the

maximum of 16-bit unsigned integers, as the upper limit for the user ID;

 Gid: User group ID (user group identification). Each user in the SylixOS system

should belong to a user group. Each user group has a corresponding user group

ID in addition to the group name. Similarly, ID numbers 0 to 99 are reserved for

system users;

 Comment: comment information, usually including the user information like

user's full name and user's role;

 Login info: login information;

 Home_dir: User’s home directory (full path name). A user's home directory is a

sub-directory assigned to the user, and used for the user to store personal files

and is the initial working directory after the user is registered. Usually the

SylixOS system adopts the user home directory structure in the form of

/home/username, where username is the registered user name;

 Login_shell: Specifies the shell (command interpreter) invoked by the user after

registration.

These fields are contained in the passwd structure defined in <pwd.h>, the

correspondence is shown in Table18.1.

Table18.1 User Password Parameters

SpaceChain OS

767

Application Development Manual

Functional

description

Struct passwd member /etc/passwd field

User name pw_name username

Encrypted password pw_passwd password

User ID pw_uid uid

User group ID pw_gid gid

Comments pw_comment comment

Login information pw_gecos login info

Initial working

directory

pw_dir home_dir

Initial Shell pw_shell login_shell

The initial contents of the /etc/passwd file in the SylixOS system are as follows:

cat passwd

root:x:0:0:root::/root:/bin/sh

sylixos:x:1:1:developer::/home/sylixos:/bin/sh

apps:x:2:2:application::/home/apps:/bin/sh

tty:!:3:3:tty owner::/home/tty:/bin/false

anonymous:!:4:4:anonymous user::/home/anonymous:/bin/false

18.3.2 /etc/shadow File

/etc/shadow is a system file that restricts access by common users. It contains

encrypted passwords and other related information. Corresponding to the /etc/passwd file,

the password information of each user in the /etc/shadow file occupies one line, and each

line consists of 9 fields, with a colon ":" as a delimiter. Its file format is defined as follows:

username:password:lastchanged:mindays:maxdays:warn:inactive:expire:reserve

 Username: user name, see the corresponding part of the /etc/passwd file;

 Password: The encrypted password (generated by the crypt_safe function). If

this field is "!!", it means that the corresponding user has not set a password;

SpaceChain OS

768

Application Development Manual

 Lastchanged: the number of days from January 1st, 1970 to the date on

which the password was changed for the last time;

 mindays: The minimum number of days for which the password remains stable.

Only when this limit is exceeded can the password be changed. This field must

be greater than or equal to 0 to enable the password expiration examination;

 maxdays: The maximum number of days to keep the password valid. If this limit

is exceeded, the system will force the user to change the password;

 warn: Specifies how many days in advance a warning should be made to the

user before the expiration of the password;

 inactive: Specifies the maximum number of days for which the account cannot be

accessed after the expiration date of the password expires, but the account

information is still valid. When this limit is exceeded, this user’s account will be

disabled.

 expire: Specifies the user account’s expiration date. Upon the expiration, the

account will automatically expire and the user can no longer register with the

system;

 reserve: Reserved field.

These fields are contained in the spwd structure defined in <shadow.h>, the

correspondence is shown in Table 18.2.

Table18.2 User Shadow Password Parameter

Functional description
Struct spwd

member

/etc/shadow

field

User name sp_namp username

Encrypted password sp_pwdp password

Time elapsed since the password was last

changed
sp_lstchg lastchanged

How soon it is allowed to change sp_min mindays

The number of days remaining for request for

change
sp_max maxdays

Number of days for due warning sp_warn warn

Number of days left before account inactivity sp_inact inactive

SpaceChain OS

769

Application Development Manual

Number of days to account expiration sp_expire expire

Reserved sp_flag reserve

The initial contents of the /etc/shadow file in the SylixOS system are as follows:

cat shadow

root:1qY9g/6K4$/FKP3w1BsziKGCP3uLDnG.:0:0:99999:7:::

sylixos:1qY9g/6K4$WFEx17sxu/3aL3wE.u8NZ1:0:0:99999:7:::

apps:1qY9g/6K4$buV57yqE0kMbApOVI/jKM1:0:0:99999:7:::

anonymous:!!:0:0:99999:7:::

18.3.3 /etc/group File

The /etc/group file contains the user group information. Each user group’s information

occupies one line and each line consists of three fields with a colon ":" as a delimiter. / The

format of the etc/passwd file is defined as follows:

username:password:gid:members

 Username: the user name, consisting of more than 2 characters, and unique in

SylixOS;

 Password: This field was originally a user password, but the password has now

been moved into the /etc/shadow file. Therefore, if the user has a password, this

field will contain a lowercase “x”. The encrypted password is stored in the

/etc/shadow file. If this field is “!!”, it indicates that the corresponding user cannot

register to the system normally without a password. If the content of this field is

not either of the above two cases, it indicates that the corresponding user is in

the prohibited state;

 Gid: User group ID (user group identification). Each user in the SylixOS system

should belong to a user group. Each user group has a corresponding user group

ID in addition to the group name. Similarly, ID numbers 0 to 99 are reserved for

system users;

 members: User members of this user group.

These fields are contained in the group structure defined in < grp.h>, and the

correspondence is as shown in Table 18.3.

Table18.3 User group parameters

SpaceChain OS

770

Application Development Manual

Functional description Struct group members /etc/group field

User name gr_name usernam

Encrypted password gr_passwd password

User group ID gr_gid gid

User group members gr_mem members

The initial contents of the /etc/group file in the SylixOS system are as follows:

cat group

root:x:0:root

sylixos:x:1:sylixos

apps:x:2:apps,hanhui,sylixos

tty:x:3:tty

anonymous:x:4:anonymous

18.4 POSIX User Operations

18.4.1 User Password Operation

The SylixOS system defines two functions for obtaining password file entries. After

the user gives the user name or user ID, the following two functions can be used to query

the user information.

#include <pwd.h>

struct passwd *getpwuid(uid_t uid);

int getpwuid_r(uid_t uid, struct passwd *pwd, char *buffer,

 size_t bufsize, struct passwd **result);

Prototype analysis of the function getpwuid_r:

 This function returns 0 if it succeeds, and returns -1 and sets the error number if

it fails;

 The parameter uid is the user ID;

 The output parameter pwd returns user information;

 The parameter buffer is a buffer;

 The parameter bufsize is the size of the buffer;

SpaceChain OS

771

Application Development Manual

 The output parameter result returns a user information pointer.

The function getpwuid_r will search the user database file /etc/passwd to obtain the

user information matching the parameter uid. The user information will be stored in the

buffer pointed to by buffer and update the pwd structure. If a matching user is found, the

pwd pointer will be returned after being stored in result, otherwise result will returns

NULL.

Note that the function getpwuid is not reentrant, so it is non-thread safe.

struct passwd *getpwnam(const char *name);

int getpwnam_r(const char *name, struct passwd *pwd,

 char *buffer, size_t bufsize, struct passwd **result);

Prototype analysis of the function getpwnam_r:

 This function returns 0 if it succeeds, and returns -1 and sets the error number if

it fails;

 The parameter name is the user name;

 The output parameter pwd returns user information;

 The parameter buffer is a buffer;

 The parameter bufsize is the size of the buffer;

 The output parameter result returns a user information pointer.

The function of the function getpwnam_r is similar to that of the function getpwuid_r,

except that the parameter name is the user name that needs to be matched instead of the

user ID (getpwuid_r the matched user ID). The function getpwnam is not reentrant.

If you only want to view the user name and user ID, then the above two functions can

meet the requirements, but some programs need to view the entire password file, then

you need to call the following three functions to achieve this goal.

#include <pwd.h>

struct passwd *getpwent(void);

void setpwent(void);

void endpwent(void);

When the function getpwent is called, it will return the next entry of record in the

password file. Like the two functions described above, it returns a passwd structure

pointer that is filled in by it. The first time the function is called, each file it uses is opened

and the passwd structure is overwritten each time this function is called. Note that there is

no requirement for the order of the record entries of the password file when this function is

used.

The function setpwent can point the read and write addresses of the getpwent

function back to the beginning of the password file (usually called rewind), and endpwent

closes the files. After viewing the password file using getpwent, be sure to call endpwent

SpaceChain OS

772

Application Development Manual

to close the files. Getpwent only knows when it should open the file it uses (on the

first call), but it doesn't know when it should close the file.

Calling setpwent at the beginning of the program is a self-protective measure to

prevent the caller from having previously called the getpwent function to open the file and

rewind the relevant file to locate it at the beginning of the file.

18.4.2 User Shadow Password Operation

Similar to a set of functions that accesses the password file, there is another set of

functions for accessing the shadow password file.

#include <shadow.h>

void setspent(void);

void endspent(void);

struct spwd *getspent(void);

struct spwd *getspnam(const char *name);

int getspent_r(struct spwd *result_buf, char *buffer,

 size_t buflen, struct spwd **result);

int getspnam_r(const char *name, struct spwd *result_buf,

 char *buffer, size_t buflen, struct spwd **result);

Prototype analysis of the function getspent_r:

 This function returns 0 if it succeeds, and returns -1 and sets the error number if

it fails;

 The output parameter result_buf returns the content of the spwd structure;

 The parameter buffer is a buffer;

 The parameter buflen is the size of the buffer;

 The output parameter result returns the result.

Prototype analysis of the function getspnam_r:

 This function returns 0 if it succeeds, and returns -1 and sets the error number if

it fails;

 The parameter name is the user name;

 The parameter result_buf returns the content of the spwd structure;

 The parameter buffer is a buffer;

 The parameter buflen is the size of the buffer;

 The output parameter result returns the result.

Here is the implementation of the spwd structure in SylixOS:

SpaceChain OS

773

Application Development Manual

struct spwd {

 char *sp_namp; /* user login name */

 char *sp_pwdp; /* encrypted password */

 long sp_lstchg; /* last password change */

 int sp_min; /* days until change allowed. */

 int sp_max; /* days before change required */

 int sp_warn; /* days warning for expiration */

 int sp_inact; /* days before account inactive */

 int sp_expire; /* date when account expires */

 int sp_flag; /* reserved for future use */

};

Note: The functions getspent_r and getspnam_r are reentrant.

18.4.3 User Group Operation

Similar to a set of functions that accesses password files, there is another set of

functions for accessing user group files.

#include <grp.h>

struct group *getgrgid(gid_t gid);

struct group *getgrnam(const char *name);

struct group *getgrent(void);

void setgrent(void);

void endgrent(void);

int getgrnam_r(const char *name, struct group *grp,

 char *buffer, size_t bufsize, struct group **result);

int getgrgid_r(gid_t gid, struct group *grp,

 char *buffer, size_t bufsize, struct group **result);

Prototype analysis of the function getgrnam_r:

 This function returns 0 if it succeeds, and returns -1 and sets the error number if

it fails;

 The parameter name is the group name;

 The output parameter grp returns the content of the group structure;

 The parameter buffer is a buffer;

 The parameter bufsize is the size of the buffer;

 The output parameter result returns the result.

Prototype analysis of the function getgrgid_r:

SpaceChain OS

774

Application Development Manual

 This function returns 0 if it succeeds, and returns -1 and sets the error

number if it fails;

 The parameter gid is the group ID;

 The output parameter grp returns the content of the group structure;

 The parameter buffer is a buffer;

 The parameter bufsize is the size of the buffer;

 The output parameter result returns the result.

Here is the implementation of the group structure in SylixOS:

struct group {

 char *gr_name; /* group name */

 char *gr_passwd; /* group password */

 gid_t gr_gid; /* group id */

 char **gr_mem; /* group members */

};

Note: The getgrnam_r and getgrgid_r functions are reentrant.

18.4.4 User’s Additional Group Operation

The group members may not only belong to the group corresponding to the group ID

in the record entry of the password file, but also belong to NGROUPS_MAX (usually 16)

additional groups. The check of file access authorities not only checks the effective group

ID of the process but also checks the additional group ID. The advantage of using an

additional group ID is that there is no need to explicitly change the group. A user may

participate in multiple projects, so it is also necessary to belong to multiple groups at the

same time. To obtain and set the additional group ID, SylixOS provides the following three

functions:

#include <grp.h>

int setgroups(int groupsun, const gid_t grlist[]);

int getgroups(int groupsize, gid_t grlist[]);

int initgroups(const char *name, gid_t basegid);

Prototype analysis of the function setgroups:

 This function returns 0 if it succeeds, and returns -1 and sets the error number if

it fails;

 The parameter groupsun is the number of groups;

 The parameter grlist[] is an array pointer that holds the user groups.

Prototype analysis of the function getgroups:

 This function returns the number of gids actually stored in the grlist array;

SpaceChain OS

775

Application Development Manual

 The parameter groupsize is the size of the array grlist[];

 The output parameter grlist[] stores the user group.

Prototype analysis of the function initgroups:

 This function returns 0 if it succeeds, and returns -1 and sets the error number if

it fails;

 The parameter name is the group member name;

 The parameter basegid is the group ID.

The function setgroups fills groupsun additional group IDs into the array grlist. The

array contains up to NGROUPS_MAX elements. The function getgroups obtains the

group ID of the additional group to which the current process user ID belongs. When

groupsize is 0 or grlist is NULL, the function will return the number of additional groups;

the function initgroups reads the file /etc/group and adds the group ID of the existing user

name to the process' additional group.

SpaceChain OS

776

Application Development Manual

18.5 Multi-user Management Database

18.5.1 User Operation

Calling the function user_db_uadd in SylixOS creates a new account. To create an

account, this function needs to access the /etc/passwd file and the /etc/shadow file.

Therefore, adding a new account requires the existence of these two files in the /etc

directory.

#include <userdb.h>

int user_db_uadd(const char *user, const char *passwd,

int enable, uid_t uid, gid_t gid,

 const char *comment, const char *home);

Prototype analysis of the function user_db_uadd:

 This function returns 0 if it succeeds, and returns -1 and sets the error number if

it fails;

 The parameter user is the user name;

 The parameter passwd is the user password;

 The parameter enable indicates whether the user is enabled.

 The parameter uid is the user ID;

 The parameter gid is the user group ID;

 The parameter comment is the comment information;

 The parameter home is the user's home directory.

Note that calling the function user_db_uadd can only create a new account in an

existing user group. If the specified group ID does not exist, the creation of a new account

will fail.

Calling the function user_db_umod can modify the enable status, comments, and

user home directory of an existing account,

#include <userdb.h>

int user_db_umod(const char *user, int enable,

 const char *comment, const char *home);

Prototype analysis of the function user_db_umod:

 This function returns 0 if it succeeds, and returns -1 and sets the error number if

it fails;

 The parameter user is the user name;

 The parameter enable indicates whether the user is enabled.

SpaceChain OS

777

Application Development Manual

 The parameter comment is the comment information;

 The parameter home is the user's home directory.

Calling the function user_db_uget can obtain the specified account information, as

described below:

#include <userdb.h>

int user_db_uget(const char *user, int *enable,

 uid_t *uid, gid_t *gid,

 char *comment, size_t sz_com,

char *home, size_t sz_home);

Prototype analysis of the function user_db_uget:

 This function returns 0 if it succeeds, and returns -1 and sets the error number if

it fails;

 The parameter user is the user name;

 The output parameter enable indicates whether the user is enabled.

 The output parameter uid is the user ID;

 The output parameter gid is the user group ID;

 The output parameter comment returns the comment information;

 The parameter sz_com is the size of the comment buffer;

 The output parameter home returns to the user's home directory;

 The parameter sz_home is the size of the user's home directory buffer.

Calling the function user_db_udel can delete an existing account.

#include <userdb.h>

int user_db_udel(const char *user);

Prototype analysis of the function user_db_udel:

 This function returns 0 if it succeeds, and returns -1 and set the error number if it

fails;

 The parameter user is the user name.

18.5.2 Group Operation

The following function provides the operation method of the user group in SylixOS.

The function user_db_gadd adds a new user group to SylixOS. The function

user_db_gget can obtain the group ID of the specified user group group. The function

user_db_gdel will delete a specified group group.

SpaceChain OS

778

Application Development Manual

#include <userdb.h>

int user_db_gadd(const char *group, gid_t gid);

int user_db_gget(const char *group, gid_t *gid);

int user_db_gdel(const char *group);

Prototype analysis of the function :

 The above function returns 0 when it succeeds, and returns -1 and sets the error

number if it fails.

 The parameter group is the group name;

 The parameter gid is the group ID, and the gid parameter of the user_db_gget

function is used to store the returned group ID.

18.5.3 Password Operation

#include <userdb.h>

int user_db_pmod(const char *user,

const char *passwd_old,

const char *passwd_new);

Prototype analysis of the function user_db_pmod:

 This function returns 0 if it succeeds, and returns -1 and sets the error number if

it fails;

 The parameter user is the user name;

 The parameter passwd_old is the previous password;

 The parameter passwd_new is the new password.

Calling the function user_db_pmod can modify the password of the specified user. In

particular, if the parameter passwd_new is NULL, the user password is cleared.

18.5.4 User Shell Commands

In a UNIX system, the root account has the "Supreme" authority, that means, an

account with root authority can do anything and even destroy the system. Similarly,

SylixOS also has a similar authority management mechanism. An account with SylixOS

root authority can do anything in SylixOS (such as delete other accounts or the underlying

work). Therefore, the user management requires that the common user's operation

authority is lower than that of the root user. The following is the Shell command to add,

modify, and delete user in SylixOS.

uadd
①
command can add new users to SylixOS:

 [Command format]

uadd name password enable[0 / 1] uid gid comment homedir

SpaceChain OS

779

Application Development Manual

 [Common Options]

None

 [Instructions for parameters]

name ：Created account name

password ：New account password

enable ：Whether to enable new account (0 is not enabled, 1 is enabled)

uid ：New account ID

gid ：New account group ID

comment ：Comment information

homedir ：New account home directory (eg /home/flags)

The following command can add new account flags to SylixOS:

uadd flags 123456 1 10 2 a_new_user /home/flags

The above command displays: new account flags, the account password is 123456,

enabling this account (1), the account ID is 10, the group ID is 2, and the home directory of

the account is /home/flags. This is a new account as noted in the comment.

The umod command can modify an existing account:

 [Command format]

umod name enable[0 / 1] comment homedir

 [Common Options]

None

 [Instructions for parameters]

name ：account name

enable ：Whether to enable the account (0 is not enabled, 1 is enabled)

comment ：Comment information

homedir ：Account home directory

The following is about how to modify an account's information. The command

displays that the status of the account flags is set to be disabled. The account set to be

disabled will have no authority to operate SylixOS.

umod flags 0 a_mod_user /home/flags

The udel command can delete an existing account:

 [Command format]

udel name

 [Common Options]

None

SpaceChain OS

780

Application Development Manual

 [Instructions for parameters]

name ：account name

The gadd command adds a new user group to SylixOS;

 [Command Format]

gadd group_name gid

 [Common Options]

None

 [Instructions for parameters]

group_name ：User group name

gid ：User group ID

The following command adds a new group grp(ID is 11) to SylixOS.

gadd grp 11

The gdel command deletes an existing group. Note that the deleted group must be a

group without user (that is, an empty group):

 [Command Format]

gdel group_name

 [Common Options]

None

 [Instructions for parameters]

group_name ：User group name

The following command is to delete the group grp:

gdel grp

The pmod command can modify the password of a specified user:

 [Command Format]

pmod name old_password new_password

 [Common Options]

None

 [Instructions for parameters]

name ：user name

old_password ：old password

new_password ：new password

SpaceChain OS

781

Application Development Manual

The following command changes the password of the user flags from 123456 to

abcd:

pmod flags 123456 abcd

 Application Development Manual
SpaceChain OS

782

Chapter 19 Dynamic Loading

19.1 Principle of Dynamic Link Library

19.1.1 Format of ELF File

The ELF (Executable and Linking Format) file are generated by the compiler and

linker and used to save binary programs and data to facilitate the processor to load the

executed file format. Originally it was developed and published by the UNIX System

Laboratories (USL) as part of the Application Binary Interface (ABI). The ELF File formats

include three types:

 Relocatable File, including code and data that can be linked with other object

files to create executable files or shared object files;

 Executable File, containing a program that can be executed. This file specifies

how the function exec creates a process image of a program.

 Shared Object File, containing the code and data that can be linked in two types

of contexts. Firstly, the linker can process it with other relocatable files to

generate another object file. Secondly, the Dynamic Linker can combine it with

an executable file and other shared objects to create a process image.

19.1.2 ELF Files in SylixOS

The ELF files in SylixOS are the following:

 Kernel Module File (ending with .ko): Generated by linking the object file

compiled from the source file, belonging to "relocatable file";

 Executable File: Generated by the link of the object file obtained by compiling, it

is a position-independent "shared object file", and the application file must

specify the program entry (usually the function “main”);

 Dynamic Link Library File (ending with .so): Generated by the link of the object

file obtained by compiling, it is a position-independent "shared object file", but

has no program entry;

 Statically Linked Library File (ending with .a): Generated by using the archive

command (ar) based on the object file obtained by compiling, used for program

linking.

After the SylixOS application source code is written, we must first use gcc to compile

the source file into the intermediate object file, and then link it into the kernel module,

application, or library file according to the actual situation. The flow is shown in Figure

19.1:

SpaceChain OS

783

Application Development Manual

Figure 19.1 SylixOS ELF File Generation Process

19.1.3 SylixOS Dynamic Loader Features

The SylixOS dynamic loader has the following features:

 Supports loading of kernel modules, location-independent executables, and

dynamic libraries;

 Supports loading of the library file on which the application depends when the

application is being loaded, and automatically resolves the dependent

relationship;

 Supports the manual loading through the operating system interface during

program operation;

 Supports the automatic construction and destruction operations of C + + global

object, and supports C + + exception handling.

19.2 Autoloading of Dynamic Library

19.2.1 Linking of Dynamic Library

Autoloading of dynamic library is automatic loading of the depended libraries before

the program is run, and as for which library files will be depended, it is determined during

linking. For example, running the following link command can link libvpmpdm.so,

libsubfun.so, libm.a, libgcc.a to the app executable. The linker loads dynamic or static

libraries based on specific conditions. In this example, libm.a and libgcc.a are

self-contained static libraries of the compiler.

arm-sylixos-eabi-g++ -mcpu=cortex-a8 -nostdlib –fPIC –shared –o app app.o

–lvpmpdm -lsubfun –lm –lgcc

SpaceChain OS

784

Application Development Manual

After the link is complete, we can use the arm-sylixos-eabi-readelf command to view

the dynamic libraries that the application depends on.

windows>
①
 arm-sylixos-eabi-readelf -d app

Dynamic section at offset 0x2cc contains 12 entries:

 Tag Type Name/Value

 0x00000001 (NEEDED) Shared library: [libvpmpdm.so]

 0x00000001 (NEEDED) Shared library: [libsubfun.so]

 0x00000004 (HASH) 0x94

 0x00000005 (STRTAB) 0x1d4

 0x00000006 (SYMTAB) 0xe4

 0x0000000a (STRSZ) 133(bytes)

 0x0000000b (SYMENT) 16(bytes)

 0x00000003 (PLTGOT) 0x8354

 0x00000002 (PLTRELSZ) 8(bytes)

 0x00000014 (PLTREL) REL

 0x00000017 (JMPREL) 0x25c

 0x00000000 (NULL) 0x0

19.2.2 Downloading of Dynamic Library

Through the use of RealEvo-IDE, a dynamic library can be downloaded to the

SylixOS system. Before downloading, we need to determine the path of the dynamic

library file in the SylixOS system. The search paths of the application dynamic libraries in

SylixOS are as follows in sequence:

 Shell current directory;

 The search path contained in the LD_LIBRARY_PATH environment variable;

 The search path included in the PATH environment.

The paths in the above environment variables are separated by ":". We can use the

env command to view the SylixOS environment variables as follows:

env

variable show >>

 VARIABLE REF VALUE

-------------------- --- --

TERMCAP /etc/termcap

TERM vt100

PATH_LOCALE /usr/share/locale

LC_ALL

① In this book, windows> is used to indicate the command that is operated in the Windows environment.

SpaceChain OS

785

Application Development Manual

LANG C

LD_LIBRARY_PATH /usr/lib:/lib:/usr/local/lib

PATH /usr/bin:/bin:/usr/pkg/sbin:/usr/local/bin

NFS_CLIENT_PROTO udp

NFS_CLIENT_AUTH AUTH_UNIX

SYSLOGD_HOST 0.0.0.0:514

FIO_FLOAT 1

SO_MEM_PAGES 8192

TSLIB_CALIBFILE /etc/pointercal

TSLIB_TSDEVICE /dev/input/touch0

MOUSE /dev/input/mouse0:/dev/input/touch0

KEYBOARD /dev/input/keyboard0

TZ CST-8:00:00

TMPDIR /tmp/

LICENSE SylixOS license: BSD/GPL.

VERSION 1.2.1

SYSTEM SylixOS kernel version: 1.2.1 NeZha(a)

19.2.3 Loading of Kernel Module

The kernel module does not attach to any application and cannot be loaded

automatically when the application is started. To autoload kernel modules, we can use the

load command in the SylixOS startup script. The SylixOS kernel module loader cannot

solve the dependencies between kernel modules. We need to decide the loading

sequence of the modules by our own. SylixOS does not automatically search for a path,

and the path must be specified in the load command. Normally SylixOS kernel modules

are stored in the /lib/modules directory or its subdirectories. The loading method of a

kernel module is shown in19.4.2 Loading Kernel Modules.

19.3 POSIX Dynamic Link Library API

19.3.1 Common API of Dynamic Library

1. Loading of Dynamic Library

#include <dlfcn.h>

void *dlopen(const char *pcFile, int iMode);

Prototype analysis of the function dlopen:

 The module handle is returned if this function succeeds, and NULL is returned

and the error number is set if this function fails.

 The parameter pcFile is the name of the dynamic library file;

SpaceChain OS

786

Application Development Manual

 The parameter iMode express the library's load property with a mask.

Calling the function dlopen will open a dynamic library with the specified iMode. The

SylixOS loader detects whether pcFile is a path, and if so, it will load the file

corresponding to the path. Otherwise, it will search for a file named pcFile in the search

path of the dynamic library file, and the search path of the dynamic library file is shown in

Section 19.2.2.

SylixOS opens the dynamic library in modes including: RTLD_GLOBAL and

RTLD_LOCAL, where RTLD_GLOBAL indicates that the module is a global module. Note

that only the global module can export symbols to the kernel symbol table; RTLD_LOCAL

indicates a local module.

2. Search of Symbols

#include <dlfcn.h>

void *dlsym(void *pvHandle, const char *pcName);

Prototype analysis of the function dlsym:

 This function returns a symbol address or NULL if it succeeds, and returns NULL

and sets an error number if it fails;

 The parameter pvHandle is a module handle returned by the function dlopen;

 The parameter pcName is the symbol name being searched.

Calling the function dlsym will return the function address represented by pcName

from pvHandle dynamic library file. If pcName does not exist, it will return NULL, so it is

not correct to judge whether the function dlsym is successful according to the return value,

and we can get error message by calling the function dlerror.

3. Unloading of Dynamic Library

#include <dlfcn.h>

int dlclose(void *pvHandle);

Prototype analysis of the function dlclose:

 This function returns 0 if it succeeds, and returns -1 and sets the error number if

it fails;

 The parameter pvHandle is a module handle returned by the function dlopen;

Calling the function dlclose will reduce the reference count of the pvHandle dynamic

library. If the reference count is reduced to zero and no symbol is referenced, the dynamic

library will be unloaded.

4. Getting Error Message

#include <dlfcn.h>

char *dlerror(void);

SpaceChain OS

787

Application Development Manual

Prototype analysis of the function dlerror:

 Returns a string with an error message.

Calling the function dlerror will return an error message on calling the function dlopen,

the function dlsym, and the function dlclose. If there is no error, NULL will be returned.

The following program shows how to load a dynamic library.

Program List 19.1 App program source code

#include <stdio.h>

#include <dlfcn.h>

int main (int argc, char *argv[])

{

 void *so_handler;

 void (*sub_fun)();

 fprintf(stdout, "Hello World!\n");

 so_handler = dlopen("libsubfun.so", RTLD_GLOBAL);

 if (!so_handler) {

 fprintf(stderr, "%s \n",dlerror());

 return (-1);

 }

 sub_fun = dlsym(so_handler, "lib_func_test");

 if (!sub_fun) {

 fprintf(stderr, "%s \n",dlerror());

 return (-2);

 }

 sub_fun();

 dlclose(so_handler);

 return (0);

}

Program List 19.2 Dynamic link library source code

#include <stdio.h>

void lib_func_test (void)

{

 fprintf(stdout, "hello library lib_func_test() run!\n");

}

Run the program under the SylixOS Shell and the results are as follows:

SpaceChain OS

788

Application Development Manual

./app

Hello World!

hello library lib_func_test() run!

19.3.2 Other APIs

The following function can get the symbol information that is smaller than the

specified address and is closest to the specified address.

#include <dlfcn.h>

int dladdr(void *pvAddr, Dl_info *pdlinfo);

Prototype analysis of the function dladdr:

 This function returns the value greater than 0 if it succeeds, and returns 0 and

sets the error number if it fails;

 The parameter pvAddr is a symbol address;

 The output parameter pdlinfo returns symbol information, the following is its

member information.

Calling the dladdr function returns information for the pvAddr address, which is

returned by the DL_info structure type, which is as follows:

typedef struct {

const char *dli_fname;

void *dli_fbase;

const char *dli_sname;

void *dli_saddr;

} Dl_info;

 Dli_fname: indicates the module file path;

 Dli_fbase: indicates the load address of the module;

 Dli_sname: indicates the symbol name;

 Dli_saddr: indicates the symbol address.

The dladdr function is generally used to print program stack information when an

error is located.

The following program shows how to use the dladdr function to perform stack

traceback.

Program List 19.3 Stack Traceback Example

#include <dlfcn.h>

#include <execinfo.h>

#include <stdio.h>

SpaceChain OS

789

Application Development Manual

#include <string.h>

#define BT_SIZE 100

void print_backtrace()

{

 Dl_info info;

 int nptrs;

 int i;

 int ret;

 void *ptr_buffer[BT_SIZE];

 nptrs = backtrace(ptr_buffer, BT_SIZE); /* Get back stack

information */

 for (i = 1; i < nptrs; i++) { /* Remove this function

frame print */

 ret = dladdr(ptr_buffer[i], &info); /* Get the frame symbol

information */

 if (ret == 0) {

 break;

 }

 fprintf(stdout, "module:%s, function:%s, address:%p\n",

 info.dli_fname, info.dli_sname, info.dli_saddr);

 if (strcmp(info.dli_sname, "main") == 0) {

 break;

 }

 }

}

void func_test2 (void)

{

 print_backtrace(); /* Print stack information

 */

}

void func_test1 (void)

{

 func_test2();

}

int main (int argc, char *argv[])

{

 func_test1();

SpaceChain OS

790

Application Development Manual

 return (0);

}

Run the program under the SylixOS Shell and the results are as follows:

./dladdr_test

module:/apps/dladdr_test/dladdr_test, function:func_test2, address:0xc00084a4

module:/apps/dladdr_test/dladdr_test, function:func_test1, address:0xc00084b4

module:/apps/dladdr_test/dladdr_test, function:main, address:0xc00084c4

19.4 Dynamic Link Library Shell Command

19.4.1 Viewing Dynamic Link Libraries

Running the modules command can view all module information that the SylixOS

system has loaded, including kernel modules, executable programs, and dynamic

libraries.

 [Command Format]

modules

 [Common Options]

None

 [Instructions for parameters]

None

The following is the output of the modules command.

modules

 NAME HANDLE TYPE GLB BASE SIZE SYMCNT

------------------------------ -------- ------ --- -------- -------- --------

VPROCESS: kernel pid: 0 TOTAL MEMORY: 32768

+ xsiipc.ko 30c5dfa8 KERNEL YES c00e9000 633c 14

VPROCESS: app pid: 3 TOTAL MEMORY: 65536 <vp ver:1.3.4>

+ app 30c639c8 USER YES c0008000 83d8 2

+ libvpmpdm.so 30c63f20 USER YES c0018000 d39c 70

+ libsubfun.so 30c63e58 USER YES c0028000 8344 2

total modules : 4

If only to view the kernel module information loaded by the SylixOS system, we can

use the lsmod command.

 [Command Format]

SpaceChain OS

791

Application Development Manual

lsmod

 [Common Options]

None

 [Instructions for parameters]

None

The following is the output of the lsmod command.

lsmod

 NAME HANDLE TYPE GLB BASE SIZE SYMCNT

------------------------------ -------- ------ --- -------- -------- --------

VPROCESS: kernel pid: 0 TOTAL MEMORY: 32768

+ xsiipc.ko 30c5dfa8 KERNEL YES c00e9000 633c 14

total modules : 1

19.4.2 Loading Kernel Modules

Through the use of the modulereg command, the kernel modules can be loaded.

 [Command Format]

modulereg [kernel module file *.ko]

 [Common Options]

None

 [Instructions for parameters]

kernel module file *.ko：kernel module

The following is an example of using the modulereg command to register the

xinput.ko module.

modulereg /lib/modules/xinput.ko

module /lib/modules/xinput.ko register ok, handle : 0x30c64ae8

19.4.3 Unloading Kernel Modules

Using the moduleunreg command can unload the kernel module. Note that the

parameter of the moduleunreg command is a module handle, so you need to use the

modules or lsmod command to get the module handle before unloading.

 [Command Format]

SpaceChain OS

792

Application Development Manual

moduleunreg [kernel module handle]

 [Common Options]

None

 [Instructions for parameters]

kernel module handle：Kernel module handler

The following is the process of unloading a module.

lsmod

 NAME HANDLE TYPE GLB BASE SIZE SYMCNT

------------------------------ -------- ------ --- -------- -------- --------

VPROCESS: kernel pid: 0 TOTAL MEMORY: 49152

+ xsiipc.ko 30c5dfa8 KERNEL YES c00e9000 633c 14

+ xinput.ko 30c64ae8 KERNEL YES c210e000 21d0 1

total modules : 2

moduleunreg 30c64ae8

module /lib/modules/xinput.ko unregister ok.

SpaceChain OS

793

Application Development Manual

SpaceChain OS

794

Application Development Manual

Chapter 20 Power Management

20.1 SylixOS Power Management

The SylixOS power management is divided into two major parts: CPU

power-consumption management and peripheral power-consumption management.

The CPU power management includes three modes:

 Normal running mode: CPU executes commands normally;

 PowerSaving mode: All the devices with power management function enter the

power-saving mode, while the CPU dominant frequency is reduced, and the

multi-core CPU only keeps one CPU running;

 System suspend mode: System suspend makes all devices with power

management function enter the Suspend state. If the system needs to wake up

through a specified event, it will recover from the reset vector. In this case, the

bootloader or BIOS program is required to cooperate.

In SMP multi-core, the number of running CPU cores can be dynamically adjusted.

Peripheral power management includes into four states:

 Normal operating state: The device is turned on and enables the power and

clock of the corresponding device to begin work;

 Devices Shutdown state: The device driver is turned off, to request the power

management adapter to disconnect the device from power and the clock stops

working.

 Power-saving state: The system enters power-saving mode to request

peripherals to enter the power-saving mode;

 Device idle state: The device power-consumption management unit has a

watchdog function. Once the idle time exceeds the set value, the system will

make the device idle.

Figure 20.1 shows the basic structure diagram of power management in SylixOS.

SpaceChain OS

795

Application Development Manual

Figure 20.1 Power Management Structure Diagram

20.2 Power Management API

1. System Suspend
①

The following function controls all peripherals that support the suspend function to

enter the suspend state.

#include <SylixOS.h>

VOID Lw_PowerM_Suspend(VOID);

2. System Wake-up

The following function controls all peripherals that support the suspend function to

resume to the normal state from the suspend state.

#include <SylixOS.h>

VOID Lw_PowerM_Resume(VOID);

3. Set CPU Energy-Saving Parameters

The following function sets the number of CPU cores to run in a multi-core system

and the power consumption level of them. The system turns off or turns on the CPU core

according to the parameters. At the same time, it sets the CPU power consumption level.

The power consumption levels are different. The CPU runs at different dominant

frequencies and reduces the dominant frequency while entering the power saving mode,

otherwise raises the dominant frequency. This function also notifies all peripherals that

support power management of the change in CPU parameters.

#include <SylixOS.h>

VOID Lw_PowerM_CpuSet(ULONG ulNCpus, UINT uiPowerLevel);

Prototype analysis of the function Lw_PowerM_CpuSet:

 The parameter

ulNCpus is the number of CPU cores in the running state;

 The parameter uiPowerLevel is the CPU power-consumption level.

SpaceChain OS

796

Application Development Manual

4. Obtain CPU Energy-Saving Parameters

The following function obtains the number of the currently-running CPUs and the

CPU power consumption level.

#include <SylixOS.h>

VOID Lw_PowerM_CpuGet(ULONG *pulNCpus, UINT *puiPowerLevel);

Prototype analysis of the function Lw_PowerM_CpuGet:

 The output parameter pulNCpus returns the number of running CPU cores.

 The output parameter piuPowerLevel returns the CPU power-consumption

level.

Note that if pulNCpus and puiPowerLevel are NULL, this function does nothing.

5. System Enters the Power-Saving Mode

Through calling of the following function, we can make the system enter the power

saving mode. It controls all the devices that support power management to enter the

power-saving mode, and sets the number of CPU cores to run and the the

power-consumption level.

#include <SylixOS.h>

VOID Lw_PowerM_SavingEnter(ULONG ulNCpus, UINT uiPowerLevel);

Prototype analysis of the function Lw_PowerM_SavingEnter:

 The parameter ulNCpus is the number of CPU cores in the running state;

 The parameter uiPowerLevel is the CPU power-consumption level.

6. System Exits the Power-Saving Mode

The following function controls the system to exit the power saving mode. It controls

all devices that support power management to exit the power-saving mode, and sets the

number of running CPU cores and power consumption levels.

#include <SylixOS.h>

VOID Lw_PowerM_SavingExit(ULONG ulNCpus, UINT uiPowerLevel);

Prototype analysis of the function Lw_PowerM_SavingExit:

 The parameter ulNCpus is the number of CPU cores in the running state;

 The parameter uiPowerLevel is the CPU power-consumption level.

SpaceChain OS

797

Application Development Manual

 Application Development Manual
SpaceChain OS

798

Chapter 21 Introduction to Standard Third-Party

Software

The open source feature of SylixOS facilitates the porting of open source software to

SylixOS, which allows it to build high-end embedded systems using feature-rich open

source software. This chapter mainly introduces the process of porting and using multiple

types of open source software in SylixOS. According to the features of different types of

open source software, different methods are used.

Note: If you have installed ACOINFO's Integrated Development Kit (RealEvo

Kit), the Qt Graphical Interface Library will be automatically included without any

configuration.

21.1 Qt Graphical Interface Software

Qt is a type of C++ graphical interface software widely-used at present. Qt itself has

some features that are also very suitable for embedded applications, for example, it has

rich API, contains hundreds of C + + class libraries, templates, etc., and can provide

suitable functions for a wide variety of embedded applications. Qt adopts object-oriented

design concept, with high degree of modularity, good reusability, and easy tailoring and

customization.

In addition to the advantages of Qt design itself, Qt provides developers with a

development tool QtCreator and a wealth of development documentation. Using

QtCreator can not only develop graphical interface programs, but also develop

non-graphical interface programs. QtCreator can complete almost all program

development work and has improved the efficiency of program development to a certain

extent.

As a cross-platform graphical interface library, Qt supports a wide range of operating

systems, such as Linux, QNX, VxWorks, etc. Qt also supports the SylixOS operating

system.

21.1.1 Qt Porting in SylixOS

The porting of Qt needs to be done under Linux. Therefore, it is necessary to

establish the compiling environment of SylixOS under Linux first. It can be done through

reference of "Guides for Linux Environment Development" of SylixOS.

Download the Qt source package first.

<linux>$
①
 cd ~/sylixos_workspace/

<linux>$ git clone https://github.com/SylixOS/qt.git

① This expression represents a shell prompt under Linux.

SpaceChain OS

799

Application Development Manual

<linux>$ cd qt

Modify the configuration file of mkspecs/qws/sylixos-arm-g++/qmake.conf and set

SYLIXOS_BASE_PATH:

<linux>$ vim mkspecs/qws/sylixos-arm-g++/qmake.conf

SYLIXOS_BASE_PATH = /home/user/sylixos_workspace/sylixos-base

Note: The value of SYLIXOS_BASE_PATH is the absolute path of the SylixOS Base project.

Configure Qt and the configuration command is as follows:

<linux>$./configure \

-prefix /opt/arm-sylixos-qt-4.8.7 \

-importdir "/opt/arm-sylixos-qt-4.8.7/qml" \

-release \

-opensource \

-confirm-license \

-embedded arm \

-xplatform qws/sylixos-arm-g++ \

-depths 8,16,24,32 \

-little-endian -host-little-endian \

-shared \

-fast \

-largefile \

-exceptions \

-stl \

-qt-sql-sqlite \

-qt3support \

-xmlpatterns \

-multimedia \

-audio-backend \

-svg \

-webkit \

-javascript-jit \

-script \

-scripttools \

-declarative \

-qt-zlib \

-qt-libtiff \

-qt-libpng \

-qt-libmng \

-qt-libjpeg \

-qt-freetype \

-verbose \

-optimized-qmake \

-no-pch \

SpaceChain OS

800

Application Development Manual

-qt-kbd-sylixosinput \

-qt-gfx-sylixosfb \

-qt-mouse-sylixosinput \

-qt-gfx-transformed \

-qt-gfx-vnc \

-no-gfx-linuxfb \

-no-mouse-pc \

-no-mouse-linuxtp \

-no-kbd-tty \

-make examples -make tools -make docs -make demos

Compile Qt:

<linux>$ make

Install Qt under the root user, enter su to switch to the root user:

<linux>$ su

Modify the environment variable PATH, otherwise it will be very large after make

install because arm-none-eabi-strip cannot be found:

<linux>$ export PATH=/usr/lib/gcc-arm-none-eabi/bin:$PATH

Enter the command to install Qt and Qt will be installed in the directory

/opt/arm-sylixos-qt-4.8.7 specified during configuration:

<linux>$ make install

21.1.2 Verification of Qt Graphical Interface Library

1. Setting of Environment Variables

Enter the following environment variables under SylixOS Shell. Note that it is

necessary to execute one by one to avoid errors due to the limited buffer size of the serial

port driver.

DISPLAY=/dev/fb0

KEYBOARD=/dev/input/kbd0

MOUSE=/dev/input/touch0:/dev/input/mse0

XINPUT_PRIO=199

QTDIR=/qt

QPEDIR=/qt

QWS_DISPLAY=sylixosfb:$DISPLAY

QWS_MOUSE_PROTO=sylixosinput

QWS_KEYBOARD=sylixosinput

POINTERCAL_FILE=/etc/pointercal

QT_PLUGIN_PATH=$QTDIR/plugins

QT_QWS_FONTDIR=$QTDIR/lib/fonts

SpaceChain OS

801

Application Development Manual

QML_IMPORT_PATH=$QTDIR/qml

QML2_IMPORT_PATH=$QTDIR/qml

LD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH

The following environment variables will be configured with function of using VNC:

QWS_DISPLAY=VNC:sylixosfb:$DISPLAY

Note: The VNC client-end under Windows can use vnc-4_1_2-x86_win32_viewer.exe.

The following environment variables will be configured with the 90° enable rotary

screen：

QWS_DISPLAY=Transformed:Rot90

The following environment variables will be configured with the 90° enable rotary

screen while using VNC;

QWS_DISPLAY=Transformed:Rot90:VNC:sylixosfb:$DISPLAY

Save the environment variable:

varsave

Transfer the following files to the Sylix OS target board via the ftp tool
①
:

 Qt plugin: From the /opt/arm-sylixos-qt-4.8.7/plugins directory;

 List of target board files in SylixOS: /qt/plugins;

 QML plugin: From the /opt/arm-sylixos-qt-4.8.7/qml directory;

 List of target board files in SylixOS: /qt/qml;

 Qt dynamic library: From the /opt/arm-sylixos-qt-4.8.7/lib directory.

2. Create Symbolic Links

After the download is complete, create a symbolic link under the SylixOS Shell as

follows:

ln -s /qt/lib/libQtCLucene.so.4.8.7 /qt/lib/libQtCLucene.so.4

ln -s /qt/lib/libQtDesignerComponents.so.4.8.7

/qt/lib/libQtDesignerComponents.so.4

ln -s /qt/lib/libQtHelp.so.4.8.7 /qt/lib/libQtHelp.so.4

ln -s /qt/lib/libQtScriptTools.so.4.8.7 /qt/lib/libQtScriptTools.so.4

ln -s /qt/lib/libQtTest.so.4.8.7 /qt/lib/libQtTest.so.4

ln -s /qt/lib/libQtCore.so.4.8.7 /qt/lib/libQtCore.so.4

ln -s /qt/lib/libQtDesigner.so.4.8.7 /qt/lib/libQtDesigner.so.4

ln -s /qt/lib/libQtNetwork.so.4.8.7 /qt/lib/libQtNetwork.so.4

ln -s /qt/lib/libQtSql.so.4.8.7 /qt/lib/libQtSql.so.4

ln -s /qt/lib/libQtWebKit.so.4.9.4 /qt/lib/libQtWebKit.so.4

SpaceChain OS

802

Application Development Manual

ln -s /qt/lib/libQtDeclarative.so.4.8.7 /qt/lib/libQtDeclarative.so.4

ln -s /qt/lib/libQtGui.so.4.8.7 /qt/lib/libQtGui.so.4

ln -s /qt/lib/libQtScript.so.4.8.7 /qt/lib/libQtScript.so.4

ln -s /qt/lib/libQtSvg.so.4.8.7 /qt/lib/libQtSvg.so.4

ln -s /qt/lib/libQtXml.so.4.8.7 /qt/lib/libQtXml.so.4

ln -s /qt/lib/libQtXmlPatterns.so.4.8.7 /qt/lib/libQtXmlPatterns.so.4

ln -s /qt/lib/libQtMultimedia.so.4.8.7 /qt/lib/libQtMultimedia.so.4

ln -s /qt/lib/libQt3Support.so.4.8.7 /qt/lib/libQt3Support.so.4

3. Screen Calibration

Set the size of the Shell stack:

shstack 120000

Note: The Qt program stack has a large consumption, so the recommended setting is greater than

120K.

Register IPC module:

modulereg /lib/modules/xsiipc.ko

Register input module:

modulereg /lib/modules/xinput.ko

Perform a screen calibration procedure. According to the screen prompts, click on the

"+" on the screen to complete the screen calibration.

/apps/mousecalibration -qws &

21.1.3 QtCreator Installation and Configuration

The porting, compilation and development environment configuration of Qt takes a

long time. To facilitate Qt programming, Beijing ACOINFO Co., Ltd. provided a compiled

Qt library and optimized QtCreator (Windows version of RealEvo-QtSylixOS, the tool

makes the above configuration process automated). Below is a brief introduction of the

configuration process of RealEvo-QtSylixOS .

After turning on RealEvo-QtSylixOS, click on the menu "Tools → Options..." so that

the Options dialog box pops up as shown in Figure 21.1.

SpaceChain OS

803

Application Development Manual

Figure 21.1 Options Dialog Box

Click "Device" in the left column to switch to the "Device" subpage, and click the

"Add..." button and the device setup wizard selection dialog box will pop up as shown in

Figure 21.2.

Figure 21.2 Device Settings Wizard Selection Dialog Box

Select "SylixOS Device" and then click "Start Wizard" button to start the SylixOS

Device Configuration Wizard as shown in Figure 21.3.

SpaceChain OS

804

Application Development Manual

Figure 21.3 SylixOS Device Configuration Wizard

Enter the name of the SylixOS device in the "Name" input box, such as "SylixOS

Device"; enter the IP address of the SylixOS device in the "Host Name" input box, such as

"192.168.7.30". In the “GDB port” input box, enter the port number, such as “1234” for

monitoring during debugging of the Qt application of the device is started; enter the user

name "root" in the "User name" input box; and enter the password "root" in the "Password"

input box.

Click the "Next" button to enter the device’s summary dialog box, and click the

"Finish" button in the such dialog box to enter the device test’s dialog box (ensure that the

SylixOS device can be connected to the PC through the network). As shown in Figure

21.4, after the device test is completed successfully, click " the "Close" button for setting.

SpaceChain OS

805

Application Development Manual

Figure 21.4 Device Test Dialog Box

After the above configuration is completed, we need to configure the SylixOS base

project process. Return to the Options dialog box again, click "Build and Run" in the left

column of the Options dialog box and switch to the "Kit" tab as shown in Figure 21.5.

SpaceChain OS

806

Application Development Manual

Figure 21.5 Kit tab

Select "arm-sylixos-qt-4.8.7" (Kit) under "Auto Detect". The device shall be selected

as "SylixOS XXX device (default device for SylixOS type)"; as for "SylixOS base project",

click the “Browse” button on the right to select the compiled SylixOS base project category

of "arm920t” for "CPU type", as shown in Figure 21.6.

Figure 21.6 Settings of SylixOS base project

After completing the basic tool configuration, we need to deploy the library for

operation of Qt to the SylixOS device as follows:

Click on the menu "Tools → Options..." to bring up the Options dialog box. Click on

"Device" in the left column to switch to the "Device" subpage, as shown in Figure 21.7.

SpaceChain OS

807

Application Development Manual

Select “SylixOS XXX device (default device for SylixOS type)” in the device

drop-down box, and then click the "Deploy Qt shared library ..." button, the "Deploy Qt to

SylixOS device" dialog box will pop up as shown in Figure 21.8.

Select the Qt shared library most preferentially supported by the SylixOS device in

the Qt shared library version drop-down box inFigure 21.8. If it is required to deploy the

Debug version of the shared library and kernel module in the SylixOS Base project, we

need to check the "Debug" check box. Otherwise, the "Release" version of shared

libraries and kernel modules will be deployed.

Note: If the SylixOS device uses a file system (such as FAT32) that does not support symbolic links

as the storage medium, we need to check the "Not support for symbolic links" check box.

Finally click on the "Deploy" button to start the deployment of the Qt shared library, as

shown in Figure 21.7.

Figure 21.7 "Device" Selection Dialog Box

SpaceChain OS

808

Application Development Manual

Figure 21.8 “Deploy Qt to SylixOS Device” dialog box

Through the above process, the configuration of RealEvo-QtSylixOS development

environment and library files is completed. The development process of Qt program will

not be introduced in this manual. Refer to the book "C++ GUI Qt 4 Programming" (2nd

edition) for details.

21.2 Zlib File Compression Library

Zlib is a widely used file compression library at present. The projects like Linux,

OpenSSL, libpng and ffmpeg all use zlib. In addition, thousands types of software also rely

on the compression service provided by zlib.

21.2.1 Porting of Zlib Library

This section describes how to compile the zlib library under RealEvo-IDE. Download

the zlib source code from the website http://www.zlib.net/, the file name is zlib-1.2.8.tar.xz,

and use the decompression software to extract it to the current file folder. The file name of

the extracted file is zlib-1.2.8.

Access the zlib-1.2.8 folder and open the /watcom/watcom_l.mak file. The contents of

the file are as follows:

C_SOURCE = adler32.c compress.c crc32.c deflate.c &

 gzclose.c gzlib.c gzread.c gzwrite.c &

 infback.c inffast.c inflate.c inftrees.c &

SpaceChain OS

809

Application Development Manual

 trees.c uncompr.c zutil.c

Where,*.c file is the program source file that implements zlib library compression.

Copy the *.c files with the same name in the zlib-1.2.8 folder to a separate folder zlib, and

copy the related *.h files to the zlib directory.

Open RealEvo-IDE, create "SylixOS Shared Lib" project, the project name is zlib_dll,

copy the *.c and *.h files in the zlib folder to the directory of the project zlib_dll, and delete

the zlib_dll.c file automatically generated when the project is created.

Modify the Makefile of the zlib_dll project and modify the SRCS as follows:

#***

src(s) file

#***

SRCS = \

 adler32.c \

 compress.c \

 crc32.c \

 deflate.c \

 gzclose.c \

 gzlib.c \

 gzread.c \

 gzwrite.c \

 infback.c \

 inffast.c \

 inflate.c \

 inftrees.c \

 trees.c \

 uncompr.c \

 zutil.c

SRCS is the same as C_SOURCE under the watcom_l.mak file. Modify the target

output file name as follows:

#***

target

#***

LIB = $(OUTPATH)/libzlib.a

DLL = $(OUTPATH)/libzlib.so

Note: The modification of the target part is not a must. The modification here is just to make the file

name consistent with the usage habits.

After successful compilation, the two files defined in the target are generated in the

Debug directory. At this point, the zlib library has been compiled and ported under

SylixOS.

SpaceChain OS

810

Application Development Manual

Next, we need to verify whether zlib can be used normally under SylixOS.

Create a new "SylixOS App" project and modify the generated project file as follows:

Program List 21.1 Use of zlib Library

#include <stdio.h>

#include <zlib.h>

int main (int argc, char *argv[])

{

 unsigned char data_in[] = "hello world! aaaaa bbbbb ccccc

 ddddd 1234567890 notrecongen yes";

 unsigned char buf[1024] = {0};

 unsigned char data_out[1024] = {0};

 unsigned long srcLen = sizeof(data_in);

 unsigned long bufLen = sizeof(buf);

 unsigned long dstLen = sizeof(data_out);

 fprintf(stdout, "src string:%s\nlength:%ld\n", data_in, srcLen);

 compress(buf, &bufLen, data_in, srcLen); /* compression

 */

fprintf(stdout, "after compressed length:%ld\n", bufLen);

 uncompress(data_out, &dstLen, buf, bufLen); /* unzip */

 fprintf(stdout, "after uncompressed length:%ld\n",dstLen);

 fprintf(stdout, "uncompressed string:%s\n",data_out);

 return (0);

}

Modify the Makefile, add the included path of header file under the include path, and

modify the following:

INCDIR = -I"$(SYLIXOS_BASE_PATH)/libsylixos/SylixOS"

INCDIR += -I"$(SYLIXOS_BASE_PATH)/libsylixos/SylixOS/include"

INCDIR += -I"$(SYLIXOS_BASE_PATH)/libsylixos/SylixOS/include/inet"

INCDIR += -I"../zlib_dll"

Add zlib library file name and directory

#***

depend dynamic library

#***

DEPEND_DLL = -lvpmpdm

DEPEND_DLL += -lzlib

#***

SpaceChain OS

811

Application Development Manual

depend dynamic library search path

#***

DEPEND_DLL_PATH = -L"$(SYLIXOS_BASE_PATH)/libsylixos/$(OUTDIR)"

DEPEND_DLL_PATH += -L"../zlib_dll/$(OUTDIR)"

Note: When filing in the dynamic library name, the file generated in the zlib_dll project is libzlib.so file,

and both the beginning and the end should be removed, -l should be added.

21.2.2 Verification of Zlib Library

Upload the libzlib.so file to the /lib directory of the SylixOS device and upload

zlib_demo to the /apps/zlib_demo directory. The running results are as follows:

./zlib_demo

Src string:hello world! aaaaa bbbbb ccccc ddddd 1234567890 notrecongen yes

Length:64

After Compressed Length:62

After UnCompressed Length:64

UnCompressed String:hello world! aaaaa bbbbb ccccc ddddd 1234567890 notrecongen

yes

From the running results of the program, it can be seen that extracting function is

achieved successfully through the zlib library.

21.3 SQLite3 Database

SQLite is a file type database, that means, a database is a file. Even if many tables,

indexes, triggers, etc. are created in the database, it is physically just a file. This facilitates

the backup of the database. The use of SQLite neither requires any database engine nor

needs the installation of other database servers. So it is very suitable for the embedded

devices. Actually, it has also been widely used in the embedded field, such as in iphone.

SQLite merges many files of earlier versions into one sqlite3.c file. This facilitates its

porting but increases the size of the combined file.

21.3.1 Porting of SQLite3 in SylixOS

Currently, the SQLite3 library has been ported to SylixOS and can be compiled using

RealEvo-IDE. The project file URL is http://git.sylixos.com/cgit/cgit.cgi/SQLite3.git/ and the

project is cloned into the local directory using the git management tool. After compilation,

the files libsqlite3.so and sqlite3 are generated in the Debug directory.

Note: SQLite3 may be ported with reference to the porting method of zlib library.

21.3.2 Verification of SQLite3 Library

Upload the libsqlite3.so file to the /lib directory of the SylixOS device and upload the

sqlite3 file to the /apps/sqlite3/ directory of the SylixOS device. The execution effects of

the program sqlite3 are as follows:

ls

SpaceChain OS

812

Application Development Manual

sqlite3

./sqlite3

SQLite version 3.8.5 2014-04-28 17:56:19

Enter ".help" for usage hints.

Connected to a transient in-memory database.

Use ".open FILENAME" to reopen on a persistent database.

sqlite>

Create a database file using SQL command and write the data. SQL commands all

end with ";".

ls

sqlite3

./sqlite3 test.db /* Create a database

file */

SQLite version 3.8.5 2014-04-28 17:56:19

Enter ".help" for usage hints.

sqlite> create table mytable(name varchar(40), /* Create a table

*/

age smallint);

sqlite> insert into mytable values('sylixos tianhe',10);/* Insert a record into

the table */

sqlite> select *from mytable; /* View the contents of

the table */

sylixos tianhe|10 /* Table output from

the console */

sqlite> .quit

ls /* View current

directory */

test.db sqlite3 /* One more database

file */

21.4 OpenSSL Encryption Library

21.4.1 Introduction to OpenSSL

OpenSSL is the open source implementation of SSL which is widely used, and is also

a widely-used encryption function library as it implements various encryption algorithms

used by SSL.

The SSL (Secure Socket Layer) security protocol was first proposed by Netscape and

was originally used to secure HTTP communication between the Navigator browser and

the web server. Later, the SSL protocol became the de facto standard for

transmission-level secure communication and was adopted and improved by the IETF as

a Transport Layer Security (TLS) protocol.

SpaceChain OS

813

Application Development Manual

The SSL/TLS protocol is located between the TCP protocol and the application

layer protocol and provides security services such as authentication, encryption, and

integrity protection for both parties involved in the transmission. With SSL as the protocol

framework, both parties in the communication can use the appropriate symmetric

algorithms, public key algorithms, and MAC algorithms to enjoy security services.

OpenSSL consists of three parts: SSL protocol, cryptographic algorithm library, and

application library. The SSL protocol part completely implements and encapsulates the

three versions of the SSL protocol and the TLS protocol. The SSL protocol library is

realized on the basis of a cryptographic algorithm library, and an SSL server and client can

be established using the library. The cryptographic algorithm library is a powerful library,

and it is the basis of OpenSSL, having implemented most of the current mainstream

cryptographic algorithms and standards. The library mainly includes public key algorithm,

symmetric encryption algorithm, hash function algorithm, X509 digital certificate standard,

PKCS12 and PKCS7. We can also integrate external encryption algorithms into OpenSSL,

such as using encryption cards.

The application part is the most lively part of OpenSSL, and is also the part of getting

started with OpenSSL. A number of practical and exemplary applications are implemented

based on the above cryptographic algorithm library and SSL protocol library, covering

massive cryptographic applications. It mainly includes the encryption program for various

cryptographic algorithms, the generation program of various keys, the SSL connection test

program, and other standard applications.

The OpenSSL application includes the following two types:

 Applications based on OpenSSL directives, such as creating a CA certificate;

 Applications based on OpenSSL encryption library and protocol library.

The workload of an application based on OpenSSL library is much larger than that of

an application based on OpenSSL command. However, the application of OpenSSL is

based on the OpenSSL library. The application based on OpenSSL library can be flexibly

selected according to the requirements without being restricted by the OpenSSL

command.

21.4.2 Porting of OpenSSL Library

The porting of OpenSSL needs to be done under Linux. Before start of this work, it

is necessary to establish the compiling environment of SylixOS under Linux first. It can be

done with the reference to "Guides for Linux Environment Development" of SylixOS wiki .

Download the OpenSSL source file from the OpenSSL official website

http://www.openssl.org/, and copy the contents of the file to the SylixOS workspace

directory.

<linux>$ cd /home/user/sylixos_workspace /* Enter the sylixos workspace

*/

SpaceChain OS

814

Application Development Manual

<linux>$ tar zxvf openssl-1.0.2a.tar.gz /* Unzip OpenSSL

 */

<linux>$ mv openssl-1.0.2a openssl /* Modify the OpenSSL directory name

 */

<linux>$ cd openssl /* Enter the OpenSSL directory

*/

Configure OpenSSL-verison Open Source ARM Toolchain:

<linux>$./configure linux-armv4 -D__ARM_MAX_ARCH__=8

-cross-compile-prefix=arm-none-eabi- no-asm shared

--prefix=/opt/arm-sylixos-openssl

Add the following content to Makefile and modify the path of the

SYLIXOS_BASE_PATH project according to the actual situation:

SYLIXOS_BASE_PATH=/home/user/sylixos_workspace/sylixos-base

INCDIR = $(SYLIXOS_BASE_PATH)/libsylixos/SylixOS

INCDIR += $(SYLIXOS_BASE_PATH)/libsylixos/SylixOS/include

INCDIR += $(SYLIXOS_BASE_PATH)/libsylixos/SylixOS/include/inet

SHLDIR = $(SYLIXOS_BASE_PATH)/libsylixos/Debug

SHLDIR += $(SYLIXOS_BASE_PATH)/libcextern/Debug

SYLIXOS_CFLAGS=-DSYLIXOS -DSYLIXOS_LIB $(addprefix -I,$(INCDIR)) -mcpu=arm920t

-fmessage-length=0 -fno-short-enums

SYLIXOS_EXLIBS=-nostdlib $(addprefix -L,$(SHLDIR)) -lcextern -lvpmpdm -lm -lgcc

Modify CFLAG:

CFLAG = $(SYLIXOS_CFLAGS) ...

Modify PEX_LIBS and EX_LIBS:

PEX_LIBS = -shared

EX_LIBS = $(SYLIXOS_EXLIBS)

Compile OpenSSL:

<linux>$ make

The installation of OpenSSL requires superuser authority, enter su to switch to the

root user:

<linux># su

Modify the environment variable PATH:

<linux># export PATH=/usr/lib/gcc-arm-none-eabi/bin:$PATH

Enter the command to install OpenSSL to the specified directory

/opt/arm-sylixos-openssl:

SpaceChain OS

815

Application Development Manual

<linux># make install

Deploy OpenSSL to the openssl directory in the /lib directory of the SylixOS target

board and upload the result of make install (located in the /opt/arm-sylixos-openssl

directory) to the /lib/openssl directory of the SylixOS target board.

Run the following command to complete the relevant configuration of OpenSSL:

cd /lib/openssl/lib /* Create a symbolic link

 */

ln -s libssl.so.1.0.0 libssl.so

ln -s libcrypto.so.1.0.0 libcrypto.so

PATH=$PATH:/lib/openssl/bin /* Modify environment variables

 */

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/lib/openssl/lib

varsave

21.4.3 Verification of OpenSSL Library

On the console of the Sylix OS device, enter openssl x (x is any character) and the

console will output the command supported by the current OpenSSL.

openssl x

openssl:Error: 'x' is an invalid command.

Standard commands

asn1parse ca ciphers cms

crl crl2pkcs7 dgst dh

dhparam dsa dsaparam ec

ecparam enc engine errstr

gendh gendsa genpkey genrsa

nseq ocsp passwd pkcs12

pkcs7 pkcs8 pkey pkeyparam

pkeyutl prime rand req

rsa rsautl s_client s_server

s_time sess_id smime speed

spkac srp ts verify

version x509

Message Digest commands (see the `dgst' command for more details)

md4 md5 mdc2 rmd160

sha sha1

Cipher commands (see the `enc' command for more details)

aes-128-cbc aes-128-ecb aes-192-cbc aes-192-ecb

aes-256-cbc aes-256-ecb base64 bf

SpaceChain OS

816

Application Development Manual

bf-cbc bf-cfb bf-ecb bf-ofb

camellia-128-cbc camellia-128-ecb camellia-192-cbc camellia-192-ecb

camellia-256-cbc camellia-256-ecb cast cast-cbc

cast5-cbc cast5-cfb cast5-ecb cast5-ofb

des des-cbc des-cfb des-ecb

des-ede des-ede-cbc des-ede-cfb des-ede-ofb

des-ede3 des-ede3-cbc des-ede3-cfb des-ede3-ofb

des-ofb des3 desx idea

idea-cbc idea-cfb idea-ecb idea-ofb

rc2 rc2-40-cbc rc2-64-cbc rc2-cbc

rc2-cfb rc2-ecb rc2-ofb rc4

rc4-40 seed seed-cbc seed-cfb

seed-ecb seed-ofb

Enter openssl version to output the current version number of OpenSSL:

openssl version

OpenSSL 1.0.2a 19 Mar 2015

21.5 GoAhead Web Server

GoAhead is widely used in the embedded web servers, such as Siemens, Honeywell

and Hewlett-Packard. Extensive use illustrates the power, security, and stability of

GoAhead. The main reason why GoAhead is widely used is that it has the following

advantages:

 Easy to be integrated with device: The web application can be ported onto a

real-time operating system easily, and through the web application, we can

access hardware features easily as well;

 Supporting storage of web pages in BOM: GoAhead supports compling of web

pages and linking them to the final executable file. Very meaningful for some

embedded applications without a file system;

 Encryption and user management: GoAhead Server supports the use of SSL for

data encryption and authentication. It also supports digest authentication (a more

secure authentication mechanism using encrypted passwords). The user

management feature allows different users to have different levels of access

authorities;

 In addition to the above features, GoAhead also provides a variety of ways to

write dynamic pages, which can quickly and easily generate dynamic pages.

21.5.1 Porting of GoAhead

SpaceChain OS

817

Application Development Manual

Currently, the porting on SylixOS has been completed, and the GoAhead

project can be compiled under RealEvo-IDE. The project file is located at

http://git.sylixos.com/cgit/cgit.cgi/GoAhead-WebServer.git/, and the project is cloned to

the current host and the compiling can be implemented by importing it into RealEvo-IDE.

The compiled file is in the Debug directory of the project, and 4 files will be generated at

the same time:

goahead: /* The main program to achieve webserver

*/

gopass: /* Account management for the web

*/

webcomp: /* Used to generate rom pages

*/

libgoahead.so: /* Goahead dynamic library, need to be copied to the /lib

directory of the SylixOS target system */

In the above four files, basic web functions can be realized by using the

libgoahead.so dynamic library and the goahead program.

21.5.2 GoAhead Verification

Upload the libgoahead.so file to the /lib directory of the SylixOS target system.

Upload the goahead program file to the /apps/goahead directory. We also need to upload

the auth.txt, route.txt, and web folders under../embedthis-goahead/src to the

/apps/goahead directory of the SylixOS target system. Run the goahead program
①
and

use the ifconfig command to view the IP address of the SylixOS target system, such as

the displayed IP address 192.168.1.13.

Start the browser on the PC host and enter http://192.168.1.13/ in the address bar

and then press Enter, the web page information will be displayed. The default information

is "Congratulations! The server is up and running.", modify the index.html file under

the ../web directory. Run goahead again, start the browser, the modified content will be

displayed

21.6 C-Language Interpreter

An Interpreter is a program that can directly translate and run high-level programming

languages line by line. The interpreter does not translate the entire program at a time.

Rather, it acts like an “intermediary”. The program must be converted into another

language before it is run. Therefore, the interpreter program runs slowly. It runs a line of

program immediately after the line is translated. And then, it will translate and run the next

line, and so on.

Picoc is an open source code project that was originally intended to realize the

execution and interpretation of C-language on an embedded device. Its core code is only

about 4,000 lines, readable and it is able to execute the basic C runtime library, very

suitable for use as a script in automation areas such as robots and drones.

SpaceChain OS

818

Application Development Manual

21.6.1 Picoc Porting

The Tiny-c-interpreter project is the name of the Picoc interpreter on github, which

has now been ported to SylixOS and can be compiled using RealEvo-IDE. The

compilation and execution of the Picoc interpreter relies on the readline library, so the

readline project should be compiled before compiling of the Picoc interpreter.

Its project file is available athttps://github.com/jiaojinxing/tiny-c-interpreter. After the

project file is cloned into a local directory, open the folder and you will find there are no

source files. Here, the TortoiseGit tool should be installed. And then, right click

/TortoiseGit/SubMoudle Add in the blank space to add the assembly. You also need to

clone the project readline in the same workspace. Compile the readline project first and

then compile the tiny-c-interpreter project.

21.6.2 Picoc Usage Verification

Upload the compiled project file to the target system of SylixOS. The files that need to

be uploaded include libreadline.so and picoc files. libreadline.so is uploaded to the /lib

directory of the target system of SylixOS, and picoc is uploaded to the /apps/picoc

directory. In the project directory tiny-c-interpreter/test is picoc test project routines, copy

00_assignment.c file to /apps/picoc directory. The execution effect of picoc is as follows:

./picoc 00_assignment.c

42

64

12, 34

 Application Development Manual
SpaceChain OS

819

Chapter 22 Platform Porting

22.1 From Linux to SylixOS

Linux is a UNIX-like operating system that is compatible with POSIX standards and

supports multi-user, multi-thread, and multi-CPU. The basic idea of Linux is that

everything is a file. SylixOS follows this philosophy, and all that in SylixOS (including

hardware, software devices, etc.) can be seen as files. As a POSIX-compliant operating

system, SylixOS can easily run the applications under the POSIX standard (such as the

third-party software described in Chapter 21). Therefore, the same POSIX-compliant

application under Linux can be run perfectly under SylixOS without any modification, as

shown in Program List 22.1.

Program List 22.1 Thread Creation

#include <stdio.h>

#include <pthread.h>

#include <unistd.h>

#include <errno.h>

void *thread1 (void *arg)

{

 int i;

 for (i = 0; i < 10; i++) {

 fprintf(stdout, "thread1 running...\n");

 sleep(1);

 }

 return (NULL);

}

int main (int argc,char *argv[])

{

 pthread_t tid;

 int ret;

 ret = pthread_create(&tid, NULL, thread1, NULL);

 if (ret < 0) {

 perror("pthread_create");

 return (-1);

 }

 pthread_join(tid, NULL);

SpaceChain OS

820

Application Development Manual

 return (0);

}

Note: The method to port the Linux application SylixOS is described in Section21.2 zlib File

Compression Library.

22.2 From VxWorks to SylixOS

VxWorks is also a POSIX-compliant real-time operating system (this is exactly the

same as SylixOS), so there is not much difference between the two operating systems for

POSIX application, and the two are basically fully compatible (SylixOS is more compatible

with the POSIX standard thanVxWorks). Besides, SylixOS provides a VxWorks

compatible interface to enable VxWorks developers to adapt to SylixOS's program

development faster. The following is an example of the API in the SylixOS logging system.

#include <SylixOS.h>

INT logFdSet(INT iWidth, fd_set *pfdsetLog);

INT logFdGet(INT *piWidth, fd_ser *pfdsetLog);

22.2.1 Development of VxWorks Applications in RealEvo-IDE

RealEvo-IDE provides a compatible library for the development of VxWorks program,

which makes SylixOS fully compatible with VxWorks in terms of code (Figure 22.1 is a

compatible library file supported by SylixOS for VyWorks). The following describes how to

use the RealEvo-IDE to develop a VxWorks program:

1. Creation of SylixOS Base Project

Open RealEvo-IDE and create a new SylixOS base project (Refer to Section 4.1.1

Creating SylixOS Base project for the creation process). Note that, the default library

selection dialog box should be selected as the libVxWorks-compliant library (the VxWorks

application depends on this library) and finally click "Finish” to finish the creation of the

project, as shown in Figure 22.1.

SpaceChain OS

821

Application Development Manual

Figure 22.1 Selection of Default Library

The created SylixOS base project directory contains: libcextern (standard C library),

libsylixos (SylixOS kernel library), libVxWorks (VxWorks-compliant library), etc., as shown

in Figure 22.2.

Compile the SylixOS base project. After successful programming, the libVxWorks.so

file will be generated under libVxWorks/Debug. This file is the dynamic library that needs

to be linked when the VxWorks application runs under SylixOS.

SpaceChain OS

822

Application Development Manual

Figure 22.2 libVxWorks Directory Structure

Figure 22.3 libVxWorks Directory Structure (continued)

2. Creation of VxWorks Application

SpaceChain OS

823

Application Development Manual

Create a VxWorks application project (see Section 4.1.2). After the creation is

complete, modify the project's target Makefile (*.mk) file, as shown in Figure 22.4.

Figure 22.4 Modification of Makefile

 LOCAL_INC_PATH: including the header file directory, with the libVxWorks

header file path added;

 LOCAL_DEPEND_LIB: including the dependent dynamic library, with the

VxWorks dynamic library added;

 LOCAL_DEPEND_LIB_PATH: including the dependent dynamic library path,

with the VxWorks dynamic library path added.

The following program shows the use of binary semaphores in VxWorks. This

program creates two tasks by calling the taskSpawn function. Semaphore 1 (semId1) is

taken in task A, and then Semaphore 2 (semId2) given. Task B starts running and gives

Semaphore 1 (semId1), thus achieving the synchronization of Task A and Task B.

Program List 22.2 Use of VxWorks semaphores

#include <vxWorks.h>

#include <taskLib.h>

#include <semLib.h>

#include <stdio.h>

#define TASK_PRI (98) /* Task priority

 */

#define TASK_STACK_SIZE (5000) /* Task stack size

 */

LOCAL SEM_ID semId1; /* Binary semaphore 1

 */

LOCAL SEM_ID semId2; /* Binary semaphore 2

 */

SpaceChain OS

824

Application Development Manual

LOCAL BOOL flag;

LOCAL int num = 4;

LOCAL STATUS taskA()

{

 int i;

 for (i = 0; i < num; i++) {

 if (semTake(semId1, WAIT_FOREVER) == ERROR) {

 perror("taskA: semTake");

 return (ERROR);

 }

 printf("[done-%d]taskA: Releasing semId2 [taskB process]\n", i + 1);

 if (semGive(semId2) == ERROR) {

 perror("taskA: semGive");

 return (ERROR);

 }

 }

 return (OK);

}

LOCAL STATUS taskB()

{

 int i;

 for (i = 0; i < num; i++) {

 if (semTake(semId2, WAIT_FOREVER) == ERROR) {

 perror("taskB: semTake");

 return (ERROR);

 }

 printf("[done-%d]taskB: Releasing semId1 [taskA process]\n", i + 1);

 if (semGive(semId1) == ERROR) {

 perror("taskB: semGive");

 return (ERROR);

 }

 }

 flag = FALSE;

 return (OK);

SpaceChain OS

825

Application Development Manual

}

STATUS synch ()

{

 flag = TRUE;

 if ((semId1 = semBCreate(SEM_Q_PRIORITY, SEM_FULL)) == (SEM_ID)NULL) {

 perror("synch: semBCreate");

 return (ERROR);

 }

 if ((semId2 = semBCreate(SEM_Q_PRIORITY, SEM_EMPTY)) == (SEM_ID)NULL) {

 perror("synch: semBCreate");

 return (ERROR);

 }

 if (taskSpawn("tTaskA", TASK_PRI, 0, TASK_STACK_SIZE, (FUNCPTR)taskA, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0) == ERROR) {

 perror("synch: taskSpawn");

 return (ERROR);

 }

 if (taskSpawn("tTaskB", TASK_PRI, 0, TASK_STACK_SIZE, (FUNCPTR)taskB, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0) == ERROR) {

 perror("synch: taskSpawn");

 return (ERROR);

 }

 while (flag)

 taskDelay(sysClkRateGet());

 if (semDelete(semId1) == ERROR) {

 perror("synch: semDelete");

 return (ERROR);

 }

 if (semDelete(semId2) == ERROR) {

 perror("synch: semDelete");

 return (ERROR);

 }

 printf("synch now completed.\n");

 return (OK);

}

SpaceChain OS

826

Application Development Manual

int main(int argc, char * argv[])

{

 synch ();

 return (OK);

}

Run the program under SylixOS Shell and the results are as follows:

./vxworks_test

VxWork compatibility library enter.

[done-1]taskA: Releasing semId2 [taskB process]

[done-1]taskB: Releasing semId1 [taskA process]

[done-2]taskA: Releasing semId2 [taskB process]

[done-2]taskB: Releasing semId1 [taskA process]

[done-3]taskA: Releasing semId2 [taskB process]

[done-3]taskB: Releasing semId1 [taskA process]

[done-4]taskA: Releasing semId2 [taskB process]

[done-4]taskB: Releasing semId1 [taskA process]

synch now completed.

VxWork compatibility library exit.

From the running results of the operation, it can be seen that the VxWorks application

can run normally under SylixOS without any modification. And the running result is the

same as the program expectation (synchronous running of task A and task B).

SpaceChain OS

827

Application Development Manual

Appendix A Standard Header File

A.1 C Standard Header File

Table A.1 C Standard Header File

Header file name Description

<assert.h> Verifier assertion

<ctype.h> Character type

<errno.h> Error code

<inttypes.h> Integer format conversion

<limits.h> Implemented constant

<locale.h> Local category

<setjmp.h> Non-local goto

<signal.h> Signal

<stdarg.h> Variable parameter table

<stdint.h> Integral

<stdio.h> Standard I/O library

<stdlib.h> Utility library functions

<string.h> String manipulation

<time.h> Time and date

<wchar.h> Support for extended multi-byte and wide character

<wctype.h> Support for wide character classification and mapping

A.2 POSIX Standard Header File

Table A.2 POSIX Standard Header File

Header file name Description Header file name Description

< dirent.h> Directory item <dlfcn.h>
Dynamic link library operation

function

< fcntl.h> File control <fmtmsg.h> Message display structure

< fnmatch.h>
File name matching

type
<ftw.h> File tree roaming

< grp.h> Group file <iconv.h>
Code set conversion utility

program

< netdb.h>
Network database

operations
<langinfo.h> Language information constant

< pwd.h> Password file <libgen.h>
Definition of pattern matching

function

< regex.h> Regular expression <monetary.h> Currency type

SpaceChain OS

828

Application Development Manual

< tar.h> TAR archived value <ndbm.h> Database operation

< termios.h> Terminal I/O <nl_types.h> Message category

< unistd.h> Symbolic constant <poll.h> Polling function

< arpa/inet.h> Internet definition <search.h> Search list

< netinet/in.h>
Internet address

family
<strings.h> String manipulation

<netinet/tcp.h>

Definition of

Transmission Control

Protocol

<syslog.h> System error logging

<sys/mman.h>
Memory Management

Statement
<ulimit.h> User restrictions

< sys/select.h> select function <utmpx.h> User account database

< sys/socket.h> Socket interface <sys/ipc.h> IPC mechanism

< sys/stat.h> File status <sys/msg.h> Message queue

< sys/times.h> Process time <sys/resource.h> Resource operation

< sys/ types.h>
Basic system data

type
<sys/sem.h> Semaphore

<sys/un.h>
Definition of UNIX

domain socket
<sys/shm.h> Shared memory

<sys/utsname.h> System name <sys/statvfs.h> File system information

<sys/wait.h> Process control <sys/time.h> Time type

<cpio.h> Cpio archive value <sys/timeb.h>
Definitions of additional date and

time

<sys/uio.h> Vector I/O operation <aio.h> Asynchronous I/O

<mqueue.h> Message queue <pthread.h> Thread

<sched.h> Perform scheduling <semaphore.h> Semaphore

<spawn.h>
Real-time spawn

interface
<stropts.h> XSI STREAMS Interface

<trace.h> Time tracking <sched_rms.h>
①
 RMS scheduling

① The POSIX standard does not define this section. This is an extension to POSIX by SylixOS.

 Application Development Manual
SpaceChain OS

829

SpaceChain OS

830

Application Development Manual

Annex B SylixOS Error Number

B.1 POSIX Error Number

Table B.1 POSIX Error Number

Error Number Description Error Number Description

EPERM Not owner EEXIST File exists

ENOENT No such file or directory EXDEV Cross-device link

ESRCH No such process ENODEV No such device

EINTR Interrupted system call ENOTDIR Not a directory

EIO I/O error EISDIR Is a directory

ENXIO No such device or address EINVAL Invalid argument or format

E2BIG Arg list too long or over flow ENFILE File table overflow

ENOEXEC Exec format error EMFILE Too many open files

EBADF Bad file number ENOTTY Not a typewriter

ECHILD No children ENAMETOOLONG File name too long

EAGAIN
No more processes or

operation would block
EFBIG File too large

ENOMEM Not enough core ENOSPC No space left on device

EACCES
Permission denied or can not

access
ESPIPE Illegal seek

EFAULT Bad address EROFS Read-only file system

ENOTEMPTY Directory not empty EMLINK Too many links

EBUSY Mount device busy EPIPE Broken pipe

EDEADLK Resource deadlock avoided ENOLCK No locks available

ENOTSUP Unsupported value EMSGSIZE Message size

EDOM Argument too large ERANGE Result too large

ECANCELED Operation canceled EWRPROTECT Write protect

EFORMAT Invalid format ENOSR Insufficient memory

EBADMSG Invalid STREAMS message ENODATA
Missing expected

message data

ETIME STREAMS timeout occurred ENOMSG
Unexpected message

type

B.2 IPC/Web Error Number

Table B.2 Web Error Number

Error Number Description Error Number Description

SpaceChain OS

831

Application Development Manual

EDESTADDRREQ
Destination address

required

ETOOMANYREFS Too many references:

can't splice

EPROTOTYPE
Protocol wrong type for

socket

ETIMEDOUT Connection timed out

ENOPROTOOPT Protocol not available ECONNREFUSED Connection refused

EPROTONOSUPPORT Protocol not supported ENETDOWN Network is down

ESOCKTNOSUPPORT
Socket type not

supported

ETXTBSY Text file busy

EOPNOTSUPP
Operation not supported

on socket

ELOOP Too many levels of

symbolic links

EPFNOSUPPORT
Protocol family not

supported

EHOSTUNREACH Host unreachable

EAFNOSUPPORT
Addr family not

supported

ENOTBLK Block device required

EADDRINUSE Address already in use EHOSTDOWN Host is down

EADDRNOTAVAIL
Can't assign requested

address

EINPROGRESS Operation now in

progress

ENOTSOCK
Socket operation on

non-socket

EALREADY Operation already in

progress

ENETUNREACH Network unreachable
ENOSYS Function not

implemented

ENETRESET
Network dropped

connection on reset

ESHUTDOWN Can't send after

socket shutdown

ECONNABORTED
Software caused

connection abort

ENOTCONN Socket is not

connected

ECONNRESET Connection reset by peer
EISCONN Socket is already

connected

ENOBUFS No buffer space available

SpaceChain OS

832

Application Development Manual

B.3 SylixOS Kernel Error Number

Table B.3 Kernel Error Number

Error Number Description

ERROR_NONE No error (0)

PX_ERROR Error (-1)

ERROR_KERNEL_PNAME_NULL Invalid name

ERROR_KERNEL_PNAME_TOO_LONG Name too long

ERROR_KERNEL_HANDLE_NULL Invalid handle

ERROR_KERNEL_IN_ISR Kernel in interrupt service mode

ERROR_KERNEL_RUNNING Kernel is running

ERROR_KERNEL_NOT_RUNNING Kernel is not running

ERROR_KERNEL_OBJECT_NULL Invalid object

ERROR_KERNEL_LOW_MEMORY Kernel not enough memory

ERROR_KERNEL_BUFFER_NULL Invalid buffer

ERROR_KERNEL_OPTION Unsupported option

ERROR_KERNEL_VECTOR_NULL Invalid vector

ERROR_KERNEL_HOOK_NULL Invalid hook

ERROR_KERNEL_OPT_NULL Invalid option

ERROR_KERNEL_MEMORY Invalid address

ERROR_KERNEL_LOCK Kernel locked

ERROR_KERNEL_CPU_NULL Invalid cpu

ERROR_KERNEL_HOOK_FULL Hook table full

ERROR_KERNEL_KEY_CONFLICT Key conflict

ERROR_DPMA_NULL Invalid DPMA

ERROR_DPMA_FULL DPMA full

ERROR_DPMA_OVERFLOW DPMA overflow

ERROR_LOADER_FORMAT Invalid format

ERROR_LOADER_ARCH Invalid architectural

ERROR_LOADER_RELOCATE Reloacate error

ERROR_LOADER_EXPORT_SYM Can not export symbol(s)

ERROR_LOADER_NO_MODULE Can not find module

ERROR_LOADER_CREATE Can not create module

ERROR_LOADER_NO_INIT Can not find initial routien

ERROR_LOADER_NO_ENTRY Can not find entry routien

ERROR_LOADER_PARAM_NULL Invalid parameter(s)

ERROR_LOADER_UNEXPECTED Unexpected error

ERROR_LOADER_NO_SYMBOL Can not find symbol

SpaceChain OS

833

Application Development Manual

ERROR_LOADER_VERSION Module version not fix to current os

ERROR_HOTPLUG_POLL_NODE_NULL No hotplug node

ERROR_HOTPLUG_MESSAGE_NULL No hotplug message

ERROR_SIGNAL_SIGQUEUE_NODES_NULL Not enough sigqueue node

ERROR_EXCE_LOST Exception message lost

ERROR_LOG_LOST Log message lost

ERROR_LOG_FMT Invalid log format

ERROR_LOG_FDSET_NULL Invalid fd set

ERROR_SYSTEM_HOOK_NULL Invalid hook

ERROR_SYSTEM_LOW_MEMORY System not enough memory

ERROR_RMS_FULL RMS full

ERROR_RMS_NULL Invalid RMS

ERROR_RMS_TICK RMS tick

ERROR_RMS_WAS_CHANGED RMS was changed

ERROR_RMS_STATUS RMS status

ERROR_INTER_LEVEL_NULL Invalid interrupt level

ERROR_TIME_NULL Invalid time

ERROR_EVENT_MAX_COUNTER_NULL Invalid event max counter

ERROR_EVENT_INIT_COUNTER Invalid event counter

ERROR_EVENT_NULL Invalid event

ERROR_EVENT_FULL Event full

ERROR_EVENT_TYPE Event type

ERROR_EVENT_WAS_DELETED Event was delete

ERROR_EVENT_NOT_OWN Event not own

ERROR_EVENTSET_NULL Invalid eventset

ERROR_EVENTSET_FULL Eventset full

ERROR_EVENTSET_TYPE Eventset type

ERROR_EVENTSET_WAIT_TYPE Eventset wait type

ERROR_EVENTSET_WAS_DELETED Eventset was delete

ERROR_EVENTSET_OPTION Eventset option

ERROR_POWERM_NODE Invalid PowerM node

ERROR_POWERM_TIME Invalid PowerM time

ERROR_POWERM_FUNCTION Invalid PowerM function

ERROR_POWERM_NULL Invalid PowerM

ERROR_POWERM_FULL PowerM full

ERROR_POWERM_STATUS PowerM status

B.4 Thread Error Number

Table B.4 Thread Error Number

SpaceChain OS

834

Application Development Manual

Error Number Description

ERROR_THREAD_STACKSIZE_LACK Not enough stack

ERROR_THREAD_STACK_NULL Invalid stack

ERROR_THREAD_FP_STACK_NULL Invalid FP stack

ERROR_THREAD_ATTR_NULL Invalid attribute

ERROR_THREAD_PRIORITY_WRONG Invalid priority

ERROR_THREAD_WAIT_TIMEOUT Wait timed out

ERROR_THREAD_NULL Invalid thread

ERROR_THREAD_FULL Thread full

ERROR_THREAD_NOT_INIT Thread not initialized

ERROR_THREAD_NOT_SUSPEND Thread not suspend

ERROR_THREAD_VAR_FULL Thread var full

ERROR_THERAD_VAR_NULL Invalid thread var

ERROR_THREAD_VAR_NOT_EXIST Thread var not exist

ERROR_THREAD_NOT_READY Thread not ready

ERROR_THREAD_IN_SAFE Thread in safe mode

ERROR_THREAD_OTHER_DELETE Thread has been delete by other

ERROR_THREAD_JOIN_SELF Thread join self

ERROR_THREAD_DETACHED Thread detached

ERROR_THREAD_JOIN Thread join

ERROR_THREAD_NOT_SLEEP Thread not sleep

ERROR_THREAD_NOTEPAD_INDEX Invalid notepad index

ERROR_THREAD_OPTION Invalid option

ERROR_THREAD_RESTART_SELF Thread restart self

ERROR_THREAD_DELETE_SELF Thread delete self

ERROR_THREAD_NEED_SIGNAL_SPT Thread need signal support

ERROR_THREAD_DISCANCEL Thread discancel

ERROR_THREADPOOL_NULL Invalid threadpool

ERROR_THREADPOOL_FULL Threadpool full

ERROR_THREADPOOL_MAX_COUNTER Invalid threadpool Max counter

SpaceChain OS

835

Application Development Manual

B.5 Message Queue Error Number

Table B.5 Message Queue Error Number

Error Number Description

ERROR_MSGQUEUE_MAX_COUNTER_NULL Invalid MQ max counter

ERROR_MSGQUEUE_MAX_LEN_NULL Invalid MQ max length

ERROR_MSGQUEUE_FULL MQ full

ERROR_MSGQUEUE_NULL Invalid MQ

ERROR_MSGQUEUE_TYPE MQ type

ERROR_MSGQUEUE_WAS_DELETED MQ was delete

ERROR_MSGQUEUE_MSG_NULL Invalid MQ message

ERROR_MSGQUEUE_MSG_LEN Invalid MQ message length

ERROR_MSGQUEUE_OPTION MQ option

B.6 TIMERError Number

Table B.6 timerError Number

Error Number Description

ERROR_TIMER_FULL Timer full

ERROR_TIMER_NULL Invalid timer

ERROR_TIMER_CALLBACK_NULL Invalid timer callback

ERROR_TIMER_ISR In timer interrupt service

ERROR_TIMER_TIME Invalid time

ERROR_TIMER_OPTION Timer option

ERROR_RTC_NULL Invalid RTC

ERROR_RTC_TIMEZONE Invalid timezone

SpaceChain OS

836

Application Development Manual

B.7 Memory Operation Error Number

Table B.7 Memory Operation Error Number

Error Number Description

ERROR_PARTITION_FULL Partition full

ERROR_PARTITION_NULL Invalid partition

ERROR_PARTITION_BLOCK_COUNTER Invalid partition block counter

ERROR_PARTITION_BLOCK_SIZE Invalid partition block size

ERROR_PARTITION_BLOCK_USED Partition used

ERROR_REGION_FULL Region full

ERROR_REGION_NULL Invalid region

ERROR_REGION_SIZE Invalid region size

ERROR_REGION_USED Pegion used

ERROR_REGION_ALIGN Miss align

ERROR_VMM_LOW_PHYSICAL_PAGE Not enough physical page

ERROR_VMM_LOW_LEVEL Low level error

ERROR_VMM_PHYSICAL_PAGE Physical page error

ERROR_VMM_VIRTUAL_PAGE Virtual page error

ERROR_VMM_PHYSICAL_ADDR Invalid physical address

ERROR_VMM_VIRTUAL_ADDR Invalid virtual address

ERROR_VMM_ALIGN Miss page align

ERROR_VMM_PAGE_INVAL Invalid page

ERROR_VMM_LOW_PAGE Low page

ERROR_DMA_CHANNEL_INVALID Invalid DMA channel

ERROR_DMA_TRANSMSG_INVALID Invalid DMA Transmessage

ERROR_DMA_DATA_TOO_LARGE Data too large

ERROR_DMA_NO_FREE_NODE No free DMA node

ERROR_DMA_MAX_NODE Max DMA node in queue

SpaceChain OS

837

Application Development Manual

B.8 I/O System Error Number

Table B.8 I/OError Number

Error Number Description

ERROR_IOS_DRIVER_GLUT Driver full

ERROR_IOS_FILE_OPERATIONS_NULL Invalid file operations

ERROR_IOS_FILE_READ_PROTECTED Read protected

ERROR_IOS_FILE_SYMLINK symbol link

ERROR_IO_NO_DRIVER No driver

ERROR_IO_BUFFER_ERROR Buffer incorrect

ERROR_IO_VOLUME_ERROR Volume incorrect

ERROR_IO_SELECT_UNSUPPORT_IN_DRIVER Driver unsupport select

ERROR_IO_SELECT_CONTEXT Invalid select context

ERROR_IO_SELECT_WIDTH Invalid width

ERROR_IO_SELECT_FDSET_NULL Invalid fd set

B.9 Shell Operation Error Number

Table B.9 ShellError Number

Error Number Description

ERROR_TSHELL_EPARAM Invalid shell parameter(s)

ERROR_TSHELL_OVERLAP Keyword overlap

ERROR_TSHELL_EKEYWORD Invalid keyword

ERROR_TSHELL_EVAR Invalid variable

ERROR_TSHELL_CANNT_OVERWRITE Can not over write

ERROR_TSHELL_ENOUSER Invalid user name

ERROR_TSHELL_EUSER No user

ERROR_TSHELL_ELEVEL Insufficient permissions

ERROR_TSHELL_CMDNOTFUND Can not find command

B.10 Other Error Numbers

Table B.10 Other Error Numbers

Error Number Description Error Number Description

EIDRM Identifier removed ELNRNG Link number out of range

SpaceChain OS

838

Application Development Manual

ECHRNG Channel number out of range
EUNATCH Protocol driver not

attached

EL2NSYNC Level 2 not synchronized
ENOCSI No CSI structure available

EL2NSYNC Level 2 not synchronized EL2HLT Level 2 halted

EL3HLT Level 3 halted EBADE Invalid exchange

EL3RST Level 3 reset EBADR Invalid request descriptor

EXFULL Exchange full ENOANO No anode

EBADRQC Invalid request code EBADSLT Invalid slot

EBFONT Bad font file format
ENONET Machine is not on the

network

ENOPKG Package not installed EREMOTE Object is remote

ENOLINK Link has been severed EADV Advertise error

ESRMNT Srmount error
ECOMM Communication error on

send

EMULTIHOP Multihop attempted EDOTDOT RFS specific error

EUCLEAN Structure needs cleaning
ENOTUNIQ Name not unique on

network

EBADFD File descriptor in bad state EREMCHG Remote address changed

ELIBACC
Can not access a needed

shared library

ELIBBAD Accessing a corrupted

shared library

ELIBSCN .lib section in a.out corrupted
ELIBMAX Attempting to link in too

many shared libraries

ELIBEXEC
Cannot exec a shared library

directly

ERESTART Interrupted system call

should be restarted

ESTRPIPE Streams pipe error EUSERS Too many users

ESTALE Stale NFS file handle
ENOTNAM Not a XENIX named type

file

ENAVAIL
No XENIX semaphores

available

EISNAM Is a named type file

EREMOTEIO Remote I/O error EDQUOT Quota exceeded

ENOMEDIUM No medium found EMEDIUMTYPE Wrong medium type

EILSEQ Illegal byte sequence

 Application Development Manual
SpaceChain OS

839

Annex C Description of SylixOS Makefile

C.1 Description of SylixOS Makefile

RealEvo-IDE generates a Makefile when creating a SylixOS project. In order to

maintain the flexibility of the SylixOS building system, the generated Makefile file is

allowed to be manually modified by the user. When you need to add or delete any file in

your project, you must manually modify the Makefile file. This section mainly analyzes

SylixOS Makefile file, to facilitate the users to modify the building function of custom

SylixOS during use.

C.1.1 Directory Structure of SylixOS

The contents of the Makefile are related to the directory structure. The following are

some typical directory structures in the SylixOS system:

1. Application and BSP Directory Structures

The SylixOS App projects, SylixOS Shared Lib projects, SylixOS Kernel Module

projects and BSP (SylixOS BSP) projects have similar source directory structures. As can

be seen from Figure C.1 and Figure C.2, the Makefile of the project is located in the root

directory of the source code.

The directory structures of SylixOS application projects, shared library projects and

kernel module project are as follows:

Figure C.1 Directory Structure of Project

The directory structure of the SylixOS BSP project is as below:

SpaceChain OS

840

Application Development Manual

Figure C.2 Directory Structure of BSP Project

2. Directory Structure of SylixOS Base Project

SylixOS Base packs several subprojects into a unified management project. Each

subproject is a subfolder under the SylixOS Base project directory, containing the

subproject's Makefile file. The SylixOS Base project itself also contains the Makefile file.

The Base project directory is structured as follows:

Figure C.3 Directory Structure of SylixOS Base Project

SpaceChain OS

841

Application Development Manual

We can extract subprojects from the SylixOS Base project to build a separate project,

or add new subprojects to the SylixOS Base project, the process is as follows:

 Copy project source code folder;

 Modify the SylixOS Base project’s Makefile file.

The contents of the SylixOS Base project’s Makefile file are as follows:

COMPONENTS = \

libsylixos \

libcextern \

libVxWorks \

libreadline \

liblua \

libsqlite3 \

pciutils \

libzmodem \

libexpat \

libluaplugin \

libsunrpc \

unfsd

all: $(COMPONENTS)

 @for target in $(COMPONENTS); do make -C $$target all -j100; done

clean: $(COMPONENTS)

 @for target in $(COMPONENTS); do make -C $$target clean; done

The above is the contents of the Makefile file of the SylixOS Base project. For the

implementation, the Makefile of each subproject is called. If you want to add and delete a

subproject, just add or delete the corresponding entries based on this structure.

C.1.2 config.mk File

All the projects generated by RealEvo-IDE include a config.mk file. The config.mk file

is generated by RealEvo-IDE and contains the basic settings of the SylixOS building

system, such as the toolchain, Base project path, and so on. When compiling SylixOS with

RealEvo-IDE, the config.mk file must be modified using the RealEvo-IDEFig. configuration

interface (refer to RealEvo-IDE User Manual). If you use other development environments,

you can manually modify it. The following is the instructions for config.mk file

configuration.

#***

SylixOS Base Project path

SpaceChain OS

842

Application Development Manual

#***

SYLIXOS_BASE_PATH := D:/sylixos/book/source/sylixos-base

#***

Toolchain prefix

#***

TOOLCHAIN_PREFIX := arm-sylixos-eabi-

#***

Debug options (debug or release)

#***

DEBUG_LEVEL = debug

#***

NOTICE: libsylixos, BSP and other kernel modules projects CAN NOT use vfp!

#***

FPUFLAGS = disable

CPUFLAGS = arm920t

Variable analysis:

 SYLIXOS_BASE_PATH is the path of the SylixOS Base project. If it is SylixOS

Base project itself, the default setting is "..";

 TOOLCHAIN_PREFIX is the prefix of toolchain;

 DEBUG_LEVEL is the debugging mode (including Debug and Release);

 FPUFLAGS is setting of a floating-point processor, and its value varies according

to the compiler. The FPUFLAGS configuration is only effective for applications

and shared library projects by default;

 CPUFLAGS is the processor mode and its value varies according to the

compiler.

SpaceChain OS

843

Application Development Manual

C.1.3 Makefile File

The Makefile file is generated by RealEvo-IDE when the project is created, allowing

manual modification. This section describes its structure. Due to the huge amount of

contents in the Makefile file, this section only describes the key configuration.

1. config.mk File Location

As mentioned earlier, the SylixOS Base project consists of several subprojects.

These subprojects can also be constructed as separate projects. So the config.mk file

exists in both the subproject top folder and the SylixOS Base project top folder. When

calling the Makefile file of a sub-project, Makefile will first search the config.mk file in the

parent folder. If such file does not exist, Makefile will searches it in the same folder. The

source codes are as follows:

#***

include config.mk

#***

CONFIG_MK_EXIST = $(shell if [-f ../config.mk]; then echo exist; else echo

notexist; fi;)

ifeq ($(CONFIG_MK_EXIST), exist)

include ../config.mk

else

CONFIG_MK_EXIST = $(shell if [-f config.mk]; then echo exist; else echo notexist;

fi;)

ifeq ($(CONFIG_MK_EXIST), exist)

include config.mk

else

CONFIG_MK_EXIST =

endif

endif

2. Target Makefile

The target Makefiles for application projects, shared library projects, kernel module

projects, and BSP projects are defined by the following statements. Multiple targets can

be compiled by including different *.mk files:

#***

Include targets makefiles

#***

include app.mk

The following section of the custom target Makefile defines the list of compiled source

files:

#***

Source list

SpaceChain OS

844

Application Development Manual

#***

LOCAL_SRCS = \

src/app.c

Variable analysis:

 变量 LOCAL_SRCS 是

The variable LOCAL_SRCS is the list of source file paths. The paths use the

directory where the Makefile is located as the current directory. The

LOCAL_SRCS is generally used to add files to the project.

 Note: If the option“Custom Makefile configuration” in RealEvo-IDE is selected, RealEvo-IDE will

automatically scan the added new file and add it to the LOCAL_SRCS list.

3. Header File Path

The following code sets the header file path.

#***

Header file search path (eg. LOCAL_INC_PATH := -I"Your hearder files search

path")

#***

LOCAL_INC_PATH := \

-I"include"

Variable analysis:

 LOCAL_INC_PATH is a list of header files.

Note: The list of header paths can be configured via RealEvo-IDE as shown in Figure C.4.

SpaceChain OS

845

Application Development Manual

Figure C.4 Configuration of Header File Path

4. Predefined Macros

The following code sets the predefined macros of the compiler.

#***

Pre-defined macro (eg. -DYOUR_MARCO=1)

#***

LOCAL_DSYMBOL := -DDEBUG

Variable analaysis:

 LOCAL_DSYMBOL is a list of predefined macros.

Note: The predefined macros can be configured via the RealEvo-IDE as shown in Figure C.5.

SpaceChain OS

846

Application Development Manual

Figure C.5 Configure of Predefined Macros

5. Shared Library

The following code sets the shared library that the application depends on and the

path thereof.

#***

Depend library (eg. LOCAL_DEPEND_LIB := -la LOCAL_DEPEND_LIB_PATH := -L"Your

library search path")

#***

LOCAL_DEPEND_LIB := \

-lhellolibrary

LOCAL_DEPEND_LIB_PATH := \

-L"../hellolibrary/$(OUTDIR)"

Variable analysis:

 LOCAL_DEPEND_LIB is a list of shared libraries;

 LOCAL_DEPEND_LIB_PATH is a list of shared library paths.

Note: The list of shared libraries can be configured via RealEvo-IDE as shown in Figure C.6.

SpaceChain OS

847

Application Development Manual

Figure C.6 Configuration of the List of Shared Library

6. Code Coverage

The following sections describe the configuration supporting the code coverage:

#**

Code coverage config

#**

LOCAL_USE_GCOV := no

Note: The code coverage function can be configured and enabled via the RealEvo-IDE as shown in

Figure C.7.

SpaceChain OS

848

Application Development Manual

Figure C.7 Enabling of Code Coverage

SpaceChain OS

849

Application Development Manual

7. Object file

Different files are generated in different types of projects. For the SylixOS kernel

project, the following object files are inherently generated:

 Libsylixos.a is the kernel library file;

 Libvpmpdm.so, libvpmpdm.a is the process patch library file;

 Xin xinput.ko and xsiipc.ko are the driver module files that comes with the kernel;

 symbol.c and symbol.h are the kernel symbol table source files, used to establish

the system kernel symbol table.

The following section defines the target types for compilation:

include $(APPLICATION_MK)

SylixOS includes the following compilation target types:

 APPLICATION_MK is used to compile common applications;

 BSP_MK is used to compile BSP programs;

 KERNEL_LIBRARY_MK is used to compile the kernel library file;

 KERNEL_MODULE_MK is used to compile kernel module file;

 LIBRARY_MK is used to compile the application library file;

 LIBSYLIXOS_MK is used to compile the SylixOS kernel;

 UNIT_TEST_MK is used to compile the multi-object file for unit test.

8. BSP link script

#***

load script

#***

LOCAL_LD_SCRIPT = SylixOSBSP.ld

Variable analysis:

 LOCAL_LD_SCRIPT is a link script file.

SpaceChain OS

850

Application Development Manual

 Application Development Manual
SpaceChain OS

851

Annex D Description of SylixOSOpen Source

Community

The SylixOS open source community, created by Beijing ACOINFO and jointly

maintained by SylixOS enthusiasts, is a public platform for SylixOS open source software

learning and communication. Here, you can learn and consult all updates and released

information about SylixOS. The community contains the following sections:

 Community News: Through this section, you can learn about the recent events

of SylixOS;

 Application Porting and Development: This section contains a discussion of

issues related to SylixOS application porting and development;

 Driver Development: This section mainly discusses the development of drivers,

or the development of BSP programs, etc;

 OS Porting: Through this section, you can find the knowledge about SylixOS

operating system and SylixOS simulator;

 Kernel Function Discussion: Here you can learn SylixOS kernel function, or

you can put forward suggestions to improve the kernel function;

 Network Communication Development: Here you can ask or answer

questions about SylixOS network;

 Business Case Presentation: This section will present the cases about the

application of SylixOS in business;

 Integrated Development Environment: Your can solve the problems

encountered in using the SylixOS integrated development environment through

this section;

 Technical Communication: This is a technology convergence section where

you can learn various kinds of technical knowledge.

 Lurk and Roasting: This is an open section to discuss various life issues.

SylixOS enthusiasts can freely speak in these sections to ask questions related to

SylixOS, and through the SylixOS open source community, you can quickly learn about

the latest developments in SylixOS.

 Application Development Manual
SpaceChain OS

852

References

Operating Systems : Internals And Design Principles (7th Edition) , William Stallings

This book describes in depth the principles of the operating system.

Unix Network Programming, Volume 1: The Sockets Networking API(3rd Edition),

W.Richard Stevens/Bill Fenner et.al.

This book describes the web socket programming method.

A Linux and UNIX System Programming Handbook, Michael Kerrisk

This book describes in depth the programming method in the Linux environment.

TCP/IP Illustrated, Volume 1: The Protocols , W.Richard Stevens

This is a complete and detailed guide to the TCP/IP protocol.

TCP/IP Illustrated, Vol 2: The Implementation, W.Richard Stevens

This book provides an in-depth analysis of the implementation of the TCP/IP

protocol.

Advanced VxWorks Program Design, Li Fangmin

This book describes in detail the programming method of VxWorks.

Advanced Programming in the UNIX Environment, W.Richard Stevens/Stephen

A.Rago

This book provides a comprehensive and in-depth description of the

programming method in the UNIX environment.

Embedded Real-time System Design Based on VxWorks, Wang Jingang et.al.

This is a textbook that introduces the principles and applications of embedded

systems.

